
Dihedral groups revisited

Let us determine the subgroup structure of dihedral groups. First we recall
the definition.

Definition 1. The dihedral group D2n is generated by a rotation a and a
reflexion b with relations

an = e

b2 = e

ab = b−1a.

Elements of the form ak are called rotations. Elements of the form akb are called
reflexions.

Note that we have
akb = ban−k

Any element of the dihedral group can be written ak or akb for 0 ≤ k < n.

Normal subgroups of dihedral groups

We identify the normal subgroups. Note that the subgroup generated by a is
normal since it has index 2. Let N denote the normal subgroup we are trying
to track down.

Case: n is odd

For n = 2k + 1, the conjugacy classes are:

{e}, {a, an−1}, {a2, an−2} . . . {ak, ak+1} and {aib | 0 ≤ i < n}.

Recall that an equivalent definition for a normal subgroup is one that is a union
of conjugacy classes.

If a single reflexion is in N , then they all are. Even worse, that conjugacy
class is not a subgroup – so to contain this class, you need that class and more.
That means N is more than half the group, so indeed, that would require N to
be the whole group.

So the only normal subgroups that are not the whole D2n are contained in
⟨a⟩, the cyclic group generated by a which is isomorphic to Z/nZ. We know
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the subgroups of that are of the form ⟨ad⟩. For each divisor d of n, we get a
different normal subgroup.

So the normal subgroups are:

⟨a0⟩ = e,

⟨ad⟩ ∀d(d ≤ n, d|n),
D2n

And that’s all. Pretty simple.

Case: n is even

The even case is harder. Say n = 2k.
First of all, there is actually a centre to this group:

Z(D2n) = {e, ak}.

That is a normal subgroup already that we would have gotten by our previous
argument – since it’s inside ⟨a⟩. So far then, nothing unknown. But what are
the conjugacy classes? They are not the same.

They are the following:

{e}, {a, an−1}, {a2, an−2, } . . . , {ak−1, ak+1}, {ak}
and {a2ib, 0 ≤ i ≤ k}, the even reflexions

and {a2i+1b, 0 ≤ i ≤ k}, the odd reflexions.

So we can definitely still get all of the subgroups of ⟨a⟩.
What else can we get? Well, we have our unknown normal subgroup N . If

N contains any reflexions, it has at least one quarter of G – so it’s pretty big.
Assume it contains ajb. If j is even, then N contains b and a2b, and thus it
contains a2.

If j is odd, then N contains ab and a3b, so it contains a2 = a3bab.
So in fact, N contains even more of G – half of it in fact. It must contain

⟨a2⟩, which is a quarter of G, and one of the conjugacy classes – either the odd
reflexions, or the even ones. And of course, we don’t want to include anything
more – or else N = G.

So in the end, we get the following normal subgroups:

⟨a0⟩ = e

⟨ad⟩ 0 < d ≤ n, d | n,
⟨a2, b⟩
⟨a2, ab⟩
D2n

So in the even case, there are precisely two extra normal subgroups.
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Subgroups of dihedral groups

We identify the whole subgroups of dihedral groups, regardless of whether they
are normal or not, by following Stephan A. Cavior.

Definition 2. Let n ≥ 1 be an integer. The number of divisors of n is denoted
by τ(n). Also the sum of divisors of n is denoted by σ(n).

Example 3. σ(8) = 1 + 2 + 4 + 8 = 15 and τ(8) = 4.

We will prove that if n ≥ 3, then number of subgroups of D2n is τ(n)+σ(n).

Lemma 4. The number of subgroups of a cyclic group of order n ≥ 1 is τ(n).

Proof. Let G be a cyclic group of order n. Then G ∼= Z/nZ. A subgroup of
Z/nZ is in the form dZ/nZ where dZ ⊇ nZ. The condition dZ ⊇ nZ is obviously
equivalent to d | n.

Lemma 5. Let b be an element of order n in D2n and let H be any subgroup
of D2n. Then either H ⊆ ⟨b⟩ or |H ∩ ⟨b⟩| = d and |H| = 2d for some d | n.

Proof. Let N = ⟨b⟩. Clearly N is a normal subgroup of D2n because [D2n : N ] =
2. Thus HN is a subgroup of D2n and hence

|HN | | 2n. (6)

On the other hand,

|HN | = |H| · |N |
|H ∩N |

=
n|H|

|H ∩N |
.

Therefore, by (6), |H|
|H∩N | | 2. Hence either |H| = |H ∩N | or |H| = 2|H ∩N |. If

|H| = |H ∩N |, then H = H ∩N and thus H ⊆ N . If |H| = 2|H ∩N |, then let
|H ∩N | = d and so |H| = 2d. Clearly d | n because H ∩N is a subgroup of N
and |N | = n.

Lemma 7. Given d | n, let m = n/d. For every 0 ≤ i < n let A(i, d) =
{abi+km | 0 ≤ k < d}. Let B(i, d) = A(i, d) ∪ ⟨bm⟩. Then B(i, d) is a subgroup
of D2n and |B(i, d)| = 2d. We also have |{B(i, d) | 0 ≤ i < n}| = m.

Proof. If abi+km = abi+rm, for some 0 ≤ k, r < d, then b(k−r)m = 1 and thus
d | (k − r), because ord(b) = n = md. Therefore k = r because 0 ≤ k, r < d.
So |A(i, d)| = d. Clearly A(i, d)∩ ⟨bm⟩ = ∅ and |⟨bm⟩| = d, because ord(b) = n.
Thus |B(i, d)| = |A(i, d)| + |⟨bm⟩| = 2d. Proving that B(i, d) is a subgroup
of D2n is easy. Just note that every element of A(i, d) is the inverse of itself
(because they all have order two) and also note that abs = b−sa for all s, because
ab = b−1a. Finally, the set {B(i, d) | 0 ≤ i < n} has m elements because clearly
B(i, d) = B(j, d) if and only if A(i, d) = A(j, d) if and only if i ≡ j mod m.

Theorem 8 (Stephan A. Cavior, 1975). If n ≥ 3, then the number of subgroups
of D2n is τ(n) + σ(n).
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Proof. Suppose that H is a subgroup of D2n. There are two cases to consider.

Case 1 . H ⊆ ⟨b⟩. By Lemma 4, the number of these subgroups is τ(n).

Case 2 . In this case, by Lemma 5, we have |H| = 2d and |H ∩ ⟨b⟩| = d, for
some d | n. Let n = md. Since H ∩ ⟨b⟩ is a subgroup of ⟨b⟩, which is a
cyclic group of order n, we have

H ∩ ⟨b⟩ = ⟨bm⟩. (9)

Let A(i, d) and B(i, d) be as they were defined in Lemma 7. Now, since
H is not contained in ⟨b⟩, there exists some 0 ≤ i < n such that abi ∈ H.
Then, since H is a subgroup, we must have abibkm ∈ H, for all k. Thus
abi+km ∈ H and so A(i, d) ⊆ H and therefore, by (9), we have B(i, d) ⊆ H.
Thus, since |H| = |B(i, d)| = 2d, we must have H = B(i, d). The converse
obviously holds: given d | n and 0 ≤ i < n, B(i, d) is a subgroup ofD2n, by
Lemma 7, and B(i, d) ⊈ ⟨b⟩ because it contains A(i, d). So the subgroups
in this case are exactly the ones in the form B(i, d), where 0 ≤ i < n and
d | n. Thus, by Lemma 7, the number of subgroups in this case is∑

d|n

|{B(i, d) | 0 ≤ i < n}| =
∑
d|n

n/d =
∑
d|n

d = σ(n).

So, by case 1 and case 2, the number of subgroups of D2n is τ(n) + σ(n).

Note that we did not just find the number of subgroups of D2n. We also
found all the subgroups.

Example 10. Let us find all subgroups of D12.
By Theorem 8, there are τ(6)+σ(6) = 4+12 = 16 subgroups. Four of them

are obtained from case 1 in the proof of the theorem. They are the subgroups
of ⟨b⟩. Since ord(b) = 6, the subgroups in this case are {1}, ⟨b⟩, ⟨b2⟩ and ⟨b3⟩.
There are 12 subgroups left and they are in the form B(i, d), where 0 ≤ i < 6
and d | 6. So d = 1, 2, 3 or 6. Also, by the proof of the last part of Lemma 7,
B(i, d) = B(j, d) if and only if i ≡ j mod 6/d. So those 12 subgroups are:

B(0, 1),B(1, 1), B(2, 1), B(3, 1), B(4, 1), B(5, 1),

B(0, 2),B(1, 2), B(2, 2), B(0, 3), B(1, 3), B(0, 6).

Note that B(0, 6) = D12.
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