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INTRODUCTION

Soit W une variété compacte a bord dont le bord est la réunion de deux variétés Vet V' ; on dit
que W est un h-cobordisme entre V et V' si les injection de Vet V' dans W sont de équivalences
d'homotopie. S. Smale ([5]) a démontré que tout #-cobordisme simplement connexe de dimension
au moins 6 est difféomorphe au produit V' x [0, 1], et, par suite, que deux variétés simplement
connexes de dimension au moins 5 qui sont #-cobordantes sont difféomorphes.

C'est 'objet de ce cours de démontrer ce théoreme. On ne traitera ni des applications de ce
théoréme qui, pourtant, sont nombreuses et importantes (voir [1] ) ni des généralisations (voir [3]
pour le cas non simplement connexe). La méthode originale de démonstration utilisait une
présentation des variétés par anses (méthode utilisée dans [1], [3], [5]) ; M. Cerf a préféré utiliser
les foncions de Morse sur les variétés (comme dans [4]) car ce procédé lui permet d'atteindre des
résultats beaucoup plus fin que le théoréme du /-cobordisme concernant le groupe des
difféomorphismes d'une variété (ce choses ne sont pas abordées dans ce cour).

Le lecture de ce cours suppose la connaissance des théoréemes de base de la topologie
différentielle : principalment les théorémes de transversalité (voir bibliographie du chapitre I),
ensuite les théoremes de fibration de J. Cerf (voir I'appendice de [2]), enfin un théoréme (voir [4],
[7]) dont voici 1'énoncé :

Théoréme du nombre d'intersection. Soient M une variété, X et X' deux sous-variétes de M. On
suppose M, X, et X' compactes, connexes, orientées et sans bord;, on suppose en plus :

(@) mM)=0; m(M\X)=0;

(b) dimension M >5;

(¢) codimension X >2; codimension X' > 3;

(d) (dimension X) + (dimension X"') = dimension M.

Soit b le nombre d'intersection de X et X'. 1l existe un plongement f de X' dans M, qui soit isotope a
l'injection de X' dans M, et qui vérifie la condition suivante: f{X') coupe X en |b| points,
transversalement en chacun d'eux.

Parmi les conséquences des théoréme de transversalité, on utilisera les théoréme de plongement et
de séparation de Whitney (voir [1], [6]).

[1] J. CERF La théorie de Smale sur le #-cobordisme des variétés.
Séminaire Cartan, 14éme année, 1961-62, n° 11.
[2] J. CERF Sur les difféomorphismes de la sphére de dimension 3 (I'; = 0).

Lecture notes in mathematics, n° 53, Springer Verlag, 1968

[3] M. KERVAIRE Le théoréme de Baden-Mazur-Stallings.
Commentarii Mathematici Helvetici 40, 1965, p. 31-42.
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[4] J. MILNOR Lectures on the h-cobordism theorem.
Princeton mathematical notes, 1965

[5] S. SMALE On the structure of manifolds.
American Journal of Mathematics, 84, 1962, p. 387-399.

[6] H. WHITNEY  Differentiable manifolds.
Annals of Mathematics, 37, 1936, p. 645-680

[7] H. WHITNEY  The self-intersection of a smooth n-manifold in 2r-space.
Annals of Mathematics, 45, 1944, p. 220-245.
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CHAPITRE 1

TRANSVERSALITE

Ce chapitre ne contenant que des résultats classiques, nous nous abstenons de le rédiger. Une
courte bibliographie renvoie a divers articles concernant les théorémes de transversalité. Nous
énongons cependant l'unique théoréme que nous utiliseront par la suite.

DEFINITION. On appelle triade' la donnée de trois variétés (W, Vo, V1) ott W est une variété a
bord, et V, et Vi deux variétés disjointes, ouvertes et fermées dont la réunion est le bord de W.

Soit (W, Vi, V1) une triade, on désigne par F l'ensemble des applications différentiables
f: W — [0, 1] telles que

O =Vo, f(1)=7.

Sauf mention explicite du contraire, toute les variétés et applications considérées ici sont
différentiables de classe C*. L'espace F est muni de la topologie C”; il n'est pas vide.

DEFINITION. On dit qu'une fonction f € F est une fonctions de Morse si tous ses points critiques
sont non-dégénérées, et toutes ses valeurs critiques distinctes.

THEOREME. Le sous-ensemble de F formé des fonctions de Morse est un ouvert partout dense de
F pour la topologie C”.

Bibliographie du Chapitre 1

R. THOM Quelques propriétés globales des variétés différentiables.
Commentarii Mathematici Helvetici, 28, 1954, p. 17-86.

A. HAEFLIGER  Plongements différentiables de variétés dans variétés.
Commentarii Mathematici Helvetici, 36, 1961, p. 47-82.

C. MORLET Le lemme de Thom et les théorémes de plongement de Whitney.
Séminaire Cartan, 14¢éme année, 1961-1962, exposes n” 4, 5, 6 et 7.

R.ABRAHAM Transverse mappings and flows.
Benjamin Inc., 1967.

1  On utilise aussi le nom de cobordisme.
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CHAPITRE II

FONCTIONS DE MORSE SUR UNE TRIADE

Ce chapitre est un chapitre de legon de choses ou nous étudierons les propriétés immédiates des
triades (introduites dans le chapitre précédent) munies d'une foncions de Morse. Nous étudierons
d'abord les triades munies d'une fonctions sans point critique (paragraphe 1), puis au paragraphe 2,
nous montrerons qu'il existe un modele pour les points critiques d'une fonction de Morse ; enfin,
nous introduirons les nappes d'un point critique dont nous donnerons quelques propriétés
(paragraphe 3 et paragraphe 4).

Paragraphe 1. TRIADES SANS POINT CRITIQUE.
1. Le théoréme fondamental.
THEOREME 1. Soit (W, Vs, V1) une tirade compacte, et f: (W, Vo, V1) — ([a, b], {a}, {b}) une

fonction de Morse sans point critique, il existe un difféomorphisme ¢ : V, x [a, b] — W tel que le
diagramme

@
Vo x [a,b] > W
PZ\. ./f
[a, D]

soit commutatif.

Pour la démonstration de ce théoréme, le lecteur consultera J. MILNOR, Morse theory, (Annals
of mathematics studies, Princeton, n® 51, Part 3). La démonstrations consiste a munir / d'une
métrique riemannienne, et a appliquer la théorie des équations différentielles sur une variété au
champ de vecteurs X = grad. 1/ ||grad. f||*.

Remarque. La restrictions de ¢ a Vy X {a} définit un automorphisme 6 de V,. En composant ¢ avec
07" xid : V, x [a, b] — V, X [a, b], on se raméne au cas ou ¢ induit sur V, x {a} l'identité de V5.

Si H est 'espace des difféomorphismes ¢ : Vj X [a, b] — W astreints a la condition du théoréme,
et dont la restrictions a V, x {a} est I'injections canonique V, — W, il est clair que le groupe G des
isotopies de V, opére a gauche dans H de facon simplement transitive.

Remarque. Siy € W est un point non-critique de la fonction /: W — R, il existe un plongement
@ : D" ' x[-¢,&] — W (ou n est la dimension de W et D"~ la boule unité de R" ') tel que
(0, 0)=yet fo(x, t)=fy) +t. 1lsuffit, pour trouver ¢, de choisir des coordonnées locales au

voisinage de y pour lesquelles le champ grad. f'est égal au champ (0, ..., 0, 1).
2. Sous-triades.

Si N est une sous-variété compacte a bord de W, dont le bord AN est le réunion d'une sous-variété
M, de V, et d'une sous-variété M, de V1, et si N est transversale a b/ le long de bN, on dira que

6
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(N, My, M,) est une sous-triade de (W, V,, ).

THEOREME 2. Soit (N, My, M) une sous-tirade de (W, Vy, V), et f une fonction de Morse sans
point critique sur W qui induise une fonction sans point critique sur N, alors toute "trivialisation"
w : M, x [a, b] — N (le théoréme 1 en prouve l'existence) qui induit l'inclusion canonique sur

Ny % {a} peut se prolonger en une trivialisation ¢ : Vy X [a, b] — W, induisant sur V, x {a}
l'application canonique.

Démonstration. Lorsqu'on a identifi¢ N a M, x I (ou [ est l'intervalle [a, b]) par le difféomorphisme
w, et Wa ¥V, x I par un difféomorphisme dont le théoréme 1 affirme I'existence, choisi de fagon qu'il
induise l'application canonique sur V; % {a}, le probleme du prolongement de y devient celui de la
recherche d'une isotopie de V,, dont la restriction a M, soit une isotopie de plongement de M, dans
Vo donné. D'apres le théoréme de fibration de Cerf (voir Séminaire CARTAN, n° 15, (1962-63)
expose 8, page 1), 'application de restriction Aut(Vy) — Pl(M,, V) est une fibration localement
triviale, et on peut donc relever tout chemin de 1'espace P1(M,, V) lorsqu'on s'est donné le
relevement de son origine. Ceci achéve la démonstration.

Remarquons que, si y n'induit pas 'application canonique sur M, X {a}, pour prolonger v il faut
d'abord savoir si le difféomorphisme de M, défini par w | M, x {a}, se prolonge en un

difféomorphisme de ¥, c'est-a-dire si l'origine de 1'isotopie de plongement admet un relévement
dans Aut(V,).

<

W

M v
o o

figure 1
3. Voisinages tubulaires de sous-triades.
Nous groupons dans ce numéro deux résultats techniques qui nous seront utiles par la suite.

PROPOSITION 1. Soit (W, Vy, V1) une triade, f une fonctions de Morse sur W, (avec points
critiques éventuels), soit (N, My, M) une sous-triade sur laquelle f induit une fonctions de Morse
sans point critique, alors N admet dans W un voisinage tubulaire dont les fibres sont a niveau
constant.

figure 2
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Notons / le segment [a, b] (ou a =fV,) et b=f(V1)). Le théoréme 1 prouve l'existence d'un
plongement y : M, x I — W, dont I'image est N, et qui rende commutatif le diagramme

4
MyxI—>W

N S
I

Si U est un voisinage tubulaire assez petit de M, dans V%, on sait que y se prolonge en un
plongement @ : U x [ — W qui induit I'application canonique sur U x {a}, et qui réalise un
voisinage tubulaire de N dans W (ceci d'apres les propriétés des voisinages tubulaires). Mais 6 ne
respecte pas les niveaux sauf le niveau « et le niveau b. Nous aurons démontré la proposition
lorsque nous aurons remplacé 6 par un plongement ¢ : S x I — W (ou S est un voisinage tubulaire
assez petit de M, dans V}), qui prolonge v, qui induise 1'application canonique sur S x {a}, et qui
respecte les niveaux, c'est-a-dire rende commutatif le diagramme

4
SxI—-W

N\ S
1

Pour tout x de U, considérons la fonction ¢ — f(O(x, t)). Lorsque x est un point de M,, la dérivée
de cette fonctions n'est pas nulle (car elle est égale a 1); il existe donc un voisinage S (tubulaire) de
M, dans V¥, tel que la dérivée ne s'annule pas pour x dans S. L'application y : § x I — § x I définie
par y(x, t) = (x, (O(x, t))) est donc un difféomorphisme de § x [ sur lui-méme, et le plongement
composé ¢ = O-y" est le plongement cherché.

PROPOSITION 2. Soient (W, Vs, V1), (N, My, M,) et f, une triade, une sous-triade et une fonction
de Morse (avec points critiques éventuels). Soit h un niveau compris entre a et b, et V la surface de
niveau h de W (la surface V n'est pas une variété si f a des points critiques de niveau h). On
suppose qu'il existe un fermé S de V, contenant VN N = M, et ne contenant aucun point critique de
la fonction f, et que f'induit sur N une fonction de Morse qui n'a pas de point critique au niveau h.
Dans ces conditions, il existe un voisinage ouvert U de S dans V, et un plongement ¢ : U % [0, €] —
W (pour assez petit) tel que

(a) le diagramme

Ux[0,e] > W
hp N\ S
[h, h+e]
soit commutatif,

(b) ¢ | U % {0} soit l'application canonique,

(c) o | M x [0, €] soit un difféeomorphisme sur la portion de N comprise entre les niveau h et
h+e.
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La proposition 2 ressemble a la proposition 1, mais on s'impose ici un "minimum" pour le
voisinage trivialisé de la sous-variété.

Indication pour la démonstration. On utilise la proposition 1 pour munir un voisinage tubulaire de
N, au voisinage du niveau 4, d'une métrique pour laquelle N est un lieu de lignes intégrales de
grad.f. On prolonge cette métrique a W, et on construit ¢ a l'aide de lignes intégrales de grad.f
comme dans la démonstration du théoreme 1.

Paragraphe 2. POINTS CRITIQUES.

Comme la démonstration du théoréme de Morse n'est plus difficile pour un espace de Banach
quelconque, que pour espace de dimension finie, nous donnerons la démonstration la plus générale,
(voir R. PALAIS, Morse theory on Hilbert manifolds, Topology, vol. 2 1963, p. 299-340).

1. Forme canonique pour un point critique non-dégéneré.

THEOREME 3. Soit U un voisinage de l'origine 0 d'un espace de Banach E, et f: U — R une
application de classe C" (n > 3) pour laquelle 0 est un point critique non-dégénéreé; il existe un
C'*difféomorphisme x = ¢(y) d'un voisinage de 0 (dans E) sur un voisinage de 0 (dans U) tel que
la fonction f{p(y)) — f0) soit quadratique en y (c'est-a-dire soit un polynome homogene de degré 2).

11 suffit de considérer le cas ou f{0) = 0. La formule de Taylor nous donne, dans un voisinage V'
(c U) de 0, étoilé par rapport a 0O:

F0) = [le'(1 = O)f (1x)df].(x, x)
soit fx) =g(x).(x, x)

ou g est une application de classe C"? de V dans l'espace des formes bilinéaires symétriques et
continues sur £. Pour x assez voisin de 0, g(x) est non-dégénéré, et définit donc un isomorphisme
G(x) de E sur E" = L(E, R). Soit Y(x) = G(0)"-G(x); pour x assez voisin de 0, ¥(x) est voisin de
l'identité de E, et on peut trouver une application 4 d'un voisinage W de 0 (dans E) dans £, de
classe C" 7, telle que Y(x) = A(x)-A(x). On va démontrer que

Jx) = g(0)-(4(x)x, A(x)x).

Ceci achevera la démonstration du théoréme : il suffit de vérifier que y = A(x)-x définit un
difféomorphisme d'un voisinage de 0 dans W, sur un voisinage de 0 dans £, ce qui est évident
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puisque la dérivée en 0 de I'application x - A(x)-x est égale a A(0) = id (E).
La symétrie de la forme bilinéaire g(x) permet de calculer la transposée de Y(x): pour tous
uekE, zeE,
u(Y(x)z) = u(G(0) "-G(x)2)

= G(0)(G(0) "u) G(0) "-G(x) z

= G(0)(G(0) "-G(x)z)-G(0) "u

= G(x)z2G(0) "'u = G(x)G(0) "u-z
d'ou Y(x) = G(x)-G(0)".

Il en résulte que 'Y(x) = G(0)-Y(x)-G(0)": la transposée de Y se déduit de Y par I'isomorphisme G(0)
de E sur E". 1l en est de méme pour la "racine carrée" de V> sa transposée est

‘A(x) = G(0)-A(x)-G(0)".
Donc 8(0)-(A(x)x, A(x)x) = G(0)(A(x)x) (A(x)-x)
='A(x) G(0)-A(x)xx
= G(0)xx = fix).
Ceci achéve la démonstration.

La difféomorphisme trouvé n'est pas le seul a transformer f'en une forme quadratique, et nous
verrons plus loin qu'on peut lui imposer un certain nombre de conditions. Néanmoins, six = ¢(»)
est un difféomorphisme tel que f{gp(y)) =f(0) + P(y, y) ou P est une forme bilinéaire symétrique sur
E, le calcul de la dérivée seconde de f montre que

2P(y, ) = f"(0)(¢'(0)y, 9'(0)y).

Ainsi, si fest une fonction de Morse sur une variété W, et c € W un point critique de f, il existe au
voisinage de ¢ un systéme de coordonnées locales tel que f{x) — f{c) soit un polyndme homogéne de
degré 2 des coordonnées locales. En outre, pour tout systéeme de coordonnées locales de ce type, le
polyndme obtenu a pour image par I'isomorphisme canonique de ¥ (au voisinage de c¢) sur I'espace
tangent a W en c (au voisinage de 0), le polyndme symétrique '2f"(c), qui est "bien définit" puisque
f'(c)=0. En particulier, son indice est ¢gal a l'indice i du point critique c. Nous n'utiliserons que les
coordonnées locales pour lesquelles f{x) — f{c) se réduit a une somme de carrés (une transformation
linéaire sur les coordonnées permet de transformer une forme quadratique d'indice 7, en une somme
de i carrés négatifs et de n — i carrés positifs), alors on aura:

f(x) :f(C) —X12 e —Xiz +xi+12 4o +xn2.

2. Etude du modéle de point critique, voisinage de Morse.
Nous allons donner quelques définitions et notations concernant la fonction fonction /2 : R" — R,
définie par

h(x)=—x == =x7+x P+ x)

dont nous venons de montrer qu'elle est le modéle d'une fonctions de Morse au voisinage d'un point
critique d'indice i.

Le point 0 est le seul point critique de la fonction /4. Pour faciliter I'écriture, on notera

10



Jean CERF et André GRAMAIN LE THEOREME DU h-COBORDISME (SMALE)

Y=(x1,...,x)eR etZ=(Xi+1, ..., Xx,) € R""". Lasurface de niveau supérieure h(x)=—Y +7° =1
est difféomorphe au produit R' x S~ "/ par le difféomorphisme:

(1) 0,2) (ER' xS" "N (Y,Z) (ER' xR ouY=y shpl/ly| et Z=z ch]y|.

De méme, la surface de niveau inférieure h(x) = —1 est difféomorphe au produit S/ x R" ",
Le voisinage de Morse modéle M est définit par les inégalités: —1 <Y*+Z* <1, et |Y]-|Z] < 1.
C'est un compact dont le bord comprend:

- une portion de la surface de niveau supérieure difféomorphe au produit D’ x S"~ '~/ (par le
paramétrage (1)),

- une portion de la surface de niveau inférieure difféomorphe au produit S~/ x D",

- la surface latérale qui est la portion de la variété |Y]|Z| = 1 comprise entre les niveaux — 1 et 1.
Elle est donc le lieu de trajectoires orthogonales des surfaces de niveau de 4. Son bord est la
réunion de deux exemplaires de S/ x S~ "/ placés l'un au niveau —1, l'autre au niveau 1, et
comme la restriction de la fonction 4 a la surface latérale est sans point critique (puisque cette
surface est orthogonale aux surfaces de niveau de #), il résulte du théoréme sur les triades
munies d'une fonction de Morse sans point critique, que la surface latérale est difféomorphe au
produit [-1, 1] x S™/ x §"~"' de fagon telle que /4 soit envoyé sur la projection sur [-1, 1].

La nappe descendante de 0 est la partiec de R’ x {0} contenue dans M; c'est le disque D’ x {0};

elle ne rencontre pas les surfaces de niveau A(x) > 0; le seul point de niveau 0 est le point 0, et son
intersection avec une surface de niveau compris entre — 1 et 0 est une sphere de dimension 7 — 1
centrée en 0. On définit de la méme manicre la nappe montante. La réunion des deux nappes
constitue la réunion des lignes de gradient de / (ou trajectoires orthogonales des surfaces de niveau)
issue de 0.

La figure 4 représente le cas n =2, i = 1. La figure 5 représente le méme cas, mais le dessin est
tracé sur la sous-variété de R’ d'équation x; = A(x,, x,). La figure 6 représente le cas n =3, i = 2.

D

A s /
1
\ u ~d
v ¢ My
N - v
1 y
N L\NL

figure §. figure £
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Remarque. Ce que nous venons de dire ne s'applique pas aux cas des points critiques d'indice 0 ou
n. Dans ce cas, M est la boule de contre et de rayon 1, qui s'identifie a la nappe montante
(pour i = 0) ou descendante (pour i = n); il n'y a qu'une seule nappe.

Rétractions de M adaptées a la fonction h.

Nous ne donnerons pas de définition des rétractions de M adaptées a la fonction /4, mais nous
nous contentons d'indiquer trois types de rétractions de M qui nous seront utiles. Apres lecture du
paragraphe 3, n° 1, le lecteur soucieux de précision pourra €crire cette définition.

(a) Homothéties.
Soit A un réel inférieur a 1, et ¢, : M — M 1'homothétie de rapport 4 et de centre 0; 1'égalité

h(Jx) = 22-h(x)

prouve que ¢; envoie les surfaces de niveau de 4 dans des surfaces de niveau de 4.

(b) Rétraction suivant les lignes de gradient de h.
Sig:[-1, 1] — [-1, 1] est une applications croissante qui soit l'identité au voisinage de 0,
l'application y : M — M définie en associant a tout point x de M l'unique point y(x) situé sur la
méme ligne de gradient que x, et tel que A(y(x)) = g(h(x)), sera appelée une rétractions suivant
les lignes de gradient de 4. Elle envoie les surfaces de niveau dans les surfaces de niveau, et
pour un choix convenable de la fonction g, I'image de M sera dans un voisinage arbitraire de la
surface de niveau 0: il suffit de choisir 1'image de g assez petite (fig 8.).
Si on choisit pour g une fonctions qui soit 1'identité sur [-1, 0] et telle que 1'image de [0, 1] soit
assez petite, la rétraction laisse invariante la portion de M de niveau négatif, et envoie la
portion positive dans un voisinage de la surface de niveau 0 (fig. 9).

(c) Rétraction suivant les lignes de gradient de la fonction k(Y, Z) = |Y]-|Z].
On définit cette rétraction de facon évidente, et, comme les lignes de gradient de la fonctions &
sont contenues dans les surfaces de niveau de 4, cette rétraction envoie encore les surfaces de
niveau de /4 dans des surfaces de niveau de 4. Un choix convenable de cette rétraction permet
d'envoyer M dans un voisinage arbitraire de la réunion des deux nappes.

figd7 fig.8 fig.2
o ‘,\ J\.-.-,/\ /P\b’/,\ / \
™ ~
RS - \/ , A
* ‘ \\ { !
\[_—_--:,—-.___‘ 3 ‘
: \ i
/’ W \ - \\ /
S - /\ >
N\ ’ [y
LN Nt Ve

-
1 Xal \J

figure 10
Paragraphe 3. NAPPES.
1. Voisinage de Morse et nappes sur une variéte.

Dans ce numéro, W désigne une variété différentiable de dimension », fune application
différentiable de ¥ dans R, et ¢ un point critique non-dégénéré d'indice i pour la fonction f.

12
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DEFINITION. Si M est le voisinage de Morse modéle pour les points critiques d'indice 7 sur les
variétés de dimension n, on dit qu'un plongement ¢ : M — W est un plongement adapté a f en c, si
¢(0) = c et s'il existe un plongement croissant ¢": [—1, 1] — R tel que f'¢ = ¢" f: c'est-a-dire

¢
M - W
hl o' U
[-1,1] » R

est commutatif.

Propriétés.

(a) Siy:W— W,ety': R — R sont des plongement, et g : W— R une application différentiable,
si y/' est croissant et si gy = y"f, alors y(c) est un point critique non-dégénéré pour g, et y-¢
est un plongement adapté a g en y(c),

@ v

MWW

hl o fl v lg
I—-> R—>R

(b) Pour tout point critique, il existe un plongement adapté. Le théoréme de Morse nous donne,
en effet, un plongement y d'un voisinage ouvert ¥ de 0 (dans R") dans W tel que fly(x)) = h(x)

+ f(c). 1l existe un nombre positif 4 tel que 'homothétie de centre 0 et de rapport 4 envoie M
dans V; le plongement ¢ : M — W définit par ¢(x) = w(Ax) est évidemment adapté a fen ¢ :

2 v

M > Vo> W

hy 2 hl ianeo Lf
R - R — R

(¢) Si(¥,), 0.1 est une isotopie adapté du voisinage de Morse modéle M, et ¢ : M — W est un
plongement adapté a f'en c, alors pour tout ¢ € [0, 1] le plongement ¢y, : M — W est adapté a
fen ¢ (c'est cette propriété qu'on vient d'appliquer en (b) a I'homothétie de rapport 4).

DEFINITION. Soit N une sous-variété de ¥, on dit que N est une nappe descendante (resp.
montante) du point critique ¢ pour la fonction f's'il existe un plongement de M dans W, adapté a fen
¢, tel que N soit I'image de la nappe descendante (resp. montante) du modele M. Il en résulte que N
est difféomorphe a D' (resp. D" ).

Propriétés.
(d) Sig: M — W estun plongement adapté, et NV la nappe descendante (resp. montante)
correspondante, il existe une isotopie (¢, ), < (o, 1; de plongement de M dans W telle que:
* pour tout ¢ € [0, 1], ¢, soit un plongement adapté,
* ¢,= ¢ sur la nappe descendante (resp. montante) modéle,
¢ Q=0
* Il'image de ¢, soit contenue dans un voisinage arbitraire de la nappe N.
On obtient ¢, par composition de ¢ et dune rétraction adapté de M, laissant fixe la nappe
descendante (resp. montante) et dont l'extrémité a son image dans un voisinage assez petit de
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cette nappe: pour cela on compose une rétraction du type (c) avec une rétraction du type (b).

(e) Sil'on prend seulement une rétraction du type (c), on peut s'arranger pour que l'image de ¢,
soit contenue dans un voisinage arbitraire de la réunion de la nappe montante et de la nappe
descendante.

(/) De méme, si (¢, p") est un plongement adapté, en composant ¢ avec une rétraction du type
(b), on peut, sans changer les images des nappes, modifier ¢’ par n'importe quel
automorphisme différentiable du segment [—1, 1] qui soit €gal a I'identité au voisinage de 0.

Nous donnerons au n° 3 une caractéristique des nappes.

2. Complément au théoréeme de Morse.

THEOREME 4. Soit E un espace de Banach, p : E — R une forme quadratique continue non-

dégénéré, et P: E — E l'isomorphisme correspondant; si E est la somme directe de deux sous-
espaces fermés M et N qui soient conjugués pour la forme quadratique p (c'est-a-dire que Vy € M,
etVze N,ona P(y)z=P(z)y=0.) et si q et r sont les forme quadratiques (supposées non-
dégénérées) induites par p sur M et N, alors

Px) =q(y) +r(2)

(ou (y, z) représente la décomposition de x sur M et N respectivement). Sous ces hypothéses, si
k : N — M est une application de classe C" (r > 3), tangente a 0 au point 0 (€ N), il existe un C"~*-
diffeomorphisme d'un voisinage U de 0 dans E sur un voisinage V de 0 dans E, noté

X=(,2) =0, 2), 0, 2)) = O(x).

tel que
(@) POx)) = p(x)
(B)  y=kz) = Y=yp(,2)=0
(¢ z=0=Z=9¢(,2)=0.

Commentaire. Le théoréme affirme que le groupe des difféomorphismes de £ qui laissent
invariante la forme quadratique p, contient des difféomorphisme d'un certain type: i.e. transformant
en son plan tangent a l'origine une surface, tout en conservant le sous-espace conjugué de ce plan
tangent (pourvu que les formes quadratiques induites par p soient non-dégénérées).

Démonstration. Nous choisissons Y = y(y, z) =y — k(z) de sorte que la condition (b) est vérifiée, et
nous cherchons Z = ¢(y, z) tel que

") +q(y = k(2)) = n(2) + q(»)
HZ) = 1(2) + 200 k(z2) = q(k(2)) = Ay, 2).

soit

On procéde alors comme dans la démonstration du théoréme de Morse: la formule de Taylor
appliquée a f(y, z) considérée comme fonction de z donne

14
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S0, 2) =8 2) (2, 2)
S0, 2) = 2R(2) + 20(0) k'(2) - 20(k(2))k'(2)

car

s'annule qguel que soit y pour z=0. On peut alors trouver, pour (y, z) assez voisin de 0,, un élément
A(y, z) de N, tel que
AW, 24, 2) = G(0) -G, 2);

Z=Ay, z)z.

et on prend pour ¢ l'application

Les conditions (a) et (c) sont donc ainsi vérifiées. En outre I'application @ ainsi définie est un
difféomorphisme puisqu'elle est tangente en 0 a I'application identique (comme il est facile de
vérifier par le calcul des dérivées des applications ¢ et ).

Ce théoréme va nous permettre de donner une caractérisation des nappes. Remarquons
auparavant que lorsque £ est un espace de Banach, et M un sous-espace ferm¢ sur lequel p induit
une forme non-dégénérée, le conjugué N de M est son supplémentaire et p induit sur N une forme
non-dégénérée.

3. Caractérisation des nappes.

PROPOSITION 3. Si N est une sous-variété de W, difféomorphe au disque D', dont le bord se
trouve a un niveau constant de la fonction f, inférieur au niveau f{c), si N contient c et si f induit sur
N une fonction de Morse dont le seul point critique est le point c, avec l'indice i, alors N est une
nappe descendante de c.

11y a un énoncé analogue pour les nappes montantes. En outre, si N et N' sont deux nappes
descendante et montante respectivement, dont les plans tangents en c sont conjugués par rapport a
f"(c), N et N' sont les nappes d'un méme plongement adapté du modele M dans W.

Deémonstration.

(a) Soit ¢ un plongement de M dans W adapté a fen c, et tel que I'image de la nappe
descendante mod¢le soit tangente en ¢ a N (ce qu'on peut toujours réaliser par un
changement de variables linéaire parce que f(c) induit une forme définie négative sur le
plan tangent a N); au voisinage de 0, I'image réciproque de N est une surface d'équation
Z = k(Y) (avec les notations du numéro 2) ou & est une application différentiable de R’

dans R" ', tangente a 0 au point 0. Le complément du théoréme de Morse nous fournit un

difféomorphisme & d'un voisinage de 0 dans M sur un voisinage V' de 0 dans M,
conservant la fonction de Morse modéle 4, et envoyant ¢ '(N) (au voisinage de 0) sur la
nappe descendante modéle. Le plongement composé ¢-0' : ¥ — W envoie donc, au
voisinage de 0, la nappe modeéle sur un voisinage de ¢ dans N, et f¢p-0 ' =¢@"h . Il en
résulte qu'un voisinage de ¢ dans N est une nappe descendante de c.

Comme le plan tangente a N" en ¢ est conjugué du plan tangent a N, I'image réciproque
de N'par -0 ' est tangente en 0 a la nappe montante modéle, et le complément du
théoréme de Morse nous fournit un second difféomorphisme 6’ qui envoie I'image
réciproque de N’ sur la nappe montante modele, en conservant la nappe descendante (2
cause du (c) du théoréme 4). En considérant le plongement -0 '-0""' on voit, qu'au
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(b)

voisinage de ¢, N et N' sont les nappes d'un méme plongement adapté.

Il reste a étendre ce plongement de fagon a obtenir pour nappes N et N’ en entier. Soit
donc y un plongement de M dans W, adapté a f'en ¢ (on supposera méme, pour simplifier,
que y envoie la fonction /4 sur la fonction f) tel que 1'image (V) de la nappe modele soit
une sous-variété D de N, dont le bord S est au niveau —1. Soit —b* le niveau du bord de N,
le complémentaire de D dans N est une couronne C difféomorphe au produit

S'=! x [-b?, —1] par un difféomorphisme qui envoie la fonction fsur la projection sur le
segment [-b°, —1] (d'apreés le théoréme 2 du paragraphe 1). Toujours d'aprés le
paragraphe 1, on peut trouver un voisinage tubulaire fermé 7'de C dont les fibres sont a
niveau constant. A l'aide d'une rétractions de M le long des lignes de niveau de %, on
peut modifier y de facon que l'image de la surface de niveau inférieure de M (de niveau
—1) soit contenue dans 7 (voir paragraphe 3, n° 1).

M?

:—b ///1;2

figure 11 figure 12

Soit , dans le modele R”, M’ le voisinage 0 obtenu en saturant M jusqu'au niveau inférieur
—b* le long des lignes de gradient de h; M’ est définit par les inégalités: —b* <—|Y?*| + |Z7|
<1; |Y]]Z] £ 1. Le plongement i se prolonge en plongement y': M’ — W, respectant les
niveaux, et envoyant le couronne (Z =0, 1 <|Y?| < b*) sur la couronne C. Pour construire
', il suffit d'utiliser la trivialisation de 7. Une rétraction de M’ sur M le long de lignes de
gradient de / permet de transformer ' en un plongement adapté ayant toute les
propriétés annoncées.

Il ne reste plus qu'a recommencer, pour la nappe montante, les opérations ci-dessus en
remarquant qu'elles ne modifient pas 1'image de l'autre nappe.

4. Nappes de gradient.

DEFINITION. Soit N une nappe descendante du point critique ¢, dont le bord AN est au niveau
fic) — b* et supposons que la variété W est munie d'une métrique riemannienne; on dit que la nappe
N est la nappe de gradient pour cette métrique si N est la réunion des lignes de gradient de la
fonctions f'comprises entre les niveaux f{c) et f{c) — b* auxquelles le point ¢ est adhérent. 11y a une
définition analogue pour la nappe montantes.

Par exemple, dans le voisinage de Morse modele M, les nappes sont les nappes de gradient pour
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la métrique induite par la métrique euclidienne ordinaire de R”".

PROPOSITION 4. Toute nappe N du point critique c est nappe de gradient pour une certaine
métrique riemannienne sur W.

La nappe N est en effet I'image de la nappe canonique par un plongement adapté ¢ du voisinage
de Morse modele M dans W. Elle est donc nappe de gradient pour toute métrique prolongeant la
métrique sur p(M) transportée de celle de M.

Plus généralement, soient Ny, NV,, ..., N, des nappes descendantes et N';, N, ..., N'. des nappes
montantes relative aux points critiques ci, ¢z, ..., ¢, telles que les plans tangents en ¢; a N; et N';
soient conjugués; si ces nappes sont "disjointes", c'est-a-dire sans autre point d'intersection que les
¢;= N; N N', il existe une métrique riemannienne pour laquelle toutes ces nappes sont nappes de
gradient. Il existe en effet des plongements ¢, : M — W pour lesquels N, et N'; sont images des
nappes canoniques et dont les images ont contenues dans des voisinages des N; U N'; assez petits
pour étre disjoints.

Application au prolongement d'une nappe. Etant donnée une nappe N descendante du point critique
c jusqu'au niveau f{c) — b*>, on munit W d'une métrique adaptée a la nappe N (cf. proposition 4).
Supposons que par tout point de bN passe une ligne intégrale de grad. f'qui soit définie entre les
niveau f{c) — a’ — b et f{c) — b*; alors la réunion N’ de la nappe N et de toutes ces lignes de gradient
est une happe descendant de ¢ jusqu'au niveau f{c) — @’ — b*. Ce la résulte immédiatement de la
caractérisation des nappe. (proposition 3).

Paragraphe 4. UN LEMME UTILE.

Pour finir ce chapitre, nous démontrons un lemme technique que nous utiliserons par la suite. Le
lecteur pressé€ ou peu courageux peut s'abstenir d'en lire la démonstration.

PROPOSITION 5. Soit N une nappe d'un point critique d'une fonction de Morse f sur W, si

(©:); < 0.1 est une isotopie du bord bN de N dans la surface de niveau de bN, dont l'image ne
contienne aucun point critique de f, il existe une nappe N', qui coincide avec N en-dehors d'un
voisinage arbitraire de bN dans N, et dont le bord bN' est l'image ¢,(bN) de l'extrémité de l'isotopie

(@,).

Soit a le niveau de bN, nous allons construire une nappe N’ qui coincide avec N au-dessus du

niveau a + ¢. Soit V' un voisinage de I'image de ¢, (et en particulier de bN) dans la surface de niveau
a; on peut supposer que V est une variété a bord, et on sait alors (paragraphel, proposition 2) qu'il
existe un tube 7, compris entre les niveaux a et a + 7, (avec 5 < ¢) dont l'intersection avec la surface
de niveau a soit V; et un difféomorphisme y : V' x [0, #] — T qui envoie bN x [0, ] sur la couronne
C de N comprise entre les niveaux a et a + 7, et tel que f{y(x, y))=a+y,oux e Vety e [0, n].
Désignons par p une application différentiable de [0, #] dans [0, 1] telle que p(0) =1 et p(n) = p'(y)
=0, et par C'l'image de HN x [0, 5] dans T par l'application 0 : (x, ) = w(@,u)(x), ). Ce
plongement est tangent en tout point de bN x {5} a la restriction de w a bN x {0, n} (d'apres le

17



Jean CERF et André GRAMAIN LE THEOREME DU h-COBORDISME (SMALE)

choix de p), et finduit sur C’" une fonction sans point critique puisque, d'apres 1'expression du
plongement 6, C' est transversale aux surfaces de niveau de f. D'apres la caractérisation de nappes,
la sous-variété N’ de W obtenu en recollant C’'a N a la place de C, est une nappe, ce qui achéve la
démonstration.

«T-

7

figs 13 : la fonction P figure 14
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CHAPITRE III

CROISEMENTS ET NAISSANCES

Dans ce chapitre, on démontre (paragraphe 2) I'existence sur toute triade d'une fonction de
Morse ordonnée, c'est-a-dire dont les valeurs critiques sont fonction croissante de leur indice. On
obtient une telle fonction par déformation d'une fonction de Morse arbitraire donnée sur la tirade.
On ¢étudie d'abord un modele de croisement de deux points critiques mal rangés (paragraphe 1), puis
on plonge le mode¢le dans la triade. De méme, on décrit au paragraphe 3 un mode¢le de naissance
dans d'un couple de points critiques, I'un d'indice 7, 'autre d'indice i + 1, et donne (paragraphe 4) un
critere pour que le plongement de ce modele permette la cancellation d'un tel couple de points
critiques dans une triade.

Paragraphe 1. CHEMIN ELEMENTAIRE DESCENDANT

_ Soith: M — [-1, 1] la fonction de Morse canonique sur le voisinage modéle M, et
@ : M — [0, 1] une fonction cloche a support contenu dans l'intérieur de M, et égale a 1 au
voisinage de 0. Pour tout A € [0, 1], la fonction

hy=h—Jlew

est une fonction de Morse dont l'unique point critique est 0, pourvu que € > 0 soit assez petit. Pour
A =1, la valeur critique correspondante est /,(0) = —¢.

DEFINITION. On appelle chemin élémentaire descendante relatif au point critique c de la
fonction de Morse f: W — R un chemin (f;); < 0, 1) d'origine f dans 1'espace F des fonctions sur W

pour lequel il existe un plongement ¢ : M — W adapté a fen c tel que pour tout A € [0, 1] on ait:

[

M—->W

bl o LS Jro=o"h
R — R

LI WA oM) =f[ W\ p(M)

Un tel chemin est entierement déterminé par la donnée du plongement adapté ¢. Remarquons
aussi que f; est une fonction de Morse pour toutes les valeurs de 4 € [0, 1] sauf un nombre fini: le
seul accident possible est que la valeur critique f;(c) soit égale a une autre valeur critique f(c). On
dit alors que le chemin (f;) a réalisé le le croisement des valeurs critiques en c et ¢'.

PROPOSITION 1. Soit N une nappe descendante du point critique c jusqu'au niveau f(bN) = a,
pour toute valeur b € la, f(c)[ il existe un chemin élémentaire descendante (f;) relatif au point c tel

que fi(c) = b.

Démonstration. Lanappe N est image de la nappe canonique par un plongement adapté ¢:
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@
MW
hl @' lf
R —> R

On a vu (chapitre II, §3, n° 1) qu'on peut choisir le couple (¢, ¢') de telle sorte que p'(—¢) = b. Le
chemin élémentaire descendant correspondant est le chemin cherché.

Paragraphe 2. FONCTION DE MORSE ORDONNEE SUR UNE TRIADE.

DEFINITION. Une fonction de Morse ordonnée sur la variété W est une fonction de Morse
f: W — R dont les valeurs critiques sont rangées dans 1'ordre croissante des indices, c'est-a-dire

qu'on a:

(1) [f(c) — fic"][indice(c) — indice(c)] > 0

pour tout couple (c, ¢’) de points critiques.

THEOREME 1. Sur toute triade compact il existe une fonction de Morse ordonnée.

Démonstration. 11 existe sur la triade W une fonctions de Morse f'; la fonction présente un nombre
fini de points critiques et elle est ordonnée si et seulement si la relation (1) est vérifiée pour tout
couple (c, ¢') de points critiques consécutifs (i.e. tel qu'il n'y ait aucune valeur critique comprise
entre f{c) et f(c')). Le théoréme 1 résulte alors de la

PROPOSITION 2. Si c et ¢’ sont deux points critiques consécutifs de la fonction de Morse f avec
flc) <f(c") et si indice(c) < indice(c") il existe un chemin d'origine f dans l'espace F qui réalise le
croisement des valeurs en c et ¢'. (C'est-a-dire un chemin (f;),<0.1) ott f; est une fonctions de Morse
ayant mémes valeurs critiques que f en dehors de c et c¢' pour toute valeur de t sauf t, € 10, 1] ou

l'on a f, (c) = f(¢"), et l'extrémité f, de ce chemin verifie fi(c) < fi(c").

On va construire explicitement ce chemin: ce sera un chemin élémentaire descendant relatif au
point critique c. On peut d'ailleurs signaler que l'existence d'un chemin de croisement entre ¢ et ¢’
implique toujours I'existence d'un chemin élémentaire réalisant ce croisement. Compte tenu de la
proposition 1, I'existence d'un chemin élémentaire convenable est une conséquence de la

PROPOSITION 3. Si c et ¢’ sont deux points critiques consécutifs de la fonction f avec

Ac) <fe)

indice(c) < indice(c")
il existe une nappe N descendante de c et de niveau inférieur f(bN) < f(c").
Démonstration. Soient N, une nappe descendante relative a ¢ et N'; une nappe montante relative a

¢’ supposées toutes deux assez petites pour étre disjointes. On sait (chapitre II, §3, n° 4) qu'on peut
alors munir /¥ d'une métrique riemannienne pour laquelle N, et N'; sont des nappes de gradient, et
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qu'on peut prolonger ces deux nappes par les lignes de gradient jusqu'a un niveau intermédiaire a
e | fic", flc)[. A ceniveau, les bords bN, et bN", des nappes prolongées sont respectivement une
(i — 1)-sphére et une (n — i’ — 1)-sphére plongées dans la (n — 1)-variété ' (a) (on a désigné par i et i’
les indices respectif de c et ¢'). Si ces bords sont disjoints, les lignes de gradient de tous les points
de bN, se prolongent jusqu'a un niveau inférieur a f{c') et la nappe descendante prolongée convient.
Dans le cas contraire et si i < i’ on peut remplacer N, par une nappe N; dont le bord bN; c f'(a)
est disjoint de bN,. En effet, la somme (i — 1) + (n — i’ — 1) des dimensions de variétés bN, et DN
est strictement inférieure a la dimension (n — 1) de la surface de niveau f'(a) et le théoréme de
séparation de Whitney (ou bien le théoréme de transversalité de Thom) fournit une isotopie de bV,
dans la surface de niveau dont l'extrémité HN; est disjointe de bN": d'ou la nappe N; d'apres la
proposition 5 du chapitre II.
Pour une métrique adaptée aux nappes (disjointes) N; et N, les lignes de gradient permettent de
prolonger N; en la nappe N cherchée (voir figure 1).

c!

figure 1

Paragraphe 3. MODELE DE NAISSANCE.
1. Premiere étude du modeéle.

Considérons sur R” la fonction numérique

ks(X) = _X12 - _.x,'Z + Xt 12 + .-+ Xn,lz + )C”3 — 3SX,,.
Ses dérivées partielles sont les suivantes:

Ok/ox, = -2x\, ..., OklOx; = —2x;;
6k/8x,-+1 = 2xi+1, ceey 8k/8xn_1 = 2xn_1;
ok/ox, = 3(x,> — s).

I1 en résulte que la fonction &, présente:
* pour s <0 aucun point critique;
* pour s > 0 deux points critiques non-dégénérés sur la droite x; =x, = - =x,_; = 0; 'un pour
x, = \'s a pour indice i et pour valeur critique —2s>?, I'autre, pour x, = —Vs, a pour indice
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{i + 1} et pour valeur critique 25,
* pour s =0 un point critique dégénéré en 0 € R".
Cet exemple montre comment apparait un couple ordonné de ponts critiques d'indices consécutifs i
et(i+1).

2. Plongement dans la variété.

Soit @ : R" — [0, 1] une fonction a support compact égale a 1 dans un voisinage du segment
x1==x,-1=0,-1<x,<1), on pose:

x)=—x" = =x2+ X2+ + X"+ x° = 3¢[1 — (£ + Doo(x)]x..

Hors du support de  la fonctions /,(x) = k_(x) n'a pas de points critique. Dans le fermé v '(1), la
fonction /(x) = k.(x) a des points critiques d¢ja étudiés. Dans le compact
adhérence(Supp (@) \ @ '(1)) la fonctions k, n'a pas de point critique; pour ¢ € [-1 , 1], on peut
choisir ¢ > 0 assez petit pour que la fonctions /, assez voisine de ko, n'y ait pas non plus de point
critique.

L'application ¢ : R" — R" définie par

(xla " xn) g (XI, Uty Xn—1, l,](X))

est un diff€éomorphisme puisque 0/ 1/0x, ne s'annule jamais. En la composant avec une homothétie
de rapport y' assez petit, on obtient un difféomorphisme y qui envoie le support de w a l'intérieur
du cylindre D"~ x I ¢ R". On note B (comme 'birth') I'image réciproque v '(D"~' x I).

PROPOSITION 4. En tout point y € N non critique pour la fonction f on peut faire apparaitre un
couple de points critiques d'indices i et (i + 1) en déformant la fonction f dans un voisinage
arbitraire de y.

Démonstration. Soit ¢ : D"~' x [ — W un plongement adapté a la fonction en y (chapitre II, § 1,
n° 1), c'est-a-dire qu'on a un diagramme commutatif:

@
D Ix[—>W
le @' lf
1 — R

Sil'on note 8 = ¢y et ' = ¢"y', on définit, pour tout ¢ € [-1, 1] la fonction £, : W — R par:

f:=fen dehors de 8(B)
fr0=0"1, sur 9(B).

Pour f=-1,0naf, =fa cause de la commutativité¢ du diagramme

0
B—>W

i o lf
R—R
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Comme la déformation de la fonction /; lorsque varie le parametre ¢ n'est effective que dans le
support de o qui est contenu dans l'intérieur de B, la fonction f; est différentiable; c'est méme une
fonctions de Morse pour ¢ # 0. Pour ¢ <0 elle a mémes points critiques que f, pour =0, il y a un
point critique dégénéré en y, qui se dédouble pour ¢ > 0 en un couple ordonné d'un point critique
d'indice i et d'un point d'indice (i + 1) contenus dans 8(B).

Paragraphe 4. COLLISION ET CANCELLATION DE DEUX POINTS CRITIQUES.
1. Enoncé du résultat.

DEFINITION. Soit (c1, ¢,) un couple ordonné de deux points critique consécutifs d'indices i et
(i + 1) pour la fonctions de Morse /: W — R. Une nappe montante N, relative a ¢, et une nappe

descendante N, relative a ¢, telles que f{bN,) = f(bN,) = a, ou fic,) < a <f(c,), sont en bonne
position si la (n — i —1)-sphére bN, et la i-sphére bN, se coupent transversalement et en un seul
point.

THEOREME 2. Si ¢, et ¢, sont deux points critiques consécutifs pour lesquels il existe deux nappe
en bonne positions, il existe un chemin d'origine f dans l'espace F qui réalise l'élimination de ces
deux points critiques.

C'est-a-dire un chemin (), < 0,2 ou f; est une fonction de Morse ayant mémes valeurs critiques
que f'en dehors de c, et ¢, pour toute valeur de t sauf't = 1 ou l'on a un point critique dégénéré
(provenant de la collision de ¢, et ¢,) et la fonction f, a mémes points et valeurs critiques que f sauf
ci et ¢, qui ont disparu.

Comme au paragraphe 3, on obtient un tel chemin en plongeant dans # une déformation du type

(k).
2. Description du voisinage double modeéle D.

Soient M, et M, les voisinages de Morse modeles pour les indices i et (i + 1) munis des fonctions
de Morse canoniques #, et h,. Soit y, : D' x §" '~ — M, le paramétrage (chapitre II, paragraphe 2,
n° 2) de la surface de niveau supérieur de M,. Si b, est un point du bord supérieur de la nappe
montante de M, etsi 0, : D"7~1 — §"7~1x {0} est un plongement tel que 6,(0) = v, (b)), le
plongement
l//l(ld X 01) c Dix Dl M,

est un paramétrage d'un voisinage de b, dans la surface de niveau supérieur de M. A l'aide des
linges de gradient de la fonction /;, on prolonge ce plongement en un paramétrage d'un voisinage de
by dans M, noté y, : D' x D" 7~ ! x [—¢, 0] — M, adapté a la fonction 4, par la relation A,y(x, y, £) =
1t

De la méme maniére, on construit un paramétrage y, : D' x D" 7~/ x [-¢, 0]— M, d'un voisinage
d'un point b, dans la surface de niveau inférieur de M,. Le voisinage double D est la réunion de M,
et de M, avec l'identification évidente de y,(D' x D" 7' x {0}) avec (D' x D"~ x {0}). Le
voisinage D est une variété a bord, arétes et coins, munie d'un paramétrage d'un voisinage du point
b (qui résulte de l'identification de b, et b,) par le plongement y : D' x D" ~! x [-¢, ¢] — D obtenu
en recollant y; et y,. Sur D la fonction 4 obtenue en recollant 4, — 1 et 4, + 1 est une fonction de
Morse; on a h-y(x, y, t) =t.
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On va maintenant munir d'une métrique riemannienne en déformant les métriques canoniques

de M, et M, au voisinage de I'image de y de fagon qu'elles se recollent, et ceci de telle sorte que les
courbes ¢ - y(x, y, f) soient des lignes de gradient de 4, et, plus précisément, que les lignes de
gradient de / soient réunions de lignes de gradient de 4, et s,. Pour cela, on recolle la métrique de
M,, celle de M, et I'image par y de la métrique produit de D' x D"~/ x [—¢, ¢] a 1'aide d'une partition
de l'unité.

figure 2 ¢ formation du modele double. figure 2 bis : le modéle double et son saturé (en pointillé)

3. Plongement et saturation du double modele.

PROPOSITION 5. Si ¢, et ¢, sont deux points critiques consécutifs de la fonction f: W — R pour

lesquels il existe deux nappes N, et N, en bonne position, il existe un plongement ¢, : My — W
adapté a la nappe N, et un plongement ¢, : M, — W adapté a la nappe N, qui se recollent en un
plongement ¢ : D — W adapté a la fonction f par un difféeomorphisme ¢': R — R tel que ¢ = ¢p"h.

Démonstration. Soient ¢, : My — W et ¢, : M, — W deux plongement adapté des modele pour
lesquels N, et N, sont respectivement les images des nappes canoniques. Si V est la variété de
niveau f~ '(a) et si M, = ¢,(M,) et M, = ¢,(M,), les intersections M; N V sont des voisinages
tubulaires des spheres ;. Si on a choisi ¢, et ¢, d'images assez voisines des nappes (chapitre I,
paragraphe 3, n° 1, propriété (a)), la condition de transversalité de bN, et bN, au point b’ =

bN, N bN, assure que l'intersection de ces tubes est "bonne": c'est un cube voisinage tubulaire
trivial d'un voisinage de b’ dans chacune des nappes.

Soit ' : D' x D"7~! — Vun paramétrage de ce cube; en composant ¢, avec un automorphisme
horizontal de M, (c'est-a-dire conservant les surfaces de niveau de la fonction /) qui conserve la
nappe montante modéle, on peut s'arranger pour que ' = @,y | D' x D" 7~/ x {0}. On fait la méme
chose pour ¢,. Supposons en outre qu'on a choisi ¢, de telle sorte que f ¢, yi(x, y, {) =a + t et g, de
telle sorte que fp.y2(x, y, t) =a + t ; alors les deux plongements ¢, et ¢, se recollent en une
application continue ¢ : D — W, et si ¢'; et ¢’ sont les deux changement de parameétre associés a ¢,
et ¢,, la foncions ¢'i(1 + ¢) = a + t sur [—¢, 0] se recolle différentiablement a la fonction ¢5(¢ — 1) =
a + tsur [0, g]. Comme la fonction / est obtenue en recollant s, — 1 et &, + 1, les égalités fp, = ¢"h,
et fp, = ¢"h, entrainent que fp = ¢"h.

Il ne reste qu'a rendre différentiable le long de M, N M, 'application ¢. Il existe des

coordonnées locales (X, Y, T) dans W, au voisinage du cube image de ¢-y, pour lesquelles on a:
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(pl.Xl(xﬂya t):(xa n(xaya t)a t) ou n(xaya O)Zy
€”2'X2(x: Y ZL) = (f(x: Y, t): Y, t) ou é(xs Y O) =X

Par une déformation de plongement ¢,-y, laissant fixes les images des surfaces (¢ = constante) et des
surfaces (x = constante), on peut déformer la fonction # en une fonction égale a y au voisinage de
t=0. Cette déformation se transporte par y; ' en une déformation de ¢, sur un voisinage de b, qui
conserve les images des surfaces de niveau et de la nappe canonique montante. Cette déformation
se prolonge en une déformation de ¢, sur M, tout entier ayant les mémes propriétés. Une opération
analogue sur ¢, permet de rendre différentiable le plongement ¢ qui vérifie toute les conditions de la
proposition 5.

Remarque. Comme les points critiques c¢; et ¢, sont consécutifs, on peut toujours supposer que le
plongement ¢ : D — W a une image D = ¢(D) comprise entre des niveaux entre lesquels les seuls
points critiques de la fonction fsont les points ¢, et c..

Saturation. Soit f: W — R (resp. f' : W' — R) une fonction de Morse, ¢, et ¢, (resp. ¢’ et ¢) deux

points critiques consécutif d'indices i et (i + 1) pour lesquels il existe des nappes en bonne positions,
etp: D — W(resp. ¢': D' — W) un plongement (proposition 5) du voisinage double mod¢le
adapté a ce couple de points critiques, d'image p(D) = D (resp. ¢'(D) = D). L'application
A=¢ '¢': D — D'est un isomorphisme, et il existe un automorphisme 4’ de R tel que /1 = 1"f.
Munissons W et W' de métrique riemannienne qui prolongent les métriques de D et D' images de
celle de D par ¢ et ¢". Soit S c W le fermé obtenu en prenant la réunion de toutes les lignes de
gradient de frencontrant D et limitées aux niveaux extrémes de D: on dit que S est le saturé de D.
Le saturé S est une variété a bord et a arétes obtenue en collant a D deux pavés isomorphes a
D' x D"~ x ], 1'un a la surface de niveau supérieur de M, dans le complément de M, N M, par la
face D' x D"~ x {0}, et a la surface latérale de M, par la face D’ x §" 72 x [, I'autre étant collé de
fagon symétrique (voir figures 3 et 4).

<

HHIE

y +1

figure 3 figure 4
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I1 est claire que 1'isomorphisme 4 se prolonge en un isomorphisme de S sur le saturé S’ de D’
transformant encore " en A“f. Il en résulte que s'il existe une déformation a support dans l'intérieur
de S qui élimine les points critiques c; et ¢,, l'application A la transporte en une déformation
analogue pour la fonction f".

Conclusion. Pour démontrer le théoreme 2, il suffit de trouver, pour une fonction de Morse
particuliére, une déformation a support contenu dans un voisinage double saturé qui éliminé un
couple de points critiques d'indices i et (i + 1), et ceci pour tout i.

4. Retour au modeéle.

On choisit comme fonction particuliére la fonction
kg’(x) = _x12 - _-xiz + Xi+ 12 + ot Xn— 12 + -xn3 - 38'.7(:,,

ou ¢'> 0 sera fixé. La déformation est donnée, pour ¢ € [0, 2], par
— 2 2 2 2 3 [ N
Jix)=—x" = =xtxi ot x o +x” = 3] - to(x)]x,

ol w : R" — [0, 1] est la fonction cloche du paragraphe 3, n° 2. Comme au paragraphe 3, hors du

support de o, la fonction £, = k. n'a pas de point critique. Dans le compact (1), la fonction f; =
k. - a deux points critiques déja étudiés pour 0 < ¢ < 1, un point critique dégénéré pour # =1 et
aucun point critique pour ¢ > 1. Enfin ¢’ > 0 peut étre choisi assez petit pour que, sur le compact
adhérence(supp (@) \ @ '(1)) et pour ¢ € [0, 2], la fonction f;, assez voisine C' de la fonction de la
fonction ko, n'ait pas de point critique.

Montrons qu'il existe un voisinage double saturé de deux nappes en bonne position de f, = k.-
assez grand pour contenir le support de la déformation f;, c'est- a-dire le support de . 11 suffit
d'étudier les cas suivants (affinité sur la variable x,);

1“cas: i=0; fix,y)=k[’+y —you(x,y) €R" ' xR. Lecasdei=n— 1 est du méme coup
résolu par la fonction —f.
2 cas: 1< i<n—2; fx,y,2)=—x+p+2—zou(x,y,2) eR' XR" "/ xR,

Nous allons démontrer dans ces deux cas le

LEMME 1. Pour tout compact K C R", il existe un voisinage double saturé S pour la fonction f
dont l'intérieur contient K.

Choisissons les nappes en bonne position:

1 cas: ¢ =(0, 13) ; Ny = composante connexe de (f < 0) contenant ¢,
c2=(0,-1\3); Ny=(x=0; -1 <y<0).

2% cas: ¢;=(0, 0, 1/N3) ; N, contenue dans (x = 0) et f(bN,) = 0;
¢2=(0, 0, —1/\3); N, contenue dans (y = 0) et {bN>) = 0.

Soit ¢ : D — R”" un plongement adapté a ces deux nappes; on munit R” d'une métrique
prolongeant l'image par ¢ de celle de D. Puisque ¢, et ¢, sont seuls points critiques de f, on peut
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prolonger le plongement ¢ le long des lignes de gradient de f'de sorte que les niveaux extrémes du
saturé S soient —A4 et 4 tels que AK) C [-4, 4].

Soit P c D la surface de niveau 4 '(0): c'est le "plombage" de deux couronnes S x D"~/ et
D' x §"7~1. La donnée de ¢|P, plongement dans la variété de niveau ¥ = f'(0), suffit pour
reconstituer (D) et S a l'aide des linges de gradient de f. Si, d'autre part, K’ est la "projection" de K
sur V par les lignes de gradient de la fonction £, le lemme 1 est démontré des que K’ est contenu
dans ¢(P). 11 suffit donc de démontrer le

LEMME 2. Si ¢ : D — R" est un plongement adapté aux points critiques c et ¢, et aux nappes N,

et N,, pour tout compact K' C Vil existe une isotopie (y:). < 0.1) du plongement p|P=7y : P — V telle
que K'soit contenu dans y,(P).

1¢ cas: On traite seulement du cas n =2 et fix, y) = x*+ )’ —y; (on obtient le cas générale a partir
de celui-1a par rotation dans R” =R""’ x R autour de l'axe {0} x R). La variété V est alors la courbe
d'équation

¥+y —-y=0

qui est difféomorphe a la droite, et F est un segment: d'ou le lemme (voir figure 3).

2¢m cgs: On traite seulement ducas n=3,i=1etfix,y,z) = —x’ +)*+ 2z —z; (on obtient le cas
générale a partir de celui-1a par deux rotations). La variété J est alors la surface d'équation

X +y 2 —z=0

qui est difféomorphe au tore privé d'un point (penser 4 la cyclide de Dupin d'équation x*(z — 1) +

Y (z+ 1)+ 2 — z=0 qui est I'inverse d'un certain tore par rapport 4 un de ces points) et P est le
plombage de deux couronnes difféomorphe a S' x I dont les &mes sont plongées par ¢ sur un cercle
méridien et un cercle paralléle de {S' x S'} \ {point} respectivement: d'ou le lemme dans ce dernier
cas (voir figure 4).
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CHAPITRE IV

DEMONSTRATION DU THEOREME DU h-COBORDISME

Dans ce chapitre, on démontre le théoréme du A-cobordisme (voir Introduction): on sait
(chapitre III, paragraphe 2, théoréme 1) qu'il existe sur tout cobordisme compact une fonction de
Morse ordonnée et on va montrer que les hypothéses homologiques de /#-cobordisme et I'hypothése
de dimension permettent d'éliminer tous les points critiques de cette fonction par collision (chapitre
III, paragraphe 4, théoréme 2) d'ou la trivialité¢ du s-cobordisme (chapitre II, paragraphe 1,
théoréme 1).

Dans tout ce chapitre, (W, V, V') désigne une triade compacte, connexe (c'est-a-dire que W est
connexe, ce qui ne restreint pas la généralité ) munie d'une fonction de Morse ordonnée. On note n
la dimension de /; on note V; une variété de niveau située entre les points critiques d'indice i et
ceux d'indice (i + 1) et W, la partie de W située en-dessous de V;: c'est une variété a bord bW; =
VU V.. On suppose que W est orientée ce qui oriente chaque V; comme composante du bord de W..

Paragraphe 1. TRIADES DONT TOUS LES POINTS CRITIQUES ONT MEME INDICE.

Dans tout ce paragraphe, on suppose que la triade (W, V, V') est munie d'une fonction de Morse
qui a (» + 1) points critiques ¢y, ¢1, -, ¢, (indexée dans 'ordre des valeurs critiques décroissantes)
qui sont tous des ponts critiques d'indice i.

1. Métriques adaptées.

PROPOSITION 1. [l existe un systeme de nappes Ny, N, -, N,, deux a deux disjointes descendant
respectivement des points co, 1, =+, ¢, jusqu'a la variété de niveau V. Pour toute donnée de ce type,
il existe une métrique riemannienne sur W pour laquelle ces nappes sont de gradient. De plus,
pour cette métrique, les nappes de gradient montantes sont deux a deux disjointes et montent
Jjusqu'au niveau de V.

La deuxiéme partie de la proposition est évidente d'apres (chapitre III, paragraphe 2, proposition
4). Le premiére partie se démontre par récurrence. Supposons # munie d'une métrique pour
laquelle les nappe de gradient de ¢y, -, ¢, soient disjointes, et soit NV la nappe de gradient descendant
de ¢y jusqu'a une variété V"' de niveau compris entre f{c,) et f{ci). Dans V"' (de dimension (n — 1)) la
trace de la nappe montante N'; de ¢; est une sphere de dimension (n — i — 1), et DN est une sphere de
dimension (i — 1); il existe donc une isotopie d'un voisinage de bN dans V" telle que I'image de bDN
par I'extrémité de cette isotopie ne rencontre pas les N'. La nappe fournie par (chapitre 11,
paragraphe 4, proposition 5) se prolonge alors, le long des lignes de gradient, entre les niveau V" et
V.

2. Relation homologiques.

2.1 L'homologie H(W, V) est somme directe de (» + 1) sous-groupes isomorphes a Z et H, (W, V)

est nul pour g #i. En effet, le long des lignes de gradient, on peut rétracter /¥ sur la réunion de V et
de toutes les nappes descendantes, d'ou l'isomorphisme
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®H,(N, bN) = H(V U(UN), V) = H(W, V).

Choisissons une orientation sur chaque nappes descendante: les classes fondamentales de
nappes (N;, bN,) forment une base de H(W, V), notée (o, 1, **, V»)-

2.2 Soit B'= U N/, la réunion des nappes montantes et 4'= B’ N V. L'application naturelle
HW, V) — H(W, W\ B") est un isomorphisme car W\ B’ se rétracte sur V' le long des lignes de f.
Mais, par excision, on peut replacer W par un voisinage tubulaire 7'de B’ (i.e., une réunion disjointe
de voisinages tubulaires 7; des nappes montantes N';). Si on oriente 7; en orientant sa fibre en ¢;
comme la nappe N, qui est tangente, et si on oriente N'; de sorte que le nombre d'intersection NN’
soit +1, on a alors un isomorphisme de 7; sur D"~ x D’ d'ot un isomorphisme

t,: H(W, W\ B') — &H,D"" x (D', S'))

de telle sorte que l'image par # de la classe fondamentale y; de la nappe (N, bN,) soit exactement le
générateur canonique du j-ieme composant de la somme directe.

2.3 L'injections (V', V'\A") — (W, W\ B') induit sur 'homologie un isomorphisme sauf en
dimension (n — 1). Ceci provient du diagramme

HWV',V'\AY — H(W,W\B')
l= l=
H(S" " x (D, ") — H(D"" x (D', S""))

ou la fleche du bas est un isomorphisme pour g #n — 1.
En particulier, si i # n — 1, la composée des fleches

V2 1
HV', V'\A") — H(W, W\ B") — H(W, V)

est un isomorphisme; le groupe H( V", V'\ 4') est un groupe libre a (» + 1) générateurs et on peut
représenter le générateur correspondent a y; € H(W, V) par un petit disque rencontrant bN';

(seulement) transversalement en un point avec un nombre d'intersection égal a +1.

2.4 In en résulte que, si M est une sous-variété orientée de dimension i de V' qui coupe
transversalement les bN';, I'image de sa classe fondamentale par l'application composée

H(M) — H(V') — H{(W) — H(W, V)
est égale a ) (M-bN,) y; en tenant compte de la commutativité du diagramme
H(V', V'\A")
N .

H(V") H(W, W\ By — H(W, ).

H(W)
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3. Croisement de singularités de méme indice.

Soient V" et V""" deux variétés de niveau situées entre les niveaux de ¢, et de c¢;, V'" étant située
au-dessous de V"',
Onnote W' laportion de W située entre V et V",

W' laportion de W située entre V" et V',
W' laportion de W située entre V" et V",

W"" la portion de W située entre V et V"' (voir figure 1).
On rappelle que W est munie d'une métrique riemannienne adaptée (cf. proposition 1) et que N, est
la nappe descendante de c,.

\'Al

c , \l W

T,
s vam

! %5 /

figure 1

On note
N l'espace des nappes descendant de ¢, jusqu'a V; et coincidant avec N, au-dessus de V",

N le sous-espace de N formé des nappes qui sont de gradient au-dessus de V",
B"=B'"N W'""la réunion des nappes montantes (W' N N) (1<j<r),
A'""=B'N V"' la réunion des intersection avec V""" des nappes N,

S l'espace des sous-variétés de V" difféomorphes a §",

S" le sous-espace de celles qui ne rencontrent pas A4,

So l'intersection de N, et de V"

PROPOSITION 2. On a alors le diagramme commutatif suivant:

a

(S, S, So) — H(V'", V'"\A")
(1 Bl by
¢
71'0(N, No) - Hi(W', V)

ou les fleches sont définies ci-dessous.

Les espaces NV et S, espaces de sous-variétés, sont munis de la topologie quotient de l'espace des
plongement par les automorphismes de la source.
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Définition de p. 1l n'y a pas de point critique entre les niveaux V" et V', et W' est donc
difféomorphe a V""" x [ par un difféomorphisme qui envoie Ny N W' sur S, x I. Ceci entraine qu'il
existe un isomorphisme canonique (S, ", So) — 7(IV', No). La fléche 3 est la fléche composée de
cet isomorphisme et de la fléche canonique 7o(IN', No) — mo(N, No).

Définition de {. Une nappe N de N est un disque de dimension i, plongé dans W, avec son bord dans
V; elle définit donc une classe d'homologie dans H,(W, V) qui ne dépend que de la classe
d'homotopie du plongement. D'ou une application

" wo(N, No) = H(W', V).

Mais chaque nappe N € N coincide avec N, au-dessus de V"', donc tout ¢lément de I'image de ¢’
induit dans H(W", V') le méme élément que N,. La suite exacte

0 — H(W', V) — H(W, V) = H(W, W) — 0
=~ | excision
I’][(W”, VH)

montre que I'image de ' est dans le sous-espace affine de H(W, V) parallele a H(W', V) et issu de la
classe définie par Ny; la soustractions de cette classe identifie ce sous-espace aftine et H(W', V).
C'est ainsi qu'on définit I'application {; on montrera qu'elle est surjective.

Définition de a. (analogue a celle de {") On prend I'image de la classe fondamentale du cylindre
So x I dans V"

Définition de y. C'est l'application composée
72 N V3

H(V", V" \A) = H(W"", W""\ B") — H(W", V) = H(W', V)

ou y; est I'isomorphisme induit par rétraction de W' sur V', et y, et y, sont les applications définies
au paragraphe 1, n° 2.3.

PROPOSITION 3. L'application { est surjective pour 2 <i<n—2; si V"' est connexe.

La commutativité du diagramme (1) est évidente d'apres la définition des applications a, f, y et {.
La surjectivité de { résulte de la surjectivité de o et de y.

L'application y est bijective pour i # n — 1. 1l suffit d'appliquer le paragraphe 1, n° 2.3 a la triade
(W"", V, V") ce qui montre que y, et y, sont des isomorphismes sii#n— 1.

L'application o est surjective si 2 <i<n—2 et si V'" est connexe, (pour i = 1, on a le méme résultat
si on ajoute 1'hypothése que le complémentaire de 4" dans V""" est connexe; de méme pour i =n — 1
si le complémentaire de Sy dans V""" est connexe).

La sous-variété 4" de V'" est la réunion disjointe de » sphéres Sy, ..., S, de dimension (n —i — 1);
rappelons (paragraphe 1, n° 2.3) que les r générateurs du groupe libre H(V"", V""" \ A) sont
représentés par des petits disques de dimension i transversaux chacun a l'une des S; (1 <j <r).

Soit P un point de Sy, et O un point de S;; comme V"' est connexe, il existe un chemin
différentiable J joignant P a Q. On peut supposer que P est le seul point d'intersection de S, et du
chemin o, et O le seul point d'intersection de 4" et de J, puisque Sy et A" sont des sous-variétés de

31



Jean CERF et André GRAMAIN LE THEOREME DU h-COBORDISME (SMALE)

codimension au moins 2 dans V"". De plus on peut supposer que ces intersections sont
transversales. 1l existe alors un plongement du tube D"~ x [0, 1 + ¢] dont la restriction a

{0} x [0, 1] est le chemin o, et tel que S, rencontre le tube suivant un diamétre D de D" ' x {0}, et
S; rencontre suivant un diamétre D' de D" 2 x {1}, et que les Sk, k #j ne rencontrent pas le tube. Les
disques D et D' sont des diamétres de dimension (i — 1) et (n — i — 1) respectivement de D"~
Comme i — 1< n—2 -1, il existe une rotation p; (¢ € [0, 1]) de D"~ ? qui transforme D en un
diamétre transversale a D', et d'orientation arbitraire. Soit / une application différentiable de D
dans /= [0, 1] qui soit égale et tangente a 0 au bord de D, et égale a 1 au voisinage du centre de D.
L'application g de I x D dans le tube D" x [0, 1 + ¢] définie par

g(ta X) = (ph(x)h h(X)Z) pour te [0’ 1]
= (pugo B(x) +t—1) pourte[1, 1 +¢]

définit une déformation de D, et donc de Sp, c'est-a-dire un élément de (S, S", S) dont I'image
dans H(V"", V'""\ A) est le générateur défini par un petit disque transverse a .S;, ou son opposé,
suivant la rotation p, choisie.

! )@
\ »/s\\ /v”\/__)

An

figure 2

Le fait que tous les générateurs de H(V"", V""" \ A) soient dans 1'image de l'application a ne
prouve que o est surjective, puisque (S, S, So) n'est pas un groupe. Il est cependant bien clair,
qu'en itérant la déformation décrite plu haut, on peut obtenir n'importe quelle combinaison linéaire a
coefficients entiers relatifs des générateurs de H,(V"", V'"""\ 4); d'ou la surjectivité de I'application a.

4. Le théoreme de la base.

THEOREME 1. Soit (W, V, V') une triade, f une fonction de Morse sur la triade dont tous les points
critiques sont d'indice i (2 <i <n - 2), et soit (xo, X1, ..., X,) une base de H(W, V); il existe une
fonction de Morse g sur la triade qui a les propriétes suivantes;

(a). g ales mémes points critiques que f,
(b). g coincide avec f au voisinage du bord de W,
(c). g sedeéduit de f par un nombre fini de croisements élémentaires,

(d). g posséde un systeme de nappes descendantes (deux a deux sans point commun) qui
réalisent la base (x, xi, ..., x,) (en les prenant dans I'ordre des valeurs critiques
décroissantes).
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Démonstration. Soit (y,, ..., y,) une base de H{(W, V) réalisée par un systéme de nappes de la
fonction f (numérotée dans I'ordre des valeurs critiques décroissantes). La surjectivité de
l'application { (n° 3, proposition 3) montre qu'il existe une nappe descendante du point ¢, et disjointe
des nappes représentatives de yy, ..., y,, dont I'image dans H(W, V) est la somme de y, et d'une
combinaison linéaire arbitraire des y; (1 <j <r).

D'autre part, en changeant la fonction f par un chemin ¢lémentaire de traversée, on peut permuter
l'ordre des éléments de la base (o, ..., ). Enfin, en changeant 'orientation d'une nappe, on change

'élément de base correspondant en son opposé. Or toute base d'un Z-module libre de type fini peut
étre obtenue a partir d'une base donnée par un nombre fini d'opérations de ce type: le théoréme en
résulte.

En d'autres termes, on a utilisé le fait (¢lémentaire) que le groupe linéaire GL(Z, r + 1) est

engendré par la réunion du sous-groupe des matrice de permutation et du sous-groupe des matrices
triangulaires inférieures dont tous les ¢léments diagonaux sont égaux a +1.

Paragraphe 2. RELATIONS HOMOLOGIQUES ET HOMOTOPIQUES DANS UNE TRIADE
ORDONNEE.

1. Relation homologiques.

1.1 De I'étude des triades qui n'ont de points critiques qu'en dimension 7, on déduit par excision
que H(W;, W;_,) est somme directe de sous-groupes isomorphes a Z en nombre égal au nombre de

points critiques d'indice 7, chacun engendré par la classe fondamentale d'une nappe descendante.
De plus H,(W;, W;_,) est nul pour g # i.

1.2. On en déduit que, pouri<j,ona H,(W, W))=0sig<ietsij<gq.

1.3. En considérant la suite exacte d'homologie du triple (W, W;, V) on trouve que l'application
canonique H,(W, V) — H,(W,, V) est un isomorphisme dés que ¢ <i ouj <gq. En particulier,
comme W= W,, l'application H{W; .1, V) — H{W, V) est un isomorphisme.

2. Relation homotopiques.

2.1 Dans le cas ou il n'y a de ponts critiques que d'indice 7, I'image d'une application de §? dans
W peut étre séparée des nappes montantes (qui sont des (n — i)-disques) désque g+ (n—i) < n—1
d'aprés le théoréme de la séparation de Whitney. Or on a vu (paragraphe 1, n° 2.2) que le
complémentaire dans ¥ de la réunion des nappes montantes se rétracte par déformation sur V. 11
en résulte que (W, V) =0 pour g <.

2.2. On en déduit immédiatement que dans le cas général 7 (W;, W) =0 si g <i. Et, en
considérant la triade (W, V',J) munie de la fonction ordonnée —f, on trouve que =, (W;, V;) = 0 pour
gs n—i—1.

2.3. L'application naturelle naturelle z,(W;) — m,(W)) est un isomorphisme pour g <i; elle est
surjective pour g =i.
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Paragraphe 3. ELIMINATION DES POINTS CRI TIQUES D'INDICE 0 ET 1.

1. Points critiques d'indice 0.

THEOREME 2. Sur une triade connexe (W, V, V') il existe une fonction de Morse sans point
critique d'indice 0 ni pont critique d'indice n.

figure 3

La variété I, est difféomorphe a la réunion (disjointe) d'un cylindre V" x I et des nappes
montantes (N') des oints critiques d'indice 0 qui sont des n-disques. La variété W, se rétracte par
déformation sur la réunion de W, et des nappes descendantes (M;) des points critiques d'indice 1
(paragraphe 1, n° 2.1); d'autre part (paragraphe 2, n° 2.3), on a #o(W;) = my(W) = 0.

Soit ¢, le point critique d'indice 0 le plus haut, en raison de la connexité de W, il existe une nappe
descendante M, d'indice 1 (i.e., un 1-disque) qui joint la nappe N’y de ¢ soit a la nappe d'un autre
point critique d'indice 0, soit au cylindre V' x I: l'intersection de N’y et de M, est nécessairement
réduite a un point et évidemment transversale. Ces nappes sont en bonne position et le théoréme de
cancellation (chapitre 111, 4.1, théoréme 2) permet d'éliminer le point critique ¢, avec un point
critique d'indice 1.

Par récurrence, on voit qu'on peut éliminer outs les points critiques d'indice 0; le procédé utilisé
nous garantit l'existence d'un nombre égal de points critiques d'indice 1 qui sont éliminés
gratuitement tandis que tous les autres points critiques restent inchangés. Le méme procédé
appliqué a la fonction —f €limine les points critiques d'indice n avec un nombre de points d'indice

(n—1).

COROLLAIRE 1. Tout cobordisme connexe de dimension 1 est trivial et donc difféeomorphe au
segment [0, 1].

En effet, lorsqu'on a éliminé les points critiques d'indice 0 et ceux d'indice n = 1, il n'en reste
plus et la trivialité résulte de (chapitre II, 1.1, théoréme 1).

COROLLAIRE 2. Tout cobordisme de dimension 2 tel que H\(W, V) = 0 est trivial.

En effet, lorsqu'on a ¢éliminé les points critiques d'indice 0 et d'indice 2, on a H\(W,, Wy) =
H(W, V)= 0 ce qui montre qu'il ne reste plus de point critique d'indice 1 d'apres (paragraphe 2,
n°1.1)

Application : classification des variétés compactes de dimension 1 et 2.

Soit M une variété compacte munie d'une fonction de Morse f; cette fonction au moins un
maximum et un minimum. Lorsqu'on retire a M un petit voisinage de Morse d'un maximum et d'un
minimum, on obtient un cobordisme. Dans le cas de la dimension 1, il est trivial donc difféomorphe
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a la réunion de deux segment. Il en résulte que M est toujours difféomorphe au cercle.

Dans le cas de la dimension 2, le lecteur étudiera ce cobordisme suivant la dimension de
H\(W, V) pour obtenir la calcification des variétés de dimension 2 (cf. Seifert et Threlfall, Lehrbuch
der Topologie.)

2. Points critiques d'indice 1.

THEOREME 3. Soit (W, V, V") une triade connexe telle que
V soit connexe,
m(V)=m(W) =0,
n=dimW=>35,

et si f est une fonction de Morse sans point critique d'indice 0, on peut éliminer les points critiques
d'indice 1 de f en ajoutant un nombre égal de points critiques d'indice 3.

A partir de maintenant, on suppose V et V' connexe pour éviter d'avoir a prendre dans les énoncés
des hypothése des précautions illusoires (car, si on peut supprimer les points critiques d'indice 1, la

variété J est slirement connexe).

c!

figure 4

Soit ¢ le plus haut des points critiques d'indice 1 et N’ sa nappe montante dont le bord DN’ c V;
est une (n — 2)-sphere. Il existe un cercle S c V; qui coupe bN' transversalement et en un seul pont.
En effet, le complémentaire V; \ (U bN')) de la réunion des bords de toutes les nappes montantes
d'indice 1 se transporte le long des lignes de gradient sur le complémentaire V'\ (U bN;) des bords
des nappes descendantes qui est connexe puisque V est connexe et que chaque bN; est un couple de
points. Considérons alors un petit segment transverse a bN'; on peut joindre ses extrémités dans
Vi\ (U bN’) d'ou, en arrondissant les angles, un cercle S c V; qui ne rencontre aucun bN; sauf bN'
qu'il coupe transversalement en un seul point.

Les nappes descendantes M, des points d'indice 2 sont de dimension 2. Comme dim S +
dim bM; =2 <n—1=dim V3, le théoréme de séparation de Whitney nous permet de supposer, par
isotopie, que S ne rencontre aucune des bM;. A l'aide des ligne de gradient, on construit un cylindre
qui rencontre V; suivant S et V; suivant un cercle S

Par un chemin élémentaire de naissance (chapitre 111, paragraphe 3, proposition 4), on fait
apparaitre un peu au-dessus de /> un couple d'un point ¢’ d'indice 2 et d'un point ¢” d'indice 3. Soit
S" c V, le bord de la nappe descendante de ¢'; si les deux cercles S’ et S” sont isotopes par une
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isotopie de plongement dans V>, le procédé de (chapitre 11, paragraphe 4, proposition 5) nous donne
une nappe descendante de ¢’ de bord S’ et qui se prolonge donc le long des lignes de gradient jusqu'a
S c Vi. Les points ¢ et ¢’ ont des nappes en bonne position, donc se tuent par (chapitre I1I,
paragraphe 4, théoréme 2).

Il reste 2 montrer que S’ et S”’ sont isotopes. Pour cela, il suffit de voir qu'ils sont homotopes,
car, d'apres le théoreme de plongement de Whitney, le cercle étant de dimension 1, et V> de
dimension su moins 4, deux plongements homotopes du cercle dans V> sont isotopes. Les cercles S’
et " sont en fait homotopes a 0 sous les hypothéses du théoreme 3 d'apres le

LEMME. La variété de niveau V, est simplement connexe.

En effet, m(W>) = m(W) = 0 d'apres (paragraphe 2, n° 2.3) et (W) = 0 par hypothese; d'autre
part m(W>, V>) = 0 d'apres (paragraphe 2, n° 2.2) puisque 2 < n — 3; le lemme résulte alors de la
suite exacte d'homotopie du couple (W5, V>)

7T1(W2, Vz) - 7F1(V2) - 7T1(W2)-
Ceci achéve la démonstration du théoréme 3.

Remarques.

1. Sil'on oublie que 7 (W) = 0, il n'en reste pas moins que S est homotope a 0 dans V.
Supposons en effet que la naissance du couple (¢, ¢ ”) ait eu lieu dans une portion W, de W, située
entre les surface de niveau V; et V", assez plate pour qu'il n'y ait eu aucun point critique avant la
naissance de (c’, ¢"); alors V, est rétracte par déformation de ", et " qui est le bord d'un disque
dans W, (c'est le bord de la nappe) est homotope a 0 dans V5.

2. Démontrons la généralisation suivante du théoréme 3;

THEOREME 3'. Soit (W, V, V') une triade de dimension n > 5 telle que l'application canonique
(V) — m(W) soit un isomorphisme, et si f est une fonction de Morse sans point critique d'indice
0, on peut éliminer les points critiques d'indice 1 de f en aoutant un nombre égal de points
critiques d'indice 3.

D'apres ce qui précede, il suffit de trouver un cercle S, plongé dans V3, coupant bN'
transversalement en un seul point et qui soit homotope a 0 dans W, ceci parce que S a méme classe
que S’ dans 7;(W,) et parce que, si cette classe est nulle, la nullité de m,(W,, V) (paragraphe 2, n°
2.2) entraine que S’ est homotope a 0 dans V.

Soit (xi, ..., X5 ; R1, ..., R une présentation de z,(V) par générateurs et relations. On peut
supposer que les générateurs sont représentés par des cercles plongés dans '\ (UbN)). Le groupe
m(W)) est alors le composé (W) = m(V) * (v1, ..., y») ou y; correspond a la nappe N;. D'ou

7[1(V1) :7[1(W1) = (Xl, vy Xy Vs wees Vrs Rl, ceey Rt)

et on peut représenter dans V), les générateurs xi, ..., x, (en déplacant les précédents le long des
lignes de gradient) par des cercles plongés dans V; et ne rencontrant aucun bN'; de méme chaque y;
peut étre représenté par un cercle plongé dans V; et qui rencontre la seule nappe N, en un seul point
et transversalement.

Le groupe 7,(W>) est quotient de z,(W,) par les relations introduites par les nappes descendantes
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d'indice 2; mais, par hypothese, on a m;(W>) = m (W) = m (V) et il résulte que, dans z;(W>), on a des
relations du type y; = #/(x1, ..., X;) ol #; est un mot composé avec les lettres x, ..., x; et leurs
inverses. D'aprées le choix des représentants dans V; des générateurs, et comme V; est de dimension
au moins 3, on peut trouver un cercle S, plongé dans V; et rencontrant N, transversalement en un
seul point, dont la classe d'homotopie dans z,(¥7) soit y;-#7, '(x1, ..., x,). 1l est clair que le cercle S
est homotope a 0 dans W, et ceci acheve la démonstration.

3. Sous les hypotheses du théoréme 3 et si ; (V') = 0, le théoreme 3 appliqué a la fonction —f
montre qu'on peut éliminer les points critiques d'indice (n — 1).

4. La méthode précédente qui consiste a faire naitre un point critique d'indice (i + 1) et un point
critique d'indice (i + 2) pour que le point nouveau-né d'indice (i + 1) tue un point critique d'indice i
permet, si 7 (V) = m(W) = m (V') et st H«(W, V) =0, d'éliminer tous les points critiques sauf pour les
indiceiet (i + 1) ou 2 <i <n—3. Dans ce cours, on utilise une autre méthode.

5. Il n'y a pas d'espoir pour que ces méthodes fonctionnent en dimensions 3 et 4; en dimension
3 on ne peut pas éviter que S rencontre les nappes descendantes d'indice 2 et en dimension 4 les
cercles S’ et " peuvent étre noués dans V, (de dimension 3) et pas forcément isotopes.

Paragraphe 4. ELIMINATION DES POINTS CRITIQUES D'INDICE i (2 <i<n—4).

THEOREME 4. Soit (W, V, V") une triade de dimension n, f une fonction de Morse sur W et i un
entier tel que 2 <i <n —4; on supposons que

n>6
n(V)=0
HW,V)=0

fn'a pas de point critique d'indice inférieur ou égal a (i — 1).
11 existe alors une difféeomorphisme de la fonction f qui élimine tous les points critiques d'indice i
par collision avec des points d'indice (i + 1) en nombre égal et qui conserve tous les autres points
critiques.

La démonstration est scindée en deux parties.
1. Partie géométrique.

Soit ¢ le plus haut des oints critiques d'indice i et N’ sa nappe montante. Le théoréme de
cancellation permet d'éliminer c si I'on trouve un point critique ¢’ d'indice (i + 1) et une nappe
descendante M relative a ¢’ qui soit en bonne position par rapport a N'. Cela signifie que dans V; la
i-sphére bM coupe la (n — i — 1)-sphére bN' transversalement en un seul point. Il en résulte que le
nombre d'intersection (bM-bN') doit étre égal a £1. La deuxieme partie de la démonstration (partie
algébrique) est consacrée a la démonstration de l'existence d'un point critique c' et d'une nappe M
telle que (bM-bN") = 1; si I'on admet cela, pour déformer la nappe M en une nappe de ¢’ en bonne
position par rapport a N', il suffit (d'aprés chapitre II, paragraphe 4, proposition 5) de trouver une
isotopie de plongement de bM dans V; dont I'extrémité coupe HN' transversalement en un seul point.

Une telle isotopie est fournie par le théoréme du nombre d'intersection de Whitney
(cf. Introduction) pourvu que les hypothése en soient vérifiées. Or V; est de dimensionn—12>5, la
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i-sphere bM est de codimension n —i — 1 > 3 d'aprés 1'hypothése sur i, et la (n — i — 1)-sphére bN' est
de codimension i > 2. Il reste a vérifier I'hypothése (a). Comme il n'y a pas de point critique
d'indice plus petit que 2, la tranche W, a I'homotopie de V; elle est en particulier simplement
connexe; 1l en est de méme de toute tranche W, d'apres (paragraphe 2, n° 2.3). Comme i <n — 3, 1l
résulte de (paragraphe 2, n° 2.2) que (W, W;) = 0, donc V; est simplement connexe.

c!

A9

N
/ / \Nj

Il reste a voir que (V;\ bN") est simplement connexe. Si l'on avait i > 3, ce serait évident car bN'
a pour codimension i dans V.. Pour le cas i = 2, on doit faire une démonstration plus compliquée.
Soit 7, une variété de niveau située en-dessous de ¢ et au-dessus des autres points d'indice i. Le
groupe 7;(V";) est un quotient du groupe (V" \ (U (N, N V"))) d'apres le théoréme de séparation de
Whitney, puisque les intersections (N, N V") des nappes montantes N'; d'indice 7 sont de
codimension i > 2. Par transport le long des lignes de gradient, (V;\ (U (N, N V"))) a I'homotopie
du complémentaire (V'\ (U bN;)) des bords des nappes descendantes des points critiques situés
au-dessous de V.. Pour i <n — 3, la codimension des bN; est au moins 3 et 7;(V'\ (U DN))) = m(V) =
0.

Ainsi, V'; est simplement connexe, donc aussi (V;\ (N N V";)) ou N est la nappe descendante de c,
et de méme (V'\ bN') par transport le long des lignes de gradient.

2. Partie algébrique.

On va montre qu'aprés des croisements éventuels de points critiques d'indice (i + 1), il existe une
nappe M descendante d'un point ¢' d'indice (i + 1) dont la trace bM sur V; ait un nombre
d'intersection égal a 1 avec bN'. En appliquant (paragraphe 1, n° 2.4) a la triade (W; ,V, V;) avec
¢o = ¢, cela signifie que I'image de la classe fondamentale M par l'application composée

k h

H(V)) — H(W)) > H(W,, V)

a pour coordonnée 1 sur yy.

Siae Hi (W1, Vi) (ou W' 1 est la portion de W située entre V; et Vi) est une classe telle que
h-k-0(a) ait pour coordonnée 1 sur y,, alors a est élément d'une base du Z-module libre
H; . ((W'i1, Vi) et le théoréme de la base (paragraphe 1, n° 4) appliqué a la triade (W41, Vi, Vii1)
montre qu'apres quelques croisements, il existe une nappe descendante d'indice (i + 1) représentant
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a et, par suite, dont le bord bM a une classe fondamentale [bM] = Jo. convenable. On va construire
a.
Comme H(W;.1, Vi) = H(W, V) = 0, la suite exacte

I_[HI(VVHI, VK) —>I‘[,(VV;, V) —)I-L(VI/;J”’ V)

prouve que yo =0 ouf € H; .1(W;.1, W;). L'image réciproque par excision de S dans
H; (W', V) est I'élément a cherché a cause de la commutativité du diagramme

0 k
Hiv \(W'i1, Vi) = H(V)) — H(W)
~ | excision B 1=
Hi\(Wii1, W) — HW)

Paragraphe 5. CONCLUSION.

THEOREME 5. Soit (W, V, V') une triade compacte de dimension n, on suppose que

n>6
m(V)=m(W)=m(V)=0
H{W,V)=0

alors W est difféomorphe a V x [0, 1].

En effet, on peut munir # d'une fonction de Morse (chapitre I) dont on élimine les points
critiques d'indice 0 et 1 (chapitre IV, paragraphe 3) ainsi que les points d'indice n et (n — 1) (chapitre
IV, paragraphe 3). L'utilisation de (chapitre IV, paragraphe 4) ne laisse de points critiques qu'en
dimension (n — 3) et (n — 2). Le lecteur se convaincra a 'aide de (chapitre IV, paragraphe 1, n° 2)
qu'on a H«(W, V') =0; on applique alors a la fonction —fle paragraphe 4 pour conclure.

Note. Montrons que H«W, V')=0. Lorsqu'il n'y a que des points critiques d'indice (n — 3) et
(n—2), le triple (W, 2, W, _3, W,_4) est équivalent au triple (W, W, _s, V). Le seul groupe
d'homologie non nul de (W, W, _5) est le groupe de dimension (n — 2) dont une base est constituée
des classes fondamentales des nappes (M;)<« <, descendantes des points critiques d'indice (n — 2).
De méme pour H, (W, _3, V) dont une base est représentée par les nappes descendantes (V)< <.
Dans la suite exacte du triple (W, W, _s, V), la nullité de H«(W, V') prouve que le seul
homomorphisme non nul:

0: anz(VV, VV;F3) - an3(Wn73, V)

est un isomorphisme. On en déduit d'abord que » = s; d'autre part, d'aprés (paragraphe 1, n° 2.4),
sur les bases canoniques, 0 s'exprime par la matrice des nombre d'intersection (bM,bN'): cette
matrice est inversible.

Si l'on note W', _; la tranche de W située au-dessus de V, 3, on calcule H«(W, V') a I'aide de la
suite exacte du triple (W, W', _s, V'). L'homomorphisme H;(W, W', ;) — Hx(W',_3, V') qui s'exprime
par la transposée de la matrice précédente est inversible; d'ou la nullité¢ de H«(W, V").

Plus généralement, avec des points critiques en tous indices, on peut montre que H«(W, V) est
I'homologie du complexe (H, (W,, W,.1); 0,)4; et H«(W, V') I'homologie du complexe transposée.
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