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Introduction

Transcriber's note

This is a memorandum on �Stable Homotopy Theory� by Joel M. Cohen. His
book is remarkable in that the writing style (of Chapters 0, 1, and 2 at least) is
very systematic, hence comprehensible: indeed, it can be used as an (informal)
introduction to axiomatic homotopy theory. Considering its publishing date
(1970), that is quite remarkable.

Thus the transcriber tried to �digitise� (a part of) it using LaTeX, besides
�xing �aws including incorrect cross-references.

Following is the original �Introduction� by the authour.

The original introduction

These notes are essentially the lecture notes of a course I gave at the University
of Chicago in the summer of 1968.1 Most aspects of stable homotopy are touched
on and some are studied in very great detail. It should, however, be emphasised
that we are only concerned with �nite CW complexes. Thus one never has
to worry about the problems which may arise for in�nite CW complexes; i.e.
certain long exact sequences which are easy to get for �nite dimensional CW
complexes become very di�cult in general unless one takes great care in de�ning
the morphisms (as J. M. Boardman has done in his Warwick lecture notes; or
see Tierney).

It is assumed that the reader has had a year of algebraic topology (a course
which covers the equivalent of most of Spanier, say). I quote without proof
some theorems from �rst year topology (e.g. the Hurewicz theorem) and prove
others. In addition I assume the reader has some understanding of spectral
sequences and what they can do. Speci�cally, I assume existence of the Serre
spectral sequence in homology. Spanier covers quite adequately the necessary
material.

For the computations of the stable homotopy groups of spheres in Chapter
V, I quote a lot of results on the Steenrod Algebra � all of which can be found

1The author was partially supported by the National Science Foundation during the prepa-

ration of these notes.
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in Steenrod-Epstein or Mosher-Tangora. Lack of prior knowledge of cohomology
operations will not interfere with the understanding of this section, although the
reader may have to accept some results on faith (or study the above-mentioned
books).

This set of notes has a quite di�erent point of view on the whole from Frank
Adams' lecture notes on stable homolopy. I feel that to some degree, these
complement the other. Although I do construct the Adams spectral sequence
for completeness, not very much is said about it here and the reader is encour-
aged to pursue the subject either in Adams' notes or in Mosher-Tancrora. The
present method of computing the stable homotopy groups of spheres is some-
what simpler than the Adams spectral sequence in the dimensions where it is
done. (Higher up this method seems to break down and the Adams method is
much neater.)

Chapter IV, on stable homotopy and category theory is entirely the work
of Peter Freyd. The proofs are to some extent my own � I tried to make
them more topological than category theoretical where possible; but the fact
remains that the main results, which are purely topological statements, cannot
be proved without using (or directly mimicking) Freyd's embedding of the stable
homotopy category into an abelian category.

Thanks are due many people for the ideas incorporated in these notes. My
interest in the subject was aroused by George Whitehead; much of my thinking
was in�uenced by him and several proofs are lifted directly from him. Chap-
ter V is an abridged version of my thesis written under Donald Anderson. I
express my deep gratitude to him for many helpful suggestions during the orig-
inal writing and since. In addition many parts of these notes grew out of very
useful discussions with Frank Peterson, David Kraines, Gerald Porter, Peter
May, Peter Freyd and Brayton Gray. I wish to thank Susan McMahon, Mary
Vallery and Cecelia Ricciotti for putting up with my handwriting and typing
this manuscript.
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Chapter 0

Preliminaries

To start with, we shall consider based, simply-connected spaces; i.e., every space
X comes equipped with a base-point ∗ ∈ X, X is connected and π1(X,∗) = 0.
f ∶X → Y will always be a continuous map with f(∗) = ∗. F (X,Y ) is the set
of all such maps. We give F (X,Y ) the compact-open topology. Let D be this
category.

A homotopy from X to Y is a continuous path Ht in F (X,Y ), 0 ≤ t ≤ 1.
Given such a path we say f ∼ g, f is homotopic to g for f =H0, g =H1. (Observe
that Ht(∗) = ∗ for all t.) The set of homotopy classes [f] of maps f ∶X → Y
is π0(F (X,Y )) = [X,Y ]. F (X,Y ) has a base-point ∗ where ∗(x) = ∗ for all
x ∈X.

Notation 0.1. Two spaces X and Y are homotopy equivalent, X ≃ Y , if and
only if there are maps f ∶X → Y , g∶Y → X with fg ∼ idY , gf ∼ idX . We shall
write X

∼= Y if X and Y are homeomorphic. (I.e., fg = idY , gf = idX for some
f and g.)

If A is a subspace of X containing the base-point of X as its own (this is
necessary, of course, in order to have the inclusion map base-point preserving)
then X/A is X with A identi�ed to the base-point. If it should happen that
X has no base-point and A ⊂ X, then X/A still makes sense and now has a
base-point.

Given spaces X and Y we form the wedge (essentially the one point union)
X ∨ Y = X × ∗ ∪ ∗ × Y ⊂ X × Y , with ∗ × ∗ as base-point. Then we de�ne the
smash product or reduced join

X ∧ Y = (X × Y )/(X ∨ Y ).

∨ and ∧ are commutative bifunctors D ×D → D and ∧ distributes over ∨.
Observe that × is the product and ∨ the coproduct for all maps and also for

homotopy classes; i.e.,

F (X,Y ×Z) ∼= F (X,Y ) × F (X,Z), F (X ∨ Y,Z) ∼= F (X,Z) × F (Y,Z),
[X,Y ×Z] = [X,Y ] × [X,Z], [X ∨ Y,Z] = [X,Z] × [Y,Z].
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2 CHAPTER 0. PRELIMINARIES

Let ρ∶F (X ∧ Y,Z) → F (X,F (Y,Z)) be given by [ρ(f)(x)](y) = f(x ∧ y).
ρ is continuous. If Y is locally compact, then ρ is, in fact, a homeomorphism.
Thus, for Y locally compact, the functors − ∧ Y and F (Y,−) are adjoint (or by
commutativity, Y ∧ − and F (Y,−)).

We de�ne the 1-sphere S1 = I/{0,1} where I = the unit interval [0,1] with
base-point 0. Let S = S1 ∧ − a functor D → D. By the above, it has a right
adjoint Ω = F (S1,−). F (SX,Z) ∼= F (X,ΩZ) so [SX,Z] = [X,ΩZ]. We recall
that [SX,Z] has a group structure arising from the �pinch� map S1 → S1 ∨ S1.

If n is an integer de�ne a function nMod1∶ I → I by nMod1(t) = n ⋅ t − ⌈nt⌉
(⌈x⌉ = greatest integer ≤ x). nMmod1 is not continuous but its composition
with the projection I → S1 is. Since nMmod1({0,1}) = ∗ ∈ S1 we in fact have
ñ∶S1 → S1 de�ned. Considering S1 as {z ∈ C∣∣z∣ = 1}, ñ(z) = zn.

For each integer r > 1 we can de�ne Sr+1 = S(Sr). In fact since S1 = S({0,1})
we see that {0,1} is a good choice for S0 - the zero sphere. Sr will represent the
functor Sr ∧ −. If n is an integer, Sr−1(n)∶Sr → Sr is de�ned and for confusion
will be written as ñ∶Sr → Sr.

There is one more functor that we wish to consider: Let Ĩ be I with the
base-point 1. Then the cone functor T is Ĩ ∨ −. We shall embed X ⊂ T X by
x ↦ (0, x). Then we see that a space X may be contracted to one point if and
only if X is a retract of T X; and a map f ∶X → Y is null homotopic if and only
if it can be extended to a map T X → Y .

We recall the following basic result (cf. Spanier �Algebraic topology� for
example):

Lemma 0.2. If f ∶Sr → Sr then for some integer n, f ∼ ñ and if m ≠ n, m̃ /∼ ñ.
In other words, [Sr,Sr] ≃ Z, the integers, with the identity corresponding to 1.
(Here of course r ≥ 1.)

Recall the homotopy group functor, πn = [Sn, ]. We recall that a non-
representable version can be de�ned on pairs. Now Hn(Sn) ≃ Z. For each n,
choose ιninH(Sn) a generator, so that in+1 corresponds to ιn under the natural
isomorphism Hn(Sn) ≃ Hn+1(Sn+1). This de�nes the Hurewicz map, a natural
transformation, hn∶πn →Hn∶:

[f] = α ∈ πn(X) ⇒ h(α) = f∗(ιn) ∈Hn(X).

For pairs of spaces satisfying a certain property, and n > 0,Hn(X,A) ≃Hn(X/A,∗).
Then we have de�ned hn(X,A)∶πn(X,A) → Hn(X,A) as the composite, for
n > 0,

πn(X,A) → πn(X/A,∗) = πn(X/A)
hn(X/A)ÐÐÐÐÐ→Hn(X/A)

∼→Hn(X,A)

The main theorem involving hn(X,A) is

Theorem 0.3 (Hurewicz). If πi(X,A) = 0, 0 ≤ i ≤ n then hn(X,A) is an
isomorphism.

It is important to note that we must assume X and A simply connected.
The �certain property� referred to above is this:
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De�nition 0.4. (X,A) has the homotopy extension property (HEP for short)
if A ⊂X, and I ×A ∪O ×X is a retract of I ×X.

Observe that if (X,A) has the HEP then letting r∶ I ×X → (I ×A)∪ (0×X)
be the retraction we have

r1 = r(1,−)∶X → (I ×A) ∪ (0 ×X), r1(A) = 1 ×A.

Observe that for X ∪ CA (this always means that a = (0, a)) we have

X ∪ CA = [(I ×A) ∪ (0 ×X)]/(1 ×A).

Since r1(A) = 1 ×A, r1 induces a map f ∶X/A→X ∪ CA. De�ning

g∶X ∪ CA→X/A, g(x) = [x], g(t, a) = ∗,

we observe that g is the homotopy inverse to f .
Thus

Theorem 0.5. If (X,A) satis�es HEP, then f ∶X/A ≃X ∪ CA. Furthermore

SA = (X ∪ CA)/X

composing f with the projection yields p∶X/A → SA called the canonical map.
p is unique up to homotopy and is natural once r∶ I ×X → I ×A∪0×X is given.

Remark 0.6. 1. The HEP for a pair (X,A) is satis�ed if and only if the following
is true: given f ∶X → Y and a homotopy H ∶A×I → Y beginning at f ∣A, then
there exists a homotopy G∶X × I → Y beginning at f and with G∣A =H.

A × 0 �
� //� _

��

f ∣A

H ∣A×0

""

A × I� _

��

H||
Y

X × 0 �
� //

f
<<

X × I

G

bb

2. The HEP always holds for a pair (A∪en,A) where int en∩A = ∅ and int en
∼=

int In; i.e. en is an attached n-cell. See Hu �Homotopy Theory�.





Chapter 1

Homotopy and Homology

Not-So-Long Exact Sequences

1.1 Basic Properties of Mapping Cones

If f ∶X → Y we de�ne the mapping cylinder Zf = Y ∪ (I ×X)/ ∼ where (0, x) ∼
f(x) ∈ Y and (t,∗) ∼ ∗. Y ⊂ Zf is a strong deformation retract, hence a
homotopy equivalence. We include X in Zf , i∶X ↪ Zf by i(x) = (x,1). Then
the following diagramme homotopy commutes:

X
f //� p

i   

X� _

��
Zf

Thus in homotopy theory we may take any map to be an inclusion by replac-
ing the codomain by a homotopy equivalent space and the map by a homotopic
one.

We now de�ne the mapping cone or co�bre of f ,

Cf = Zf /X = (Y ∪ CX)/ ∼, (0, x) ∼ f(x).

Then we have canonically the inclusion if ∶Y → Cf and the projection σf ∶Cf →
Cf /Y = SX.

We now prove several basic properties.

1) If f ∼ g∶X → Y then Cf ≃ Cg: let H ∶X × I → Y be such that H(x,0) = f(x),
H(x,1) = g(x). Then de�ne φ∶Cf → Cg by φ(y) = y and

φ(t, x) =
⎧⎪⎪⎨⎪⎪⎩

H(x,2t) 0 ≤ t ≤ 1
2

(2t − 1, x) 1
2
≤ t ≤ 1.

5
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This makes sense since φ(0, x) = H(x,0) = f(x) and (0, x) = φ( 1
2
, x) =

H(x,1) = g(x).
Similarly we de�ne ψ∶Cg → Cf and it is easy to show that ψ is the homotopy
inverse of φ.

2) Let a∶X → X ′ be a homotopy equivalence with â its homotopy inverse. Let
f ∶X ′ → Y . Then there is a map φ∶Cfa → Cf by φ(y) = y, φ(t, x) = (t, a(x)).
Similarly there is a map Cfaâ → Cfa. But by 1), Cfâ ∼ Cf since aâ ∼ idX′ .
Thus there are maps Cf ⇆ Cfa, and it is not di�cult to show that they are
a homotopy inverses. Similarly, if g∶Z →X, then Cag ≃ Cg.

3) By Theorem 0.5 we have: if f ∶Y → X is an inclusion and (X,Y ) has the
HEP, then Cf ≃X/Y .

4) Putting this all together, this says that, up to homotopy type, we may replace
a map by an inclusion and the cone by the quotient space in order to study
the mapping cone sequence. For example

5) If f ∶X → Y and g∶Y → Z are maps, then φ∶Cf → Cgf is de�ned by φ(y) =
g(h), φ(t, x) = (t, x). Then Cφ ≃ Cg: assume f and g are inclusions having
the HEP. Then φ is also and

Cg ≃ Z/Y = (Z/X)/(Y /X) ≃ Cgf /Cf ≃ Cφ.

6) If f ∶X → Y and Z is any space, then

[Cf , Z]
i∗fÐ→ [Y,Z] f∗Ð→ [X,Z]

is exact: if H ∶X × I → Cf by H(t, x) = (t, x) then H(x,0) = (if ○ f)(x) and
H(x,1) = ∗. Thus if ○ f ≃ ∗. So f∗ ○ i∗f = 0. Conversely, if g∶Y → Z and
g ○ f ∼ ∗, let G∶X × I → Z be such that G(x,1) = ∗ and G(x,0) = g ○ f . Then
de�ne g̃∶Cf → Z by g̃(y) = g(y), g̃(t, x) = G(x, t). This is well-de�ned and
g̃ ○ if = g.

7) (Cf , Y ) has the HEP so that θ∶Cif ≃ SX. The following then are homotopy
commutative diagrams:

Cf
� � //

σf

!!

Cif

θ

��
SX

Cif

σif //

θ

��

SY

SX
±Sf

==

(the sign depends on the actual choice of θ, but usually will come out −) .

8) If f ∶X → Y and Z is some space, then form f ∧ idZ ∶X ∧ Z → Y ∧ Z. Then
there is a natural map Cf∧idZ

→ Cf ∧ Z which is a bijection: take f to be
an inclusion; then we get the map Y ∧Z/X ∧Z → (Y /X) ∧Z. For Y and X
compact, it is a homeomorphism. In general, it induces an isomorphism of
homotopy groups.
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By a co�bration or a mapping cone sequence, we mean a sequence

X
fÐ→ Y

gÐ→ Z,

such that there is a homotopy equivalence a∶Z → Cf and a ○ g ∼ if ∶Y → Cf .
Thus if (X,A) has the HEP, A→X →X/A is a mapping cone sequence.

We get the Barratt-Puppe sequence from the above constructions:

X
fÐ→ Y

ifÐ→ Cf

σfÐ→ SX SfÐ→ SY
SifÐÐ→ SCf → ⋯ (α)

which has the property that every sequence of two maps (and three spaces) is
a mapping cone sequence. Also observe that if W is any space, then [(α), W ] is
a long exact sequence.

1.2 Basic Properties of Fibres

There is an adjoint construction to that of mapping cone. Set PY = {ω∶ I →
Y ∣ω(0) = ∗}. If f ∶X → Y let Ef = {(x,ω) ∈ X × PY ∣ω(1) = f(x)}. Ef is
called the �bre of f . We de�ne jf ∶Ef →X by jf(x,ω) = x and φf ∶ΩY → Ef by
φf(ω) = (∗, ω). (Recall that Ω = F (S1,−) and that it is left adjoint to S = S1∧−,
that is, [SX,Z] = [X,ΩZ] since F (SX,Z) ≃ F (X,ΩZ).)

We have the dual properties to co�bres:

1') If f ∼ g then Ef ≃ Eg.

2') If a∶X ′ → X and b∶Y → Y ′ are homotopy equivalences and f ∶X → Y , then
Eb○f○a ≃ Ef .

3') (Intentionally left blank.)

4') (Intentionally left blank.)

5') Given X
fÐ→ Y

gÐ→ Z, there is a map φ∶Egf → Eg given by φ(x,ω)) =
(f(x), ω) with �bre Eφ ≃ Ef .

6') If f ∶X → Y and Z is any space, then

[Z,Ef ]
jf∗ÐÐ→ [Z,X] f∗Ð→ [Z,Y ]

is exact.

7') There is a homotopy equivalence φ∶Ejf ≃ ΩY with the following homotopy
commutative:

ΩY
φf // Ef

Ejf

φ

OO

jjf

>>
ΩY

φjf //

±Ωf ""

Ejf

φ

��
ΩX
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8') If f ∶X → Y and Z is some space, then form f × idZ ∶X × Z → Y × Z. Then
since P (Y ×Z) = PY × PZ,

Ef×idZ

= {((x, z), (ω1, ω2)) ∈ (X ×Z) × (PY × PZ)∣ω1(1) = f(x), ω2(1) = Z}
= {(x,ω) ∈X × PY ∣ω(1) = f(x)} × {(z,ω) ∈ Z × PZ ∣ω(1) = z} ×Z
= Ef × PZ ×Z.

Since PZ is contractible, Ef×idZ
≃ Ef ×Z.

Finally, there is a Barratt-Puppe sequence

⋯ → ΩEf

ΩjfÐÐ→ ΩX
ΩfÐ→ ΩY

σfÐ→ Ef

jfÐ→X
fÐ→ Y (β)

such that if W is any space, then [W, (β)] is a long exact sequence . Under
certain circumstances, we shall �nd that [(β), W ] and [W , (α)] are exact. We
shall investigate this in �3.2.

Remark 1.1. Care should be taken to observe that [X,Y ] is a pointed set and

not, in general, a group unless X = SX ′ or Y = ΩY ′. A sequence A
fÐ→ B

gÐ→ C
of pointed sets is exact if f(A) = g−1(∗). In particular, g is a monomorphism
if f(A) = ∗; but monomorphism means only that g−1(∗) = ∗. It does not mean
(unless g is a group homomorphism) that g is 1 - 1. Epimorphism does mean
onto, however; and f is an epimorphism if and only if g(B) = ∗.

De�nition 1.2. p∶E → B is a �bre map if and only if p satis�es the covering
homotopy property: if W is any space and

W × 0 f //� _

��

E

p

��
W × I

H
//

∃G
<<

B

is a commutative diagramme, then there exists G∶W × I → E making the dia-
gramme commute.

If p is a �bre map and F = p−1(∗) then we call F
iÐ→ E

pÐ→ B a �bration. We

shall also call F ′
i′Ð→ E′

p′Ð→ B′ a �bration if there exist homotopy equivalences
F ≃ F ′, E ≃ E′, B ≃ B′ making the total diagramme homotopy commute.

Theorem 1.3. If f ∶X → Y is any map then

Ef

JfÐ→X
fÐ→ Y

is a �bration.

Remark 1.4. This says that in (β) above any two consecutive maps yield a
�bration.
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Proof. Let Ẽf = {(x,ω) ∈ X × Y I ∣f(x) = ω(1)}. Let f̃ ∶ Ẽf → Y be given by

f̃(x,ω) = ω(0). We have maps X ⇆ Ẽf where

x↦ (x,ωx) x← [ (x,ω).
with ωx(t) = f(s)). Clearly X → Ẽf → X is the identity and Ẽf → X → Ẽf

takes (x,ω) ↦ (x,ωx). Let Ht(x,ω) = (X,ωt) where ωt(1 − s) = ω(1 − st) so
that ω1 = ω, ω0 = ωx.

Then X ≃ Ẽf since H0 =⟳ and H1 = idẼf
. Also the following diagramme

X
∼ //

f   

Ẽf

f̃

��
Y

homotopy commutes.
Observe that f̃−1(∗) = Ef .

Finally we need to show that f is a �bre map. Let p∶ Ẽf → X, q∶ Ẽf → Y I

be the projections. Then given

W × 0 h //� _

��

Ẽf

f̃

��
W × I

H
// Y

we de�ne G∶W × I → Ẽf by G(ω, t) = (ph(ω), λω,t)) where

λω,t =
⎧⎪⎪⎨⎪⎪⎩

H(ω, t − 2s) 0 ≤ s ≤ t/2
qh(ω) ( 2s−t

2−t ) t/2 ≤ s ≤ 1

This is continuous since H(ω,0) = f̃h(ω) = qh(ω)(0) so λω,t(t/2) is well-
de�ned. Since λω,t(1) = qh(ω)(1) = fph(ω), G(ω, t) ∈ Ẽf .

Also G(ω,0) = qh(ω) = f̃h(ω) and f̃G(ω, t) = λω,t(0) =H(ω, t).
So the diagramme will commute and the theorem is proved. (Except for the

possibility of G being discontinuous. We simply remark that it is continuous
for spaces we are interested in and we leave the exact conditions to point-set
topologists.)

Next observe that the exactness of the sequence πn(β)

⋯ → ΩY → Ef →X
fÐ→ Y (β)

yields the following exact sequence

πn(ΩEf) //

∼
��

πn(ΩX) //

∼
��

πn(ΩX) //

∼
��

πn(Ef) // πn(X) // πn(Y )

πn+1(Ef) // πn+1(X) // πn+1(Y )

99
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(We use the fact that πn+1(X) = [Sn+1,X] = [S(Sn),X] = [Sn,ΩX] = πn(ΩX).)

1.3 Some Consequences of the Serre Spectral Se-

quence

Under certain circumstances, a map which is not a homotopy equivalence looks
like one in low dimensions. To make this more precise, observe:

Theorem 1.5. If f ∶A → B then f∗∶Hi(A) → Hi(B) is an isomorphism for
i < n and an epimorphism for i < n if and only if the same is true of f∗∶πi(A) →
πi(B).

Proof. Consider the inclusion of A into the mapping cylinder j∶A→ Zf . Then

Hi(f) is an
⎧⎪⎪⎨⎪⎪⎩

iso i < n
epi i ≤ n

⇔Hi(j) is same ⇔Hi(Zf ,A) = 0 for i ≤ n

⇕ Theorem0.3

πi(f) is same⇔ πj is an

⎧⎪⎪⎨⎪⎪⎩

iso i < n
epi i ≤ n

⇔ πi(Zf ,A) = 0 for i ≤ n

Corollary 1.6. The co�bre of f is n-connected if and only if the �bre of f is
(n − 1)-connected.

We say that f is n-connected in this case.

Remark 1.7. In all the above A and B are 1-connected. For A, B not 1-
connected, there are examples where Cf ≃ ∗ but Ef is not 2-connected: as
a group π2(S1 ∨ S2) ≃ Z[t, t−1] (a polynomial algebra on one variable and its
inverse). Let θ∶S2 → S1 ∨ S2 represent 2t − 1. Then H2(θ) is an isomorphism so
X = Cθ has the same homology as S1. Then there is a map f ∶S1 →X which is a
homology isomorphism and in fact Cf /S1 ≃ ∗, but π2(f) is not an isomorphism
and Ef is not 2-connected.

We recall the Serre Spectral Sequence (e.g. as outlined in Spanier):

Theorem 1.8. (Serre) Let E
iÐ→ E

pÐ→ B be a �bration with B 1-connected.
Then there is a spectral sequence {Er, dr} with

E2
s,t =Hs(B;Ht(F )) →H∗(E)

and a spectral sequence {Ẽr, d̃r} with

Ẽ2
s,t =Hs(B;Ht(F )) →H∗(E,F )

The edge homomorphisms are those induced by p∗ and i∗.
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Corollary 1.9. If B is (n − 1)-connected and F is (m − 1)-connected then for
p∶ (E,F ) → (B,∗),

Hi(p) is an
⎧⎪⎪⎨⎪⎪⎩

iso for i <m + n
epi for i ≤m + n.

Proof. Picture the spectral sequence {Ẽr, d̃r} of F → E → B converging to
H∗(E,F ).

Hn(B;Hm(F ))

Hn(B,∗) Hn+1(B,∗) Hn+m(B,∗) Hn+m+1(B,∗)

First possible non-zero di�erential

mm

Thus since the edge homomorphism is H∗(p) the result follows.

Notice that we cannot say that p∶ (E,F ) → (B,∗) is (m + n)-connected.
This does not make sense in the relative case: pii(p) is an isomorphism for all
i although Hi(p) is not. Conversely if A ⊂ X satis�es HEP then f ∶ (X,A) →
(X/A,∗) induces a homology isomorphism but not a homotopy isomorphism in
all dimensions.

We can, however, put it this way:

p̃∶E/F → B induces an

⎧⎪⎪⎨⎪⎪⎩

iso for i <m + n
epi for i ≤m + n

Thus p̃∶E/F → B is (m + n)-connected.
We now wish to look at the dual problem: IfX

fÐ→ Y
iÐ→⊂ Cf is a co�bration

then there is an induced map ρ∶X → Ei. How close are X and Ei; i.e., how
connected is ρ?

Look at Corollary 1.9 as follows:
For i ≤ n+m−1, replace Hi(E/F ) by Hi(B) in the exact homology sequence

for F → E → E/F yielding

Hi(F ) →Hi(E) →Hi(B) →Hi−1(F ) → ⋯

exact for i ≤m + n − 1.
If f ∶X → Y , let E = Eif = {(y,ω) ∈ Y × PCf ∣ω(1) = y}. De�ne ρ∶X → E by

ρ(x) = (f(x), ωx) where ωx(t) = (1− t, x) so that ωx(0) = ∗, ωx(1) = f(x). Thus

E

j

��
X

f
//

ρ

??

Y
if
// Cf
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is commutative. Assume thatX is (n−1)-connected and Cf is (m−1)-connected.
From the exact homotopy sequence for E → Y → Cf and homology for X →
Y → Cf and the Hurewicz theorem we �nd that E is also (n − 1)-connected.
But from the above we have both of the following sequences exact and the
diagramme commutative for k ≤ n +m − 1.

Hk(Y ) // Hk(Cf) // Hk−1(E) // Hk(Y ) // ⋯

Hk(Y ) // Hk(Cf) // Hk−1(X) //

ρ∗

OO

Hk(Y ) // ⋯

Thus Hk(ρ) is an isomorphism for k ≤ n +m − 2 (but not necessarily an
epimorphism for k = n +m − 1). Thus

Theorem 1.10. Given X → Y → Cf with X (n−1)-connected and Cf (m−1)-
connected then the induced map ρ∶X → Ei is (n+m−2)-connected. Hence there
is an exact homotopy sequence

πn+m−3(X) → πn+m−3(Y ) → πn+m−3(Cf) → πn+m−4(X) → ⋯

1.4 Getting to the Stable Range

We shall now proceed to make great use of Theorem 1.10. This will be the
essential tool in getting to a stable situation. The idea is roughly that if a space
is n-connected then its properties up to dimension 2n− ε (ε = 0,1, or 2 usually)
are stable; e.g.

suspending gives an isomorphism Hi →Hi+1 and πi → πk+1;

looping gives an isomorphism πi → πi−1, and Hi →Hi−1.

Within this range, �brations and co�brations �look the same.� These ideas will
become more precise in this section. From now on, the statement X ⊂ Y will
assume that (Y,X) has the HEP.

Theorem 1.11. (Blakers-Massey) If X ⊂ Y (Note this means that (Y,X) has
the HEP.) and X is (n − 1)-connected and Y /X is (m − 1)-connected then

φ∶πi(Y,X) → πi(Y /X) is an
⎧⎪⎪⎨⎪⎪⎩

iso for i <m + n − 1
epi for i ≤m + n − 1

Proof. We have
Ei

j

��
X //

ρ
??

Y
i
// Y /X
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where ρ is (n +m − 2)-connected. The following is an exact diagramme (rows
are exact and the diagramme commutes):

πi(Ej) // πi(Y ) // πi(Y /X) // πi−1(Ej) // πi−1(Y )

πi(X) //

ρ∗

OO

πi(Y ) // πi(Y,X) //

φ

OO

πi−1(X) //

ρ′
∗

OO

πi−1Y

We apply the 5-lemma:

for i < n +m − 2 ρ′∗ is ≃ and ρ∗ is epi so φ is ≃;

for i < n +m − 1 ρ′∗ is epi so φ is epi;

Theorem 1.12. If A is (n−1)-connected and B is (m−1)-connected and n ≤m
then

πi(A ∨B) ≃ πi(A) ⊕ πi(B) ⊕ πi+1(A ∧B), i ≤m + 2n − 3.

Proof. In the sequence

πi(A ∨B) → πi(A ×B) → πi(A ×B,A ∨B) → ⋯

we observe that πi(A × B) ≃ πi(A) ⊕ πi(B), and πi(A ∨ B) contains this as a
direct summand because A and B are retracts of A ∨ B. Thus we have split
exact sequences:

0→ πi+1(A ×B,A ∨B) → πi(A ∨B) ⇆ πi(A) ⊕ πi(B) → 0

so

πi(A ∨B) ≃ πi(A) ⊕ πi(B) ⊕ πi+1(A ×B,A ∨B).

But A∨B is (n− 1)-connected and using the Künneth formula we observe that
(A ×B)/(A ∨B) = A ∧B is (m + n − 1)-connected so

πi+1(A ×B,A ∨B) ≃ πi+1(A ∧B), i + 1 <m + 2n − 2

applying Theorem 1.10.

Another place we use Theorem 1.10 is in the very important Freudenthal
Suspension Theorem.

Theorem 1.13. (Freudenthal Suspension) If X is (n − 1)-connected then

S∶πi(X) → πi+1(SX) is an
⎧⎪⎪⎨⎪⎪⎩

iso for i < 2n − 1
epi or i ≤ 2n − 1.
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Proof. Look at the co�bration X
f∗Ð→ ∗ iÐ→ SX.

Ei = ΩSX, ρ∶X → ΩSX

is the map ρ(x)(t) = t ∧ x the adjoint to the identity SX → SX. Thus the

composite πi(X)
ρ∗Ð→ πi(ΩSX) ≃ πi+1(SX) is the suspension S. But ρ is (2n−1)-

connected by Theorem 1.10 so

ρ∗ is an

⎧⎪⎪⎨⎪⎪⎩

iso for i < 2n − 1
epi for i ≤ 2n − 1,

hence S is also.

We now introduce the type of space which will be most convenient for study-
ing homotopy problems.

De�nition 1.14. A CW complex is a space X together with a sequence of
subspaces Xn such that

1) for some indexing set Jn, where each

Xn =Xn−1 ∪α∈Jn e
n
α

where each enα is an n-cell; i.e. there is an onto map φα∶ In → enα which,

restricted to the interior of In is a homeomorphism onto
○n
eα. The boundary

is ėnα = enα ∖
○
e
n

α. Then
○n
eα ∩ (Xn ∪β≠α enβ) = ∅

and each ėnα is contained in a �nite union of cells of dimension < n. Since
ėnα ≃ Sn−1, there is de�ned a family of �characteristic maps�

○
φα∶Sn−1 →Xn−1

and C ○

φα0

∼=Xn−1 ∪ enα0
.

2) X0 is discrete.

3) X = ∪∞n=0Xn and O ⊂X is open if and only if O∩Xn is open in Xn for all n.

Remark 1.15. i) 3) de�nes the �weak topology� on X with respect to the
subspaces Xn. Observe that the topology remains the same if the word
�open� is replaced by �closed.�

ii) If Xn−1 is connected, then

Xn/Xn−1 = ∨JnS
n

a wedge (or �bouquet�) of n-spheres. Let

φ = ∨ ○
φα∶ ∨JnS

n−1 →Xn−1

Then Cφ ≃ Xn. Thus there is a co�bration ∨Sn−1 → Xn−1 → Xn. We will
�nd this particularly useful.



1.5. CW SPACES 15

iii) A subcomplex A of a CW complexX, is a CW complex A such that An ⊂Xn

and

An = An−1 ∪Jn
enα

where Jn ⊂ Jn. An extension of a remark in Chapter 0 yields the fact that
(X,A) has the HEP.

De�nition 1.16. We de�ne the dimension of a CW complex X by dimX ≤ n
if X =Xn.

1.5 CW Spaces

We call a space Y a CW space if and only if there is some CW complex X ≃ Y .
We set dimY = minX≃Y dimX . Since all theorems are statements only up to
homotopy type any proof need involve only a CW complex X and the statement
holds true for the CW space Y ≃ X. Observe that a CW complex may have
a smaller dimension when considered as a CW space, but that will not matter
because hypotheses have the form �dimension ≤ n.� For example, we have the
following useful fact about CW spaces.

Lemma 1.17. If X is a connected CW space of dimension ≤ n and Y is an
n-connected space, then [X,Y ] = 0.

Proof. We proceed by induction on n. If n = 1, then

X ≃ ∨αS1 ⇒ [X,Y ] = ∨αS1, Y ] = ∏
α

[S1, Y ] = ∏
α

π1(Y ) = 0.

Assume the lemma is true up to n − l. Let X and Y be as in the hypothesis.
Then there is a map f ∶ ∨Sn−1 → Sn−1 with Cf ≃ X, so Xn−1 → X → ∨Sn is a
co�bration so

[Xn−1, Y ] ← [X,Y ] ← [∨αSn, Y ]

is exact since [Xn−1, Y ] = 0 by induction and ∏πn(Y ) = 0 since Y is n-
connected; therefore [X,Y ] = 0.

By more geometric means we can extend Lemma 1.17 to the in�nite dimen-
sional case.

Lemma 1.18. Let Y be a space and X a CW complex with n cells only for
those n such that πn(Y ) = 0. Then [X,Y ] = 0.

Proof. Let f ∶X → Y ; we wish to construct a homotopy

H ∶X × I → Y, H(x,0) = f(x), H(x,1) = ∗.

X is obtained from ∗ by adjoining various n-cells. Well-order the procedure
and construct H inductively. H ∣∗ is trivial. Let X ′ be a subcomplex of X and



16CHAPTER 1. HOMOTOPYANDHOMOLOGYNOT-SO-LONG EXACT SEQUENCES

assume we are given H ∣X′ , let X ′′ =X ′ ∪ en. Since (X ′′,X ′) has the HEP, H ∣X′
can be extended to

H̃ ∶X ′′ × I → Y, H̃ ∣X′ =H ∣X′ , H̃(x,0) = f(x).

H̃(x,1) = ∗ for x ∈X ′. H̃(x,1) = ∗ for x ∈ ėn so H̃1∶ (en, ėn) → (Y,∗) represents
an element in πn(Y ) = 0, so there is a homotopy

G∶ (en, ėn) × I → Y, G1 = ∗, G0 = H̃1.

Now de�ne H ∣○n
e
as follows: write

○n
e = Sn−1 ∧ [0,1) where [0,1) has base point

0. For (x, t) ∈ ○ne let

H((x, t), s) =
⎧⎪⎪⎨⎪⎪⎩

H̃((x.t), 1
2
) 0 ≤ s ≤ t, t > 0

G((x, t), s−t
1−t) t ≤ s ≤ 1.

This is continuous, and extends H ∣X′ since as t → 1, G((x, t), s) → ∗ uniformly
for all s. Furthermore, H((x, t),1) = G((x, t),1)) = ∗. Thus H ∣X′′ is de�ned.
Inductively, then we have constructed a homotopy H ∶ f ∼ ∗.

We recall a few facts about relative homotopy groups. An element α ∈
πn(X,A) is represented by a map f ∶ (Dn,Sn−1) → (X,A) where Dn is some n-
cell and Sn−1 its boundary. α = 0 if and only if f ∼ f ′ relSn−1 where f ′(Dn) ⊂ A.
Also recall the long exact sequence

⋯ → πn+1(X,A) → πn(A) → πn(X) → πn(X,A) → ⋯

All are elementary facts to be found in Hu [1] or Spanier.
We can use these facts to study some properties of CW complexes. We can

think of a CW complex as being built up from the empty set by adding one cell
at a time. (Use the axiom of choice to well-order the procedure.) If θ∶Sn−1 → A
then Cθ will often be written as A ∪θ en. Observe

Lemma 1.19. If X = A ∪θ en and πn(Y,B) = 0, then any map f ∶ (X,A) →
(Y,B) is homotopic relA to some f ′ where f ′(X) ⊂ B.

Proof. Let i∶ (Dn,Sn−1) → (X,A) be the obvious map where i∣Dn∖Sn−1 is a home-
omorphism onto en ∖ A. Then [f ○ i] ∈ πn(Y,B) represents 0 so there is some
h′∶ (Dn,Sn−1) → (X,A) homotopic relSn−1 to f ○ i and h′(Dn) ⊂ B. Then since
h′∣Sn−1 = f ○ i∣Sn−1 we can de�ne

f ′∶ (X,A) → (Y,B), f ′∣A = f ∣A, f ′∣en∖A = h′ ○ i−1, f ′ ∼ f relA.

Lemma 1.20. Let X be a CW complex of dimension N ≤ ∞ such that Xn = ∗.
Assume πi(Y,B) = 0 for n − 1 < i < N . Then if j∶B → Y is the inclusion
then j∗∶ [X,B] → [X,Y ] is injective. If πi(Y,B) = 0 for n < i < N + 1 then
j∗ is surjective. In particular if πi(Y,B) = 0 for n ≤ i < N + 1, then j∗ is an
isomorphism.
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Proof. Let E be the �bre of the inclusion j∶B → Y . Then the sequence [X,E] →
[X,B] j∗Ð→ [X,Y ] is exact. Comparing the long exact homotopy sequences, we
observe that πi(E) = πi+1(Y,B). Thus if πi(Y,B) = 0 for n − 1 < i < N then
πi(E) = 0 for n < i < N + 1. Since X has i-cells for n < i < N + 1, Lemma 1.18
yields the fact that [X,E] = 0. Thus j∗ is injective.

Let f ∶X → Y and let X ′′ =X ′ ∪ ei be one stage in the construction of X.
Assume that f ∣X′ ∼ f ′∣X′ where f ′(X ′) ⊂ B. By the HEP for (X ′′,X ′)

(see Chapter 0) there is some f̃ ′′∶X ′′ → Y with f̃ ′′ ∼ f and f̃ ′′∣X′′ = f ′. Then
applying Lemma 1.19 to f̃ ′′ we get f ′′∶X ′′ → Y such that f ′′ ∼ f ′ relX ′ and
f ′′(X ′′) ⊂ B. Then cell by cell, we construct f ∶X → Y with f(X) ⊂ B. Since at
each stage the homotopy remained �xed there is a homotopy f ∼ fde�ned on
all of X. Now let g∶X → B be de�ned by g(x) = f(x). Then j ○ g = f ∼ f . Thus
j∗ is surjective.

Finally we can prove a most important result on CW complexes, the White-
head Theorem. We recall that a map f ∶X → Y is called a weak homotopy
equivalence if f∗∶π∗(X) → π∗(Y ) is an isomorphism. A homotopy equivalence
is clearly a weak homotopy equivalence. J. H. C. Whitehead has proved the
converse on CW complexes:

Theorem 1.21. Let X and Y be CW complexes. Then f ∶X → Y is a homotopy
equivalence if and only if it is a weak homotopy equivalence. Furthermore if X
and Y are 1-connected, then these conditions hold if and only if f∗∶H∗(X) →
H∗(Y ) is an isomorphism.

Proof. Let i∶X ⊂ Zf , j∶Y ⊂ Zf , r∶Zf → Y be the usual maps with Zf the
mapping cylinder. If f is a weak homotopy equivalence, then so is i; thus
π∗(Zf ,X) = 0 so by Lemma 1.20,

[Zf ,X]
i∗Ð→ [Zf , Zf ]

is surjective. Thus there is a map φ∶Zf → X with i ○ φ ∼ idZf
. Then g =

φ ○ j∶Y →X is such that

f ○ g = f ○ g ○ j ∼ r ○ i ○ φ ○ j ∼ r ○ j ∼ idY .

Thus that f is a weak homotopy equivalence implies there is some g with
f ○ g ∼ idY . But then g is also a weak homotopy equivalence so there is some k
with g ○ k ∼ idY . Then

k ∼ (f ○ g) ○ k = f ○ (g ○ k) ∼ f ⇒ g ○ f ∼ g ○ k ∼ idX .

Thus g is a homotopy inverse to f .
The �nal statement on homology follows immediately from Theorem 1.5.

It is obvious that if X and Y are CW spaces and f ∶X → Y then Cf is a CW
space. The following is not obvious and not easy and we shall not prove it here.
It will be useful to keep this in mind as we continue, although we shall not use
it.
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Theorem 1.22. (Milnor) If X, Y are CW spaces and f ∶X → Y then Ef is a
CW space. In particular if X = ∗ then EF = Y is a CW space.

The proof for ΩY can be found in Milnor. The general case is unpublished.

Theorem 1.23. Let f ∶X → Y where X is (n−1)-connected and Cf is (m−1)-
connected. If W is an r-dimensional CW space where r ≤ n +m − 2, then

[W,X] f∗Ð→ [W,Y ]
if∗Ð→ [W,Cf ]

is exact. If Y is (ℓ − 1)-connected and r ≤ n + ℓ − 1 also, there is a long exact
sequence continuing to the right.

Proof. We have this diagramme

Ei

��
X

f
//

θ

??

Y
i
// Cf

θ is (n+m−2)-connected by Theorem 1.10. Thus from Lemma 1.20, θ∗∶ [W,X] →
[W,Ei] is an epimorphism if r ≤ n +m − 2. But

[W,Ei] → [W,Y ] → [W,Cf ]

is always exact, hence if r ≤ n+m− 2 then [W,X] → [W,Y ] → [W,Cf ] is exact.
Applying this to the co�bration Y → Cf → SX completes the proof.

Theorem 1.24. Let W be a CW space of dimension r. Let f ∶X → Y be n-
connected. Then

f∗∶ [W,X] → [W.Y ] is a
⎧⎪⎪⎨⎪⎪⎩

monomorphism if r < n
epimorphism if r ≤ n.

Proof. [W,Ef ] → [W,X]
f∗Ð→ [W,Y ] is exact. Since EF is (n − 1)-connected,

[W,E] = 0 if r < n, hence f is a monomorphism. Since X is connected and Cf

is n-connected [W,X] → [W,Y ] → [W,Cf ] is exact for r < n by Theorem 1.23
and [W,Cf ] = 0 by Lemma 1.18. Thus f∗ is an epimorphism for r ≤ n.

As a consequence we get theorems such as the following:

Theorem 1.25. If A is (n − 1)-connected and B is (m − 1)-connected, and X
is a CW space of dimension r, then

[X,A ∨B] → [X,A] ⊕ [X,B] is an
⎧⎪⎪⎨⎪⎪⎩

isomorphism if r <m + n − 1
epimorphism if r ≤m + n − 1.

Proof. The map [X,A∨B] → [X,A]⊕[X,B] = [X,A×B] is induced by i∶A∨B →
A ×B which is (m + n − 1)-connected since Ci ≃ A ∧B.
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We make one concession to point-set topology by proving

Lemma 1.26. Assume Y = ∪∞i=1Yi has the weak topology. Assume Yi ⊂ Yi+1 and
the Yi are T1-spaces. Then for X compact, F (X,Y ) = limÐ→F (X,Yn), the direct

limit, and [X,Y ] = limÐ→[X,Yn].

Proof. Since limÐ→F (X,Yn) ⊂ F (X,Y ), for the �rst part it su�ces show that

for any f ∶X → Y there is some n with f(X) ⊂ Yn, if X is compact. Arguing
by contradiction, assume f(X) /⊂ Yn for any n. Choose y ∈ f(X) ∖ Yn. Set
A = {yn}∞n=1. For any y ∈ Y , (A∖{y})∩Yn is �nite, hence, since Yn is T1, closed.
Thus A∖{y} is closed so y is not a limit point of A. So A is an in�nite subset of
f(X) with no limit points. Thus f(X) is non-compact. So X is non-compact.
This contradicts the hypothesis.

We observe if X is compact then so is X × I so any homotopy takes place in
some Yn and the second part of the lemma follows.

From this lemma it immediately follows that

πn(∪∞i=1Yi) = limÐ→πn(Yi)

since Sn is compact.
We can extend Theorem 1.24 by induction to a �nite wedge and then by

Lemma 1.26 to a countable wedge.

Corollary 1.27. If {Ai}∞i=1 is a countable collection of (n−1)-connected spaces
and X is a compact CW space of dimension ≤ 2n − 2, then

[X,∨∞i=1Ai] = ∑
i

[X,Ai]

Proof. ∨∞i=1Ai = ∪∞j=1 ∨
j
i=1 Ai so for m − 2n − 2

πm(∨∞i=1Ai) = limÐ→
j

πm(∨ji=1Ai) = limÐ→
j

j

∑
i=1
πm(Ai) =

∞
∑
i=1
πm(Ai)

Then using the techniques of Corollary 1.27 extend to CW complexes of dimen-
sion ≤ 2n − 2.

We observe that the theorem fails for X non-compact. For example if X =
∨∞n=1Sn then [idX] ∈ [X,X] but idX /∈ ∑∞1 [X,Sn].
Theorem 1.28. (Generalised Freudenthal) If X is (n−1)-connected and dimY ≤
r then

S∶ [Y,X] → [SY,SX] is an
⎧⎪⎪⎨⎪⎪⎩

iso if r < 2n − 1 ∶
epi if r ≤ 2n − 1.

Proof. As we observed in the proof of Theorem 1.13, ρ∶ SX → SΩX is (2n −
1)-connected, where ρ is the adjoint of the identity SX → SX. Since the
composition

[Y,X] ρ∗Ð→ [Y.ΩSX] ≃ [SY,SX]
is the suspension, applying Theorem 1.24 to ρ �nishes the proof.
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Two �stability� theorems we will need later are the following;

Corollary 1.29. If X is (n − 1)-connected and dimY ≤ r, then the suspension
map S∶F (Y,X) → F (SY,SX) is (2n − r − 1)-connected.

Proof. S induces

S∗∶πi(F (Y,X)) //

∼

πi(F (SY,SX))

∼

S∶ [SiY,X] // [Si+1Y,SX]

and thus is an isomorphism for i + r < 2n − 1 and an epimorphism for i + r ≤
2n − 1.

Notice that f ∶X → Y n-connected implies S(f) is (n + 1)-connected since
CS(f) ≃ SCf and Ω(f) is (n − 1)-connected since EΩf

≃ ΩEf .

Corollary 1.30. The map X → ΩrSrX is (2n − 1)-connected, if X is (n − 1)-
connected.

Proof. Taking Y = S0 in the above lemma yields X → ΩSX (2n− 1)-connected.
Thus SX → ΩS2X is (2n + 1)-connected so ΩSX → Ω2S2X is 2n-connected.
Thus

X → ΩSX → Ω2S2X → ⋯→ Ωr2X

is (2n − 1)-connected.

Stability, for us, will refer to those cases in which [X,Y ]− → [SX,SY ] is
an isomorphism. We can now put our previous results together to �stabilise�
[X,Y ]:

Corollary 1.31. If dimY ≤ n then [Sj ,SjX] → [Sj+1Y,Sj+1X] is an isomor-
phism for j ≥ n + 2 (regardless of the connectivity of X) .

De�nition 1.32. {Y,X} = limÐ→[S
jY,SjX] is the set of S-maps from Y to X.

Observe that if dimY ≤ n, {Y,X} = [SjY,SjX] for j ≥ n + 2.

One of the most useful aspects of S-maps comes from the following theorem.

Theorem 1.33. If X → Y → Cf is a co�bration, then

{W,X} → {W,Y } → {W,Cf}

is exact, for any �nite dimensional CW space W .

Proof.

[SnW,SnX] → [SnW,SnY ] → [SnW,SnCf ]
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is exact if dimSnW ≤ 2n − 2 sinceSnX and SnCf are (n − 1)-connected. Thus
it is exact if dimW ≤ n − 2. So choose n ≥ dimW + 2 and the sequence is exact
and yields (by the above)

{W,X} → {W,Y } → {W,Cf}

exact.

De�nition 1.34. CS is the category whose objects are �nite dimensional CW
spaces and whose morphisms are S maps {,}.





Chapter 2

Eilenberg-Mac Lane spaces

and spectra

2.1 Construction of certain spaces

In this section we shall construct certain spaces having the property that their
homotopy (Eilenberg - Mac Lane spaces) or homology (Moore spaces) groups
in every dimension except one. Based on these spaces we will have a procedure
of �dismantling� a given space to study its homology based on its homotopy or
vice versa. By taking �brations or co�brations with these spaces we shall have
means of killing o� homotopy or homology groups at one at a time.

De�nition 2.1. An Eilenberg-Mac Lane space of type (π,n) is a CW space
K(π,n) such that

πi(K(π,n)) =
⎧⎪⎪⎨⎪⎪⎩

0 i ≠ n
π i = n.

An Moore space of type (π,n) is a CW space M(π,n) such that

H̃i(M(π,n)) =
⎧⎪⎪⎨⎪⎪⎩

0 i ≠ n
π i = n.

and π1(M(π,n)) is abelian.
Clearly if n ≥ 2, the existence of a K(π,n) requires that π be abelian. The

existence of an M(π,n) always requires π to be abelian. These conditions are
almost su�cient.

Theorem 2.2. a) If π is abelian and n ≥ 2, then K(π,n)'s and M(π,n)'s exist
and are unique up to homotopy type;

b) If π is any group, then K(π,1) exists and is unique, and if π is abelian and
H2(K(π,1)) = 0 then M(π,1)'s exist (but are not necessarily unique);

23
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c) Hn(X;π) and [X,K(π,n)] are naturally isomorphic for n ≥ 1.

Since it will not be relevant to our work, we shall not prove b) but stick to
the cases n ≥ 2. (The case of K(π,1) is of historical importance, however, as
H∗(K(π,1)) ∼=H∗(π), the cohomology of the group π. Cf. Mac Lane.) For the
proof of b) regarding M(π,1) see Varadarajan. Its non-uniqueness was shown
in Chapter I where we saw two examples of M(Z,1).

Observe that ∨αSn is a choice for M(σαZ, n) (for n ≥ 2). To construct an
M(G,n), n ≥ 2, let

0→ F
fÐ→H → G→ 0

be a free abelian presentation of G. Let F = ∑β∈B Z, H = ∑α∈AZ and let f have
the integral matrix form ((fαβ)), (α,β) ∈ A ×B for these bases. Then we have
maps fαβ ∶Sn → Sn (since the fαβ are integers). Let

f̃ = ((fαβ))∶ ∨βSn → ∨αSn.

The exact homology sequence for

∨βSn
f̃Ð→ ∨αSn → Cf

yields the fact that Cf is an M(G,n); it follows from Theorem 1.23 that Cf is
1-connected for n ≥ 2.

For example, if G = Z/qZ, then M(G,n) = SSn ∪q en+1, an n-sphere with an
(n + 1)-cell attached at its boundary (which is an n-sphere) by the map q.

As a corollary to the construction, we note that M(G,n) may be taken to
be a CW complex of dimension ≤ n + 1.

We can construct K(π,n) as follows: let

πi(Kn) =
⎧⎪⎪⎨⎪⎪⎩

π for i = n
0 for i > n.

Inductively assume we have constructed Kn ⊂Kn+1 ⊂ ⋯ ⊂Km where

πi(Km) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, i < n
π, i = n
0, n < i ≤m

and Kr ⊂ Km induces a homotopy isomorphism up to degree r for all r ≤ m.
Let fα∶Sm+1 →Km be such that the {fα} generate πm+1(Km). Let

f = ∨fα∶ ∨Sn+1 →Km.

Then let Km+1 = Cf . By Theorem 1.23 there is an exact sequence

πi(∨Sm+1)
f∗Ð→ πi(Km)

i∗Ð→ πi(Km+1) → πi−1(∨Sm+1) → ⋯
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for i ≤ n +m − 1. Since πi(∨Sm+1) = 0 for i ≤ m, i∗ is an isomorphism there.
But πm+1(f∗) is onto and πm(∨Sm+1 = 0 so πm+1(Km+1) = 0. Thus we have
constructed Km+1 inductively. Then with the weak topology K = ∪∞m=nKm is a
CW complex and using Lemma 1.18

πi(K) = limÐ→
m

πi(Km) =
⎧⎪⎪⎨⎪⎪⎩

0 i ≠ n,
π i = n.

Thus we have constructed a K(π,n).
Next we shall show that for CW spaces X, [X,K(π,n)] ≃Hn(X;π). Now

Hn(K(π,n);π) ≃ Hom(Hn(K(π,n)), π) ≃ Hom(π,π).

Choose ι ∈Hn(K(π,n);π) corresponding to 1π. De�ne a natural transformation
T ∶ [−,K(π,n)] →Hn(−;π) by T (X)[f] = f∗(ι) for any f ∶X →K(π,n). By the
choice of ι, T (Sn) is an isomorphism. By the triviality of both sides T (Sm)
is an isomorphism for m ≠ n. Since a product of isomorphisms is again an
isomorphism, T (∨Sm) is for all m.

Let X be a CW space. Assume that T (∨SiXr) has been shown to be an
isomorphism for all i and for some �xed r. For example, we can start o� with
r = 0. Then the Puppe sequence for the i-th suspension of the co�bration
∨Sr →Xr →Xr+1

∨Sr+i → SiXr → SiXr+1 → ∨Sr+i+1 → Si+1Xr

yields the exact diagramme

[∨Sr+i,K(π,n)] //

T (∨Sr+i)
��

[SiXr,K(π,n)] //

T (SiXr)
��

[SiXr+1,K(π,n)] //

T (SiXr+1)
��

[∨Sr+i+1,K(π,n)] //

t(∨Sr+i+1

��

[Si+1Xr,K(π,n)]

T (Si+1Xr)
��

Hn(∨Sr+i;π) // Hn(SiXr;π) // Hn(SiXr+1;π) // Hn(∨Sr+i+1;π) // Hn(Si+1Xr;π)
Since the �rst, second, fourth and �fth are isomorphisms, so is the third,

hence T (X) is an isomorphism for �nite dimensional CW spaces X .
Observe that the above did not require K(π,n) to be a CW space. In

particular, given some K(π,n + 1),

πi(ΩK(π,n + 1)) ≃ πi+1(K(π,n + 1)) =
⎧⎪⎪⎨⎪⎪⎩

π, i = n,
0, i ≠ n

so we have T ′∶ [−,K(π,n)] → Hn(π) de�ned with T ′(X) an isomorphism for
�nite dimensional CW spaces.

Let X be an arbitrary CW complex. Then X/Xn+1 is a CW complex with
i-cells only for i ≥ n + 2 and i = 0. thus from lemma 1.18,

[X/Xn+1,K(π,n + 1)] = 0 = [S(X/Xn+1),K(π,n + 1)]

Applying [−,K(π,n+1)] to the Barratt-Puppe sequence of ι∶ ∶Xn+1 ↪X yields
the exact sequence
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0 = [X/Xn+1,K(π,n + 1)] [SXn+1,K(π,n + 1)]oo

∼
��

[SX,K(π,n + 1)]oo

∼
��

[S(X/Xn+1),K(π,n + 1)] = 0oo

[Xn+1,ΩK(π,n + 1)]

T ′(Xn+1)
��

[X,ΩK(π,n + 1)]
i#oo

T ′(X)
��

Hn(Xn+1;π) HnX;π)
i∗

oo

By the exactness, i# is an isomorphism. By the long exact cohomology se-
quence i ∗ is an isomorphism. By the previous part T ′(Xn+1) is an isomorphism
hence T ′(X)∶ [X,ΩK(π,n + 1)] →Hn(X;π) is an isomorphism.

In particular, if K ′(pi, n) is an Eilenberg-Mac Lane space of type (π,n) then

[K(π,n),ΩK(π,n + 1)] ≃Hn(K(π,n);π) ≃ Hom(π,π)

choosing f ∶K(π,n) → ΩK(π,n+1) representing idπ ∶π → π, we see (details are in
the more general lemma 2.5) that f is a weak homotopy equivalence. We may as
well assume f to be an inclusion. Then from lemma 1.20 we see that for any CW
spaceX, f∗∶ [X,K(π,n)] → [X,K(π,n+1)] is an isomorphism. Thus composing
f∗ with T

′(X) yields T (X)∶ [X,K(π,n)] →Hn(X;π) an isomorphism.

Remark 2.3. We could have skipped some of this by using the fact (theorem
1.22, which wasn't proved) that K(π,n+1) is a CW space, hence is a choice for
Kπ,n).

Next we observe the following useful property of Moore spaces.

Lemma 2.4. If πi(X) = 0 for i < n ≥ 2 then there is a map h∶M(πn(X), n) →X
which is a πn (and hence Hn) isomorphism.

Proof. Look at the construction of the �standard� M(π,n);π = πn(X): if

0→ F
fÐ→ G

pÐ→ π → 0

is exact where F , G are free abelian, then there is a map

f̃ ∶ ∨αSn → ∨βSn

such that πn(f̃) represent f . M(π,n) is Cf̃ . For each β, there is a map gβ ∶Sn →
X representing one of the generators of π. Then the map

g = ∨gβ ∶ ∨βSn →X

is de�ned and πn(g) represents p. Thus gf̃ ∼ ∗ (since pf = 0). Thus g may be
lifted to a map h ∶ M(π,n) → X which clearly induces a πn (and hence Hn)
isomorphism.

In particular it follows from this and from the Whitehead theorem 1.21 that
M(π,n) are unique for n ≥ 2. As a dual statement to lemma 2.4 we have

Lemma 2.5. If X is an n − 1 connected CW space then there is a map f ∶X →
K(pin(X), n) which induces a πn (and hence Hn) isomorphism.
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Proof. Let π = πn(X) ≃Hn(X). Then

[X,K(π,n)] ∼=Hn(X,π) ∼= Hom(Hn(X), π) ∼= Hom(π,π)

Choose f ∶X →K(π,n) corresponding to idπ.
Now let us pause a moment and consider what it means to have φ ∈Hn(Y,π)

correspond to g∶Y →K(π,n). In particular g induces g∗∶Hn(Y ) →Hn(K(π,n)) =
pi so that g∗ ∈ Hom(Hn(Y ), π). Then the epimorphismHn(Y,π) → Hom(Hn(Y ), π)
sends φ to g∗. Thus in our situation

Hn(X)
f∗ //

∼

��

Hn(K(π,n))
∼

��
π

idπ

// π

is a commutative diagram, hence f∗ is an isomorphism.
Now we can prove the uniqueness of theK(π,n)'s. IfX is any Eilenberg-Mac

Lane space of type (π,n) and K(π,n) is the standard one, then by lemma 2.5
there is a map f ∶X →K(π,n) which induces a πn-isomorphism. By the triviality
in other dimensions, f is a weak homotopy equivalence hence by the Whitehead
theorem a homotopy equivalence. This completes the proof of theorem 2.2.

2.2 Properties of the Eilenberg-Mac Lane and

Moore spaces

We next prove some useful properties of CW spaces. First we observe

Theorem 2.6. Let X be a 2-connected CW space such that Hi(X) = 0 for i > n.
Then for some integer r, SX ∼ a CW complex of dimension ≤ n+r. Conversely
if dimX ≤ n then Hi(X) = 0 for i > n.

Proof. By induction on t where X is (n − t)-connected: For t = 0 or 1, X
must be a wedge of spheres and thus is unique. Assume the theorem proved
for 1 ≤ t ≤ (n − m) and let X be (m − 1)-connected. Then by Lemma 2.4
there is a map h∶M(πm(X),m) → X which is an Hm-isomorphism. Thus
h∗∶H∗(X) → H∗(M(πm(X),m)) is an epimorphism (by the naturality of the
universal coe�cient theorem). Thus i∗h∶H∗(Ch) → H∗(X) is a monomorphism
so Hi(Ch) = 0 for i > n.

On the other hand Ch is m-connected. By the inductive hypothesis, then,
there exists a CW complex C ′ of dimension ≤ (n+r) such that C ′ ≃ SrCh. Now
SX ≃ Cσh

, σh∶Ch →M(πm(X),m + 1) so Sr+1X is the cone of a map

C ′ ≃ SrCh ≃M(πm(X),m + r + 1)

and this cone clearly is a CW complex of dimension ≤max(r+n+1,m+ r+2) =
r + n + 1. Thus Sr+1X ≃ a CW complex of dimension ≤ n + r + 1.

The converse is gotten by an easy induction argument.



28 CHAPTER 2. EILENBERG-MAC LANE SPACES AND SPECTRA

(A much more geometric argument shows that r may be taken equal to 0.)
The following is an immediate consequence of this and Lemma 1.18.

Theorem 2.7. If Hi(Y ) = 0 for i > n and πi(X) = 0 for i ≤ n and Y is a CW
space , then for some r [SrY,SrX] = 0. Thus [Y,X] = 0.

Notice that the hypotheses of the above theorem imply that Hi(Y ;πi(X)) =
0. We may wonder if that is not the most important point. In fact with much
weaker hypotheses we can get a much sharper theorem by approaching the
problem from the dual point of view: by �brations and Eilenberg-Mac Lane
spaces:

Theorem 2.8. Let X and Y be CW spaces with Hi(Y ;πi(X)) = 0 for all
i. If either πi(X) = 0 for su�ciently large i or Y is �nite dimensional, then
[Y,X] = 0.

Proof. We can prove this by induction: let E0 = X. Given En an n-connected
space with πi(En) ≃ πi(X) for i > n, let f ∶En → K(πn+1(X), n + 1) induce
πn+1(f), an isomorphism (using Lemma 2.5). Let En+1, be the �bre of f .
Then En+1 is (n + 1)-connected and πn(En+1) ≃ πi(En) ≃ (X) for i > n + 1.

Now if πi(X) = 0 for i ≥ r then since Y is a CW space and π∗(Er) = 0 we
have [Y,Er] = 0. If on the other hand Y is r-dimensional, then [Y,Er] = 0.

Now we work backwards inductively. From the �bration

En+1 → En → −K(πn+1(X), n + 1),

here is an exact sequence

[Y,En+1] → [Y,En] → [Y,K(πn+1(X), n + 1)].

But [Y,K(πn+1(X), n+1)] =Hn+1(Y ;πn+1(X)) = 0 so that [Y,En+1] = 0 implies
that [Y,En] = 0. Thus inductively [Y,X] = [Y,E0] = 0.

We have already observed that ΩK(π,n + 1) ≃K(π,n). This is very useful.
We wish to consider more general cases of sequences of spaces An with An ≃
ΩAn+1. We generalise this to the idea of spectra.

De�nition 2.9. A spectrum X is a sequence of spaces Xn and maps ϵ∶ SXn →
Xn+1 or equivalently, ϵ̃n∶Xn → ΩXn+1.

Example 2.10. (1) Xn =K(π,n), ϵ̃∶K(π,n) ≃ ΩK(π,n + 1). This gives K(π).

(2) W a space, Xn = SnW , εn∶ S(SnW ) ≃ Sn+1W . This gives SW .

(3) X a spectrum, (X ∧W )n =Xn ∧W .

(4) X a spectrum,

(Xd)n =
⎧⎪⎪⎨⎪⎪⎩

Xn+d if n + d ≥ 0;
∗ if n + d < 0.

Xd is the d-th suspension of X and is de�ned for all integers d.
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(5) If W is compact and X is a spectrum we can form the spectrum F (W,X)
whose n-th space is F (W,Xn) with the compact open topology. The maps
are given by

SF (W,Xn)
αÐ→ F (W,SXn)

F (W,ϵn)ÐÐÐÐÐ→ F (W,Xn+1)

where α(t ∧ f)(w) = t ∧ f(w).
From now on we will assume that all spectra are CW spectra i.e., each space

is a CW space. We can now de�ne some functors on spectra:

De�nition 2.11.

Hr(X) = limÐ→
n

Hr+n(Xn),

πr(X) = limÐ→
n

πr+n(Xn),

Hr(X) = lim←Ð
n

Hr+n(Xn).

where the direct and inverse limit systems are given by

Hr+n(Xn) ≃Hr+n+1(SXn)
εn∗ÐÐ→Hr+n+1(Xn+1),

πr+n(Xn) → πr+n+1(SXn)
εn∗ÐÐ→ πr+n+1(Xn+1),

Hr+n+1(Xn+1)
ε∗nÐ→Hr+n+1(SXn) ≃Hr+n(Xn).

A map of spectra f ∶X → Y of degree r is a sequence of maps fn∶Xn → Yn,
for n su�ciently large, such that the following diagramme commutes

SXn
Sfn //

εn

��

SYn+r
εn+1

��
Xn+1

fn+1

// Yn+r+1

Then we can de�ne the spectrum Cf , the cone of f , with (Cf)n+r = Cfn

with the map SCfn = CSfn → Cfn+1 induced by the commutativity of the above
diagram. (We can similarly de�ne a spectrum Ef , the �bre of f .)

The set of homotopy classes of maps of spectra of degree r will be denoted
by [X,Y ]r or [X,Y ]−r. We shall let [W,Y ] = limÐ→n

[SnW,Yn] = [SW,Y ].

We shall �nd certain types of spectra as manageable as spaces.

De�nition 2.12. (1) A spectrum X is convergent if and only if for some N ,
πi(X) = 0 for all i ≤ N . X will be called N -connected.

(2) X is strongly convergent if and only if for some N eachXn is n+N connected
for n su�ciently large (hence X is N -connected) and furthermore for all q
the map

Hq+k+1(SXk) →Hq+k+1(Xk+1)
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is an isomorphism for almost all k. This last statement says that for all q,
εk is q + k connected for almost all k.

(3) f ∶X → Y is a weak homotopy equivalence if and only if it is of degree 0 and

f∗∶ [W,X] → [W,Y ]

is an isomorphism for every �nite CW complex W .

Theorem 2.13. If X and Y are strongly convergent spectra then f ∶X → Y is
a weak homotopy equivalence if and only if f∗∶H∗(X) → H∗(Y ) is an isomor-
phism. For any X and Y , f ∶X → Y is a weak homotopy equivalence if and only
if f∗∶π∗(X) → π∗(Y ) is an isomorphism.

Proof. Let m be an integer. Choose an integer N such that

1) Xk and Yk are 1-connected for k ≥ N ,

2) for all j ≤m the natural maps

Hj+k(Xk) →Hj(X), Hj+k(Yk) →Hj(Y )

are isomorphisms for all k ≥ N ,

3) For every �nite CW complex of dimension ≤m the maps

[SkP,Xk] → [P,X], [SkP,Yk] → [P,Y ]

are isomorphisms for all k ≥ N .

The diagrammes

Hj+k(Xk) //

fk∗

��

Hj(X)

f∗

��
Hj+k(Yk) // Hj(Y )

[SkP,Xk] //

fk∗
��

[P,X]

f∗

��
[SkP,Yk] // [P,Y ]

commute.
If k ≥ N , j ≤m and dimP ≤m, then the horizontal arrows are isomorphisms.
Now if f is a weak homotopy equivalence then

fk∗∶ [Sk(Sr),Xk] ≃ [Sk(Sr), Yk], r ≤m ⇒ fk∗∶πi+k(Xk) ≃ πi+k(Yk), i ≤m
⇒ fk∗∶Hi+k(Xk) ≃Hi+k(Yk), i <m ⇒ f∗∶Hi(X) →Hi(Y ), i <m.

But m was arbitrary so f∗ is an isomorphism for all i. We can work backwards
to prove the converse once we prove the second statement.

If f∗∶π∗(X) → π∗(Y ) is an isomorphism, then f∗∶ [Sn,X] → [Sn, Y ] is an
isomorphism for every sphere Sx. The result then follows by induction on the
number of cells and by the 5-lemma in the obvious way.
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Two useful types of spectra that we have seen before are the following.

De�nition 2.14. A spectrum X is an S-spectrum if and only if SXn ≃ Xn+1
for almost all n. A spectrum X is an Ω-spectrum if and only if Xn ≃ ΩXn+1 for
almost all n.

Theorem 2.15. a) S-spectra are strongly convergent.

b) Convergent Ω-spectra are strongly convergent.

c) Given a spectrum X there exists an Ω-spectrum X ′ weakly homotopy equiv-
alent to X.

d) ⇐ b) + c). If X is convergent then there exists a strongly convergent Ω-
spectrum X ′ weakly homotopy equivalent to X.

Proof. a) is trivial.
b) Assume πi(X) = 0 for i ≤ N . Then assume Xn ≃ ΩXn+1 for all n ≥M . Then
πn+1(Xn) = 0 i ≤ N for all n ≥ M . Thus each Xn is (n +N)-connected. Then

we have SXn ≃ SΩn+1
εnÐ→Xn+1. But

πi+n(Xn) S //

∼
��

πi+n+1(SXn)

ε∗

��
πi+n(ΩXn+1) ∼

// πi+n+1(Xn+1)

commutes. By Theorem 1.13 S is an

⎧⎪⎪⎨⎪⎪⎩

isomorphism for i + n < 2(n +N + 1) − 1,
epimorphism for i + n < 2(n +N + 1) − 1.

Thus εn∗ is an ⎧⎪⎪⎨⎪⎪⎩

isomorphism for i < n + 2N + 1,
epimorphism for i < n + 2n + 1.

Thus εn∗ is n + (n + 2N + 1)-connected. So for all n ≥ q − 2N − 1, εn is (n + q)-
connected. Thus X is strongly convergent.
c) Let X ′n = limÐ→r

ΩrXn+1 where

ΩrXn+r
Ωrεn+rÐÐÐÐ→ Ωr(ΩXn+r+1) = Ωr+1Xn+r+1

gives the direct system.
Since Ω = F (S1,−) and S1 is compact, Lemma 1.26 yields

ΩX ′n+1 = ΩlimÐ→
r

ΩrXn+r+1 = limÐ→
r

Ωr+1Xn+r =X ′n.

Thus X ′ is an Ω-spectrum.
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De�ne f ∶X → X ′ by Xn = Ω0Xn → limÐ→r
ΩrXn+r. Given n, choose s so that

n + s > 0. Then

πn(X) = limÐ→
r

πn+r(Xr) = limÐ→
r

πn+s(Ωr−sXr) ≃ πn+s(limÐ→
r

Ωr−sXr) ≃

πn+s(limÐ→
r

ΩrXr+s) = πn+s(X ′s) = πn(X ′)

and this isomorphism is that given by f∗. Using Theorem 2.13, f is a weak
homotopy equivalence.

Corollary 2.16. K(G) and S are strongly convergent.

At this point we note that not all Ω spectra are convergent. For example,
Bott periodicity says that Ω2U ≃ U and Ω8O ≃ O for the unitary and orthog-
onal groups. Thus there is a spectrum X with X2n = ΩU, X2n+1 = U whence
π2m(X) ≃ Z for every integer m. Similarly we make a spectrum out of O with
π4m(X) ≃ Z for every integer m.

2.3 Generalised homology theories.

Let C2 be the category of pairs of spaces (X,A) satisfying HEP (= the homotopy
extension property.) Let C∗ be the category of based spaces. In both cases the
morphisms are homotopy classes of maps. Write (X,∅) as X. Let σ∶ C2 → C2
be the functor given by σ(X,A) = A. Let A be the category of abelian groups.

De�nition 2.17. A generalised homology theory H on C2 is a sequence of
functors Hn∶ C2 → A and natural transformations ∂n∶Hn →Hn−1 ○ σ such that

(1) The following is exact for each pair (X,A):

⋯ ∂n+1ÐÐ→Hn(A)
i∗Ð→Hn(X)

j∗Ð→Hn(X,A)
∂nÐ→Hn−1(A) → ⋯

(2) Hn(X,A)
p∗Ð→Hn(X/A,∗) is an isomorphism where p is the projection.

Note by convention X/∅ =X∐∗ with ∗ acting as the base-point.

De�nition 2.18. A reduced generalised homology theory H̃ on C∗ is a sequence
of functors H̃n∶ C∗ → A and natural transformations σn∶Hn → Hn+1 ○ S such
that

(1) If A ⊂X satis�es HEP, then H̃n(A) → H̃n(X) → H̃n(X/A) is exact.

(2) σn(X) is an isomorphism for every object X of C∗.

The coe�cients of a theory are H∗(∗) or H̃∗(S0). Observe that if X is a
non-empty space then x0 ∈ X is a retract of X hence H∗(x0) ≃ H∗(∗) is a
summand of H∗(X), so H∗(X) ≃H∗(x0) ⊕H∗(X,x0).
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Claim: For X ∈ C∗ de�ne H̃n(X) = Hn(X,∗). Then this gives us a reduced
homology theory: since H̃n(X/A) = Hn(X/A,∗) ≃ (X,A) we have the exact
sequence Hn(A) →Hn(X) → H̃n(X/A) →Hn−1(A) →Hn−1(X), but

Hn(A) ≃

��

Hn(∗) ⊕

∼
��

H̃n(A)

��
Hn(X) ≃ Hn(∗) ⊕ H̃n(X)

commutes so H̃n(A) → H̃n(X) → H̃n(X/A) → H̃n−1(A) → H̃n−1(X) is exact,
Finally since T A/A = SA, the exactness of

0 = H̃n(TA) → H̃n(TA)
∂nÐ→ H̃n−1(A)H̃n−1(TA) = 0

yields an isomorphism with σn−1(A) = ∂−1n . TA ∼ ∗ so H̃n(TA) = 0.
On the other hand, given H̃ we can de�ne Hn(X,A) = H̃n(X/A); as before

X/∅ =X∐∗ whence

Hn(X) = H̃(X) ⊕Hn(∗) = H̃n(X) ⊕ H̃n(S0), S0 = ∗∐∗′.)

We de�ne ∂n by

Hn(X,A)
∂n // Hn−1(A) H̃n−1(A) ⊕ H̃n−1(S0)

H̃n(X/A) p∗
// H̃n(SA) H̃n−1(A)∼

oo

OO

Clearly

Hn(A) // H(X) // Hn(X,A)

Hn(∗) ⊕ H̃n(A) // Hn(∗) ⊕ H̃n(X) // Hn(X/A)

is exact.
We get the rest by observing that X/A→X∐TA so

Hn(X) →Hn(X∐TA) →Hn((X∐)/X)

yields
Hn(X) →Hn(X/A) →Hn−1(A) ≃Hn(SA)

exact hence
Hn(A) →Hn(X) →Hn(X,A) →Hn−1(A)

is exact.
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From now we on we shall deal solely with reduced generalised (co)homology
theories. Consequently we shall neglect the word �reduced� and eliminate ∼

except for ordinary cohomology.
Let A be a spectrum. For any space X let kn(X) = [S,X ∧A]n = πn(X ∧A)

and kn(X) = [SX,A]n = [X,A]n.

Theorem 2.19. k∗ is a cohomology theory H∗(−;A). If A is strongly conver-
gent k∗ is a homology theory H∗(−;A).

Proof. It is obvious that k∗ is a cohomology theory. To show that k∗ is a
homology theory, we investigate the �stable range� of the problem. Let A be
(r − 1)-connected. Given n, choose N ≥ n − 2r + 3 such that for all m ≥ N ,
εm∶ SAm → Am+1, is (m+n+2)-connected and Am is (m+r−1)-connected. Then
for any space Y , πn+m(Y ∧Am) ≃ πn+m+1(Y ∧SAm) since (n+m) ≤ 2(m+r)−2.
Also πn+m+1(Y ∧ SAm) ≃ πn+m+1(Y ∧Am+1) since εm is (n +m + 2)-connected.
Thus πn+m(Y ∧A) ≃ πn(Y ∧A) = kn(Y ), and πn+m+1(Y ∧Am) ∼= kn+1(Y ).

Thus we have

kn(Y ) ∼= πn+m(Y ∧Am) ∼= πn+m+1(SY ∧Am) ∼= kn+1(SY ).

Finally if X ⊂ Y then the co�bration X → Y → Y /X yields the co�bration
X ∧Am → Y ∧Am → (Y /X) ∧Am so that

πn+m(X ∧Am) → πn+m(Y ∧Am) → πn+m((Y /X) ∧Am)

is exact for m+n < 2m+2r−2 hence for m ≥ N . This, then, yields the exactness
of

kn(X) → kn(Y ) → kn(Y /X).

Observe that for the case of A =K(π) we have

Hn(S0;K(π)) =
⎧⎪⎪⎨⎪⎪⎩

π, n = 0
0, n ≠ 0

hence H∗(−;K(π)) must be regular reduced homology. This is a special case of
the following

Theorem 2.20. Let T ∶h∗ → k∗ be a natural transformation of homology the-
ories (i.e. of the functors and commuting with the isomorphisms σ). Then if
T (S0) is an isomorphism, so is T (X) for any �nite CW complex.

Proof. The proof is again the usual argument by induction on the cells using
the �ve lemma.

There is a generalisation of the ideas of theorem 2.20 that we �nd particularly
useful.
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De�nition 2.21. A partial homology theory of bidegree (m,M) is a sequence of
functors Hn∶ C∗ → A and natural transformations σn∶Hn →Hn+1 ○ S such that

1) If A ⊂ X satis�es HEP and A and X are (m − 1) connected then Hn(A) →
Hn(X) →Hn(X/A) is exact for n <M

2) σn(X) is an isomorphism if X is (m − 1) connected and n <M − 1.

Remark 2.22. a) This is clearly a reduced theory.

b) For each integer m > 1, π∗ is a homology theory of bidegree (m,2m − 1).
Then we extend theorem 2.20 as follows (in fact, its proof yields a proof of

theorem 2.20).

De�nition 2.23. A natural transformation T∗∶h∗ → k∗ of partial homology
theories of bidegree (m,M) is called a weak isomorphism if Ti(X) is an isomor-
phism for i < M and an epimorphism for i = M for all m − 1 connected �nite
CW complexes.

Theorem 2.24. Let T∗∶h∗ → k∗ be a natural transformation of partial homology
theories of bidegree (m,M). Assume

Ti(Sn)∶hi(Sn) → ki(Sn)

is an isomorphism for all n ≥ m and i < M and an epimorphism for i = M .
Then T∗ is a weak isomorphism.

Proof. The co�bration X →X∨Y → Y yields the fact that hi(X∨Y ) ≃ hi(X)⊕
hi(Y ) if X, Y are (m− 1)-connected and i <M . The same is true for k∗. Thus
Ti(Sn) is an isomorphism for �nite wedges of n-spheres, n ≥m, i <M . Given a
�nite (m − 1) connected CW complex X the long exact sequence for Xm ⊂ X
yields the fact that Xm ≃ ∨Sm, a �nite wedge. Thus Ti(Xm) is an isomorphism
for i < M . Assume Ti(SrXn) is an isomorphism for i < M and all r ≥ 0. Now
from the co�bration ∨Sm → Xn → Xn+1 we get exact sequences connecting the
maps

Ti(∨Sn+r) → Ti(SrXn) → Ti(SrXn+1) → Ti−1(∨Sn+r) → Ti(SrXn)

Since all but the middle map are isomorphisms for i <M the 5-lemma implies
that Ti(SrXn+1) is an isomorphism for i < M and all r ≥ 0. For i = M the
�rst two are epimorphisms and the last two are isomorphisms Tm(SrXn) is
an epimorphism. Since X is �nite, X = Xn for some n, hence Ti(X) is an
isomorphism for i <M and Tm(X) is an epimorphism.





Chapter 3

Spanier-Whitehead duality

3.1 Duality Theorem

The central aim of this chapter is to show that corresponding to a �nite CW
complex X and a su�ciently large integer N there is a �nite CW complex
DN(X), unique up to homotopy type, having many nice properties.

First DN+1(SX) ≃DN(X) ≃ SDN−1(X) so that we have in a natural way a
spectrum DX dual to SX.

Next we �nd that for each N where it is de�ned Hi(DN(X)) ≃ HN−i(X).
Finally we �nd that for two �nite CW complexes X, Y , [SX,SY ] may be
identi�ed with [DY,DX] in a natural way.

The �rst step in getting this duality is to recall certain pairings of homology
and cohomology.

Observe that for any abelian groups A, B, C there is a natural evaluation
map e∶A⊗Hom(A⊗B,C) → Hom(B,C) given by [e(a⊗ f)](b) = f(a⊗ b).

Given spaces X, Y and an abelian group G we can form the singular chain
complexes C∗(X), C∗(Y ) and the cochain complex C∗(Y,G) = Hom(C∗(Y ),G).
Then an evaluation map is de�ned

C+(X) ⊗Hom(C∗(X) ⊗C∗(Y ),G) → C∗(Y,G)

If this is composed with the map induced by the Eilenberg-Zilber map, which
gives a chain equivalence C∗(X) ⊗C∗(Y ) → C∗(X × Y ) we have de�ned

/∶C∗(X) ⊗C∗(X × Y,G) → C∗(Y,G).

Speci�cally if x ∈ Cq(X), u ∈ Cn(X × Y,G) and y ∈ Cn−q(Y ) then u/x ∈
Cn−q(Y,G) is given by (u/x)(y) = u(x × y). From the boundary formula on
C∗(X × Y ) it is immediate that

δ(u/x) = (δu)/x − (−1)n−q(u/∂x)

Thus it is easy to check that we get

/∶H∗(X) ⊗H∗(X × Y,G) →H∗(Y,G)

37



38 CHAPTER 3. SPANIER-WHITEHEAD DUALITY

induced.
Then the relative Eilenberg-Zilber (Spanier, p. 234)

(C∗(X)⊗C∗(Y ),C∗(X)⊗C∗(B)+C∗(A)⊗C∗(Y )) → (C∗(X×Y ),C∗(X×B∪A×Y )

for pairs (X,A), (Y,B) yields the natural transformation

/∶H∗(X × Y,X ×B ∪A × Y ) ⊗H∗(X,A) →H∗(Y,B).

If f ∶ (X ′,A′) → (X,A) and g∶ (Y ′,B′) → (Y,B) then

g∗(u/f∗(x)) = [(f × g)∗u]/x, u ∈H∗(X × Y,X ×B ∪A × Y ), x ∈H∗(X ′,A′).

We shall now recall some facts about �bre bundles before we put the slant
product to work.

De�nition 3.1. (E,B,F, p) is a �bre bundle if and only if p∶E → B is a map
such that for every b ∈ B there exists a neighbourhood U of B and a homeo-
morphism φ∶U × F → p−1(U) such that pφ(u, f) = u for all u ∈ U .

The following can be found in Spanier, p.96.

Lemma 3.2. If (E,B,F, p) is a �bre bundle and B is paracompact and Haus-
dor� then p is a �bre map.

Remark by the transcriber : The proof of Lemma 3.2 is extremely hard.

Lemma 3.3. Let p∶E → X be a �bration. Let X ′ ⊂ X be such that p′ =
p∣X′ ∶X ′ → B is a �bre map with �bre F ′. Then i∗∶πq(F,F ′)

∼Ð→ πq(X,X ′).
Proof. Let j be the composite isomorphism πq(X ′, F ′) ≃ πq(B) ≃ πq(X,F ).

We have the triples (X,F,F ′) (X,X ′, F ′) leading to exact sequences (cf.
Spanier, p. 378):

h // πr(F,F ′)
f // πr(X,F ′)

g // πr(X,F ) h // πr−1(F,F ′)

h′
// πr(X ′, F ′)

f ′
// πr(X,F ′)

g′
// πr(X,X ′)

h′
// πr−1(X ′, F ′)

We wish to show that i∗ = g′f is an isomorphism. We know that j = gf ′ is.
Thus g is epi and f ′ is mono. Thus h and h′ are trivial. Thus g is epi, f is
mono.

i∗ is mono.
Assume i∗(x) = 0. Then g′(f(x)) = 0 so f(x) = f ′(x′) for some x′. But then
j(x′) = gf ′(x′) = gf(x) = 0 so x′ = 0. Then f(x) = f ′(0) = 0. Since f is mono,
x = 0. Thus i∗ is mono.

i∗ is epi.
Let y ∈ πr(X,X ′). Then y = g′(z) for some z ∈ πr(X,F ′). j = gf ′ is epi
so for some w ∈ πr(X ′, F ′) g(z) = j(w) = gf ′(w). Thus g(z − f ′(w)) = 0 so
f(x) = z−f ′(w) for some x. But then i∗(x) = g′f(x) = g′(z)−g′f ′(w) = g′(z) = y.
Thus i∗ is epi.
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Let ∆ = {(x,x)∣x ∈ Sn+1} ⊂ Sn+1 × Sn+1. Let E = Sn+1 × Sn+1 ∖∆ and de�ne
p∶E → Sn+1 by p(x, y) = x. Let F = Sn+1 ∖ ∗.

Proposition 3.4. (E,Sn+1, F, p) is a �bre bundle.

Proof. Consider
Sn+1 = [{x ∈ Rn+1∶ ∥z∥ ≤ 3} ×Z/2Z]/ ∼

where (z,0) ∼ (z,1) if ∥z∥ = 3. We take x to be the point (0,0) and we shall
�nd a neighbourhood V ∋ x such that p−1(V ) ∼= V × F . We suppress the second
coordinate and consider {z∶ ∥z∥ < 3} ⊂ Sn+1 to contain x. Let V = {z∶ ∥z∥ < 1},
D = {z∶ ∥z∥ ≤ 2}. If (x′, x′′) ∈ V × D, x′ ≠ x′′ then there is a unique point
z′ ∈ Rn+1 such that ∥z′∥ = 2 and x′′ belongs to the closed segment from x′ to z′.
If x′′ = tx′ +(1− t)z′ for t ∈ [0,1) let h(x′, x′′) = (1− t)z′ ≠ 0, h(x′, x′′) = 0. Then
de�ne

ψ∶ (V × Sn+1, V × Sn+1 ∖∆) → V × (Sn+1,Sn+1 ∖ x)
by

ψ(x′, x′′) =
⎧⎪⎪⎨⎪⎪⎩

(x′, x′′) x′′ /∈D,
(x′, h(x′, x′′)) x′′ ∈D.

Thus ψ gives a homeomorphism

p−1(V ) = V × Sn+1 ∖∆ ≃ V × (Sn+1 ∖ x) ∼= V × F.

By any rotation, what we did for x could be done for any point.

Now using Lemma 3.2 we get

Theorem 3.5. p∶E → Sn+1 is a �bre map.

Now we have
Sn+1 ∖ ∗ ⊂� _

��

Sn+1� _

��
Sn+1 × Sn+1 ∖∆ ⊂

��

Sn+1 × Sn+1

��
Sn+1 = Sn+1

where the vertical maps are �bre maps. Thus from Lemma 3.3

πi(Sn+1,Sn+1 ∖ ∗) ≃ πi(Sn+1 × Sn+1,Sn+1 × Sn+1 ∖∆)

where

πi(Sn+1,Sn+1 ∖ ∗) ≃ πi(Sn+1) =
⎧⎪⎪⎨⎪⎪⎩

0, i < n + 1
Z, i = n + 1.

Thus

Hi(Sn+1 × Sn+1,Sn+1 × Sn+1 ∖∆) =
⎧⎪⎪⎨⎪⎪⎩

0, i < n + 1
Z, i = n + 1.
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Choose u ∈Hn+1(Sn+1 × Sn+1,Sn+1 × Sn+1 ∖∆) a generator.
Let A ⊂ X be subcomplexes of Sn+1. Choose X ′ ⊂ A′ ⊂ Sn+1 such that A′

(resp. X ′) is a deformation retract of Sn+1 ∖A (resp. Sn+1 ∖X).
Let

i∶ (X ×A′,X ×X ′ ∪A ×A′) → (Sn+1 × Sn+1,Sn+1 × Sn+1 ∖∆)

be the inclusion. The slant product

/∶H∗(X ×A′,X ×X ′ ∪A ×A′) ⊗H∗(X,A) →H∗(A′,X ′)

is de�ned.
i∗(u) ∈Hn+1(X ×A′,X ×X ′ ∪A ×A′). So there is de�ned

γu∶Hq(X,A) →Hn+1−q(A′,X ′), γu(x) = i∗(u)/x, q = 0,1, . . . , n + 1

Theorem 3.6. If A ⊂X are subcomplexes of Sn+1 for a �xed triangulation then
γu is an isomorphism.

The proof is quite involved.

Proof. Case 1 : X = ∗, A = ∅. Let A′ = Sn+1, X ′ = Sn+1 ∖ ∗, then

Hn+q+1(Sn+1,Sn+1 ∖ ∗) =
⎧⎪⎪⎨⎪⎪⎩

0 q ≠ 0
Z q = 0

=Hq(∗).

We need to know the isomorphism is given by γu. But this follows from the fact
that the map

Hn+1(Sn+1,Sn+1 ∖ ∗) ←Hn+1(Sn+1 × Sn+1,Sn+1 × Sn+1 ∖∆)

is an isomorphism.
Assume the theorem holds for (X,A) where dim(X ∖A) < k, k > 0.

Case 2 : X = k-cell, A = Ẋ, the boundary of X. Then Ẋ = E+ ∪E− a union of
two hemispheres, (k − 1)-cells. E+ ∩E− = Ė+ = Ė− a (k − 2)-sphere

Hq(X, Ẋ)
γu //

∂

��

Hn−q+1(Ẋ ′,X ′)

δ

��
Hq−1(Ẋ,E−)

γ′u

// Hn−q+2(E′−, Ẍ ′)

commutes up to sign by a chain level formula. By induction yγu is an isomor-
phism. ∂ is an isomorphism since H∗(X,E−) = 0 since both are contractible.

We need the following lemma.

Lemma 3.7. If A is a k-cell in Sn, H̃∗(Sn ∖A) = 0.
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Proof. By induction on k. If k = 0, A = ∗ and Sn ∖ ∗ ∼= Rn is contractible.
Assume the result for k < m, m ≥ 1. Regard A as homeomorphic to B × I,
B an (m − 1)-cell. h∶B × I → A the homeomorphism. Let A′ = h(B × [0, 1

2
]),

A′′ = h(B × [ 1
2
,1]) then A′ ∪A′′ = A, A′ ∩A′′ is an (m − 1)-cell. Then from the

Mayer-Vietoris sequence (Spanier, p. 186) for (Sn ∖A′,Sn ∖A′′) and from the
inductive assumption that H̃∗(Sn ∖ (A′ ∩A′′)) = 0 we get

H̃∗(Sn ∖A) = H̃∗(Sn ∖A′) ⊕ H̃∗(Sn ∖A′′)

Thus if 0 ≠ z ∈ H̃∗(Sn ∖A) then i∗(z) ≠ 0 in H̃∗(Sn ∖A1 where A1 = A′ or A′′.
Then iterating this argument, we get a sequence of spaces

A ⊃ A2 ⊃ A2 ⊃ ⋯

and a non-zero element of limÐ→i
H̃(Sn ∖Ai). Observe that every compact set of

Sn ∖ ∩Ai is contained in some Sn ∖Aj , hence (by an argument similar to that
of Lemma 1.18, taking speci�c representative cycles for the homology classes)
H∗(Sn∖∩Ai) = limÐ→i

H̃∗(Sn∖Ai) ≠ 0. But ∩Ai is an (m−1)-cell so H̃∗(Sn∖∩Ai) =
0 by induction. Thus we have a contradiction unless H̃∗(Sn ∖A) = 0, and the
lemma is proved.

Applying this to the previous, X ′ and E′− are complements of cells in Sn+1
hence H̃∗(X ′) = 0 = H̃∗(E′−) so H∗(E′−,X ′) = 0. Thus δ is an isomorphism,
hence γu is also and Case 2 is completed.
Case 3 : dimX = k, A = Xk−1. Let E1, . . . ,Er be the k-simplices of X ∖A. We
wish to show that ∑r

i=1H
∗(Ė′i,E′I) ≃ H∗(A′,X ′) induced by the inclusion. If

r = 1, then (E1, Ė1) ↪ (X,A) is a relative homeomorphism, hence

(Sn+1 ∖A,Sn+1 ∖X) ↪ (Sn+1 ∖ Ė1,Sn+1 ∖E1)

is also, so the isomorphism holds for r = 1. The Mayer-Vietoris sequence provides
the inductive step proving it for general r.

Now we have the commutative diagramme

r

∑
i=1
H∗(Ei, Ėi)

φ //

γ′u
��

H∗(X,A)

γu

��r

∑
i=1
H∗(Ė′i,E′i) θ

// H∗(A′,X ′)

γ′u is an isomorphism by Case 2 ; φ is well known to be an isomorphism (cf.
Hu [2], p. 46); θ is an isomorphism by the above; hence γu is an isomorphism.
Case 4 : General (X,A), dimX = k. Let Xp = A ∪Xp. By induction we will
show that γu∶Hq(Xp,A) → Hn−q+1(A′,X ′) is an isomorphism. For p = −1, this
is trivially true.
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Look at the homology groups of the triad (Xp,Xp−1,A).
Hq+1(Xp,Xp−1) //

γ1
u

��

Hq(Xp−1,A) //

γ2
u

��

Hq(Xp,A) //

γ3
u

��

Hq(Xp,Xp−1) //

γ4
u

��

Hq−1(Xp−1,A)

γ5
u

��
Hn−q(X ′p−1,X ′p) // Hn−q+1(A′,X ′p−1) // Hn−q+1(A′,X ′p) // Hn−q+1(X ′p−1,X ′p) // Hn−q+2(A′,X ′p−1)

Inductively γ2u and γ5u are isomorphisms; γ1u and γ4u are isomorphisms by
induction for p < k and by Case 3 for p = k. Thus γ3u is an isomorphism and

γu∶Hq(X,A)toHn−q+1(A′,X ′)

is an isomorphism setting p = k.

In particular if A = ∅ we have

Hq(X)
∼γuÐÐ→Hn−q+1(Sn+1,X ′)

if X ≠ ∅, X ′ ⊂ Sn+1 ∖ ∗ ⊂ Sn+1 so the inclusion map is null-homotopic so
H̃∗(Sn+1) → H̃∗(X ′) is trivial. Thus

Hn−q+1(Sn+1,X ′) ≃
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Hn−q(X ′) q ≠ 0, n + 1
Z⊕Hn(X ′) q = 0
0 q = n + 1

Thus γu∶ H̃q(X) ≃ H̃n−q(X ′).
If X ⊂ Sn+1 and X∗ is a proper deformation retract of Sn+1∖X then we pick

α ∈ Sn+1 ∖X ∪X∗. Then we may consider X ∪X∗ ⊂ Sn+1 ∖ α ≈ Rn+1. Since
X ∩X∗ = ∅ we have

X ×X∗ ⊂ Rn+1 ×Rn+1 ∖∆, ∆ = {(x,x)∣x ∈ Rn+1}

Then the deformation retraction

r∶Rn+1 ×Rn+1 ∖∆→ Sn = {(x,0) ∈ Rn+1 ×Rn+1 ∖∆∣∥x∥ = 1}

given by (x, y) ↦ x−y
∥x−y∥ composes to give a map f ∶X ×X∗ → Sn.

If we make the assumption that X and X∗ are connected based CW com-
plexes then from the isomorphism H̃i(X) ≃ H̃n−i(X∗) and the other way around,
we get that Hi(X∗) = Hi(X) = 0 for i ≥ n. Thus [X∗,Sn] = [X,Sn] = 0 from
Theorem 2.8 so the composite X ∨X∗ →X ×X∗ → Sn is null-homotopic thus a
map (unique if [SX∗,Sn] = 0 = [SX,Sn])

u∶X ∧X∗ → Sn

is de�ned.
Claim: For ιn ∈Hn(Sn), u∗(ιn)/∶ H̃q(X) ≈ H̃n−q(X∗).
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This follows from the commutativity of the following horrible diagramme.
(Represent Rn+1 as Sn+1 ∖ α as before.)

Hn+1(Sn+1 × Sn+1,Sn+1 × Sn+1 ∖∆) //

≈
��

Hn+1(X × Sn+1,X × (Sn+1 ∖X))

≈

��

Hn+1(Rn+1 × Sn+1,Rn+1 × Sn+1 ∖∆)

33

≈
��

Hn+1(Rn+1 ×Rn+1,Rn+1 ×Rn+1 ∖∆) // Hn+1(X × Sn+1,X ×X∗)

Hn+1(Rn+1 ×Rn+1 ∖∆) //

≈ δ

OO

≈
��

Hn(X ×X∗)

δ

OO

Hn(Sn)
f∗

33

All unmarked maps are inclusions.

De�nition 3.8. If i∶A ⊂ B then A is an S-(deformation) retract of B if and
only if there exists j ∈ {B,A} such that j ○ {i} = {id} (and {i} ○ j = {id}).

Observe that if ß∶A ↪ B is an S-deformation retract, then i∶ SA → SB is
a homotopy equivalence. Thus i∗∶H∗(SA) → H∗(SB) is an isomorphism. But
this is the same as i∗∶ H̃∗(A) → H̃∗(B). Thus i induces a homology isomorphism.
Thus, in particular, if A and B are 1-connected CW complexes, i is a homotopy
equivalence.

De�nition 3.9. If X, X∗ are based CW complexes, then X∗ is a geometric n-
dual of X if X and X∗ can be embedded in Sn+1 so that X∗ is an S-deformation
retract of Sn+1 ∖X.

X∗ is an n-dual of X if and only if there is a map u∶X ∧X∗ → Sn such that
u∗(ιn)/∶ H̃q(X) → H̃n−q(X∗) is an isomorphism, where ιn generates Hn(Sn).

u is called an n-duality map.

Lemma 3.10. If u∶X ∧X∗ → Sn is an n-duality map then

(SX) ∧X∗ → S(X ∧X∗) SuÐ→ S(Sn) → Sn+1

X ∧ (SX∗) ÐÐÐÐÐÐÐ→
interchange

S(X ∧X∗) SuÐ→ S(Sn) → Sn+1

are (n + 1)-duality maps and

X∗ ∧X ÐÐÐÐÐÐÐ→
interchange

X ∧X∗ uÐ→ Sn

is an n-duality map.
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Proof. The �rst comes from the fact that

u∗(ιn)/∶ H̃q(X) → H̃n−q(X∗)

so
u∗(ιn)/ ∈ Hom(H̃q(X), H̃n−q(X∗))

and the map

Hn(X ∧X∗) → H̃q(X; H̃n−q(X∗)) → Hom(H̃q(X), H̃n−q(X∗))

takes u∗(ιn) ↦ u∗(ιn)/.
Then it is clear that the new maps are in fact isomorphisms. The �nal

statement, follows from the universal coe�cient theorem.

3.2 Duality in Certain Spectra and Map

Let us assume that we have a duality map u∶X∗ ∧X → Sn. Then we also have

duality maps Sku∶ (SkX∗) ∧X → Sn+k. This leads to maps fk = S̃ku∶ SkX∗ →
F (X,Sn+k) the adjoint. By commutativity of

S(SkX∗) Sfk //

��

SF (X,Sn+k)

��
Sk+1X∗

fk+1

// F (X,Sn+k+1)

we have induced f ∶ SX∗ → F (X,S). Reindex so that SkX∗ is the (n+k)th term
of SX∗.

Theorem 3.11. f is a weak homotopy equivalence.

Proof. It su�ces to prove that f induces a homology isomorphism. The idea
behind the proof is represented by the following:

H∗(F (X,S) ≃ π∗(F (X,S) ∧K) ≃ π∗(F (X,K)) ≃ [SX,K] ≃H∗(X) ≃H∗(X∗) ≃
H∗(SX∗)

where K =K(Z). We shall prove these isomorphisms in several stages.
Look at the map ρ∶F (X,Y )∧Z → F (X,Y ∧Z) given by ρ(f∧z)(x) = f(x)∧z.

Theorem 3.12. Let X, Y and Z be CW spaces with dimX ≤ k, Y (n − 1)-
connected and Z (m − 1)-connected. Then ρ∶F (X,Y ) ∧ Z → F (X,Y ∧ Z) is
(2n − 2k +m)-connected.

Proof. Fix X and Y . Then let

hi(Z) = πi(F (X,Y ) ∧Z) ki(Z) = πi(F (X,Y ∧Z)).

We claim
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� h∗ and k∗ are partial homology theories of bidegree (m,2(m+n− k − 1)),

� ρ∶h∗ → k∗ is an isomorphism in the appropriate degrees.

First observe that πi(F (X,Y )) = [Si, Y ] = 0 for i + k < n − 1 so F (X,Y ) is
(n−k−1)-connected. Then if A ⊂ Z are m−1)-connected spaces with the HEP,
F (X,Y )∧A→ F (X,Y )∧Z → F (X,Y )∧Z/A is a co�bration of (n+m−k−1)-
connected spaces. Hence there is an exact homotopy sequence (Theorem 1.10)
starting with π2(n+m−k−1)(F (X,Y ) ∧ A) = h2(n+m−k−1)(A). The isomorphism
hi(Z) ≃ hi+1(SZ) is evident from the exact sequence.

Next observe that ki(Z) ≃ [SiX,Y ∧Z]. Now Y ∧A→ Y ∧Z → Y ∧Z/A is a
co�bration of (n +m − 1)-connected spaces, hence from Theorem 1.23, there is
an exact sequence beginning [SiX,Y ∧A] ≃ ki(A) for i+k ≤ 2(n+m−1), hence,
for i ≤ 2(n +m − k − 1). So h∗ and k∗ are partial homology theories of bidegree
(m,2n − 2k +m − 1). (Actually they can both be extended a bit.)

Now let Z = St, t ≥m. The following diagram clearly commutes up to sign.

hiSt // ki(St)

πi(F (X,Y ) ∧ St)
ρ∗ // πi(F (X,Y ∧ St))

πi−t(F (X,Y )) ≃ [Si−tX,Y ] g
//

f

OO

[SiX,StY ]

∼

OO

where

f is

⎧⎪⎪⎨⎪⎪⎩

iso for (i − t) < 2(n − k) − 1
epi for (i − t) ≤ 2(n − k) − 1

and

g is

⎧⎪⎪⎨⎪⎪⎩

iso for (i − t + k) < 2n − 1
epi for (i − t + k) ≤ 2n − 1

Thus ρ∗ is an isomorphism for i < 2n − 2k + t and an epimorphism for i =
2n − 2k + t. Thus for t ≥m, ρ∗ is an isomorphism for i < 2n − 2k +m − 1 and an
epimorphism for i = 2n − 2k +m − 1. Thus by Theorem 2.24, for any (m − 1)-
connected Z, ρ∗∶hi(Z) → ki(Z) is also, hence ρ∶F (X,Y ) ∧X → F (X,Y ∧Z) is
(2n − 2k +m)-connected.

There is a very useful principle which will be demonstrated in Corollary
3.14. It is this: if f ∶Y → Z is n-connected and X is a CW space of dimension
m, then F (X,f)∶F (X,Y ) → F (X,Z) is (n −m) connected. This is immediate
from the observation that the map πi(F (X,f))∶πi(F (X,Y )) → πi(F (X,Z)) is
equivalent to [SiX,f]∶ [SiX,Y ] → [SiX,Z] which is an isomorphism for i+m <
n and epi for i +m = n.
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Corollary 3.13. Let X be (n−1)-connected. Then φ∶X → ΩrSrX, the adjoint
of the identity map of SrX, is (2n − 1)-connected, and θ∶ SrΩrX → X, the
adjoint of the identity map of ΩrX, is (2n − r)-connected.

Proof. We have already proved that φ is (2n − 1)-connected in Corollary 1.30.
The following diagramme commutes

SrΩrX
θ // X

φ

��

SrF (Sr,X)

ρ

��
F (Sr,SrX) ΩrSrX

ρ is (2n− r)-connected by Theorem 3.12 and φ is (2n− 1)-connected. Thus θ is
(2n − r)-connected.

Corollary 3.14. If X is a CW space of dimension ≤ k then the composite

F (X,Sn) ∧K(Z,m) ρÐ→ F (X,SnK(Z,m)) ≃

F (X,SnΩnK(Z,m + n)) F (X,θ)ÐÐÐÐ→ F (X,K(Z,m + n))

is min(2n+m− 2k,2m+n− k) connected. In particular F (X,Sm) ∧K(Z,m) →
F (X,K(Z,2m)) is (3m − 2k) connected.

Proof. ρ is (2n − 2k +m)-connected. θ is [2(n +m) − n]-connected, so F (X,θ)
is (2m + n − k)-connected; and the result is immediate.

But πi(F (X,K(Z,2m)) ≃ [SiX,K(Z,m)] ≃H2m(SiX) ≃H2m−i(X). Thus

Corollary 3.15. πi(F (X,Sm) ∧K(Z,m)) ≃ H2m−i(X) for i < 3m − 2k where
dimX ≤ k.

Theorem 3.16. The composite

πi+m(X ∧K(Z,m)) h //

φi(X)
++

Hi+m(X ∧K(Z,m)) ≃ ∑ H̃J(X; H̃i+m−j(K(Z,m)))

��
H̃i(X)

is an isomorphism for 0 < i ≤ m + t − 1 where X is a (t − 1)-connected CW
complex.
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Proof. Let hi(X) = πi+m(X∧K(Z,m)). Then for any t, h∗ is a partial homology
theory of bidegree (t,m+ t). Then φi∶hi →Hi(−) is a natural transformation of
partial homology theories of bidegree (t,m + t). It su�ces to show that φi(Sk)
is an isomorphism for k ≥ tand i ≤m + k.

By Corollary 3.13 SkK(Z,m) →K(Z,m+k) is (2m+k)-connected. Thus for
0 < i <m+ k, πi+m(SkK(Z,m)) = 0 except for i = k and πm+k(SkK(Z,m)) = Z.
But the same is true of Hi(Sk) and the Hurewicz isomorphism theorem yields
the isomorphism for i = k.

We proved in Corollary 3.15 that

πi+m(F (X,Sm) ∧K(Z,m)) ≃ H̃m−i(X), i < 2m − 2k, dimX ≤ k.

Now we have that πi+m(F (X,Sm) ∧K(Z,m)) ≃ H̃i(F (X,Sm)) for i ≤m +m −
k − 1. Thus
Theorem 3.17. If dimX ≤ k then for i ≤ 2m − 2k − 1

H̃i(F (X,Sm)) ≃ H̃m−i(X).

Recall the map u∶X∗ ∧X → Sm which we have assumed induces

u∗(ιn)/∶ H̃i(X∗) ≃Hm−i(X).

It de�nes ũ∶X∗ → F (X,Sm) by ũ(x∗)(x) = u(x∗ ∧ x).
Lemma 3.18. The diagramme

H̃m−i(X) ≃ // H̃i(F (X,Sm))

H̃i(X∗)

≃

OO

ũ∗

77

commutes.

Proof. Recall the evaluation map eval∶F (X,Sm) ∧X → Sm. The diagramme

X∗ ∧X u //

ũ∧id
��

Sm

F (X,Sm) ∧X
eval

88

obviously commutes: eval(ũ∧id)(x∗∧x) = eval(ũ(x∗)∧x) = ũ(x∗)(x) = u(x∗∧x).
Thus by naturality of the Künneth formula

H̃i(X∗) ⊗ H̃m−i(X) α //

Ũ⊗id
��

H̃m(X∗ ∧X)
u∗ // Hm(Sm) = Z

H̃i(F (X,Sm) ⊗ H̃m−i(X)
β
// H̃m(F (X,Sm) ∧X)

eval∗

66
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commutes.
The map u∗α is the same as the composite

H̃i(X∗) ⊗ H̃m−i(X) ≃ // H̃m−i(X) ⊗ (X)

p⊗id
��

Hom(H̃m−i(X),Z) ⊗ H̃m−i(X) // Z

Thus in order to show that ũ is an isomorphism for i su�ciently small compared
to m, it will su�ce to show that the following diagramme commutes up to sign:

H̃m−i(X) ⊗ H̃m−i(X) ≃ //

p⊗id
��

θ(X)

''
φ(X)

//

H̃i(F (X,Sm)) ⊗ H̃m−i(X)

eval∗ β

��
Hom(H̃m−i(X),Z) ⊗ H̃m−i(X) // Z

i.e. that θ(X) = ±φ(X).
First de�ne the adjoint maps

θ̃(X), φ̃(X)∶ H̃m−i(X) → Hom(Hm−i(X),Z).

By the adjointness it follows that φ̃(X) is simply the projection

p∶ H̃m−i(X) → Hom(H̃m−i(X),Z).

Thus we have θ̃∶ H̃m−i(X) → Hom H̃m−i(X),Z) de�ned and natural in X and
we wish to show that it is ±p.

We can use the fact that H̃m−i(−) = [−,K(Z,m − i)]. But then θ̃ is de-
termined by some element of Hom(H̃m−i(K(Z,m − i)),Z) ≃ Z. φ̃ is obviously
determined by a generator. Thus θ̃ = λφ̃ for some integer λ. But θ̃(S0) is clearly
an isomorphism so λ = ±1 and the lemma is proved.

Then applying Theorem 2.13 we get

Theorem 3.11 f ∶ SX∗ → F (X,S) is a weak homotopy equivalence.

(End of Proof of Theorem 3.11)
Observe that for A and B �nite CW complexes

{A ∧B,C} ≃ [SNA ∧B,SNC] ≃ [SNA,F (B,SNC)]

forN su�ciently large. Thus lettingN →∞ we get {A∧B,C} ≃ {A,F (B,SC)}.
Let X and Y be �nite CW complexes embedded in Sm+1 and X∗ and Y ∗ be
their m-duals.

Thus, given duality maps u∶X∗ ∧X → Sm and v∶Y ∗ ∧ Y → Sm we get an
isomorphism D(u, v)∶ {X,Y } ≃ {Y ∗,X∗} where f ∶ SrX → SrY corresponds to
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g∶ StY ∗ → StX∗ if and only if the following diagramme is stably commutative
(i.e. some suspension of it commutes):

StY ∗ ∧ SrX g∧id //

id∧f
��

StX∗ ∧ SrX
tur

��
StY ∗ ∧ SrY

tvr
// Sm+t+r

where tur and tvr are the appropriate suspensions of u and v.
Thus duality is almost an isomorphism of the stable category with itself.

Unfortunately it isn't quite because of the choices involved. For most prac-
tical purposes, however, we can regard it as a functor assigning to spaces
X embeddable in Sn, the space DnX in such a way that DnDnX = X and
{X,Y } = {DnY,DnX}.

Recall that if X ∧DnX → Sn is a duality map then so are (SmX) ∧DnX →
Sn+m and X ∧ SmDnX → Sn+m. Thus Dn+m(SmX) = DnX and Dn+mX =
SmDnX.

We can make the category C of �nite CW complexes and S-maps a graded
category by de�ning

{X,Y }n = {SnX,Y } = [SX,SY ]n.

Then

{X,Y }n = {SnX,Y } ≃ {Dm+nY,Dm+nX} = {SnDmY,DmX} = {DmY,DmX}n.

Thus Dm preserves grading,
Observe that if X → Y → Cf is co�bration then we get long exact sequences

{W,X}n → {W,Y }n → {W,Cf}n → {W,X}n−1
{X,W}n ← {Y,W}n ← {Cf ,W}n ← {X,W}n+1

Also if X → Y → Cf is co�bration, then

DnCf →DnY →DnX

acts like one in terms of the long exact sequences.
This leads to being able to consider certain problems by only looking at dual

problems.

Example 3.19. Freyd conjectures (Freyd [2]) the following: If X and Y are
�nite CW complexes and f ∈ {X,Y } is such that f∗∶πS

∗ (X) → πS
∗ (Y ) is zero

then f = 0. (tπs
∗(−) =H∗(−;S).)

A dual conjecture replaces f∗ by f
∗∶ {Y,S0}∗ → {X,S0}∗.

They are equivalent: Assume the former conjecture true. Pick f ∈ {X,Y }
with f∗∶ {Y,S0} → {X,S0} zero; then for N large we have DNf ∈ {DnY,DNX}
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with (DNf)∗∶ {SN , Y } → {SN ,X} zero hence DNf = 0 hence f = 0. Similarly
the second conjecture implies the �rst.

We now consider the following category S : the objects are pairs (X,n)
where X is a �nite CW space and a given embedding of it into some sphere (and
hence all higher spheres) and n is an integer and we set (X,n) = (SX,n − 1).
The morphisms are S ((X,n), (Y,m)) = {Sr+nX,Sr+mY } where r+n, r+m ≥ 0.
Observe that we can use the fact that

1. This is independent of r.

2. This is una�ected by replacement of (X,n) by (SX,n − 1).

Roughly, the objects of S are �nite CW complexes and their formal de-
suspensions. We write (X,n) = SnX for any integer n and this makes sense in
S . We can always de-suspend objects in S . Call an object of S �real� if it is
equal to some (X,0).

S has an advantage when it comes to Spanier-Whitehead duality: we can
talk about the dual as follows:

Given a real object X choose n su�ciently large that DnX exists. Then as
usual Dn+1X = SDnX so if we de�ne DX = S−nDnX we get a unique object of
S (in general, it is not real), independent of n. For any object of S we extend
by setting DSrX = S−rDX. This also is unique up to homotopy type since

SDnSX ≃DnX

whenever DnX is de�ned. Observe also that the maps evalnX ∶X ∧DnX → Sn
will yield in S a natural map evalX ∶X ∧DX− → S0 by taking de-suspension.

Theorem 3.20. D acts like a contravariant functor which is an anti-automorphism
and involution on S . I.e.,

1) D2X ≃X.

2) S (X,Y ) ≃S (DX,SY ).

We observe that DSn ≃ S−n for all n. Also observe that since DnX ∧DmY =
Dn+m(X ∧ Y ) for spaces we get DX ∧DY =D(X ∧ Y ) in S .

Theorem 3.21. S (X ∧ Y,Z) is naturally equivalent to S (X,DY ∧X). Thus
− ∧ Y and DY ∧ − are adjoint functors.

Proof. First observe that it will su�ce to prove this for real objects Y since if
Y = SrY ′ then

S (X ∧ Y,Z) =S (SrX ∧ Y ′, Z) =S (X ∧ Y ′,S−rZ)
S (X,DY ∧Z) =S (X,DSrY ′ ∧Z) =S (X, (S−rDY ′) ∧Z) =S (X,DY ′ ∧ S−rZ).

Fixing X and Z de�ne kn(Y ) = S−n(X,DY ∧ Z) and k−n(Y ) = S−n(X ∧
Y,Z). Observe that k∗ and k−∗ are cohomology theories. De�ne α∶k∗ → k−∗ as
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the composite

S−n(X,DY ∧Z) Y ∧−//

α(Y )
��

S−n(Y ∧X,Y ∧DY ∧Z)

S−n(Y ∧X,evalY ∧Z)
��

S−n(X ∧ Y,Z) S−n(Y ∧X ∧ Y,S0 ∧Z)T ∗oo

where T ∶X ∧ Y → Y ∧X is the twist and S0 ∧Z is identi�ed with Z. It su�ces
to show that α(S0) is an isomorphism, but this is trivial since each of the three
maps is then an isomorphism.

Observe that reduced homology and cohomology can be de�ned on by setting
H̃k(SrX) = H̃k(X), H̃k(Sr) = K̃k−r(X) and we have for H̃ = H̃(−,Z)

H̃−k(DX) = H̃−k(S−nDnX) = H̃n−k(DnX) ≃ H̃k(X)

for X real and hence by suspension for all X.
Observe that Theorem 3.21 makes sense and holds for any space Z. Setting

X = Sn yields Sn(Y,Z) =S (SnY,Z) ≃S (Sn,DY ∧Z) = πSn (DY ∧Z).
Next observe that if A is a convergent spectrum then

Hk(W ;A) = limÐ→
r

πk+r(W ∧Ar) = limÐ→
r

πSk+r(W ∧Ar).

Thus

Hk(DY ;A) = limÐ→
r

πSk+r(DY ∧Ar) = limÐ→
r

S (Sk+rY,Ar)

= limÐ→
r

[Sk+rY,Ar] = limÐ→
r

[SrY,Ar−k] =H−k(Y ;A).

Thus duality holds for homology with coe�cients in a convergent spectrum.
Also if k∗ is any (reduced) cohomology theory, we get a dual homology theory
by de�ning kn(X) = k−n(DX).

Finally let us observe that if we take the category of spectra, take the full
subcategory S ′ of all (SX)d where X is a �nite CW space then S ′ ≃ S
(SnX ∈S corresponds to (SX)n).

Incidentally we may ask about homology and cohomology theories de�ned
in S in general and ask if they come from spectra.

Theorem 3.22. If H is a generalised homology theory de�ned on S and
Hn(S0) is countable for all n, then there exists a spectrum A such that H =
H∗(−;A).

This theorem is due to E. H. Brown, Jr. (cf. Brown) and we shall not prove
it.


