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Introduction

Transcriber’s note

This is a memorandum on “Stable Homotopy Theory” by Joel M. Cohen. His
book is remarkable in that the writing style (of Chapters 0, 1, and 2 at least) is
very systematic, hence comprehensible: indeed, it can be used as an (informal)
introduction to axiomatic homotopy theory. Considering its publishing date
(1970), that is quite remarkable.

Thus the transcriber tried to “digitise” (a part of) it using LaTeX, besides
fixing flaws including incorrect cross-references.

Following is the original “Introduction” by the authour.

The original introduction

These notes are essentially the lecture notes of a course I gave at the University
of Chicago in the summer of 1968.1 Most aspects of stable homotopy are touched
on and some are studied in very great detail. It should, however, be emphasised
that we are only concerned with finite CW complexes. Thus one never has
to worry about the problems which may arise for infinite CW complexes; i.e.
certain long exact sequences which are easy to get for finite dimensional CW
complexes become very difficult in general unless one takes great care in defining
the morphisms (as J. M. Boardman has done in his Warwick lecture notes; or
see Tierney).

It is assumed that the reader has had a year of algebraic topology (a course
which covers the equivalent of most of Spanier, say). I quote without proof
some theorems from first year topology (e.g. the Hurewicz theorem) and prove
others. In addition I assume the reader has some understanding of spectral
sequences and what they can do. Specifically, I assume existence of the Serre
spectral sequence in homology. Spanier covers quite adequately the necessary
material.

For the computations of the stable homotopy groups of spheres in Chapter
V, I quote a lot of results on the Steenrod Algebra — all of which can be found

1 The author was partially supported by the National Science Foundation during the prepa-
ration of these notes.
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in Steenrod-Epstein or Mosher-Tangora. Lack of prior knowledge of cohomology
operations will not interfere with the understanding of this section, although the
reader may have to accept some results on faith (or study the above-mentioned
books).

This set of notes has a quite different point of view on the whole from Frank
Adams’ lecture notes on stable homolopy. I feel that to some degree, these
complement the other. Although I do construct the Adams spectral sequence
for completeness, not very much is said about it here and the reader is encour-
aged to pursue the subject either in Adams’ notes or in Mosher-Tancrora. The
present method of computing the stable homotopy groups of spheres is some-
what simpler than the Adams spectral sequence in the dimensions where it is
done. (Higher up this method seems to break down and the Adams method is
much neater.)

Chapter IV, on stable homotopy and category theory is entirely the work
of Peter Freyd. The proofs are to some extent my own — I tried to make
them more topological than category theoretical where possible; but the fact
remains that the main results, which are purely topological statements, cannot
be proved without using (or directly mimicking) Freyd’s embedding of the stable
homotopy category into an abelian category.

Thanks are due many people for the ideas incorporated in these notes. My
interest in the subject was aroused by George Whitehead; much of my thinking
was influenced by him and several proofs are lifted directly from him. Chap-
ter V is an abridged version of my thesis written under Donald Anderson. I
express my deep gratitude to him for many helpful suggestions during the orig-
inal writing and since. In addition many parts of these notes grew out of very
useful discussions with Frank Peterson, David Kraines, Gerald Porter, Peter
May, Peter Freyd and Brayton Gray. I wish to thank Susan McMahon, Mary
Vallery and Cecelia Ricciotti for putting up with my handwriting and typing
this manuscript.
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Chapter 0

Preliminaries

To start with, we shall consider based, simply-connected spaces; i.e., every space
X comes equipped with a base-point * € X, X is connected and m (X, *) = 0.
f:X = Y will always be a continuous map with f(x) = x. F(X,Y) is the set
of all such maps. We give F(X,Y) the compact-open topology. Let D be this
category.

A homotopy from X to Y is a continuous path Hy in F(X,Y), 0 <t < 1.

Given such a path we say f ~ g, f is homotopic to g for f = Hy, g = H;. (Observe
that Hy(+) = » for all ¢.) The set of homotopy classes [f] of maps f: X - Y
is mo(F(X,Y)) = [X,Y]. F(X,Y) has a base-point * where *(x) = * for all
relX.
Notation 0.1. Two spaces X and Y are homotopy equivalent, X ~ Y if and
only if there are maps f: X - Y, ¢:Y - X with fg ~idy, gf ~idx. We shall
write X =Y if X and Y are homeomorphic. (L.e., fg = idy, gf = idx for some
f and g.)

If A is a subspace of X containing the base-point of X as its own (this is
necessary, of course, in order to have the inclusion map base-point preserving)
then X /A is X with A identified to the base-point. If it should happen that
X has no base-point and A ¢ X, then X/A still makes sense and now has a
base-point.

Given spaces X and Y we form the wedge (essentially the one point union)
XvY=Xx+uUs*xY c X xY, with # x * as base-point. Then we define the
smash product or reduced join

XAY =(XxY)/(XVY).

v and A are commutative bifunctors D x D — D and A distributes over v.
Observe that x is the product and v the coproduct for all maps and also for
homotopy classes; i.e.,

F(X,YxZ)2F(X,Y)xF(X,Z), F(XVY,2)2F(X,Z)xF(Y,Z),
[X,Y xZ]=[X,Y]x[X,Z], [XVY,Z]=[X,Z]x[Y,Z].
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Let gt F(X AY, Z) > F(X, F(Y,Z)) be given by [p(f)(2)](y) = F(z A1),
p is continuous. If Y is locally compact, then p is, in fact, a homeomorphism.
Thus, for Y locally compact, the functors — AY and F(Y,-) are adjoint (or by
commutativity, Y A — and F(Y,-)).

We define the 1-sphere S' = I/{0,1} where I = the unit interval [0, 1] with
base-point 0. Let S = S' A — a functor D — D. By the above, it has a right
adjoint Q = F(S',-). F(SX,Z) = F(X,Q7) so [SX,Z] = [X,QZ]. We recall
that [SX, Z] has a group structure arising from the “pinch” map S' - S! v St

If n is an integer define a function nModl:I — I by nModl1(t) =n -t - [nt]
([x] = greatest integer < x). nMmodl is not continuous but its composition
with the projection I - S' is. Since nMmod1({0,1}) = » € S' we in fact have
7:S' — S! defined. Considering S* as {z € C||z| = 1}, 7i(2) = 2™.

For each integer r > 1 we can define ™! = S(S"). In fact since S! = S({0,1})
we see that {0,1} is a good choice for S° - the zero sphere. S” will represent the
functor S" A —. If n is an integer, S"7!(n):S" — S” is defined and for confusion
will be written as 7:S” - S".

There is one more functor that we wish to consider: Let T be I with the
base-point 1. Then the cone functor 7 is T v —. We shall embed X ¢ TX by
x+~ (0,2). Then we see that a space X may be contracted to one point if and
only if X is a retract of 7X; and a map f: X — Y is null homotopic if and only
if it can be extended to a map TX - Y.

We recall the following basic result (cf. Spanier “Algebraic topology” for
example):

Lemma 0.2. If f:S" - S" then for some integer n, f ~7 and if m +n, m ¢ 0.
In other words, [S",S"] ~ Z, the integers, with the identity corresponding to 1.
(Here of course r > 1.)

Recall the homotopy group functor, m, = [S",]. We recall that a non-
representable version can be defined on pairs. Now H,(S") ~ Z. For each n,
choose ¢,inH(S™) a generator, so that 4,1 corresponds to ¢,, under the natural
isomorphism H,,(S™) ~ H,,,1(S"*). This defines the Hurewicz map, a natural
transformation, h,:m, — H,:

[f]=aem(X)=h(a) = fi(n) € Hn(X).

For pairs of spaces satisfying a certain property, and n > 0, H, (X, A) ~ H,(X/A, *).
Then we have defined h,(X,A):7,(X,A) - H,(X,A) as the composite, for
n >0,

(X, A) > o (XJA, %) = (X]A) 2 g (x74) 5 B (X, A)
The main theorem involving h, (X, A) is

Theorem 0.3 (Hurewicz). If m;(X,A) =0, 0 < i < n then h,(X,A) is an
isomorphism.

It is important to note that we must assume X and A simply connected.
The “certain property” referred to above is this:



Definition 0.4. (X, A) has the homotopy extension property (HEP for short)
if Ac X,and I x AuO x X is a retract of I x X.

Observe that if (X, A) has the HEP then letting I x X - (Ix A)u(0x X)
be the retraction we have

r1=r(l,-): X >{IxA)u(0xX), r(A)=1xA.
Observe that for X uCA (this always means that a = (0,a)) we have
XUCA=[(IxA)u(0xX)]/(1xA).
Since r1(A) =1 x A, r; induces a map f: X/A - X UCA. Defining
g XUCA—>X/A, g(z) =[z], g(t,a)=+,

we observe that g is the homotopy inverse to f.
Thus

Theorem 0.5. If (X, A) satisfies HEP, then f: X/A ~ X uCA. Furthermore
SA=(XuCA)/X

composing [ with the projection yields p: X /A — SA called the canonical map.
p is unique up to homotopy and is natural once r: I x X - [ x Au0x X is given.

Remark 0.6. 1. The HEP for a pair (X, A) is satisfied if and only if the following
is true: given f: X — Y and a homotopy H: AxI — Y beginning at f|4, then
there exists a homotopy G: X x I - Y beginning at f and with G|4 = H.

AxO0—— Ax]T

S

Hlaxo
Y
f " G

e

Xx0e— > X x]

2. The HEP always holds for a pair (Aue™, A) where inte™ N A = @ and inte™ =
int I"; i.e. e” is an attached n-cell. See Hu “Homotopy Theory”.






Chapter 1

Homotopy and Homology
Not-So-Long Exact Sequences

1.1 Basic Properties of Mapping Cones

If f:X - Y we define the mapping cylinder Zy =Y u (I x X)/ ~ where (0,z) ~
f(z) € Y and (t,%) ~ . Y c Zj is a strong deformation retract, hence a
homotopy equivalence. We include X in Z;, i: X - Z; by i(z) = (x,1). Then
the following diagramme homotopy commutes:

Thus in homotopy theory we may take any map to be an inclusion by replac-
ing the codomain by a homotopy equivalent space and the map by a homotopic
one.

We now define the mapping cone or cofibre of f,

Cp=24/X = (Y UCX)[ ~, (0,2) ~ f(a).

Then we have canonically the inclusion i;:Y — C and the projection o¢:Cy —
C¢lY =SX.
We now prove several basic properties.

1) If f~g:X - Y then Cy ~ C,: let H: X xI - Y be such that H(z,0) = f(z),
H(xz,1) = g(z). Then define ¢:Cy - Cy by ¢(y) =y and

| H(x,2t)
olto) = {(275— 1,)

= O

IAN N
—_ N

IN N

5
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This makes sense since ¢(0,2) = H(z,0) = f(z) and (0,z) = ¢(3,2) =
H(z,1) = g(x).

Similarly we define 1:Cy - C'y and it is easy to show that v is the homotopy
inverse of ¢.

2) Let a: X — X' be a homotopy equivalence with @ its homotopy inverse. Let
f: X" - Y. Then there is a map ¢:Cf, - Cr by 0(y) =y, ¢(t,z) = (¢,a(x)).
Similarly there is a map Cfqg = Cfq. But by 1), Cre~ Cy since a@ ~ idx-.
Thus there are maps Cy < C}q, and it is not difficult to show that they are
a homotopy inverses. Similarly, if g: Z - X, then Coq ~ Cy.

3) By Theorem 0.5 we have: if f:Y — X is an inclusion and (X,Y) has the
HEP, then Cy ~ X /Y.

4) Putting this all together, this says that, up to homotopy type, we may replace
a map by an inclusion and the cone by the quotient space in order to study
the mapping cone sequence. For example

5) If X - Y and ¢:Y — Z are maps, then ¢:C; - Cyy is defined by ¢(y) =
g(h), p(t,x) = (t,z). Then Cy, ~ Cy: assume f and g are inclusions having
the HEP. Then ¢ is also and

Cy = Z]Y = (Z)X)](Y]X) = Cy[Cy = C,.

6) If f:X - Y and Z is any space, then

(€1, 2] 5 [V, 2] 5 [X, 2]

is exact: if H: X xI — Cy by H(t,x) = (t,z) then H(z,0) = (iy o f)(z) and
H(x,1) = . Thus iyo f ~x. So f*oi} =0. Conversely, if g:Y - Z and
gof~x, let G:X xI - Z be such that G(z,1) = * and G(x,0) =go f. Then
define 3:Cy - Z by §(y) = g(y),g(t,xz) = G(z,t). This is well-defined and
Z]/O Zf =4g.

7) (C,Y) has the HEP so that 6:C;, ~ SX. The following then are homotopy
commutative diagrams:

Cr—sCy, i, —LsSY

YSE’ 5&4

(the sign depends on the actual choice of 6, but usually will come out -) .

8) If f:X - Y and Z is some space, then form fAidz:X AZ - Y A Z. Then
there is a natural map Cyaia, = Cr A Z which is a bijection: take f to be
an inclusion; then we get the map YAZ/XAZ - (Y/X)AZ. For Y and X
compact, it is a homeomorphism. In general, it induces an isomorphism of
homotopy groups.
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By a cofibration or a mapping cone sequence, we mean a sequence
f g
X>Y > 27,

such that there is a homotopy equivalence a:Z - Cy and aog ~ is:Y — Cfy.
Thus if (X, A) has the HEP, A - X — X /A is a mapping cone sequence.
We get the Barratt-Puppe sequence from the above constructions:

i o St
xLy %o, 2sx sy 2L sop (@)

which has the property that every sequence of two maps (and three spaces) is
a mapping cone sequence. Also observe that if W is any space, then [(«), W] is
a long exact sequence.

1.2 Basic Properties of Fibres

There is an adjoint construction to that of mapping cone. Set PY = {w:[ —
Yiw(0) = x}. If 1X - Y let Ef = {(z,w) € X x PY|w(1) = f(x)}. Eyis
called the fibre of f. We define j;: E; - X by jf(z,w) =z and ¢ QY — Ef by
or(w) = (*,w). (Recall that Q = F(S',-) and that it is left adjoint to S = S'A—,
that is, [SX, Z] = [X,QZ] since F(SX,Z) ~ F(X,0Q%).)

We have the dual properties to cofibres:

1’) If f ~ g then Ey ~ E,.

2) If a: X' - X and b:Y — Y’ are homotopy equivalences and f: X — Y, then
Ebofoa = Ef

3’) (Intentionally left blank.)
4’) (Intentionally left blank.)

5’) Given X Ly s Z, there is a map ¢:Ey; - Eg given by ¢(z,w)) =
(f(z),w) with fibre E, ~ Ey.
6’) If f/:X - Y and Z is any space, then

]f*

[2.E1] 5 [2,X] & (2]

is exact.

7’) There is a homotopy equivalence ¢: E;, ~ QY with the following homotopy
commutative:

- p, oy g,

PN



8CHAPTER 1. HOMOTOPY AND HOMOLOGY NOT-SO-LONG EXACT SEQUENCES

8) If f:X - Y and Z is some space, then form fxidz: X xZ - Y x Z. Then
since P(Y x Z) = PY x PZ,

Eyyia,

={((@,2), (w1,w2)) € (X x Z) x (PY x PZ)|w1(1) = f(x),w2(1) = Z}
={(z,w) e X x PY|w(1) = f(2)} x {(z,w) e Zx PZ|w(1) =z} x Z
=EfxPZxZ.

Since PZ is contractible, Ey.iq, ~ Ef x Z.

Finally, there is a Barratt-Puppe sequence

Q; Q o j
s QB —Laox Loy LEe L xly (8)

such that if W is any space, then [W,(5)] is a long exact sequence . Under
certain circumstances, we shall find that [(8), W] and [W, («)] are exact. We
shall investigate this in §3.2.

Remark 1.1. Care should be taken to observe that [X,Y] is a pointed set and
not, in general, a group unless X = SX' or Y = QY’. A sequence A Lpilc
of pointed sets is exact if f(A) = g7*(*). In particular, g is a monomorphism
if f(A) = *; but monomorphism means only that g~*(%) = *. It does not mean
(unless g is a group homomorphism) that ¢ is 1 - 1. Epimorphism does mean
onto, however; and f is an epimorphism if and only if g(B) = *.

Definition 1.2. p: E - B is a fibre map if and only if p satisfies the covering
homotopy property: if W is any space and

Wx0—'sE

Wx.I*>B
H

is a commutative diagramme, then there exists G: W x I - E making the dia-
gramme commute.

If p is a fibre map and F = p~!(+) then we call F LELBa fibration. We
shall also call F' — E’ %> B’ a fibration if there exist homotopy equivalences
F~F' FE~F' B~ B making the total diagramme homotopy commute.

Theorem 1.3. If f: X - Y is any map then
J
B, L xLy
is a fibration.

Remark 1.4. This says that in (8) above any two consecutive maps yield a
fibration.
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Proof. Let E; = {(z,w) € X x Y!|f(x) = w(1)}. Let f:E; - Y be given by
f(x,w) = w(0). We have maps X & E; where
e (r,we) x < (z,w).

with w,(t) = f(s)). Clearly X —» E; — X is the identity and E; - X — Ej
takes (z,w) = (z,w;). Let Hy(z,w) = (X,w!) where w!(1-s) = w(1 - st) so
that w' = w, w® = w,.

Then X ~ Ef since Hy =C and H; = idﬁf' Also the following diagramme

PN

Y

homotopy commutes.

Observe that f~(») = E;.

Finally we need to show that f is a fibre map. Let p: Ef - X, ¢ Ef - Y!
be the projections. Then given

W><04h>Evf

|7

Wxl——Y
H

we define G:W x I - Ef by G(w,t) = (ph(w), A\y.+)) where

)

H(w,t-2s) 0<s<t/2
Awit = 25—t
gh(w) (2) t/2<s<1
This is continuous since H(w,0) = fh(w) = gh(w)(0) s0 Ay ((t/2) is well-
defined. Since A, +(1) = gh(w)(1) = fph(w), G(w,t) € Ef.
Also G(w,0) = gh(w) = fh(w) and fG(w,t) = A, +(0) = H(w,t).
So the diagramme will commute and the theorem is proved. (Except for the
possibility of G being discontinuous. We simply remark that it is continuous

for spaces we are interested in and we leave the exact conditions to point-set
topologists.) O

Next observe that the exactness of the sequence 7, (53)
sV > B> X Ly (8)
yields the following exact sequence
T (QEf;) —— 1, (QX) —— 1, (QX) ——= 71 (Ef) — (X)) —— 1, (Y)
T

7Tn+1(Ef) _— 7Tn+1(X) _— 7Tn+1(Y)
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(We use the fact that m,.1(X) = [S"*, X] = [S(S"), X] = [S", 02X ] = m,(QX).)

1.3 Some Consequences of the Serre Spectral Se-
quence

Under certain circumstances, a map which is not a homotopy equivalence looks
like one in low dimensions. To make this more precise, observe:

Theorem 1.5. If f:A - B then f.:H;(A) - H;(B) is an isomorphism for
i <n and an epimorphism for i <n if and only if the same is true of f.:m;(A) >
7Tz'(B).

Proof. Consider the inclusion of A into the mapping cylinder j: A - Z;. Then

H;(f)is an{lso o H;(j) is same < H;(Z;,A)=0fori<n

epii<n
{ Theorem0.3

isoi<n
mi(f) is same < 7, is an{ < m(Zp,A)=0fori<n

epii<n

O
Corollary 1.6. The cofibre of [ is n-connected if and only if the fibre of f is
(n - 1)-connected.

We say that f is n-connected in this case.

Remark 1.7. In all the above A and B are 1-connected. For A, B not 1-
connected, there are examples where Cy ~ * but Ef is not 2-connected: as
a group mo(St v S?) ~ Z[t,t7!] (a polynomial algebra on one variable and its
inverse). Let 0:S? — S v S? represent 2¢ — 1. Then H,(#) is an isomorphism so
X = Oy has the same homology as S*. Then there is a map f:S' - X which is a
homology isomorphism and in fact C¢/S' ~ , but m2(f) is not an isomorphism
and Ey is not 2-connected.

We recall the Serre Spectral Sequence (e.g. as outlined in Spanier):

Theorem 1.8. (Serre) Let E LEL Bbea fibration with B 1-connected.
Then there is a spectral sequence {E",d"} with

B, = Hy(B; Hy(F)) » H.(E)
and a spectral sequence {E",d"} with
B2y = Hy(B; Hy(F)) > H.(E, F)

The edge homomorphisms are those induced by p. and i,.
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Corollary 1.9. If B is (n—1)-connected and F is (m - 1)-connected then for
P:(E,F) ~ (B,*),

iso for i<m+n
ept for i<m+n.

H;(p) is an{

Proof. Picture the spectral sequence {E",d"} of F — E — B converging to
H.(E,F).

Hy (B; Ho (F))

ossible non-zero differential
Hn(B;*) Hn-%—l(Ba*) Hn+m(B;*) Hn+m+1(By*)
Thus since the edge homomorphism is H,(p) the result follows. O

Notice that we cannot say that p:(E,F) — (B,*) is (m + n)-connected.
This does not make sense in the relative case: pi;(p) is an isomorphism for all
i although H;(p) is not. Conversely if A ¢ X satisfies HEP then f:(X,A) —
(X /A, *) induces a homology isomorphism but not a homotopy isomorphism in
all dimensions.

We can, however, put it this way:

isofor i<m+n

p:E/F — B induces an{ . i
epifor i<m+n

Thus p: E/F — B is (m + n)-connected.

We now wish to look at the dual problem: IfX ER Y Se (Y is a cofibration
then there is an induced map p: X — E;. How close are X and E;; i.e., how
connected is p?

Look at Corollary 1.9 as follows:

For i <n+m-1, replace H;(E/F) by H;(B) in the exact homology sequence
for F - E —» E/F yielding

H;(F) - H;(E) > H;(B) > Hi_1(F) > -
exact fori<m+n-1.

If ftX->Y,let E=E; ={(y,w) €Y x PC¢lw(1) = y}. Define p: X - E by
p(z) = (f(z),w,) where w,(t) = (1-t,2) so that w,(0) = *, w, (1) = f(z). Thus

it

X —>Y ——>0C
tf
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is commutative. Assume that X is (n—1)-connected and Cy is (m—1)-connected.
From the exact homotopy sequence for £ - Y — C; and homology for X —
Y — C} and the Hurewicz theorem we find that E is also (n — 1)-connected.
But from the above we have both of the following sequences exact and the
diagramme commutative for k <n+m - 1.

N

H(Y) —— H(Cp) —> Hyr(X) —> Hy(Y) —> -
Thus Hy(p) is an isomorphism for k < n +m — 2 (but not necessarily an
epimorphism for k =n+m—1). Thus

Theorem 1.10. Given X - Y — Cy with X (n—1)-connected and Cy (m—1)-
connected then the induced map p: X — E; is (n+m—2)-connected. Hence there
is an exact homotopy sequence

Tn+m—3 (X) - 7Tn+m—3(Y) - 7Tn+m—3(cf) - 7Tn+7rL—4(X) >

1.4 Getting to the Stable Range

We shall now proceed to make great use of Theorem 1.10. This will be the
essential tool in getting to a stable situation. The idea is roughly that if a space
is n-connected then its properties up to dimension 2n—¢ (¢ = 0,1, or 2 usually)
are stable; e.g.

suspending gives an isomorphism H; - H;,1 and 7; — Tg41;
looping gives an isomorphism 7; - m;_1, and H; - H;_;.

Within this range, fibrations and cofibrations “look the same.” These ideas will
become more precise in this section. From now on, the statement X c Y will
assume that (Y, X) has the HEP.

Theorem 1.11. (Blakers-Massey) If X ¢ Y (Note this means that (Y, X) has
the HEP.) and X is (n—1)-connected and Y /X is (m — 1)-connected then

iso fori<m+n-1

(Y, X (Y /X)) 4
i ) > m(Y )Zsan{epiforiﬁm+n—1

Proof. We have
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where p is (n + m — 2)-connected. The following is an exact diagramme (rows
are exact and the diagramme commutes):

mi(E;) —=mi(Y) ——=m(Y/[X) —— mi1(E)) —=mi-(Y)

1

(X)) ——m(Y) ——m(V, X)) —— 711 (X)) ——=m1Y

We apply the 5-lemma:
for i<n+m-2 pl is ~ and p, is epi s0 ¢ is =;
for i<n+m-1 p’, is epi so p is epi;
O

Theorem 1.12. If A is (n—1)-connected and B is (m—1)-connected and n <m
then

mi(Av B)~m(A)om(B)®m(AAB), i<m+2n-3.
Proof. In the sequence
mi(AvB) > m(AxB) > m(AxB,Av B) - -

we observe that m;(A x B) ~ m;(A) @ 7;(B), and m;(A v B) contains this as a
direct summand because A and B are retracts of A v B. Thus we have split
exact sequences:

0-m1(AxB,AvB)>m(AvB)sm(A)em(B)—>0

SO
7Ti(A\/ B) ~ 7TZ'(A) @ﬂ'i(B) G97Ti+1(A x B,AVB).

But Av B is (n-1)-connected and using the Kiinneth formula we observe that
(AxB)/(Av B)=AABis (m+n-1)-connected so

Tis1(Ax BJAVB) ~m1(AAB), i+l<m+2n-2
applying Theorem 1.10. O

Another place we use Theorem 1.10 is in the very important Freudenthal
Suspension Theorem.

Theorem 1.13. (Freudenthal Suspension) If X is (n —1)-connected then

. < 2n—1
S:mi(X) - m11(SX) is an ZSO_ for ,l "
epi or i< 2n—1.
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Proof. Look at the cofibration X ELREA SX.
E;=Q8X, p:X->QSX

is the map p(x)(t) = t A x the adjoint to the identity SX — SX. Thus the
composite ; (X)) £ 1, (S X) ~ 7,41 (SX) is the suspension S. But pis (2n-1)-
connected by Theorem 1.10 so

. iso for i <2n -1
P« is any | )
epi for i <2n -1,

hence S is also. O

We now introduce the type of space which will be most convenient for study-
ing homotopy problems.

Definition 1.14. A CW complex is a space X together with a sequence of
subspaces X" such that

1) for some indexing set J,,, where each
n n-1 n
X" =X""" Uger, €q

where each el is an n-cell; i.e. there is an onto map ¢,:I" — e}, which,
restricted to ;gbhe interior of I is a homeomorphism onto ¢,. The boundary
is €}, = ey N e,. Then .

ea N (X" Ugsa eg) =g

and each é7 is contained in a finite union of cells of dimension < n. Since
¢" ~S"! there is defined a family of “characteristic maps” ¢:S" ! - X1

and C. =X"luen .
Pag 0

2) XY is discrete.
3) X =uX X" and O c X is open if and only if OnX™ is open in X" for all n.

Remark 1.15. i) 3) defines the “weak topology” on X with respect to the
subspaces X™. Observe that the topology remains the same if the word
“open” is replaced by “closed.”

ii) If X" ! is connected, then
X"/ X" =y, S"
a wedge (or “bouquet”) of n-spheres. Let
0=V, vy ST Xl

Then C, ~ X™. Thus there is a cofibration vS™t » Xl 5 X We will
find this particularly useful.
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iii) A subcomplez A of a CW complex X, is a CW complex A such that A™ ¢ X"
and
A" = An—l Uj el

n (o3

where .J,, ¢ J,. An extension of a remark in Chapter 0 yields the fact that
(X, A) has the HEP.

Definition 1.16. We define the dimension of a CW complex X by dim X <n
if X =X".

1.5 CW Spaces

We call a space Y a CW space if and only if there is some CW complex X ~ Y.
We set dimY = miny.y dim X . Since all theorems are statements only up to
homotopy type any proof need involve only a CW complex X and the statement
holds true for the CW space Y ~ X. Observe that a CW complex may have
a smaller dimension when considered as a CW space, but that will not matter
because hypotheses have the form “dimension < n.” For example, we have the
following useful fact about CW spaces.

Lemma 1.17. If X is a connected CW space of dimension < n and Y is an
n-connected space, then [X,Y]=0.

Proof. We proceed by induction on n. If n =1, then

X 2voS' = [X,Y]=v.S Y] =[][S". Y] =[] m(Y)=0.

«

Assume the lemma is true up to n —[. Let X and Y be as in the hypothesis.
Then there is a map f:vS™™* —» §"! with Cy ~ X, s0 X" > X - v§" is a
cofibration so

[X"LY] < [X,Y] « [voS", Y]

is exact since [X"'Y] = 0 by induction and [[7,(Y) = 0 since Y is n-
connected; therefore [X,Y] = 0. O

By more geometric means we can extend Lemma 1.17 to the infinite dimen-
sional case.

Lemma 1.18. Let Y be a space and X a CW complex with n cells only for
those n such that 7, (Y) =0. Then [X,Y]=0.

Proof. Let f: X - Y; we wish to construct a homotopy
H:X xI-Y, H(x,0)=f(z), H(z,1)=*

X is obtained from * by adjoining various n-cells. Well-order the procedure
and construct H inductively. H|, is trivial. Let X’ be a subcomplex of X and
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assume we are given H|x/, let X" = X" ue™. Since (X", X’) has the HEP, H|x-
can be extended to

ﬁIX”XI—>K EI|X/=H|X/, ﬁ(m,O):f(x)

H(x,1) = for z € X'. H(z,1) = * for x € é" so Hy: (e",é") —» (Y, ) represents
an element in 7,(Y") =0, so there is a homotopy

C—rYI(en,én)XI—>Y—7 Glz*, G():f‘jl.

Now define Hl., as follows: write ¢ =S"1 A [0,1) where [0,1) has base point
0. For (z,t) € ¢ let

JH((zt),d) 0<s<t, t>0
H((x’t)’s)_{G((x,t),jj t<s<l.

This is continuous, and extends H|x- since as t - 1, G((«x,t),s) > * uniformly
for all s. Furthermore, H((z,t),1) = G((«,t),1)) = ». Thus H|x~ is defined.
Inductively, then we have constructed a homotopy H: f ~ *. O

We recall a few facts about relative homotopy groups. An element « ¢
(X, A) is represented by a map f:(D",S" ') - (X, A) where D" is some n-
cell and S"7! its boundary. a = 0 if and only if f ~ f'rel S*~! where f'(D") c A.
Also recall the long exact sequence

i 7rn+1(XaA) - '/Tn(A) - ’/Tn(X) - Wn(XaA) -

All are elementary facts to be found in Hu [1] or Spanier.

We can use these facts to study some properties of CW complexes. We can
think of a CW complex as being built up from the empty set by adding one cell
at a time. (Use the axiom of choice to well-order the procedure.) If §:S"™ — A
then Cy will often be written as A ug ™. Observe

Lemma 1.19. If X = Auyge™ and m,(Y,B) = 0, then any map f:(X,A) —
(Y, B) is homotopic rel A to some [’ where f'(X) c B.

Proof. Let i:(D",S"!) - (X, A) be the obvious map where i|pn.gn-1 is a home-
omorphism onto €” \ A. Then [f oi] € m,(Y, B) represents 0 so there is some
p': (D", S 1) - (X, A) homotopic relS"™! to f oi and h’'(D"™) c B. Then since
hilgn-1 = f o dlgn-1 we can define

f,:(X,A)ﬁ(Y,B), f,|A:f|A7 f,|e”\A:h',oi_1u fINfrelA'
O
Lemma 1.20. Let X be a CW complex of dimension N < oo such that X" = *.
Assume w;(Y,B) =0 forn-1<i < N. Then if j:B — Y is the inclusion
then j.:[X,B] » [X,Y] is injective. If m;(Y,B) =0 for n <i < N +1 then

Jx 18 surjective. In particular if m;(Y,B) =0 for n <i < N +1, then j. is an
isomorphism.
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Proof. Let E be the fibre of the inclusion j: B — Y. Then the sequence [ X, E] —

[X, B] EAN [X,Y] is exact. Comparing the long exact homotopy sequences, we
observe that m;(F) = m21(Y, B). Thus if m;(Y,B) =0 for n -1 < i < N then
m;(E) =0 for n <i< N +1. Since X has i-cells for n <i < N +1, Lemma 1.18
yields the fact that [X, E] =0. Thus j, is injective.

Let f: X - Y and let X" = X’ Ue® be one stage in the construction of X.

Assume that f|x: ~ f'|x» where f'(X’) ¢ B. By the HEP for (X", X")
(see Chapter 0) there is some f": X" - Y with f ~ f and f”|x» = f". Then
applying Lemma 1.19 to [ we get f”:X” — Y such that f” ~ f'rel X’ and
F"(X'™) c B. Then cell by cell, we construct f: X - Y with f(X) c B. Since at
each stage the homotopy remained fixed there is a homotopy f ~ fdefined on
all of X. Now let g: X — B be defined by g(x) = f(z). Then jog=f ~ f. Thus
J« 1S surjective. O

Finally we can prove a most important result on CW complexes, the White-
head Theorem. We recall that a map f: X — Y is called a weak homotopy
equivalence if fo:m.(X) - 7. (Y) is an isomorphism. A homotopy equivalence
is clearly a weak homotopy equivalence. J. H. C. Whitehead has proved the
converse on CW complexes:

Theorem 1.21. Let X andY be CW complexes. Then f: X — Y is a homotopy
equivalence if and only if it is a weak homotopy equivalence. Furthermore if X
and Y are 1-connected, then these conditions hold if and only if f.:H.(X) —
H,.(Y) is an isomorphism.

Proof. Let ©:X c Zy, j:Y c Zy, r1Zy — Y be the usual maps with Z; the
mapping cylinder. If f is a weak homotopy equivalence, then so is i; thus
m(Z5,X) =0 so by Lemma 1.20,

[Z;, X152y, Z¢]

is surjective. Thus there is a map ¢:Zy —» X with i0 ¢ ~ idz,. Then g =
po7:Y — X is such that

fog=fogoj~roiopoj~roj~idy.

Thus that f is a weak homotopy equivalence implies there is some g with
fog~idy. But then g is also a weak homotopy equivalence so there is some k
with go k ~idy. Then

k~(fog)ok=fo(gok)~f=gof~gok~idx.

Thus ¢ is a homotopy inverse to f.
The final statement on homology follows immediately from Theorem 1.5. [

It is obvious that if X and Y are CW spaces and f: X — Y then Cy is a CW
space. The following is not obvious and not easy and we shall not prove it here.
It will be useful to keep this in mind as we continue, although we shall not use
it.
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Theorem 1.22. (Milnor) If X, Y are CW spaces and f: X - Y then Ef is a
CW space. In particular if X = then Er =Y is a CW space.

The proof for QY can be found in Milnor. The general case is unpublished.
Theorem 1.23. Let f: X - Y where X is (n—1)-connected and Cy is (m—1)-
connected. If W is an r-dimensional CW space where r <mn +m —2, then

(W, X155 (W,y] 25 [W,Cy]
is exact. If Y is (£ —1)-connected and r < n+ £ -1 also, there is a long exact
sequence continuing to the right.

Proof. We have this diagramme

E;

a

X —=Y ——=C;

6 is (n+m—2)-connected by Theorem 1.10. Thus from Lemma 1.20, 6,:[W, X ] —
[W, E;] is an epimorphism if » <n +m — 2. But

(W, Ei] - [W,Y] — [W, C]

is always exact, hence if » <n+m -2 then [W, X] - [W,Y] > [W,C¢] is exact.
Applying this to the cofibration ¥ - C't - SX completes the proof. O

Theorem 1.24. Let W be a CW space of dimension r. Let f:X — Y be n-
connected. Then

Fi[W.X] = [WY] i monomorphism if r<n
(W, X] > [WY]isa . L
epimorphism if r<n.

Proof. [W,Ef] —» [W,X] LR [W,Y] is exact. Since Ep is (n - 1)-connected,
[W,E] =0 if r <n, hence f is a monomorphism. Since X is connected and Cf
is n-connected [W, X ] —» [W,Y] - [W,C/] is exact for » < n by Theorem 1.23
and [W,Cy] =0 by Lemma 1.18. Thus f, is an epimorphism for r < n. O

As a consequence we get theorems such as the following:

Theorem 1.25. If A is (n—1)-connected and B is (m — 1)-connected, and X
is a CW space of dimension r, then

[X,Av B] > [X,A]®[X,B] is an isomorphism if r<m+n-1
’ ’ ’ epimorphism if r<m+n-1.

Proof. The map [X,AvB] - [X, Ale[X, B] = [X, AxB] isinduced by i: AvB —
A x B which is (m + n — 1)-connected since C; ~ AA B. O
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We make one concession to point-set topology by proving

Lemma 1.26. Assume Y = U2,Y; has the weak topology. AssumeY; c Y;;; and
the Y; are Ti-spaces. Then for X compact, F(X,Y) = H_I)nF(X, Y,.), the direct
limit, and [X,Y] = lim[X,Y,].

Proof. Since li_I)nF(X, Y,) ¢ F(X,Y), for the first part it suffices show that
for any f:X — Y there is some n with f(X) c Y, if X is compact. Arguing
by contradiction, assume f(X) ¢ Y,, for any n. Choose y € f(X) \Y,. Set
A={y,},. Forany y e Y, (A\{y})nY, is finite, hence, since Y, is 77, closed.
Thus A\ {y} is closed so y is not a limit point of A. So A is an infinite subset of
f(X) with no limit points. Thus f(X) is non-compact. So X is non-compact.
This contradicts the hypothesis.

We observe if X is compact then so is X x I so any homotopy takes place in
some Y,, and the second part of the lemma follows. O

From this lemma it immediately follows that
T (U2, Y5) = h_r{m'n(yz)

since S™ is compact.
We can extend Theorem 1.24 by induction to a finite wedge and then by
Lemma 1.26 to a countable wedge.

Corollary 1.27. If {4;}2, is a countable collection of (n—1)-connected spaces
and X is a compact CW space of dimension <2n -2, then

[X, Vit Ai] = Z[X,Ai]

o A _ 00 i 4. 9
Proof. v A; = U2y Vie A; so for m —2n -2

) J o)
Wm(v;':lAi) = h_r)nﬂm(vgzlAi) = IE)HZ’/Tm(AZ) = Zﬂm(Ai)

j j =1 =1

Then using the techniques of Corollary 1.27 extend to CW complexes of dimen-
sion < 2n — 2. O

We observe that the theorem fails for X non-compact. For example if X =
vee ;S™ then [idx] € [X, X] but idx ¢ X77[X,S™].

Theorem 1.28. (Generalised Freudenthal) If X is (n—1)-connected and dimY" <
r then
isoif r<2n-1:

S: [V, X] - [SY,8X] is any .
epi if r<2n-1.

Proof. As we observed in the proof of Theorem 1.13, p:SX - SQX is (2n -
1)-connected, where p is the adjoint of the identity SX — SX. Since the
composition

[V, X] & [V.OSX] ~ [SY, SX]
is the suspension, applying Theorem 1.24 to p finishes the proof. O
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Two “stability” theorems we will need later are the following;

Corollary 1.29. If X is (n—1)-connected and dimY < r, then the suspension
map S:F(Y,X) - F(SY,8X) is (2n —r — 1)-connected.

Proof. S induces
Sy:mi(F(Y, X)) —— m(F(SY,8X))

S:[SY, X] —— [S™Y, SX]

and thus is an isomorphism for i + 7 < 2n — 1 and an epimorphism for i + r <
2n - 1. O

Notice that f:X — Y n-connected implies S(f) is (n + 1)-connected since
Cs(yy 2 SCy and Q(f) is (n - 1)-connected since Eq, ~ QFE}.

Corollary 1.30. The map X — Q"S"X is (2n—1)-connected, if X is (n—1)-
connected.

Proof. Taking Y =S in the above lemma yields X — QSX (2n - 1)-connected.
Thus SX — Q82X is (2n + 1)-connected so QSX — Q252X is 2n-connected.
Thus

X > Q8X > °S’X —» - > QX

is (2n — 1)-connected. O

Stability, for us, will refer to those cases in which [X,Y]- - [SX,SY] is
an isomorphism. We can now put our previous results together to “stabilise”
[X,Y]:

Corollary 1.31. If dimY < n then [§7,87X] - [S*'Y, 87+ X] is an isomor-
phism for j >n+2 (regardless of the connectivity of X) .

Definition 1.32. {Y, X} = li_r)n[SjY7 S87X] is the set of S-maps from Y to X.
Observe that if dimY <n, {Y, X} = [S7Y, 87 X] for j >n +2.

One of the most useful aspects of S-maps comes from the following theorem.
Theorem 1.33. If X - Y - Cy is a cofibration, then
(W, X} > (WY} > {W,Cr}
is exact, for any finite dimensional CW space W .

Proof.
[S"W,S"X] > [§"W,8"Y] - [S"W,8"Cf]
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is exact if dimS"W < 2n - 2 sinceS™ X and S"C} are (n — 1)-connected. Thus
it is exact if dim W < n —2. So choose n > dim W + 2 and the sequence is exact
and yields (by the above)

W, X} > {W,)Y} - {W,Cy}
exact. O

Definition 1.34. C¢ is the category whose objects are finite dimensional CW
spaces and whose morphisms are S maps {, }.






Chapter 2

Eilenberg-Mac Lane spaces
and spectra

2.1 Construction of certain spaces

In this section we shall construct certain spaces having the property that their
homotopy (Eilenberg - Mac Lane spaces) or homology (Moore spaces) groups
in every dimension except one. Based on these spaces we will have a procedure
of “dismantling” a given space to study its homology based on its homotopy or
vice versa. By taking fibrations or cofibrations with these spaces we shall have
means of killing off homotopy or homology groups at one at a time.

Definition 2.1. An Eilenberg-Mac Lane space of type (m,n) is a CW space
K (m,n) such that

1EN

i =n.

(K (m,n)) = {?r

An Moore space of type (mw,n) is a CW space M (m,n) such that

1EN

(M (r.n)) = {2

and 71 (M (7,n)) is abelian.

Clearly if n > 2, the existence of a K(m,n) requires that m be abelian. The
existence of an M (7,n) always requires 7 to be abelian. These conditions are
almost sufficient.

Theorem 2.2. a) If 7 is abelian and n > 2, then K(mw,n)’s and M (w,n)’s exist
and are unique up to homotopy type;

b) If w is any group, then K(w,1) exists and is unique, and if w is abelian and
H?(K(m,1)) =0 then M(m,1)’s exist (but are not necessarily unique);

23
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¢) H"(X;m) and [ X, K(m,n)] are naturally isomorphic for n > 1.

Since it will not be relevant to our work, we shall not prove b) but stick to
the cases n > 2. (The case of K(m,1) is of historical importance, however, as
H*(K(m,1)) = H*(r), the cohomology of the group 7. Cf. Mac Lane.) For the
proof of b) regarding M (m,1) see Varadarajan. Its non-uniqueness was shown
in Chapter I where we saw two examples of M (Z,1).

Observe that v,S™ is a choice for M(c,Z,n) (for n > 2). To construct an
M(G,n), n>2, let

0—-F ERYZ IR G-0
be a free abelian presentation of G. Let F'= ¥ 3.5 Z, H = ¥4 Z and let f have

the integral matrix form ((fag)), (0, 8) € A x B for these bases. Then we have
maps fap:S™ - S™ (since the fup are integers). Let

F=((fap)):veS" > vaS™.

The exact homology sequence for

VS Lvast - oy

yields the fact that C; is an M (G, n); it follows from Theorem 1.23 that C; is
1-connected for n > 2.

For example, if G = Z/qZ, then M(G,n) = SS™ u, e"*!, an n-sphere with an
(n + 1)-cell attached at its boundary (which is an n-sphere) by the map q.

As a corollary to the construction, we note that M (G,n) may be taken to
be a CW complex of dimension < n + 1.

We can construct K (m,n) as follows: let

m fori=n

71'i(‘Kn) = {

0 fori>n.
Inductively assume we have constructed K, ¢ K,1 c--- ¢ K,,, where

0, i<n
mi(Kpm) =47, i=n

0, n<i<m

and K, c K, induces a homotopy isomorphism up to degree r for all r < m.
Let f,:S™! - K,, be such that the {f,} generate m,,;1(K,,). Let

f=VievS™ 5 K.

Then let K41 = C¢. By Theorem 1.23 there is an exact sequence

7 (vS™H) TiN i (Kom) LN Ti( K1) = mig (VS™H) > oo
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for i <n+m-1. Since m;(vS™"!) =0 for i <m, i, is an isomorphism there.
But my41(fs) is onto and 7, (VS™ = 0 50 Mpmys1(Kpme1) = 0. Thus we have
constructed K,,+1 inductively. Then with the weak topology K =uy:_, K, is a
CW complex and using Lemma 1.18

m 1T="n

0 i%n,
7714(1('):li_n>171'i(Km):{7T Z n

Thus we have constructed a K (m,n).
Next we shall show that for CW spaces X, [X, K(m,n)]~ H*(X;7). Now

H"(K(m,n);7) ~Hom(H" (K (m,n)),n) ~ Hom(x, ).

Choose 1 € H"(K (mw,n); ) corresponding to 1. Define a natural transformation
T:[-,K(m,n)] > H"(—;7) by T(X)[f] = f«(¢) for any f: X — K(m,n). By the
choice of ¢, T(S™) is an isomorphism. By the triviality of both sides T'(S™)
is an isomorphism for m # n. Since a product of isomorphisms is again an
isomorphism, T'(vS™) is for all m.

Let X be a CW space. Assume that T'(vS'X") has been shown to be an
isomorphism for all ¢ and for some fixed r. For example, we can start off with
r = 0. Then the Puppe sequence for the i-th suspension of the cofibration
vS” - X7 _)Xr+1

VSTJri _)8’LXT N SiX’r‘+1 N VST+i+1 _)87;+1X’r’

yields the exact diagramme
[vS™ K (m,n)] — [S'X", K (7,n)] — [S'X"*, K(7,n)] —— [VS"*"*! K (7,n)] — [ X", K (7,n)]
H'L(VSHl; 7r) - H”(S'.Xr; 71-) - H"(SiXT”;Tr) - H"(VSHH];Tr) - H"(S”er; 7r)
Since the first, second, fourth and fifth are isomorphisms, so is the third,
hence T'(X) is an isomorphism for finite dimensional CW spaces X .
Observe that the above did not require K(w,n) to be a CW space. In
particular, given some K (m,n+ 1),

T, i=n,

mi(QK(m,n+1)) = mi (K(m,n +1)) = {o i*n

so we have T":[-, K(m,n)] - H" () defined with 7'(X) an isomorphism for
finite dimensional CW spaces.

Let X be an arbitrary CW complex. Then X /X" is a CW complex with
i-cells only for ¢ >n +2 and 4 = 0. thus from lemma 1.18,

[(X/X™ K(m,n+1)]=0=[S(X/X™), K(m,n+1)]

Applying [-, K(7,n+1)] to the Barratt-Puppe sequence of 1:: X! & X yields
the exact sequence
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0=[X/X" K(m,n+1)] =<—— [SX™, K(m,n+1)] =< [SX, K(m,n +1)] =<— [S(X/X"), K(7,n+1)] =0
(X" QK (myn +1)] <F— [X, QK (1,0 +1)]
S l lm’
Hn(XnH ; ﬂ_) HnX; ﬂ,)

By the exactness, i is an isomorphism. By the long exact cohomology se-
quence i * is an isomorphism. By the previous part 7/(X"*!) is an isomorphism
hence T'(X): [ X, QK (m,n+1)] > H"(X;7) is an isomorphism.

In particular, if K’'(pi,n) is an Eilenberg-Mac Lane space of type (m,n) then

[K(m,n), QK (m,n+1)]~ H"(K(7,n);7) ~ Hom(mr, )

choosing f: K(m,n) - QK (7, n+1) representing id,: m — 7, we see (details are in
the more general lemma 2.5) that f is a weak homotopy equivalence. We may as
well assume f to be an inclusion. Then from lemma 1.20 we see that for any CW
space X, f.:[X,K(m,n)] = [X, K(w,n+1)]is an isomorphism. Thus composing
fe with T'(X) yields T(X):[X, K(7,n)] — H"(X;x) an isomorphism.

Remark 2.3. We could have skipped some of this by using the fact (theorem
1.22, which wasn’t proved) that K (7, n+1) is a CW space, hence is a choice for
Km,n).

Next we observe the following useful property of Moore spaces.

Lemma 2.4. If m;(X) =0 fori <n > 2 then there is a map h: M (7, (X),n) - X
which is a 7, (and hence H™) isomorphism.

Proof. Look at the construction of the “standard” M (w,n);m = m,(X): if

0-FLG%7-0
is exact where F', G are free abelian, then there is a map
]’F: VoSt > VﬁSn

such that m,(f) represent f. M(m,n) is Cy. For each f3, there is a map g:S" —
X representing one of the generators of 7. Then the map

g=Vvgg:vgS"T - X

is defined and 7,(g) represents p. Thus gf ~ % (since pf = 0). Thus g may be
lifted to a map h : M(m,n) - X which clearly induces a m, (and hence H,)
isomorphism. O

In particular it follows from this and from the Whitehead theorem 1.21 that
M (m,n) are unique for n > 2. As a dual statement to lemma 2.4 we have

Lemma 2.5. If X is an n—1 connected CW space then there is a map f: X —
K(pin(X),n) which induces a 7, (and hence H, ) isomorphism.
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Proof. Let m =m,(X) ~ H,(X). Then
[X,K(m,n)] = H"(X,n) =Hom(H,(X),n) = Hom(x, )

Choose f: X - K(m,n) corresponding to id,.

Now let us pause a moment and consider what it means to have ¢ € H™ (Y, )
correspond to g:Y — K(m,n). In particular g induces g,: H,(Y) > H,(K(m,n)) =
pi so that g, € Hom(H,(Y), 7). Then the epimorphism H"(Y,7) - Hom(H,(Y), )
sends ¢ to g.. Thus in our situation

Ho(X) —2% Hy (K (x,n))

I
is a commutative diagram, hence f, is an isomorphism.

Now we can prove the uniqueness of the K (7, n)’s. If X is any Eilenberg-Mac
Lane space of type (m,n) and K(m,n) is the standard one, then by lemma 2.5
there is amap f: X — K (m,n) which induces a m,-isomorphism. By the triviality
in other dimensions, f is a weak homotopy equivalence hence by the Whitehead
theorem a homotopy equivalence. This completes the proof of theorem 2.2. [

2.2 Properties of the Eilenberg-Mac Lane and
Moore spaces

We next prove some useful properties of CW spaces. First we observe

Theorem 2.6. Let X be a 2-connected CW space such that H'(X) =0 fori>n.
Then for some integer r, SX ~ a CW complex of dimension <n+r. Conversely
if dim X <n then H(X) =0 fori>n.

Proof. By induction on ¢ where X is (n — t)-connected: For ¢ = 0 or 1, X
must be a wedge of spheres and thus is unique. Assume the theorem proved
for 1 <t < (n-m) and let X be (m — 1)-connected. Then by Lemma 2.4
there is a map h: M (7, (X),m) - X which is an H,,-isomorphism. Thus
h:H*(X) > H* (M (7, (X),m)) is an epimorphism (by the naturality of the
universal coefficient theorem). Thus i;: H*(C}) — H*(X) is a monomorphism
so H(Cy) =0 for i > n.

On the other hand C}, is m-connected. By the inductive hypothesis, then,
there exists a CW complex C’ of dimension < (n+7) such that C’ ~ S"C},. Now
SX ~C,,, 04:Cl, = M(7,(X),m+1) so S X is the cone of a map

C'~8"Ch~M(mpu(X),m+r+1)

and this cone clearly is a CW complex of dimension < max(r+n+1,m+r+2) =
r+n+1. Thus S X ~ a CW complex of dimension <n + 7+ 1.
The converse is gotten by an easy induction argument. O
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(A much more geometric argument shows that r may be taken equal to 0.)
The following is an immediate consequence of this and Lemma 1.18.

Theorem 2.7. If H(Y) =0 fori>n and m;(X) =0 fori<n and Y is a CW
space , then for some r [S"Y,8"X]=0. Thus [Y,X]=0.

Notice that the hypotheses of the above theorem imply that H*(Y;m;(X)) =
0. We may wonder if that is not the most important point. In fact with much
weaker hypotheses we can get a much sharper theorem by approaching the
problem from the dual point of view: by fibrations and Eilenberg-Mac Lane
spaces:

Theorem 2.8. Let X and Y be CW spaces with H(Y;7;(X)) = 0 for all
i. If either m(X) = 0 for sufficiently large i or Y is finite dimensional, then
[Y,X]=0.

Proof. We can prove this by induction: let Ey = X. Given F,, an n-connected

space with m;(FE,) ~ m;(X) for i > n, let f:E, - K(mu41(X),n + 1) induce

Tn+1(f), an isomorphism (using Lemma 2.5). Let E,.1, be the fibre of f .

Then F,,; is (n+ 1)-connected and 7, (Ep41) ~ m;(E,) ~ (X) for i >n + 1.
Now if 7;(X) = 0 for 4 > r then since Y is a CW space and 7. (E,) = 0 we

have [Y, E,] = 0. If on the other hand Y is r-dimensional, then [Y, E,] = 0.
Now we work backwards inductively. From the fibration

En+1 - En - _K(ﬂ-n#—l(X)vn + 1)7
here is an exact sequence
|:Y; En+1] - [K En] - |:Y; K(ﬂn-#l(X)vn"' 1)]

But [V, K(m1(X),n+1)] = H"Y(Y;741(X)) = 0so that [V, E,.41] = 0 implies
that [Y, E,] = 0. Thus inductively [Y, X]=[Y, Ey] = 0. O

We have already observed that QK (7w, n+ 1) ~ K(m,n). This is very useful.
We wish to consider more general cases of sequences of spaces A, with A, ~
QA,+1- We generalise this to the idea of spectra.

Definition 2.9. A spectrum X is a sequence of spaces X, and maps e:SX,, —
X411 or equivalently, €,: X,, > QX 41.

Ezample 2.10. (1) X, = K(m,n), €K (m,n) ~ QK (m,n+1). This gives K ().
(2) W aspace, X, =S"W, £,:S(S"W) =~ S W. This gives SW.
(3) X a spectrum, (X AW),, = X, AW.

(4) X a spectrum,

(ld)n _ Xntd ?fn+d20;
* ifn+d<0.

X% is the d-th suspension of X and is defined for all integers d.
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(5) If W is compact and X is a spectrum we can form the spectrum F (W, X)
whose n-th space is F (W, X,,) with the compact open topology. The maps
are given by

SF(W, X)) & F(W,8X,,) —),

where a(t A f)(w) =t A f(w).
From now on we will assume that all spectra are CW spectra i.e., each space
is a CW space. We can now define some functors on spectra:

F(W, Xpn41)

Definition 2.11.
Hr(&) = li_r)nHrJrn(Xn)a

771"(&) = h_n)1777'+n(Xn)7
H"(X) zliLnHHn(Xn)'

n

where the direct and inverse limit systems are given by

H’r+n(Xn) = Hr+n+1(SXn) i) Hr+n+1(Xn+1)7

Enx

777'+n(Xn) - 7Tr+n+1(SXn) I 7T7'+n+1(Xn+1)7
Hr+n+1(Xn+1) E_n) Hr+n+1(SXn) ~ Hr+n(X")'

A map of spectra f: X — Y of degree r is a sequence of maps f,: X, - Y,
for n sufficiently large, such that the following diagramme commutes

Sfn
SXn 4f> SYn+r

EHL lsn-%-l

Xn+1 ¥ > Yn+r+1
n+1
Then we can define the spectrum C';, the cone of f , with (Qf)n+r =Cy,
with the map SC, = Csy, — Cy,,, induced by the commutativity of the above
diagram. (We can similarly define a spectrum Ef, the fibre of f .)
The set of homotopy classes of maps of spectra of degree r will be denoted
by [X,Y]" or [X,Y]_.. We shall let [W,Y] = h_1>nn[S”W, Y,.]=[SW,Y].

We shall find certain types of spectra as manageable as spaces.

Definition 2.12. (1) A spectrum X is convergent if and only if for some N,
mi(X) =0 for all i < N. X will be called N-connected.

(2) X is strongly convergent if and only if for some N each X, is n+ N connected
for n sufficiently large (hence X is N-connected) and furthermore for all ¢
the map

Hq+k+1(SXk) - Hq+k+1(Xk+1)
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is an isomorphism for almost all k. This last statement says that for all ¢,
€k is ¢ + k connected for almost all k.

(3) f:X > Y is a weak homotopy equivalence if and only if it is of degree 0 and
fe W, X] = [WY]
is an isomorphism for every finite CW complex W.

Theorem 2.13. If X and Y are strongly convergent spectra then f:X - Y is
a weak homotopy equivalence if and only if f.: H.(X) > H.(Y) is an isomor-
phism. For any X andY, f: X - Y is a weak homotopy equivalence if and only
if fo:m(X) = 7 (Y) is an isomorphism.

Proof. Let m be an integer. Choose an integer N such that
1) X and Y} are 1-connected for k > N,
2) for all j <m the natural maps
Hjwp(Xe) > Hj(X), Hjn(Yr) » Hj(Y)
are isomorphisms for all £ > N,

3) For every finite CW complex of dimension < m the maps
[$"P.Xi] > [P X], [$"PYi] - [PY]
are isomorphisms for all £ > N.

The diagrammes

Hjip (X)) — H;(X) [S*P, X;] — [P, X]
A P
H;x(Yy) — H;(Y) [S*P, Y] — [P, Y]

commute.
If k> N, j<m and dim P < m, then the horizontal arrows are isomorphisms.
Now if f is a weak homotopy equivalence then

Fret [SF(ST), Xi] = [SH(S), Yi], r<m = fromn(Xe) 2 min(Ya), i<m
= freHi(Xp) @ Hipo(Ye), i<m = foH(X)-> H(Y), i<m.

But m was arbitrary so f,. is an isomorphism for all i. We can work backwards
to prove the converse once we prove the second statement.

If fome(X) » m(Y) is an isomorphism, then f,:[S", X] - [S",Y] is an
isomorphism for every sphere S”. The result then follows by induction on the
number of cells and by the 5-lemma in the obvious way. O
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Two useful types of spectra that we have seen before are the following.

Definition 2.14. A spectrum X is an S-spectrum if and only if SX,, ~ X411
for almost all n. A spectrum X is an Q-spectrum if and only if X,, ~ QX,,,, for
almost all n.

Theorem 2.15. a) S-spectra are strongly convergent.
b) Convergent Q2-spectra are strongly convergent.

¢) Given a spectrum X there exists an Q-spectrum X' weakly homotopy equiv-
alent to X.

d) < b) + ¢). If X is convergent then there exists a strongly convergent §2-
spectrum X' weakly homotopy equivalent to X.

Proof. a) is trivial.
b) Assume 7;(X) =0 for i < N. Then assume X,, ~ QX for all n > M. Then
Tn+1(Xpn) =04 < N for all n > M. Thus each X,, is (n + N)-connected. Then

we have SX,, ~ 801 — X,41. But

S
Ti+n (Xn) > Ti+n+1 (SXn)

7Ti+n(QXn+1) = Titn+l (Xn+1)
commutes. By Theorem 1.13 § is an

isomorphism for i+n<2(n+N+1)-1,
epimorphism for i+n<2(n+N+1)-1.

Thus ¢, is an
isomorphism for i<n+2N +1,
epimorphism for i<n+2n+1.

Thus e, is n+ (n + 2N + 1)-connected. So for all n>qg-2N -1, &, is (n +q)-
connected. Thus X is strongly convergent.
c) Let X = h_H)lr 0" X,,+1 where

e
Qengr

QTXTL+’I" I QT(QXTL+T’+1) = QT+1Xn+r+1

gives the direct system.
Since Q = F(S!,-) and S' is compact, Lemma 1.26 yields

QX;%Ll = Qh_r)nQTXnH”Jrl = h_r)nQT+1Xn+r = Xrll

T T

Thus X’ is an Q-spectrum.
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Define f: X - X' by X,, = Q°X,, - h_r)n Q" X,+r. Given n, choose s so that
n+s>0. Then

Wn(&) :li_l’)n’/Tan(XT) = &nﬂn+s(QT75Xr) = 7Tn+s(1i_r)n QT?SXT) =

7Tn+s(h_n>1 QTX’I‘-FS) = 7Tn+s(X;) = 7"-n(il)

T

and this isomorphism is that given by f,. Using Theorem 2.13, f is a weak
homotopy equivalence. O

Corollary 2.16. K(G) and S are strongly convergent.

At this point we note that not all € spectra are convergent. For example,
Bott periodicity says that Q?U ~ U and Q%O ~ O for the unitary and orthog-
onal groups. Thus there is a spectrum X with X5, = QU, X5,,1 = U whence
mom(X) ~ Z for every integer m. Similarly we make a spectrum out of O with
7am (X)) ~ Z for every integer m.

2.3 Generalised homology theories.

Let C? be the category of pairs of spaces (X, A) satisfying HEP (= the homotopy
extension property.) Let C* be the category of based spaces. In both cases the
morphisms are homotopy classes of maps. Write (X, @) as X. Let 0:C% — C?
be the functor given by o(X, A) = A. Let A be the category of abelian groups.

Definition 2.17. A generalised homology theory H on C? is a sequence of
functors H,,:C?> - A and natural transformations 8,,: H,, — H,,_1 o o such that

(1) The following is exact for each pair (X, A):
an+1 - Jx On
oo —— Hp(A) = Hp(X) = Hp(X,A) = Hypoi (A) - -

(2) H,(X,A) % H,(X/A,*) is an isomorphism where p is the projection.
Note by convention X /@ = X [] * with * acting as the base-point.

Definition 2.18. A reduced generalised homology theory H on C* is a sequence

of functors H,:C* - A and natural transformations o,,: H,, - H,+1 oS such
that

(1) If Ac X satisfies HEP, then H,,(A) - H,(X) - H,(X/A) is exact.
(2) 0,,(X) is an isomorphism for every object X of C*.

The coefficients of a theory are H,(+) or H,(S?). Observe that if X is a
non-empty space then xzg € X is a retract of X hence H,(xzp) ~ H.(*) is a
summand of H,(X), so H.(X) ~ H,(x0) ® H. (X, x0).
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Claim: For X € C* define H,(X) = H,(X,*). Then this gives us a reduced
homology theory: since H, (X/A) = H,(X/A,*) ~ (X, A) we have the exact
sequence H,(A) - H,(X) - H,(X/A) > H,_1(A) - H,_1(X), but

Hn(A) Hy(x) e H,(A)

N

Ho(X) = Hp(x) e Hu(X)

12

commutes so H,(A) - H,(X) - H,(X/A) - H,_1(A) - H,_1(X) is exact,
Finally since TA/A = SA, the exactness of

0= H,(TA) ~ Hy(TA) 2 Hyoy(A)Hooy (TA) =0

yields an isomorphism with ¢,,_1(A) = Ot TA~xso ﬁn(ZA) =0.
On the other hand, given H we can define H,(X,A) = H,(X/A); as before
X /@ =X 11 » whence
Ho(X)=H(X)®H,(*) = Hy,(X)® H,(S?), S°=+]]*")

We define 0,, by

Ho(X,A) -7 Hy o (A) == H,_,(A) ® H,_,(S")
Clearly
Hy(A) H(X) Hn (X, A)
Hp(x)® ﬁn(A) —Hy(*)® ﬁn(X) — Hn(X/A)
is exact.

We get the rest by observing that X/A — X [[TA so
H,(X) > Ho(X []TA) > H, (X [])/X)

yields
H,(X)->H,(X/A) > H,_1(A) ~ H,(SA)

exact hence
H,(A)->H,(X)->H,(X,A) > H,1(A)

is exact.
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From now we on we shall deal solely with reduced generalised (co)homology
theories. Consequently we shall neglect the word “reduced” and eliminate ~
except for ordinary cohomology.

Let A be a spectrum. For any space X let k,(X) =[S, X AA], =7 (X A A)
and k" (X) = [SX,A]" = [X, A]".

Theorem 2.19. k* is a cohomology theory H*(—; A). If A is strongly conver-
gent k. is a homology theory H,(-; A).

Proof. 1t is obvious that k* is a cohomology theory. To show that k. is a
homology theory, we investigate the “stable range” of the problem. Let A be
(r = 1)-connected. Given n, choose N > n —2r + 3 such that for all m > N,
Em:SAm = Am+1, is (m+n+2)-connected and A,, is (m+r-1)-connected. Then
for any space Y, mpem (Y AAR) ~ Tpime1 (Y ASA,,) since (n+m) <2(m+r) -2.
Also Tpim1 (Y ASAL) = Tpima1 (Y A Apyr) sinee €, is (n +m + 2)-connected.
Thus Tpm (Y AA) 2, (Y A A) = kp(Y), and Tpme1 (Y A Ap) = kne1 (V).
Thus we have

Fen (V) 2 Mo (Y A Am) = Toname 1 (SY A Ap) = kina1 (SY).

Finally if X c Y then the cofibration X - Y — Y/X yields the cofibration
XANAp =Y ANA, - (Y/X)AA, so that

Tntm (X A Am) = Tpam (Y A Ap) = Tonam (Y/X) A A)

is exact for m+n < 2m+2r -2 hence for m > N. This, then, yields the exactness
of
kn(X) = ko (V) > k(Y] X).

Observe that for the case of A= K (7) we have

=0
Hy(S%K(m)={"" "
(85 K(m) {07 n+0
hence H.(—; K (7)) must be regular reduced homology. This is a special case of
the following

Theorem 2.20. Let T:h, — k. be a natural transformation of homology the-
ories (i.e. of the functors and commuting with the isomorphisms o). Then if
T(S°) is an isomorphism, so is T(X) for any finite CW complez.

Proof. The proof is again the usual argument by induction on the cells using
the five lemma. O

There is a generalisation of the ideas of theorem 2.20 that we find particularly
useful.
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Definition 2.21. A partial homology theory of bidegree (m, M) is a sequence of
functors H,,:C* — A and natural transformations o,,: H,, - H,,.1 oS such that

1) If A c X satisfies HEP and A and X are (m - 1) connected then H,(A) —
H,(X) - H,(X/A) is exact for n < M

2) 0,(X) is an isomorphism if X is (m — 1) connected and n < M — 1.
Remark 2.22. a) This is clearly a reduced theory.

b) For each integer m > 1, m, is a homology theory of bidegree (m,2m — 1).

Then we extend theorem 2.20 as follows (in fact, its proof yields a proof of
theorem 2.20).

Definition 2.23. A natural transformation T,:h, — k. of partial homology
theories of bidegree (m, M) is called a weak isomorphism if T;(X) is an isomor-
phism for ¢ < M and an epimorphism for ¢ = M for all m — 1 connected finite
CW complexes.

Theorem 2.24. Let T,:h, — k. be a natural transformation of partial homology
theories of bidegree (m,M). Assume

Ti(S"):hi(S") = ki(S")

is an isomorphism for all n > m and i < M and an epimorphism for i = M.
Then T, is a weak isomorphism.

Proof. The cofibration X - X vY — Y yields the fact that h;(XvY) ~ h;(X) e
hi(Y) if X, Y are (m —1)-connected and i < M. The same is true for k.. Thus
T;(S™) is an isomorphism for finite wedges of n-spheres, n >m, i < M. Given a
finite (m — 1) connected CW complex X the long exact sequence for X™ c X
yields the fact that X™ ~ vS™, a finite wedge. Thus T;(X™) is an isomorphism
for i < M. Assume T;(S"X™) is an isomorphism for ¢ < M and all » > 0. Now
from the cofibration vS™ - X™ - X" we get exact sequences connecting the
maps

Ti(VSn+T) N TZ(STXTL) N Ti(STXn+1) N E_l(VSn+T) N TZ(San)

Since all but the middle map are isomorphisms for i < M the 5-lemma implies
that T;(S"X"*1) is an isomorphism for i < M and all 7 > 0. For i = M the
first two are epimorphisms and the last two are isomorphisms T,,(S"X™) is
an epimorphism. Since X is finite, X = X" for some n, hence T;(X) is an
isomorphism for ¢ < M and T,,(X) is an epimorphism. O






Chapter 3

Spanier- Whitehead duality

3.1 Duality Theorem

The central aim of this chapter is to show that corresponding to a finite CW
complex X and a sufficiently large integer N there is a finite CW complex
Dy (X), unique up to homotopy type, having many nice properties.

First Dn41(SX) ~ Dy(X) ~ SDy-1(X) so that we have in a natural way a
spectrum DX dual to SX.

Next we find that for each N where it is defined H'(Dy (X)) ~ Hy_i(X).
Finally we find that for two finite CW complexes X, Y, [SX,SY] may be
identified with [DY, DX] in a natural way.

The first step in getting this duality is to recall certain pairings of homology
and cohomology.

Observe that for any abelian groups A, B, C there is a natural evaluation
map e: A ® Hom(A ® B,C) -~ Hom(B, C) given by [e(a® f)](b) = f(a® ).

Given spaces X, Y and an abelian group G we can form the singular chain
complexes C.(X), C.(Y) and the cochain complex C*(Y,G) = Hom(C,.(Y),G).
Then an evaluation map is defined

C,(X) ® Hom(Co(X) ® C.(Y),G) » C*(Y,G)

If this is composed with the map induced by the Eilenberg-Zilber map, which
gives a chain equivalence C.(X) ® C.(Y) - C.(X xY') we have defined

[:C(X)® C* (X xY,G) - C* (Y, G).

Specifically if x € Cy(X), u € C"(X xY,G) and y € Cp,_4(Y) then u/z «
Cr—q(Y,G) is given by (u/z)(y) = u(x xy). From the boundary formula on
C,(X xY) it is immediate that

6(ufx) = (bu)/z - (-1)""(u/0x)
Thus it is easy to check that we get
JH(X) ® H* (X x V,G) > H*(Y,G)

37
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induced.
Then the relative Eilenberg-Zilber (Spanier, p. 234)

(Ce(X)C(Y),Ci(X)®C,(B)+C:(A)®C.(Y)) - (C.(XxY),Cy (X xBUAXY)
for pairs (X, A), (Y, B) yields the natural transformation
[H (X xY, XxBUAxY)® H.(X,A) - H* (Y, B).
If f:(X',A") > (X,A) and ¢: (Y',B’") - (Y, B) then
g (u/f(x))=[(fxg)*ul/z, uweH*(XxY,XxBUAxY),zeH, (X' A").

We shall now recall some facts about fibre bundles before we put the slant
product to work.

Definition 3.1. (E, B, F,p) is a fibre bundle if and only if p: E — B is a map
such that for every b € B there exists a neighbourhood U of B and a homeo-
morphism :U x F — p~!(U) such that pp(u, f) = u for all u e U.

The following can be found in Spanier, p.96.

Lemma 3.2. If (E, B, F,p) is a fibre bundle and B is paracompact and Haus-
dorff then p is a fibre map.

Remark by the transcriber: The proof of Lemma 3.2 is extremely hard.

Lemma 3.3. Let p:E — X be a fibration. Let X' ¢ X be such that p' =
plx: X' — B is a fibre map with fibre F'. Then i 7w (F,F") = m,(X, X").

Proof. Let j be the composite isomorphism 7y (X', F') ~ my(B) =~ m¢(X, F).
We have the triples (X, F,F’) (X,X’, F') leading to exact sequences (cf.
Spanier, p. 378):

4h>7rr(F,F') 4f>7rr(X,F') 4g>7rr(X,F) 4h>7rr_1(F,F')

— (X', F") 7>7TT(X, F') ——m.(X,X") — mr1 (X', F")
g

We wish to show that i, = ¢’ f is an isomorphism. We know that j = gf” is.
Thus ¢ is epi and f’ is mono. Thus h and h' are trivial. Thus g is epi, f is
mono.

1% 1S MONO.

Assume i,(x) = 0. Then ¢'(f(x)) =0 so f(z) = f'(2’) for some z’. But then
jx")y =gf'(2") =gf(x) =0so x' =0. Then f(z)= f'(0) =0. Since f is mono,
x =0. Thus 7, is mono.
iy 18 epi.
Let y € m.(X,X’). Then y = ¢’(2) for some z € m.(X,F’'). j = gf' is epi
so for some w € (X', F') g(z) = j(w) = gf'(w). Thus g(z - f'(w)) = 0 so
f(z) = z—f'(w) for some z. But then i, (z) =¢' f(x) =¢'(2)-¢ f'(w) =¢'(2) = y.
Thus i, is epi. O
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Let A = {(z,2)|r e S"*1} c S x §"*1. Let £ =S"" x S"*1 \ A and define
p:E - S™ by p(x,y) =2. Let F =S\ «.

Proposition 3.4. (E,S"*! F,p) is a fibre bundle.

Proof. Consider
S™ = [z e R™™ | 2| < 3} x Z/2Z]/ ~
where (z,0) ~ (z,1) if |z| = 3. We take x to be the point (0,0) and we shall
find a neighbourhood V 5 x such that p~1(V) =V x F. We suppress the second
coordinate and consider {z:z| < 3} c S**! to contain z. Let V = {z:]z| < 1},
D = {z]z| < 2}. If (',2") € Vx D, 2’ # 2" then there is a unique point
2" e R""L such that ||2’| = 2 and 2" belongs to the closed segment from 2’ to z’.
If 2" =ta’+ (1-t)z' for t € [0,1) let A(z',2") = (1-t)z' #0, h(z',2") = 0. Then
define
¢: (V x Sn+17v x Sn+1 N A) SV x (Sn+17Sn+1 N .I‘)

by
1/1(%’ x//) _ (z',2") a" ¢ D,
' (', h(z',2")) 2" eD.
Thus 9 gives a homeomorphism
p V)=V xS VA=V x (S \2) 2V xF.
By any rotation, what we did for « could be done for any point. O

Now using Lemma 3.2 we get
Theorem 3.5. p: E - S™*! is a fibre map.

Now we have
Sn+1 % c Sn+1

|

Sn+1 « Sn+1 VA c Sn+1 « SnJrl

l |

Sn+1 Sn+1

where the vertical maps are fibre maps. Thus from Lemma 3.3
ﬂ_i(Sn+1’Sn+1 N >(_) ~ ﬂ_i(SrHl x Sn+17Sn+1 ~ Sn+1 N A)

where
Wi(Sn+1,Sn+l N >(_) ~ ﬂ_i(Sn+1) _ 07 1<n+1
Z7 t=n+1.
Thus

Hi(S"H y Sn+1,Sn+1 % L A) _ 0, i<n+1
Z, i=n+1.
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Choose u € H™1(S™*1 x S**1 §n*l x §7+1 ( A) a generator.

Let A c X be subcomplexes of S""1. Choose X’ c A’ c S**! such that A’
(resp. X’) is a deformation retract of S"*1 \ A (resp. S"*1 \ X).

Let

i (X « A,,X x X' U A x A,) N (Sn+1 x Sn+17Sn+1 XSn+1 N A)
be the inclusion. The slant product
JH (X xA X x X' UAx Ao H (X, A) - H* (A", X")

is defined.
i*(u) e H""H(X x A", X x X" u Ax A"). So there is defined

Yur Hy(X, A) » H" YA X", yu(z) =i (u)/z, ¢=0,1,...,n+1

Theorem 3.6. If A c X are subcomplexes of S*™! for a fized triangulation then
Yu &S an tsomorphism.

The proof is quite involved.
Proof. Case 1: X =%, A=@. Let A’ =S"*1 X' =8"*1\ «, then

0 q+0

=H .
Z q=0 q(*)

Hn+q+1 (Sn+17§n+l N )(_) :{

We need to know the isomorphism is given by ~,. But this follows from the fact
that the map

Hn+1(Sn+1’Sn+1 N *) - Hn+1(Sn+1 % Sn+1’Sn+1 « Sn+1 N A)

is an isomorphism.

Assume the theorem holds for (X, A) where dim(X \ A) <k, k> 0.
Case 2: X = k-cell, A =X, the boundary of X. Then X = E, UE_ a union of
two hemispheres, (k- 1)-cells. B, nE_=E, = E_ a (k - 2)-sphere

Hy (X, X) —“> H" (X' X")

o| |

Hq—l(XaE—) - Hniq+2(EiaX,)
PYU/

commutes up to sign by a chain level formula. By induction y+, is an isomor-
phism. 0 is an isomorphism since H, (X, E_) = 0 since both are contractible.
We need the following lemma.

Lemma 3.7. If A is a k-cell in S, H,(S" \ A) = 0.
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Proof. By induction on k. If £ =0, A = x and S" \ » = R" is contractible.
Assume the result for £k < m, m > 1. Regard A as homeomorphic to B x I,
B an (m—1)-cell. h:Bx I — A the homeomorphism. Let A’ = h(B x [0,1]),
A" = h(B x [%, 1]) then A’uA” = A, A’n A" is an (m - 1)-cell. Then from the
Mayer-Vietoris sequence (Spanier, p. 186) for (S™ \ A’,S™ \ A”) and from the
inductive assumption that H,(S" \ (A’ n A”)) = 0 we get

H.(S"~ A) = H (S" A') @ H,(S" ~ A”)

Thus if 0 # z € H,(S™ \ A) then 4,(z) # 0 in H,(S" \ A; where A; = A" or A”.
Then iterating this argument, we get a sequence of spaces

ADAQDAQD'"

and a non-zero element of lim_ H(S™\ A;). Observe that every compact set of
S™ N\ nA; is contained in some S"™ \ A;, hence (by an argument similar to that
of Lemma 1.18; taking specific representative cycles for the homology classes)
H,(S"\n4;) = lim. H,(S"~A;) #0. But nA; is an (m—1)-cell so H, (S"~n4;) =
0 by induction. Thus we have a contradiction unless H,(S" \ A) = 0, and the
lemma is proved. O

Applying this to the previous, X’ and E’ are complements of cells in S™*!

hence H,(X') =0 = H,(E") so H.(E",X") = 0. Thus § is an isomorphism,
hence 7, is also and Case 2 is completed.

Case 3: dimX =k, A= X" Let Ei,...,E, be the k-simplices of X \ A. We
wish to show that Y_, H*(E!, E}) ~ H*(A’, X') induced by the inclusion. If
r =1, then (E4, El) < (X, A) is a relative homeomorphism, hence

(Sn+1 N A’Sn+l N X) N (Sn+l N E17Sn+1 N El)

is also, so the isomorphism holds for » = 1. The Mayer-Vietoris sequence provides
the inductive step proving it for general r.
Now we have the commutative diagramme

S H.(E;, E;) ——= H.(X,A)

i=1

'yLl Yu

T .
> H (B, B) —— H* (A, X')
=1

~,, is an isomorphism by Case 2; ¢ is well known to be an isomorphism (cf.
Hu [2], p. 46); 6 is an isomorphism by the above; hence ~,, is an isomorphism.
Case 4: General (X,A), dimX = k. Let X, = Au X?. By induction we will
show that ~,: Hy(X,, A) - H"%*1(A’, X") is an isomorphism. For p = -1, this
is trivially true.
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Look at the homology groups of the triad (X, X,-1,4).
H(1+1(Xp7 prl) E— Hq(Xp—h A) - Hq(Xp: A) Hq(Xpa prl) - qul(prlw A)

1 2 3 4 5
.| ¢ |2 K ¢

Hniq(X;,;—le;;) Hn,fq+1(A/’X;_]) H7"7q+1(A’,X;) anqﬂ(XIr)_“X;) H’L7Q+2(A’,X;_1)

Inductively 72 and 7> are isomorphisms; v. and ~! are isomorphisms by
induction for p < k and by Case 3 for p = k. Thus ~2 is an isomorphism and

Yui Hy (X, A)toH™ " (A’ X7)
is an isomorphism setting p = k. O

In particular if A =@ we have

Hq(X) N_’“) H'n—q+1(S'n,+l’Xl)

if X # 2, X' c 8"\ c 8™ sothe inclusion map is null-homotopic so
H*(S™') -» H*(X') is trivial. Thus

H™ (X" qg#0,n+1
Hn—qul(S'rHl’Xl) ~ Z@ Hn(X/) q= 0
0 qg=n+1

Thus ,: Hy(X) ~ H*9(X").

If X cS™! and X* is a proper deformation retract of \ X then we pick
a e S\ X uX*. Then we may consider X uX* c S™*! \ a ~ R™!. Since
X nX* =g we have

Sn+1

XxX*cR"™ xR"™ VA, A={(z,z)zeR"!}
Then the deformation retraction

PR X R™I N A - S" = {(2,0) e R™ x RN Az = 1)

given by (z,y) — ﬁ composes to give a map f: X x X* - S™.

If we make the assumption that X and X* are connected based CW com-
plexes then from the isomorphism H;(X) ~ H"*(X*) and the other way around,
we get that H'(X*) = H'(X) =0 for i > n. Thus [X*,S"] = [X,S"] = 0 from
Theorem 2.8 so the composite X v X* - X x X* - S" is null-homotopic thus a
map (unique if [SX*,S"]=0=[SX,S"])

wXAX*—>S"

is defined. _ _
Claim: For ¢, € H"(S™), u*(tp,)/: HY(X) » H"4(X™).
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This follows from the commutativity of the following horrible diagramme.
(Represent R™*! as S"*1 \ o as before.)

Hn+1(Sn+1 % Sn+1’Sn+1 x Sn+l N A) - . Hn+1(X % Sn+1,X % (Sn+1 N X))

Hn+1(Rn+1 % Sn+1,Rn+1 x Sn+1 N A) ~

Hn+1(Rn+1 % RnJrl’R'rHl « RnJrl N A) Hn+1(X % Sn+17X « X*)

Hn+1(Rn+1 % Rn+1 N A) Hn(X % X*)
H™(S™)

All unmarked maps are inclusions.

Definition 3.8. If i: A c B then A is an S-(deformation) retract of B if and
only if there exists j € {B, A} such that jo {i} = {id} (and {i} o j = {id}).

Observe that if 8: A - B is an S-deformation retract, then i:SA — SB is
a homotopy equivalence. Thus i,: H.(SA) —» H.(SB) is an isomorphism. But
this is the same as i,: Hy (A) - H,(B). Thus i induces a homology isomorphisim.
Thus, in particular, if A and B are 1-connected CW complexes, i is a homotopy
equivalence.

Definition 3.9. If X, X* are based CW complexes, then X* is a geometric n-
dual of X if X and X* can be embedded in S™*! so that X* is an S-deformation
retract of S"*1 \ X.

X* is an n-dual of X if and only if there is a map u: X A X* — S" such that
W (tn)/: Hy(X) - H"9(X™") is an isomorphism, where ¢,, generates H"(S™).
u is called an n-duality map.

Lemma 3.10. If u: X A X* - S" is an n-duality map then
(SX)AX* > S(X A X*) 2% S(s™) > sn!

X A(SXY) S(X A X*) 2% §(sm) »sn!

interchange
are (n+ 1)-duality maps and

XA X XAX 5 sn

interchange

is an n-duality map.
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Proof. The first comes from the fact that
u*(tn)/: ﬁq(X) - f_jn_q(X*)

u*(1n)/ € Hom(H,(X), H"9(X*))

and the map
H" (X AX*) > HY(X; H" (X)) - Hom(H,(X), H"(X*))

takes u* (1) = u*(in)/.
Then it is clear that the new maps are in fact isomorphisms. The final
statement, follows from the universal coefficient theorem. O

3.2 Duality in Certain Spectra and Map

Let us assume that we have a duality map u: X* A X - S™. Then we also have
duality maps SFu: (S¥X*) A X — S"**. This leads to maps f = Sku: SFX* -
F(X,S™*) the adjoint. By commutativity of

S(SFx*) 2 sp(x, sk

| |

Sk+1X* ? F(X, Sn+k+1)
k+1
we have induced f:SX* - F(X,S). Reindex so that S*X* is the (n+k)th term
of SX*.
Theorem 3.11. f is a weak homotopy equivalence.

Proof. 1t suffices to prove that f induces a homology isomorphism. The idea
behind the proof is represented by the following:

H(E(X,S) »m (E(X,S) A K) 2 m (E(X, K)) = [SX, K]~ H(X) ~ H.(X") =
H.(SX™)

where K = K(Z). We shall prove these isomorphisms in several stages.
Look at the map p: F(X,Y)AZ - F(X,YAZ) given by p(faz)(x) = f(z)Az.

Theorem 3.12. Let X, Y and Z be CW spaces with dimX <k, Y (n-1)-
connected and Z (m — 1)-connected. Then p:F(X,Y)AZ - F(X, Y AZ) is
(2n - 2k + m)-connected.

Proof. Fix X and Y. Then let
hi(Z)=mi(F(X,Y)AZ) ki(Z)=mi(F(X,Y AZ)).

We claim
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e h, and k, are partial homology theories of bidegree (m,2(m+n—-k-1)),
e p:h, — k, is an isomorphism in the appropriate degrees.

First observe that m;(F(X,Y)) = [S,Y] =0for i+k <n-1so F(X,Y) is
(n—k—1)-connected. Then if A c Z are m—1)-connected spaces with the HEP,
F(X,Y)AA->F(X,)Y)AZ -» F(X,Y)AZ[A s a cofibration of (n+m—-k-1)-
connected spaces. Hence there is an exact homotopy sequence (Theorem 1.10)
starting with 7a(,4m-p-1)(F(X,Y) A A) = ho(nim-k-1)(A). The isomorphism
hi(Z) ~ h;i+1(SZ) is evident from the exact sequence.

Next observe that k;(Z) ~ [S'X,YAZ]. Now YAA Y AZ Y AZ|Ais a
cofibration of (n +m - 1)-connected spaces, hence from Theorem 1.23, there is
an exact sequence beginning [S'X,Y A A] = k;(A) for i+k < 2(n+m~-1), hence,
fori<2(n+m-k-1). So h, and k, are partial homology theories of bidegree
(m,2n -2k +m—1). (Actually they can both be extended a bit.)

Now let Z =S, t > m. The following diagram clearly commutes up to sign.

h;S! ki (SY)

m(F(X,Y)ASY) — 2 s m,(F(X,Y AS))

A 1

i (F(X,Y)) 2 [S7X,Y] [S'X,S'Y]
where
isofor (i-t)<2(n-k)-1
epi for (i—-t)<2(n-k)-1
and

. |isofor (i-t+k)<2n-1
is

epi for (i-t+k)<2n-1
Thus p, is an isomorphism for i < 2n - 2k + ¢t and an epimorphism for i =
2n — 2k +t. Thus for ¢ > m, p, is an isomorphism for ¢ < 2n — 2k +m -1 and an
epimorphism for ¢ = 2n — 2k + m — 1. Thus by Theorem 2.24, for any (m - 1)-
connected Z, p.:hi(Z) — k;i(Z) is also, hence p: F(X,Y)A X - F(X,Y A Z) is
(2n - 2k + m)-connected. O

There is a very useful principle which will be demonstrated in Corollary
3.14. Tt is this: if f:Y — Z is n-connected and X is a CW space of dimension
m, then F(X, f):F(X,Y) » F(X,Z) is (n—m) connected. This is immediate
from the observation that the map m;(F(X, f)):m(F(X,Y)) - m(F (X, Z)) is
equivalent to [S°X, f]:[S'X,Y] - [S'X, Z] which is an isomorphism for i +m <
n and epi for i + m = n.



46 CHAPTER 3. SPANIER-WHITEHEAD DUALITY

Corollary 3.13. Let X be (n—1)-connected. Then ¢: X - Q"S" X, the adjoint
of the identity map of S"X, is (2n — 1)-connected, and 0:S"Q"X — X, the
adjoint of the identity map of Q" X, is (2n - r)-connected.

Proof. We have already proved that ¢ is (2n — 1)-connected in Corollary 1.30.
The following diagramme commutes

sarx —2 X
S"F(S", X) o
/|
F(S",8"X) =——=Q'S"X

p is (2n —r)-connected by Theorem 3.12 and ¢ is (2n —1)-connected. Thus 6 is
(2n - r)-connected. O

Corollary 3.14. If X is a CW space of dimension < k then the composite

F(X,S")AK(Z,m) S F(X,8"K(Z,m)) ~
F(X,0)

F(X,S"Q"K(Z,m+n)) F(X,K(Z,m+n))

is min(2n +m -2k, 2m+n—k) connected. In particular F(X,S™)AK(Z,m) -
F(X,K(Z,2m)) is (3m - 2k) connected.

Proof. pis (2n -2k + m)-connected. 6 is [2(n + m) — n]-connected, so F(X,0)
is (2m + n — k)-connected; and the result is immediate. O

But m;(F(X, K(Z,2m)) = [S'X, K(Z,m)] ~ H*™(S'X) ~ H*™~(X). Thus

Corollary 3.15. m;(F(X,S™) A K(Z,m)) ~ H*™(X) for i < 3m — 2k where
dim X <k.

Theorem 3.16. The composite

Tiem(X A K(Z,m)) —L Hip(X AK(Z,m)) 2 Y Hy (X5 Hivn i (K(Z,m)))

Hi(X)

is an isomorphism for 0 < i < m+t -1 where X is a (t - 1)-connected CW
complez.
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Proof. Let h;(X) = mi1m(XAK(Z,m)). Then for any ¢, h, is a partial homology
theory of bidegree (¢t,m+t). Then ¢;:h; > H;(-) is a natural transformation of
partial homology theories of bidegree (¢,m +t). It suffices to show that ¢;(S*)
is an isomorphism for k > tand i <m + k.

By Corollary 3.13 SKK(Z,m) - K(Z,m+k) is (2m+k)-connected. Thus for
0<i<m+k, Tipm(S*K(Z,m)) =0 except for i = k and 7,1 (S*K(Z,m)) = Z.
But the same is true of H;(S¥) and the Hurewicz isomorphism theorem yields
the isomorphism for ¢ = k. O

We proved in Corollary 3.15 that
Tiam (F(X,S™) A K(Z,m)) ~ H"(X), i<2m -2k, dimX <k.

Now we have that 7, (F(X,S™) A K(Z,m)) ~ H;(F(X,S™)) for i <m+m -
k—1. Thus

Theorem 3.17. If dim X <k then for i <2m -2k -1
H;(F(X,S™)) ~ H™(X).
Recall the map u: X* A X — S™ which we have assumed induces
u* (in) [ Hi(X ™) = H™ (X)),
It defines u: X* - F(X,S™) by @(a*)(z) = u(z* A x).
Lemma 3.18. The diagramme
H™ ' (X) — Hi(F(X.S™))
1~
Hi(x")
commutes.
Proof. Recall the evaluation map eval: F(X,S™) A X — S™. The diagramme
X*AX —% 8™
'UT/\idL %
F(X,S™) A X

obviously commutes: eval(@aid)(z*Azx) = eval(u(z*)Az) = (z*)(z) = u(z* Azx).
Thus by naturality of the Kiinneth formula

H((X)eH"(X) —2 s> H (X*AX) —2 > H,(S") =7

U@idl /
evaly

H;(F(X,S™)® H,,_(X) — H,,(F(X,S™) A X)
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commutes.
The map u.« is the same as the composite

H(X")® Hypei(X) —————= H" (X)) ® (X)

p®idl

Hom(H,,i(X),2) ® Hp_i(X) —>7Z

Thus in order to show that @ is an isomorphism for ¢ sufficiently small compared
to m, it will suffice to show that the following diagramme commutes up to sign:

H™(X) ® Hypi(X) - Hi(F(X,S™)) ® Hp-i(X)
p®idl 6(x) lcval*[}
P(X)
Hom(H,,_i(X),Z) ® Hp,_i(X) Z

ie. that 0(X) = +p(X).
First define the adjoint maps

0(X), §(X): H"™(X) ~ Hom(H,i(X), Z).
By the adjointness it follows that $(X) is simply the projection
p H™ (X)) - Hom(H,,_;(X),Z).

Thus we have 6: H™*(X) - Hom H,,_;(X),Z) defined and natural in X and
we wish to show that it is +p.

We can use the fact that H™%(-) = [-, K(Z,m —i)]. But then § is de-
termined by some element of Horg(ﬁm_i(K(Z,m -1i)),Z) = Z. § is obviously
determined by a generator. Thus § = AZ for some integer \. But 6(S°) is clearly
an isomorphism so A = £1 and the lemma is proved. O

Then applying Theorem 2.13 we get

Theorem 3.11 f:SX* - F(X,S) is a weak homotopy equivalence. O

(End of Proof of Theorem 3.11)
Observe that for A and B finite CW complexes

{AAB,C} = [SNAAB,SVC] =[SV A, F(B,SNC)]

for N sufficiently large. Thus letting N — oo we get {AAB,C} ~ {A, F(B,S8C)}.
Let X and Y be finite CW complexes embedded in S™*! and X* and Y* be
their m-duals.

Thus, given duality maps u: X* A X - S™ and v:Y* AY - S™ we get an
isomorphism D(u,v):{X,Y} ~ {Y* X*} where f:S"X - S"Y corresponds to
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g:S'Y* - StX* if and only if the following diagramme is stably commutative
(i-e. some suspension of it commutes):

SY*ASTX L StxtASTX

id/\fl ltur

Sty* A STY Sm+t+r

tvr

where ‘u" and 'v" are the appropriate suspensions of u and v.

Thus duality is almost an isomorphism of the stable category with itself.
Unfortunately it isn’t quite because of the choices involved. For most prac-
tical purposes, however, we can regard it as a functor assigning to spaces
X embeddable in S”, the space D, X in such a way that D,D,X = X and
{X7 Y} = {DnY7 DnX}

Recall that if X A D,,X - S™ is a duality map then so are (S"X)A D, X —
S™*™ and X A 8™D,X — S"™. Thus Dym(S™X) = D, X and D,y X =
S"D,X.

We can make the category C of finite CW complexes and S-maps a graded
category by defining

{X, Y}, ={S"X,Y} =[SX,S5Y ],
Then
{X,) Y}, ={S"X, Y} 2 {DpsnY, Dpsn X} ={S"Dp,Y, D, X} = {D,,Y, Dy X } ..

Thus D,, preserves grading,
Observe that if X — Y — Cy is cofibration then we get long exact sequences

(W, X}, = W, Y} = {W,C}p = {W, X}
{X, W}n < {Ya W}n < {Cfv W}n <~ {Xa W}n+1

Also if X -Y — (' is cofibration, then
D, Cy - DY - D, X

acts like one in terms of the long exact sequences.
This leads to being able to consider certain problems by only looking at dual
problems.

Ezample 3.19. Freyd conjectures (Freyd [2]) the following: If X and Y are
finite CW complexes and f € {X,Y} is such that f.:7¥(X) — 75(Y) is zero
then f =0. (t73(-) = H.(~:S).

A dual conjecture replaces f, by f*:{Y,S%}, - {X,S°},.

They are equivalent: Assume the former conjecture true. Pick f e {X,Y}
with f*:{Y,S°} - {X,S°} zero; then for N large we have Dy f € {D, Y, Dy X}
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with (Dyf)«:{SY,Y} - {SV, X} zero hence Dxf = 0 hence f = 0. Similarly
the second conjecture implies the first.

We now consider the following category .: the objects are pairs (X,n)
where X is a finite CW space and a given embedding of it into some sphere (and
hence all higher spheres) and n is an integer and we set (X,n) = (SX,n-1).
The morphisms are .7 ((X,n), (Y,m)) = {S""X,S8™™Y } where r+n, r+m > 0.
Observe that we can use the fact that

1. This is independent of r.
2. This is unaffected by replacement of (X,n) by (SX,n-1).

Roughly, the objects of . are finite CW complexes and their formal de-
suspensions. We write (X,n) = 8" X for any integer n and this makes sense in
. We can always de-suspend objects in .. Call an object of .% “real” if it is
equal to some (X,0).

- has an advantage when it comes to Spanier-Whitehead duality: we can
talk about the dual as follows:

Given a real object X choose n sufficiently large that D, X exists. Then as
usual D, 1 X =8D, X so if we define DX =S D, X we get a unique object of
. (in general, it is not real), independent of n. For any object of . we extend
by setting DS" X = S™"DX. This also is unique up to homotopy type since

SD,SX ~D, X

whenever D, X is defined. Observe also that the maps evaly: X A D, X — S”
will yield in . a natural map evaly: X A DX - — S° by taking de-suspension.

Theorem 3.20. D acts like a contravariant functor which is an anti-automorphism
and involution on . ILe.,

1) D*°X ~ X.
2) S(X,Y)~.7(DX,SY).

We observe that DS™ ~ S~ for all n. Also observe that since D, X AD,,Y =
Dy (X AY) for spaces we get DX ADY =D(X AY) in ..

Theorem 3.21. Y (X AY,Z) is naturally equivalent to . (X, DY A X). Thus
—AY and DY A - are adjoint functors.

Proof. First observe that it will suffice to prove this for real objects Y since if
Y =8"Y’ then

S (XNY,Z) =S (S XY, Z) =S (XY S"Z)
S (X, DY NZ) = (X,DS'Y'NZ) =7 (X,(S"DY')AZ) =S (X,DY' NS Z).

Fixing X and Z define k"(Y) = (X, DY A Z) and k™(Y) = (X A
Y, Z). Observe that k* and k™ are cohomology theories. Define a: k* — k™" as
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the composite

S (X, DY AZ) —2E7 (Y AX,Y ADY A Z)

Q(Y)l l&"n(Y/\X,evaly NZ)

FAXAY, Z) <~ 7 (Y AXAY,SOA Z)

where T: X AY — Y A X is the twist and S A Z is identified with Z. It suffices
to show that o(S?) is an isomorphism, but this is trivial since each of the three
maps is then an isomorphism. O

_ Observe that reduced homology and cohomology can be geﬁr}gd on by setting
Hi(8"X) = H*(X), H*(S") = K*"(X) and we have for H = H(-,7Z)

H—k(DX) = H—k(S_nDnX) = ﬁn—k(DnX) = ﬁk(X)

for X real and hence by suspension for all X.
Observe that Theorem 3.21 makes sense and holds for any space Z. Setting
X =8§" yields .7, (Y, Z) = #(S"Y, Z) ~ #(S",DY A Z) =75 (DY A Z).
Next observe that if A is a convergent spectrum then
Hy(W; A) = lim g (W A A,) = lim i, (W A A).

i
—
T

Thus

Hy(DY; A) =limny, (DY A A,) = lim .7 (8*7Y, A,)
= im[S"7Y, 4,] = im[8"Y, 4, ] = H*(Y; A).

T T

Thus duality holds for homology with coefficients in a convergent spectrum.
Also if k* is any (reduced) cohomology theory, we get a dual homology theory
by defining k,(X) = k™" (DX).

Finally let us observe that if we take the category of spectra, take the full
subcategory .7’ of all (SX)¢ where X is a finite CW space then .#’ ~ .¥
(8" X €. corresponds to (SX)").

Incidentally we may ask about homology and cohomology theories defined
in . in general and ask if they come from spectra.

Theorem 3.22. If 7 is a generalised homology theory defined on . and
H,(S%) is countable for all n, then there exists a spectrum A such that H =
H. (= 4).

This theorem is due to E. H. Brown, Jr. (cf. Brown) and we shall not prove
it.



