

Correspondence Theorem for Rings

This article, taken from <http://math.stackexchange.com/questions/813978/correspondence-theorem-for-rings>, gives a full proof for the Correspondence theorem for rings.

Proposition 1. *Let A be a multiplicative ring with identity and I an ideal of A . Then there is a one-to-one correspondence between*

the ideals of A that contain I

and

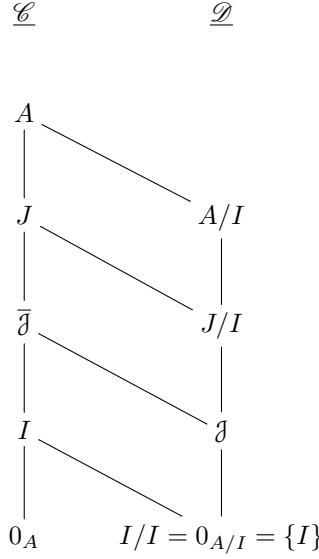
the ideals of the factor ring A/I .

Proof. Let \mathcal{C} and \mathcal{D} denote, respectively, the collection of ideals of A containing I , and the collection of ideals of A/I and define

$$f: \mathcal{C} \rightarrow \mathcal{D} \text{ by } f(J) = J/I = \{a + I \mid a \in J\} \subset A/I$$

$$g: \mathcal{D} \rightarrow \mathcal{C} \text{ by } g(\mathcal{J}) = \bar{\mathcal{J}} = \{a \mid a + I \in \mathcal{J}\} \subset A.$$

The following diagram epitomises the situation.



If $\mathcal{J} \in \mathcal{C}$, then we have

$$(f \circ g)(\mathcal{J}) = \{a + I \mid a \in g(\mathcal{J})\} = \{a + I \mid a + I \in \mathcal{J}\} = \mathcal{J}.$$

If $J \in \mathcal{C}$, then

$$\begin{aligned}(g \circ f)(J) &= \{a \mid a + I \in f(J)\} = \{a \mid a + I = b + I \text{ for some } b \in J\} \\ &= \{a \mid a \in b + I \text{ for some } b \in J\}.\end{aligned}$$

This last set clearly contains J . Now,

$$a \in b + I \implies (a - b) \in I \subset J \Rightarrow a = b + J \Rightarrow a \in J.$$

So $(g \circ f)(J) = J$, and we have shown that f and g establish a bijection between \mathcal{C} and \mathcal{D} . \square