Dihedral groups revisited

Let us determine the subgroup structure of dihedral groups. First we recall
the definition.

Definition 1. The dihedral group Ds, is generated by a rotation a and a
reflexion b with relations

n

a =e
¥ =e
ab=b"la.

k

Elements of the form a* are called rotations. Elements of the form a*b are called

reflexions.

Note that we have
afb = ba"F

Any element of the dihedral group can be written a* or a*b for 0 < k < n.

Normal subgroups of dihedral groups

We identify the normal subgroups. Note that the subgroup generated by a is
normal since it has index 2. Let N denote the normal subgroup we are trying
to track down.

Case: n is odd

For n = 2k + 1, the conjugacy classes are:
{e}, {a,a" 1}, {a% a" "} .. {a", "™} and {a'b|0<i<n}.

Recall that an equivalent definition for a normal subgroup is one that is a union
of conjugacy classes.

If a single reflexion is in N, then they all are. Even worse, that conjugacy
class is not a subgroup — so to contain this class, you need that class and more.
That means N is more than half the group, so indeed, that would require N to
be the whole group.

So the only normal subgroups that are not the whole Ds,, are contained in
(a), the cyclic group generated by a which is isomorphic to Z/nZ. We know



the subgroups of that are of the form (a?). For each divisor d of n, we get a
different normal subgroup.
So the normal subgroups are:

(%) =e,
(a?y Vd(d < n,dn),
D2n

And that’s all. Pretty simple.

Case: n is even

The even case is harder. Say n = 2k.
First of all, there is actually a centre to this group:

Z(Dy,) = {e,a"}.

That is a normal subgroup already that we would have gotten by our previous
argument — since it’s inside (a). So far then, nothing unknown. But what are
the conjugacy classes? They are not the same.

They are the following;:

{e},{a, a”_l}, {ag, a2, ool {ak_l, akﬂ}, {ak}
and {a%b, 0 <i<k}, theeven reflexions
and {a%Hb7 0<i<k}, theodd reflexions.

So we can definitely still get all of the subgroups of (a).

What else can we get? Well, we have our unknown normal subgroup N. If
N contains any reflexions, it has at least one quarter of G — so it’s pretty big.
Assume it contains a/b. If j is even, then N contains b and a?b, and thus it
contains a?.

If j is odd, then N contains ab and a®b, so it contains a? = a3bab.

So in fact, N contains even more of G — half of it in fact. It must contain
(a?), which is a quarter of G, and one of the conjugacy classes — either the odd
reflexions, or the even ones. And of course, we don’t want to include anything
more — or else N = G.

So in the end, we get the following normal subgroups:

(a%) =e

(¥ 0<d<n,d|n,
(a®,0)

(

Dsy,

So in the even case, there are precisely two extra normal subgroups.



Subgroups of dihedral groups

We identify the whole subgroups of dihedral groups, regardless of whether they
are normal or not, by following Stephan A. Cavior.

Definition 2. Let n > 1 be an integer. The number of divisors of n is denoted
by 7(n). Also the sum of divisors of n is denoted by o(n).

Ezample 3. c(8) =14+2+4+8=15and 7(8) = 4.
We will prove that if n > 3, then number of subgroups of Da,, is 7(n)+a(n).
Lemma 4. The number of subgroups of a cyclic group of order n > 1 is 7(n).

Proof. Let G be a cyclic group of order n. Then G = Z/nZ. A subgroup of
Z/nZ is in the form dZ/nZ where dZ 2 nZ. The condition dZ O nZ is obviously
equivalent to d | n. O

Lemma 5. Let b be an element of order n in D, and let H be any subgroup
of Day,. Then either H C (b) or |HN(b)| =d and |H| = 2d for some d | n.

Proof. Let N = (b). Clearly N is a normal subgroup of Ds,, because [Da,: N] =
2. Thus HN is a subgroup of Dy, and hence

|HN| | 2n. (6)

On the other hand,
[H|-|N| _ n|H|
HN| = = .
| ||HﬂN||HﬂN|

Therefore, by (6), % | 2. Hence either |H| = |HNN|or |[H|=2/HNN]|. If
|H| = |H N N|, then H=HNN and thus H C N. If |H| = 2|H N N}, then let
|[HN N|=dand so |H| = 2d. Clearly d | n because H N N is a subgroup of N

and |[N| = n. O

Lemma 7. Given d | n, let m = n/d. For every 0 < i < n let A(i,d) =
{abitkm | 0 < k < d}. Let B(i,d) = A(i,d) U (b™). Then B(i,d) is a subgroup
of Doy, and |B(i,d)| = 2d. We also have |[{B(i,d) | 0 <i < n}| =m.

Proof. If ab™tF™ = abit™™  for some 0 < k,r < d, then b*~")™ =1 and thus
d | (k —r), because ord(b) = n = md. Therefore k = r because 0 < k,r < d.
So |A(i,d)| = d. Clearly A(i,d)N{b™) = @& and |[(b™)| = d, because ord(b) = n.
Thus |B(i,d)| = |A(i,d)| + [(b™)] = 2d. Proving that B(i,d) is a subgroup
of Dy, is easy. Just note that every element of A(i,d) is the inverse of itself
(because they all have order two) and also note that ab® = b~*a for all s, because
ab = b~ 'a. Finally, the set {B(i,d) | 0 < i < n} has m elements because clearly
B(i,d) = B(j,d) if and only if A(i,d) = A(j,d) if and only if i = j mod m. O

Theorem 8 (Stephan A. Cavior, 1975). Ifn > 3, then the number of subgroups
of Doy, is T(n) 4+ o(n).



Proof. Suppose that H is a subgroup of Ds,. There are two cases to consider.
Case 1 . H C (b). By Lemma 4, the number of these subgroups is 7(n).

Case 2 . In this case, by Lemma 5, we have |H| = 2d and |H N (b)| = d, for
some d | n. Let n = md. Since H N (b) is a subgroup of (b), which is a
cyclic group of order n, we have

HO @) = (6m). (9)

Let A(i,d) and B(i,d) be as they were defined in Lemma 7. Now, since
H is not contained in (b), there exists some 0 < i < n such that ab’ € H.
Then, since H is a subgroup, we must have ab’b*™ € H, for all k. Thus
abit*m ¢ [ and so A(i,d) C H and therefore, by (9), we have B(i,d) C H.
Thus, since |H| = |B(i,d)| = 2d, we must have H = B(i,d). The converse
obviously holds: given d | n and 0 < i < n, B(i,d) is a subgroup of Da,,, by
Lemma 7, and B(i,d) ¢ (b) because it contains A(i,d). So the subgroups
in this case are exactly the ones in the form B(i,d), where 0 < i < n and
d | n. Thus, by Lemma 7, the number of subgroups in this case is

SHBG.d) | 0<i<n}=> n/d=> d=o(n).
d|n

d|n d|n

So, by case 1 and case 2, the number of subgroups of Da, is 7(n) + o(n). O

Note that we did not just find the number of subgroups of Ds,. We also
found all the subgroups.

Ezxample 10. Let us find all subgroups of Djs.

By Theorem 8, there are 7(6) + 0 (6) = 4+ 12 = 16 subgroups. Four of them
are obtained from case 1 in the proof of the theorem. They are the subgroups
of (b). Since ord(b) = 6, the subgroups in this case are {1}, (b), (b?) and (b3).
There are 12 subgroups left and they are in the form B(i,d), where 0 < i < 6
and d | 6. Sod =1,2,3 or 6. Also, by the proof of the last part of Lemma 7,
B(i,d) = B(j,d) if and only if i = j mod 6/d. So those 12 subgroups are:

B(0,1),B(1,1), B(2,1), B(3,1), B(4,1), B(5,1),
B(0,2),B(1,2), B(2,2), B(0,3), B(1,3), B(0,6).

Note that B(0,6) = Djs.



