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Foreword

Preface by the original authours (with some mod-
ification by the transcriber)

This book is the result of reworking part of a rather lengthy course of lectures of
which we delivered several versions at the Leningrad and Moscow Universities.
In these lectures we presented an introduction to the fundamental topics of
topology: homology theory, homotopy theory, theory of bundles, and topology
of manifolds. The structure of the course was well determined by the guiding
term elementary topology, whose main significance resides in the fact that it
made us use a rather simple apparatus. In this book we have retained those
sections of the course where algebra plays a subordinate role. We plan to publish
the more algebraic part of the lectures as a separate book.

Reprocessing the lectures to produce the book resulted in the profits and
losses inherent in such a situation: the rigour has increased to the detriment
of the intuitiveness, the geometric descriptions have been replaced by formulae
needing interpretations, etc. Nevertheless, it seems to us that the book retains
the main qualities of our lectures: their elementary, systematic, and pedagog-
ical features. The preparation of the reader is assumed to be limited to the
usual knowledge of set theory, algebra, and calculus which mathematics stu-
dents should master after the first year and a half of studies. The exposition is
accompanied by examples and exercises. We hope that the book can be used as
a topology textbook.

The most essential difference between the book and the corresponding part
of our lectures is the arrangement of the material: here we have followed a much
more orderly succession of topics. However, from our experience, a lecture course
in elementary topology which exaggerates in the last respect is rather tedious
and less efficient than one which mixes geometry with algebra and applications.
This remark may serve as a warning to the teacher who would like to use our
book as a guide. In fact, it is by no means necessary to read the book in its
order; a reader who is interested in getting to the homotopy groups or to any
other topic sooner, can easily do so.

Concerning the terminology and notation, we have tried to stick to standard
usage, and have permitted ourselves only a few reforms. For example, we do not
use the terms “simplicial complexes” or “CW-complexes”, but simplicial spaces
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and cellular spaces; not “cofibrations”, but Borsuk pairs; not “fibre bundles” (or
“fibred products”), but Steenrod bundles. There is even one term which we do
not use in the generally accepted way: for us, a connected space refers to what
usually is called a linearly connected (or path-connected) space (we do not have
a special name for the spaces which are usually called connected). Furthermore,
we have avoided using non-standardised notations for standard objects. In fact,
in the majority of cases, our notation is just an abbreviation of the corresponding
term and can be understood by itself: for example, proj stands for projection,
incl - for inclusion, dim - for dimension, skel - for skeleton, bs - for base, etc.

Topology requires a very precise set-theoretic language, and this compelled
us to devote a special attention to this language; this is illustrated in Set-
Theoretical Terms and Notations Used in this Book, but not Generally Adopted
below. We emphasise that on these pages we only list the terms and notations,
assuming that the objects themselves are known.

In this book we rarely refer to the history of topology. We have even de-
parted from the tradition that some theorems bear the names of their real or
imaginary authors. In return, we willingly have used names of topologists in
the terminology and notations.

The organisation of the text and the system of references may be briefly
described as follows. Each Chapter is divided into Sections, each Section -
into Subsections, each Subsection - into Numbers. The chapters, sections and
subsections have numbers and titles, while the numbers are denoted by either
(Remark, Definition, Theorem, Lemma or Corollary preceding) their numbers.
Each fact announced without proof is called Information, and is distinguished
from the rest of the text by this title. To refer to a section, subsection, or number
within the same chapter, we do not indicate the number of the chapter, and
references within a section or subsection are similarly abbreviated. Examples:
the entries §1.2 (Section 2 of Chapter 1), Subsection 1.2.3 (Subsection 3 of
Section 2 of Chapter 1), and (Remark, say) 1.2.3.4 (No. 4 of Subsection 3 of
Section 2 of Chapter 1) are abbreviated, within Chapter 1, as §2 , Subsection
2.3, and 2.3.4, respectively; the second of these entries is abbreviated within
§1.2 as Subsection 3; the third entry is abbreviated within §1.2 and Subsection
1.2.3 as 3.4 and 4, respectively.

The Authours

Review in MathScinet by J.F. Adams

The Russian original has been reviewed [“Nauka”, Moscow, 1977; MR0645388].
Chapter 1 is a very good summary of “general topology” for the non-specialist
user. Chapters 2, 3 and 4 give comprehensive groundwork in (respectively) CW-
complexes and simplicial complexes, smooth manifolds, and fibrations. Chapter
5 gives some homotopy theory, for the non-specialist user. All this is done
without any homology theory, because the authors “plan to publish the more
algebraic part of the lectures as a separate book”. For example, the notion of
“degree” is obtained from the work on differential topology. The English transla-
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tion is thus a useful addition to the available textbooks; probably, as the review
of the original edition suggests, it is most suited to readers “oriented towards
the advanced theory of differentiable manifolds”.

Remark by the transcriber

This textbook is, as far as the transcriber knows, the only “introductory homo-
topy theory” covering smooth manifolds and bundle theory in the homotopy-
theoretic context. Their treatment avoids functorial treatments, which may
be suitable for the beginning level. It is quite regrettable that this wonderful
textbook is less known than the (now classic) Hu and (more modern) Arkovitz.

The transcriber is sure that upon completing this textbook, the reader will
be ready to study axiomatic or categorical homotopy theory.
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Chapter 0

Set-Theoretical Terms and
Notations Used in this Book,
but not Generally Adopted

Mathematicians manage with a surprisingly modest collection of set-theoretic
terms and notations, which can be roughly divided into three groups.

e The first contains terms and notations which have attained general recog-
nition.

e The terms and notations in the second group are equally well-known, but
can be understood differently or have varying connotations.

e The third group consists of terms and notations used less frequently.

There is no need to define terms from the first group. For example, the
notations X UY, X NY, and X; x --- x X,, for the union, intersection, and
product of sets, or the notations f: X — Y, im f and f|4: A — Y for a map,
its image, and its restriction are understood in the same way by all people. The
same is true for the notation z € X and the terms one-to-one map (injective
map) and map onto (surjective map).

For the sake of precision, we must say a few words about our usage of terms
and notations from the second group. We denote the empty set by @. We
understand the notation X C Y in the broadest sense, i.e., the equality X =Y
is not excluded. The same is true for the term countable set: we use it both for
infinite countable and finite sets. The identity map of the set X is denoted by
idx, or, when there is no ambiguity about X, simply by id. We shall say that
a map is invertible if it has an inverse, i.e., it is simultaneously injective and
surjective. We let {x € X|...} denote the set of points z of the set X which
satisfy the condition appearing instead of the three dots. A family {X,,},cnr is
a map a set M onto a set of objects X, with u € M, defined by the formula
= Xy
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Next our main task is to list the terms and notations appearing in this book
and belonging to the third group.

0.1 Maps

If A is a subset of a set X, then the inclusion of A in X may be considered as
the map defined by the formula x — z. We denote it by incl: A — X. If there
is no ambiguity about A and X, we simply write incl.

If Ais a subset of X and B is a subset of Y, then each map f: X — Y
such that f(A) C B induces a map abr f: A — B,  — f(z), and called here
the abridgement (or compression) of the map f to A,B. When there is no
ambiguity about A and B, one can write abr f instead of abr f: A — B. If
B =Y, then abr f is just the usual restriction of f to A.

By a map of a sequence (X, A;,...,A,) into a sequence (Y, By,...,By,),
where (By,...,B,) are subsets of X (respectively, Y), we mean a sequence of
maps

(p: X =Y, 01: Ay > By,...,0n: Ay — By)

such that ; = abr . We denote such a map by
(9079017-'-790n): (X7A17"'7An) — (KBlvaBn)

If the subsets Aq,..., A, and By,..., B, are fixed, then the map

f:((P79017~-~790n>

and its first component ¢ are uniquely determined by each other and usually
we do not distinguish between them. For example, the notation

f: (X7A1,...7An) — (}/,Bh,Bn)
may be also used to say that f is a map of X into Y such that
f(Ay) C By,..., f(A,) C B,.

When we wish to emphasise explicitly this relationship between f and ¢, we
shall write:

f=rely, @ =abrsf.

Sometimes we simply write rel instead of relid.

0.2 Quotients

We denote the quotient (or factor) set of a set X by a partition p of X by X/p.
The map X — X/p which takes each point into the element of p containing
it is called projection and is denoted by proj. A subset of X which is a union
of elements of the partition is said to be saturated. The smallest saturated set
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containing a given subset A of X (i.e., proj ' (proj(A))) is called the saturation
of A.

If p and q are partitions of X and Y, respectively, then each map f: X — Y
which transforms elements of p into elements of g induces a map X/p — Y/q,
which takes each element A of p into the element of ¢ which contains f(A). This
map is denoted by fact f. In particular, fact f is defined when g is the partition
of Y into its points, and f is constant on the elements of p. Thus, for each
map f: X — Y constant on the elements of the partition p of X we have the
corresponding map fact f: X/p — Y.

Given a map f: X — Y, the partition of X into the non-empty pre-images
of the points of Y is denoted by zer(f). The corresponding map

fact f: X/ zer(f) =Y

is injective and is called the injective factor (or injective quotient) of the map

f.

0.3 Sums

The sum of the family of sets {x,},.cn is the union of disjoint copies of the
sets X,,, i.e., the set of pairs (z,p) such that z,, € X,. Notation: HueM X
The map of X, (v € M) into [],c s X, defined by the formula z — (z,v), is
denoted by incl,,.

We note that the maps incl, are injective and their images incl, (X,) are pair-
wise disjoint and cover [, ,, X, Therefore, for any family {Y, },cn indexed by
the same set M, and each family of maps {f,,: X,, — Y, },.ca, there is a unique
map f: ]_LleM X, — H/LEM Y,, which satisfies the relations foincl, = incl, of.
f is called the sum of the maps f and is denoted by HmnM fu-

If M consists of the numbers 1,...,n, we use, along with Hu X, and [] fu,
the notations X1 [[---[] X, and fi][]---1] fn-

0.4 Products

The product X; X - -+ x X,, is mapped naturally onto its factor X; following the
rule (z1,...,2,) — x;. This mas is called the i-th projection and is denoted by
proj;.

Given maps f1: X1 = Y1,..., fu: X, — Y, the rule

(x1,...xn) = (fi(z1), ... fulzn))

defines a map of the product Xy x - -- x X,, into the product Y7 x --- xY,,, called
the product of the maps f1,..., f, and denoted by f; X -+ X f,.

If p is a partition of the set X and g is a partition of the set Y, we let p X g
denote the partition of the product X x Y into the sets A x B, where A is an
element of p and B is an element of g.
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There is a natural map of X into X x X given by = — (x,z). This is the
diagonal map and is denoted by diag or A. Its image

A(X)=diag(X x X) c X x X

is called the diagonal of X x X.



Chapter 1

TOPOLOGICAL SPACES

1.1 FUNDAMENTAL CONCEPTS

1.1.1 Topologies

Definition 1.1.1.1. We say that a topological structure or, simply, a topology,
is defined on a set X if there is given a class of subsets of X which contains

(i) the union of any collection in the class, and
(ii) the intersection of any finite collection in the class.

A set endowed with a topological structure is called a topological space, its
elements - points, and the sets of the given class - open sets.

A collection of sets for which we take the union or the intersection may be
empty. The union of the empty collection is &, while the intersection of the
empty collection of subsets of X is the entire set X. Hence @ and X are open
sets (in any topology).

Two examples of topological structures are:

(a) the trivial topology, whose only open sets are & and X, and
(b) the discrete topology, in which all the subsets of X are open.

If X has more than one element, it is possible to define other topologies on
X. For example, if X consists of two elements, a and b, then it will admit two
topologies aside from the trivial and discrete ones. In one, the open sets are
&, a, and X, while in the second the open sets are &, b, and X. More serious
examples will appear in the sequel.

Definition 1.1.1.2. A subset of a topological space is closed if its complement
is open. The class of closed sets contains the intersection of any collection of
sets from the class, and it contains the union of any finite collection of sets from
the class. Moreover, given any class of subsets of a set X with these properties,
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there exists a unique topology on X such that the given class is the class of all
closed sets.

Definition 1.1.1.3. A neighbourhood of a point of a topological space is any
open set containing the given point. A neighbourhood of a subset of a topological
space is any open set containing the given subset.

Derived Concepts

Definition 1.1.1.4. If we consider the open sets contained in a given subset A
of a topological space X, there is one which is the largest, namely the union of
all such sets. It is called the interior part or, simply, the interior of the set A.
We denote it by int A or Intx A. Similarly, among the closed sets containing A,
there is one which is the smallest, namely the intersection of all such sets. It is
called the closure of the set A and is denoted by Cl A or Clx A. The difference
Cl A\ int A can be represented as the intersection of the closed sets Cl1 A and
X \int A, and is therefore closed. This set is called the boundary or frontier of
the set A and is denoted by Fr A or Frx A. We remark that X \int A = C1(X\ 4)
and that A and X \ A have the same boundary.

Definition 1.1.1.5. Relative to the set A, the points of the sets int A, Cl A,
FrA, and X \ ClA = int(X \ A) are called interior, adherent boundary (or
frontier) and exterior points, respectively. They can be characterised more
explicitly in terms of neighbourhoods. A point is:

(i) an interior point if it has a neighbourhood entirely contained in A;
(ii) an adherent point if each of its neighbourhoods intersects A;

(iii) a boundary point if each of its neighbourhoods intersects both A and X'\ 4;
and

(iv) an exterior point if it has a neighbourhood which does not intersect A.

Clearly, a set is open (closed) if and only if it coincides with its interior
(respectively, closure), i.e., if it consists only of interior points (respectively, if
it contains all its boundary points).

Definition 1.1.1.6. A subset A of a topological space X is said to be dense in
X (or everywhere dense) if CLA = X, i.e., if A intersects any non-empty open
set in X. A set A is nowhere dense if X \ Cl A is everywhere dense.

Bases and Prebases

Definition 1.1.1.7. A base of a topological space is a collection of open sets
such that any open set can be represented as a union of sets from this collection.
Equivalently, a collection I" of open sets is a base if for any open set U and any
point © € U thereis V € I' such that x € V C U.

A base completely determines the topology: the open sets are exactly those
which can be expressed as union of elements of the base.
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The following Proposition provides us with a standard method of introducing
a topology on a set.

Proposition 1.1.1.8. Let I' be a collection of subsets of a set X. Then there
ezists a topology on X with base I' if and only if the intersection of every finite
sub-collection of sets from I" can be expressed as a union of sets from I.

The intersection of a finite collection of sets belonging to a base is open;
hence the necessity of the condition. Sufficiency follows from the fact that the
class of subsets of X which are representable as unions of sets from I' satisfies
the conditions of Definition 1.1.1.1. The previous Theorem can be reformulated
in the following useful way.

Theorem 1.1.1.9. There is a topology on X with base I if and only if the sets
of I' cover X, and for any U,V € " and any point x € UNV, there exists W € T’
such thatx e W CUNV.

Definition 1.1.1.10. A collection of subsets of a topological space is said to
be a prebase of the space if the intersections of finite sub-collections of sets from
the given collection form a base.

Proposition 1.1.1.8 shows that any collection T’ of subsets of a set X is the
prebase of a unique topology on X.

Definition 1.1.1.11. A base at the point x of a topological space X is a col-
lection of neighbourhoods of z such that any neighbourhood of z contains a
neighbourhood from this collection. A prebase at the point x is a collection of
sets such that the intersections of finite sub-collections form a base at .

Covers

Definition 1.1.1.12. As a rule, the covers we shall encounter will be either
covers of a topological space by some of its subsets, or covers of a subset of a
topological space by other subsets of this space. If we need to emphasise that
a certain cover of a subset A of a topological space X consists of subsets of X
which are not necessarily included in A, we shall refer to it as a cover of the set
Ain X.

A cover T is a refinement of a cover A if any element of I is contained in an
element of A.

A cover is locally finite if any point of the space has a neighbourhood which
intersects only a finite number of elements of the cover.

A cover is open (closed) if all its elements are open (respectively, closed)
sets.

Remark 1.1.1.13. Every open cover of a topological space X has a refinement
whose sets belong to a given base of X.

For example, the sets of the base contained in the sets of the given cover
yield such a refinement.
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1.1.2 Metrics

Definition 1.1.2.1. A non-negative real function p defined on the square X x X
of the set X is a metric on X if it satisfies three conditions:

(i) p(z,y) =0if and only if z = y;
(i) p(z,y) = p(y, ) for all z,y € X;
(iii) p(x,z) < p(z,y) + p(y, z) for any z,y,z € X.

A metric space is a set equipped with a metric. We use the symbol dist as the
standard notation for metrics.

The values taken by a metric are called distances, and the inequality they
satisfy according to the definition is the triangle inequality.

Ezample 1.1.2.2. The standard n-dimensional Euclidean space R™ (n > 0) is
the fundamental example of metric space. R™ is the set of all sequences {x;}7
of real numbers, where the distance between two sequences {x;}7 and {y;}} is
defined as [Y°7 (z; — y:)?]'/2. The line R! is usually identified with the field of
real numbers, denoted by R.

We obtain the definition of the standard Hilbert space ¢, by replacing the
n-term sequences {x;}7 with infinite sequences {x;}5° satisfying the condition

7 2? < oo and writing Y"7° instead of >} in the distance formula.

Definition 1.1.2.3. The ball with centre o € X and radius v > 0 in the
metric space X is the set of points x € X such that dist(zg,z) < r. If we
write < (respectively =) instead of <, we obtain the definition of the open ball
(respectively, of the sphere). The unit ball and the unit sphere of R™, i.e., the
ball and sphere with centre (0,...,0) and radius 1, are simply called the n-
dimensional ball D" and the (n — 1)-dimensional sphere S*~'. In particular, D°
is just a point, SY - a pair of points, and S™! = @. Moreover, we set D" = &
forn < —1 and S"™ = @ for n < —2.

Definition 1.1.2.4. By definition, the distance between two sets, A and B, is
the number inf,c 4 yep dist(z, y), and we denote it by Dist(A4, B). In particular,
if @ is a point, Dist(a, B) = inf,¢ g dist(a, y).

The diameter of the set A is the number sup, ,c 4 dist(z,y), denoted by
diam A. A set is bounded if its diameter is finite.

The Metric Topology

Definition 1.1.2.5. As a consequence of the triangle inequality, if the open
ball with centre at xy and radius r contains a point x1, then it also contains
the open ball with centre at x; and radius r — dist(xg,x1). Therefore, in any
metric space, the intersection of two open balls contains, together with each
point, some open ball centred at that point. Moreover, since the open balls
cover the space, they constitute the base of a certain topology (see Proposition
1.1.1.9). In this way, every metric space becomes a topological one.
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The resulting topology is called the metric topology. From now on we shall
tacitly regard the metric spaces as topological spaces, having in mind the metric
topology. In particular, this refers to R™ and /5.

A topological space whose topology is the metric topology relative to some
metric is said to be metrisable.

Remark 1.1.2.6. Clearly, the open balls centred at a given point of a metric
space constitute a base at that point. The part of this base consisting of the
balls of radii 1/n (n =1,2,...) is also a base.

Definition 1.1.2.7. If A is a subset of a metric space X, its metric neighbour-
hood of radius r > 0 is, by definition, the set of all points x € X such that
Dist(A,x) < r. Since this set is the union of all open balls of radius r centred
at the points of A, it is open, i.e., a genuine neighbourhood of A.

1.1.3 Subspaces

Definition 1.1.3.1. We shall now discuss the relative topology, which trans-
forms any subset A of a topological space X into an independent topological
space. This topology is defined by taking its open sets to be those of the form
AN B, where B is an open subset of X. It is evident that all the conditions of
Definition 1.1.1.1 are satisfied. Moreover, the closed subsets of A in this topol-
ogy are exactly the intersections A N B where B is a closed subset of X. The
subsets of the space X, equipped with the relative topology, are called subspaces
of X.

If X is a topological space and A is a subspace of X, the pair (X, A) is
called a topological pair. A topological triple is a triple (X, A, B) consisting of a
topological space X and two subspaces A, B of X, such that B C A.

Remark 1.1.3.2. Let A be a subspace of X. It is clear that any subset of A
which is open or closed in X has the same property in A. If A is open, then
every set open in A is also open in X. If A is closed, then any set closed in A
is also closed in X. In any case, if B C A C X, then Cl4 B = (Clx B) N A.

Obviously, if T' is a base (pre-base) of the space X, then the sets AN B with
B €T yield a base (respectively, pre-base) of the space A.

As a direct consequence of its definition, the relative topology is transitive:
if B is a subset of the subspace A of X, the topologies induced on B by the
inclusions B C A and B C X coincide.

Remark 1.1.3.3. If X is a metric space and A is a subset of X, then the restric-
tion of the function dist to A x A is clearly a metric on A. Consequently, any
subset of a metric space is itself a metric space. In addition, it is obvious that
the metric topology of the latter coincides with the relative topology induced
on A by the metric topology of the ambient space X.

Example 1.1.3.4. The previous constructions greatly increase the supply of non
trivial examples of topological spaces: we can now include all the subsets of
R™ and /¢5. In particular, the balls and spheres of R™ are topological spaces.
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Here we shall add only the cubes of R™, defined by inequalities of the form
a; <z <a;+a (i =1,...,n), with real numbers ay,...,an,a, and a > 0. If
a; = -+ = a, = 0 and a = 1, the cube is called the unit cube I™. The unit
segment I is also denoted by I.

Fundamental Covers

Definition 1.1.3.5. A cover I of a topological space X is fundamental if each
subset A of X such that AN B is open in B for all B € T is itself open.
Equivalently, I" is fundamental if each subset A of X such that AN B is closed
in B for all B € I is itself closed.

Obviously, a cover which admits a fundamental refinement is itself funda-
mental.

Theorem 1.1.3.6. All open covers, and all finite or locally finite closed covers
are fundamental.

Proof. Clearly, the claim is true for both open and finite closed covers. Now
suppose that T' is a locally finite closed cover of a space X. Consider a cover A
of X consisting of open sets which intersect only a finite number of elements of
I'. Since A is fundamental, it is enough to check that, given any set U € A, the
cover of U with elements U N B, B € I', is fundamental. But this results from
the fact that the latter cover is finite and closed. O

Definition 1.1.3.7. A triple (X, A, B), where X is a topological space and A
and B are subsets of X which constitute a fundamental cover of X, is termed a
triad. If int AUint B = X, or if AUB = X with A and B closed, then (X, A, B)
is a triad.

1.1.4 Continuous Maps

Definition 1.1.4.1. A map f of a topological space X into a topological space
Y is continuous if the preimage of each open subset of Y is open in X. Equiv-
alently, f is continuous if the pre-image of each closed set is closed.
A map
f:(X,Ay,...,A,) = (Y, By,...,By),

where Aq,...,A, and By,...,B, are subsets of the spaces X and Y, respec-
tively, is said to be continuous, if the map abrs f: X — Y is continuous.

A useful comment: in order for a map X — Y to be continuous, it is enough
that the pre-images of the sets comprising some pre-base of Y be open.

Remark 1.1.42. If f: X — Y and ¢g: Y — Z are continuous, then the com-
position g o f: X — Z is obviously continuous. Trivially, the identity map
idx : X — X is continuous for any topological space X.

According to the definition of the relative topology, if f: X — Y is continu-
ousand A C X, B C Y are subsets with f(A) C B, then the map abr f: A — B
is also continuous. In particular, the restriction f|4: A — Y of a continuous
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map f: X — Y to an arbitrary subset A of X is continuous. For example, the
inclusion of a subspace into its ambient space is always continuous.

If a compression abr f of the map f: X — Y is defined on the entire space X,
then its continuity is equivalent to the continuity of f. In particular, f: X — Y
is continuous if and only if the map f: X — f(X) is continuous.

It is clear that if v is a fundamental cover of X, then a map f: X — Y is
continuous whenever all the restrictions A € T', are continuous. An equivalent
formulation:

Theorem 1.1.4.3. let " be a fundamental cover of the topological space X, and
assume that for each A € T there is a continuous map f: A — Y, such that
falz) = fp(x) for allx € ANB (A, B € T'); then the map f: X — Y defined
by

f(z) = fa(z) for z€ A (AeTl)

18 continuous.

Definition 1.1.4.4. A continuous map is open if the images of the open sets
are open, and closed if the images of the closed sets are closed.

Obviously, a composition of open maps is open, and a composition of closed
maps is closed.

Here we note one useful sufficient condition for a map to be open:

Theorem 1.1.4.5. f: X — Y is certainly open if for each x € X there is
a neighbourhood U, of f(x) and a continuous map g,: U, — X such that the
composition f o g coincides with incl: U, — Y.

Proof. If this is the case, then f(A) = U,ecg, '(A) for any subset A of X. [

Continuity at a Point

Definition 1.1.4.6. A map f: X — Y is continuous at the point x € X if for
any neighbourhood V' of the point f(x) there is a neighbourhood U of x such
that f(U C V.

One can reformulate this definition using fewer open sets. In fact, let us
assume that, along with the map f: X — Y, we are given an arbitrary prebase
at the point z € X, A, and an arbitrary pre-base at the point f(z) € Y, E.
Then one readily sees that f is continuous at x if and only if each neighbourhood
V € F contains the image of some neighbourhood U € A.

When X and Y are metric spaces, and A and E consists of open balls centred
at the points x and f(x), respectively, the last statement reduces to the usual
numerical formulation given in calculus: the map f: X — Y is continuous at
the point € X if for each € > 0 there is § > 0 such that distx(z,2’) < ¢
implies disty (f(z), f(2")) <e.

Theorem 1.1.4.7. A map f: X — Y is continuous if and only if it is contin-
uwous at each point of X.
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Proof. If f is continuous and V is a neighbourhood of the point f(z), then
f~1(V) is a neighbourhood of the point z, and f(f~1(V)) C V.

If f is continuous at each point and V' is open in Y, then each point of the
set f~1(V) is an interior point, since it has a neighbourhood whose image lies
inV. U

Homeomorphisms and Embeddings

Remark 1.1.4.8. If f: X — Y is an invertible continuous map, the inverse map
f~1:Y — X is not necessarily continuous. For example, consider the identity
map of a set with the discrete topology onto the same set, but equipped with a
different topology; its inverse is not continuous.

An invertible map f such that both f and f~! are continuous is a home-
omorphism. If there is a homeomorphism X — Y, the space Y is said to be
homeomorphic to the space X.

The following maps are obviously homeomorphisms: the identity transfor-
mation of a space, the map inverse to a homeomorphism, and the composition
of two homeomorphisms. Thus, the homeomorphism of spaces is an equivalence
relation.

Ezample 1.1.4.9. The open ball int D" is homeomorphic to R™. The standard
homeomorphism R"™ — int D™ is given by the formula

= 2z arctan(dist(0, x)) /7 dist (0, z), if x#0,
x
0, if z=0.

Ezample 1.1.4.10. The cube I™ is homeomorphic to D"; its interior int I" is
homeomorphic to intD”, and its boundary FrI™ is homeomorphic to FrD"”,
i.e., to S*!. The standard homeomorphisms D® — I™, int D" — int I™, and
FrD™ — FrI™ are realised by translation with the vector

(orty +-- -+ ort,)/2,

followed by central projection
(here orty,...,ort, denote the vectors (1,0,...,0),...,(0,...,0,1).

Ezample 1.1.4.11. The punctured sphere S” (i.e., C" with one point removed)
is homeomorphic to R”. A homeomorphism R™ — S™ \ ort; is given by the
composition of the homeomorphism {z1,...,2,)} — {(0,21,...,2,)} of R"
onto a subspace of R"*! with the stereographic projection, i.e., the central
projection of this subspace onto S™ \ ort; from the point ort;.

Definition 1.1.4.12. A map f: X — Y is an embedding or, more specifically,
a topological embedding, if abr f: X — f(X) is a homeomorphism. For example,
the inclusion of a subspace in its ambient space is an embedding.
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Retractions

Definition 1.1.4.13. A retraction is a continuous map of a space X onto a
subspace A which is the identity map on A. A subset onto which a space can
be retracted is a retract of the space.

Each point of a topological space is a retract of this space. However, a pair
of points is already not necessarily a retract. For example, a segment cannot be
retracted onto its boundary since any such retraction would be a real continuous
function taking two values but no intermediate ones.

Theorem 1.1.4.14. A subspace A of a topological space X is a retract of X if
and only if every continuous map A — Y can be extended to a continuous map
X =Y, for any topological space Y.

Proof. If p: X — A is a retraction and f: A — Y is continuous, then the
composition f o p extends f to X.

X.

J/ “ fop
P ko
A

£\
- .V
f

If every continuous map A — Y extends to a continuous map X — Y, then
extending the identity map A — A to a continuous map X — A yields a

retraction.
ida

A—>
Ci /

dr
X

A

Numerical Functions

Remark 1.1.4.15. The well-known theorem of calculus asserting that the arith-
metic operations performed upon continuous functions again produce continuous
functions is obviously true for the numerical functions defined on an arbitrary
topological space. Similarly, the theorem asserting the continuity of the limit
of a uniformly convergent sequence of continuous functions holds for numerical
function on a topological space.

Theorem 1.1.4.16. If X is a metric space and A is a subset of X, then the
function X — R, x +— Dist(x, A), is continuous.

Proof. Let x,y € X and z € A. Then
Dist(z, A) < dist(z, z) < dist(z,y) + dist(y, 2).

Hence Dist(x, A) < dist(z,y) + Dist(y, A) for any x,y € X, and since z and y
appear symmetrically, we obtain |Dist(z, A) — Dist(y, A)| < dist(z, y). O
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Definition 1.1.4.17. A subset A of a topological space X is said to be dis-
tinguishable if there is a continuous function f: X — I such that f(z) = 0 for
z € Aand f(z) >0 for z € X \ A. Any function with this property is said to
distinguish the set A.

A distinguishable set is obviously closed. It is also clear that any closed
subset of a metric space is distinguishable: for example, the function

x +— min(1, Dist(z, A))

distinguishes the closed subset A.

1.1.5 Separation Axioms

Remark 1.1.5.1. In this subsection and the two that follow, we formulate addi-
tional restriction which are often imposed on a topological structure in order to
bring the properties of the corresponding topological space closer to those that
characterize the subsets of the spaces R™.

Definition 1.1.5.2. More than ten “separation axioms” are known. We need
the following four.

T1. Given two arbitrary points a and b, a # b, there is a neighbourhood of a
which does not contain b. Equivalent formulations: each point is a closed
set; finite sets are closed.

T2. Two arbitrary distinct points have disjoint neighbourhoods.

T3. Any point and any closed set not containing this point have disjoint neigh-
bourhoods. An equivalent formulation: every neighbourhood of an arbi-
trary point contains the closure of a neighbourhood of this point.

T4. Any two disjoint closed sets have disjoint neighbourhoods. An equivalent
formulation: every neighbourhood of an arbitrary closed set contains the
closure of a neighbourhood of this set. Another equivalent formulation:
given an arbitrary finite collection of pairwise disjoint closed sets, there
are neighbourhoods of these sets with pairwise disjoint closures.

Definition 1.1.5.3. Axiom T; is a consequence of Ts, but simple examples
show that it is not a consequence of T3 or zT4. Spaces which satisfy axiom Ty
are called Hausdorff, those which satisfy the axioms Ty and T3 - regular, and
those which satisfy the axioms T; and T4 - normal.

Every normal space is regular, and every regular space is Hausdorff.

Obviously, every subspace of a Hausdorff space is Hausdorff, every subspace
of a regular space is regular, and every closed subspace of a normal space is
normal.

Information 1.1.5.4. A non-closed subspace of a normal space is not necessarily
normal; see [11].
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Theorem 1.1.5.5. Every retract of a Hausdorff space is closed.

Proof. Let A be a retract of a topological space X and let p: X — A be a
retraction. If b € X \ A, then since X is Hausdorff and p is continuous, the
points b and p(b) have disjoint neighbourhoods, U and V, such that p(U) C V.
This implies that p(z) # « for € U, i.e., UN A = &. Thus any point which is
not contained in A is an exterior point for A. O

Remark by the transcriber:
The following proof may be more comprehensible. First, we need a lemma.

Lemma 1.1.5.6. Let X be a topological space. Then X is Hausdorff if and
only if the diagonal of X x X: A = {(z,z) € X x X|z € X} is closed in X x X.

Proof. Let X be Hausdorff, then if z # y there are neighbourhoods V, and V,,
such that V, NV, = @. Therefore V,, x V, N A = @ and thus the complement
of A is open.

Now, assume that A is closed in X x X. Then, for any point (x,y), = # v,
there is an open set around it that does not intersect A. Therefore, there are
two sets v € V, and y € V, such that V, x V}, doesn’t intersect A, hence
VNV, =2. O

Now we return to

Proof. Let f: X — X xX by f(x) = (r(x),z) where r: X — Ais the retraction.
Since each “coordinate” is continuous, f is a continuous map (notice that the
first map is just the composition ¢ o r, where ¢ inclusion of A in X). Since X is
Hausdorff, the diagonal A = {(z,y) € X x X|z =y} C X x X is closed. Hence,
by continuity of f,

i) ={reX|fz)eA}={reX|r(z) =z} ={zc X|jrc A} =A

is closed. O

Theorem 1.1.5.7. Every metric space is normal.

Proof. Clearly, every metric space satisfies axiom T;. Let us verify Ty. Suppose
A and B are disjoint closed subsets of a metric space, and set

U = {z|Dist(x, A) < Dist(z, B)}, V = {z|Dist(z, B) < Dist(x, A)}.

Since Dist(x, A) and Dist(x, B) depend continuously on z (see Theorem 1.1.4.16),
U and V are open. Trivially, UNV =@, ACU,and BCV. O
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Urysohn Functions

Lemma 1.1.5.8. Let A and B be two closed subsets of a topological space X .
Let T be the collection of all neighbourhoods of A which do not intersect B, and
let A be the set of dyadic rational numbers of the interval I (i.e., the numbers
m/29 with arbitrary non-negative integers m,q satisfying m < 29). If X is
normal, then there exists a mapping ¢: A — T" such that

Clo(r1) C p(ra) for ri <. (1.1.5.9)

Proof. Set (1) = X \ B and let ¢©(0) be any neighbourhood of A which is
contained, together with its closure, in X \ B (see the second formulation of
axiom ). If ¢(r) is already defined in such a way that (1.1.5.9) holds for the
numbers r = m/2? € A — A with ¢ = n, we can extend the definition to

r=m/2""! € A,

keeping (1.1.5.9) valid: if r = m/2"" € A with odd m = 2k+1, we take ()
to be any open set containing Cly(k/2™) and contained along with its closure
in o((k + 1)/2™). This induction yields a mapping ¢: A — I' with property
(1.1.5.9) . O

Theorem 1.1.5.10. Given two arbitrary disjoint closed subsets A and B of a
normal space X, there is a continuous function X — I, equal to 0 on A and
equal to 1 on B.

Proof. Using Lemma 1.1.5.8 and its notations, define a function f: X — I by
the formula

It is evident that f is equal to 0 on A and to 1 on B. To show that f is
continuous, note that the intervals [0,7) and (r,1] with » € A constitute a
prebase of the segment I, and that f~1([0,7)) = Ny <r(r'), while f~1([0,7]) =
Nrrsre(r’). Using property (1.1.5.9), we see that the last intersection is just
Ny Cl(r'); hence intervals [0,7) and (r, 1] have open pre-images, and f is
continuous. O

Definition 1.1.5.11. A continuous function f: X — I such that f(z) =0 for
x€AC X and f(z) =1for x € B C X is referred to as a Urysohn function
for the pair A, B.

A Urysohn function for a pair A, B may also take the value 0 outside of
A. However, if A is distinguishable, f is any Urysohn function for the pair A,
B, and g distinguishes A, then z — min(f(z) + g(x),1) provides a Urysohn
function for A, B which is positive outside A.

One may note that the proof of Theorem 1.1.5.10 does not use axiom Ty
and conclude that this theorem is true for any T,-space. The converse is also
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true: if any pair of disjoint closed subsets of X admits a Urysohn function, then
X satisfies axiom Ty.

Finally, we remark that one can prove a slightly stronger version of Theorem
1.1.5.10, by composing the Urysohn function with a linear transformation

t—a+ (b—a)t,

where a and b are arbitrary real numbers. The composition is a continuous
function X — [a,b], equal to @ on A and to b on B.

Extension Theorems

Lemma 1.1.5.12. Let F be a closed subset of the topological space X, and
let p: F' — R be a continuwous function bounded in absolute value by a number
L > 0. If X is normal, then there exists a continuous function ¥: X — R such
that

|(z)| < L/3 for xzeX,

and (1.1.5.13)

() ()| <2L/3 for wEF

Proof. The subsets of F determined by the inequalities ¢(z) < —L/3 and
p(x) > L/3 are closed in F, and hence in X, and disjoint. Therefore, there
is a continuous function ¢: X — [-L/3,L/3], equal to —L/3 on the first set,
and equal to L/3 on the second (see Definition 1.1.5.11 and the comment below).
Tt is clear that 1) satisfies the requirements (1.1.5.11) . O

Theorem 1.1.5.14. If A is a closed subset of the normal space X, then every
continuous function A — R extends to a continuous function X — R. This
claim remains true if one takes an interval instead of the real line R.

Proof. First, let us show that every continuous map f of A into an interval can
be extended to a continuous map g of X into the same interval. Without loss
of generality, we may take the interval [—1,1]. Define g as the sum of a series
of continuous functions gi: X — R which satisfy the conditions

lge(z)| < 281/3kF) if zeX (1.1.5.15)

and .
1f(2) = gil@) < (2/3)F, if ze€A (1.1.5.16)

0

The functions g are constructed inductively: take gop = 0 and, assuming
that go, ..., g, are already constructed and satisty (??) and (1.1.5.16) for k& < n,
define g, 41 to be the function obtained when one applies the previous lemma
top=f—>0(gla), F=A, and L = (2/3)". Inequality (??) shows that the
series Y _° gr converges uniformly on X, and hence its sum g is a continuous
function (see Remark 1.1.2.6). Inequality (1.1.5.16) implies that g|4 = f.
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To prove the first part of the theorem, notice that R is homeomorphic to the
open interval (—1,1). We have just showed that given any continuous function
g: A — (—1,1), there exists a continuous g: X — [—1,1] such that g(z) = f(x)
for all z € A. Let B = g~ '(—1)Ug~%(1). The sets A and B are closed and
disjoint; hence the pair A, B has a Urysohn function. If we multiply the latter
by g, we get the desired extension X — (—1,1) of the function f. O

Theorem 1.1.5.17. If A is a closed subset of the normal space X, then every
continuous map A — R™ extends to a continuous map X — R™. This claim
remains true if one takes a cube instead of R™.

To see this, it suffices to apply Theorem 1.1.5.14 to the coordinate functions
of the given map A — R"™.

1.1.6 Countability Axioms

Definition 1.1.6.1. A topological space is said to satisfy the second axiom of
countability (or to be a second countable space) if it has a countable base. A
topological space is said to satisfy the first axiom of countability (or to be a first
countable space) if it has a countable base at each point. A topological space is
separable if it has a countable dense subset.

Theorem 1.1.6.2. The second axiom of countability implies the first aziom of
countability and the separability. A metric space is always first countable, and
is second countable if and only if it is separable.

It is immediate that a second countable space is first countable, and Remark
1.1.2.6 shows that every metric space is first countable. To produce a countable
dense set in a space with countable base, just pick a point in each set of a given
countable base. Given a separable metric space, the open balls centred at the
points of a countable dense set and with radii 1/n (n = 1,2,...) constitute a
countable base.

Theorem 1.1.6.3. R" and /> are separable, and hence have a countable base.

Proof. The collection of all sequences {x;}} with rational z;’s is a countable
dense set in R".

The set of all finitely supported (i.e., having only a finite number of non-zero
terms) sequences {x;}5° with rational z;’s is countable and dense in ¢5. O

Theorem 1.1.6.4. Every subspace of a second countable space is second count-
able. In particular, all subspaces of R™ and ¢y have countable base.

Proof. Indeed, a countable base of the space induces a countable base of each
of its subspaces; see Theorem 1.1.6.2. O

Theorem 1.1.6.5. In a separable space, every collection of pairwise disjoint
open subsets is countable.
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Proof. In fact, let S be a countable dense subset of the given space. For any
set in the given collection, pick a point of S contained in this set. This yields
an injective mapping of the given collection into S. O

Remark 1.1.6.6. Obviously, a continuous surjective map of topological spaces
carries every dense set into a dense set. It is also clear that an open map
between two topological spaces transforms each base into a base, and each base
at a point into a base at the image of this point. Therefore, the image of a
separable space under a continuous map is separable, and the image of a first
or a second countable space under an open map is first, respectively second
countable.

Theorem 1.1.6.7. Every regular second countable space is normal.

Proof. Let A and B be closed disjoint subset of a regular second countable
space. According to the second formulation of axiom Tj, each point of any of
the sets A and B has a neighbourhood whose closure does not intersect the
other set. Picking such neighbourhoods, we get open covers of A and B, and
we may assume that these covers are countable; if not, we may refine them by
covers made of sets belonging to a countable base (see Remark 1.1.1.13). Let us
index these two covers, writing them as Uy, Us,... and Vi, V5, ..., and then set
U, =U,\NtClV; and V! = V\ U} C1U;. The sets U = UYU), and V = ULV,
are open and clearly disjoint. Since C1U; N B = @ and ClV; N A = &, we have
UD>AandV D B. O

Embedding and Metrisation Theorems

Theorem 1.1.6.8. Every regular second countable space can be embedded in
ls.

Proof. Let X be a regular space with countable base I'. We index the pairs
(U, V), U,V €T, satisfying C1U C V, writing them as a sequence

(U1, V1), (U2, Va), ... .

Now define f: X — f by the rule f(z) = {k~lpr(x)}5°, where ¢y, is an arbi-
trary Urysohn function for the pair Cl1Uy, X \ Vi (see Definition 1.1.5.11). If
x # y, then there exists an index k such that € Uy, y € X \ V} (indeed, X is
regular), and so f is injective. We show next that f is an embedding.

Since the ¢}’s are continuous, given zo € X, ¢ > 0, and n, there is a
neighbourhood U of z such that > (|ox(z) — pr(x0)|/k)? < e2/2 for allz € U.
Choosing n such that Y% | k=2 < £2/2, we see that dist(f (o), f(2)) < &, and
so f is continuous.

Let g denote the inverse of abr f: X — f(X). Given a point yo € f(X)
and a neighbourhood U of g(yo), find n such that g(yo) €yn and V,, € U. If
y = f(X) and dist(yo,y) < 1/n, then clearly |¢,(9(y)) — ¢n(yo))| < 1, which in
turn implies that g(y) € V. In conclusion, for y € f(X) and dist(yo,y) < 1/n,
we have g(y) € U, proving the continuity of g. O



20 CHAPTER 1. TOPOLOGICAL SPACES

Theorem 1.1.6.9. A second countable topological space is metrisable if and
only if it is reqular.

Proof. The necessity of this condition is contained in 1.1.5.7, and its sufficiency
-in 1.1.6.8. O

1.1.7 Compactness

Definition 1.1.7.1. A topological space is compact if any of its open covers
contains a finite cover. For example, a finite set endowed with an arbitrary
topology is compact, whereas an infinite set endowed with the discrete topology
is not compact.

It is clear that a subspace A of a topological space X is compact if only if
from each open cover of A in X one can extract a finite cover.

Theorem 1.1.7.2. Every closed subset of a compact space is compact.

Proof. Let A be a closed subset of the compact space X, and let A be a cover
of Ain X. We add the set X \ A (which is of course open) to A, extract a
finite cover from the resulting open cover of X, and then delete the set X \ A
from the latter, if it still remains. This obviously yields a finite cover of A in X
which is contained in A. O

Theorem 1.1.7.3. In a Hausdorff space, any two compact disjoint sets have
disjoint neighbourhoods.

Proof. Let A and B denote the given sets. If B is a point, then for each point
x € A consider disjoint neighbourhoods and V of x and B, and extract a finite
cover U, ,...,U,, from the open cover of A given by the neighbourhoods U,;
then UfU,, and N{V,, are disjoint neighbourhoods of the set A and the point
B.

In the general case, pick for each = € B disjoint neighbourhoods U, and V,, of

A and of z, and then extract a finite cover V,,,...,V,, from the resulting cover
of B by neighbourhoods V,; then NjU,, and UjV;, are disjoint neighbourhoods
of A and B. O

Theorem 1.1.7.4. Every compact subset of a Hausdorff space is closed.
Proof. Indeed, from Theorem 1.1.7.3 we see that a point which is not contained

in a given compact subset of a Hausdorff space has a neighbourhood which does
not, intersect this subset. O

Theorem 1.1.7.5. Every compact Hausdorff space is normal.

Proof. This is a consequence of Theorems 1.1.7.3 and 1.1.7.3. O
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Compactness and Fundamental Covers

Theorem 1.1.7.6. Suppose A is a compact subset of a T1-space X. Then from
every countable fundamental cover of X one can extract a finite cover of A.

Proof. Let Uy, Us,... be the given cover. If none of the sets U{"U; covers A,
pick a point from each set A\ UT*U;, and denote the set of all these points by
Y. It is obvious that Y is infinite and that each intersection Y N U; is finite.
The latter shows that Y and all its subsets are closed; hence Y is at the same
time compact (see Proposition 1.1.7.2) and discrete. But this contradicts the
fact that Y is infinite. O

Remark 1.1.7.7. The countability assumption in Theorem 1.1.7.6 is essential.
For example, the cover of a segment by all its countable subsets is fundamental,
but one cannot extract from it a countable cover.

Compactness and Maps

Theorem 1.1.7.8. The image of a compact space under a continuous map is
compact.

Proof. Let f be a continuous map of the compact space X onto a topological
space Y, and let A be an open cover of Y. The setsf(V), V € f~1(A), form
an open cover of X, and clearly a sub-cover Uy,...,Us of this cover yields a
sub-cover f(Uy),..., f(Us) of A. O

Theorem 1.1.7.9. Every continuous map of a compact space into a Hausdorff
space is closed.

Proof. This is a corollary of Propositions 1.1.7.2, 1.1.7.8, and 1.1.7.4. O

Theorem 1.1.7.10. Every invertible continuous map of a compact space onto
a Hausdorff space is a homeomorphism. FEvery injective continuous map of a
compact space into a Hausdorff space is an embedding.

Proof. These are consequences of Theorem 1.1.7.9 and of the obvious fact that
a closed invertible map is a homeomorphism. O
Compactness and Metrics

Theorem 1.1.7.11. Every compact subset of a metric space can be covered by
a finite number of open balls having radius e, for any positive e.

Proof. Such a cover can be extracted from any cover consisting of balls of radius
E. O

Theorem 1.1.7.12. Every compact metric space has a countable base.

Proof. To obtain such a base, it suffices to construct, for each positive integer
n, a finite cover of open balls of radius 1/n, and then take the union of these
covers. 0
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Theorem 1.1.7.13. Every compact metric space is bounded.
Proof. This is a consequence of 1.1.7.11. O

Theorem 1.1.7.14. Let X be a compact topological space. Then every contin-
wous function X — R attains its absolute mazximum and absolute minimum.

Proof. Theorems 1.1.7.8 and 1.1.7.13 show that the image of X in R is bounded.
Theorem 1.1.7.9 shows that this image is closed, which in turn implies that it
contains its adherent points, including its greatest lower bound and its least
upper bound. O

Theorem 1.1.7.15. Let A and B be disjoint subsets of a metric space. If A is
compact and B is closed, then Dist(A, B) > 0.

Proof. Since A is compact and Dist(z, B) depends continuously on x € A (see
Theorem 1.1.4.16), there exists a € A such that

Dist(a, B) = in£1 Dist(z, B) = Dist(A, B)
TE

(see Theorem 1.1.7.14). Since B is closed and a ¢ B, Dist(a, B) > 0, and thus
Dist(A, B) > 0. O

Theorem 1.1.7.16. Suppose that f is a continuous map of a metric space X
into a topological space Y and A is an open cover of Y. If X is compact, then
there is € > 0 such that for any set A C X with diameter diam A < e, f(A) is
contained in some element of A.

Proof. 1t is enough to show that there is an € > 0 such that any two points
x,y € X with dist(z,y) < € are both contained in one of the sets of the cover
I' = f~1(A). For each x € X, pick a ball centred at = and contained in one of
the sets of I', and let U, be the concentric ball with half the radius. Now extract
a finite cover Uy, ,...,U,, from the cover of X by the balls U,. Let ¢; denote
the radius of U,,, and let ¢ = min{ey,...,e,}. If 2,y € X and dist(z,y) < e,
then dist(z;, z) < ¢; and dist(z;,y) < dist(x;, z) + dist(z,y) < 2¢; for some 1.
Therefore,  and y belong to one and the same set of the cover T'. O

Compactness in Euclidean Space

Theorem 1.1.7.17. The cubes of R™ are compact.

Proof. Obviously, any cube in R™ can be divided into 2™ cubes of half the edge,
and if some cover I' of the original cube by open subsets of R™ does not contain
a finite sub-cover, then it retains the same property as a cover of one of the
smaller cubes. An iteration of this argument yields a decreasing sequence of
cubes @Q1,Qq, ..., each of them being half the size of the preceding one, and
such that none of them is covered by a finite collection of sets from I". But the
point common to all these cubes is certainly covered by some set from I', which
must also cover all the cubes @), with k& large enough. O
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Theorem 1.1.7.18. A subset of R™ is compact if and only if it is bounded and
closed.

Proof. The necessity of these conditions is implied in Theorems 1.1.7.13 and
1.1.7.4. The sufficiency is a consequence of Propositions 1.1.7.17 and 1.1.7.2,
since any bounded subset of R" is contained in some cube. O

Local Compactness

Definition 1.1.7.19. A topological space is locally compact if each of its points
has a neighbourhood with compact closure.

Compact spaces are obviously locally compact. The most important exam-
ples of non-compact, locally compact spaces are R"™ with n > 0.

Theorem 1.1.7.20. Every closed subset of a locally compact space is locally
compact.

Proof. Indeed, if a is a point of a closed subset A of the locally compact space
X, and U is a neighbourhood of a in X with compact closure Clx U, then UN A
is a neighbourhood of @ in A with compact closure Cla(U N A). [Cla(U N A),
being closed in X, is closed in the compact subset Clx U of X, and hence is
compact; see Theorem 1.1.7.2]. O

Theorem 1.1.7.21. Every open subset of a locally compact Hausdorff space is
locally compact.

Proof. Let a be a point of the open subset A of the locally compact space X,
and let U be a neighbourhood of @ in X with compact closure Clx U. Since
the space Clx U is regular (see Proposition 1.1.7.5), a has a neighbourhood V'
in Clx U such that Cla, gy V € U N A. We show that V is a neighbourhood of
a in A with compact closure Cly V.

The set V is open in Clx U, hence in U N A, which in turn implies that V'
is open in A. To verify that Cl4 V is compact, note that the closure Cley, v V
is compact (see Proposition 1.1.7.2) and contained in U N A. This implies that
it equals Clyna V and that the latter is closed in A (see Proposition 1.1.7.4),
which finally shows that Clyna V = Cla V. O

Theorem 1.1.7.22. Let U be a neighbourhood of the point a of the locally
compact space X. If X is Hausdorff, then a has a neighbourhood whose closure
is compact and contained in U .

Proof. Since U is a locally compact space (see Theorem 1.1.7.21), ¢ has a neigh-
bourhood V' in U with compact closure. Since U is open, V is open in U.
Finally, since Cly V' is compact and X is Hausdorff, Cly V is closed in X (see
Theorem 1.1.7.4) and thus it coincides with ¢_ XV. We see that V is the desired
neighbourhood of a. O

Theorem 1.1.7.23. Locally compact Hausdorff spaces are reqular.

Proof. This is a consequence of Theorem 1.1.7.22. O
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Information: Paracompactness

Definition 1.1.7.24. A Hausdorfl space is paracompact if each of its open
covers has a locally finite refinement. The compact Hausdorff spaces are (obvi-
ously) paracompact, and so are all the metric spaces. All paracompact spaces
are normal. For details, see [11].

One can show that a paracompact space which can be covered by open
metrisable sets is metrisable; see [13].
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1.2 CONSTRUCTIONS

1.2.1 Sums

The sum HueM X, of a family {z,} of topological spaces becomes a topo-
logical space if we declare a subset to be open if its pre-images under all
maps incl,: X, — [[ X, are open. Equivalently, a subset of [] X, is closed
if its pre-images under all maps incl are closed. It is evident that each map
incl,: X, — ], is an embedding and that the images incl, (X, ) are both open
and closed in [ X,,.

Let {Y,, } be another family of topological spaces, indexed by the same set M,
and let f,: X, — Y}, be continuous maps. Then the map [] f,: [[ X, = [[Y.
is obviously continuous.

Remark 1.2.1.1. If all spaces X, satisfy one of the axioms Ti, Ty, T3, or Ty,
then their sum satisfies the same axiom. The same hold for the first axiom of
countability, and also for the properties of local compactness and metrisability
if X,, are metric spaces, one can define a metric on [[ X, by the formulae:

1 if v#£V
dist(incl, (z), incl,/ (z')) = orif v=v and dist(z,2')>1;
dist(x, 2’) it dist(z,2') < 1.

If each X, has a countable base and M is countable, then [] X, has a countable
base too. Similarly, when M is countable and each X, is separable, [[ X, is
separable too. Finally, [] X, is compact whenever all X, are compact and M
is finite.

1.2.2 Products

Remark 1.2.2.1. Let X1,..., X, be topological spaces. We define a topology on
X7 x -+ x X, by taking as a base the collection of all sets

U1X---XUnCX1X"'X{En,

where U; is open in X;, i = 1,...,n. The conditions of Proposition 1.1.1.8 are
satisfied by virtue of the relation

(U x - xU)N(U x---xU)y= (U NUY) x--x (U, NU).

The resulting topological space is called the product of the spaces X1 X -+ x X,,.

If Ay,..., A, are subspaces of X; x---x X,, then the topology of the product
Ay x .-+ x A, is obviously identical with the topology induced by the inclusion
Ay XX Ap C Xy X X X

Actually, we have met with some products already. Indeed, R™ is the product
of n copies of the real line R, while I" is the product of n copies of the unit
segment I.

The product X x I, where X is a topological space, is known as the cylinder
over X.
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Remark 1.2.2.2. Forming the product of spaces is a commutative and associative
operation: there are obvious canonical homeomorphisms

X1 x Xo = Xox Xy
(Xl XXQ) XX3*>X1 X (XQ XXg),
(Xix - xXpo1)x Xp= X1 X - x X,

Moreover, sums and products of spaces satisfy the distributive law: there is a
canonical homeomorphism X x (I],car Yy) = L, e (X X Yy).

Theorem 1.2.2.3. If the sets Aq,..., A, are open in X1,...,X,, then
A=A x---x A,

is open in X1 X---x X,,. If A1,..., A, are closed, then A is closed. In all cases,
ClA=ClA; x---xClA,.

Proof. The first statement is a direct result of the definition of the topology of
X7 x---x X, while the second is a consequence of the third; so let us verify the
third statement. A point (z1,...,z,) € X1 X --- x X, is an adherent point of
A if and only if each of its base neighbourhoods Uy x - -+ x U, has a non-empty
intersection with A, i.e., if and only if for any neighbourhoods Uy, ..., U, of the
points x1,...,&,, U; N A; # &, i = 1,...,n. That is to say, (z1,...,2,) is an
adherent point of A if and only if x; is an adherent point of 4;, i = 1,...,n.
Therefore, C1A =ClA; x --- x Cl A,,. O

Remark 1.2.2.4. We note that the projections proj,c: X3 x --- x X,, = X, are
continuous and open for any topological spaces X1, ..., X,,.
The sets of the form

0 0 0 0 0 C
T X Xy XXy X @y XX ay,, x € X5 (5 #£19)

are called the fibres of the product X; x --- x X,,. Clearly, the restriction of
proj;: Xi x---x X, = X, toanyﬁbrex?x~-~><x?_1xXixx?+1x--~><xg isa
homeomorphism. Hence the fibres are canonically homeomorphic to the factors
of the product.

For any map f: Y — X; x--- x X,,, where Y, X;,..., X,, are arbitrary sets,
we have the corresponding maps proj, of: Y — X;. Conversely, given arbitrary
f:Y — X, there is a unique map f: Y — X; x---x X, such that proj, of = fi.
Clearly, if Y, X1,..., X,, are topological spaces, then f is continuous if and only
if all the maps proj, of are continuous.

In particular, it follows that the map diag: X — X x X is continuous for
every topological space X. We make the (obvious) remark that the diagonal
diag(X) is closed if and only if X is Hausdorff (see Lemma 1.1.5.6).

Remark 1.2.2.5. Obviously, every product
fixoooxfr:Xigx---xX,=>Y x-- XY,

of continuous maps f1: X1 — Y1,..., fn: X,y — Y, is continuous. Moreover,
f1 x -+ x f, is open whenever fi,..., f, are open.
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Remark 1.2.2.6. If X is a metric space, then for any points @1, zo, 2,25 € X
|dist (2], x%) — dist(z1, z2)| < dist(z], 1) + dist(xh, z2)

clearly holds. This inequality shows that the function dist: X x X — R is
continuous.

Properties of Products

Theorem 1.2.2.7. Every product of T1-spaces is a T1-space. Every product of
Hausdorff spaces is Hausdorff. Every product of regular spaces is regular.

Proof. The first and second assertions are immediate. We show that a product of
Ts-spaces X1, ..., X, isa Ts-space. Let U be a neighbourhood of (z1,...,zn) €
X7 x -+ x X,. Pick neighbourhoods U; x - - - x U, of the points z1, ..., z,, such
that Uy x --- x U, C U, and fix neighbourhoods Vi, ..., V,, of the same points
with C1V;, C Uy, ...ClV,, C U,. Since Cl(V} x xV,,) = ClV; x --- x ClV,, (see
Theorem 1.2.2.3), one has Cl(V; x xV,,) C U. O

INFORMATION. There are product of normal spaces which are not normal;
see [14].
Remark 1.2.2.8. If Sy,...,S,, are dense sets in the spaces Xi,...,X,,, then
S1 X +++ xS, is obviously dense in X; x --- x X,,. Consequently, a product of

separable spaces is separable.
IfIy,...,I, are bases of Xy,...,X,, then the sets U; x --- x U,, with

Uyely,...,U,en

form a base of the space X7 x --- x X,,. Consequently, a product of second
countable spaces is second countable.

If now I'y,..., T, are bases of Xi,...,X,, at the points (z1,...,2,), then
the sets Uy x --- x U, with U; € I'y,...,U, € I, form a base of X7 x -+ x X,
at the point (x1,...,2,). Consequently, a product of first countable spaces is
first countable.

Theorem 1.2.2.9. Fvery product of metrisable spaces is metrisable.

Proof. In fact, we can say more: if Xi,...,X, are metric spaces, then the

formula
n

dist((w1,...,xn), (zh, ..., 7)) = [Z(dist(mi, zh))?]/?

i=1

defines a canonical metric on the product X; x --- x X,. O
Theorem 1.2.2.10. FEvery product of compact spaces is compact.

Proof. 1t suffices to consider a product of two spaces. Solet X and Y be compact
topological spaces, and let I be an open cover of X x Y. Consider an arbitrary
refinement A of T, consisting of open sets of the form U x V (see Remark
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1.1.1.13). Since the fibres X Y are homeomorphic to ¥ and Y is compact, one
can find, for each point € X, a finite collection A, = {U;(z) x Vl(x)}?:(gi) of
elements of A which covers X x Y (see Theorem 1.1.7.2); one may assume that
x € Ui(z) for all i = 1,...,n(x). Since the sets U, = N"*) are open and cover
the compact space X, there exists a finite collection Uy, ,...,U,,, covering X.
It is clear that A’ = UL A, is a cover of X x Y. Finally, replacing each set
W € A’ by a set of I containing W, we produce a finite subcover of T O

Theorem 1.2.2.11. Every product of locally compact spaces is locally compact.

Proof. Let Uy, ...,U, be neighbourhoods of the points z; € X1,..., 2, € X,.
Then Uy x --- x U, is a neighbourhood of (x1,...,2,) in X; x --- x X,,. Fur-
thermore, its closure C1(Uy x - -- x U,,) is just C1Uy X - -- x C1U,, (see Theorem
1.2.2.3), and so is compact whenever ClUy, ..., ClU, are compact (see Theorem
1.2.2.10). 0

An Application: A Method for Constructing Continuous Maps

Remark 1.2.2.12. Theorem 1.2.2.14 below allows us to establish continuity a
map in some situations similar to those treated by Theorem 1.1.4.3, but where
the latter is not applicable.

Lemma 1.2.2.13. Suppose that the map f: X X Q — Z is continuous and
transforms the fibre xo x Q into a point. If the space Q) is compact, then given
any neighbourhood W of the point f(xg X Q), there is a neighbourhood U of x
such that f(U x Q) C W.

Proof. Given any point ¢ € @, fix a neighbourhood of U, and a neighbourhood
Vg of ¢ with f(Uy x V) C W. Since @ is compact, one can cover it with a finite
collection Vi, ..., V,, . Now set U = N{_,Uy,. O
Theorem 1.2.2.14. Suppose that X,Y,Z and Q are topological spaces, A is
a subset of X, B is a closed subset of Y, and f: X X Q — Z and g: Y — X
are continuous maps such that f(x x Q) reduces to a point for each x € A, and
g(B) C A. If Q is compact, then for each continuous map p/colonY \ B — Q,
the map h: Y — Z given by

S faW)e(y),  for yeY\B,
o) = {f(g(y) xQ),  for yeB,

1S continuous.

Proof. The map h is clearly continuous at the points of Y \ B; let us verify
its continuity at the points y € B. By virtue of Lemma 1.2.2.13, given any
neighbourhood W of the point h(y), there is a neighbourhood U of the point
g(y) such that f(U x Q) C W. The last inclusion shows that h(g~1(U)) C W,
and finally note that ¢g~!(U) is a neighbourhood of y. O
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Information

Information 1.2.2.15. The notion of a product of an infinite number of topo-
logical spaces can be defined in a natural way; in this case too a product of
compact spaces remains compact; see [3] for details.

1.2.3 Quotients

Definition 1.2.3.1. The quotient set X/p of a topological space X by any of
its partitions p is equipped with a natural topology: a subset of X/p is open
if its pre-image under the map proj: X — X/p is open. Equivalently, a subset
of X/p is closed if its pre-image is closed. This topology is called the quotient
topology, and the set X/p with the quotient topology is the quotient space of
the space X by its partition .

It is clear that proj: X — X/ is continuous.

In the special case of a partition o whose elements are a single set A and the
points of X \ A, X/ is called the quotient of the space X by A and is denoted
by X/A.

Remark 1.2.3.2. Given two topological spaces X and Y with respective par-
titions p and ¢, and a continuous map f: X — Y which takes the elements
of o into elements of g, the map fact f: X/p — Y/q is continuous. This is a
straightforward consequence of the definition of the quotient topology. Indeed,
if U — Y/q is open, then the set f~'(proj '(U)) is open in X, and so the
identity f~'(proj=*(U)) = proj *((fact f)~(U)) implies that (fact f)~'(U) is
open in X/p.

If g is the partition of Y into single points, then Y/g =Y and proj: Y — Y/q
is the identity map. In this case, f — fact f defines a one-to-one correspondence
between continuous maps X — Y which are constant on the elements of the
partition p, and continuous maps X/p — Y.

Remark 1.2.3.3. In particular, the discussion above shows that given a contin-
uous map f: X — Y, its injective factor fact f: X/ zer(f) — Y is continuous

too. The converse is also true: every map f: X — Y can be represented as the

. j £ : .
composition X 2% X/ zer(f) fact/, Y, and so f is continuous whenever fact f

is continuous.

Remark 1.2.3.4. A continuous map whose injective factor is a homeomorphism
will be referred to as a factorial map (or a quotient map).

An equivalent definition: a map f of a topological space X into a topological
space Y is factorial if f(X) = Y, and the preimage f~1(B) of a set B C Y is
open if and only if B is open. If we substitute closed sets for open ones, we
obtain another equivalent definition.

Obviously, the composition of two factorial maps is factorial, and any in-
jective factorial map is a homeomorphism. Moreover, it is plain that if f is
factorial and the composition go f is continuous, then the map g is continuous.
Also, f continuous and g o f factorial imply ¢ factorial.
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The projections onto quotient spaces form the main class of factorial maps.
A crude necessary condition for amap f: X — Y with f(X) =Y to be factorial
is that f be an open or a closed map.

Remark 1.2.3.5. Taking quotients is a transitive operation: if @ is a partition of
X and ¢’ is a partition of X /g, then the quotient space (X/p)/g’ is canonically
homeomorphic to X /g, where ¢ partitions X into the pre-images of the elements
of ' under the projection X — X/gp. This canonical homeomorphism is defined
as the injective factor of the composite map X — X/p — (X/p)/¢’, and is truly
a homeomorphism, because this composition is factorial (see Remark 1.2.3.4).

Theorem 1.2.3.6. If the sets A and B constitute a fundamental cover of the
space X , then
fact[incl: A — X]: AJANB — X/B

18 a homeomorphism.

Proof. Given an open subset U of the quotient A/A N B, it is enough to show
that V' = [proj: X — X/B](factincl(U)) is open in X. But this is a consequence
of the equalities

VNA=][proj: A— A/AN B]"Y(U)

and
VAB = B, ?f prOJ-(AﬁB) el,
, if proj(AnB)¢U.

Properties of Quotients

Remark 1.2.3.7. Obviously, a quotient space X/p satisfies axiom Ty if and only
if the elements of the partition g are closed. Also, X/ is Hausdorff if and
only if any two distinct elements of o have disjoint saturated neighbourhoods.
Similarly, X/p is a Ts-space (T4-space) if and only if for any element A of p
and any saturated closed subset B of X (respectively, for any saturated, closed
subsets A and B of X) such that AN B = &, A and B have disjoint saturated
neighbourhoods in X.

Moreover, it is readily seen that X/p is second countable if and only if there
is a countable collection of open saturated sets in X such that any saturated
set can be expressed as the union of one of its subcollections.

It is immediate from Remark 1.1.6.6 that a quotient of a separable space is
separable.

Similarly, Theorem 1.1.7.8 implies that a quotient of a compact space is
compact.

Closed Partitions

Definition 1.2.3.8. A partition p of the space X is closed if proj: X — X/p
is a closed map. An equivalent condition: saturations of closed sets are closed.
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Obviously, a partition which has only one element that is not reduced to a
point is closed if and only if this element is closed.

Theorem 1.2.3.9. The quotient of a T1-space by a closed partition is a T1-
space. The quotient of a normal space by a closed partition is normal.

Proof. Since the first assertion is straightforward, all we have to show is that
the quotient X/p of a Ty-space X by a closed partition g is a T4-space. Let Fy
and Fy be disjoint, saturated, closed subsets of X. Since X is normal, F; and
F5 have disjoint neighbourhoods. Furthermore, since p is a closed partition,
the saturations of the complements of these neighbourhoods are closed, and
now it is clear that the complements of these saturations are disjoint saturated
neighbourhoods of F} and F5. O

Open Partitions

Remark 1.2.3.10. A partition p of the space X is open if proj: X — X/p is an
open map. An equivalent condition: saturations of open sets are open.

If p is an open partition and A is a saturated set, then the saturation of
int A is open, and hence equals int A; passing to complements, we see that the
saturation of Cl A is just Cl A. Therefore, in the case of an open partition, the
interior and the closure of a saturated set are saturated.

As it follows from Remark 1.1.6.6, the quotient of a first countable (second
countable) space by an open partition is first countable (respectively, second
countable).

Theorem 1.2.3.11. Let © and q be open partitions of the respective spaces X
andY . The product (X/p) x (Y/q) is canonically homeomorphic to the quotient

(X xY)/(px q)-

Proof. The injective factor of the map proj x proj: X xY — (X xY)/(p x q)
defines this canonical map, which is a homeomorphism because proj x proj is
open (see Remark 1.2.2.5). O

1.2.4 Glueing

Remark 1.2.4.1. Glueing (or pasting) topological spaces is a composite operation
which consists of taking a sum and subsequently passing to a quotient. More
precisely, suppose that {x,},ca is a family of topological spaces and g is a
partition of the space X = [[X,,. Then we say that the quotient space X/p is
obtained by glueing the spaces X, (or according to) p. The composite map

X,, incl, X proj X/BO

is termed the v-th immersion and is denoted by Imm,,. Clearly, the sets Imm,, (X )
yield a fundamental cover of X/p, and a map f: X/p — Y, where Y is an arbi-
trary topological space, is continuous if and only if all the compositions folmm,
are continuous.
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Unions
Definition 1.2.4.2. Let {X,},cabe a family of topological spaces. Suppose
that for each pair (p,p’) € M x M there is given a subset A4,,, C X,. In
addition, suppose that for each pair (u, ') € M x M there is given an invertible
map @t Ay — A such that:

(i) Auu =X, and ¢, =id X, for any p € M;

(i) oup (Apw N Auur) = Ay N Ay and the diagramme

abro,,,/

A/m’ n Auu” Au’# N Au’u”
Ay VA

is commutative for every p, ', 1’ € M. For z € [] X,,, denote by B, the subset
of [T X, consisting of all the points incl,(¢,.(x)), where X € A,,. The sets
B, are pairwise disjoint and define a partition of [[ X,. The corresponding
quotient space is called the union of the spaces X,, by (or along) the maps v, .

This construction is a special case of glueing, when all the immersions Imm,,
are injective. Moreover, assuming that all the maps ¢,,,» are homeomorphisms
and that the sets A,,  are all open or all closed, we see at once that all the
maps Imm,, are embeddings.

In the general case, a union of Ti-spaces is clearly a Ti-space.

Remark 1.2.4.3. Often the union construction is employed when all the spaces
X, are subsets of a set X and cover X, while A,, and ¢, are given by
Ay = X, N X, and ¢,y = id. In this situation, conditions 1.2.4.2 (i) and
1.2.4.2 (ii) are automatically fulfilled, and one may describe the union of the
X,.’s simply as the set X equipped with the following topology: a set C' C X is
open (closed) if and only if the intersection C'N X, is open (respectively, closed)
in X, for any p € M.
Memo by the transcriber: This topology is the one exactly used in the definition
of CW complexes, under the (somewhat misleading) name “weak topology”.
We devote some special attention to the case where the topology of each set
X, is induced by some topology already given on X. Then our construction
produces a new topology on X. It is clear that the sets open (closed) in the
old topology remain open (respectively, closed) in the new topology. Moreover,
if all the intersections X, N X, are open in their sets X, (endowed with the
initial topology), then the new topology on X induces the initial topology back
on each set X,,; the same holds whenever all the intersections X, N X/, are
closed in their sets X,,.
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Limits and Filtrations

Remark 1.2.4.4. Let Xy, X;,... be topological spaces, and let pg: Xg — X1,
p1: X1 — X2,... be embeddings. Set

{s%10"'090k/(Xk'), if K <k,
Aprr =

X if K>k
and
abr(@k—1 00 @), if kK <k,
Ok = { idx,, if k'=k,

abr(pp_10---0p) "L, if K>k

The union of the spaces X is well-defined because conditions 1.2.4.2 (i) and
1.2.4.2 (ii) are obviously satisfied. This union is called the limit of the sequence
{z} and denoted by lim(X, @) or lim Xj.

A specific property of the limit construction is that the maps

Immyg: X — lim X,

are embeddings: indeed, every closed subset A of X} is the pre-image under
Immy, of some closed subset of lim X, for example, of

U Immk/((ﬂxk (@k/—l SR (pk(A)))
K =k+1

Obviously, if ¢r(Xy) is open (closed) in X;q for all k, then all the sets
Tmmy (X}) are open (respectively, closed) in lim(Xy, ¢k ).

Suppose that { X}, ¢} X; — X |} another sequence of topological spaces
and embeddings, and that for each k& there is given a continuous map

fki Xk — X]/C,
so that all the diagrammes

in>)(]/c

X — X
k+1 Fr+1 k+1

are commutative. Then the rule f(Immg(x)) = Immg(fx(x)) defines a contin-
uous map f: lIm(Xg,pr) = Im(X},¢)) (see Remark 1.2.3.2); f is called the
limit of the sequence fy, f1,... and is denoted by lim fy.

Theorem 1.2.4.5. If Xy, X1,... are Ty-spaces, then every compact subset of
lim Xy, is contained in one of the sets Tmmy(Xy).
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Proof. This is a consequence of Theorem 1.1.7.6. O

Theorem 1.2.4.6. If Xy, X1 < ... are normal spaces and pp(Xy) is closed in
X4 for every k, then lim(Xy, @) is normal.

Proof. Since we already know that lim(Xy, ¢) is a T1-space, it suffices to show
that there exists a Urysohn function for any pair A, B of closed disjoint subsets
of this space (see Definition 1.1.5.11). To see this, we merely have to produce a
sequence fi: Immy(Xy) — I, such that each fi is a Urysohn function for the
pair AN Immg(Xy), BN Immg(Xy), and fei1]immg(x,) = fx, for each k.

As fo take any Urysohn function for the pair ANImmg(Xy), BN Immg(Xy).
Given fi, we define Immy41: Immy(Xy+1) — I as the (continuous) extension
of the function

gk [Immg (X5)] U [A N Immg (Xg41)] U [B N Immyyq (Xe11)] = 1,
defined by the formula

fk(x), if xe€ Immk(Xk),
gk(ib) =40, if reAn Immk+1(Xk+1),
1, if =€ BNImmgyi(Xki1)

(see Theorem 1.1.5.14). The functions g are continuous because the sets
Immy (X)), ANImmg 1 (Xg41), and BNImmygq(Xk41) are closed (see Theorem
1.1.4.3), which in turn is a consequence of the fact that ¢r(X%), ©k+1(Xk+1)
are closed. O

Definition 1.2.4.7. A sequence Xy, X1, ... of subsets of a topological space X
is a filtration of X if, firstly, Xo C X1 C ---, and, secondly, the sets X} form a
fundamental cover of X.

The first condition shows that the inclusions incl: X — X1 and the limit
lim(X%,incl) are meaningful, while the second condition is equivalent to the
following: the map X — lim(Xj, incl), which equals Immy, : X} — lim(X}, incl)
on each Xj, is a homeomorphism. Using this canonical homeomorphism, we
may identify lim(X},incl) with X.

Attaching

Remark 1.2.4.8. Let X1, X5,C, and ¢: C — X5 be two topological spaces, a
subset of X7, and a continuous map, respectively. Denote by g the partition
of X, J] X2 into the points of incl; (X \ C) and incly(Xs \ ¢(C)), and the sets
incl; ((¢~1(x)) Uincly(z) with z € ¢(C). The quotient space (X1 ][] X2)/p is
written Xy U, X;. We say that XU, X is obtained by attaching the space X,
to the space X5 by (or along) .

This construction is clearly a special kind of glueing, and it is plain that
Imm2: Xy — X5 U, X; is an embedding.
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If X5 reduces to a point, then XU, X is canonically homeomorphic to the
quotient space X;/C; the canonical homeomorphism is just

fact[lmmlz X1 — X2 Utp Xl}

Theorem 1.2.4.9. If X; and X3 are normal and C is closed, then Xo U, X,
is mormal.

Proof. Since we already know that X, U, X; is a Ti-space (see Definition
1.2.4.2), it suffices to show that there exists a Urysohn function for any pair of
closed disjoint subsets A, B of XoU, X;. Let fo: X5 — I be a Urysohn function
for the pair Immj * (A), Imm; *(B). Define g: CU[Imm; * (A)]U[Imm; *(B)] — T
by

fale(z), if zeC,

glx) =<0, if ¢ Imm;'(A),
1, if 2 ¢Imm;!(B),

and extend it to a continuous function f;: X7 — I (see Theorem 1.1.5.14). The
function X U, X1 — I, defined as

fi(x), if yelmmy(z) [xe€ Xq],
v {fz(x), if yelmmy(z) [ze€ X,

is obviously a Urysohn function for the pair A, B. O

1.2.5 Projective Spaces

Remark 1.2.5.1. In this subsection we shall describe the real, complex, quater-
nionic, and Cayley projective spaces. These may be considered as examples
illustrating the previous definitions, but are also important spaces in their own
right.

We denote the field of complex numbers by C, the field of quaternions by H,
and the algebra of Cayley numbers by (Ca. The corresponding n-dimensional
spaces, i.e., the products of n copies C x ---x C, Hx --- xH, and Ca x - - - X Ca,
are denoted by C", H", and Ca™. Since every complex number is a pair of
real numbers, every quaternion a quadruplet of real numbers, and every Cayley
number an octuplet of real numbers, one can naturally identify C™, H", and Ca"
with R2", R3”, and R3", respectively. In particular, the former are endowed
with natural topologies and metrics. The vector operations in C", H", and Ca™
(addition of vectors and left or right multiplication by scalars) are continuous
in these topologies.

Definition 1.2.5.2. The n-dimensional real projective space RP"™ is defined as
the quotient space of S™ by its partition into pairs of diametrically opposed (=
antipodal) points. One may equivalently describe RP™ as the quotient space
of D™ by its partition into the points of int D™ and the pairs of diametrically
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opposed points of FrD® = S"~!. The canonical homeomorphism permitting us
to identify these two quotient spaces is fact f, where f: D™ — S™ is defined by

(m,...,xn)+—>(xl,...,xn,\/17;&7...,@)'

One may also identify the points of RP™ with the lines of R"*! which pass
through the point 0 = (0,...,0) (the line passing through the points z and
—x corresponds to the pair of points x, —x € S™. The set of all these lines,
equipped with the angular metric (i.e., the distance between two lines is defined
as the angle between them which is less than 7/2), is a metric space, and
the above natural map of RP™ onto this space is clearly a homeomorphism.
This provides a third description of the real projective space. The fourth, a
coordinate description, can be obtained if one remarks that every line passing
through 0 is uniquely determined by any of its non-zero points, and that the
coordinates of any two non-zero points of such a line are proportional. This
enables us to interpret the points of RP™ as classes of proportional non-zero real
sequences (Z1,...,Tp4+1); the point determined by the sequence (x1,...,2Zp41)
is denoted by (x; : --- : Zp41), and the numbers xy,..., 2,41 are called its
homogeneous coordinates. The description of the topology of RP™ in terms of
the homogeneous coordinates is plain.

Definition 1.2.5.3. All the above discussion of the space RP™ can be repeated
naturally for the complex case, leading to four equivalent description of the n-
dimensional complex projective space CP™.

First description: CP" is the quotient space of the unit sphere S?"*! of C by
its partition into the circles obtained by intersecting S?"*! with the (complex)
lines of C which pass through the point 0.

The second description: CP" is the quotient space of the unit ball D?" of C by
its partition into the points of int D2" and the circles on FrD?" = §2"" obtained
by intersecting S2"" with the lines of C passing through 0. The canonical home-
omorphism between these two quotient spaces is fact f , where f: D27 — §27+1
is given by

flxy,. ... @en) = (Il,...,xgn,\/lfﬂf%*"'*Ign).

The third description: CP™ is the set of lines of C"*! passing through the point
0, equipped with the topology induced by the angular metric.

The fourth description: CP"™ is the space of classes of (complex) proportional
non-zero complex sequences (1, ..., Tpt1)-

The notation (7 : -+ : Zy41) introduced in Definition 1.2.5.2 also extends
to the complex case, and the numbers zi,...,x,+1 are known, as in the real
case, as the homogeneous coordinates of the point (z1,...,Zn41)-

Definition 1.2.5.4. Since the field of quaternions is not commutative, one has
to distinguish between the left and the right lines in H". But as soon as we have
chosen one type of lines, we can automatically repeat the discussion in Definition
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1.2.5.3 for the quaternionic case, and so obtain four equivalent descriptions of
the corresponding (left or right) n-dimensional quaternionic projective space
HP™. Since the anti-automorphism = — z~! of the multiplicative group of the
field H takes left lines into right ones, the right space HP™. Since the anti-
automorphism x +—+ x~! of the multiplicative group of the field H takes left lines
into right ones, the right space HP"™ is homeomorphic to the left one.

Henceforth, we shall regard H" as a left vector space, and accordingly HP™
will be regarded as the left projective space.

Definition 1.2.5.5. Since the Cayley algebra is not associative, we cannot
successfully define lines in Ca™ for n > 2. In the Cayley plane Ca? one can
define a line passing through the point (0,0) as a set {(x1, z2)|z2 = cz1}, where
¢ € Ca; in addition, there is the vertical coordinate line {(x1,z2)|z1 = 0}. If
one identifies Ca? with R16, it becomes clear that these lines are 8-dimensional
subspaces. Moreover, every point different from (0,0) of Ca sits on exactly
one of these lines, and each line intersects S'® along a 7-dimensional sphere.
One can define the projective Cayley line CaP! as the quotient space of S'° by
its partition into these 7-dimensional spheres. Of course, there are three more
description of this projective line, which are appropriately modified versions of
those given in Definitions 1.2.5.2, 1.2.5.3, and 1.2.5.4. In addition, we can define
the projective Cayley plane CaP? as the quotient of int D'6 by its partition into
the points of int D% and the 7-dimensional spheres just described. However, an
attempt to describe the projective plane CaP in the spirit of the alternatives of
Definitions 1.2.5.2, 1.2.5.3, and 1.2.5.4 fails. Projective Cayley spaces of higher
dimensions are not defined.

Remark 1.2.5.6. The spaces RP', CP', HP!, and CaP" are canonically home-
omorphic to S!, S2, S*, and S®. The homeomorphism RP! — S' transforms the
line z; = 0 into orty, and each line o = cr; into the point of the punctured
sphere S! \ ort; which corresponds to ¢ via the homeomorphism R! — S! \ ort;
described in Example 1.1.4.9. The homeomorphisms CP! — S§?, HP! — S%,
and CaP! — S® are similarly defined, when we substitute the homeomorphisms
C! = R? — S§%\ orty, H! = R*0S*\ ort;, and Ca' = R® — S!\ ort; for the
homeomorphism R! — S!\ ort;.

Remark 1.2.5.7. The canonical embedding (x1,...,zx) = (71,...,7k,0) of R¥
in R¥*! permits identification of R* with the subspace xj4; = 0 of R¥*! and
may be regarded as an inclusion. This map induces inclusions DF — DF+1
Skt — Sk, and RP¥~! — RP*. Similarly, the inclusions C*¥ — C**! and
H* — HF! induce inclusions CP*~1 — CP* and HP*~! — HP*.

Set

R>® =1limR*, C*® =1imC*, H* =limHF,
D>® = limD*, S =limS*,

and
RP>® =limRP*, CP>® =1imCP*, HP*> = limHP*.
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The points of the spaces R, C*°, and H* can be naturally identified with
the real, complex, and quaternionic finitely-supported (i.e., having only a finite
number of non-zero terms) sequences {x}5°. The sphere S is included in the
ball D*°, which in turn is included in the space R*°. The projective spaces RP>°,
CP®° and HP> are constructed from S>° and D> by taking quotients that are
limits of the quotients described in Definitions 1.2.5.2, 1.2.5.3, and 1.2.5.4.

Remark 1.2.5.8. The previous description of CP™ and HP™, and also of CaP?!
as quotient spaces of spheres, define projections S?"+! — CP", S*+3 — HP",
and S'® — CaP?, which play a distinguished role. They are called Hopf maps.
The most important Hopf maps are S — CP! = §?, 8" — HP! = $*, and
S5 — CaP! = S8.

1.2.6 More Special Constructions

Definition 1.2.6.1. Let X be a topological space. The quotient space
(X xI)/(X x0)

is called the cone over X and is denoted by cone X. The point proj(X x 0) is
the vertex of the cone, the set proj(X x 1) is the base of the cone, and each set
proj(zxI), z € X, is a generatriz of the cone. The base of cone X is canonically
homeomorphic to X and is usually identified with X. The generatrices are
obviously canonically homeomorphic to 1.

For each map f from X into another topological space Y, we have the map
fact(f x idy): cone X — coneY, which is continuous whenever f is so. This
map is denoted by cone f.

Definition 1.2.6.2. The quotient of the product X x I by its partition whose
elements are the sets X x 0 and X x 1, and the points of the set

(X xD\[(X x0)U (X x1)],

is called the suspension of X and is denoted by sus X. The points proj(X x 0)
and proj(X x 1) are the vertices of the suspension, the set proj(X x %) is its
base, and the sets proj(xz x I), z € X, are its generatrices. The base of sus X
is canonically homeomorphic to X, while each of its generatrices is canonically
homeomorphic to I.

For each map f: X — Y there is the corresponding map
fact(f x idy): sus X — susY,

which we denote by sus f; sus f is continuous whenever f is so.
Notice that the suspension sus X can be alternatively described as cone X/X.

Remark 1.2.6.3. Let X; and X5 be topological spaces. The quotient space of
X1 x Xo x I by its partition into the sets x1 X Xo x 0 (with z; € X7), X3 xxox 1
(with zs € X5), and the points of

Xl*XQ = (X1XX2XI)\[(X1XX2XO)U(X1 XXQXl)},
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is called the join of X; and X5. The sets proj(X; x X2 x0) and proj(X; x Xox 1)
are the bases of the join, and the sets proj(zy x 2 x I) with z; € X; and
o € X5 are its generatrices. The bases are obviously canonically homeomorphic
to X7 and X5, and are usually identified with X; and X5. The generatrices are
canonically homeomorphic to I.

For each pair of maps fi: X7 — Y; and fo: X9 — Y5 we have the map
fact(f1 x fo xidy): X7 x Xa — Y1+ Y5, denoted by f1 % fa; f1 * f2 is continuous
whenever both f; and f; are so.

The *-operation is commutative, i.e., there exists a canonical homeomor-
phlsm Xox X7 — X1+ Xo.

We remark that the join X; x X5 may be alternatively defined as

(X1 [T X2) Uy (X1 x Xp x ),

where ¢: X7 x Xo x (0U1) — X; [[ X3 is given by ¢(z1, 22,0) = incly(x1),
p(r1,22,1) = incly(xe). It is also clear that the quotient space of X; x X5 by
its partition whose elements are the bases X; and X5, and the points of the set
(X1 % X2)\ (X1 UX>) is the suspension sus(X; x X3).

Remark 1.2.6.4. The iterated join (--- ((X1 * X3) * X3) - -+ ) * X, maybe canon-
ically embedded in the product cone X x --- x cone X. This embedding is
denoted by jc or, more precisely, by jex, . x ,and is defined inductively: for
n =1 it takes z; € X; into proj(z1,1) € cone X1, while for n > 2 it is given by

jCXl,...,Xn (proj(m, L, t)) = ((1 - t)jCXl,A..,X",l (JJ), proj(mn, t))’
wherez € (- ((X1%X2)*X3) -+ )x X1, T, € Xp, and ¢ € I; the multiplication
of a point of cone X; X --- X cone X,,_1 by 1 — ¢ is defined by the rule

(1 —t)(proj(z1,t1),...,proj(Tn—1,tn-1)) =
(proj(z1, (1 —t)t1),...,proj(xn—_1, (1 — t)tn_1)).

Clearly, the image of the embedding jey, . x, (proj(z,zn,t)) is precisely

.....

{(proj(z1,t1),...,proj(zn,,t,)) € cone X1 X «-+ x cone Xp|t; + -+ +t, = 1},

which allows us to identify the iterated join (- - ((X1 *x Xa2) x X3) - -+ ) x X,, with
this set.

Remark 1.2.6.5. The x-operation is associative, meaning, as usual, that the two
joins (X7 * X3) * X3 and X; % (X3  X3) are canonically homeomorphic. The
canonical homeomorphism

(X1 *XQ) * X3 — X1 % (X2 *Xg)
is the composition of the canonical homeomorphism

(Xl *XQ) * X3 — (X2 *Xg) * X1
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with the suitable compression of the canonical homeomorphism
cone X9 X cone X3 x cone X; — cone X; X cone Xo X cone X3.

A consequence of the associativity of the x-operation is that the multiple join
X % -+ % X, is meaningful for any topological spaces X1, ..., X,.

Theorem 1.2.6.6. The product cone X X --- X cone X,, is canonically homeo-
morphic to cone(Xy * -+ * X,,).

Proof. The canonical homeomorphism
cone(Xy x---x X)) — cone X1 X -+ X cone X,,
is defined as
proj(icx: _x, (proj(zi,t1), ..., proj(zn, tn)),t) =
(proj(z1, tt1/ max(ty,...,ts)), ..., proj(x,, tt,/ max(ty, ..., t,))).
O

Theorem 1.2.6.7. coneS™ and susS™ are are canonically homeomorphic to
DM+l gnd S™HL.

Proof. The canonical homeomorphisms cone S™ — D™*! and susS™ — S™+!
are defined by the formulae

proj((xy, ...y Tma1),t) — (txq, .. tTmy1)

and
proj((x1,...,Tm41),t) = (zysinmt,. .., Ty sinwt, cos wt).

O

Theorem 1.2.6.8. The join X xD° is canonically homeomorphic to cone X .
The join X S is canonically homeomorphic to sus X. The join X » SF is
canonically homeomorphic to the iterated suspension sus®*t! X; in particular,
S™ % S™2 s canonically homeomorphic to S™rTm2+1,

Proof. The canonical homeomorphism X x D% — cone X is given by
proj(x,0,t) — proj(z,t).
The canonical homeomorphism X xsus X is given by the formulae

proj(z,1,t) — proj(z, (1 +t)/2),
proj(xz,—1,t) — proj(x, (1 — t)/2).

Finally, the canonical homeomorphism X * S¥ — sus X is the composite map

X *SF 5 sus X xS o oo 5 susP X« S — susFt X
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where the last arrow denotes the canonical homeomorphism, and the r-th arrow,
with r < k, denotes the composite canonical homeomorphism

— — — — — ™
sus" TP X «SFTTH 5 ogus™ T X asusSFTT = sus” TP X «SF « SO

—sus" ' X %SO« SFTT 5 sus” X +SFT.

O

Remark 1.2.6.9. Combining the canonical homeomorphisms constructed in 1.2.6.6,
1.2.6.7 and 1.2.6.8, we obtain the composite homeomorphisms

S™ %k ST —
§M 4o §Mn-2  §Mn—1tmatl

m Mo+ Mmp+n—2 mi+my+n—1
S™M1 % S§™2 — S™ ,

D™ x - x D™ — coneS™ ! x -+ X coneS™ ! —

cone(S™ 1w ... x 8™ 5 cone STt

mi+...+mqy
DM ,

and

D™ %% D™ — coneS™ %D xconeS™ " % D0 —

cone(Sml—l *D° % % SMn—1—1 O *Sm,ﬁl) .

1

coneS™ ! x coneD? x - -+ x coneS™ ! x coneD? x "1

D™ x[x---xD™-1x]xD" —

D™ x D! x ... x D™t x D' x D™ —

pmitetmetn—1

Therefore, the join S™! x - -- x S™n the product D™ x --- x D™~ and the join
D™ % ---xD™» are canonically homeomorphic to the sphere S™1+mn+n=1 the
ball D™+ and the ball D™t +mntn=1 regpectively.

The Mapping Cylinder and the Mapping Cone

Definition 1.2.6.10. Let f: X; — X5 be a continuous map. The result of
attaching the product X x I to X5 by the map X; x Xs, (x,1) — f(x), is called
the mapping cylinder of f, and is denoted by Cyl;. The sets Imm; (X; x 0) and
Immy(Xy) are the lower and upper bases of Cyl;, and the sets Imm; (z x I)
with € X are its generatrices.

Clearly, the bases are canonically homeomorphic to X; and X, and they
are usually identified with these two spaces; the generatrices are canonically
homeomorphic to /. Moreover, there is a canonical retraction rt f: Cyl; — Xo,
defined on Imm; (X x I) as rt f(Imm; (x,t)) = Imm;, (z, 1)[= f(z)].
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It is evident that the composite map

incl

X, 2 oy, M x,

equals f.
If X; = X; and f = idx,, then Cyl; is canonically homeomorphic to the
cylinder over X7, X7 x I.

Definition 1.2.6.11. The mapping cone of the continuous map f: X; — Xs is
the space XoUcone X , denoted by Coney (do not confuse it with cone f, which is
amap, defined in Definition 1.2.6.11). Equivalent definition: Coney = Cyl; /X5.

1.2.7 Spaces of Continuous Maps

Definition 1.2.7.1. Let C(X,Y) be the set of all continuous maps of a topolog-
ical space X into a topological space Y. The set of all maps ¢ € C(X,Y) such
that ¢(A1) C By,...,9(A,) C By, where Ay, ..., A, and By,..., B, are given
subsets of X and Y, respectively, is denoted by C(X, Ay,..., An; Y, By,..., By).
It may be interpreted as the set of all continuous maps

(X,Al,...,An) — (KBlvan)

We equip C(X,Y) with the compact-open topology: by definition, this is the
topology with the pre-base consisting of all sets C(X, A;Y, B) with A compact
and B open. Together with C(X,Y), all the sets C(X, A1,...,An;Y,B1,...,By)
become topological spaces.

If Y is a point, then C(X,Y) reduces to a point. If X is discrete and con-
sists of the points z1,...,z,, then C(X,Y") is canonically homeomorphic to the
product Y x --- X Y of n copies of the space Y; this homeomorphism is given
by ¢ = (p(21, ..., (@n))-

To each pair of continuous maps f: X’ — X and g: Y — Y’ there corre-
sponds a mapping C(X,Y) — C(X’,Y’), given by the rule ¢ — go o f. This
mapping is continuous, and we shall denote it by C(f, g).

)

/| |

/ !
C(f,9):p>gopof

Theorem 1.2.7.2. IfY is a Hausdor{f space, then so is C(X,Y).

Proof. Indeed, if p,¢ € C(X,Y) and ¢ # 1, then there is x € X such that
p(x) # ¥(z). Let U and V be disjoint neighbourhoods of the points ¢(z) and
(z). Then C(X,z;Y,U) and C(X,z;Y,V) are disjoint neighbourhoods of the
points ¢ and . O



1.2. CONSTRUCTIONS 43

Theorem 1.2.7.3. If X is compact and Y is metrisable, then C(X,Y") is metris-
able. Moreover, if Y is equipped with a metric, then

dist(p, ¥) = sup dist(p(z), psi(z))
zeX

defines a metric on C(X,Y), compatible with its topology.

Proof. Given ¢ € C(X,Y), the set ¢(X) can be covered by a finite number of
balls of an arbitrarily small radius ¢ (see Theorem 1.1.7.11). It is clear that
w = N3_,C(X, o Y (U;);Y,U;) is a neighbourhood of the point ¢, contained in
the ball of radius 2¢ centred at ¢. Therefore, every ball in C(X,Y’) contains a
neighbourhood of its centre.

On the other hand, if A C X is compact and B C Y is open, with ¢(A) C B,
then C(X, A;Y, B) contains the ball with radius Dist(p(A),Y \ B) centred at ¢
(see Theorem 1.1.7.15). Therefore, every neighbourhood of ¢ belonging to the
pre-base considered in Definition 1.2.7.1 contains a ball centred at (. O

Theorem 1.2.7.4. For any topological spaces X and Yi,...,Y,, the space
C(X,Y1 x -+ xY,) is canonically homeomorphic to the product

C(X,Y1) x -+ xC(X,Yy,).

Proof. This canonical homeomorphism takes each ¢ € C(X,Y; x -+ x Y},) into
(proj; op, ...,proj, op) € C(X,Y1) x --- x C(X,Y,) (cf. Remark 1.2.2.4). O

Theorem 1.2.7.5. Let p be a closed partition of the compact Hausdorff space
X, and let Y be an arbitrary topological space. Then

C(proj,idy): C(X/p,Y) = C(X,Y)
is an embedding.

Proof. Tt suffices to show that given a compact subset A of X/p and an open
subset B of Y, the set

C(proj,idy): [C(X/p, A;Y, B)]
is open in C(proj, idy )[C(X/p,Y)]. Since X/p is Hausdorff (see Theorem 1.2.3.9),
A is closed. It follows that proj(A) is closed, and hence compact. Consequently,
C(X,proj~'(A);Y, B) is open in C(X,Y), and it remains to note that
C(proj, idy)[C(X/p, A;Y, B)] = C(X, proj~ ' (A); Y, B)NC(proj, idy ) [C(X/p; V)]

O
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The Mappings X xY — Z and X — C(Y, 2)

Theorem 1.2.7.6. Suppose that X, Y and Z are topological spaces, and
p: X XY =27

is continuous. Then the formula [p¥(z)](y) = @(x,y) defines a continuous
mapping ¥ : X — C(Y, Z).

Let : X — C(Y, Z) be a continuous mapping, and suppose thatY is Haus-
dorff and locally compact. Then the formula ¥ (z,y) = [¢(x)](y) defines a
continuous mapping " : X xY — Z.

Proof. To prove the first assertion, pick a point Xy € X, a compact set B C Y,
and an open set C' C Z. Then it is enough to exhibit a neighbourhood U of xg
such that ¢¥(U) C C(Y, B; Z,C). For each point y € B fix neighbourhoods U,
and V,, of zp and y such that (U, x V,) C C, and then extract a finite cover
Vs, Vys of B from the collection {V, },ep. It is clear that U = U_,U,, is a
neighbourhood of zg and that (U x B) C Ui_;¢(U,, xV,,) C C. It remains to
remark that the inclusion (U x B) C C is equivalent to ¥ (U) C C(Y, B; Z,C).

To prove the second assertion, pick a point (zg, o) € X XY and a neighbour-
hood W of the point ¢"(xg,yo). Now let us find a neighbourhood V of yo with
compact closure ClV satisfying C1V C [¢)(z0)] (W) (see Theorem 1.1.7.22),
and then a neighbourhood U of zq satisfying ¢(U) C C(Y,C1V;Z, W). Obvi-
ously, U x V is a neighbourhood of the point (z¢, o) and ¥ (U x V) C W. O

Theorem 1.2.7.7. The mapping C(X xY,Z) — C(X,C(Y,Z)) defined by the
rule ¢ — @V (see Theorem 1.2.7.6) is continuous for any topological spaces X,
Y and Z. If X is Hausdorff and Y is Hausdorff and locally compact, then this
mapping is a homeomorphism, and its inverse is given by the rule 1) — Y.

Proof. The continuity of the mapping ¢ — ¢V results from the fact that the
pre-image of C(X, A;C(Y, Z),C(Y, B; Z,C)) under this mapping is just

C(X xY,Ax B;Z,0).

Assume that X is Hausdorff and Y is Hausdorff and locally compact. Consider
a point g € C(X,C(Y; Z)), a compact subset @ of X XY, a neighbourhood W
of the set ¥{'(Q), and a point ¢ € Q. Now find a neighbourhood U, x V; of ¢
such that ¢ (U, x C1V,) C W. Since @ is compact, its images proj, (Q) and
proj,(Q) in X and Y are also compact (see Proposition 1.1.7.8). Moreover, they
are Hausdorff spaces together with X and Y, and hence normal (see Proposition
1.1.7.5). Consequently, there exist open subsets U7 of proj, (Q) and V of
proj,(Q) such that

proji(a) € Uy, Clyroj, @) Uy € Uy,
pro.]2(q) € ‘/:]/’7 Clprojz(Q) Vq/ C ‘/:1/
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and it is plain that the intersection (Ué X V:]’) N Q is open in (. Being compact,
@ can be covered by a finite number of such intersections, say

U, xV, U, xV,.

ql""’ qS

Now set

T = () C(X, Cloroj, (@) Uqi; C(Y; Z),C(Y, Clirojy (@) Vais Z, W)).

i=1

It is clear that T is a neighbourhood of ¢ and that the image of T under the
mapping ¢ — ¢ is contained in C(X x Y, Q; Z, W). We conclude that ¢ — "
is continuous. It is readily seen that the mappings ¢ — ¢V and ¢ — ¥” are
inverses of one another. O

A Surprising Application

Theorem 1.2.7.8. Let f: X — X' be a factorial map. If the space Y Hausdorff
and locally compact, then the map f x idy: X xY — X' x Y is factorial.
Proof. One can assume that X’ = X/ zer(f) and that f is the projection

X — X/ zer(f).

Consider the projection proj: X x Y — (X x Y)/(zer(f) x zer(idy)). The
mapping Pr¥: X — C(Y, (X xY)/(zer(f) xzer(idy)) is constant on the elements
of the partition zer(f), and hence it induces continuous mappings

fact proj¥: X' — C(Y, (X x Y)/(zer(f) x zer(idy))
(fact proj¥)": X' x Y — (X x Y)/(zer(f) x zer(idy)).
It it clear that the second of these mappings is the inverse of the injective factor

of fxidy: XxY — X’'xY. Thus the injective factor of fxidy : X XY — X'xY
is a homeomorphism. O

Theorem 1.2.7.9. Let f: X — X' and g: Y — Y’ be factorial maps. If X'
and Y are Hausdorff and locally compact, then the map f xg: X XY — X' xY’
is factorial.

Proof. In fact, one can express f X g as the composition

idys xg

X xy 29 xr oy X' xY'

and recall that a composition of factorial maps is again factorial. O
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1.2.8 The Case of Pointed Spaces

Definition 1.2.8.1. In the sequel, the class of topological spaces equipped
with a simple additional structure - a distinguished point (i.e, topological pairs
(X, zg), where ¢ is a point) will play an important role; we call these spaces
pointed spaces, and call the distinguished point a base point. The constructions
described in the previous subsections must be naturally modified when applied
to such spaces. For some of these construction, the modification entails merely
the addition of a base point to the resulting space: for example, the quotient
space of pointed space (X, o) has the natural base point proj(xo), the product of
the pointed spaces (X1, 1), ..., (Xn, z,) has the natural base point (x1,...,x,),
and the space of continuous maps from X into a pointed topological space (Y, yo)
contains the constant map const: X — Y, x — yo, and hence has the natural
base point const. Other constructions such as the sum, suspension, and join
need more serious modifications.

We shall describe these modified constructions below, and also introduce a
new one - the tensor product of pointed spaces. In every case, pointed spaces
produce pointed spaces, and base point-preserving maps again produce base
point-preserving maps. We remark that the maps fact f, C(f,g), and fi; x---Xx f,
preserve base points whenever the initial maps have this property.

We use the symbol bp as a general notation for the base points.

Bouquets and Tensor Products

Definition 1.2.8.2. The construction below replaces the sum construction for
pointed spaces.

Let {X,},em be a family of topological spaces with base points. The quo-
tient space of the sum HueM X, by the subset consisting of all points €, (x,,) is
called the bouguet (or the wedge) of the spaces, and is denoted by \/ ¢/ (X, zp1).
If M consists of the numbers 1,...,n, we also write (X1,21)V -V (Xn,Zn).
The point projoincl,(z,) € \/(X,,z,) does not depend on v; it is called the
centre of the bouquet \/(X,,x,), and is taken as its base point.

The bouquet \/(X,,, zm.) is obviously a union of the spaces X, (see Defini-
tion 1.2.4.2), and so there exist the embeddings Imm,,: X,, — \/(X,,z,). The
maps proj,: (X, z,) = X,, defined by

H /
proj, (Imm,, (z) = {XW Tf V/#%
x, if vV =u,
are specific to the bouquet construction. Clearly, proj, oImm = idx, and
proj, o Imm,, = const if v/ # v.

If M also indexes another family of pointed spaces (Y,,v,) and a fam-
ily of continuous maps f,: X, — Y, such that f,(z,) = y,, then the map
tact(I1 fu): V(Xu zp) = VY, y,) is well-defined and continuous; we denote
it by V fu.
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Definition 1.2.8.3. Let (X1,21),..., (X, x,) be pointed spaces. The rules
= (X, T2,...,2p) [T € Xq],...,x = (T1,...,Tn1,2) [2 € Xy,
define canonical embeddings
Xi—> Xy x---xXp,...,. X, = X1 x - x Xy,

denoted by incly,...,incl,. Moreover, the rule  +— (proj,(z),...,proj,(z))
defines a canonical embedding

(thl)\/"-\/(Xn,xn) — X1 %X Xp,

which allows us to regard the bouquet (X1,z1)V - -V (Xn,2n) as a subspace
of X1 x -+ x X,,. Clearly, incl;: X; — X1 x --- x X, is the composition of the
embedding Imm;: X; — (X,21) V- \/(Xn, 2,,) with the inclusion

Xz \/ -\ (X @) = X% x X,

while the projection proj,;: (X,21)V -V (Xn,zn) — X, is the restriction of
proj;: X1 x --- x X, = Xj;.
The quotient space

(X, 21) @+ @ (X, ) 1= (X1 X - x X)) /[(X,20) \/ -+ (X, )]

is called the tensor product of the spaces X1, ..., X,. The point

pl“Oj[(Xl,C(Jl) \/ T \/(men)] € (X, 1‘1) Q@ (Xm m:n)

is called the centre of the tensor product (X,z1) ® -+ ® (X,,x,) and is taken
as its base point.

The tensor product is a commutative and associative operation: there are
obvious canonical homeomorphisms

(X1,21) ® (X2, 22) = (X2, 22) ® (X1,21)
(X1, 71) ® [(X2,22) ® (X3, 23),bp] = [(X1,21) ® (X2,72),bp] ® (X3, 73);

this is also the way we understand the more general equality
[(X1,21) @ ® (Xn-1,%Tn-1),bp] ® (Xn,zn) = (X1,21) @ - ® (X, Tn)-
If (Y1,91),...,(Yn,yn) are other pointed spaces and
fi: X =Y, . fn: X =Y,
are continuous, base point-preserving maps, then the map
fact(fi x -+ x fo): (X1, 21) @+ @ (Xp, 2n) = (Y1,01) @ -+ @ (Yo, yn)

is well defined and continuous; we denote it by f1 ® - -+ ® fp.
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Cones, Suspensions, and Joins

Definition 1.2.8.4. The cone over the pointed space (X, ) is defined as quo-
tient of the usual cone cone X by its generatrix proj(zo x I), and is denoted by
cone(X, zg). The image of proj(zo x I) under the projection

cone X — cone(X, xg)

is the vertex of cone(X, x¢), and is taken as its base point. The image of the base
of cone X under the projection cone X — cone(X, x¢) is the base of cone(X, x¢);
this projection carries the first base onto the second one, and thus allows us to
identify the base of cone(X, zg) with X.

If (Y, yo) is another pointed space and f: X — Y is continuous, with

f(@o) = o,

then the map fact cone f: cone(X, zp) — cone(Y,yp) is well defined and contin-
uous, and we denote it simply by cone f.

Equivalently, one may describe cone(X,xzq) as the quotient space of the
cylinder X x I by (X x 0)U (zg x I).

Definition 1.2.8.5. The suspension of the pointed space (X, xo) is defined as
the quotient of the usual suspension sus Xby its generatrix proj(zo x I), and
is denoted by sus(X,xo). The image of this generatrix under the projection
sus X — sus(X, zg) is the vertez of sus(X,xg) and is taken as its base point.

If (Y,y0) is another pointed space and f: X — Y is continuous, with
f(Xo) = yo, then the map factsus f: sus(X,z9) — sus(Y,yp) is well defined
and continuous, and we denote it simply by sus f.

Equivalently, we may describe sus(X, z() as the quotient space of the cylinder
X xITby(Xx(QUl)U(xgxI),1ie., as

(X,20)® (I/(0U1),bp) = (X, x0) ® (S*, orty).
Another equivalent description: sus(X, xg) = cone(X, z¢)/X.

Definition 1.2.8.6. The join of the pointed spaces (X1,z1) and (Xa,x2) is
defined as the quotient space of the usual join X; x X5 by its generatrix

proj(zy X xg x I),

and is denoted by (X7, x1) * (X2, 22). The image of proj(xz; X xo x I) under the
projection X7 * Xo — (X1, 21) * (X2, x2) is the centre of (X, x1)* (X2, x2), and
is taken as its base point.

If (Y1,y1) and (Ys,y2) are another pointed spaces, and f;: X; — Y7 and
f2: X5 — Y5 are continuous maps such that fi(z1) = y1 and fo(x2) = y2, then
the map

fact(f1 * f2): (X1, 21) * (X2, 22) = (Y1, 91) * (Y2, 92))

is well-defined and continuous, and we denote it simply by f1 * fa.
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Theorem 1.2.8.7. For any two pointed spaces (X1,21) and (Xa,x2), the bou-
quet of suspensions is canonically homeomorphic to the suspension of bouquets:

(sus(X1,z1), bp) \/(sus(X27 Z2),bp) ~ sus((X1,x1) \/(Xg, x2), bp).

Proof. The canonical homeomorphism

(sus(Xy,x1),bp) \/(sus(Xg, x9),bp) — sus((X1,21) \/(Xg, x2),bp)
is given by
proj(Imm;(z),t) — Imm;(proj(z,t)) [z € X,;, i=1,2].
O

Theorem 1.2.8.8. cone(S,orty), sus(S,orty), and (S™,orty) * (S, orty) are
canonically homeomorphic to D™t S™*1 and S™T7+1 respectively.

Proof. The canonical homeomorphism sus(S™,ort1) — D™*! is defined as

proj((z1, ..., Zm41),t) = (tx1 + (1 — 1), tx9, ..., tTmi1).

First base

Second base

Figure 1.1: Suspensions of spheres

The canonical homeomorphism sus(S™,ort;) — S™*! transforms the gen-
eratrix passing through the point x € S™ onto the circle on S™*! with centre
(orty +x)/2 (which degenerates to the point ort; if @ = orty); as ¢ varies from
0 to 1, the image of the point proj(z,t) moves uniformly on this circle, starting
from orty, and continuing into the half space x,,11 < 0 (see Fig. 1.1, left).
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Finally, the canonical homeomorphism (S™,ort;) * (S™, ort) — S™+n+! is
defined on the bases S and S™ by the formulae

(l‘ " )'_> 3r1 +1 1‘%/5 ZC;,/EH 0 0 \/g(l—ﬂh)

1y---5dm+1 4 ) 2 P 2 s Uy e ey Uy 4
3xy + 1 x%ﬁ 33,‘1/_5;1 V3(z1 — 1)

(ml,...,$n+1)'—> 4 707"'7077a"'7 2 ) 4

and maps the generatrix joining the points z € S™ and 2’ € S™ onto the arc
of the great circle on S™*+"*! which joins the images of  and /, in such a way
that the lengths are linearly transformed (see Fig. 1.1, right). O

Definition 1.2.8.9. Since

cone(S"™, orty) = (S™,ort1) ® (I,0) (see Definition1.2.8.4), and
sus(S™, ort;) = (S™,ort1) ® (S*,ort;) (see Definition1.2.8.5),
the homeomorphisms cone(S™, ort;) — D™*! and sus(S™,ort;) — S™*1, de-
fined in Proposition 1.2.8.8, lead for n > 1 to the canonical homeomorphisms
S" = (St,ort) ® - - - @ (St orty),
D" = (SYorty) ® - -- ® (S, orty) ®(I, 0).

n—1

Now one can define the maps

id®---®@id®proj: D" = (S, orty) @ --- ® (S, orty) ® (I,0) —
(SHorty) ®@---®@ (S, ort) ® (I/(0U1),bp) = S™,
(proj®--- ® proj®idy) oproj: [" =T x--- x I —
(I/(0U1),bp)®---® (I/(0U1),bp) ® (I,0) =D".
We denote these by DS and ID. It is clear that DS takes int D™ homeomorphi-
cally onto S™ \ ort;, while ID takes homeomorphically int I onto int D", and

int I"~1 onto S"~! \ orty, and carries Fr I" \ int I"~! into ort;.
Since the map DS is closed (see Theorem 1.1.7.9), its injective factor

fact DS: D/S"! — §”
is a homeomorphism. Consequently, for n > 1, the quotient space D" /S"1 is
canonically homeomorphic to S™.
The Mappings (X, z0) ® (Y,y) — Z and X — C(Y,yo; Z, 20)

Theorem 1.2.8.10. Let (X, xy), (Y,y0) and (Z, zo) be pointed topological spaces.
If : (X,20) @ (Y,y0) = Z is continuous and preserves base points, then the
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formula [p°(x)](y) = ¢(proj(z,y)) defines a continuous, base point-preserving
mapping (¢”: X — C(Y,yo0; Z, 20)-

Let ¢v: X — C(Y,yo;Z,20) be a continuous, base point-preserving map-
ping, and suppose that Y is Hausdorff and locally compact. Then the formula
7 (proj(z,y)) = [v(2)](y) defines a continuous, base point-preserving mapping
’l/)m: (X,.’EQ) & (Y, yo) — Z.

Proof. Indeed,
" = abr[(poproj: X xy — Z)V],

while
Y7o (proj: X x Y — (X,20) @ (Y, 90))
=[4 o (incl: C(Y, yo; Z, 20) — C(Y, Z))]".
O

Theorem 1.2.8.11. Given arbitrary pointed topological spaces (X, xo), (Y, yo),
and (Z, zg), the mapping

C((Xa JIQ) & (K y0)7bp7 Z7 ZO) — C(X> {L'O,C(Y7 Yo; Z7 ZO)7COHSt)

given by the formula ¢ — ¢V (see Theorem 1.2.8.10) is continuous. If X and
Y are Hausdorff and compact, then this mapping is a homeomorphism and its
inverse is given by the formula ¢ — .

Proof. The preimage of C(X, A, zo; C(Y, y0; Z, 20),C(Y, B, yo; Z, C, zp), const) un-
der the mapping ¢ — " is just C((X,z0) ® (Y, yo),proj(A x B),bp; Z,C, zg),
which shows that ¢ — ¢" is continuous. Assume now that X and Y are Haus-
dorff and compact, and consider the mapping

C(proj,;dz): C((X,z0) ® (Y,v0),Z) = C(X x Y, Z).
By Theorem 1.2.7.5, this mapping is an embedding. Consider the diagramme

C(X7A,$0;C(Y, Yo; Za Zo),C(Y, BayO; Za 07 Zo),COHSt) — C((X7 .1‘0) ® (Y’ yo),bp; Za ZO)

| l

CX,C(Y, Z) C(X xY,2)

where the horizontal arrows denote the mappings iv) — ™ and ¢ — 9", and
the vertical arrows the composite mappings

C(X,20;C(Y,90; Z, 20), const) indl, C(X,C(Y,90; Z, 20))
C(idx ,incl) CX.CY.2)
and

incl

C((X,20) @ (Y, y0),bp; Z, 20) — C((X,z0) @ (Y, %0, 2))

Coroiida), o x w v, 7).
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Since this diagramme is commutative, the fact that C(proj,idz) is an embedding
implies the continuity of v — 1. That the mappings ¢ — " and ¢ — ¥ are
inverses of one another is plain. O

1.2.9 Exercises

Ezercise 1.2.9.1. Show that for each topological space X and each compact
topological space Y the map proj;: X x Y — X is closed.

Ezercise 1.2.9.2. Show that the subset of S” defined by the inequality

in the standard coordinates of R, is homeomorphic to I x S*~*,

Ezercise 1.2.9.3. Let M, X,,, and ¢,,/, be as in Definition 1.2.4.2, and let X
denote the union of the spaces X, defined by the homeomorphisms ¢,,,,,. Show
that the maps Imm,,: X,, — X are topological embeddings whenever M has
only two elements, but when M has three elements this is not necessarily so.

FEzercise 1.2.9.4. Show that for n > 1 the spaces C(I,0,1;S™, orty,orte) and
C(1,0,1;S™, orty,orty) are homeomorphic.

Ezercise 1.2.9.5. Let T be the set of all real sequences {z; }$°, with the topology
defined by the prebase consisting of all sets of the form {{z;}{°la < zs < b}.
Further, let S be the quotient space of 7 \ 0 (where 0 = {z; = 0}5°) by its
partition into rays, i.e, into the sets {{tz9}|0 < t < oo} with {z¥ € 7\ 0. Show
that 7 is metrisable, while S is regular, but has the peculiar property that every
continuous map S — R is constant.
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1.3 HOMOTOPIES

1.3.1 General Definitions

Definition 1.3.1.1. A continuous map f': X — Y is homotopic to the con-
tinuous map f: X — Y if there is a continuous map F: X x I — Y such that
F(z,0) = f(x) and F(z,1) = f'(z), for all z € X. Every such map F is called
a homotopy from f to f' (or connecting f to f’). One says also that F is a
homotopy of f. A map homotopic to a constant map is also said to be null
homotopic.

Often a homotopy F': X x I — Y is interpreted as a family of continuous
maps fi: X — Y, related to F via fi(x) = F(z,t) (0 <t <1). According to
Theorem 1.2.7.6, the continuity of F' implies that this family is continuous as
a map of the segment [ into C(X,Y’). Moreover, if X is Hausdorff, then the
continuity of the family f; is equivalent to that of the map F.

Obviously, the constant homotopy F of a continuous map f: X — Y, given
by F(z,t) = f(x), connects f to f; if the homotopy F' connects f to f’, then
the inverse homotopy, F’, defined by F’(x,t) = F(x,1 —t), connects [ to f; if
the homotopy F' connects f to f’ and the homotopy F’ connects f’ to f”, then
their product F”, defined as

FY () = F(z,2t), for t<1/2,
’ F'(z,2t —1), for t>1/2,

is a homotopy connecting f to f”. Thus homotopy is an equivalence relation,
which yields a partition of C(X,Y") into equivalence classes, called homotopy
classes. We denote the set of these classes by 7(X,Y).

Ezample 1.3.1.2. An example is the rectilinear homotopy. Namely, let f and f’
be continuous maps of a space X into a subspace Y of R". If for each x € X
the segment joining f(z) to f/(x) is entirely contained in Y, then

F(a,t) = (1= t)f(x) +tf'(x)

defines a homotopy from f to f’, referred to as rectilinear.
Obviously, any two maps of an arbitrary space into R™ or D™ are rectilinearly
homotopic.

Theorem 1.3.1.3. Let the maps f, f': X — Y be homotopic. Then given any
continuous maps g: Y =Y’ and h: X' — X, the maps go foh and go f' oh

are homotopic.

Proof. In fact, let F': X x I — Y be a homotopy from f to f’. Then
go Fo(hxidy)

is a homotopy from go foh to go f' oh. O
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Remark 1.3.1.4. As Theorem 1.3.1.3 shows, the mapping
C(h,g): C(X,Y) = C(X",Y")

induced by two continuous maps h: X’ — X and g: Y — Y transforms homo-
topy classes into homotopy classes. The resulting mapping

factC(h,g): m(X,Y) = n(X",Y")

is denoted by m(h, g), and Theorem 1.3.1.3 implies that it depends only on the
homotopy classes of h and g.

Stationary Homotopies

Definition 1.3.1.5. Let A be a subset of the space X. A homotopy
F: XxI—=Y

is said to be stationary on A or, simply, to be an A-homotopy if F(x,t) = F(z,0)
for all z € A and t € I. Two maps which can be connected by an A-homotopy
are A-homotopic. (Transcriber’s note: In the Western(?) world, this notion is
called a homotopy relative to A.)

As with usual homotopy, A-homotopy defines an equivalence relation, divid-
ing the set of continuous maps X — Y which coincide on A with a given map
f: A — Y, into equivalence classes. The latter are called A-homotopy classes
or, in full, homotopy classes of continuous extensions of the map f to X. We
denote the set of these classes by 7(X, 4; f).

Notice that a rectilinear homotopy from f to f’ (see Example 1.3.1.2) is
stationary on the set of points where f and g agree.

If one wants to specify that a certain homotopy is ordinary, i.e., not station-
ary, then one says that it is free.

Homotopy Equivalence of Spaces

Definition 1.3.1.6. A continuous map g: Y — X is a homotopy inverse of the
continuous map f: X — Y if the composition go f is homotopic to idx and the
composition f o g is homotopic to idy.

(Transcriber’s note: this means that there are continuous maps GF: X xI — Y
and FG:Y x I — Ysuch that

GF: X xI— X, GF(z,0)=go0f(z), GF(z,1)=x
FG:Y xI—=Y, FG(y,0)=fogly), FG(y1l) =y

).

A continuous map which has a homotopy inverse is called a homotopy equiva-
lence. If there is a homotopy equivalence X — Y, then one says that the space
Y is homotopy equivalent to the space X.
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The following are obviously homotopy equivalences: the identity map of
any space, a map which is a homotopy inverse of a homotopy equivalence, and
the composition of two homotopy equivalences. Thus, homotopy equivalence
among topological spaces is an equivalence relation. It divides the topological
spaces into classes called homotopy types (instead of saying that Y is homotopy
equivalent to X, one says also that X and Y have the same homotopy type).

Every homeomorphism is clearly a homotopy equivalence.

Theorem 1.3.1.7. If one of the continuous maps f: X =Y and g: Y — Z,
and their composition go f: X — Z are homotopy equivalences, then the other
map is also a homotopy equivalence.

Proof. Indeed, let h be a homotopy inverse of g o f, and suppose that f is a
homotopy equivalence. Then f o h is a homotopy inverse of g. Similarly, if g is
a homotopy equivalence, then h o g is a homotopy inverse of f.

X4>Z X4>Z

NN

Theorem 1.3.1.8. m(X,Y) is a homotopy invariant. That is to say, if
g Y =Y f: XX
are homotopy equivalences, then w(f,g): 7(X,Y) = w(X',Y’) is invertible.

Proof. Evidently, if f (respectively, ¢') is a homotopy inverse of f (respectively,
of g), then the map 7(f’, ¢’) is the inverse of 7 (f, g). O

Contractible Spaces

Definition 1.3.1.9. A space X is contractible if the map idx is homotopic to
a constant map.

R and Dn are examples of contractible spaces (see Example 1.3.1.2).

Theorem 1.3.1.10. A space is contractible if and only if it is homotopy equiv-
alent to a point.

Proof. If idx is homotopic to a constant map ¢, then the map f: D° — X
taking the value ¢(X), and the map g: X — D are homotopy inverses of one
another: indeed, fog = ¢ and go f = idpo.

If now f: D° — X and g: X — D° are homotopy inverses of one another,
then id x is homotopic to the constant map f o g. O
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Theorem 1.3.1.11. If X is contractible, then any two continuous maps of an
arbitrary topological space into X are homotopic. In particular, idx is homo-
topic to any constant map X — X.

Proof. This is a straightforward consequence of Theorems 1.3.1.10 and 1.3.1.8.
O

Deformation Retractions

Definition 1.3.1.12. A retraction p of a topological space X onto one of its
subspaces A (see Definition 1.1.4.13) is called a deformation (strong deforma-
tion) retraction if the composition X LNy RN ST homotopic (respectively,
A-homotopic) to idx. If the space X admits a deformation retraction (a strong
deformation retraction) onto A, then A is called a deformation retract (respec-

tively, a strong deformation retract) of X.

Obviously, if p: X — A is a deformation retraction, then p and the inclusion
A — X are homotopy equivalences, each being a homotopy inverse of the other.
It is clear also that any space which admits a deformation retraction onto one
of its points is contractible, and that every point of a contractible space is a
deformation retract of the ambient space.

Relative Homotopies

Remark 1.3.1.13. Let X (respectively Y) be a space with a distinguished se-
quence of subsets Ay,..., A, (respectively, By,...,B,). A map

F: (X xI,A xI,...,A, xI)— (Y,By,...,By)
is called a homotopy connecting the continuous maps
f7f/: (XaAla"'aAn) - (Y7B1a"'7B’n)

if abrs F' is a homotopy connecting the maps abrs f and abrs f’. In this case,
it is evident that abrabrs F': A; x I — B; is a homotopy connecting the maps
abrabrs f, abrabrs f': A; — B;. Moreover, it is readily seen that the homo-
topies

(X xI,Ay xI,...,A, xI)— (Y,By,...,By)

yield an equivalence relation. This relation divides
C(XvAlv"'7An;YvBla"'aBn)

into homotopy classes forming a set denoted by 7(X, A1,...,4,;Y, B1,...,B,).
We may give an analogous definition of the map m(h,g) from Remark 1.3.1.4.
A continuous map g: (Y, By,...,B,) = (X, A1,..., A,) is said to be a ho-
motopy inverse of the continuous map f: (X, Ay,..., A,) = (Y, By,...,By) if
go f is homotopic to relidx and fog is homotopic to relidy. A continuous map
possessing a homotopy inverse is called a homotopy equivalence. Two sequences
(X,A1,...,A,) and (Y, By,...,By) are said to be homotopy equivalent, or to
have the same homotopy type, if they are related by a homotopy equivalence.



1.3. HOMOTOPIES o7

Theorems 1.3.1.7 and 1.3.1.8, as they stand, apply to the case of relative
homotopy.

Remark 1.3.1.14. The situation discussed in Remark 1.3.1.13 encompasses the
case when X and Y are pointed spaces (in this case A; and B; are points,
n = 1, and the homotopies defined in Remark 1.3.1.13 are just the homotopies
stationary at A;). Moreover, the definition of a contractible space given in
Definition 1.3.1.9 extends to pointed spaces (however, the homotopy from idx
to a constant map must be stationary at the base point). The same is true for
Theorems 1.3.1.10 and 1.3.1.11, as well as for the definitions of a deformation
retraction and deformation retract, given in Definition 1.3.1.12 (X and A must
have the same base point, and the homotopy from the composition

X LA x

to idx must be stationary at this point). Also, the remarks in Definition 1.3.1.12
remain valid, while the definition of strong deformation retraction is entirely
unaffected by the presence of a base point.

1.3.2 Paths

Definition 1.3.2.1. A path in a topological space X is any continuous map of
the closed unit interval I into X. The points s(0) and s(1) are called the origin
and the end of the path s. Closed path (in which s(0) = s(1)) are also termed
loops.

Given a path s, the formula ¢t — s(1 — t) defines a new path, called the
inverse of s and denoted by s~!. Given two paths s; and sy with s1(1) = s2(0),
the formula

. s1(2t), for t<1/2,
s2(2t — 1), for t>1/2

defines a path, called the product of the paths s; and so, and denoted by s1s5.
Obviously, (s7')~' = and (s152) " = 55 's7*
Remark 1.3.2.2. Since I = D x I if any path can be considered as a homotopy
of a map D° — X. If one adopts such an interpretation, then the inverse path
becomes the inverse homotopy, while the product of paths becomes the product
of homotopies.

On the other hand, every homotopy between two continuous maps

fifiX—=Y

defines a path in C(X,Y), joining f and f’ (see Proposition 1.2.7.6), and again
the inverse path corresponds to the inverse homotopy, and the product of paths
to the product of homotopies. If X is Hausdorff and locally compact, then a
homotopy connecting two maps f, f': X — Y may be even defined as a path in
C(X,Y) joining f and f’.
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Remark 1.3.2.3. Since any path is a continuous map, it can be also subjected
to homotopies. Unfortunately, the generally accepted terminology for such ho-
motopies is not in complete agreement with our definitions in subsection 1.3.1.1
(which are also generally accepted). More precisely, when we consider paths,
the homotopies and the homotopy relation are understood always as (0 U 1)-
homotopies (i.e., homotopies stationary at the extremities of the interval I) and
(0 U 1)-homotopy relation, respectively. Moreover, a free homotopy of a loop is
understood always as a usual free homotopy whereby the path remains a loop
all the time (i.e., as a continuous map F': T x I — X such that F(0,t) = F(1,t)
for all t € I).

1.3.3 Connectedness and k-Connectedness

Remark 1.3.3.1. The properties of topological spaces we study in this subsection
represent weaker versions of the contractibility in the absolute case, and of
deformation retractability in the relative case.

Definition 1.3.3.2. A topological space is connected (see the Preface) if each
pair of its points can be joined by a path. (Note by the transcriber: this is
important in that we can avoid considering pathological cases like Topologist’s
sine curve.) Equivalently, X is connected if the set 7(D°, X) contains just an
element; see Remark 1.3.2.2.

Since 7(D°, X) is a homotopy invariant, connectedness is a homotopically
invariant property. In particular, all contractible spaces are connected. For
example, R™ and D™ are connected for every n.

For n > 0, S™ is also connected: any two points of S"can be joined by a
path, which in fact is contained in S™ \ p, where p is a third point (recall that
the punctured sphere S™\ p is homeomorphic to R™. S° is not connected: a path
joining —1 and 1 would be a continuous function on [0, 1], taking two distinct
values but no intermediate ones.

The only connected subsets of the real line R are the empty set, the finite
or infinite intervals, the finite or infinite semi-intervals, and the closed intervals.
Indeed, if o and B are the exact lower and upper bounds of a connected subset
A of R, then A contains the interval («, 3).

Remark 1.3.3.3. Given an arbitrary topological space X, the property of being
joined by a path defines a relation between its points, which obviously satisfies
all the requirements for an equivalence relation . This relation defines a partition
of X into subsets which are the maximal connected subsets of X, and are called
the components of X. Clearly, the set of components may be identified with
7(D°, X). We denote it by comp X.

Every continuous map f: X — Y induces the map

fact f = 7(id D°, f): comp X — compY.

This map does not change when we replace f by an arbitrary homotopic map,
and fact f is invertible whenever f is a homotopy equivalence (see Remark 1.3.1.4
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and Theorem 1.3.1.8). It is also plain that if f(X) =Y, then
fact f(comp X) = compY.

In particular, the image of a connected space under a continuous map is con-
nected.

Theorem 1.3.3.4. If X can be written as the union of two connected subsets
Ay and Ay with Ay N Ay # &, then X is connected.

Proof. Indeed, a component of X which contains a point xy € A; N A contains
also Ay and As, i.e., contains X. O

Theorem 1.3.3.5. Consider a partition of X into open sets. Then every con-
nected subset of X is contained in one of the elements of this partition. In
particular, every subset of a connected space which is both open and closed is
either empty or the whole space X.

Proof. Let A be a connected subset of X, and let U be an element of the
partition, such that U N A # @. Consider the map f: X — S° which takes U
into 1 and X \ U into —1. Since f is continuous, f(A) is connected, whence
f(A)=1land ACU. O

k-Connectedness

Theorem 1.3.3.6. The following properties of a continuous map f:S" — X
with v > 0 are equivalent:

(i) f is homotopic to a constant map;
(ii) f extends to a continuous map D™ — X;

(iii) the compositions f o DSy, foDS_: D" — X are S"~!-homotopic, where
DS+ and DS_ are the embeddings of D" in S", defined by

]D)S—i—(l’l,...,l‘r)<$1,...,$T,\/lx%...x%) and

(iv) f is orty-homotopic to a constant map.

Proof. The proof follows the following scheme:
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(i) — (i1). A homotopy F:S" x I — X from f to a constant map takes the
upper base of the cylinder S” x I into one point. Consequently, F' may be
expressed as the composition of the map S” x I — D", defined by

((mlv cee a$T+1)at) — (xl(l - t)v cee ,:L'T+1(1 - t))a

and a continuous map g: D! — X (see Remark 1.2.3.4 and Proposition
1.1.7.9), and it is clear that g|s- = f.

(i1) — (i4i) and (i4) — (iv). Suppose g: D"™! — X is a continuous extension of
f. Then the formulae

(21, ., Try1),t) r—)g(xl,...,xr+1,(12t)\/1:c%~~~x%) and

(@1, arg1), ) = gt + (L= a1, (1 =)z, ..., (1 = D) @rs1)

define an S"~!-homotopy D" x I — X from foDS, to foDS_, and an ort;-
homotopy S" x I — X from f to a constant map.

(#47) — (i1). An S"-homotopy f: D" x I — X from fo DS, to foDS_ takes
every generatrix of the cylinder S” x [ into one point. Consequently, F' can be
expressed as the composition of the map D™ x I — D" T, defined by

(w1, ), t) > (ml,...,xr,(%—l)\/l—x%—---—x%)7

and some continuous map g: D"*! — X (see Remark 1.2.3.4 and Proposition
1.1.7.9), and it is clear that g|s- = f.
(iw) — (¢). This implication is trivial. O

Definition 1.3.3.7. A non-empty space X is said to be k-connected (0 < k <
00), if any continuous map S” — X with r < k is homotopic to a constant map,
i.e., satisfies condition (i) of Proposition 1.3.3.6. Theorem 1.3.3.6 shows that
this definition has three more equivalent formulations, based on conditions (ii),
(iii) and (iv. Moreover, since for any continuous maps fi, fo: D" — X which
agree on S"~! there is a continuous map f:S" — X such that foDS, = f;
and foDS_ = f5, we conclude that a non-empty space X is k-connected if and
only if any continuous maps fi, fo: D" — X, r < k, which agree on S"~! are
S~ !-homotopic.

Obviously, for non-empty spaces 0-connectedness is nothing else but con-
nectedness. The 1-connected spaces are usually called simply connected. Note
that a 0-connected space is simply connected if and only if any two paths with
common extremities are homotopic.

The homotopy invariance of the sets 7(S", X') implies that a space which is
homotopy equivalent to a k-connected space is itself k-connected. In particular,
every contractible space is co-connected.

The Relative Case
Theorem 1.3.3.8. The following properties of a continuous map

f: (D", S = (X,4), r>0
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are equivalent:

(i) f is homotopic to a constant map;

(ii) abrs f is ST"1-homotopic to a map which carries D" into a subset of A;

Proof. (i) = (ii): If F': (D" x I,S" x I) — (X, A) is a homotopy from f to a
constant map, then the formula

(2.1) {F(x/ dist(0, z),2(1 — dist(0,2))),  if dist(0,2) > (2—1)/2,
| F(2e/@=1),0), if  dist(0,x) < (2-1)/2,

defines an S"-homotopy D x I — X from abrs f to a map which carries D" into
a subset of A.

(i) = (i): f G: D" x I — X is a homotopy stationary on S"~! from abrs f to
a map which carries D" into a subset of A, consider the map F': D" x I — X
given by

G(z1,...,x.),2t), if t<1/2,

(g, a),t) = {G((leu —t),...,22,(1—1),1), if t>1/2.

Then rel F: (D" x I,S""! x I) — (X, A) is a homotopy from f to a constant
map. O

Remark 1.3.3.9. A pair (X, A) is k-connected (0 < k < o0) if for any map
f: (D", S — (X, A) with r < k, abrs f is S"~!-homotopic to a map whose
image is contained in A.

It is clear that the pair (X, A) is O-connected if and only if each component
of the space X intersects A. If k& > 0, then (X, A) is k-connected if and only
if every continuous map f: (D",S""1) — (X, A) with r < k is homotopic to a
constant map; see Theorem 1.3.3.8.

A pair which is homotopy equivalent to a k-connected pair is k-connected.
As a consequence, we see that when A is a strong deformation retract of X, the
pair (X, A) is oo-connected; indeed, (X, A) is homotopy equivalent to (X, X).
It will be clear later that the pair (X, A) is already oo-connected if A is a
deformation retract of X, or even when the inclusion A — X is a homotopy
equivalence; see Remark 5.1.6.7.

1.3.4 Local Properties

Definition 1.3.4.1. A topological space X is locally contractible at the point
xg € X if each neighbourhood U of z( contains another neighbourhood V' of zq
such that the inclusion V < U is homotopic to the constant map V — zg. A
topological space is locally contractible if it is locally contractible at any of its
points.

If we replace in these definitions the homotopies by zg-homotopies, the we
get the definitions of a space X which is strongly locally contractible at the point
xg, and of a strongly locally contractible space X.

R™, D™ and S™ are examples of strongly locally contractible spaces.
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Definition 1.3.4.2. A topological space X is locally connected at the point
o € X if each neighbourhood U of xpq contains another neighbourhood V' of
Zg, such that any two points in V' can be joined by a path in U. A topological
space is locally connected if it is locally connected at any of its points.

It is clear that a locally contractible space is locally connected. As an exam-
ple of a connected space which is not locally connected we may take the subset
of R? consisting of the lines myx; + moxo, with my, my € Z.

Theorem 1.3.4.3. A space is locally connected if and only if the components
of its open sets are open. In particular, in a locally connected space every neigh-
bourhood of an arbitrary point contains a connected neighbourhood of this point.

Proof. Suppose that X is locally connected, U is an open subset of X, A a
component of U, and xy € A an arbitrary point. Then, by definition, U contains
a neighbourhood V of z( such that any two points in V' can be joined by a path
in U. Hence V C A and zg € int A. This proves that in a locally connected
space the components of the open sets are open. O

1.3.5 Borsuk Pairs

Definition 1.3.5.1. A topological pair (X, A) is a Borsuk pair if given any
topological space Y E, any continuous map f: X — Y, and any homotopy
F: Ax I — Y of the map f|a, there is a homotopy X x I — Y of f which
extends F'.

Ax0—= > X x0

AN
e

Ax]T X><I

(Transcriber’s note: As stated in the Preface, this is called a “cofibration” in the
western literature.)

If (X, A, B) is a topological triple such that (X, A) and (A4, B) are Borsuk
pairs, then (X, B) is obviously a Borsuk pair.

Theorem 1.3.5.2. Let (X, A) be a topological pair. Then in order for (X, A)
to be a Borsuk pair it is necessary that (X x 0) U (A x I) be a retract of the
cylinder X x I. When A is closed, this condition is also sufficient.

Proof. THE NECESSITY. Any homotopy of the map
incl: X =Xx0— (Xx0)U(AxI)

which extends the homotopyincl: A x I — (X x 0) U (A x I) is a retraction of
the cylinder X x I onto (X x 0) U (A x I).
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THE SUFFICIENCY. Let p: X x I — (X x0) U (A x I) be a retraction.
Then given any topological space Y, any continuous map f: X — Y, and any
homotopy F': A x I — Y of the map f|a, the composition

XxISH(xx0)uAdxnSy,

where G is defined by

) fx), it t=0,
G(I7t){F(x,t), if xe€A,

is a homotopy of f which extends F'. O

Remark 1.3.5.3. The following statement completes Theorem 1.3.5.22 in an
essential way. If X is Hausdorff, then the assumption that (X x 0) U (A x I) is
a retract of the cylinder X x I implies automatically that A is closed.

Indeed, it suffices to note that the above hypothesis implies that (X x 0) U
(Ax1I)isclosed in X x I (see Proposition 1.1.5.5), and that A is the pre-image
of this set under the map X — X x I, z — (x,1).

Theorem 1.3.5.4. If the sets A and B form a closed cover of the space X and
(A, AN B) is a Borsuk pair, then (X, B) is also a Borsuk pair.

Proof. This is a consequence of Proposition 1.3.5.2; in fact, any retraction
p: AXI—=[Ax0U[(ANB) x I]

defines a retraction X x I — (X x 0) U (B x I) by

(2,1) > plx,t), if xe€A,
7 (z,1), if zeB.

Theorem 1.3.5.5. If (X, A) is a Borsuk pair and A is closed, then
(Zx X,Z x A)
is a Borsuk pair for every topological space Z.

Proof. If p is a retraction of the cylinder X x I onto (X x 0) U (A x I), then
idz xp is a retraction of the cylinder (Z x X) x I = Z x (X x [) onto

[(ZxX)x0U[(ZxA)xI=Zx[(X x0)U(AxI).
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Borsuk Pairs and Deformation Retractions

Theorem 1.3.5.6. If (X, A) is a Borsuk pair and the inclusion A — X is a
homotopy equivalence, then A is a deformation retract of X.

Proof. Let pi: X — A be a homotopy inverse of the inclusion A — X. Extend
the homotopy from 7|4 = woincl: A — A to id4 to a homotopy of the map 7;

this yields a homotopy from 7 to a retraction of X onto A, which we denote by
p. Since the composition X & A Incl X is homotopic to idx, the composition

X 2 A2 X s also homotopic to id x, and thus p is a deformation retraction.
O

Theorem 1.3.5.7. If A is a deformation retract of X and
(X XxI,(X x0)UAxI)U(X x1))
is a Borsuk pair, then A is a strong deformation retract of X .

Proof. Let p: X — A be a deformation retraction, and let f: X x I — X be a

incl

homotopy from idy to the composite map X £ A =< X. Define a homotopy
G (X Xx0OUAXxDHUX x| xI—=X

by
x, if t;1 =0,
g((z,t1),t2) = S f(z, (1 —t2)t1), if xe€A,
flp(z), 1 —ta), if ¢ =1,

and extend it to some homotopy G: (X xI)xI — X of themap f: X xI — X.
It is clear that (z,t) — G((x,t),1) yields an A-homotopy X x I — X from idx
to inclop. O

Theorem 1.3.5.8. If (X, A) is a Borsuk pair and B is a strong deformation
retract of the space A, then the map rel: (X, B) — (X, A) is a homotopy equiv-
alence.

Proof. Consider a B-homotopy from id4 to the composition of a strong de-
formation retraction A — B and the inclusion B < A. Now extend it to a
homotopy G of idx. It is clear that the map (X, A) — (X, B), x — G(x,1), is
a homotopy inverse of rel. O

Local Characteristics of Borsuk Pairs

Theorem 1.3.5.9. Suppose that (X, A) is a Borsuk pair with X normal, Y
is any topological space, and f: X — Y is any continuous map. Then given
any homotopy F of the map f|a and any neighbourhood U of A, there is an
(X \ U)-homotopy of f extending F.
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Proof. Let G be a homotopy of f extending F, and let ¢ be any Urysohn
function for the pair (X \ U, A). Then the formula (z,t) — G(z,tp(z)) defines
an (X \ U)-homotopy of f extending F'. O

Theorem 1.3.5.10. If (X, A) is a Borsuk pair, then there exists a neighbour-
hood U of A such that the inclusion U — X is A-homotopic to a map which
takes U into a subset of A. If X is normal and A is distinguishable (in partic-
ular, if X is metrisable and A is closed), then this condition is also sufficient,
i.e., the converse of the above statement is valid.

Proof. THE SUFFICIENCY: Let F': U x I — X be an A-homotopy such that
F(z,0) = z and f(z,1) € A for all © € U, and let ¢: X — I be a Urysohn
function for the pair (A, X \ U), which distinguishes A (see definition 1.1.5.11).
The formula

o) = {5(9:,min(t/cp(z),1)), i iiZ\A’

defines amap G: U x I — X, and Theorem 1.2.2.14 shows that G is continuous.
This in turn implies the continuity of the map H: X x I — X x I defined by

Hz,t) = (G(z,max(0,t — p(x))), max(0,t — 2p(x))) if zeU,
) (,0) if ze€X\U.
It is readily seen that H(X x I) = (X x 0) U (A x I) and that
abrH: X x I = (X x0)U(Ax1T)

is a retraction. O

Theorem 1.3.5.11. Let (X, A) be a topological pair such that A is a strong
deformation retract of one of its neighbourhoods. If X is normal and A is
distinguishable (in particular, if X is metrisable and A is closed), then (X, A)
is a Borsuk pair.

Proof. This is a corollary of Theorem 1.3.5.10. O

Theorem 1.3.5.12. If (X, A) is a Borsuk pair, then given any neighbourhood
V' of A, there is another neighbourhood W of A, such that W C V and the
inclusion W — V is A-homotopic to a map which takes W into a subset of A.

Proof. By Theorem 1.3.5.10, there exists a neighbourhood U of A and an A-
homotopy F: U x I — X such that F(x,0) = z and F(z,1) € A for all x € U.
Now Lemma 1.2.2.13 shows that every point x € U has a neighbourhood W,
in U with FOW,, x I) C V. Set W = UzeaW,. It is clear that W C V,
F(W x I) C V, and that abr F: W x I — V is an A-homotopy from the
inclusion W — [ to a map which takes W into A. O

Theorem 1.3.5.13. If X is a topological space and x € X is such that (X, x)
is a Borsuk pair, then X is strongly locally contractible at x. If X is normal and
locally contractible at a distinguishable point x, then (X, z) is a Borsuk pair.

Proof. This is a consequence of Theorems 1.3.5.12 and 1.3.5.10. O
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1.3.6 CNRS-spaces

Definition 1.3.6.1. A subset A of a topological space X is said to be a neigh-
bourhood retract of X if A is a retract of one of its neighbourhoods in X.

The retracts and the open sets are trivial examples of neighbourhood re-
tracts.

Theorem 1.3.6.2. If A is a neighbourhood retract of X and B is a neighbour-
hood retract of A, then B is a neighbourhood retract of X.

Proof. Indeed, let p: : U — A be a neighbourhood retraction for A in X, and let
o: V — B be a neighbourhood retraction for B in A. Then oo (p|w): W — B,
where W = p~1(V), is a neighbourhood retraction for B in X. O

Definition 1.3.6.3. A topological space is a CNRS-space or, simply, a CNRS, if
it is compact and can be embedded in a Euclidean space (of a certain dimension)
as a neighbourhood retract; CNRS is the abbreviation of compact neighbourhood
retract of a sphere.

D™ and S™ are obvious examples of CNRS’s.
Theorem 1.3.6.4. A compact neighbourhood retract of a CNRS is a CNRS.

Proof. This is a result of Theorem 1.3.6.2. O

Theorem 1.3.6.5. The image of any embedding of a CNRS in a normal space
is a neighbourhood retract.

Proof. Let f: X — Y be an embedding of the CNRS X in the normal space Y,
and let g: X — R”™ be an embedding of X such that g(X) is a neighbourhood
retract of R™. Further, consider

fi=Tlabr f: X — f(X)], g1 =[abrg: X — g(X)],

and let p: V' — ¢g(X) be a neighbourhood retraction. Since f(X) is closed (see
Proposition 1.1.7.9), go f{*: f(X) — R™ extends to a continuous map

h:Y - R"

(see Theorem 1.1.5.17). It is clear that U = h=*(V) is a neighbourhood of f(X),
and that f; o gy ' opofabrh: U — V] is a retraction of U onto f(X). O

Theorem 1.3.6.6. Given any compact neighbourhood retract X of R™, there is
a number € > 0 such that any two maps, f and g, of an arbitrary space Y into
X which satisfy

sup dist(f(y),9(y)) < e
yeY

are homotopic. Moreover, one may choose a homotopy stationary on the set
where f and g agree.
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Proof. Let 0: U — X be a neighbourhood retraction. We show that one may
take € to be the distance between X and R™\ U (which is positive by Theorem
1.1.7.15).

Let f,g: Y — X be continuous and satisfy sup, .y dist(f(y),9(y)) < e.
For any point y € Y, the segment with the extremities f(y) and g(y) lies in

incl incl

U. Consequently, the composite maps Y i> X2 UandY & X 25 U
can be connected by a rectilinear homotopy F': Y x I — U, and it is plain that
ocoF:Y xI — X is a homotopy from f to g. Furthermore, oo F' is is stationary
on the set where f and g agree. O

Theorem 1.3.6.7. if A is a neighbourhood retract of a CNRS X, then (X, A)
is a Borsuk pair.

Proof. Let 0: U — A be a neighbourhood retraction. Consider X as a neigh-
bourhood retract of R”™ and pick € as in Theorem 1.3.6.6. Denote by V' the neigh-
bourhood of A in X consisting of all the point « € U for which dist(z, o(z)) < e,
and let ¢ be the composition

incl

v, 4 x

Then dist(p(z),2) < € for x € V, and p(z) = = for x € A. Hence the inclusion
V — X is A-homotopic to ¢, and since (V) = A, we can apply Theorem
1.3.5.10. u

Theorem 1.3.6.8. Every CNRS is strongly locally contractible.

Proof. This is a consequence of Definition 1.3.5.1, and Theorem 1.3.5.13. O

Information

Information 1.3.6.9. The converse of Theorem 1.3.6.8 is also true: every locally
contractible compact subspace of a Euclidean space is a neighbourhood retract
of this space. For a proof, see [14].

1.3.7 Homotopy Properties of Topological Constructions

Remark 1.3.7.1. In this subsection we establish the homotopy invariance of some
of the constructions described in §1.2 and study the homotopy properties of the
resulting spaces.

Products

Remark 1.3.7.2. Obviously, two continuous maps f,g: Y — X; x -+ x X,
are homotopic if and only if proj, of, proj; og: ¥ — X, are homotopic for all
i=1,...,n (see Remark 1.2.2.4). In particular, X; x --- X x,, is k-connected if
and only if all the X;’s are k-connected (0 < k < 00).
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It is also clear that if the maps g1: X1 — Y1,...,9n: X,, — Y, are homotopic
to the maps f1: X1 — Y1,..., fn: X — Y,, then

gL X Xgp: Xy XXX, —>Yy x---xY, and
fix- o xfrn:Xgx--xX,=>Y x--- XY,

are homotopic; moreover, if fi,..., f, are homotopy equivalences, then so is
Jixe X

Remark 1.3.7.3. If A is a deformation retract (strong deformation retract) of X,
then AxUY is a deformation retract (respectively, a strong deformation retract)
of the product X x Y, for any space Y. In particular, if X is contractible, then
the fibres X Y of the product X x Y are deformation retracts of X x Y.

Quotients

Remark 1.3.7.4. Since the projection X — X/p is continuous, the quotient
space of a connected space is connected (see Remark 1.3.3.3). Moreover, in
order that the quotient X/A of X by its subspace A be connected, it is even
enough that the pair (X, A) be 0-connected; if the components of X are open,
then the connectedness of X/A implies the 0-connectedness of (X, A).

We shall see later that neither the k-connectedness with k& > 0, nor the
contractibility are, generally speaking, preserved when one takes quotients.

Theorem 1.3.7.5. Let p and q be partitions of the spaces X and Y. If the
maps fi: X — Y form a homotopy and take the elements of o into elements of
q, then the maps fact fi: X/p — Y/q also form a homotopy.

Proof. We have to verify that the map
G: (X/p)xI—=Y/q, (x,t)— (fact fi)(x),

is continuous. To do this, it suffices to note (see Remark 1.2.3.4) that the
composition

X x [ 2 oy« 1 S vy

is continuous, and that the map proj x idy is factorial. The first is a consequence
of the commutativity of the diagram

proj X idy

XxI——— (X/p)x1I

. |o

_—
Y proj Y/ 1

where F' is F(x,t) = fi(x), while the second follows from Theorem 1.2.7.8. [

Theorem 1.3.7.6. If f,f': (X,A) — (Y,B) are homotopic, then the maps
rel fact f, relfact f': (X/A,proj(A)) — (Y/B,proj(B)) are also homotopic. If f
is a homotopy equivalence, then so is relfact f.
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Proof. The first assertion is a corollary of Theorem 1.3.7.5, while the second
is a consequence of the first: if g: (Y, B) — (X, A) is a homotopy inverse of
f, then relfact g: (Y/B,proj(B)) — (X/A,proj(A)) is a homotopy inverse of
relfact f. O

Theorem 1.3.7.7. If (X, A) is a Borsuk pair and A is contractible, then
rel proj: (X, A) — (X/A, proj(A)) is a homotopy equivalence.

Proof. Let F: A x I — A be a homotopy from id4 to a constant map, and let
G: X x I — X be a homotopy of idx extending F'. Denote by g: X — X the
map x — G(x,1) which is homotopic to idx. Since g is constant on A, the
map fact g: X/A — X is meaningful; moreover, since fact g(proj(4)) C A, the
map relfact g: (X/A;proj(4)) — (X, A) is also meaningful. Let us check that
rel fact g is a homotopy inverse of rel proj. Consider the homotopies

relG: (X xI,Ax1I)— (X,A) and
relfact G: ((X/A) x I,proj(A) x I) — (X/A,proj(A)).

The first connects the maps
relidx,relg: (X, A) — (X, A)
while the second connects the maps
relid x /), relfact g: (X/A,proj(A)) — (X/A, proj(A)).

It is clear that

frel g: (X, 4) = (X, A)] =

[rel fact g: (X/A, proj(A)) = (X, A)] o [relproj: (X, A) — (X/A,proj(A))]
and

[relfact g: (X/A,proj(A)) — (X/A, proj(A))] =
[rel proj: (X, A) — (X/A,proj(A))] o [relfact g: (X/A, proj(4)) — (X, A)].

Attachings

Theorem 1.3.7.8. If (X1,C) is a Borsuk pair and p,¢ : C — X5 are ho-
motopic, then the spaces Xo U, X1 and Xo Uy Xy are homotopy equivalent.
Moreover, there is a homotopy equivalence f: Xo U, X1 — Xo Uy Xy such that
the following diagram is commutative:

VW

X UW X1 %XZ Uap X1

(1.3.7.9)
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Proof. Let p: C x i — X5 be a homotopy from ¢ to ¢’, and let
o: Xy xI— (x; x0)U(CxI)
be a retraction. Define the maps
h: (X1 x0)U(C xI)— XU, Xy, h':(Xyx0)U(Cxl) = Xy Uy Xy

by
h(z.t) = Imm; (x), %f t=0,
Imms op(x, t), if zeC,

and

W () = Imm; (z), if t=0,
’ Imms ot)(x, 1 — t), if zeC,

Now define two more maps,
fZXQUSOX—)XQULp/Xl, gZX2U¢IX1—>X2U¥,/X1
via

folmmy(z) =h oo(x,1), folmmy(z)=Imms(z), and

golmm;(z) =hoo(x,1), golmmy(z)=Imms(x).

It is clear that all these maps are continuous and that the diagram (1.3.7.9) is
commutative. Moreover, it is readily seen that the map Xy U, X7 — Xo Uy Xy
given by

(Imm; (z),t) = hooop(o(x,t),t), (Immy(z),t)— Imms(x),

where ¢: (X7 xI)xI = X x I, ¥((z,u),t) = (z,max(0,t —u)) , is a homotopy
from id(X2U, X1) to go f. Thus, go f is homotopic to id(x,u, x,) and, similarly,
f o g is homotopic to id(XQUW,Xl) . O

Lemma 1.3.7.10. If the maps f: Y — Y’ and f':Y' — Y are homotopy
inverses of one another, then given any homotopy F': Y x I =Y from idy to
f' o f, there is a homotopy F':Y' x I — Y’ from f o f’, such that the maps
foF,Flo(fxidy): Y xI—=Y" are[Y x0)U(Y x 1)]-homotopic.

Proof. Let G: Y’ x I — Y’ be an arbitrary homotopy from idy~ to f o f/, and
let F’ be the product of the following three homotopies: G, f o F o (f' x idj),
and the inverse of the homotopy G o (f x idy) o (f’ x id;) . Divide the square
I? into eight pieces, as shown in Fig. 1.2, left:

the points Aj, Ay, Az, A4 have the abscissae 0,1/2,3/4,1, and ordinate 0,

the points By, ..., Bg the abscissae 0,1/8,1/4,1/2,3/4, 1, and ordinate 1/2, and
the points C7, Cs the abscissae 0,1, and ordinate 1.
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Now define affine maps a1: I? — P; and ay: I? — P, with the following
properties:

(11(0,0) ZBg, 01(1,0=B4, 051(0, 1) :Ag,
Oé2(0,0> = B57 Oég(l, O) = B47 042(0, 1) = A4'

Further, for y € Y define a map ¢, : I? — Y’ through the conditions:

oy (ti,ta)) = f(F(F(y,t2),t1) and
pylaa(ti,t2)) = G(f o F(y,t2), t1);

if 0 <t <1/2, then ¢,(t,0) = G(f(y),2t); the restriction
©ylg, is constant on all segments parallel to the line AsBs;
©ylg, is constant on all segments passing through the point D;;
©y|q, is constant on the vertical segments;
©y|q, is constant on all segments parallel to the line Cy Bs;
©y|os 1s constant on all segments passing through the point Do; and, at last,
©ylos is constant on the vertical segments
those segments on which ¢, is constant are depicted in Fig. 1.2, right.
It is clear that the formula ((y,t1),t2) — @, (t1,t2) defines a [(Y x0)U(Y x1)]-
homotopy (Y x I) x I =Y’ from fo F to F' o (f x idj). O

g G
s
ICANK
NG \5, 8, e/
Y3 2\ a e &
& \\\
23
R 2 \&g
03 / 2 &
A, A Ay A,

Figure 1.2: Left and right.

Theorem 1.3.7.11. Let (X, C) be a Borsuk pair with C closed. Let ¢: C =Y
be a continuous map. If f: Y — Y’ is a homotopy equivalence, then

fact(idx I1f): Y Uy X = Y Upop X

is also a homotopy equivalence.
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Proof. Let us fix:
(i) homotopy inverse of f, f': Y/ = Y;
(ii) a homotopy F': Y x I — Y from idy to f'o f;
(iii) a homotopy F’: Y’ x I — Y’ from idy: — fo f’,
together with an [(Y x 0) U (Y x 1)]-homotopy G: (Y x I) x I =Y’
from fo F to F' o (f xid;) (see Lemma 1.3.7.10) ;
(iv) a retraction p: X x I — (X x 0)U (C x I).
Further, define

g: (X x0)u(CxI)—=UU, X and
g (X x0)UCxD]xI—=Y Upsp X

by

Imm; (z), it t=0,
g(x,t) = :
Imms oF (p(2),t), if zed,

and
Imm; (z), if t;1 =0,

g/((w,h)atz) = {Immg oG((¢(x),t1),t2), if zeC.

Together, these maps yield a map h: Y’ Supfo, X — Y U, X which satisfies
h(lmmy (2)) = g o p(a, 1), h(lmma(y)) = Imma(f' ().
Now it is clear that the formulae
H(Imm; (2),t) = go p(z,t), H(Immy(y'),t) =Immy(F(y,t)).

define a homotopy H: (YU, X)X 1 — YUy, X from id(y, x) to hofact(idx I1f).
Also, we see that the formulae

define two homotopies Hi, Hjy: (Y’ Ufo, X) x I — Y’ Uyo, X, whose product is
a homotopy from idy,, x) to fact(idx II f) o h. Therefore, h is a homotopy
inverse of fact(idx ILf). O

More Special Constructions

Theorem 1.3.7.12. cone X is contractible for any X. sus X is connected for
any X. X1 * Xo is connected for any X1 and Xs.
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Proof. The contractibility of the cone is obvious. The connectedness of the
suspension is a consequence of the fact that it is a quotient space of the cone.
To prove that the join X7 x X5 is connected, we may check that any two points
proj(xy, xa,t), proj(a}, zh,t') € X1 * Xa, [(z1, 22, 1), (2], 25,1") € X1 x Xo x I]
can be joined by the path

proj(xy, z2,37(1 —t) + 1), it 7<1/3,
T+ ¢ proj(z}, z2,2 — 37), if 1/3<71<2/3,
proj(z}, x5, t' (31 — 2)), it 7>2/3.

O

Remark 1.3.7.13. Given two homotopic maps f,g: X — Y, a straightforward
application of Proposition 1.3.7.5 shows that the maps

sus f,susg: sus X — susY

are also homotopic. As usual, we may deduce that sus f is a homotopy equiva-
lence whenever f is one.

Moreover, the same Proposition 1.3.7.5 shows that given homotopic maps
f1,91: X1 — Y71 and homotopic maps f3, go: Xo — Y5 the maps

fixfo,g1%g2: X1ixXo = Y1 xY5

are also homotopic. Similarly, we conclude that f; x fo a homotopy equivalence

whenever f; and f; are homotopy equivalences.

Remark 1.3.7.14. Given a continuous map f: X; — Xo, 1t f: Cyl f — X5 (see

Definition 1.2.6.10) is obviously a strong deformation retraction of the mapping

cylinder Cyl f onto X5. Hence X5 is a strong deformation retract of Cyl f.
The inclusion X; — Cyl f is a homotopy equivalence if and only if f is a

homotopy equivalence. In fact, the composition

incl rt f

X1 — Cylf — Xo

coincides with f, and rt f is a homotopy equivalence.

The Case of Pointed Spaces

Remark 1.3.7.15. The results obtained in Remarks 1.3.7.2, 1.3.7.3, Theorems
1.3.7.6, 1.3.7.7, 1.3.7.11, 1.3.7.12, and Remark 1.3.7.13 have obvious analogues
for pointed spaces. Let us add that those theorems which are the analogues of
Remark 1.3.7.13 are valid for both bouquets and tensor products:

if fu,9u: (Xu,zn) = (Yy,y,) are homotopic for each p, then

\/fuv\/gu: (\/(Xu,x,,),bp) — (\/(Yu’yu%bp)

are homotopic, and if all the f,’s are homotopy equivalences, then so is \/ f..
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Similarly, if
fi,01: (X1, 21) = (Y1, 1)
and
f2, 920 (X2, 72) — (Ya,92)

are homotopic, then

fl ® f27gl ® ga: ((Xlaxl) ® (X2,$2)7bp) - ((}/hyl) ® (E/vaQ)vbp)

are homotopic; if f; and f; are homotopy equivalences, then so is f1 ® fs.

1.3.8 Exercises

Ezercise 1.3.8.1. Show that the sphere S°° is contractible.

FEzercise 1.3.8.2. Show that if (X, A) is a Borsuk pair and X is contractible,
then the quotient X/A is homotopy equivalent to sus A.

Exercise 1.3.8.3. Suppose that the product of two topological spaces is home-
omorphic to the suspension of some other topological space. Prove that either
both factors of the product are contractible, or one of them reduces to a point.

Exercise 1.3.8.4. Let f1: X1 — X5 be a homotopy equivalence. Show that X;
is a strong deformation retract of Cyl f.

Ezercise 1.3.8.5. Show that if X is metrisable and « € X is such that (X, z) is a
Borsuk pair, then the projection sus X — sus(X, z) is a homotopy equivalence.

Ezercise 1.3.8.6. Given an arbitrary connected topological space X and two
arbitrary points x,y € X, show that the subset of C(I,0; X, x) consisting of all
paths passing through the point y is contractible.
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CELLULAR SPACES

2.1 CELLULAR SPACES AND THEIR TOPO-
LOGICAL PROPERTIES

2.1.1 Fundamental Concepts

Definition 2.1.1.1. A decomposition p of a topological space X is called cel-
lular if there is a function d taking the set of elements of g into the non-
negative integers, such that for every element e of p there exists a continuous
map D¥®) — X with the following two properties:

(i) it maps int D¥®) homeomorphically onto e;

(ii) it maps S*®)~! onto a union of elements of o on which d takes values
smaller than d(e).

The elements of a cellular decomposition and their closures are called cells and
closed cells, respectively. The number d(e) is the dimension of the cell e and
is usually denoted by dime; the n-dimensional cells are also termed n-cells.
Any continuous map D%®) — X with the properties (i) and (ii) is said to be
characteristic for e; we use the symbol char, as a standard notation for such a
map.

Obviously, char.(D4™¢) C Cle, and if X is Hausdorff, then
char, (D4™¢) = Cle.

In particular, every closed cell in a cellular decomposition of a Hausdorff space
is compact. Moreover, in the case of a Hausdorff space, given any cell e, Cle\ e
is covered by cells of dimension lower than dim e.

Definition 2.1.1.2. A cellular decomposition is said to be rigged (or equipped)
if for each of its cells there is fixed a characteristic map. The resulting family

75
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{char.: D¥me — X1 is called a rigging (or an equipment) of the decomposition,
and the map
char: H pdime 5 X
eeX/p

defined by the relations char o incl, = char, is called the total characteristic
map.

Definition 2.1.1.3. According to the general definitions of Chapter 1 (see
Remark 1.2.4.3), the cover of the space X by the closed cells of a cellular de-
composition g defines a new topology on X. A subset of X is closed in this
topology if and only if its intersections with the closed cells of the decomposition
p are closed in the initial topology of X. The new topology on X is called the
weak or cellular topology, and the process by which we pass from the initial to
the cellular topology of X is called a cellular weakening of the initial topology.
The weakening of a topology can only enlarge the supply of open and closed
sets; in particular, a Hausdorff space remains Hausdorff. In any case, it does
not affect the topology of the closed cells, and so the decomposition p remains
cellular and retains its characteristic maps.

If X is Hausdorff and the decomposition g is endowed with a rigging {char.},
then the cellular topology can be described effectively in terms of the correspond-
ing total characteristic map: a subset A of X is open (closed) if and only if its
pre-image char ' (A) is open (respectively, closed). In other words, the cellular
topology is exactly that topology on X which transforms the injective factor of
the map char into a homeomorphism. Recall that the injective factor of char is
a map of the quotient space of the sum [ .y, DU™¢ by its partition zer(char)
onto X. The equivalence of these two definitions of the cellular topology results
from the fact that the maps char are closed (see Proposition 1.1.7.9).

Definition 2.1.1.4. A cellular space is a Hausdorff topological space endowed
with a cellular decomposition which satisfies the following two conditions:

(C) every closed cell intersects only a finite number of cells;
(W) the closed cells constitute a fundamental cover of the space.

Obviously, condition (W) implies that the cellular topology coincides with the
initial one. The notations (C) and (W) are generally accepted, and originate
from the terms closure finiteness and weak topology.

Property (C) is clearly preserved under the cellular weakening of the topol-
ogy. Therefore, a Hausdorff topological space having a cellular decomposition
satisfying (C) becomes a cellular space via cellular weakening.

Usually the terminology specific to cellular decompositions is applied to cel-
lular spaces too. In particular, a cellular space may be finite, countable, and
rigged. Thus, a finite cellular space is one that has a finite number of cells, but
not necessarily a finite number of points.

The dimension of a cellular space is the supremum of the dimensions of its
cells; the dimension of the empty space (which is not excluded from the family
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of cellular spaces) is taken equal to —1. The dimension - finite or infinite - of
the cellular space X is denoted by dim X.
We let cell,, X denote the set of all r-cells of X.

Ezample 2.1.1.5. The simplest cellular spaces are the discrete spaces decom-
posed into O-cells (isolated points). It is clear that all O-dimensional cellular
spaces are of this type:
Caveat a decomposition of a non-discrete Hausdorff space into 0-cells does not
satisfy condition (W).

The decomposition of the ball D* (n > 1) into the n-cell int D" and the
O-cells which cover Fr D™ = S”~! is an example of cellular decomposition which
satisfies condition (W), but not condition (C).

The Locally Finite Case

Remark 2.1.1.6. In agreement with the general definitions given in Definition
1.1.1.12, a cellular decomposition is locally finite if every point of the given
space has a neighbourhood which intersects only a finite number of cells. An
equivalent condition: every point has a neighbourhood which intersects only a
finite number of closed cells.

Clearly, in a space possessing a locally finite cellular decomposition, every
compact subset has a neighbourhood which intersects only a finite number of
cells. As a consequence, every locally finite cellular decomposition of a Hausdorff
space satisfies condition (C). Theorem 1.1.3.6 shows that condition (W) is
satisfied by any locally finite cellular decomposition. We conclude that every
Hausdorff space endowed with a finite or locally finite cellular decomposition is
a cellular space.

Theorem 2.1.1.7. A cellular space is locally finite if and only if every cell
intersects only a finite number of closed cells.

Proof. In a locally finite cellular space the closure of an arbitrarily given cell
has a neighbourhood which intersects only a finite number of cells (see Remark
2.1.1.6). It is clear that this neighbourhood, and hence the given cell, do not
intersect the closure of other cells.

Conversely, if every cell of a cellular space intersects only a finite number of
closed cells, then the axioms (C) and (W) imply that the union of any collection
of closed cells is closed. Consequently, the complement of the union of all closed
cells which do not intersect an arbitrarily given cell e is a neighbourhood of e.
Since this complement cannot intersect the closed cells which do not intersect
e, it intersects only a finite number of closed cells. O

Subspaces

Lemma 2.1.1.8. Let A be a subset of the cellular space X with the following
property: if x € A, then A contains the closure of the cell in which x lies. Then
any part of A whose intersections with all the closed cells contained in A are
closed is itself closed.
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Proof. Indeed, if B C A is such a part, and e is an arbitrary cell, then one can
write the intersection BNCle as Ui_;[(BNCle;) NCle], where ey, ..., es are all
the cells of A which intersect Cle, and this shows that B N Cle is closed. O

Definition 2.1.1.9. A subset of a cellular space which contains together with
each point the closure of its cell is called a subspace of the given cellular space.
Every subspace is a cellular space, with the cellular decomposition induced
by the cellular decomposition of the ambient space. By Lemma 2.1.1.8, this
decomposition satisfies condition (W), and it obviously satisfies condition (W).

As another consequence of Lemma 2.1.1.8, we see that every subspace of a
cellular space is closed. Notice also that the union and the intersection of any
collection of subspaces are again subspaces, and that every cover of a cellular
space by subspaces is fundamental.

A pair consisting of a cellular space and one of its subspaces is called a
cellular pair. Cellular triples and cellular triads are defined similarly.

Warning: a closed cell is not necessarily a subspace. For an example, consider
the bouquet (D', 0)V(S?, orty ), with the decomposition into four cells: the 0-cells
Imm; (—1) and Imm; (1), the 1-cell Imm; (int D), and the 2-cell Imms (S*\orty).
This is obviously a cellular space; however, the closure of the 2-cell touches the
1-cell, but does not contain it.

Remark 2.1.1.10. The most important subspaces of a cellular space X are its
skeleta

skely X, skel; X, ... skel,. X, ...,

defined as skel, X = Ugime<re. If X # @, then all the skeleta are non-empty
(since the presence of cells of a certain positive dimension implies the presence
of cells of lower dimension). For formal reasons, we add the empty skeleton
skel_; X and the skeleton skeloo X = X. The sequence {skel, X }o<r<oo is
clearly a filtration of X.

We remark that any map D9™¢ — X which is characteristic for the cell
e takes STMme~1 into skelgime_1 X (in fact, we saw this already in Definition
2.1.1.1). If X carries a rigging {char.}, then the map

abr char,: ST™ ™1 5 skelgime—1 X
is called an attaching map for e, and is denoted by att..

Theorem 2.1.1.11. Ewvery cell of a cellular space is included in a finite sub-
space.

Proof. Use induction on the dimension of the cell. A O-cell is itself a subspace.
If e is a cell of positive dimension, then Cle \ e may be covered by a finite
number of lower dimensional cells, and the union of e with a collection of finite
subspaces which contain these cells is a finite subspace containing e. O
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Compact Subsets

Theorem 2.1.1.12. A compact subset of a cellular space intersects only a finite
number of cells.

Proof. Every subset A of a cellular space contains a part B which intersects at
only one point each cell intersecting A. Since B intersects any closed cell at
a finite number of points, B and all its subsets are closed. Therefore, B must
be discrete. When A is compact, B as a discrete, closed, and compact set is
finite. O

Theorem 2.1.1.13. Every compact subset of a cellular space is contained in a
finite subspace.

Proof. For each cell intersected by the given subset, pick a finite subspace con-
taining this cell. The union of these subspaces is the desired finite subspace. [

Theorem 2.1.1.14. Every compact subset of a locally finite cellular space is
contained in the interior of a finite subspace.

Proof. Indeed, such a subset has a neighbourhood which intersects only a finite
number of cells (cf. Remark 2.1.1.6). For each such cell, pick a finite subspace
which contains it; the union of these subspace is again a finite subspace and
contains the above neighbourhood. O

Cellular Maps

Remark 2.1.1.15. A map of a cellular space X into a cellular space Y is said
to be cellular if it is continuous and maps the skeleton skel,. X into skel, Y, for
each 7.

A cellular map obviously transforms 0-cells into O-cells. However, a cell of
positive dimension is not necessarily transformed into a single cell: for example,
consider the identity map of the segment D!, decomposed into the O-cells —1,
1 and the 1-cell (—1,1), onto the same segment, but decomposed now into the
0-cells —1, 0, 1 and the 1 -cells (—1,0), (0,1); this cellular map takes the 1-cell
(—1,1) into the union of a 0-cell and two 1 -cells.

Definition 2.1.1.16. A cellular map is a cellular equivalence if it is invertible
and its inverse is also cellular. An equivalent formulation: a cellular equivalence
is a homeomorphism which transforms the cellular decomposition of the domain
space exactly into the cellular decomposition of the image space. If there is a
cellular equivalence between two cellular spaces, then they are said to be cellular
equivalent. Two rigged cellular spaces related by a cellular equivalence which
transforms one rigging into the other are said to be rigged-equivalent.

If X and Y are cellular spaces, a map f: X — Y is a cellular embedding if
f(X) is a subspace of Y (defined as in Definition 2.1.1.9) and abr f: X — f(X)
is a cellular equivalence.

Warning: there are cellular homeomorphisms which are not cellular equiva-
lences. An example is the homeomorphism described in Remark 2.1.1.15.
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2.1.2 Glueing Cellular Spaces From Balls

Theorem 2.1.2.1. If r > 0, then the skeleton skel,. X of the rigged cellular
space X is canonically homeomorphic to the space

(skel, 1 X) Uy, ( [ De =D")),
eceM,.

where M, = cell,, X and the map ¢: HeEMr (Se = S™1) — skel,_1 X is defined
by ¢ oincl, = att.(e € M,.).

Proof. This canonical homeomorphism between the above spaces is the injective
factor of the map
(skel,—y X)TT( J] De) — skel, X
eeM,.

defined by the inclusion
skel,_1 X — skel, X

and the maps
abr char,: D, — skel,. X.

O

Remark 2.1.2.2. The description in Definition 2.1.1.3 of the weak topology
in terms of the total characteristic map shows that one can glue any cellular
space from balls, and even do it in a nice way. Theorem 2.1.2.1 above reduces
this glueing to a sequence of attaching processes: the r-th process transforms
skel,_; X into skel, X (r = 0,1,...), and X is defined, starting from the se-
quence {skel, X}, as X = limskel, X (see Remark 2.1.1.10).

The following formal procedure transforms this description of cellular spaces
into a useful inductive method of constructing such spaces. First of all, note
that if we are given a topological space A with a rigged cellular decomposition
into cells of dimensions < ¢, and to A we attach a sum [],.,,(D, = DY) of
g-dimensional balls by some continuous map @colon ]_[H€ (S, =817 — A,
then we obtain a space endowed with an obvious rigged cellular decomposition
into cells of dimensions < ¢ + 1. This space satisfies condition (W) whenever
A satisfies it, and Proposition 1.2.4.9 shows that it is normal if A is normal.
Moreover, it follows from Theorem 2.1.1.12 that this space satisfies condition
(C) provided A is cellular. Finally, we conclude that if A is a normal rigged
cellular space,then A Uy, (I],c s Dy) is @ normal rigged cellular space too.

These observations form the basis of our inductive construction. We start
with ¢ = 0, ie., take A = @, and at the r-th step we attach the space
[,.cas, (D, = D7) to the previously constructed normal rigged cellular space
X,_1,dim X,._; <7 —1, by a continuous map

ere J] Su=5""—X,_1.
HEM,
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The r-th step yields a normal rigged cellular space X, = X, _1 U, (HHEMT D),

with dim X,. < r. The result of the whole process is a sequence @ = X_1, Xg, X1, ...

with natural cellular embeddings X, — X,;;, and limit space X = lim X,.
According to Theorem 1.2.4.6, X is normal and is endowed with an obvious
cellular decomposition satisfying properties (C) and (W). Therefore, X is a
normal rigged cellular space, and clearly skel, X = X,.

We say that X is an inductively glued cellular space. The discussion above
demonstrates that every rigged cellular space is rigged-equivalent to an induc-
tively glued cellular space.

Corollary 2.1.2.3. Every cellular space is normal.

2.1.3 The Canonical Cellular Decompositions of Spheres,
Balls, and Projective Space

Remark 2.1.3.1. The spheres, balls, and projective spaces admit canonical cel-
lular decompositions making them into cellular spaces. These are all rigged
cellular decompositions and will be described in the present subsection. It will
be evident in each case that properties (C) and (W) are satisfied.

Remark 2.1.3.2. The canonical cellular decomposition of the sphere " with 0 <
n < oo, consists of the 0-cell ort; and the n-cell S™ \ ort;. As the characteristic
map of the cell S™ \ ort; we take DS: D* — S™.

Remark 2.1.3.3. The canonical cellular decomposition of the ball D™ with 1 <
n < oo, is given by the O-cell orty, the (n — [)-cell S*~1 \ ort;, and the n-cell
int D". For the characteristic maps of the cells S"~! \ ort; and int D" we take
the composite map

]D)nfl %Snfl incl G
and idp~, respectively.
Remark 2.1.3.4. The canonical cellular decomposition of the real projective

space RP™ (0 < n < oo) consists of the r-cells e, = RP" \ RP""!, where
0<r<mnforn<oo,and 0 <r < oo for n = co. The composition

pr 2 gpr 29, gpr

(where proj is the projection arising from the characterisation of RP" as a
quotient space of D", given in Definition 1.2.5.2) is taken as the characteristic
map of the cell e,.

It is clear that att,, is simply proj: S"~! — RP"~! and that skel, RP" =
RP", r <n.

Remark 2.1.3.5. The canonical cellular decomposition of the complex projective
space CP™ (0 < n < oo) consists of the 2r-cells e, = CP"\ CP"~!, where
0<r<nforn< oo, and 0 <r < co for n = co. The composition

DQT proj (CPT incl (CP”
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is taken as the characteristic map of the cell es.. Obviously, skel, CP" =
CPlr/2], for r < 2n.

The canonical rigged cellular decompositions of the projective spaces HP™
(0 <n < o0) and (CaP™ (0 < n < 2) are defined similarly. The decomposition
of HP™ is given by the 4r-cells e, = HP" \ HP"~! where 0 < r < n for n < oo,
and 0 < r < oo for n = co. For CaP™ the cells are e, = CaP" \ CaP" ! with
0<7r<nanddime, = 8.

2.1.4 More Topological Properties of Cellular Spaces

Remark 2.1.4.1. Our task in this subsection is to examine what connections
exist between properties of cellular spaces such as compactness, local compact-
ness, separability, second countability, and metrisability, and properties of their
cellular decompositions such as finiteness, countability, and local finiteness. In-
cidentally, we prove that cellular spaces are CNRS’s. Moreover, conditions for
the connectedness of a cellular space, as well as its partition into components
are studied.

Compactness and Local Compactness

Theorem 2.1.4.2. A cellular space is compact if and only if it is finite.

Proof. The necessity of this condition is a result of Theorem 2.1.1.12. Since
every finite cellular space can be covered by a finite number of closed cells, the
condition is also sufficient. O

Theorem 2.1.4.3. A cellular space is locally compact if and only if it is locally
finite.

Proof. By Theorem 2.1.1.12, every neighbourhood with compact closure of an
arbitrarily given point intersects only a finite number of cells, and hence the
condition is necessary. It is also sufficient, because the closure of a neighbour-
hood which intersects only a finite number of cells is contained in the union of
the closures of these cells. O

Embedding Theorems

Theorem 2.1.4.4. FEvery cellular space can be embedded in a Fuclidean space
of sufficiently high dimension.

Proof. We shall proceed by induction. Given a finite cellular space X of di-
mension n > 0, and an embedding j: skel,_; X — R, we shall construct an
embedding J: X — R24T"+L (since a cellular space of dimension —1 is empty,
the first step of the induction is trivial). Pick a rigging of X and arrange the
n-cells of X in a sequence eq,...,e,.
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Now let p = \/y? + --- + y2 and define the maps ¢1,...,ps: D — RITH
by
(07707y177yn717yn+2k71)7 if P§1/27
oy, uk) = (2p — 1)j o chare, (%,...,%)—l—
(272p)(0,...,0 wo o U y—"+2k,1>, it p>1/2

’2p7 2p 7 2p

and then set

J(LL') _ j('r)a if xze€ Skeln_l )(7
- or(y), ift ze€Cle, and =z = chare,(y).

This yields a continuous map J: X — RIT"*! and since the plane y; =
0,...,Y = 0,Yg4n+1 = 1 contains no parallel to R?, J is injective. Hence,
J is an embedding (see Theorem 1.1.7.10). O

Theorem 2.1.4.5. Every finite cellular space is a CNRS.

Proof. The proof is a continuation of the previous one and also requires an

induction on n. Namely, we show that R? U J(X) is a neighbourhood retract

of R?*t"+1  This is enough: if we assume that j(skel,_; X) is a neighbourhood

retract of R, then J(X) is obviously a neighbourhood retract of R? U J(X).
Set

A = p(intD") and Br = A N{(z1,...,Tqrn+1) : Xgrnt1 # 1}

Since the sets Ay, ..., As are pairwise disjoint and closed in RIT"FI\US _ ) (S71),
they have pairwise disjoint neighbourhoods Uy, ..., Us in RTT"FI\US _ op (S"71),
and clearly Uy,...,U, are open in RIt"+1. Moreover, since Aj,..., A, are all
homeomorphic to R"™, the identity maps A; — Aj,...,A; — A, extend to
continuous maps 1 : Uy — Ay, ..., 0s: Us — A (see Theorem 1.1.5.17).

Now let

Vi, = {x € Uy|dist(x, ¥ (x)) < Dist(z,R?)},
V = {x € RI™" | Dist(x,RY) < 1/2},

and denote by 1 the orthogonal projection V' — R9. It is clear that W =
VUViU--- UV, is a neighbourhood of R?U J(X) in R?*"*! and that the sets

{ {[(Uf =, C1Vi) NFr VI U (Uf ARy O W, (2.1.4.6)

{[(Ui_, Fr Vi) N CLV N W]\ Uiy or(S™ 1)},
are disjoint and closed in Y\ U3 _ 10k (Snﬂ)’ where
Y = (Ui, ClVy) NnClV N W.

Let f: Y \ Uj_,¢k(S*™!) — I be a Urysohn function for the pair (2.1.4.6) .
Now given y € ClBy, and z € RY, let u,, be the path in R? U J(X) defined
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as the product of the rectilinear path between y and ¢y (¢p-1)/ dist(0, o ' (y)))
with he rectilinear path between ¢y, (p5-1)/ dist(0, ¢, ' (y))) and z. Define

o: (Ui_, C1By) x RI x I — RTU J(X)

by o(y, 2,t) = uy.(t) . According to Theorem 1.2.2.14, the map 7: ¥ — R? U
J(X),

() = o(r(x), ¥(x), f(x)), if ze(ClVaNCIVNW)\ gr(S"1),
x, if zeUi_jpr(S"h),

is continuous. By Theorem 1.1.4.3, the map W — R? U J(X) defined by the
formula
Qﬁk(m), if CL‘ECIVkﬁ(W\V),

= < P(x), if xeW\Uj_,Vi,
7(z), if zeY,
is also continuous, and it is clearly a retraction. O

Connectedness. Components

Theorem 2.1.4.7. The components of a cellular space are open subspaces.

Proof. Every closed cell is connected, as the image of a ball under a character-
istic map. Therefore, a component of a cellular space contains along with each
point the closure of the cell in which the point lies, i.e., it is a subspace. The
complement of a component is the union of the remaining components and so
it is a subspace too. Consequently, this complement is closed, and hence the
component is open. O

Theorem 2.1.4.8. If r > 1, then the r-th skeleton skel,. A of a component A of
the cellular space X is a component of skel, X. In particular, a cellular space
X is connected if and only if skel; X is connected.

Proof. Obviously, skel,. A = ANskel,. X for all 7, and if B is another component
of X, then skel, A and skel,. B sit in different components of skel,. X. Therefore,
all we have to show is that the skeletons skel,. A with » > 1 are connected or,
equivalently, that given a connected cellular space X, all its skeletons skel, X
(r > 1) are connected. But this is plain if one notes that the construction of an
inductively glued cellular space described in Remark 2.1.2.2 cannot result in a
connected space if one of the spaces X, with » > 1 is not connected. O

Theorem 2.1.4.9. Every connected locally finite cellular space is countable.

Proof. Given a connected, locally finite cellular space X, fix an arbitrary point
zo € X and consider the set A,, of all points of X that can be joined to xzg
by a path intersecting at most m cells. Since any path intersects only a finite
number of cells (see Theorem 2.1.1.12), X = U%_, A,,, and it is clear that each
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A,, consists of whole cells. Therefore, all we have to verify is that each set A,,
with m > 1 contains only a finite number of cells, and we do it by induction on
m.

It is readily seen that the closure of any cell contained in A,,+; intersects
the closure of some cell from A,,. On the other hand, since X is locally finite,
the closure of any cell from A,, (being a compact subset of X) can intersect
only a finite number of closed cells. Thus the number of cells in A,,; is finite
provided that the number of cells in A,, is so, and to complete the proof note
that A; is just one cell. O

Countability Axioms and Metrisability

Theorem 2.1.4.10. A cellular space is separable if and only if it is countable.

Proof. If the cellular space X is countable, pick a countable dense set in each
cell and then take the union of all these sets to produce a countable dense set
in X.

Now suppose that X is separable. Then every point of X lies in a finite
subspace (see Theorem 2.1.1.11). Pick such a subspace for each point of a fixed
countable dense set in X. The union of these subspaces is a countable subspace
and actually coincides with X. O

Lemma 2.1.4.11. If the cellular space X has a countable base at a point xy €
X, then this base contains a neighbourhood of xy which intersects only a finite
number of cells of X .

Proof. Suppose that this is not true. Write the elements of the given base in
a sequence and Uy, Us ... and (using a trivial induction), select a sequence of
points x1,xa,... in X \ xg, such that:

(i) = € Uy
(ii) if ¢ # 4, then x; and «; sit in distinct cells.

Since any closed cell contains only a finite number of the x;’s, the set of all
T’ 18 closed, and its complement is a neighbourhood of zy3. We reached a
contradiction, because this complement contains none of the neighbourhoods
Uy,Us. ... O

Theorem 2.1.4.12. A cellular space is first countable if and only if it is locally
finite.

Proof. The necessity of this condition is a corollary of Lemma 2.1.4.11. To prove
its sufficiency, use Proposition 2.1.1.14 to deduce that every point x( of a locally
finite cellular space has a neighbourhood U contained in a finite subspace. By
Theorem 2.1.4.4, such a subspace, and hence U, are first countable spaces, and
it is obvious that a countable base of U at x( is also a countable base of the
given space at xg. O
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Theorem 2.1.4.13. A cellular space is second countable if and only if it is
countable and locally finite.

Proof. The necessity of this condition is a corollary of 2.1.4.10 and 2.1.4.12. To
prove its sufficiency, for each closed cell we fix a neighbourhood contained in a
finite subspace (see Theorem 2.1.1.14). As a result of Theorem 2.1.4.4, these
neighbourhoods are second countable, and it is clear that the union of their
countable bases is a countable base of the given space. O

Theorem 2.1.4.14. A cellular space is metrisable if and only if it is locally
finite.

Proof. The necessity of this condition is a corollary of Theorem 2.1.4.12. The
metrisability of a connected locally finite cellular space follows from Propositions
2.1.4.9, 2.1.4.13, 2.1.2.3, and 1.1.6.9. Since every locally finite cellular space is
homeomorphic to the sum of its components, and these are metrisable, the space
is metrisable too (see Theorem 2.1.4.7 and Remark 1.2.1.1). O

2.1.5 Cellular Constructions

Remark 2.1.5.1. When applied to cellular spaces, the constructions described
in §2.1.2 need to be appropriately modified. For certain constructions the mod-
ification consists merely of observing that the resulting space is endowed with a
cellular decomposition and becomes cellular; an obvious example is the sum. For
other examples, such as the product, the modification also affects the topology
of the resulting space.

Below we describe the main modifications of both types. We emphasise that
all these constructions, when applied to rigged cellular spaces, produce again
rigged cellular spaces.

Cellular Product

Remark 2.1.5.2. Let X; and X5 be topological spaces with cellular decomposi-
tions g1 and p,. Then the product X; x X5 has a natural cellular decomposition,
namely g1 X p2 with dim(e; X e2) = dime; +dimes. As a characteristic map for
the cell e; X e; one may take the composition of the canonical homeomorphism

]Ddim e1+dim da N ]D)dim er Ddim do
with the product
char,, x char,, : Ddmer x pdimd2 _, x5 X,
of arbitrary characteristic maps
char,, : Ddimer 5 X, and char,, : pdimda _y X,

When the decompositions g1 and o are rigged, p; X g2 takes on a canonical
rigging.
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If o1 and - fulfil property (C), then (Cz) holds for ;1 x g too. However,
there are situations where p; x o does not have property (W), even when
X, and X5 are cellular spaces; see Exercise 2.1.6.6. The cellular space arising
from the product X; x X5 of the cellular spaces X; and Xs through cellular
weakening of its topology is called the cellular product of X; and X5, and is
denoted by X; x¢o Xo.

We note that the cellular weakening does not alter the topology of the com-
pact parts of the space X; x X5. Indeed, every compact subset of X; x X5 has
compact images under the projections X; x Xo — X7 and X; x X3 — X5, and
hence it can be covered by a finite number of cells.

Theorem 2.1.5.3. If X, is locally finite, then X xc Xo = X1 X X5 for any
cellular space X,.

Proof. Let char' and char® be the total characteristic maps corresponding to
some riggings of the cellular decompositions g1 and o of X; and Xs. It is clear
that the total characteristic map corresponding to @1 X g2 can be expressed as
the composition

H]D)dim(el Xea) N H(Ddim e1 ]D)dim 62) _

: , (2.1.5.4)
(H Ddim61) < (H ]D)dim 52) char® X char X, % X

where the first map is the sum of the canonical homeomorphisms Ddim(e1xe2) _,
Ddimer s pdimes - Since ) and g, satisfy condition (W), the maps char' and
char? are factorial (see Definition 2.1.1.3). Furthermore, since [ [ D™ €2 and X,
are locally compact (see Theorem 2.1.4.3), the map char! x char? is factorial too
(see Theorem 1.2.7.9), which in turn implies that the composite map (2.1.5.4)
is factorial. Therefore, the decomposition p; X g9 has property (W). O

Information 2.1.5.5. If every point of each of the cellular spaces X; and X,
has a neighbourhood which intersects only a countable family of cells, then
X1 x¢c Xo = X1 x Xo; see [6] for a proof.

Attaching

Remark 2.1.5.6. Consider two cellular spaces X; and X5, a subspace C' of X7,
and a cellular map ¢: C — X,. According to Remark 1.2.4.8, X> U, X; is a
well-defined topological space, while Corollary 2.1.2.3 and Proposition 1.2.4.9
imply that X, U, X, is normal. Now decompose X» U, X into the sets Imm; e;
and Imms ey, where e; and es run over the cells in X5 \ C and X5 respectively,
and put dim(Imm; e;) = dime; and dim(Imms es) = dimes. This is a cellular
decomposition: as a characteristic map for Imm; e; one may take the composi-
tion of an arbitrary characteristic map char., with Imm,. Clearly, the only cells
that the closure of the cell Imm; e; intersects are either Imm; &1, where ¢; is
a cell in X intersecting Cle;, or Imms e where €5 is a cell in X5 intersecting
»(Cle;NC). Moreover, we see thatClImms es intersects only the cells Immy 5,
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where e is a cell in X5 intersecting Cley. Consequently, our decomposition has
property (C).

To see that it has property (W) too, let F' be a subset of having closed
intersections with all the cells in X5 U, X;. The equality

Imm; ' (F) N Cley = Immy ' (F N Cl(Tmmy e3))
shows that Imm; *(F) is closed, and now the equality

fmmy ! (F) A Cle; = {‘pl(hfm21(F) neCle), e c G
Imm; " (F N Cl(Immy; ey)), if e1 C X1\C,

proves that Imm; ' (F) is closed too. We conclude that the space X Uy X1 is
cellular. It is immediate that Imms(X5) is a subspace of X5 U, X, that Imms
is a cellular embedding, and that the map Imm; is cellular.

If Xo =D, then p: C — X5 is a cellular map for any cellular pair (X1, C),
and Xy U, X1 = X;/C. Thus, the previous definition implies that the quotient
space of a cellular space by a subspace is cellular.

Limits
Remark 2.1.5.7. Suppose that Xy, Xq,..., are cellular spaces and py: Xy —
X1,01: X1 = Xo,..., are cellular embeddings. By Remark 1.2.4.4, the limit
lim(Xp, pr) is a well-defined topological space, which is also normal (see Corol-
lary 2.1.2.32.3 and Theorem 1.2.4.6). Now consider the decomposition of lim (X}, )
into the sets Immy ey, where ey, is a cell in Xy \ pp—1(Xk-1), k=0,1,..., and
put dim(Immy, ex) = dimeg. If we take the composition of an arbitrary char-
acteristic map char., with Imm, as a characteristic map for the cell Immy e,
we see that this decomposition is cellular. Since it obviously satisfies conditions
(C) and (W), lim(Xy, k) becomes a cellular space, and Immj, become cellular
embeddings.

Notice that this definition of the limit includes as a special case the inductive
process of glueing a cellular space from balls that we discussed in subsection
2.1.2.

More Special Constructions

Remark 2.1.5.8. Since decomposing the segment I into the cells 0, 1, and int [
makes [ into a finite cellular space, the cylinder X x I is cellular for any cellular
space X; see Remark 2.1.5.2 and Theorem 2.1.5.3. The bases of X x I are
cellular subspaces (in the sense of Definition 2.1.1.9); hence when we pass to
the quotient space cone X of X x I, and then to the quotient space sus X of
cone X, we find ourselves in the situation covered by the construction in Remark
2.1.5.6. Therefore, the cone and the suspension over a cellular space are also
cellular spaces.

If f: XitoX5 is a cellular map, then the attaching processes which transform
X1 x I into Cyl f, and cone X; into Cone f fall again into the category described
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in Remark 2.1.5.6 Therefore, the mapping cylinder and the mapping cone of a
cellular map are cellular spaces.

Definition 2.1.5.9. The cellular join X1 xc X> of two cellular spaces X; and
X5 is defined as

X1 xc Xo = (X1 [ X2) Uy [(X1 xc X2) x I,
where
01 [(X1 xc X2) x 0] U [(X7 xc Xa) x 1] = X1 [ X2
is given by
o(x1,22,0) =incly(x1), p(x1,22,1) = incly(zs);

cf. Remark 1.2.6.3. Since ¢ is cellular, the space X7 xc X2 is cellular.

According to Theorem 2.1.5.3, when X is locally finite, X; xc X5 is topolog-
ically the same as X7 x X5. In general, the cellular decomposition of X7 xc X5
is cellular for X; x X5 too, and so cellular weakening of the topology of X x X5
yields X; *c X5. However, this process does not affect the topology of the
compact sets of X7 x Xs; cf. Remark 2.1.5.2.

The Case of Pointed Spaces

Remark 2.1.5.10. Suppose that X is a cellular space and zg is a 0-cell that
we take as a base point. The cone cone(X,zy) and the suspension sus(X, z)
are quotients of cone X and sus X by subspaces, and as such they are cellular
spaces. Similarly, the bouquet of a family of cellular spaces with O-cells as base
points is the quotient of the sum of this family by a subspace, and hence is a
cellular space.

Finally, we define the cellular tensor product and the cellular join of the
cellular spaces X; and Xs with the O-cells 1 and x5 taken as base points, as
the quotient spaces

X1 Xe Xo/[(X1 X x2) U (z1 x X2)] and (X xc X2)/(X1 * X3)
respectively. These are cellular spaces, denoted by
(X1,21) ®@c (Xa,22) and (Xi,z1) *c (X2, z2).
If X is locally finite, then they are identical with
(X1,21) ® (Xao,29) and (Xy,z1) * (X2, x2).
as topological spaces. In the general case, the cellular decompositions of
(X1,21) ®c (X2,22) and (Xi,21) xc (X2, 22).
are cellular for

(X1,21) ® (X2,22) and (X, x1) * (X2, 22)
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too. Thus
(X1,21) ®c (X2,22) and (X1, 1) *¢ (X2, 22).

arise from the cellular weakening of the topologies of
(X1,21) ® (Xo,22) and (Xy,21) % (X2, 22)

respectively, and it is clear that this process does not affect the topology of the
compact subsets of

(Xl,xl)@)(Xg,xg) and (Xl,xl)*(XQ,.TQ).

2.1.6 Exercise

Exercise 2.1.6.1. Show that given an arbitrary cellular space X and an arbitrary
point z € X, there exists a cellular space Y together with a cellular homeomor-
phism f: X — Y such that f(x) € skelp Y.

Exercise 2.1.6.2. Show that the sphere S™ and the ball D> are homeomorphic
to cellular spaces.

Ezercise 2.1.6.3. Show that every connected, locally finite cellular space can be
topologically embedded in R*°.

Ezercise 2.1.6.4. Show that every connected, finite dimensional, locally finite
cellular space can be embedded in RY, for sufficiently large q.

Exercise 2.1.6.5. Show that every finite cellular space admits a cellular embed-
ding in a cellular space homeomorphic to D4, for sufficiently large q.

INFORMATION. Every finite cellular space of dimension n can be embedded
in a cellular space homeomorphic to D?*+1,

Ezercise 2.1.6.6. Consider the bouquet B = Vicr(I; = I,0) as a cellular space
(see Remark 2.1.5.10) and show that the map id: B x¢ B — B x B is not a
homeomorphism.
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2.2 SIMPLICIAL SPACES

2.2.1 Euclidean Simplices

Remark 2.2.1.1. Let A be a subset of R™ consisting of r + 1 points (r > 0)
which are not contained in any (r — 1)-dimensional plane. The convex hull of
A (i.e., the smallest convex set containing A) is called the Fuclidean simplex
spanned by A, and is denoted by Esi A. The points of A are the vertices of
the simplex Esi A, and the number r is its dimension. Esi A is also called a
Euclidean r-simplex.

Obviously, a point of Esi A is a vertex if and only if Esi A contains no non-
degenerate segment whose midpoint falls on the given point. Therefore, the set
A is uniquely determined by Esi A.

Every simplex spanned by a subset of A is called a face of the simplex Esi A.
It is clear that Esi A; NEsi A; = Esi(4; N Ag), for any A;, A C A.

Two faces spanned by complementary subsets A; and As of A are said to be
opposite. In this case, the formula

proj(xy, xa,t) = (1 —t)zy +tee (1 € EsiA;, x5 €Esidy, tel)

defines a homeomorphism of the join Esi A; x Esi Ay onto Esi A. Thus, every
Euclidean simplex is canonically homeomorphic to the join of any of the pairs
of its opposite faces.

Since D" is canonically homeomorphic to any join with p+ ¢ = r — 1 (see
Remark 1.2.6.9), a trivial induction proves that both the spaces Esi A and D"
are homeomorphic to a join of r 4+ 1 points. We conclude that every Euclidean
r-simplex is homeomorphic to D".

It is clear that the boundary of the simplex Esi A in the r-plane that it
determines is precisely the union of its (r — 1)-faces. Usually, this boundary and
its complement in Esi A are simply referred to as the boundary and the interior
of the simplex Esi A.

Remark 2.2.1.2. We may equivalently describe the simplex Esi A as the set
of all sums ., t.a, where t, > 0 and }  _,t, = 1. Since there is no
(r — 1)-plane containing A, the numbers ¢, are determined uniquely for any
point x =), taa; t4is called a-th barycentric coordinates of x and is denoted
by bary,(z). Obviously, a face Esi B of the simplex Esi A is defined in the
barycentric coordinates of Esi A by the equations bary,(x) = 0 for a € A\ B.
Moreover, if € Esi B, then the coordinates bary,(z) computed in Esi A and
Esi B coincide for all a € B.

The point of Esi A having all barycentric coordinates equal, i.e, equal to
1/(r + 1), is the centre of the simplex Esi A.

Remark 2.2.1.3. A map Esi A — Esi B is called simplicial if it is affine and takes
A into B. It is clear that such a map takes each face of Esi A simplicially into
a face of Esi B, and takes the interior of Esi A onto the interior of the simplex
which is its image.
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Obviously, every map A — B extends uniquely to a simplicial map Esi A —
Esi B. If the given map A — B is injective (invertible), then its simplicial
extension Esi A — Esi B is an embedding (respectively, a homeomorphism).

Definition 2.2.1.4. Esi A is said to be an ordered simplex if the set A is
ordered. Since the subsets of an ordered set inherit a natural order, all the faces
of an ordered simplex are ordered simplices.

If Esi A and Esi B are ordered r-simplices, then the orders of A and B define
an invertible map A — B, and hence a simplicial homeomorphism Esi A —
Esi B. Consequently, all ordered Euclidean simplices of the same dimension are
canonically simplicial homeomorphic.

Remark 2.2.1.5. The simplex spanned by the points orty,...,ort, of R™! is
called the unit r-simplex and is denoted by T". This simplex is notable due to
the fact that its barycentric coordinates are the usual coordinates in R"*'. The
given order of its vertices transforms 7" into an ordered simplex, and thus every
ordered Euclidean r-simplex is canonically simplicial homeomorphic to 1.

Note that given an ordered simplex Esi A, the homeomorphism Esi A — D"
discussed in Remark 2.2.1.1 is now canonical. The canonical homeomorphism
T" — D" and its inverse are denoted by TID and DT, respectively. That TD
maps the boundary (the interior) of 7" onto S"~! (respectively, onto int D") is
plain.

Topological Simplices

Remark 2.2.1.6. A topological space X is an ordered topological simplex of di-
mension 1 (or an ordered topological r-simplex) if there exists a homeomorphism
T" — X; this is called a characteristic homeomorphism of the simpler X, while
X is sometimes referred to as the support of the simplex. For example, all or-
dered Euclidean r-simplices and the ball D" are ordered topological r-simplices;
see Remark 2.2.1.5.

The standard way to destroy an order is to introduce simultaneously all
possible orders. Accordingly, we say that the topological space X is a topological
simplex of dimension r (or a topological r-simplex) if there are given (r 4 1)!
homeomorphisms 77 — X" | which can be transformed into each other by
simplicial homeomorphisms 77 — T". The terms characteristic homeomorphism
and support are employed in this situation too; however, now we have at our
disposal (r + 1)! equally rightful characteristic homeomorphisms.

If X is a topological r-simplex (an ordered topological r-simplex), and Y
is a topological space, then every homeomorphism X — Y transforms Y into
a topological r-simplex (respectively, into an ordered topological r-simplex).
Consequently, every homeomorphic image of a Euclidean r-simplex (ordered
Euclidean r-simplex) is a topological r-simplex (respectively, an ordered topo-
logical r-simplex).

The vertices, faces, boundary, interior, barycentric coordinates, centre, and
simplicial maps are defined in an obvious fashion for topological simplices. The
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faces of a topological simplex (ordered topological simplex) are topological sim-
plices (respectively, ordered topological simplices). As with a Euclidean simplex,
a topological simplex becomes an ordered one as soon as we fix an order of its
vertices.

2.2.2 Simplicial Spaces and Simplicial Maps

Definition 2.2.2.1. A triangulation of a set X is a cover A of X by topological
simplices such that:

(i) every face of an arbitrary simplex in A is again a simplex in A;

(ii) if a simplex in A is contained in another simplex of A, then the first is a
face of the second;

(iii) the intersection of the supports of two overlapping simplices of A is again
the support of a simplex in A.

A set X endowed with a triangulation is known as a simplicial space; the sim-
plices of the triangulation are called simplices of the space, and the O-simplices
are its vertices. The smallest simplex in the triangulation which contains a given
point z € X is denoted by simplex,,.

According to Remark 1.2.4.3; a triangulation transforms the given set into a
topological space, and Remark 1.2.4.1 shows that the supports of the simplices of
the triangulation yield a fundamental cover of this space. Since the intersection
of two simplices in the triangulation is closed in each of them, the simplices in
the triangulation keep the same topology when considered as subspaces of this
topological space (see Definition 1.2.4.2).

Let a be a vertex of the simplicial space X. Then the a-th barycentric
coordinate bary,(x) is well defined for any point = belonging to any simplex
which has a as one of its vertices (see Remarks 2.2.1.2 and 2.2.1.6), and we obtain
a continuous function bary,: X — R if we set bar,(z) = 0 for those points
2z € X contained in simplices which do not have a as a vertex. bary, is called
the a-th barycentric function. Given two arbitrary distinct points x,y € X,
there obviously is a vertex a such that bary,(z) # bary,(y). Consequently,
every simplicial space is Hausdorff.

When a set X endowed with a triangulation already has a topology, it is
useful to find conditions ensuring that the topology defined by the triangulation
is identical with the initial one. We have an immediate necessary and sufficient
condition: the topology of each simplex in the triangulation coincides with the
topology induced by the initial topology of X, and the cover of X by the supports
of these simplices is fundamental in the initial topology. If this condition is
satisfied, then the given triangulation is said to be a triangulation of the initial
topological space X. Example: the cover of a topological simplex by all its faces
is a triangulation of this simplex.

A simplicial space is ordered if its simplices are ordered in such a way that
the orders of the faces of any simplex agree with the order of the simplex itself.
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In particular, this holds whenever the order of the simplices is induced by some
order on the set of all vertices of the given space, which incidentally shows that
a simplicial space can be always ordered.

Remark 2.2.2.2. We shall presently describe a fundamental class of simplicial
spaces. Given an arbitrary non-empty set A, we let Si A denote the set of all non-
negative, finitely supported functions ¢: A — R such that > 4 (a) = 1. If
B C A, then we identify Si B with the subset of Si A consisting of all functions
@ € SiA such that ¢(x) = 0 for x € A\ B. If A is finite and has r + 1
elements, then Si A is obviously a topological simplex: indeed, Si A is a subset
of the (r + 1)-dimensional Euclidean space of all functions A — R. Moreover,
corresponding to the (r 4+ 1)! orders on A there are (r + 1)! homeomorphisms
T" — Si A, each transforming the point (z1,...,2,41) into a function taking
the values z1,...,2,4+1; one may transform one homeomorphism into another
by composition with a simplicial homeomorphism 7" — T". In the general
case, Si A is covered by the topological simplices Si B corresponding to all finite
subsets B of A, and it is clear that this yields a triangulation of Si A. SiA is
therefore a simplicial space, and we call it the simplex spanned by A. Ordering
Si A is equivalent to ordering the set A.

Definition 2.2.2.3. The interiors of the simplices of a simplicial space X con-
stitute a decomposition of the set X. If we define the dimension of the interior
e of the simplex s by dime = dim s, and take as a characteristic map for e the
composition

pdims DL, pdims 2, o inel, (2.2.2.4)

where ¢ is any characteristic homeomorphism for the simplex s, then the above
decomposition becomes cellular. Since conditions (C) and (W) are clearly sat-
isfied in this situation, and we already know that every simplicial space is Haus-
dorff, we see that this cellular decomposition transforms X into a cellular space.
Thus, every simplicial space, decomposed into the interiors of its simplices, is a
cellular space.

Since an r-simplex has (r 4+ 1)! characteristic homeomorphisms, formula
(2.2.2.4) distinguishes (r 4+ 1)! privileged maps in the family of all maps that
are characteristic for an r-cell in a simplicial space; we call them simplicial
characteristic maps and note that they are topological embeddings. Fixing a
simplicial characteristic map is equivalent to fixing an order of the simplex s;
hence every ordered simplicial space is canonically rigged. It is clear that the
skeleton skel,. X of a simplicial space X is simply the union of all its simplices of
dimension < r, and that dim(skel, X) = r for r < dim X. In particular, skely X
is the set of vertices of X. Of course, X is finite if and only if skely X is finite
as a set. A simplicial space is locally finite if and only if each of its vertices is
contained in only a finite number of simplices (see Theorem 2.1.1.7).

Subspaces

Definition 2.2.2.5. A subspace of a simplicial space is any subset which is
a union of whole simplices. Every subspace has a natural triangulation, and
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hence is a simplicial space. The subspaces of an ordered simplicial space are
also ordered simplicial spaces.

Obviously, a subset of a simplicial space X is a subspace of X if and only if
it is a cellular subspace of the cellular space X.

A subspace of a simplicial space X is complete if its intersection with the
support of any simplex of X is either the support of some simplex of X or empty.
An equivalent formulation: a subspace is complete if it contains, along with the
vertices of a simplex, the simplex itself.

Of course, the simplices of a simplicial space are complete subspaces. A
subspace of Si A is complete if and only if it is of the form Si B, where B C A.

Simplicial Maps

Remark 2.2.2.6. A map X — Y, where X and Y are simplicial spaces, is called
simplicial if it transforms every simplex of X simplicially into a simplex of Y.
It is clear that such a map is also cellular and maps X onto a subspace of Y.

The following facts are also immediate.

An invertible simplicial map is a homeomorphism, and its inverse is also sim-
plicial. Every injective simplicial map is a topological embedding. A simplicial
map f: X — Y is uniquely defined by the map abr f: skelg X — skely Y from
the set of vertices of X into the set of vertices of Y. A map skelg X — skelp Y
extends to a simplicial map X — Y if and only if it carries the vertices of each
simplex of X into the vertices of a simplex of Y. A simplicial map f: XY is
injective (invertible) if and only if abr f: skelg X — skely Y is injective (respec-
tively, invertible).

Two simplicial spaces which can be transformed one into another by a sim-
plicial homeomorphism are said to be simplicial homeomorphic.

Definition 2.2.2.7. A simplicial map f: X — Y, where X and Y are ordered
simplicial spaces, is monotone if f(a) < f(b) for any pair of vertices, a and b, of
X which belong to the same simplex and satisfy a < b.

Every simplicial map between simplicial spaces can be made monotone by
suitably ordering the spaces. Moreover, if X and Y are simplicial spaces and
Y is ordered, then one can transform a given simplicial map f: X — Y into
a monotone one my suitably ordering X; indeed, it suffices to order arbitrarily
the pre-image of each vertex of Y, and then order the simplices of X by the
rule: a < b whenever f(a) < f(b) or f(a) = f(b) and a < bin f~(f(a)).

2.2.3 Simplicial Schemes

Definition 2.2.3.1. A simplicial scheme (or schema) is a pair (M, S), where
M is a set and S is a cover of M by finite subsets, such that S contains, along
with each set A € S, all the parts of A.

A map of the simplicial scheme (M,S) into the simplicial scheme (M’,S’)
is a pair of maps, p: M — M’ and ¢: S — 5’, such that ¢(A4) = ¢(A) for all
A € S. The last condition shows that the map (¢, ) of (M, S) into (M’',S")
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is actually uniquely determined by ¢. Obviously, ¢: M — M’ defines a map
of the scheme (M, S) into the scheme (M’,S’) if and only if p(A) € S’ for all
A € S. If p and ¢ are invertible, i.e., ¢ is invertible and ¢(S) = S’, then
the map (¢, ) is called an isomorphism. Two simplicial schemes which can be
related by an isomorphism are isomorphic.

A simplicial scheme (M, .S) is a subscheme of the simplicial scheme (M’, S’)
it M ¢ M’ and S C S’. The subscheme (M, S) is complete if A € S’ and A C M
imply A€ S.

Definition 2.2.3.2. The simplicial scheme given by the skeleton skely X of a
simplicial space X and the cover of skelg X by the 0-skeletons of the simplices of
X is termed the scheme of the space X and is denoted by sch X. For example,
the scheme of Si A (see Remark 2.2.2.2 consists of the set A and of the cover of
A by all its finite subsets.

The map abr f: skelg X — skelg X’ induced by a simplicial map f: X — X’
takes the 0-skeleton of each simplex of X into the 0-skeleton of a simplex of X”.
Hence it defines a map of sch X into sch X’, called the scheme of the map f and
denoted by sch f. The discussion in Remark 2.2.2.6 implies that a simplicial map
is uniquely determined by its scheme, that every map of sch X into sch X’ is the
scheme of some simplicial map X — X', for any simplicial spaces X and X', and
that a simplicial map is invertible if and only if its scheme is an isomorphism.
In particular, two simplicial spaces X and X' are simplicial homeomorphic if
and only if their schemes sch X and sch X’ are isomorphic.

Remark 2.2.3.3. If X is a subspace of the simplicial space X', then sch X is
a subscheme of sch X’, and sch X is complete if and only if X is complete.
Moreover, it is clear that every subscheme of sch X’ is the scheme of a subspace
of X'.

In particular, let (M, S) be an arbitrary simplicial scheme, and consider the
simplex Si M. Obviously, (M, S) is a subscheme of sch Si M, and so (M, S) is
the scheme of a subspace of Si M. Thus, every simplicial scheme is the scheme
of a simplicial space. Moreover, given an arbitrary simplicial space X, we may
take (M, S) to be the scheme of X and conclude that every simplicial space X
can be simplicially embedded in Siskely X.

Definition 2.2.3.4. A simplicial scheme (M, S) is ordered if the sets of S are
ordered and the order of each set A € S. S is compatible with the orders of
the subsets of A. A map (p, p) between ordered simplicial schemes (M, S) and
(M, S") is monotone if p(a) < ¢(b) whenever a < b. Therefore, ordering the
scheme of a simplicial space is equivalent to ordering the space itself, and the
scheme of a simplicial map between two ordered simplicial spaces is monotone
if and only if the map itself is monotone.

2.2.4 Polyhedra

Remark 2.2.4.1. A polyhedron is a subset of Euclidean space which admits a
finite triangulation by Euclidean simplices. Of course, the simplest polyhedra
are the Euclidean simplices.
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A subspace of a polyhedron is obviously a polyhedron.

Now any simplicial space can be simplicially embedded in the simplex spanned
by its 0-skeleton (see Remark 2.2.3.3), and when the initial space is finite and
has ¢ vertices, this skeleton is simplicial homeomorphic to 79~ ! Therefore, every
finite simplicial space admits a simplicial embedding in a Euclidean simplex with
the same number of vertices. Hence every finite simplicial space is simplicial
homeomorphic to a polyhedron.

Theorem 2.2.4.2. Ewvery finite n-dimensional simplicial space is simplicial
homeomorphic to a polyhedron contained in R?"+1,

Proof. Since every finite n-dimensional simplicial space can be simplicially em-
bedded in skel,, T? for ¢ large enough (see Remark 2.2.4.1), it suffices to con-
struct, for arbitrarily given ¢ and n, a linear mapping f: RT! — R?"+! which
is injective on skel,, T9.

If ¢ < 2n, we may take f to be the inclusion R9t! — RZ*+1 If ¢ > 2n,
define f by

2n-+1
q+1
+1 »
Fla¥it) = 3> it

=1 i=1
All that remains is to verify that if * = (z1,...,2441) and 2" = (2,..., 2}, ;)
belong to skel,, T? and f(z) = f(z'), then = 2’. Since each of the points = and
' lies in an n-dimensional face of T, at most n+1 of the numbers z1, ..., zq41,
and n+ 1 of the numbers 7, ... ,x;H are different from zero. Consequently, no
more than 2n + 2 numbers 1 — 21, .., 2441 — 2, are different from zero, i.e.,
there are positive integers ji, ..., jont2 such that j; < --- < jop42 < 2¢+1 and
Ty = Xj/ for j 7§ jl, NN 7j2n+2- Since

q+1 q+1 q+1 q+1

ij = Zx;(: 1) and Zjixj = Zjim;-
j=1 j=1 J=1 J=1

fori=1,...,2n+ 1, we have

2n+2
> dilaj, —aj)=0, i=0,....2n+1.
r=1

The determinant of the matrix {jﬁ}jigziﬁ’rﬂwﬂ does not vanish, and so z;, =
o forr=1,...,2n+2 and finally » = '. O

Information 2.2.4.3. For any n there are n-dimensional polyhedra which cannot
be topologically embedded in R?". An example is skel,, 72" *2; see [10] for a
proof.
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2.2.5 Simplicial Constructions

Remark 2.2.5.1. Many of the topological and cellular constructions described
in §1.2 and Subsection 2.1.5 can be replaced by parallel constructions which
produce simplicial spaces out of simplicial ones. The simplest examples are
the J] and \/ operations: a sum of simplicial spaces and a bouquet of pointed
simplicial spaces with vertices as base points are obviously simplicial spaces.
There are also more elaborate constructions, the more important ones being
discussed below. The main one is the barycentric subdivision construction,
which refines triangulations and has no analogues in §1.2 and Subsection 2.1.5.

Lemma 2.2.5.2. Let I' be a fundamental cover of the topological space X by
triangulated subspaces. Suppose that for any A, B € T" the intersection ANB is a
complete subspace of both A and B (considered as simplicial spaces) and inherits
from A and B the same triangulation. Then there exists a unique triangulation
of X relative to which the elements of I' become simplicial subspaces.

Proof. This triangulation of X is simply the union of the triangulations of the
elements of I. One may check directly that this union satisfies conditions (i),
(ii), and (iii) in Definition 2.2.2.1 [the completeness of the intersections A N B
is necessary for (iii)]. Uniqueness is also evident. O

Barycentric Subdivision

Definition 2.2.5.3. The construction below produces a new simplicial space,
bary X, from any simplicial space X, such that bary X is identical to X as a
topological space, but has a finer triangulation, called the barycentric subdivision
of the initial triangulation.

Consider first a Euclidean simplex X . For an arbitrary numeration ay, . . ., a,
of the vertices of X, form the set

{z € X|bary, (z) < bary, () <--- < bary, (z)}. (2.2.5.4)

It is readily seen that (2.2.5.4) is the Euclidean simplex whose vertices are the
centres of the simplices Esi Ay, ..., Esi A,, where A; = ag, ..., a,. Furthermore,
the simplices of the form (2.2.5.4) corresponding to all possible numerations
of the vertices of X and their faces clearly yield a triangulation of X. This is
precisely the barycentric subdivision of the standard triangulation of the simplex
X, and it transforms X into bary X. An obvious property of this construction
is that the inclusion bary X < bary X' is a simplicial embedding whenever X
is a face of the simplex X'.

Now if X is a topological simplex, we define the barycentric subdivision of
its standard triangulation as the image of the barycentric subdivision of the
standard triangulation of the unit simplex 7", r = dim X, under a simplicial
homeomorphism 7" — X. This is clearly a correct definition, i.e., the trian-
gulation of X thus obtained does not depend on the choice of the simplicial
homeomorphism 7" — X among the (r 4+ 1)! available ones.



2.2. SIMPLICIAL SPACES 99

Finally, let X be an arbitrary simplicial space, and consider the cover of
X by its simplices, each subdivided as above. It is easy to verify that this
cover satisfies the conditions of Lemma 2.2.5.2, and hence we obtain a new
triangulation of X, which is precisely the barycentric subdivision of the initial
triangulation of X.

We note that the barycentric subdivision transforms a finite (locally finite)
simplicial space into a finite (respectively, locally finite) one. Moreover, if X is
a polyhedron, then so is bary X.

Remark 2.2.5.5. The set of vertices of the space bary X equals exactly the set
of centres of the simplices of X. The centres of the simplices s1,..., s, of X
are the vertices of a simplex of bary X if and only if s1,...,s, Can be re-
indexed to form an increasing sequence. This observation enables us to give a
concise description of the barycentric subdivision in the language of schemes:
if sch X = (M, S), then schbary X = (S, bary S), where bary S is precisely the
collection of those finite parts of S that can be ordered by inclusion. At the
same time, we obtain a canonical order of bary X: if a,a’ € skelg bary X, then
a < o' whenever the simplex (of X) with centre a is contained in the simplex
with centre o.

In particular the above description of sch bary X shows that bary X is a com-
plete subspace of bary X’ whenever X is a subspace of X’. Indeed, sch bary X
is clearly a complete subscheme of sch bary X’.

In general, given a simplicial map f: X — X', the map f: bary X —
bary X’ is not simplicial (the simplest example: take X = T2, X' = T,
f(orty) = orty, f(orty) = f(orts) = orty). However, the map sch f: sch X —
sch X’ naturally induces a map sch bary X — sch bary X’, and hence a simplicial
map bary X — bary X’. The latter is denoted by bary f and is clearly always
monotone.

Theorem 2.2.5.6. If X is a polyhedron, then the mazimal diameter of the
simplices of the polyhedron bary X does not exceed the maximal diameter of the
sitmplices of X times n/(n+ 1), where n = dim X .

Proof. 1t is enough to show that if X is the Euclidean simplex with vertices
ag, ..., ar, then the diameter of the simplex (2.2.5.4) is no bigger than [r/(r +
1)]diam X. Consider the part X’ of X defined by the inequality bary, (x) >
r/(r+1). X' is the Euclidean simplex obtained by contracting X towards the
vertex a, by a factor of r/(r +1). Consequently, diam X' < [r/(r 4+ 1)] diam X,
and we finally note that X’ contains the simplex (2.2.5.4). O

Corollary 2.2.5.7. For any polyhedron X and any € > 0 there is a positive
integer m such that every simplex of the polyhedron bary™ X has diameter < e.

Simplicial Products

Definition 2.2.5.8. If X; and X, are simplicial spaces with dim X; > 0 and
dim X5 > 0, then it is readily seen that their cellular product X; x¢c X5 does



100 CHAPTER 2. CELLULAR SPACES

not admit a triangulation such that the interiors of its simplices are products
of interiors of simplices of X; and X5. However, we shall presently show that
X1 Xc X5 admits triangulations, and we shall construct a canonical triangulation
when X; and X5 are ordered. This construction produces a simplicial space
out of X1 X X, called the simplicial product of X; and X5, and denoted by
X1 Xs XQ.
To begin with, let X; be the Euclidean simplex in R" with vertices ag, ... ..., a4,

and let X5 be the Euclidean simplex in R™ with vertices b, ... ...,b.. Set for
r1 € X7 and x5 € Xo:

i J
ai(xl) = Zbar}’ak (331)7 ﬁj(QTQ) = Zbarybl (902),
k=0 1=0

and arrange the numbers ao(z1),...,aq—1(z1), Bo(22),...,Br—1(z2) in a non-
decreasing sequence v1(x1,%2), ..., Vq+r(T1,22). Further, let M, denote the
collection of subsets with ¢ elements of {1,...,¢+ r}, and let s(u), where p €
My, denote the set of all points (x1,z2) € X3 x Xo such that each of the
numbers v, (x1,22), p € p is equal to one of the numbers yo(x1), ..., vq—1(z1).
One may check directly that there is no (¢+r — 1)-dimensional plane containing
the ¢ + r + 1 points

(ag,bo), - .., (a0, bj,—1);

(@1,b5,-1), .-+, (a1,bj,—2);

.................. (2.2.5.9)
(@g-1,bj,~(g-1)) -+ -+ (Ag—1, bj,—q);

(aq’ qu*Q)’ ) (aqv b?”)v

where ji,...J4 € 1, j1 < -+ jq. Also, one may verify that

q Jr+1—(k+1)

YooY bwra(nze) — el e)](ak, ) = (21, 22)

k=0 I=jr—k

for (z1,22) € s(pn), jo =0, jg+1 = g+7r+1, v0(z1,22) = 0 and Ygiri1 (71, 72) =
1. Moreover,

q Jr+1—(k+1) q+r
ST bk me) =@ w2)] = D [pra (@1, 22) = (21, 72)] = 1
k=0  I=jr—k p=0

and vp41(z1, x2) —vp(x1,x2) > 0. Consequently, the set s(u) is contained in the
Euclidean simplex spanned by the points (2.2.5.9), and since s(u) is obviously
convex and contains all the points (2.2.5.9), it equals this simplex. Now it is
clear that the sets s(u) cover X7 x X5, and that s(p1)Ns(pe) is just the Euclidean
simplex spanned by the vertices common to the simplices s(u1) and s(us), for
any pi, o € Mgy,.. As a result, the simplices s(u) and their faces constitute a
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triangulation of the product X; x X9, and this triangulation transforms X; x X,
into X1 xXg X5. Moreover it is readily seen that if X; and X, are faces of the
ordered Euclidean simplices X| and X}, then the inclusion X7 xg Xs — X{xsX}
is a simplicial embedding.

Next let X; x X5 be ordered topological simplices. To define the simplicial
product X; xg Xo, use the previous prescription to triangulate the product
of the unit simplices 7% and 7", with ¢ = dim X; and r = dim X5, and then
employ the product 79 xT" — X3 x X5 of canonical simplicial homeomorphisms
T9 — X; and 77 — X, to carry this triangulation to X; x X5. With the
resulting triangulation, X; x X5 becomes X; xg Xo.

Finally, let X; and X5 be arbitrary ordered simplicial spaces. It is readily
verified that the cover of X; x¢c X5 by the product s; X so of simplices s; of X3
and s, of X5, where s X s is triangulated as above, satisfies the conditions of
Lemma 2.2.5.2. This lemma yields a triangulation which transforms X; xc X»
into the simplicial product X; xg Xs.

We remark that each cell e of X; xc X2 can be represented as the union of
a finite number of cells of X; xg X5, having dimensions < dime. In particular,
the map id: X7 xg X9 — X1 xXg X5 is cellular.

Remark 2.2.5.10. A straightforward corollary of the simplicial product con-
struction is that the product f; X fo: X3 xg Xo — X Xg X} of two monotone
simplicial maps, f1: X1 — X] and fo: Xo — X/, is also simplicial. It is also
plain that if X; and X, are subspaces of the ordered simplicial spaces X/ and
X, then X; xg X5 is a subspace of X/ xg X}.

Let us conclude with a description of the simplicial product in terms of
schemes. Suppose sch X; = (M7,51) and sch Xy = (M3, S2). Then sch(X; xg
X2) = (My x Ms, S), where S is the collection of sets A C X; x X5 such that:

(i) proj;(A) € S, proj,(A) € Sa;

(ii) if (a1,a2) € A, (a},ah) € A, and a; < af , then as < d}.

Limits

Remark 2.2.5.11. Let X, X1, X5,... be simplicial spaces, together with sim-
plicial embeddings po: Xo — X1,¢1: X1 — Xs,.... Consider the cover of
lim(X, ¢r) by the sets Immy(sy), where s, is a simplex of X (k =0,1,...).
If we take for a characteristic homeomorphism of Immy(sx) the composition
of a characteristic homeomorphism 79™s* — s, with the homeomorphism
abrImmy: s — Immyg(sg), then Immyg(s;) becomes a topological simplex.
It is clear that in this way the cover {Immg(s;)} becomes a triangulation of
lim(Xp, pr); hence lim(Xy, i) is a simplicial space. As a cellular space, this
space coincides with the limit defined in Remark 2.1.5.7. Moreover, Immy, are
simplicial embeddings.

If X}, are ordered spaces and @), are monotone, then the space lim(Xy, ¢x)
is ordered, and the embeddings Immj are monotone.
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Joins, Cones, and Suspensions

Remark 2.2.5.12. Let X; and X5 be topological simplices. Then the join X;xX5
naturally becomes a topological simplex if we define the characteristic homeo-
morphisms as

TdimX1+dimX2+1 T]_*T Pp1xp2 X *XQ,

where T} and T; are opposite faces of the simplex 74m Xa+dim Xo4+1 and o) and
@y are simplicial homeomorphisms (the equality 7dimXi+dimXa+1 — 7 )
stands for the simplicial homeomorphism established in Remark 2.2.1.1). Now
one may canonically triangulate the cellular join X; xc X2 of two arbitrary
simplicial spaces X; and X5: its simplices are the images of the simplices of X3
and X5 under the inclusions X7 — X; x¢c X3 and Xo — X7 x¢ X2, and also the
images of the simplices s; x s under the inclusions incl xincl: s1 *xso — X7 % X5,
where s; is a simplex of X; and so a simplex of Xs. The resulting simplicial
space is called the simplicial join of X1 and X5, and is denoted by X; xg Xo.
As a cellular space, X xg X5 is identical to Xy xc Xo.

If sch Xy = (M7, S1) and sch Xy = (M3, S3), then clearly X xg Xo = (M; 1T
Ms, S), where S is the collection of non-empty subsets A of Mj IT Ms such that
incl; *(A) € S or incl; '(A) = @, while incl; '(A) € Sy or incly '(A) = @. Here
incly : My — M7 II M5 and incly: My — My I1 My are the canonical mappings.

In particular, since

coneX = XxD% and susX = X xS

for any topological space X (see Theorem 1.2.6.8), we see that the simplicial join
construction transforms the cone and the suspension over an arbitrary simplicial
space into simplicial spaces.

Simplicial Mapping Cylinders

Remark 2.2.5.13. To a given monotone simplicial map f: X; — Xo, this con-
struction associates a simplicial space Scyl f, called the simplicial mapping cylin-
der of f. Generally speaking, Scyl f is not homeomorphic to the usual mapping
cylinder Cyl f of f (see Chapter 4 Exercise 4.6.6.12), but has similar properties.

The most suitable language for describing the space Scyl f is that of schemes.
Thus, let sch X1 = (M7, S1), sch Xo = (M3, S2), and sch f = (¢, ®). We define
Scyl f by the formula sch Scyl f = (M; II M, S), where S is the collection of
(finite) subsets A C M; II My such that:

(i) incl; ' (A) € S or incl; *(A) = 2

(i) p(incl(A)) Uincly ' (A) € Sy;

(iii) if a; € incly*(A) # @, then incly ' (A) € ©(S1);
)

(iv) if a1 € incly*(A) and ay € incly ' (A), then ag < @(ay).
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The maps incl; and incly define two maps sch X; — schScyl f and sch Xy —
sch Scyl f, and hence two simplicial embeddings, X; — Scyl f and X5 — Scyl f.
The images of these embeddings are called the (lower and upper) bases of the
cylinder Scyl f and can be identified with X; and X5. Moreover, the map
M; x (0U1) — M; II My defined by (a,0) — incli(a), (a,1) — incly p(a),
induces a certain map sch(X; xg I) — schScyl f, and hence a simplicial map
X7 xg I — Scylf. Clearly, together with the inclusion Xy — Scyl f, this
simplicial map yields a continuous map (X; xg I) I Xo — Scyl f, which in
turn induces a continuous map csc f: Cyl f — Scyl f. Moreover, we see that
csc f(Cyl f) = Scyl f, and that the canonical retraction rt f: Cyl f — Xo (see
Definition 1.2.6.10) is constant on the elements of the partition zer(csc f). Also,
the canonical Xs-homotopy from id(Cyl f) to the composite map

Tt

Cyl f 20 x, 2 oyl 7

is constant on the elements of the partition zer(csc f) x zer(id I') . Consequently,
rt f defines a strong deformation retraction Scyl f — X5 and the composition of
the inclusion X; — Scyl f with this retraction obviously equals f. We conclude
that the inclusion Xy — Scyl f is always a homotopy equivalence, whereas the
inclusion X; — Scyl f is a homotopy equivalence if and only if f is a homotopy
equivalence.

2.2.6 Stars. Links. Regular Neighbourhoods

Remark 2.2.6.1. The star of a simplex s in a simplicial space X is the union
of all simplices of X which contain s. Notation: Stars or Star(s, X). Clearly,
Star s is a subspace of X.

The open star of the simplex s is the union of the interiors of all simplices
containing s. Notation: star s or star(s, X). It is readily seen that star s is the
open set defined by the inequalities

bary, (z) >0,...,bary, (z) >0,

where ag ..., a4 are the vertices of s. Moreover, Clstar s = Star s.

The link of the simplex s is the union of all simplices in Star s which do not
intersect s. Notation: link s or link(s, X). Clearly, link s is a subspace of the
spaces X and Star s.

The following are obvious facts.

o If s’ is a face of s, then Star s’ C Star s, star s’ C star s, link s’ C link s.

o If ag,...,a, are vertices which do not sit in the same simplex, then the
intersection NY_, star a; is empty. However, if ao, ..., a, are vertices of a
simplex s, then NY_, star a; = stars.

e If X is a subspace of X', then star(s, X) = star(s, X')N X for any simplex
s of X.
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e Moreover, if X is complete, then Star(s, X) = Star(s, X")NX and link(s, X) =
link(s, X') N X.

e Finally, if s’ is a simplex of link(s, X), then link(s’, 1k(s, X)) = link(s”, X),
where s” is the smallest simplex containing s and s'.

Definition 2.2.6.2. We can extend the definition of the star, open star, and
link to points of a simplicial space X: for € X, the star Starz = Star(z, X),
the open star starz = star(z, X ), and the link link 2 = link(z, X), are defined
as

Starz = Starsimplexx, starxz = starsimplexz, and link2 = Star simplex a\star simplex x.

Obviously, star z is a neighbourhood of z, and link x = Fr Star z = Frstarz. In
addition, the star Star z is homeomorphic to the cone over linkz. In fact, the
formula

proj(y,t) = (1 —t)e ' (z) + to~ ' (y)),

where y € linkz and ¢ € I, defines a canonical homeomorphism conelink z —
Star x; here ¢ is any characteristic homeomorphism of any simplex containing
x and y.

Warning: the equality link = link simplex « holds only when z is a vertex.

If &' is a simplex of link(s, X), then by Remarks 2.2.1.1 and 2.2.5.12, the
join s x s’ is canonically simplicial homeomorphic to the smallest simplex of
X containing both s and s’. It is clear that all these simplicial homeomor-
phisms together yield a simplicial homeomorphism s * link(s, X)) — Star(s, X).
If follows that the star Star(z, X) of any point © € X is canonically simpli-
cial homeomorphic to simplex z % link(simplex z, X'), and we readily see that
this simplicial homeomorphism maps the join of the boundary of six with the
link link(simplex z, X') onto link(x, X). Moreover, since Frsimplexx is home-
omorphic to Sdimsimplexz—1 anq the join Sdimsimplexz—1 4 link(simplex z, X) is
homeomorphic to the iterated suspension susd™simplex Jink(simplex z, X ), we
conclude that link(z, X) is homeomorphic to susd™simplex® Jink(simplex z, X).

The link of a point is a homotopy invariant

Lemma 2.2.6.3. Let A and B be retracts of a topological space Y. If the
inclusions i: A — Y and j: B — Y are homotopic to some maps f: A —Y
and g: B—'Y such that f(A) C B and g(B) C A, then A and B are homotopy
equivalent.

Proof. Consider two arbitrary retractions, o: Y — B and p: Y — A. Then the
restrictions o|4 and p|p are homotopy equivalences A — B and B — A, and
inverses of one another. Indeed, o|4 = 0 04, p|g = p o j, and the composition
pojoooiishomotopicto pojooof=pof, which in turn is homotopic to
poi=idas. Therefore, p|p o 0|4 is homotopic to id4, and a similar argument
proves that o|4 o p|p is homotopic to idp. O
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Theorem 2.2.6.4. Let T and T be subspaces of the topological space X, and
assume that both T, and Ty and are endowed with finite triangulations. If xog € X
is an interior point for both Ty and Ts, then the links link(zo,1 ) and link(zo, T2)
have the same homotopy type.

Proof. Let F; denote a homotopy Star(zo,7;) X I — X from the inclusion
Star(zg,T;) — X to the constant map Star(zg,T;) — xo € X, such that F; is
rectilinear on each simplex of Star(zg, T;) (i = 1,2). Set C;(t) = F;(Star(zo, T;) X
t) (i = 1,2). Since star(Xp,T;) is open and Star(xg,T;) is compact (i =
1,2), there exists ¢ > 0 and § > 0 such that Ci(e) C Star(zg,Ts), Ca(e) C
Star(zg,T1), C1(8) C Ca(e), and Co(d) C Cq(e). Moreover, since C;(e) \ 2o is a
retract of Star(zo,T;) \ zo (i = 1,2), C1(e) \ xo and Cy(e) \ z are retracts of
Y = [Star(xg,T1) U Star(xg, T2)] \ 2o. Finally, the formulae

(y,t) = Fi(y,dt/e) and (y,t) — Fy(y,dt/e)

define homotopies (Cy(e) \ z9) x I — Y and (Cs(e) \ zg) X I — Y from the
inclusions Ci(e) \ 29 — Y and Cy(e) \ zp — Y to maps whose images lie in
Cy(e) \ zo and C1(e) \ zo respectively. Consequently, Ca(e) \ 2o and C1(¢) \ o
have the same homotopy type (see Lemma 2.2.6.3), and it remains to note that
Ci(e) \ xo has the same homotopy type as link(zg, T;) (i = 1,2). O

Regular Neighbourhoods

Definition 2.2.6.5. The regular neighbourhood of the subspace A of a simplicial
space X is the union of the open stars star(a, X) with a € A or, equivalently,
the union of the open stars star(a, X) with a € skely A.

Theorem 2.2.6.6. If the subspace A is complete, then A is a deformation
retract of its reqular neighbourhood U .

Proof. In fact, there is even a canonical A-homotopy h: U x I — U from idy
to the composition of a retraction U — A with the inclusion A — U. This
homotopy is given by

{1-t EbESkelo 4 bary, (z)} bary, (z) .
bary, (h(z,t)) = TS ey abae@ 0 HaEskelod,
tbary, (), if a € skelp X \ skelg A.

O

In particular, this shows that every subspace of a simplicial space X is a
deformation retract of its regular neighbourhood in bary X (see Remark 2.2.5.5).
Barycentric Stars and Barycentric Links

Definition 2.2.6.7. The barycentric star of the simplex s of a simplicial space
X is the union of all simplices of bary X which have as their first vertex the
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centre of s. Notation: barstr or barstr(s, X). An equivalent description: barstr s
is the set of all points € X such that

= bary, (), if a,be snskelyX,

b
e () {> bary,(z), if aeskelpX, be(X)\s)NskelyX.

It is clear that the barycentric stars of the simplices of X cover X and are
subspaces of bary X. Moreover, barstrs # barstrs’ whenever s # s, and
barstr s C barstr s’ whenever s C s’

Definition 2.2.6.8. The union of those simplices of the barycentric star barstr s
which do not contain the centre of s is the barycentric link of the simplex s,
and is denoted by barlk s. The % barstr s is clearly simplicial homeomorphic to
the cone over barlk s. Moreover, the rectilinear projection from the centre of s
induces a homeomorphism of barlk s onto the link link s of the simplex s in X
(and the barycentric subdivision of link s transforms this homeomorphism into
s simplicial one). Therefore, the pairs (barstr s, barlk s) and (conelink s, link s)
are homeomorphic.

2.2.7 Simplicial Approximation of Continuous Maps

Definition 2.2.7.1. Let f: X — Y be a continuous map, where X and Y are
simplicial spaces. A simplicial map g: X — Y is a simplicial approzimation of
f if g(z) € simplex f(x) for any point z € X.

Theorem 2.2.7.2. Every simplicial approximation g of the map f: X — Y is
canonically homotopic to f.

Proof. The canonical homotopy X x I — Y from f to g is an affine mapping
from each generatrix x X I of the cylinder X x I onto the (possibly degenerate)
rectilinear segment joining f(x) and g(x). It is clear that this homotopy is
stationary on the set of the points x € X where g(z) = f(z). O

Theorem 2.2.7.3. A simplicial map g: X — Y is a simplicial approzimation
of the continuous map f: X — Y if and only if f(stara) C star g(a) for every
vertex a of X.

Proof. Assume first that g is a simplicial approximation of f, and let = € star a.
Recalling that g(x) € simplex f(z), that g is simplicial, and that z lies in the
interior of a simplex with vertex a, we conclude that g(x) lies in the interior of
a simplex with vertex g(a) (see 2.2.1.3). Thus, g(a) is a vertex of simplex f(x),
and hence f(z) C star g(a).

Now suppose that f(stara) C star g(a) for every vertex a of X. Pick z € X
if ag, ..., a4 are the vertices of simplex f(z), then z € NY_, star a;, whence

f(z) € f(N]_ystara;) C NI_, f(stara;) C NI, star g(a;).

Therefore, the points g(ap),...,g(aq) are among the vertices of the simplex
simplex f(z), and since g(z) lies in the simplex with vertices g(ao), ..., g(aq),
g(x) € simplex f(z). O
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Theorem 2.2.7.4. A continuous map f: X — Y of simplicial spaces has a
simplicial approximation if and only if for each vertex a of X there is a vertex
b of Y such that f(stara) C starb.

Proof. The necessity of this condition is an immediate consequence of Proposi-
tion 2.2.7.3. To prove its sufficiency, fix a map ¢: skelg X — skelg Y such that
f(stara) C star(e(a) for every vertex a € skely X. If ay, ..., a, are the vertices
of X, then N{_ stara; # &, and the inclusions

NL_,starp(a;) D NL, f(stara;) D f(NL, stara;)

demonstrate that NY_, star ¢(a;) # @ too. This in turn implies that p(ag), . .., ¢(a,)
are among the vertices of a simplex of Y (see Remark 2.2.6.1). Therefore, ¢
extends to a simplicial map X — Y (see Remark 2.2.2.6) and, applying Propo-
sition 2.2.7.3, this extension is a simplicial approximation of f. O

Theorem 2.2.7.5. For each continuous map f of a finite simplicial space
X into a simplicial space Y there is a positive integer m such that the map
f: bary™ X — Y admits a simplicial approzimation.

Proof. Without loss of generality, we may assume that X is a polyhedron (see
Remark 2.2.4.1). Since the open stars of the vertices of Y constitute an open
cover, there is ¢ > 0 such that, given any subset A of X with diam A < ¢,
f(A) is contained in one of these open stars (see Theorem 1.1.7.16). Let m be
large enough so that the simplices of bary™ X have diameters less than /2 (see
Corollary 2.2.5.7). Then given any vertex of bary”™ X, the diameter of its star is
less than e, and Theorem 2.2.7.4 shows that f: bary”™ X — Y has a simplicial
approximation. O

2.2.8 Exercise

Ezercise 2.2.8.1. Let X be a simplicial space. Show that the formula

dist(z,y) = > (bary,(y) — bary,(z))*]'/?
acskelg X

defines a metric on X, and verify that the resulting metric topology coincides
with the initial topology if and only if X is locally finite.

Exercise 2.2.8.2. Show that for every polyhedron X C R”™ there is a triangu-
lation of R™ by Euclidean simplices, relative to which X becomes a simplicial
subspace of R™.

Exercise 2.2.8.3. Show that every connected, locally finite, n-dimensional sim-
plicial space can be simplicially embedded in R?"*! triangulated by Euclidean
simplices.

Ezercise 2.2.8.4. Let f: X — Y be continuous, where X and Y are simplicial
spaces. Produce a new triangulation of X with the following two properties:
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(a) each of its simplices is contained in one of the simplices of the original
triangulation;

(b) f has a simplicial approximation relative to the new triangulation.
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2.3 HOMOTOPY PROPERTIES OF CELLULAR
SPACES

2.3.1 Cellular Pairs

Definition 2.3.1.1. Suppose that X is a rigged cellular space and A is subspace
of X. Let hg: AUskelg X — I denote the function equal to zero on A and
equal to 1 on (A Uskely X) \ A, and define inductively a sequence of functions
hr: AUskel, X — I (r=1,2,...), such that

() hp—1(x), if ze€ AUskel,_1 X,
r €Tr) =
1—7[1 — h.—1(atte(y)], if x = char.(ry)

where e € cell, X \ cellA, 7 € I, and y € S"~!. Since the functions h, are
continuous and each of them extends the preceding one, together they yield a
continuous function X — I. This function is called the characteristic function
of the pair (X, A), and the neighbourhood of A consisting of all points of X
where the characteristic function is less than 1 is called the neat neighbourhood
of the subspace A.

Obviously, the characteristic function of the pair (X, A) vanishes on A, and
only on A; hence, every subspace of a cellular space is distinguishable.

If X is a simplicial space, then we may construct a characteristic function
starting with a simplicial rigging of X, and it is readily seen that such a func-
tion does not depend upon the choice of the rigging. In this case, the neat
neighbourhood of a subspace A is simply the regular neighbourhood of A in
bary X.

Theorem 2.3.1.2. Every subspace A of a rigged cellular space X is a strong
deformation retract of its neat neighbourhood.

Proof. Let U denote the neat neighbourhood of A in X. Since the products
(AUskel, X) x I are subspaces of the cylinder X x I and cover it, they constitute
a fundamental cover of X x I. Therefore, their intersections with U x I, i.e.,
the cylinders U, x I, where = U,. = U N (A Uskel,. X), constitute a fundamental
cover of U x I. Let Gg be the constant homotopy of the inclusion A — X, and
define homotopies F,.: U, x I — U, r > 1, by the formula

Pl ) x, if zeU,._q,
r\T, 1) = .
char.(((1 —&)7 + t)y), if @ = char.(ry),

where e € cell, X \ cell, 4, i € (0,1], and y € S"~!. Now construct homotopies
G.:U.xI,r>1, by

Z, if 0<t< 2T
Grlw,t) =  Fr(e,27t = 1), if 27" <t <27
Gro1(Fr(z,1),t),  if 277+ <t <1
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Each homotopy G, extends the preceding one, and together they yield an A-
homotopy U x I — U from idy to a map which takes U into A. The compression
of the last map to amap U — A is the desired strong deformation retraction. [

Theorem 2.3.1.3. Ewvery cellular pair is a Borsuk pair (i.e, has the homotopy
extension property with respect to any space).

Proof. This is a consequence of Proposition 2.3.1.2 combined with Proposition
1.3.5.11, because cellular spaces are normal, and their subspaces are distinguish-
able. O

Theorem 2.3.1.4. If (X, A) is a cellular pair and the inclusion A C X is a
homotopy equivalence, then A is a strong deformation retract of X.

Proof. In order to prove this, first apply Propositions 2.3.1.3 and 1.3.5.6 to the
pair (X, A), then apply Proposition 2.3.1.3 to the pair (X x I, (X x 0) U (4 x
I) U (X x 1)) and, finally, apply Theorem 1.3.5.7 to the pair (X, A). O

Cellular Pairs and k-Connectedness

Theorem 2.3.1.5. Let k be a non-negative integer or co. Suppose that (X, A)
is a cellular pair such that all the cells in X \ A have dimension at most k, and
let (Y, B) be an arbitrary k-connected topological pair. Then every continuous
map f: X — Y such that f(A) C B is A-homotopic to a map which takes X
into a subset of B. In particular, every continuous map of a k-dimensional
cellular space into a k-connected topological space is homotopic to a constant
map.

Proof. We exhibit a sequence of A-homotopies {F,.: (AUskel, X)xI - Y} _,,
each extending the preceding one, and satisfying the conditions:

(i) Fr(z,0) = f(z) for all z € A Uskely X;
(i) F.((AUskel, X) x (1—-27"""1) C B;
(iii) F,.(z,t) does not depend upon ¢ for ¢t > 1 — 27771,

Then the map F: X x I — Y which equals F,. on (A Uskel, X) x I will be a
homotopy from f to a map which takes X into a subset of B.

We proceed by induction. Define F_; as the constant homotopy of f|a,
and assume that homotopies F_1,..., F,_1, each extending its predecessor and
satisfying (i)-(iii), are already constructed. If ¢ > k, then A Uskel, X = X
and we simply take F, = F,_;. So suppose now that ¢ < k. Since the pair
((Auskel, X) x I, (AUskel,—1 X) x I) is Borsuk (see Theorem 2.3.1.3), there is
a homotopy G of the map f|(A Uskel, X), such that G|auskel,_, x)x1 = Fy—1-
Using the fact that F,_1((AUskel;_1 X) x (1—279)) C B, the formula h.(y) =
G(char.(y),1 — 279) defines a map h.: D — Y which takes S?~! into B, for
each cell e € cell; X \ cell; A. Now take advantage of the k-connectedness of
the pair (Y, B) to deduce that, given any cell e € cell, X \ cell, A, there is an
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S9~1-homotopy H,: DY x I — Y from h, to a map whose image is a subset of
B. We put

Fy_1(z,t), it x € AUskel,—1 X,
Fiot) = G(,t), if0<t<1-27,
e H.(y,s9m(t—(1-279)), ifx=char.(y)and 1 -2"9<¢t<1—-27971
H.(y,1) if z = char.(y) and 1 —27971 <t < 1.

Then it is immediate that the map Fj is continuous, extends Fy,_q, and fulfils
properties (i)-(iii) with r = q. O

Theorem 2.3.1.6. Let k be a non-negative integer or co. If the cellular pair
(X, A) is k-connected and every cell in X \ A is of dimension at most k, then
A is a strong deformation retract of X. In particular, every k-connected k-
dimensional cellular space is contractible.

Proof. Indeed, idx is A-homotopic to a map ¢g: X — X such that g(X) C
A (see Theorem 2.3.1.5), and hence abrg: X — A is a strong deformation
retraction. O

2.3.2 Cellular Approximation of Continuous Maps

Lemma 2.3.2.1. Let X = AU, [Il,en (D, = D**1)], where A is a topological
space and ¢ is a continuous map U,er (S, =S*) — A. Let f: D" — X be a
continuous map such that f(S") C A’ = Immqy(A). Then:

(I) if r <k, f is S"-homotopic to a map g such that g(D"1) C A’;

(1) if r = k, [ is S"-homotopic to a map g such that there are affine maps
aq,...,as: DFYY — DEYL ith four properties:
(i) the images d; = a;(D*+1) are pairwise disjoint balls lying in int D¥*1;

(ii) each of the compositions g o «; coincides with one of the composite
maps

DA 29 1, D, 22 X (2.3.2.2)

(i) g(D*H1\ UL intd;) C A’;

(iv) for k > 1, the point of the ball d; having the largest value of the first
coordinate is just «;(orty), and the segment joining this point with
orty is entirely contained in DF+1 \Uis, (i=1,...,s).

(Part (I) of this lemma, i.e., the case r < k, merely asserts that the pair
(X, A’) is k-connected, and this is the only information that we shall actually
use in the present section; part (II) is needed in §5.3.)
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Proof. Denote the composite map (2.3.2.2) by h , fix an arbitrary Euclidean
(k + 1)-simplex o in D**! and then fix in int, an arbitrary (k + 1)-simplex 7
of the triangulation bary® 0. The sets h,(into), up € M, and X \ Upearh, (1)
constitute an open cover of X, and so there is a triangulation of D"*! which is
fine enough to ensure that the image of any of its simplices under f lies in one
of the sets of this cover (see Corollary 2.2.5.7 and Theorem 1.1.7.6). Let K,
(respectively, L) be the union of those simplices whose images are contained in
hu(int o) (respectively, in X \ U,h,(7)). Obviously, the sets K, are pairwise
disjoint, only a finite number of them are non-empty, K,, and L are simplicial
subspaces of the simplicial space D", and LU (U, K,,) = D" 1.
Now apply Proposition 2.2.7.5 to the composite maps

(abrh,)~"

K, 2 b, (0) bary? o. (2.3.2.3)

This theorem tells us that there is an m such that the maps (2.3.2.3) admit
simplicial approximations when one replaces K, by bary™ K,,. We let F), denote
the canonical homotopy from (2.3.2.3) to the above simplicial approximation.
Since 7 is not a face of any other simplex, F,,((LNK,) x I)NintT = @, and
so together the homotopies F), define a homotopy F: (L N (U,K,)) x I —
X \ Uph,(int 7). By Propositions 2.3.1.3 and 1.3.5.9, F' extends to a homotopy
G:LxI— X\U,X \Uuh,(int7) of the map abr f: L — X \ U,h,(int7),
stationary on B = D"\ U, f~!(h,(int 7)). It is evident that the composite
maps
Fu huls

K/ xI—oc——X

and -

Lx TS X\ Uuh,(int7) 2% X
yield together a B-homotopy of f. This homotopy connects f to amap fi: D™ —
X such that, for every u, the composition

(abrh,)~"

bary™ K LLEIN hy(o) bary? o

is simplicial and h,(7) C f1(K,) C hu(o). Since B D S", fi is S"-homotopic to
f, and to complete the proof of our lemma it suffices to examine (I) and (IT) for
f1 rather than f.

Consider an arbitrary ball § C int 7, and let v denote the homeomorphism
§ — Dk 4p(x) = (x — a)/p, where a and p are the centre and the radius of J.
Moreover, let W: D*t! x J — D**! be defined as

xr — toa
1 —to(1—p)

where ¢ is the largest of the numbers 6 € [0, ¢] such that (x—6a)/(1—-60(1—p)) €
DF*!. Now the family of mappings p;: : X — X, given by

() x, it zed,
xTr) =
br hpow(hT\(x),t))  if @ € hy(int D),

U(x,t) =
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obviously yields an A’-homotopy of idx such that p; (X \ U,h,(6)) C A" and
prohy=hyot.

If r < k, then f;(D"*') € X\U,h,(d), and to complete the proof in this case
we only need to note that (y,t) — p:(f1(y)) is an S"-homotopy from f; to a map
whose image is included in A’. If r = k, then f;'(U,h,(d)) can be decomposed
into pairwise disjoint ellipsoids 41, ..., Js, each being affinely mapped onto one
of the sets h,(d) by fi.

Let {g:} be an S"-homotopy of idpr+:, with the following properties:

e the preimages d; = ¢ *(J;) are balls;
e the maps abrq;: d; — §; are affine; and

e for £ > 1 the point of the ball d; having the largest value of the first
coordinate is carried by fi o ¢1 into one of the points h,, (1) ~! orty)), and

e the segment joining this point with ort; is entirely contained in D*+!\
Uj‘:l int dj .

Obviously, the formula (y,t) — (f1 o ¢:(y),t) defines an S"-homotopy from f;
to a map g satisfying conditions (IIi)-(Iliv). O

Theorem 2.3.2.4. Every cellular pair (X, A) with A D skely X is k-connected
(0 < k < o0). In particular, every cellular space whose k-skeleton reduces to a
point is k-connected.

Proof. Since any continuous map of a ball into X takes the ball into a subset of
one of the skeletons skel, X, it suffices to show that all the pairs (AUskel, X, A)
with r >k are k-connected. But this is an immediate consequence of the k-
connectedness of the pairs (A U skel,41 X, A U skel, X) with ¢ > k, which in
turn follows from Lemma 2.3.2.1 (see Theorem 2.1.2.1). O

Corollary 2.3.2.5. S" is (n — 1)-connected (n > 1). CP™ is simply connected
(0 <n <o0). CaP? is 7-connected.

Theorem 2.3.2.6. FEvery continuous map f from a cellular space X into cel-
lular space Y is homotopic to a cellular map. If, in addition, [ is cellular on a
subspace A of X, then f is A-homotopic to a cellular map.

Proof. Given f: X — Y, continuous on X and cellular on A, we shall construct a
sequence of maps { f,: X — Y }22 _, and a sequence of homotopies { F.: X xI —
Y)$2,, such that:

i) fo1=1
(i) f, is cellular on A U skel, X;

(iii) F., is a homotopy from f._1 to f,, stationary on A Uskel,_; X. Then the
formula
Fo(zx,2—-2"t1(1—t¢ if 1-27"<t<1-2-r—-1
iy {B@2=0=0), <i<i-2oro1,
F.(X,1), if xe€AUskel, X and t=1,
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will define an A-homotopy from f to a cellular map.

We proceed by induction. If f,. and F, are already constructed for r < k
and satisfy (i)-(i), then by Theorems 2.3.2.4 and 2.3.1.5 there is a (skely A U
skelp_1 X)-homotopy from fi_1|skel, x t0 @ map whose image is contained in
skel;, Y. This homotopy together with the constant homotopy of fr—1|AUskel,_; X
yield some (A U skely_; X)-homotopy of fi_1|Auskel, x- Applying Theorem
2.3.1.3, the last homotopy extends to some (A U skelx_; X)-homotopy of the
map fr_1, which we take as F. Finally, set = Fi(x,1), z € X. O

Theorem 2.3.2.7. Two homotopic cellular maps f,g: X — Y are cellular
homotopic. If, in addition, f and g are A-homotopic and A is a subspace of X,
then f and g are cellular A-homotopic.

Proof. Surely, every A-homotopy from f to g is a continuous map of the cylinder
X x I into Y, and is cellular on (X x (0U1))U (A x I). By Proposition 2.3.2.6,
this map is [(X x (0U 1)) U (A x I)]-homotopic to a cellular map. O

2.3.3 k-Connected Cellular Pairs

Theorem 2.3.3.1. Every k-connected cellular pair (X,A) (0 < k < o0) is
homotopy equivalent to a cellular pair (Y, B) such that B D skel, Y.

Proof. If k = oo, then, by Theorem 2.3.1.6, A is a strong deformation retract of
X, and hence the pair (X, A) is homotopy equivalent to (X, X).

Turning now to the case k < oo, may assume that A D skely_; X; indeed,
one reduces to this case by induction on k, because for k£ > 1 every k-connected
pair is also (k — 1)-connected, while the condition A D skel_; X is trivially
fulfilled. According to Theorems 2.3.1.5 and 2.3.2.7, there is a cellular skel; A-
homotopy f: skely X x I — X from the inclusion skely X — X to a map which
takes skely X into A. Define F': skely X x I x I — X by F(z,t1,t2) = f(f,t1),
and set

C = (skely X x I x 0) U (skelp X x (0U1) x I)U (skely A x I xI),
D =skelp X x I x 1.

Obviously, C' and D are subspaces of the cellular space skely X x I x I and the
map F' is cellular. Now define Y and B by

Y = XUp, (skelxy X x I x I), B =Immy(A)UImm,;(D).

By Remark 2.1.5.6, Y is a cellular space, and it is clear that B is a subspace of
Y containing skel, Y. To verify that (X, A) and (Y, B) have the same homotopy
type, note that Imms(A) is a strong deformation retract of B and Immy(X) is
a strong deformation retract of Y. In fact, the formula

(Immy (z,t1,1),¢) — Immy (z,tt1,1) [z € skely X, ¢, ¢ € 1],
(Immy(z), ) — Immy(z) [x € At el
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defines a homotopy B x I — B, stationary on Imms(A), from idg to a retraction
B — Immy(A). Similarly, the formula

(Imm;y (z,t1,t2),¢) — Immy (z,t1,8t2) [v € skelp X, ¢, 61,12 € I],
(Immy(z),t) — Immy(z) [z € X,tell,

defines a homotopy Y x I — Y, stationary on Imms(Y'), from idy to a retraction
Y — Immy(X). Consequently, the pair (Y,Immsy(A)) is homotopy equivalent
to both the pairs (Y, B) (see Theorem 1.3.5.8) and (Immz(X ), Imms(A)), and
it remains to observe that the pairs (Imms(X ), Imms(A)) and (X, A) are home-
omorphic. O

Theorem 2.3.3.2. Every k-connected cellular space (0 < k < 00) is homotopy
equivalent to a cellular space whose k-skeleton reduces to a point.

Proof. Let X be a k-connected cellular space and choose a O-cell zg in X.
The pair (X,zp) is homotopy equivalent to a cellular pair (X, A) such that
A D skely X (see Theorem 2.3.3.1). Set Y = X/A. Since A is contractible, Y
has the same homotopy type as X (see Theorems 1.3.7.7 and 2.3.1.3), and it is
clear that skel, Y is just a point. O

Remark 2.3.3.3. Theorem 2.3.3.2 says nothing about the dimension of the space
Y which replaces the given space X. However, its proof demonstrates that one
can always choose Y to satisfy dimY < max(dim X, k¥ +2). Our next task is to
prove that for k = 0 the last equality may be sharpened to dimY — dim X (see
Theorem 2.3.3.6).

Lemma 2.3.3.4. LetY be a topological space, and let {Y,}72, be a fundamental
cover of Y such that Y, NY, = @ whenever k —1 > 1. If Y,_1 NY} is a strong
deformation retract of Yy, for all k > 1, then Yy is a strong deformation retract
of Y.

Proof. If Fy.: Yy, x I — Y} is a homotopy, stationary on Yj;_; NY%, from idy, to
a map which takes Y} into Y;_1 NYx, then the formula

Y, if yeY, and
0<t<27k

Fy(Fyyq (... Fp(x,1)...,1),2t = 1), if yeY, and
27l << 27l (1<k)

(y,1) —

defines an yp-homotopy ¥ x I — Y from idy to a map which takes Y into
Yo- O

Theorem 2.3.3.5. Given any connected cellular space X, there is a contractible
one-dimensional subspace of X containing all the 0-cells.
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Proof. Fix an arbitrary 0-cell g in X and let Ay be the set of all O-cells that
can be joined to zy by a path I — skel; X which touches at most k 1-cells.
Since skel; X is connected (see Theorem 2.1.4.8), and a path can touch only a
finite number of cells, U Aj = skely X. Now given any O-cell x € Ay \ Ar_1
with k& > 1, pick a closed 1 -cell ¢(x) joining = to some cell in Ax_1 \ Ag_o and

set
Y, = Zo, 1f k=0,
Uyeana,,cy), if k>0,

and Y = U2, Y%. Obviously, Y is a one-dimensional subspace of X containing
skelp X, and the cover {Y;} of Y satisfies the conditions of Lemma 2.3.3.4.
Therefore, Y; is a strong deformation retract of Y, i.e, Y is contractible. O

Theorem 2.3.3.6. Every connected n-dimensional cellular space is homotopy
equivalent to a cellular space of dimension at most n, and having only one 0-
cell. In particular, every connected one-dimensional cellular space is homotopy
equivalent to a bouquet of circles.

Proof. This results from Theorems 2.3.3.5, 2.3.1.3, and 1.3.7.7. U

Applications to Cellular Constructions

Theorem 2.3.3.7. If the cellular space X is k-connected, then susX and
sus(X, zo), where xo is a 0-cell, are (k + 1)-connected.

Proof. The proof reduces to three remarks.

First, since sus X and sus(X, zp) have the same homotopy type (see Theo-
rems 2.1.4.5, 1.3.6.8, and 1.3.7.7), the (k + 1)-connectedness of one is equivalent
to the (k + 1)-connectedness of the other.

Secondly, according to Theorem 2.3.2.4 and Remark 1.3.7.13, it is enough to
verify that sus(X, zg) is (k + 1)-connected when skely X = z.

And thirdly, if skel, X = xq, then the (k+1)-connectedness of sus(X, zg) is a
corollary of Theorem 2.3.2.4, because under this assumption skely1 sus(X, zg)
also reduces to a point. O

Theorem 2.3.3.8. Suppose X; is a k;-connected cellular space and x; is a 0-cell
of X;, i =1,2. Then the tensor products (X1,21) ® (Xa,22) and (X1,21) ®c
(Xa,29) are (k1 + k2 + 1)-connected.

Proof. Again, the proof reduces to three remarks.

First, since (X1,21) ® (X2,22) induces on its compact subsets topologies
which are identical to those induced by the topology of (X1,z1) ®c (X2, x2),
the (k1 + ko + 1)-connectedness of one of these spaces implies the (k1 + ko 4 1)-
connectedness of the other.

Secondly, using Theorem 2.3.3.1 and Remark 1.3.7.13, it is enough to verify
that (X1,21) ®c (Xa2,22) is (k1 + k2 + 1)-connected when skel, X = z; and
skelg, X = xa.
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Thirdly, under these circumstances, the (k1+k2+1)-connectedness of (X1, z1)®c
(X3, x2) follows from Proposition 2.3.3.2, because skelg, 1,11 (X1, 71)®c (X2, 72))
also reduces to a point. O

Lemma 2.3.3.9. For any cellular spaces X1 and Xo with O-cells x1 and x2 taken
as base points, the cellular join (X1, x1) *c (X2, 22) is homotopy equivalent to
sus((X1,71) ®c (X2, 22), bp).

Proof. By definition, the spaces
(X1,21) *c (X2,22),bp), sus((X1,71) ®c (X2, 22), bp)

are obtained from projection (X7 x ¢ X3) x I by taking quotients two times, and
the projection

(X1 x¢ X2) x I = sus((X1,21) ®c (X2,22),bp)
is constant on the elements of the partition
zer(proj: (X1 xo X2) X I = (X1,21) ®c (X2, 22)).
The resulting map
[ = factproj: (X1 x¢c X2) X I = (X1,71) *c (X2, 22)]:
sus((X1,71) ®c (X2, 22),bp) — (X1, 21) xc (X2, 72)

is factorial (see Remark 1.2.3.4). Since the only element of the partition zer(f)
which does not reduce to a point is f~!(bp), we see that

sus((X1,71) ®c (X2,22),bp) = [(X1,21) xc (X2, 22]/f " (bp).
Finally, note that
F7H(bp)) = (X1, 21) ®c (22, 22)] U [(21,21) ®c (X2, 22)],

and since this union is contractible, the quotient space [( X1, z1)xc (X2, x2)]/f 1 (bp)
is homotopy equivalent to (X1, 1) *¢ (X2, z2).

Theorem 2.3.3.10. Let the cellular spaces X1 and X5 be k1- and respectively
kao-connected. Then the joins X1 * Xa, X1 *¢ Xo, (X1,21) * (X2,22), and
(X1,21) *c (X2, 22), where x1 and xo are 0-cells, are (k1 + ko + 2)-connected.

Proof. The proof reduces to four remarks.

First, since (X7, x1) xc (X2, z2) is a quotient of X7 xc X2 by a contractible
space (the closed 1 -cell 1 x 23), (X1,21) ¢ (X2,22) and X x¢ X2 have the
same homotopy type.

Secondly, X; xc X5 induces on its compact subsets the same topologies as
does X7 x X2, and hence the (k1 + ko + 2)-connectedness of one of these spaces
implies the (k1 4+ k2 + 2)-connectedness of the other.

Thirdly, and from the same reason, (Xi,z1) * (Xa,22) is (k1 + ko + 2)-
connected if and only if (X1, 1) ¢ (X2, 22) is (k1 + k2 + 2)-connected.

Fourthly, the ((k1 + k2 + 2)-connectedness of (X1, 1) ¢ (X2, z2) is an im-
mediate consequence of Lemma 2.3.3.9, Theorems 2.3.3.8, and 2.3.3.7. O
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2.3.4 Simplicial Approximation of Cellular Spaces

Lemma 2.3.4.1. Suppose that X and Y are cellular spaces and {X,}2, and
{Y, - }22,, are filtrations of X and Y by subspaces. Let f: X — Y be a cellular
map such that f(X,) C Y, (0 <r < oo). If all the maps abr f: Xr — Y, are
homotopy equivalence, then so is f.

Proof. Since the Z, = Cyl(abr f: X, — Y,.) are cellular subspaces of Z = Cyl f
and satisfy the conditions Z, C Z,41 and cupS,Z, = Z, they yield a filtration
of Z (see Definition 2.1.1.9). Thus, the image of any continuous map D¥ — Z
is contained in one of the sets Z, (see Theorem 1.2.4.5), and so the pair (Z, X)
is oo-connected provided that all the pairs (Z,, X,) are oo-connected. Now
note that (Z,, X,.) is co-connected if and only if abr f: X, — Y, is a homotopy
equivalence; similarly, (Z, X) is co-connected if and only if f is a homotopy
equivalence (see Theorems 2.3.1.3, 2.3.1.6, Remarks 1.3.3.9, and 1.3.7.14). O

Theorem 2.3.4.2. Given any cellular space X, there is a simplicial space which
has the same homotopy type and the same dimension as X, and is finite or
countable together with X .

Proof. The proof consists of producing three sequences:

(1) ome of simplicial spaces {Y;}52,
(2) one of simplicial embeddings {i,: V. = Y,.11}22,,

(3) and one of cellular homotopy equivalences {f,: skel, — Y, 11}22,,
with the following four properties:
(1 fr|skelr_1 X = irfl o frfl;

)
(ii) dimY, = dimskel, X;

(iii) if skel, X is finite (countable), then Y, is finite (respectively, countable);
(iv)

This will enable us to define the simplicial space lim(Y}.,,) having dimension
dim X, and finite or countable together with X, as well as a cellular map f: X —
lim(Y;., 4,) such that f|sel, x = Imm, of. Finally, we shall use Lemma 2.3.4.1
to show that f is a homotopy equivalence.

Define Yy and fy as skelgp X and idgkel, x, and assume that simplicial spaces
Y, cellular homotopy equivalences f,., and simplicial embeddings 4,1, satisfying
(i)-(iv), are already constructed for r < ¢. By Theorem 2.1.2.1, we may represent
skel; X as skel, 1 Uy A, where A = Heecen, x (De = D) and ¢ is a continuous
map of ¥ = eecen, x (Se = S7) into skel, 1 X.

Next triangulate A so that X becomes a complete subspace and the map
fe—109: X = Y, admits a simplicial approximation g¥ — Y,_;. Further,

if skel, X =skel,_; X, then Y, =Y,_; and 4, =idy, _,.
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order Y;_; and X in such a manner that the map g becomes monotone. Applying
successively Propositions 1.3.7.11, 1.3.7.8, and then again 1.3.7.11, we obtain
three homotopy equivalences:

e a homotopy equivalence skel; X — Y, 1Uy, _ 0, A which agrees with f,
on skel,_1 X;

e a homotopy equivalence Y, 1 Uy, 0, A — Y, 1Ug A which is the identity
on Y, _1;

e and a homotopy equivalence Y;_1 Uy A — (Scylg) Uina A, where incl =
[incl: & — Scylg] (see Remark 2.2.5.13), which agrees with the inclusion
Y,—1 — Scylg on Y,_;.

At last, we may define Y; as (Scylg) Uina A, f; as the composition of the three
homotopy equivalences above, and i,_; as the composite embedding Y,_; —
Scylg — Y,. The triangulations of A and of the cylinder Scyl g yield together
a triangulation of Y; (see Lemma 2.2.5.2). It is plain that ¢,_1 is a simplicial
embedding and that Yy, f,, and 4,_; satisfy conditions (i)-(iv) for r = ¢. O

Theorem 2.3.4.3. Let X and Y be cellular spaces with X finite and Y count-
able. Then the set m(X,Y) is countable.

Proof. By Propositions 2.3.4.2 and 1.3.1.8, we need only consider the case when
X and Y are simplicial spaces. Under this assumption, Theorem 2.2.7.5 shows
that the cardinal of 7(X,Y") does not exceed the cardinal of the set of all sim-
plicial mappings bary™ X — Y (m = 0,1,...), and the latter is obviously
countable. O

2.3.5 Exercises

Ezercise 2.3.5.1. Suppose that the cellular spaces X; and X/ are homotopy
equivalent, i = 1,2. Show that X; x ¢ Xs and X7 X ¢ X} are homotopy equivalent,
and that the same is true for the spaces X7 xc X2 and X| x¢ XJ.

Exercise 2.3.5.2. Show that every cellular space is homotopy equivalent to a
locally finite cellular space.

Ezercise 2.3.5.3. Show that every cellular pair is homotopy equivalent to a
simplicial pair, and that every finite cellular pair is homotopy equivalent to a
finite simplicial pair.

Ezercise 2.3.5.4. Show that there is no cellular space having the same homotopy
type as the subspace of the real line consisting of the points 0 and 1/n, n =
1,2,....






Chapter 3

SMOOTH MANIFOLDS

3.1 FUNDAMENTAL CONCEPTS

3.1.1 Topological Manifolds

Remark 3.1.1.1. This chapter comprises an elementary introduction to differen-
tial topology. The basic objects of this theory are the smooth manifolds. They
are defined in the next subsection and represent (as do cellular and simplicial
spaces) topological spaces with an additional structure. The present subsection
is devoted to topological manifolds, which occupy an intermediate position be-
tween smooth manifolds and topological spaces, and do not carry an additional
structure.

Locally Euclidean Spaces

Remark 3.1.1.2. A topological space is said to be a an n-dimensional locally
Euclidean space if each of its points has a neighbourhood homeomorphic to the
space R™ or to the half space R™, where R" is the set of all points (z1,...,z,) €
R"™ with 21 < 0. The half space R” is defined for n > 1; we do not define it for
n = 0 and, accordingly, a 0-dimensional locally Euclidean space is simply a topo-
logical space such that each of its points has a neighbourhood homeomorphic
to RO, i.e., a discrete space.

In a locally Euclidean space X, the points having a neighbourhood home-
omorphic to R™ are called interior points, while the remaining ones are called
boundary points. The interior (boundary) points form the interior (respectively,
the boundary) of the locally Euclidean space X, denoted by int X (respectively
0X). (The difference between the notations int,d and int, Fr should prevent
us, in each context, from confusing the interior and boundary points, and the
interior part and boundary defined here with the interior and boundary points
and the interior part and boundary of a set in a topological space.) Clearly, the
interior of X is a dense open set, whereas the boundary of X is closed.

If each point of a topological space has a neighbourhood homeomorphic to an

121
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open subset of R™ or R™, then obviously it already is an n-dimensional locally
Euclidean space. Consequently, every open subset of an n-dimensional locally
Euclidean space is also an n-dimensional locally Euclidean space. In particular,
the interior of an n-dimensional Euclidean space is an n-dimensional locally
Euclidean space without boundary. Moreover, the interior and boundary of an
open subset U of a locally Euclidean space X are given by intU = U Nint X
and U = U NOX.

Since a locally Euclidean space is locally connected, its components are open
(see Theorem 1.3.4.3), and hence also closed.

Obvious examples of n-dimensional locally Euclidean spaces are R™, R™, S™,

and D™. It is clear that OR™ = @ and dS™ = @. Furthermore, all the boundary
points of the half space R™ lie in the limiting hyperplane R?il, consisting of
the points (x1, ..., 2zn) such that z; = 0, and all the boundary points of the ball
D" lie in the limiting sphere S*~1.
Remark 3.1.1.3. Since the product R™ x R"? is homeomorphic to R™ "2 we
see that the product X; x X5 of two locally Euclidean spaces X; and Xs of
dimensions n; and nq, and without boundary, is an (n; +mns)-dimensional locally
Euclidean space. This is true in general, i.e, a product X7 x- - - x X of boundary-
less locally Euclidean spaces Xi,..., X of dimensions ni,...,ns, is an (n +
-+ -4 ny)-dimensional boundary-less locally Euclidean space. Turning to locally
FEuclidean spaces with boundary, note that the formula

((x17"'71‘n1)7(y1a"'ayn2)) = ('rlv"'7x7L17y1a"'7yn2)

which gives the canonical homeomorphism R™* x R™2 — R™*"2 also defines a
homeomorphism R™ x R™ — R™*"2 for n; > 0. Similarly, the formula

(('T17'-~7$n1)7(y17"'ay’rLz)) — (yl7~--ayn2a$17~-~>$n1)

defines a homeomorphism R™ x R"2 — R™ "2 for n, > 0, and the formula

((Ila v axnl)a (ylv s 7yn2)) = (721‘12;/171% - y%,ﬂfg, sy gy Y2, - 'aynz)

defines a homeomorphism R™ x R™2 — R™ "2 for n; > 0, ny > 0. Thus, each
of the products R”* x R"?2, R™ xR"2, and R™ xR"™? is homeomorphic to R™ "2,
We conclude that given locally Euclidean spaces X; and Xs of dimensions n4
and ng, the product X; x X5 is an (n; +nq)-dimensional locally Euclidean space.
In general, the product X; x --- x X of arbitrary locally Euclidean spaces of
dimensions n1,...,ns is an (ny + - - - + ng)-dimensional locally Euclidean space.

Remark 3.1.1.4. The discussion in Remark 3.1.1.2 raises two non-trivial ques-
tions.

The first one is whether a non-empty topological space can be a locally Eu-
clidean space of dimension n and, simultaneously, a locally Euclidean space of
a different dimension n’ : n # n’ ? In Chapter 4 this question is answered
negatively (see Theorem 4.6.5.11). The answer is obvious when n =1, n’ > 1
orn’ =1, n > 1. In fact, any connected subset of a one-dimensional locally Eu-
clidean space becomes disconnected after one removes two suitably chosen points
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(for example, two points belonging to an open subset which is homeomorphic to
R'); in contrast, every non-empty locally Euclidean space of dimension n’ > 1
contains a non-empty open subset which cannot be disconnected by removing
two points (any open subset homeomorphic to R™ has this property). The pic-
ture is crystal clear when n = 0 or n’ = 0. However, when n > 1, n’ > 1, the
proof requires a technique which we will develop only later.

The second question is whether we can formulate more efficient definitions of
the interior and boundary points, which would permit us to actually recognise
them. For example, consider the half space R™. At this point we can show
only the trivial inclusion JR™ C R"™! (see Remark 3.1.1.2), and we are forced
to settle for one of the extreme equalities OR” = R}™! or JR" = @ (which
obviously are the only possible ones). We shall prove in Chapter 4 that OR" =
R}~ (see Theorem 4.6.5.13). This equality is plain for n = 1 (assuming that
the point 0 has a neighbourhood in R! which is homeomorphic to R, then by
removing 0 we would disconnect this neighbourhood; this is absurd, because
the latter cannot happen to a connected neighbourhood of 0 in R ). But for
n > 1, we again need techniques which are to be developed. The equality
OR" = R’f‘l settles satisfactorily the general problem of recognising the interior
and boundary points too. Indeed, it follows that

Theorem 3.1.1.5. a point x of the n-dimensional locally Euclidean space X which
has a neighbourhood U with a homeomorphism U — R"™, is a boundary point of
U, and hence, of X, if and only if this homeomorphism takes x into a point of
the hyperplane R’f‘l.

For D" this theorem asserts that D" = S"~1.
Finally, we note that the alternative equality O0R” = @& would obviously
imply that 0X = @ for any n-dimensional locally Euclidean space.

Remark 3.1.1.6. In general, it would be more prudent not to use the theorems
formulated in Remark 3.1.1.4, i.e, the theorem on dimensions and the equality
OR™ = R"™! as long as they have not been proven. This indeed is the way we
shall deal with the theorem on dimensions - the only exception is a harmless
remark in 3.1.2.3. However, we have already used the equality OR” = R’f71 and
we will take advantage of it again, before its proof, in Theorem 3.1.1.8 and in
Remarks 3.1.2.6, 3.1.2.7. But these are the only instances where these theorems
and their corollaries will be used before their proofs.

Theorem 3.1.1.7. The boundary of an n-dimensional locally Fuclidean space
is an (n — 1)-dimensional locally Euclidean space without boundary.

Proof. Let x be a boundary point of the locally Euclidean space X and let U
be a neighbourhood of x, homeomorphic to R™. Then the boundary OU is a
neighbourhood of x in 90X, since U = U N &X, and is homeomorphic to R"~ 1,
since OR™ = R7 (here the reference to Chapter 4 for the equality OR™ = R} is
unnecessary: the alternative OR™ = & is excluded, because 0X # &). O
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Theorem 3.1.1.8. For any locally Euclidean spaces X1, ..., Xs

int(X; X -+ x Xg) =int X1 X -+ xint X5, and
O(Xy X+ xXg)=(0X1 x -+ x X)U---U (X7 X+ x 0Xs).

Proof. 1t is enough to prove the statement for s = 2. Let x; € X; and let ¢; be
a homeomorphism of a neighbourhood U; of z; onto R™ or R", i = 1,2. Then
1 X 2 is a homeomorphism of the neighbourhood U; x Us of the point (z1, z2)
onto one of the products

(1) R™ x Rz,
(2) R™ x R™,
(3) R™ x R"2, or
(4) R x R"2,

and composing it with one of the homeomorphisms exhibited in Remark 3.1.1.3,
we obtain a homeomorphism of U; x Us onto R™ 72 or R™ "2 We denote this
composition by ¢ and analyse the four possible cases.

(1)2 If (pl(Ul) = R™ and (pQ(UQ) = R"2, then (pl(U1 X (Uz) = R™m*72 gnd
x1, T2 and (x1,x2) are all interior points.

(2): If 1 (U1) = R™ and ¢o(Us) = R"™, then ¢, (U; x (Up) = R™"2 and
o(x1,z9) € R if and only if ¢(zp) € R72™. Thus (z1,2,) is an interior
(boundary) point if and only if x5 is an interior (respectively, boundary) point,
while z; is an interior point.

(3): Similarly, if 1 (U1) = R"™ and ¢2(Uz) = R™2, then (z1, x2) is an interior
or boundary point simultaneously with x1, while x5 is an interior point.

(4): Finally, if p1(Uy) = R™ and ¢2(Uz) = R"2, then ¢1(U; x Uz) =
R 271 f and only if ¢(z;) € RM™ ™ or p(z9) € RP*7. That is to say,
(z1,22) is a boundary point if and only if at least one of the points z1, x2 is
boundary.

Our conclusion is that in all cases (z1,x2) is an interior (boundary point) if
x1 and z9 are interior points (respectively, if z1 and x5 are boundary points). O

Theorem 3.1.1.9. A locally Euclidean space is connected if and only if its
interior s connected.

Proof. This condition is obviously sufficient. Now let us show that it is also
necessary. Let X be a connected locally Euclidean space, let A be a component
of int X, and let B be the union of the remaining components. Since the closed
sets C1A and ClB cover X and X is connected, C1A N ClB # @ whenever
B # @, and obviously ClLANCIB C 0X. Let x € ClLANCIB, and let U
be a neighbourhood of x homeomorphic to R™. Since int R” is connected, its
homeomorphic image U Nint X = int U is also connected, which is impossible if
B # @. Consequently, B = @ and int X is connected. O
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Definition 3.1.1.10. The topological space X Uinel: 9x—x X constructed from
a locally Euclidean space X is called the double of X and is denoted by dopp X.
The double of an n-dimensional locally Euclidean space is an n-dimensional
locally Euclidean space without boundary.

From now on, we shall identify Imm;(X) with X and we shall denote the
map abr Imms: X — Immy(X) by cop, and Immy(X) - by cop X. Note that X
and cop X are closed in dopp X.

Manifolds

Remark 3.1.1.11. A locally Euclidean space is called a topological manifold or,
briefly, a manifold if it is a Hausdorff topological space with countable base. A
manifold is closed if it is compact and has no boundary and open if it has no
compact components.

Comparing what was said in Remarks 3.1.1.2, 3.1.1.3, Theorem 3.1.1.7, and
Definition 3.1.1.10 with the corresponding properties of Hausdorff, second count-
able, and compact spaces we see that:

e every open subset of an n-dimensional manifold is an n-dimensional man-
ifold;

e the interior of an nm-dimensional manifold is an n-dimensional manifold
without boundary;

¢ the boundary of an n-dimensional manifold is an (n— 1)-dimensional man-
ifold without boundary;

e the boundary of a compact manifold is a closed manifold;

e the product of s manifolds of dimensions nq,...,ns is an (ny + -+ + ns)-
dimensional manifold;

e the double of an n-dimensional manifold is an n-dimensional manifold
without boundary;

e and the double of a compact manifold is a closed manifold.

Since the components of a manifold constitute an open cover, their number is
finite in the compact case and countable in general (see Theorem 1.1.6.5).

Clearly R™, R™, S™ and D", which we gave above as examples of locally
Euclidean spaces, are manifolds.

Theorem 3.1.1.12. Manifolds are locally compact.

Proof. Let x be a point of an n-dimensional manifold X. Fix a homeomorphism
¢ of a neighbourhood U of x onto R™ or R™, and a neighbourhood V of ¢(x)
in p(U) with compact closure C1V. Let U’ = ¢~ !(V). Then obviously U’ is
a neighbourhood of z in X, U’ € ¢~ }(C1V), and ¢~ (C1V) is compact. Thus
¢ Y(C1V) is closed and contains both the neighbourhood U’ and its closure
ClU’. We conclude that C1U’ is compact. O
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Theorem 3.1.1.13. Manifolds are metrisable.

Proof. Every locally compact Hausdorff space is regular (see Theorem 1.1.7.23),
and every regular second countable space is metrisable (see Theorem 1.1.6.9).
O

Example 3.1.1.14. The following example shows that for n > 1 there are n-
dimensional locally Euclidean spaces with countable base which are not Haus-
dorff. Consider X = R"cup;R"™, where ¢ = [incl: R" \ R”] — R"] . Then X
is obviously an n-dimensional, second countable, locally Euclidean space, but
for n > 1 and 2 € R?™!, any two neighbourhoods of the points Imm; (z) and
Imms(x) in X intersect.

Information 3.1.1.15. For n > 1 there are connected, Hausdorff, n-dimensional
locally Euclidean spaces that are not second countable. A two-dimensional
example can be found in [5], and a one-dimensional one - in [11], p. 164 (the
transfinite line, or “Alexandrov’s line”). Higher-dimensional examples can be
constructed from these by taking direct products with Euclidean spaces.

One-dimensional Manifolds

Remark 3.1.1.16. A zero-dimensional connected manifold obviously reduces to
a point. Theorems 3.1.1.18 and 3.1.1.20 below provide the topological clas-
sification of connected one-dimensional manifolds. The two-dimensional case
will be analysed in §3.5 (see Subsection 3.5.3). The topological classification of
manifolds of higher dimensions is a very difficult problem.

Lemma 3.1.1.17. If a connected Hausdorff space X can be represented as the
union of two open subsets homeomorphic to R, then X is homeomorphic to
either R or St.

Proof. Let X = UUV be the above representation and ¢: U — RY, ¢: V — R!
- the corresponding homeomorphisms. We exclude the trivial cases U C V' and
V C U, where X is homeomorphic to R!, and examine the sets (U NV) and
YU NV).

Since the intersection U NV is open in both U and V, ¢(U N V) and
(U NV) are open in R! and their components are intervals. None of these
intervals is bounded: indeed, suppose that (U N V) contains a bounded in-
terval (a,b). Then ¢~!((a,b)) is both closed in V (as the intersection of the
compact, and hence closed set =1 ([a,b]) with V') and open in V, which implies
V = ¢ ((a,b)) C U, a contradiction. Moreover, (U NV) # R~! because, if
not, U C V. Similarly, ¥(U NV) # R~!. Finally, we are left with only two
possible cases:

(i) each of the sets o(UNV) and ¥ (U N V) is an open half line;

(if) each of the sets (U NV) and (U N V) the union of two disjoint open
half lines.
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Since we may multiply both ¢ and ¥ by —1, we may assume that:
Case (i), ¢(U NV) has the form (—o0,a), and (U NV) - the form (b, 00).
Consider the composition

(—00,a) = p(UNV) 225 7 AV 2 0 A V) = (b, o).

This map is injective and continuous, and hence monotone and obviously in-
creasing (if it were to decrease, the points ¢~'(a) and ¥~'(b) would have no
disjoint neighbourhoods in X). Thus,

X =97 (=00, ¥(xq]) U — =1([(¢(w0), 00)),

for some point 29 € U NV, and so X is homeomorphic to R*.

Case (ii), (U NV) = (00,a1) U (az,00) and (U NV) = (00,b1) U (ba, 00),
for some ay,as,by, by (a1 < as,b; < by), and we may assume that the composite
homeomorphism

o(UNV) 22 L unv 2% wwnv)

maps (—00, ay) onto (bg, 00), and (az, 00) onto (—oo, by ). Both functions (—oo, a1)
(be,00), and (ag,00) — (—00,b1), which represent compressions of this compos-

ite homeomorphism, are increasing (if, for example, the first were to decrease,
then the points ¢ ~!(a1) and ¥ ~1(by) would have no disjoint neighbourhoods in
X). We can thus write

X =y ([W(x2), ¥(21)]) U™ ([p(1), (a2))),

with some points z1 € = ((—00,a1)) = 1 ((be, 0)) and x5 € ¢~ ((az,00)) =
1 ~1((—00,bs)). Therefore, X is homeomorphic to S'. O

Theorem 3.1.1.18. FEvery compact, connected, one-dimensional manifold is
homeomorphic to either S* or D',

Proof. For a start, assume that the given manifold is closed. Then it can be
covered by a finite number of open subsets homeomorphic to R', and we may
arrange these in a sequence Uy, ..., U such that each union Vi, =U; U--- U Uy
is connected. According to Lemma 3.1.1.17, the first of the sets Vi,...,V, not
homeomorphic to R! is homeomorphic to S!, and being both open and closed,
it is the entire manifold, which is thus homeomorphic to S!.

Assume now that the manifold has a boundary. Then its double is a closed,
connected, one-dimensional manifold, and as such is homeomorphic to S!. There-
fore, the original manifold is homeomorphic to a subset of S'. Since this subset
is connected, closed, non-empty, different from S!, and not reduced to a point,
it is homeomorphic to D! . O

Lemma 3.1.1.19. If a topological space X can be represented as the union of
a non-decreasing sequence of open subsets, all homeomorphic to R', then X is
homeomorphic to RY.



128 CHAPTER 3. SMOOTH MANIFOLDS

Proof. Let X = UV, be the given representation. Clearly, any homeomorphism
of onto some interval (a,b) extends to a homeomorphism of V;ii| onto one
of the intervals (a,b), (a — 1,b), (a,b+ 1), or (a — 1,b + 1). Hence one can
construct inductively a sequence of intervals and a sequence of homeomorphisms
p1: V1 = Ay, po: Vo = Ag, ... such that ¢; = abr; ;. The map of X onto
the interval UA;, which agrees with ¢; on V;, is obviously a homeomorphism. O

Theorem 3.1.1.20. Every non-compact, connected, one-dimensional manifold
is homeomorphic to either R' or RL .

Proof. First, assume that the given manifold X has no boundary. Then X
can be covered by a countable family of open subsets, all homeomorphic to
R!, and we can arrange these in a sequence Uy, Us, ..., such that all unions
Ui U---UU, are connected. Then all these unions are homeomorphic to R!.
Indeed, if not, the first of them not homeomorphic to R! is, according to Lemma
3.1.1.17, homeomorphic to S, and being open and closed must coincide with
X, a contradiction. Therefore, one can apply Lemma 3.1.1.19 to our manifold
and deduce that it is homeomorphic to R!.

Now assume that X has a boundary. Then dopp X is a non-compact, con-
nected, one-dimensional, boundary-less manifold, and must be homeomorphic
to R!. It follows that X is homeomorphic to a connected, closed, non-compact
subset of R, different from R; as such, it is homeomorphic to R! . O

3.1.2 Differentiable Structures

Remark 3.1.2.1. Recall that a real function defined on an open subset of R™
is of class C" (or a C"-function) if it has continuous partial derivatives of all
orders up to and including r. The definition implies that 0 < r < oo, that C°
is the class of all continuous functions, and that C* is the class of all functions
which have continuous partial derivatives of all orders. In addition, we say that
the real analytic functions are of class C* (or C%-functions). It is convenient to
consider a > oo and thus encompass all the classes listed above by the inequality
0<r<a.

Obviously, these definitions can be extended to real functions defined on
an open subset of the half space R™. To do this, we consider the derivatives
with respect to the first coordinate at the points of the boundary hyperplane
R™ to be left derivatives, and analyticity at such points is understood as the
existence of an analytic continuation to an open set in R™. We further extend
the definitions to maps of an open subset of R™ or of R™, into any subset of RY:
such a map is of class C", or, simply, a C"-map, if its coordinate functions are
of class C".

Remark 3.1.2.2. A map f of an open subset of R™ or R” into an open subset of
R™ or R™ is a diffeomorphism if it is invertible and both f and f~' are of class
C'. Two sets which can be transformed into each other by a diffeomorphism are
said to be diffeomorphic.

The following facts are contained in well-known theorems of calculus:
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(i) If an open subset of R? or R is diffeomorphic to an open subset of R™ or
R™, then p = n.

(ii) An open subset of R™ which is diffeomorphic to an open subset of R” is
open in R™.

(iii) A diffeomorphism which is the inverse of a diffeomorphism of class C" is
itself of class C".

C"-structures and C"-spaces

Remark 3.1.2.3. The definitions below refer to a given set X.

A chart of dimension n on X is an invertible map of a subset of X onto an
open subset of IR? or R” 0 The domain of a chart ¢ is called the support of ¢
and is denoted by supp .

Two charts, ¢ and v, are C"-compatible (or have a C"-overlap) (0 < r < a)
if the set o (supp ¢ Nsupp¢) is open in im @, the set ¥ (supp ¢ Nsuppv) is open
in im ¢, and the maps

-1

o (supp ¢ N supp 1) 22— supp o N supp ¥ =2 y(suppp Nsuppey)  and
bra ! b

P(supp ¢ N supp ¥) ——— supp ¢ N suppy —» p(supp ¢ N supp ),

which are inverses of one another, are of class C" (i.e, C"-diffeomorphisms for
r > 1 and homeomorphisms for » = 0). This condition is trivially satisfied
whenever supp pNsupp ¥ = . If supp pNsupp ¢ # @, then the C'-compatibility
of the charts ¢ and v implies the equality of their dimensions. In fact, this
equality results also from the C%-compatibility of ¢ and 1, as shown by Remark
3.1.1.4.

A collection of charts is an n-dimensional C" -atlas of the set X if these charts
cover X, are n-dimensional, and each two of them are C"-compatible. Two C"-
atlases of X are C"-equivalent if their union is again a C"-atlas. This is clearly an
equivalence relation, and the equivalence classes of n-dimensional C"-atlases of
the set X are called n-dimensional C"-structures. The C"-structures with r > 0
are called differentiable structures.

Clearly, if 0 < g < r, then each n-dimensional C"-atlas is also an n-dimensional
Cl-atlas, and two equivalent C"-atlases are also C%-equivalent. Thus, when
0 < g < r every n-dimensional C"-structure uniquely extends to a C"-structure.

Every C"-structure contains a maximal atlas, namely the union of all its
atlases. The latter is called the complete atlas of the structure, and its charts
are called the charts of the structure. When we pass from a C"-structure to its
Cl-extension, the complete atlas extends too.

Remark 3.1.2.4. A set endowed with an n-dimensional C"-structure is called an
n-dimensional C"-space. The charts and atlases of the structure are refereed to
as the charts and atlases of the space. The complete atlas of a C"-space X is
denoted by Atl X.
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The coordinate functions of a chart pp of the C"-space X are called coordi-
nates on supp ¢ or, alternatively, local coordinates in X.

We shall denote by C?X the C%space obtained from the C?-space X by
extending its C”"-structure to a C?-structure, 0 < g < r.

The C"-spaces with r > ¢ are also termed CZ9-spaces.

For examples of C"-spaces we may look at all the open subsets X of R™
or R™, with the C"-structure defined by the atlas reduced to the single chart
id: X — X. In particular, for any r, the charts idg» and idg» transform R"
and R™ into n-dimensional C"-spaces.

Remark 3.1.2.5. Every n-dimensional locally Euclidean space has an obvious C°-
structure: its complete atlas consists of all possible homeomorphisms U — U’,
where U is an open subset of the space and U’ is an open subset of R™ or
R™. On the other hand, applying the “union of topological spaces” construction
(see Remark 1.2.4.3) to the complete atlas of a given n-dimensional C%-space,
we obtain an n-dimensional locally Euclidean space, and this transition is the
inverse of the previous one. Therefore, C%-spaces are just locally Euclidean
spaces.

Since any differentiable structure extends uniquely to a C°-structure, every
C"-space with > 0 is also a locally Euclidean space. Its topology may be
described in a more direct fashion as the topology of the union constructed
from any atlas of the structure.

Remark 3.1.2.6. Obviously, every point of an n-dimensional C"-space X can
be covered by a chart ¢ of X such that ime = R™ or R”. The points with
imy = R™ are called interior points and form an open dense set, called the
interior of the space X, denoted by int X. The remaining points are called
boundary points and they form a closed set, called the boundary of X, denoted
by 0X. These notations are in agreement with those introduced at Remarkl
3.1.1.2. In fact, when r = 0, the previous and present definitions of the interior
and boundary points coincide.

When r > 0, we use Remark 3.1.2.2 (ii) in order to recognise the interior
and boundary points. According to this remark, when » > 0 a point X of
an n-dimensional C"-space is a boundary point if and only if imp C R™ and
@(x) € RT™! where ¢ is a chart on this space with o € supp ¢. In particular,
if we regard R” as a C"-space with r» > 0, then OR"™ = R’f‘l. Recall that the
corresponding statement for » = 0 appeared in Remark 3.1.1.4 and its proof
was postponed until Chapter 4.

The above characterisation of the boundary points shows that the interior
and the boundary of a C"- space do not change when we extend its C"-structure
to a C?-structure, for any ¢ < r. In other words, for 0 < ¢ < r, int(C?X) = int X
and 9(C7X) = 0X. We emphasise that the equalities int(C°X) = int X and
9(C°X) = 0X were proved by a reference to Remark 3.1.1.4, i.e., they depended
upon results from Chapter 4, whereas the equalities int(C?X) = int X and
0(C1X) = 0X for ¢ > 0 need no such reference.

Using the relation X = 9(C°X), we see that Proposition 3.1.1.9 is valid for
C"-spaces with » > 0 too. That is to say, a C"-space is connected if and only if
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its interior is connected. However, this C"-variant of Proposition 3.1.1.9 can be
proved by merely repeating the proof of the original theorem, and therefore we
can eliminate the reference to Chapter 4.

Remark 3.1.2.7. Suppose A is an open subset of an n-dimensional C"-space X.
Then the charts of X whose supports are included in A yield a C"-atlas of the
set A, and define an n-dimensional C"-structure on A. In this way, any open
subset of an n-dimensional C"-space is an n-dimensional C"-space. In particular,
the interior of any n-dimensional C"-space is an n-dimensional C"-space without
boundary. Moreover, the interior and the boundary of an open subset U of the
C"-space X are obviously given by int U = U Nint X and oU = U N 0X.

Suppose ¢ is a chart on an n-dimensional C"-space X. Then abr¢: 0X N
supp ¢ — @(0X Nsupp ¢) is an (n — 1)-dimensional chart on dX. In this way
we may construct a C"-atlas of the set X, and so define a C"-structure on 0X.
Thus, the boundary of an n-dimensional C"-space is an (n — 1)-dimensional
C"-space without boundary.

If 1 (2) is a chart on the C™*-space X1 (C"'-space X5) such that im p; = R™
or R™ (respectively, im ¢o = R™2 or R™?), then the composition of ¢; X s with
one of the homeomorphisms R™ x R"2 — R™+72 and R™ x R" — R™ "2,
defined in Remark 3.1.1.3, provides an (n1+ng)-dimensional chart on X x X5. If
0X5 = @ then the charts constructed as above form a C"-atlas of the set X1 x X5,
with = min(rq,73), and hence define a C"-structure on X; x X5. Thus the
product of the ni-dimensional C™-space X; and the ns-dimensional C"2-space
Xo with 0X5 = @ is an (n; + no-dimensional C"-space, where r = min(ry, r2).

In general, the product of the n;-dimensional C"i-spaces X;,i = 1,...,s,
such that at most one of them has a boundary, is an (n; +- - - +ns)-dimensional
C"-space, where r = min(r, ..., rs). Moreover,

int(Xy x -+ x Xg) =int X3 x -+ x Xg,
and if X; is the only space having a boundary, then
OXy x - xX) =Xy x--Xj_1 Xx0X; x -+ x X,.

For » = 0 both formulae can be found in Theorem 3.1.1.8; for r» > 0, they are
plain.

It is clear that when we extend the C"-structure of the C"-space X to a
CY-structure, the C"-structures induced on the open subsets of X and on its
boundary X also extend to C9-structures, and that C?(X;7 x --- x X;) = C9X; x
-+« X C1X,. In particular, the topology defined by the above induced C"-
structures coincide with the relative topology, and the product of the C"-spaces
X;,i = 1,...,s, considered as a topological space, is just the product of the
topological spaces X1, ..., X;.

Smooth Maps

Definition 3.1.2.8. A continuous map f of a CZ"-space X into a CZ"-space
Y is of class C", or a C"-map, if for any chart ¢ on X and any chart on Y, the
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composite map

_ brop—?! _ br f P,
p(supp @ N f~ ! (suppry)) ——— suppp N f~ ! (supp ) — supp ) — im

is of class C" (see Remark 3.1.2.1). Such a composite map is called a local
representative of the map f; we use the notation loc(p,¥)f.

Obviously, a map f: X — Y of CZ"-spaces is of class C" if and only if the
local representatives of f constructed for all the charts of of some atlases of X
and Y are of class C" .

Note that this general definition of C"-maps contains the definition given in
Remark 3.1.2.1. Now, as before, a C°-map is just a continuous map. The maps
of class C! are called smooth, and the maps of class C* - (real) analytic.

The composition of two C°-maps is obviously a C°-map. If A is an open
subset or the boundary of a C"-space X, then the inclusion A — X is a C"-
map. If A is open in X or A = X, and B is open in Y or B = 9Y, then the
compression A — B of any C"-map X — Y is a C"-map.

Remark 3.1.2.9. A map f of a C='-space X into a C='-space Y is a diffeomor-
phism if it is invertible and both f and f~! are smooth. The space Y is said
to be diffeomorphic to the space X if there is a diffeomorphism X — Y, and
C"-diffeomorphic to X, if there is a C"-diffeomorphism X — Y.

Of course, the identity map of a C='-space with r > 1 is a C"-diffeomorphism.
Also, the composition of two C"-diffeomorphisms is a C"-diffeomorphism, and
the inverse of a C"-diffeomorphism is a C"-diffeomorphism itself, as we may easily
see from Remark 3.1.2.2 (iii). Therefore, the property of being C"-diffeomorphic
is an equivalence relation.

Using Remark 3.1.2.2 (i), we conclude that non-empty diffeomorphic spaces
have the same dimension.

Remark 3.1.2.10. Let f1: X1 — Y1,..., f1: X;n = Y., be C"-maps with r > 1
where no more than one of the spaces X1,...,X,,, and no more than one of the
spaces Y1,...,Y,,, has a boundary. Then

fixo o X[ Xix- o xX,, =>Y x--- XY,

is obviously a C"-map. If f1,..., f,, are diffeomorphisms, then sois f1 X - - X fi,.

The canonical homeomorphism X; x X5 — X9 X x1 is a C"-diffeomorphism
for any two C"-spaces X7 and X5 with » > 1, such that one of them has no
boundary. The canonical homeomorphisms

(X1 x - x X)X X = Xy X x X, and
Xlx(XQX'“XXm)—)Xlx...XXm

are C"-diffeomorphisms for any C"-spaces X1 X -+ X X,,, with r > 1, such that
no more that one of them has a boundary.
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Subspaces

Remark 3.1.2.11. A subset A of an n-dimensional C"-space X with » > 11is a
k-ddimensional subspace of X if each point of A is covered by a chart ¢ on X
such that the pair (im ¢, o(ANsupp p)) coincides with one of the pairs (R, R¥),
(R™,R*), or (R™,R*). If k > 0, then this condition is obviously equivalent to
the following one: each point of A is covered by a chart ¢ of the space X such
that p(ANsuppyp) =imp NRF or imp NRX.

Suppose A is a k-dimensional subspace of an n-dimensional C"-space X, and
consider the maps abrtp: A Nsuppy — p(A Nsuppy) corresponding to all
charts ¢ on X such that p(A Nsupp @) = imp NR* or imp NR*. Each such
map is a k-dimensional chart on A, and together they yield a k-dimensional
Cr-atlas of A. The C"-structure defined by this atlas transforms A into a k-
dimensional C"-space. The topology of this C"-space obviously coincides with
the relative topology.

When we extend the C"-structure of a space to a C?-structure with ¢ > 1,
its subspaces remain subspaces. The subspaces of C?X are called C?-subspaces
of the original C"-space X.

The codimension of a subspace is the difference between the dimension of
the ambient space and that of the subspace.

It is evident that the open subsets of a C"-space (with » > 1) are among its
subspaces; in particular, we cite its interior and its components. Warning: if
not empty, the boundary of a C"-space is not a subspace.

It is readily seen that if A is a subspace of codimension 0 of a C"-space X,
then int A = int A Nint X.

A subspace of a C"-space is neat if it is closed as a subset and its boundary
is contained in the boundary of the space. Note that every neat subspace of
codimension 0 is made of whole components of the ambient space.

Remark 3.1.2.12. The definition of a subspace given in Remark 3.1.2.11 contains
implicitly the generally used method of defining subspaces through equations
and inequalities. Namely, according to the second variant of our definition,
a subset A of an n-dimensional C"-space X (r > 1) is a subspace of X of
positive dimension k if and only if each point of A has a neighbourhood U with
coordinates @1, ..., @n, such that the intersection ANU is defined in U either by
the equations @41 =0,...,p, = 0, or by the equations ¢r+1 =0,...,0, =0
and the inequality ¢; < 0.

As a procedure for defining subspaces, this formulation has an obvious dis-
advantage; namely, we must assume from the beginning that ¢i,...,p, are
local coordinates. We make use the implicit function theorem to make it more
efficient.

Let X be a C"-space (r > 1), zgp € X, and let fi,..., f,, be real C!-functions
defined on a neighbourhood Uy, of Xy. We say that fi,..., f,, are independent
at the point xq if there is a chart ¢ on X with zy € supp ¢ and such that the
functions g1, ..., 9m: ©(Up Nsupp¢) — R defined by g;(y) = fi(¢~1(y)) have
linearly independent gradients at the point ¢(xg). The following statements are
consequences of the implicit function theorem:
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(i) if the C"-functions fi,..., f;, are independent at the interior point xo of
the C"-space X, then they can be completed to a system of coordinates in
a neighbourhood of z;

(ii) if the C"-functions fi,..., f,, are independent at the boundary point z
of the C"-space X, and the function f; is negative at the interior points
and zero on the boundary, then f1,..., f;, can be completed to a system
of coordinates in a neighbourhood of zy having f; as the first coordinate.

Comparing with the previous, coordinate description of the subspaces of a C"-
space, we see that a subset A of the n-dimensional C"-space X is a subspace of
positive dimension k of X if:

i) each point g € A which is an interior point for X has a neighbourhood
g
U where the intersection A N U is defined either by the equations ¢p1 =

0,...,¢n =0, where Yr41, ..., p are C"-functions independent at x, or by
the equations ¢y +1 = 0,...,¢, = 0 and the inequality ¢;(z) < 0, where
©1, Pk+1, - - -, @ are C"-functions independent at xo;

(ii) each point zp € A which lies on the boundary of X has a neighbourhood
U such that the intersections int X N U, 0X NU, and ANU are defined
in U by the inequality ¢;(x) < 0, by the equation ¢;(x) = 0, and by the
equations ¢r+1 = 0,...,¢, = 0, respectively, where ¢1, Ygt1,...,¢ are
C"-functions independent at zq.

Remark 3.1.2.13. An obvious consequence of the definition of a subspace is that
the interior int A of a subspace A of the C"-space X is contained in int X, and
that the intersections 0A Nint X and dANJX are open in JA, i.e, they consist
of whole components of 0A. Moreover, it is clear that int A is a subspace of
both X and int X, while A Nint X is a subspace of X. In particular, if A is a
neat subspace of X, then 04 = AN 0X and int A is a neat subspace of int X,
while 0A is a neat subspace of 0.X.

The inclusion A — X of a subspace A of a C"-space X is obviously a C"-map.
The compression A — B of any C%-map X — Y, where A (B) is a subspace of
X (respectively, V) is a C?-map.

Let A; be a subspace of the C"-space X;,7 = 1,...,s, and assume that at
most one of the spaces X1, ..., X, has a boundary, the same being true for the
subspaces Ay,...,As. Then Ay, X --- x A is a subspace of X1, x -+ x X, and
is a neat subspace if each A; is neat. For example, the fibres of the product
X1, x .-+ x X, are neat subspaces.

Let A be a subspace of the C"-space X, and let B be a subspace of A.
Then, using the description of subspaces in Remark 3.1.2.12, we see that B is
a subspace of X; in particular, if B is a neat subspace of A and A is a neat
subspace of X, then B is also a neat subspace of X. In a similar fashion we
conclude that a neat subspace B of the C"-space X which is contained in a neat
subspace A of X is also a neat subspace of A.
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CT-manifolds

Definition 3.1.2.14. A C"-space is a C"-manifold, or a manifold of class C", if it
is a topological manifold, i.e., a second-countable, Hausdorff space. A manifold
of class CY is simply a topological manifold; see Remark 3.1.2.5. The manifolds
of class C" with r > 1 are called smooth, or differentiable. The manifolds of
class C® are called (real) analytic.

Since any C"-structure is defined by one of its atlases, it is interesting to
discover those properties of an atlas of a C"-space which guarantee that the
space is Hausdorff and second-countable. Here we formulate only two obvious
conditions: if each pair of points is covered by a chart of the atlas or by two
disjoint charts of the atlas, then the space is Hausdorff; if the atlas is countable,
then the space is second-countable.

There is no need to check that a space is Hausdorff and second-countable if
the differentiable structure is introduced on a set which is already a topological
manifold, and the topology defined by the differentiable structure coincides with
the initial one. If the differentiable structure is defined by an atlas {¢,y}, then
the two topologies agree if and only if supp ¢, are open and cyp, are homeo-
morphisms; see Remark 3.1.2.5.

A smooth manifold is closed if it is compact and has no boundary; cf. Re-
mark 3.1.1.11. Warning: at the present time the equality X = 9(C°X) is not
proven (see Remark 3.1.2.6). Therefore, we should be careful to distinguish be-
tween the smooth manifold X being closed and the topological manifold C°X
being closed.

Definition 3.1.2.15. Reconsidering the statements made in Remarks 3.1.2.7
and 3.1.2.11 in the light of the corresponding properties of Hausdorff spaces,
second-countable spaces, and compact spaces, we may deduce the following;:

e every open subset of an n-dimensional C"-manifold is an n-dimensional
C"-manifold;

e the interior of an n-dimensional C"-manifold is an n-dimensional C"-manifold
without boundary;

e the boundary of an n-dimensional C"-manifold is an (n — 1)-dimensional
C"-manifold without boundary;

e the boundary of a compact C -manifold is a closed C -manifold;

e the product of the C"-manifolds X, ..., X, of dimensions n4,...,ng, such
that no more than one of them has a boundary, is an (n; + -+ + ng)-
dimensional C"-manifold;

e a subspace of a C"-manifold is a C"-manifold.

The subspaces of smooth manifolds are called submanifolds, and the neat sub-
spaces - neat submanifolds.
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Remark 3.1.2.16. The basic examples of n-dimensional C"-manifolds with r >
1 are again R™ and R™ (see Remark 3.1.2.4 ). The submanifolds of these
spaces provide an unlimited supply of examples of C"-manifolds. The sim-
plest are the submanifolds of R™ defined by one system of equations ¢y11(z) =
0,...,¢0n(x) =0, where @i11,...,p, are C"-functions defined on an open sub-
set of R™ and having linearly independent gradients on the set of their common
zeros. We may add to such a system the inequality o(x) < 0, where ¢
is any C"-function defined in a neighbourhood of the set of common zeros of
©k+1, - - -, ¥n, zero on this set, and such that the gradients of p1, Yr+1,...,9n
are linearly independent on the same set. For example, the sphere S*~! is de-
fined, in standard coordinates, by the equation x? + --- 4+ 22 — 1 = 0, and the
ball D" - by the inequality z? + -+ + 22 — 1 < 0. Hence S*~! and D" are
submanifolds of R™ and, in particular, C®-manifolds.

The following facts are clear: RF, for k& < n, and S¥, for k& < n, are neat
submanifolds of R™; R¥ and D* are not neat submanifolds of R™ for k < n; R*
is a neat submanifold of R”™ for k < n; S* is a neat submanifold of S™ for k < n;
and D* is a neat submanifold of D" for k < n.

Remark 3.1.2.17. Finally, we note that every real, n-dimensional vector space
has a natural C"-structure for any r (0 < r < a), which makes it into an n-
dimensional C"-manifold. This structure is defined by the linear charts i.e, by
the linear maps onto R™.

3.1.3 Orientations

Remark 3.1.3.1. Consider a C"-manifold X, and let Catl X denote the atlas
of X consisting of all the charts with connected support. If ¢ and ¢ are two
charts on the smooth manifold X, we denote by J(p,) the Jacobian of the
map loc(y, ) id, i.e, of the composite map

br =" br
@(supp ¢ Nsupp ) ———— supp ¢ N supp Y —— Y(supp ¢ N supp ).

An orientation of the smooth manifold X is a function w: Catl X — SY such
that w(e) = [sgn J(p, ¥)](y)w(y) for each two charts ,9 € Catl X, where y
is an arbitrary point of ¢(supp ¢ Nsupp ) [therefore, the function sgn J(p, )
must be constant on ¢(supp ¢ Nsupp)] . A smooth manifold endowed with
an orientation is said to be oriented. A smooth manifold which can be oriented
is orientable. Clearly, an orientation Catl X — S is determined by its values
on any subatlas of Catl X. Moreover, every function which carries a subatlas of
Catl X into S and satisfies the previous compatibility condition, i.e, its values
on two charts ¢, ¥ of the given subatlas are obtained one from another multiply-
ing by [sgn J (v, ¥)](y) with y € p(supp ¢ Nsupp ), extends to an orientation
Catl X — S°. When one extends the C"-structure of a C"-manifold X to a C¢
structure with ¢ < r, Catl X becomes a subatlas of CatlC¢X. If ¢ > 1, this es-
tablishes a one-to-one correspondence between the orientations of the manifolds
X and C1X.
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Remark 3.1.3.2. For each orientation w: Catl X — S° there exists the opposite
orientation —w, and thus every non-empty orientable manifold has at least two
orientations.

Given two arbitrary orientations of the manifold X, the set covered by the
charts on which they agree, and the set covered by the charts on which they do
not agree are open, disjoint, and together they cover X; hence, each of them
is a union of components of the manifold X. Consequently, the orientation of
a connected manifold is uniquely determined by its value at one chart. More-
over, every smooth, connected, orientable manifold has exactly two orientations,
whereas an orientable smooth manifold with s components has 2° orientations.
The standard way of describing an orientation of a smooth connected manifold
is to indicate the charts where it is positive. For example, R™ has a natural
orientation, positive on the chart idg~.

Remark 3.1.3.3. Since any point of a zero-dimensional manifold X is covered
by only one chart of Catl X, it follows that every zero dimensional manifold is
orientable, and has actually a natural orientation, identically equal to +1. We
shall see later (in Subsection 5.3.1 and Remark 5.6.3.4) that all one-dimensional
manifolds are orientable, whereas the manifolds of dimension > 2 are not nec-
essarily so.

In Chapter 5 we shall give effective sufficient conditions for the orientability
of a manifold of arbitrary dimension (see Subsection 5.6.3). The crudest of them
is that the manifold be simply connected.

Remark 3.1.3.4. Let A be an open subset of a smooth manifold X. Then
Catl A C Catl X, and every orientation of X induces an orientation of A; in
particular, A is orientable whenever X is. If A intersects all the components of
X, then the orientation of X is determined by the orientation induced on the
submanifold A.

In the case A = int X, we may say more: not only does each orientation of
X restrict to an orientation of the manifold int X, but also each orientation of
int X extends to an orientation of X. Indeed, for each connected subset U of X,
UnNint X is connected (see Remarks 3.1.2.6 and 3.1.2.7) and so the compression

abr ¢: supp ¢ Nint X — @(supp ¢ Nint X)

belongs to Catl(int X) for any ¢ € CatlX. This enables us to extend any
orientation w: Catl(int X) — SY to an orientation Catl X through the formula
@ — w(abry). Thus, if we associate to each orientation Catl X — S its
restriction Catl(int X) — S°, we obtain a one-to-one correspondence between
the orientations of the manifolds X and int X. In particular, X is orientable
whenever int X is such. According to Remark 3.1.2.7, for each chart ¢ on the
smooth manifold X we have the corresponding chart

abr ¢: supp ¢ NOX — @(supp p NIX)

on its boundary 0X. It is clear that every chart in Catl 9.X is of the form abr ¢,
where ¢ € Catl X, and that for each orientation w: Catl X — S of the manifold
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X we have an orientation of its boundary, defined by the rule abry — w(yp).
In particular, X is orientable whenever X is such. If all the components of
X have a boundary, then the orientation of X is uniquely determined by the
orientation it induces on 9.X.

The only submanifolds of a smooth manifold X which inherit a natural
orientation when X is oriented are those of codimension zero. This orientation
has been implied in the discussion of the open subsets of X. If A is an arbitrary
submanifold of X of codimension zero, then the induced orientation is defined
by the orientation of its interior int A, which is open in X. In particular, A
is orientable if X is such. If A intersects all the components of X, then the
orientation of X is uniquely determined by the orientation it induces on A.

Since the manifold R™ has a natural orientation, all its n-dimensional sub-
manifolds inherit a natural orientation too. In particular, D™ carries a natural
orientation, which in turn induces an orientation of its boundary S"~!. Warn-
ing: the orientation of S induced by the orientation of D' does not coincide
with the canonical orientation of S°, considered as a zero-dimensional manifold
(see Remark 3.1.3.3).

Orientations and Diffeomorphisms

Definition 3.1.3.5. Every diffeomorphism f: X — Y establishes a one-to-
one correspondence between the orientations of the manifolds X and Y. If both
manifolds are oriented and f transforms the orientation of X into the orientation
of Y (into the opposite orientation of Y), then we say that f preserves (reverses)
the orientation or that f is orientation preserving (respectively, orientation
reversing).

To determine whether a diffeomorphism f: X — Y is orientation preserving
or not, we may look at its local representatives; if X and Y are connected, it
is enough to analyse only one local representative. Namely, suppose that wx
and wy are orientations of the connected manifolds X and Y. Let ¢ € Catl X
and ¢ € CatlY be two charts and pick x € supp N f~!(supp ). If the sign
of the Jacobian of loc(y, 1) f at the point ¢(x) coincides with (is opposite to)
the sign of the product wx (¢)wy (¢), then f is clearly orientation preserving
(respectively, reversing).

Remark 3.1.3.6. Of special interest is the case where X = Y is a connected
manifold. It is readily seen that in this situation a diffeomorphism which pre-
serves (reverses) one orientation of X, will preserve (respectively, reverse) all
orientations of X. Therefore, in this case one can talk about an orientation
preserving (reversing) diffeomorphism without fixing an orientation. In partic-
ular, every (auto)diffeomorphism of a smooth, connected, orientable manifold
is either orientation preserving or orientation reversing.

As an example, consider a non-singular linear transformation f: R™ — R™.
It is clear that f is a diffeomorphism and that f is orientation preserving (revers-
ing) if det f > 0 (respectively, det f < 0). If the transformation f is orthogonal,
then its compressions abr f: D" — D" and abr f: S*~! — S*~! are meaningful,
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are diffeomorphisms, and preserve (reverse) orientation if det f = 1 (respec-
tively, det f = —1) [here S° is oriented as D']. If f is given by f(z) = —u,
then det f = (—1)". Hence this diffecomorphism and the induced antipodal
map abr f: S*~1 — S*~! are orientation preserving for n even and orientation
reversing for n odd.

Orientations and Products of Manifolds

Remark 3.1.3.7. We have shown in Remark 3.1.2.7 that every product ¢ X - - - X
s of charts ¢1,...,@s on the smooth manifolds X, ..., X without boundary
of dimensions nq,...,ns, may be regarded, using the canonical identification
R™ x ... x R = R™* s defined by the formula

((.7311,...,J}lnl),...,(xsl,. x.sn,)) — (xll,...,xlnl,. ..,.1‘817...,],‘sns)
as a chart on the product X; x --- x X,. Given orientations wq,...,ws of the
manifolds X1,..., X, let us define a mapping from the collection of all charts

Q1 X -+ X g with ¢, € Catl X1, ..., p, € Catl X, into S° by the formula

P1 X s X g > Wl(‘pl)a"'aws((ps)'

It is obvious that the above collection of charts is a subatlas of Catl(X7, ..., X;),
and that this mapping satisfies the compatibility condition introduced in Re-
mark 3.1.3.1. Therefore, it extends to an orientation of the manifold X; x
- X X, called the product of the orientations, wy,...,ws. The latter can be
defined even if one of the manifolds X7,..., X, has a boundary: it is the ori-
entation induced by the orientation of the interior int X7 x - -+ x int X,. Thus,
a product of smooth, oriented manifolds (such that no more than one of them
has a boundary) is oriented, and a product of smooth, orientable manifolds is
orientable.
We note that the orientability of X; x --- x X, implies the orientability
of each factor Xi,...,X,. In fact, if w is an orientation of the product and
D1y Pio1, Pit1,---,ps are fixed charts of

Catl(int X1), ..., Catl(int X;_1), Catl(int X; 1), ..., Catl(int X;),
then the mapping Catl(int X;) — SY given by
P w(pr X Pl X P X i1 X X @)
is an orientation of the manifold int Xj.
Theorem 3.1.3.8. Suppose X1 and Xy are smooth oriented manifolds of di-
mensions ni and no, such that one of them has no boundary. The canonical

diffeomorphism X1 x Xo — X5 X x1 preserves orientation if nins is even and
reverses orientation if ning is odd.
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Proof. Let ¢1 € Catl(int X1) and @2 € Catl(int X2) be charts with im ¢y = R™
and im @ = R"2, respectively. Clearly,

©1 X g € Catl(int(X; X 23)), ¢ X 1 € Catl(int(Xs X 1)),

and the local representative R™**72 — R"2+™ of the canonical diffeomorphism
X7 x X9 — X5 x X relative to these charts is given by

(T1y s Tnytng) = (Trgt1y ooy Trybngy L1y v oy Ty )-
Therefore, the Jacobian of this local representative is (—1)"1"2. O

Theorem 3.1.3.9. Suppose X1,...,Xs are smooth oriented manifolds of di-
MeNSions ny,...,ns such that only one, say X;, has a boundary. Then the
canonical orientation of the product

X1><--~><Xi_1anixXi+1><~~~><Xs

and the natural orientation that this product receives as O(Xq x -+ x X) differ
by a factor of (—1)mtFniz1,

Proof. Obviously, the above orientations agree if i = 1. The case ¢ > 1 reduces
to 7 = 1 with the aid of the diffeomorphisms

X1X-~-XXS—>XiXX1X~-~Xi,1XXZ'+1><---><XS
X1><-~-><Xi,1><8XZ-><XZ-+1><-~><XS—>8X1-><X1><~-Xl-,1><XZ-+1><~~~

The first of them is the product of the canonical diffeomorphism
(X1 X e XXifl) x X; -+ X; X (X1 X "'Xifl)

with idx,, , x...xx,, while the second is the product of the canonical diffeomor-
phism
(Xl X X Xi—l) X 8XZ —)8Xl X (Xl X "'Xi—l)

withidx,,, x...xx,. The first diffeomorphism preserves (reverses) the orientation
if the product (ni+---+n;_1)n; is even (respectively, odd), while the second has
the same property if the product (ny 4+ -+ +mn;_1)(n; — 1) is even (respectively,
odd); see Theorem 3.1.3.8. This explains the factor (—1)"t+Fni-1, O

Orientations of Vector Spaces

Remark 3.1.3.10. Real vector spaces are smooth manifolds (see Remark 3.1.2.17)
and hence the definition of orientation given in Remark 3.1.3.1 applies. On the
other hand, there is a well-known, purely vectorial definition of an orientation
of a real vector space: an orientation is a mapping from the set of all bases of
the space into S°, which takes the same value on two bases if and only if the
matrix transforming one basis into the other has a positive determinant. This
vectorial definition clearly agrees with the definition given in Remark 3.1.3.1
and is often more convenient.

x Xs.
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In particular, the vectorial definition makes obvious the following remark.
Let f be a linear map of a real vector space V into another real vector space.
Fix a subspace V' C V that is mapped isomorphically by f onto im f. Then we
may represent V' as the direct sum of the spaces im f and ker f. Consequently,
the orientations of any two of the three spaces V', im f, and ker f determine the
orientation of the third. As an immediate result of our definition, we see that
this connection between the orientations of V', im f, and ker f does not depend
upon the choice of V', but only on the map f.

(Transcriber’s note: I have no idea what the above paragraph is referring to.
Chances are the authours are talking about the following fact.)

We have V/ker f ~ im f by the homomorphism theorem. Since V is a vector
space, we have V ~im f @ ker f.

3.1.4 The Manifold of Tangent Vectors

Remark 3.1.4.1. Suppose that X is an n-dimensional C"-manifold, r» > 1. For
each point z € X, let Atl, X be the collection of all charts ¢ € Atl X such that
x € supp y; recall that Atl X denotes the complete atlas of X. If ¢, ¢ € Atl, X,
then at the point ¢(z) the differential of the diffeomorphism

loc(, ) id: @(supp @ Nsupp¥) — 1 (supp ¢ Nsupp )

is meaningful [and is the linear map R™ — R"™ whose matrix is the Jacobi
matrix of the map loc(p, 1) id at the point ¢(x)]. We denote this differential by
da (0, 1)

Now consider the real vector space of all the maps Atl, X — R™ (with the
natural operations). It is clear that those maps v: Atl, X — R™ which satisfy
the relation v(¢)) = d.(p,¥)v(p) for any two charts ¢,¢ € Atl, X yield a
subspace of this vector space, i.e, they form a real vector space. The latter is
called the tangent space to X at the point x and is denoted by Tang, X. The
maps in Tang, X are called tangent vectors at the point x (on X), or vectors
tangent to X at x. Obviously, a tangent vector is completely defined by its
value on an arbitrary chart of Atl, X, and for each chart ¢ € Atl, X and each
vector u € R™ there is a vector v € Tang, X with v(¢) = u. Therefore, the
mapping ¢ : Tang, X — R", ¢x(v) = v(p), defined for a chart ¢ € Atl, X,
is invertible. Moreover, px being linear, it is an isomorphism; in particular,
dim T'ang, X = n. The isomorphism cp;él takes the canonical basis ortq, ..., ort,
of R™ into a basis of Tang, X, which we shall call the ¢-basis. The coordinates of
a vector v € Tang, X relative to the y-basis coincide with the usual coordinates
of the vector v(p) and are called the p-coordinates of v.

Remark 3.1.4.2. We denote the union Uze x Tang, X, i.e., the space of all vectors
tangent to X, by Tang X. The map Tang X — X transforming Tang, — X
into  is called projection and is denoted by proj. Thus proj~'(z) = Tang, X.

The set Tang X has a natural topology which makes it a topological manifold.
Furthermore, for r > 2, Tang X has a natural differentiable structure. In order
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to describe these structures, we define, for each chart ¢ € Atl X, the map

tnep: proj”'(supp ) — ime x R™,  tnp(v) = (¢ o proj(v), pu(v)).

If we identify R x R” with R?", and consider im ¢ x R™ to be an open subset of
R2?" or R_?", then we may interpret tn ¢ as a 2n-dimensional chart on Tang X.
Obviously, if b € Atl X is another chart, the composition

@(supp Nsupp)) x R" =

L L abr(tn )71
tn p(proj ! (supp ¢) N proj~* (supp ¢) ————

(3.1.4.3)
) abr(tn ¢)

proj ' (supp @) N proj ' (supp
tn1(proj ! (supp ¢) N proj ! (supp ¥)) = th(supp p Nsupp)) x R™

is given by the formula (a,u) — (loc(p, ) idy-1(q) (¢, ¥)u). Equivalently, writ-
ing this composite map in coordinates, we have

(a1y . y@pyur, .. up) = (b, by v, .o, ),

where
bj = éj(al, e ,an),
m j=1,...,n. 3.1.4.4
Uj = Zi:l Diﬁj(ah...,an)ui, ( )

and ¢,...,¢, are the coordinate functions of the map loc(p,)id (D; denotes
the partial derivative with respect to the i-th coordinate). Formula (3.1.4.4)
shows that the charts tn ¢ and tn are C"~! compatible (we set C*~! = C*>
and C*~! = C%). Moreover, the charts tny, ¢ € Atl X, cover Tang X, and
thus yield a C"~!-atlas of the set Tang X. This atlas has a countable subatlas
(since Atl X has such a subatlas). Furthermore, for any two vectors of Tang X,
it has either a chart which contains both of them, or a pair of disjoint charts,
each containing one of the vectors (indeed, recall that Atl X contains, for any
two points of X, either a chart containing both of them, or a pair of disjoint
charts, each containing one of the points). Therefore, it makes Tang X into
a 2n-dimensional C"~!-manifold, which we call the total manifold of vectors
tangent to the manifold X.

Clearly, the projection Tang X — X, the inclusions Tang, X — Tang X,
and the natural map X — Tang X which takes each point x into the zero vector
of the space Tang, X, are all C"~! maps.

Formula (3.1.4.4) shows that for r > 2 the Jacobian of the composite map
(3.1.4.3) at the point (a,u) is equal to the square of the Jacobian of the map
loc(p,, si)id at the point a. We deduce that for » > 2 the manifold Tang X
is always orientable and even carries a canonical orientation, namely the one
which is positive on the charts tn ¢ with ¢ € Catl X.

One more remark: let X; and X5 be two arbitrary smooth manifolds such
that 90X, = &. Then for any two points 71 € X; and z2 € X3, Tang,, ,, (X7 x
X5) and Tang, X; © Tang,, X» are isomorphic as vector spaces, and the iso-
morphism is natural. In addition, the isomorphisms corresponding to all pairs
(21, x2) yield a diffeomorphism of Tang(X; x X3) onto Tang X; x Tang Xo.
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The Differential of a Smooth Map

Remark 3.1.4.5. Let f be a C"-map of an m-dimensional C="-manifold X into
an n-dimensional CZ"-manifold Y, » > 1. For a point z € X and two charts
@ € Atl, X and ¢ € Atly,)Y, we let d.(f;p,9) denote the differential of
the map loc(p,¥)f at the point ¢(z), regarded as the linear map R™ — R”
whose matrix is the Jacobi matrix of loc(p,v)f at ¢(z). If ¢’ € Atl, X and
V' € Atly(,) Y are two other charts, then

do(f39" ") = dpy (0, 0") 0 da(fr0,) 0 da (', ).

Combining this relation with the equalities d. (', ¢ = @go(¢y) ™" and d(4) (¥, 9)) =
P, o1 we see that

(W) odu(f; 0, 0") 0y = Uyt o du(fi0,0) 0 04,

i.e., the linear map w#l ody(f;p,9) o py: Tang, X — Tangy(,)Y does not
depend upon the choice of the charts ¢ and . This linear map is called the
differential of the map f at the point x and is denoted by d,f. The map
Tang X — TangY which equals d, f on Tang, X for all x € X is called the
differential of the map f and is denoted by df. The resulting diagramme

d
Tang X ¥, TangY

| |

X—Y

is clearly commutative.

Let ¢1,...,¢, be the coordinate functions of the map loc(p,)f. Then the
local representative loc(tn ¢, tn)df of the differential df is given in coordinates
by the formula

(@1 ey Q3 ULy ey Um) > (D1, oy b1, ey U),

where
bj zfj(ah...,am),

m j=1...,n.
’Uj = Zi:l Diﬁj(al, e ,am)ui,}

Therefore, df is of class C" 1.

Of course, d(ho f) = dhodf for any smooth map h of ¥ into a third smooth
manifold, and df = id(Tang X) when X =Y and f = idX. Also, if f is a
diffeomorphism, then df is a diffeomorphism for » > 2 and a homeomorphism
for r = 1.

In the special case when X is an open subset of R™ or of R™, and Y is an
open subset of R™ or of R™, in addition to the differential d,f: Tang X, —
Tangy(,) Y one has the classical differential of the map f, i.e, the linear map
R™ — R™ whose matrix is the Jacobi matrix of f at the point x. Let us identify
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the spaces Tang, X and R™ (Tang;(,)Y and R") via the linear isomorphism
(idx)g: Tang, — R™ (respectively, (idy)s: Tangy,)Y — R"). Then it is
clear that d, f becomes the classical differential.

Remark 3.1.4.6. If A is a submanifold or the boundary of a smooth manifold
X, then the differential d, incl: Tang, A — Tang, X of inclusion incl: A — X
is a monomorphism for each point z € A. Thus, we can identify the tangent
space Tang, A with the subspace d, incl(Tang, A) of Tang, X, and Tang A -
with dincl(Tang A).

If A is a submanifold of R”, then along with the identification Tang, A =
d, € (Tang, A) one has the identification Tang, R™ = R" via the canonical (lin-
ear) isomorphism (idg»): Tang, R™ — R™, and so Tang, A becomes a subspace
of R™.

It is easy to describe this subspace explicitly when A is defined in a neigh-
bourhood of = by the independent functions ¢g41,...¢, as in Remark 3.1.2.12.
In this situation, Tang, A consists of all the vectors of R” which are orthogo-
nal to the n — k vectors grad @1, .. .grad ¢,. For example, Tang, S"~! is the
subspace of R™ composed of all vectors orthogonal to the vector .

Vector Fields

Definition 3.1.4.7. A wvector field on a smooth manifold X is a continuous
map X — Tang X which takes each point x € X into a vector tangent to X at
x. A trivial example is the zero vector field, whose value at each point z € X
is the zero vector of the space Tang, X (see Remark 3.1.4.2).

A smooth, n-dimensional, C"-manifold X is C"-parallelisable if there exist n
C"-vector fields f1,..., fn: X — Tang X such that, at each point x € X, the
vectors f1(x),..., fn(z) yield a basis of the space Tang, X. For example, R"
(regarded as a C*-manifold) is C%-parallelisable: a parallelisation is given by the
vector fields which associate to each point € R™ the (idg~)-basis of the space
Tang, R™.

CO-parallelisability is simply called parallelisability. It will be shown in Chap-
ter 4 (see Remark 4.6.4.3) that the parallelisability of a compact CZ"+!-manifold
with r < oo implies its C"-parallelisability.

INFORMATION. The C"-parallelisability is a consequence of the paral-
lelisability of a C="+!-manifold even if the manifold is not compact, or if r = a.

Theorem 3.1.4.8. Suppose that the smooth manifold X is parallelised by the
C"-vector fields f1,..., fn: X = Tang X. Then the formula (z, (y1,...,Yn)) —
y1f1(x)+- -+ ynfn(z) defines a C"-diffeomorphism of the product X x R™ onto
Tang X. Indeed, the formula v — (proj(v), (Y1,...,Yn)), where y1,...,y, are
the coordinates of the vector v relative to the basis fi(proj(v)),..., fn(proj(v))
of Tang i) X defines the inverse map Tang X — X x R™, and obviously
both maps are of class C". Thus the total manifold of vectors tangent to a
C"-parallelisable n-dimensional smooth manifold X is C”-diffeomorphic to the
product X x R",
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In particular, we deduce that every C'-parallelisable smooth manifold is ori-
entable.

Proof. (of the second statement)

In fact, Tang X is orientable for any C"-manifold X with r > 2 (see Remark
3.1.4.2); hence, in our case, the product X x R™ is orientable, which in turn
implies the orientability of X (see Remark 3.1.3.7). O

Ezample 3.1.4.9. For each odd n, there is a vector field with no zeros on
the sphere S”. For example, such a vector field S® — R"*! is given by
= (1, .., Zns1) = W1, Yny1) € R 2 € S") where yor,_1 = —oz,
Yok = Tak—1 (k=1,...,(n+1)/2); here we consider (y1,...,Ynt+1) as a vector
in Tang, S™ (see Remark 3.1.4.6).

Note that the same vector field can be defined in a more concise fashion
as the map = — z;, regarding R**! as C("t1/2 If n + 1 is divisible by 4,
R may be regarded as H("+1/4 and the formulae = — orty, = — orts, and
x — orty (ortg, orts, and orty are considered here as the imaginary quaternion
units) define three vector fields on S™ which are linearly independent at each
point. If n + 1 is divisible by 8, R®*! may be regarded as Ca"*1/% and the
formulae x + orts, ..., ortg (orty,...,orts are considered here as the imaginary
Cayley units) define seven vector fields on S™ which are linearly independent
at each point. Since all the above vector fields are analytic, this construction
shows, in particular, that S', S3, and S® are Ca-parallelisable.

Information 3.1.4.10. For n # 0,1,3,7 the sphere S™ is not parallelisable. For
a proof, see [1] and [2].

3.1.5 Embeddings, Immersions, and Submersions

Remark 3.1.5.1. A map f: X — Y of smooth manifolds is a C"-embedding if
f(X) is a C"-submanifold of Y and abr f: X — f(X) is a C"-diffeomorphism.
For example, the inclusion of a submanifold into its ambient C"-manifold is a C"-
embedding. Since every map f: X — Y can be written as the composition of its
compression abr f: X — f(X) with the inclusion f(X) — Y, a C"-embedding
is really a map of class C".

The C'-embeddings are also termed differentiable embeddings. Using The-
orem 3.1.5.3 we shall prove below, we can see that a differentiable embedding
which is of class C" is a C"-embedding. Moreover, it is evident that differen-
tiable embeddings are topological embeddings. The latter are sometimes called
CY-embeddings

A differentiable embedding f: X — Y is neat if f(X) is a neat submanifold
of Y. For example, the inclusion of a neat submanifold into its smooth ambient
manifold is such an embedding. Clearly, if dim X = dimY’, Y is connected, and
X # O, then every neat differentiable embedding X — Y is a diffeomorphism.

It is obvious that for each C"-embedding f: X — Y and each point z €
X, there are charts ¢ € Atl,C"X and ¢ € Atly,)C"Y such that loc(p,v¥)f
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coincides with one of the inclusions
R™ - R", R"™ —=R", or R™—-R",

where m = dim X and n = dimY. If f is neat, then the second case must be
excluded.

Immersions

Remark 3.1.5.2. A smooth map f: X — Y of smooth manifolds is an immersion
if

(i) dyf: Tang, X — Tang;,)Y is a monomorphism for any = € X;
(ii) (df)~'(TangdY) C TangdX.

We remark that condition (i) implies that dim X < dimY’, and condition (ii) -
that f(int X) C intY. If 9Y = &, then (ii) is automatically fulfilled.

Trivially, the composition of two immersions is an immersion.

The differentiable embeddings are examples of immersions.

Theorem 3.1.5.3. If f: X — Y is an immersion of class C", then each point
of the manifold X has a neighbourhood N such that the restriction of f to N is
a C"-embedding.

Proof. Let g € X be an arbitrary point, and put m = dim X, n = dimY. Now
pick some charts ¢ € Atl X, X, ¢ €€ Atly,,) Y, and denote by ¢1,..., ¢, the
coordinate functions of the map loc(p,9)f. According to condition 3.1.5.2 (i),
the Jacobi matrix of loc(p, ) f at ¢(zo) has rank m. Using condition 3.1.5.2
(ii, one can assume that the minor M of this matrix, constructed from its first
m rows, is not zero.

[If f(zo) € intY, 3.1.5.2 (ii is not necessary: one can achieve M # 0 by
re-indexing the local coordinates of the chart i.e, by permuting the rows of the
matrix. When f(xg) € 9Y, 3.1.5.2 (ii ensures that all the elements of the first
row of the Jacobi matrix, starting with the second, are zero; this allows to
achieve M # 0 by re-indexing the coordinates s, . .., ¥,.]

Next apply the implicit function theorem to deduce the existence of a neigh-
bourhood W of the point (¢1f(x0)),- .., Ym(f(20)) in R™ in R™ and of a C"-
embedding h: W — im ¢, such that, for i = 1,...,m, one has:

hi(¥1f(20)), - - s Ym(f(w0)) = pi(0) and
Ci(hi(yrs - Um)s - (ha(yis - ym)) = v (W1, Ym) € W],

where hi,...,h,, are the coordinate functions of h. Let N = o 1(h(W)).
Evidently, N is a neighbourhood of xq. Its image f(N) in o }(W x R"™™) is
defined by the equations

wj _gj(hl(wl"wm)”hm(¢1a7’¢)m)) = 07
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and, possibly, by the additional inequality hi (11, ...,%s) < 0. Therefore, f(N)
is a C"-submanifold of Y. The composite map

(abrg) "

P G(FN)) = W hw) L N,

f(N)

(where the second map is the compression of the orthogonal projection R™ —
R™) is of class C" and is the inverse of the map abr f: N — f(N). We conclude
that f|y is a C"-embedding. O

Corollary 3.1.5.4. If an immersion of class C" is a topological embedding, then
it is a C"-embedding. In particular, every injective C"-immersion of a compact
manifold is a C"-embedding.

Theorem 3.1.5.5. Let f: X — Y be a smooth map such that (df )~ (Tang dY) C
Tang 0X, and let A be a compact subset of the manifold X. If f|a is injective
and the differential d, f is non-degenerate for each point x € A, then f is a dif-
ferentiable embedding on some neighbourhood of A. In particular, if we require,
in addition to the previous conditions, that dim X = dimY and f(0X) C 9Y,
then f carries a neighbourhood of A diffeomorphically onto a neighbourhood of

f(A).

Proof. Fix for each point © € A a neighbourhood such that f|y, is a C"-
embedding (see Theorem 3.1.5.3), and then cover A by a finite number of such
neighbourhoods, say Uy, ,...,U,.. Since the set Y x Y\ diagY is openin Y x Y’
(see Remark 1.2.2.4), its pre-image W under the map f X f: X x X - Y xY
is also open. But f is injective on A; whence W U [US_, (U, x U,)] contains
A x A, and is actually a neighbourhood of A x A. Next introduce a metric on
X (see Theorem 3.1.1.13, get the corresponding metric on X x X (see Theorem
1.2.2.9), and then set

B = {z € X|Dist(4, z) < Dist((X x X)\ W, A x A)/2}.

Since B is open and contains A (see Theorem 1.1.7.15), the intersection B N
(Us_,Uy,) is also open and contains A. This intersection contains a relatively
compact neighbourhood U of A, because A is compact. Moreover, B x B C W,
and so f is injective on B. We conclude that f|c1p is a topological embedding
and f|y - a differentiable embedding (see Corollary 3.1.5.4). O
Submersions
Remark 3.1.5.6. A smooth map f: X — Y of smooth manifolds is a submersion
if:

(i) dof: Tang, X — Tang,)Y is an epimorphism for any = € X;

(i) d.f(Tang, 0X) = Tang;,) Y for any point = € dX N f~! (int X);

(iii) X N f~1(intY) is a union of whole components of the manifold 9.X.



148 CHAPTER 3. SMOOTH MANIFOLDS

We remark that condition (i) implies dim X > dimY’, and that conditions (ii)
and (iii) are automatically fulfilled whenever 0X = @.

As examples, consider smooth real functions f: X — R. As in the classical
calculus, a point 2 € X and the corresponding value f(x) are said to be critical
for fifd,f =0. It it clear that f is a submersion if and only if the functions f
and f|sx have no critical points.

As additional examples of submersions we cite the projections of the product
of two smooth manifolds (one of them being without boundary) onto its factors.

Theorem 3.1.5.7. A map f of a smooth m-dimensional manifold X into a
smooth n-dimensional manifold Y is a submersion of class C" if and only if for
each point x € X there are charts ¢ € Atl, C"X and ¢ € Atly,)C"Y such that
the following holds:

o f(supp ) C supp;

e the pair (im p,im ) coincides with one of the pairs
- (R™, R™),
- (R™, R™), or
- (RT’ R*)?

and in each case p(x) = 0 and Y(f(z)) = 0; the corresponding local
representative loc(p, ) f can be described,

— in the first case, as the projection of the product R™ x R™~™ onto its
first factor,

— in the second case - as the projection of the product R™™"™ x R™ onto
its second factor,

— and in the third case - as the projection of the product R™ x R™~™
onto its first factor.

Proof. The sufficiency of this condition is obvious. Let us prove its neces-
sity. Let @' € Atly X and ¢! € Atly(,)Y be arbitrary charts such that

f(supp !) = supp !, pl(x) =0, and ¥'(f(z)) = 0. We denote by ¢1,... ¢k
and v1,... 9L the corresponding coordinate functions, and by ¢1,...,¢, the
coordinate functions of the map loc(p!, ') f. We consider three distinct cases:

a) r€int X, f(x) €intY;
b) z € 90X, f(z) € intY; and
c) f(x) € dY.

Condition 3.1.5.6 (i) says that the Jacobi matrix of the map loc(p!,9!) f, com-
puted at the point 0, has rank n in each of the three cases. Condition 3.1.5.6
(ii) says that in case b) this rank does not decrease when we remove from the
matrix the first column. Therefore, in cases a) and ¢) we may assume that the
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minor constructed from the first n columns does not vanish, while in case b) the
same is true for the minor constructed from the last n columns. Moreover, in
case c), 0 is a boundary point of im ¢! in R™, and the function ¢! vanishes on
@ (0X Nim ') in a neighbourhood of this point. Indeed, the first part of the
last assertion follows from the fact that is a non-positive function, vanishes at
0, and has non-zero gradient at 0; now the second part of the assertion is seen
to be a consequence of 3.1.5.6 (iii).

We pass from ¢!, 1! to the required charts o, ¢ through the intermediary
charts ¢* € Atl, C"X and ¢* € Atly(,)C"Y. In cases a) and c), ¢? is the chart
whose local coordinates are the restrictions of the functions

ioph, i lyopt ol y . 0k,

to a small enough neighbourhood U, of the point x, while 1?2 is the chart
abryl: Vo — ¢1(Va), where Vo = f(Us). In case b), »? and ¢? are similarly
defined,

él0<,01,-~-’€n0<,01,<,0711+17~-~§05n

by the functions
1

5. ot 0 opl, ... by ot

In all cases f(Us) = V and obviously in cases a) and c), the map loc(p?, 1?) f
is given in the new coordinates ?,... 2 and %, ...92 by the formulae 7 =
02,2 = 2, whereas in case b) the corresponding formulae are ¢? =
©% pi1s---, 2 = 2. Fix a positive £ and define the subsets U and V of U,
and V5 by the inequalities

lpfl<e (i=1,...,m) and || <e (j=1,...,n)

respectively. It is clear that for € small enough, the charts o, ¥ with supp ¢ = U,
supp ¥ = V, and local coordinates

2 2
eiy) vily)
(pz(y): (z:l,,m), ¢(z): (]:1,,Tl)
e — |}l ! A
have the desired properties. O

Corollary 3.1.5.8. If f: X — Y is a submersion, then f(int X) C intY,
f~Y0Y) C 90X, and the maps abr f: int X — intY and abr f: f~1(0Y) — X
are submersions.

If f: X =Y is a submersion of class C", then f~1(y) is a neat C"-submanifold
of X fory € intY, and a neat C"-submanifold of 0X for y € Y.

Every submersion is an open map.

The composition of two submersions is a submersion.

Theorem 3.1.5.9. A C"-map f: X — Y satisfying condition 3.1.5.6 (i) is a
submersion if and only if for each point xo € X there is a neighbourhood V of
the point f(xo) and a C"-map g: V — X, such that f(g(y)) =y for ally € V
and g(f(zo)) = 0.
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Proof. The sufficiency of this condition is clear, its necessity results from The-
orem 3.1.5.7. O

Theorem 3.1.5.10. Let f: X — Y be a submersion of class C" such that
f(X) =Y, and let h be a map of Y into a third manifold. If the composition
ho f is of class C", then h is of class C" too.

Proof. According to Theorem 3.1.5.9, one can find for each point of Y a neigh-
bourhood V' and a C"-map g: V — X such that f o g = [incl: V — Y], and
hence h|y = (ho f)og. O

3.1.6 Complex Structures

Remark 3.1.6.1. Recall that a map of an open subset of C™ into a subset, of C™
is holomorphic if its coordinate functions are holomorphic, and biholomorphic
if it is invertible and both the map and its inverse are holomorphic. Obviously,
in the last case we must have m = n; cf. Remark 3.1.2.2.

If we regard C™ and C" as R?>™ and R?", respectively, then the holomor-
phic maps become C*-maps, and the biholomorphic ones - C*-diffeomorphisms.
A smooth map of an open subset of R?™ into a subset of R?" is holomorphic
relative to the complex structures on R?™ and R?" resulting from the identifica-
tions R?™ = C™ and R?" = C"| if and only if it satisfies the Cauchy-Riemann
conditions. Evidently, a map which is the inverse of a diffeomorphism satisfying
the Cauchy-Riemann conditions also satisfies these conditions. Consequently,
every holomorphic diffeomorphism is a biholomorphic map.

Remark 3.1.6.2. Suppose that a holomorphic map between subsets of C™ has
a non-degenerate differential at some point. Then it retains the same prop-
erty when considered as a C*-map, and hence it maps a neighbourhood of the
given point diffeomorphically onto its image. Thus, a holomorphic map whose
Jacobian does not vanish at a point maps a neighbourhood of the point biholo-
morphically onto its image.

This statement is the exact analogue, and also the result of the theorem
concerning local inversion of a smooth map in the real case. In a similar fash-
ion, one can translate a more general theorem from the real calculus into the
complex language - the implicit function theorem. Namely, let f be a holo-
morphic map of an open subset A of C™ x C" into C", and let (2°,u%) € A
be such that f(z°, w’) = 0. Suppose that the Jacobian of f with respect to
the second variable does not vanish at (2°,w"). The complex implicit function
theorem states the existence of a neighbourhood U of the point z° in C™, of a
neighbourhood V of the point w® in C", and of a holomorphic map g: U — V,
such that U x V' C A and the pre-image of 0 under f|yxv is precisely the graph
of g.

Remark 3.1.6.3. A linear transformation of C™ is also linear as a transformation
of R?": hence to each complex n x n-matrix C one can associate a real 2n x 2n-
matrix R. If C = A+ iB and z = z + iy are the decompositions of the
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matrix C and the vector z € C™ into real and imaginary parts, then Cz =
(Az — By) +i(Bx + Ay), and

A -B
r= {B A ] :
In particular, det R = |det C|. Indeed, if we add to the first block-row of R
the second, multiplied by 7, and then add to the second block-column the first,
multiplied by —¢, we obtain the matrix

C 0
B C|’
which has the same determinant as R.

Complex Manifolds

Definition 3.1.6.4. An n-dimensional complex chart on the set X is an invert-
ible mapping of a subset of X onto an open subset of C". Two complex charts,
© and 1, are compatible if the set ¢(supp ¢ Nsupp) is open in im w, the set
W (supp ¢ N'supp ) is open in im ¢, and the composite maps

bro ! b
o (SUpp @ M SUPP 1) ¥ supp o N supp ) ~—vs 4(supp o N supp ) and

abry ™1 abr ¢
Y(supp ¢ Nsupp 1)) ——— supp ¢ Nsupp P —— p(supp ¢ Nsupp ),

which are inverses of each other, are holomorphic (here supp is defined as in
the real case). If two overlapping charts of dimensions m and n are compatible,
then m = n.

A collection of complex charts is an n-dimensional holomorphic atlas of the
set X if these charts cover X, are n-dimensional, and are pairwise compatible.
Two holomorphic atlases are holomorphically equivalent if their union is again
an atlas. The family of n-dimensional holomorphic atlases of X is divided into
disjoint classes of holomorphically equivalent atlases. These classes are called
n-dimensional complex structures on X.

Remark 3.1.6.5. Any n-dimensional complex chart may be regarded as a 2n-
dimensional real chart, i.e., a 2n-dimensional chart in the sense of Remark
3.1.2.3. Furthermore, compatible complex charts yield C*-compatible charts,
holomorphic atlases yield C*-atlases, and holomorphically equivalent atlases
yield C*-equivalent atlases. Therefore, an n-dimensional complex structure on
the set X induces a 2n-dimensional C*-structure on X. For us, the most im-
portant case occurs when this C*-structure makes X into a manifold, i.e, when
it defines a Hausdorff, second countable topology. A set X equipped with an
n-dimensional complex structure enjoying this property is an n-dimensional
complex manifold.

We let Atl X denote the complete atlas of the complex manifold X, i.e., the
collection of all charts of all atlases of its complex structure.
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Definition 3.1.6.6. A continuous map f: X — Y between complex manifolds
is holomorphic if all its local representatives are holomorphic, i.e., the maps
w(supp e N f~(suppy)) — im v, x — P(f(p~1(x))), constructed by means of
the charts ¢ € Atl X and ¢ € AtlY, are holomorphic. A map f: X — Y is
biholomorphic if it is holomorphic, invertible, and its inverse is also holomor-
phic. Two complex manifolds which can be transformed one into another by a
biholomorphic map are said to be btholomorphically equivalent.

If complex manifolds are considered as C*-manifolds, the holomorphic maps
become C*-maps, and the biholomorphic maps - C%-diffeomorphisms.

Definition 3.1.6.7. Let A be a subset of an n-dimensional complex manifold
X. Ais a k-dimensional submanifold of X if for each point x € A there is a
chart ¢ € Atl X such that = € supp ¢y and p(suppp N A) = imp N CF. The
charts abr : supp p N A — im ¢ N CF derived from the charts ¢ € Atl X form
a k-dimensional holomorphic atlas of the set A, thus transforming A into a
complex manifold.

The notion of independent functions defined in Remark 3.1.2.12 makes sense
for the complex case too. Therefore, using the implicit function theorem,
we deduce that a subset A of the complex n-dimensional manifold X is a k-
dimensional submanifold of X if and only if for each point xy € A there are a
neighbourhood U of zy in X and holomorphic functions ¢gy1,...,¢9n: U = C,
independent at xg, and such that the intersection A N U is defined in U by the
equations ¢g11(x) =0,...,p,(x) = 0; cf. Remark 3.1.2.12.

If the complex manifold X is regarded as a C%-manifold, then a submanifold
remains a submanifold and its C*-structure induced from the C*-structure of X
is identical to the C®-structure induced by its own complex structure.

If A is a submanifold of the complex manifold X, then the inclusion A — X
is holomorphic.

A map f: X — Y between complex manifolds is a holomorphic embedding
if abr f: X — f(X) is a biholomorphic map of X onto a submanifold of Y.
In this case f is the composition of the biholomorphic map X — f(X) and
the inclusion f(X) — Y. We conclude that every holomorphic embedding is a
holomorphic map.

Remark 3.1.6.8. Suppose X1, ..., X, are complex manifolds of dimensions ny, ...
The products 1 X -+ X @ of all charts p; € Atl X; form an (ny + -+ + ng)-
dimensional holomorphic atlas of the set X7 x - -+ x X, transforming it into an
(n1+---+ns)-dimensional complex manifold. Considered as a C*-manifold, the
latter is just the product of the C*-manifolds X1, ..., X,.

Remark 3.1.6.9. The same definitions of tangent vectors, tangent vector spaces,
total manifold of tangent vectors, and differential of a map (see Subsection 3.1.4)
apply in the complex case. The space Tang, X tangent to the n-dimensional
complex manifold X at the point x is an n-dimensional complex vector space;
the total manifold Tang X is a 2n-dimensional complex manifold, and the pro-
jection Tang X — X is holomorphic. The differential d,f of a holomorphic
map f: X — Y at the point z € X is a linear mapping Tang, X — Tang;,yY
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of complex vector spaces, and the differential df is a holomorphic mapping
Tang X — TangY'.

Again, the tangent spaces Tang, X and the manifold Tang X may be con-
sidered as real vector spaces and as a C*-manifold, respectively. As one may
guess, they coincide with the tangent space and the total manifold of tangent
vectors to X, regarded as a C*-manifold. The differential of a holomorphic map
f, regarded as a C%-map, coincides with the differential of the C*-map f.

The simplest examples of complex manifolds are the spaces C™ themselves.
We obtain an unlimited supply of additional examples by defining submanifolds
of C" through systems of equations; cf. Remark 3.1.2.16. However, this method
will never produce compact manifolds of positive dimension. In fact,

Theorem 3.1.6.10. Every compact submanifold of C" has dimension zero.

Proof. To convince ourselves that this is true, it is enough to show that on a
compact manifold the only holomorphic functions are the constants. This is a
straightforward consequence of the well-known theorem stating that a function
holomorphic on an open subset of the complex line C which attains its maxi-
mum modulus is constant. Now suppose X is a compact, connected, complex
manifold, and f: X — C is holomorphic. Let ¢ be a value of f such that |c| =
max|f(w)|, and let € X be such that f(z) = ¢. Then for each chart ¢ € Atl X
with z € supp ¢ and im ¢ = int D?4™ X " and for each point y € supp ¢, the set
of complex numbers z such that (1 —2)p(x)+ z¢(y) € im ¢ is an open disc with
centre 0 and radius greater than 1. The formula z — (o~ ((1—2)e(z)+20(y)))
defines a holomorphic function on this disc, which attains its maximum modulus
as 0. Since such a function is necessarily a constant, we see that f(y) = ¢ by
setting z = 0 and z = 1. Therefore, the set f~1(c) is open. Because f~!(c) is
also closed and non-empty, it is all of X. O

Examples of compact complex manifolds will appear in §3.2.

Manifolds of Complex Origin

Definition 3.1.6.11. Every complex manifold gives rise to a C®-manifold when
we pass from complex to real numbers, as described in Remark 3.1.6.5. A C%-
manifold arising in this way is called a manifold of complex origin.

Clearly, the manifolds of complex origin are even-dimensional and have no
boundary. They are orientable, and if the original complex structure is known,
they receive a canonical orientation, namely that orientation which is positive
on the real connected charts which arise from the charts of the complete atlas of
the complex structure when we pass to the reals. (Using Remark 3.1.6.3 we see
that the compatibility condition required in Remark 3.1.3.1 is satisfied.) It is
also clear that the products of manifolds of complex origin are again manifolds
of complex origin.
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3.1.7 Exercises

Ezercise 3.1.7.1. Show that a non-empty, closed, smooth manifold of dimension
n > 0 cannot be immersed in R”.

Exercise 3.1.7.2. Show that the equation 2+ - -+ 2, = 1 defines a submanifold
of C"™ which is C-diffeomorphic to Tang S* L.

Ezxercise 3.1.7.3. Show that the map f: S? — R*, defined by the formula
f($17x2,$3) = (I‘% - l‘ga 1711‘2,1311‘3,1‘2{53),

is an immersion and that f(S?) is a submanifold of R* diffeomorphic to RP2.

Exercise 3.1.7.4. Show that if one of the numbers nq,...,ns is odd and s > 1,
then the manifold S™* x --- x S™= is parallelisable.



3.2. STIEFEL AND GRASSMANN MANIFOLDS 155

3.2 STIEFEL AND GRASSMANN MANIFOLDS

3.2.1 Stiefel Manifolds

Remark 3.2.1.1. We denote by RV (n, k), or simply by V(n,k) (0 < k < n), the
set of linear isometric maps R¥ — R. Such a map is uniquely determined by the
images of the vectors orty, ..., ort, € R¥, i.e, by an orthonormal k-frame in R™.
The coordinates of the vectors of this frame form the matrix of the map, which
has n rows and k columns. In this way, V(n, k) can be interpreted as the set of
orthonormal k-frames in R™, or as the set of the n x k-matrices ||vg; || such that

D waivgg =0 (1<i<j<k). (3.2.1.2)

s=1

We may regard a matrix ||vg|| as a point of R™*, if we index its entries vg; in
dictionary order. Thus V (n, k) becomes the subset of R™* defined by the equa-
tions (3.2.1.2). An easy computation shows that the gradients of the left-hand
sides of 3.2.1.2) do not vanish and are pairwise orthogonal on this subset. Hence
V(n,k) is an [nk — k(k + 1)/2]-dimensional C*-submanifold without boundary
of R™ (see Remark 3.1.2.12). V(n, k) is called the Stiefel manifold.

Clearly, V(n,0) reduces to a point, V'(n, 1) is just the sphere S, and V'(n, 2)
is the submanifold of all vectors of unit length in Tang S™~!.

Remark 3.2.1.3. The points of V(n,n) are orthogonal transformations of R™
, or orthogonal matrices of order n, and V(n,n) is usually denoted by O(n).
The composition of transformation (multiplication of matrices) induces a group
structure on O(n). The subgroup of O(n) consisting of all matrices with de-
terminant +1 is denoted by SO(n). The two sets SO(n) and O(n) \ SO(n) are
open in O(n)), and hence are C*-manifolds. They are actually C*-diffeomorphic:
multiplication by an arbitrary matrix from O(n) \ SO(n) establishes a diffeo-
morphism. Moreover, the manifold SO(n) is canonically C®-diffeomorphic to
V(n,n —1): a matrix from V(n,n — 1) is carried by this diffeomorphism into a
matrix from SO(n) through the addition of a column; that is to say, we complete
each orthonormal (n — 1)-frame in R™ to a positive orthonormal n-frame.

We further note that SO(2) = V(2,1) = S', and the group structure on
SO(2) agrees with the group structure on the circle S, considered as the mul-
tiplicative group of complex numbers of modulus 1.

Remark 3.2.1.4. The inclusion R™ — R" %4 induces a C*-embedding V' (n, k) —
V(n + q, k), which transforms each map ¢: R¥ — R” into the composite map

RF £y e 2 grta,

There is also a canonical C%embedding V'(n, k) — V(n+ ¢, k + q), which trans-
forms ¢: R¥ — R™ into the map

RFHT = RF x Re 2299, R o RY = R
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Finally, the inclusion R*~7 — R* induces a C®-submersion
Vn,k) = Vink—q),

which transforms each map : R¥ — R” into the composite map
RF-¢ Il gk £, gn

i.e, each frame (vy,...,vy) is taken into the frame (vi,...,vp—_q). Using The-
orem 3.1.5.9, it is readily seen that this is indeed a submersion, because given
any frame (v,...,v?) € V(n,k) we have an explicit construction of the neigh-
bourhood V' of the frame (v7,...,v0_,) € V(n,k — ¢) and of the C*-map
g: V. — V(n,k) which are required by this Theorem. In fact, one can take

as V the set of frames ((v1,...,v5—q) € V(n, k — ¢) such that the vectors

0 0
'U17...7'Uk7q7vkiq+1,...7'Uk

are linearly independent and then, for (vy, ..
to be the frame obtained from

., Ug—q) € V define g((v1,...,v5—¢)

0 0
(V1«4 vy Vk—gs Vg 15+ - Vk)

through standard orthogonalisation. Let us add that the pre-image of an arbi-
trary frame (vf,...,v)_,) € V(n, k—q) under this submersion is the submanifold
of V(n, k) consisting of all the frames

0 0 0 0
(1)17 v Ug—qr Vk—g+19 - - 7Uk)7

where (v)_,,,...,v}) is an orthonormal g-frame of the (n — k +-¢)-dimensional
subspace of R™ which is orthogonal to the vectors v{, ... ,vg_q; in particular,

this submanifold is diffeomorphic to V(n — k + ¢, q).
Remark 3.2.1.5. We see from equations (3.2.1.2) that the set V(n, k) is bounded

and closed in R" . Therefore, V (n, k) is a closed manifold.
The manifold V(n,n — 1) = SO(n) is connected: each matrix of SO(n) can

be expressed as cu(y1, ..., ¢, )c”t, where

[cospr  —sinp i

sing;  cosy
. cos @, —sinp,
u’(gpla SERE) QOT) - sin ©r COS Py
0

L 1_

(with ¢1,...,, € R) and ¢ is an orthogonal matrix. Therefore, each matrix

can be joined to the identity matrix by the path

tcu((1—t)er, ..., (1—1t)e,)c.
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Since the manifolds V(n, k) with k¥ < n — 1 are the images under continuous
maps of V(n,n — 1) (see Remark 3.2.1.4), they are also connected. For n > 0,
V(n,n) has two connected components: SO(n) and O(n) \ SO(n).

The Complex Case

Remark 3.2.1.6. Let CV(n,k), 0 < k < n, be the set of linear isometric maps
C* — C™. In other words, CV (n, k) consists of the orthonormal k-frames in C"
or, equivalently, of the complex n x k-matrices ||vs;]|| such that

These equations show that CV (n, k) is a subset of C™* = R2"*, Now we sepa-
rate their real and imaginary parts and obtain k2 real equations such that the
gradients of their left-hand sides do not vanish and are pairwise orthogonal on
CV(n,k). Thus CV(n,k) is a (2nk — k?)-dimensional C*-submanifold without
boundary of R?"*, called the complex Stiefel manifold.

Warning: CV (n, k) is not a complex manifold in the sense of Remark 3.1.6.5.
The present definition does not equip it with a complex structure; in fact, such
a structure does not exist in general, since CV(n, k) is odd-dimensional for k
odd.

Clearly, CV (n,0) reduces to a point, and CV(n, 1) is just the sphere S"~1.
he points of the manifold CV(n,n) are unitary transformations of C", and
CV(n,n) is usually denoted by U(n). Like O(n), U(n) is a group under the
composition operation o. The subgroup of U(n) consisting of all matrices with
determinant 1 is denoted by SU(n) and is a C®-submanifold of U(n), canonically
diffeomorphic to CV(n,n — 1) (cf. Remark 3.2.1.3).

The manifold U(n) is canonically diffeomorphic to SU(n) x S!: this diffeo-
morphism takes each pair (u,z) € SU(n) x S! into the matrix obtained from u
by multiplying its first row by z.

Warning: this diffeomorphism is not a group isomorphism between the direct
product of groups SU(n) x St and U(n).

The C*-embeddings

CV(n,k) = CV(n+q,k) and CV(n,k) - CV(n+q,k+1),
and the C*-submersion
CV(n,k) = CV(n,k —q)

are defined exactly as in the real case. Moreover, since each linear isometric
map C¥ — C" may be regarded as a linear isometric map R?* — R?", there is
a canonical C%embedding CV (n, k) — RV (2n, 2k).

The manifolds CV (n, k) are compact. Moreover, they are all connected.
Indeed, CV(n,k) = U(n) is connected, because every unitary matrix can be
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expressed as cu(p1, ..., p,)c L, where
exp(ip1) 0
u(@h"'a@n): (5017"'750n€R)7
0 exp(ipn)

and c is a unitary matrix, and then joined to the identity matrix by the path

t—=cu((l—t)p1,..., (1 —t)en).

The manifolds CV(n,k) with k& < n are connected as continuous images of

CV(n,n).

The Quaternionic Case

Remark 3.2.1.7. The discussion in Remark 3.2.1.6 can be repeated almost word
for word if one replaces the field of complex numbers by the skew field of quater-
nions.

(Recall that H™ is considered as a left vector space; see Definition 1.2.5.4;
consequently, a linear map H — H"™ is left-linear here, and the scalar product
of the vectors (uq,...,u,) and (vi,...,v,) is defined as >, u;v;).

In this way, we obtain:

e the C*-manifold without boundary HV (n,k) (0 < k < n) of dimension
dnk — (2k* — k), called the quaternionic Stiefel manifold;

e the C%embeddings HV (n, k) — HV (n + ¢, k),
HV (n,k) = HV (n+ q,k + q), and HV (n, k) — (V(2n, 2k); and

e the C*-submersion HV (n, k) — HV (n, k — q).

Clearly, HV (n, 0) reduces to a point, and HV (n, 1) is just S*"~1. The manifold
HV (n,n) is usually denoted by Sp(n) its points are the linear isometric trans-
formations of H", and the composition of transformations makes Sp(n) into a
group.

All the manifolds HV (n, k) are compact and connected. Since the proof of
connectedness along the lines in Remarks 3.2.1.5 or 3.2.1.6 requires the normal
form of a matrix form Sp(n), which is less known than the normal forms for
SO(n) and U(n), we remark that a different proof of connectedness is given in
Chapter 5 (see Corollary 5.2.7.4).

Non-compact Stiefel Manifolds

Remark 3.2.1.8. Let RV’ (n, k), or simply V' (n, k), 0 < k < n, denote the set of
linear monomorphisms R¥ — R™. Alternatively, one may describe V'(n, k) as
the set of non-degenerate k-frames in R™, or as the set of the real n x k-matrices
of rank k. Clearly, this set is open in the space R™ of all real n x k-matrices,
and hence V'(n, k) is an nk-dimensional C®manifold containing V(n, k) as a
submanifold.
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Let T'(k,R), or simply T'(k), be the set of real upper triangular matrices of
order k with positive diagonal entries. Trivially, T'(k) is open in the space of all
upper triangular matrices of order k, RF(+1)/2 and is actually diffeomorphic
to RF(EH1/2 If we orthogonalise a given non-degenerate k-frame in R” via
the standard procedure, then the matrix corresponding to this frame takes the
form ut, where u € V(n,k) and ¢t € T(k). Moreover, it is obvious that this
representation is unique and defines a diffeomorphism V'(n, k) — V(n, k) xT(k),
transforming V' (n, k) into the fibre V(n, k) x E, where E is the identity matrix.
Therefore, the manifold V' (n, k) is C®-diffeomorphic to V (n, k) x RE*+1/2 and
V(n, k) is its strong deformation retract. In particular, V'(n, k) is connected for
k < mn, and V'(n,n) has two components.

Again, V'(n,0) reduces to a point, while V'(n, 1) coincides with R™\ 0. The
manifold V'(n,n) is usually denoted by GL(n,R) and its points are the non-
degenerate linear transformations of R™ or, equivalently, the non-degenerate
matrices of order n. The composition of transformations (multiplication of
matrices) defines a group structure on GL(n,R). The subgroup of GL(n,R)
consisting of all matrices with positive determinant is denoted by GL. (n,R).
The sets GL4(n,R) and GL(n,R) \ GL1(n,R) are open in GL(n,R) and C°-
diffeomorphic to SO(n) x R™"+1)/2; in fact, they are the components of the
manifold GL(n, R).

Corresponding to each monomorphism w: R¥ — R” we have the composite
maps

k ¥ n incl n+
R &5 R" — R"™9,

RE+a 1y ghte 22X, o e 19, gota gpq
RF—a I Rk 2, gn
and so we obtain the C*-embeddings

V'(n, k) = V'(n+q,k),
V'(in k) = V'(n+q,k+q),

and the C*-submersion
V'(n, k) = V'(n,k —q),

respectively; cf. Remark 3.2.1.4.

Remark 3.2.1.9. Welet CV'/(n, k) (0 < k < n) denote the set of linear monomor-
phisms (C¥ — C". Alternatively, CV'(n, k) is the set of non-degenerate k-frames
in C™, or the set of complex n x k-matrices of rank k. Again, it it clear that this
is an open set in the space C™* of all complex n x k-matrices. Thus CV’(n, k)
is a 2nk-dimensional C*-manifold containing CV(n, k) as a submanifold.
Repeating what was said in Remark 3.2.1.8 (with obvious modifications), we
obtain a C*-diffeomorphism CV'(n,k) — CV(n,k) x T(k,C), where T'(k,C) is
the manifold of complex upper triangular matrices of order k£ with positive diag-
onal elements. Clearly, T'(k,C) is C®-diffeomorphic R¥*, and hence CV'(n, k) is
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diffeomorphic to CV (n, k) x R, In particular, the manifolds CV’(n, k) are all
connected. CV’(n,0) reduces to a point, while CV’(n, 1) is just C™\ 0. Usually
the manifold CV'(n,n) is denoted by GL(n, C); it consists of all non-degenerate
linear transformations of C", and is a group with group operation o. There are
also the natural C*-embeddings

CV'(n,k) — CV'(n+ q,k),
CV'(n,k) = CV'(n+q,k + q),

as well as the C%-submersion
CV'(n,k) = CV'(n,k — q).

Remark 3.2.1.10. If we replace the commutative fields R and C by the skew
field H in the previous definitions, we obtain:

e the 4nk-dimensional C*-manifold HV’(n, k) of all linear monomorphisms
HF — H";

o the Co-diffeomorphism HV(n, k) — HV (n, k) x R2¥"—k:
e the C%-embeddings

HV'(n,k) — HV'(n+¢,k) and
HV'(n,k) = HV'(n + ¢,k + q)

e and finally, the C%-submersion HV'(n, k) — HV'(n, k — q).

As before, HV'(n,0) reduces to a point, while HV'(n,1) is just H \ 0. The
manifold HV'(n,n) consists of all non-degenerate linear transformations of H",
is a group with group operation o, and is usually denoted by GL(n, H).

3.2.2 Grassmann Manifolds

Remark 3.2.2.1. Let RG(n, k), or simply G(n, k), 0 < k < n, be the set of k-
dimensional linear subspaces (or k-planes passing through 0 ) of R™. If ~ is such
a plane, we let U, denote the collection of planes in G(n, k) whose projection on
~ is non-degenerate. Let us fix an orthonormal basis e = {ey,...,ex} of v and
complete it to an orthonormal basis of R™, adding a frame ¢ = {e1,...,6,_%}.
For each +' € U, there exists a unique frame u1, . .., u in 4" which projects onto
e. Expressing the vectors ui, ..., u in terms of the basis ey, ..., ex, €1, .., En—k,
we obtain

n—k
u; = €; + Zcises (i=1,...,k; cis €R)
s=1

This construction yields a map ¢(e,¢) from the set U, into the space RF(n—k)
of real k x (n — k)-matrices. Obviously, ¢(e,¢) is invertible, and the collection
of maps (e, e)) obtained from all the pairs e, e is a C*-atlas of the set G(n, k).
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Since any two planes in G(n,k) are contained in some set U,, the topology
defined by the atlas {¢(e, )} is Hausdorff. Moreover, this atlas contains finite
subatlases (for example, the subatlas consisting of the charts ¢(e, €) where e and
¢ are subframes of the standard frame orty, . .., ort, of R™), and hence the above
topology has a countable base. Thus, the atlas {¢(e, €)} transforms G(n, k) into
a k(n — k)-dimensional C®-manifold, called the Grassmann manifold.

Clearly, G(n,0) and G(n,n) both reduce to points, and G(n, 1), as a set and
a topological space, is identical to RP"~!. So we see that the space RP"~! has
a Cstructure compatible with its topology, and hence RP"~! is an (n — 1)-
dimensional C%-manifold. We remark that this C%-structure may be described
directly and conveniently as follows: for & = 1, the finite atlas of the manifold
G(n, k) given above consists of n charts

o1: Uy =R o, Uy — R,
defined in homogeneous coordinates by the formulae

Uz’ = {(xl I iL’n)|£EZ 75 0}7
wil(z1 -t xn)) = (21 Tiy oo Tie1 [Ty Tig1 [Ty« o - T [ T5).

It is also clear that relative to this C®-structure, the canonical homeomorphism
RP! — S! (see Remark 1.2.5.6) becomes a C¢-diffeomorphism.

Remark 3.2.2.2. Obviously, we may modify the definition of the manifold G(n, k)
by replacing the non-oriented planes with oriented ones. More precisely, G(n, k)
is replaced by the set G4 (n,k) of oriented k-dimensional planes (oriented k-
planes, for short) of R™ passing through 0. One has to modify the set U,
accordingly and take it to be the collection of all planes in G (n,k) whose
projections onto the plane v € Gy (n,k) are non-degenerate and orientation
preserving. The maps ¢(e,e): U — R™"™~F) are defined as in Remark 3.2.2.1
and again they form a C®-atlas possessing finite subatlases. Since any pair of
points of G4 (n, k) is covered by a set of the form U, U Uy, where the plane ¥
differs from v only by its orientation (obviously, U, U Uy = @) , the topology
defined by the atlas {¢(e, )} is Hausdorff. The k(n—k)-dimensional C*-manifold
so obtained is termed the upper Grassmann manifold.

The manifolds G4 (n,0) and G4 (n,n) are canonically homeomorphic to S°,

while G (n, 1) is canonically diffeomorphic to S*~!: under this diffeomorphism
each point 2 € S"~! goes into the oriented line defined by the pair of points
0, x.
Remark 3.2.2.3. If one associates to each plane v € G(n,k) its orthogonal
complement, one obtains a mapping of G(n, k) onto G(n,n — k) which is clearly
a C*-diffeomorphism. A C%-diffeomorphism G4 (n, k) — G4 (n,n—Fk) is similarly
defined, if the orientation given to the orthogonal plane v and the orientation of
~+ behave in accordance to the classical rule: let a basis of v+ which is compatible
with this orientation be written to the right of a basis of 7 which is compatible
with its orientation; then the resulting basis of R™ should be compatible with the
standard orientation of R™ (see Remark 3.1.3.10). In particular, G(n,n — 1) =
RP" ! and G4 (n,n—1)=8S""1L
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The inclusion R” — R"*? induces obvious C*-embeddings G(n, k) — G(n+
q,k) and G4 (n, k) = G4 (n+q, k). Furthermore, the formula v — v xR? defines
C%-embeddings G(n, k) = G(n+q,n+k) and Gy (n, k) = G (n+q,n+k) (the
orientation of the product v x R? is defined by the orientation of its factors -
see Remark 3.1.3.7). These embeddings and the previous diffeomorphisms form
the following commutative diagrams:

G(n, k) G(n+q,k) Gy(n,k) Gi(n+q,k)

l l | |

Gnn—k) —=G(n+gn—k+q) Gilnn—k)—=Gi(n+qn—k+q)

The map G4 (n,k) — G(n, k) which takes each oriented plane and “forgets” its
orientation is clearly a C®-submersion such that the pre-image of each point
of G(n,k) consists of just two points. For k = 1 we recover the projection
Sn=t 5 RPL

If to each frame from V' (n, k) we associate the oriented plane that it spans,
we obtain a C*-map V(n,k) — Gi(n,k). This is a submersion, a fact that
can be readily checked with the aid of Theorem 3.1.5.9, if for a given frame
1% € V(n, k) one explicitly indicates the neighbourhood V' of the oriented plane
7 spanned by v° and the map g: V — V(n, k) which are needed in this theorem.
One can take V' = U,, (see Remark 3.2.2.2) and define g(vy) for each v € V to
be the frame which is obtained from v° after projection on v and standard
orthogonalisation. The pre-image of an oriented plane v € G4 (n, k) under this
submersion is the set of all orthonormal positive k-frames of v and, in particular,
is diffeomorphic to SO(k).

The map of V(n,k) onto G(n,k) which takes each frame into the non-
oriented plane that it spans is also a submersion. In fact, it is exactly the com-
position of the two previous submersions. The pre-image of a plane v € G(n, k)
consists of all the orthonormal frames of v and, in particular, is diffeomorphic
to O(k).

Finally, the maps V'(n, k) = G4 (n,k) and V'(n, k) — G(n, k), which trans-
form each frame into the plane that it spans are both submersions. The pre-
images of the points of G (n, k) and G(n, k) under these maps are diffeomorphic
to GL4 (k,R) and GL(k, R), respectively.

Since the manifolds G(n, k) and G4 (n, k) are continuous images of V(n, k),
they are compact and, excepting G (n,0) and G4 (n,n), connected.

The family of manifolds G(n,k) (k # 0,n) contains both orientable and
non-orientable manifolds. More precisely,

Theorem 3.2.2.4. for k # 0, G(n,k) is orientable if n is even and non-
orientable if n is odd.

Proof. To see this, use the atlas made of the charts (e, ), where e and ¢ are
complementary subframes of the standard basis of R™, with the order of vectors
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they inherit from this basis (cf. Remark 3.2.2.1). Denote the indices of the
vectors of e by

gi(e), -y dkle) (1< jale) <--- <jr(e) <n),

and say that two charts ¢(e,e) and (e, ¢’) of the atlas are contiguous if there
exists ¢ such that je(e’) = je(e) £ 1 and j,(e’) = jp(e) for p # £. Obviously, for
k # 0,n we can always exhibit contiguous charts, and actually any two charts
in the atlas may be connected by a finite chain of charts such that each two
neighbouring charts in the chain are contiguous.

Suppose that ¢;s and ¢, are the coordinate functions of two contiguous
charts, (e, e) and ¢(e’,¢’), such that je(¢’) = je(e) + 1. Then it is readily seen
that the coordinate cy,,, with m = j, — £+ 1 does not vanish on the intersection
of the supports of the two charts, but takes all the remaining real values on this
intersection. A simple computation shows that

—1 . .
(CisCom — CimCos)Copms if i£4L,s#m,
—1 . .
oo CosCppm s if i=4s#m,
b —cimcznll, if £l s=m,
-1 . .
Com> if i=4,s=m,

and thus the Jacobian is [see Remark 3.1.3.1]

J((p(@&‘), @(6/75/)) = (_1)ncé_n7;'

If n is odd, this Jacobian takes both positive and negative values; hence the
manifold G(n, k) is not orientable for such n. For n even, the formula

ole,e) — (71)k[j1(6)+”'+.jk(e)]

defines a map of the atlas under consideration into S°, which satisfies the
compatibility condition in Remark 3.1.3.1: this condition obviously holds for
contiguous charts, which in turn implies the compatibility for non-contiguous
charts. Hence, for n even G(n, k) is orientable. O

Remark 3.2.2.5. The next constructions produce C*-embeddings of G(n, k) and
G4 (n,k) in Euclidean spaces; see also Exercise 3.2.4.8.

Let us start with G4 (n,k). For a matrix v € V/(n,k), let M, ...;, (v) be
the minor constructed from the rows with indices 41, ... g, and put N;, .., (v) =
M, ...i, (0) /p(v), where p(v) is the positive square root of the sum of the squares
of all minors having maximal order. The functions Nj,..;.: V'(n,k) — R are
clearly analytic. Moreover, if two frames in V'(n, k), v! and v?, span the same
k-plane, then N;,..;, (v!) = N;,...;, (v?). Therefore, the map

Niyoip 2 V(n k) — R()

1k

with coordinate functions N;,...;, is the composition of the canonical submersion
V'(n,k) = G4+(n, k), defined in Remark 3.2.2.3, with a C*-map

g+: Gi(n, k) — R(})
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(see Theorem 3.1.5.10). We next show that gy is a C*-embedding.

Using Corollary 3.1.5.4, it suffices to verify that g, is an injective immersion.
To demonstrate that g, is injective, one has to show that if v!, v? € V' (n, k) and
N(v') = N(v?), then the n x 2k-matrix constructed by adjoining the matrices
v! and v? has rank k. But this is plain, because any (k+1) x (k+1)-minor of this
n x 2k-matrix, constructed from k columns of v!' and one column of v? is equal
to zero (expand the minor with respect to the column of v?). To verify that g,
is an immersion, it is enough to show that at each point vy € G4 (n, k), the rank
of the differential g is k(n — k). This in turn will be true if we can prove that
at each point vy € V'(n, k), the differential d,, N has rank > k(n — k). Finally,
to obtain this property of d,, N, we prove that at each point vy € V'(n, k), the
differential d,, M has rank > k(n — k) + 1, where

M:V'(n, k) — RE)

is the map with coordinate functions M;,...;,. So let A be any k x k-submatrix
of the matrix v € V'(n, k) such that A is non-degenerate for v = vy, and let v, j,
be an element of A such that its cofactor, call it «, does not vanish for v = vy.
Next isolate those minors M;,...;, (v) of the matrix v which have at least k — 1
rows in common with A, and then form a submatrix of the Jacobi matrix of the
map M as follows. Take the derivatives of the chosen minors with respect to
those elements of the matrix v which do not appear in A and the one derivative
with respect to v;,;,. We obtain a square matrix of order k(n — k) + 1 which
has, in a neighbourhood of the point vy (and for a suitable arrangement of the
rows and columns) the form

(At)_l det A 0 0 51
0 (AY)~tdet A 0
0 0 (At)_l det A 5k(n—k)
0 0 «a

where t indicates transposition. The determinant of this matrix is equal to
a(det A)(»=F)(E=1) and therefore does not vanish.
Now let us turn to G(n, k) and compose the embedding g, with the map

q: R(Z) — R(:)((Z)*l)ﬂ
defined as
q('rlv R 71'(”)) -

k

(22, 129, . .. zlx(z),x%, LT3y oo T2T (Y- ,x(z)ilx(g),x%:)).

Clearly, the restriction q|R(:)\ is a C*-immersion, and ¢(z) = ¢(y) if and only

0

if # = +y. Since the equality g4 (v") = g+ () holds for planes v,~" € G (n, k)
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which coincide geometrically (but have opposite orientations), we see that gog;
is a C*-immersion of G4 (n, k) into RE(G)+/2, Moreover, gog+ (v') = gog+ ()
if and only if v and ' coincide or differ only by their orientations. Therefore, the
map fact(gogs): G(n, k) — RD(DHD/2 ig well defined and is a C*-embedding.

Information 3.2.2.6. The coordinate functions g;" . , ofthemap g, : Gy (n, k) —

i
R(V) satisfy the relations

k

+ + _ + + _
9ir-ix g1 Zgil~~~z'k71jsgjlmz‘sflujs“wjk =0.
s=1

Considering these relations as equations relative to the coordinates in R(Z), they
define a subset of R(+) which is exactly g4 (G4 (n,k)). See [9] for details.

The numbers gzlk (7) are known as the Grassmann-Pliicker coordinates of
the oriented plane ~.

The Complex and Quaternionic Cases

Remark 3.2.2.7. To obtain the complex version of the manifold RG(n, k), one
has to take k-dimensional planes of C™ passing through 0 instead of k-dimensional
planes of R™ passing through 0. The result is a complex manifold CG(n, k) of
dimension k(n — k), called the complex Grassmann manifold.

Obviously, CG(n,0)) and CG(n,n) reduce to points, whereas CG(n, 1)) co-
incides, as a topological space, with CP"~!. Thus we equip the projective
space CP"~! with a complex structure compatible with its topology, which
makes CP"~! into an (n — 1)-dimensional complex manifold. This structure
may be given in homogeneous coordinates just as we described the C®-structure
of RP"~!]. Relative to this structure the canonical homeomorphism CP! — S§?
(see Remark 1.2.5.6) becomes a C?-diffeomorphism.

The complex analogues constructed in Remark 3.2.2.3, are defined in an ob-
vious way:

Real Complex The analogue is a
G(n, k) = G(n,n—k) CG(n,k) = CG(n,n — k) biholomorphic map
G(n, k) - G(n+q,k) CG(n,k) = CG(n+ q, k) holomorphic embedding
Gn, k) - Gn+q¢,k+q) CG(n,k) — CG(n+ q,k+ q) | holomorphic embedding
V(n, k) = G(n, k) CV(n,k) — CG(n,k) C“-submersion
V'(n,k) = G(n, k) CV'(n,k) — CG(n, k) C%-submersion

We mention also the C*-embedding CG(n,k) — CG4(2n,2k): when we
transform C™ into R2", every k-plane becomes an oriented 2k-plane.

The manifold CG(n, k) is the image of CV(n, k) under a continuous mabp,
and as such it is compact and connected. Moreover, it readily seen that CG(n, k)

can be analytically embedded in R(%): the composition of the embeddings
CG(n, k) — CG4 (2n,2k) — RGE)

is a C*-embedding.
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Remark 3.2.2.8. Substituting quaternions for complex numbers in these def-
initions, we obtain a connected 4k(n — k)-dimensional C*-manifold HG(n, k),
called the quaternionic Grassmann manifold. For k = 0,n, HG(n, k) reduces
to a point. For k = 1,n — 1, HG(n, k) is topologically the quaternionic pro-
jective space HHP"~!. Thus HP™ ! becomes a C*manifold, and the canonical
homeomorphism HP"~! — S§* becomes a C?-diffeomorphism.

The quaternionic analogues of the maps described in Remarks 3.2.2.3 and
3.2.2.7 are C*-maps. In particular, there is a canonical C*-embedding HG(n, k) —
G4 (4n,4k). Composing it with the canonical embedding G4 (4n,4k) — R(iZ),
we obtain a C*-embedding HG(n, k) — R(%).

Remark 3.2.2.9. The maps

§*~1 = CV(n,1) = CG(n,1) = CP" ! and

st =HV(n,1) - HG(n,1) = HP" ',
which are particular cases of the canonical maps in Remark 3.2.2.7 and coincide
with the corresponding Hopf maps (see Remark 1.2.5.8). As a result, we see

that these Hopf maps are C%submersions. The Hopf map S — S is a C%-
submersion too, a fact that follows directly from its definition.

Projective Cayley Plane

Remark 3.2.2.10. The projective Cayley plane is also equipped with a C®-
structure which transforms CaP? into a C%*manifold. We next describe this
structure.

Identify R'6 with Ca?, and R'7 with Ca? x R, and then define three maps
D6 — S'6 by the formulae

(y1,y2) = (2(1 = p*)2y1,2(1 — p*) '/ 2ys, 2p* — 1),
(y1,92) = (2T192,2(1 — p»)27,,1 — 2|y %),
(y1,y2) = (2(1 = p») %Gy, 25591, 1 — 2|y2[?)

where y1, 92 € Ca and p = (Jy1]2 + |y2|?)*/? (the first map is just DS, but we do
not use this fact explicitly). These three maps yield a map

F: DY — ' x §'0 x s
and one can easily verify that
zer(F) = zer[proj: D'® — CaP?].

Since the injective factor of F' is a topological embedding of the quotient space
D6/ zer(F) into S'6 x S'6 x S16 (see Theorem 1.1.7.10), and since, according
to the last equality, this quotient space coincides with D6/ zer(proj) = CaP?,
we can identify CaP? with F(D'6). To transform CaP? into a C*-manifold, it
suffices to show that F(D'°) is a C%-submanifold of S'¢ x S!6 x S16.
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Define f,g: S'6\ ort;7 — S as

UgU1 _ |UQ|2
1) = (===
f(u17u27 ) (1_tau171_t

uy,ug € Ca, te€R,

7t)7 g(ulvu25t):(a27

and consider the three maps hy, ho, hz: S16\ ort;; — S'6 x S16 x S16 given by

hi(z) = (2, f(2),9(x)),  ha(z) = (9(z), 2, f(z)), ha(z) = (f(2),g(x), ).

Since f and g are analytic, hy,ho and h3 are analytic embeddings. One can
check directly that

F(D*%) N proji_l(S16 \ orty7) = hi (S \ orty7).

Therefore, the left-hand side intersections are C*-submanifolds of S16 x S16 x S6,
and it remains to note that

U; pI‘Oji_l(S16 \ OI‘t17) = SlG X SlG X §16 \ (Ol"t177 ortyr, OI‘t17),

and that (orty7,orty7, orty7) & F (D).

Non-compact Grassmann Manifolds

Remark 3.2.2.11. We denote by RG'(n, k), or simply by G'(n, k) (0 < k <
n) the set of all k-dimensional planes of R", i.e., the planes need not pass
through 0. It is clear that given a plane 7' € G'(n, k), there is a unique (k + 1)-
plane v in R™*! that passes both through 0 and the k-plane which results by
translating +" by the vector ort, ;. Moreover, the formula v — +' defines an
injective mapping G’'(n,k) — G(n + 1,k + 1), which has an open image. So
we may regard G’(n, k) as an open subset of the manifold G(n + 1,k + 1). In
particular, G'(n,k) is a (k 4+ 1)(n — k)-dimensional C*-manifold. We call it
the non-compact Grassmann manifold. G'(n, k) can be mapped naturally onto
G(n,k): for each plane 7' € G'(n, k), consider the parallel plane v € G(n, k).
It is a straightforward consequence of Theorem 3.1.5.9 that this map is a C%-
submersion (one can take the entire G(n, k) for the required neighbourhood V'
of v in G(n, k), and one can take the map which takes each plane from G(n, k)
into the parallel plane passing through an arbitrary, but fixed point of 4/, for the
required g). The pre-image of a plane v € G(n, k) under this submersion is the
set, of all k-planes of R™ which are parallel to -, and is canonically diffeomorphic
to the orthogonal complement v+ of v (a unique k-plane parallel to vy passes
through each point of 7).

The oriented, complex, and quaternionic versions of these definitions are
immediate.

3.2.3 Some Low-Dimensional Stiefel and Grassmann Man-
ifolds

Theorem 3.2.3.1. SO(3) is canonically C*-diffeomorphic to RP3.
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Proof. We let shi denote the map of R?® into R} which takes (yi,y2,¥3) into
(0,91,%2,93)- The canonical C%-diffeomorphism RP? — SO(3) takes the line
of R} passing through the point x € R*\ 0 into the orthogonal transformation
@: R® — R3 defined by the quaternionic formula ¢(y) = shi™!(zshi(y)z1).
The inverse diffeomorphism SO(3) — R? takes each transformation ¢: R? — R3
into the line consisting of the quaternions of the form

g — shi(p(orty))qorte — shi(p(orte))q orts — shi(¢(orts))q orty,

where ¢ is an arbitrary quaternion, and ort,, orts , and orty are regarded as
quaternion units. It is routine to check that quaternions of this form describe
precisely a line and that the constructed maps RP? — SO(3) and SO(3) — R3
are inverses of one another. O

Theorem 3.2.3.2. RV (4,2) is canonically C*-diffeomorphic to S® x S?.

Proof. The canonical C?-diffeomorphism S? x §? — RV (4,2) takes the pair
(x,y) € S* x S? into the frame {z, x shi(y)}. O

Theorem 3.2.3.3. SO(4) is canonically C*-diffeomorphic to S® x SO(3).

Proof. The canonical C?-diffeomorphism S x SO(3) — SO(4) is defined by the
quaternion formula (z,{y,z}) — {x,xshi(y),xshi(z)} (here the points of the
manifolds SO(3) and SO(4) are interpreted as frames). O

Theorem 3.2.3.4. G (4,2) is canonically C*-diffeomorphic to S* x S2.

Proof. The canonical C?-diffeomorphism G (4,2) — S? x S? takes the oriented
plane spanned by the frame {z, y} € V (4, 2) into the pair (shi~*(zy~"),shi~*(z~1y)).
The inverse diffeomorphism transforms each pair (u,v) € S? x S? into the
two-dimensional plane consisting of quaternions of the form shi(u)g + ¢ shi(v),
where ¢ is an arbitrary quaternion. Again, it is routine to check that the
pair (shi™*(zy~1),shi”'(z~'y)) is uniquely determined by the oriented plane
spanned by the frame {z,y}, that the quaternions shi(u)q + ¢shi(v) fill ex-
actly a two-dimensional plane, and that the maps G (4,2) — S? x S? and
S? x §? — G4(4,2) constructed above are inverses of one another. 0

3.2.4 Exercises

Exercise 3.2.4.1. A homogeneous polynomial in n + 1 variables and with real
(complex) coefficients is non-singular if there are no points in R"*1\ 0 (re-
spectively, in "1\ 0) where all its partial derivatives vanish. Show that the
projection R"*1\ 0 — RP"™ (respectively, C"*1 \ 0 — CP") transforms the
set of zeros different from 0 of such a polynomial into a submanifold of RP™
(respectively, CP™) .

Ezercise 3.2.4.2. Let p(x1, 22, x3) be a non-singular homogeneous polynomial of
degree k with real coefficients. Show that the submanifold of the projective plane
RP? defined by the equation p(z1, s, 73) = 0 has an orientable neighbourhood
if and only if % is even.
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Ezercise 3.2.4.3. Let p(x1,x2,23) be a non-singular homogeneous polynomial
of degree 3 with real coefficients. Show that the submanifold of RP? defined by
the equation p(x1,xa, 23) = 0 is homeomorphic to either S! or S'ITS!, and that
both cases are realised.

Ezercise 3.2.4.4. Show that the equation 23 + 23 + 23 = 0 defines in CP? a
submanifold homeomorphic to S2.

Ezercise 3.2.4.5. Show that the equation z3$ + z3 + 23 = 0 defines in CP? a
submanifold homeomorphic to S' x S*.

Exercise 3.2.4.6. Show that the equation 7 + 23 + 23 + 27 = 0 defines in CP?
a submanifold homeomorphic to S? x S2.

Ezercise 3.2.4.7. Show that RG(n,k) (CG(n,k)) admits a C%embedding in
rp(i)-1 (respectively, CP(Z)A).

Ezercise 3.2.4.8. Show that the map RG(n, k) — R™ which takes each plane
v € RG(n, k) into the matrix of the composite map

roj incl
R™ 2%, 4 B R7

(where proj is the orthogonal projection) is a C%-embedding. Show that the
same is true for the map CG(n, k) — €™ which takes each plane v € CG(n, k)
into the matrix of the composite map

cn 2ol ind, on
Ezercise 3.2.4.9. Show that RV (8, k) is C2-diffeomorphic to S” x RV (7,k — 1)
(1 < k < 8). Show that CV(4,k) is C%diffeomorphic to ST x CV(3,k — 1)
(1<k<4).
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3.3 A DIGRESSION: THREE THEOREMS FROM
CALCULUS

3.3.1 Polynomial Approximation of Functions

Remark 3.3.1.1. The purpose of this section is to state and prove three theorems
from calculus, namely Theorem 3.3.1.7, 3.3.2.3, and 3.3.3.5. They differ in
character and we grouped them together here because all three are needed in
this chapter, and none of them is included in the traditional calculus course.

The main theorem of this subsection, Theorem 3.3.1.7, is a corollary of
Lemma 3.3.1.4, whose proof, in turn, requires Lemma 3.3.1.2.

Lemma 3.3.1.2. For any positive § < 1

where )
ay :/ (1 —tH*at. (3.3.1.3)

~1
Proof. This is an easy consequence of the inequalities

1[0 sk 200=0) ( 1-482\"
O<1—a—k 75(1_t)dt< 3 (a_52/4>

The left inequality is plain, while the right one follows from the estimates
5 1
o — / (1—2Yedt = 2/ (1= 2)kdt < 2(1— 6)(1 — 62)F
-5 5

and

5/2
ar > / (1 —tHkdt > §(1 — 6%/4).
—5/2

Lemma 3.3.1.4. There exists a sequence of mappings
{pr: C(I",R) = C(R", R)}32,
such that:
(i) pr(f) is a polynomial for any f € C(I",R) and any k;
(ii) if f equals O on FrI™, then the sequence {py|m converges uniformly to f;

(i5i) if f equals 0 on FrI™ and has continuous partial derivative D;f, then
pi(Dif) = Dipr(f).
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Proof. For f € C(I",R) we set

n

k(@1 wn) = = [ f(tre ot H (t;—a;) by - db, (3.3.15)

a/k In -

where ay, is defined by (3.3.1.3). This clearly defines a polynomial and therefore
we must check only properties (ii) and (iii).

To check (ii), we extend the function f to R™, setting f(z) = 0 for z € R"\I",
and denote by M the maximum of |f(z)|. Given an arbitrary e > 0, we can find
6,0 < d <1, such that

[f(z, . 2h) — flo,... @) <g/2 for |x) —aq] <6,..., |z, —x,| <0.

Moreover, we can find a number K such that

1 o " €
1—| = 1—t2)k —
(ak/_5( t)dt) <=

for all k > K (see Lemma 3.3.1.2). We next show that |[pr(f)](z) — f(z)| < e
forx € I and k > K.

Write [pi(f)](2) — /() as

1 n
T@/ (fttr + 1, bty +20) — f(21,...,2 H1—t2 dty -~ dt,
[~1,1]~ e

and then replace the integrand by its absolute value. Now divide the new inte-
gral into two integrals, one over the cube [—§,d]™ and one over its complement
[-1,1]™\ [-4,8]™. We obtain

|lpk(N)](@) = ()] <
1
ak/[ 6)6]n(f(t1+x1,...,tn+xn) — f(x1,...,zp))

1
7/ (f(tl—’_xla7tn+x’n)_f(x1aaxn))
[=1,1]"\[-6,6]"

ak
The first term is smaller than €/2, since

|f(t1 +l’1,...,tn+1'n)_f(l'l,...,xn” <€/2
for (t1,...,tn) € [-6,0] and

1 5 n
Il (1 —t)*dty ---dt, = | — 1—t3H*d 1.
ak/ 1 1]n t tl tn (ak /;5( t ) t) <

The second term is also smaller than £/2, since

lf(t1 + 21, .oyt ) — f(21,. . )] <2M
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/ [T -e)dt---at, =
[

L1m\[=6,8]™ 521

n 1 n
H 1—t2 kdtl -dty, —a—k/ H(l—t?)kdtl-..dtn:
- = [=8,8]™ 521

7
1 o N " e
1<ak/5(lt)dt> <m

Therefore, |[py(f)](z) — f(z)] <e.
To check property (iii), replace f by D,f in definition (3.3.1.5) and then
integrate by parts with respect to ¢; in the right-hand side. We obtain

Pe(Dif)l(@1s- s 2n) =

alk ot 88]1—[1 (= (t; — o)) dty - db (3.3.1.6)
Since . .
e 1T == = = [0 = =2
j=1 j=
the right-hand side of (3.3.1.6) is equal to [D;pr(f)|(z1,...,Zn). O

Theorem 3.3.1.7. Suppose X is a compact set in R™ and f is a real function
defined and of class C in a neighbourhood of X. If r < oo then for any ¢ > 0
and any non-negative integer s < r, there is a polynomial g: R™ — R such that

max| Dy -+ Dyng(z) — Dyt - Dy" f(z) < e
T

for any collection s1,...,s, of non-negative integers with sy + -+ s, < s.

Proof. Clearly, one can assume that X C int I"™. Denote by U the neighbour-
hood of X mentioned above, and let §: R™ — R be any C"-function equal to 0
on D™ and equal to 1 outside the concentric ball of radius 2. For y € (I"\ U) U
FrI™, we let d(y) denote the ball of centre y and radius Dist(y, X)/4. Cover
(I"\U)UFrI" by a finite number of balls int d(y), say intd(y1),. .., intd(y,),
and define h: I — R as

hiy) = 47 =1 B(4(y — i)/ Dist(y;, X)), i yeU,
Y 0, if y&U.

Then h is of class C", agrees with f on X, and vanishes on a neighbourhood of
Fr I™ . This shows that one can take g to be pi(h), with pj as in Lemma 3.3.1.4
and k large enough. O
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3.3.2 Singular Values

Remark 3.3.2.1. In the present subsection we assume that we are given open
subset U of R™ and a C>*-map f: U — R? with ¢ > 1. We let F' denote the set
of points in U where the rank of the Jacobi matrix of f is less than ¢. Our aim
is to prove Theorem 3.3.2.3, which is needed in the next section (see Theorem
3.4.7.4).

We need two auxiliary notations: f; for the j-th coordinate function of
the map f (j = 1,...,n) and Fs for the set of points in U where all partial
derivatives of order 1, ..., s of the functions f vanish. Clearly, F§ is closed in U
and F O Fy D Fy---.

Lemma 3.3.2.2. Suppose s > (n/q) — 1 and C is any compact part of the set
Fs. The image f(C) is nowhere dense.

Proof. 1t is enough to show that for any n-dimensional cube Q C U, the set
f(CNQ) is nowhere dense. Indeed, one can cover C' by a finite number of such
cubes, and use the fact that a finite union of nowhere dense sets is nowhere
dense.

Let a be the edge length of ). Consider the standard partition of @ into
m"™ small cubes of edge length a/m (with m an arbitrary positive integer). Let
Q@' be a small cube in this partition which intersects C. Now apply Taylor’s
theorem to the functions f; and use the fact that their partial derivatives of
order s + 1 are bounded on @ to show that there is a constant b such that

dist(f(2), f(y)) < bldist(z,y)]"*!

for any x € F; N Q, y € Q. Since Q' has diameter a/n/m, we see that f(Q’)
is contained in a ball of radius b(ay/n/m)**Tt. Therefore, f(Q’) is contained
in a ¢g-dimensional cube with edge length 2b(ay/n/m)**1, and f(C N Q) - in
a union of no more than m"™ such cubes. The volume of each such cube is
[2b(ay/n/m)**T1]9, and so the sum of their volumes does not exceed

m"[2b(av/n/m) T = em™ (s + 1)

where ¢ is independent of m. By hypothesis, this sum goes to 0 as m — oc.
This shows that the set f(C' N Q) can have no interior points. Since the latter
is a closed set, it is also nowhere dense. O

Theorem 3.3.2.3. The image f(C) of any compact part of the set F' is nowhere
dense.

Proof. We proceed inductively on n. For n = 0 there is nothing to prove; hence
it is enough to show that the theorem holds for n = k£ + 1 if it holds for n = k.

We start with the special case F; = &. Since C' is compact, it suffices to find,
for each point z € C, a neighbourhood V in U such that f(C NV) is nowhere
dense. Assume that Dyy1fq(x) # 0 (we can always achieve this by re-indexing
the coordinates in R¥*! and R?) and consider the map g: U — R¥*! defined
by the formula

Y= Ukr1) = W, Yk fo(W).
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Its Jacobian at the point  does not vanish (being equal to D41 fy); hence g is
a C*°-diffeomorphism of a neighbourhood W of = onto a neighbourhood of g(z).
Now one can take as V' any neighbourhood of = with compact closure included
in W. To see this, set h to be the composite map

rg) ! a
g(W) (abr g) 17 b f RY.

It transforms each point from g(W) into a point which has the same last coor-
dinate. In particular, for any real number u, h can be compressed to a map

g(W) N [RF x u] = R x .

If we identify g(W) N [R¥ x u] with its orthogonal projection on R¥ in the
standard fashion, and R9™! x u - with its orthogonal projection on R9~!, we
obtain a C-map h, of an open subset of R* into R¢~!. Clearly, the Jacobi
matrix of h,, at the point (yi,...,yx) is obtained from the Jacobi matrix of the
map h at the point (y1,...,yx, u) by deleting the last column and the last row,
which has the form 0,...,0,1. Therefore, the rank of the first matrix is less
than ¢ — 1 if and only if the rank of the second matrix is less than g, i.e, if
(Y1, Yk, ) € g(FNW). Applying the induction hypothesis to h,, we deduce
that the intersection of h(g(CNCI1V)) with each hyperplane R9~! x u is nowhere
dense in R?~! x u. But if this is the case, h(g(CNC1V)) has no interior points in
R and we need only note that this set is closed and coincides with f(CNCl1V).

Now let us turn to a second special case: C C Fs and Fyy1 = & (for some
s). Again, it is enough to exhibit for each point x € C a neighbourhood V in
U such that the set f(C NV) is nowhere dense. Let ¢ be a derivative of order
s of one of the functions f; which satisfies the following condition: one of the

derivatives D;p, say Dyy1¢, does not vanish at the point z. Consider the map
g: U = R defined as

Y=, Ukt1) = W1, Yk 0(Y))-

Its Jacobian does not vanish at x (being equal to Dyp); hence g yields a C>°-
diffeomorphism of a neighbourhood W of x onto a neighbourhood of g(x). We
show, with the aid of the composite map

(abr g) "

g(W) W 2L, Ra (3.3.2.4)
that one can take any neighbourhood of  with compact closure included in W
for V. To do this, note that g(C) C R¥ and restrict the map (3.3.2.4) to a map
h: g(W)NRF — RY. Clearly, all the derivatives of order < s of the coordinate
functions of h vanish on g(CNW). Using the induction hypothesis, it is evident
that h carries the compact parts of the set g(C' N W) into nowhere dense sets.
Finally, we observe that g(C NClV) is a compact part of g(C N W), and that
h(g(CNCLV)) is just f(CNCLV).

At last, we come to the general case. According to Lemma 3.3.2.2, there
exists a number r such that the set f(C'NF}.) is nowhere dense. We shall prove
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by induction on r, i.e, assuming that f(C' N F,.) is nowhere dense, we show that,
for r =1, f(C) is nowhere dense, and for r > 1, f(C N F,_;) is nowhere dense.
Let G be an open non-empty subset of R?. Since C'N F,. is compact and
f(C' N F,) is nowhere dense, the set C'N F,. has a neighbourhood N in R™ such
that CIN is compact and CIN C U, f(CIN) p G. Next replace the map f by
its restriction to U \ F,. and C - by the set
C,:{C\N, if r=1
(C\F.)\N, it r>1.
Now we are back to one of the cases covered by the first part of the proof
(namely, in the first case for » = 1, and in the second one for r > 1). Therefore,
we conclude that f(C’) does not cover G\ f(Cl1N). Consequently, if r = 1 the

set f(C N F,) does not cover G, while if r > 1 the set f(C' N F;) does not cover
G. This completes the proof, because f(C) and f(C N F,_; are closed. O

Information 3.3.2.5. In Theorem 3.3.2.3, the condition that f be C°°-smooth is
unnecessarily strong: in fact, the proof uses only the fact that f is of class C",
with 7 = 2 + max(n — ¢,0). A more precise analysis shows that this r can be
decreased by 1 (see, for example, [21]), but no further (for ¢ = 1, this is showed
in [23], and the case ¢ > 1 reduces easily to the case ¢ = 1).

3.3.3 Non-degenerate Critical Points

Remark 3.3.3.1. Let f be a real C?-function defined on an open subset of R™.
A critical point y of f is non-degenerate if the second differential of f at y
(considered as a quadratic form) has rank n. The index of the second differential
of f at y (i-e, the number of negative squares in the diagonal representation of
this form) is called the index of the point y and is denoted by indy y.

We remark that if ¢ is a C?-diffeomorphism of an open subset U of R™ onto
another open subset of R™ and y is a non-degenerate critical point of f: U — R,
then (y) is a non-degenerate critical point of the function fo g : p(U) — R,
and indf., ¢(y) = indyy. Both conclusions remain true in the more general
situation where ¢ is only of class C* but the function f o ¢ is of class C2.

Now consider the function R™ — R defined as

(T, @) > =2 — =T+ Th e+ T G (3.3.3.2)
where ¢ is a real number (0 < k < n). This function has a unique critical point,
at 0, which clearly is non-degenerate and of index k. The main goal in the
present subsection is to show that, in a suitably chosen system of coordinates,
any sufficiently smooth function has the above form (3.3.3.2) in the vicinity of
a non-degenerate critical point.

Lemma 3.3.3.3. Let V be an open ball in R™ with centre 0, and let f: V — R be
a C"-function, r > 1, with f(0) = 0. There are C"~'-functions f1,... fn: V = R
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such that .
fl@) =Y wifi(x) (3.3.3.4)
i=1

for all points x = (x1,...,2,) € V.

Proof. To prove the lemma, it is enough to set

1

and then observe that (3.3.3.4) is an immediate consequence of the equality
D ) = 3 wiDuf (1)
ot N — e '

O

Theorem 3.3.3.5. Suppose that y is a non-degenerate critical point of a C"-
function f defined on an open subset of R™. If r > 3, then there exist a neigh-
bourhood U of y and a diffeomorphism ¢ of U onto a neighbourhood V of 0, such
that the restriction f|y coincides with the composite map U Pyy 3332, R,

where k =1ind;y and c = f(y).

Proof. Without loss of generality, we may assume that y = 0 and f(y) = 0. By
Lemma 3.3.3.3,

flz)= infi(x)

in some neighbourhood of 0, where f; are C"~!-functions. Differentiating, we
obtain D; f(z) = >/, x;Dif;(x), since fi(0) = -+ = fu(0). Again we apply
Lemma 3.3.3.3 and write, in a neighbourhood Vj of 0,

fi(z) = Z%fm(z) (i=1,...,n)
j=1
with C"~2-functions fij- Therefore, for x € Vj,

fl@)="Y" giy(@)ws;,

ij=1

where g;;(x) = (fi;(z) + fi(x))/2. Clearly, ¢;;(0) = D;D; f(0)/2.

The subsequent constructions mimic the standard reduction of a quadratic
form to canonical form through linear transformations. For p = 0,...,n, we
construct neighbourhoods V,, and W, of the point 0 in R", C"~?-diffeomorphisms
op: WytoV,, and also C"~2-functions gfj: Vo = R,i4,5=p+1,...,n, such that:

(i) Wp C Vpo1;
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(ii) ¢p = 0;
(iii) the composite map

Pp incl incl

! -1 b
_>1/1)_1”_1>...‘/’1_>W1_>1/OH>R
is represented by the formula

T a2l 4 Z 95y ()23 (3.3.3.6)
1j=p+1

(iv) gij = gji-

Then we will have finished, since one could take
o1 (o (o (V) )

for V, define ¢ as the composition

V 2 01(V) 2 ga(r) S - B Y BT (V)

where 7 is a suitable permutation of the standard coordinates in R™, and set
U= (V).

The neighbourhood V; is already given. We let Wy = Vi, ¢ = id Vy,
g?j = gij, and assume that we have constructed V,, Wp, ¢, and g;; satisfying
(i) , (ii), (iii), and (iv) for p < ¢. It is clear that 0 is a non-degenerate critical
point of the function (3.3.3.6) with p = ¢. Hence the matrix G = ||g§’j(O)||§J:QJrl
is non-degenerate and there exists a non-degenerate (n — ¢) X (n — ¢)-matrix A
such that the left upper element of the matrix A'GA is not zero. Let £ denote
the linear transformation of R™ having matrix

b A

where F is the ¢ x g-identity matrix. The composition of the diffeomorphism
abr¢: (=*(V,) — V, with the function (3.3.1.6) is given by

n
T £ 4. £ mg + Z hij(x)zx;,
4,J=q+1

where h;; = hj; and hgi1441 # 0. Now consider the subset L of ¢71(V,)
consisting of all the points = where hgy1 441 # 0 and has the same sign as
hgt1,4+1(0), and then define ¢o: L — R” as

T/J(J)) = (3"17 .. 7xq7§ |hq+1,q+1 ($)|7xq+2a cee 7xn)7
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where

h x
E=2g41 + Z zsis’qﬂ( ) .
sSqtl hqt1,g+1(2)

A simple computation shows that the Jacobian of ¢ at the point 0 does not
vanish. Therefore, the compression of 1) to a neighbourhood M of 0 and to
its image ¥(M) is a C"~2-diffeomorphism. It is now readily verified that the
sets Vo1 = ¥(M) and Wy = £(M), the map pg41: W1 — Vgqq defined by
©q+1(x) = (€71 (x)), and the functions gf;rl: Vg+1 — R defined as

957 (0) = higta) — Mt D1 (2)
hgt1,g+1(2)

enjoy the properties (i), (i), (iii), and (iv). O
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3.4 EMBEDDINGS. IMMERSIONS. SMOOTH-
INGS. APPROXIMATIONS

3.4.1 Spaces of Smooth Maps

Remark 3.4.1.1. Let X and X’ be CZ"-manifolds (0 < r < a). We denote by
C"(X, X’) the set of all C"-maps X — X'. If r < oo, we equip C"(X, X') with the
C"-topology which makes C"(X, X’) into a topological space, as follows. Given
two arbitrary charts ¢ € Atl X and ¢’ € Atl X', a sequence of non-negative
integers r1,...,7, with n = dim X and r; 4+ --- + r, < r, a compact subset A
of im ¢, and an open subset A’ of R™ | where n’ = dim X, consider the subset
of C"(X, X’) consisting of all maps f such that

[DY* -+ Dy loc(p, ) f(A) € A”.

These subsets form a prebase of the C"-topology on C"(X, X').

Clearly, C°(X, X') — C(X, X'), and the C%-topology is simply the compact-
open topology (see Definition 1.2.7.1). Also, for s < r, the inclusion C" (X, X') —
C*(X, X") is obviously continuous. Another direct consequence of the definition
of the C"-topology is that all the spaces C"(X,X’) are regular. In addition,
we note that the sets closed (open) in C"(X, X’) are exactly those sets closed
(respectively, open) in all the C"-topologies with r finite.

For each pair of C"-maps f: Y — X and f': Y’ — X', there is a map
C"(X,X') = C"(Y,Y’) defined by the formula g — f' o go f, and denoted by
(. ).

X— X
T Cr(f i) i
Y ———

f Ogof

Obviously, CO(f, f') = C(f, f') (see Definition 1.2.7.1), C"(f, f') = abr C*(f, )
for s < r, and C"(f, f') is continuous for all r < oco.

We list some particular subsets of C"(X, X’) which are important in the se-
quel. These are the sets of all C"-embeddings, C"-immersions, C"-submersions,
and C"-diffeomorphisms X — X', and they are denoted by Emb" (X, X', Imm" (X, X'),
Subm” (X, X’), and Diff" (X, X’), respectively (1 < r < a). Moreover, we let
Ch(X,X') denote the set of all C"-maps f: X — X’ such that f(0X) C 90X’
and d, f(Tang X) C Tangy,)(90X’) for all € 9X. Usually one writes Diff” X
instead of Diff" (X, X).

For 1 < r < oo, the map C5(X, X') — C"(0X,0X’), defined as f +— abr f
is continuous, and the map C"(X,X’) — C"~!(Tang X,TangX'), defined as
f — df is a topological embedding.

Theorem 3.4.1.2. If X is compact, then the set Imm" (X, X’) is open in
ChX,X') 1 <r<o0).
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Proof. We have to exhibit, for a given Cj-immersion fo: X — X', a neigh-
bourhood of fy in C4(X, X’) consisting only of immersions. To do this, pick
for each point z € X two charts, ¢, € Atl, X and ¢/, € Atl, X', such that
fo(supp @) C supp ¢, and loc(¢,, ¢,)f equals one of the inclusions R — R™
R” — R”', or R* — R’_", (see Proposition 3.1.5.3 and Remark 3.1.5.1; here
n = dimX and n’ = dimX’). Now cover X with a finite number of sets
U, = ¢, (intD"), say U,,,...,U,,, and denote by U; the subset of C"(X, X’)
consisting of all the maps f such that f(ClU,,) C supp ¢/, and the upper n x n-
minor of the Jacobi matrix of the map loc(y,,, ¢.)f has no zeros on D". The
intersection Uy N --- N U, is the desired neighbourhood of the map fo. O

Theorem 3.4.1.3. If X is compact and X' has no boundary, then the set
Subm" (X, X') is open in C"(X, X’) (1 <r < o0).

Proof. We have to exhibit, for a given C"-submersion fo: X — X', a neigh-
bourhood of fy in C"(X, X’) consisting only of submersions. Again, for each
point z € X we choose charts ¢, € Atl, X and ¢/ € Atl, X, such that
fo(supp ;) C supp ¢, and loc(y., ¢, )f equals one of the orthogonal projec-
tions R® — R", R” — R™ (see Theorem 3.1.5.7). Now cover X with a finite
number of sets U, = ¢, *(int D), say Uy, ..., U,., and denote by U; the subset
of C"(X, X’) consisting of all maps f such that f(Cl,,) C supp ¢, and the left
n' x n/-minor of the Jacobi matrix of the map loc(ip, ¢’)f has no zeros on D™.
The intersection Uy N - - N U, is the desired neighbourhood of the map fy. O

Theorem 3.4.1.4. If X is compact, then the set Emb" (X, X’) is open in
C'(X,X') 1<r<o).

Proof. Given a C"-embedding fo: X — X', Theorems 3.4.1.2 and Corollary
3.1.5.4 show that it is enough to produce a neighbourhood of fy in C"(X, X”)
consisting only of injective maps. For each point € X, choose two charts, ¢, €
Atl, X and ¢/, € Atl, X', such that fo(supp ¢.) C supp ¢l and loc(¢,, @) f
coincides with one of the inclusions R” — R, or R” — R™ (see Remark
3.1.5.1). Now cover X with a finite number of sets U, = ¢ !(intD"), say
Uz, ..., Uz, . Let U; be the subset of C" (X, X’) consisting of all maps f such
that f(ClU,,) C supp ), and, if we symmetrise the upper n x n-part of the
Jacobi matrix of loc(py,, ¢,;)f and take all the principal minors, they are all
positive on the ball D™. (The principal minors are the left-upper minors; the
symmetrised matrix is half the sum of the matrix with its transpose.) Finally,
denote by U that part of C"(X, X') consisting of all maps such that the preimage
of any point of ’ lies in one of the sets U,,. Let us show that the intersection
V=UN--NU; "U is a neighbourhood of fy with the necessary property. It
is clear that fy € V and that all the sets U; are open. Hence it suffices to verify
that:

(i) U is open, and

(ii) the maps in U; are injective.
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To prove (i), note that U is the preimage of the set
W=C(X x X, (X x X)\U;(Uy, x Up,); X' x X', (X' x X} \ diag(X"))
under the continuous mapping
C'(X,X") = CXxX,X'xX"), fefxf

Since (X x X)\ U;(Uy, x Uy,) is compact and (X’ x X’)\ diag(X"’) is open in
X' x X' (see Remark 1.2.2.4), W is open in C(X x X, X’ x X’) and U is open
in C"(X, X").

To prove (ii), given a map f € U; and arbitrary distinct points y, z € U,,,
let s: I — R be the function which takes each point ¢ € I into the inner product
of the vectors v = ¢, (2) — ¢z, (y) and

loc(pa,, ) FI((1 = t)pw, (y) + tpa, (2)) — loc(pa,, ¢, ) f(y),

computed in R”. Next denote by J(u) the symmetrised upper n x n-part of
the Jacobi matrix of the map loc(oy,, ¢}, ) f at the point u € int D", and by ¢; -
the bilinear form R” x R™ — R" having the matrix J((1 — ¢)¢., (y) + tos, (2)).
The function s is smooth and its derivative at the point ¢ is precisely ¢;(v,v),
and is therefore positive (as a consequence of the definition of Uf;). Moreover,
s(0) = 0, which implies that s(1) > 0, i.e., f(y) # f(2). O

Corollary 3.4.1.5. If X is compact, then the set of neat C"-embeddings X —
X' is open in C5H(X, X') (1 <r < oo0).

Proof. This is an immediate corollary of Theorem 3.4.1.4 since the set in ques-
tion is just Emb" (X, X') N C5(X, X’). O

Corollary 3.4.1.6. If X is compact, then the set Diff" (X, X’) is open in
CHX,X') 1 <r<oo0).

Proof. This is a corollary of Corollary 3.4.1.5 (see Remark 3.1.5.1). O

3.4.2 The Simplest Embedding Theorems

Theorem 3.4.2.1. Every compact CZ"-manifold, 1 < r < oo, admits a C"-
embedding in a Euclidean space of sufficiently high dimension.

Proof. Let n be the dimension of the given manifold X, and let a: R®™ — I be a
C"-function equal to 1 on D", smaller than 1 outside D™, and equal to 0 outside
the concentric ball of radius 2. For each point x € X, fix a chart ¢, € Atl, X
with im ¢, = R™ or R”, and ¢, = 0. Define a map j,: X — R x R™ by the
formula

Jnly) = (alez(y) alez(y))pa(y),  if y € suppepa,
* (0,0), if ye X \suppg,.
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Now cover X by a finite number of sets U, = ¢, ' (intD"), say Us,,...,Us.,
and define

Jr X = RXRY) X x RXRY) =Ry (G, (1), (9):

The map j is of class C" and injective: if y € U,, and 3/ # y, then j,. (y') #
Jas (Y)-

<In)deed, if y' & Uy,, then a(v.,(y')) < 1, whereas a(¢,,(y)) = 1;if v € U,,,
then

(¢, (¥) P2, (Y') = 02, () # u. (1) = alPa(y))p2(y)

Moreover, j is an immersion, since j,, is an immersion on U,, (the second
component X — R™ of the map j agrees with ¢,, on U,,). Therefore, j is a
C"-embedding (see Corollary 3.1.5.4). O

Supplement for the Case of Non-empty Boundary

Lemma 3.4.2.2. On any compact C="-manifold, 1 < r < oo, there is a (real)
C"-function h, equal to 0 on 0X, positive on int X, and having no critical points
on 0X.

Proof. Let a: R — I , n = dim X, be a C"-function equal to 1 on D™ and equal
to 0 outside the concentric ball of radius 2. For each point = € 90X fix a chart
vz € Atl, X such that im ¢, = R” and ¢,(xz) = 0, and define two functions
fzy 922 X — R through the formulae

A =alpe(v)),B(pz)), if y€suppys,
(fz(¥), 9:(y)) = {(170) iy e X\ supp oo,

Here 5: R™ — R is given by B(t1,...,t,) = t1a(ty,...,t,). Covering 0X by a
finite number of sets U, = o, *(int D"), say Uy, , ..., U,., and setting

hy) =TT Fe) + D 90 (),
=1 =1

we obtain the needed function hA: X — R. In fact, h vanishes identically on 0X,
since f is equal to 0 on U,, and all the functions g,, vanish identically on 0.X;
h is positive on int X, since all the functions f;,, g, are non-negative and g,
is positive at all points of int X, excepting the zeros of f,,. Finally, h has no
critical points on 90X, since ) g, has no critical points on 90X (the derivative
with respect to the first coordinate of the local representative loc(¢z, ,idR)g,,,
i.e, of the composition (¢z, |suppe,, ) © 5, s is negative on D™ N R?~ for k =i

and non-positive on D™ N R’f71 for all k), while [] fz, vanishes identically on
WU, - O

Theorem 3.4.2.3. Every compact CZ"-manifold, 1 < r < oo, admits a neat
C"-embedding in a Euclidean space of sufficiently high dimension.

Proof. The formula x — (—h(z), j(x)), where j is an arbitrary C"-embedding in
R™ (see Theorem 3.4.2.1), and h is the function constructed in Lemma 3.4.2.2,
defines a neat C"-embedding in RZ™ = RL x R9. O
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Information

Remark 3.4.2.4. The compactness assumption and the condition that r # a
may be eliminated from the formulations of 3.4.2.1 and 3.4.2.3. Any smooth
manifold of class C=", with r < oo or r = a, compact or not, can be C"-embedded
in Euclidean space, and any smooth manifold of class C=", with r < co or r = a,
compact or not, admits a neat CZ"-embedding Euclidean space. For proofs see
[22] and [8].

We should mention that the case r = a in Theorems 3.4.2.1 and 3.4.2.3 is
exceedingly difficult and this is the reason why we excluded it here. In the sequel
we shall exclude it from other formulations too: cf., for example, Theorems
3.4.4.2, 3.4.5.3, 3.4.6.5, and 4.6.2.7.

3.4.3 Transversalisations and Tubes

Remark 3.4.3.1. In this subsection, we consider the image in Euclidean space
of a smooth manifold under a differentiable embedding and study the structure
of a neighbourhood of this image. The results are concentrated in Theorems
3.4.3.4, 3.4.3.5, and 3.4.3.7, and serve as the technical basis for the remaining
part of the present section.

Remark 3.4.3.2. Let j be a differentiable embedding of the smooth, closed, n-
dimensional manifold X in R?. A transversalisation of j is a continuous map
7: X = G(q,q—mn) such that, for each point = € X, the plane 7(x) is transverse
to the plane d,j(Tang, X) (i.e., the two planes intersect at only one point). A
basic example is the normal transversalisation which associates to each point
x € X the corresponding normal plane (i.e., the orthogonal complement to
d,j(Tang, X) in RY); if j is of class C", then its normal transversalisation is
obviously of class C"~! (cf. Remark 3.1.4.2).

Given an embedding j: X — R? and a transversalisation 7: X — G(q,q—n)
of j, one can construct the natural map 7: X — G’(q, ¢ — n), which takes each
point z into the plane j(z) 4+ 7(z) (which is parallel to 7(x) and passes through
j(x)). We denote the ball and the sphere with centre j(z) and radius p in
j(x)+i(z) by d,(x, p) and s,(z, p), respectively. The unions U xd,(z, p) and
Uzex[d-(z, p) \ s-(z, p)] are called the tube (or the tubular neighbourhood) and
the open tube (or the open tubular neighbourhood) of radius p of the transver-
salisation 7 , and are denoted by Tub. pand tub. p, respectively.

A tube Tub; p is said to be neat if there is a o > p such that:

(i) the open balls d,(z,0)\ s, (z,0), z € X, are pairwise disjoint and the open
tube tub, o they form is a neighbourhood of j(X) in RY;

(ii) the map of this neighbourhood onto X, which transforms all the points of
d.(x,0)\ s-(x,0) into z, is smooth.

The restrictions of the last map to Tub, p or tub, p (which obviously do not
depend on the choice of o) are called projections and are denoted by proj. .
If Tub, p is neat, then all the tubes Tub., p’ with p’ < p are obviously neat.
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Warning: it may happen that the normal transversalisation does not have a
neat tube, or even a tube such that the balls d;q, (2, p) are disjoint; see Exercise
3.4.11.4.

Remark 3.4.3.3. The following construction enables us to represent a neat tubu-
lar neighbourhood as the image of some ideal model of itself, and is required in
the proofs of Theorems 3.4.3.4 and 3.4.3.5.

Let Tu, be that subset of the product X x RY consisting of all the pairs
(z,t) with ¢t € 7(z). For p > 0, we let Tu, p and tu, p denote the pieces of
Tu, such that dist(0,¢) < p and dist(0,t) < p, respectively. We also denote
by nat: Tu, — R? the map given by nat(z,t) = j(z) + ¢t. nat is obviously
an isometry of each plane z x 7(z) onto the corresponding plane j(z) + 7(z),
and transforms Tu. p (tu, p) exactly into Tub,p (respectively, tub;, p). It is
also clear that nat is injective on Tu;, p(tu,p) if and only if the balls d,(z, p)
(respectively, the open balls d, (z, p) \ s-(x, p)) are pairwise disjoint. In this case
nat transforms the restriction to Tu, p of the projection proj;: X x R? — X
into the projection proj,: Tub, p — X (respectively, the restriction to tu, p of
proj; into proj.: tub, — X).

We are interested only in smooth transversalisations 7. If j and 7 are C"-
maps with » > 1, then X x R? is a CZ"-manifold, Tu, is a neat ¢-dimensional
submanifold of X x RY (without boundary), and nat is a C"-map. Moreover,
in this case Tu, p is a compact g-dimensional submanifold of Tu, such that
int(Tu, p) = tu, p and the restriction of the projection projl: X x R? — X to
each of the manifolds Tu,, Tu;, p, and tu, p is a C"-submersion.

Theorem 3.4.3.4. Let the maps j and 7 be of class C", r > 1. If Tub, p is
a neat tube, then it is a C"-submanifold of RY with int(Tub, p) = tub, p, and
proj.: Tub, p — X is a C"-submersion.

Proof. Let 0 > p be such that the conditions (i) and (ii) in Remark 3.4.3.2
are satisfied. As Remark 3.4.3.3 shows, the map abrnat: tu, o — tub, o is
invertible and its inverse abrnat=!': : tub,o — tu, o is obviously given by
y + (proj.(y),y — j o proj. (y)). This formula shows that abrnat~—! is smooth
and thus a C"-diffeomorphism. Now it is evident that the properties of Tub, p
and the projection proj.: Tub,p — X which we have to verify are conse-
quences of the properties established in Remark 3.4.3.3 for their models Tu, p
and abrproj;: Tu, p — X. O

Theorem 3.4.3.5. Every smooth transversalisation has a neat tube.

Proof. Let T be a smooth transversalisation of the embedding j: X — RY. Since
the planes 7(z) and d,j(Tang, X) are transverse, the differential d, ; nat is non-
degenerate when ¢t = 0. Hence, nat defines a diffeomorphism of a neighbourhood
U of X x 0 in Tu, onto a neighbourhood of j(X) (see Theorem 3.1.5.5). It is
clear that if Tu, p C U, then Tub,p is a neat tube of the transversalisation
T. O
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Lemma 3.4.3.6. Suppose X and X' are closed CZ"-manifolds, 1 < r < oo.
If there exists a C"-embedding of X' in Euclidean space together with a C'-
transversalisation, then the set C"(X, X') is dense in C(X, X').

Proof. Fix a C"-embedding j: X — R?, and a C"-embedding j': X’ — RY
together with a C"-transversalisation 7P"™¢. It suffices to show that given an
arbitrary continuous map f: X — X’ and an arbitrary € > 0, there is a C"-map
g: X — X' such that

max dist(j' o f(x), j' o g(z)) < e

(see Theorem 1.2.7.3). We construct the neat tube Tub, p’ with p’ < £/2 and
choose

5 min(e/2, Dist(j/(X"), RY \ tub, o).

Note that § > 0 (see Theorem 1.1.7.15). Then, according to Theorem 1.1.5.17,
the composition

N —1 ./ /
jx) B x £ x0 7 Ra

extends to a continuous map f1: R? — RY". Now Theorem 3.3.1.7 yields a map

¢1: RY — RY with polynomial components and such that

max dist(f1 © j(2), 91 0 j(2)) <0.

This in turn shows that g; o j(X) C tub,/,p’, and it is clear that g(z)
proj, (g1 o j(x)) defines the desired map g: X — X'.

|

Theorem 3.4.3.7. Every C"-embedding of a closed CZ"-manifold, 1 < r < a,
in FEuclidean space admits a C"-transversalisation.

Proof. If r = a,00, the normal transversalisation will suffice. If 1 < r < oo,
the existence of the normal transversalisation shows that the set of all transver-
salisations of a given C"-embedding j: X — R? is not empty. Since the lat-
ter set is (trivially) open in C(X,G(q,q — dim X)), it is enough to show that
C"(X,G(q,q — dim X)) is dense in C(X,G(g,q — dim X)). But this is a conse-
quence of Lemma 3.4.3.6, because G(gq, ¢—dim X) can be analytically embedded
in Euclidean space. 0

3.4.4 Smoothing Maps in the Case of Closed Manifolds

Remark 3.4.4.1. Now we arrive at the main topic of the present section — ap-
proximating maps of one smooth manifold into another by maps which are more
regular in a sense or another as, for example, maps of a higher differentiability
class, or embeddings, or immersions.

In this subsection we consider only approximations which raise the differen-
tiability class of maps without improving their other properties, and we restrict
ourselves to the simplest case — that of the closed manifolds.
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Theorem 3.4.4.2. If r < co then for any closed C="-manifolds X and X' and
any s < r, the set C"(X,X') is dense in C5(X,X'). The same is true when
r = a provided that X and X' can be C*-embedded in Euclidean spaces.

Proof. We have to show that given a map f € C*(X, X’) and a neighbourhood
U of fin C*(X,X"), there is a C"-map in Y. Fix C"-embeddings j: X — R? and
j'+ X' — RY, corresponding transversalisations T and 7/, and corresponding
neat tubes Tub, p and Tub, p’. Now consider the mapping

C*(abr j, proj,.): C*(Tub, (p/2, tub,, o) = C*(X, X"),

where abrj = [abrj: X — Tub,(p/2)] (see Remark 3.4.1.1). Since it takes
C"-maps into C"-maps, it suffices to prove that the preimage V of U under this
mapping intersects C"(Tub,(p/2),tub,/,p’). But V is open and contains the
restriction to Tub,(p/2) of the composition

tub, p 297 x L x7 2 bub g (3.4.4.3)

The image of this restriction is compact, and so it lies at a positive distance
from RY \tub, p’. Consequently, there exists ¢ > 0 such that if, at the points of
Tub,(p/2), the partial derivatives of order 0, 1, ..., s of the coordinate functions
of amap g € C*(Tub,(p/2), R?) differ from the corresponding partial derivatives
of the map (3.4.4.3) by less than ¢, then

g(Tub,(p/2)) C tub,s p and [abrg: Tub,(p/2) — tub, p] € V.

Finally, apply Theorem 3.3.1.7 to the coordinate functions of (3.4.4.3) to deduce
that there exists a map ¢ with polynomial coordinate functions whose partial
derivatives have the property above. Thus VNC"(Tub,(p/2),tub, p') # @. O

Remark 3.4.4.4. Comparing Theorem 3.4.4.2 with the Theorems 3.4.1.2; 3.4.1.3,
3.4.1.4, and Corollary 3.4.1.6, we see that for r < oo and 1 < s < r, and for
any given closed CZ"-manifolds X and X', the following holds: Imm" (X, X') is
dense in Imm®(X, X’), Subm” (X, X’) is dense in Subm?®(X, X’), Emb" (X, X)
is dense in Emb®(X, X'), and finally Diff" (X, X”) is dense in Diff*(X, X’). The
same is true when r = a provided that X and X’ can be C%embedded in
Euclidean spaces.

Corollary 3.4.4.5. If two closed CZ"-manifolds, 1 < r < oo, are diffeomorphic,
then they are C"-diffeomorphic. The same is true for r = a provided that X and
X' can be C-embedded in Euclidean spaces.

Information 3.4.4.6. Two closed homeomorphic C®-manifolds are not necessarily
diffeomorphic. Historically, the first such examples where C*-manifolds which
are homeomorphic, but not diffeomorphic to S7; see [15].



3.4. EMBEDDINGS. IMMERSIONS. SMOOTHINGS. APPROXIMATIONS187

Supplement to to Theorem 2

Theorem 3.4.4.7. If r < oo, then C" (X, X’) is dense in C*(X,X'), s <r, in
the following more general situation too: X is a closed CZ"-manifold and X' is
an open subset of a closed C="-manifold Y. The same is true for r = a if X
and Y can be C*-embedded in Euclidean spaces.

Proof. The proof reduces to observing that the mapping
C*(id,incl): C*(X, X")/toC*(X,Y)

is a topological embedding with open image which carries C"(X, X’) into the in-
tersection of this image with C"(X,Y"). Since C"(X,Y) is dense in C*(X,Y"), the
above intersection is dense in this image, and C"(X, X’) is dense in C*(X, X').

O

Lemma 3.4.4.8. Every pair of disjoint closed subsets of a closed C"-manifold
with r < 0o has a Urysohn function of class C".

Proof. Let ¢: X — I be an arbitrary Urysohn function for the given pair of
subsets A, B of X. According to Theorem 3.4.4.7 , there is a C"-function
1: X — R such that max,ex|y(x) — p(x)] < 1/3. If now \: R — I'is a C"-
function such that A(y) =0 for y < 1/3 and A(y) = 1 for y > 2/3, then Ao ¢ is
obviously a Urysohn C"-function for the pair A, B. O

Theorem 3.4.4.9. Let X and X' be closed C="-manifolds and let A be a closed
subset of X. If 0 < s < r < oo, then that part of C5(X,X') consisting of the
C"-extensions of a given map ¢: A — X' is dense in the part of C°(X,X")
consisting of the extensions of @ which are of class C" in a neighbourhood of A
(the neighbourhood depends upon the extension,).

Proof. Let f € C5(X,X’) be an extension of ¢ which is of class C" in a neigh-
bourhood U of A. Given a neighbourhood U of f in C*(X,X’), we have to
show that U contains a C"-extension of . Fix a C"-embedding j': X' — R,
a C"-transversalisation 7" of ;' and a neat tube Tub, p’, and denote by V the
piece of C*(X, X') consisting of all the maps g such that

maxdist(j o f(x), " 0 g(x)) < Dist(j(X), R \ tub p/).
xr

It is obvious that V is open and that for any g € V, x € X, the segment with
endpoints j' o f(x), 7' o g(x) is contained in tub, p’. Next construct a Urysohn
C"-function v for the pair A, X \ U (see Lemma 3.4.4.8) and consider the map
®:V — C*(X,X’) which transforms ¢ into the map

= proj. (1 = (2))j" o f(z) + ()" 0 g()).

One may check directly that ® is continuous and ®(f) = f; hence the set ®~1 (/)
is open and non-empty. Now Theorem 3.4.4.2 shows that ¢ ~'(i) contains a C"-
map. Finally, we note that ® takes C"-maps into C"-extensions of . O
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Theorem 3.4.4.10. Suppose that X and X' are closed CZ"-manifolds and A
is a submanifold of X which is itself closed as a manifold. Let ¢: A — X’
be a C"-map. If 0 < s < r < oo, then that part of C°(X,X’) consisting of
the C"-extensions of ¢ is dense in the part of C*(X,X') consisting of all the
C?-extensions of .

Proof. Given a C*®-extension of ¢ and a neighbourhood U of this extension
in C*(X,X’), we have to show that U contains a C"-extension of p. Fix C"-
embeddings j: X — RY and j/: X’ — R?, a C"-transversalisation 7 of the
embedding j|4: A — R? and a C"-transversalisation 7 of j’, and corresponding
neat tubes Tub, p and Tub, p’. Further, denote by V the piece of C*(X, X’)
consisting of all the maps ¢ such that

max dist(j' o (), ' o g(x)) < Dist(j'(X"),R? \ tub, o).
S

Obviously, V is open and contains all the C*-extensions of ¢ to X. Now take
any Urysohn C"-function t for the pair X \ j~!(tub, p), A and consider the
mapping ®: V — C*(X, X’) which transforms each map ¢ into the map

proj.  (jog(z) +¢(@)[j' o poproj,(j(z)) — j’ o g oproj.(j(z))]),
x> if j(x) € Tub, p,

g(z), i j(z) ¢ Tub, p.

It is clear that ® is continuous and that ®(g) = g whenever g extends ¢. This im-
plies that ®~1(U/) is an open non-empty set which, according to Theorem 3.4.4.2,
contains a C"-map. Finally, note that ® takes C"-maps into C"-extensions of
©. O

3.4.5 Glueing Manifolds Smoothly

Remark 3.4.5.1. Our main task in this subsection is to make the necessary
preparations for extending the basic approximation theorems given in the pre-
vious subsection, i.e., Theorem 3.4.4.2, Remark 3.4.4.4 and Corollary 3.4.4.5, in
their non-analytic version, to include compact manifolds with boundary. The
main tool used in the extension is that of smooth doubling of a compact mani-
fold, an operation which transforms it into a closed manifold. However, we find
it convenient to define and study a more general operation, which is useful for
other purposes too - the smooth glueing of smooth compact manifolds. To begin
with, we need to investigate the structure of a smooth compact manifold in the
vicinity of its boundary.

Definition 3.4.5.2. A collaring of a compact C"-manifold X (0 <r <a)is a
C"-embedding of the cylinder X x I into X, which takes the point (z,0) into
x, for each z € 0X. The image of 0X x I under such an embedding is known
as a collar (on X).

If X is a smooth manifold (i.e., r > 1), a collaring is a differentiable embed-
ding and its image is a submanifold of codimension 0, whose boundary consists
of 0X and of a submanifold of int X diffeomorphic to 0.X.
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Theorem 3.4.5.3. If 1 < r < oo, every compact C"-manifold admits a collar-
mng.

Proof. Let X be the given manifold. Pick a neat C"-embedding j: X — R? (see
Theorem 3.4.2.3), a C"-transversalisation 7 of the composite embedding

X 221, ge 1, ga
and a neat tube Tub, p. Consider the map : j(tub, p) — 0X x R!, defined
as ¢ — (proj.(j(x), ji(x)), where j; is the first coordinate function of j. Since
j is neat, the differential d,¢ is non-degenerate at each point x € 90X, so that
 realises a diffeomorphism of a neighbourhood of 0X onto a neighbourhood
of X x 0 (see Theorem 3.1.5.5). Now let £ > 0 be small enough so that the
product X X [—¢,0] is contained in the previous neighbourhood. Then the
formula (z,t) — p~1(z, —ct) obviously defines a collaring of X. O

Information 3.4.5.4. The compact topological manifolds (r = 0) and the com-
pact analytic manifolds (r = a) admit collarings too. The case r = 0 is consid-
ered in [4].

Glueing

Remark 3.4.5.5. Suppose that X and X’ are compact n-dimensional C"-manifolds
with » > 1, and let C and C’ be submanifolds of X and X', respectively, con-
sisting of whole components of these boundaries. Assuming that C and C’ are
diffeomorphic, pick a C"-diffeomorphism ¢: C' — C’ and attach X to X’ by the
composite map

incl
cC5H0 =5 X

(see Remark 1.2.4.8). The resulting space Y = X’ Ujnclop X is obviously a com-
pact, n-dimensional, topological manifold. However, if X and X’ have collars
then it turns out that Y has a natural C"-structure that makes it into a collared
C"-manifold. The atlas that defines this C"-structure consists of the charts of
Atl(X \ C) and Atl(X’\ C’) (we regard X and X' as parts of V), as well as
the charts U constructed from both the charts ¢y € AtlC and the collarings
kE:0X x I — X and k': 0X’' x I — X' by the formulae

supp ¥ = k(suppt x [0,1)) UK (supp e x [0,1))
and

t
} zeC, tel0,1)

(imy C R* ! and im ¥ =im¢ x (=1,1) C R*! x R =R") . It is readily seen
that these charts are all pairwise compatible. One constructs a collar on the
resulting C"-manifold Y from those pieces of the collarings k and &’ which are

preserved under the above procedure. We say that the diffeomorphism ¢ glues
X and X’ into Y. Tt is clear that 9Y = (0X \ C)U (0X'\ C’) and that X, X',
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and C are submanifolds of Y. The pieces of the collarings k and k¥’ which are
related to C and C’ yield a two-sided collaring of the manifold C in Y, i.e., a
C"-embedding C' x [-1,1] — Y such that (z,0) — z; its image is a two-sided
collar of C'in Y.

In the particular situation X’ = X, ¢/ = C = 90X, and ¢ = idgx, we use
the term doubling instead of glueing and denote Y by dopp X. This definition
agrees with Definition 3.1.1.10, i.e., C°(dopp X) = dopp(C°X).

Now suppose that X and X’ are oriented manifolds and C and C’ are
equipped with the induced orientations (see Remark 3.1.3.4). If ¢ is orientation
preserving, then Y is orientable and can be actually oriented in a canonical way.
This canonical orientation is that which induces the original orientation on X
and the orientation opposite to the original one on X’. In particular, dopp X is
oriented for any oriented manifold X.

The simplest examples show that the C"-structure on Y depends not only
upon the C"-structures of the manifolds X and X’ and the diffeomorphism ¢,
but also upon the collarings k£ and k. Our next objective is to demonstrate
that for r # a this last dependence is eliminated if we regard Y as distinct up
to C"-diffeomorphisms.

Lemma 3.4.5.6. Let X and X' be closed C"-manifolds, 1 < r < oo, and let
f: X x[-1,1] = X’ x [-1,1] be such that f(X x [-1,0]) C X' x (—=1,0] and
(X x[0,1]) C X' x[0,1). Assume that abr f: X x [-1,0] = X' x (—1,0] and
abr f: X x [0,1] — X’ x [0,1) are differentiable embeddings of class C", while
abr f: X x 0 — X’ x 0 is a diffeomorphism. Then there exists a C"-embedding
g: X x [-1,1] = X' x [-1,1] such that

g=f on (X x[~1,-1/2])U(X x 0) U (X x [L/2,1]),
g(X x [<1,0]) = F(X x [~1,0]),
9(X x [0,1]) = F(X x [0, 1)).

Proof. In the proof that follows we let f; and f; denote the composite maps

XI

e T |
Projy

X x[-1,1] —L= X' x|

\ lp

—1,1]
respectively.

For a start, assume that for some positive € the map f; is constant on each
set © X [—e,¢], z € X. In this case, fix positive numbers § and 7, such that
0 < min(e, 1/2) and for any « € X the derivative of the function ¢ — fa(x,t) is
not less than n on the intervals [—4,0) and (0, d].
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Note that the existence of such 4 and 7 results from the continuity of the
functions X x [—-1,0] — R and X x [0,1] — R, given by the formula (z,t) —
Of2(x,t)07|r=¢ (for t = 0 one takes the left derivative for the first function and
the right derivative for the second one), and the positivity of both functions
on X x 0. Since X is compact, these functions are bounded from below by a
positive constant on X X 0, and hence on X X [, d] for some ¢ > 0.

To proceed further, pick a C"-function «: [—4§,] — I such that

0 for |t] < d/4,
a(t) =
1 for |t| > /2.
It is not hard to verify that the formula
g(x t) _ (fl(x’t)> (1 - O‘(t))nt + O‘(t)fQ(xa t))7 if |t| < 67
’ f(z,1), if [t > 6,

defines a map g: X x [-1,1] — X’ x [-1, 1] with the desired properties.

In the general case, choose 0 < £; < 1/2 such that the map ¢,: X — X/,
defined as ¢¢(r) = fi1(z,t), is a diffeomorphism for all |t| < ¢;.

Note that the existence of such an €; is a consequence of:

e the continuous dependence of y; on ¢ in the C"-topology,

e the fact that ¢; is a diffeomorphism (recall that abr f: X x 0 — X’ x 0 is
a diffeomorphism), and

e the fact that Diff (X, X’) is open in C"(X, X’) (see Corollary 3.4.1.6).

Let v: [—€1,e1] — R be a non-decreasing C"-function such that

0 for |t| <e/4,
1) = n=e
t for |t| >¢e/2.

Now define f: X x [-1,1] = X' x [-1,1] by

ry _ f(gpt_l o @'y(t)(x)ﬂf)a if |t‘ < e,
fe,) = {f(:z:,t), if [t > e

Then fsatigﬁes all the conditions imposed to f in the statement of the lemma.
Moreover, f satisfies the extra conditions under which the lemma has already
been proved, namely that the composite map

X x[-1,1] L X7 % [-1,1] 2 v

is constant on the sets x X [—¢, €], with e = ¢1/4. The map g corresponding to

fvia the above procedure has the needed properties because f agrees with f
on (X x[-1,-1/2) U(X x 0) U (X x [1/2,1]). O
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Theorem 3.4.5.7. Suppose that X1, X|, Xo, and X} are collared C"-manifolds,
1<r<oo, 0,01, Co, and C} are pieces of their boundaries consisting of whole
components, and ¢1: C1 — C}, and pa: Co — Ch are C"-diffeomorphisms.
Assume that there are C"-diffeomorphisms F: X; — X5 and F': X] — X,
such that F(C1) = Cq, F'(C}) = CY and the diagram

c, i)ci

abrFl iabrF’

U
C2 5> G2

is commutative. If Y1 is the result of glueing and X7 and X{ by ¢1, and Y3 is
the result of glueing and X5 and X} by @2, then the manifolds Y1 and Ys are
C"-diffeomorphic. Moreover, there exists a C"-diffeomorphism G: Y1 — Y5 such
that G(X{) = Xé, G(Cl) = CQ, and [aer: Cl — CQ] = [abrF: Cl — CQ]

Proof. Let ¢1: Cy x [—1,1] = Y7 and £5: Cy x [—1,1] — Y5 be two-sided collar-
ings. Denote by H: Y7 — Y, the map defined by the formulae

) [incl: X5 = Y] o F on X,
N [incl: X} — Y5] o FY on Xj

and choose € > 0 so that H o £1(Cy x [—¢,¢g]) C €2(Cs x [=1,1]). Now apply
Lemma 3.4.5.6 to the map

f:01 x [=1,1] = Co x [=1,1], (2,t) = L3 (H o £1(z, et)).

This lemma guarantees the existence of a C"-embedding g: Cy x [-1,1] = C5 x
[—1,1] with

g=f on (Cyx[-1,-1/2])U(Cy x0)U(C; x [1/2,1]),
and satisfies

g(Cl X [_170]) = f(cl X [_170])7 9(01 X [O’ 1]) = f(cl X [07 1])

Clearly,
) = {H(y) iy (C1x [~.c),
lyog(z,t/e), if y=141(z,t) with 2z €Cy, te]—g¢,
defines the required C"-diffeomorphism G: Y; — Y5. O
Cutting

Theorem 3.4.5.8. Let Y be a C"-manifold, 1 < r < oo, and let X and X' be
compact submanifolds of Y such that dim X = dim X' =dimY andY = XUX'.
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If C = XN X' is a piece of both boundaries 0X and OX' consisting of whole
components of 0X and 0X', then there is a C"-embedding ¢: C' x [-1,1] = YV
such that

£(z,0) =z for any point =z € C,
(C x [-1,0)) Cint X, £(C x (0,1]) C int X'.

Proof. Fix a C"-embedding j: Y — RY?, a C"-transversalisation 7 of the embed-
ding jlc: C — RY, and a neat tube Tub, p. Consider the map ¢: C — S4~!
which takes each point z € C into the unit vector tangent to j(Y') at the point
j(2), contained in 7(z), and pointing towards j(X'). ¢ is continuous (in fact, of
class C"71), and so Theorem 3.4.4.2 yields a C"-map ¢;: C — S?! such that
the inner product (p(z), v1(2)) is positive on C. Define

Wi tuby p— C xR, 2 (proj, (2), (= — j o proj, (2), (¢1(2):
Clearly, v is of class C" and for z € C the differential
dj(z)w: Tangj(z)(tub‘f' p) - Tang(z,o) (C X R) = (Ta‘ngz O) OR

induces an isomorphism of Tang; ) j(C) onto Tang, C' and carries the vector
¢(2) into (p(2),¢1(2)) € R. Moreover, both Tang; (., j(C) and ¢(z) are con-
tained in Tang; ) j(Y'); hence d;.)1 takes Tang; . j(Y') onto Tang, o)(C x R).
Since dim T'ang;(.y = dim Tang;,0)(C x R), we see that dj(zVTang, )y, 1€
the linear map d;(.)(¥|;(v)ntub, p), i an isomorphism. By Theorem 3.1.5.5,
Y|j(v)ntub, p» defines a diffeomorphism from a neighbourhood of j(C') onto
a neighbourhood of C' x 0 Accordingly, C' x [—e,¢] will lie in the previous
neighbourhood provided that € > 0 is small enough. Now it is plain that
U(z,t) = j71(1b~1(2,et)) defines the desired embedding ¢: C' x [-1,1] =Y. O

Corollary 3.4.5.9. Let Y be a C"-manifold, 1 < r < oo, and let X and X'
be compact submanifolds of Y such that dimX = dim X’ = dimY and Y =
XUX'. If XN X' is a piece of both boundaries 0X and X', consisting of
whole components of 0X and 0X', then idx and idx: together define a CT-
diffeomorphism of Y onto the manifold obtained from the appropriately collared
manifolds X and X' glueing X and X' by id(X N X’).

The Simplest Application
Theorem 3.4.5.10. Every smooth compact manifold is a CNRS.

Proof. When the manifold is closed, this is a consequence of Theorems 3.4.2.1,
3.4.3.7, and 3.4.3.5, because the image of a smooth manifold under a differen-
tiable embedding in Euclidean space is the retract of the interior of a neat tube
corresponding to a smooth transversalisation of the given embedding. Theorem
1.3.6.4 enables us to reduce the case of manifolds with boundary to the closed
case; namely, any compact smooth manifold has a smooth closed double (see
Remark 3.4.5.5), and is obviously a retract of this double. O
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3.4.6 Smoothing Maps in the Presence of a Boundary

Remark 3.4.6.1. The main results of this subsection are Thor ems 3.4.6.5,
3.4.6.10 and which generalise Theorem 3.4.4.2. Lemma 3.4.6.2 is necessary to
the proof of Lemma 3.4.6.3, Lemma 3.4.6.3 - to the proof of Lemma 3.4.6.4, and
Lemma 3.4.6.4 - to the proof of Theorem 3.4.6.5. Finally, Lemmas 3.4.6.7 and
3.4.6.8 are necessary to the proof of Theorem 3.4.6.10.

Lemma 3.4.6.2. Let Y be a C="-manifold with r < oo, and let f: Y xR! — R
be a C"-function. Then the function F': Y x R — R defined by

F(y,t) = {Zk—o T(_I)k(;ﬂ)ﬂy’ —kt), if t>0

is also of class C".

Proof. All we must check is that the two expressions defining F', as well as their
partial derivatives with respect to ¢ and local coordinates on Y agree for ¢t = 0.
To see this, it suffices to note that the equality

E:PD“*Cq4>WD%w)=D%w)

Pt k+1

holds for s < r and any C*-function ¢: Rl — R. Indeed, this last equality is

equivalent to
S

> i) =0 <0

k=—1
and this is valid if we interpret the sum as the “(r 4+ 1)-th difference” of the
integral function & — k° computed at k = —1. O

Lemma 3.4.6.3. Let X be a collared CZ"-manifold. If 1 < r < oo, then every
function in C"(X,R) extends to a function in C"(dopp X,R).

Proof. Fix a two-sided collaring of the manifold X in dopp X, ¢: 0X x[-1,1] —
dopp X (see Remark 3.4.5.5), and pick a C"-function a: R — I such that

a(t) =

1 for t<0, and
0 for t>1/r.

Let ¢ € C"(X,R). Consider the function f: X — R! defined by the formula
a(t)p(l(y,t)), if t<1/r,
Flut) = (t)e(L(y, 1)) . /
0, if ¢>1/r

Since f is C", Lemma 3.4.6.2 processes it into a C"-function F': 0X x jR — R
(take Y = 0X). Now it is plain that

0, if zedoppX \ (XULOX x[0,1/7])),
() = § #(@), if zeX,
F(=Y(z)), if xz€l(0X x[0,1/r]),
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defines a C"-function v: dopp X — R extending . O

Lemma 3.4.6.4. Let X be a collared CZ"-manifold, and let X' be a closed
CZ"-manifold. If 0 < r < oo, then every map in C"(X, X') extends to a map in
C"(dopp X, X").

Proof. This is evident when r = 0. Suppose r > 0 and f € C"(X, X’). Fix
a C"-embedding 7': X’ — RY, a C"-transversalisation 7/ of j/, and a neat tube
Tub,. p’. Lemma 3.4.6.3 ensures that the coordinate functions of j' o f extend
to C"-functions dopp X — R, i.e., j' o f extends to a C"-map g: dopp X — R4
Let U be the neighbourhood of X in X consisting of the points x such that

dist(j' o f(x), g(cop(w))) < Dist(j'(X"), R \ tub, p).

Now construct a Urysohn C"-function ¢: dopp X — I for the pair X, cop(X\U).
It is clear that for any = € X the segment with endpoints j'o f(z) and g(cop(z))
lies in tub, p’. Moreover, we see that the formulae

h(z) = j"o f(x), if reX,
h(cop(z)) = j' o f(z), if zeX\U,
h(cop(z)) = (1 — ¢(cop(x)))g(cop(z)) + ¢(cop(z))j’ o f(x), if xe€ClU,

define a C™-map h: dopp X — RY which extends j'o f and satisfies h(dopp X)) C
tub, p’. Finally, the composite map

abr j 0],/
dopp X 22895 tub, 0 LA '

is the desired C"-extension of f to dopp X. O

Theorem 3.4.6.5. Let X and X' be compact C="-manifolds with X' closed. If
0<s<r<oo, then:

(i) C"(X, X' is dense in C5(X, X");

(ii) given an arbitrary C"-map p: 0X — X', that part of C"(X, X’) consisting
of the C"-extensions of ¢ is dense in the part of C°(X, X') consisting of
the C?-extensions of .

Proof. The mapping
C*(incl: X — dopp X,id X'): C*(dopp X, X') — C*(X, X")

transforms C"-maps into C*-maps and, according to Lemma 3.4.6.4, its image is
precisely C*(X, X’). Hence,

(i) is a consequence of the fact that C"(dopp X, X1) is dense in C*(dopp X, X')
(see Theorem 3.4.4.2), while

(ii) follows from the fact that the set of all C"C-extensions of ¢ is dense in
the part of C*(dopp X, X’) consisting of the C*-extensions of ¢ (see Theorem
3.4.4.10). O
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Corollary 3.4.6.6. Let X and X' be closed C="-manifolds, 1 < r < oo. If two
maps in C" (X, X') are homotopic, then they can be connected by a C"-homotopy
XxI—= X"

Lemma 3.4.6.7. Let X and X' be compact CZ"-manifolds, 1 < r < co. Then
the mapping C5(X, X’) — C"(0X,0X"), f > abr f, is open.

Proof. We have already seen in Remark 3.4.1.1 that this mapping is continuous.
We presently show that it is open. Given a map f € C4(X, X’), it is enough
to find a neighbourhood U of the map abr f: 0X — 90X’ and a continuous
mapping ®: U — C"(0X,0X’) such that ®(abr f) = f and [abr(®(g)): X —
0X'] = g for all g € U (see Theorem 1.1.4.5). Fix collarings k: 0X x I — X
and k': 90X’ x I — X', a C"-embedding j': X' — R?, a C -transversalisation
7' of §/, and a neat tube Tub, p’. Now construct a C"-function a: I — I such
that
{1 for 0<t<1/3, and
at) =
0 for 2/3<t<1,

and choose ¢ > 0 with f(k(0X x [0,¢]) C k'(0X’ x I). Let f1 and fo be the

composite maps
f ox’
/—P—mh
(ab k)7L

OX x [0,e] L £(9X x [0,e]) 2o k(90X x )L (09X % 1)

!
f2 I

We define U as the set of all g € C"(0X,0X’) such that
max dist (7 o f(y), ' © 9(9)) < Dist(7'(0X'), RY \ tub,. '),
y

and define ® as

[@(9)(z) = fz), if weX\kOX x0e]),

[@(9)](k(y. 1)) = K (proj. (§' (f1(y, 1)) + /)5 (f(v)) — 5" (9] f2(y, 1),
it yeoX,teloel.

It is routine to check that ¢/ and ® have the needed properties. O

Lemma 3.4.6.8. Let X and X' be compact CZ"-manifolds. If 1 < r < oo, then
the set of all composite maps

x L x7 2 gopp X

with f € C"(X,X') is open in that part of C"(X,dopp X’') consisting of the
extensions of all maps 0X,— 0X'.
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Proof. Let fy € C4(X,X’) and denote by go the composite map

incl

x Lo x7 2 qopp X'

Fix a collaring of X, k: 0X xI — X and a two-sided collaring of 9X’ in dopp X,
0': 0X' x [-1,1] — dopp X’. Further, take positive d, n such that:

(1) go(k(0X % [0,0]) C ¢ (X' x (—1,1));
(if) for any y € 0X the derivative of the function
[Oa 6] - [_17 1]
. (3.4.6.9)
t [projo: OX x [=1,1] = [=1,1]](¢" (g0 0 k(y, 1))

is everywhere less than —n.

[The function 0X x [0,1] — R, which carries each point (y,t) to the derivative
of the function (3.4.6.9) at the point ¢, is continuous on 0X x [0, 1] and negative
on 0X x 0. Since 9X is compact, this function is bounded above by a negative
constant on 90X x 0, and hence on 0X X [0, 8], for some positive §. This ensures
the existence of 0 and 1 as above.]

Clearly, the C"-maps g: X — dopp X’ which fulfil conditions (i) and (i)
(writing ¢ instead of gg) and satisfy g(X \ k(0X x [0,4))) C int X’ form an
open set in C"(X,dopp X’). It remains to observe that the intersection of this
set with that part of C"(X,dopp X’) consisting of the extensions of all maps
0X — 0X' is a neighbourhood of gq in the set of all composite maps

X L x 2 qopp X!, f € CH(X, X).
O

Theorem 3.4.6.10. Let X and X' be compact C="-manifolds. If 1 < r < oo,
then

(1) Ch(X,X") is dense in C5(X, X').
(it) the part of C5(X,X") consisting of all C}-extensions of a given map
e €C"(0X,0X")
is dense in the part of C5(X, X') consisting of all Cjj-extensions of .

Proof. Lemma 3.4.6.7 and Theorem 3.4.4.2 (the latter applied to the manifolds
0X and 0X') show that the set of all maps g € C5(X, X’) such that

[abrg: 0X — 0X'] € C"(0X,0X")

is dense in C3(X, X’). Therefore, (i) is a consequence of (ii).
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To prove (ii), suppose that f € C5(X,X’) is an extension of ¢, and let U
be a neighbourhood of f in C5(X,X’). We have to show that ¢/ contains a
C"-extension of ¢. Consider the composite map

X i> X/ A, dopp X.
By virtue of Lemma 3.4.6.8, this map has a neighbourhood V in C*(X, dopp X”)
such that for any g € V with g(0X) C X’ one has

g(X)Cc X' and [abrg: X — 0X'] €U.

Thus, it suffices to find a C"-extension of ¢ in V; but such an extension is
provided by Theorem 3.4.6.5. O

Remark 3.4.6.11. Comparing Theorems 3.4.6.5 and 3.4.6.10 with Theorems
3.4.1.2 - 3.4.1.4 and Corollaries 3.4.1.5 - 3.4.1.5, we arrive at the following state-
ments for 1 < s < r < co. Given any compact C="-manifold X and any closed
CZ"-manifold X', Imm" (X, X’) is dense in Imm® (X, X’), Subm” (X, X’) is dense
in Subm®(X, X’), and Emb" (X, X’) is dense in Emb®(X, X'). For any compact
C="-manifolds X and X', the set of neat embeddings in C"(X, X’) is dense in the
set of neat embeddings in C*(X, X’), and Diff" (X, X’) is dense in Diff*(X, X’).

Corollary 3.4.6.12. Two compact C="-manifolds, 1 < r < oo, which are dif-
feomorphic are C™-diffeomorphic.

Information 3.4.6.13. As with Theorem 3.4.4.2, Theorems 3.4.6.5 and 3.4.6.10
remain valid for r = a too (cf. Remark 3.4.2.4). We excluded this case in view
of its difficulty.

Theorems 3.4.4.2, 3.4.6.5 and 3.4.6.10 (as well as their C%-variants) also hold
for non-compact X and X’. However, this generalisation is of limited interest.
For example, it does not suffice if one wants to eliminate the compactness as-
sumption in Corollary 3.4.6.12 (which is actually possible). The appropriate ex-
tensions of Theorems 3.4.4.2, Theorems 3.4.6.5 and 3.4.6.10 to the non-compact
case are related to topologies which are stronger than those defined in Remark
3.4.1.1, and require analytic tools stronger than Theorem 3.3.1.7.

3.4.7 General Position

Remark 3.4.7.1. The main result of this subsection is the final Theorem 3.4.7.7,
which constitutes the basis of a large part of the material below. We emphasise
that this theorem is formulated and proved only in the C*°-case. In Subsection
3.4.9 we add a statement covering the case of C"-maps with r finite (see Theorem
3.4.9.10).

The technical part of the subsection is concentrated in Theorem 3.4.7.2,
which establishes the fundamental topological property of the spaces C"(X, X’),
and Theorem 3.4.7.4, which represents the only corollary of Theorem 3.3.2.3
that we need.

To simplify the formulations of Theorems 3.4.7.2 and 3.4.7.3, we give a spe-
cial name to those topological spaces where the intersection of any countable
collection of dense open sets is dense: we call them Baire spaces.
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Technicalities

Theorem 3.4.7.2. C"(X, X') is a Baire space for any C=" manifolds X and
X" with 0 <r < co.

Proof. We have to show that given arbitrary open dense subsets Ui,Uo, ...
of C"(X,X’), and an arbitrary open subset W of C"(X, X’), the intersection
W N (Ni=1=U;) is not empty. Let {¢;}5°, and {¢,;}$2, be atlases of the manifold
X, indexed so that the set K; = Clsupp); is compact and contained in supp p;
and 1p; = abrp; for all 4. Similarly, let {¢}}32; and {¢7}32; be atlases of X',
indexed so that the set K = Clsuppt; C supp ) and ¢} = abr ¢’ for all j.
We construct a sequence of C"™-maps fi1: X — X', f1: X — X', ..., a sequence
Vi,Va,... of open subsets of C"(X,X’), and a sequence of positive integers
n(1),n(2),..., such that:

(i) fi € Vi
(i

(iii

if i > 2, then V; C V,;_1;
ClV, c WnU,;

(iv
(v

(vi

fi(K:) € UMY supp o

)
)
)
)
) if s <dand ¢ < n(s), then f;(K, N fi(K])) C supp ¢j;
)

if i > 2, s < i, and t < n(s), then the partial derivatives of order
< min(r,i — 2) of the coordinate functions of the local representatives
loc(gs, ©}) fi and loc(ps, @})fi_1 differ by less than 27¢ at the points of
ps(Ks N fTHED).

Then we will have finished the proof. Indeed, (v) and (vi) imply that for any s,
t such that ¢ < n(s) the sequence

{loc(ps, (p;)f”ws(supp wsﬁfSI(suppw{))}?is’
together with all its partial derivatives of order < r converges uniformly on
¢s(supp s N f ! (supp ;) to a C’-map

gstt @s(supp s N f (supp ¢y)) — im gy,

Moreover, the composite maps

_ abr g _
supp s N f H(Suppey) —2 @, (supp ¥s N f5 (supp¥)))

7\—1
25 im g P supp )

together define a C"-map ¢g: X — X’ |(iv) shows that the sets supps N
fol(suppv;) cover X and clearly the maps gs are compatible on the inter-
sections of these sets]. ¢ is the limit (in C"(X, X")) of the sequence fi, fa,...
and (i)-(iii) show that g € W N (N2,U;).
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We proceed by induction. Take fi to be any element of WNU;, and take V;
to be any neighbourhood of f; (in C"(X, X’)) such that C1V; C WNU; (recall
that C"(X, X') is a regular space - see Remark 3.4.1.1). Assume that for some
k > 2, the maps f; € C"(X, X’), the open sets V; C C"(X, X'), and the positive
integers n(i) with ¢ < k have been defined and satisfy (i)-(vi). We let G denote
the set of all C"-maps g: X — X’ such that for s <k — 1 and ¢t < n(s)

g(K N f7H(K])) C supp ¢},

and all partial derivative of order < min(r,k — 2) of the coordinate functions
of the local representatives loc(ps, ¢})g and loc(ps, ¢}) fr—1 differ by less than
27F at the points of (K, N f71(K})). Obviously, G is open and fr_; € G.
Therefore, GNVy_1 # @ and, since Uy, is dense, GN(Vy—1NUy) # @. Choose Vy
to be any non-empty open set with C1V, C GNVi_1 NUk, fi to be any element
of Vi and n(k) to be any positive integer such that fi(Kjx) C Ufﬁi) supp ¢;. It
is readily seen that the objects Vi, fi, and n(k) satisfy conditions (i) - (vi) for
i=k. O

Theorem 3.4.7.3. Every topological manifold is a Baire space.

Proof. This is a special case of Theorem 3.4.7.2: in fact, the topological manifold
X may be regarded as the space C°(D°, X). O

Theorem 3.4.7.4. Let X and X' be manifolds of class C*® or C* . If f: X —
X' is a C*®-map and F is the set of all points x € X such that d,, f(Tang, X) #
Tang ) X', then f(F) is the union of a countable family of nowhere dense sets.

Proof. Let ® and @' be arbitrary countable atlases of the manifolds X and X'.
For each pair (¢, ¢’) € ® x @', write supp(¢ N f~(supp ¢’)) as the union of a
sequence of compact sets K1(p, '), Ka(p,¢'),..., and let C;(p, ¢’) be the set
of all points x € K;(ip, ¢') such that the rank of the Jacobi matrix of loc(ip, ¢’) f
at ¢(x) is less than dim X’. Theorem 3.3.2.3 shows that the sets f(C;i(¢,¢"))
are all nowhere dense, and obviously f(F) = U;f(C;(p,¢")). O

The Basic Theorem

Remark 3.4.7.5. Let X, X5, and X’ be smooth manifolds, and let A; and A,
be subsets of X7 and X5. Two smooth maps f1: X; — X’ and fy: X — X' are
said to be transverse (one to the other) on Ay, As if for any x1 € Ay, x5 € Ay
with fi(z1) = fi(z1), the vector space Tangy,, ) X' is spanned by its subspaces
de, fi(Tang, Xi1) and dg, fo(Tang,, X»), and the following holds:

o if z; € 90Xy, then Tangy(,, X' is already spanned by its subspaces
d, fi(Tang, 0X:) and d,, f2(Tang,, X>);

o if x5 € 0X5, then Tang(,,) X' is already spanned by its subspaces
dz, f1(Tang, X1) and d, fo(Tang,, 0X>);



3.4. EMBEDDINGS. IMMERSIONS. SMOOTHINGS. APPROXIMATIONS201

e if z1 € 0Xy, and 22 € 90X, then Tang;(,,) X' is already spanned by its
subspaces d, fi(Tang, 0X;) and d,, f>(Tang,, 0X>5);

Two maps fi1: X1 — X’ and fo: X5 — X’ which are transverse on X;, X5 are
simply referred to as transverse.
Let us make three obvious remarks.

First if dim X; +dim X5 < dim X', then the fact that f; and f2 are transverse
on Ay, Ay implies that f1(A1) N fo(A2) = @.

Secondly if fy and fy are transverse on AA;, Ao, then they are transverse on
some neighbourhoods of A; and As,.

Thirdly if X;, X5, and X’ are of class C" with 1 < r < oo, and A;, Ay are
compact, then given fy € C"(Xs, X’), the set of all f; € C"(X1, X’) such
that fi and f, are transverse on A1, A, is open in C" (X, X').

Lemma 3.4.7.6. Suppose X1 and X5 are C*°- or C*-manifolds and f1: X1 —
RY and fo: Xo — RY are C*°-maps. Then there is a dense set V in RY such
that for each vector v € V, the map X1 — RY defined by x1 — fi(x1) + v is
transverse to fa.

Proof. We may take V to be the set of all v € RY which satisfy the following
condition. Consider the four maps int X7 x int X5 — ]Rq', int X x 0Xg — Rq/,
8X1 xint Xo — Rq/, and 8X1 X 8X2 — Rq/, given by (.’El,xg) — fg(.’bg)—fl(fﬂl).
Then given any of these maps, v is not the image of a point where the differential
of that map has rank less than ¢’. The map x1 — fi(z1) +v with v € V is
obviopsly transverse to fo, and theorems 3.4.7.4 and 3.4.7.3 show that V' is dense
in R, O

Theorem 3.4.7.7. Let X1, Xo, and X' be C*®°- or C*-manifolds with 0X' = &.
If fo: X9 — X' is a C*°-map, then the subset of C*° (X1, X') consisting of all
maps transverse to fy is the intersection of a countable collection of dense open
sets.

Proof. For two sets A; C X; and Ay C Xo, we let F(A;1, A2) denote the set of
all C*°-maps f1: X7 — X' such that fiand fo are transverse on A;, A,. If A;
and As are compact, then F(A;, As) is obviously open in C*° (X7, X'), and we
shall presently show that if A; and As are compact, then F (A1, As) is dense in
C> (X1, X’). These two facts are enough: express X as the union of a sequence
of compact sets K11, K19, ..., express X, as the union of a sequence of compact
sets Ko1, Koo,..., and then observe that the part in which we are interested
(i.e, F(X1,X5)) can be written as N; ;F (K14, Koj).

Thus, suppose that A; and Ay are compact, and let U be a neighbourhood
(in C*(X1, X")) of an arbitrarily given map g;: X; — X’. We have to produce
a map contained in both F(A;, A2) and Y. We do this in two steps: first, we
compress U to a neighbourhood V of g; having a more special form, and then
construct a map belonging to F(A;, A3) and V.
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Let dim X; = g1, dim X5 = ¢, and dim X’ = ¢’. To begin building the
neighbourhood V, fix for each point 2’ € fo(As) a chart ¢/, € Atl,, X’ with
img!, = R? and ¢, (z') = 0. Further, fix for each point x5 € Ay a chart pa,, €
Atl,, X such that im pa,, = R orim o, = R%, @o,, (x2) = 0, Clsupp oy, is
compact, and fo(Clsupp ¢2z,) C [cp’f?(m)]*l(int D). Now cover Ay by a finite
number of sets gp;,jz (int D), say <p2_1.121 (int D), .. -7902_9512,_; (int D%) and denote
the chart @}Z(ZZj)(arg) simply by ¢},, and the chart ¢a;,, - by 12;. Continuing,
for each point x; € A; choose a chart ¢1,, € Atly, X1 such that im ¢y, = R%
or impiz, = R%, 1, (x1) = 0, Clsupp p14, is compact, and g1 (Clsupp @14, )
is contained in one of the sets X"\ fo(Clsupp ¢2;), [¢;]_1(int D7), for any given
j=1,...,L. Finally, cover A; by a finite number of the sets gofwll (int D) | say
gof;ll(int D), ..., ¢1,,, (intD?), and denote the chart ¢1,,, by ;. At last,
we may define V as the subset of I/ consisting of all maps hy: X; — X’ such
that:

hy(Clsupp ;) CX'\ f2(Clsupp o) if ¢1(Clsupp ;) C X'\ fo(Clsupp s;),
hi(Clsupp ;) €X'\ ()~ (intDT) if g1 (Clsupp¢hn;) € X'\ fo(int D).

That V is a neighbourhood of g; in C*°(X;, X') is plain.

Turning now to the final part of the construction, arrange the pairs (4, 7),
i=1,...,k,j=1,...,¢ inasequence (i1,j1),- -, (im,jm), with m = k-£. Next
construct inductively maps hY, ..., hJ": X; — X’ with the following properties:

(i) h§ eV;
(ii) if r < s, then the maps h] and f> are transverse on wfii (D), 1/)231 (D).

Then AT* will belong to F(A1, Az) N V.

Put hY = f; and assume that the maps h satisfying (i) and (ii) are already
defined for s < ¢ < m. If the maps hﬁ_l and fy are transverse on ¢1_it1 (D),
Wy (D), put bt = hi~'. Otherwise, ki~ (¢1;, (D)) C (¥15,)7 (DY), and
Lemma 3.4.7.6 guarantees the existence of a set V dense in RY such that the

composite map

-1
106(w1¢t7¢;t)h§ Rq/ T—x+v Rq/

im 91,
is transverse to loc(1;,,;,) fa: imaby;, — RY, for each v € V. Pick a C-

function a: R? — R, equal to 1 on D and equal to 0 outside the concentric ball
D? of radius 2. Now for v € V define g,: X1 — X’ by

htl_l(‘rl)a
i e xo\ ) D),
90 =0 (1 () (20)) + (e (@2))),

if 1€ (R (supp ),

We easily see that go = hi™*, that gy is C°°, and that the map RY — C>® (X1, X,
v — gy, is continuous. Consequently, there is an open set U C Rq/, such that
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0 € U and for v € U the map g, € V, and g, and f5 are transverse on wfii (D),
Wy, (D92) for r < t.

On the other hand, the definition of V shows that for v € V, g, fo are
transverse on 1/11]1 (D), ng}(]])@), and hence one may take h{ = g, for any
velUnV. O

3.4.8 Maps Transverse to a Submanifold

Remark 3.4.8.1. Theorem 3.4.7.7 is used mainly when Xs is a submanifold of
X’ and f5 is the corresponding inclusion. In such a situation we use a simpler
terminology; namely, instead of saying that the map f1: X; — X' is transverse
to the inclusion incl: Xy — X', we say that f; is transverse to X,. Then
Theorem 3.4.7.7 states that if X; and X’ are of class C* or C* and 0X' = @,
then the set of all maps in C*°(X;, X’) which are transverse to X, is dense in
C>® (X, X').

The more special case, when both X; and X5 are submanifolds of a manifold
X' and f1 and f5 are the corresponding inclusions, deserves particular atten-
tion. If the maps incl: X; — X’ and in: incl: Xo — X’ are transverse, we
say that the submanifolds X; and X, themselves are transverse. Comparing
Theorems 3.4.7.7 and 3.4.1.4, we see that given arbitrary submanifolds X; and
X5 of a closed, C*® or C%manifold X', every neighbourhood of the inclusion
incl: X3 — X’ in C>°(X;, X’) contains embeddings transverse to X5. The last
statement is frequently formulated in a more geometric and less formal fashion:
two submanifolds can be made transverse through an arbitrarily small displace-
ment of either of them.

Of course, the C<*>°-complement to Theorem 3.4.7.7 that was mentioned in
Remark 3.4.7.1 (Theorem 3.4.9.10) applies to these special cases too. However,
note that in order to bring two submanifolds into general position in this way
one must displace both of them, and not only one.

Theorem 3.4.8.2. Suppose X1 and X' are C"-manifolds (1 < r < a) with
dim X1 = q; and dim X’ = ¢/, and X5 is a submanifold of X' with dim X5 = ¢5.
Let f1: X1 — X' be a C"-map transverse to Xo and such that f1(0X)NOXs C
O0X'. Then X1o = f{ '(X2) is a (1 + g2 — ¢')-dimensional C"-submanifold of
X1 with 0X1o5 = ffl(an). Moreover, this submanifold is neat whenever X5 is
neat. Finally, the linear map

fact d;, f1: Tang, X;/Tang, Xis — Tangy X'/ Tang; ) X2 (3.4.8.3)

is an isomorphism for any point v1 € X;.
(It is understood that a submanifold of negative dimension is void.)

Proof. Note that the second assertion is a straightforward supplement to the
first, while the third assertion becomes evident if one observes that both quotient
spaces appearing in (3.4.8.3) have the same dimension. Therefore, we have to
prove only the first assertion, and in order to do this, we follow the scheme in
Remark 3.4.8.1.
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To begin with, consider, given 7 € X2, all possible positions of the point
fi(x1). The case fi(z1) € int X5 N OX' is excluded, because int Xo N 0X' = &
(X3 is a submanifold of X'). If x; € X1, the case fi(x1) € 0X2NIX’ is excluded
since it would contradict the assumption that f; is transverse to X» (if 1 € X3
and f1(x1) € X2 N X', then the spaces imd,, fi and Tang, (z, 0X2 are both
contained in Tangy () 0X', and so they cannot span Tangy (,) X'.) When
x1 € 0X1, therelation fi(x1) € dXoNint X’ is impossible since f1(0X1)N0Xs C
0X'. Therefore, we are left with four possibilities:

(i) z1 € int Xy, fi1(z1) € int Xo Nint X';
(il) z1 € int Xy, f1(z1) € 0Xo Nint X';
)

)

(iii) 1 € 90Xy, f1(z1) € int Xo Nint X7;

(iV r1 € 0X1, fl(aﬁl) € 0X,NoX' .

Fix a chart ¢" € Atlg, (,,) C" X" which transforms the triple
(supp cg’, Xo Nsupp @', f1(21))

into one of the triples (RY,R%,0), (R? ,R%,0), or (R‘Z,qu,o), with corre-
sponding local coordinates ¢1, ..., . Define

1/}17""1/)(1: fl_l(suppwl)%]Ra 1/’1(93):<P;(f1(m))

In cases (i), (iii), and (iv) above, the intersection X1o N f;* (supp ') is defined
by the equations ¥g,11(x) = 0,...,9%¢(x) = 0, and in the case (ii) - by the
same equations and the inequality 11 (z) < 0. Let us verify that for all cases
(i)-(iv), the above equations and inequality satisfy the independence conditions
displayed in Remark 3.1.2.12.

In case (i) , we have to show that 9,11, ...,%q are independent at the point
x1. This follows from the equality

dim(ﬁg;q2+1 ker(dz, ¥5) = ¢’ — g,
which in turn follows from the trivial inclusion
do, f1 (N0, 41 ker(de,07)) C Tangy, ) Xz
and the equality
Tangy, (,,) X' = imd, fi + Tangy, (,,) X2

(which is part of the definition of transversality).

In case (ii) , we have to show that ¢1,%qg,+1,...,%y are independent at z;.
The proof is a repeat of the previous one, except that one must replace the
equality

Tangy, (,,) X' = imdg, fi + Tangy, (,,) X2
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by
Tangfl (z1) Xl =im dajl fl + Tangfl (z1) 8X2

Finally, in cases (iii) and (iv), we have to produce a C"-function

Y fi (suppy’) = R

which is zero on 9X; N f; (supp ¢’), negative on int X; N f; ! (supp¢’), and
is such that ¥1,%g¢,+1,...,%q, are independent at z;. The existence of such a
function is equivalent i to the restrictions of 1,41, - . ., %y to XN f; *(supp ¢’)
being independent at x;. The latter can be proved as in (i), employing the
equality

Tangfl(zl) X' =imd,, (f1laox,) + Tangfl(m) X

rather than

T&I’lgfl(ml) X/ = ldel fl + Tangh(m) XQ.
O

Corollary 3.4.8.4. Let X; and be X5 transverse submanifolds of a smooth
manifold X', and assume that X, is neat. Then X1NX5 is a (dim X; +dim Xo—
dim X")-dimensional submanifold of X', and is neat whenever Xo is neat.

The Simplest Applications

Theorem 3.4.8.5. Let A be a closed subset of a closed C"-manifold X, and
let U be a neighbourhood of A. If 1 < r < oo, then there is in U a compact
submanifold B of codimension 0 such that A C int B.

Proof. Let ¢: X — I be a Urysohn C"-function for the pair A, X \U (see Lemma
3.4.4.8), and suppose that ¢ € (0,1) is not a critical value of ¢ (see Remark
3.4.8.11. Set B = ¢~ 1([0,c]). Then B is the preimage of the submanifold

incl

(—00,c] of R under the composite C"-map X % I == R. Since the latter is
transverse to (—oo, ], B is a submanifold of codimension 0. It is immediate
from the construction that B is closed as a subset, that A C int B, and that
BcU. O

Theorem 3.4.8.6. Every CNRS is homeomorphic to a retract of a closed,
orientable, C*°-manifold.

Proof. Let j be an embedding of the CNRS X in S?, with ¢ large enough, and
let U be a neighbourhood of j(X) which retracts on j(X). Theorem 3.4.8.5
provides a compact submanifold B C U such that B D j(X), and clearly j(X)
is a retract of the double of B. O
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3.4.9 Raising the Smoothness Class of a Manifold

Remark 3.4.9.1. The main results of this subsection are Theorems 3.4.9.6 and
3.4.9.8. Lemmas 3.4.9.2-3.4.9.5 are needed for the proof of Theorem 3.4.9.6,
while Lemma 3.4.9.7 in conjunction with Theorem 3.4.9.6 yield Theorem 3.4.9.8.

Lemma 3.4.9.2. Let X and X' be CZ"-manifolds, 1 < r < oo, X compact,
and 0X' = @. Suppose A’ is a submanifold of X', f: X — X' is a C"-map
transverse to A’ such that f(0X) C X'\ A, and p: X — f~1(4') is both a
retraction and a C"-submersion. Then there is a neighbourhood U of the map f
in C"(X, X") such that every g € U satisfies:

(i) g is transverse to A’;
(it) g(0X) C X'\ A';
(iit) plg-1(A"): g~ H(A") — f~H(A') is a submersion,
Proof. We obtain U as the intersection of three open sets, U, Us and Us.
e U is the set of all maps in C"(X, X') which are transverse to A’.
o Uy is the set of all g € C"(X, X') with g(0X) C X'\ A'.

e Usistheset ofall g € C"(X, X’) such that the intersection of the subspaces
kerd,p and (dmg)’l(Tangg(m) A’) of Tang, X reduces to 0 for all points

x € g HA).

We already know that U is open (see Remark 3.4.7.5). The openness of Us is
a consequence of the compactness of 9X and the openness of X’ \ A’. To prove
that U3 is open, we shall describe it in a different way. Fix a C"-embedding
j: X — R? and let C C Tang X be the subset of all vectors u such that
dp(u) = 0 and < dj(u),dj(u) >= 1. Then clearly Us is just the set of all
g € C"(X,X’) such that dg(C) C Tang X’ \ Tang A’. The openness of this last
set is a consequence of the following facts: C' is compact, Tang X’ \ Tang A’
is open in (Tang X’), and the mapping C"(X, X’) — C"~!(Tang X, Tang X'),
which takes each g € C"(X,X’) into dg, is continuous (see Remark 3.4.1.1).
Therefore, U is open, and we see at once that f € U and that any map g € U
satisfies (i) and (ii). It is easily checked that (iii) also holds: indeed, g € U;
implies that g=!(A’) is a neat submanifold of X (see Theorem 3.4.8.2); since
g € Uy, g7(A’) C int X, and as such it is closed as an independent manifold.
Finally, g € U3 implies that the differential d,(p|,-1(A’) is non-degenerate at
all points z € g~1(A"). O

Lemma 3.4.9.3. Let X and X' be smooth closed manifolds of equal dimensions,
and let f: X — X' be a submersion. If X' is connected and the preimage under
f of one of its points reduces to a point, then f is a diffeomorphism.
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Proof. Tt suffices to show that f is invertible. Let A’ = f(X), and denote by B’
the set of all 2/ € X such that f(2’) consists of more than one point. Being a
submersion, the map f is open (see Corollary 3.1.5.8), so A’ is an open set. Also,
B’ is open: if f(x1) = f(xs) = 2’ and x; # x2, then x; and x5 have disjoint
neighbourhoods, Uy and Us, in X such that f|y, and f|y, are differentiable
embeddings, and f(U1) N f(U2) is a neighbourhood of &’ contained in B’. On
the other hand, A’ is closed because X is compact. Also, B’ is closed, because
if Uy,...,Us are open sets coveringX and such that the restrictions f|y, are
differentiable embeddings, then

B' = ﬁf:lf(X \ Ui)ﬂ

and the sets f(X \ U;) are closed. Finally, since X’ is connected, A’ # &, and
B’ # X', we have A’ = X' and B’ = @, i.e., f is invertible. O

Lemma 3.4.9.4. Suppose X is a compact C"-submanifold of R?, 1 < r < oo,
U is a neighbourhood of X in R, and X' is an open subset of a closed C°-
manifold admitting a C*-embedding in Euclidean space. If f € C"(U,X’), then
every neighbourhood in C™(X, X') of the restriction f|x contains the restriction
of some map belonging to C*(U, X").

Proof. For a start, suppose that X' is itself a closed C*-manifold. Denote by U
the given neighbourhood of f|x in C"(X, X’), and fix a C*-embedding j': X’ —
R, a C*-transversalisation 7/ of j/, and a neat tube Tub,. p’. Since

C"(id, proj,.): C"(X, tub, p') — C"(X, X")

is continuous, the preimage of & under this mapping is open; moreover, it is not
empty because it contains the composite map

[abrj': X' — tub, p'] o f.

Therefore, Theorem 3.3.1.7 yields a map g: U — tub, p’ with polynomial com-
ponents, such that g|x belongs to the above preimage of . Clearly, the com-
position proj., og is the desired map belonging to C*(U, X').

One can reduce the general case to the above situation: if X’ is an open
subset of the closed C*-manifold Y, then

€7 (id, incl): C"(X, X') — C"(X,Y)

is a topological embedding with open image, and transforms C*(X, X’ into the
intersection of this image with C*(X,Y") (cf. Theorem 3.4.4.7). O

Lemma 3.4.9.5. For each compact, g-dimensional C"-submanifold X of RY,
1 < r < a, and each compact subset A of RY, the set of all C"-embeddings
f: X - R? with f(int X) D A is open in RI(X,RY).

(In the present subsection we shall apply Lemma 3.4.9.5 only in the case
where A is a point. However, we shall need it in full generality in the next
subsection.)
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Proof. For a start, suppose that A is the ball in R? with centre ¢ and radius
p. Let f: X — R? be an embedding of class R? such that f(int X) D A, and
denote by U the set of all R%-embeddings g: X — RY satisfying for any z € X
the inequality

dist(f(x), g(x)) < min(p, Dist(f(Fr X), A)).

Since U is open in C"(X,R?) (see Theorem 3.4.1.4) and f € U, it is enough to
show that g(int X) D A for any g € U. But if g € U, then g(Fr X)N A = @ and
thus the two sets g(X) N A and g(int X) N A are equal, while the first is closed
in A and the second is open in A. Moreover, g(int X) N A D g(f~1(c)) (since
dist(g(f~*(c)),¢) < p), so that g(int X) N A # @. Consequently, g(int X)N A =
A, ie., (int X) D A.

The more general situation where A is the union of a finite number of balls
reduces to the case already considered. To prove the theorem in the most
general case, it remains to observe that for any C"-embedding f: X — RY with
f(int X) D A, there is a finite number of balls whose union contains A and is
contained in f(int X). O

Theorem 3.4.9.6. Every closed C"-manifold X with 1 < r < oo is C"-diffeomorphic
to a C*-submanifold of Euclidean space.

Proof. 1t is sufficient to consider a connected manifold X. Fix a C"-embedding
j: X — RY, a C"-transversalisation 7 of j, and a neat tube Tub, p. Consider
the map f: Tub, p — G’(¢,n = dim X) which takes each point y € Tub, p into
the plane y — j o proj.(y) + (7 o proj,(y))* (which passes through the point
y — joproj,(y) and is orthogonal to 7 oproj..(y)). It is clear that f is transverse
to G(g,n) (even the maps f|pmj;1, x € X, are transverse to G(g,n)) and that
f71(G(g,n)) = j(X). Pick some point zo € X and let V C G’(g,n) be the
set of all planes transverse to 7(cg) (i.e., intersecting 7(zo) at only one point)
. Finally, let 7 be the map V — 7(z¢) which takes each plane belonging to V/
into its intersection with 7(zg). According to Lemma 3.4.9.2, f|rub. (p/2) has
in C"(Tub,(p/2),G'(q,n)) a neighbourhood U such that if g € U, then:

1. g is transverse to G(q,n);
2. g(0Tub-(p/2)) C G'(q,n) \ G(g, n);
3. abrproj,.: g7 1(G'(¢,n)) — X is a submersion.

Moreover, as Lemma 3.4.9.5 shows, the set of all C"-embeddings
¢ dr (20, p/2) = T(20)

with o(int d- (2o, p/2)) 3 0 is open in C"(d, (w0, p/2)), T(20)). Hence f|rup, (p/2)
has in C"(Tub,(p/2),G'(¢,n)) a neighbourhood V such that for each g € V
one has g(d,(wo,p/2)),7(20)). Hence flruy, (p/2) has in C"(d-(zo,p/2)) C V
and 7 o [abrg: d,(zg,p/2) — V] is a C"-embedding whose image contains 0.
Since G'(¢,n) is an open subset of a closed C*-manifold (see Remark 3.2.2.11),
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Lemma 3.4.9.4 guarantees the existence of a C*-map h: tub, p — G’(¢,n) whose
restriction to Tub,(p/2) belongs to U N V. Set Y = [h|tub, (p/2)] (G (g, n))-
By virtue of Theorem 3.4.8.2, Y is a C*manifold, and we have only to verify
that proj, |y : Y — X is a diffeomorphism. But this claim follows from Lemma
3.4.9.3. Indeed, since h|rypy, (p/2) € U NV, the conditions of this lemma are
satisfied: the fact that h|p, (,/2) € U shows that proj, [y is a submersion,
while h|ryb, (p/2) € V implies that the preimage (proj, [y) ' (zo) reduces to a
point. O

Lemma 3.4.9.7. Let X be a closed C"-manifold with 1 < r < co, and let A and
B be compact submanifolds of X such that A C int B and dim B = dim X. If
B is endowed with the C*°-structure which is the restriction of its C"-structure,
then for any closed C*°-manifold X', that part of the space C"(X, X') consisting
of all extensions of maps from C*(A, X") is dense in C"(X, X').

Proof. Suppose f € C"(X,X') and U is a neighbourhood of f in C"(X, X").
We have to produce in i/ a map extending a map from C*>(A4, X'). Fix a C>°-
embedding j’: X' — RY, a C™®-transversalisation 7/ of j/, and a neat tube
Tub,/, p’. Let V C C"(B, X') be the set of all maps g such that

max dist(j' 0 £(2),7'(9(x))) < Dist(j'(X'), R \ tuby o)

Clearly, V is open and the segment with endpoints j’ o f(x) and j'(g(z)) lies in
tub, p/, for any g € 1V and = € B. Now choose a neighbourhood U of 9B in
B such that C1U N A = @, construct a Urysohn C*-function ¢: B — I for the
pair Cl1U, A, and consider the mapping ®: V — C"(X, X’) which takes g € V
into the map

L] if zeX)\B,
proj, (1 - p(@))j o f(z) + p(a)j'(g(x))),  if =€ B.

Obviously, ® is continuous, and ®(f|g) = f. These properties of ® show that
the set ®~1(U) is open and non-empty. Applying Theorem 3.4.6.5, we deduce
that ®~1(U) contains a C*°-map. Finally, note that ® transforms C**-maps into
extensions of maps from C>(A, X'). O

Theorem 3.4.9.8. Every compact C"-manifold with 1 < r < oo is C"-diffeomorphic
to a C*°-manifold. Moreover, if X is a compact C"-manifold with 1 < r < oo,

Y is a C*®°-manifold, and ¢: Y — 0X is a C"-diffeomorphism, then there exists

a C*°-manifold X' together with a C"-diffeomorphism p: X — X', such that the
composite map

v 4 ox 222 ox
is a C*°-diffeomorphism.

Proof. Composing the C"-diffeomorphism ¢ x id: Y x [-1,1] — 9X x [-1,1]
with an arbitrary two-sided C"-collaring 0X x [—1,1] — dopp X, we obtain a
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C"-embedding Y x [—1,1] — dopp X. Since Y x [—1,1] is a C°°-manifold, the
image B of this embedding inherits a C*-structure which is the restriction of
the induced C”-structure, and obviously 0X C int B. Theorem 3.4.9.6 provides
a closed C*-manifold Z together with a C"-diffeomorphism dopp X — Z. In
addition, Lemma 3.4.9.7 and Corollary 3.4.1.6 imply that this C"-diffeomorphism
may be taken of class C> on 0X. Now set X’ to be the image of X under the
diffeomorphism chosen in this way, and take ¢ to be the compression of this
diffeomorphism to a diffeomorphism X — X’. Tt is immediate that X’ and ¢
have the desired properties. O

Information 3.4.9.9. Theorems 3.4.9.6 and 3.4.9.8 can be substantially strength-
ened: they are valid for non-compact manifolds too, and in Theorem 3.4.9.8 one
may replace oo by a. However, one cannot eliminate the hypothesis that r» > 1
from these theorems: there exist closed topological manifolds which are not
homeomorphic to smooth manifolds. The first example of this kind appeared in
[12].

Application: A Supplement to Theorem 3.4.7.7

Theorem 3.4.9.10. Let X and X5 be compact Czr—manifolds with 1 < r < co.
If X' is closed, then the pairs (f1, f2) of transverse maps form a dense set in
C"(X1,X') x C"(Xq, X').

Proof. By Theorem 3.4.9.8, there exist C°°-manifolds Y7, and Y53, together with
C"-diffeomorphisms Y; — X1, Yo — X5 and Y/ — X’. Hence it is enough to
prove that the pairs of transverse maps are dense in C"(Y1,Y’) x C"(Y3,Y”’). By
Theorem 3.4.7.7, these pairs are dense in C*°(Y7,Y")xC>(Y3,Y”), and according
to Theorem 3.4.6.5 this product is dense in C"(Y7,Y”) x C"(Y2,Y”). O

3.4.10 Approximation of Maps by Embeddings and Im-
mersions

Remark 3.4.10.1. In this subsection we complete the programme outlined in
Remark 3.4.4.1. The main results are Theorems thm:03-4-10-4 and thm:03-4-
10-5. Lemma 3.4.10.3 is our basic tool, and this same lemma can be used to
derive many other corollaries; see, in particular, Exercises 3.4.11.11, 3.4.11.12,
and 3.4.11.13.

Auxiliary Manifolds

Remark 3.4.10.2. Suppose X is a closed n-dimensional C="-manifolds with 1 <
r < a, and let j: X — R? be an embedding of class C". Also, let m be a positive
integer such that 0 < m < g. We shall need two constructions.

The first construction We denote by Aux; or, more specifically by Aux; (j;m),
that subset of Tang X x G(q,m) consisting of the pairs (u, ) such that

<dj(u),dj(u) >=1 and dj(u) €.
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Further, define
auxy: Aux; — G'(¢,m), (u,y) — j(proj(u))+vy, proj= [proj: Tang X — X].

Note that Aux; is a [2n — 1+ (m — 1)(¢ — m)]-dimensional submanifold of
Tang X x G(g,m). Indeed, it is the preimage of the submanifold

STt x G(g,m) C RY x G'(¢q,m)
under the mapping
Tang X x G(g,m) = R? x G'(¢,m), (u,7) = (dj(u), dj(u) +7);

this mapping is transverse to S9=1 x G(q, m).
aux; is of class C"~! and its image consists of those m-planes of R? which
contain lines tangent to j(X).

The second construction We denote by Auxs or, more specifically by Auxs(j;m),
the subset of X x X x G(q, m) consisting of the triples (x,a’,~) such that
x # 2’ and j(2') — j(x) € 7. Further, define

auxa: Auxg — G'(¢,m), (z,2',7)— j(x)+~.

Note that Auxs is a [2n 4+ (m — 1)(¢ — m)]-dimensional submanifold of
X x X x G(q,m). Indeed, it is the preimage of the submanifold G(gq,m)
of G’(g,m) under the mapping

(X x X)\diag X) x G(g,m) = G'(¢,m), (z,2',7) = j(=') —j(x)+;

this mapping is transverse to G(g, m).

auxsy is of class C” and its image consists of those m-planes of R? which
intersect j(X) at more than one point.
The Basic Theorems

Lemma 3.4.10.3. Let X be a closed n-dimensional C="-manifold, 1 < r < oo,
andlet j: X — R? be an embedding of class C” together with a C"-transversalisation
7: X = G'(q,q — n) and a neat tube Tub, p. Then there exist a neighbourhood
U of the map 7: X — G'(q,q — n) (see Remark 3.4.5.2) in C"(X,G'(q,q — n))
and a continuous mapping ®: U — Diff" X such that, for each map g € U:

(1) [jo ®(9)l(z) € g(x) for all x € X;

(ii) the map
79 X = Glg,q—n), x—g(x)—[jo®(g)()

is a transversalisation of the embedding j o ®(g): X — RY;

(iii) some neat tube of this transversalisation contains Tub,(p/2).
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Proof. Given g € C"(X,G'(q,q—n)), let hy: Tub; p — R? denote the map which
carries each point y € Tub.- p into its image under the orthogonal projection onto
the plane g(proj(y)). Obviously,

C"(X,G'(¢,9 —n)) = C"(Tub; p,RY), g+ hy

is a continuous mapping, and if g = 7, then hy = [incl: Tub, p — R?. Con-
sequently, 7 has a neighbourhood V in C"(X,G'(q,q — n)) such that, for any
g €V, hy is a C"-embedding and hy(tub, p) D Tub,(p/2) (see Lemma 3.4.9.5).
For g € V, let i, denote the composition

incl proj,

abr -1
L) =1 (Tuby (p/2)) 2 Tub, p 22907, x

z 22, Tub,(p/2)

An obvious verification shows that g — 4, is a continuous mapping V —
C"(X,X), and that i, = id. Therefore, 7 has a neighbourhood Uin V such
that i, is a diffeomorphism for all g € U. Set ®(g) =i ' for g € Y. It is imme-
diate that ® is continuous and that I/ and ® satisfy the conditions (i)-(iii). O

Theorem 3.4.10.4. Suppose X is a compact n-dimensional C="-manifold, 1 <
r < oo, and X' is a closed n-dimensional C="-manifold. Then for n' > 2n,
Imm"(X, X') is dense in C"(X, X'), and for n’ > 2n+1, Emb" (X, X') is dense
in C"(X, X").

Proof. Without loss of generality, we shall prove these statements in the case
r = o0o; when 7 < 0o, we simply apply Theorems 3.4.9.6 and 3.4.6.5 to reduce
to the first case.

Let f € C*(X,X'), and let U be a neighbourhood of f. We have to show
that, for n’ > 2n, U contains an immersion, and that for n’ > 2n+1, U contains
an embedding.

Fix C*°-embeddings j: X — R? and j’: X’ — RY, and define an embedding

I X Rq-‘rq/ = RY % Rq/, '~ (j/(xl)vo)'

Further, pick a C*°-transversalisation 7/ of J’ and a neat tube Tub,, p’. Then
Ji(x) = (' (f(x),tj(z)) defines a C-embedding J,: X — Rt for any fixed
t > 0. Pick € small enough so that J.(X) C Tub,, (p'/2) and denote J.
simply by J. Applying Lemma 3.4.10.3 (to the manifold X', the embedding J’,
the transversalisation 7/ and the tube Tub, p'), we conclude that there are a
neighbourhood U’ of the map 7/ in C>®(X',G'(¢"+q,4'+q—n)) and a continuous
mapping ®': U’ — Diff > X’ such that, for each ¢’ € U":

(1) [J o ®'(¢")](z") € ¢'(a) for all 2’ € X';
(ii) the map
T X' =G +q.d +q-n'), (@)= g @) [ @ (g)()

is a transversalisation of the embedding J' o ®'(¢’);
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(iii) some neat tube of this transversalisation contains Tub, (p’/2).

Now consider the mapping
VU - CF(X, X)), [W(g)](x) = proj, (J(x)).

We see that ¥’ is continuous and W'(7') = f. Hence, (¥')~1(i) is open in
C®(X',G'"(¢d +q,4 + q—n')) and non-empty. This fact together with Theorem
3.4.7.7 show that (¥')~1({) contains a map h transverse to each of the maps

auxy: Auxy(J;¢ +q—n') = G'(¢ +q¢,¢d +q—n')
auxe: Auxa(J;q +q—n') = G'(¢ +q,¢ +q—n').

We shall presently show that ¥/(h) is an immersion for n’ > 2n, and a differen-
tiable embedding for n’ > 2n+1. This will complete the proof, since ¥/ (h) € U.
The inequality n’ > 2n is equivalent to

dim X’ + dim Auxy(J;¢' + ¢ —n') <dimG'(¢' + ¢,¢ + q—n');

hence for n’ > 2n the fact that aux; and h are transverse means that h(X")
does not intersect im auxy, i.e., none of the planes h(z’),z’ € X', contains a line
tangent to J(X). The latter, in turn, means that the differential d (proj.; [(z))
of the restriction proj,, |7(z) is @ monomorphism for any point y € J(X). Thus
proj., |7(z) and also ¥'(h), are immersions.

Similarly, the inequality n’ > 2n + 1 is equivalent to

dim X’ + dim Auxy(J; ¢ + ¢ —n') <dimG' (¢ + q¢,¢ +q—n');

hence for n’ > 2n + 1 the fact that auxy and h are transverse means that h(X")
does not intersect im auxa, i.e., none of the planes h(z'), 2" € X', intersects J(X)
at more than one point. This says that the restriction proj. |7(z) 1s injective.
We see at once that U’'(h) is also an injective map, and since it is an immersion,
U’(h) is a differentiable embedding (see Corollary 3.1.5.4). O

Embeddings and Immersions in Euclidean Spaces

Theorem 3.4.10.5. Every compact n-dimensional C="-manifold with 1 < r <
oo can be C"-immersed in R?" and C"-embedded in R?"T1,

Proof. This is a consequence of Theorem 3.4.10.4 (where we take X to be the
given manifold, and set first X’ = S?7, and then X’ = S?"*1; we disregard the
trivial case n = 0). O

Information 3.4.10.6. As a matter of fact, every n-dimensional C="-manifold
with » > 1 admits a C"-embedding in R?" whenever n > 1, and a C"-immersion
in R?*~! whenever n > 2. If n > 0 and is not a power of 2, then every
CZ"-manifold with r > 1 admits a C"-embedding in R**~!. However, for each
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n = 2% s > 0, there are smooth, closed, n-dimensional manifolds which can-
not be even topologically embedded in R?"~! (such an example is RP"). Ev-
ery n-dimensional C"-manifold, » > 1, without closed components, can be C"-
embedded in R?"~!. Every orientable n-dimensional C="-manifold with r > 1
and n # 1,4 can be C"-embedded in R?"~. [it is not known whether a smooth,
closed, orientable, four-dimensional manifold admits a differentiable embedding
in R”; a topological embedding always exists.|
More information, details, and references can be found in [20] and [18].

3.4.11 Exercises

Ezercise 3.4.11.1. Show that for any CZ"-manifolds X and X', with 0 < r < oo,
the space C" (X, X’) has a countable base.

FEzercise 3.4.11.2. Let X be a compact CZ"-manifold, 1 < r < oo and let X’
be an arbitrary C="-manifold. Show that the set Subm” (X, X’) N C5(X, X’) is
open in C4(X, X’).

Exercise 3.4.11.3. Show that every compact topological manifold is a CNRS.
[cf. Theorem 3.4.5.10.]

FEzercise 3.4.11.4. Suppose X is the smooth one-dimensional submanifold of R?,
closed as an independent manifold, and containing the graph of the function x —
sin(1/x) defined on the interval (0, 1). Let 7 be the normal transversalisation of
the inclusion X — R?. Show that for any p the segment d.((0,0), p) intersects
a segment d.(z, p) for some x # (0,0). [cf. Remark 3.4.3.2.]

Exercise 3.4.11.5. Suppose X is a compact C"-manifold with 1 < r < oo, and
A is a submanifold of X. Show that for a suitable collaring of X, AU cop(A4) is
a submanifold of dopp X.

Ezercise 3.4.11.6. Let X and Y be compact C"-manifold with 1 < r < oo.
Check that:

(i) the product X xY has a C"-structure which induces the usual C"-structures
on interX x Y and X X intY;

(ii) the C"-manifold obtained by equipping X x Y with a C"-structure having
these properties is unique up to a diffeomorphism.

Exercise 3.4.11.7. Let X7, X5, and X be compact C*°-manifolds, and let f; €
C5°(X2,X’). Show that the subset of C5°(X;, X’) consisting of all maps trans-
verse to fo is dense in C5° (X, X').

Ezercise 3.4.11.8. Let X1, X5, X', and f, be as in exercise 3.4.11.7. Show that
for any C*°-map ¢: X1 — 0X’ transverse to abr fo: 0Xs — 9X’, the subset
of C*° — (X1, X’) consisting of all the extensions of ¢ which are transverse to fo
is dense in the subspace of C3°(X1, X') consisting of all the extensions of ¢.
Exercise 3.4.11.9. Let X and X’ be compact CZ"-manifolds with 1 < r < oo,
and let ¢: partialX — X’ be a C"-immersion. If dim X’ > 2dim X, show that
the subset of C}(X, X”) consisting of all C"-immersions that extend ¢ is dense
in the subspace of C; (X, X’) consisting of all extensions of ¢.
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Ezercise 3.4.11.10. Let X and X’ be compact CZ"-manifolds with 1 < r < oo,
and let ¢: X — X' be a C"-embedding. If dim X’ > 2dim X + 1, show that
the subset of C5(X, X’) consisting of all C"-embeddings that extend ¢ is dense
in the subspace of C5(X,X’) consisting of all extensions of ¢. [In particular,
every compact n-dimensional C="-manifold admits a neat embedding in D?"+1 ]

Ezercise 3.4.11.11. Let X and X’ be closed C2"-manifolds with 1 < r < 0.
Show that the set of all C"-maps f: X — X' such that Tang(,,) X' = imd,, f+
imd,, f for any two distinct points z1, 22 € X with f(xz1) = f(x2), is dense in
C"(X,X").

Ezercise 3.4.11.12. Let X and X’ be closed C2"-manifolds with 1 < r < oo.
If dim X’ = 2dim X — 1, show that the set of all C"-maps f: X — X’ such
that rankd, f = dim X for all but a finite number of points z € X, where
rankd, f = dim X — 1, is dense in C" (X, X’).

Ezercise 3.4.11.13. Let X and X’be closed CZ"-manifolds with 1 < r < co. If
2dim X’ > 3dim X, show that the set of all C"-maps f: X — X’ such that the

preimage of each point of X’ under f contains at most two points, is dense in
C"(X,X").
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3.5 THE SIMPLEST STRUCTURE THEOREMS

3.5.1 Morse Functions

Remark 3.5.1.1. The central result of this section is Theorem 3.5.2.10, whose
main conclusion is that every compact n-dimensional C*°-manifold can be ob-
tained from an empty n-dimensional manifold through a finite number of fairly
standard operations, namely, by attaching handles. The entire present subsec-
tion and that part of Subsection 3.5.2 preceding Theorem 3.5.2.10 are essentially
devoted to the preparation of its formulation and proof. The remaining part of
Subsection 3.5.2 contains corollaries of Theorem 3.5.2.10. In Subsection 3.5.3
this theorem is used to effectively classify the compact smooth two-dimensional
manifolds.

It should come as no surprise that, in contrast to the previous sections, here
we consider, in general, only the C*°-case: the theorems concerning smoothing of
diffeomorphisms and manifolds (i.e., Corollaries 3.4.4.5, 3.4.6.12, and Theorems
3.4.9.6, 3.4.9.8) show that we may replace the class C* by any class C", 1 <r <
oo, without affecting the theory discussed here.

Cobordisms and Morse Functions

Definition 3.5.1.2. A compact C°°-manifold X is called a cobordism if its
boundary 90X is the disjoint union of two parts, 99X and 01X, each consisting
of whole components of 9X. Those two parts are termed the beginning and the
end of the cobordism X. Each of them may be empty; when both are empty, X
is closed. In general, given a compact C*°-manifold, one can transform it into
a cobordism in 2¢ ways, where £ is the number of components of 0X. Among
these cobordisms, there is one without beginning (0o X = @, 1 X = 0X) and
one without end (9pX = 90X, 01X = @).

Two cobordisms, X and X', are said to be diffeormorphic if there is a diffeo-
morphism (and hence a C*°-diffeomorphism) f: X — X’ such that f(9yX) =
80X’ and f(alX) = 81X’.

Suppose that X and X’ are two cobordisms such that 9;X and 99X’ are
diffeomorphic, and let ¢: 91 X — 9y X’ be a C*°-diffeomorphism. Then one can
form a manifold Y by glueing the somehow collared manifolds X and X’ with
the aid of ¢. Now Y naturally becomes a cobordism if we set 9pY = 0o X
and 0;Y = 0:X’. We say that the cobordism Y is the result of glueing the
cobordisms X and X' by . If the cobordisms X and X' are oriented and ¢ is
orientation reversing (here the orientations of 9; X and 9y X’ are those induced
by the orientations of X and X’; see Remark 3.1.3.4), then one can orient Y in
such a manner that both embeddings, X — Y and X’ — Y, become orientation
preserving. Warning: this definition of the orientation of the glued cobordism
is not in accordance with the definition of the orientation of a glued manifold,
given in Remark 3.4.5.5.

Two smooth closed manifolds, Vy and V7, are cobordant if there is a cobor-
dism with the beginning and the end diffeomorphic to V and V7, respectively.
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If, in addition, V{ and V; are oriented, and there is an oriented cobordism X
such that one of the diffeomorphisms Vy — 99X and V; — 9 X preserves ori-
entation, whereas the other reverses it, then we say that V; and V; are oriented
cobordant. Clearly, the cobordism and oriented cobordism relations are reflexive
and symmetric, and since cobordisms can be glued, they are also transitive, i.e.,
they are genuine equivalence relations.

Definition 3.5.1.3. A critical point x of a C2-function f: X — R, where
X is a CZ2-manifold is non-degenerate if for some chart ¢ € Atl, C*X (and
hence for any such chart) ¢(z) is a non-degenerate critical point of the function
(flsuppy) © ¢~ ': imp — R (see Remark 3.3.3.1). The corresponding index is
independent of the choice of the chart ¢ (see Remark 3.3.3.1), and is called the
index of the point x relative to f.

Suppose X is a cobordism, and let f: X — R be a C*°-function; f is a Morse
function if the following holds:

e im f C I

e f71(0)=0pX, and f71(1) = 0, X;

e all critical points of f lie in int X and are non-degenerate.
We say that a Morse function is proper if its values at distinct critical points
are distinct.
The Local Structure of Morse Functions

Theorem 3.5.1.4. Suppose that X is an n-dimensional cobordism and f: X —
R is a Morse function. Then for every point x € X there is a chart ¢ € Atl, X
with @(z) = 0, such that the restriction flsuppw coincides with the composite
map

Supp ¢ RN imp — R,

where the second arrow denotes one of the following functions:

—11, if ©e€ O X;
<t17~-~,tn)’_> 1+ tq, if xe@lX;
flx) +tq, if xe€int X s not a critical point of f;

Proof. To prove the first three cases we need only remark that the function
X — R, defined by

fly)—=z for zeimtXUX
Y —f(y) for =€ JyX

can be completed, in a neighbourhood of x, to a system of coordinates (see
Remark 3.1.2.12). For the fourth case, we refer to Theorem 3.3.3.5. O

Corollary 3.5.1.5. A Morse function has only a finite number of critical points.
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An Existence Theorem

Lemma 3.5.1.6. Given any C*-function f: D™ — R, there exists an open
dense subset A of R™ such that for a € A the function D™ — R defined by

e fla)— <a,z> (3.5.1.7)

has no degenerate critical points.

Proof. Consider the map grad f: D™ — R with coordinate functions D, f,..., D, f.
One may take A to be R™\ [grad f](F), where F' = {x € D"|rankd, grad f < n}.
F' is clearly open, and Theorem 3.4.7.4 implies that it is also dense in R. More-
over, it is evident that if x € D™ is a critical point of the function (3.5.1.7),
then [grad f](z) = a, and the matrix of the second-order partial derivatives of
(3.5.1.7) at x is precisely the matrix of the differential d, grad f relative to the
standard coordinates in Tang, D™ and Tang, R". Therefore, if a € A, then this
matrix of second-order partial derivatives is non-singular. O

Theorem 3.5.1.8. On every cobordism there is a proper Morse function.

Proof. First, let us show that if there exists some Morse function on the cobor-
dism X, then there exists a proper Morse function on X. Let z1,...,z, be
the critical points of the Morse function f: X — R, and let Uy, ..., U,, be pair-
wise disjoint neighbourhoods of these points in int X. Further, let V3,...,V,,
be neighbourhoods of z1,...,z,, such that C1V; C Uy,...,ClV,, C U,,, and
let ¢1,...,@m be Urysohn C*-functions for the pairs X \ Uy, C1V;),... (X \
Un,ClV;). (The existence of such Urysohn functions results from Lemma
3.4.4.8, applied here to the double of the manifold X.) Clearly, if the numbers
€1,-..,Em are small enough, then the function

X-oR, - f@)+ep1(x)+ - +emom(z)

is, together with f, a Morse function, and its only critical points are z1, ..., 2.
Moreover, its values at the points z1, ..., 2, are f(x1)+e1,... f(Tm)+Em, and
s0, by choosing suitable €1, ..., &,, one can force these values to be distinct.
Now we show that there exists Morse functions on X. Fix a collaring k: 0.X x
I — X and a C*°-function 8: I — I which equals 1 on the segment [0,1/2] and
vanishes on a neighbourhood of 1. Next define g: X — R by the formulae

glx)==, for ze€X\k(0X x]0,1)),

1,1
oz, 1)) = %—i—?(t 1)8(¢), for ze€ X, tel,

5 +5(1=1)B(1), for z€e0 X, tel
It is clear that g is C*°, takes X into I, JpX into 0, and 0; X into 1, and has
no critical points in k(90X x [0,1/2]). Pick charts ¢1,...,ps € Atl X such that
imp; = ---imp, = R", n = dim X, and the sets o, ' (intD"), ..., @5 (int D)
cover X \ k(0X x [0,1/2]). Further, choose a C*°-function a: R™ — I which
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equals 1 on D™ and 0 outside the concentric ball 2D™ of radius 2. Using induc-
tion, we shall build functions gg,...,9s: X — R, such that g; coincides with
g in a neighbourhood of 0X, maps int X into int I, has no critical points in
k(0X x [0,1/2]), and has no degenerate critical points in U;-:1<pj_1(D”). Then
gs will be a Morse function on X.

Let gy = g and assume that for some k > 1 functions enjoying the required
properties are already constructed for ¢ < k. For each point a € R"™, the formula

ho(z) = 4 961 (@) if zeX\ gl (2D),
¢ Ge-1— < a,pr > o pp(x), if x € supp g,

defines a C*°-function h,: X — R which agrees with g;_; in a neighbourhood
of 0X, and for a = 0 coincides with gx_; on all of X. Clearly, the point 0 has
a neighbourhood U in R™ such that for a € U the function h, has no critical
points in k(0X x [0,1/2]), has no degenerate critical points in Uf;llgo;l(ID)"),
and maps int X into int /. Thus, by Lemma 3.5.1.6, we can find a € U such
that h, also has no degenerate critical points in ¢, '(D"), and hence we can

take g = h, for such a value of a. O

3.5.2 Cobordisms and Surgery

Remark 3.5.2.1. This subsection is devoted to two types of special operations on
cobordisms, called attaching of handles and spherical modifications. The former
were already mentioned in Remark 3.5.1.1. Spherical modifications are simpler
that the attaching of handles, but their applications are more limited: we shall
define them solely for the closed case, and starting with a closed C°°-manifold
they are capable of producing only manifolds cobordant with the given one.

Standard Cobordisms

Definition 3.5.2.2. We define standard cobordisms of two kinds:
e the standard trivial cobordisms, and
e the standard elementary cobordisms of index k.

On every standard cobordism there is a standard Morse function.

A standard trivial cobordism is constructed by taking an arbitrary closed
C°°-manifold V and simply forming the cylinder V' x I, with 0o(V x I) =V x 0
and 01 (V' x I) =V x 1. The corresponding standard Morse function is defined
as (v,t) — t and has no critical points.

The standard elementary cobordism of index k is defined for an arbitrary
closed (n — 1)-dimensional C*°-manifold V' with n > k, and an arbitrary C-
embedding : S¥=1 x D"~* — V| and is denoted by EI(V, ¢). Up to a canonical
homeomorphism, EI(V, ¢) is simply (V x I) U,, (D¥ x D"~*), where the map
@1: SF=1xD"* 5 V x I is defined by ¢y (z,y) = (p(,y),1). To define EI(V, ¢)
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as a C*°-manifold, we let E(n, k) denote the set
2 2 2
(0 ot) € RIS < LIS -3 < )
k+1 i=1 k+1

and let el denote the homeomorphism of the intersection
n k : 1 n—k
E(n, k) N[R™\ (RY x 1nt(§D )]
onto the cylinder
1
©(S* x (Dnk \int(i]]])”’k))) x I
given by the formula

(tlv s 7t’rL) = ((p((tlv v 7tk)/(t%a s 7ti)1/27 (tk-i-la v 7tTL))7
1

S(TG_t%_"'ti+ti+1+“‘+ti))-

As a topological space, EI(V, ¢) is the result of glueing the cylinder [V \ (S* x
int($D"~*))] x I and E(n, k) by the homeomorphism el (see Fig. 3.1).

N

P(57%D’)

A5 Ay 4,
g (sxint (FD'Y) <1

Figure 3.1: (n=2, k=1)

The C*>°-structure on EI(V, ¢) is fixed by an atlas consisting of the charts of
arbitrary atlases of the C*°-manifolds

[V \ o(SF 1 x (%D”"“))] xI and E(n,k)N(R* x intD"~*)
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(these manifolds are regarded as parts of the space EI(V, ¢)). The beginning of
0o E1(V, @) is formed by the two sets

V\ (S x (LD #)) x 0, and

2
{(t1,- - tn) eE(n,k)|—tf—..._t§+t§+1...+tn:_li6 ,
Similarly, the sets
V\ (S5 x (%]D)”*k))] «1, and
((tye oo tn) € B R)| — 3 — oo — 4 82yt = %},

counstitute the end 9; E1(V, ¢). The standard Morse function on EI(V, ¢) is given
by the two functions

1
[V \ o(SF1 x int(§ID)"_k))] xI =R, E(nk)—R,
defined by the formulae

(v, t) = t,  (tr,...,tn) n—>8(1—16—t%—-~-—ti+ti+1+-“+ti)
respectively. It has a unique critical point 0 € E(n, k), of index k. We use the
symbol mo to denote the standard Morse function.

Using Fig. 3.1 as a guide, it is readily seen that the manifold EI(V, )
is homeomorphic to (V x I) Uy, (D*¥ x D"=*). The formulae describing this
canonical homeomorphism are cumbersome, and we shall not burden the reader
with their precise form.

The basic property shared by all standard cobordisms constructed from a
given manifold V is that the beginning of each is canonically C*°-diffeomorphic
to V. For the standard trivial cobordism, this diffeomorphism is v — (v,0). In
the case of the cobordism El(V, ¢), the diffeomorphism is defined as v — (v, 0)
on the part

1 1
V\ o(SF1 x int(§1n>”*’f)) — [V \ oSkt x int(ilD)”’k))] x 0,
and as
(S x D k)

1
{(t1,..-tn) € EK)| =] — - —ti + o+ 12 = —

167’
tk)(tk+1, . tn)) >

1 1
(tl\/m+ti+1+~--+t%,~-~,t1\/16-Hfiﬂ+-~-+t%,tk+1,-~-,ﬁn)
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Remark 3.5.2.3. The construction of the standard elementary cobordism the
simplest when the index k is 0 or n.

If k£ = 0, then ¢ embeds the empty set into V', E(n, k) is the ball iID)" and el
is a homeomorphism of empty sets. In this case the similarity dilatation (with
coefficient 4) of the ball E(n, k) transforms El(V, ¢) into the sum (V' x I) ITD"
with

H[(V x HHID"] =incly(V x0), [V xI)IID"] =(V x1) mstt
it also transforms the standard Morse function mo into the function

VxI—R, (v,t) — t,
D" — R, (t1y e ostn) > (L + 83+ +12)/2.

If k = n, then ¢ embeds S"~! into V, the image of this embedding being one of
the components of V' (see Remark 3.1.5.1). Again, E(n, k) is the ball ;D" and
el is a homeomorphism of empty sets. Here the similarity dilatation of the ball
E(n, k) transforms E1(V, ¢) into the sum ([V \ ¢(S*~1)] x I) I D" with

A{([V\ (8" x IID"} = ([V\ (S"71)] x 0) LIS,
O{([V\e(S" ] x HID"} = incly ([V\ ¢(S" )] x 1);

while the standard Morse function mo is taken into the function

VNS DI xI =R, (v,t) =t
D" — R, (tryeeoytn) > (L—t3 4+ —t2)/2.

We also remark that k = 0 and k& = n are the only values of the index for which
the standard elementary cobordism can have a connected boundary: for k =0
the boundary is connected if and only if the initial manifold V' is empty, while
for k£ = n the boundary is connected if and only if ¢ is a diffeomorphism. We
have seen that in both cases the cobordism is diffeomorphic to D™.

Trivial Cobordisms and Elementary Cobordisms

Definition 3.5.2.4. A cobordism is said to be trivial if it is diffeomorphic to
a standard trivial cobordism. A cobordism is an elementary cobordism of index
k if it is diffeomorphic to a standard elementary cobordism of index k.

From these definitions it follows that if X is a trivial cobordism, then the
manifolds 9y X and 9; X are diffeomorphic, and that on a trivial cobordism there
is a Morse function without critical points, whereas on an elementary cobordism
of index k there is a Morse function with a single critical point of index k and
no other critical points.

Lemma 3.5.2.5. Suppose X and X' are two cobordisms such that the manifolds
X and 0y X' are diffeomorphic. If X' is trivial, the the cobordism obtained by
glueing X and X' by an arbitrary C*°-diffeomorophism 01X — 0o X' (and using
arbitrary collarings of X and X') is diffeomorphic to X.
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Proof. Corollary 3.4.5.9 shows that given a C*°-diffeomorphism ¢: 1 X — 9 X',
it suffices to produce two C*°-embeddings, j: X — X and j': X’ — X, such
that

JX) V(X)) =X, j(X)Nj(X) =j(0X)=j"(0X'),

and the composite diffeomorphism

./ -1
BoX' 2 i3y X") 2 9, X

coincides with ¢~!. In order to accomplish this, let us fix:
e a collaring k: 0X x I — X;

e a C*-diffeomorphism f: X’ — 9y X’ x I such that f(z") = (2/,0) for all
' € 9X’;

e an increasing C*°-function a: I — I, such that

1/2+t¢ f t<3/4
alt) = /2+1t/3 or t<3/4,
t for > 7/8.

Further, using the function

B:I—=1, t—(1-1)/2,

set
j(z) ==, if xeX\k(0 x][0,1)),
J(k(z,1)) = k(z, a(t)), if zehX, tel,
J@) =ko (g~ x B)o f('), if '€ X

We can verify directly that j and 7' have the required properties. O

Lemma 3.5.2.6. If on a cobordism there is a Morse function without critical
point, then the cobordism is trivial,

Proof. Let f: X — R be a Morse function with no critical points. According to
Corollary 3.1.5.8 (or, if one prefers, to Theorem 3.4.8.2), the preimage f~1(¢)
of any point ¢ € (0, 1) is a neat submanifold of X; moreover, f~1(¢) is obviously
closed as an independent manifold (the preimages f~1(0) = 9pX and f~1(1) =
01X are also closed manifolds). By Theorems 3.4.5.3 and 3.4.5.8, the manifold
f71(t) has a neighbourhood U; together with a C°>*-submersion m;: U; — f~1(¢)
which is the identity map on f~1(t), for each fixed t € I. Define, for ¢t € I, a
C*°-map
Fo: U — f7Yt) x I, x (m(x), f(2)).

Obviously, the differential d; F} is non-degenerate for x € f~1(¢), and F; induces
a diffeomorphism of f~1(¢) onto f~1(t) xt. Consequently, F} is a C*°-embedding
on a neighbourhood of f~1(¢) (see 3.1.5.5), i.e., there is a neighbourhood A;
of the point ¢ in I such that F; induces a diffeomorphism of F,*(A;) onto
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f71(t) x A¢. Let m be large enough so that if we divide I into m intervals of
length 1/m, then each such interval is contained in one of the sets A;. Then all
the cobordisms f~1([(i — 1)/m,i/m]), with

0o ([(i=1)/m,ifm]) = f7H((i=1)/m), O f M ([(i=1)/m,i/m]) = [~} (i/m),

are trivial, and now Lemma 3.5.2.5 shows that the entire cobordism X is trivial.
O

Theorem 3.5.2.7. If on a cobordism X there is a Morse function with a single
critical point of index k and no other critical points, then X is an elementary
cobordism of index k.

Proof. The proof is quite long and we shall begin by constructing an auxiliary
cobordism Y.

Fix a Morse function f: X — I with a single critical point of index k, say =,
and no other critical points. By Theorem 3.5.1.4, there is a chart ¢ € Atl, X,
p(x) = 0, such that f|supp, equals the composition of ¢ with the function
imp — R given by

Obviously, im ¢ contains the subset A of R” determined (in the standard coor-
dinates) by the inequalities:

toyr + o+t < de?,

™)
[\~

e
—— < =t e <

)

H‘m
(@)

for some € > 0. Let
B=An(R* x (R"*\ int(%m)"*k))).
As a topological space, Y is the result of glueing the subset
FH @) = 55 T @) + 5D\ (AN B)
of X and the product S¥~! x 2D"~* x I by the homeomorphism
¢o~L(B) — SF1 x 2Dk \int(gn)n*’f)] x I
given by
o Mty ... ) =
( (tr, ... ) S(i_tQ

7(tk+17~--,tn),— 2 2 +"'+ti) )
(t%—l—“-—&-t%) 216 1 k k+1
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[Here we use the inequalities —% < flz)y<1- %Z, which are immediate conse-
quences of the inclusion A C im¢.]

The C*°-structure of Y is fixed by the atlas consisting of arbitrary atlases of
the C*°-manifolds

2

FUS@) - S f@) + DN A B)

and
SE=1 x int(2D"F) x I

The beginning 970Y is the union of the two sets
2 2

N\ HANB) 0 (f(@) = 35)

9

@ - 5

and
Sk x int(2D™F) x 0.

Similarly, the end 0,Y is the union of the two sets

€

I @) = [\ ANBI T N (@) - )

and
SF=1 s int(2D™F) x 1.

The functions

—1 52 €2 —1
P - S f@) + DV AV B) 5 R
g S+ ) - F(@),

and

SF1 x int(2D"F) x I — R,

(u,v,t) — [u € SF=1 v € int(2D" %), t € 1],
yield together a function ¢g: Y — R. It is readily seen that g is a Morse function
with no critical points. (In virtue of Lemma 3.5.2.6, this implies that Y is

a trivial cobordism; however, in what follows this property of Y is not used
directly.) Now consider the composite embedding

Sh—1ypr—h G122 G2 l/2), gt ko p el k1 opn—ky s p I,y

and its compression 1: S¥=! x D"7% — ¢=!(1/2). To complete the proof of
the theorem we shall presently verify that the cobordism X is diffeomorphic to

El(g~1(1/2), ).
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As a preliminary step, we find a number §, 0 < 6 < 1/2, and a C*>-
diffeomorphism

1 1 1 1 1
H:g ' (2)x[= -6, = = =62
G x5 =05 +0 = g7 (5~ 6.5 +9)),
such that .
H((u,v, i)at) = (uavat)

forall ue S¥~1, v e D" * and t € [1 -, % + 4].

By Theorem 3.4.5.8, one can find 7, 0 < n < 1/2, such that there is a
C-submersion 7: g~!((3 —n,3 + 7)) — g~ () which is the identity map on
g~ %(3). Fix a C>®-function a: Rn — k — R, equal to 1 on D"~* and to 0 outside
2D"~*, and define a new C*°-submersion p: g~ ((3 — 0,3 + 1)) = g~ 1(3) by

the formula

7(y), if y¢SF1xint(2D"F) x I,
ply) = {m(w,v,—1+ (-1 —a(v), if y=(uv,1),
where u e SF1 ve2D* tecl.

Further, define

1 1 1 1 1
.o—1 - - —1/= - -
G:yg ((2 77,2+77))—>9 (2)><(2 n,2+n)

by G(y) (p(y),9(y)). Since G induces a diffeomorphism of g~'(3) onto

g7 '(1) x & and the differential d,G is non-degenerate as long as y € g~*(3),
there is 4, 0 < § < 1, such that the restriction of G to g7*([3 — 4,1 +4]) is a

C*>-embedding. Now it is clear that one can take for H the map

(abr @)~ g_l([%) y [% s, % +6] = g_l([% 5, % + ).

Finally, to show that the cobordisms X and El(g’l%, 1) are diffeomorphic, cut
each of them into three cobordisms:

e X into the cobordisms
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By Lemma 3.5.2.6, the first and the third cobordisms in each of these triples are
trivial, and hence the second cobordism is diffeomorphic to the entire cobordism.
Therefore, it is enough to exhibit a diffeomorphism

mo~ ([ = b8 8) > £ (1F(@) - 5 S+ D)

To do this, consider the composite map
1 1
(971(5) \(SP1 x int D" F)) x [5 -
1 1 i
(Y \ (S*1 xintD" %) x I)) N g*l([5 -4, o ) —

5e2 5e2

1

(X N\ (®RY xint D" 0 f7H([f (2) = —- f(@) + D)
and the map

Bn, k) Amo} ([ — 5, 5 +4)) -

o7 imp 1 (R x 207 0 77 (7)) + °50)

given by the formula
(t1ssty) = 07 Haty, .o ety,
which together provide the desired diffeomorphism. O

Corollary 3.5.2.8. Suppose that on a given n-dimensional cobordism X with
connected boundary there ezists a Morse function with a unique critical point.
Then X s diffeomorphic to D™.

Attaching Handless

Definition 3.5.2.9. Let X be an n-dimensional cobordism and let : SF~1 x
D"* — 9;X be a C>®-embedding. The result of glueing X and the elementary
cobordism El(d; X, ¢) by the canonical diffeomorphism 91X — 9y El(01 X, )
(see Definition 3.5.2.2) is said to be obtained from X by attaching a handle of
indez k.

By attaching a handle of index 0 to X we replace, up to a diffeomorphism,
X by X 1 D"; the new component of the boundary, i.e., inclo(S"~1), is added
to 01 X. To attach a handle of index n, we actually glue X and D™ by a
diffeomorphism of one of the components of 9; X onto S*~!.

Theorem 3.5.2.10. FEwvery cobordism X can be obtained, up to a diffeomor-
phism, from the standard trivial cobordism 0y X x I, by attaching a finite number
of handles. Moreover, given any proper Morse function f: X — R, one may
choose these handles so that their number will not exceed the number of critical

points of f.
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Proof. We prove this statement by induction on the number of critical points
of f. If f has no critical points, Lemma 3.5.2.6 suffices. If f has m > 1 critical
points, then there is ¢ € (0,1) such that one of the critical values of f is greater
than ¢, while the remaining ones are smaller than ¢. We cut X into two cobor-
disms: f71([0,¢]) and f~1([e,1]). On f=1([0, ¢]) there is a proper Morse function
with m — 1 critical points, for example, z + f(z)/c. On f~1([c,1])) there is a
Morse function with a unique critical point, for example, x — (f(x)—c)/(1—c).
Finally, note that by Theorem 3.5.2.7 the second cobordism is elementary. [

Theorem 3.5.2.11. A closed n-dimensional C*°-manifold X on which there is
Morse function having only two critical points is homeomorphic to S™.

Proof. We remark (leaving the trivial case n = 0 aside) that every Morse func-
tion with only two critical points is proper (the two points are necessarily a
maximum and a minimum). Thus Theorem 3.5.2.10 shows that X can be ob-
tained from an empty manifold by attaching two handles. Obviously, the first
handle has index 0, and the second index n, and hence X actually results from
glueing two copies of D" by a diffeomorphism of S*~1. O

A Homotopy Corollary

Lemma 3.5.2.12. The cobordism EI(V, @) is homotopy equivalent to V Uy Dk,
where f: SF=1 — V is given by f(y) = ¢(y,0). Moreover, there is a homotopy
equivalence V Uy D* — EI(V,¢) which agrees on V with the inclusion V[=
D El(V, )] = EI(V, ¢).

Proof. One can assemble such a homotopy equivalence from the above inclusion
V — EI(V, ¢) and the embedding D¥ — E1(V, ¢) which takes each point x € D*
into the point /4 € E(n,k). To complete the proof, it is enough to remark
that the constructed mapping V U; D* — EI(V, ) is a topological embedding
whose image is a strong deformation retract of EI(V, ¢). O

Theorem 3.5.2.13. FEvery compact n-dimensional smooth manifold is homo-
topy equivalent to a finite cellular space of dimension < n.

Proof. The discussion in Definition 3.5.1.2 implies that one may assume that the
given manifold is a cobordism with an empty beginning. Therefore, all we have
to show is that if an n-dimensional cobordism is homotopy equivalent to a finite
cellular space of dimension < n, then it retains this property after we attach to it
an arbitrary handle; see Theorem 3.5.2.10. But from Lemma 3.5.2.12 it follows
that attaching a handle of index k to a cobordism X has the same homotopy
effect as attaching D* to X by some embedding f: S¥~! — X. Now replace
X by a finite cellular space Y of dimension < n with the same homotopy type,
replace the map f by its composition with a homotopy equivalence X — Y, and
subsequently replace this composition by a homotopic cellular map ¢g: S¥~! = Y
(see Theorem 2.3.2.6). By Theorem 1.3.7.8, the cobordism which results by
attaching a handle of index k to X is homotopy equivalent to the space Y U, D¥;
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according to Remark 2.1.5.6, Y U, D* is a finite cellular space of dimension
<n. O

Definition 3.5.2.14. Let V be a closed n-dimensional C*°-manifold, and let
@: Sk~ x D*=k+1 5 V be a C*-embedding. Fix arbitrary collars on

Y\ o(SF7t x int D" *F1) and DF x Sk,
and then glue these manifolds by the diffeomorphism
abrp: SF71 x SR 5 p(SETL x SnTF)

of the boundary of the second onto the boundary of the first. We say that
the glued manifold is obtained from V by a spherical modification along the
embedding ©'. The number k is the index of the modification.

Theorem 3.5.2.15. If the cobordism X' is obtained from the cobordism X by
attaching a handle using an embedding p: SF=1 x D"% — 9, X, then 0, X' is
obtained from by a spherical modification along the same embedding ¢: SF~1 x
Dk — hX.

Proof. Since 9 X»"™¢ = 9, El(01 X, ¢), we actually claim that 9; E1(0; X, ¢) is
obtained from 9; X by a spherical modification along . Recall that El(9; X, )
is the result of glueing the spaces [01 X \ ¢(S*~! x int(1D"~*))] x I and E(n, k)
by el (see Definition 3.5.2.2). Obviously, [0; X \ ¢(S¥~! x int D"~*)] x 1 and
E(n,k) N 0y El(01 X, ¢) are compact (n — 1)-dimensional submanifolds of the
manifold 9; E1(01 X, ¢), which they cover, and they intersect along their common
boundary. Consider the mappings

projy: [1X \ p(S* 7! x int D" )] x 1 = 91X o(S*7! x int D"7F)
and
11/}: E(na k) N 81 El(alX, SO) — ]D)k X Snfkrfl’

16 toits . tn
Oty tn) = | =(tr, ... tn), (b1, tn)
V@t +82)

15
It is clear that ) is a C*°-diffeomorphism such that proj(v)=1(z1, 22)) = ¢(z1, 22)
for all z; € S*=1 and 2z, € S**~1. Now applying Corollary 3.4.5.9, we see that
01 El(01 X, ¢) is really obtained by glueing the manifolds

X\ oS xintD" %) and DF x StF1
by abr . O

Corollary 3.5.2.16. Given an arbitrary cobordism X, the manifold 01X can
be obtained from Oy X through a finite number of spherical modifications. In
particular, the boundary of an arbitrary compact C*°-manifold can be obtained
from an empty manifold through a finite number of spherical modifications.

ITranslator’s note: or by doing a surgery on V using .
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3.5.3 Two-dimensional Manifolds

Remark 3.5.3.1. The theory presented in the two previous subsections repre-
sents, first of all, an attempt to somehow visualise, survey, and classify smooth
compact manifolds of a given dimension. To apply this theory in complex situa-
tions, one needs to develop it further, but in the simplest cases Theorem 3.5.2.10
emerges as a sufficiently effective tool. For example, in the one-dimensional case
every standard cobordism is a sum of segments, and hence Theorem 3.5.2.100
implies that every smooth compact one-dimensional manifold is diffeomorphic
to the sum of a finite number of segments and circles.

Warning: although this differentiable classification coincides with the topolog-
ical classification given in Theorem 3.1.1.18, it has an entirely different meaning.
[We add that also in the non-compact case (which, due to its relative complexity,
is not considered in our book in any systematic way), the differentiable classi-
fication of one-dimensional manifolds is identical with the topological one; see
Exercise 3.5.4.1.]

The present subsection is devoted to the differentiable classification of the
smooth, compact, two-dimensional manifolds, and again Theorem 3.5.2.10 is
enough. We begin by drawing up a list of model manifolds (which play the same
role as the segments and circles in the one-dimensional case). Next we show that
every smooth, compact, connected, two dimensional manifold is diffeomorphic
to one of the models. No two of the model manifolds are diffeomorphic or
homeomorphic. However, we prove this fact only in Chapter 5 (see Remark ?7);
here we merely prepare the geometric part of the proof, describing for the closed
model manifolds canonical rigged cellular decomposition, and for the non-closed
model manifolds - the bouquets of circles to which they are homotopy equivalent.
As we did in the classification of one-dimensional manifolds, we shall not worry
about the differentiability class (cf. Remark 3.5.1.1).

Model Surfaces

Remark 3.5.3.2. We begin with the elementary model surfaces: the spheres with
holes and the Mdébius strips.

A sphere with ¢ hole is S? with the interiors of £ pairwise disjoint spherical
caps (segments) removed; its boundary is a sum of ¢ circles and inherits a well-
defined orientation. A sphere with one hole is diffeomorphic to D?, while a
sphere with two holes is diffeomorphic to the cylinder S' x D'; we call the latter
a handle (do not confuse with the "handles" in Subsection 3.5.2 !).

A Mobius strip is a submanifold of R? produced by the motion of a segment
of length 1 whose middle glides along a circle S! in such a manner that the
segment remains normal to the circle and turns uniformly through a total angle
7 (see Fig. 3.2). Every Mdobiu strip is a non-orientable compact submanifold of
R3 with boundary diffeomorphic to S!.

The list of all model surfaces is:

e the empty two-dimensional manifold,
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Figure 3.2:

e the spheres with handles and holes,
e the spheres with cross-caps.

A sphere with g handles and ¢ holes (g > 0, £ > 0) is defined as the result
of glueing a sphere with 2g + ¢ holes and a sum of g handles by an orienta-
tion preserving diffeomorphism from the boundary of the sum of handles onto
the union of 2g components of the sphere with holes. This object is a smooth,
compact, orientable, two dimensional manifold, uniquely defined up to an orien-
tation preserving diffeomorphism by the numbers g and ¢, and whose boundary
is diffeomorphic to a sum of ¢ circles. This manifold coincides with S? if g = 0,
¢ = 0; it is diffeomorphic to D? if g =0,¢ =1,and to S' x Stif g=1,¢ =0,
and then it is known as a torus; for ¢ = 2 and ¢ = 0, it is called a double
torus or a pretzel. For any g and /¢, a sphere with g handles and ¢ holes can be
differentiably embedded in R?; for g = 3 and ¢ = 2, the standard embedding is
depicted in Fig.3.3.

Figure 3.3:

A sphere with h cross-caps and ¢ holes (h > 0, £ > 0) is defined as the
result of glueing a sphere with A + ¢ holes and a sum of A Mdbius strips by
a diffeomorphism of the boundary of the sum of strips onto the union of A
components of the sphere with holes. One obtains a smooth, compact, two-
dimensional manifold, uniquely defined up to a diffeomorphism by the numbers
h and ¢, and whose boundary is diffeomorphic to a sum of ¢ circles. This
manifold is orientable only for h = 0. For h = 1, £ = 0, it is diffeomorphic to
RP2?, and for h=1, £ =1, to a Mobius strip.

For h = 2, { = 0, this manifold is called the Klein bottle and is well known
because of its immersion in R3, depicted in Fig. 3.4; for h = 2, ¢ = 1, it is
called a disc with an inverted handle and is depicted in Fig. 3.5, on the left
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§

Figure 3.4:

(the drawing on the right in Fig. 3.5 demonstrates that by glueing a disc with
an inverted handle and a usual disc by a diffeomorphism of their boundaries we
actually get a Klein bottle).

F

W X

Figure 3.5:

We emphasise that in our list of model manifolds, the cross-caps do not meet
with the handles, i.e., we excluded the case of a sphere with holes to which we
attach both handles and Mdbius strips. We show in Lemma 3.5.3.3 that for
h > 1, every sphere with g handles, h cross-caps, and £ holes is diffeomorphic
to a sphere with 2g + h cross-caps and ¢ holes.

Auxiliary Propositions

Lemma 3.5.3.3. Let X1 and X5 be smooth, compact, two-dimensional mani-
folds, and let ¢ be a diffeomorphism of a component of 01X onto a component
of 32 X. Denote by X the manifold obtained by glueing X1 and X by . Then

(i) if X1 and Xo are diffeomorphic to a sphere with g1 handles and ¢; holes,
and to a sphere with go handles and {5 holes, respectively, then X is dif-
feomorphic to a sphere with g1 + g2 handles and {1 + {5 holes;

(i1) if X1 and Xo are diffeomorphic to a sphere with hy cross-caps and {1
holes, and to a sphere with ho cross-caps and €y holes, respectively, then
X is diffeomorphic to a sphere with hi + ho cross-caps and {1 + {5 holes;
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(iii) if X1 and Xo are diffeomorphic to a sphere with g1 handles and {1 holes,
and to a sphere with hy > 0 cross-caps and {5 holes, respectively, then X
is diffeomorphic to a sphere with 2g1 + ho cross-caps and {1 + {2 — 2 holes.

Proof. The only case which needs proof is (iii), where we see immediately that
X is diffeomorphic to a sphere with g; handles, ho cross-caps, and £; + 5 — 2
holes.

To begin with, suppose that g1 =1, ho =1, and ¢; + /5 —2 = 1. Then X is
diffeomorphic to a Md&bius strip with a handle attached; see the left drawing in
Fig. 3.6.

Figure 3.6:

The last manifold is obviously diffeomorphic to a Md&bius strip with an in-
verted handle, as that in the right drawing in Fig. 3.6, and hence can be cut
into a sphere with one cross-cap and a disc with an inverted handle. According
to (ii), this implies that X is diffeomorphic to a sphere with three cross-caps
and one hole.

In the general case, we use induction on g;. If gy = 0, there is nothing to
prove. If g1 > 0, then X can be glued from a sphere with g; — 1 handles, cross-
caps, and ¢; + £5 — 1 holes and a sphere with one handle, one cross-cap, and
one hole. But we already proved that this second manifold is diffeomorphic to
a sphere with three cross-caps and one hole. Consequently, X is diffeomorphic
to a sphere with g; — 1 handles, ho + 2 cross-caps, and ¢; + ¢ — 2 holes, and so
diffeomorphic to a sphere with 2g; + ho cross-caps and ¢ + £2 — 2 holes. O

Lemma 3.5.3.4. Let X be a smooth, compact, connected, two-dimensional
manifold, and let X’ be the result of attaching a handle to X by a diffeomor-
phism of the boundary of the handle onto the union of two components of 0X.
Then:

(i) if X is diffeomorphic to a sphere with g handles and ¢ holes, then X' is
diffeomorphic to a sphere with g+ 1 handles and £ —2 holes, or to a sphere
with 2g + 2 cross-caps and ¢ — 2 holes;

(ii) if X is diffeomorphic to a sphere with h cross-caps and £ holes, then X' is
diffeomorphic to a sphere with h 4+ 2 cross-caps and ¢ — 2 holes.
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Proof. This is a corollary of Lemma 3.5.3.3: indeed, in both cases one can cut
X' into two manifolds, such that the first one differs from X by having one hole
less, while the second is diffeomorphic to a sphere with one handle and one hole,
or to a disc with an inverted handle. O

Theorem 3.5.3.5. Let X; and X5 be smooth, compact, two-dimensional mani-
folds, and let ¢ be a diffeomorphism of a non-empty union of whole components
of 02 X5 onto a non-empty union of whole components of 01 X. Denote by X
the manifold glued from X1 and Xo by means of . If both X1 and X5 are dif-
feomorphic to model surfaces, then X is also diffeomorphic to one of the model
surfaces.

Proof. This is a consequence of Lemmas 3.5.3.3 and 3.5.3.4, because glueing by
means of ¢ is equivalent to first glueing by the diffeomorphism of one of the
components of d, X5 onto the corresponding component of 01X, obtained by
compressing ¢, and subsequently attaching a number of handles equal to half the
number of the components of 9; X and d> X which remain to be identified. [

The Main Theorem

Theorem 3.5.3.6. Every smooth, connected, compact, two-dimensional mani-
fold is diffeomorphic to one of the model surfaces.

Proof. Applying Theorems 2.10 and 5, all we need to show is that the compo-
nents of the elementary two-dimensional cobordisms are diffeomorphic to model
surfaces. And this is not hard to check directly by examining all possible cases,
if we recall that every smooth, closed, one-dimensional manifold is diffeomor-
phic to a sum of circles. To spell it out,every elementary cobordism of index
0 constructed from a sum of m circles is diffeomorphic to a sum of m spheres
with two holes and a sphere with one hole. Next, every elementary cobordism
of index 2 constructed from a sum of m circles (and a differentiable embedding
of a circle in this sum) is diffeomorphic to a sum of m — 1 spheres with two holes
and a sphere with one hole. And finally, every elementary cobordism of index 1
constructed from a sum of m circles and a differentiable embedding of S° x D!
in this sum is diffeomorphic to one of the following three manifolds:

e a sum of m — 2 spheres with two holes and a sphere with three holes;
e a sum of m — 1 spheres with two holes and a sphere with three holes;

e a sum of m — 1 spheres with two holes and a sphere with one cross-cap
and two holes.

For m = 2, one see the three cases in Fig. 3.7.
O

Information 3.5.3.7. Every compact, connected, two-dimensional topological
manifold is homeomorphic to one of the model surfaces.
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Figure 3.7:

Cellular Decompositions of the Closed Model Surfaces

Remark 3.5.3.8. The closed model surfaces possess standard rigged cellular de-
compositions, which generalize the canonical decompositions of the sphere S2,
the complex projective space CP?, and the torus S! x S! into two cells, three
cells, and four cells, respectively. Each of these standard decompositions, except
the no-cell decomposition of the empty model surface, contains only one 0-cell
and only one 2-cell, while the number of 1-cells is 2g for a sphere with g han-
dles, and h for a sphere with h cross-caps. Therefore, the 1-skeleton of a sphere
with ¢g handles is a bouquet of 2¢ circles, while the 1-skeleton of a sphere with
h cross-caps is a bouquet of h circles. Moreover, the description of the entire
rigged cellular decomposition reduces to the characterisation of the attaching
map for the 2-cell, i.e., of a certain map of S! into the aforementioned bouquet.

We disregard the values ¢ = 0,1 and h = 0, 1, already considered, and for
the case of a sphere with g handles, we represent S' as the contour of a regular
polygon with first vertex ort; and 4g edges, arranged successively as

ay, by, ay, b, ... ag, by, ay, by
In the case of a sphere with h cross-caps, we represent S' as the contour of a reg-
ular polygon with first vertex ort; and 2h edges, which are arranged successively
as
C1,Cy ey Chy Che

In both cases we form a quotient space of S' by identifying each edge with the
corresponding “primed” edge, as follows: a; is identified with a}, and b; with
b} through a reflection with respect to a line (relative to which these edges are
symmetric), while ¢; is identified with ¢} through a rotation of the polygon
(around its centre). In either of cases the quotient space is a bouquet of circles:
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in the first case the number of circles is 2¢, and in the second h. The projection
of S! onto this quotient space is the required attaching map.

Of course, we still have to convince the reader that the cellular spaces pro-
duced in this manner are homeomorphic to the model surfaces. To this end, let
us divide our 4g-gon into a g-gon and g pentagons, by drawing diagonals which
cut out quadruplets a;, b;, al, b.. Similarly, we divide our 2h-gon into a h-gon
and h triangles, by drawing diagonals which cut out pairs ¢;, ¢} (see Fig. 3.8).

i

o
)

D

0

Figure 3.8: g =3, h =3

Identifying the edges and the way described above, all the vertices of the
remaining g-gon become one and the same point, thus transforming the g-gon
into a sphere with ¢ circular apertures; at the same time, the edges of the
pentagons are identified in such a manner that each pentagon becomes a torus
with a circular aperture. Attaching these holed tori to the holed sphere in such
a way as to restore all that was destroyed by the auxiliary (diagonal) cuts,
we obtain, up to a homeomorphism, a sphere with g handles. Similarly, the
prescribed identifications of the edges ¢;, ¢} take all the vertices of the h-gon
into one and the same point, thus transforming the h-gon into a sphere with
h circular apertures; at the same time, each triangle becomes a Mdbius strip,
since two of its edges are identified. Attaching these strips to the holed sphere,
we obtain, up to a homeomorphism,a sphere with h cross-caps. [Warning: the
boundaries of the previous circular apertures (in the sphere) have a common
point, and for g = 2 or h = 2, they even coincide.]

The Homotopy Structure of the Non-closed Model Surfaces

Theorem 3.5.3.9. A sphere with g handles and ¢ holes is homotopy equivalent
to a bouquet of 2g + £ — 1 circles. A sphere with h cross-caps and £ holes is
homotopy equivalent to a bouquet of h + € — 1 circles.

Proof. To prove these assertions, we first note that by attaching the 4g-gon to
the bouquet of 2g circles as in Remark 3.5.3.8, we produce, up to a homeo-
morphism, a sphere with g handles and ¢ holes, provided we first remove the
interiors of ¢ pairwise disjoint discs from the interior of the 4g-gon. Now let us
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arrange these discs such that every line passing through the first vertex, orty,
intersects no more than one of them. Denote by A the set consisting of:

(i) the contour of the 4g-gon;

(ii) the 2¢ — 2 segments tangent to ¢ — 1 of the removed discs and passing
through orty;

(iii) the outer arcs of the boundaries of these discs having as endpoints the
tangency points.

Then A is obviously a strong deformation retract of the holed 4g-gon. If we now
project this 4g-gon onto the sphere with g handles, the above strong deformation
retraction is transformed into a strong deformation retraction of the holed sphere
with g handles onto the image of A under the projection. Finally, note that this
image is manifestly homeomorphic to a bouquet of 2g + ¢ — 1 circles.

The proof for a sphere with h cross-caps and /£ holes is a verbatim repetition
of the previous argument, with the 4g-gon replaced by the 2h-gon. O

3.5.4 Exercises

Ezercise 3.5.4.1. Show that every smooth, connected, non-compact, one-dimensional
manifold is homeomorphic to a line or a half-line (see Remark 3.5.3.1).

Ezercise 3.5.4.2. Define a submanifold of CP? in homogeneous coordinates by
the equation 27" + z3* + 2§ = 0, and show that it is diffeomorphic to a sphere
with (m — 1)(m — 2)/2 handles (see Exercises 3.2.4.4 and 3.2.4.5).

Ezercise 3.5.4.3. Show that the subset of CP* x CP! consisting of the points
((z1 : 22), (w1 : we)) such that z{(w] + wh) = 22(w} — wh) is a manifold
diffeomorphic to a sphere with (p — 1)(¢ — 1) handles.

Exercise 3.5.4.4. Show that every smooth, closed, connected, orientable, three-
dimensional manifold can be obtained by glueing two copies of a handle-body
by a diffeomorphism of its boundary. (A handle-body is a part of R3 bounded
by a sphere with handles which is standardly embedded in R3) .

Ezercise 3.5.4.5. Consider the manifold obtained by glueing two copies of the
solid torus S! x D? by a diffeomorphism of its boundary S! x S*, given by the
formula (21, z2) — (2§25, 2§29), where a, b, ¢, d are integers satisfying ad — bc =
+1. Show that this manifold is diffeomorphic to S? for a = 0, to S? x S* for
a = =+1, and to RP3 for a = £2.

Exercise 3.5.4.6. Show that on every connected closed C*°-manifold there is a
Morse function with a unique local minimum and a unique local maximum.
Exercise 3.5.4.7. Show that on every connected cobordism X with non-empty
0pX and 01 X there is a proper Morse function with no local maxima and minima
lying in int X.

Exercise 3.5.4.8. Show that on every cobordism there is a proper Morse function
such that, for any of its critical points z1 and x, of indices k1 and ko, k1 < ko
implies f(.]?l) < f(l‘g)
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Exercise 3.5.4.9. Suppose that on a cobordism X there is a Morse function with
no critical points of index 1 and that the manifold 9y X is orientable. Show that
the cobordism X is orientable and that every orientation of 9y X is induced by
some orientation of X.



Chapter 4

BUNDLES

4.1 BUNDLES WITHOUT GROUP STRUCTURE

4.1.1 General Definitions

Definition 4.1.1.1. A bundle is a triple (T, p, B), where T and B are topolog-
ical spaces and p: T' — B is a continuous map. The spaces T and B are called
the total space and the base of the bundle (T, p, B), respectively, and the map
p is its projection. For a bundle &, we denote its total space, its base, and its
projection by tl(£), bs(€), and proj(&), respectively: & = (t1(£), proj(§), bs(&)).

The preimage [proj(£)]~1(b) of a point b € bs(¢) is called the fibre of the
bundle & over the point b.

A section of the bundle ¢ is a continuous map s: bsg — tl(§) such that
proj(§)os = idy(¢). Two sections of £ are homotopic if they can be connected by
a homotopy consisting only of sections, i.e., by a homotopy h: bs(§) x I — t1(§)
such that proj(£) o h equals proj;: bs(€) x I — bs(§).

The restriction of the bundle £ to a subspace B C bs(§) is the bundle

¢l ([proj(¢)] 1 (B), abr proj(¢), B).

The product of the bundles & and & is the bundle
(t1(&1) x t1(&2), proj(&1) x proj(&2), bs(&1) x bs(&2))

denoted £1 x €. The fibre of {1 x &5 over a point (b1, be) € bs(£; x &) is precisely
the product of the fibres [proj(£1)]~1(b1) and [proj(&2)]~1(b2).

Definition 4.1.1.2. A map of the bundle & into the bundle £ is a pair of
continuous maps F': tI(&') — t1(£), f: bs(&') — bs(€), such that the diagram

t1(¢') — = t1(€) (4.1.1.3)
proj@')l iproj(a

bs(¢') ——= bs(¢)

239



240 CHAPTER 4. BUNDLES

is commutative. If ® = (F, f) is such a pair, we write ® : & — £, F = t1(D),
f=Ds(P).

A map ®: & — ¢ is said to be an isomorphism if t1(®) and bs(®) are
homeomorphisms, and an equivalence if, in addition, bs(¢’) = bs(€) and bs(®) =
idpg(e). If there is an isomorphism (equivalence) between &' and &, then the
bundles ¢ and & are said to be isomorphic (respectively, equivalent).

A map @ : & — ¢ is called an inclusion if t1(®) and bs(®) are inclusions. For
example, given any subset B of bs(€), the inclusions incl: [proj(¢)]=(B) — t1(€)
and incl: B — bs(&), form the inclusion of the bundle &|5 in &.

The commutativity of the diagram (4.1.1.3) implies that F' is a fibre pre-
serving map (or a fibred map), i.e., it takes each fibre of ¢’ into a fibre of ¢.
Obviously, if proj(¢’)(t1(¢’)) = bs(¢’), then given an arbitrary fibre preserving
map F: t1(¢') — t1(§) there is a unique map f: bs(¢’) — bs(§), which makes
diagram (4.1.1.3) commutative. Moreover, if the map proj(¢’) is factorial, then
the continuity of F' implies the continuity of f. Therefore, we have

Theorem 4.1.1.4. if £ is a bundle with factorial projection, then given any
fibre preserving map F: tl(¢') — t1(§), there is one and only one continuous
map ® : &' — £ such that t1(®) = F.

Remark 4.1.1.5. Let f be a continuous map of a topological space B into the
base of a bundle £&. We may define a new bundle having base B, total space
{(b,z) € B x t1(&)|f(b) = [proj(§)](z)}, and projection - the restriction of the
projection proj;: B x t1(§) — B to the last space. This new bundle is called the
bundle induced from ¢ by f, and is denoted by f'¢.

It is clear that the restriction of the projection proj,: B x tl(§) — t1(£) to
t1(f'(€)) defines for each b € bs((f'(¢)) a homeomorphism of the fibre of f*(¢)
over the point b onto the fibre of £ over the point f(b) € bs({), and determines,
together with f, a map f'(¢) — & This map is called the adjoint of f and is
denoted by adj f.

The following observations also need no proofs or explanations. If f is a
homeomorphism, then the adjoint map adj f: f'(¢) — & is an isomorphism; if,
in addition, f = idpg) then adj f is an equivalence. If f is an inclusion, then
adj f: f'(¢€) — ¢ establishes an equivalence between f'(¢) and &|p. Finally,
given arbitrary continuous maps f: B — bs(¢) and g: B’ — B, the bundles
(fog) (&) and ¢'(f'(€)) are canonically equivalent.

Definition 4.1.1.6. If ®: ¢’ — ¢ is a map of bundles, then the formula z
([proj(€N](z), [(t1(®)](x)) defines a continuous map t1(&’) — t1([bs(®)]'(¢)). This
map defines, together with idpg(e/), a map of &’ into the bundle [bs(®)](¢), which
we denote by corr ®; we say that corr ® corrects the map ®.

Obviously, adj(bs(®)) o corr & = O.

4.1.2 Locally Trivial Bundles

Definition 4.1.2.1. The obvious example of a bundle having a given base B
and fibres homeomorphic to a given space F is the standard trivial bundle (or
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the product bundle) (B x F,proj;, B). Its fibres are the fibres b x F' of the
product B x F, and are obviously canonically homeomorphic to F'.

Notice that there is a one-to-one correspondence between the continuous
functions B — F' and the sections B — B x F' of the standard trivial bundle
(B x F,proj;, B): for each function f: B — F there is the corresponding section

s:B—=BXF, b~ (b f(b);
we say that f and s are associated.

Definition 4.1.2.2. A bundle ¢ is trivial or, more specifically, topologically
trivial, if it is equivalent to a standard trivial bundle. Any equivalence between
a standard trivial bundle and &, is referred to as a trivialisation of &.

A bundle £ is locally trivial or, more specifically, topologically locally trivial,
if every point of bs¢ has a neighbourhood U such that the bundle |y is trivial.

Since the projection of a product of topological spaces onto one of its factors
is an open map, the projection of a trivial bundle is open, and hence so is the
projection of a locally trivial bundle.

It is immediate that the product of two trivial (locally trivial) bundles is a
trivial (respectively, locally trivial) bundle. Furthermore, any bundle induced
from a trivial (locally trivial) bundle is trivial (respectively, locally trivial). If
f+ B — bs¢ is constant, then f'€ is a trivial bundle, for any &.

Remark 4.1.2.3. The fibres of a trivial bundle are, as those of the standard triv-
ial bundle, homeomorphic to each other. However, in a trivial, but not standard
trivial bundle, these homeomorphisms are not canonical any longer. If the base
of a locally trivial bundle is connected, then its fibres are also mutually home-
omorphic; indeed, the set of the points of the base having fibres homeomorphic
to a given fibre is open, and the sets of this type form a partition of the base
(see Theorem 1.3.3.5).
On the other hand, the example of the locally trivial bundle

((Bx F)II (B" x F"),proj, Il proj,, BII B")

where B, F, B, and F’ are arbitrary topological spaces, demonstrates that in
a locally trivial bundle the fibres over points situated in different components
of the base are not necessarily homeomorphic. Moreover, we see that there are
locally trivial bundles which are not trivial.

A non-trivial, locally trivial bundle may have a connected base; see Theorem
4.1.2.5 and Example 4.1.2.6.

Coverings

Remark 4.1.2.4. A locally trivial bundle is a covering in the broad sense if all
its fibres are discrete spaces. In this case the total space and the projection are
usually called a covering space and a covering projection, respectively.! Clearly

ITranslator’s note: Frequently, the terms covering space and covering projection are them-
selves used to designate the whole covering.
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, every point of a covering space has a neighbourhood such that the restriction
of the projection to this neighbourhood is a homeomorphism onto its image in
the base.

A covering in the broad sense is said to be a covering in the narrow sense
or, simply, a covering, if both the covering and base spaces are connected and
non-empty. According to Remark 4.1.2.33, all the fibres of a covering have the
same cardinality, called the number of sheets (or the multiplicity) of the given
covering.

Theorem 4.1.2.5. A covering whose number of sheets is greater than one can-
not be trivial.

Proof. Indeed, the total space of a trivial bundle is homeomorphic to the product
of the base and a fibre, and hence it cannot be connected when the fibre is
discrete and has more than one point. O

Ezample 4.1.2.6. The bundle (S',hel,,,S"), where

m
)

hel,,: S' > S', 2z 2
is an m-sheeted covering for any m # 0. The bundle (R!, hel,S!), where
hel: R! — S! is defined as hel(x) = ¢?™@ is a countably-sheeted covering.

If k # 0,n, then the bundle having total space G4 (n, k), base G(n, k), and
projection equal to the submersion exhibited in Remark 3.2.2.3, is a two-sheeted
covering. In particular, so is (S", proj, RP™) for n > 1.

Finally, let us show that every sphere with h cross-caps admits as a two-
sheeted covering space a sphere with A — 1 handles (see Subsection 3.5.3); here
h is an arbitrary positive integer. For h = 1, we already encountered such a
covering, namely (S, proj, RP?). Generally, one may construct it starting with
h copies of (S?,proj, RP?). To do this, restrict one copy of (S?, proj, RP?) to a
covering over the projective plane with A — 1 holes, and restrict the remaining
h — 1 copies to coverings over the projective plane with one hole (i.e., over
the Mobius strip). Now glue the bases of these h restricted coverings into a
sphere with h cross-caps by diffeomorphisms of the boundaries of the holes.
The resulting glued space is the base of a new covering, whose total space is
obtained by glueing the h total spaces of the above restricted coverings: one
of these total spaces is a sphere with A — 1 pairs of antipodal holes, while the
remaining h — 1 total spaces are spheres with two antipodal holes, i.e., cylinders
over circles. (Each of these h — 1 cylinders has two possible covering attaching
maps, and we may use either one of them.) Since “sealing” a pair of holes by a
cylinder results in replacing this pair by a handle, what we actually obtain is a
two-sheeted covering having a sphere with h cross-caps as the base and a sphere
with A — 1 handles as the total space.



4.1. BUNDLES WITHOUT GROUP STRUCTURE 243

4.1.3 Serre Bundles

Definition 4.1.3.1. A bundle ¢ is a Serre bundle? if it satisfies Serre’s condi-
tion: for any positive integer r or » = 0, and every continuous maps f: I" — bsg
and fo: I" — t1(€), related by proj(§) o fo= flzr—1, there is a continuous map
f: I" — t1(§) such that proj(§) o f: f and }:l]r—l = ﬁ). (We identify the cube
I"~! with that face of I” whose points have the last coordinate equal to zero;
see Remark 1.2.5.7.)
=t e
s 7

T lproj(é)

I" —bs(¢)
The requirement that proj(§)of = f appearing in Serre’s condition is fundamen-
tal in the theory of bundles, and is encountered also when f and fare defined
on spaces other than cubes. If two maps, f: X — tl(§) and f: X — bs(§),
satisfy this last requirement, we say that f covers [ (or that ]?is a lifting or
lift of f; we also say that f can be lifted to t1(¢); this terminology is valid for
arbitrary ¢ and X.
Obviously, the product of two Serre bundles and a bundle induced from a
Serre bundle are again Serre bundles.

Ezample 4.1.3.2. Examples of bundles which do not satisfy Serre’s condition
are (I,p,I), where p(x) = /2 or p(x) = 4x(1 — x). In the first case, take r = 1,
f =1idy, fo(0) = 0; in the second case, take r = 2, f(z1,x2) = 4daq (1—z1)(1—22),
fo =id;. Then there is no continuous map such that po f: f and ﬂlr—l = fg.

We remark that the first bundle has both empty and non-empty fibres, while
the second has a single connected fibre, the others being not connected. As we
shall see later (see Theorem 5.4.3.6), such features of a bundle are not compatible

with Serre’s condition when the base is connected.

Serre’s Condition is Local

Theorem 4.1.3.3. If every point of the base bs¢ of a bundle § has a neighbour-
hood U such that |y is a Serre bundle, then £ itself is a Serre bundle.

Proof. Let f: I"™ — bs(§) and for I — t1(€) be continuous maps satisfying
proj(§) o ]?0 = f|rn—1. Since bs(§) can be covered by open sets such that the
restriction of £ to each of these sets satisfies Serre’s condition, Theorem 1.1.7.16
yields a positive integer N such that every cube of edge 1/N contained in I™ is
taken by f into one of these open sets. Divide I into N™ cubes of edge 1/N,
arrange these cubes in dictionary order @q,...,Qn~», and set

Wi =I1"""U(Uis,Q)), Qi =QinW_y.

2Translator’s note: Frequently called a Serre fibre space or a weak fibration.
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It is clear that I"' =Wy, C Wy C --- C Wy» = I", and examining all possible
cases, we see that each pair (Q;, Qz) is homeomorphic to (I, I"~!). Now assume

that for some ¢ < N™ there is a map f;_1: W;_1 — t1(£), such that
proj(€) o f = flw, .\, ficalnr = fo.

Set g, = flg, and go; = ﬁ-,1|Q;. Since the restriction |f(q,) satisfies Serre’s
condition, there is a continuous map g;: tl(§) such that

proj(§) o gi = g; and gilq, = Goi-

Furthermore, because fz 1 and g; agree on W;_1 N Q; = Q} toget}ier they form

a continuous map f;: Wi_1 UQ; — t1(§), and obviously proj(§) o f; = f|w, and
fZ|In 1= fo This shows that induction on ¢ works, starting w1th 1 =0, and
the result is a map f an such that proj(&) o f f and fz|1n 1= fO O

Serre’s Condition and Local Triviality
Theorem 4.1.3.4. Every locally trivial bundle is a Serre bundle.

Proof. By Theorem 4.1.3.3, one need only consider the case (B x F,proj, B),
where B and F' are arbitrary topological spaces. Let

f:I">B and fo: "' BxF

be continuous maps such that proj, 0]70 = f|n—1. Define f: I" — B x f as

f(xla s ,In) = (f(xlv s 7xn)7pr0j2 Ofo(xlv cee 7xn—1))~
Clearly, proj, of: f and ﬂln—l = fo. O

Example 4.1.3.5. The following example demonstrates that there are Serre bun-
dles which are not locally trivial. Let T be the triangle in R? with vertices
(0,0), (0,1), and (1,0), and let py,po: T — I be defined by py(z1,22) = 21,
pa(x1,22) = xo . The bundle (T, p;1,I) is not locally trivial; indeed, the fibres
over the points 0 and 1 are not homeomorphic. However, (T, p1,I) does sat-
isfy Serre’s condition: if f: I™ — I and fo: I"~' — T are continuous, and
p1 o fo = f then the map f: I™ — T defined by

flxy,. . xn) = (f(z1, ..., xn), min(l — f(x1,...,2,),projyofo(x1, ..., Tn_1)))

is continuous, covers f, and equals fo on 1"~ 1.

Vi 1 0.7

l

— 1
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This example shows also that in a Serre bundle with connected base there can
be non-homeomorphic fibres. Actually, there are Serre bundles with connected
base and in which some fibres are not even homotopy equivalent, being instead
equivalent in a certain weaker sense (see Exercise 5.4.4.3 and Theorem 5.4.3.6)

The Covering Homotopy Theorem

Theorem 4.1.3.6. Suppose that & is a Serre bundle and (X, A) is a cellular
pair. Then for every continuous map f: X x — tl(€), every homotopy F: X X
I — bs(§) of proj(€) o f, and every homotopy G: A x I — t1(€) of ﬂA covering
F|axr, there is a homotopy of f which covers F and extends G.

Proof. Assume that X is rigged, and that for some r > 0 there is a homotopy
Fr_1: (AUskel,_1 X) x I — t1(§) of f|Aauskel,_, x covering F|(auskel, , X)x1I-
If e is an r-cell from X \ A, then ¢.(z,t) = F(char(x),t) defines a continuous
map @.: D" x I — bs(£), while the formula

&O,e(l‘, t) = {{(Char(l‘))a if t= 07

F,_;(char.(z),t), if zeS 1
defines a continuous map @g: (D" x 0) U (S"~! x I) — t1(£). Obviously, the
pairs (D" x I, (D" x 0) U (S’"1 x I)) and (I"*1,I") are homeomorphic, and

proj(€) © Po.e = Pel(rx0)u(s—1x1)-

Consequently, there is a continuous map @.: D" x I — tl(£) covering ¢. and
extending @g .. Since Pe(x,t) = F,_y(char(z),t) for all z € S™1, the maps @,
corresponding to all r-cells from X \ A together with F_4 yield a continuous
map F,: (AUskel, X) x I — t1(¢), and it is evident that the following holds:

proj(€) o . = F|(auskel, X)x1Is Fr= Flauskel,_, x)x1 = Fr1.
Hence, we may use induction on r, setting }~7_1 = @, to produce a sequence
{F,: (AUskel, X) x I —t1()}2_,

of homotopies which extend each other. These homotopies define a homotopy
of f covering F' and extending G. O

Theorem 4.1.3.7. Let X be a cellular space and let f: X — t1(§) be continu-
ous. If £ is a Serre bundle, then every homotopy of proj(§) o f is covered by a
homotopy of f.

Proof. This is precisely Theorem 4.1.3.6 for the absolute case A = &, the proof
is immediate. We note that for X = I™, Theorem 4.1.3.7 reduces to Serre’s
condition for r =n + 1. O
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The Case of Coverings

Proposition 4.1.3.8. Suppose that £ is a covering in the broad sense, X is a
connected topological space, and f,g: X — tI(§) are continuous maps. If

proj(§) o f = proj(§) o g
and f equals g at some point, then f =g.

Proof. Since the set {x € X|f(z) # g(x)} is open and, by assumption, its
complement is not empty, it suffices to show that this complement is also open.
In other words, let us verify that if f(z¢) = g(zo), then z¢ has a neighbourhood
U such that f(z) = g(z) for all z € U. Let V be a neighbourhood of f(zg) such
that proj(§)|v: V. — [proj(§)](V) is a homeomorphism (see Remark 4.1.2.4),
and take U to be any neighbourhood of zy with f(U) C V and ¢(U) C V.

Since [proj(&)](f(x)) = [proj(§)](g(z)) for all x € X, we have f(x) = g(z) for
allz e U. O

Theorem 4.1.3.9. Suppose that & is a covering in the broad sense, X is a
connected cellular space with a distinguished 0-cell xo, and f,g: Xtotl(€) are
continuous. If the maps proj(§)o f and proj(§)og are xo-homotopic and f(xg) =
g(z0), then f and g are xo-homotopic.

Proof. By Theorem 4.1.3.6, any xp-homotopy from proj(&) o f to proj(§) o g is
covered by an zp-homotopy from f to some map h. Since h(zg) = f(zo) = g(z0o)
and proj(§) o h = proj(€) o g, Proposition 4.1.3.8 yields h = g. O

4.1.4 Bundles With Map Spaces as Total Spaces.

Definition 4.1.4.1. We say that a bundle £ satisfies the strong Serre condition®
if for every topological space X, every continuous map f: X — t1(§), and every
homotopy F of proj(£) o f there is a homotopy of f which covers F.
f
X ————=tl(¢)

P
F lproj(i)

X x I ——>Ds(€)

If we replace X by a cube of arbitrary dimension, then this becomes the sim-
ple Serre condition; moreover, when X is restricted to be an arbitrary cellular
space, we obtain again a condition equivalent to the simple Serre condition; see
Theorem 4.1.3.7.

Theorem 4.1.4.2. Let (X, A) and Y be a Borsuk pair (= cofibration) and a
topological space, respectively. If X is Hausdorff and locally compact, then the
bundle

(C(X,Y),C(incl,id),C(A,Y))

3Translator’s note: Such a bundle is frequently called a Hurewicz fibre space or a fibration.
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satisfies the strong Serre condition.

Proof. Consider a topological space Z, a continuous map f: Z — C (X,Y), and
a homotopy F: Z x I — C(A,Y) of C(incl,id) o f. Since X is Hausdorff and
locally compact, the maps g: Z x X — Y and G: Z x A x I — Y given by
9(z,z) = (f)N(z,2) = [f(2)](x) and G(z,z,t) = [F(z,t)](z) are continuous (see
Theorem 1.2.7.6). It is clear that G is a homotopy of §|zxa. Now (Zx X, Zx A)
is a Borsuk pair (see Theorem 1.3.5.5 and Remark 1.3.5.3), and hence G extends
to a homotopy G of g.

ZxAx0 = ZxXx0

Y
_ X
g .

Zx AxT Zx X %1

Finally, the formula [F(z,t)](z) = G(z,,t) defines a homotopy F: Z x I —
C(X,Y) of f which covers F.

77— ex,y)

-~ 7
If‘ - \LC(incl,id)

Zx1——>C(AY)

O

Theorem 4.1.4.3. In a bundle with connected base and satisfying the strong
Serre condition, the fibres are pairwise homotopy equivalent.

Proof. Let & be the given bundle, and let s be a path joining two given points
of bs(§). Set Fy = [proj(¢)]~1(s(0)) and F; = [proj(¢)]=1(s(1)). Now consider
two homotopies Jo: Fy x I — bs(§) and Jy: Fy x I — bs(€) of the composite
maps

F Inel, t1(¢) M bs(§) and Fy dndl, t1(£) Lj(é)) bs(&),

respectively, given by Jo(x,t) = s(t) and Jy(z,t) = s~1(t). Since & satisfies the
strong Serre condition, Jy and J; are covered by two homotopies,

Jo: Fo x I —tl(€) and Jy: Fy x I — t1(€)

of the maps incl: Fy — t1(§) and incl: Fy — t1(£), respectively. Now we have

Jo(FQX 1)CF‘17 Jl(Fl Xl)CFO
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and hence there are well-defined maps
fo: Fo = Fi, x> .70(33,1) and fi: Fy - Fy, =+~ jl(x,l).

We next show that f; o fo is homotopic to idf,, and since the construction is
symmetric, fy o f1 will be homotopic to idp, .
The formulae

~ .
i) = {Jo(x,Qt), if < 1/2,

J(fo(z),2t —1)  if t>1/2.

and
H(z,t,7)=s((1—=7)(1—1]1—2¢])

define a map j: Fy x I — tl(§), and a homotopy H: (Fy x I) x I — bs(&) of
proj(§)oj. Again, using Serre’s strong condition, H can be lifted to a homotopy
H: (FyxI)xI—tl(¢)of j. Since (1—7)(1—[1—2t)) =0forT=1ort=0,1,
we see that _ _

H((Fox (0Ul))x YUH((Fop xI)x1)C Fp.

Therefore, the formula
((x,0), 3t), if t<1/3,

(
((z,3t—1),1), if 1/3<t<1/3,
H((z,1),3—3t), if t>2/3.

H
Kz, t)={ H

defines a homotopy K: Fy x I — Fj. Since

K(x,0) = H((2,0),0) = j(z,0) = J(2,0) =z and

K(:U, 1) = H((m, 1)70) = j(x» 1) = J(foxv 1) = fl(fo(x))v
it follows that K is a homotopy from idg, to fi o fo. O

Theorem 4.1.4.4. Given arbitrary points xo, x1, x(, ) of a connected topo-
logical space X, the spaces C(I,0,1; X, xo,21) and C(1,0,1; X, x{,x}) have the
same homotopy type

Proof. C(I,0,1; X,x0,21) and C(I,0,1; X, z(,2}) are the fibres of the bundle
(C(1,X),C(incl,id),C(0U1), X)) over the points (xg,z1) and (z(, x}) of its base
C(0U1),X)) = X x X; hence by Theorems 4.1.4.2 and 4.1.4.3, they have the
same homotopy type. O
The Adjoint Serre Bundle

Definition 4.1.4.5. Given an arbitrary bundle &, we let adj, denote the bundle
with the same base, total space

{(z,s) € t1(§) x C(1,bs(£))[s(0) = proj(§) ()},
and projection (z,s) +— s(1). We call adj, the bundle adjoint to &.
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Notice that the total spaces tl(adj ) and t1(£) have the same homotopy type:
the formulae = — (z,u,) and (z, s) — z, where u, is the constant path in bs(&)
with u,(0) = [proj(¢)](z), define homotopy equivalences t1(¢) — tl(adj&) and
tl(adj &) — t1(€) which are inverses to one another. Indeed, the composition of
the first map with the second one is idy¢), while the composition of the second
map with the first one is homotopic to idtladj§ via the homotopy ((z,s),t) —

(z,s¢), where s; is the path in bse defined by s;(7) = s(t7).
Theorem 4.1.4.6. The bundle adj € satisfies the strong Serre condition for any
bundle .

Proof. Consider a topological space Z, a continuous map f: Z — tl(adj ), and

a homotopy F': Z x I — bs(adj&)(= bs(§)) of proj(adj) o f. Denote by ¢; and
g2 the composite maps

t1(€)

7 — L ti(adj &) =2 (1, bs(€)

C(I,bs(£))
and define a homotopy g: Z x I — (I,bs(&)) by

_ g1 +1)), if 7<1/(1+1),
9z )(m) = {F(z,T(l Y1), if r>1/(1+0).

It is readily verified that the following diagramme commutes.

Z—1 L (adje)

[ / lproi(adj 5

Z x I — bs(adj &) (= bs(&))

4.1.5 Exercises

Ezercise 4.1.5.1. Show that for any g > 1 a sphere with g handles admits a
sphere with 2¢g — 1 handles as a covering space.

Exercise 4.1.5.2. Show that for any h > 1 a sphere with h cross-caps admits a
sphere with 2h — 2 cross-caps as a covering space.

Ezercise 4.1.5.3. Show that the spaces C(S!,ort;;RP", (1 : 0 : --- : 0)) and
C(St,orty;S™, orty) x S° are homeomorphic for any n > 1.

Ezercise 4.1.5.4. Show that the bundle with total space C(I,0;S", orty), base
S™, and projection s — s(1), is locally trivial (see Exercise 1.2.9.4).
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4.2 A DIGRESSION: TOPOLOGICAL GROUPS
AND TRANSFORMATION GROUPS

4.2.1 Topological Groups

Definition 4.2.1.1. A set G is a topological group or a group space if it is
endowed with both a topology and a group structure such that the group op-
erations, i.e, the maps G x G — G, (g9,h) — gh, G — G, and g — g~ 1, are
continuous. Obviously, the continuity of these two maps is equivalent to the
continuity of the single map G x G — G, (g,h) — g~ 'h.

By the definition of the (product) topology on G x G, the continuity of the
map (g, h) — gh at the point (go, ho) means that for every neighbourhood W
of the point gohg one can find neighbourhoods U and V of g9 and hg such that
UV C W. Similarly, the continuity of the map (g,h) + g~ 'h means that for
every neighbourhood W of the point gy and hg there are neighbourhoods U and
V of gy and hg such that U~V c W.

Clearly, every group becomes a topological group if it is equipped with the
discrete topology.

Remark 4.2.1.2. The continuity of the group operations implies that the left and
right translations by group elements (i.e., the maps G — G given by g — ag
and g — ga), and the map g — ¢g' are homeomorphisms of the space G. In
particular, if B C G is open or closed, then so are the sets B~!, aB and Ba, for
all a € G.

We note also that if B is open and A is arbitrary, then AB and BA are
open. Indeed, AB = Uyc p4aB and BA = U, 4 Ba.

Subgroups and Quotients

Remark 4.2.1.3. Any subset H of the topological group G which is a subgroup
in the algebraic sense inherits both a group structure and a topology from G,
and it is immediate that the group operations in H are continuous.

A subgroup of a topological group is normal if it is normal in the algebraic
sense. As in ordinary group theory, normal subgroups are termed also normal
divisors or invariant subgroups.

An example of a normal subgroup of a topological group G, which has no
analogue in ordinary group theory, is the component of the identity, i.e., that
component of the space G which contains the identity element, eg, of G. This
component is obviously a subgroup: if v and v are paths joining e with g and
h, respectively, then the path t — wu(t)~!v(t) joins eq with g~ 'h. Since the
inner automorphisms of G are continuous and take e into itself, this subgroup
is normal. It is also clear that the cosets of this subgroup in G are exactly the
components of the space GG, and the corresponding quotient group coincides, as
a set, with comp G.

Theorem 4.2.1.4. Every open subgroup of a topological group is also closed.
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Proof. In fact, the complement of an open subgroup is a union of left cosets and
by Remark 4.2.1.2 each of these cosets is open. Therefore, the complement is
also open. O

Definition 4.2.1.5. The partition of a topological group G into the left cosets
of a subgroup H is denoted by zer(G, H), and the corresponding quotient space
is called the space of left cosets of H in G and is denoted by G/H. We shall
not need here right coset spaces.

The basic topological property of the partition zer(G, H) and of the projec-
tion G — G/H is their openness. Indeed, the saturation of a set B relative to
zer(G, H) equals BH, which is an open set whenever B is open (see Remark
4.2.1.2).

Theorem 4.2.1.6. Given a topological group, the space of left cosets of a closed
subgroup is regular. In particular, a topological group whose identity element is
closed is regular.

Proof. Since the cosets gH are closed (see Remark 4.2.1.2), G/ H satisfies Axiom
T;. To show that G/H additionally satisfies Axiom Tj, it suffices to produce,
given a coset goH and a neighbourhood U of goH which is saturated relative to
zer(G, H), a saturated neighbourhood V of go H such that C1V C U. To see this,
suppose that we have such a neighbourhood. Then for every point proj(go) €
G/H and every neighbourhood proj(U) of proj(go), there is a neighbourhood,
proj(V), of proj(go), such that Clproj(V') C proj(U). The last inclusion follows
from the inclusion proj(V') C proj(ClV) together with the fact that proj(ClV)
is closed (which follows from the fact that C1V is closed and saturated; C1V is
saturated because the partition zer(G, H) is open; see Remark 1.2.3.10).

Now to produce the desired neighbourhood V', note that eél go = go and so
the points eg and gy have neighbourhoods W and Wy such that W—'W, c U.
Set V. =WyH. If g € C1V, then Wy, being a neighbourhood of g, intersects
V, i.e., there exist w € W, wg € Wy, and h € H such that wg = wgh. We
have g = w™lwgh, and thus g = w™twoh € W™ 'WyH C UH = U. Therefore,
Clv cU. O

Definition 4.2.1.7. Let H be a normal subgroup of the topological group G.
According to ordinary group theory, the set of cosets G/H is endowed with a
group structure. Let us show that the map G/H xG/H — G/H, (z,y) — 2™y,
is continuous.

First, note that the composition ¢: G x G — G/H of the map G x G — G,
(g,h) — g~th, with the projection G — G/H is constant on the elements of
the partition zer(G, H) x zer(G/H). Secondly, the map (x,y) — 2~ 'y equals
fact ) o a1, where

a ' G/H x G/H — (G x G)/(zer(G, H) x zer(G, H))
is the inverse of the injective factor, a, of the map

proj x proj: G x G — G/H x G/H,
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and
facty: (G x G)/(zer(G,H) — zer(G,H)) — G/H.

Since the partition zer(G, H) is open, « is a homeomorphism (see Theorem
1.2.3.11), and this implies that the map (z,y) — 2~ 'y is continuous.

We conclude that G/ H is a topological group; G/ H is called the factor group
of the topological group G by H.

Homomorphisms

Remark 4.2.1.8. A map f: G — G’, where G and G’ are topological groups, is
a homomorphism if it is an algebraic homomorphism as well as continuous.

As in ordinary group theory, the kernel ker f of f is defined as the preimage
of the identity of G’. A homomorphism f is a monomorphism if it is injective,
i.e., if its kernel ker f is the identity element of G, and an epimorphism if its
image im f = f(G) is all of G’. An example of monomorphism (epimorphism) is
the inclusion of a subgroup in a topological group (respectively, the projection
of a topological group onto a factor group).

An invertible homomorphism whose inverse is also a homomorphism is called
an isomorphism. In other words, an isomorphism of topological groups is a map
which is both an algebraic homomorphism and a homeomorphism.

Theorem 4.2.1.9. Let f: G — G’ be a homomorphism of topological groups.
Then

(i) im f is a subgroup of G', and the compression abr f: G — im f is an
epimorphism;

(ii) ker f is a normal subgroup of G, and the injective factor of f,
fact f: G/ker f — G,
is a monomorphism.

Proof. In addition to recognising that this copies a well-known statement of
ordinary group theory, one has to check that the maps abr f and fact f are
continuous, which is trivial. O

Theorem 4.2.1.10. An epimorphism f: G — G’ is open if and only if its
injective factor, fact f: G/ker f — G’, is an isomorphism.

Proof. The necessity of this condition is obvious. The openness of the projection
G — G/ ker f shows that the condition is also sufficient. O

Theorem 4.2.1.11. An epimorphism of a compact topological group onto a
topological group with closed identity element is open.

Proof. Let f: G — G’ be the given epimorphism. Since G is compact, G/ ker f
is compact. Moreover, as the identity element of G’ is closed, G’ is Hausdorff (see
Theorem 4.2.1.6). Finally, fact f: G/ker f — G’ is invertible and continuous,
and hence in our case a homeomorphism (see Theorem 1.1.7.10). Applying
Theorem 4.2.1.10, f is open. O
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Direct Products

Definition 4.2.1.12. Let G; and G> be topological groups. In ordinary group
theory, the product G; X G5 is given a group structure, and in topology it is
given a topology (see Remark 1.2.2.1), and it is clear that these two structures
are compatible in the sense of Definition 4.2.1.1, i.e., the group operations in
(G1 X Gg are continuous. The result is a topological group G; x Ga, called the
direct product of the topological groups G; and Gs.

This product operation is both commutative and associative: there are ob-
vious canonical isomorphisms

G1XG2—>G2XG1, (G1XG2)XG3—>G1X(G2XG3).
We remark that the inclusions

incly: Gy — Gy x Gy, 1+ (21,eq,)
incla: Go — Gy X Ga, z9 — (eGl’xQ)

are monomorphisms (of topological groups), while the projections
proj;: G1 X G = G1, projy: G1 x Ga — Go

are open epimorphisms such that ker proj; = incla(G2) and ker proj, = incl; (G1).
The last observation together with Theorem 4.2.1.10 imply

fact proj, : (G1 x Gg)/incly(Ga) = Gy,
fact proj,: (G1 x Gg)/incli(G1) = Go.

Definition 4.2.1.13. We say that the topological group G decomposes into the
direct product of its subgroups G1 and Gq if the map G1 x Ga, (91,92) — 9192
is an isomorphism of topological groups. If this is the case, the groups G and
G171 and G are usually identified via this isomorphism.

Recall that a similar definition exists in ordinary group theory, only there the
isomorphism is simply an algebraic isomorphism. Moreover, in that theory, G
decomposes into the direct product of its subgroups G; and Gy if and only if G,
and G5 generate GG, are normal subgroups of G, and G1NG3 = eg. Consequently,
if these conditions are satisfied in our case, then (g1, g2) — g192 is an algebraic
isomorphism. This map is obviously continuous; however, there are obvious
examples where the algebraic inverse isomorphism is not continuous. But the
algebraic inverse isomorphism is continuous whenever the space G is compact
and Hausdorff. Therefore, every compact Hausdorff topological group which
decomposes algebraically into the direct product of two subgroups, decomposes
also into the direct product of these subgroups in the sense of our topological
definition.



254 CHAPTER 4. BUNDLES

The Simplest Examples

Remark 4.2.1.14. The real line R with addition as the group operation is a
topological group, as is the space R™. Obviously, R* =R x --- x R (n factors;
the product is understood as in Definition 4.2.1.12).

Remark 4.2.1.15. The punctured real line R* = R \ 0, with multiplication as
group operation, is a topological group. Its subgroup R’ consisting of the
positive reals, is isomorphic to R: an isomorphism R — R is provided by the
exponential function x — a*, with arbitrary a # 1. Another evident subgroup
of R* is S, and obviously R* = S% x R%.

The punctured complex line C* = C\ 0 and the punctured quaternionic
line H* = H \ 0 are also topological groups under multiplication. Here S! is a
subgroup of C*, S? is a subgroup of H*, and C* =S! x RY, H* = S§* x R.

Remark 4.2.1.16. The map hel : R — S! (see Example 4.1.2.6) is an open
epimorphism. Its kernel is the subgroup of integers, Z, of R, and hence the
factor group R/Z is isomorphic to S!.

The map hel x - -+ x hel: R® — (S!)" =S! x --- x S! is also an open epimor-
phism. Its kernel is the integer lattice, Z x --- X Z = Z™, of R™, and hence the
factor group R™/Z" is isomorphic to (S')™.

Remark 4.2.1.17. The subgroup of S® consisting of the real quaternions (i.e., of
the quaternions (w1, 2,3, 24) such that z1 = 2o = 23 = 0) is simply S°. This
is a normal subgroup, and the factor group S3/SU is, as a topological space, the
same as RP3,

The subgroup of S? consisting of the complex quaternions (i.e., of the quater-
nions (z1, 22,3, r4) such that x3 = x4 = 0) is simply S!. However, this is not
a normal subgroup. The coset space S?/S! is canonically homeomorphic to S?:
this canonical homeomorphism is provided by the injective factor of the Hopf
map S — S? (obviously, zer(S3,St) = zer(S? — §?)).

4.2.2 Groups of Homeomorphism

Remark 4.2.2.1. By Remark 1.1.4.8, the homeomorphisms of a topological space
are a subgroup of the group Sym X of all invertible transformations X — X,
i.e., they form a group under the o (composition) operation. We denote the
group of homeomorphisms of X by Top X.

We may define two topologies on Top X. The first one is induced by the
inclusion Top X C C(X, X) (see Definition 1.2.7.1), i.e., is defined by the prebase
consisting of the sets Nb(K,0) = C(X, K; X,0)NTop X, with K compact and
00 open. The second topology is defined by the prebase consisting of the sets
U, U~ where U is open in the first topology. Equivalently, the second topology
is generated by the prebase consisting of the sets Nb(K, O), [Nb(K,0)] 1.

Lemma 4.2.2.2. If X is a locally compact Hausdorff space, then the map
Top X x TopX — TopX, (g,h) — gh(= g o h), is continuous in either of
the above topologies.
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Proof. If gh € Nb(K, O), then h(K) C g~!(O), and by Theorem 1.1.7.22, every
point of h(K) has a neighbourhood whose closure is compact and contained
in ¢g7'(0). Let O denote the union of a finite collection of such neighbour-
hoods which cover h(K). Clearly, C10’" is compact, and g € Nb(ClO’,0),
h € Nb(K,0"), Nb(C1O',O)Nb(K,0’") C Nb(K,O) .

Now if gh € [Nb(K,0)]71, then h=1g~! € Nb(K,O), and the above ar-
gument yields two sets, U,V C Top X, open in the first topology, and such
that h=! € V, g7 € U, VU C Nb(K,O). Clearly, g € U~!, h € V71, and
U—v~! C [Nb(K,O)] % O

Theorem 4.2.2.3. If X is a locally compact Hausdorff space, then Top X,
equipped with the second topology, is a topological group.

Proof. This is a corollary of Lemma 4.2.2.2 and of the obvious continuity of the
map g — ¢~ ! in the second topology. O

Theorem 4.2.2.4. If X is a compact Hausdorff space, then the first and the
second topologies on Top X are identical.

Proof. This is an immediate corollary of the relation
[Nb(K,0)]"' = Nb(X \ 0, X \ K).
O

Lemma 4.2.2.5. Let X be a locally compact, locally connected, Hausdorff space.
Then for a prebase of the second topology on Top X it suffice to take the sets
of the form Nb(K, O), where K is the closure of a connected open set and O is
open.

Proof. Given a compact K, an open O, and a homeomorphism f € Nb(K, O),
it suffices to produce connected open sets Uy, ...,Us with compact closures,
such that f € N{Nb(ClU;,0) C Nb(K,O). For each point z € K, fix a
connected neighbourhood of z, V, with C1V, compact and C1V,, C f~1(O) (see
Theorems 1.1.7.22 and 1.3.4.3). Now cover K by a finite number of the V,.’s, say
Vars -5 Va,- It is clear that the sets U, = V;, have the required properties. [

Theorem 4.2.2.6. If X is a locally compact, locally connected, Hausdorff space,
then the two topologies on Top X are identical.

Proof. By Lemma 4.2.2.5, given an open connected U with compact ClU, an
open O, and a homeomorphism f € Nb(C1U, O), it is enough to find a subset
U C Top X, open in the first topology, and such that f € & C Nb(CIU,O).
Leaving aside the trivial case U = &, we fix a point 2o € f(U) and find a set
W with compact closure contained in O, such that f(ClU) C W, and then take
an open set V satisfying f(C1U) C V Cc C1V C W. Now set

U = Nb(x,U) NNb(CIW \ U, f~*(0) \ C1U).
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The inclusion f € U is trivial, and it remains is to show that /=1 C Nb(C1U, O),
i.e., that g~ (C1U) C O for any g € U. But

geU = g(CIW\U)c f~1(0)\ClU,

whence U C ¢g(V) U g(X \ C1W). Since g(V) and g(X \ C1W) are open and
disjoint, and U is connected, we have only two possibilities: either UNg(U) = &
or U C g(V). Since g € U, g(xg) € U, since zp € f(U) C V, g(zg) € g(V).
Consequently, U N g(V) # @, and thus U C g(V), i.e., g (U) C V. Finally,
g }(ClU) c C1V cC O. O

Groups of Diffeomorphisms

Note: the following “7” is numbered as “8” in the original Russian text.

Remark 4.2.2.7. Let X be a CZ"-manifold, 1 < r < co. By Remark 3.1.2.9,
the set of its C"-diffeomorphisms, Diff” X, is a group under the composition
operation. By Remark 3.4.1.1, Diff” X can be endowed with the C"-topology.
We show that these two structures are compatible and conclude that Diff” X is
a topological group.

Obviously, the case r = oo reduces to r < 0o, and so we may assume from
the beginning that r is finite. Consider the mapping

do---od: Diff" X — Top(Tang--- Tang X).

r r

This is clearly a group monomorphism. Moreover, by Remark 3.4.1.1, do---od
is a topological embedding when the group Top(Tang- - - Tang X) is equipped
with the second topology. However, the first and the second topologies on
Top(Tang - - - Tang X) coincide (see Theorem 4.2.2.6), and hence the operations
o and f ~ f~! are continuous in these topologies. Consequently, both opera-
tions are continuous in Diff” X also.

Let us add that the inclusion Diff” X — Top X is a monomorphism of topo-
logical groups, and that the same is true for the inclusions Diff” X — Diff* X
with s < r.

The Classical Groups

Note: the following “10” and “11” are numbered as “9” and “10” in the original
Russian text.

Definition 4.2.2.8. The analytic manifolds O(n), SO(n), U(n), SU(n), Sp(n),
and also GL(n,R), GL4 (n,R), GL(n,C), GL(n,H), defined in Subsection 3.2.1
(see Remarks 3.1.1.2 and 3.2.1.10 - 3.2.1.10) and endowed there with group
structures, are obviously topological groups. O(n) is called the orthogonal group,
SO(n) - the special orthogonal group, U(n) - the unitary group, SU(n) - the
special unitary group, and Sp(n) - the symplectic group. GL(n,R), GL(n,C),
and GL(n, H) are known as the general linear groups. It is immediate that SO(n)
is the component of the identity of O(n), while GL (n,R) is the component of
the identity of GL(n,R).
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Remark 4.2.2.9. The topological group GL(n,R) is manifestly a subgroup of the
topological group Top R™ (in the sense of Remark 4.2.1.3). In the same sense,
O(n), SO(n), and GL4 (n,R) are subgroups of Top R".

Similarly, GL(n, C) and its subgroups U(n), SU(n), are subgroups of Top C",
while GL(n,H) and its subgroup Sp(n) are subgroups of Top H".

We also note that the inclusions U(n) C SO(2n), Sp(n) C SU(2n), GL(n,C) C
GL1(2n,R), and GL(n,H) C GL(2n,C) are inclusions of a subgroup into a
group in the sense of Remark 4.2.1.3.

4.2.3 Actions

Definition 4.2.3.1. An action of the group G on a set X isamap u: Gx X —
X with the following two properties:

(i) pleg,z) =x;
(ii) if p(g1,2) = =1 and p(g2, x1) = x2, then u(gagr, ) = 2.

The image of p(g,z) under the given action is usually denoted by gz, and so
one may write conditions (i), (ii) in the form:

® cgxr =1,
b 92(9196) = (9291)30-

ide,
GXGXX(LQGXX (92,91, 2) ———————> (g2, 12 = 21)

S |

GxX W X (9291, ) =12 = (9291)T = g2(g17) = ga11

Every element g € G defines a map X — X, z — gz, called the transformation
induced by the element g. We see from (i) and (ii) that

e this map is invertible (its inverse is the transformation induced by g—1),

e the map G — Sym X which takes each g into the corresponding transfor-
mation is a homomorphism.

We call it the adjoint homomorphism of the given action. Actually, this homo-
morphism uniquely determines the action, and it is clear that every homomor-
phism h: G — Sym X is the adjoint homomorphism of a certain action, namely,
of (g,z) — (h(g))x. Therefore, an action of a group G on X can be interpreted
as a homomorphism G — Sym X.

We are mainly interested in the case where the adjoint homomorphism is
a monomorphism. An action with this property is said to be effective. Gen-
erally, the kernel of the adjoint homomorphism will be referred to as the non-
effectiveness kernel of the given action. If K is this kernel, then we can write the
adjoint homomorphism as the composition of the projection G — G/K with the
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monomorphism G/K — Sym X. Moreover, the action itself may be expressed
as the composition of the map

projxidx: Gx X - G/K x X

with the effective action G/K x X — X. We call the action G/K x X — X
the effective factor of the action G x X — X.

The image of the set G x x under a given action G x X — X is a subset of
X called the orbit of the point . Obviously, the orbits of two points are either
identical or disjoint, and hence the orbits partition X. An action with only one
orbit is said to be transitive. In general, we denote the space of orbits by X/G.

If h: G; — G is a group homomorphism, then by composing the mapping
hxidy: Gy x X — G x X with an action G x X — X of G on X, we obtain an
action of G; on X. We say that this new action is induced by the initial action
via the homomorphism h. The adjoint homomorphism of the induced action
is simply the composition of A with the adjoint homomorphism of the initial
action. If h is a monomorphism (epimorphism), then an effective (respectively,
transitive) action induces an effective (respectively, a transitive) one.

If G; is a subgroup of G and h is the inclusion of Gy in G, then we say that
the induced action is obtained by restricting (or by reducing) the group G to Gy;
we also say that the initial action is obtained by extending (or by prolonging)
the group Gy to G. The discussion above shows that when one restricts the
group, an effective action remains effective. Also, when one extends the group,
a transitive action remains transitive.

A subset X; of X is tnvariant under the action G x X — X if it is saturated
with respect to the partition of X into orbits. If this is the case, then we have
an action G x X7 — X, and clearly this is effective whenever the initial action
G x X — X is effective.

Given two actions, G; X X7 — X7 and G2 x Xo — Xo, their product is the
action defined by

(G1 x G2) x (X1 x X2) = X1 x Xo,  (g91,92)(21,72) = (121, g222).

A product of effective (transitive) actions is again effective (respectively, tran-
sitive).

Given two actions, G x X — X and G x X' — X', of the same group, a
map f: X — X' is a G-map (or a G-equivariant map) if f(gz) = gf(z) for all
z € X and g € G.

Gx X ——X (g,2) ———>gx

] LT

Gx X' —=X'" (g, f(2))— g(fz) = f(gz)

We can describe the more general situation when we are given two actions,
GxX — X and G’ x X' — X'1, of different groups, and a homomorphism
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v: G — G5 then f: X — X' is called a y-map if f(gz) = v(g)f(x) for all x € X
and g € G.

GxX——X (g,2) 1 gz

AT

G xX'—=X"" (4(g), f(2)) —=7(9)(f () = f(g2)

Two actions, G x X — X and G x X' — X', are equivalent if there is an
invertible G-map X — X'.

Remark 4.2.3.2. The action defined in Definition 4.2.3.1 should actually be
called a left action, to distinguish it from a right action, which is defined as a
map X X G — X with the following two properties:

(i) wz,eq) ==
(ii) if p(z,91) = x1 and p(x1,g2) = @2, then p(x, g192) = o.
For a right action, we write xg instead of gz, and properties (i), (ii) in the form:
o xcg =1,
e (291)g2 = 2(9192).

id
XXGXGMXXG (z,91,92) —————— (xg1 = =1, g2)

<idx,oc>l l I l

XxaG [z X (2, 9192) > 19 = 1(9192) = (291)92 = 7192

Furthermore, the adjoint homomorphism becomes the adjoint anti-homomorphism,
and the rest of the discussion in Definition 4.2.3.1 can be repeated word for word
for a right action.

It is clear that the formula zg = ¢~ x transforms a left action into a right
one, and that the formula gr = zg~! yields the inverse transformation. We say
that the actions thus related are conjugate.

Henceforth, by action we shall mean a left action, unless we mention explic-
itly that we are dealing with a right action.

1

Remark 4.2.3.3. If the transformations induced by the elements of the group G,
acting on X from the left (right), are elements of a subgroup H of Sym X, then
the action (respectively, right action) of G can be thought of as a homomorphism
(respectively, anti-homomorphism) of G into H. In this case we say that G acts
on X (respectively, acts from the right on X) by transformations from H.

The group H is not always indicated explicitly. For example, if X is a
topological space and H = Top X, then one simply says that G acts on X (acts
on X from the right) by homeomorphisms. Similarly, if X is a group and H is
a group of automorphisms of X, then one says that G acts on X (respectively,
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acts on X from the right) by automorphisms; in this case, the action itself will
be referred to as a group-action.

Important special examples are the actions G x G — G given by (g, ) — gx
or (g,7) — gxg~!, and the right actions G x F — G given by (r,g) — xg and
(z,9) — g 'xg (here all the products are taken in G). These are called, in
order: the left canonical action, the left inner action, the right canonical action,
and the right inner action. The canonical actions are effective and transitive,
while the inner actions are group-actions.

Let us remark that by restricting the left canonical action G x G — G to the
action G; x G — G, where (1 is a subgroup of G, the orbits become the (right)
cosets of G1. Thus, the two interpretations (the usual group-theoretic one, and
that given in Definition 4.2.3.1) of the notation G/G; agree (if we denote the
right coset space also by G/G1).

Definition 4.2.3.4. The following generalisation of the left canonical action
is already of general importance. Let G; be a subgroup of G. Since every left
translation takes left cosets into left cosets, the map (g, ) — gz induces a map
G x G/G1 — G/G4, and this is clearly an action, called the canonical action of
the group G on G/G, . It is transitive, and its non-effectiveness kernel is the
intersection of all subgroups of G which are conjugate to G;. The projection
G — G/G; is a G-map with respect to the left canonical action of G on G and
the canonical action of G on G/Gj.

It turns out that every transitive action of G is equivalent to the canonical
action on some quotient G/G;. Specifically, let G x X — X be a transitive
action, and let ;7 € X be an arbitrarily chosen point. Consider the map f: G —
X, g — gx1. The preimage of x; under f is a subgroup G; of G, while the
preimages under f of points x € X, z # x1, are left cosets of G;1. It is routine
to check that the injective factor of f, fact f: G/G; — X, is a G-map.

The subgroup G has a special name: it is known as the isotropy (or stability,
or stationary) subgroup of the action G x X — X | or of the group G, at the
point 1. Obviously, the isotropy subgroup at the point gz, is gG1¢g~!, and so
the isotropy subgroups of a transitive action of G constitute exactly one of its
classes of conjugate subgroups.

Continuous Actions

Definition 4.2.3.5. A continuous action of a topological group G on a topo-
logical space X is a continuous map G x X — X which is an action in the sense
of Definition 4.2.3.1.

For a continuous action, the transformations induced by the elements of the
group are manifestly homeomorphisms. Therefore, the adjoint homomorphism
of a continuous action G x X — X can be compressed to an algebraic isomor-
phism G — Top X. By Theorem 1.2.7.6, this last homomorphism is continuous
in the first topology of the group Top X (see Remark 4.2.2.1). If, in addition, X
is Hausdorff and locally compact, then the existence of a continuous (in the first
topology on Top X) compression G — Top X of the adjoint homomorphism of
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the given action is equivalent to the continuity of the action. It is clear that
an algebraic homomorphism G — Top X which is continuous in one of the two
topologies of Top X is continuous also in the other one, and we know that if
X is locally compact and Hausdorff, then Top X with the second topology is a
topological group (see Theorem 4.2.2.3). Therefore,

Theorem 4.2.3.6. if X is a locally compact Hausdorff space, then a continuous
action of G on X may be defined as a homomorphism G — Top X of topological
groups (see Remark 4.2.1.8).

A discrete group which acts by homeomorphisms always acts continuously.
Thus, we may regard the actions of non-topologised groups which act by home-
omorphisms as continuous actions.

Definition 4.2.3.7. A G-space is a topological space endowed with a contin-
uous action of the group G. A G-space is called effective if the action of G
is effective. In the general case, by shifting to the effective factor of the ac-
tion of G, the given G-space becomes an effective (G/K)-space, where K is the
non-effectiveness kernel.

When the action G x X — X is continuous, X/G is a topological space (a
quotient space of X), known as an orbit space. Since the saturation of any subset
A C X with respect to the partition of X into orbits is the union of the sets g A,
g € G, this partition is always open. When the group G is finite, the partition
into orbits is also closed. In particular, X/G is second countable together with
X, and when G is finite, X/G is normal together with X; see Remark 1.2.3.10
and Theorem 1.2.3.9. Let us add that the partition into orbits is again closed
whenever X is compact and Hausdorff and G is compact. Indeed, in this case
the action G x X — X is a closed map, and since it transforms every product
G x A into the saturation of the set A, this saturation is closed whenever A is
closed.

By restricting the topological group G to a subgroup G, we transform every
G-space into a Gy-space. Any invariant subspace of a G-space is obviously a
G-space; the G-spaces of this type are termed subspaces of the initial G-space.
The product of two continuous actions is continuous, and hence the product of
a G-space with a Ga-space is a (G1 X G3)-space.

One can define the notions of G-map and y-map for the case of continuous
actions. To spell it out, a G-map (or a G-equivariant map) of a G-space into
another G-space is any continuous map which is a G-map in the sense of Defi-
nition 4.2.3.1; similarly, a v-map of a G-space into a G'-space is any continuous
map which is also a y-map in the sense of Definition 4.2.3.1 (here v: G — G’
is a homomorphism of topological groups). Two continuous actions of G are
equivalent if the corresponding G-spaces are G-homeomorphic.

When G is a topological group, the special actions introduced in Remark
4.2.3.3, i.e., the left canonical and left inner actions, are continuous.

As in Remark 4.2.3.3, the notation G/G; can be interpreted in two ways
(as the space of cosets of G; in G and as an orbit space), but again the two
interpretations agree.
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Theorem 4.2.3.8. The canonical action of a group G on the space G/G1 of
cosets of a subgroup G1 is also continuous.

Proof. To see this, consider the composition ¢¥: G x G — G/G; of the map
G x G — G, (g9,h) — gh, with the projection G — G/G; . Clearly, ¢ is
constant on the elements of the partition zer(G, eg) x zer(G, G1)). Furthermore,
the action G x G/G; — G/G; in which we are interested is the composition of
the map

G x G/G1 — +(G x G)/(zex(G, eq) x zer(G,Gr)),

given by the inverse of the injective factor of idg x proj: Gx — G x G/G1, with
fact: (G x G)/(zer(G,eq) x zer(G,G1)) = G/Gh.

Since the partitions (zer(G,eq) and zer(G,G1) are open, the above injective
factor is a homeomorphism (see Theorem 1.2.3.11), which in turn implies the
continuity of the action of G on G/G}. O

Therefore,

Definition 4.2.3.9. G/G; becomes a G-space with respect to the canonical
action G x G/G1 — G/G1, and is called a homogeneous space.

The equivalence between an arbitrary transitive action G x X — X and
the canonical action of G on G/G1, where G; is an isotropy subgroup, is not
complete in the case of continuous actions. More precisely, the map f: G — X,
g —= gx1, and its injective factor, fact f: G/G1 — X, are indeed continuous,
but as the next example (provided by the translator) shows that (fact f)~! is
not necessarily continuous.

Example 4.2.3.10 ((An “irrational flow” on the torus)). Think of S! as the set
of complex numbers of modulus 1 and let « be irrational, i.e, « € R\ Q. Take
G =R, X =S!' xS, and define

GxX—X, (t/(exp2rx,exp2ny))— (exp2m(x +1t),exp2n(y + at)),

However, (fact f)~! is continuous provided that G is compact and X is
Hausdorft, i.e.,

Theorem 4.2.3.11. every transitive continuous action of a compact topological
group on a Hausdorff topological space with a distinguished point is canonically
equivalent to the canonical action of the group on the space of cosets of the
isotropy group at the distinguished point.

Remark 4.2.3.12. A continuous action G x X — X is free if for every point
x € X the map G — X given by g — gz is an embedding.

Every free action is clearly effective. Moreover, if the action G x X — X
is free, then by restricting G to one of its subgroups, or by restricting X to
one of its G-subspaces, the action remains free. A product of free actions is
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free. The canonical action G x G — G is free, while the canonical action
G x G/G1 — G/G; is not free unless G = eg.

Given a free action G x X — X, consider the bundle (X,proj, X/G). If
every point x € X has a neighbourhood U such that gU N ¢'U = & for all
9,9 € G with g # ¢’ (which happens, in particular, when G is finite and X is
Hausdorff), then the image of U under the projection proj: X — X/G is open,
and the restriction of the bundle (X, proj, X/G) to proj(U) is a trivial bundle
with discrete fibres. Therefore, in this case (X, proj, X/G) is a covering in the
broad sense.

Definition 4.2.3.13. A continuous right action of a topological group G on
a topological space X is a continuous map X x G — X which is also a right
action in the sense of Remark 4.2.3.2.

All definitions and facts discussed in Definition 4.2.3.5, Theorem 4.2.3.6,
Definition 4.2.3.7, and Remark 4.2.3.12 can be adapted immediately to the
case of right actions. In particular, a topological space endowed with a right
continuous action is called a right G-space. We keep the simple term G-space
only for left G-spaces.

Examples
Remark 4.2.3.14. Let X be a topological space. The identity homomorphism
Top X — Top X

defines an effective action of Top X on X, and hence an effective action of
any subgroup of Top X on X. If X is Hausdorff and locally compact, then
Top X is a topological group and all these actions are continuous. In particular,
GL(n,R), GL4+(n,R), O(n), and SO(n) act effectively and continuously on R™,
while GL(n,C), U(n), and SU(n) act the same manner on C", and GL(n,H)
and Sp(n) on - H™.

Given an arbitrary CZ"-manifold X with r < oo, the inclusion

Diff" X — Top X

defines an effective and continuous action of Diff” X on X.

Remark 4.2.3.15. Since S"~! is invariant under the action of O(n) on R™, O(n)
and its subgroup SO(n) act continuously on S"~! Similarly, U(n) and SU(n),
being subgroups of O(2n), act continuously on S?"~! while Sp(n), being a
subgroup of O(4n), acts continuously on S**~1. All these actions are effective,
and, if we exclude the trivial cases SO(1) x S® — S% and SU(1) x St — S,
transitive.

The isotropy subgroups of the actions

O(n) xS" ' 8" ! and SO(n)xS" ! —8§" !

at ort,, are exactly O(n — 1) and SO(n — 1). Similarly, the isotropy subgroups
of the actions

U(n) x S*~1 55 821 and  SU(n) x 21 — §2n-1
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at orty, are U(n — 1) and SU(n — 1), while the isotropy subgroup of the action
Sp(n) x S~ — §4=1 at orty, is Sp(n — 1). The corresponding homeomor-
phisms,

O(n)/O(n—1) = S" ', SO(n)/SO(n—1) = S""!, Un)/Um—-1) =™

SU(n)/SU(n — 1) — S~ 1 Sp(n)/Sp(n —1) — st*~1

(see Theorem 4.2.3.8 and Definition 4.2.3.9) equal the injective factors of the
submersions

V(nvn)[: O(Tl)] - V(na 1)[: Snil]a V(”?” - 1) - V(na 1)a
CV(n,n) - CV(n,1), CV(n,n—1)— CV(n,1), HV(n,n) — HV(n,1),

defined in Subsection 3.2.1 (see Remarks 3.2.1.4, 3.2.1.6, and 3.2.1.7).

If we restrict O(n), U(n), and Sp(n) (n > 1) to their subgroups which con-
sists of scalar multiples of the identity matrix, and which are usually identified
with SY, S and S?, respectively, we obtain continuous actions

SO % Sn—l N Sn—l7 Sl % S2n—1 — SQn—l7 S3 % S4n—1 N S4n—1.
These are free actions, and the corresponding orbit spaces are
Sn—l/SO — RPn—l SQn—l/Sl _ (CPn—l S4n—1/S3 _ HP”_l.

We remark also that D", D2, and D*" are invariant under the actions of O(n),
U(n), and Sp(n) on R™, C", and H". Hence O(n) and SO(n) act continuously
on D", U(n), and SU(n) act continuously on D?", and Sp(n) acts continuously
on D*". All these actions are effective.

Remark 4.2.3.16. The groups O(n) and SO(n) (O(k) and SO(k)) act contin-
uously from the left (right) on the Stiefel manifolds V(n, k): the left actions
are defined by (g,v) — gowv [g € O(n) or SO(n), v € V(n,k); g and v are
regarded as linear maps|; the right actions are given by (v, g) — vog. Similarly,
U(n) and SU(n) (U(k) and SU(k)) act continuously from the left (respectively,
from the right) on CV(n, k), and Sp(n) (Sp(k)) acts continuously from the left
(respectively, from the right) on HV (n, k).

For k # 0, all the left actions are effective, and the only intransitive ones are

SO(n) x V(n,n) = V(n,n) and SU(n)x CV(n,n) — CV(n,n), n>1.
The isotropy subgroups of O(n) and SO(n) at the point
[(z1,...,2k) = (0,...,0,21,...,21)] € V(n, k)

(the elements of V(n,k) are considered as linear isometric maps R¥ — R")
coincide with O(n — k) and SO(n — k). Similarly, the isotropy subgroups of
U(n), SU(n), and Sp(n) at the points

[(z1,...,25) = (0,...,0,21,...,2,)] of CV(n,k) and HV(n,k)
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coincide with U(n—k), SU(n—k), and Sp(n—k), respectively. The corresponding
homeomorphisms

O(n)/O(n—k) = V(n,k), SO(n)/SO(n—k)— V(n,k),
U(n)/U(n —k) = CV(n,k), SU(n)/SU(n—k)— CV(n,k),
Sp(n)/Sp(n — k) = HV (n, k),

are precisely the injective factors of the maps

O(n) = V(n,k), SO(n)—=V(n,k), U(n)— CV(n,k),
SU(n) = CV(n,k), Sp(n) — HV(n,k),
defined in Subsection 3.2.1 (see Remarks 3.2.1.4, 3.2.1.6, and 3.2.1.7). When

k =1, these actions reduce to those discussed in Remark 4.2.3.15.
All the right actions are free. The corresponding orbit spaces,

V(n,k)/O(k), V(n,k)/SO(k), CV(n,k)/U(k), CV(n,k)/SU(k),
HV (n, k)/ Sp(k),
are canonically homeomorphic to the Grassmann manifolds G(n, k), G+ (n, k),

CG(n, k), and HG(n, k), respectively; the corresponding canonical homeomor-
phisms are the injective factors of the maps

V(n, k) = G(n, k), V(nk)— Gi(nk), CV(n,k)— CG(n,k),
HV (n, k) — HG(n, k),

defined in Subsection 3.2.2 (see Remarks 3.2.2.3, 3.2.2.7, and 3.2.2.8).

Remark 4.2.3.17. The same formulae, i.e., (g,v) — gow, (g,v) — v o g, define
left actions of GL(n,R) and GL4(n,R) on V'(n, k), of GL(n,C) on CV'(n, k),
and of GL(n,H) on HV'(n, k), and right actions of GL(k,R) and GL (k,R) on
V'(n, k), of GL(k,C) on CV'(n, k) and of GL(k,H) on HV’(n, k).

All the left actions are effective and, excepting the action

GLy(n,R) x V'(n,n) — V'(n,n),

transitive. The isotropy subgroups of GL(n,R), GL(n,C), and GL(n,H) at the
points
[(1,...,25) = (0,...,0,21,...,21)]

of V'(n, k), CV'(n, k), and HV'(n, k) are
GL(n — k,R), GL(n-k,C), GL(n-—k,H),
respectively. The corresponding homeomorphisms

GL(n,R)/GL(n — k,R) = V'(n, k), GL(n,C)/GL(n —k,C) — CV'(n, k),
GL(n,H)/ GL(n — k,H) — HV'(n, k)
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are the injective factors of the maps
GL(n,R) = RV'(n,k), GL(n,C) — CV'(n,k), GL(n,H) — HV'(n, k),

defined in Subsection 3.2.1 (see Remarks 3.2.1.8, 3.2.1.9, and 3.2.1.10). The
isotropy subgroup of GL (n,R) at the point

[(z1,..., o) — (0,...,0,21,...,2x)] € V'(n, k)

is GLy(n — k,R).
All the right actions are free. The corresponding orbit spaces,

V'(n,k)/GL(k,R), V'(n,k)/GL.(k,R), CV’(n,k)/GL(k,C),
HV'(n, k)/ GL(k, H),

are canonically homeomorphic to the Grassmann manifolds G(n, k), G4 (n, k),
CG(n, k), and HG(n, k); the corresponding canonical homeomorphisms are the
injective factors of the maps

V'(n,k) = G(n,k), V'(n,k) = Gy(n,k), CV'(n,k) — CG(n,k),
HV'(n, k) — HG(n, k),

defined in Subsection 3.2.2 (see Remarks 3.2.2.3, 3.2.2.7, and 3.2.2.8).

Remark 4.2.3.18. GL(n,R) and its subgroups GL (n,R), O(n), and SO(n) ob-
viously act continuously from the left on the Grassmann manifolds G(n,k),
G4 (n, k). Similarly, GL(n,C) and its subgroups U(n) and SU(n) act continu-
ously from the left on CG(n, k), while GL(n, H) and Sp(n) act continuously from
the left on HG(n, k). For k odd, the actions of O(n) and SO(n) on G4 (n, k) are
effective. The non-effectiveness kernels of the actions GL(n,R) x G4 (n, k) —
Gi(n,k) and GLy(n, k) x G4(n,k) = G4 (n, k) for k odd consist of scalar ma-
trices with positive diagonal elements. If we exclude the trivial cases k = 0
and k = n, the non-effectiveness kernels of the remaining actions consists of
all scalar matrices contained in the corresponding group. The only intransitive
actions are

GL(n,R) x G4+(n,0) = G4+(n,0), GLy(n,R)x G4 (n,0) = G4(n,0),
O(’ﬂ) X G+(n70) - G+(TL,O), SO(’IL) X G+(n70) - G_A,_(TL,O),
GL:(n,R) x G4 (n,n) — Gy(n,n), SO(n) x Gy(n,n) = G4 (n,n).
Take the + plane z; = 0,...,2,_ = 0 (oriented in the case of G (n,k)) as a
distinguished point in the manifolds G(n, k), G(n, k), CG(n, k), and HG(n, k).
Then the isotropy subgroups of the actions
GL(n,R) x G(n, k) — G(n,k), GL(n,R) x G(n,k) = G+(n,k),
GL(n,C) x CG(n, k) — CG(n,k), GL(n,H) x HG(n,k) — HG(n, k)
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at these distinguished points are the subgroups of all matrices of the form
A C
0 B’
where A and B are non-singular matrices of order n — k and k, respectively, and
C'is an arbitrary (n—k) x k matrix (and B € GL4 (k, R) in the case of G(n, k)).
If we restrict the acting group to a subgroup, then the new isotropy sub-
group is the intersection of the original isotropy subgroup with the new acting
group. In particular, for the actions of O(n) on G(n,k) and G1(n, k), the ac-
tion of SO(n) on G4(n, k), the action of U(n) on CG(n, k), and the action of
Sp(n) on HG(n, k), the corresponding isotropy subgroups are the images of the
monomorphisms
O(n —k) x O(k) — O(n), O(n—k)xSO(k) = O(n),
SO(n — k) x SO(k) — SO(n), U(n—k) x U(k) — U(n),
Sp(n — k) x Sp(k) — Sp(n),

all defined by the matrix formula
A 0
(A,B) — [0 B] .
If we identify these product with their images, we obtain canonical homeomor-
phisms
O(n)/[0(n — k) x O(k)] = G(n, k), O(n)/[O(n — k) x SO(k)] = G4(n, k),
SO(n)/1S0(n — k) x SO(k)] > G4 (n,k),  U(n)/[U(n — k) x U(k)] = G(n, k),
Sp(n)/[Sp(n — k) x Sp(k)] — HG(n, k).
Remark 4.2.3.19. Let m, ¢1,...,¢, be relatively prime positive integers. The
complex-number formula
(k, (z1,-..,2n)) — (21 exp(2mikli/m), ..., z, exp(2wikl, /m)),
keZ, (z1,...,2) € S>71
defines an action Z x S?»~! — §2"~! with non-effectiveness kernel mZ, which
becomes, by shifting to the effective factor, a free action of the group Z,, =
Z/mZ. The orbit space S*"~1/(Z/mZ is denoted by L(m;/fy,...,¢,) and is
called a lens (or a lens space).
There are also infinite lenses L(m;{q,0a,...), with m, €4, 0o, ... relatively

prime positive integers. The lens L(m; ¢y, ¥s,...) defined as the orbit space of
the free action resulting from passing to the effective factor of the action

(k,(z1,-..,)) = (z1 exp(2mikly /m), zo exp(2mikls/m), . ..)
of on S*°. An equivalent description:

L(m;tly,la,...) = liﬂ(L(m;él,...,En)),

incl

incl: L(m;ly, ... 0,) = L(m; by, ..o lng).
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The infinite lens L(m;1,1,...) is denoted simply by L(m).
According to Remark 4.2.3.12, the triples

(8271—1,pr0j’ L(m;ﬁh . ,fn))7 (Soo)proj’ L(m7 £17‘€27 .. ))

are coverings.

Remark 4.2.3.20. The formula (y, ) — yaxy~!, where x and y are quaternions

and y has norm 1, defines a continuous action S* x R* — R*. The space R} of
imaginary quaternions is invariant under this action, and hence R$, and also R?,
are 3-spaces. [We identify R} with R? via the map shi: R?* — R¥; see Theorem
3.2.3.1.] The non-effectiveness kernel of the action S* x R® — R3 is obviously
SY, and now it is clear that the effective action of the factor group S3/S° = RP3
on R3 becomes the standard action of SO(3) on R? (see Remark 4.2.3.15) under
the canonical identification of the spaces RP3 and SO(3) (see Theorem 3.2.3.1).

Ezample 4.2.3.21. Let P be a convex regular polyhedron in R? (a tetrahedron,
cube, octahedron, dodecahedron, or icosahedron) with centre 0. Let GP be
the subgroup of SO(3) consisting of those rotations which take P into itself,
and let GP be the preimage of GP under the projection S3 — SO(3) (see
Remark 4.2.3.20). Obviously, GP and GP do not change if we replace P by
the dual polyhedron, while they are transformed into conjugate subgroups of
SO(3) and if we replace P by any convex regular polyhedron with the same
number of faces and centre 0. Therefore, in SO(3) (S®) there are exactly three
classes of conjugate subgroups GP (respectively, 513) The groups in the first
class are called tetrahedral groups (respectively, binary tetrahedral groups), those
in the second class - cube or octahedral groups (respectively, binary cube or
octahedral groups), and those in the third class - dodecahedral or icosahedral
groups (respectively, binary dodecahedral and icosahedral groups).

To every rotation in GP we may associate the image of a marked oriented
edge of the polyhedron P, and in this way define an invertible mapping of the
group G P onto the set of oriented edges of P. Consequently, the order of the
group GP is twice the number of edges of P, i.e., 12 when P is a tetrahedron,
24 when P is a cube or octahedron, and 60 when P is a dodecahedron or an
icosahedron. The corresponding binary groups G P have order 24, 48, and 120.

The coset spaces SO(3)/GP and S?/GP are orbit spaces of the free actions
induced by the left canonical actions of SO(3) and S*® under the inclusions
GP — SO(3) and GP — S3. Therefore, the triples (SO(3), proj, SO(3)/GP)
and (S3,pr0j,83/513) are coverings (see Remark 4.2.3.12). Obviously, we can
write SO(3)/GP = S3/GP.

4.2.4 Exercises
Exercise 4.2.4.1. Show that for any smooth manifold X the first and the second
topologies on Top X coincide.

Ezercise 4.2.4.2. Let X denote the subset of R consisting of the points 0 and 2",
all n € Z. Show that the first and the second topologies on Top X are distinct.
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Ezercise 4.2.4.3. Show that the canonical diffeomorphism SU(2) — S? (see
Remark 3.2.1.6) is a group isomorphism.

FEzercise 4.2.4.4. Show that the lenses L(m; {q,...,0;) and L(m; ¢}, ..., ¢},) are
homeomorphic whenever for each 7 the sum ¢; + ¢} or the difference £; — £, is a
multiple of m.

Ezercise 4.2.4.5. Show that the submanifold Tang; RP? of Tang RP? consisting
of the unit tangent vectors (i.e., of the images under the map dpyo;: Tang S? —
Tang RP of the unit tangent vectors) is homeomorphic to the lens L(4;1,1).

Ezercise 4.2.4.6. Consider the action of Z/2Z on the manifold V(3,2) of unit
vectors tangent to S?, where the non-zero element of takes each vector v into
—v. Show that the orbit space V' (3,2)/(Z/2Z) is homeomorphic to (4;1,1).

Exercise 4.2.4.7. Consider the action (Z/2Z) x Tang; RP? — Tang; RP? (see
Exercise 4.2.4.5), where the non-zero element of takes each vector v into —v.
Show that the orbit space Tang, RP?/(Z/2Z) is homeomorphic to the coset
space S/H, where H is the subgroup of S* consisting of the quaternions 4 ort;,
+ orty, +orts, +orty.

Exercise 4.2.4.8. Consider the action (Z/2Z) x CP? — CP?, where the non-zero
element of Z/27 takes each point ((21 : 22 : 23) into ((Z1 : Z2 : Z3)). Show that
the orbit space CP?/(Z/2Z) is homeomorphic to S*.

Ezercise 4.2.4.9. Consider the action Z/2Z on CP' x CP!, where the non-zero
element of Z /27 takes each point ((21 : 22), (w1 : w2)) into ((Z1 : Z2), (W; : Wa)).
Show that the orbit space CP! x CP!/Z/2Z is homeomorphic to S*.

Ezercise 4.2.4.10. Consider the action of Z/2Z on S? x S?, where the non-zero

element of Z/2Z takes each point (z,y) into (y,z). Show that the orbit space
S? x S?/7/2Z is homomorphic to CP?.
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4.3 BUNDLES WITH A GROUP STRUCTURE

4.3.1 Spaces With F-Structure

Remark 4.3.1.1. The bundles which we encounter most frequently have fibres
that besides being merely topological spaces, carry some additional structure:
for example, they may be vector, Euclidean, or Hermitian spaces. In the present
section we shall introduce this concept of additional structure into the theory
of bundles.

We begin by giving an exact description of the necessary type of structures
and then fit them systematically into the basic definitions of the theory, given
in §4.1 (see Subsections 4.1.1 and 4.1.2).

Definition 4.3.1.2. Let G be a topological group, and let F' be an effective
G-space. We say that the topological space W is endowed with an F-structure
if there is given a non-empty set A of homeomorphism F' — W such that, for an
arbitrarily fixed homeomorphism «/inA, a given homeomorphism 5: F — W
belongs to A if and only if 37! o « is the transformation induced by one of the
elements of G. The homeomorphisms of A are called marked.

Every marked homeomorphism naturally carries the action of G from F' to
W. If G is commutative, then the resulting action G x W — W does not
depend upon the choice of the marked homeomorphism, and hence in this case
the F-structure reduces to the action of G. If G is not commutative, then an
F-structure does not define a canonical action of G on W.

We remark that F' itself has a canonical F-structure, namely that whose
marked homeomorphisms are the transformations induced by the elements of
G.

In the simplest case when G is the trivial group, a space with an F-structure
is simply a topological space canonically homeomorphic to F'.

Ezample 4.3.1.3. If G = GL(n,R) and F' = R™ with the usual action of this
group, then a space with an F-structure is nothing else but an n-dimensional
vector space, and fixing a marked homeomorphism is simply fixing a basis of
the space.

Ezample 4.3.1.4. If G is one of the groups GL(n,R), O(n), or SO(n), and F is
R™ with the usual action of these groups, then a space with an F-structure is an
oriented n-dimensional real vector space, ann-dimensional Euclidean space, or
an oriented n-dimensional Euclidean space, respectively. When G is GL(n, C) or
U(n), and F is C™ with the usual action of G, then a space with an F-structure
is an n-dimensional complex vector space, or an n-dimensional Hermitian space,
respectively.

Ezample 4.3.1.5. If G = Diff" X, where X = F is a C"-manifold (1 < r < a)
and G acts as usual, then a space with an F-structure is a C"-manifold which
is C"-diffeomorphic to X.

Example 4.3.1.6. If G = Top X, where X is a locally compact Hausdorff space,
and F' = X with the usual action of Top X, then a space with an F-structure
is simply a topological space homeomorphic to X.
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Example 4.3.1.7. If G is the group of all simplicial auto-homeomorphisms of the
unit simplex 7", and F' = T"™ with the standard action of this group, then a
space with an F-structure is simply an n-dimensional topological simplex.

Remark 4.3.1.8. A homeomorphism W — W', where W and W' are spaces
with F-structure, which takes the set of marked homeomorphisms of W into
the set of marked homeomorphisms of W, is called an isomorphism or, more
specifically, an F-isomorphism.

In each of the previous examples, the F-isomorphisms form a well-known
class of maps: in the first and the fifth cases they are the linear isomorphism,
in the second - the orientation preserving linear isomorphisms, in the third and
sixth - the linear isometric isomorphisms, in the fourth - the orientation preserv-
ing linear isomorphisms, in the seventh - the C"-diffeomorphisms, in the eighth
- the homeomorphisms, and in the ninth - the simplicial homeomorphisms.

Remark 4.3.1.9. Given a space W with an F-structure and a space W’ with an
F’-structure, the product W x W' is obviously a space with an F' x F’-structure
(see Definition 4.2.3.7); the marked homeomorphisms F x F/ — W x W' are
those of the form a x o', where o and o’ are marked homeomorphisms.

If the Gi-space Fj is obtained from the G-space F' by reducing the group
G to G,, then by returning to F' from F; every space Wiy with an Fj-structure
becomes a space W with an F-structure: topologically, W is the same as Wh,
while the new marked homeomorphisms are defined as the compositions of the
transformations induced by the elements of G with the old marked homeomor-
phisms. We say that W is obtained from W; by eztending (or prolonging) the
group G to G.

4.3.2 Steenrod Bundles

Definition 4.3.2.1. Let G and F be a topological group and an effective G-
space, respectively. A bundle £ is a weak F-bundle, or a W — F-bundle, if each
of its fibres is endowed with an F-structure. In this case, F' and G are called the
standard fibre and the structure group of &, respectively. The set of all marked
homeomorphisms from F' onto the fibres of ¢ is denoted by M H (§). The group
G acts naturally from the right on M H (&) by the rule:

lagl(y) = algy) o€ MH(E), g€G, yePF

If ¢ is a W — F-bundle and f: B — bs(&) is continuous, then clearly the induced
bundle f'(¢) is a W — F-bundle: the F-structures on its fibres are defined via
the homeomorphisms

abrtl(adj f): [proj(f'(£))] " (b) — [proj(&)] ' (f(b)), b€ B.

Given two W — F-bundles, £ and 7, a map f of £ into 7 is called a W — F-map
if the maps abrtl(f) from the fibres of ¢ into the fibres of 1 are isomorphisms
(see Remark 4.3.1.8). A W — F-map which is an isomorphism (respectively,
equivalence) in the pure topological sense, i.e., in the sense of Definition 4.1.1.2,
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is called a W — F-isomorphism (respectively, a w — F-equivalence). Two W — F-
bundles which can be mapped into each other by a W — F-isomorphism (W — F-
equivalence) are said to be W — F-isomorphic (respectively, W — F-equivalent).

To each W—F-map f: & — 1 corresponds the map M H (§) — M H(n), which
takes each marked homeomorphism a: F' — [proj(£)]=1(b) into the composite
homeomorphism

F % (proj ) ™! (b) 0

[proj ()]~ (bs(£(b)).
Moreover, we see that M H(f) is a G-map with respect to the natural right
actions of G on M H (&) and M H (n).

The standard trivial bundle, (B x F, proj;, B), with B an arbitrary topologi-
cal space, is obviously a W — F-bundle: the F-structures on its fibres are defined
by the homeomorphisms F' — b x f, y — (b,y). As in Subsection 4.1.2, every
W — F-bundle which is W — F-equivalent to a standard trivial W — F-bundle
is called a W — F-trivial W — F-bundle.

Definition 4.3.2.2. A bundle ¢ is a strong F-bundle or, simply, an F-bundle
if it is a W — F-bundle and M H (€) is endowed with a topology.

If ¢ is an F-bundle and f: B — bs(€) is continuous, then the induced bundle
f'(&) is also an F-bundle: to introduce a topology on M H(f'(£)), we use the
injective mapping

MH(f(€) = B x MH(§), o ([proj(f(§))(a(F)), [MH(adj f))(a)).

A map f: £ — n, where £ and n are F-bundles, is said to be an F-map if it
is a W — F-map andM H(f) is continuous. AnF-map f is an F-isomorphism
(F-equivalence) if it is an isomorphism (respectively, equivalence) in the pure
topological sense and M H(f) is a homeomorphism.

The standard trivial bundle (B x F,proj;, B), with B an arbitrary topo-
logical space, is obviously an F-bundle: the F-structures of its fibres were al-
ready introduced in Definition 4.3.2.1, and one can introduce a topology on
MH((B x F,proj;, B)) by means of the invertible mapping B x G — M H ((B x
F,proj,, B)), which takes each pair (b,g) into the homeomorphism F — b x
F,y— (b,gy). An F-bundle which is F-equivalent to a standard trivial bundle
is called F-trivial, and every such equivalence is an F-trivialisation.

Definition 4.3.2.3. The F-bundle &, is locally F-trivial if every point of bs(&)
has a neighbourhood U such that the restriction £|y is F-trivial. The locally
F-trivial bundles are called Steenrod F-bundles.

Steenrod bundles play a major role in what follows, which accounts also for
the importance of the F-bundles. The weak F-bundles are only auxiliary.

We remark that for Steenrod bundles the canonical right action of the struc-
ture group on the space of marked homeomorphisms is continuous and free. This
is plainly true in the standard trivial case, to which the general case reduces.



4.3. BUNDLES WITH A GROUP STRUCTURE 273

Remark 4.3.2.4. If € is a Steenrod F-bundle and f: B — bs(§) is continuous,
then the induced bundle f'(¢) is again a Steenrod F-bundle: by Definition
4.3.2.2, f'(¢) is an F-bundle, and the obvious fact that f'(¢) is F-trivial if ¢
is so implies the local F-triviality of f'(¢). Clearly, the map adjf: f'(¢) —
¢ is an F-map, the canonical equivalence idLS(g)(ﬁ) — &, and the canonical
equivalences of the form ¢'(f'(¢)) — (f 0 ¢)'(¢) (see Remark 4.1.1.5), are F-
equivalences. Moreover, given any F-map h of & into another Steenrod F-
bundle, the correcting map, corr h , is an F-map. (Recall Definition 4.1.1.6.)

The product of a Steenrod F-bundle ¢ with a Steenrod F’-bundle & is a
Steenrod F' x F’-bundle: the F x F’-structures on its fibres is defined as in
Remark 4.3.1.9; the topology on M H (£ x &) is introduced by means of the
invertible mapping

MHE) x MH(E') - MH(E x &), (a,a) = axa;

the local F' x F’-triviality of the resulting F' x F’-bundle follows from the fact
that it is F' x F'-trivial whenever £ is F-trivial and ¢’ is F’-trivial.

If the G1-space F; comes from the effective G-space F' by reducing the group
G to G1, then by returning to F' from F}, every Steenrod Fj-bundle becomes a
Steenrod F-bundle &:

e topologically, ¢ is the same as &5;
e the F-structures on the fibres of ¢ are those described in Remark 4.3.1.9;
e further, to define a topology on M H (), consider the action

G x (Gx MH(&)) = G x MH(&),  (91,(9,0)) = (919,27 1),

where G acts canonically from the right on M H(z8;) (see Definition
4.3.2.1), and then use the invertible mapping (GxMH (&1))/G1 — M H(E),
which takes the orbit of the pair (g,«) into the homeomorphism y —
a(gy), to transfer the topology of (G x M H(&1))/G1 to MH(E);

e finally, the local F-triviality of the resulting F-bundle is a consequence of
its F-triviality in the case when & is Fj-trivial.

This transformation of Fj-bundles into F-bundles is known as the extension
(or prolongation) of the structure group. It takes Fj-maps into F-maps, and
Fi-equivalences into F-equivalences. It is also clear that the extension of the
structure group commutes with the induction operation; that is to say, if £ is
obtained from &; by extension of the structure group and f: B — bs(§) is an
arbitrary continuous map, then f'(€) is obtained from f'(&;) by extension of the
structure group.

Theorem 4.3.2.5. FEvery Steenrod F-bundle with trivial structure group is F-
trivial.
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Proof. Let £ be a Steenrod bundle with standard fibre F' and trivial structure
group. Let T' be an open cover of bs(§) such that the bundle ¢|y is F-trivial
for any U € T'. Set n = (bs(§) x F,projy,bs(€)). Clearly, the F-trivialisation
nlv — £|u is unique for any U € T, and these F-trivialisations together yield
an F-trivialisation n — &. O

Theorems About F-maps

Theorem 4.3.2.6. Suppose that & and &' are Steenrod bundles with standard
fibre F, B is a topological space, and p: B — bs(§) is a factorial map. If
7: t1(€) = t1(¢') and B: bs(§) — bs(&’) are maps such that (7 o tl(adjp), 8o p)
is an F-map p'(€) — &', then (1, 3) is an F-map € — ¢'.

Proof. We need only check the continuity of 8, 7, and M H (7, 8). The continuity
of § is an immediate consequence of the continuity of the composition §op and
the fact that p is factorial (see Remark 1.2.3.4). As for 7 and M H(r, ), it is
enough to verify their continuity when £ and ¢’ are standard trivial F-bundles.
In this situation, 7 is given by 7(b, y) = (8(b), v(b)y), where ¢ is some map from
bs(§) into the structure group G. Moreover, if we use the homeomorphisms

BxG— MH@p(€)), bs(€) x G~ MH(E), bs(€)x G — MH(E)

(which define the topologies on M H (p'(€)), M H (&), and M H(¢'), respectively;
see Definition 4.3.2.2), then the maps

MH (7 o tl(adjp), S o p): MH(p'(€)) — MH(&),
MH(r,3): MH(§) — MH(E)

are transformed into the maps

BxG = bs(&') x G, (b,g)— (Bopd),(vop(=))g),
bs(§) x G = bs(&') x G, (b,g) = (B(b), p(b)g),

respectively. The first formula shows that ¢ o p is continuous, and since p is
factorial, ¢ is continuous. Finally, the continuity of ¢ implies the continuity of
7 and MH(T,B). O

Corollary 4.3.2.7. Suppose that £ and &' are Steenrod bundles with standard
fibre F' and B: bs(§) — bs(¢’) is continuous. If 7: tl(§) — t1(&') is a map
such that the restrictions T|iroi(¢)) -1 (v, Blu form an F-map |y — &', for each
element U of some fundamental cover of bs(§), then (1,3) is an F-map & — &'.

Proof. This is a corollary of Theorem 4.3.2.6: take p to be the map proj: Hyer
U — bs(§), where T is the given fundamental cover of bs(€). O

Theorem 4.3.2.8. If the Steenrod F-bundles & and &' have the same base, then
every F-map f: & — & with bs(f) = idpse) s an F-equivalence.
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Proof. All we need to prove is that [t1(f)]~! and [M H(f)]~! are continuous, and
it suffices to examine the case when £ = £ and £ is a standard trivial F-bundle.
Then t1(f), [t1(f)]~!: bs(§) x F — bs(§) x F are given by

(b,y) = (b, 0(b)y), (b, g) = (b,b(b)y) [b € bs(§),y € F.

where ¢ and v are some maps from bs(§) into the structure group G. Moreover,
if we use the topologising homeomorphism bs(§) x G — M H (£), then MH(f)
and [MH(f)]~! become the maps bs(§) x G — bs(§) x G given by

(0,9) = (b,0(b)g),  (b,g) = (b;9(b)g) [bebs(§),g€ Gl

Obviously, ¥(b) = [¢(b)] !, and thus the continuity of M H(f) first implies the
continuity of ¢ and 1), and then the continuity of and [MH(f)]~*. O

Corollary 4.3.2.9. The correcting map, corr f, is an F-equivalence for every
F-map [ between Steenrod F-bundles.

Principal Bundles

Definition 4.3.2.10. A Steenrod bundle is called principal if its standard fibre
is the structure group G which acts canonically from the left on itself (see
Definition 4.2.3.7). We take the liberty to denote the last G-space simply by G
and, accordingly, the principal bundles with structure group G will be referred
to as Steenrod G-bundles.

A fundamental property of the principal bundles is that their spaces of
marked homeomorphisms can be identified with their total spaces. More pre-
cisely, given a principal G-bundle &, the formula o — a(eq) defines a homeo-
morphism MH (&) — t1(€). For a standard trivial bundle, this is evident, and
the general case is readily reduced to the standard trivial one.

If we identify M H(§) and tl(¢) via the homeomorphism o — a(eg), then
the natural right action of G on M H (&) (see Definition 4.3.2.1) becomes the
free right action of G on t1(§). This free, action, t1)€) x G — t1(£), can be also
described directly: its orbits are exactly the fibres of £, and on each fibre the
action is simply the right canonical action, transferred from G to the fibre by
means of marked homeomorphisms.

Remark 4.3.2.11. This construction of the free right action of G on the total
space of a principal bundle with structure group G can be partially reversed.
Assume that the topological group G acts continuously and freely from the
right on the topological space X, and consider the bundle (X, proj, X/G). Its
fibres (orbits) carry natural G-structures: the marked homeomorphisms G —
proj 1 (b) (b € X/G) are given by g +— g, x € proj—'(b). Since to distinct points
x correspond distinct homeomorphisms g — xg, we obtain also an invertible map
of X onto the set of marked homeomorphisms, and thus we get a topology on
the last set. Therefore, (X, proj, X/G) is a G-bundle.

To explain why we called this last construction a partial inversion of the
original one, apply it now to the right action t1(§) x G — t1(§) described in
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Definition 4.3.2.10; the resulting bundle is exactly £ . More precisely, the injec-
tive factor of the projection proj(&) maps tl(€)/G onto bs(€), and together with
idg ey forms a G-isomorphism (t1(£), proj, t1(§)/G) — &.

Theorem 4.3.2.12. If the G-bundle (X,proj, X/G), defined by a free right
action of G , has a section, then it is G-trivial. In particular, every Steenrod
G-bundle having a section is G-trivial.

Proof. Indeed, if s: X/G — X is a section, then the map
f: (X/G)xG,proj,, X/G) = (X, proj;, X/G), given by t1(f(b,g)) = s(b)g,
is a G-trivialisation of the bundle (X, proj, X/G). O

Corollary 4.3.2.13. If the G-bundle (X,proj, X/G), defined by a free right
action of G, is topologically trivial, then it is G-trivial. If (X,proj, X/G) is
locally topologically trivial, then it is locally G-trivial, i.e., it is a Steenrod G-
bundle.

4.3.3 Associated Bundles

Remark 4.3.3.1. Let G be a topological group, and let F' and F’ be effective
G-spaces. The construction below associates to each Steenrod F-bundle & a
certain Steenrod F’-bundle having the same base.

The formula g(o,y) = (ag,g 'y), where g € G, « € MH(§), and y € F',
defines a right action of G on M H(§)xF’ (here G acts canonically from the
right on MH(E); see Definition 4.3.2.3). Let &' denote the bundle with to-
tal space (MH(E) x F')/G, base bs(€), and whose projection takes the or-
bit of a pair (a,y) € MH(§) x F’' into the point (proj(§))(a(F)). The fi-
bres of this bundle carry a natural F’-structure: the marked homeomorphisms
F’ — [(proj(¢")]=1(b) are given by y +— proj(a,y), where a € M H(€) is such
that a(F) = [proj(¢)]~1(b). Since distinct homeomorphisms « yield distinct
homeomorphisms y +— proj(«a,y), we obtain at the same time an invertible map
MH(&) - MH(&'), which we use to topologise M H(¢'), and thus make from
an F’-bundle. Finally, |y is '-trivial for each set U such that {|y is F-trivial.
Consequently, & is locally F’-trivial, i.e., it is a Steenrod F’-bundle. We say
that is the F’-bundle associated with £ and denote it by assoc(&, F”).

Remark 4.3.3.2. We add four remarks to the above description of the assoc
construction:

(i) The map tl(§) — (M H (&) x F)/G which takes each point x € t1(§) into
the orbit consisting of the pairs («,y) € MH(§) x F with a(y) = =,
is obviously a homeomorphism; together with idy¢), this map defines
an F-equivalence £ — assoc({, F'). Therefore, the bundle assoc(&, F) is
canonically F-equivalent to &.

(if) The invertible map M H(§) — M H (assoc(§, F')) that we used to topol-
ogise M H (assoc(§, F')), is a G-map with respect to the right canonical
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actions of G on M H (&) and M H (assoc(§, F')). As a corollary, we may
state that, given an arbitrary effective G-space F”, the product of the
above invertible G-map with id is a G-map

MH (&) x F" — MH (assoc(&, F')) x F”,

where G acts fro the right on M H(§) x F” and M H (assoc(&, F')) x F"
by g(a,y) = (ag, g~ 'y). The resulting homeomorphism

(MH (&) x F")/G — (MH (assoc(¢, F')) x F") /G,
together with idyg¢) define an F"'-equivalence
assoc(&, F'") — assoc(assoc(&, F'), F").

Therefore, the bundles assoc(assoc(&, F'), F"") and assoc(&, F"') are canon-
ically F"-equivalent.

The bundle assoc(§, G), i.e., the principal bundle associated with £ is
canonically G-isomorphic to the G-bundle (M H (&), proj, MH(£)/G) de-
fined by the canonical right action of G on M H (€) (see Remark 4.3.2.11).
The canonical G-isomorphism (M H (), proj, MH(£)/G) — assoc(&, G) is
given by the homeomorphism M H () — (M H(§) x G)/G which takes each
a € MH(&) into the orbit of (o, eq).

If F’ is a subspace of the G-space F” (see Definition 4.2.3.7), then
(MH(&) x F')/G C (MH(§) x F"'/G,

and the inclusion
(MH(§) x F')/G — (MH(§) x F") |G

together with idyg), yield an inclusion of the bundle assoc(¢, F') into
assoc(&, F"). Moreover, M H (assoc(&, F')) is exactly the set of maps

abra: F' — o(F'), o€ MH(assoc(&, F")).

Behaviour With Respect to Maps

Definition 4.3.3.3. Let F and F’ again be effective G-spaces, and suppose
that £ and 7n are Steenrod bundles with standard fibre F', and f: & — ton is an
arbitrary F-map. Define the map

assoc(f, F'): assoc(&, F') — assoc(n, F')

by the formulae

bs(assoc(f, F')) = bs(f) and
tl(assoc(f, F')) = [fact(MH(f) X idg/): (MH(&) x F')/G(MH(n) x F'/G].
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Remark 4.3.3.4. Tt is clear that assoc(f, F’) is an F’-map. Moreover, assoc(f, F")
is an F’-isomorphism (F’-equivalence) whenever f is an F-isomorphism (respec-
tively, F-equivalence). Next, consider the diagrammes

¢ ——assoc(¢, F) assoc(&, F'") —— assoc(assoc(&, F'), ')
l lassoc(f,F) i lassoc(assoc(ﬁF'),F”)
n —— assoc(n, F) assoc(n, F"") —— assoc(assoc(n, F'), F")

and

(MH(&), pI'Oj, MH(&)/G) - assoc(f, G)
(MH(f),fact MH(f)\L J(assoc(f,G)
(MH(n), proj, M H(n)/G) —— assoc(n, G)

where F” is any effective G-space, and the horizontal arrows denote successively
the canonical F-equivalences described in Remark 4.3.3.2 (i) and 4.3.3.2 (ii), and
the canonical F-isomorphisms from Remark 4.3.3.2 (iii). These diagrammes
clearly commute.

Remark 4.3.3.5. The assoc and induction operations commute. Namely, the
map
corr[assoc(adj h, F')]: assoc(h'(€), F') — h'(assoc(€, F'))

is an F’-equivalence, for any Steenrod F-bundle ¢ and any continuous map
h: B — bs(§); see Corollary 4.3.2.9.

Furthermore, the assoc operation commutes with the extension of the struc-
ture group. That is to say, let F; and F] be the effective Gp-spaces obtained
from F and F’ by reducing the group G to a subgroup G;. If the Steenrod
Fy-bundle & is taken into £ by the extension of the group G; to G, then the
map

fact(incl X idp): (MH (&) x F))/G1 — (MH (&) x F')/G,

where incl = [incl: MH (&) — MH(E)], defines an F’-equivalence between the
bundle obtained from assoc(&1, Fy) by extending G1 to G, and assoc(&, F).

Weakly Associated Bundles

Remark 4.3.3.6. The construction described in Remark 4.3.3.11 can be gener-
alised to the situation where the action of G on F”’ is not effective: we need
only shift, as a preliminary step, to the effective factor of this action, and thus
transform F” into an effective G/K-space, F’, where K is the non-effectiveness
kernel. Therefore, assoc(€, F’) may be defined for any Steenrod F-bundle £, and
any G-space F’ and is, in the general case, a Steenrod bundle with structure
group G/K and standard fibre F’. We say that assoc(&, F) is weakly associated
with &.

The map assoc(f, F’) defined in Definition 4.3.3.3 remains viable under this
extension of the assoc construction, and becomes an F’-map. The properties of
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assoc discussed in Remarks 4.3.3.2, 4.3.3.4, and 4.3.3.5 must be modified in an
obvious manner; for example, when F” is not effective (but F’ is effective), the
canonical F"-equivalence

assoc(&, F'") — assoc(assoc(&, F'), F”)

becomes an F’-equivalence.

Sections Associated with F-Maps

Remark 4.3.3.7. Let £ and &’ be Steenrod bundles with structure group G and
standard fibre F, and let f: bs(¢) — bs(€P7™¢), be continuous. The con-
struction below establishes a one-to-one correspondence between the F-maps
h: & — & with bs(h) = f and the sections of a specially constructed bundle,
Fibr(¢, ¢’ f)-

Let G* denote the group G endowed with the action of the group G x G
given by (g1,92)9 = 9199, = (generally speaking, this is not an effective action).
Set

Fibr(¢,&; f) = assoc(diag' (€ x f(£')), G*),
where diag = [diag: bs(§) — bs(&) x bs(§)], and assoc is taken in the weak sense
of Remark 4.3.3.6. It is clear that for every F-map h such that bs(h) = f and
every point b € bs(¢) , the composite homeomorphism

abr abr tl(adj -1
br (1) labril(adi DI

F S [proj (&))"} (b) [proi (€] (£(1))
[proj £1(€)] "1 (B(F)) 2 F,

where

ae MH(E), proj€(a(F))=b,  BeMH(f'(&)), proj(f' (€ (B(F))))=b,

is simply one of the transformations F' — F' induced by the elements of G. We
denote the corresponding element by g(«, 3), and note that

9(agi, Bgs) = g19(a, B)g5 " Vg1,92 € G

(here G acts canonically from the right on M H(¢) and M H(f'(¢')). This shows
that the orbit of the pair

(@ x B,g(a, B)) € MH(€ x f'(€))) x G*

under the right action of G x G on MH (¢ x (&) x G*, constructed as in
Remark 4.3.3.1, does not depend upon the choice of o and 3, provided h and b
are fixed. When h is fixed, the map bs(¢) — (MH (¢ x f'(¢')) x GX)/(G x G)
taking b € bs(§) into this orbit is continuous and manifestly a section of the
bundle Fibr(¢,&’; f). We call it the section associated with h and denote it by
h*. The correspondence h — h* defines an invertible map from the set of
all F-maps h: & — & with bs(h) = f onto the set of sections of Fibr(¢,&’; f):
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the inverse map takes each section s: bs(¢) — tl(Fibr(&,¢’; f)) into the F-map
h: & — £ given by

tl(h(2)) = tl(adj f(Bz(g9z(a ™" (2))))),

where x € t1(€), o, € MH(E), B € MH(f'(£")), 9. € G, and (ap X B, 92) €
s o proj(§(z)).

Let us remark that when bs(§) = bs)¢{) and f = idyg(e), an F-map h: § — &
with bs(h) = f is simply an F-equivalence (see Theorem 4.3.2.8). Therefore,
when £ and f[l] have the same base, the above construction yields a one-to-
one correspondence between the F-equivalences £ — £’ and the sections of the

bundle Fibr(, €'; idps(e) )-

4.3.4 Ehresmann-Feldbau Bundles

Definition 4.3.4.1. An Ehresmann-Feldbau bundle is a W-F-bundle which is
locally W-F-trivial; the last means that every point of the base has a neigh-
bourhood such that the restriction of the bundle to this neighbourhood is W-
F-trivial.

The theory of Ehresmann-Feldbau bundles is a variant of the theory of bun-
dles with a group structure; it is simpler than the theory of Steenrod bundles
(there are fewer structures), but also less pithy (there are no associated bundles).
This relative poverty nearly deprives it of any independent value; however, the
fact that it is equivalent, for a large class of standard fibres which includes the
most important cases, to the theory of Steenrod bundles, makes it useful, as it
enables us to simplify the latter.

The Case of Topologically Effective Actions

Definition 4.3.4.2. A continuous effective action G x X — X is said to be
topologically effective if given any topological space Y and any map f: Y — G,
the continuity of the composite map

Yx X 2% axx - x (4.3.4.3)

implies the continuity of f. In this case we also say that the G-space X is
topologically effective.

Clearly, if we reduce the group, a topologically effective action remains so,
and every G-space which has a topologically effective subspace is itself topolog-
ically effective.

The free actions are immediate examples of topologically effective actions; in
particular, the left canonical action of a topological group (on itself) is always
topologically effective. Also, the usual actions of GL(n,R) and of its subgroups
on R"™ are all topologically effective.
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Theorem 4.3.4.4. In order that a G-space be topologically effective, it is nec-
essary that the map c¢: G — C(X, X), which takes each g € G into the trans-
formation induced by g, be a topological embedding; if X is locally compact and
Hausdorff, then this condition is also sufficient.

Proof. The necessity is plain (take Y = ¢(G) and f = [(abrc)™!: ¢(G) — G]).
Now assume that the condition is satisfied. Then the continuity of f: Y — G is
equivalent to the continuity of the composite map Y Las C(X,X). By The-
orem 1.2.7.6, for X locally compact and Hausdorff the last map is continuous
because so is the map (4.3.4.3). In particular, for G compact, every effective, lo-
cally compact Hausdorff G-space is topologically effective (see Theorems 1.1.7.10
and 1.2.7.2). If X is Hausdorff, locally compact, and locally connected, then
the usual action of the group Top X on X is topologically effective, and the
same holds when X is Hausdorff and compact (see Lemma 4.2.2.5 and Theorem
4.2.2.6). O

Theorem 4.3.4.5. If the standard fibre F is topologically effective, then every
W-F-map (respectively, W-F-isomorphism, W-F-equivalence) between Steenrod
bundles is an F-map (respectively, F-isomorphism, F-equivalence).

Proof. Let € and & be Steenrod F-bundles. We need only prove the continuity
of the map M H(f) corresponding to the given W-F-map f: £ — ¢ and we may
assume that £ and & are standard trivial bundles. In this case,

tl(§) =bs(§) x F,  tl(¢') = bs() x F,

and tl(f) is given by (b,y) — (bs(f(b)), p(b)y), where ¢ is some map of bs(&)
into the structure group G. At the same time, if we use the canonical homeo-
morphisms

bs(§) x G — MH(E), bs(&') x G — MH(E)

(see Definition 4.3.2.2), then M H(f) becomes the map

bs(§) x G = bs(§) x G, (b, g) — (bs(f(b), 0(b)g).
The continuity of t1(f) implies the continuity of the composition
projyotl(f): bs(§) x F — F,

which equals the composition

bs(&) x F 2% G F > F,

where the last arrow denotes the action. Since this action is topologically effec-
tive, ¢ is continuous, and so is M H(f). O

Theorem 4.3.4.6. Given an Ehresmann-Feldbau bundle with a topologically
effective standard fibre, there is a unique topology on the set of its marked home-
omorphisms which transforms this bundle into a Steenrod bundle.
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Proof. The uniqueness of this topology is a consequence of Theorem 4.3.4.5. Let
us prove its existence. Let £ be an Ehresmann-Feldbau bundle with topologically
effective fibre F. Cover bs(§) by open sets U such that |y is W-F-trivial, and
fix W-F-equivalences hy: (U x F,proj;,U) — &|y. Now topologise the sets
MH (¢|y) with the aid of the maps

MH (hy): MH((U x F,proj,,U)) = MH(|y).

We obtain a cover of M H(&) by topological spaces M H(&|y), and Theorem
4.3.4.5 shows that these spaces induce the same topologies on their intersections,
as required for the construction in Remark 1.2.4.3. The topology on M H(¢)
produced by this construction transforms ¢ into a Steenrod bundle. O

Locally Trivial Bundles as Ehresmann-Feldbau Bundles

Remark 4.3.4.7. If F is a locally compact Hausdorff space endowed with the
usual action of the group Top F, then an Ehresmann-Feldbau W-F-bundle is
simply a locally trivial bundle with fibres homeomorphic to F. Therefore, any
ordinary locally trivial bundle whose fibres are locally compact Hausdorff spaces
homeomorphic one to another, may be regarded as an Ehresmann-Feldbau bun-
dle, and as such it has an implicit group structure. If, in addition, the fibres are
locally connected or compact, then such bundles can be also regarded as Steen-
rod bundles. We remark that the last assertion is also true for all coverings in
the broad sense with connected bases.

4.3.5 Exercises

Exercise 4.3.5.1. Show that all the effective actions listed in Remarks 4.2.3.15,
4.2.3.16, 4.2.3.17, and 4.2.3.18 are topologically effective.

Ezercise 4.3.5.2. Let X be an arbitrary C"-manifold (r > 1) of positive dimen-
sion. Show that the usual action of Diff” X on X is topologically effective.

Ezercise 4.3.5.3. Consider R as a Z-space with the action (n,t) — t+n (n € Z,
t € R), and using the same formula, extend this action to an action of the
additive group R, equipped with the discrete topology. Show that this extension
of the structure group takes assoc((R,hel,S!),R) into a bundle which is not
trivial as a Steenrod bundle, but is trivial as an Ehresmann-Feldbau bundle.
(Cf. Theorem 4.3.4.5.)

Exercise 4.3.5.4. Suppose that G is a connected topological group, F'is an effec-
tive G-space, and £ is a non-trivial Steenrod F-bundle with simply connected
base. Denote G°, F, and &° the group G equipped with the discrete topol-
ogy, the space F', regarded as a G -space, and the bundle £, regarded as a W-F
-bundle, respectively. Show that there is no topology on the set of marked home-
omorphisms of ¢° which makes from &° a Steenrod F°-bundle. (Cf. Theorem
4.34.6.)
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4.4 THE CLASSIFICATION OF STEENROD BUN-
DLES

4.4.1 Spaces With F-Structure

Remark 4.4.1.1. We now turn to the problem of classifying the Steenrod bundles
with a given standard fibre F' and a given cellular base B with respect to F-
equivalence. Our main achievement in this section is to establish a canonical
one-to-one correspondence between the classes of F-equivalent bundles over B
and the homotopy classes of maps from B into a specially constructed space
that depends only upon the structure group. This correspondence reduces the
given classification problem to a problem in ordinary homotopy theory.
Lemmas About F-Trivial Bundles

Lemma 4.4.1.2. Let £ be a Steenrod bundle with standard fibre F', and let By
and Bs be closed subspaces of bs(£), such that By U By = bs(§) and B; N B2 is
a retract of By. If the restrictions {|p,1 and &|pa are F-trivial, then & is also
F-trivial.

Proof. Choose a retraction p: By — By Nbs and two F-trivialisations,
hll m = (Bl X F, pI‘Ojl,Bl) — €|B17 h22 2 = (BQ X F,pI‘Ojl,Bg) — g‘Bz

and denote by f the composite F-equivalence

id
772 |BlmBQ IH m |BIOBZ

f\L iabr h1

-
772|BlﬁB2 abr hy * nglmBQ

Obviously, t1(f) is given by
(0,y) = (b, (¢(b))y, [b€ BiNBa,y € F,

where ¢ is some map of By N By into the structure group G. Moreover, if we
use the canonical homeomorphism

(B1N Bz) x G = MH(¢|p,nB,),
then M H(f) becomes the map
(Bl OBQ) x G — (B1 QBQ) X G’7 (b, g) — (b, (gp(b))g) [b € B ﬂBz,g € G]

Therefore, the continuity of M H(f) implies the continuity of ¢, which in turn
yields the continuity of the map

By x F = By x F, (b,y) — (b, (w0 p(b))y).
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But this last map, together with idp,, form an F-equivalence f’: 1y — 19, and
the obvious equality

[ =[abr f": n2|B,nBy = M2 BinB.]
shows that the composite F-maps

incl

h ! h incl
m =€l —= & m e €, — €

coincide on By N Bs. By Corollary 4.3.2.7, from this it follows that these two
maps yield an F-map (B X F,proj;, B) — £. Finally, by Theorem 4.3.2.8, the
last map is an F-equivalence. O

Lemma 4.4.1.3. Every Steenrod F-bundle with base I" is F-trivial.

Proof. Let n be an arbitrary Steenrod F-bundle with bs(n) = I"™. Find a positive
integer N such that 7 is F-trivial over any cube of edge 1/N contained in I".
Now divide I™, as usual, into N™ such cubes, arrange them in lexicographical
order Q1,...,QnNn, and set W; = Ug-:le. Induction shows that 7 is F-trivial
over each of the sets Wy,...,Wxy= : to go from W; to W;;1, apply Lemma
44.1.2t0& =nlw,,,, B1 =W, and By = Q;+1. We conclude that n is F-trivial

i+1)

over Wyn = I™. O

Lemma 4.4.1.4. Let & and & be Steenrod bundles with common standard
fibre F' and common base B, and let A be a retract of B. If & and & are F-
trivial, then for every F-equivalence h: &1|a — &2|a there is an F-equivalence
h': & — & such that [abrh': &1]a — &2|a] = h.

Proof. 1t is enough to prove this assertion for the case where £ is the standard
trivial F-bundle (B x F,proj;, B), and & = &;. Let p: B — A be a retraction.
Obviously, tl(h) is given by

(a,y) = (a,(p(a))y) a€A, yeF,

where ¢ is some map of A into the structure group G. Moreover, via the
canonical homeomorphism

Ax G — MH(&|a)[= MH(&|a)], MH(h)
becomes the map
AxG— AxG, (a,9) = (a,(p(a))g) a€Aged.

Therefore, the continuity of M H(h) implies the continuity of ¢, which in turn
implies the continuity of the map

BxF—BxF,  (by)— (b (popp(b))y).

The latter and idp yield an F-equivalence h': & — & which extends h. O
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The Homotopy Invariance of the Induced Bundle

Theorem 4.4.1.5. Let £ be a Steenrod bundle with standard fibre F, and let
f1 and fo be continuous maps of a cellular space X into bs(§). If f1 and fo are
homotopic, then the bundles fi(¢) and fi(€) are F-equivalent. Moreover, if fi
and fy are A-homotopic, where A is a cellular subspace of X, then there is an
F-equivalence f{(&) — f3(€) which is the identity on (f1(£))]a.

Proof. Pick an A-homotopy, H: X x I — bs(§), from f; to fo, and set & =
(f1&)x(1,idy, I), & = H'€. Tt is clear that & |(x xoyu(axn) = E2l(x xoyu(axr) and
that the canonical homeomorphism X — X x 1 transforms &;|xx1 and &|xx1
into f{¢ and fi¢, respectively. Therefore, it suffices to find an F-equivalence
& — & which is the identity over (X x 0) U (A x I).

We produce such an F-equivalence by taking the limit of a sequence of F-
equivalences, h;: &1|c, — &i|c, where C; = (X x 0) U (A x I) U (skel; X x I),
such that each map h; extends the preceding one. Take h_; to be the identity
map, and assume that the F-equivalence h; is already constructed. To get h;1,
suppose that X is rigged, and for each cell e € cell; 11 X \ cell;11 A consider the
bundles

[abr(chare X id])}l(fl‘ci) = [(chare x id I)!fl]‘(DiJrl X 0)U(SixI)
1

[abr(chare X ld])}(fg‘cl) = [(chare x id I)!fg]‘(]@ﬁl X 0)U(SixI)
where
abr(char, x id;) = [abr(char, x id;): (D! x 0) U (S x I) = C].

Let g. denote the F-equivalence of these bundles defined by h;. By Lemma
4.4.1.3,
(chare x idI)!(fl), (char, x idI)!(fg)

are F-trivial, and since (D! x 0) U (S* x I) is a retract of D! x I, Lemma
4.4.1.4 shows that g. extends to an F-equivalence

Ge: (char, xidI)'¢; — (char, x id I)'&,

Further, note that the map tlg. is constant on the elements of the partition
zer(tladj(char, xid;)) and apply Theorem 4.3.2.6, with

B=D""" x1I, p=abr(char, xid;): D" x I — Cle x I]
to conclude that the composite map

abr(chare X idr

(char, x id;)'€; 2 (chare x id;)'€ Ly Eolotext

defines an F-map &i|ciex: — &2|clexs. By Theorem 4.3.2.8, this is an F-
equivalence, which we denote by h.. Now note that for any cells ej,eq €
cell; 11 X \ cell;11 A, tlhe, and tlh., agree over (Cle; x I) N (Cley x I), and
that for each cell e € cell; 11 X \ cell;11, tl heand tlh; agree over (Cl. xI) N C;.
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Since the sets C; and Cle x I, e € cell;11 X \ cell;11 A, constitute a funda-
mental cover of C;y;, we use Corollary 4.3.2.7 to conclude that h; and h.,
e € celliyy X \ celliyg A, form together an F-map &1|c,., — &2lc,,,- We take
this map for h;11 and note that it obviously extends h;; moreover, by Corollary
4.3.2.7, hi_+11 is also an F-map.

To check the rest, i.e., that the sequence {h;: &i|c,,, — &2|c,,,} converges
to an F-equivalence £; — &9, it is enough to remark that the sets constitute a
fundamental cover of X x I, and then apply Corollary 4.3.2.7 to the sequences
{h;} and {h; '}. O

The Sets Stnrd(B, F)

Remark 4.4.1.6. We let Stnrd(B, F') denote the set of F-equivalence classes of
Steenrod F-bundles over B. Below we shall study the mappings of this set
into itself, defined by the induced bundle construction, by the extension of the
structure group, and by the associated bundle construction.

(Transcriber’snote: Here the original authours try to avoid functional
treatment(s). This has the advantage that it does not force the reader to swallow
a lot of category theory first, but in the end the reader may want to reconstruct
everything in the framework of axiomatic homotopy theory.)

For any continuous map f: B’ — B, the rule & — f'¢

61(f'€) —t1(¢)
|
B ——B

defines a mapping
f!: Stord(B, F) — Stord(B’, F).

If B’ is a cellular space, Theorem 4.4.1.5 shows that f' depends only on the
homotopy class of f. In particular, if B and B’ are both cellular and f is a
homotopy equivalence, then f ! is invertible.

The extension of the structure group, which transforms the Gi-space F' into
the effective G-space F', defines a mapping

ext: Stnrd(B, Fy) — Stord(B, F),

for any topological space B. This mapping is natural: that is to say, the dia-
gramme

Stnrd(B, Fy) ety Sturd(B, F)

I

Stnrd(B/, Fl) T Stnrd(B/, F)

commutes for any continuous map f: B’ — B; see Remark 4.3.2.4.
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Given another effective G-space, F”, the rule & — assoc(&, F') defines for
any topological space B a mapping

assoc: Stnrd(B,F) — Sturd(B, F').

This mapping is invertible [its inverse is assoc: Sturd(B,F’) — Sturd(B, F)]
and also natural, i.e., the diagramme

Stnrd(B, F) —22°% Stnrd(B, F')

L

S‘tl’lrd(Bl7 F) m Stnrd(B/, F/)

commutes for any continuous map f: B’ — Bj; see Remark 4.3.3.5.
Moreover, the diagram

Stnrd(B, Fy) 2% Stnrd(B, F}) (4.4.1.7)

I

Stnrd(B, F) —— Sturd(B, F’)

assoc

commutes for any topological space B, any effective G1-spaces F; and FY, and
any effective G-spaces, F' and F’, obtained from F; and F] by extension of the
structure group; see Remarks 4.3.3.5 and 4.3.3.6.

4.4.2 TUniversal Bundles

Remark 4.4.2.1. Let F be an effective G-space. By Theorem 4.4.1.5, given any
Steenrod F-bundle £, any cellular space B, and any continuous map f: B —
bs(£), we may consider the bundle f'¢. This defines a mapping (B, bs&) —
Stnrd(B, F'), which we denote by induz(B,§): induz(B,§) (the homotopy class
of f) = the F-equivalence class of f'¢.

The following diagramme is obviously commutative for any topological space
C and any continuous map g: C' — bs¢

induz(B,
B9 Sinrd(B, F)
ﬂm %&)
7(B,bs€)

Similarly, the diagramme

B bsg induz(B,assoc(&, f') Stn rd B F)

mm assoc

Sturd(B, F)
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commutes for any effective G-space F”.

Definition 4.4.2.2. A Steenrod F-bundle ¢ is called wniversal if the map
induz(B, () is invertible for any cellular space B. In other words, a Steenrod
F-bundle ( is universal if:

(i) given any Steenrod F-bundle ¢ with cellular base, there is a continuous
map f: bs¢é — bs( such that the bundle f'¢ is F-equivalent to &,

(ii) if for two arbitrary continuous maps, fi and fs, of a cellular space into bs ¢
the bundles f{¢ and f4¢ are F-equivalent, then f; and f» are homotopic.

Conditions (i) and (ii) have an equivalent formulation respectively:

(i)’) given any Steenrod F-bundle { with cellular base, there is an F-map
& — (. Indeed, if f: bs&é — bs( is continuous and g: & — f'C is an F-
equivalence, then adj fog: £ — ( is an F-map. Conversely, if h: £ — (is
an F-map, then corrh: & — (bs(h))'( is an F-equivalence (see Corollary
4.3.2.9).

(ii)’) given any Steenrod F-bundle £ with cellular base and any F-maps hg, hi: £ —
¢, bshg and bsh; are homotopic. Indeed, suppose that &, hg, hy have
these properties; then both bundles, (bs(hg))'¢ and (bs(h1))'¢, are F-
equivalent to &, and so, by (ii), bs(ho)) and bs(hy) are homotopic. Con-
versely, if fo and f; are continuous maps of a cellular space into bs £ and
h: f5¢ — f1!¢ is an F-equivalence, then fy = bsadj fo, f1 = bs(adj f10h)
and, by (ii’), fo and f; are homotopic.

We remark also that both (i’) and (ii”) (and hence (i) and (ii)) are consequences
of the following condition: given an arbitrary F-bundle £ with cellular base and
an arbitrary subspace A of bs¢, every F-map &|4 — ¢ extends to an F-map
& — (. To see that this condition implies (i’), it suffices to take A = &. To see
that it implies (ii’), take the F-bundle £ x (I,id;, I), the subspace

A= (bs¢x0)U (bs& x 1) Cbs(& x (I,idy, I)) =bs& x I,
and take as the F-map that must be extended
g: & x (1,idg, I)|bsexoyubsex1) =
with
bs g(b,0) = bs hg(b),bsg(b,1) =bshy(b) [b € bs¢],
tlg(x,0) = tlho(z), tlg(z,1) = tlhi(z) [z € tlg].

Theorem 4.4.2.3. FEvery bundle induced from a universal bundle by a homo-
topy equivalence is universal.

Proof. Indeed, if ¢ is a universal F-bundle and f: B — bs( is a homotopy
equivalence, then the map induz(B, f'¢) coincides with induz(B,¢) o 7(f,idg)
for any cellular space (see Remark 4.4.2.1), and hence it is invertible. O
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Theorem 4.4.2.4. If the F-bundles ¢ and ¢' are universal and bs(¢) and bs(¢’)
are cellular spaces, then bs(g): bs(¢) — bs({’) is a homotopy equivalence for any
F-map g: ¢ — (.

Proof. Pick an F-map ¢g: ¢’ — ¢. Since ¢’ og: ' = (' and g’ 0o g: ( — ( are
F-maps, condition in Definition 4.4.2.2 (ii’) implies that the map

bs(g') o bs(g) = bs(g' 0 g) (respectively, bs(g)obs(g’) =bs(gog’))
is homotopic to id,(¢)) (respectively, to id(pscr))- O

Theorem 4.4.2.5. A bundle associated with a universal bundle is itself univer-
sal.

Proof. Indeed, let ¢ be a universal F-bundle and let I’ be another effective
G-space. Then for any cellular space B, induz(B,assoc(¢, F")) is precisely the
composition of the maps induz(B, () and assoc: Stnrd(B, F) — Stnrd(B, F”)
(see Remark 4.4.2.1), and hence is invertible. O

Classifying Spaces

Theorem 4.4.2.6. As Theorem 4.4.2.5 shows, the base of a universal bundle
with structure group G is simultaneously the base of all universal bundles with
structure group G and all possible standard fibres, and so we may say that it
does not depend upon the choice of the standard fibre. This base is called a
classifying space of the group G.

From Theorem 4.4.2.3 it follows that every space which has the same homo-
topy type as a classifying space of G is itself a classifying space of G. Moreover,
it results from Theorem 4.4.2.4 that any two cellular classifying spaces of G have
the same homotopy type.

k-Universal Bundles

Definition 4.4.2.7. A Steenrod F-bundle ( is called k-universal if
induz(B,(): m(B,bs(¢)) — Stnrd(B, F)

is surjective for each cellular space B of dimension < k and injective for each
cellular space B of dimension < k — 1. In other words, a Steenrod F-bundle ¢
is k-universal if:

a) given any Steenrod F-bundle 5¢ with cellular base of dimension < k, there is
a continuous map f: bs& — bs( such that the bundle f'(¢) is F-equivalent
to &,

b) any two continuous maps, fo and fi, from a cellular space of dimension
< k — 1 into bs(, such that the bundles f}(¢) and f{(¢) are F-equivalent,
are homotopic.
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Equivalent conditions are:

a’) given any Steenrod F-bundle £ with cellular base of dimension < k, there
is an F-map £ — ¢ and

b’) for any Steenrod F-bundle £ with cellular base of dimension < k — 1 and
any F-maps go,91: £ — ¢, bs(go) and bs(g;) are homotopic.

In all these formulations k is a positive integer, and the universal bundles
are sometimes termed oo-universal. Every k-universal bundle is obviously /-
universal for ¢ < k. Moreover, Theorems 2.3.2.6 and 2.3.2.7 show that the
restriction of a k-universal bundle with cellular base to a subspace of the base
which contains its ¢-skeleton is f-universal, for any ¢ < k.

Theorems 4.4.2.3 and 4.4.2.5 have immediate analogues for k-universal bun-
dles: every bundle induced from a k-universal bundle by a homotopy equivalence
is k-universal; a bundle associated with a k-universal bundle is itself k-universal.

4.4.3 The Milnor Bundles

Definition 4.4.3.1. Below we shall construct for any topological group G a
principal bundle with structure group G, called the Milnor G-bundle and de-
noted by MilG. In Remarks 4.4.3.2, 4.4.3.5 and Theorems 4.4.3.3, 4.4.3.5 we
shall prove that Mil G is a universal G-bundle.

Let TG(k) denote the join of k copies of the group G. Then T'G(k) embeds
naturally in TG(k+1) (as a base of the join TG(k)*G = TG(k+1)) and so the
TG = hﬂk TG(k) is meaningful. The right action G x G — G, (91,9) — g~ ‘g1,
extends to a free, continuous, right action of G on TG(k). Since the inclusions
TG(k) — TG(k+1) are G-maps with respect to this action, G acts also on TG.
Therefore, a G-bundle (T'G, proj, TG/G) results, and this is Mil G.

If G is a subgroup of G, then there exist the inclusions

inclx---xincl: TGy (k) = TG(k) (k=1,2,...),
—_—
k

where incl = [incl: G; — G, and all of them are incl-maps. Moreover, they are
compatible with the embeddings

TG(k) = TG(k+1), TGy(k) — TG(k+1),

and hence the limit map TGy — T'G is meaningful (see Remark 1.2.4.4). This
map is also an incl-map, and together with the map TG,/G; — TG/G that it
induces, it clearly yields an (incl, incl)-map MilG; — Mil G. Therefore, to each
inclusion G; — G corresponds an (incl, incl)-map MilG; — Mil G.

Mil G is Locally Trivial

Remark 4.4.3.2. It is convenient to identify T'G(k) with that subspace of the
product cone G x - - - x cone G which consists of the points {proj(g;,t;)}*_; such

k
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that ¢ + -+ +tx = 1, and is canonically homeomorphic to TG(k) (see Remark
1.2.6.4; here proj = [proj: G x I — cone G]). After this identification, the points
of TG may be represented as sequences {proj(g;,t;)}52, such that > ¢; = 1 and
only a finite number of the ¢;’s are non-zero. Now the right action of G on TG
(see Definition 4.4.3.1) is described as proj(g;,t;)g = {proj(g—tg:, t:)}.

Theorem 4.4.3.3. MilG is locally G-trivial.

Proof. Let Us be the collection of sequences {proj(g;,t;)} with ¢; # 0, and
consider the sets proj Mil G(Uy), proj Mil G(Us), . ... These sets are open, cover
TG/G, and over each of them the bundle Mil G is G-trivial: the G-trivialisation

proj Mil G(U,) x G — (proj Mil G) ! (proj Mil G(Uy)) [= U]

takes each point (z,¢g) into the sequence {proj(g;,t;)} determined by the condi-
tions: proj MilG({proj(g;,t;)}) = = and g5 = g. O

Mi G is Universal
Theorem 4.4.3.4. MilG is universal.

Proof. According to Definition 4.4.2.2, it suffices to show that given any G-
bundle £ with cellular base and any subspace A C bs¢&, every G-map f: &|atoMilG
extends to a G-map & — MilG.

We consider first the case bs¢& = D", A = S", for some r. Then ¢ is G-
trivial (see Remark 4.4.1.3), and we may actually assume that £ is the standard
trivial G-bundle (D" x G, proj,,D"*!). The desired extension h: & — MilG
has an explicit description: let k& be the smallest number s such that TG(s) D
tI(f(S" x eq), and let ¢; denote the composite map

brtl i '
abrtlf), TG(k) ey cone G x -+ x cone G 22 cone G

k

S"x G

(i =1,...,k); further, define ivp: D"*! x G — TG(k + 1) by

¢(tyag) = (t§01(y)a s atwk(y)aproj(ga 1- t))a

where y € S™, t € I, and proj = [proj: G x I — coneG|. Now set tl(h) =
[incl: TG(k 4+ 1) — TG] o 2.

The general case reduces to this special one. Indeed, assume that the space
bs ¢ is rigged and that a G-map h: | auskel, bs(e) — Mil G extending f is already
available. The above argument shows that for each cell

e € cell, 41 bs(§) \ cell, 11 A
the G-map

fe = hy o [abrchar: S” — A Uskel, bs(€)]: charl ()]s — MilG
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extends to a G-map g, : char;(g) — Mil G, and it is clear that tl(g.) is constant
on the elements of the partition zer(tladj Char.). Applying Theorem 4.3.2.6
(with B = D" and p = [abr Char.: D" — Cle]), we see that g. defines a
G-map &|cie — Mil G, which we denote by hg. Further, note that for any cells

e1, ez € cellpq bs(€) \ cell,y1 A,
tl(he, ) and tl(he,) agree over Cle; N Cley, and that for any cell
e € celly 41 bs(§) \ cell, 11 A,

tl(he) and tl(h,) agree over Cle N (AUskel, bs(§)). This implies that h, and he,
e € cell, 11 bs(&) \ cell, 41 A, yield together a G-map

Pri1t €l Auskel, 41 bs(e) — MilG

extending h,. (see Corollary 4.3.2.7). Therefore, using induction, we can produce
a sequence
{hst &l aUskel, bs(e) = MIlG g2

of G-maps with h_1 = f, such that h; extends hs_; for all s > 0. Since the sets
A U skels bs(§) constitute a fundamental cover of bs(£), using again Corollary
4.3.2.7 we conclude that the hy’s yield a G-map £ — Mil G extending f. O

A Promise

Remark 4.4.3.5. The base of the bundle Mil G is not a cellular space. However,
we shall see in Chapter 5 that for any topological group G there are also universal
G-bundles with cellular base; see Theorem 5.6.1.4. By Definition 4.4.2.7, this
will imply the existence of k-universal G-bundles with cellular base of dimension
< k, for any given topological group G and any positive integer k.

4.4.4 Reductions of the Structure Group

Definition 4.4.4.1. We say that the Steenrod Fi-bundle & with structure
group G is obtained from the Steenrod F-bundle £ with structure group G by
reducing the group G to Gy if £ is obtained from £; by extending the group G
to G.

While the extension of the structure group of a Steenrod bundle is a well-
defined operation, the reduction of the structure group cannot be carried out
for every Steenrod bundle, and even when it is possible, it may produce bundles
which are not equivalent with respect to the reduced group. In other words, the
mapping

ext: Stnrd(B, F) — Stnrd(B, F) (4.4.4.2)
defined in Remark 4.4.1.6 may be both non-surjective and non-injective.

We remark that the set-theoretic properties of the mapping (4.4.4.2) are
uniquely determined by the triple B, G, Gy, i.e., they are preserved when we
replace F' and F} by other effective GG-spaces and their corresponding G1-spaces,
while keeping B, GG, and G the same; this is plain from diagramme (4.4.1.7).
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Recall that given a cellular space B, Sturd(B, F') can be interpreted as the
set of homotopy classes of continuous maps from B into a classifying space of
the structure group. Below we describe (4.4.4.2) in the same homotopy terms.

Definition 4.4.4.3. Let G, G1, F', F} be as in Definition 4.4.4.1, and let
and (; be universal bundles with standard fibres F' and F;. A continuous map
Y: bs(¢1) — bs( is called classifying if 1'(¢) is F-equivalent to the bundle
obtained from (; by extending the structure group G; to G. By the definition
of a universal bundle, such a map exists whenever bs(zeta,) is a cellular space,
and so it certainly exists when ¢; = MilG and {; = MilG; (see Definition
4.4.3.1).

Theorem 4.4.4.4. Our main claim is that the diagramme

Stnrd(B, Fy) —> Stnrd(B, F) (4.4.4.5)
induz(B,Cl)T Tinduz(B,C)
m(B,bs((1)) (B,bs(¢))

- o
m(idg,)
commutes for any classifying map ¢ and any cellular space B.

Proof. The composition induz(B,C) o w(idp,() takes the homotopy class of
fi: B — bs(; into the class of the bundle (¢ o f1)'(¢), while the same ho-
motopy class is taken by extoinduz(B,(;) into the class of the bundle ob-
tained from f,)'¢; extending the structure group G to G. Since the exten-
sion of the structure group and the induction construction commute (see Re-
mark 4.4.1.6), the last class contains f{(¢'¢), and it remains to observe that

') = (o fr)'C. u

Remark 4.4.4.6. The commutativity of the diagramme (4.4.4.5) and the invert-
ibility of its vertical mappings imply that induz(B, (;) is an injective mapping
from the set of homotopy classes of maps g: B — bs((y), such that ¢ o g is
homotopic to a given map f: B — bs((), onto the set of classes of F;-equivalent
Fi-bundles which are obtained from f'¢ by reducing the structure group G to
(1. In particular, a Steenrod F-bundle £ with cellular base admits the reduc-
tion of the group G to G; if and only if any continuous map f: bs€ — bs(
such that f'(¢) is F-equivalent to ¢ is homotopic to the composition of some
continuous map bs(§) — bs(¢q) with 9.

4.4.5 Exercises

Ezercise 4.4.5.1. Given a topological group G and a positive integer k, denote
by Mil(G, k) the restriction of the bundle MilG to TG(k)/G, i.e., the bundle
(TG(k),proj, TG(k)/G). Show that Mil(G, k) is a (k — 1)-universal G-bundle.

FEzercise 4.4.5.2. Show that Mil(Z/2Z) is isomorphic to (S°°, proj, RP*°), while
Mil(Z/27Z, k) (see Exercise 4.4.5.1) is isomorphic to (S¥=1, proj, RP*~1).
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Exercise 4.4.5.3. Show that MilS! is isomorphic to (S°°,proj, CP>), while
Mil(S', k) is isomorphic to (S?*~! proj, CP*~1).

Exercise 4.4.5.4. Let X be a compact n-dimensional C"-manifold, 1 < r < oo.
Consider the right action of Diff” X on Emb"(X,RY), given by

(@) = joyp, [j € Emb"(X,R?), ¢ € Diff” X],
and the limit right action of Diff X on
lim(Emb" (X, R?), abr C" (id X, incl): Emb" (X, R?) — Emb” (X, RIT1)).
Show that
(lim Emb" (X, R?), proj, [lim Emb" (X, R?)]/ Diff” X)
is a universal Diff” X-bundle, while
(Emb" (X, R), proj, Emb" (X, R?)/ Diff” X)

is a (¢ — 2n — 1)-universal Diff” X-bundle, for any ¢ > 2n + 1.
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4.5 VECTOR BUNDLES

4.5.1 General Definitions

Remark 4.5.1.1. The main objective of this section is to study those Steenrod
bundles whose standard fibre is either R™ with the usual action of one of the
groups GL(n,R), GLy(n,R), O(n), or SO(n), or C" with the usual action of
GL(n,C) or U(n).

Since all the standard fibres listed above are topologically effective, the cor-
responding bundles may be also regarded as Ehresmann-Feldbau bundles with
the same standard fibres (see Subsection 4.3.4). We shall proceed in this way
and ignore completely the topology on the set of marked homeomorphisms in
the course of the entire section.

To simplify the discussion, we introduce a special notation for the above
standard fibres: GLR"™, GL; R™, OR", SOR", and GLC", UC".

Standard Fibre GL R"

Definition 4.5.1.2. A Steenrod bundle with standard fibre GLR" is called an
n-dimensional real vector bundle.

Since a space with a GL R™-structure is simply an n-dimensional real vec-
tor space (see Example 4.3.1.3), a W-GL R"-bundle is simply a bundle whose
fibres are n-dimensional real vector spaces. Moreover, a W-GL R™-equivalence
of W-GL R"-bundles is an equivalence that is linear on fibres. Therefore, an n-
dimensional real vector bundle is a bundle whose fibres are n-dimensional real
vector spaces, and which is locally trivial in the natural vector sense: every point
of the base has a neighbourhood U over which the given bundle is equivalent to
(U x R™, proj;, U) via an equivalence which is linear on each fibre.

Theorem 4.5.1.3. A bundle £ whose fibres are n-dimensional real vector spaces
is an n-dimensional real vector bundle (i.e., & is locally trivial in the previous
vector sense) if and only if:

1. & 1is topologically locally trivial;
2. the partial vector operations in t1(£), i.e., the maps
R x t1(€) = t1(€), (M) — Az,
{(z1,22) € t1(§) x tU(§)| proj&(x1) = proj&(z2)} — t1(S)),

(x1,22) — 21 + T2
are continuous.

Proof. The necessity of these conditions is obvious. Let us verify their suffi-
ciency. Let by € bs(§). Fix an arbitrary basis, v1,...,v,, of the vector space
(proj(€))~1(by), a neighbourhood U of by such that | is topologically trivial,
and a trivialisation h: (U x R"™, proj;,U) — &|y. Define a map,

R (U x R™, proj,,U) — &,
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linear on fibres, by the formula
t1(W (b, ort;) = tlh(b, projy o tlh™ (v;)), proj, = [projy: U x R™ — R"].
Now pick disjoint neighbourhoods, K and N, of the set
projy o tl(h 1) o t1A’ (by x S"71)

and of the point
projy o tl(h 1) o t1A' (b, 0) € R™,

respectively, and denote by V the neighbourhood of by consisting of all b € U
such that t1h/(b x S~ 1) C t1h(b x K) and t1h/(b,0) € tlh(b x N). It is clear
that

be V= tlh(b,0) € t1h'(b x S"71),

and thus the map abrh’: (V x R™, proj;,V) — &|yv is non-degenerate on each
fibre. Consequently, we can apply Theorem 4.3.2.8 to abr i/, taking F to be
R"™, regarded as a TopR"-space ((V x R™ proj,,V) and |y are thought of
as Steenrod F-bundles; see Remark 4.3.4.7). We conclude that abrh’ is an
equivalence in the topological sense, and since abr A’ is also linear on fibres, the
proof is complete. O

Standard Fibre O R"

Definition 4.5.1.4. A Steenrod bundle with standard fibre O R" is called an
n-dimensional Euclidean bundle.

Since a space with an O R™-structure is an n-dimensional Euclidean space,
a W-O R"-bundle is simply a bundle whose fibres are n-dimensional Euclidean
spaces. Moreover, it is clear that any W-O R™-equivalence of W-O R"-bundles
is an equivalence which is an orthogonal map on each fibre. Therefore, an
n-dimensional Euclidean bundle is a bundle whose fibres are n-dimensional Eu-
clidean spaces and which is locally trivial in the natural Euclidean sense: every
point of the base has a neighbourhood U over which the bundle is equivalent to
(U x R™, proj;, U) via an equivalence which is an orthogonal map on each fibre.

Theorem 4.5.1.5. A bundle £ whose fibres are n-dimensional Euclidean spaces
is an n-dimensional Euclidean bundle (i.e., £ is locally trivial in the Euclidean
sense) if and only if it satisfies

(i) & is topologically locally trivial;
(ii) the partial vector operations in t1(§), i.e., the maps

R x t1(¢) = t1(€), (A,z) = Az,
{(z1,22) € t1(&) x t1(§)| proj&(z1) = proj&(wa)} — t1()),

(x1,22) — 1 + T2

are continuous.
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(iii) the function t1(§) — R, which takes each its length, is continuous.
Note that (i) and (i) are identical to 1. and 2. of Theorem 4.5.1.3.

Proof. These conditions are obviously necessary. Let us verify that they are
also sufficient. By Theorem (4.5.1.3), (i) and (ii) imply that every point of
bs(§) has a neighbourhood U together with a trivialisation linear on fibres,
h: (U x R™ proj;,U) — &|ly. Let vy(b),...,v,(b) be the basis of the vec-
tor space (proj(€))~1(b), b € U, resulting from the standard orthogonalisa-
tion of the basis tlh(b,orty),...,t1h(b,ort,). Now (iii) shows that the vectors

v1(b), ..., v,(b) depend continuously on b, and it is clear that the map linear on
fibres, h': (U x R™, proj,,U) — €|y given by t1h/(b,ort;) = v;(b) (i =1,...,n),
is a trivialisation, orthogonal on each fibre, of the bundle |y . O

Remark 4.5.1.6. Since O(n) C GLR", every n-dimensional Euclidean bundle £
determines a unique n-dimensional real vector bundle &, through extension of
the structure group. One may use Theorem 4.5.1.5 to interpret the reduction
of the structure group transforming ¢’ into £ as enriching the bundle ¢’ with an
additional structure: namely, a Euclidean metric on each fibre, such that the
corresponding length function t1£’ — R is continuous. This additional structure
is termed a Fuclidean metric on £’.

Standard Fibres GL; R"” and SOR"

Definition 4.5.1.7. A Steenrod bundle with standard fibre ¢L;R™ (respec-
tively, SOR™) is called an n-dimensional oriented vector bundle (respectively,
an n-dimensional oriented Euclidean bundle).

Since a space with GLj R™-structure (SO R"™-structure) is simply an n-
dimensional oriented vector space (respectively, an n-dimensional oriented Eu-
clidean space), a W-GLy R"-bundle (a W-SOR"™-bundle) is simply a bundle
whose fibres are n-dimensional oriented vector (respectively, Euclidean) spaces.
It is also plain that a W-GL; R"-equivalence of W-GL; R"-bundles (a W-
SO R™-equivalence of W-SO R™-bundles) is simply an equivalence which is orien-
tation preserving and linear (respectively, orthogonal) on fibres. Consequently,
an n-dimensional oriented vector bundle (Euclidean bundle) is a bundle whose
fibres are n-dimensional oriented vector spaces (respectively, Euclidean spaces),
and which is locally trivial in the following sense: every point of the base has
a neighbourhood over which the bundle has a trivialisation that is orientation
preserving and linear (respectively, orthogonal) on fibres.

Remark 4.5.1.8. To obtain a version of Theorem 4.5.1.3 which is suitable for the
oriented case, note that the orientation existing on each fibre of an n-dimensional
oriented vector bundle £ maps the set of non-degenerate n-frames of the given
fibre into S°. Furthermore, the set of all non-degenerate n-frames of the fibres of
& is the total space of the associated bundle assoc(§, V' (n,n)) [where GL (n,R)
acts on V'(n,n) as usual; see Theorem 2.3.1.3], and the orientations of the fibres
combine to define a map tlassoc(¢,V’(n,n)) — S°. The “oriented” version of
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Theorem 4.5.1.3 asserts that a bundle€ whose fibres are n-dimensional oriented
real vector spaces is an n-dimensional oriented vector bundle if and only it
satisfies conditions (1) and (2) of Theorem 4.5.1.3 and the condition

(iv): the function tlassoc(&,V/(n,n)) — SY, defined by the orientations of the
fibres of &, is continuous.

Theorem 4.5.1.5 must be modified in a similar fashion. Namely, given an n-
dimensional oriented Euclidean bundle &, the orientation of each fibre of £ maps
the set of orthonormal n-frames of the given fibre into S°. Since the set of all
orthonormal n-frames of all fibres of £ equals the total space of the associated
bundle assoc(&,V(n,n)), we obtain a function tlassoc(&,V(n,n)) — SY. The
“oriented” version of Theorem 4.5.1.5 asserts that a bundle £ whose fibres are n-
dimensional oriented Euclidean spaces is an n-dimensional oriented Euclidean
bundle if and only if it satisfies conditions (1) and (2) of Theorem 4.5.1.3,
condition (iii) of Theorem 4.5.1.5, and condition
(v) : the function tlassoc(&,V (n,n)) — SY, defined by the orientations of the
fibres of &, is continuous.

Definition 4.5.1.9. Since GL;(n,R) C GL(n,R), every n-dimensional ori-
ented real vector bundle ¢ determines a unique n-dimensional real vector bundle
&, obtained from &£ by extending the structure group. As it follows from the
discussion in Remark 4.5.1.8, when we reduce the structure group and produce
& from &', we are endowing the fibres of £¢”” with orientations which combine to
define a continuous map

assoc(¢',V'(n,n) = GL(n,R)) — S".

This additional structure is termed an orientation of the bundle &'

Similarly, the inclusion SO(n) C O(n) associates with every n-dimensional
oriented Euclidean bundle ¢ a unique n-dimensional Euclidean bundle £’, ob-
tained from & by extension of the structure group. Again, the reduction of the
structure group which transforms £’ into £ is seen to provide & with an ori-
entation, i.e., as orienting its fibres in such a manner that the corresponding
function

tlassoc(¢’, V(n,n) = O(n)) — S°

is continuous.

The real vector and Euclidean bundles possessing orientations are refereed
to as orientable. Since every orientation may be replaced by the opposite one,
as a result of multiplication by —1, every orientable bundle has at least two
orientations.

Standard Fibres GLC" and UC"

Definition 4.5.1.10. A Steenrod bundle with standard fibre GLC™ (UC") is
called an n-dimensional complex vector (respectively, Hermitian) bundle.

Our discussion of real vector bundles in Theorem 4.5.1.2 and Theorem 4.5.1.3
carries over, word-for-word, for complex vector bundles, and the same is true
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for the discussion in Definition 4.5.1.4, Theorem 4.5.1.5, and Remark 4.5.1.6
of Euclidean bundles and the Hermitian bundles. In particular, a W-GL C"-
bundle (W-U C™-bundle) is simply a bundle whose fibres are n-dimensional com-
plex vector spaces (respectively, n-dimensional Hermitian spaces); a W-GL C™-
equivalence (W-U C™-equivalence) of W-GL C™-bundles(respectively, W-U C"-
bundles) is simply an equivalence linear (respectively, Hermitian) on fibres; a
W-GL C™-bundle (W-U C™-bundle) is locally trivial if and only if it is topolog-
ically locally trivial and, in addition, the vector operations (respectively, the
vector operations and the length function) are continuous; the reduction of the
structure group which turns a given complex vector bundle, £ into a Hermi-
tian bundle £, may be interpreted as endowing &’ with a Hermitian metric, i.e.,
as supplying a Hermitian metric (inner product) on each fibre of ¢, in such a
manner that the resulting length function is continuous on t1(¢’).

Definition 4.5.1.11. Given an arbitrary n-dimensional complex vector bun-
dle &, we may construct an n-dimensional complex vector bundle, conj&, by
replacing each marked homeomorphism « with the composition « o conj, where
conj: C* — C" is the usual complex conjugation; conj¢ is called the bundle
conjugate to .

This construction carries over to Hermitian bundles and produces again Her-
mitian bundles, i.e., to every n-dimensional Hermitian bundle £ there corre-
sponds the conjugate Hermitian bundle conj .

Definition 4.5.1.12. The extension of structure group defined by the inclusion
GL(n,C) C GL(2n,R) turns n-dimensional complex vector bundles into 2n-
dimensional real vector bundles. Similarly, the extension defined by the inclu-
sion U(n) C O(2n) turns n-dimensional Hermitian bundles into 2n-dimensional
Euclidean bundles. In both cases we call the extension of the structure group
realification, and we denote by R¢ the bundle obtained from £ by realification.

We recall that the additional structure which turns a given 2n-dimensional
real vector space into an n-dimensional complex space may be described as
a linear transformation whose square equals —id (a “multiplication by —”).
Similarly, the additional structure which turns a given 2n-dimensional Eu-
clidean space into an n-dimensional Hermitian space may be described as an
orthogonal transformation whose square equals —id. Accordingly, the addi-
tional structure which distinguishes between the n-dimensional complex bun-
dle ¢ and R¢ may be regarded as a GLR?"-equivalence, I: R¢ — RE, such
that I? = —(idg¢) (the minus sign is defined fibre-wise),and that which distin-
guishes between the n-dimensional Hermitian bundle ¢ and R¢ — as an O R??
-equivalence,l: R¢ — RE, such that I? = —(idge). Moreover, we may think of
the reduction of structure group which turns R¢ into € as endowing R, with
one of the last two equivalences.

Obviously, R conj ¢ = R¢ for any complex vector or Hermitian bundle &, and
the shift & — conj& may be described in the previous language as the shift
I— -1

Remark 4.5.1.13. Since we have not only GL(n,C) C GL(2n,R) and U(n) C
O(2n), but also GL(n,C) C GL4(2n,R) and U(n) C SO(2n), the realification
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of a given n-dimensional complex vector or Hermitian bundle may be effected
in two steps: one may first extend GL(n,C) to GL,(2n,R) (U(n) to SO(2n)),
and then extend GL;(2n,R) to GL(2n,R) (respectively, SO(2n) to O(2n)).
Therefore, every complex vector or Hermitian bundle £ provides RE with a
canonical orientation.

Maps

Definition 4.5.1.14. A map of a real or complex vector bundle into another
is said to be linear if it is linear on fibres. Those linear maps which are non-
degenerate (injective) on fibres are called linear monomorphisms. A map be-
tween Euclidean bundles which is both isometric and linear on fibres is called an
orthogonal monomorphism. A map between Hermitian bundles which is both
isometric and linear on fibres is called a wnitary monomorphism.

Note that a linear monomorphism between n-dimensional vector bundles
is nothing else but a GLR"-map in the real case and a GLC"-map in the
complex case. Similarly, an orthogonal (unitary) monomorphism between two
n-dimensional Euclidean (respectively, Hermitian) bundles is simply an O R"-
map (respectively, a UC"-map)) .

Vector Fields

Definition 4.5.1.15. Sections of vector bundles are called vector fields. This
term is applied equally to the real and complex vector bundles, to the Euclidean
and Hermitian bundles, and to the oriented bundles of both types.

A sequence of k vector fields is termed a field of k-frames. A point of the
base where the corresponding frame is degenerate is a singularity of the given
field. A field of k-frames with no singularities in an n-dimensional vector bundle
may be regarded as a section of the associated bundle with fibre RV’ (n, k) or
CV'(n, k). Similarly, a field of orthonormal k-frames with no singularities in an
n-dimensional Euclidean or Hermitian bundle may be thought of as a section of
the associated bundle with fibre RV (n, k) or CV (n, k) [in all cases, the structure
group acts as usual].

For every vector bundle there is the zero vector field, which takes each point
of the base into the zero vector of the fibre over the given point. As we shall see,
there are vector bundles having no sections without zeros. An n-dimensional
real (complex) vector bundle £ admits a field of n-frames with no singularities
if and only if £ is GLR"™-trivial (respectively, GL C"-trivial); conversely, any
such field yields a GL R"-trivialisation (respectively, a GL C"-trivialisation) of
. Similarly, for an n-dimensional Euclidean (Hermitian) bundle &, giving a field
of orthonormal n-frames is equivalent to giving an O R™-trivialisation (respec-
tively, a U C"™-trivialisation) of £&. Moreover, given an n-dimensional oriented
real vector (Euclidean) bundle &, a field of n-frames without singularities (re-
spectively, a field of orthonormal n-frames) such that the orientations of the
fibres are positive on the frames of the field, yields a GL, R™-trivialisation (re-
spectively, an SO R™-trivialisation) of &.
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4.5.2 Constructions

Remark 4.5.2.1. In this subsection we discuss a number of constructions which
shall be applied afterwards to vector, Euclidean, and Hermitian bundles, and
which were not, covered by the general theory of Steenrod bundles from §4.3.

Subbundles

Definition 4.5.2.2. Let £ be an n-dimensional real vector bundle, and let g be a
section of the bundle assoc(§, RG(n, k)) weakly associated with & [here GL(n,R)
acts on RG(n, k) in the usual way], i.e., a continuous function which takes each
point b € bs¢ into a k-dimensional subspace of the fibre (proj(£))~1(b). Denote
by T the union of all these k-dimensional subspaces, and let £|, be the bundle
(T, proj(&)|r, bs(§)). Since the fibres of £|, are the subspaces singled out by g,
€|, is a GL R*-bundle, and it is clear that £, is locally GL R*-trivial.

In fact, let £ be the standard trivial bundle (B x R™, proj;, B). Given by €
B, choose a linear isomorphism £: R¥ — g(bg). Then for a sufficiently small
neighbourhood U of by, the restriction of {|, to U admits even a canonical
GLR"-trivialisation,

hi (U x R*, projy, U) = (€lg)lu,  t1(h(b, v)) = proj, (b, £(v));

here proj, denotes the projection of the fibre b x R™ onto its subspace g(b).
Therefore, |, is a k-dimensional real vector bundle. We call it the subbundle
of & associated with g.

Remark 4.5.2.3. The subbundles of Euclidean, complex vector, or Hermitian
bundles are defined similarly. In the Euclidean case, RG(n, k) is regarded as
an O(n)-space, g remains a section of assoc(§,RG(n, k)), and the resulting sub-
bundle £|,, turns out to be Euclidean (its local O RF-triviality is a consequence
of its local triviality linear on fibres, established in Definition 4.5.2.2, and of
the continuity of the length; see Theorem 4.5.1.5). The discussion in Definition
4.5.2.2 carries over, word-for word, to the complex case: all we have to do is
to replace R by C [in particular, the GL(n, R)-space RG(n, k) must be replaced
by the GL(n,C)-space CG(n,k)]. The resulting subbundle, {|,, is a complex
vector bundle. Finally, in the Hermitian case, CG(n, k) is considered as a U(n)-
space and the sub-bundle ¢|, is Hermitian (¢, is locally UCF -trivial because
it is locally trivial, linearly on fibres, and the length function is continuous; see
Definition 4.5.1.10).

Definition 4.5.2.4. It is clear that the inclusion {|; — £ is a linear monomor-
phism in both vector cases, an orthogonal monomorphism in the Euclidean case,
and a unitary monomorphism in the Hermitian case. Conversely, to every lin-
ear, orthogonal, or unitary monomorphism, f: & — &, with bs(&;) = bs(€) and
bs(f) = id, there corresponds a subbundle of &, namely the subbundle asso-
ciated with the section b — t1 f((proj(&1))~1(b)) of assoc(¢, RG(n,dim&;)) or
assoc(§, CG(n,dim &;)). This subbundle is the image of the monomorphism f,
denoted im f. By Theorem 4.3.2.8, abr f: ¢ — im fisa GLR"” , GLC"-, OR"-,
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or U C™-equivalence, depending on whether we are in the real vector, complex
vector, Euclidean, or Hermitian case.

We note that the correcting map, corr f: & — (bs f)'(€), which is a linear,
orthogonal, or unitary monomorphism together with f (see Remark 4.3.2.4),
always satisfies bs corr f = id. Therefore, im corr f is meaningful for any linear,
orthogonal, or unitary monomorphism f.

Orthogonal Complements and Quotient Bundles

Definition 4.5.2.5. If ¢ is an n-dimensional Euclidean (Hermitian) bundle,

then to each section g of assoc(§, RG(n, k)) (respectively, of assoc(&, CG(n, k)))

there corresponds the section g orthogonal to g: g* is the section of assoc(¢, RG(n, n—
k)) (respectively, of assoc(&, CG(n,n — k))) which takes each b € bs() into the
orthogonal complement of the subspace g(b) in the fibre (proj(¢))~*(b). There-

fore, to every k-dimensional subbundle n = ¢|, of the n-dimensional Euclidean

or Hermitian bundle & there corresponds an (n— k)-dimensional subbundle, £, ,
called the orthogonal complement of the subbundle 7, and denoted 7= .

Definition 4.5.2.6. A subbundle of a vector bundle has no orthogonal com-
plement, but a corresponding quotient bundle is well defined. Namely, let n be
a k-dimensional subbundle of the n-dimensional real or complex vector bundle
. Consider the bundle (T, fact proj(§), bs(€)), where T is the quotient space of
t1(€) by its partition into the sets x + (proj(£))~1(b), with x € (proj(&))~1(b).
The fibres of this bundle are the quotient spaces (proj(¢))~*(b)/(proj(n))~1(b),
and so it is a GLR™ - or GLC" ~bundle. (T, fact proj(€), bs(§)) is called the
quotient bundle of ¢ by n, denoted by &/n.

This construction and the previous one are related: indeed, if we apply
the quotient bundle construction to a Euclidean or Hermitian bundle, we ob-
tain the result of the orthogonal complement construction. More precisely, in
the Euclidean case each quotient (proj(¢))~1(b)/(proj(&))~1(b) is an (n — k)-
dimensional Euclidean space; hence, £/n is an O R"~*-bundle, and the map
h:n — &/n, given by tlh(xz) = proj(x), where proj = [proj: tl(§) — t1({/n)], is
an O R"-equivalence. Similarly, in the Hermitian case, (proj(£))~1(b)/(proj(¢))~1(b)
are (n — k)-dimensional Hermitian spaces, and hence ¢/7 is a UC" *-bundle,
and the same h is a UC" *-equivalence. Therefore, the quotient bundle of a
Euclidean (Hermitian) bundle £ by a subbundle 7 is a Euclidean (respectively,
Hermitian) bundle of dimension dim ¢ — dim 7.

From this it is readily seen that the quotient of a vector bundle ¢ by a
subbundle 7 is a vector bundle of dimension dim £ —dim#. All we have to check
is that £/n is locally trivial linearly on fibres whenever ¢ is a standard trivial
bundle. But this is immediate from the previous discussion if we note that such
a £ may be assumed to be Euclidean in the real case, and Hermitian in the
complex case .

Remark 4.5.2.7. For real vector or Euclidean bundles, the orientation of each of
the three spaces, (proj(¢))~*(b), (proj(n))~*(b), (proj(€))~*(b)/(proj(n))~*(b),
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is uniquely determined by the orientations of the other two (see Remark 3.1.3.10).
Consequently, the orientability of two out of the three bundles, &, 7, £/n implies
the orientability of the third, and given orientations of two of them canonically
determine the orientation of the third.

Sums

Definition 4.5.2.8. The vector bundle £ is said to decompose into the (direct)
sum of its subbundles & and & if each fibre (proj(£))~1(b) is the direct sum
of its subspaces (proj(£)1)~1(b) and (proj(&2))~1(b). A Euclidean or Hermitian
bundle £ decomposes into the (orthogonal) sum of its subbundles &; and &, if each
fibre (proj(¢))~1(b) is the orthogonal sum of (proj(¢);)~1(b) and (proj(&2))~1(b).

In the Euclidean and Hermitian cases, every subbundle £; of the given bundle
¢ splits ¢ into the sum of its subbundles &; and &-. We show in Subsection 4.5.4
that given any vector bundle £ with cellular base and any subbundle &; of &,
there is a subbundle & of £ such that £ decomposes into the direct sum of &
and &5; see Remark 4.5.4.7.

If the vector bundle ¢ decomposes into the sum of its subbundles &; and &,
then the quotient bundle ¢ /¢; is canonically GL RY™é2- or GL C4™ &2_equivalent
to &2: this canonical equivalence h: & — £/&; is given by

tlh(x) = proj(z), proj = [proj: tl(§) — t1(£/&1)].

Such an equivalence exists also in the Euclidean and Hermitian cases, when
O or U replaces GL (in fact, we have already established this in Definition
?7?). We now introduce a construction which reverses the above process and,
in particular, allows us to recover a bundle which decomposes into a sum of
subbundles from its summands.

Definition 4.5.2.9. Let & and & be real vector bundles of dimensions 1, and
ny and with common base. Then &; x & is a Steenrod bundle with base bs(&;) x
bs(&2) and structure group GL(n1,R) x GL(n2,R). The bundle diag' (&, x &)
where diag: bs(&;) — bs(&1) x bs(&), has the same structure group (and base
bs(&1)). Extending this group to GL(n; + no, R), we turn diag' (¢, x &) into an
(n1 + n2)-dimensional real vector bundle, called the (direct) sum of the bundles
& and &, and denoted & P &s.

In the Euclidean, complex vector, and Hermitian cases, the definition and
notation of a sum of two bundles are the same. In the Euclidean case, O(n) x
O(ng) is extended to O(ny + ng), in the complex vector case, GL(ny,C) x
GL(ng, C) is extended to GL(n; + n2,C), and in the Hermitian case, U(ny) X
U(ngy) is extended to U(nj 4+ ns); moreover, a sum of Euclidean, complex vector,
or Hermitian bundles is again a Euclidean, complex vector, or Hermitian bundle,
respectively.

In all cases,

bs(&1 @ &2) = bs(£1)(= bs(&2)),
(proj(&1 @ &))" (b) = (proj(£1)) ™' (b) @ (proj(€2)) " (b);
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the last sum is orthogonal in the Euclidean and Hermitian situations. These
equalities define linear, orthogonal, or unitary monomorphisms, & — & @ &
and & — & @ & which act as the identity on the base. These monomorphisms
identify & and & with subbundles of & & & and split & & & into the sum of
these subbundles.

Note that the same identifications allow us to take the quotients (&; ®&2)/&1
and & &2 /& and using the canonical equivalences defined in Definition 4.5.2.8,
we may actually write (§; @ &2)/&1 = & and (& ® &2) /&2 = & . In particular, in
the real vector and Euclidean cases, the orientability of two out of the three bun-
dles, & &2, and & B &, implies the orientability of the third, and the orientations
of any two of them define canonically an orientation of the third.

Let us add that £®¢ is always orientable and has a canonical orientation, for
any real vector or Euclidean bundle £. This canonical orientation is determined
on each fibre by arbitrary orientations of its summands, provided that we take
identical orientations for both summands.

Definition 4.5.2.10. The sum of a real vector or Euclidean bundle £ and the
one-dimensional trivial GL R*- or O R!-bundle (bs(¢) x R, proj,, bs(€)) is called
the suspension of &, and is denoted by sus&. Similarly, for any complex vector
or Hermitian bundle &, the suspension of &, sus¢, is the sum of £ and the one-
dimensional standard trivial GL C!- or UC!-bundle (bs(¢) x (C, proj, bs(€)).

Two real vector bundles, & and & with bs(£1) = bs(&3) are said to be stably
equivalent if there exist k; and ko such that dim&; + k; = dim & + ko and the
bundles sus® &; and sus®? &, are GL RYU™ &1+F1_equivalent. Stable equivalence of
Euclidean, complex vector, and Hermitian bundles is similarly defined (replacing
GLRIM &tk By QRAM&+k - G CAm&+k - and U Cdm &tk respectively).
A bundle which is stably equivalent to a standard trivial bundle is called stably
trivial.

Finally, we note that for real vector or Euclidean bundles, the orientability
of one of the bundles £ and sus ¢ implies the orientability of the other, and any
orientation of one of them canonically defines an orientation of the other; see
Definition 4.5.2.9.

Complexification

Definition 4.5.2.11. Given an n-dimensional real vector bundle £, consider the
map I: EBE — £BE, given by t11(x,y) = (—y,x) [« and y sit in the same fibre
of £]. Obviously, I is a GLR?"-equivalence satisfying 1> = —id. Therefore, I
turns £HE into an n-dimensional complex vector bundle (see Definition 4.5.1.12),
called the complexification of &, and denoted C&.

If £ is an n-dimensional Euclidean bundle, the same construction turns £ ® &
into an n-dimensional Hermitian bundle, which is also called the complezification
of £ and is denoted C&.

The operation £ — C¢ is called complezification in both cases. Note that
RC¢ = £ @ € in both cases.
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Remark 4.5.2.12. Each of the bundles RC{ and & @ £, appearing in the last
equality, carries a canonical orientation; see Remark 4.5.1.13 and Definition
4.5.2.9. It may be shown that these orientations coincide when n = 0,1 mod 4,
and are opposite when n = 2,3 mod 4.

Indeed, pick an arbitrary fibre (proj(£))~1(b) of ¢ and an arbitrary basis
(respectively, orthonormal basis) vy,...,v, in (proj(¢))~*(b). The canonical
orientation of the fibre (proj(£))~1(b) x (proj(&))~1(b) of RC takes the value +1
on the basis (v1,0),(0,v1),..., (vn,0),(0,v,)) of this fibre, and the same holds
for the canonical orientation of the fibre (proj(£))=1(b) x (proj(£))~1(b) of B €
and its basis (v1,0), (0,v1),. .., (vn,0),(0,v,)). It remains to note that, in order
to shift from one basis to the other, we have to perform n(n—1)/2 permutations
of adjacent vectors, and that this number is even for n = 0,1 mod 4, and odd
for n =2,3 mod 4.

Theorem 4.5.2.13. The map
conj: C& — conjC¢, given by tlconj(x,y) = (z, —y),

is a GL C"-equivalence (UC™-equivalence) for any n-dimensional real vector
(respectively, Euclidean) bundle &.

Proof. Indeed, the equivalences I,I5: £ & £ — £ @ £, which turn £ & £ into C&
and conj C¢, are given by

t111(1'7y) = (_y7x)a IQ = _117
and hence I3 o conj = conjolj. O

Theorem 4.5.2.14. The map
1 1

where I is the equivalence which turns RE into £, is a GL C"-equivalence (U C™-
equivalence) for any n-dimensional complex vector (respectively, Hermitian)
bundle.

Proof. The equivalences I, Io: RE @ RE — RE @ RE, which turn RE & RE into
& @ conj&, and CRE, are given by

tl[l(wvy) = (tl](l’),*ﬂ](y)), tlIQ(xay) = (*y,fﬂ),
and hence Iy o K = K o I;. O

4.5.3 The Classical Universal Vector Bundles

Remark 4.5.3.1. The main value of the construction in Subsection 4.4.3 is that it
establishes the existence of a universal G-bundle for a completely arbitrary topo-
logical group G. However, for the groups GL(n,R), GL4(n,R), O(n), SO(n),
GL(n,C), and U(n), there are more convenient, classical constructions, which
are described in the present subsection.
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The Grassmann Spaces
Definition 4.5.3.2. Set
G( ) = lim(G(m,n),incl: G(m,n) - G(m + 1,n)),

Gy( ) = lim(G4(m,n),incl: G4 (m,n) = G (m+1,n)),
CG(o0,n) = lim(CG(m,n),incl CG(m,n) - CG(m + 1,n)).

oo,
oo, n

G(oo,n) consists of all n-dimensional planes of R* passing through 0, and is
called the n-th (real) Grassmann space. Similarly, the n-th upper Grassmann
space, G4 (0o, n), consists of all oriented n-dimensional planes in R* passing
through 0. Finally, the n-th complex Grassmann space, CG(co,n), consists of
all n-dimensional planes in C passing through 0.

The canonical maps:

G(m,n) = G(m,n), CG(m,n)— G(2m,2n), CG(m,n)— G4(2m,2n),
G(m,n) = Gm+q,n+gq), Gi(m,n)—=Gi(m+q,n+q),
CG(m,n) = CG(m+q,n+q)

(see Remarks 3.2.2.3 and 3.2.2.7) define for any n the following maps:

Gi(oc0,n) = G(oo,n), CG(oco0,n) = G(o0,2n), CG(co,n) — G4(c0,2n),
G(OO,?’Z)%G(OO,’IL—FQ), G+(OO,TL—>G+(OO,7’L+(]),
CG(o0,n) = CG(c0,n + q).

The first of these maps (as the canonical map G4 (m,n) — G(m,n) with m <
o0) is a two-sheeted covering projection; the second is the composition of the
first and the third; and all these maps, except the first, are embeddings.

Remark 4.5.3.3. The Grassmann spaces possess natural cellular decompositions
which we shall presently describe.

First consider G(co,n). Let €, denote the set of all sequences of integers,
w={w(l),...,w(n)}, with 0 <w(1l) <--- <w(n), and let us agree to add the
term w(0) = 0 to each sequence w € Q,,. Further, let e(w) denote the subset of
G(o00,n) consisting of those n-planes v in R (passing through 0) such that

dim(y NR™) = max{s|w(s) + s < m},

for all m. We show that the sets e(w), w € Q,, yield a cellular decomposition
of G(oco,n), with dime(w) = d(w), where d(w) = w(1) 4+ - -+ + w(n).

We have to produce a characteristic map, chare): DU“) — G(oo,n). Fix
w and, for points u,v € S*(M+"=1 such that u + v # 0, denote by r(u,v) €
SO(w(n)+n) the orthogonal transformation which takes u into v and keeps fixed
all the vectors of R“(™*" which are orthogonal to v and v. Further, let H; de-
note the w(i)-dimensional hemisphere consisting of all points (1, ... 2y @)+:) €
S«(D=i=1 such that @, (j)1+; = 0 for j =1,...,i+1, and 2,(;)4+;) > 0. Consider
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the map ¢: Hy x --- x H, — G(oo,n) which takes each sequence (uq,...,up)
into the plane spanned by the n-frame: (which is obviously orthonormal)

ulv[r(ortw(l)+17ul)](u2)7"'7 (45 34)
o)

[r(ortw(l)Jrlv ul) ©r 0 T(Ortw(nfl)]nfla un—l)](un)

Then ¢ is continuous and maps int(H; X --- x Hy,) into e(w), and 9(Hy X - - X
H,) into a union of sets e(w’) with d(w’)) < d(w). Moreover, its compression
abrp: int(H; X -+ X H,) — e(w) is a homeomorphism: its inverse takes each
plane v € e(w) into the sequence (uq,...,u,), with

Uy = V1,U2 = [T(Ortw(l)ﬂ),ul]_l(?&), )

Up = [T(Ortw(l)-&-lu ul) ©---0 [T(Ortw(n—l)+n—17 unfl)]_l(vn)v

where vy, ..., v, is an orthogonal basis of 7, selected in such a way that v; sits
in the hemisphere z,(;)1; > 0 of S*()i~1 (the vectors v1,...,v, are uniquely
determined by these requirements). Therefore, one may take char (. to be the
composition

DU 5 DM x .. x DM 5 Hy x - x H,, 2 G(oo, n),

where the left map is the inverse of the homeomorphism indicated in Remark
1.2.6.9, and the middle map is the product of the homeomorphisms D“(*) H;
given by

(J:l, R ,xw(i)) —
w(i)

(xla s axw(i)70axw(i)+1a s 7Xw(2)a 0) R 0) xw(i71)+17 s 7$w(i)7 (1 - 2'1332)1/2)
1

The cellular decomposition of G4 (oo,n) has twice as many cells as that of
G(00,n). Namely, over each cell e(w) sit two cells, e1 (w) and e_ (w), of G4 (00, n),
which are homeomorphically mapped onto e(w) by the projection G (co,n) —
G(o0,n): ey (w) is made up of planes oriented in such a way that the orientation
is positive on the basis vy, ..., v, described above, while e_(w) is made up of
the same planes, but with the opposite orientations. The characteristic maps
for ey (w) and e_(w) are constructed in the same manner as char,,), but now
the plane spanned by the frame (4.5.3.4) is oriented [its orientation is positive
(negative) on (4.5.3.4) for ey (w) (respectively, for e_(w))].

The cellular decomposition of CG(oco,n) is given by the cells Ce(w), w € Q,,
which are defined precisely as the e(w)’s if one replaces R> and R™ by C*> and
C™; dim Ce(w) = 2d(w), and charc,(,) is the exact complex-Hermitian analogue
of the map char,,).

Remark 4.5.3.5. The above cellular decompositions contain only a finite num-
ber of cells of a given dimension, and hence satisfy property (C). Since each of
the manifolds G(m,n), G4 (m,n), and CG(m,n) is covered by a finite number
of cells, and since these manifolds constitute fundamental covers of the spaces
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G(oo,n), G4 (oo, n), and CG(ocon), our cellular decompositions satisfy also prop-
erty (W). Finally, from Theorem 1.2.4.6 it follows that G(oco,n), G4 (oo, n),
and CG(ocon) are normal. Therefore, the above cellular decompositions turn
G(oo,n), G4 (00,n), and CG(oon) into cellular spaces.

It is clear that G(m,n), G4 (m,n), and CG(m,n) are subspaces of G (oo, n),
G (00,n), and CG(oon) in the cellular sense, and so they are cellular spaces
too.

For n =1, G(m,n)), CG(m,n), G(co,n), and CG(co,n) are simply RP™~1,
CP™~ !, RP>, and CP™, respectively, and the above cellular decompositions
are identical with those described in Remarks 2.1.3.4 and 2.1.3.5.

Remark 4.5.3.6. Note that the canonical embeddings
G(oo,n) = G(oo,n+q), Gi(oo,n) = G4(00,n+q), CG(c0,n) — CG(o0,n+q)

(see Definition 4.5.3.2) are cellular. The image of the first, the second and the
third respectively contain

skel, G(oo,n+q), skel, Gy(co,n+q), skela,r1 CG(oo,n+ q).
The inclusions

G(m,n) D skely,—, G(oo,n), Gy(m,n) D skel,,—, G4 (co,n),
CG(m,n) D skelay,—2n+1 CG(00,n)

are equally evident.

The Grassmann Bundles

Definition 4.5.3.7. Let 0 < n < m < oo and n < oco. We let T(m,n),
T (m,n), and CT(m,n), denote those subsets of the respective products G(m, n)x
R™ G4 (m,n)xR™, and CG(m,n)x C™, consisting of all pairs (v, z) such that
x € 7. Consider the bundles (T'(m, n), proj, G(m,n)), (T'(m,n), proj, G+ (m,n)),
and (CT'(m,n),proj, CG(m,n)), where proj(y,z) = . The fibres of the first
(second; third) bundle are Euclidean spaces (respectively, oriented Euclidean
spaces; Hermitian spaces). Moreover, the first (second; third) bundle is lo-
cally W-O R"-trivial (respectively, locally W-SO R"™-trivial; locally W-U C"-
trivial), and hence it is a Euclidean (respectively, oriented Euclidean; Hermi-
tian) bundle. We denote these bundles by Grass(m,O(n)), Grass(m,SO(n)),
and Grass(m,U(n)). In addition, by extending the respective structure groups,
O(n), SO(n), and U(n), to GL(n,R), GL(n,R), and GL(n,C), we obtain bun-
dles denoted by Grass(m, GL(n,R)), Grass(m, GL (n,R)), and Grass(m, GL(n, C)).
The bundles of these six series are called Grassmann bundles. For m = oo, we
use the simpler notations Grass O(n), Grass SO(n), Grass U(n), Grass GL(n,R),
Grass GL4 (n,R) , and Grass GL(n, C).

Note that for m < oo, Grass(m,O(n)) is nothing else but the subbundle
of the standard trivial bundle (G(m,n) x R™, proj, G(m,n)) (viewed as a Eu-
clidean bundle) associated with the diagonal section, v — (v,7) of the bundle



4.5. VECTOR BUNDLES 309

(G(m,n) x G(m,n),proj;, G(m,n)). The same holds, with obvious modifica-
tions, for the remaining five series.

Theorem 4.5.3.8. The bundles Grass G with G = GL(n,R), GL(n,R), O(n),
SO(n), GL(n,C), U(n) are universal.

Proof. The proofs for the different groups G differ only in some obvious details,
and are all very similar to the proof of Theorem 4.4.3.4. We shall treat here
only the group GL(n,R). According to Definition 4.4.2.2, it suffices to show
that given any n-dimensional real vector bundle ¢ with cellular base and any
subspace A C bs)¢), every GLR"-map g: {|4 — Grass GL(n,R) extends to a
GLR"™-map ¢ — Grass GL(n,R).

Assume first that bs(¢) = D"+ (for some r) and A = S”. In this case £ is
GLR"™-trivial, and so we may actually assume that ¢ is the standard trivial bun-
dle (D"t xR", proj,, D"™1). The desired extension of g, f: £ — Grass GL(n,R),
can be described explicitly: let g; be the composite map

s x R® 19, tl(Grass GL(n, R)) Indl, G(oo,n) x R*™ Proly, oo

and define fi: D"t! x R® — R by

filty, (x1,... z0) = tg1(y, (1, ..., 20))+(1=t3)Y2(0,...,0,21,...,2,,0,...),
——

m

where y € S", t € I, and m is the smallest number s such that R® D g;(S" x

S"71); finally, set t1(f(y,x)) = (f1(y x R"), fi(y, z)).
The general case reduces to this special situation. Assume that the cellular

space bs(§) is rigged and that we already have a GLR"™-map
fr+ €l auskel, bs(e) — Grass GL(n, R)

which extends g. The above argument shows that for every cell e € cell,. 1 bs(£)\
cell,+1 A the GLR™-map

ge = fr o adj[abr char,: " — A Uskel, bs(¢)]: char! ¢

s+ — Grass GL(n,R)

extends to a GLR™map h,: char!eg — Grass GL(n,R), and it is clear that
tl(h.) is constant on the elements of the partition zer(tladjchar.). Applying
Theorem 4.3.2.6 (with B = D"*! and p = [abr Char,: D"! — Cl(e)]), we con-
clude that h. defines a GLR™-map &|cye) — Grass GL(n,R), which we denote

by fe.
Now note that for any two cells,
e1,es € cellp 11 bs(§) \ cell, 1 A,

tl(fe) and tl(f,) agree over Cl(e1) N Cl(ez), and that for any cell

e € cell; 41 bs(§) \ cell, 41 A,



310 CHAPTER 4. BUNDLES

t1(fe) and tl(f,) agree over Cl(e) N (A Uskel, bs(§)). From this compatibility it
follows that the maps f,. and f., e € cell,11 bs(€) \ cell, 1 A, combine to define
a GLR™-map

fra1: &l auskel, o, bs(§) — Grass GL(n,R)

which extends ,.; see Corollary 4.3.2.7. Therefore, using induction, we can pro-
duce a sequence of GL R™-maps,

{fs: €l auskel, bs(§) — Grass GL(n,R) _}

such that $f_1 = g and f, extends f,_1, s > 0. Finally, the maps f, define a
GLR™map ¢ — Grass GL(n,R) extending g. O

Corollary 4.5.3.9. The bundles
Grass(m, GL(n, R)), Grassy (m, GL(n, R)), Grass(m, O(n)), Grass(m, SO(n))
are (m — n)-universal. The bundles
Grass(m, GL(n, C)), Grass(m, U(n))
are (2m — 2n + 1)-universal

Proof. This is a corollary of Theorem 4.5.3.8 (see Remark 4.5.3.6 and Definition
4.4.2.7). O

Associated Principal Bundles

Definition 4.5.3.10. When m < oo, the total spaces of the principal bundles
associated with the Grassmann bundles

Grass(m, GL(n,R)), Grass(m,GLi(n,R)), Grass(m,GL(n,C)),
Grass(m,O(n)), Grass(m,SO(n)), Grass(m,U(n)),

are obviously V'(m,n), V'(m,n), CV'(m,n), and V(m,n), V(m,n), CV(m,n).
The corresponding projections are the maps described in Remarks 3.2.2.3 and
3.2.2.7:

V'(m,n) = G(m,n), V'(m,n) — Gy(m,n), CV'(m,n)— CG(m,n),
V(m,n) = G(m,n), V(m,n) = Gy(m,n), CV(m,n)— CG(m,n).
(4.5.3.11)

The same is true for m = oo, if V/(o0, n), CV'(c0,n), V(co0,n), and CV(m,n)
are understood as lim(V’/(m,n),incl), ligl(CV'(m,n)Jncl), li_n;(V(mm),incl),
and h_r)n((CV(m,n),incl), and the projections (4.5.3.11) with m = oo as the
limits of the projections (4.5.3.11), m < oco. V’(co,n), CV'(c0,n), V(co,n),
and CV(m,n) are are called Stiefel spaces.

It is clear that for m < oo0 the canonical right actions of the structure
groups on the above total spaces (see Definition 4.3.2.10) are exactly the right
actions described in Remarks 4.2.3.16 and 4.2.3.17, while for m = oo they are
the colimits (inductive limits) of the latter.
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The Bundles assoc(Grass O(1),0(1)) and assoc(Grass U(1), U(1))

Theorem 4.5.3.12. The principal bundle associated with Grass O(1) is O(1)-
isomorphic to MilO(1). The principal bundle associated with GrassU(1) is
U(1)-isomorphic to MilU(1).

Proof. Tt suffices to find an O(1)-homeomorphism
t1(Mil O(1)) — tl(assoc(Grass O(1), O(1))),
when we regard t1(MilO(1)) and
tl(assoc(Grass O(1),0(1))) = V (o0, 1)[= S
as right O(1)-spaces ; similarly, viewing tI(MilU(1)) and
tl(assoc(Grass U(1),U(1))) = CV (o0, 1)[= S=]
as right U(1)-spaces, we need only exhibit a U(1)-homeomorphism
tI(MilU(1)) — tl(assoc(Grass U(1),U(1)));

see Corollary 4.3.2.9 and Definition 4.3.2.10. In both cases such a homeomor-
phism is given by the formula

{proj(gi, t:)}i21 = {givti}iZs

The meaning of the left-hand side was explained in Remark 4.4.3.2, while in the
right-hand side the elements g; of O(1) or U(1) are thought of as numbers (the
following inclusions are used: V(o0,1) C R*®, CV (c0,1) € C*, O(1) =S° C R,
and U(1) =S c C. O

4.5.4 The Most Important Reductions of the Structure
Group

Remark 4.5.4.1. The use of Grassmann bundles enables us to apply the scheme
presented in Subsection 4.4.4 to the problems raised in Subsection 4.5.1 con-
cerning reductions of the structure group. This is the subject of the present
subsection.

Recall that the reductions corresponding to the inclusions

O(n) c GL(n,R), SO(n) C GL(n,R), U(n)C GL(n,C), (4.5.4.2)

are equivalent to the introduction of a Euclidean or Hermitian metric, while the
reductions resulting from the inclusions

GL.(n,R) C GL(n,R), SO(n)  O(n), (4.5.4.3)

are equivalent to the introduction of an orientation. Finally, the reductions
resulting from the inclusions

GL(n,C) Cc GL(2n,R), U(n) C O(2n), (4.5.4.4)
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mean the introduction of a complex structure.

For each of the inclusions (4.5.4.2), (4.5.4.3), and (4.5.4.4), we shall exhibit
a canonical classifying map, and then list the most obvious consequences of
these constructions. Moreover, we shall carry out the same programme for the
inclusions

GL(n —s,R) ¢ GL(n,R), GL4(n—s,R) C GL(n,R),

GL(n —s,C) C GL(n,C), (4.5.4.5)

and
O(n—s) C O(n), SO(n—s)CSO(n), U(n-—s)CUn). (4.5.4.6)

The reductions of the structure group corresponding to the six inclusions (4.5.4.5)
and (4.5.4.6) may be interpreted as the representation of the given n-dimensional
bundle as the s-fold suspension of an (n — s)-dimensional bundle.

Remark 4.5.4.7. The outlined programme is simple to carry out for inclusions
(4.5.4.2). Indeed, the bundles Grass GL(n,R) and Grass O(n) have the same
base, G(oo,n), and the same is true for Grass GLy(n,R) and GrassSO(n),
with the base G4 (00, n), and for Grass GL(n,C) and Grass U(n), with the base
CG(oc0,n). It is obvious that in all three cases the identity map of the base is
classifying. Therefore, the mappings

ext: Stnrd(B,OR") — Sturd(B, GLR"),
ext : Stnrd(B, SOR"™) — Stnrd(B, GLy R™),
ext: Stnrd(B,UCn) — Sturd(B, GLC")

are invertible for any cellular space B; see Definition 4.4.4.3. In particular, every
real (complex) vector bundle with cellular base admits a Euclidean (respectively,
Hermitian) metric.

As a corollary, we obtain the theorem already formulated in Definition
4.5.2.8: given any vector bundle £ with cellular base and any subbundle &,
there exists a subbundle &; of £ such that £ decomposes into the sum of & and

&a.

Remark 4.5.4.8. Similarly, the projection G4 (00, n) — G(o0,n) is classifying for
both inclusions (4.5.4.3), while the inclusion CG(oco,n) — G(o0,2n) is classify-
ing for both inclusions (4.5.4.4). However, a study of the homotopy properties
of these classifying maps is already a quite difficult task. We shall return to the
first of them in §5.6, armed with more sophisticated tools.

Remark 4.5.4.9. For the inclusions (4.5.4.5) and (4.5.4.6) there are also obvious
classifying maps:

for both left inclusions, - the canonical embedding G(oo,n — s) = G(oco,n),
for both middle inclusions - the canonical embedding G4 (co,n —s) — G(co, n),

for both last inclusions - the canonical embedding CG(co,n — s) — CG(oo,n)
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(see Definition 4.5.3.2). Identifying G(co,n—s), G4 (00, n—s), and CG (o0, n—s)
with their images under these embeddings, and using Remark 4.5.3.6, we can
write:

G(oco,n — s) D skel,_s G(oo,n), Gi(co,n —s) D skel,_s G(oo,n)
CG(oo,n — 8) D skelyp 2541 CG(00, n).

From the first inclusion it follows that the pair (G(oco0,n), G(co,n—s)) is (n—s)-
connected (see Theorem 2.3.2.4), which in turn implies (by Theorems 2.3.2.6 and
2.3.2.7) that the map

m(id, incl): (B, G(co,n — s)) — (B, G(oo,n))

is invertible for any cellular space B with dim B < n — s, and surjective for any
cellular space B with dim B = n — s. Consequently,

ext: Sturd(B,GLR"™*) — Stnrd(B, GLR")
ext: Stnrd(B,0OR"™*) — Stnrd(B, OR™)

are invertible for any cellular B with dim B < n — s, and surjective for any
cellular B with dimB = n — s. In exactly the same manner the inclusion
G4 (00,n—s) D skel,,_s G4 (00, n) leads to the invertibility (surjectivity) of the
mappings

ext: Stnrd(B,GL4y R"™%) — Sturd(B, GL4 R"™)
ext: Sturd(B,SOR"™*) — Sturd(B,SOR")

for any cellular B with dim B < n — s (respectively, dim B = n — s), while
the inclusion CG(oco,n — s) D skela,_92s+1 CG(0c0,n) implies the invertibility
(surjectivity) of the mappings

ext: Stnrd(B,GLC"™*) — Stonrd(B, GLC")
ext: Sturd(B,UC"™%) — Stnrd(B,UC")

for any cellular B with dim B < 2(n — s) (respectively, dim B = 2n — 2s + 1).
Therefore, every n-dimensional real (complex) vector bundle with cellular base
of dimension < n — s (respectively, < 2n — 2s + 1) is GLR"-equivalent (re-
spectively, GL C™-equivalent) to the s-fold suspension of an (n — s)-dimensional
bundle; furthermore, if given two (n — s)-dimensional real (complex) vector
bundles with cellular base of dimension < n — s (respectively, < 2n — 2s + 1)
their s-fold suspensions are GL R™-equivalent (respectively, GL C™-equivalent),
then the bundles themselves are GLR"*-equivalent (respectively, GL C"~*S-
equivalent).

4.5.5 Exercises

FEzercise 4.5.5.1. Let € be an n-dimensional real vector bundle. Show assoc(&, R™\
0) is equivalent (in the sense of Definition 4.1.1.2) to the bundle with total space
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{zG € tl(§)|x # 0} and whose projection is the restriction of proj(§) to this sub-
space of t1(§) .

Let ¢ be an n-dimensional Euclidean bundle. Show that assoc({,D") and
assoc(&,S" 1) are equivalent to the bundles whose total spaces are the subspaces
of t1(§) consisting of the vectors of length < 1 and = 1, respectively, and whose
projections are the appropriate restrictions of projé.

Ezercise 4.5.5.2. Let £ be an n-dimensional real (complex) vector bundle. Show
that assoc(&, V'(n,k)) (respectively, assoc(§, CV'(n,k))) is equivalent with the
bundle with total space

{(z1,.. o me) € 81(E) x - x t1(E) | proj§(a1)) = - -+ = proj(§(zk)),
—_——
k
Zr1,...,T linearly independent,

and whose projection is the restriction of the composite map

£1(E) x -+ x t1(€) 2L 13g) PO s (e,

Let £ be an n-dimensional Euclidean (Hermitian) bundle. Show that assoc(&, V (n, k))
(respectively, assoc(§, CV (n, k))) is equivalent with the bundle with total space

{21, ) € 1(E) x - x th(§) | proj§(z1)) = - - - = proj(§(zk)),
—_————
k
r1,...,T 1S an orthonormal frame,

and whose projection is the restriction of the composite map

£1(€) x -+ x t(€) 2L 13g) PO (e,

Exercise 4.5.5.3. Consider the spaces 7 and S introduced in Exercise 1.2.9.5.
Now GL(1,R) acts on T \ O from the right by ({z;},t) — {tz;}. Clearly
(T\0)/GLL(1,R) = S. Show that the GL,(1,R)-bundle defined by this ac-
tion is locally trivial, but not trivial. Show that the associated oriented one-
dimensional real vector bundle does not admit a Euclidean metric.
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4.6 SMOOTH BUNDLES

4.6.1 Fundamental Concepts

Definition 4.6.1.1. Let 1 <7 < a. A bundle £ is called a bundle of class C", or
a C-bundle if t1(£) and bs(&) are C"-manifolds, and for each point by € bs(&) there
are a neighbourhood U of by, a C"-manifold F' with 0F = @ if OU # &, and a C"-
diffeomorphism h: U x F — (proj(£)) 1 (U), such that (proj(¢))~t(h(b,z)) =b
forallbe U and z € F.

U x F—"> (proj(€))"1(U) < tl(€)

\ iproj(&) lproj(s)
proj;

bo € U c bs(§)

The C*-bundles with s > r will be referred to as bundles of class > r, or C2"-
bundles. The CZ!-bundles are called smooth.

If £ is a C"-bundle, then proj(&) is obviously a C"-submersion. In particular,
the fibres of a smooth bundle are neat submanifolds of the total manifold t1(&)
(see Corollary 3.1.5.8). Moreover, the fibres over points belonging to the same
component of the base of a C"-bundle are pairwise C"-diffeomorphic. If bs(&) is
connected and Obs(§) # @, then the fibres have no boundary, and

9t1(€) = (proj(€)) ™' (9 bs(€)),
whereas if 0bs(¢) = @, then

OtL(€) = Unens)e)l(proj(£)) ~ (0)];

in the first situation, the restriction

(91(€), abr proj(€), d[(proj(£)) " (b)]
of the bundle £ to 9bs(§) is a C"-bundle, whereas in the second

(9t1(£), abr proj(£), bs(¢))

is a C"-bundle.

Given two C"-bundles, & and & such that dbs(§) = & and dtl = @, the
product & x & is a C"-bundle.

The restriction of a C"-bundle to a neat submanifold of its base is clearly a
C"-bundle.

Suppose that ¢ is a C"-bundle, B is a C"-manifold, and f: B — bs(§) is a C"-
map such that the fibre (proj(¢))~1(f(b)) has no boundary for all b € dB. Then
() is a C"-bundle, and we say that the bundle f'(¢) is neatly induced. For
example, given a C"-bundle &, incl (€) is always neatly induced when incl is either
the inclusion of a neat submanifold inclbs(¢), or the inclusion 0 bs(§) — bs(€);
obviously, incl'(€) coincides, as a C"-bundle, with the corresponding restriction
of &.
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Definition 4.6.1.2. Let 0 < s < r. A map ¢ from one C2"-bundle into
another is said to be a C*-map (a C*-isomorphism) if t1(§) and bs(§) are C*-maps
(respectively, C*-diffeomorphisms for s > 1, and homeomorphisms for s = 0). A
Cs-isomorphism which is also an equivalence is called a C*-equivalence.

A CZ"-bundle A£ is said to be C*-trivial if it is C5-equivalent to a standard
trivial bundle (bs(§) x F,projq,bs(€)), where F' is a C"-manifold (such that
OF = @if 0bs(€) # @). Every C"-bundle is obviously locally C"-trivial, meaning
that each point of bs(£) has a neighbourhood U such that £|y is C"-trivial; in
particular, every smooth bundle is topologically locally trivial.

If f'(¢) is neatly induced from the CZ"-bundle ¢ by a C" -map f, then
adj f: f'(¢€) — & s a C"-map. Furthermore, if ¢: ¢’ — ¢ is a C"-map, where
¢ and ¢ are C"-bundles, and (bs(y))'(¢) is neatly induced, then corrp: & —
(bs())'(€) is also a C"-map.

Smooth Bundles and Submersions

Theorem 4.6.1.3. Let r < 0o and let f: X — Y be a C"-submersion, where
X and Y are C"-manifolds, X is compact, and f~1(0Y) = 0X. Then (X, f,Y)
1s a C"-bundle. The same holds true when r = a, provided that X admits a
C*-embedding in Euclidean space.

(See Exercise 4.6.6.1 for a supplement to this theorem.)

Proof. Tt suffices to examine the case f(X) =Y indeed, in the general case the
set f(X) is both open (see Corollary 3.1.5.8) and closed (see Theorem 1.1.7.9),
and hence is a union of whole components of Y. We show that for each point
Yo € Y there are a neighbourhood U of yy, a closed C"-manifold F, and a C"-
diffeomorphism h: U x f — f~1(U), such that f(h(y,z)) =y for all y € U and
reF.

From Corollary 3.1.5.8 (or, if it is more convenient, from Theorem 3.4.8.2),
it follows that f~1(yo) is a neat submanifold of X for yo € intY, and a neat
submanifold of X for yo € 9Y, and in both cases f~!(yo) is closed as an
independent manifold. Set F' = f~!(y), and pick a C"-embedding j: X — RY,
a C"-transversalisation 7 of the embedding j|r: F' — R? and a neat tube Tub. p.
Now consider the map

g1 (tubr p) = Y X F, p(z) = (f(2), proj, (j(2))).
The following properties of ¢ are immediate:
o is of class C";
* (d(j~!(tubs p))) CAY x f);
e ( is injective on F;
e the differential d ¢ is non-degenerate for all z € F.

Since F' is compact, we conclude that ¢ defines a diffeomorphism of a neighbour-
hood of F onto a neighbourhood of ¢(F) = yo x F' (see Theorem 3.1.5.5). Using



4.6. SMOOTH BUNDLES 317

once more the compactness of F', we see that the last neighbourhood contains
a set of the form V x F, where V is a neighbourhood of 3y (in Y). Let U be a
smaller neighbourhood of yg, such that j(f~1(U)) C tub, p. Then o=} (UxF) =
f~Y(U), and we can finally set h = (abr)~!: U x F — f~1(U). O

Ezample 4.6.1.4. The bundles
(HV (n, k), proj, HG(n, k)),

whose projections are the submersions defined in Subsection 3.2.2, are principal
C®-bundles with structure groups O(k), SO(k), U(k), and Sp(k), respectively.
Similarly,

(V(nv k)v pI‘Oj, V(nv k— Q))7 (CV(TL, k)v pI‘Oj, (CG(TL, k — q))a
(HV (n, k), proj, HG(n, k — q)),

whose projections are the submersions defined in Subsection 3.2.1, are Steenrod
C*-bundles with structure group

On—k+gq), Umn—%k+q), Spn-—k+q),
and standard fibres
Vin—k+q.4q), CVin—k+gq,q), HV(n—k+q,q)
(on which the above groups act canonically; see Remark 4.2.3.16). The coverings
(R,hel,S$Y),  (S*, hel,,,SY), (G (n,k),proj, G(n,k)),

defined in Example 4.1.2.6, are also principal C*-bundles.
Among the previously listed principal C*-bundles we find

(83,proj,82), (87,pr0j,S4),

whose projections are the Hopf submersions (see Remark 3.2.2.9); they are called
the Hopf bundles. The Hopf submersion S'> — S® defines a C%-bundle, which is
also known as a Hopf bundle; its fibres are diffeomorphic to S7 (but this bundle
is not endowed with any special structure group).

The Smooth Bundles as Steenrod Bundles

Remark 4.6.1.5. Let F be a C"-manifold with » > 1. According to Remark
4.2.3.14, F is an effective Diff” F-space, and thus every C"-bundle £ whose fibres
are C"-diffeomorphic to F' is a W-F-bundle (see Example 4.3.1.5 and Definition
4.3.2.1). Moreover, £ is clearly locally W-F-trivial, i.e., it is a Ehresmann—
Feldbau bundle. However, the procedure that enabled us in Subsection 4.3.4 to
turn Ehresmann-Feldbau bundles into Steenrod bundles does not work here: as
we already had the occasion to note (see Exercise 4.3.5.2), when dim F' > 0, the
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natural action of Diff” F on F is not topologically effective. Nevertheless, the set
MH (&) carries a natural topology, transferred from C"(F,t1(¢)) with the aid of
the injective mapping M H (§) — C"(F,t1(£)) which takes each diffeomorphism
a € MH(E) into the map [incl: a(F) — t1(§)] o a. It is clear that with this
topology on M H(£), £ becomes a Steenrod F-bundle.

It is instructive to compare the implicit group structures described above for
smooth bundles with the implicit group structures of locally trivial bundles (see
Remark 4.3.4.7). Here we merely mention two difficulties encountered in the
differential situation. Firstly, not every Steenrod F-bundle can be smoothed -
the fact that its base need not be a manifold is already an obstruction. Sec-
ondly, simple examples show that there are F-maps of C"-bundles with fibres
diffeomorphic to F', which are not C"-maps.

4.6.2 Smoothings and Approximations

Remark 4.6.2.1. This subsection is similar in character with §3.4: here we gener-
alise some of the results obtained there for smooth manifolds to smooth bundles.
Although part of these results are indeed rather important, some problems are
not touched upon at all. For the sake of brevity, we shall consider below only
the closed case; the reader can find some additional information concerning the
(more general) compact case in Subsection 4.6.6 (see Exercises 4.6.6.2-4.6.6.5).

We shall need two notations, for 0 < s < r: if £ is a C"-bundle, we let
Sect® € denote the set of all C*-sections of &; and if £ and &' are C"-bundles, we
let C*(&,&') denote the space of all C*-maps & — &'. If s # a, both sets carry
natural topologies: Sect®¢ is a subspace of C*(bs(§),t1(€)), while C*(¢,¢') is a
subspace of the product C*(t1(£),t1(£")) x C*(bs(§), bs(£)).

¢-Transversalisations and Tubes

Our immediate task is to adapt the definitions and theorems of Subsection 3.4.3
for use in the more general setting of this subsection.

Definition 4.6.2.2. We start with the transversalisations. Let & be a smooth
bundle such that t1(£) is closed, and let j: tl(§) — R? be a differentiable em-
bedding. A continuous map t: tl(§) — G(¢,q — n), where n = dimtl(¢) —
dimbs(§), is called a &-transversalisation of the embedding j if the restric-
tion 7|(proj(e))-1(y) 18 @ transversalisation of the embedding j|(proj(¢))-1(y) for
all points y € bs(§). A fundamental example is the normal &-transversalisation,
which takes each point z € t1(€) into the orthogonal complement of the plane
dj(Tang[(proj(&)] = (proj(¢)(z)))) in RY. Our &-version of Theorem 3.4.3.7
asserts that if &, and j are of class C" (1 < r < a), then j admits a &-
transversalisation of class C". The proof is an obvious modification of that
of Theorem 3.4.3.7.

Now we move on to tubes. Let 7 be an arbitrary &-transversalisation of
the embedding j. We define the tube Tub, p and the open tube tub, p as the
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following subsets of bs(§) x R?:

d-(z,p))
(d‘l'(l'vp) \ ST(.’E,,O))),

where d;(z, p) and s, (z, p) are the ball, and respectively the sphere, with centre
j(x) and radius p in the plane j(z) 4+ 7(z). Equivalently,

Tub, p = Umetl(g)((PTOj(f))(x)

X
tub; p = Uzene) ((proj(§))(z) x

Tubr p = Uyens(e) (y X Tubry -1, )
bubr p = Uyebs(e) (4 X tubry o)1,y P)-
The tube Tub, p is neat if there is a o > p such that:
e the sets (proj(§))(z) x (d-(x,0) \ s;(x,0)) are pairwise disjoint,
e tub, o is open in bs(§) x R,

e the map tub, o — t1(§), which takes (proj(§))(x) x (dr(z,0) \ s-(z,0))
into x, is smooth.

The restrictions of this last map to Tub. p and ;ub,p are called projections and
are denoted by proj.. (they clearly do not depend upon the choice of o). If &, 7,
and 7 are of class C", r > 1, then the following are true:

e there exists a neat tube;

e every neat tube Tub, p is a submanifold of bs(£) x R?, with int Tub, p =
tub; p;

e proj.: Tub, p — tl(§) is a C"-submersion.

Again, the proof is an obvious modification of the proofs of Theorems 3.4.3.4
and 3.4.3.5. We must also modify appropriately the construction in Remark
3.4.3.3: now the model Tu, is defined as the subset

{(z,t) € t1(¢) x Rt € 7(x)} C tl(€) x RY,

while nat: Tu, — bs(§) x R? is given by nat(z,t) = ([proj,(£)](z), j(z) + ).

The Basic Theorems

Theorem 4.6.2.3. Let < oo and let & and &' be C"-bundles with closed total
spaces t1(§) and t1(£'), and closed bases bs(§) and bs(¢'). Then C™(§,&') is dense
in C5(&,¢&) for any s < r. The same holds v = a, provided that t1(), t1(£),
bs(§) and bs(&') admit C*-embeddings in Euclidean spaces.

Proof. Pick a C"-embedding j/: t1(¢') — R?, a ¢-transversalisation 7/ of j/ of
class C", and a neat tube Tub,. p’. Let U denote the subset of

C*(t1(€), t1(€") x C*(bs(£), bs(&"))
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consisting of all the pairs
(F': t1(§) — t1(&"), f: bs(§) — bs(£"))
such that (f((proj(&))(x)),7 (F(x))) € tub, p’ for all z € t1)¢). Then U is open
and contains C*(&,¢’). For (F f) €U, define ®(F, f): t1(§) — t1(¢') by
@ = proj. (f((proj(§))(z)), j'(F ().
Obviously, (¢(F, f), f) € C*(&,¢’) and the map

U: U — C(&,€),U(F, f) = (®(F, f), f),

is a retraction which takes

UN(C(t1(E), t1(g)) x C"(bs(€), bs(£7)))
into C"(&,¢). Since

C"(t1(8), t1(")) x C"(bs(£), bs(£"))
is dense in,

C*(t1(6), t1(£)) x C*(bs(€), bs(£))
(see Theorem 3.4.4.2), the existence of such a retraction implies that C*((,¢’)
is dense in C*((,¢). O

Theorem 4.6.2.4. Let s < r < oo, let £ and &' be arbitrary C="-bundles such
that t1(£), t1(&’), bs(&), bs(&’) are closed manifolds, and let f : bs(§) — bs(¢)
be a C"-map. Then the set

{0 eC(&&)|bs(2) = f}
s dense in

{®eci(&&)|bs(2) = f}.
The same holds true for r = a, provided that t1(§), t1(&1) admit C*-embeddings
in Fuclidean spaces.

Proof. Let F denote the subspace of C*(bs(§),bs(¢’)) consisting of the maps
t1(®) such that ® € C*(&,&’) and bs(®) = f. We show that FNC"(&,&’) is dense
in F

Pick a C"-embedding j': tl(§’ — RY, a &’-transversalisation 7/ of j’ of class
C", and a neat tube Tub, p. Consider the subset & C C*(t1(£),t1(£")) consisting
of all maps F': t1(¢) — t1(¢’) such that f((proj(§))(z), s (F(z))) € tub, p for
all z € t1(€). Tt is clear that U is open and contains F. Moreover, the mapping
U — F, transforming each F' € U into the map

= proj.(f((proj(€))(x)), j'(F(x))).
is a retraction which takes
UN(CT(t1(E), t1(€)) x C"(bs(§), bs(£")))

into FNC"(&,&’). Since C"(t1(£),t1(¢’)) is dense in C*(t1(£), t1(¢’)), the existence
of such a retraction shows that F N C*((£,¢’) is dense in F, as claimed. O
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Theorem 4.6.2.5. Let r < oo, and let £ and &' be arbitrary C="-bundles such
that the manifolds t1(§), t1(¢’), bs(§) and bs(&') are closed. If0 < s < r, then the
set of all C"-isomorphisms (C"-equivalences) £ — &' is dense in the subspace of
all C*-isomorphisms (respectively, C*-equivalences) of C*(£,£). The same holds
true for r = a, provided that t1(£), t1(¢), bs(§), bs(&') (respectively, t1(€) and
t1(&")) admit C*-embeddings in Euclidean spaces.

Proof. This is a consequence of Theorems 4.6.2.3, 4.6.2.4, and Corollary 3.4.1.6.
O

Corollary 4.6.2.6. If two C="-bundles with closed total manifolds and bases are
Cl-isomorphic and r < oo, then they are C"-isomorphic. The same holds true
for r = a, provided that the total manifolds and the bases admit C*-embeddings
in Fuclidean spaces.

If two CZ"-bundles with closed total manifolds are C'-equivalent and r < oo
then they are C"-equivalent. The same holds true for r = a, provided that the
total manifolds and the bases admit C*-embeddings in Fuclidean spaces.

Theorem 4.6.2.7. If r < oo, then given any C"-bundle & with closed t1(§) and
bs(§), the space Sect” () is dense in Sect®(§), for any s < r. The same holds
true for r = a, provided that t1(§) and bs(§) admit C*-embeddings in Euclidean
spaces.

Proof. This is a result of Theorem 4.6.2.4, applied to the bundles  and (bs(€), idyg(¢), bs(§))
and to the map idpg(e)- O

Theorem 4.6.2.8. Every C="-bundle & such that t1(¢) and bs(&) are closed
manifolds is C"-isomorphic to a C*-bundle n with the property that tl(n) and
bs(n) can be C*-embedded in Euclidean spaces.

Proof. By Theorem 3.4.9.6, there exist C%-manifolds, 7" and B, admitting C*-
embeddings in Euclidean spaces, together with C"-diffeomorphisms

F: T —tl(€), f:B—bs().

Pick a C"-embedding j: tl(§) — R? a &-transversalisation 7 of j of class C", and
a neat tube Tub, p. Let U denote the subset of C"(T, B) consisting of all the
submersions p: T'— B such that the image of the composite map

(fop)x(joF)

RN N bs(€) x RY
is contained in tub, p. Obviously:
e U/ is open;

o f~loproj(&)o F el

e the mapping ®: U — C"(T,tl(£)), which takes each g € U into the map
x + proj.(fog(z),jo F(x)), is continuous and ®(f~! oproj(£)o F) = F.
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Since F is a C"-diffeomorphism, there is a neighbourhood V of f~1oproj(¢)o F
in C"(T, B) with the property that ¥V C U and ®(g) is a C"-diffeomorphism
for all ¢ € V. Now pick some C*-map h and set n = (T, h, B). By Theorem
4.6.1.3, n is a C*-bundle, and it is plain that ®(h) and f yield a C"-isomorphism
n—¢. 0

4.6.3 Smooth Vector Bundles

Remark 4.6.3.1. Usually, when we encounter a bundle which is smooth, it car-
ries some additional structures, most frequently a group structure of Steenrod
type. In such cases, smoothness plays the same role as does the topology in the
theory of Steenrod bundles discussed earlier (§§4.3, 4.4), and it is natural to try
developing this analogy into a weighty theory of smooth Steenrod bundles.

Unfortunately, such a program is beyond the scope of our book. Therefore,
we shall restrict ourselves to the basic facts concerning smooth vector bundles,
which are of main interest to this study, and can be derived in a less cumbersome
manner than the general theory.

We remark that because the fibres of a vector bundle of positive dimension
are not compact, it is not possible to deduce the smoothing and approximation
theorems below (Theorems 4.6.3.8 - 4.6.3.12) from the results of the previous
subsection without resorting to additional devices. However, we prefer to give
simple, straightforward proofs of these theorems, so that this subsection becomes
independent of the previous one.

Fundamental Concepts

Definition 4.6.3.2. ¢ is an n-dimensional real vector C"-bundle (1 < r < a)
if it is both an n-dimensional real vector bundle and a C"-bundle, and these
two structures are compatible, meaning that the restriction of £ over a small
enough neighbourhood of an arbitrary point of bs(¢) is C"-GL R"-trivial (i.e.,
is C"-GL R™-equivalent to a standard trivial bundle, where, of course, a C"-
GLR™-equivalence is just a GL R™-equivalence which is simultaneously a C"-
equivalence). The Euclidean, complex vector, and Hermitian C"-bundles are
similarly defined.

Products of vector, Euclidean, or Hermitian C="-bundles, as well as bun-
dles induced (in particular, obtained by reducing) such bundles, are again C="-
bundles of the same kind, provided the conditions imposed by the corresponding
definitions from Subsection 4.6.1 (see Definition 4.6.1.2) are fulfilled.

We add that the statements and proofs of Theorem 4.3.2.8 and Corollary
4.3.2.9 carry over, with obvious modifications, to vector, Euclidean, and Her-
mitian CZ"-bundles. Here we formulate only the C"-GL R"-version of Corollary
4.3.2.9: let f: & = nbe a C"-GLR"-map, where £ and 7 are CZ"-GL R"-bundles,
and suppose that the bundle (bs(f))'n is neatly induced (see Definition 4.6.1.1.);
then corr f is a C"-GL R™-equivalence.
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Remark 4.6.3.3. The explicit descriptions of the vector, Euclidean, and Hermi-
tian bundles, given in Subsection 4.5.1, have obvious C"-analogues (1 < r < a).
The C"-analogue of Theorem 4.5.1.3 asserts that a C"-bundle whose fibres are
n-dimensional real vector spaces is an n-dimensional real vector C"-bundle if
and only if the partial vector operations indicated in Theorem 4.5.1.3 are C"-
maps. Similarly, the Theorem C"-analogue of Theorem 4.5.1.5 asserts that a
C"-bundle whose fibres are n-dimensional Euclidean is an n-dimensional Eu-
clidean C"-bundle if and only if the partial vector operations and the metric
(equivalently, the square of the length of vectors, considered as a function on
the total space) are of class C". In particular, in order to turn a real vector
C"-bundle into a Euclidean C"-bundle, one has to equip it with a Euclidean C"-
metric. The corresponding complex formulations (i.e., the C"-analogues of the
theorems in Definition 4.5.1.10) are obtained by replacing Euclidean bundles
and Euclidean metrics by Hermitian bundles and Hermitian metrics.

Smooth Grassmann Bundles

Remark 4.6.3.4. The Grassmann bundles defined in Definition 4.5.3.7 provide
(for m < oo) fundamental examples of smooth vector, Euclidean, and Her-
mitian bundles. Namely, if 0 < n < m < oo, then Grass(m,GL(n,R)),
Grass(m, GL(n, C)), Grass(m, O(n)), and Grass(m, U(n)) are obviously real vec-
tor, complex vector, Euclidean, and Hermitian C®-bundles, respectively, all of
them n-dimensional. The third (fourth) bundle differs from the first (respec-
tively, second) by having a Euclidean C*-metric (respectively, a Hermitian C"-
metric).

Theorem 4.6.3.5 below may be thought of as a weakened C"-analogue (for
r # a) of that part of Corollary 4.5.3.9 concerning Grass(m, GL(n,R)) and
Grass(m, GL(n, C)).

Theorem 4.6.3.5. Let £ be an n-dimensional real (complex) vector C"-bundle
with compact base. If r # a, then there are a number m and a C"-map f: bs(§) —
G(m,n) (respectively, f: bs(¢) = CG(m,n)) such that € is C"-GLR"-equivalent
to the bundle f'Grass(m,GL(n,R)) (respectively, C"-GL C-equivalent to the
bundle f'Grass(m,GL(n,C))).

Proof. Since the proofs of the real and complex cases differ only in some obvious
details, we shall prove only the former. Choose, for every point b € bs(£), a chart
Wy € Atly bs(§) such that

Wy (supp ¥, b0) = (Rg,0) or (RZ,0) [g=dimbs(¢)]
and &|supp 4, 18 C"-GLR"-trivial, and then fix a C"-GLR"-trivialisation,
Ty (supp ¢ X R", projy, supp ) = &lsupp -

Now cover bs(§) by a finite number of sets 1/);1(1[))‘1), say z/Jb’ll(ID)q), ... 7’(/Jl;1(]D)q>
and pick a C"-function a: R? — R which equals 1 on D? and 0 outside 2ID9.
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Finally, define Hy, ..., Hs: t1(¢§) — R by

Hi() = a(iy, ((proj(€))(z))) projyotlry H(x),  if € (proj(£))~* (supp vb;),
' 0, if 2 ¢ (proj(€))~! (suppyb;),

where proj, = [projy: supp ¢, x R™ — R"]. Define
H: tl(¢§) 5 R x -+ xR"=R*",  H(z) = (Hi(x),...,Hs(x)).

Clearly, H is a C"-map and its restrictions H |(proj(¢))-1(») are linear monomor-
phisms for all b € bs(§). Set m = sn and

f:bs(€) = G(m,n),  f(b) = H((proj(€)) ™" (b).

To verify that the bundles £ and f' Grass(m, GL(n, R)) are C"-GL R™-equivalent,
it is enough to produce a C"-GLR™map ¢: £ — Grass(m,GL(n,R)) with
bs(p) = f. Such a ¢ is defined by

tl(p): t1(§) — tl(Grass(m, GL(n,R))),  tl(¢)(x) = (f(proj(£))(x), H(x))

(recall that tl Grass(m, GL(n,R)) = {(v,y) € G(m,n) x R™"|y € v}). O

An Application

Theorem 4.6.3.6. If 1 < r < oo, then every real (complez) vector C"-bundle
with compact base has a Euclidean (respectively, Hermitian) C"-metric.

Proof. Since Grass(m, GL(n,R)) (Grass(m, GL(n, C))) has a Euclidean (respec-
tively, Hermitian) C*-metric, Theorem 4.6.3.6 is a consequence of Theorem
46.3.5. =

Smoothings and Approximations

Remark 4.6.3.7. Given two real or complex vector C="-bundles, ¢ and &', and
a C®-map f: bs(§) — bs(§) with » > s > 0, we let L¥(§,¢’; f) denote, in
Theorems 4.6.3.8 and 4.6.3.10 below, the set of all linear C*-maps ¢: £ — £
such that bs(¢) = f. If s # a, then L*(,¢’; f) inherits a natural topology as a
subset of C5(¢’,€).

When dim¢ = dim&’ = n, bs¢ = bs&’, and f = id, L*(£,&'; f) contains
the set of all C"-GL R™-equivalences £’ — £ in the real case, and the set of all
C*-GL C™-equivalences £ — £ in the complex case. In both cases this subset is
open for any s # a.

Notice that among the spaces L°(£,¢'; f) we find Sect®(§), 0 < s < r
(see Remark 4.6.2.1). More precisely, Sect®(§) is canonically homeomorphic
to L*(&,&'; f), where ¢ is the standard trivial bundle (bs(§) x R, proj;, bs(£)),
and f = idpg(e); the canonical homeomorphism L*(&,£"; f) — Sect®(€) takes
each map ¢: ¢ — ¢ into the section b — (t1(¢))(b,1).
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Theorem 4.6.3.8. Let & and &' be real or complex vector C="-bundles with
compact bases. If 0 < s < r < oo, then L"(£,&'; f) is dense in L*(£,&; f) for
any C"-map f: bs(&') — bs(§).

Proof. Since the proofs of the real and complex cases differ only in some obvious
details, we shall again prove only the former. By Theorem 4.6.3.5, we may
assume that

¢ = ¢' Grass(m, GL(n,R)), ¢" Grass(m', GL(n',R),

where
g: bs(&) = G(m,n), g¢': bs(¢') = G(m',n")

are some C"-maps. Then we can identify t1(£) with the C"-submanifold

{(b,y) € bs(€) x R™|y = g(b)} C bs(€) x R”

and, similarly, t1(¢") with the C"-submanifold
{(V,y) € bs(&) x R™ |y’ = g(b')} C bs(&') x B

The orthogonal projections of R™ onto its subspaces g(b) with b € bs(¢) combine
to define a C"-map p: bs(&) xR™ — t1(¢), and a C"-map p: bs(&')xR™ — t1(¢)
is similarly defined.

Let A be the Euclidean space of all linear maps R™ — R™ (which is the
same as the space of all real (m x m/)-matrices; cf. Remarks 3.2.1.1 or 3.2.1.8),
and consider the mappings

©: L7(8,€'5 ) = C*(bs(¢), A),  :C*(bs(), A) —=> L€, €5 f),
given by

{[2()I(0)} (') = [projz: bs(§) x R™ = R™](tl() o p' (¥, y/))
[t (AN, y") = p(f V), [R(B)](¥))

(where ¢ € L3(&,€ f), ¥/ € bs(¢'), ¥ € R™, and h € C3(bs(¢'), A)). Clearly,
¢ is continuous (and so is ¢) and takes C"-maps into C"-maps. Moreover,
Yo = idps(¢e.p), and hence ¢ is surjective. Since C"(bs¢’, A) is dense
in C5(bs¢’, A) (see Theorem 3.4.6.5), we conclude that L"(¢,&'; f) is dense in
L5(&,¢'; f). |Explanation: Theorem 3.4.6.5 is applied after we have completed
the space A to a sphere by adding a point; cf. Theorem 3.4.4.2 and 3.4.4.7.] O

Theorem 4.6.3.9. Let ¢ be a real or complex vector CZ"-bundle with compact
base. If 0 < s < r < oo, then Sect”(§) is dense in Sect®(§).

Proof. This is a consequence of Theorem 4.6.3.8: Sect”(§) = L"(£,&';idps(e))
and Sect®(§) = L*(§,&';idps(e)), where £ = (bs(§) xR, proj;, bs(&)); see Remark
46.3.7. =
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Theorem 4.6.3.10. Let ¢ and &l/] be n-dimensional real (complex) vector C=" -
bundles with common compact base. If 0 < s < r < oo, then the set of C"-
GL R™-equivalences (respectively, C"-GL C"™-equivalences) & — £ is dense in
the subset of L*(£,&';id) consisting of all C*-GLR™-equivalences (respectively,
C?-GL C"-equivalences) .

Proof. Since the last subset is open in L°(,¢';id), Theorem 4.6.3.10 is a con-
sequence of Theorem 4.6.3.8. O

Corollary 4.6.3.11. If two n-dimensional real (complex) vectorC="-bundles
with compact base are GLR™-equivalent (respectively, GL C"—equivalent) and
r # a, then they are C"-GL R"-equivalent (respectively, C"-GL C™-equivalent) .

Theorem 4.6.3.12. If the base of the n-dimensional real (complezx) vector bun-
dle ¢ is a compact CZ"-manifold with 1 < r < oo, then & is GLR"-equivalent
(GL CR™-equivalent) to a real (complex) vector C="-bundle. If the base of the
n-dimensional real (complex) vector C*-bundle & is a compact CZ"-manifold,
where 1 < r < oo, then £ is C*-GLR"™-equivalent (C°-GL C"-equivalent) to a
real (complex) vector C="-bundle.

Proof. We shall prove again only the real case. Let £ be an n-dimensional real
vector bundle with bs(¢) a compact CZ"-manifold. By Corollary 4.5.3.9 and
Theorem 3.5.2.13, ¢ is GL R"-equivalent to f' Grass(m, GL(n,R)), where m is
large enough and f is some continuous map bs(§) — G(m,n). If £ is an n-
dimensional real vector C*-bundle such that bs(¢) is a compact CZ"-manifold,
then by Theorem 4.6.3.5 ¢ is C*-GLR™-equivalent to f'Grass(m, GL(n,R)),
where m is large enough and f is some C®*-map bs)§) — G(m,n). In both
cases f is homotopic to a C="-map g: bs(¢) — G(m,n) (see Theorems 3.4.6.5,
1.3.6.6, and 3.4.5.10), so that ¢ is GLR™-equivalent to ¢' Grass(m, GL(n,R))
(see Theorem 4.4.1.5). This completes the proof of the first claim; as for the
second, we need only add that, by Corollary 4.6.3.11, £ is C*-GL R"-equivalent
to ¢' Grass(m, GL(n,R)). O

Constructions

Remark 4.6.3.13. We conclude this subsection with a short review of the con-
structions described in §4.5.

By definition, a C*-subbundle of a (real or complex) vector C"-bundle £ is a
subbundle of £ in the sense of Definition 4.5.2.2 or Remark 4.5.2.3, whose total
space is a C*-submanifold of t1(£). A C®-subbundle is clearly a vector C*-bundle.
The C?-subbundles of Euclidean or Hermitian C"-bundles are similarly defined.
The C"-bundles of C"-bundles will be simply referred to as subbundles.

According to Definition 4.5.2.5, every subbundle n of a Euclidean or Hermi-
tian bundle ¢ has an orthogonal complement 7+, and it is clear that:

e nt is a C*-subbundle of ¢ together with n;

e the canonical equivalence n — ¢/n (see Definition ??) turns £/7 into a
Euclidean or Hermitian C*-bundle (and thus becomes a C*-equivalence).
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We see that in the (real or complex) vector C®-case, £/n becomes a vector
C#-bundle by introducing on ¢ a (Euclidean or Hermitian) C*-metric. Recall,
however, that we have established the existence of such a metric only under the
assumptions that the base is compact and s # a (see Theorem 4.6.3.6).

Let & and &3 be real vector C"-bundles with a common boundary-less base.
Then the construction of & @ &, (see Definition 4.5.2.9) shows that this sum
is again a real vector C"-bundle. The difficulty occurring when the base has a
boundary (i.e., the fact that the product £; x &5 is not defined as a C*-bundle)can
be circumvented with the aid of the formulae

tl(&1 @ &) = t1((proj(&1))'&),  proj(&1 @ &) = (proj(&2)) o proj((proj(é1))'&a).

If the conditions in Definition 4.5.2.9 are satisfied, then these formulas are equiv-
alent to the definition of and this remains valid under our present circumstances,
provided that the base has no boundary; the same formulas are now taken as the
definition of the sum when the boundary is present. One can repeat the argu-
ment for complex vector, Euclidean, and Hermitian C"-bundles. In particular,
we can define the suspension (see Definition 4.5.1.10) of a C"-bundle.

The C"-variants of the other constructions described in §4.5 and their mutual
relations are already evident. In particular, the conjugate of a complex vector
(Hermitian) C"-bundle is a complex (respectively, Hermitian) C"-bundle; the
realification (see Definition 4.5.1.12) of a complex vector (Hermitian) C"-bundle
is a real vector (respectively, Euclidean) C"-bundle; the complexification (see
Definition 4.5.2.11) of a real vector (Euclidean) C"-bundle is a complex vector
(respectively, Hermitian) C"-bundle; and in the C"-versions of Theorems 4.5.2.13
and 4.5.2.13, the equivalences conj and K become C"-equivalences.

4.6.4 Tangent and Normal Bundles

Remark 4.6.4.1. The basic notions of tangent and normal bundles have actually
already been introduced and used in Chapter 3. However, only now,that we
have acquired the idea of a smooth vector bundle, can we present the full-
fledged definitions of tangent and normal bundles and give them the general,
correct treatment that they deserve.

Tangent Bundles

Definition 4.6.4.2. Recall that in Chapter 3 we defined, for an arbitrarily
given C"-manifold with » > 1, the real vector spaces Tang, X (z € X), the
C"~l-manifold Tang X, and the projection proj: Tang X — X (see Remarks
3.1.4.1 and 3.1.4.2). Comparing these objects with the general definitions given
in Definitions 4.5.1.2 and 4.6.3.2, we readily see that (Tang X, proj, X) is a real
vector bundle of dimension dim X and, for » > 2, a real vector C"~!-bundle of
dimension dim X, called the tangent bundle of the manifold X, and is denoted
by tang X.

Similarly, confronting the definition of the differential df : Tang X — TangY
ofaC" '-map f: X — Y (see Remark 3.1.4.5) with the general definitions given
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in Definitions 4.5.1.14 and 4.6.3.2, we conclude that (df, f) is a linear C"~!-map
tang X — tangY. If f is a C"~!-diffeomorphism then (df, f) is a linear C"~1-
isomorphism.

Remark 4.6.4.3. The notion of vector field has been defined twice: once for
smooth manifolds (see Definition 3.1.4.7), and once for vector, Euclidean, and
Hermitian bundles (see Definition 4.5.1.15). Now it is plain that the second
definition generalises the first one: a vector field on a smooth manifold X is
simply a vector field in its tangent bundle Tang X.

In particular, the parallelisability (C*-parallelisability) of an n-dimensional
smooth manifold X is equivalent to the GL R"-triviality (respectively, C*-GL R-
triviality) of the bundle tang X. Comparing this with Corollary 4.6.3.11, we see
that a parallelisable compact C"-manifold with r < oo is C"~! -parallelisable.

Definition 4.6.4.4. A smooth manifold is stably parallelisable if its tangent
bundle is stably trivial. The discussion in Remark 4.5.4.9 and Theorem 3.5.2.13
show that if a compact manifold is stably parallelisable, then the stabilisation
occurs already at the first step, i.e., the bundle sustang X is GLR"*!-trivial
for any stably parallelisable n-dimensional manifold X.

Remark 4.6.4.5. Recall that, given a point z of the smooth manifold X, each
chart ¢ € Atl, X defines a ¢-basis for the tangent space Tang X, and the matrix
of the transformation from the )-basis to the 1-basis is just the Jacobi matrix
of the map loc(ip, ©) id, computed at ¢(x). From this it follows that the values of
any orientation of X (assumed on the charts of Catl X) are correctly transferred
to the bases of the spaces Tang, X, and in this manner an orientation is defined
on the bundle tang X. This procedure is clearly reversible, and hence there is a
one-to-one correspondence between the orientations of the smooth manifold X
and the orientations of its tangent bundle tang X. In particular, X is orientable
if and only if tang X is orientable, and tang X is a GL, R™-bundle for any
oriented smooth n-dimensional manifold X.

We already know that every parallelisable manifold is orientable (see Theo-
rem 3.1.4.8 and Remark 4.6.4.3). Now we can add that every stably parallelis-
able manifold is also orientable.

Definition 4.6.4.6. One attractive feature of tangent bundles is that they
can naturally be induced from Grassmann bundles. Namely, if j: X — R¢
is a C"-immersion (for example, a C"-embedding), then dj maps each tangent
space Tang, X onto an n-dimensional plane of passing through 0. Thus a map
t: X — G(g,n) is defined, and it is clear that tang X is nothing else but
t' Grass(q, GL(n,R)) (up to a correcting C"~'-GL R"-equivalence) . [In fact,
this obvious observation is older that the theory of bundles and was one of the
factors which stimulated its creation.] If X is orientable, then one can gener-
alise this observation and replace G(gq,n), the standard fibre GLR"™, and the
bundle Grass(q, GL(n,R)), by G(q,n), GLyR"™, and Grass(q, GL4(n,R)), re-
spectively. In all cases t is known as a tangential map. If j is an embedding
and no orientation is involved, then ¢ coincides with the composition of the nor-
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mal transversalisation X — G(gq,q — n) of j with the canonical diffeomorphism
G(g,9 —n) = G(g,n) (see Remark 3.2.2.3).

Definition 4.6.4.7. A smooth manifold whose tangent bundle is equipped with
a Euclidean metric is called a Riemannian manifold. In this case the metric is
usually termed a Riemannian metric. If X is of class C”, then the metric can be
at most of class C"~!. In fact, Theorem 4.6.3.6 shows that there is a Riemannian
C"~l-metric on every compact C"-manifold with 1 < r < co. Incidentally, the
same result may be extracted from Theorem 3.4.2.1. It is customary to look
upon the tangent bundle of a Riemannian manifold as a Euclidean bundle. If
the metric is of class C*, s > 1, then this bundle is a Euclidean C*-bundle.

Normal Bundles

Definition 4.6.4.8. The initial data involved in the concept of normal bundle
are two smooth manifolds, X and X’, and an immersion j: X — X’. The most
important case is that of an embedding j. In the definitions below n = dim X
and n' = dim X',

Let us examine first the simplest case: X is a submanifold of the Riemannian
manifold X', and j is the inclusion X — X’. One may naturally view tang X as
a subbundle of tang X’|x. By Definition 4.5.2.5, has in tang X’| x an orthogonal
complement, (tang X ). This is an (n’ —n)-dimensional Euclidean bundle with
base X, called the normal bundle of X, and denoted norm X. If X and X’
are of class C=" with r > 2, and the Riemannian metric is of class C"~', then
norm X is a Euclidean CZ"~'-bundle; see Remark 4.6.3.13. In all cases, the sum
tang X @ norm X is canonically O R™ -equivalent to tang X’|x; when X and X’
are of class C=" with r > 2, this equivalence is of class C"~!.

To define the normal bundle for an arbitrary immersion 7: X — X’ and
without recourse to a Riemannian metric, we have to replace the restriction
tang X’|x by the induced bundle j'tang X’ and then pass to a quotient instead
of taking an orthogonal complement. More exactly, the normal bundle, norm 7,
of the immersion j: X — X', with X and X’ smooth manifolds, is defined as

norm j = j' tang X'/ im corr(dj, 5).

This formula defines an (n’ — n)-dimensional real vector bundle over X. The
sum tang X @ norm X is canonically GL R™-equivalent to the induced bundle
j'tang X’. Unfortunately, there is less to say about the differentiability class of
norm j and of the canonical equivalence j'tang X’ — tang X @ norm j: if X’ is
either compact or diffeomorphic to an open subset of a compact manifold, and j
is C" with 2 < r < 7, then norm j is a real vector CZ"~!-bundle, while the above
canonical equivalence is C"~'. These limitations are obviously due to the fact
that we have had no theorems which guarantee the existence of a Riemannian
metric in the non-compact and analytic situations.

If j is an inclusion, we may simply write norm X instead of norm j.

Notice that, as the definition of the normal bundle norm j shows, the ori-
entability of two of the three bundles j'tang X', tang X, and normj implies
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the orientability of the third, and given orientations on two of them canonically
define the orientation of the third; see Remark 4.5.2.7. Comparing this with the
discussion in Remark 4.6.4.5, we see that if X’ is orientable, then the orientabil-
ity of norm j is equivalent to the orientability of the manifold X; moreover, if
X'’ is oriented, then the orientations of X’ and of norm j canonically determine
each other.

Remark 4.6.4.9. The introduction of tangent and normal bundles allows us to
better formulate and essentially complete the main result of Subsection 3.4.8,
i.e., Theorem 3.4.8.2.

We may sharpen the formulation of the third part of this theorem, which
asserts that the linear homomorphisms fact d,, fi are actually isomorphisms.
Now we can say that the maps factd,, fi combine with abr f;: X125 — X5 to
define a linear isomorphism from the normal bundle of the manifold X5 (taken
in X;) onto the normal bundle of the manifold X5 (taken in X’). When X’
is compact and 2 < r < oo, this is a linear C"~!-isomorphism norm X5 —
norm Xo.

To complete Theorem 3.4.8.2, we consider orientations. Namely, suppose
that Xy, X', and X5 are orientable (oriented). Then, as an immediate conse-
quence of Remark 4.6.4.5 and Definition 4.6.4.8, the manifold, X5 is orientable
(respectively, canonically oriented). In particular, under the assumptions of
Corollary 3.4.8.4, the orientability of X’, X1, and X, implies the orientability
of X1NXj,, and given orientations of X', X7, and X5 canonically orient X7 N Xs.

Theorem 4.6.4.10. An n-dimensional smooth compact manifold is stably par-
allelisable if and only if it admits a differentiable embedding in some R? having
a GLRI™"-triwial normal bundle.

Proof. Let j: X — RY be an embedding enjoying the above property. Then
tang X @ norm j is GLR-equivalent to j'tangRY, and hence the condition is
sufficient. To prove its necessity, consider an arbitrary differentiable embed-
ding j: X — R? and the composite embedding X 2 R? 2% Ra+n+k where
k is large enough so that the suspension sustang X is GL R-trivial (actually,
it suffices to take k = 1; see Definition 4.6.4.4). The normal bundle of this
composite embedding is just sus”t*norm j, and it is GLR9"*-trivial, being
GL R+ *_equivalent to the bundle

norm j @ sus tang X = sus®(norm j @ tang X) = sus®(j' tang R?).

The Complex Case

Definition 4.6.4.11. The basic definitions of this subsection, i.e., those the
tangent bundle, tang X, Riemannian metric, and normal bundles, norm X and
normyj, carry over,word-for-word, to complex manifolds. The bundles become
complex bundles, the Riemannian metric is replaced by a Hermitian one, while
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j is assumed to be a holomorphic immersion (i.e., to be locally a holomor-
phic embedding). If f: X — X’ is holomorphic, then (df, f) is a linear map
tang X — tang X’. The definition and properties of tangential maps are pre-
served, but they become less universal (see Theorem 3.1.6.10). Finally, the
realification of a complex manifold (see Remark 3.1.6.9) leads to the realifica-
tion of its tangent bundle (see Definition 4.5.1.12 and Remark 4.5.1.13), and
turns Hermitian metrics into Riemannian ones.

It is impossible not to notice the eclectic character of these definitions. The
reason for this inconsistency is that, whereas the notion of differentiable struc-
ture, which lies at the heart of the theory of smooth vector bundles, is specifi-
cally a real notion even when we pass to complex vector bundles, in the complex
case the tangent and normal bundles carry an additional, complex-differentiable
structure - the so-called holomorphic structure. Unfortunately, the theory of
holomorphic vector bundles is beyond the scope of this book.

4.6.5 Degree

Definition 4.6.5.1. In this subsection we shall apply some of the simplest re-
sults of differential topology to homotopy theory. Namely, given any oriented,
compact, smooth manifold X, any oriented, compact, connected, smooth man-
ifold Y with dimY = dim X, and any continuous map f: (X,0X) — (Y,9Y),
we define an integer which depends only upon the homotopy class of f. This
number is called the degree of the map f and is denoted by deg f.

Although the degree deg f is a global characteristic of f, and is actually
defined for maps which are merely continuous, we shall approach this notion by
infinitesimal methods: we start by assuming that

fEC(X,0X;Y,0Y)NCHX,Y)

and choose a point y € int Y such that f is transverse to y. Consider f~1(y). It
consists of a finite number of points, each of them having a neighbourhood which
is mapped diffeomorphically by f onto a neighbourhood of y (see Theorems
3.4.8.2 and 3.1.5.5), and each of these diffeomorphisms is either orientation
preserving or orientation reversing, where the neighbourhoods are oriented in
agreement with the orientations of X and Y (see Remark 4.6.4.9). The degree
of the map f at the point y, denoted deg, f, is the number of the points of
f(y) where the orientation is preserved, minus the number of points of f~!(y)
where the orientation is reversed. A popular shorter version of this definition
is: deg,, f is the algebraic number of the preimages of the point y.

In this definition of deg, f, the assumption that y € int Y’ is essential. How-
ever, one may repeat the definition for a boundary point ¥, provided that

feCHX,Y)nC(X,int X;Y,intY)

and abr f: X — 0Y is transverse to y. The degree deg, f thus defined is
obviously the same as deg, [abr f: f~Y(Z) — Z|], where Z is the component of
dY containing y.

We add that if the degree is defined for a point y, i.e., either
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e ycintY, f €C(X,0X;Y,0Y)NCHX,Y), and f is transverse to y, or

ey €Y, feCHX,Y)NC(X,int X;Y,intY), and abr f: 0X — 9Y is
transverse to y,

then it is defined for any point y' in a neighbourhood of y (in V), and deg,, f =
deg, f.

Lemma 4.6.5.2. Let X andY be oriented, compact, C* -manifolds, with dim X =
dimY and Y connected, and let

9, h e C¥(X,Y)NC(X,int X;Y,intY).

Further, let y,z € Y be such that deg, g and deg, h are defined (see Definition
4.6.5.1). If the maps

relg,rel h: (X,0X) — (Y,9Y)
are homotopic, then deg, h = deg, g.

Proof. We disregard the trivial case dimY = 0 and assume for a start that
h = g. Using Definition 4.6.5.1, we find neighbourhoods U and V of y and z,
such that

deg, g = deg, g,Vy' € U, deg, h=deg, h,Vz' €V.

It is clear that one can join y to z by a path which is a C*°-embedding I — Y. By
Theorems 3.4.1.4 and 3.4.7.7, there is a path s: I — intY such that s(0) € U,
s(1) € V, and s is a C*-embedding transverse to g. The preimage g~!(s(I)) is
an oriented, compact, one-dimensional C*°-submanifold of X, and

A9~ (s(1)) = g~ (s(0)) Ug~(s(1))
(see Theorem 3.4.8.2 and Remark 4.6.4.9). Obviously,

degy gy g = degygyabryg, degyy)g = degyy)abry,

where abr g = [abrg: g7 !(s(I)) — s(I)]. But the contribution of a point from
g ' (s(1)) to degy;)abrg equals the value of the orientation which this point
inherits a s a component of dg~!(s(I)). Similarly, the contribution of a point
from g~'(s(0)) to deg () abr g is opposite to the value of the orientation which
this point inherits as a component of dg~'(s(I)). Consequently, deg,)g —
deg, () g is the number of points of dg~"(s(I)) which inherit the orientation
+1 from g~*(s(I)), minus the number of points of dg(s(I)) which inherit the
orientation —1 from g~!(s(I)). However, this difference must be 0, because
every component of g~1(s(I)) is diffeomorphic to either S! or D! (see Remark
3.5.3.1).

Now drop the assumption that h = g, and suppose that Y is closed. Then
X is also closed, and from the fact that g and h are homotopic it follows that
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there exists a C*°-homotopy F' from ¢ to h (see Corollary 3.4.6.6). The map
O: X xI =Y xI, &(x,t)=(F(x,t),t), obviously belongs to the intersection

C(X xILY x )NC(X x I,int(X x I);Y x Iint(Y x I)).

Furthermore, if we identify X x 0 and X x 1 with X, and Y x0 and Y x 1 with
Y, then abr®: X x0 — Y x 0 and abr®: X x1 — Y x 1 become g and h,
and we can write deg(, oy ® = deg, g and deg. ;) ® = deg_ h. By the argument
above, deg. 1y ® = deg(, o) ® and thus deg, h = deg,, g.

Finally, if 9Y # &, we find a component Z of dY and points ¢/, 2z’ € Z such
that abrg: X — 9Y is transverse to y’, while abr h: 0X — 9Y is transverse
to z’. We already know that

deg, g = deg,, g, deg,h =deg, h,
while, according to Definition 4.6.5.1,
deg, g = deg,, [abrg: g~ (2) = Z]
deg_, h = deg_,[abrh: h™*(Z) — Z].
But
deg, [abrg: g~"(Z) — Z] = deg_/[abrh: h™'(Z) — Z]. (4.6.5.3)

Indeed, since rel g and rel h are homotopic, h=1(Z) = g=1(Z), and thus (4.6.5.3)
follows from that part of the lemma which we have already proved. O

Lemma 4.6.5.4. For any compact C*°-manifolds X and Y, the set
CP(X,Y)NC(X,int X;Y,intY)
is dense in C(X,0X;Y,0Y).

Proof. Construct the doubles, dopp X and dopp Y, together with two-sided col-
larings
k: 90X x D' — dopp X, £:9Y xD' — doppY

Pick a C*°-embedding j: doppY — R?, a C*°-transversalisation 7 of j|ay,
and a neat tube Tub, p. Then it suffices, given a map f € C(X,0X;Y,dY) and
e >0, to find

C(X,Y)NC(X,int X;Y,intY)

such that dist(j(f(z)),j(g(z))) < e for all z € X. To produce such a g, we shall
construct successively three auxiliary maps, hy, ho, hs: dopp X — dopp Y.
The map h; is very simply defined by

hi(z) = f(z), hi(cop(x)) = cop(f(x)) [z € X].

To construct hs, fix 4, 0 < § < 1, such that:



334 CHAPTER 4. BUNDLES

(i) dist(j o l(z,t),jol(2,t") < e/4 for |t —t'| < § where 2z € Y, t,t' € DY

(i) dist(j(h1(k(2,1))),5(h1(k(2,t")))) < e/dfor |t—t'| < 6 where z € 9Y,, t,t' €
D!,

(iii) for any z € 9Y, the ball with centre j(z) and radius d lies in Tub, p, while
its image under the map joproj,: Tub, p — R? lies in the ball with centre
j(z) and radius /4.

[The existence of such a § is a consequence of the continuity of j, k, ¢, hq, and
proj,.]| Further, pick a C**-map w: X — JY such that

dist(j(p(2)),j0 f(2)) < VzedX

(Theorem 3.4.4.2 guarantees that such a map ¢ exists), and define, for each
t € I, the map

pr: 0X = Y, pi(x) = proj (tj(p(x)) + (1 —1)j o f(x)).

Next, pick a C*°-map a: R — R such that

0 for |t <1/3,
at) =
1 for |t| >2/3,

k1(k(z,t)) = k(z, (1 =)t +0), if ze€0X, tel,
ki(x) = x, if zeX\k(0X x1I),

and

00z 1) = 6z, (1= 8)t +6), if zedY, tel,
L) =y, if yeY\ay xI),.

It is clear that k; and ¢; are topological embeddings. Now define ho by

( ( 2 )) ( St)( ) )a if ze 8X7 |t| <4,
ha (@) = o (f (ki (2))), if zeX\k(0X x[0,9)),
ha(cop(x)) = cop(f1(f(ky ' (2))) i =€ X\ k(0X x [0,4)).

Then the following facts are evident:

hs € C(dopp X, int X,0X : doppY,int Y, 9Y);

dist(j o h1(x),j o ha(x)) < €/2 for all zin dopp X;

the restriction of hy to k(0X x [—46/3,46/3]) is of class C*°;

if z € 0X, then imd; (ha|k(partiax x[~5/3.6/3))) € Tangy,(.) Y.
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Finally, take hs to be any C°°-map dopp X — doppY which equals hs on
k(0X x [-§/6,d/6] and enjoys the properties:

hs(X \ k(X % [0,8/6))) C intY;
hs(cop(X \ k(0X x [0,d/6))) C cop(intY);
dist(j o hs(x),j o ha(z)) <e/2 Vz e X.

[Theorem 3.4.4.9 guarantees that such an 3 exists.]
Clearly, h3(X) C Y. Now define the desired map g by g = [abrhg: X — Y],
and check directly that it has all the necessary properties. O

Definition 4.6.5.5. Let X and Y be (as in Definition 4.6.5.1) oriented, com-
pact, manifolds with dimX = dimY, and let f € C(X,0X;Y,0Y). Restrict
the differentiable structures of the manifolds X and Y to C*°-structures (see
Theorem3.4.9.8), and find a map g € C3(X,Y) NC(X,0X;Y,0Y) which is
close enough to f in the C°-topology, and such that the maps f,g: X — Y,
as well as the maps abr f,abrg: 0X — 9Y are homotopic (see Lemma 4.6.5.4,
Theorems 3.4.5.10, and 1.3.6.6).

Now compute deg, g at some point y € intY such that g is transverse to
y. By Lemma 4.6.5.2, deg, g does not depend upon the choice of g or y, while
Remark 3.4.6.11 and Corollary 3.4.1.6 show that deg,g does not depend upon the
modality of restricting the differentiable structures of X and Y to C*°-structures
(according to the aforementioned theorems, the C*°-manifolds resulting from the
restriction of the differentiable structure of a given compact, smooth manifold,
effected in two distinct ways, are C*>°-diffeomorphic via a diffeomorphism which
can be as C%-close to the identity diffeomorphism as we choose). We call deg, g
the degree of the map f, denoted deg f.

The main properties of the degree are immediate consequences of its defini-
tion and of Lemmas 4.6.5.2 and 4.6.5.4. We list here some of them:

1.if f,f": (X,0X) — (Y,9Y) are homotopic, then degf = degf’ (by
Lemma 4.6.5.2);

2. the degree of the composite map (X, 9X) ER (v,0Y) L (2,07) is deg f -
deg g (by the definition of deg);
3. the degree of the identity map is 1 (trivial);

4. if f: : (X,0X) — (Y,9Y) is a homotopy equivalence, then deg f = 1
(proof: if g is a homotopy inverse of f, then deg f - degg = deg(go f) =
degid(x ax)=1);

5.0f f: (X,0X) — (Y,9Y) is such that f(X) # Y, then deg f = 0 (indeed,
one can approximate f as closely as desired by a map from

C(X,Y)NC(X,int X;Y,intY)

enjoying the same properties);
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6. if Z is any component of Y, then
deg[f: (X,0X) — (Y,0Y)] = deglabr f: f~1(Z) — Z]

(a result of the discussion in Definition 4.6.5.1) and, in particular, deg f =
0 whenever X is closed but Y is not.

As examples, consider the maps
f: (Dn’Sn—l) N (Dn’Sn—l)

and abr f: S"~! — S"~! defined by an orthogonal (n x n)-matrix V (n > 2) .
Obviously, deg f = degabr f = det V, i.e.,

1 if 'V €S0(n),
deg f = degabr f =
g f = degabr f {_1 if VeOo(n)\SOM).
Thus, the degree of the antipodal map S"~! — S*~1, z +— —x, equals 1 if n is
even and —1 if n is odd.

The Non-oriented Case

Definition 4.6.5.6. The discussion in Definition 4.6.5.1, Lemmas 4.6.5.2, and
4.6.5.4 can be carried over to non-oriented manifolds if we replace integers by
integers modulo 2. This enables us to define deg f € Z/2Z for any continuous
map f: (X,0X) — (Y,0Y), where X and Y are smooth, compact manifolds,
and Y is connected (no orientability needed). All the properties of the inte-
gral degree listed in Definition 4.6.5.5 are preserved. For the case of oriented
manifolds, when both degrees (the integral and mod 2) are defined, we con-
tinue to use the same notation for both, because misunderstandings are usually
eliminated by the context.

Applications

Theorem 4.6.5.7. Smooth closed manifolds of positive dimension are not con-
tractible.

Proof. This is plain if the given manifold is not connected. In the connected
case, the degree of the identity map of a closed manifold is 1, whereas the degree
of any map which takes the whole manifold into one of its points is zero (here
we use the -degree defined in Definition 4.6.5.6). O

Theorem 4.6.5.8. If n # m, then S™ and S™ are not homotopy equivalent.

Proof. Indeed, if m < n, then every continuous map S — S™ is homotopic to a
constant map (see Corollary 2.3.2.5 and Theorem 2.3.1.6), whereas id: S™ — S™
is not homotopic to a constant map (see Theorem 4.6.5.7). O

Theorem 4.6.5.9. The boundary of a non-empty, compact, smooth manifold
is mot a retract of the manifold.
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Proof. 1t suffices to assume that the given manifold X is compact, smooth,
connected, and with 0X # &. Let p: X — 0X be a retraction, and let Z be
any component of X. Consider the composite map X 2 X el X. Since its
image is not all of X, its degree is 0 (see Definitions 4.6.5.5 and 4.6.5.6). On
the other hand, this degree equals the degree of abr(inclop): Z — Z, which is

1, the last map being id Z. O

Theorem 4.6.5.10. Every continuous map D™ — D™ has a fized point.

Proof. Suppose that f: D™ — D" is continuous and has no fixed points. Then
the map D™ — S™~! taking each point € D" into its projection on S~ from
the point f(x) is a retraction, and hence S"~! is a retract of D": contradiction
(see Theorem 4.6.5.9). O

Theorem 4.6.5.11. If an m-dimensional locally Euclidean space is homeomor-
phic to an n-dimensional locally Euclidean space, then n = m. (Cf. Remark
3.1.1.4).

Proof. Every point of R? can be covered (in RY) by a Euclidean g-simplex.
Therefore, every point of a ¢g-dimensional locally Euclidean space lies in the
interior of a finitely-triangulated subset, and its link in this subset is homeo-
morphic to S7!. By Theorem 2.2.6.4, this link is a homotopy invariant, and
Theorem 4.6.5.8 shows that the spheres S™ and S" cannot have the same ho-
motopy type unless m = n. O

Remark 4.6.5.12. Theorem 4.6.5.11 clarifies not only the definition of a locally
Euclidean space, but also that of a cellular space. Namely, it shows that the
dimension of a cell is uniquely determined by this cell.

Therefore, the dimension function which we introduced into the definition of
the cellular decomposition as an additional element of its structure, is actually
redundant, being completely determined by the decomposition itself.

Theorem 4.6.5.13. The boundary of the half space R™ is R?H.
(Cf. Remark 3.1.1.4.)

Proof. Tt suffices to show that the point 0 has in R” no neighbourhood homeo-
morphic to R™; see Remark 3.1.1.4.

Agsume that such a neighbourhood exists. Then 0 is an interior point of a
finitely-triangulated subset of this neighbourhood, where its link is homeomor-
phic to S*~! (cf. the proof of Theorem 4.6.5.11). On the other hand, 0 is an
interior point of a finitely-triangulated subset, where its link is homeomorphic
to D"~ !: take any Euclidean n-simplex which lies in R” and contains 0 in the
interior of one of its (n — 1)-faces. Since S"~! is not contractible, whereas D"~
is, we contradict Theorem 2.2.6.4. O
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4.6.6 Exercises

Ezercise 4.6.6.1. Let r < oo, and let f: X — Y be a C"-submersion, where
X and Y are C"-manifolds, X compact and Y closed. Show that (X, f,Y)
is a C"-bundle. (Combined with Theorem 4.6.1.3, this result shows that for
r < oo, (X, f,Y) is a C"-bundle whenever X is a compact C"-manifold and Y is
a C"-manifold, while f: X — Y is a C"-submersion.)

Ezercise 4.6.6.2. Let 1 < r < oo, and let £ be a C"-bundle with closed base.
Show that there is a collaring k: 9t1(§) x I — tl(€), such that k(z x I) C

(proj(&))~t(proj(£)(z)) for every point z € O t1(£).
Ezercise 4.6.6.3. Let 1 <r < oo, and let £ be a C"-bundle with

dtU(E) = (proj(€)) " (abs(€)).
Show that there are collarings
k: Obs(€) x T — bs(€),  £: 0t1(€) x I — tl(€)
such that the diagram

At1(€) x T —Est1(¢)

abrproj(f)XidIl lproj(ﬁ)
Obs(&) x I — bs(§)

commutes.

Ezercise 4.6.6.4. Show that if r < oo, then for every CZ"-bundle ¢ with compact
bs(§) and t1(£), Sect”(§) is dense in Sect®(§) for any s < r. (This generalises
Theorem 4.6.2.7 for r # a.)

Exercise 4.6.6.5. Show that every C="-bundle ¢ with compact bs(§) and t1(€) is
C"-isomorphic to a C*°-bundle (cf. Theorem 4.6.2.8).

Ezercise 4.6.6.6. Show that sustang RP™ is C*-GLR"*!-equivalent to the sum

of n + 1 copies of Grass(n + 1, GL(1,R)), while sustang CP" is C*-GL C"*1-
equivalent to the sum of n + 1 copies of Grass(n + 1, GL(1,C)).

FEzercise 4.6.6.7. Show that the normal bundle of the C*-embedding G(m,n) —
G(m+1,n), described in Remark 3.2.2.3, is C*-GL R™-equivalent to Grass(m, GL(n,R)),
while the normal bundle of the C*-embedding CG(m,n) — CG(m + 1,n), de-
scribed in Remark 3.2.2.7, is C*-GL C™-equivalent to Grass(m, GL(n,C)).

Exercise 4.6.6.8. Let p1,...,p,y1 be homogeneous complex polynomials of de-
gree m in +1 variables, whose only common zero is the point 0. Show that the
map CP™ — CP™ given by

(z1:- - zZng1) = (P1(21- ooy Zng1) o Pngr(21 -0, Zng1)

has degree m™.
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Exercise 4.6.6.9. Show that for n > 1 every continuous map S"™ — S™ whose
degree is not (—1)"*! has a fixed point.

Exercise 4.6.6.10. Show that for n > 1 every continuous map S"™ — S™ having
odd degree transforms some pair of antipodal points into another such pair.

Exercise 4.6.6.11. Show that for odd n > 1 the degree of any map S — RP"
is even.

Ezercise 4.6.6.12. Let f be a simplicial map of the standard 2-simplex onto the
standard 1-simplex. Show that the simplicial mapping cylinder, Scyl f, is not
homeomorphic to Cyl f.






Chapter 5

HOMOTOPY GROUPS

5.1 THE GENERAL THEORY

5.1.1 Absolute Homotopy Groups

Definition 5.1.1.1. Let (X, z() be a pointed space, and let » > 0 be an in-
teger. To simplify the notation, let us agree to write Sph, (X, zg) for the set
C(I,FrI; X,xg) of all continuous maps (I,FrI) — (X, x0) and denote the set of
homotopy classes of such maps (i.e., 7(I",FrI"; X,zq) by m(X,zg). The ele-
ments of Sph,. (X, z) will be referred to as r-dimensional spheroids (or simply
r-spheroids) of the space X with origin xo.

For r > 0 and two arbitrary spheroids ¢, € Sph,.(X,zo), we define their
product, ¢, as the spheroid in Sph,. (X, zo given by

(p(2t1,t2,,t7—), if OStl S1/2,

5.1.1.2
V2t — 1,t, ... ), if 1/2<t <1 ( )

Wl)(tl,tg, .. ,t,,) = {

For r > 0 and ¢ € Sph,.(X, ), the spheroid ¢!, called the inverse of ¢, is
defined by @ t(t1,ta,...,t,) = (1 —t1,ta,...,t.). Obviously, if ©, 01,9,1; €
Sph,.(X,zo) are such that ¢; is homotopic to ¢ and 1 is homotopic to v,
then the spheroids 111 and @y are homotopic. Therefore, (5.1.1.2) defines a
multiplication on 7,.(X, zg). It turns out that

Theorem 5.1.1.3. this multiplication is associative, that the homotopy class
of the constant spheroid const (which takes I" into o) is a two-sided identity
element and that the homotopy classes of the spheroids ¢ and ¢~ are inverses
of one another.

Proof. The associativity of the multiplication means that the products (@)x
and ¢(¢x) are homotopic for any spheroids ¢, 1, x € Sph,. (X, x¢). Indeed, the

341
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formula
o (b2, ot 0 <t < 1t
((tr ooy t),t) > (At —t = Lita, o ty), i S <ty < 28
X(‘“{#J%...,tr), if %Shél,
(5.1.1.4)

defines a homotopy I" x I — X from (p)x to w(1x)-
To prove the second claim, we have to show that the products ¢(const) and
(const)p are both homotopic to ¢, for any ¢ € Sph,.(X, z¢). The formulae

2t : 1+t

@(77t27"'3t7")7 lf 0§t1§77
((t1,t2, ... tr),t) — 1+t I 2 (5.1.1.5)

Zo, if Tgtlgl,

and

o, if 0<t; <t 116
ti,to, ... tn), 1) — B )
(b, ) ) @(72“1+1ﬁ,t2,...,tr), if L < <1, ( )

define homotopies from o (const) and (const)p to ¢.
Finally, the third claim is that the products @@ ~! and ¢ !¢ are both ho-
motopic to const: indeed, a homotopy from @@ ~! to const is given by

1

0(2t1,ta, ..., t), if 0<t <158,

((t1,t2, .oy tr),t) = < o(1 —ty,ta, ..o ty), if i<t <Mt (5.1.17)
0(2 = 2t1,t9,...,t,), if < <1

O

The set 7,.(X, zp), r > 0, with this group structure is called the r-th homo-
topy group of the space X at the point x.

If »r > 0, then each r-spheroid maps I" into the component Xy of X con-
taining xo. Consequently, for » > 0 the groups 7, (X, z¢) an 7,.(Xo,xo) are
isomorphic.

By Theorem 2.3.4.3, for a countable cellular space X all the sets m,.(X, o)
are countable.

The Case r =0

Definition 5.1.1.8. Since I” is a point and FrI” = @&, Sphy(X,zo) and
mo(X, z9) can be identified with X and with the set comp X of components
of X, respectively. mo(X,xo) has no natural group structure. However, it does
have a distinguished element which, in analogy with the higher-dimensional case,
will be referred to as an identity: this is the homotopy class of the 0-spheroid
const, i.e., the component of X containing xg.

To be able to use the same language for the cases » > 0 and r = 0, we
shall call mo(X,zo) the 0-th homotopy group of X at xy, and we shall apply
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the group-theoretic terminology to sets with distinguished elements and their
maps. In particular, by a direct product we understand the usual product, a
homomorphism is a map preserving distinguished elements, the kernel of a ho-
momorphism is the preimage of the distinguished element, and an isomorphism
is an invertible homomorphism.

The Case r =1

Remark 5.1.1.9. One-dimensional spheroids are nothing else but closed paths,
and the multiplication, inversion, and homotopy of spheroids, as defined in
Theorem 5.1.1.3, coincide with the multiplication, inversion, and homotopy of
paths, as defined in Definition 1.3.2.1 and Remark 1.3.2.3. The 1-st homotopy
group is alternatively known as the fundamental group. It was defined some
decades before the higher homotopy groups were introduced, and we shall see
below that it holds a special position amongst the homotopy groups.

Remark 5.1.1.10. When r = 1 the homotopies (5.1.1.4)-(5.1.1.7) are defined not
only for loops ¢, ¥, x with common origin: the only condition that the paths ¢,
¥, x must satisfy is that the products involved be meaningful. As in the case of
loops, the homotopy class of a product is uniquely determined by the homotopy
classes of its factors, provided that the origin of the paths in the second class
coincides with the end of the paths in the first class. This multiplication is
associative; the class of the constant path is a left identity element for the class
of paths with the same origin, and a right identity element for the class of
paths with the same end; and the classes of the paths s and s~! are inverses
of one another, i.e., their product, taken in any order, is homotopic with the
corresponding identity element.

The Case r > 1
Theorem 5.1.1.11. For r > 1 the group 7,.(X, xo) is Abelian.

Proof. We have to verify that the products ¢ and ¢ are homotopic for any
spheroids ¢ € Sph,.(X,zg), 7 > 1. Consider the following three homotopies
I"x I — X:

((tl,tg,tg, e ,tr),t) —

@(2t1, (1 +t)ta,t3,. .., 1), if 0<t1<3, 0<t< i,
Y2ty =1, (L +t)ta —tt3,...,1,), if 5§ <t <1, 5 <t <1,
Zo, otherwise;

((tl,tg,tg,...,tr),ﬂ —
Q(2t1 —t,2ty,t3,..., ), if <<t 0<t <3,
(2t +t— 1,2ty — 1,t3,...,t,), if i<t < 1<t,<1,

o, otherwise;
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and

((tl,tg,t3, Ce ,tr),t) —

02t — 1,(2 — t)ta, ts, ..., L), if 1<t;<1, 0<t <55,
P2t (2= t)ta +t — Ltg,... 1), if 0<t <3, 1= <ty <1,
Zo, otherwise;

Their successive product is a homotopy from w to 1. [These homotopies
are pictured in Fig. 5.1, where the shaded regions are mapped into z.] O

Second homotopy

First homotopy Third homotopy

Figure 5.1: (r = 2)

Behaviour Under Continuous Maps

Definition 5.1.1.12. Let f: (X, z9) — (X', z{,) be a continuous map of pointed
spaces. Then to each spheroid ¢: (I",FrI") — (X, xo) there corresponds the
spheroid fop: (I",FrI") — (X', x(). This defines a map

f# = far: Sph,. (X, z0) — Sph, (X', z(),

and clearly fu takes homotopic spheroids into homotopic ones, and takes the
constant spheroid into the constant one. Moreover, fu,(o¥) = fu,(©)far(¥)
for r > 0. Therefore, fy, defines a homomorphism 7, (X, z¢) — 7. (X', z()) for
each r > 0, called the homomorphism induced by the map f, and denoted f, or,
more specifically, fi,.

Theorem 5.1.1.18. For any two continuous maps, f: (X,x0) — (Y,yo) and
g: Y,y0) = (Z,20), and any r > 0,

(go f)er = gur © far-
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If f = id(X,.rg); then f*r = idﬂ.T(X@U).
Proof. (g o f)#r = gyr © fyr and id(x o), = idSph,.(X, x0). O

Theorem 5.1.1.14. If the continuous maps f, f': (X,x0) = (Y, yo) are homo-
topic, then fuo. = fl,. forallr. If f: (X,20) = (Y, y0) is a homotopy equivalence,
then f.. is an isomorphism for all r.

Proof. The spheroids f o ¢ and f¥ o ¢ are homotopic for any ¢ € Sph,. (X, zo),
which proves the first assertion. The second assertion follows from the equalities
Gur © fur = (g0 flar = 1d and fi0 = (f 0 g)sr = id, where ¢ is any homotopy
inverse of f (see Theorem 5.1.1.13). O

A Multiplication Theorem

Theorem 5.1.1.15. Let (X, xq) and (Y,yo) be arbitrary pointed spaces. Then
for any r > 0 the homotopy group 7,.(X XY, (xo,y0)) is canonically isomorphic
to the direct product 7, (X, zg) X 7-(Y,y0). The canonical isomorphism (X X
Y, (%0,90)) = mr (X, 20) X (Y, 90) is given by o — (projy, (), projy, (a)). If
(X', () and (Y, y}) is another pair of pointed spaces and f: (X, z9) = (X', x()
and g: (Y,y0) — (Y',y}) are continuous, then the diagramme

(X XY, (z0,90)) — 7 (X, 20) X 7 (Y, 10)

(fXg)*i lf*xg*

T (XX Y, (20, 4)) —— mr (X ) > m (Y7, 4p)
commutes (the horizontal maps are the canonical homomorphisms).

Proof. The proof is immediate. O

5.1.2 A Digression: Local Systems

Definition 5.1.2.1. We say that on the topological space X there is given a
local system of groups if for each point z € X there is a group G, and for each
path s: I — X there is a homomorphism Ts: G4y — G(1), such that three
conditions are satisfied:

(1) if s1(0) = s(1), then Tys, = T, o Ts;

(i) if s is a constant path, then T is the identical automorphism of G();
(iii) if s and s; are homotopic paths, then T = T, .
Condition (iii) shows that we may write T,instead of T, where o is the homo-
topy class of the path s. Moreover, from (i)-(iii) it follows that all the homo-
morphisms T (T,,) are actually isomorphisms, and that T, ! = T,-1 (respec-
tively, T, ! = T,-1): indeed, using Remark 5.1.1.10, the paths ss~! and s~ 's
are homotopic to a constant path, and hence Ts-1 o Ty = Ty-1 = idg,,, and
TS o Ts—l = Tss—l =id Gs(l)-

The isomorphism T is called the translation along s.
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Remark 5.1.2.2. In particular, if s is a loop with origin = or, equivalently, if o is

an element of the fundamental group 71 (X, z), then Ts; = T}, is an automorphism

of G,. Comparing this with conditions (i) and (ii) in Definition 5.1.2.1, we see

that the rule o — T, defines a right group-action of m (X, z) on G,.

To each path s: I — X there corresponds a natural isomorphism ¢, : 71 (X, s(0)) —

71 (X, s(1)), given by tsw = 0~ lwo, where o is the homotopy class of s; some-
times we denote ts by t,. One can check directly that Ts: G0y — Gy is a ts

map (see Definition 4.2.3.1).

Definition 5.1.2.3. Let
(Xa {G$}7{T9})7 (X/a{G;c’}v{T;’})

be local systems of groups, given on two spaces, X and X', and let f: X — X’
be continuous. Let us assume further that for each point x € X we are given
a homomorphism h: G, — G’f - We say that the homomorphisms h, and
the map f form a homomorphism of the first local system into the second if
hsy o Ts = TJ/"os o hy(g) for any path s: I — X. A homomorphism (f, {h,}) is
an isomorphism if f is a homeomorphism and all h, are isomorphisms; (f, {h.})
is an equivalence if it is an isomorphism and, in addition, X’ = X and f = idx.

If (X',{G.,},{T.}) is alocal system of groups and f: X — X' is continuous,
then the induced local system (X, {G,}, {Ts}) arises on X: set G, = Gy, and
Ts = T}, Obviously, (f,{idg,}) is a homomorphism of the induced local
system into the original one.

Theorem 5.1.2.4. Let X be a connected space with base point xg. Two local
systems of groups, (X,{Gy},{Ts}) and (X', {G.. },{T.}), are equivalent if and
only if the two corresponding actions of m (X, zg) on G, and G, are isomor-
phic, i.e., if and only if there is a group isomorphism G, — Gy, which is also
a 7 (X, zg)-map.

Proof. That the actions of m1(X,z9) on G, and G arising from equivalent
local systems are isomorphic is obvious. To prove the converse, fix a 71 (X, zg)-
isomorphism h: Gy, — G, and choose, for each x € X, some path s, with
origin 29 and end . It is readily verified that (id, {h.}), where h, = T} ohoTS_:,
is an equivalence. O

Remark 5.1.2.5. A local system of groups on a topological space X is said to
be simple if it is equivalent to a canonical simple local system (X,{G.},{Ts}),
where all the G, are equal to some fixed group G, and all the homomorphisms
T are the identical automorphism of G.

By Theorem 5.1.2.4, a local system of groups on a connected topological
space X with base point z is simple if and only if the induced action of 7 (X, )
on (G is the identical action. In particular, a local system is simple whenever
m1(X, xo) is trivial or the groups G, are all isomorphic to Z/2Z.

Remark 5.1.2.6. It is readily seen that the discussion above may be extended
from local systems of groups to local systems of other algebraic objects, such as
vector spaces or rings.
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In the present section we shall encounter, in addition to local systems of
groups, local systems of sets with an identity (a distinguished element).

5.1.3 Local Systems of Homotopy Groups of Topological
Spaces

Definition 5.1.3.1. Two spheroids, ¢o € Sph,.(X, o) and ¢; € Sph, (X, z1),
are said to be freely homotopic if the maps abrs g, abrsp: I” — X can be
connected by a homotopy consisting only of spheroids. More precisely o and
1 are freely homotopic if there is a continuous map h: I" x I — X, constant
on each set FrI” x ¢t (¢t € I), and such that h(y,0) = o(y), h(y,1) = ¢1(y) for
allye I".

An essential element of such a homotopy is the path described by the origin
of the spheroid, i.e., t — h(Fr 1" xt). We say that h is a free homotopy connecting
the spheroids wog and p1 along this path.

Theorem 5.1.3.2. Every spheroid with origin xo admits a free homotopy along
any path with origin xy. Free homotopies of homotopic spheroids along homo-
topic paths produce homotopic spheroids.

Proof. Let ¢ € Sph,.(X,z0), and let s be a path with s(0) = xo. To exhibit
a free homotopy of ¢ along s, it is enough to extend somehow the homotopy
(y,t) — s(t) [y € FrI",t € I] of the constant map ¢|r - to a homotopy of
p: 1" — X. (That such an extension exists follows from Theorem 2.3.1.3.)

To prove the second claim, let ¢y and ¢f, be homotopic spheroids, and let
h,h': I" x I — X be free homotopies of ¢g and ¢f, along the homotopic paths
s and s’. To show that the spheroids ¢ and ¢/ are homo topic, where

P1(Ty, ..o te) = h((tr, .. ), 1), 4 (Th, .. 1) = W((t1, - 1), T)

pick some homotopies, : I" x I — X, from ¢ to ¢y, and g: I x I — X, from s
to s’, and define a subset K of the cube I"t2 = I" xIxI and amap H: K — X,
as follows:

K = Fryr+2 I+ \ [(intgr+1 IT—H) x 1]
f(y7 ) if v= 0,
g(u,v), if yé& FrgpeI",
h(y,v), if wu=0,
M(y,v), if u=1

H(y,u,v) =

where y € I",u e I,v el

There exists a homeomorphism k: I" x I — K such that k(y,u) = (y,u,1)
for all (y,u) € Fr(I" x I); for example, take the inverse of the homeomorphism
ki: K > 1" x 1,

1 1 1
kl(y7u,v) = (y07 5) + 5(1 +’U)(y — Yo, U — 5)7
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where y = (orty +--- + ort,.)/2. Now it is clear that Hok: I" x I — X is a
homotopy from ¢; to ¢]. O

Definition 5.1.3.3. According to the previous theorem, the free homotopies
along a path s: I — X define a map T;: 7,.(X,s(0)) — m(X,s(1)) for any
r > 0. The same theorem demonstrates that the maps T} fulfil property 5.1.2.1
(iii), and it is obvious that they enjoy also the properties 5.1.2.1 (i), 5.1.2.1
(ii), and are homomorphisms. The resulting local system, (X, {(X,z)},{Ts}),
is a local system of groups for any » > 1, and a local system of sets with
distinguished elements for » = 0; (X, {(X,2)},{Ts}) is called the local system
of the r-th homotopy groups of X. In particular, m (X, ) acts naturally from
the right on 7,.(X, ), for any z € X and r > 1.

Theorem 5.1.3.4. If r = 1, then the isomorphism Ty acts by the rule Ts =
o twe, where o is the homotopy class of the path s (i.e., T, coincides with
the homomorphism ts from Remark 5.1.2.2). In particular, the right action of
m1(X,x) on m (X, x) is the inner right action.

Proof. Let w be any loop in the class w, and define a path s;: I — X, t € I, by
s¢(y) = s(ty). Consider the loop w; = (s; 'w)s;. Since sp is the constant path,
belongs to w, and the formula (y,t) — w:(y) defines a free homotopy I x I — X
from wy to the loop w; = (s71w)s along s; w; belongs to the class o~ two. O

Definition 5.1.3.5. As Definition 5.1.3.3 shows, for arbitrary fixed r all the
homotopy groups m,.(X, zg) of a connected topological space X are isomorphic.
For r = 1, this was already a corollary of Remark 5.1.2.2.

A space X is r-simple if it is connected and the local system of its r-th ho-
motopy groups is simple.

(Remark by the transcriber: For the definition of “simplicity”, see Remark
5.1.2.5.)

In this case, the groups ,.(X, z) are not only isomorphic, but are manifestly
canonically isomorphic, and hence they may be identified with a unique group,
7 (X), referred to as the r-th homotopy group of X without base point. The
elements of 7,.(X) are classes of freely homotopic spheroids. A space is simple
if it is r-simple for all r.

If X is not r-simple, then one cannot use the isomorphisms 7T to identify the
groups 7, (X, z) with different z. In this situation one can speak of the group
7-(X) of X only as an abstract group.

Obviously, the local system of the 0-th homotopy groups of a topological
space is always simple, and for connected spaces, it becomes a local system of
sets, each reduced to one point.

According to Theorem 5.1.3.4, a space is 1-simple if and only if it is connected
and its fundamental group is Abelian (see Remark 5.1.2.5).

Remark 5.1.3.6. As Definition 5.1.1.12 shows, every continuous map f: X — X’
induces a a homomorphism f = (f.)x: 7 (X, z) = m.(X’', f()), for any x € X.
If h is a free homotopy from the spheroid g to the spheroid ¢; along the path
s, then f o h is a free homotopy from f o ¢y to f o p; along the path f o s,
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and 5o (fs)s(1) © Ts = Tfos © (f«)so)- Thus, given any r > 0, the induced
homomorphisms (f.,)x combine with f to define a homomorphism of the local
system of the r-th homotopy groups of X into the local system of the r-th
homotopy groups of X’.

Three special cases deserve to be mentioned:

(a) X is r-simple;
(b) X’ is r-simple;
(¢) X and X’ are both r-simple.

In case (a), the homomorphisms (f..)x take the same group, m.(X), into
m(X', f(x)), z € X, and for any path s: I — X the diagramme

7 (X)

W (fe)s)

(X', f 0 5(0)) (X', fos(1))

Tfos

commutes. In case (b) , the homomorphisms (f..)x map the groups m.(X),
x € X, into the same group, 7,.(X’), and for any path s: I — X the diagramme

(X, 5(0)) = (X, 5(1))
WT(X/)

commutes. Finally, in case (c), the local systems of the r-th homotopy groups
of X and X’ reduce to two groups, 7,.(X) and 7,.(X’), and the homomorphisms
(f«r)x become one homomorphism fy,.: m-(X) — 7.(X’).

Theorem 5.1.3.7. If f: X — X' is a homotopy equivalence, then all induced
homomorphisms (f.)(X): pir(X,x) — m.(X', f(x)) are isomorphisms.

Proof. Let f': X’ — X be a homotopy inverse of f. If H: X x I — X is a
homotopy from f’o f to idx, then given any spheroid ¢ € Sph,.(X, z), the map
I"x I — I, (y,t) — H(e(y),t), is a free homotopy from ¢ to the spheroid
fo foSph,. (X, f o f(x)), along the path s, s(t) = H(x,t). Therefore, the
homomorphism

(f)1@) 0 (fo)a = ((f' 0 fl)e: (X, 2) = mp(X, f'0 f(2))

is simply the translation T; In particular, it is an isomorphism, implying that
(f1) f(z) is an epimorphism. On the other hand, (f.)of(z) © (fi) () is also an
isomorphism, and so (f;) () a monomorphism. We conclude that (f)s(,) an
isomorphism, and hence 50 is (fi)z = [(f1) ()] " 0 Ts-
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Theorem 5.1.3.8. Let (X, xq) be a pointed topological space, and let 0 < k <
0o. The homotopy groups m.(X, xzg) are trivial for all r < k if and only if X is
k-connected. The homotopy groups m(X,xo) are all trivial if and only if X is
oo-connected

Proof. If X is k-connected, then 7,.(X,x) is trivial for all » < k: to see this,
compare the definition of 7,.(X,zo) and that of k-connectedness (see Definition
1.3.3.7; in Theorem 1.3.3.6 one can replace (D"*!,S") by the homeomorphic pair
(I"t1 Fr I"*1)). The same two definitions prove the converse statement, since
the triviality of 7.(X, o) for all » < k implies the triviality of 7.(X,z) for all
r <k and any z € X (see Definitions 5.1.1.8 and 5.1.3.5). O

5.1.4 Relative Homotopy Groups

Definition 5.1.4.1. Set J"~! = Fg-I" \ intg-—1 I""1. Given any topologi-
cal pair (X, A) with base point o € A and any positive integer r, we let
Sph,.(X, A, zo) denote the set C(I",FrI", J"~1; X, A, z) of all continuous maps
(I",FrI”,J7 1) — (X,A,79). The elements of Sph, (X, A, z¢) are called r-
dimensional spheroids (or r-spheroids) with origin xo of the pair (X, A). The
set . (I",FrI", J" =1 X, A, 29) of homotopy classes of such spheroids is simply
denoted by 7. (X, A, xq).

Notice that every spheroid ¢ € Sph, (X, A,x), such that o(I") C A, is
homotopic to the constant spheroid. In fact, there is even a standard homotopy
I" x I — I from ¢ to the constant spheroid:

((tl,...7t,«,1,tr),t) — (tl,...,trfl,(l —t)tr +t).

A 1-spheroid with origin z( of the pair (X, A) is simply a path with origin
in A and end zo. Warning: a homotopy of such a spheroid is stationary at the
point 1, but if A is not reduced to zg, it is not necessarily stationary at the
point 0.

When r > 2, formula (5.1.1.2) defines a multiplication on Sph, (X, A, z¢),
and this induces a multiplication on 7,.(X, A, zg), which turns 7,.(X, A, z¢) into
a group. The identity element of m,.(X, A, z¢) is the homotopy class of the
constant spheroid, while the class of the spheroid ¢!, with

o Mt ta, .o ty) = (1 —t1,ta, ...y ty),

is the inverse of the class of ¢. The proof of these assertions is entirely analogous
to that given in the case of absolute homotopy groups.

For r > 2, m.(X, A, x0) is called the r-th homotopy group of the pair (X, A)
at the point xo. The first homotopy group of (X, A) at z is defined to be the set
m1(X, A, o) with an identity (a distinguished element), namely the homotopy
class of the constant 1-spheroid.

If A =z, then 7,.(X, A, z¢) equals 7,.(X, zg) (i-e., m-(X, zg, z0) and 7. (X, o)
coincide as groups for r > 2, and as sets with distinguished elements for r = 1).

For r > 1, m(X, A, x) is canonically isomorphic to m.(Xo, Ag, o) , where
X and Ag are the components of X and A which contain zg.
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For r > 2, m.(X, A, zy) is Abelian; the proof entails obvious modifications
of the proof of Theorem 5.1.1.11.

Definition 5.1.4.2. Every continuous map f: (X, A, xo) — (X', A’, z() yields
the induced homomorphism f.: m.(X, A, x9) — 7 (X', A, z(), r > 1, defined
as in the absolute case. If A = zyp and A’ = xz{, we recover the absolute
induced homomorphism, f.: m.(X,z9) — 7-(X’,zy). As with the absolute
case, (go f)« = g« o fx and id, = id. If f and f’ are homotopic, then f, = f..
If f is a homotopy equivalence, then f, is an isomorphism.

The Boundary Homomorphism

Definition 5.1.4.3. Given a spheroid ¢ € Sph, (X, A, x¢), its compression,
abry: (I""LFrI™1) — (A,x¢), is a spheroid belonging to Sph, (A, zq),
called the boundary of ¢, and denoted dp. The resulting map, 9: Sph,.(X, A, xo) —
Sph,._; (A4, zg), takes homotopic spheroids into homotopic ones, takes the sum of
two spheroids into the sum of their boundaries, and takes the constant spheroid
into the constant one. Therefore, it defines, for every r > 1, a homomorphism
0: (X, Ay xg) = mr_1(A4, x0), called the boundary homomorphism.
Given any continuous map, f: (X, A, x¢) — (X', A, x(), the diagramme

7T7«(X, Aa JZO) $ 7T7~_1(A, 330)

f*l i(abrf)*

(X', A xp) — mr—1(A", zp)

commutes for any » > 1. Indeed, we already know that the similar diagram
with Sph instead of 7, and with fu and (abr f)x instead of f. and (abr f),,
commutes.

Local Systems of Homotopy Groups of a Topological Pair

Definition 5.1.4.4. Two spheroids, ¢o € Sph,.(X, A, z¢) and ¢; € Sph,.(X, A, z1),
are said to be freely homotopic if there is a homotopy from ¢y to ¢ consisting
only of spheroids, where ¢g to 1 are viewed as maps (I",FrI —r) — (X, A).
In other words, ¢y to ¢1 are freely homotopic if there is a map h: I" x I — I
such that h(FrI” x I) C A, h is constant on every set J"~! x ¢ (¢t € I), and
h(y,0) = wo(y), h(y,1) = ¢1(y) for all y € I". We say that h is a free homotopy
from @ to @1, along the path t — h(J"~! x t).

Theorem 5.1.4.5. Every spheroid with origin xo of (X, A) admits a free homo-
topy along any given path, s: I — A, with s(0) = xg. Moreover, free homotopies
of homotopic spheroids along homotopic paths of A produce homotopic spheroids.

Proof. The proof differs from that of Theorem 5.1.3.2 in two details:
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e in the first part of the proof, we have to start with abry: J"=! — A
(instead of ¢|m rr) and extend its homotopy, (y,t) — s(¢), initially to a
homotopy of abr¢: FrI"™ — A, and then to a homotopy of ¢: I" — X;

e in the second part of the proof, we must replace g: I xI — X by g: I xI —
A.

O

This theorem shows that given a path s: I — A, the free homotopies along
s define a map Ts: 7(X, A,s(0)) — m(X,A,s(1)) (for each » > 1). As in
the absolute case, Ty are homomorphisms and enjoy properties 5.1.2.1 (i)-(iii).
Therefore, a local system, (A, {m-(X, A,2)},{Ts}), arises on A, which is a local
system of groups for r > 2, and a local system of sets with distinguished elements
for r = 1. This is the local system of the r-th homotopy groups of the pair (X, A).
In particular, for any € A and r > 1, 71 (A, x9) acts naturally from the right
on 7,.(X, A, x); this is a group-action for r > 1, and it fixes the distinguished
element for r = 1.

From the existence of this local system it follows that, for any r > 1, the
r-th homotopy groups m.(X, A,z), x € A, are all isomorphic whenever A is
connected.

A pair (X, A) with A connected is said to be r-simple if the local system
of its r-th homotopy groups is simple. In this case all the homotopy groups
(X, A,x), x € A, can be identified with a single group, the r-th homotopy
group of the pair (X, A) without base point, m.(X, A); the elements of m,.(X, A)
are classes of freely homotopic spheroids. A pair is simple if it is r-simple for
any r > 1. For example, every pointed space is a simple pair.

Remark 5.1.4.6. Given any pair (X, A) and any path s: I — A, the diagramme

(X, A, 5(0)) —2> 1, _1(A, 5(0))

Tsl ln

(X, A, 5(1)) ——> o1 (A, 5(1))

obviously commutes. Therefore, the boundary homomorphisms, 0 = 9,(X, A, z) —
7r—1(A, x), combine with id 4 to define a homomorphism of the local system of
the r-th homotopy groups of the pair (X, A) into the local system of the (r—1)-th
homotopy groups of the space A.
Further, given any continuous map, f: (X,4) — (X', A’), the homomor-
phisms
f* = (f*)z : '/Tr(Xa Aa 1‘) — ’/TT(X/a Al, f(z))a

combined with f to define a homomorphism of the local system of the r-th ho-
motopy groups of the pair (X, A) into the corresponding local system of (X', A”).
As in Remark 5.1.3.6, we mention three special cases:

(a) (X, A) is r-simple;
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(b) (X', A’) is r-simple;
(c) both (X, A) and (X', A’) are r-simple.

In cases (a) and (b), any path s: I — A yields commutative diagrammes similar
to those in Remark 5.1.3.6; in case (c), the local systems of the r-th homo-
topy groups of the pairs (X, A) and (X', A") reduce to single groups, (X, A)
and m,.(X’, A’), while the homomorphisms reduce to a single homomorphism,
fer (X, A) = m (X7 AN

Theorem 5.1.4.7. If f is a homotopy equivalence, then all the homomorphisms
(f«)z are isomorphisms.

Proof. The proof is similar to that given in the absolute case (see Theorem
5.1.3.7). O

Theorem 5.1.4.8. Let (X, A) be a pair with base point xo € A. If X, A are
connected, then the triviality of all the homotopy groups m.(X, A, xo) is equiv-
alent to the oco-connectedness of (X, A); the triviality of the homotopy groups
(X, A, x0) for 1 <r <k is equivalent to the k-connectedness of (X, A).

Proof. The proof is a repetition of the proof of Theorem 5.1.3.8, with obvious
modifications (instead of referring to Definition 1.3.3.7, we refer to Remark
1.3.3.9). O

The Group (X, A, xo)
Theorem 5.1.4.9. If o, 3 € mo(X, A, x0), then a™!Ba = Ty, .

Proof. (For an alternative proof, see Subsection 5.1.10). We have to check that,
given two arbitrary spheroids, ¢, € Sph,.(X, A, x¢), there is a free homotopy
from psi to =19 along the loop dp. We shall exhibit such a homotopy as a
family of maps, x¢: I? — X (t € I), constructed as follows.

Set f(t) = {= — §|t— 3|, and divide I? into eight parts, as shown in Fig. 5.2:
the points A1 (t), Aa(t), As(t), A4(t) have abscissae f(t), t/4, 1—(t/2), 1— f(t),
respectively, while the points By (t), Ba(t), Bs(t), Ba(t) lie above these points
at the height 1 — f(¢). Further, let a;: Q;(t) — I?, j = 1,2,3, be the affine
maps defined by the conditions

ar(Ai(t)) = (£,0),  a1(A2(t)) = (0,0), ar(Bi(t)) = (£, 1),
az(Az(t)) = (0,0), ax(43(t)) = (1,0), aa(Ba(t)) = (0,1),
ag(A3(t)) = (0,0), as(As(t)) = (£,0), as(Bs(t)) = (0,1).

Now set
Xt|Q1(t) =@poay, Xt|Q2(t) =1 oay, Xt|Q3(t) =@poas

and consider the resulting continuous map Q1 (t) U Q2(t) UQs(t) — X. Extend
it firstly to a map U7Q;(t) — X which is constant on the horizontals in Q4 (¢) U
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Figure 5.2:

Qs(t) and on the verticals in Qg(t) U Q7(t), and then to a map USQ;(t) — X
which is constant on the horizontals in Qgo(t). (The latter is possible, since the
already extended mapUJQ;(t) — X is constant on the segment [By(t), By(t)],
and assumes the same values at those points of the segments [By(t), (0,1)] and
[B4(t), (1,1)] which lie at the same height.) The continuity of the map I? x I —
X defined by the family y;: I? — X follows from its continuity on each of the
eight polyhedrons Ui (Q;(t) x t), 1 <1 <8. O

The Action of the Group 71 (X, zp) on 71 (X, A4, )

Definition 5.1.4.10. Given a spheroid w € Sph, (X, A,z¢) and a loop s €
Sph, (X, ), the product ws is well defined, and obviously ws € Sph, (X, A, o).
Moreover, the homotopy class of ws is uniquely determined by the homo-
topy classes of w and s, and hence we may define the product wo for any
w € m(X,A,z9) and ¢ € m(X,20). Using again the homotopies described
in Theorem 5.1.1.3, we see that w(co’) = (w)o)o’ and we, (x,z,) = w for any
w € m(X,A,x0) and 0,0’ € m(X,20). That is to say, the rule (w,0) — wo
defines a right action Of w1 (X, zo) on 71 (X, A, xg).

If A = xg, then we clearly recover the canonical right action of the group
m1(X, zp) (on itself) . It is readily seen that the translation

Ts: (X, A,8(0) = (X, A4,s(1))

is a [Tinclos: m(X,s(0)) — tm(X,s(1))]-map for any path s: I — A, ie.,
Ts(wo) = Ts(w)Tinclos(0) for all o € m1(X,s(0)) and w € m (X, A, 5(0)). Fur-
thermore, given any continuous map f: (X, A,zg) — (X', A',z(), the homo-
morphism

ferm(X, A o) — m (X', A )
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is a fo: m (X, zo) = m (X', z()-map, i.e.,
filwo) = fi(w)fi(o) Vw e m(X, A, x9),Yo € m(X, o).
In particular, if we consider the map rel = [incl: (X, zg, z9) = (X, A, zo)], then
(rely w)o = rel, (wo)
for all w, o € T1(X, xo).

Theorem 5.1.4.11. For any w € m1(X, A,x0) and oinmi (A, z9) we have
T,w = w(incl, o),
where incl = [incl: (A4, z9) = (X, z0)].

Proof. Let w and s be spheroids in the classes w and o. Consider, for each fixed
t € I, the path s;: T — A given by s:(y) = s(ty), and set w; = w(inclos;). Since
Sp is a constant path, w and wy are homotopic. On the other hand, the formula
(y,t) — we(y) defines a free homotopy I x I — I from wy to wy = w(inclos),
along s. O

5.1.5 A Digression: Sequences of Groups and Homomor-
phisms, and 7-Sequences

Definition 5.1.5.1. A sequence of groups and homomorphism is a finite or
infinite (on one or both sides) sequence of groups such that for each two adjacent
groups, G; and G;41, there is given a homomorphism G; — G;41.
A homomorphism of a sequence of groups and homomorphisms, into another
such sequence,
{Gi,hil Gi — Gi+1} into {G/ hl: G: — G;+1}

(2 7"
is a sequence of homomorphisms {H;: G; — G;y1} such that the diagram

hi—1 hi
Gioi— G —— Gi+1

lHi—l \LHi \LH1‘+1

! U
1 Gz Y Gi+1

commutes. A homomorphism {H;} such that each H;: G; — G/ is and isomor-
phism is called an isomorphism.

Definition 5.1.5.2. A sequence of groups and homomorphisms, {G;,h;}, is
ezact if for each group G;, excepting the initial and final ones, the kernel ker h;
of the homomorphism h; equals the image im h;_; of the homomorphism h;_.

The following three properties are common to all exact sequences {G;, h;}.
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(i) If G, is an inner (i.e., neither initial, nor final) term of the given sequence,
then h;_; is trivial if and only if h; is a monomorphism, while h; is trivial
if and only if h;_; is an epimorphism; h;_; and h; are both trivial if and
only if the group G; is trivial.

ii) If G; and G, are inner terms, then h;_; and h;,; are simultaneously
+ +
trivial if and only if h; is an isomorphism.

(iii) In particular, the triviality of G;—; and G;41 implies the triviality of G;,
while the triviality of G;_; and G, implies that h; is an isomorphism.

Definition 5.1.5.3. An exact sequence of the form

1sFrLha%ms

is called short (here 1 denotes the trivial group). An example is

1 F2d g qip
where F' is a normal subgroup of G. This example has a universal character:
every short exact sequence,

1-rlasman

is canonically isomorphic to a sequence of this type, namely, to
1=imf 24 ¢ 2% G/im f — 1;
the canonical isomorphism is obviously

{idy,abr f: F — im f,idg, h — proj(g—*(h)),id; }.

Splitting

Definition 5.1.5.4. Let {G;, h;} be a sequence of groups and homomorphisms.
We say that this sequence is split from the right at the term G, by the homo-
morphism (: Gap1 — G if hy 0 ¢ = idg,,,. Such a splitting is said to be
normal if im ¢ is a normal subgroup of G,,.

Similarly, {G};, h;} is split from the left at the term G, by the homomorphism
(: Gy = Gooq if (o hy—1 =idg, ,. We sometimes say simply that the given
sequence is split, or that it splits (at right or at left) at G.

Lemma 5.1.5.5. Let A and B be groups, and let u: A - B and v: B — A
be homomorphisms. If imv is a normal subgroup of A and uwowv = idg, then
A =keru x imw.

Proof. Every element a € A can be represented as [a(vou(a)) !](vou(a)), and
obviously a(vou(a))™t € keru and v o u(a) € imv. If a € keru N imwv, then
u(a) = ep, and there is b € B with v(b) = a. Thus, b = uov(b) = u(a) = ep
and a = v(b) = ea. O
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Theorem 5.1.5.6. If the exact sequence {G;, h;} splits normally from the right
at G, and splits from the right at G,_3, then it also splits from the left at
Go , and Gy = Go_1 X Goy1. More precisely, under these hypotheses, he_1is
a monomorphism, he, is an epimorphism, and G, decomposes into the direct
product of imh,_1 and a subgroup which is mapped isomorphically onto G411
by ho. Moreover, every homomorphism (: Goy11 — G, which splits the sequence
from the right is a monomorphism, and if  is also normally splitting, then for
a direct complement of im h,_1 one may take im .

Proof. The equality G, = imh,_1 X im is a consequence of Lemma 5.1.5.5
and of the exactness of the given sequence. From h, o ¢ = idg,,, it follows
that h,, is an epimorphism and that ¢ is a monomorphism. Since {G;, h;} splits
from the right at G,_3, ho—3 is an epimorphism, and now the exactness of
{G}, h;} implies that h,_o is trivial, while h,_; is a monomorphism. Finally, as
a homomorphism splitting the given sequence at from the left one can take the
homomorphism which is the inverse of on an equals the identity on im (. O

Theorem 5.1.5.7. If the exact sequence {G;, h;} splits from the left at G, and
Ga+3, then it splits normally from the right at G, and

Ga = Gozfl X Ga+1~

More precisely, under these hypotheses, ho_1 is a monomorphism, hs is an
epimorphism, and G, decomposes into the direct product of imhy_1 and a sub-
group which is mapped isomorphically onto Go11 by h,. Moreover, every ho-
momorphism (: : G, — Gu_1 which splits the sequence from the left is an
epimorphism, and for a direct complement of im h,_1 one can take ker C.

Proof. The equality G, = imh,_1 X im( is a consequence of Lemma 5.1.5.5.
From (o ho—1 =1idg, , it follows that h,_1 is @ monomorphism and that ¢ is
an epimorphism. Since {G;, h;} splits from the left at G153 and is exact, ho3
is an epimorphism. As a homomorphism splitting the given sequence normally
from the right at G, one can take the composition

Gas1 = Ga/kerhg = Go/imho 1 = (imho_1xker ()/imho 1 = ker{ =% G
[

Theorem 5.1.5.8. An exact sequence

1—>FL>G1>H—>1

splits at G from the left if and only if it splits at G normally from the right,
and this happens if and only if the subgroup im f = kerg of G has a direct
complement.

Proof. This is a corollary of Lemma 5.1.5.5. O
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Five Lemma
Theorem 5.1.5.9. If

hl hz h3 hl

G, Ga Gs Gy Gs
\L‘Pl ltpz itps J/SDAL \Lsﬂs
Gy —> Gy —> Gy —> G} —> G}

is a homomorphism of exact sequences, and if p1 is an epimorphism, pa, P4
are isomorphisms, and @5 is a monomorphism, then 3 is an isomorphism.

Proof. Let us show first that 3 is a monomorphism. If a € ker 3, then ¢4 o
hs(a) = h3 o p3(a) = eg;, and so hz(a) = eg,, i.e., a € kerhy = imhy . Let
a = ha(b), b € G. Since

hy 0 pa(b) = w3 0 ha(b) = p3(a) = eg,

there is ¢ € G such that h}(c) = pa(b). Therefore, there is d € G; such that
hi o p1(d) = pa(b). On the other hand, h} o ¢1(d) = w2 o hi(d), and hence
p2(b) = 2 0 hi(d). Consequently, b = hy(d) and a = hy o hi(d) = eq,-

Now let us verify that o3 is an epimorphism. Let a € G%. Then

@5 0 hyopy ! ohy(a) = hyohy(a) =eqy,
and so hy o @) o hz(a) = egy, Le., @, ohh(a) € ker hy = im hs. Let
w1 o hiy(a) = hs(b), beGs.
Since
hy(a(ps(0)) 1) = (paopy tohy(a)) (hyops(0) ™" = pa(py ol (a))(h5(0) 1) = eqy

there is ¢ € GY% such that hb(c) = a(ps3(b))~!, and hence there is d € G5 such
that hf o pa(d) = a(p3(b))~ 1. On the other hand, h} o p2(d) = 3 o ha(d), and
hence a(p3(b)) ™! = 3 0 ha(d). Consequently, a = p3(ha(d)b). O

m-Sequences

Remark 5.1.5.10. In the next subsections we shall handle the so-called homotopy
sequences. These are rather cumbersome entities which are similar to sequences
of groups and homomorphisms, but possess additional properties and structures.
Such sequences are encountered in various geometric situations, but they are
all algebraically related. The rest of the present subsection is devoted to a
preliminary, purely algebraic description and study of these sequences.

Definition 5.1.5.11. Consider a left-infinite sequence
—>H7P—G>H6 p—5>H5 p_4>1—[4 p—3>H3 p—2>H2 p—1>H1 P_0>H07 (51512)

where:
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Iy, 11y, IIy are sets with an identity (distinguished element),
II3, 114, II5 are groups,

Ilg, 117, ... are Abelian groups,

P05 P15 P2 are homomorphisms in the sense of Definition 5.1.1.8,
P35 P4y --. are group homomorphism.

Then (5.1.5.12) is called a m-sequence if there are given
right group-actions of II3 on the groups I3, with k& > 2,
right group-actions of I14 on the groups Ilg; 1 with k& > 2,
right group-actions of II4 on the groups Ils;_; with k& > 2,
right group-actions of Il3 on the set Ils,

such that
(i) psk is a ps-homomorphism for all k£ > 2;
(ii) psg+1 a Ig-homomorphism for all k& > 2;

(iii) p3x—1 is a IIy-homomorphism for all £ > 2, with respect to the right
group-action of II, on II3; induced by the given action of on Il3 via ps;

(iv) p4 is a II;-homomorphism with respect to the right inner action of Il4;

(v) the transformation of the group IIy induced by the image ps(a) € IIy of
an arbitrary element o € Il4 is the inner automorphism 8+ a~!Ba;

(vi) the transformation of the set Il induced by an arbitrary element o € I3
coincides on p2(Il3) with the transformation ps(w)o = pa(wo).

A homomorphism of the m-sequence {II,, p; }52, into the m-sequence {II}, p; }7°
is a sequence of homomorphisms h;: II; — II} such that

pioh;y1 = h;op; for all i > 0;
Ry, Wiy and by, (k > 2) are hs-, hy- and hs-homomorphisms, respectively;
ho(w)hs(o) = he(wo) for all w € I and o € II.

An isomorphism is a homomorphism such that all ;’s are isomorphisms.

Remark 5.1.5.13. Among conditions (i)-(vi) above, two refer to p4, namely (iv)
and (v). From (iv) it follows that if II; acts identically on IIs, then im p4 is
contained in the centre of the group II4. From (v) it follows that if II, acts
identically on Il5, then IT5 is Abelian, and that the converse is true provided py4
is an epimorphism. In general, (v) implies that ker p, is contained in the centre
of H5.
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Definition 5.1.5.14. The w-sequence (5.1.5.12) is ezact if ker p; = im p; 41 for
all 7 > 0 and, in addition, the preimages of the elements of II; under p; are
nothing but the orbits of the action of II3 on 5.

The 7w-sequence (5.1.5.12) is ezact and i > 0 is arbitrary, then obviously the
homomorphism p; is trivial if and only if p;;1 is an epimorphism, while ker p;
is trivial if and only if p;;; is trivial. In general, when ¢ > 3, ker p; is trivial
if and only p; is injective, because p; is a group homomorphism. Further, the
triviality of ker po means that ps is injective: if po(a) = p2(8), then

p2(af™) = p2()B7" = p2(B)B™" = p2(BB") = p2(epi,)

[see condition (vi) in Definition 5.1.5.11], and hence o« = 5. The triviality of
ker pg does not imply the injectivity of pg, and this is also valid for ker p; and
p1. However, in the case of an exact m-sequence (5.1.5.12), the injectivity of pq
is guaranteed if the group is trivial, or if it acts identically on II5.

The above discussion makes clear that,

in the case of an exact m-sequence (5.1.5.12) and for ¢ > 1, the triviality of p;
and p;42 is equivalent to the invertibility of p;41,

the triviality of II; and II;; o implies the triviality of IT;_q,

the triviality of IT;_; and II; ;5 implies the invertibility of p; (cf. Definition
5.1.5.2).

Theorem 5.1.5.15. Let (5.1.5.12) be an exact w-sequence. If the action of 114
on Iy induced by the action of I3 via ps is identical, then im p3 is a normal
subgroup of ll3. The converse is true provided ps is an epimorphism.

Proof. Assume that I, acts identically on IlIy. If o € TIly, 8 € II3, then
p2(B)p3(a) = p2(B), and hence

p2(Bps(@)B71) = pa(Bps(a)) B~ = [p2(B)ps(a)]B = p2(B)B~" = p2(BB~") = em,

[see condition (vi) in Definition vi]. Therefore, Bp3(a)8~! € ker po = im p3, and
hence im p3 is a normal subgroup of II3.

Now assume that p, is an epimorphism and that im ps is a normal subgroup
of IIs. If @ € Il and v € Ily, then there is § € I3 such that = p» = v, and
since Bpz(a)B~t € im p3 = ker py, we have

Yps(r) = pa(B)ps(a) = p2(Bps(a)) = p2(Bps()B~'B) = e, B
= Pz(eng)ﬁ = Pz(ﬁ) =7

[see again (vi) in Definition vi]. Consequently, II acts identically on II. O

Remark 5.1.5.16. Every sequence of Abelian groups and group homomorphisms
of the form (5.1.5.12) can be viewed as a m-sequence, where the action of II3 on
I3k, & > 2, and the actions of II4 on Il3;41 and II3;_1, & > 2, are identical,
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while the action of I3 on Il is given by wo = wps(0) [w € I3, o € II3]. Then it
is readily seen that a sequence which is exact in the sense of Definition 5.1.5.2
is also exact as a m-sequence, and that the homomorphisms of sequences in the
sense of Definition 5.1.5.1 are also homomorphisms in the sense of Definition
5.1.5.11.

Splitting of 7—Sequences

Definition 5.1.5.17. We say that the m-sequence (5.1.5.12) is split from the
right at the term II, by the homomorphism ¢: I,y — I, if po—10¢ =1idp,_,.
This splitting is normal if

a=0,1,2 or
« > 3 and im ( is a normal subgroup of II,.

We say that the m-sequence (5.1.5.12) is split from the left at the term IT,, by the
homomorphism (: I, = a1 if (0 po = idm, . (¢ is a group homomorphism
when this makes sense, and a homomorphism of sets with identity elements
otherwise.)

Theorem 5.1.5.18. Ifa > 5, then any right splitting of the m-sequence (5.1.5.12)
at I, is normal. If (5.1.5.12) is exact and Ty acts identically on 15, then any
right splitting at 11, is normal.

Proof. Since for o > 5 the groups II, are Abelian, we need consider a only I,
and II5. Suppose that the homomorphism ¢: Iy — II5 splits (5.1.5.12) from
the right at II5. If o, 8 € II5, then

BapB™ = [BC(pa(B~NNIC(pa(B))aB™]
= [C(pa(B) BB (pa(B™1))] = C(pa(B))aC(pa(B7));

permuting the factors is permissible because 8¢ (p4(371)) € ker py (as shown by
the equality ps o ¢ =idy,), and hence B¢(ps(871)) belongs to the centre of II5
(see Remark 5.1.5.13). This representation of Ba3~! shows that if a € im¢(,
then Baf~! € im( for all B € IIs.

Now suppose that ¢: II3 — II4 splits the exact m-sequence (5.1.5.12) from
the right at Pi4, and that I14 acts identically on II5. If «, 5 € 114, then

BaB™t = [BC(ps(B~))][¢(ps(8)) B
= [¢(ps(B))aB~ B¢ (ps(B71))] = C(p3(B))al(ps(B71));

permuting the factors is permissible because 3¢(p3(371)) € ker ps (as shown by
the equality ps o ¢ = idr,), and hence 3¢(p3(371)) belongs to the centre of Tl,.
(see Remark 5.1.5.13). This representation of Ba3~! shows that if a € im¢(,
then Baf~! € im( for all B € I4. O
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Remark 5.1.5.19. Let the m-sequence (5.1.5.12) be exact, normally split from
right at II, and split from the right at II,,35. If a > 4, then, according to
Theorem 5.1.5.6, sequence (5.1.5.12) also splits from the left at II,, and II,
decomposes into the product of a subgroup canonically isomorphic to II,; and
a subgroup isomorphic to II,. When o = 1,2,3, (5.1.5.12) also splits from the
left at II, (to see this, repeat the arguments of Theorem 5.1.5.6), but obvious
examples demonstrate that the above isomorphism II, = Mgy41 x IIy—1 is not
necessarily valid.

Now let the m-sequence (5.1.5.12 be exact and split from the left at II,, and
IM,_5. If « > 6, then, according to Theorem 5.1.5.7, (5.1.5.12) is normally
split from the right at II,, and II, decomposes into the product of a subgroup
canonically isomorphic to II, + 1 and a subgroup isomorphic to II,,_;. A word-
for-word repetition of the arguments in Theorem 5.1.5.7 shows that this holds
also for o = 4,5. If o = 3, all we can say is that (5.1.5.12) splits from the right
at H3.

In what follows, we shall often encounter w-sequences which are exact, and
split at every third term. The discussion above shows that if the m-sequence
(5.1.5.12) is exact and normally split from the right (split from the left) at every
term II; 43, with ig + 3k > 1, then it also splits from the left at these terms
(respectively, it also splits from the right at II;, 435 with ig + 3k > 3, and splits
normally from the right at IT;, ;55 for ig + 3k > 4).

The w-Variant of the Five Lemma

Theorem 5.1.5.20. Let {11;, p;}5°, and {IL}, p;}32, be exact m-sequences, and
let {h;: II; — II}}2°, be a homomorphism of the first sequence into the second.
If ho—1 and hoy1 are isomorphisms and ker ho—o = en, ,, imhgyo = H:x+27
then ker h, = er;, and imh, = II/, (and hence h, is a group isomorphism for

all a > 3).

Proof. If o > 5, then this is contained in theorem 5.1.5.9. The proof for a =
2,3,4 is similar. O

5.1.6 The Homotopy Sequence of a Pair

Definition 5.1.6.1. Let (X, A) be a topological pair with base point zy €
A. According to Subsections subsect:05-1-1 and 5.1.4, the homotopy groups
(X, o) and

pi-(A, o) are defined for any r > 0, whereas the homotopy groups 7. (X, A, zg)
are defined for any » > 1. Moreover, by Definition 5.1.4.3, there are the ho-
momorphisms 9: 7,.(X, A, x9) = m—1(4,2z0). To these we add the homomor-
phisms incl,: 7.(A,z9) — 7-(X,x0) and rel,: 7.(X,z9) — 7-(X, A, x0), in-
duced by the inclusions incl: A — X and rel: (X, zg,z9) — (X, A, x¢). These
three series of homotopy groups and three series of homomorphisms can be
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assembled into the left-infinite sequence

. £>7T2(A7£L'0) % 7T2(X, "EO) _)rel* 7T2(X7A7x0) i 7T1(A,.’IJ0) nel. (5 1.6 2)
incl, o

7T1(X,.T0) & 7T1(X7A,3?0) 2) 7T0(A,.’L‘0> —_— 7T()(X, 370)

Here, all the terms, except for the last six, are Abelian groups, all the terms,
except for the last three, are groups, the last three terms are sets with an identity,
all the maps, except for the last three, are group homomorphisms, and the last
three maps are homomorphisms of sets with identity. By Definitions 5.1.3.3
and 5.1.4.4, m(X,x0) acts from the right on (X, xo), while 71 (A, x¢) acts
from the right on m,.(A,x0) and 7.(X, A, zg), and all these are group-actions.
Furthermore, the homomorphisms incl,, rel,, and 0 are compatible with these
actions, as required in Definition 5.1.5.11 (see Remarks 5.1.3.6, 5.1.4.6, and
Theorem 5.1.3.4), and o~ !Ba = Tp, 3 for all a, B € 7 (X, A, xq) (see Theorem
5.1.4.9). From Definition 5.1.4.10 and Theorem 5.1.4.11 it follows that m (X, zo)
acts from the right on 71 (X, A, z¢) in such a manner that rel,(w)o = rel,(wo)
for allw, o € m (X, ). Therefore, (5.1.6.2) is a m-sequence, called the homotopy
sequence of the pair (X, A) with base point xg.

Theorem 5.1.6.3. Sequence (5.1.6.2) is ezxact.

Proof. The proof is a routine, direct verification of the six inclusions imincl, C
kerrel,, kerrel, C imincl,, imrel, C ker 9, ker @ C imrel,, im 0 C ker incl,, and
kerincl, C im @, plus a justification of the fact that, given «, 8 € m.(X, A, x0),
there is a a € 71 (X, zg) such that aoc = 8 if and only if da = 9. O

Theorem 5.1.6.4. Given any path s: I — A, the vertical isomorphisms

incl, rel.

—7,.(A,5(0)) — 7m-(X, 5(0)) — 7.(X, A, s(0)) o, mr—1(4,5(0)) —

I [E I I

—7,.(4,s(1)) - (X, s(1)) o (X, A, s(1)) - mr—1(4,5(0)) —

define an isomorphism of the first sequence onto the second.

Proof. The commutativity of the first square has been established in Remark
5.1.3.6, while the commutativity of the second and the third in Remark 5.1.4.6.
From the fact that the local systems (A, {m.(A,z)}, {Ts}), (X, {m-(,2)}, {Ts}),
and (A, {m (X, A, x)},{Ts}) satisty property in Definition 5.1.2.1 (i), and from
the equality Ts(wo) = Ts(w)Tinaos(o) [o € m(X,s(0)), w € m (X, A4, s(0))],
deduced in Definition 5.1.4.10, it follows that the vertical homomorphisms are
compatible with the actions of the fundamental groups. O
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Theorem 5.1.6.5. Given a continuous map f: (X, A, zo) — (X', A',z(), the
vertical homomorphisms

e (A, 2(0)) 225 (X, 3(0)) —L 1 (X, A, 2(0)) — L= 101 (A, 20)) —>
\L(abrf)* J(f* \Lf* i/(abrf)*
(A 2(0)) = (X 2 0)) = (X, A 2(0)) = 7 (A 2(0)) —

(5.1.6.6)
induced by f yield a homomorphism of the first sequence into the second.

Proof. The commutativity of the first two squares follows from Theorem 5.1.1.13
and Definition 5.1.4.2. The commutativity of the third square has been estab-
lished in Definition 5.1.4.3, and the compatibility of the vertical homomorphisms
with the actions of the fundamental groups - in Remarks 5.1.3.6, 5.1.4.6, and
Definition 5.1.4.10. O

The Most Important Special Cases

Remark 5.1.6.7. If X is oo-connected, then all the homomorphisms
0: (X, A, o) = mr—1(4, o)

are isomorphisms. If X is k-connected and k < oo, then
0: (X, A, x0) = mr—1(A, x0)

is an isomorphism for all r < k, while
0: mr1(X, A, o) — (A, x0)

is an epimorphism. The converse of both statements is true provided that X is
connected.
If A is co-connected, then all the homomorphisms

rely: (X, zo) = 7 (X, A, x0)
are isomorphisms. If A is k-connected, and k& < oo then
rely: a1 (X, o) = mra1(X, A, 20)
is an isomorphism for all » < k, while
rel: w1 (X, 20) = 1 (X, 4, o)

is an epimorphism. If one of the spaces X, A is connected, then again, the
converse of both statements is true.
If the pair (X, A) is co-connected, then all the homomorphisms

incly: m-(A, 20) = 7 (X, o)
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are isomorphisms. If (X, A) is k-connected and k < oo, then
incl,: 7. (A, z9) — 7 (X, x0)

is an isomorphism for all r < k, while
incly: mx (A, zg) = 7 (X, o)

is an epimorphism. The converse is true in both cases (with no supplementary
conditions). In particular, if incl: A — X is a homotopy equivalence, then the
pair (X, A) is co-connected (see Theorem 5.1.3.7 and cf. Remark 1.3.3.9).

Theorem 5.1.6.8. If A is a retract of X, then the sequence (5.1.6.2) splits
from the left at m.(X,x0), and any retraction p: X — A induces splitting ho-
momorphisms p,: m (X, x0) = 7-(4, z9).

Proof. Since poincl = ida, p. oincly = idy (4 4,)- O
Theorem 5.1.6.9. Suppose that (X, xo) can be contracted to (A, o), i.e., idx is
xo-homotopic to some map h: X — X such that h(X) C A. Then the sequence

(5.1.6.2) splits from the right at 7.(A, xg), and as splitting homomorphisms one
may take (abrh),: m.(X, 200 — m.(A4, 20).

Proof. The composition inclo abr h is zg-homotopic to idx , and hence
incl, o(abr h). = idy, (x,0)
O

Corollary 5.1.6.10. Suppose that (A,xo) is contractible in (X, xo), i.e., the
inclusion A — X is xg-homotopic to the constant map. Then the sequence
(5.1.6.2) splits from the right at m.(X, A, xo). As splitting homomorphisms
(A, x9) = mry1(X, A, o) one may take those induced by the maps, given
by

Trt Sphr(A? .I‘o) — Sphr+1(X7 A7 Z'()), [’VT(()O)}(tla R atr) = h’((p(tla s at'f')a t?“-‘rl)a
[L,O S SphT(A,JJ())],

where h: A x I — X is any homotopy from incl: A — X to the constant map.
Proof. This is a corollary of the obvious equality 9 o, = idspn (4,z0)- O

Remark 5.1.6.11. The following remarks are concerned not with the homotopy
sequences of pairs themselves, but with the homomorphism (5.1.6.6) induced by
amap f: (X, A,z9) = (X', A, z() between pairs with base point.

The m-variant of the Five Lemma (see Theorem 5.1.5.20) shows that:

o if
Vr >0,

(abr f).: m.(A, 20) = 7 (A, 23),
o) Vrz1,

for (X, A 20) = (X, A2

are isomorphisms, then so are f.: 7.(X,z¢) — (X', (), for all r > 1,
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for (X, m0) = mp (X ),  Vr>1,
formr(X, Ay x0) = (X' A ), Ve > 1,
are isomorphisms, then so are (abr f).: 7.(4,z9) = 7w (A", xy), Vr>1;
o if
for (X, m0) = (X', 2p), Vr >0,
(abr f).: m. (A, 20) = 7 (A", 25), Vr >0,
are isomorphisms, then

— so are f.: (X, A, x9) = m (X', A, xy), for all r > 2,
— while f.: m.(X, A, 29) = — > 7. (X', A, x(,) is an epimorphism with
trivial kernel.

In the last case, fi: m1 (X, A, 20) = 71 (X', A’, x}) is not necessarily injective;
see Example 5.3.8.9. However, this map is certainly injective (and hence, an
isomorphism) if we assume, in addition, that all the homomorphisms

(abr f)y: m.(A,z) = m. (A", f(x)), =z € A,

are epimorphic. To see this, let wy,ws with fi(w1) = fi(we), and let wy and wy
be spheroids in the classes w; and ws. Then there is a path s’: I — A’ such
that s'(0) = fowsi (1), s'(1) = f ows(1), and the loop

((f ow)([incl: A" — X'Jo 8"))(f ows) ™! (5.1.6.12)

is homotopic to the constant loop. Since (abr f).: m1(4,x0) — m (A, z() is
an isomorphism and (abr f).: m(4,w1) — m(4’, f(w))) is an epimorphism,
there is a path s: I — A such that s(0) = wy(1), s(1) = wa(1), and the path
abr fos: I — A’ is homotopic to s’. For such a choice of s, f takes the loop

(wy ([incl: A — X] o s))w;* (5.1.6.13)

into a loop homotopic to (5.1.6.12), and therefore homotopic to the constant
loop. Finally, from the fact that f.: m (X, z9) — m(X’,2j) is an isomor-
phism, it follows that (5.1.6.13) itself is homotopic to the constant loop, i.e., the
spheroids w; and wy are homotopic, and w; = wo.

The Homotopy Sequence of a Triple

Definition 5.1.6.14. Let (X, A, B) be a topological triple with base point
o € B. According to Subsection 5.1.4, when r > 1 the homotopy groups

FT(XaAva)v FT(XaBa'rO)a 7TT(A7Bax0)
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and the homomorphisms
incl,: (A, B,xo) = m-(X, B,xp), reli: m.(X,B,x0) = m (X, 4, z0),

induced by the inclusions incl: (A4, B) — (X, B) and rel: (X, B) — (X, A), are
well defined. If r > 2, we define an additional homomorphism,

0: (X,A,l‘o) — 7TT,1(A,B,$0>,

as the composition of the boundary homomorphism 7. (X, A, zg) — m—1(4, o)
and the homomorphism 7,._1(A, xg) = m-—1(A, B, x¢), induced by the inclusion
(A, X, 1’0) — (A, B7 Io).

Now we may assemble these three series of groups and three series of homo-
morphisms into a left-infinite sequence

o incl rel
oo = ma(A, B, xg) — mo(X, B, xg) — m(X, A, x
2( 0) 2( 0) 2( 0) (5.1.6.15)

2) Trl(A,B,J,‘o) % 7T1(X,B,JZO) ﬂ) TI'1(X,A,$0)
As was (5.1.6.2), (5.1.6.15) is a m-sequence:
the right group-actions of mo (X, A, ) on the groups m,.(X, A, x¢), and the right
group-actions of mo (X, B, ) on the groups m,.(A, B, zg) and 7.(X, B, xq),

are induced by the actions of m1(A,zq) and 71 (B, zo) via the homomor-
phisms 9: pis(X, A, x0) — m (A4, zo) and 9: pia(X, B,xo) = 71 (B, zo);

similarly, the right action of mo(X, A, 20) on (A, B,x¢) is induced by the
action of 71 (A, xo) via the homomorphism 0: m (X, A, x0) — 71 (4, z0);

finally, Definition 5.1.4.4, Remark 5.1.4.6, Theorem 5.1.4.9, and Definition
5.1.4.10 show that the conditions imposed by Definition 5.1.5.11 are sat-
isfied.

m-Sequence (5.1.6.15) is called the homotopy sequence of the triple (X, A, B)
with base point x.

Sequence (5.1.6.15) is exact; cf. Theorem 5.1.6.3.

Given any path s: I — B, the translations

(X, A, 5(0)) = m- (X, A,s(1)), m(X,B,s(0)) = m.(X,B,s(1)),

(4, B, s(0)) = m.(A, B,s(1))
define an isomorphism of the homotopy sequence of the triple (X, A, B) with
base point s(0) into the homotopy sequence of the triple (X, A, B) with base
point s(1); cf. Theorem 5.1.6.4.

Given any continuous map f from a triple (X, A, B) with base point z into
a triple (X', A’, B") with base point z, (x € B, z(, € B’), the homomorphisms
f* : 7TT(X, A; Z‘O) — T(T(X/a Alv xlo)v f* : T(T(X7 B7 J)Q) — TFT(X/7 B/a .136),
(abr f).: m.(A, B,xg) — m.(A", B, 1),

constitute a homomorphism from the homotopy sequence of the first triple into
the homotopy sequence of the second triple; cf. Theorem 5.1.6.5.
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5.1.7 The Local System of Homotopy Groups of the Fibres
of a Serre Bundle

Definition 5.1.7.1. Suppose that £ is a Serre bundle, Fy and F; are fibres of &,
and zg € Fy, 1 € F1. Two spheroids, ¢ € Sph,.(Fy, o) and ¢1 € Sph,.(F1, xo),
are said to be fibre homotopic if the spheroids

[incl: Fo — t1(§)]ogo € Sph,.(t1(), z0),  [incl: F1 — tl(§)]opr € Sph,.(t1(§), 1)

can be connected by a free homotopy consisting of spheroids of t1(£) which take
I" into fibres of £. In other words, ¢g and ¢; are fibre homotopic if there is
amap h: I" x I — t1(§) such that: h is constant on each set FrI" x ¢, t € I,
h(y,0) = @0, h(y,1) = ¢1, y € I", and the map proj(§) o h is constant on each
set I" x t,t € I. We say that h is a fibre homotopy from ¢ to ©1 along the path
t— h(FriI” xt).

Theorem 5.1.7.2. Given any spheroid ¢ with origin of the fibre Fy, there is a
fibre homotopy of ¢ along any path with origin xo in tl(§). Fibre homotopies of
homotopic spheroids along homotopic paths of t1(£), always lead to homotopic
spheroids. Fibre homotopies of freely homotopic spheroids along paths which
cover homotopic paths of bs(§) lead to freely homotopic spheroids.

Proof. Let s: I — tl(§) be a path with s(0) = zo, and let ¢ € Sph,(Fy, o).
Define homotopies
H:I"x1I—bs(€), H(y,t)=proj&)os(t),
G:I"xI—=tl(), G(y,t)=s(t).

Since
H(y,0) = proj(§)(¢(y)), Yy e I", G(y,0) = ¢(y) Yy € Fr 1",

there is a homotopy, H: I" x I — t1(€), which covers H and satisfies

H(y,t) =G(y,t), Yy e FrI", H(y,0) = p(y), Vy € I"

(see Theorem 4.1.3.6). H is manifestly a fibre homotopy of ¢ along s.

To prove the second assertion, it suffices to show that two spheroids, ¢, €
Sph,.(Fy, xp), which are fibre homotopic along a loop s: I — t1(§) homotopic
with the constant loop, are homotopic in the usual sense. Choose a fibre homo-
topy ¢ : I x I — tl(&), from ¢ to ¢ along s, and a homotopy h: I x I — t1(£),
from s to the constant loop. Now define

FoI™ 1), (b, trg) = @((t1, oo ) s,
H: IT+1 X I — bS(§)7 ((t17 s atT)at) = pI‘OJ(g) © h(tr-i-l?t)a
G: FrI™ x I —tl(¢),

gﬁ(tl,...7tr+1),t), if tr+1 :0,

((tl,...,t7-+1),t) —> w(t1;~~~7tr+1)7t)7 if tr+1 :0,
h(tr-i—l)t)a if(t17"'7tT+l) eFri”.
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Since

H(y,0) = proj(&)(f(y)), yel™,
G(y70):f(y)a yeFrIT—Hv

there is a homotopy H: "1 x [ — t1(¢), which covers H and satisfies
H(y,t) =G(y.t), yeFrI"!
H(y,0)=f(y), yel™*".

Now let ¢¥((t1,...,t.),t) = H((t1,...,t),t),1) and note that U: I" x Itimes] —
F} is a (usual) homotopy from ¢ to 1.

Let us prove the last part of the theorem. Suppose that the spheroids
wo € Sph,.(Fo, 7o) and w1 € Sph,.(Fi, 1) are fibre homotopic along the path
u: I — tl(¢), and that the same holds for the spheroids ¢y € Sph, (Fy, zo)
and 1y € Sph,.(Fi,z1) and the path v: I — tl(¢). Further, suppose that the
paths proj(&) o u,proj(§) ocv: I — bs(&), are homotopic, and that ¢y and vy
are freely homotopic along a path w: I — Fy. The last means that there is a
fibre homotopy from g to ¢y along the path wy = [incl: Fy — t1(§)] o w. Tt is
clear that the loop proj(¢)o(u=t(wov)): I — bs(€) is homotopic to the constant
loop, which in turn implies that the path u~!(wov) is homotopic to some path
wy: I — tl(€) with wy(I) C Fy (see Theorem 4.1.3.6). By the first part of the
theorem, there exists a fibre homotopy of ¢ along w1, and now the second part
guarantees that this homotopy yields a spheroid which is homotopic to ¥ [p1
is fibre homotopic to 1 along the path u~!(wov)]. Consequently, ¢; is fibre
homotopic to ¢ along a path in Fj, i.e., the spheroids ¢; and iy are freely
homotopic. O

Definition 5.1.7.3. By Theorem 5.1.7.2, the fibre homotopies along a given
path s: I — t1(§) define (for any r > 0) a map

T,: w0 (Fo, 5(0)) = m(Fy, s(1)),
Fo = (proj(€)) " (proj(&)(s(0))), F1 = (proj(§)) ™" (proj(¢)(s(1))).-

The maps T are obviously homomorphisms and satisfy conditions (i)-(iii) in
Definition 5.1.2.1. Therefore, a local system

(t1(), {mr (proj(€)) " (proj(€) (x), x)} {T:})

arises on t1(£). This is a local system of groups for » > 1, and a local system of
sets with identity for » = 0. It is called the upper local system of the r-th homo-
topy groups of the fibres of &. In particular, given any = € t1(£) and r > 1, there
is a natural right group-action of 71 (t1(€), ) on m,.(proj(¢))~t(proj(&)(x), x).

Clearly, by restricting this local system to any fibre of £ we obtain the
local system of the r-th homotopy groups of the given fibre. Moreover, the
homomorphisms

incl, : 7, (proj(€)) ™" (proj(€)(x), ) — m,(t1(€), )
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combine with idyj¢) to define a homomorphism of the upper local system into
the local system of the r-th homotopy groups of t1(£).

Definition 5.1.7.4. Suppose now that the fibres of £ are r-simple. Then, given
any point bin bs(£), all the homotopy groups

e ((proj(€))~' (b)), @ € (proj(€))~" (b),

may be identified with a unique group, m,.((proj(¢))~1(b) (see Definition 5.1.3.5).
In this case, for any path s: I — bs(§), we can define

Ty e ((proj(€)) =" (s(0))) — 7 ((proj(€)) " (s(1)))

to be the translation

Ts: mr((proj(€)) ™" (5(0)), 3(0)) = mr((proj(€)) " (s(1)), (1))

along some path 5: I — t1)£), which covers s; from Theorem 5.1.7.2 it follows
that Ty does not depend upon the choice of s. The maps T, are obviously
homomorphisms and satisfy properties (i)-(iii) in Definition 5.1.2.1. Therefore,

a local system
(bs(€), {mr((proj(€) ™" (0))}, {T})

arises on bs(¢), which consists of groups (sets with identity) for any r > 1 (re-
spectively, for r = 0). This is called the lower local system of the r-th homotopy
groups of the fibres of £. In particular, for any r > 1 and any b € bs(§), there
is a natural right group-action of 7 (bs(£),b) on 7, ((proj(€))~1(b)).

It is readily seen that the lower local system induces the upper local system,
defined in Definition 5.1.7.3 on t1(&), via the projection proj(§).

Remark 5.1.7.5. Let p: & — & be a map of Serre bundles. Then tl(¢) and the
homomorphisms

abr(tl(¢)).: m-((proj(¢)) ™! (proj(&)(z), z) —
T ((proj(€)) ™" (proj(£1) (t1() (2)), tl(p) () [z € t1(E)]

combine to define a homomorphism of the upper local system of the r-th homo-
topy groups of the fibres of £ into the similar system for &;. Furthermore, if the
fibres of ¢ and &; are r-simple, then bs(y) and

- ((proj(€)) ™ (b)) — pir((proj(€)) "' (bs()(b)))  [b € bs(€)]
combine to define a homomorphism of the lower local system of the r-th homo-
topy groups of the fibres of £ into the similar system for &;.

5.1.8 The Homotopy Sequence of a Serre Bundle

Lemma 5.1.8.1. Let £ be a Serre bundle with a base point xo € t1(§), and let
B be a subset of bs(€) with by = proj(§)(zo) € B. Then

(proj(€)): m(t1(€), (proj(€)) ™ (B), o) — m(bs(§), B, xo)
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and, in particular,

(proj(€))s: m(t1(€), (proj(€)) " (bo), bo) — 7 (bs(€), bo)
are isomorphisms for any r > 1.

Proof. (proj(§))« is epimorphic.
Let ¢ € Sph,.(bs(§), B, bg). Define

fIr NS tle), fITY =
H:I"'x T —=bs(&), H((tr,...,tr_1),t) = p(ts,...,1—1),
G: FrI" ' x I —tl(§), GFrI"™ x1I)=ux.

Since H(y,0) = (proj(€))(f(y)) fory € I"~*, and G(y,0) = f(y) fory € FrI"~*,

there is a homotopy H: I"~! x I — tl(£), which covers H and equals G on
FrI"=! x I (see Theorem 4.1.3.6). Now the formula

Yty .. te) = H((t1, .. tr1), 1 — )

defines a spheroid
W € Sph, (t1(€), (proj(€)) " (B), xo)

such that (proj(£))#(¢) = ¢.
(proj(§))« is monomorphic.

Let
(/NS Sphr(tl(§)7 (proj(f))_l(B), 370)’

and suppose that the spheroid

(proj (5))# (1/’) € Sphr (bs(f)a Ba bO)

is homotopic to the constant spheroid. Choose a homotopy ¢: I" x I — bs(&)
from (proj(§))(¢) to the constant spheroid, and define

FoIm = tl(e), FUI") =,
H:T"xT—=bs(€), H((tr,....,t:),t) = @((tr, ... . tr—1, 1 —1), 1),
G: FrI" x I — t1(§),

{w(tl, ot 1= 1), ift, =0,

G((t, .. 1)) =
(s )t o, if (t1,....,t,) € FrI", t, £ 0.

Since H(y,0) = (proj(§))(f(y)) for y € I", and G(y,0) = f(y) for y € Fr 1",

there exists a homotopy H: I" x I — tl(§) which covers H and equals G on
FrI™ x I. Now it is plain that

w(tla"'atht) = H((th'"atr—l?t)al 7t7”)

defines a homotopy ¢: I" x I — t1(£) from v to the constant spheroid. O
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The Action of 71 (bs(§),by) on comp(Fp)

Remark 5.1.8.2. Let £ be a Serre bundle with base point by € bs(&). Set Fy =
(proj(€))~1(by) and define a right action of the group m;((€),bo) on comp(Fp)
as follows: for C' € comp(Fy) and o € 71 (bs(€),by), Co is the component of Fy
which contains the origins of those paths which end in C' and cover loops in the
class . That this action is well defined follows from Lemma 5.1.8.1: a path
which ends in C' and covers a loop in the class ¢ can be regarded as a spheroid
of the pair (t1(£), Fy) with origin in C, and which is carried into a loop in class
o by (proj(&€))x. If s1 € Sph, (t1(€), Fo,z1) and sy € Sph, (t1(§), Fo, x2) are two
such spheroids, and w is a path in C' with w(0) = 21 and w(1) = z3, then the
loops (proj(€))x(s1w) and (proj(§))x(s2) are homotopic. Now Lemma 5.1.8.1
implies that the spheroids sjw, s2 € Sph,.(t1(§), Fp, z2) are homotopic, which,
in turn, implies that the components of Fy containing s;(0) and s2(0) coincide.
It is readily seen that this is indeed a right action.

This action is compatible with the action of the fundamental group of t1(§)
on the homotopy groups of the fibres of ¢ (see Definition 5.1.7.3), namely
C(proj(§))«(o) = T,C for all C € comp(Fy) = mo(Fo,20), 0 € m(tL(),20),
and o € Fy. Moreover, if f: £ — £ is a map of Serre bundles, then

fact abrtl(f): comp(Fp) — comp(proj(§/))_1(bS(f)(bO)))7

where

abrtl(f) = [abr t1(f): Fo — proj(¢")~" (bs(f)(bo))],
is a [(bs(f))s«: m1(bs(€),bo) — m1(bs(&), bs(f)(bg))]-map.

Theorem 5.1.8.3. If C € comp(Fy) and xo € C, then the isotropy subgroup
of m1(bs(&),bo) at x¢ (see Definition 4.2.3.4) equals the image of the homomor-
phism (proj(€))..: m1(t1(€), o) — 1 (bs(€), bo).

Proof. In fact, the equality Co = C means that there is a path s: I — t1(£) such
that s(0),s(1) € C and s covers a loop in the class 0. This, in turn, guarantees
the existence of a loop with origin zg which covers a loop in the class o. O

Construction of the Sequence

Definition 5.1.8.4. Let £ be a Serre bundle with base point z¢ € t1(£). Let
bo = (proj(€))(zo), Fo = (proj(&))~1(bo), and apply Lemma 5.1.8.1 to transform
the homotopy sequence of the pair (t1(£), Fy) with base point zg into a new
sequence. Namely, for each r > 1, we replace

e the homotopy group ,(t1(&), Fo, @) by m,(bs(€). bo),

e the homomorphism rel,.: 7, (t1(€), z9) — 7 (t1(), Fo, xo) - by its composi-
tion with the 1sornorphlsm (proj(&€))s«: mr(t1(&), Fo, xo9) — m-(bs(£), bo),
(t
(b

1(¢), zg) - by the composi-

e the homomorphism 87rr(t1(§) Fy,xz0) = mro1
(t1(€ s(£), bo, bo)

tion A = do (proj(&))~1: m, ), Fo,z0) —
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Since the composition of the inclusion rel: (t1(£), zo,zo) — (t1(£), bo, bo) with
the projection proj(§): (t1(€), Fo,xo) — (bs(€),bo, bg) is simply
proj(§): (tl(€), o, w0) — (bs(), bo)

we see that [(proj(€)).: m-(t1(§), Fo,zo) — 7. (bs(§),bp)] o rel, is nothing else
but

(proj(&))s: mr(t1(§), w0) — mr(bs(§), bo).
Finally, if we attach the homotopy group mo(bs(€), bg) to the right of the result-
ing sequence by means of the homomorphism

(proj(§)).: mo(tl(§), x0) — mo(bs(§), bo)

we obtain the sequence
incl, proj(¢) A
_>7T2(F07 330) e ﬂz(tl(f), xO) — 772(bs(§)7 bO) —
1 (Fo, o) 25 o (81(6), 20) 29 7y (bs(€), o) 2 (5.1.8.5)

70(Fo, 20) =5 70 (t1(€), 20) 22, 0 (bs(€), bo).

By Definitions 5.1.3.3, 5.1.7.3, and Remark 5.1.8.2, there are right group-actions

of w1 (t1(§), zo) on 7, (t1(§), xo) and 7, (Fop, o), and also a right action of w1 (bs(£), by)
on the set my(Fp, o). The homomorphisms incl,, (proj(€))., and A are compat-
ible with these actions, as required by Definition 5.1.5.11 (see Remarks 5.1.3.6,
5.1.4.6, Definition 5.1.7.3, and Remark 5.1.8.2). Therefore, (5.1.8.5) is a -
sequence, called the homotopy sequence of the bundle £ with base point x.

Theorem 5.1.8.6. Sequence (5.1.8.5) is exact.

Proof. This is a corollary of the exactness of the homotopy sequence of the pair
(t1(&), Fp) and of two additional and evident facts:

e the kernel of (proj(€)).: mo(tl(€),zo) — mo(bs(£),bo) equals the image of
incl, '/TO(F07 1'0) — 7T0(t1(£)7 l’o);

e a,f € m(Fy,xo), there is o € 71(bs(&), by) such that § = oo if and only
if incl, () = incl.(B).

O

Theorem 5.1.8.7. Given a map f: & — &, of Serre bundles, the vertical ho-
momorphisms

(prOJ(ﬁ))*

incl,
— . (Fo, x0) —— 7 (t1(§), xo) —— m,-(bs(£), bo) *>7Tr 1(Fo, 2o) —
(abrtl(f))*l ((tl(f))*l (bs())a l (abr t1(£))- i
Hﬂr(Féawo)ﬁﬂr(ﬂ(ﬁl)»%) ( s(€'),0) —x > mr—1(Fg, 75) —
incl. (proj(&

where z{, = t1(f)(z0), by = bs(f)(bo), and F} = (proj(&'))~1(b}), constitute a
homomorphism of the first homotopy sequence into the second.
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Proof. The commutativity of the first two squares follows from Theorem 5.1.1.13,
while the commutativity of the third follows from Definitions 5.1.4.2 and 5.1.4.2.
The compatibility of the vertical homomorphisms with the actions of the funda-
mental groups was established in Remarks5.1.3.6, 5.1.4.6, 5.1.7.5, and 5.1.8.2.

O

The Most Important Special Cases

Remark 5.1.8.8. If t1(£) is co-connected, then all the homomorphisms
A 7. (bs(§),bo) = mr—1(Fo, xo)

are isomorphisms. If t1(§) is k-connected and k < oo, then
A 7. (bs(§),bo) — mr—1(Fo, xo)

is an isomorphism for all r < k, while
A mpy1(bs(€),bo) = m(Fo, o)

is an epimorphism. If t1(£) is connected, then the converse is true in both cases.
If bs(€) is co-connected, then all the homomorphisms

incly : 7. (Fo, o) — m-(t1(€), o)
are isomorphisms. If bs(§) is k-connected and k < oo,
incly: m(Fo, zo) = m(t1(£), zg)
is an isomorphism for all r < k, while
incly : w41 (Fo, o) = Trt1

is an epimorphism. If bs(§) is connected, then the converse is true in both cases.
If Fj is oo-connected, then all the homomorphisms

(proj(&))«: m(t1(&), zo) —= 7 (bs(§), bo)
are isomorphisms. If Fj is k-connected and k < oo, then
(proj(€))«: mr(t1(), xo) = mr(bs(£), bo)
is an isomorphism for all r < k, while
(proj(€))«: Th41(t1(€), x0) = mrp1(bs(€), bo)

is an epimorphism. The converse is true in both cases (with no supplementary
conditions).
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Theorem 5.1.8.9. If the bundle £ has a section s such that s(by) = xo,
then sequence (5.1.8.2) splits from the right at the terms m.(t1(§),x0), and
Su: mp(bs(§),b0) = 7 (81(€), o) are splitting homomorphisms for any such sec-
tion, s: (bs(&€),bo) — (t1(£), xo).

Proof. Since (proj(€)) o s = idpe(e)s (proj(€))= o s. = idm,(bs(€), bo)- O

Theorem 5.1.8.10. If Fy is a retract of t1(€), then sequence (5.1.8.5) splits
from the left at the terms m,(t1(£), xo), and any retraction p: t1(§) — Fy induces
splitting homomorphisms p,: m.(t1(£), xo) — m(Fo, xo)-

Proof. Since p oincl = idg,, p« o incly = idy () o) O

Theorem 5.1.8.11. If the inclusion incl: Fy — t1(§) is zo-homotopic to the
constant map, then sequence (5.1.8.5) splits from the right at the terms 7. (bs(&), by).
Moreover, given any xo-homotopy h: Fy x I — t1(§) from incl to the constant
map, consider the maps

Tt Sphr (F07 1‘0) — Sphr+1(bs(§)7 bO)
given by

(@t tra) = proj(€) o hle(tr, s tr),trga), @ € Sph,.(Fo, Zo).

Then the homomorphisms m(Fy, zo) — mr+1(bs(€),by) induced by v, split the
sequence.

Proof. Given an arbitrary spheroid Sph, (Fy, o), it suffices to find a spheroid

Y € Sph,.(t1(§), Fo,bo) such that 9y = ¢ and (proj(§))# = Vr(¢). We can
set, for example, ¥ (t1,...,tr41) = h(@(t1, ..., t), trr1). O

Theorem 5.1.8.12. If proj(§) is xo-homotopic to the constant map, then se-
quence (5.1.8.5) splits from the left at m.(Fo,x9). Moreover, given any xg-
homotopy h: t1(§) x I — bs(§), from proj(§) to the constant map, consider the
maps

¥+ Sph,.(Fo,z9) = Sph,.; (bs(£), bo),
[Vr(@)](tlv s 7t7“+1) = h(‘ﬁ(tlv s 7tr))7tr+1)7 pe SphT.(Fo, J)o).

Then the homomorphisms m.(Fy,xo) — mr11(bs(§),bo) Induced by ~, split the
sequence.

Proof. Given an arbitrary spheroid ¢ € Sph,.; (t1(£), Fp, s0), it suffices to show
that the spheroids v,.09(¢) and (proj(&))4(+), which belong to Sph,. ; (bs(£), bo),
are homotopic. Clearly the formula

((tlv s 7t7")7t) = h(¢(t1a s 7t7“7tt7“+1)7 (1 - t)t'f"rl)

defines such a homotopy. O



376 CHAPTER 5. HOMOTOPY GROUPS

Corollary 5.1.8.13. If £ is a covering in the broad sense, then
(proj(&))«: mr(t1(), x0) — (bs(£), bo)

is an isomorphism for r > 2, and a monomorphism for r = 1. If £ is a covering
(in the narrow sense) , then, in addition, the map

fact A: mq(bs(€),bp)/ im(proj(€)). — Fo
induced by A: 71(bs(€),by) — mo(Fo, Xo) = Fo is invertible.

Proof. This is a corollary of the exactness of the homotopy sequence of the
bundle and of the fact that 7, (Fpzo) = 0 for all r > 0 and mo(t1(§),z0) = 0
whenever £ is a covering in the narrow sense. O

Remark 5.1.8.14. Let ¢ and & be Serre bundles with base points xg € t1(¢) and
xh € t1(¢'), and let f: & — ¢, with t1(f)(xo) = (. Set

bo = (proj(§))(zo), by = (proj(¢’))(xp),
Fo = (proj(§)) ™" (bo),  Fy = (proj(€)) ™" (bp)-
From Theorems 5.1.8.7 and 5.1.5.20, we derive the following conclusions.

o If

(bs(f))«: mr(bs(£), o) — mp(bs(£'),bp), 7> 1,
(abr t1(f)).: mr(Fo,x0) — T (Fp, ), 7 >0,

are isomorphisms, then so are

(810f))s 1 mr(t1(8), w0) — mr(81(€), @), 7> 1.

(610f))x s e (81(6), 20) — e (81(E)), 25), 7 >0,
(abr t1(f))«: m-(Fo, z0) — 7 (Fy, xg), 7 >0,

are isomorphisms, then so are

(bs(f))«: mr(bs(£), bo) — mp(bs(£'), bp), 7= 1.

(b(f)): 7 (bS(E), bo) = 7o (bS(E'),bp), 7> 0,
(410f))s 2 7 (81(E), w0) — mr (1(€), 25), 7 >0,
are isomorphisms, then so are
(abrtl(f))* WT(F(),(EO) _>7TT('F(;7xé])? r 2 1a

while
(abr t1(f))s«: mo(Fo, zo) — mo(Fy, x()

is an epimorphism with trivial kernel.
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We remark that in the last case,
(abr t1(f))«: mo(Fo, zo) — mo(Fy), x()

is also an isomorphism if we make the additional assumption that all the homo-
morphisms

(t1(f))« 2 m1(81(€), w0) = mi(tU('), 20), = € Fy

are epimorphisms. Indeed, let 1,22 € Fy be such that t1(f)(x1) and t1(f)(z2)
lie in the same component of the fibre F{j, and let s': I — F] be a path with
$/(0) = t1(f)(21), 5'(1) = tI(f)(w2). Since (1(f)),: To(t1(€),z0) — 7o(t1(E'), 25)
is an isomorphism, and (t1(f)).: w1 (t1(§), z1) — w1 (t1(&"), (t1(f))f(z1)) is an
epimorphism, there is a path s: I — t1(§) such that s(0) = z1, s(1) = 22, and
(t1(f)) o s: I — t1(¢’) is homotopic to the path [incl: F] — t1(¢')] o 8. Then
the loop (proj(¢’)) o tl(f) o s is homotopic to the constant loop, and from the
fact that (bs(f)).«: m1(bs(§),by) — m1(bs(£'),bf) is an isomorphism it follows
that proj(€) o s is also homotopic to the constant loop. Now, applying Theorem
4.1.3.6 to the map s, an arbitrary homotopy from proj(§) o s to the constant
loop, and the constant homotopy of the map s|g, ;, we obtain a homotopy from
s to a path u: I — t1(§) such that u(l) C Fy, u(0) = z1, and u(1) = z3.

5.1.9 The Influence of Other Structures Upon Homotopy
Groups

Remark 5.1.9.1. In this subsection we discuss the most elementary properties
of homotopy groups which are due to the presence of an additional, group-like
structure, compatible with the topology of the space under consideration. The
most important such property we shall consider is simplicity.

The Case of Topological Groups

Theorem 5.1.9.2. If X is a topological group and s: I — X is an arbitrary
path, then the translation 7.(X,s(0)) — m(X,s(1)) coincides, for any r >
0, with the isomorphism induced by the left group translation by the element

[s(D)][s(0)] "

Proof. In fact, there is even a canonical free homotopy from any spheroid ¢ €
Sph,.(X, s(0)) to [s(1)][s(0)] "¢ along s, given by

((t1y .o te) 1) = [s@][$(0)] o (te, . .. 1)
0

Corollary 5.1.9.3. The components of a topological group are simple spaces.
In particular, the fundamental groups of these components are Abelian.

Remark 5.1.9.4. If X is a topological group, then, besides the multiplication
on the sets Sph,.(X,e = ex) defined in Definition 5.1.1.1, there is another one,
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resulting from the group operation on X [the product of two spheroids ¢, ¥ €
Sph,.(X, e) is given by y — ¢(y)¢(y)].- Moreover, the second product makes also
sense for r = 0, when the first product is not even defined. Obviously, this new
multiplication turns Sph,.(X,e), r > 0, into a group; the spheroids homotopic
to the constant one form a normal subgroup, and the resulting quotient group
equals, as a set, m.(X,e). When r = 0, mp(X,e) equals the quotient group
X/Xo, where X is the component of e. When r > 1, the new group structure
on 7.(X, e) coincides with the original one; in fact, given ¢, ¥ € Sph,.(X,e), the
formula

((t1y. o ty),t) —

2t
¢(min(1, 1T1t)’ ta, ...ty (max(0,

201+t —1

to, ...ty
1+t )727 ) )

defines a homotopy I" x I — X from the original product of ¢ and 1 to the
new one.
Let us add that the existing multiplication on X also turns the set

UmGX Sphr(X, x)

of all spheroids of X into a group. The spheroids homotopic to the constant
ones form a normal subgroup, and the resulting quotient group is canonically
isomorphic to m.(X, e), for any r > 1.

Remark 5.1.9.5. Every inner automorphism of the topological group X induces
automorphisms of the groups 7,.(X,e), and thus the inner right action of X
defines a right group-action of X on each group =,.(X,e). The transformations
induced by the elements of the subgroup Xy (see Remark 5.1.9.4) are all identi-
cal: if w: I — X is a path with s(0) = e and s(1) = z, and ¢ € Sph,.(X, ), then
the formula (y,t) — [w(t)]"t¢(y)w(t)defines a homotopy I x I — X from ¢ to
the spheroid y — 2~ 1¢(y)x. Therefore, there are natural right group-actions of
mo(X,e) = X/ X on the groups m.(X,e).

The Case of Homogeneous Spaces

Theorem 5.1.9.6. Let G be a topological group, and let H be a connected
subgroup of G. If (G,proj,X = G/H) is a Serre bundle, then given any path
s: I — X, the translation 7,.(X, s(0)) = 7.(X, s(1)) coincides, for any r > 0,
with the isomorphism induced by any transformation of X (under the canonical
action) which is given by an element of G which takes s(0) into s(1).

Proof. Let g € G be any element such that gs(0) = s(1), and let $: I — G be
any path covering s. Since $(1) and ¢5(0) lie in the same coset of H, and since
the cosets of a connected group are connected, there is a path w in the coset
containing 5(1) and ¢s(0) such that w(0) = 5(1) and w(l) = ¢s(0). Now given
any ¢ € Sph,.(X, s(0)), the formula

(F1y e te)ot) o [51 ][50 (0)] Lo(tes - 1)
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where s1 = sw, defines a free homotopy I" x I — X from ¢ to [s1(1)][s(0)] ¢,
along a path homotopic to s (namely, the product of s and the constant path).
O

Corollary 5.1.9.7. If H is a connected subgroup of the topological group G
and (G,proj, G/H) is a Serre bundle, then the components of G/H are simple
spaces. In particular, the fundamental groups of the components of G/H are
Abelian.

Remark 5.1.9.8. Henceforth, (G, proj, G/H) will automatically be a Serre bun-
dle (as required in Theorem 5.1.9.6 and Corollary 5.1.9.7): G and its quo-
tient space G/H will always be closed smooth manifolds, while the projection
G — G/H will be a submersion and, by Theorems 4.6.1.3 and 4.1.3.4, these
properties imply that (G, proj, G/H) is a Serre bundle.

The Case of H-Spaces

Definition 5.1.9.9. A pointed topological space (X, e) is called an H-space if
there exists a continuous map u: X x X — X such that u(e,e) = e, and the
maps X — X, given by z — pu(e,x) and = — u(zx,e), are e-homotopic to idx.
The map p is called a multiplication, and e is called an identity (or a homotopy
identity). Usually, one writes zy instead of u(z,y).

An H-space X is homotopy associative if the maps X x X x X — X,
given by (x1,x9,x3) — (r122)x3 and (x1,x2,x3) — x1(T2x3), are homotopic,
and homotopy commutative (or Abelian) if the maps X x X — X, given by
(x1,22) ¥ z122 and (21, x2) — 221, are homotopic.

Given a H-space X, a continuous map v: X — X is said to be a homotopy
inverse if the maps X — X, given by z — zv(z) andz — v(x)z, are homotopic
to the constant map which takes X into e. Usually, one writes 2~ ! instead of
v(x).

The primary examples of H-spaces are topological groups. Every topologi-
cal group (viewed as a H-space) is homotopy associative and has a homotopy
inverse, and every Abelian topological group is homotopy Abelian.

Remark 5.1.9.10. The spaces of spheroids provide another important class of
H-spaces. For a given pointed topological space (X, zg), the sets Sph,. (X, )
with » > 1 become H-spaces if we equip them with the topology they inherit
as subsets of C(I",X) and with the usual multiplication, and take the con-
stant spheroid as the identity. In fact, the map ¢ — (const)y is homotopic to
idgpn, (x,00) Via the const-homotopy Sph,.(X,zo) x I — Sph,.(X, o), given by
(¢, t) — o4, where ¢y is the spheroid whose value at the point (¢1,...,t,.) € I" is
given by the right-hand side of formula (5.1.1.5); further, the map ¢/top(const)
is homotopic to idgpn, (x,z,) Via the const-homotopy which is similarly defined
by formula (5.1.1.6). The H-spaces Sph,. (X, zy) are homotopy associative and
have a homotopy inverse for » > 1, and are homotopy Abelian for r > 2; the
formulae in Subsection 5.1.1 again provide us with the necessary homotopies.
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Similarly, given any topological pair (X, A) with base point z(, the sets
Sph,. (X, A, zp) with » > 2 are homotopy associative H-spaces possessing a ho-
motopy inverse. If r > 3, these H-spaces are homotopy Abelian.

Theorem 5.1.9.11. Every connected H-space is simple and, in particular, has
an Abelian fundamental group.

Proof. Suppose X is a connected H-space with identity e, ¢ € Sph,.(X,e) with
arbitrary r, and s € Sph; (X, e) is a loop. Then, the formula (y,t) — s(t)e(y)
defines a free homotopy I” x I — X from the spheroid y — ep(y) (which is ho-
motopic to ¢) to the same spheroid y — ep(y), along the loop ¢ — s(¢)e (which
is homotopic to s) . Thus, m1 (X, e) acts identically on the groups 7. (X,e). O

Remark 5.1.9.12. Tt is clear that the second description of the homotopy groups
(X, e), given in Remark 5.1.9.4 for the case of topological groups, carries over
to H-spaces X with identity e. Generally speaking, the multiplication that each
set Sph,.(X,e) inherits from X does not turn this set into a group. However,
this multiplication does induce the usual group structure on 7.(X,e), r > 1.
Moreover, if X is homotopy associative and has a homotopy inverse, then the
set mo(X, e) is a group.

The Local System of Homotopy Groups of the Total Space of a Prin-
cipal Bundle

Lemma 5.1.9.13. Let £ be a principal bundle with structure group G, and let
u,v: I — tl(€) be paths satisfying proj(§) o u = proj(§) cv. If go,g1 € G are
such that u(0)go = vo and u(1)g; = v(1) [here G acts canonically from the right
on tl(€); see Definition 4.3.2.10], then the diagramme

7 (81(€), u(0) — 7, (£1(€), u(1))

| l

7 (81(8), v(0)) —7—= 7 (£1(€), (1))
where the vertical isomorphisms are induced by the transformations r +— gy
and x — xg1, commutes.

Proof. Recall that the canonical right action tl1(§) x G — tl(§) is free and its
orbits coincide with the fibres of £. Since u(t) and v(t) lie in the same fibre,
for each t € I there is a unique g(t) € G such that u(t)g(t) = v(t). Therefore,
if h: I" x I — t1(€) is a free homotopy from ¢y € Sph,.(t1(£),u(0)) to ¢1 €
Sph,.(t1(€), u(1)) along w, then (y,t) — h(y,t)g(t) yields a free homotopy from
the spheroid y — pggo to the spheroid y — ¢1g; along v. O

Definition 5.1.9.14. Suppose that £ is a principal bundle, b € bs(§), and
r > 0. The right canonical action of the structure group of £ on t1(§) induces
isomorphisms between the homotopy groups . (t1(€), ) with z € (proj(£))~1(b),
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and so we may identify these groups. We shall call the resulting group (which
actually is a group for r > 0 and a set with identity for » = 0) the r-th homotopy
group of the space t1(€) over b, and we shall write m,.(t1(£), b).

Given a path s: I — bs(€), we define Ty: (t1(€), s(0)) — m-(t1(€), s(1)) as
the translation Ty: (t1(£),5(0)) — m,-(t1(£),$(1)) along any path § which covers
s. That this is well defined follows from Lemma 5.1.9.13. Obviously, T are
homomorphisms and satisfy conditions 5.1.2.1 (i)-(iii). Therefore, we have pro-
duced a local system on bs(§), (bs(§), {m-(t1(£),0)},{Ts}) , which we call the
lower local system of the r-th homotopy groups of the total space of &.

It is clear that the local system on tl(£) induced by this system via proj(§)
is nothing but the usual local system of the r-th homotopy groups of t1(&).

Given a monomorphism ¢: : G — G’ and r > 0, every p-map of the Steen-
rod G-bundle £ into the Steenrod G’-bundle ¢’ induces a homomorphism of the
lower local system of the r-th homotopy groups of t1(§) into the corresponding
system of t1(¢").

The Homotopy Sequence of a Principal Bundle

Definition 5.1.9.15. Let £ be a principal G-bundle with base point z( € t1(£).
If in sequence (5.1.8.5) we replace (Fp,xo) by the Pair (G,e = eg) [which is
canonically homeomorphic to (Fp, zg) via g — zog] and attach 1 to the right of
the resulting sequence, we obtain

o (G e) 2 o (81(6), o) B o (bs(€), bo)

By (Gre) 2 ) (81(€), w0) 22N 1 (bs(€), bo) (5.1.9.16)

2y r0(Ge) 205 mo(41(€), m0) LD, 1 (bs(€), by) — 1
(bo = (proj(€)) (o).

Recall that mo(G,e) is a group (see Remark 5.1.9.4) and that 71 (G,e) is
Abelian (see Corollary 5.1.9.3). It is immediate that A: mp (bs(€), by) — mo (G, €)
is a group homomorphism. Moreover, mo(G, e) acts from the right on 7.(G,e)
(see Remark 5.1.9.5), while 7 (bs(§), bo) acts similarly on both m,(bs(§), bo (see
Definition 5.1.3.3) and 7, (t1(§),z0) = 7-(t1(§),b0) (see Definition 5.1.9.14).
The canonical right action t1(§) x G — tl(¢) induces a right action of G on
mo(tl(€), zp) = comp(tl(£)), and thus a right action of 7o(G, e) on mo(t1(£), z0)-
[We regard (G, e) as the quotient group of G by the component of e; see Re-
mark 5.1.9.4. The action of this component on 7o (t1(€), ) is identical.] Finally,
it is clear that the homomorphisms incly, proj,, and A are compatible with the
above actions, as required in Definition 5.1.5.11. Consequently, (5.1.9.16) is a
m-sequence, called the homotopy sequence of the G-bundle & with base point x.

Obviously, (proj(&))s: mo(tl(&), xo) — mo(bs(§), bo) is an epimorphism, and
the partition of mo(t1(£), zo) into the orbits of m (G, €) is exactly zer((proj(&)).).
Therefore, sequence (5.1.9.16) is exact.

Given a monomorphism ¢: G’ — G, every p-map f of the principal G’-
bundle ¢ with base point z(, € t1(¢') into the principal G-bundle £ with base
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point zg € t1(§), such that tl f(zy) = xo, induces a homomorphism of the
homotopy sequence of £’ into the homotopy sequence of .

5.1.10 Alternative Descriptions of the Homotopy Groups

Definition 5.1.10.1. The spheroid DS o ID € Sph,.(S™,ort;) (see Definition
1.2.8.9) is called the fundamental spheroid of the sphere S™, denoted IS, and
we let sph, denote the element of 7,.(S",ort;) that it defines. The spheroid
ID € Sph,. (D", S"~1, orty) is called the fundamental spheroid of the ball D", and
we let kug, denote the element of 7,.(D",S"~! orty) that it defines.

Obviously, 9(ID) = IS, whence d(kug,) = sph,._;.

Remark 5.1.10.2. We let Sph?(X7 xo) denote the set of all continuous maps
from the pointed space (S",orty) into the pointed space (X, zg), and define

IS*: Sph@ (X, z0) = Sph,(X,z0), ¢~ polIS.

Clearly, this map is invertible, and Theorem 1.3.7.6 implies that two maps,
p, Y € SphTO(X, ), are homotopic if and only if the spheroids IS¥ (), IS (1))
are homotopic. Consequently, replacing our “cubic” spheroids and their homo-
topies by the “spheric” spheroids from Sth(X ,xo) and their homotopies, we
are led to an equivalent description of the set m,.(X, z¢).

It is readily seen that the identity spheroid ids- belongs to the class sph,.,
and that the element of 7,.(X, z¢) given by a spheroid

f: (S orty) = (X, z0)

equals f,(sph,.).

If r > 1, then IS# transfers the multiplication in Sph,. (X, 20) to Sph9 (X, zo).
The resulting multiplication in Sph® (X, ) may also be described directly: the
product

o (ST, orty) = (St orty) ® -+ @ (S, orty) — (X, )

of the spheroids

907’(/}: (STlaortl) = (Sl7ort1) X (Sl7ort1) — (Xa (Eo)

is given by
w(y%7y2a"'7y7')a if Syl 207
901/1 Yi,Y2,---,Yr) = . (51103)
( T) {Tr(y%y%“wyT)a if 32/1 Sov
where y1,ys, . . ., Y, are complex numbers of modulus 1, and & denotes the imagi-

nary part. The multiplication that this operation induces on 7,.(X, z¢) coincides
with the existing one. One can use (5.1.10.3) to study directly the homotopy
properties of the multiplication in SphrO(X ,xo) and get an independent descrip-
tion of the homotopy groups 7, (X, zo) in the language of spheric spheroids.
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It is particularly simple to describe in this language the spheroid
p = (IST) (IS (p)) )
that is, the inverse of the spheroid

2 S Sphp(X7xo) goil(xlvx27m3a e ’xT+1) = @(x17—$27.’,1?3,. . 'x7”+1)

Definition 5.1.10.4. Let Sph,. O(X, A4, z() be the set of all continuous maps
(D", S™1 orty) — (X, A, x0), and define

ID#: SphQ (X, A, z0) — Sph, (X, A, 20), ¢+ o ID.
This map is invertible, and Theorem 1.3.7.6 implies that two maps,
. € SPhP (X, 4, z0)

are homotopic if and only if the spheroids ID#(p) and ID*(z)) are homo-
topic. If r > 2, then ID# transfers the multiplication from Sph,. (X, A, x¢)
to SphO (X, A, z0). The resulting multiplication in Sph® (X, A, 20) may also be
described directly: given two maps,

<P7¢1 (]D)T,OI‘tl) = (Sl,OI‘tl) Q- (Sl,OI‘tl) ® (Ia 1) - (vaO)v

formula (5.1.10.3), where y1,...,y.—1 are complex numbers of modulus 1 and
yr € I, defines a map

o (D", orty) — (X, o),
and this map belongs to SphTQ(X, A, xg) whenever 1) € Sph?(X, A xg). As
in the absolute case, p~! = (ID¥)([ID#(p)]!), that is, the inverse of the
spheroid ¢ € SphTO(X,A, xp), is given by

80_1(x1;x2’x33 o 71‘7‘) - 90(3717 —X2,T3,. .. a'r’l‘)'

Therefore, by replacing the cubic spheroids by spheric ones, we get an ade-
quate description of the homotopy groups 7, (X, A, x¢).

Obviously, the identity spheroid idp- belongs to the class kug,, and the
element of 7,.(X, A, o) given by a spheroid f: (D",S"~1 ort;) — (X, A, xq)
equals f,(kug,).

Unlike the cubic sets Sph,.(X, 2o, #0) and Sph,.(X, z), the sets Sph© (X, x¢, zo )
and Sph? (X, zg) are not identical, being merely related through the canonical
invertible map

(ID#)~1 o (IS*): Sph@ (X, z¢) — SphP (X, z0, z0);

this map can be described more directly as ¢ — ¢ o DS.
The boundary d¢ of a spheric spheroid ¢ € SphQ@ (X, A, x) is the element
Oy € Sph,_,(A4, zo) given by

Do = [abrp: (S orty) — (A, x0)].

Clearly, IS# 00 = doID#, which demonstrates that this definition of the bound-
ary leads to the same boundary homomorphism 9: 7.(X, A, z¢) — m—1(4, o)
as the cubic theory does.
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Remark 5.1.10.5. For each continuous map,
fi(X,zo) = (X' 2) or f:(X,A,m) — (X', A, x()
we have the map
fu: SphO (X, xz0) — SphO (X', xf) or fu: SphO(X, A, x¢) — SphO (X', A, z})

given by fu(p) = fop. Trivially, IS#o fy = f4oIS# and ID#o fy = fuoID¥#,
so that these maps fx lead to the same induced homomorphisms

for (X, 20) = (X' 2g) and  fu: mo (X, A, 20) = 7 (X', AL ()

as the cubic theory does.

A free homotopy from a spheroid ¢q € SphTO(X7 Zg) to a spheroid ¢y €
Sph© (X, z,) along a path s: I — X is defined as a usual homotopy S” x I — X
from ¢o to 1 which takes (orty,¢) into s(¢) for any ¢t € I. If h is such a
homotopy, then h o (IS x id;) is a free homotopy from IS#(ypg) € Sph,.(X, x¢)
to IS# (1) € Sph,.(X,z1) along s. Therefore, the spheric free homotopies along
s yield the same isomorphism Ty: m.(X,29) = m-(X,21) as do the cubic ones.
It is readily seen that all this carries over to the relative case.

An Alternative Proof of Theorem 5.1.4.9

Remark 5.1.10.6. Using spheric spheroids and the homotopy sequence of a pair,
one can give a second proof of Theorem 5.1.4.9, which is less direct but, in
return, more transparent.

Consider first a model situation: X = (D?, orty)V (D2, orty), A = (S, orty)V
(S',orty), xo is the centre of both bouquets, a = Imm;,(kug,), and § =
Imma, (kug,). Since d(a~Ba) = (9a)~1(9B)(0a) = Tsa08 (see Theorem
5.1.3.4) and Ty, 08 = 0Tpa 3 (see Remark 5.1.4.6), we have d(a~!fa) = 0153
Moreover, since X is contractible, 8 is an isomorphism (see Remark 5.1.6.7),
and hence o~ Ba = Tha 8.

In the general case, pick two arbitrary spheroids 4¢, ) € Sph? (X, A zg) in
the classes a, 8 and define

f: (D2 orty) V (D%, orty), (S', orty) V (S, orty) — (X, A)

by
f(Immy (2)) = ¢(z), f(Ilmmy(z)) = ¢(z), =D

Since ¢ = f oImmy, ¥ = f o Immy, we have
a = (f olmmy).(kugy), S = (focImms).(kug,),

and hence

a™'Ba = f.([lmmy, (kugy)] ! [fmma. (kug,)][Imm..(kug,)]
= f* (TOOImml*(kug2) Ime* (kUgQ)) = Taa/@~
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Spheroids in Spheroid Spaces

Remark 5.1.10.7. Let (X,z¢) be a pointed space. With every spheroid ¢ €
Sph, (X, z0) we may associate an r-spheroid of the space Sph,(X,x) [see
Remark 5.1.9.10] with base point the constant spheroid, by means of each of
the formulae

[W(t1, .oy te)](ur, oy us) = @(E1, ey by, .o, Us),
[W(t1, .. te)](ur, e yus) = @(ury oo Ug, b1y .o ey Er).

This leads to two maps,
Cub, Buc: Sph, (X, z¢) — Sph,.(Sph, (X, z¢), const).

These maps are invertible and both they and their inverses take homotopic
spheroids into homotopic ones. If » > 0, then the multiplication in Sph,. , . (X, z¢)

is transferred by Cub into the usual multiplication in Sph, (Sph, (X, z¢), const)

[that is, the multiplication of spheroids]. If s > 0, then the multiplication in
Sph, (X, ) is transferred by Buc into the multiplication in Sph,.(Sph, (X, ), const)
which arises from the fact that Sph, (X, zo) is an H-space with identity element

const (see Theorem 5.1.9.11 and Remark 5.1.9.10). Therefore, when 7 + s > 0,

the maps Cub and Buc define group isomorphisms,

cub, buc: 7,4 5(X, z9) = 7 (Sph, (X, zo), const)

[the group structure ofmg(Sph,(X,xg),const), s > 0, was explained in Re-
mark 5.1.9.12]. Therefore, one can identify 7,.(X,zo) with any of the groups
(Sph,._, (X, x¢), const) with ¢ <.

Finally, note that the isomorphism cub: (X, x9) — m_1(Sph; (X, z¢), const)
appears also as the isomorphism A: (X, ) — m-_1(Sph; (X, zo), const) in the
homotopy sequence of the Serre bundle

&€= (C(I,0; X, xzp),abr C([incl: FrI — I],id), X =C(Fr1,0; X, x0)),

whose fibre over the point xg is Sph; (X, xg). That £ is a Serre bundle follows
from Theorem 4.1.4.2.

5.1.11 Additional Theorems

Theorem 5.1.11.1. Let dy,...,d,, be pairwise disjoint balls in R” such that
di,....dy, C D", and let g € SphQ (X, A, x0) be a spheroid with g(C) C
A, where C = D" \ U, intd;. Let 7,: D" — D" denote the map 7,(y) =
(centre of d;) + (radius of d;)y. Suppose further that the segments joining the
points 1 (orty), ..., Tm(orty) to orty are contained in C. Then, for r > 2,

v = (Toym)(Tsyv2) - (Ts,, Ym)s (5.1.11.2)
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where v € m.(X, A, xo) and v; € m(X, A, go7(orty)) are the elements repre-
sented by the spheroids g and g o7; € SphQ (X, A, g o 7;(ort1)), and s; is the
path in A given by

si(t) = g((L —t);(orty) + torty), i=1,...,m.

The same conclusion holds true for r = 2, provided di,...,d,, are indexed
naturally, i.e., each of the 2-frames (1;(ort1) — orty, 741 (orty) — orty) defines
the natural orientation of R2.

Proof. The proof is quite involved and we proceed by induction on m. We make
two preliminary remarks, denoting by ¢; the (rectilinear) path in C given by
gl(t) = (]. — t)Ti(OI‘tl) + tortl.

1. For given dy,...,d,, , it suffices to prove the theorem when
(X,A,20) = (D",C,orty), g=relidpr, s;=24¢.

Indeed, g.: (D", C,ort1) — 7,.(X, A, o) takes the class of the spheroid rel idp-
into v, while it takes the class of the spheroid 7; translated along ¢;, into T, ;.

2. For a given m, it suffices to prove the theorem for a standard choice of
dy,...,dy,, namely, for the balls of radius 1/2m centred at
m—1 m—3 3—m 1—-m

orta, ortg, ..., ortg, orty .
m m m m

To see this, consider, along with these standard balls and the corresponding
C, 7, £;, arbitrary balls d}, ..., d} satisfying the conditions of the theorem,
with the corresponding C’, 7/, ¢;. Clearly, there exists a continuous map
h: D" — D", which is S"-homotopic to idp- and satisfies h(C) C C’, hor; =
7/, and ho¢; = £i’. Then

rel h,: (D", C,orty) — (D", C’, orty)

takes the class of the spheroid idp- into the class of idp-, while taking the
class of the spheroid 7; translated along ¢;, into the class of the spheroid 7/
translated along ¢;, i =1,...,m.

Now back to our induction. The cases m = 0 and m = 1 are trivial; consider
m = 2. By our remarks, we may assume that (X, A,zq) = (D", C,orty), g = id,
and dy, dy are the standard balls (with radius 1/4 and centres orts /2 and
—orty /2). Let p, denote the rotation of D" by an angle ¢ around the subspace
given by the equations x1 = x2 = 0. Further, consider the homotopies D" x I —
D" given by

(y’ t) = [(1 + t)p‘n't/2(y) - 201‘t2}/4,
(y7t) = [(1 + t)pf'n't/Q(y) + 201’1?2]/4,
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(y € D", t € I). These can be viewed as free homotopies of spheroids of the pair
D", C) ; as such, they connect 71 and 75 with two spheroids with origin 0, o7 and
o9 along two paths, which we call u; and us. Obviously, ul_lﬁl and u;lﬂg are
both homotopic to the rectilinear path ¢ which joins 0 to ort;. Consequently,
the product of the classes obtained by translating the classes of 71 and 73 to orty
along ¢ and /5 is the same as the product of the classes obtained by translating
the classes of o1 and o9 to orty along ¢, that is, the class of the product of
the spheroids o; and o5 translated to ort; along ¢. It remains to observe that
there is a free homotopy from the product o102 to idp- along ¢, for example, a
rectilinear homotopy.
Finally, let m > 3. As in the case m = 2, we shall assume that

(X, A, 20) = (D",C,orty), ¢=id,
and dy,...,d,, are the standard balls with radius 1/2m and centres

m—1 m—3 3—m 1-m
orta, ortg, ..., orta, ortg .
m m m

Let d be the ball of radius 3/2m centred at 2= orty (note that dp,—1, dm, C d),
and let 7: D" — D" be defined by 7(y) = (centre of d)+ (radius of d)y. Further,
let ¢, u, and v be the rectilinear paths joining 7(ort1) to orty, 7(orty) to 74, (orty),
and 7, (orty) to T(orty), respectively. We let § € m,.(D", C, 7(ort;)) denote the
class of 7. Since the products uf, v¢ are clearly homotopic to the paths ¢,, 1,
gm:

T&’Yl e Tem’)/m - T&’Yl T Tfm_27m72TZ(Tu’)/mflTv’Ym)' (51113)

Now apply the theorem, first for the case of two factors, and then for the
case of m — 1 factors, to conclude that

Tu’Ym—lTv"Ym =4

(5.1.11.4)
Tglf)/l U Tfn1727m—26 =.

(In the first case, the theorem is applied to (X, A,zq) = (D", C, 7(orty)), g =7,
and the balls 77(d,,,_1), 77! (d,n), while in the second case we take (X, A, zq) =
(D", C,orty), g = id, and the balls dy,...,dm—2,d). At last, (5.1.11.3), and
(5.1.11.4) yield (5.1.11.2). O

Theorem 5.1.11.5. Let X = lim(Xy, pr), where Xy are Ti-spaces, and let
z € X,x9 € Xo,x1 € X1,... be points such that Immy(x) = x. If for some r
all the homomorphisms (¢ )sr: T ( Xk, Tr) = 7p(Xgt1, Trt1) are isomorphism,
then so are (Immy) s 7 (Xg, 1) — m-(X, ) (with the same r).

Proof. Notice that, according to Theorem 1.2.4.5, every spheroid I"™ — X may
be expressed as the composition of a spheroid I" — X, with the embedding
Immy, for ¢ large enough; similarly, every homotopy I" x I — X is the com-
position of some homotopy I” x I — X, with Imm,;;, for £ large enough. Now
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the fact that (Immy )., are epimorphisms and monomorphisms is seen to be a
consequence of the analogous properties of the compositions

(0e—1)sr © (Pe—2)sr 0= 0 (Ok)sr: Tr( Xk, x1) — T (X, 20).

5.1.12 Exercises

Ezercise 5.1.12.1. Let (X, z() be a pointed space and suppose that there is given
a right group-action of 71 (X, zg) on a group G. Show that there exists a local
system of groups, (X,{G.},{Ts}), with G,, = G, which determines the given
action.

Ezercise 5.1.12.2. Let (X, A) be a cellular pair with base point zy € A, and
suppose that X is countable. Show that all the groups m,.(X, A, z) are count-
able.

Ezercise 5.1.12.3. Let (X, A) be a cellular pair with base point zy € A, and
suppose that the groups ,i,(X,z0) and m,(A, zo) are finitely generated (for all
r > 1). Show that if X is simply connected, then the groups 7, (X, A, x¢) with
r > 2 are also finitely generated.

Ezercise 5.1.12.4. Let £ be a Serre bundle, and let E be a subspace of tl(§)
such that (E, (proj(§))|g, bs(€)) is also a Serre bundle. Show that for any point
x € Fand any r > 1

incl. : 7, ((proj(€)) ™ ((proj(€))(@)), (proj(€) " ((proj (€)) ()N B, a) = m(H1(€), E, )

is an isomorphism.

Ezercise 5.1.12.5. Show that if the base of a covering is k-simple, then its total
space is also k-simple.

Exercise 5.1.12.6. Let r > 0 and s > 0. Show that the homomorphisms
cub, buc: m44(X, x0) = 7 (Sph, (X, o), const)

differ only by the constant factor (—1)"°.
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5.2 THE HOMOTOPY GROUPS OF SPHERES
AND OF CLASSICAL MANIFOLDS

5.2.1 Suspension in the Homotopy Groups of Spheres

Definition 5.2.1.1. The suspension of a spheroid ¢ € Sph,.(X,xo) is the
spheroid sus ¢ € Sph,.,; (sus(X, zg),bp), given by

sus So(tla N 7t7“+1> = prOj(‘P(th s 7t7“)7 t’l“+1)ﬂ pI‘Oj = [pI'OjZ XXI — SUS(X> {L'O)]

Obviously, suspensions of homotopic spheroids are homotopic, the suspension
of the product of two spheroids of positive dimensions equals the product of
their suspensions, and the suspension of the constant spheroid is again the con-
stant spheroid. Consequently, the mapping ¢ — sus ¢ yields a homomorphism
pir (X, 20) = mr41(sus(X, zg), bp) , for any r > 0. This homomorphism is also
called suspension and is denoted by sus.

Recall that we have already defined the suspension of a continuous map
on two occasions: in Definition 1.2.6.2, for maps of topological spaces, and in
Definition 1.2.8.5, for maps of pointed topological spaces. The present, third
definition, is more special; it concerns maps from the pair (I, Fr I") into pointed
spaces, and has no intersection with the previous ones. At the same time, it is
compatible with the second definition, in the sense that we may obtain the third
definition from the latter by shifting from spheric spheroids to cubic ones. More
precisely, the spheroids in Sph,Q(X, Zo), being maps between pointed spaces,
have suspensions in the sense of Definition 1.2.8.5, and the diagramme

SphTO(X, T) — Sphgl(sus(X, Zo), bp)

Is* J{ iIS#

Sph,. (X, z0) —== Sph,., ; (sus(X, o), bp)
commutes.

Let us add two important, yet obvious remarks. Firstly, if f: (X,zq) —
(Y, yo) is continuous, then the diagramme

(X, ) "> 1,41 (sus(X, zg), bp)

f*l J{(SHSJ’)*

Ty (Y, yO) “sus > Tr+1 (sus(Y, yo)v bp)

(where sus f is understood as in Definition 1.2.8.5) commutes for any r > 0.
Secondly, since (sus(S™,ort;),bp) = (S"™! ort;), our construction, when ap-
plied to spheres, yields a homomorphism 7,.(S™, orty) — m.41(S"T! orty). The
main theorem of this subsection, Theorem 5.2.1.4, is devoted precisely to this
homomorphism.
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Remark 5.2.1.2. Alternatively, one can describe
sus: 7. (X, x9) — mr41(sus(X, zp), bp)
by means of the map
Ip: (X, 20) — Sphy (sus(X, z0),bp),  [Ip(x)](t) = (x,1).

Namely, every spheroid ¢ € Sph,. (X, ) is taken into sus ¢ by the composition

s u
Sph,. (X, zo) 2#, Sph,.(Sph; (sus(X, z¢), bp), const) Cub, Sph,.; (sus(X, xo), bp)
(see Remark 5.1.10.7), and hence the homomorphism
sus: 7. (X, 29) — mry1(sus(X, xp), bp)

may be defined as sus = cubolp, (to check this facts is routine).

A new description of the homomorphism sus emerges if we view sus(X, xg)
as the quotient space of the cone cone(X,zq) by its base (which is identi-
fied with X). Indeed, given any ¢ € Sph,(X,xz), consider the spheroid in
Sph,., ; (cone(X, x¢), X, o) defined as

(t1, .y trg1) = (@(t1, .oy tr), trgn).
The latter is taken into sus ¢ by the map
Projy Sph,., 1 (cone(X, o), X, x0) — Sph,.,, (sus(X, z), bp),
proj = [proj: cone(X,zg) — sus(X, xo],
and is transformed back into ¢ by the map
0: Sph, ;(cone(X, ), X, z9) — Sph,.(X,z0).

Consequently, sus: 7.(X, z¢) = m41(sus(X, zo), bp) is nothing but the compo-
sition

(X, o) ﬂ) 711 (cone(X, zg), X, zg) %) 711 (sus(X, o), bp)

(0: mry1(cone(X, xzg), X, x9) — m-(X, o) is invertible because the cone is con-
tractible; see Remark 5.1.6.7).

If, for example, (X, xq) = (S",orty), then cone(X,zg) = D", sus(X,zg) =
S**+1 and proj = DS.

The Suspension Theorem

Lemma 5.2.1.3. Let K and L be closed disjoint subsets of I, and assume that
K is covered by a finite number of k-dimensional planes, that L is covered by a
finite number of (-dimensional planes, and that K NFr I™ C I™~1 x[0,1/2) and
LNFri™ c I™ 1 x (1/2,1]. If k+ ¢ < m — 2, then there is a Fr I"™ -homotopy,
F.:I™x I — I™, such that:
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(i) the maps I'"™ — I™ which form F' are homeomorphisms, and their inverses
also form a homotopy;

(ii) F connects idym with a map I™ — I™ which takes K into I™1 x [0,1/2]
and L into I™1 x [1/2,1].

Proof. Suppose first that L C I™~! x [1/2,1]. Since the lines which intersect
both K and L constitute a set which can be covered by a finite number of
planes of dimension k + ¢+ 1 < m — 1, there is a point a € int I~ x (0,1/2)
which does not lie on any such line. Let us project K and L on FrI™ from
a. Their images are closed disjoint subsets of Fr I, and so there is a Urysohn
function, a: Fr I™ — I, for these images. Choose € > 0 such that the similarity
transformation with centre a and coefficient ¢ pulls I™ into I"™ x [0,1/2], while
the similarity transformation with the same centre and coefficient 1/(1 — ¢)
does not take K N (I"™ x [1/2,1]) out of I"™. Now let ¢, : I — I"™ denote the
rectilinear path which joins a to a given point x € FrI™, and let ¥y: I — I
denote the homeomorphism which takes linearly [0, (1+¢)/2] onto [0, (1 —)/2]
and [(1+41t)/2,1] onto [(1 —t)/2,1]. The formula

F(@x(u)a t) = Pz O wt(lfe)a(a:) (u),

where x € Fr I and t,u € I, defines the desired homotopy.
To reduce everything to this special case, we produce, in the general case, a
Fr I"™-homotopy F': I"™ x I — I"™ which satisfies property (i) and connects idym
with a map which takes L into I"™ x [1/2,1]. We can define such a homotopy
F by
F((,u),t) = (0, 6-is(w), [ve ™ tuell,

where ¢ € (0,1) is any number such that L C I™~! x [(1 — §)/2,1]. O

Theorem 5.2.1.4. sus: 7,(S", orty) — 7,11 (S"*1, orty) is an isomorphism for
r < 2n — 2 and an epimorphism for r = 2n — 1.

Proof. a) To see that sus is epimorphic for » < 2n — 1, we have to verify
that, given any spheroid ¢ € Sph, ,(S"*! ort;), there is a spheroid ¢ €
Sph,.(S™, orty) such that sus+ is homotopic to ¢.

The proof is quite simple when ¢(I” x [0,1/2]) is contained in the upper
half {z,42 > 0} of S"*! while p(I" x [1/2,1]) is contained in the lower half
{®p12 < 0} of S™™! (here w1, ..., 7,42 are the standard coordinates in R"*2).
In this case, p(I" x (1/2)) lies in the intersection of these two hemispheres, i.e.,
o(I™ x (1/2)) € S™, and the required psi is given by

w(tl,...7tr) == @(t17--~7tra1/2)-

The formula

@(tl,...,tr,t{%;) if 0§tr+1§%,
((t1y. - tp),t) — proj(gp(tl,...,tm%),tT_H) if 15t <t < %’
(,O(tl, s atra tr;r_l;t) if % < tT+l < 1,
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where proj = [proj: S™ x I — sus(S™, orty)], defines a homotopy from ¢ to sus .

Consider now the more general case where ¢~ (ort,12) C I" x [0,1/2) and
@ (= ort,2) C I" x (1/2,1]. This case is readily reduced to the previous one.
Indeed, pick € > 0 such that the last coordinate of ¢(y) is <1—¢ (> —(1 —¢))
for all y € I" x [1/2,1] (respectively, for all y € I" x [0,1/2]). Now define
h: (St orty) — (S"+1, orty) by

(xh sy Tl (x%+2 - (1 - 52)1/2»/(1 - (1 - 52))1/2,
lf |J}n+2| Z 1-— g,

(1‘1, . ,$n+1,0)/(33% +...4+ $%+1)1/2,
if |xn+2| < 1 - &

h(fL'l, s 7xn+2) =

[This map stretches the polar caps of S"™1, defined by the inequalities z,,42 >
1—¢and x,12 < —(1 — €) over the upper and lower hemispheres, respectively,
and contracts the equatorial belt —(1 — ¢) < z,42 < 1 — ¢ to the equator
S™.] It is clear that h is orti-homotopic to idgn+1 [such a homotopy moves each
point z € S"T! uniformly towards h(x) along the shortest arc of the great circle
passing through = and h(z)]. Moreover, h o ¢ takes I" x [0,1/2] into the upper
hemisphere, and takes I" x [1/2,1] into the lower hemisphere.

Finally, in the most general case, we triangulate S"*! in such a way that ort;
becomes a vertex, while ort, 2 and ort, o become interior points of (n + 1)-
simplices, and then consider a rectilinear triangulation of I"™ which ensures that
o has simplicial approximations. Let ¢; be such an approximation. Then the
sets K = o] '(ort,,42) and L = o] '(— ort, o) satisfy the conditions of Lemma
5.2.1.3, with m = r + 1 and k = ¢ = r — n |here the intersections K N Fr "1
and L NFr ™! are actually empty|. Let G: I"*! x » — I"*! be the homotopy
made up of the inverses of the homeomorphisms which form the homotopy F
provided by Lemma 5.2.1.3. The spheroid ¢ is obviously homotopic to ¢, and
we need only remark that

prorel G: (I"™ x I,Fr I"™ x I) — (S™ orty)

is a homotopy from ¢ to a spheroid @, such that ¢, *(ort, o) C I" x [0,1/2]
and 5 ' (—ort,2) C I x [1/2,1].

b) To see that sus is a monomorphism for r < 2n+2, we must show that every
spheroid ¢: (I",FrI") — (S",ort;) whose suspension sust: (I"*! Fr[7+1) —
(S"*1 orty) is homotopic to the constant spheroid is itself homotopic to the
constant spheroid.

Let ¢ : (I"™ x [,FrI"" x I) — (S"*! ort;) be a homotopy from sus
to const. Consider a triangulation of S**! with the properties: the equator
S™ is a simplicial subspace, ort; is a vertex, and ort, 42, —ort, o are interior
points of (n + 1)-simplices. Further, triangulate rectilinearly I"*! x I = I" x
I x I so that I" x (1/2) x 0 is a simplicial subspace and ¢ admits simplicial
approximations. If ¢; is such an approximation, then ¢ (I" x (1/2) x 0) C S™,
and the formula ¢ (y) = (y,1/2,0) defines a spheroid ¢ : (I",FrI") — (S™, orty)
which is homotopic to . Consider the map

perm: IT+2 — IT+2, (tl, e ,tr+1,tr+2) — (tl, ce ,tr,tr+2,tr+1)
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Clearly, K = perm(¢); ' (ort,,+2) and L = perm(¢p; ' (— ort,,12)) satisfy the con-
ditions of Lemma 5.2.1.3, with m = r+2 and kK = ¢ = r — n + 1. Thus,
let G: I""2 x I — I"t2? be the homotopy made up of the inverses of the
homeomorphisms which form the homotopy F' provided by this lemma, and let
p: SPT\ (ort,42 U(—ort,42)) — S™ be a retraction. One may verify directly
that

(y7 t) — p(‘Pl © perim OG(y7 2 1/2)7 1)

(where (y,t,1/2) € I"*? = I" x x1I) is a homotopy I" x I — S™ from ; to
const. O

The Series {7, (S™,ortq)}

Definition 5.2.1.5. The main content of Theorem 5.2.1.4 is that each of the
series
LN (S, orty) SLLN 71 (S™T orty) Sus, 7TT+2(S”+2,01"‘51) RLLN

of homotopy groups of spheres, connected by the suspension, stabilises. That
is to say, in the k-th series {m,r(S",ort1)}, the groups m,r(S™, ort;) with
n > k + 2 are isomorphic via suspension. This canonical isomorphism enables
us to identify the groups 7, +%(S™, ort1), n > k + 2, with a single group, called
the stable group of the series m,11(S™,ort1); we denote it by Stab(k).

5.2.2 The Simplest Homotopy Groups of Spheres

Theorem 5.2.2.1. The groups m.(S™) with r < n are trivial. In particular,
Stab(k) = 0 whenever k < 0.

Proof. This is a corollary of Theorems 2.3.2.4 and 5.1.3.8. O

The Homotopy Groups of the Circle

Theorem 5.2.2.2. Ifr > 1, m,.(S!) is trivial. m (S',ort1) is an infinite cyclic
group with generator sph;.

Proof. The proof uses the covering (R, hel,S') [see Example 4.1.2.6]. First,
notice that hel(0) = ort; and hel”*(ort;) = Z. Since the line R is contractible,
its homotopy groups are trivial, and hence, by Theorem 5.1.8.13 so is 7, (S!, orty )
for any r > 1, and A: 7 (St,ort;) — 79(Z,0) = Z is invertible. Moreover,
(R, hel, S!) is obviously a principal bundle with structure group Z, so that A
is a group homomorphism (see Definition 5.1.9.15). Therefore, A is a group
isomorphism, and it remains to observe that A(sph;) = —1. O

Remark 5.2.2.3. The proof above computes the homotopy groups of the circle
as quick as lightning by applying the general theory to the covering (R, hel, St).
Such an approach is natural as the general theory is already available to us.
However, it conceals the fact that the computation is in fact quite elementary.
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Since the fundamental group of the circle has both a historical and intrinsic
importance, we shall not spare a few more lines, and we shall redo the proof of
the equality 71 (S*, ort;) = Z in an elementary way, which reveals those simple
aspects of the general theory that are really necessary. Namely, we need only
the following two facts: every path in S' with origin ort; is covered by a path
in R with origin 0; two paths in R, with origin 0, which cover homotopic paths
in S' have the same end. (Cf. Definition 5.6.2.1).

Proof. Now to the proof: consider the powers of the fundamental loop IS: I —
S (with the natural order of multiplication), and let u,, denote the n-th power
(n € Z). Let U,: I — R be the path with origin 0 covering the loop u,,. Obvi-
ously, u,(1) = n, and so the loops u, are pairwise non-homotopic. Moreover,
given any loop u: I — S! with origin ort;, the covering path u: I — R with
origin 0 ends at an integer. Consequently, u is homotopic to one of the paths
Uy, and thus u is homotopic to one of the loops wu,. In other words, the classes
(sphy)™ with n € Z are pairwise distinct and exhaust m(S!, orty). O

Corollaries

Corollary 5.2.2.4. The pair (D? S') is simple. w,.(D?,SY) is trivial for any
r# 2. m(D? St orty) is an infinite cyclic group with generator kug,.

Proof. These are all consequences of Theorem 5.2.2.2 and of the fact that D?
is contractible, which implies that 9: m,.(D?,S* ort;) — m,_1(S',ort;) is an
isomorphism for any r > 1 (see Remark 5.1.6.7). O

Corollary 5.2.2.5. It follows from Theorems 5.2.2.1 and 5.2.2.2 that forn > 1,
S™ is a simple space. Similarly, Theorem 5.2.2.1 and Corollary 5.2.2.4 show that
for n.> 2 the pair (D", S"~1) is simple.

In particular, given any point y € S™ with n > 1, the group m,(S™,y) can be
identified with 7, (S", orty), and given any point y € S*~1 with n > 2, the group
(D", S"1 y) can be identified with w, (D", S"~1 ort). Therefore, for r > 1,
a continuous map f:S — X, with X a topological space, defines an element
of m-(X,x) for any point x € f(S"), and not only for x = f(orty). Similarly,
for r > 2, a continuous map f: (D",S""1) — (X, A), with (X, A) a topological
pair, defines an element of 7.(X,A,x) for any x € f(S™™1), and not only for
x = f(orty).

The Groups 7,(S")

Theorem 5.2.2.6. For n > 1, sus: m,(S",ort1) — m,11(S" 1, orty) is an
isomorphism and sus(sph,,) = sph,, ;.

Proof. By Theorem 5.2.1.4, sus: 7, (S™,ort;) — m,41(S""1, ort;) is an isomor-
phism for n > 2, and an epimorphism for n = 1. To prove that this epimorphism
is also a monomorphism, we use the homotopy properties of the Hopf bundle
(S3, proj, S?) [see Example 4.6.1.4]: the segment

7T2(S_3) =0— WQ(SQ) — 7T1(Sl) — 71'1(83) =0
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of its homotopy sequence (see Theorem 5.2.2.1) demonstrates that mo(S?) =
71 (St). Since 71(S') = Z (see Theorem 5.2.2.2), sus: 71 (S, orty) — mo(S?, orty)
cannot have a non-trivial kernel. The equality sus(sph,,) = sph,,,; is obvious.

O

Theorem 5.2.2.7. If n > 1, m,(S",orty) is an infinite cyclic group with gen-
erator sph,,. In particular, Stab(O) = Z.

Proof. For n = 1, this statement is a repetition of a part of Theorem 5.2.2.2,
while for n > 1 it results from Theorems 5.2.2.2 and 5.2.2.6. O

Corollary 5.2.2.8. If n > 2, 7, (D", S™, orty) is an infinite cyclic group with
generator kug,, .

Remark 5.2.2.9. For each n > 1, Theorem 5.2.2.7 establishes a canonical iso-
morphism m,(S") — Z. In particular, it associates with each continuous map
f:S™ — S™ an integer, and it is not hard to see that this is nothing but the
degree deg f, as defined in Subsection 4.6.5. This is a consequence of three ev-
ident facts: deg(sus f) = deg f; the class ksph; is represented by the spheroid
hely. (see Example 4.1.2.6); and deg(hely) = k.

Similarly, for each n > 2, Corollary 5.2.2.8 establishes a canonical isomor-
phism 7, (D", S"~1) — Z. In particular, it associates with each continuous map
f: (D", S"1) — (D*,S"1) an integer, which coincides with deg f, as defined
in Subsection 4.6.5.

Further Information Obtained From the Hopf Bundles

Theorem 5.2.2.10. If r > 3, the homomorphism proj, : m.(S?) — m(S?) in-
duced by the Hopf map proj: S* — S? is an isomorphism. In particular, 73(S?)
is canonically isomorphic to Z, and is generated by proj, (sphs), i.e., by the class
of the Hopf map itself.

Proof. This is plain from the segment
7 (SY) =0 = 7,(S?) = 7.(S?) = m_1(SY) =0
of the homotopy sequence of the Hopf bundle (S?, proj, S?). O

Theorem 5.2.2.11. If r > 1, the homomorphism proj,: m.(S7) — m,.(S*) in-
duced by the Hopf map proj: ST — S* maps m,.(S7) isomorphically onto a sub-
group of pi,.(S*) which has a direct complement isomorphic to m,_1(S®). In
particular, 77(S*) = Z @ 76(S?).

Proof. This is a consequence of Theorem 5.1.8.11, when applied to the Hopf
bundle (S7, proj, S*). O

Theorem 5.2.2.12. If r > 1, the homomorphism proj,: 7.(S®) — 7,.(S%)
induced by the Hopf map proj: S — S8 maps 7,.(S'%) isomorphically onto a
subgroup of pi,.(S®) which has a direct complement isomorphic to m._1(S7). In
particular, m15(S®) = Z @ m14(S7).
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Proof. This is a consequence of Theorem 5.1.8.11, when applied to the Hopf
bundle (S*?, proj, S®). O

Theorem 5.2.2.13. The composite maps

T (SY) 225 7,(S2) 2 w1 (SY),  mro1(S?) 2 . (SY) S m_i(SP),

Tt (ST) 22 7, (S®) 2 7,1 (S7),

where the homomorphisms A correspond to the Hopf bundles, coincide for any
r > 1 with id, _ (1), idy, _ (s8), and id, _ (s7), respectively.

Proof. Let q be 2, 4, or 8, and consider the map x: D? — S9! given by
X(x1,...,2q) = (xh...,xq,(l—m%—~-~—x3),0,...,0).

Its restriction to S9! is simply the inclusion S9! — S2¢—1, while proj oy, where
proj is the Hopf map proj: S?9~! — S9, simply DS: D9 — S?. Therefore, the
diagram

T (Squl, Sqfl)

:W\

7 (S9) mr_1(8771)

k/

7, (D7, S71)

commutes; here the vertical homomorphisms are induced by rel y: (D?,S971) —
(S?2=1 S9=1). Moreover, rel proj, and the lower  are isomorphisms (see Lemma
5.1.8.1 and Remark 5.1.6.7), and from the above commutativity it follows that
the composite homomorphism

rel, DS,
e

mo1 (7Y 2 1 (e, s 0 (S9)

r roj, )t
Grelprol.) 7 (s2a-1 se-1y Oy (g9

equals id; _ (se-1). To complete the proof, notice that rel DS, o 071 = sus (see
Remark 5.2.1.2) and 9 o (relproj,) ™! = A (see Definition 5.1.8.4). O

Remark 5.2.2.14. It follows from Theorem 5.2.2.13 and Remark 5.1.8.8 that
sus 75 (S?) — 76(S*) and susm13(S7) — 714(S®) are isomorphisms, that is, in the
two series {7, +2(S™)} and {7,46(S™)} (as in the series {m,(S™)}) stabilisation
begins at least one step earlier than guaranteed by Theorem 5.2.1.4.
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5.2.3 The Composition Product

Definition 5.2.3.1. Let X be a space with base point xy. Given two spheroids,
p € Sphg)(X, xo) and ¢ € Spth(Sp,ortl), the composition ¢ o (S, orty) —
(X, zg) is a spheroid in SphqO (X, zg), and the homotopy class of the latter is
uniquely determined by the homotopy classes of ¢ and 1. Therefore, for any
two classes, a € m,.(X,x0) and 8 € 7w,(SP), one may define the composition
aof € my(X,z). Equivalently, we can set awo 8 = ¢.(f), where ¢ is any
representative of «.
The following facts need no proof:

o if a € m,(X,20), then aosph, = ;

o ifa € my(X,x), B € my(SP) and f: X — Y is continuous, then f,(aof) =
(fe(a)) o B;

o if o € mp(X, 20) and B € my(SP) then sus(a o 5) = sus o sus f3;

o if o € (X, x0) and f1, B2 € my(SP), then awo (81 + f2) = ao 1 + o PBa;
[in particular, a0 k sph,, = ka for all a € m,(X, z¢) and k € Z|.

The last property is called right distributivity, to distinguish it from the left
distributivity, which amounts to (a3 + @2) o = a1 08+ asof for any o, as €
mp(X,20) and B € pig(SP). In general, left distributivity does not hold; see
Theorem 5.2.3.2 and Lemma 5.2.3.6, and also Exercise 5.2.9.1.

Theorem 5.2.3.2. Given any a1, as € m,(X,z0) and B € ;1 (SP71),

(a1 + ag) osus B = ag o B+ ag osus . (5.2.3.3)
In particular,

(ksph,) osus 8 = ksus 3

for any B € my_1(SP™') and k € Z.
Proof. Pick representatives 1, o € Sph?(X, xo) and ¢ € Sphgl(Sp’l,ortl)
of the classes a1, ag and 3, respectively, and let p; and py, denote the projections
proj: SP=ExT — sus(SP~1, orty) = SP and proj: ST 1xI — sus(S?1, orty) = S9.

By definition (see Remark 5.1.10.2), the class a; + aso is represented by the
spheroid

p1(z,t) — @1 0p1(z,2t), if 0<t<1/2,
n w2 0 pa(x, 2t — 1), if 1/2<t<1,

while sus g is represented by the spheroid pa(z,t) — p1(¢(z),t) (see Remark
5.2.1.1). This shows that both sides of (5.2.3.3) are represented by the spheroid

%01°p1(¢($)a2t), if OStS 1/27
w2 0 pa(P(x),2t — 1), if 1/2<t<1,

pa(z,t) — {
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The Ring Stab

Lemma 5.2.3.4. Let k, ¢, and n be non-negative integers, with n > 0. Then
for any o € w4 (S™) and B € mn1(S"),

sus" a o sus"tF @ = (—1)* sus™ o sus"H a.

Proof. Pick representatives ¢ € Sphgrk(S",ortl) and ¢ € SphnO+Z(S",ort1) of
the classes @ and f3, and for non-negative integers, p and ¢, let perm(p, q) be
the (auto)homeomorphism of the sphere SP*4 = (Al ort;) ®---® (S, orty) (see
Definition 1.2.8.9) which permutes the factors according to the rule

((17"'7p+Q) H (p+1""7p+Q71?"'7p)'
One may check directly that the following two compositions are equal:

sus” ¢ o perm(n,n + k) o sus"tk Y operm(n+k,n+{): §2ntkte s,
perm(n, n) osus” @ o penn(n7 n-+ 6) ° Susn+€ ,(/): SQn+k+£ 5 S”.
Since deg perm(p, q) = (—1)P, this yields

susa o [(‘1)n(n+k) Sph2n+k] o sus™ " Bo [<_1)(n+k)(n+z) Sph2n+k+é]

= [(—=1)" sphy,] 0 sus” B o [(=1)""+ sphy,,, ] o sus" .

Using the right and left distributivities (see Definition 5.2.3.11 and Theorem
5.2.3.22), it is not hard to reduce this equality to the form

(_1)n(n+k:)+(n+k)(n+f) sus” a o Susn+k: ﬂ _ (_1)n2+n(n+€) sus™ ﬁ o SuSnJrf a

and now we note that [n(n+k)+(n+k)(n+£)]—[n?+n(n+¢)] = kf(mod 2). O

Definition 5.2.3.5. We set Stab = @k = 0°° Stab(k) and identify each group
Stab(k) with its image under the natural embedding Stab(k) — Stab. The
operation o transforms Stab into a ring: if & € m,41(S") and S € T qp4+e(S™)
then sus(a o ) = susa o susf (see Definition 5.2.3.1). Therefore, o is well
defined as a distributive multiplication Stab(k) x Stab(¢) — Stab(k + ¢) (see
Definition 5.2.3.1 and Theorem 5.2.3.2), and can be extended bi-distributively to
a multiplication Stab x Stab — Stab. It results from Definition 5.2.3.1, Theorem
5.2.3.2, and Lemma 5.2.3.4 that the ring Stab is associative, has the identity
sph = sph; = sphy = .- and is skew-commutative, meaning that f o «a =
(—1)*a o B for any «a € Stab(k) and 3 € Stab(¥¢).

An Application

Lemma 5.2.3.6. The composition (— sphy) o proj, (sphs), proj: S* — S? is the
Hopf map, equals proj, (sphs).
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Proof. This is a consequence of the commutativity of the diagram

st — - §°

| |

S? — = §?

where the horizontal maps are the spheroids (z1, 2, x5, 24) — (21, —22,23, —Z4))
and (z1,x9,x3) — (21, —x2,x3), which represent the classes sphy and — sph,,
respectively. O

Theorem 5.2.3.7. The group Stab(1) has at most two elements.

Proof. Since m4(S?) is already stable, and susm3(S?) — m4(S?) is epimorphic
(see Theorem 5.2.1.4), it suffices to show that ker sus contains the 2[proj: S —
S?],(sphy), i.e., twice the generator of 73(S?) (see Theorem 5.2.2.10). Indeed,
since

2 proj * (SphB) = pl"oj * (Sphd) + proj * (SphS)
= sphy o proj, (sphs) + (—sphy) o proj, (sph;)

(see Lemma 5.2.3.6), we get
sus(2 proj, (sph)) = sphy o sus(proj, (sph)) + (— sph o(proj, (sphy))

(see Definition 5.2.3.1), and we note that the right-hand side of the last equality
is 0 (according to Theorem 5.2.3.2). O

5.2.4 Information: Homotopy Groups of Spheres

Remark 5.2.4.1. For a long time the study and computation of homotopy groups
of spheres was at the centre of the attention of topologists. It was hoped that one
could succeed in solving this problem and that other, more difficult problems in
homotopy theory could be reduced to a considerable extent to it. Deep results
have actually been obtained in both these directions; the initial hopes, however,
have not been realised. Gradually it became clear that from the homotopy
point of view the sphere is not elementary, but rather an intricate, complicated
object. On the other hand, the information acquired about the homotopy groups
of spheres found unexpected applications, first of all in differential topology.

Below we discuss a (rather small) part of these results: general results in
Remark 5.2.4.2, and those of tabular character in Remark 5.2.4.3. For more
complete information, references, and proofs, see [7].

Remark 5.2.4.2. m4,_1(S*™), m =1,2,..., are the only infinite groups among
mr(S™) with » > n. Each of these infinite groups is isomorphic to a direct sum
Z @ (finite group).

For an odd prime p, the order of the group Stab(2m(p — 1) — 1) with 1 <
m < p— 1 is divisible by p, but not by p?, while the order of Stab(k) with
k < 2p(p— 1) — 2 is not divisible by p if £ Z —1 mod 2(p — 1).
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Remark 5.2.4.3. Among the groups m,(S™) which have been computed are all
Tk (S™) with k < 22, and all Stab(k) with & < 7. The group m,4+%(S™) with
n > 2and 1 < k < 7 are displayed in Table 5.1.

n~k 1 2 3 4 5 6 7

2 7 727 7]27. Z]12Z, 7]27. 7]27. 7]37.

3 Z/2Z 7J2Z  7J12Z 7.)27 7.)27 7./3Z ARG/

4 Z)27 ZeTL/12Z  TJ2L®TLJ2L L/2L@Z/2L L)2Z& L/247 Z/15Z

5 7./247. 7.)2Z 7)27 7.)2Z 7./30Z

6 0 z 7./27. 7./607.

7 0 7.)27 7./120Z

8 7./27. 7 & 7,/120Z
9 7./2407Z

Table 5.1: m,1£(S™) withn >2and 1<k <7

In Table 5.2, where proj always denotes one of the Hopf maps S? — S?,
S” — S%, or S¥ — S we indicate the generators of the groups Stab(k) with
k=1,....T.

Groups Generators
Stab(1) = m4(S?)[= Z/27Z] sus(proj, (sphy))
Stab(2) = 76 (S*) [ Z/27Z] sus?(proj, (sphy)) o sus®(proj, (sphy))
Stab(3) = 7 (S®) [ Z/247)] sus(proj, (sph-))

Stab(4) = m10(S%)[= 0] -
Stab('c')) = 712(S7)[: O] -
Stab(6) = m14(S®)[2 Z/2Z]  sus”(proj, (sphy)) o sus” (proj, (sphy))
Stab(7) = m16(S?)[= Z/240Z) sus(proj, (sphyy))

Table 5.2: Stab(k) and generators for Hopf fibrations
We add the relations

sus®(proj, (sphy)) o sus*(proj, (sphy)) o sus® (proj, (sphy)) = 12 sus(proj, (sph;)),
sus’ (proj, (sphy)) o sus®(proj, (sphy)) o sus” (proj, (sphr)) = 120 sus(proj, (sphy;)),

which give, together with Table 1, a complete description of @2:1 Stab(k), a
part of Stab.

The groups Stab(k) with £ =8,...,15 are listed in Table 5.3.
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k Stab k 2 Stab k

8 L2 & Z]2Z 12 0

9 Z2L®TL)2L& 727 | 13 7./3Z

10 7.)27. 14 Z/6Z & 7)27
11 7./5047. 15 7/480Z & 7./27.

Table 5.3: Stab(k) with K =8,...,15

5.2.5 The Homotopy Groups of Projective Spaces and Lenses

Theorem 5.2.5.1. Let 2 <n <oco. m(RP™ (1:0:0:---)) has two elements
and is generated by the class of the loop rp: I — RP™ given by rp(t) = (cos 7t :
sint :0:0:---). m(RP™,(1:0:0:---)) is isomorphic to m-(S™) for all
r # 1 [in particular, this group is trivial for n = oo/ and the isomorphism is
induced by the projection S™ — RP™. RP™ is simple for n odd, and is not
n-simple for n even.

(The case n = 1 has been considered in Theorem 5.2.2.2.)

Proof. All assertions concerning the groups m.(RP",(1 : 0 : 0 : ---)) follow
from Theorem 5.1.8.13, when applied to the covering (S™, proj, RP™). Since the
fundamental group of RP™ is Abelian RP™ is 1-simple. Now let » > 2, and
consider the automorphism

Top: 1 (RP*,(1:0:0:--+)) > m(RP*,(1:0:0:---)).

) Let p be the path in S™ which covers rp and has origin ort;. Then from the
(obvious) commutativity of the diagramme

T (—idgn )«
(S, orty) - (S", —ort]) <—— 7,.(S™, orty)

proj*l/ J/proj*/
Proj,

ﬂ,.(RP",(l:O:O:-~-))T—>7T,.(RP",(1:O:O:---))

rp

If we make the identification ,.(S™, — orty) = m.(S", ort) = 7,.(S™) (see Corol-
lary 5.2.2.5), then we see that T}, is the identity if and only if

(—idgn )u: mp (S — 7,.(S™)

is the identity. Finally, note that if n is odd, then —idg» and idg» are homotopic,
and hence (—idgn)«: 7.(S™) — 7,.(S™) is the identity automorphism for all 7,
while if n is even,

[(—id2),: (S™) = m(S")] = —id,, (gn) -
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Theorem 5.2.5.2. Let 1 # n # oo. me(CP™,(1:0:0:---)) is isomorphic
to Z and is generated by the class of the spheroid incl: S> = CP' — CP™.
7-(CP*,(1:0:0:--+)) is isomorphic to m.(S*" 1) for any r # 2 [in particular,
this group is trivial for n = o0of, and the isomorphism is induced by the projection
S+l Cpn.

(For n =1 this theorem repeats Theorem 5.2.2.10.)

Proof. We make two claims:
e incl,: m(CP,(1:0)) = ma( ™, (1:0:0:--+)) is an isomorphism;

e proj,: m.(S*"*1 orty) — m.(CP",(1:0:0: ---)) is an isomorphism for
all r # 2.

The first follows from the 3-connectedness of the pair (CP!, CP') (see Theorem
2.3.2.4 and Remark 2.1.3.5), while the second is a consequence of the homotopy
sequence of the bundle (S>"*! proj, ™) and Theorem 5.2.2.2. O

Theorem 5.2.5.3. Let 1 #n # oo and r > 1. The homomorphism induced by
the projection S*"+3 — HP"™ maps m,.(S*"3) isomorphically onto a subgroup of
7-(HP™,(1:0:0:---)) which has a direct complement isomorphic to m,_1(S?).
In particular, 7.(HP",(1:0:0: ---)) isomorphic to m._1(S3) for all v > 1.

(For n =1 this theorem repeats Theorem 5.2.2.11.)

Proof. We need only apply Theorem 5.1.8.11 to the bundle, (S***3, proj, HP™).
O

Theorem 5.2.5.4. The lenses L(m; ly,...,¢,) and L(m; £y, 05, ...) are simple.
m1(L(m; by, ..., 0,)) and w1 (L(m; L1, 4, . ..)) are isomorphic to Z/mZ. Ifr > 2,
7 (L(m; by, ..., 0y)) is isomorphic to 7,.(S?>"~1), and the isomorphism is induced
by the projection S*" =t — L(m; {1, ..., 0,). 7-(L(m;ly, Lo, ...)) is trivial for all
r>2.

Proof. The proof is clearly a generalisation of the first part of the proof of
Theorem 5.2.5.1. O

5.2.6 The Homotopy Groups of Classical Groups

Theorem 5.2.6.1. The inclusion homomorphism m.(SO(n)) — 7,.(SO(n + 1))
is an isomorphism for r < n — 2 and an epimorphism for r =n — 1.

=z for n=2,
1(SO(n)) = {Z/2Z for n >3,
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and is generated by the class of the inclusion S' = SO(2) — SO(n). m(SO(n))
is trivial for all n.

0 for n<2

/ or n =3,
75(SO(n)) = for n=

YASYA for n =4,

(Z®Z)/(a cyclic subgroup) for n>5.

Proof. The triviality of the groups m2(SO(2)), m3(SO(2)), m2(SO(3)), and m2(SO(4)),
and the isomorphisms 71 (SO(2)) & Z, 71(SO(3)) & Z/27Z, 73(SO(3)) = Z, and
73(SO(4)) = Z @ Z all result from the equalities SO(2) = S*, SO(3) = RP3,
and SO(4) = RP? x S? (see Remark 3.2.1.3, Theorem 3.2.3.1, and Remark
3.2.2.3), and Theorems 5.2.2.2, 5.2.2.7, and 5.2.5.1. The rest is a consequence
of the homotopy sequence of the bundle (SO(n + 1), proj, S™) with base point
id € SO(n + 1); see Example 4.6.1.4. O

Theorem 5.2.6.2. The inclusion homomorphism m,. x (U(n)) — m.(U(n + 1))
is an isomorphism for r < 2n — 1 and an epimorphism for r = 2n. If n > 1,
711(U(n)) is isomorphic to Z and is generated by the class of the inclusion S* =
U(1) = U(n). m2(U(n)) is trivial for all n.

{O for n=1,

ms(U(n)) = 4 for n>2.

The inclusion homomorphism 71 (U(n)) — 7,.(SO(2n)) is epimorphic for all n.

Proof. These are corollaries of the equalities [incl: U(1) — SO(2)] = id and
U(2) = S'x$?, and of the homotopy sequence of the bundle (U(n+1), proj, S>"+1)
with base point id € U(n + 1); see Example 4.6.1.4. O

Theorem 5.2.6.3. The inclusion homomorphism 7.(Sp(n)) — m(Sp(n + 1))
is an isomorphism for r < 4n 4+ 1 and an epimorphism for r = 4dn + 2. In
particular, if r <5 and n > 1, 7,(Sp(n)) is isomorphic to 7. (Sp(1) = S?).

Proof. This can be seen from the homotopy sequence of the bundle (Sp(n +
1), proj, S**3) with base point id € Sp(n + 1); see Example 4.6.1.4. O

Stabilisation

Definition 5.2.6.4. Theorems 5.2.6.1, 5.2.6.2 and 5.2.6.3 show that for r» > 1,
each series of groups
7-(SO(1)) = m-(SO(2)) — 73(SO(3)) — - -,
m(U(1)) = m(U(2)) = 7 (U(3)) = -+,
7 (Sp(1)) = m(Sp(2)) = 7 (Sp(3)) — -+ -,

stabilises: the first one, starting with m,.(SO(r + 2)), the second one, with
m-(U([r + 2)/2])), and the third one, with m.(Sp([(r + 2)/4])). The groups
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7-(SO(n)) with n > r + 2, 7-(U(n)) with n > [(r + 2)/2], and 7.(Sp(n))
with n > [(r + 2)/4] are said to be stable, and are denoted by 7,(SO), 7(U),
and 7,.(Sp), respectively. By Theorem 5.2.6.1, 7,.(SO) = Z, m2(SO) = 0, and
73(S0) = (Z & Z)/(cyclic subgroup). By Theorem 5.2.6.2, 1 (U) 2 Z, m2(U) =
0, and 7w3(U) = Z. Finally, by Theorem 5.2.6.3, 71 (Sp) = 0, m2(Sp) = 0, and
m3(Sp) = Z.

The notations 7,.(SO), m.(U), and m,.(Sp) have also a direct meaning: they
represent the ordinary r-th homotopy groups of the limit spaces SO = lim SO(n),
U =lim U(n), and Sp = lim Sp(n), respectively (see Theorem 5.1.11.5).

>
S

Information

Remark 5.2.6.5. The homotopy groups m.(SO), 7,.(U), and 7.(Sp) have been
explicitly computed. Namely, for any r» > 1 there are canonical isomorphisms
7(SO) = 7,48(S0), m-(Sp) — 7r+8(Sp), and 7,.(U) — 7,42(U), and the first
seven homotopy groups of SO and Sp, together with the first two homotopy
groups of U are displayed in the following tables.

r 1 2 3 4 5 6 7 8
m(SO) | 2/2Z 0 Z 0 0 0 Z Z/2Z
7 (Sp) 0 0 Z Z/2Z Z/2Z 0 Z 0

Table 5.4:
T 1 2
m(U) | Z 0
Table 5.5:

For a proof, see [17].
There are also many unstable homotopy groups of the manifolds SO(n),
U(n), and Sp(n) which have been computed. For example, ma,(U(n)) = Z/n!Z,

Z/(2n+ 1)Z for n even,

Tan+2(Sp(n)) = {Z/2[(2n + 1)z for n odd.

For details and references for the proofs, see [7].

5.2.7 The Homotopy Groups of Stiefel Manifolds and Spaces
Lemma 5.2.7.1. Let k <n. Then
e The manifold V(n, k) is simple.

e The inclusion homomorphism 7.(V(n,k)) — 7 (V(n + 1,k + 1)) is an
isomorphism for r <n —1 and an epimorphism for r =n — 1.
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o Ifn is odd and k = 1, the last epimorphism is also an isomorphism.

e The manifolds CV (n, k) and HV (n, k) are all simple.

e The inclusion homomorphism m.(CV (n,k)) — m.(CV(n+ 1,k +1)) is an
isomorphism for r < 2n and an epimorphism for r = 2n.

e The inclusion homomorphism 7.(HV (n,k)) = 7-(HV(n+ 1,k +1)) is an
isomorphism for r < 4n + 2 and an epimorphism for r = 4n + 2.

Proof. The fact that the Stiefel manifolds are simple may be seen from the equal-
ities V(n, k) = SO(n)/SO(n — k), CV(n,k) = U(n)/ U(n — k), and HV (n, k) =
Sp(n)/Sp(n — k) (see Remark 4.2.3.16 and Corollary 5.1.9.7). To prove the
rest, use the homotopy sequences of the bundles (V(n + 1,k + 1), proj,S™),
(CV(n+1,k+1),proj,S?"*1) and (HV (n + 1,k + 1), proj, S***3) described in
Example 4.6.1.4, taking the inclusions R¥ — R" C* — C”, and H* — H" as
base points (in the respective total spaces). In the real case, we take advantage,
in addition, of the fact that for n odd, the bundle (V(n + 1,2), proj, S™) admits
a section (see Example 3.1.4.9); for n odd and k = 1, this ensures that the
first of the aforementioned homotopy sequences splits from the left at the terms
m(V(n+ 1,k + 1)) (see Theorem 5.1.8.9.) O

Corollary 5.2.7.2. Ifk < n, then the manifold V (n, k) is (n—k—1)-connected.
Tn—k(V(n,k)) with 0 < k < n is cyclic and is generated by the class of the
inclusion S*F = V(n — k+ 1,1) — V(n,k); this group is infinite whenever
n —k is even or k = 1.

Proof. This is a corollary of Lemma 5.2.7.1: when r <n — k,

7 (V(n, k) =2n.(Vin—1L,k—-1) = 2m0.(V(n—k+1,1)) = m.(S" %) =0,
while in the sequence

Tp—(S"F) = 1k (V(n—k+1,1)) = 71 (V(n—k+2,2)) = -+ —= i, (V(n, k))

all the maps are isomorphisms, except for the first which is an isomorphism for
n — k even and an epimorphism for n — &k odd. O

Corollary 5.2.7.3. The manifold CV (n, k) is 2(n — k)-connected .
Ton—2k+1(CV (n, k) 2 Z
is generated by the class of the inclusion
S™=2ktl — CV(n—k+1,1) = CV(n,k)

Proof. This is a corollary of Lemma 5.2.7.1 : when r < 2n — 2k + 1, in the
sequence

T (ST = 71, (CV (n—k+4+1,1)) = 7. (CV(n—k+2,2)) = --- = 7, (CV(n, k))

all the arrows are isomorphisms. O
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Corollary 5.2.7.4. The manifold HV (n, k) is (4n — 4k + 2)-connected.
Tan—ak+3(HV (n, k) 2 Z
is generated by the class of the inclusion
SRS —HV (n — k4 1,1) — HV (n, k).
Proof. This is also a corollary of Lemma 5.2.7.1: if » < 4n — 4k + 3 (actually, if
r < 4n — 4k + 5), then in the sequence
7 (S = o (HV (n—k+1,1)) = 7. (HV (n—k+2,2)) = --- = 7., (HV (n, k))
all the arrows are isomorphisms. O

Theorem 5.2.7.5. The spaces V (00, k) and CV (0o, k) (see Definition 4.5.3.10),
as well as

HV (00, k) = lig(HV(n7 k),incl: HV (n, k) - HV (n + 1,k))
are oco-connected.

Proof. This follows from Corollaries 5.2.7.2, 5.2.7.3, 5.2.7.4, and Theorem 5.1.11.5.
O

5.2.8 The Homotopy Groups of Grassmann Manifolds and
Spaces

Remark 5.2.8.1. In this subsection the computation of the most important ho-
motopy groups of the Grassmann manifolds G(n, k), G+(n, k), CG(n, k), and
HG (n, k), and of the Grassmann spaces G(oo, k), G4 (00, k), CG(00, k) (see Def-
inition 4.5.3.2) and

HG(c0, k) = lim(HG(n, k), incl: HG(n, k) — HG(n +1,k))

is reduced to the computation of the homotopy groups of the corresponding
classical groups.

Grassmann manifolds and spaces are taken care of together, and thus n may
also take the value oo.

Theorem 5.2.8.2. If k > 0 and 0 < r < n — k, then 7.(G4+(n,k)) is iso-
morphic to m._1(SO(k)), and the inclusion homomorphism m.(G4+(n,k)) —
T (G4+(n', k)) is an isomorphism for all n' > n.

Proof. The first claim results from Theorems Corollary 5.2.7.2 and Theorem
5.2.7.5, and the homotopy sequence of the bundle (V(n, k), proj, G+ (n, k)), de-
fined in Example 4.6.1.4, with the inclusion R¥ — R™ as base point. The second
claim results from the commutativity of the diagramme

(G (n, k) —2> m_1(SO(k))

incl, \L lincl*—id

70 (G (', ) — > 71 (SO(R))
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(see Theorem 5.1.8.7). O
Theorem 5.2.8.3.
- (G(n, k) 2 m.(GL(n, k), 0<k<n and r2>2,

Z for n=2 and r>2,

G(n,k)) =

Proof. Since G(2, 1) is homeomorphic to S', Theorem 5.2.2.2 yields m (G(2,1)) =
Z. If we now apply Theorem 5.1.8.13 to the canonical two—sheeted covering
(G4 (n, k), proj, G(n, k)), the rest is plain. O

Theorem 5.2.8.4. If0 < r < 2n—2k+1, then 7.(CG(n, k)) = m_1(U(k)), and
the inclusion homomorphism 7,.(CG(n, k)) — 7.(CG(n', k)) is an isomorphism
for all n' > n.

Proof. The proof repeats that of Theorem 5.2.8.2 mutatis mutandis. O
Theorem 5.2.8.5. If 0 < r < 4n — 4k + 3, then n.(HG(n, k)) = m—1(Sp(k)),

and the inclusion homomorphism m,.(HG(n, k)) — m.(HG(n', k)) is an isomor-
phism for all ' > n.

Proof. Again, the proof repeats that of Theorem 5.2.8.2 mutatis mutandis. [

5.2.9 Exercises

Ezercise 5.2.9.1. Let ¢ = 2,4, 8, and let proj: S?9~1t0S be the Hopf map. Show
that for any integer k

(ksph,) o proj, (sphy, ;) = k* proj, (sphy, ;).
Ezercise 5.2.9.2. Show that for any positive integer n, RP™ is (n + 1)-simple.
Ezercise 5.2.9.3. Let n be even and k be odd. Show that G(n, k) is simple.

Ezercise 5.2.9.4. Let 3 < n < co. Show that G(n,2) is not 2-simple.
Ezercise 5.2.9.5. Show that the inclusion homomorphisms

m(SO(3)) — 7,.(SO(4)), m-(SO(7)) = 7,.(SO(8)), m(U(1)) — m.(U(2)),
m(U@3)) = m(U(4)), m(Sp(1)) = m(Sp(2))
are monomorphic for any integer 7.

Ezercise 5.2.9.6. Consider the map CV (n, k) — V(2n, 2k — 1) which takes each
k-frame (v1,...,v;) of C™ into (vy,dv1,...,v5—1,i0k—1,v;) of C™, considered as
R2". Show that the homomorphism

7T2n_2k+1((CV(TL, k)) — 7T2n2k+1(V(2n, 2k — 1))

induced by this map takes the generator of ma,_2x+1(CV(n,k)) indicated in
Corollary 5.2.7.3 into the generator of ma,_ax+1(V(2n,2k — 1)) indicated in
Corollary 5.2.7.2.
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5.3 HOMOTOPY GROUPS OF CELLULAR SPACES

5.3.1 The Homotopy Groups of One-dimensional Cellular
Spaces

Definition 5.3.1.1. In this subsection we compute the homotopy groups of
a bouquet B =V )/ (Sy = St,ort;) constructed from an arbitrary family,
{S,, = S'},enr of circles. As usual, the base point bp will be the centre of the
bouquet.

To simplify the exposition, we let v, and o, denote the loop defined by the
inclusion Imm,,: S' — B, i.e., the loop Imm, oIS: I — B, and the homotopy
class of u,, i.e., Imm,,, (sph; ), respectively. A loop will be referred to as standard
if it is of the form (- - - ((v1v2)v3) - - - Up—1)vp, where each of the factors vy, ..., v,
is either one of the loops u, or one of their inverses u;l and, in addition, two
loops u,, u;l with the same p are not allowed to be adjacent. The case n =0
is not excluded: then, the product is simply the constant loop with origin bp.

Lemma 5.3.1.2. There is a covering (E,p, B) with the following two properties:
(i) B is contractible;

(11) the paths which cover standard loops and originate at some point xo of the
fibre Fy = p~1(bp) end at distinct points of Fy, and Fy is evhausted by the
ends of these paths.

Proof. Let us agree to denote by GF (M), as usual, the free group generated
by the set M. We equip GF(M) with the discrete topology, form the bouquet
A=V,en(Dy = D', 0), and then the product A x GF(M). Further, let p
be the partition of A x GF(M) into the pairs {(Imm,,, (1), g), (Imm,(—1), gu)}
with y € M and g € GF(M), and the points which do not appear in any of
these pairs, and denote by p the composition

roi DS, =DS
Ax GF(M) 222 A VD570

Then p is obviously constant on the elements of p. Now set
B=[AxGF(M)|/p, p=l[factp: B— B, o= proj(ao,e),
where ag is the centre of the bouquet A, e = eqr ), and
proj = [proj: A x GF(M) — B.

Then it is readily seen that (B, p, B) is a covering with Fy = proj(ag x GF(M))
and xqg € Fy. _

The contractibility of B follows from Lemma 2.3.3.4: in fact, the subspaces
proj(A x [GF(M) \ GF,—1(M)]) of B, where GF,, (M) is the part of GF'(M)
consisting of words of length < n, satisfy the conditions of this lemma. The
path with origin xy which covers the standard path

(--- (u‘;lluffz) e )qu'L [E1,...,en = £1],
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ends at the point proj(ag, g), with g = ugtug? -+ -ugn . Clearly, the ends of these

paths are pairwise distinct and exhaust Fj. O

Theorem 5.3.1.3. The groups 7,.(B) with r > 1 are trivial, whereas 71 (B, bp)
is a free group with free generators v, .

Proof. The proof is based on Lemma 5.3.1.2 and uses the same notation. Since
B is contractible, all its homotopy groups are trivial, and hence so are the groups
7-(B) with r > 1; moreover, the map A: 7y (B,bp) — mo(Fo,zo) is invertible
(see Theorem 5.1.8.13). Combining the invertibility of A with property (ii) of
the covering (E, p, B), we see that the homotopy classes of the standard loops
are pairwise distinct and exhaust 71(B,bp). Consequently, 71 (B, bp) is a free
group with generators o, € M. O

Corollary 5.3.1.4. The fundamental group of a connected one-dimensional
cellular space is free, whereas its higher homotopy groups are trivial.

Proof. This is a corollary of Theorem 5.3.1.3, because every connected one-
dimensional cellular space is homotopy equivalent to a bouquet of circles (see
Theorem 2.3.3.6). O

5.3.2 The Effect of Attaching Balls

Remark 5.3.2.1. Let X = AU, [[],cp (D, = DFFY)], where A is a connected
topological space, and ¢ is a continuous map [[ ¢ (S, = S*) — A (see Lemma
2.3.2.1), and let xg € A. In this subsection we exhibit a system of generators
for the group m41(X, A, x0) [k > 1].

We remark that the homotopy groups 7,.(X, A) with r» < k are trivial (see
Lemma 2.3.2.1), whereas for r > k+1, 7,.(X, A) is already a much more compli-
cated object: in the simplest case, when A is just a point and the family {D,,}
consists of a single ball, 7,.(X, A) equals 7, (S¥*1).

In Theorem 5.3.2.2 below, f, denotes the composite map

incl Imm
DE =4 T Dy — X,
v

and a, € mp41(X, A, fu(ort1)) is the class of the spheroid
fM: (Dk+la Sk7 Ortl) — (X7 A7 fu(ortl))'

Theorem 5.3.2.2. Let w,: I — A be an arbitrary path joining the points
fulorty) and xo. If k > 1, then w1 (X, A, o) is generated over m (A, xo) by
the classes B, = Ty, oy [i.e., it is generated, in the usual sense, by the classes
T8, with w € m1(X, A, z0)]/.

Proof. We claim that every element 8 € m11(X, A, zg) can be represented as

m

B =170 (Bu)E (i€ M, w; € m (A, x0)). (5.3.2.3)

i=1
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By Lemma 2.3.2.1, there is a spheroid g € Sphko+1(X,A,x0) in the class p,
and similarity transformations o1, ...,0,, mapping D+ onto pairwise disjoint
balls dy,...,d,, C int D¥*!, with the following properties:

e the point of d; having the largest value of the first coordinate coincides
with o;(orty);

e the segment joining this point with ort; lies in C' = D*¥+1\ U™, int d;;

e the composition D1 25 ¢, Incl mk+1 9y X ig identical with one of the
maps fu;
° g(C) C A.

Now it is clear that, if we suitably re-index the balls dy, ..., d,, then X, A, ¢, g,
and dy, ..., d,, satisfy the conditions of Theorem 5.1.11.1, and hence we have, in
the notation of this theorem, v = [T;~, T, (v;). In our case, v = fand ; = ail;
the last equality is a consequence of the fact that «,, and 7; are the elements
of mp41(X, A, f,, (orty)) represented by the spheroids f,, and g o 7;, which are
transformed one into another by the orthogonal transformations of D1, o~ 1o
abr7;, (abr7;)~! o o; (which are inverses of one another). Consequently, 3 =
[T, Ts,(af!), and to obtain (5.3.2.3), we need only write w; for the class of

the loop w;il Si- O

Corollary 5.3.2.4. Under the hypotheses of Theorem 5.3.2.2, the inclusion
homomorphism 7,.(A,x9) — 7.(X,x0) is an isomorphism for r < k — 1, and
an epimorphism for r = k. The kernel of this epimorphism is generated over
m1(A, z0) by the classes 0B, = Ty, (0ay) [i.e., by the classes of the attaching
spheroids Of,, translated to x].

Theorem 5.3.2.5. Let (X, A) be a cellular pair with base point xo. If A is
connected and A D skely X, with k > 1, then 7,.(X, A) is trivial for all r < k.
Moreover, mp1(X, A, xg) is generated over w1 (A, xo) by the classes of the char-
acteristic maps of the (k+1)-cells in X\ A (regarded as spheroids), translated to
xo along arbitrary paths. The inclusion homomorphism (A, xo) — 7-(X, o)
is an tsomorphism for r < k — 1 and an epimorphism for r = k; the kernel of
the latter is generated over 71 (A, xg) by the classes of the attaching spheroids of
the (k4 1)-cells in X \ A, translated to xo along arbitrary paths.

Proof. When X \ A C skelg;1, all these assertions follow from Remark 5.3.2.1,
Theorem 5.3.2.2, and Corollary 5.3.2.4. The general case is reduced to this
special situation by Theorem 2.3.2.6. O

5.3.3 The Fundamental Group of a Cellular Space

Remark 5.3.3.1. In this subsection we present an effective method for computing
the fundamental group of a cellular space possessing a single O-cell. This last
condition is not a serious limitation, since, firstly, it is fulfilled in the most
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important cases and, secondly, every connected space can be transformed, by
taking a rather simple quotient, into a homotopy equivalent space which meets
our requirement (see Subsection 2.3.3). It is by no means difficult to generalise
the computation scheme to arbitrary cellular spaces; however, the exposition is
cumbersome.

Remark 5.3.3.2. Let X be a cellular space with a single 0-cell xy. Since zq is
also the unique 0-cell of skel; X, this skeleton is homeomorphic to a bouquet
of circles. Consequently, 7 (skel 1X,x) is the free group generated by the
homotopy classes of the characteristic loops, i.e., of the characteristic maps of
the 1 -cells (see Theorem 5.3.1.3).

According to Theorem 5.3.2.5, incl, : 7 (skel 1X, 29) — 71 (X, zg) is an epi-
morphism whose kernel is generated over 7 (skel; X, 29) by the homotopy classes
of the attaching maps of the 2-cells of X, translated to xg along arbitrary paths.
In our case, m (skely X, zg) acts as a group of inner automorphisms, and hence
kerincl, is the smallest normal subgroup of m (X, zg) containing the above el-
ements. Thus, the fundamental group that we want to compute is canonically
isomorphic to the quotient group of m(skel; X, zg) by this normal subgroup.

Remark 5.3.3.3. The discussion above shows that in order to compute m1 (X, o)
it suffices to know the 1-skeleton of X and the attaching maps of the 2-cells of
X. Given these data, we can exhibit a system of generators and relations for
m1 (X, xp): to each 1-cell corresponds a generator, namely the class of the re-
spective characteristic loop; each 2-cells defines a relation, namely that the class
of the attaching map of the given 2-cell, when translated to xg and expressed
in terms of generators, must be equal to the identity element of 71 (X, ). In a
very simplified fashion, we may say that a set of generators of 71 (X, z¢) consists
of the 1-cells of X, while a system of relations consists of the 2-cells.

We remark that the system of relations is not entirely canonical, because
it depends upon the choice of the paths along which we do the translation;
consequently, the left-hand sides of the relations are determined only up to
conjugation.

Lemma 5.3.3.4. The fundamental group of a finite connected cellular space
has a presentation given by a finite number of generators and relations.

An Additional Theorem

Definition 5.3.3.5. If A and B are subspaces of the topological space X, with

inclusions

ANB X

N A

B
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and g € AN B, then the rule a x 8 — i, (a)j.(8) defines a homomorphism
1 (A, xo) x m1(B,29) — m(X,20) [* denotes the free product]|, whose kernel
contains all the elements of the form i,(0)j.(5) with 6 € (A N B, zp). There-
fore, the same rule defines a homomorphism

[m1(A, x0) * 1 (B, 20)]/ vk(X, A, B, x0) — m1(X, o), (5.3.3.6)

where vk(X, A, B, z() designates the smallest normal subgroup of m(A,xg) *
m1(B,xz9) — 71 (X,x0) containing the indicated elements (and is known as
the van Kampen subgroup). Furthermore, homomorphism (5.3.3.6) is natural,
meaning that the diagramme

[7T1(A,x0)*Wl(B,xo)]/Vk(X,A,B,xo) 4>771(X,$0)

! |

[m (A", z0) xm (B, xp)]/ vk(X', A", B' ) — m1 (X', xp)

produced by a continuous map (X, A, B,zo) — (X', A’, B’,x() always com-
mutes.

Theorem 5.3.3.7. Let (X, A, B) be a cellular triad (i.e., a cellular space X
with two subspaces, A and B, such that AUB = X), and let zo € D = AN B.
If A, B, and D are connected, then (5.3.3.6) is an isomorphism.

(This theorem will be generalised in the next section; see Remark 5.4.3.12.)

Proof. Let us assume first that X has a single 0O-cell 3. By Remark 5.3.3.3,
the fundamental group at zy of any of the spaces A, B, C, or D admits a
presentation by generators and relations corresponding to its 1-cells and respec-
tively its 2-cells. Therefore, the system of generators and relations of 71 (X, zg)
(m1(D,x0)) is the union (respectively, intersection) of the systems of generators
and relations of 71 (A, xo) and 71 (B, x¢), and the homomorphisms i, j., ¢, and
Jji from Definition 5.3.3.5 act as the identity on generators. Using the systems
of generators and relations of 71 (A, z¢) and 71 (B, zo) we may build a system of
generators and relations of the group m (A, xg) x 71 (B, zp); however, the gener-
ators corresponding to the 1-cells in D must be counted twice. With this choice
of generators and relations, the homomorphism

(A, o) * 1 (B, xg) — m (X, x0), a*xfB i, (a)il(B),

is the identity on generators, and its kernel is generated by the elements obtained
by identifying the generators corresponding to the 1 -cells in D. This completes
the proof of the case that we considered.

To reduce the general case to this special one, we shall transfer the ori-
gin from xy to an arbitrary O-cell ey in D (by a translation inside D), and
then replace the quadruplet (X, A, B, eg) by a homotopy equivalent quadruplet
(X', A", B', eq/) with a single 0-cell, e}, and such that A’U B’ = X’. We exhibit
such a quadruplet by taking quotients twice:
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e first, the quotient of X by a contractible one-dimensional subspace of D
containing skelp D (see Theorem 2.3.3.5 and Definition 1.3.3.7, and cf.
Theorem 2.3.3.6),

e and subsequently the quotient of the resulting space by the union (bou-
quet) of contractible one-dimensional subspaces of the quotients of A and
B containing the 0-skeletons of these quotients.

O

Corollary 5.3.3.8. If A and B are cellular spaces with 0-cells a and b as base
points, then w1 ((A,a) \/(B,b),bp) = m1(A,a) * (B, D).

5.3.4 Homotopy Groups of Compact Surfaces

Remark 5.3.4.1. Recall that a sphere with handles and cross-caps and at one
hole is homotopy equivalent to a bouquet of circles, the number of circles being
2g+/¢—1 when g handles and ¢ holes are present, and h+£—1 when h cross-caps
and ¢ holes are present (see Theorem 3.5.3.9). Thus, the fundamental group of
such a surface is free, having 2g + ¢ — 1 or h + ¢ — 1 generators, respectively,
whereas the higher homotopy groups are trivial; see Theorem 5.3.1.3.

Below we shall discuss the homotopy groups of closed surfaces, i.e., of spheres
with handles or cross-caps, but no holes. First (using the cellular decomposi-
tions indicated in Subsection 3.5.3, and Remark 5.3.3.3) we compute the fun-
damental groups, and then (by means of a simple device) we handle the higher
homotopy groups. We disregard the sphere and the projective space, whose
homotopy groups have been computed in the previous section (see Theorems
5.2.2.7, 5.2.2.10, Remark 5.2.4.3, and Theorem 5.2.5.1), and need no further
comment.

The Fundamental Groups of Closed Surfaces

Remark 5.3.4.2. The cellular decomposition of a sphere with g handles, con-
structed in Remark 3.5.3.8, contains one O-cell eg, 2g 1-cells ai,bq,...aq,bg,
and one 2-cell, whose attaching map takes ort; into eg. Let aq,f1,...aq, B
denote the generators of the fundamental group of the 1 -skeleton of the given
surface which correspond to the 1-cells a1, b1, ... a4, by. The the homotopy class
of the above attaching map (regarded as a loop) is the word

“1p—1 “1p-1
04161041 ﬂl "'O‘gﬂgag ﬂg .

Therefore, the fundamental group of our surface at the point ey may be described
as the group with generators a1, b1,...aq, by, and the relation

arbra; oyt agbgaglbgl =1

The cellular decomposition of a sphere with h cross-caps (see Remark 3.5.3.8)
contains one 0-cell eg, h 1-cells ¢y, . .., cp, and one 2-cell. Repeating the previous
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argument with the obvious changes, we see that the fundamental group of this
surface at ey can be described as the group with generators c¢y,...,c, and the
relation

cier - epep = 1.

Remark 5.3.4.3. It is important to note that the groups computed in Remark
5.3.4.2 are pairwise non-isomorphic. (To see this, factor each fundamental group
by its commutator subgroup: for a sphere with g handles this yields a free
Abelian group of rank 2g, while in the case of a sphere with h cross-caps the
result is the direct sum of a free Abelian group of rank h—1 and a group of order
2.) In particular, the closed model surfaces are pairwise non-homeomorphic.

From this it is readily seen that the compact model surfaces are also pairwise
non-homeomorphic: it suffices to seal up the holes by discs. The number of holes
is a topological invariant, because it equals the number of components of the
boundary (see Remark 3.1.1.4 and Theorem 4.6.5.13).

The Higher Homotopy Groups

Theorem 5.3.4.4. Let P be a sphere with g handles. If g > 1 and r > 2, then
. (P) = 0.

Proof. 1t is clear that P admits as a covering space the infinite garland P
constructed from S' x R by

e first removing small open discs centred at the points (orty, 2k) [k = 0, +1,. ..

e and then glueing a sphere with g — 1 handles and one hole in the place of
each such disc (see Fig. 5.3).

Figure 5.3: (g = 3)

Denote by an the finite garland constructed in the same fashion from the product
St x [-2n — 1,2n + 1]. Obviously, P, is a sphere with (2n + 1)(g — 1) handles
and two holes, so that m,.(P,) = 0 for all » > 2 (see Remark 5.3.4.1). Since P =

ligl(Pn,inclz P, — Pp41), we also have m,.(P) = 0 for all r > 2 (see Theorem
5.1.11.5). Consequently, m,.(P) = 0 for all » > 2 (see Theorem 5.1.8.13). O

Corollary 5.3.4.5. Let P be a sphere with h cross-caps. If h > 2 and r > 2,
then m.(P) = 0.
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Proof. Since P admits a sphere with h — 1 as covering space (see Example
4.1.2.6), this is a corollary of Theorem 5.3.4.4. O

5.3.5 The Homotopy Groups of Bouquets

Remark 5.3.5.1. Suppose that we are given a family {(X,,z,)} of pointed
Ti-spaces, and consider the bouquet B = \/ueM(wa#)' Then the formula
Imm({ovbuenr) =32, cpr Immy, (o) defines a homomorphism

Imm: DPuem WT(X;U:L',LL) - WT(Babp)

for any r > 2. This homomorphism is natural, i.e., if B’ = vu’eM’ (X, 7))
is another bouquet of T%-spaces, o: M’ — M is arbitrary, and f, : (X', 2') —

(Xo(u), To(ywy) are continuous, then the following diagramme commutes

Ouwem (X, 1)) Amm_ o (B, bp) (5.3.5.2)

| |

@HGM'/TT(X;U x,u) W '/Tr(Ba bp)

where the left vertical map is the homomorphism

{O‘:L/};L’EM’ = Z (fu’)*(a;ﬂ)

pea=t(p) weM
and the right vertical map is the homomorphism induced by the map
B' — B, Tmmy(y,,) = Imm,yofu(y,) [y, € X,,p € M]

Lemma 5.3.5.3. Given any o € 7.(B,bp) [r > 1], there is D° finite set M’ C
M such that

e proj,(a) =0 if p€ M\ M’;
e « lies in the image of the homomorphism 7.(B’,bp) — (B, bp) induced
by the natural embedding of the bouquet B" =\/ ,c7p (Xpu, @y) in B.

Proof. We only have to observe that for any spheroid ¢ € Sph£ B,bp), p(I") is
covered by a finite number of sets Imm,, (X). [Indeed, since ¢(I") is compact
and every point of X is closed in X, we can choose a point in each non-empty
intersection ¢(I”) NImm, (X, \ z,) and in this way produce a set which, being
both discrete and compact, is finite.] O

Remark 5.3.5.4. Let r > 2 and define the map Pr: 7,.(B,bp) = ®permr (X, x,)
by Pr(a) = {proj,,(@)}uem (Lemma 5.3.5.3 shows that this definition is cor-
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rect). Obviously, Pr is a homomorphism and diagramme (5.3.5.2) remains com-

. I P
mutative when we replace —— by «—.

Suen (X, 2) <—— 7,.(B',bp) (5.3.5.5)

W

| |

Suemmr( Xy, ) ~5 7 (B, bp)

If M is finite, then Pr equals the composition of the homomorphism
(B, bp) — . ( H Xy Azu})
neM

induced by the inclusion B — [],c) X, (see Definition 1.2.8.3) with the
canonical isomorphism 7, ([],cps Xp: {2n}) = Spemmr(Xy, z,) (see Theorem
5.1.1.15).

Theorem 5.3.5.6. Prolmm equals the identity automorphism of the group
Suemmr (X, xz,). In particular, Pr is epimorphic, Imm 4s monomorphic, and
7 (B, bp) = ker Pr @ im Imm.

Proof. Since proj,, o Imm,, = idx, and proj, oImm,(X,) = =z, for v # pu,

ProTmm({a,}uen) = Pr[ > Tmmy,, (o))
neM

= {Z (proj,, oImmM)(aM)}VEM = {al/}l/EM
neM

for any o, € m.(X,,2,) and p € M. O

Theorem 5.3.5.7. Let (X,,x,) be cellular pairs, and let m, k, (uinM) be
positive integers such that k, + k, > m for v # p, and for any v

To(Xp,2u) =0 for 1<s<k,.
If 2 <r <m, then

Imm: ®pen 7 (X, x,) — 7 (B, bp)
Pr: 7T7‘(Ba bp) — GBMEMTFT(XAM xﬂ)
are isomorphisms.
This theorem will be generalised in the next section; see Definition 5.4.3.1.

Proof. Suppose first that M is finite. By Theorem 2.3.3.2 and the fact that
Imm is natural (see Remark 5.3.5.1), we may assume that skel;, X, reduces to
the point x, for all ;4 € M. In this case, B D skel,,41 X, where X is the cellular
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product of the spaces X,,. By Theorem 2.3.2.4, incl,: 7.(B,bp) — m,.(X,bp) is
an isomorphism for » < m. According to Theorem 5.1.1.15,

incl, oImm: @puen 7 (X, ) — 7 (B, bp)

is an isomorphism for any r. Therefore, Imm is an isomorphism for r < m.
In the general case, Lemma 5.3.5.3 shows that for any o« € m.(B,bp) and
r < m, there is a finite sub-bouquet B’ = V,ycnr, (Xu,2,) of B such that o
lies in the image of the homomorphism 7,.(B’, bp) — ,.(B, bp) induced by the
natural embedding B’ — B. Using Remark 5.3.5.1, this homomorphism is part
of the commutative diagramme
e (X, 2l) 2 7 (B, bp) (5.3.5.8)

wtp

| |

Suemmr (X, x,) WTFT(Babp)

But we have already proved that the upper Imm is an isomorphism, so that «
also lies in the image of our (lower) Imm. Therefore, the latter is an epimor-
phism and this, combined with Theorem 5.3.5.6, implies that Imm and Pr are
isomorphisms. O

Corollary 5.3.5.9. Let B be a bouquet of n-dimensional spheres, constructed
from o family {(§, = S”,ort1)}uem. If n > 2, then the groups m.(B) with
r < n are trivial, whereas m,(B,bp) is a free Abelian group with free generators
Imm,,. (sph,,).

5.3.6 The Homotopy Groups of a k-Connected Cellular
Pair

Lemma 5.3.6.1. (A diagramme lemma) Consider the following commutative
diagramme of groups and homomorphisms

0—»

y l

0——s

B

If o, B, and ~ are epimorphic and ker 8 C «(kerwy), then & is epimorphic,
ker 8 = a(kery), and ker § = ~y(ker o).

Proof. Since the diagramme is commutative and «, 8 are epimorphic, ¢ is epi-
morphic. The commutativity of the diagramme implies also that a(kery) C
ker 8 and «y(ker o) C kerd. Let us verify that ker 6 C y(ker o). Pick d € kerd. If
d = v(a), then a(a) € ker  (again by commutativity), whence a(a) € a(ker),
i.e., there is ¢ € ker~ such that a(c) = a(a). The last equality yields ac™! €
ker o, and we have d = y(a) = v(ac™!) € y(ker a). O
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Theorem 5.3.6.2. Let (X, A) be a cellular pair with base point xg € A. If

A is connected and, for r < k, n.(X,A) = 0, then proj,: mpi1: (X, A, 20) —
Trt+1(X/A, proj(zg)) is epimorphic, and for k > 1 ker proj, is the smallest sub-
group of Tey1(X, A, x0) containing all the “ratios” (T,a)a ™! with o € m41(X, A, x0)
and o € w1 (A, x9). For k = 0, the situation is described by the commutative
diagramme

incl, rel.

7T1(A,"£0) Hﬂ'l(X,lL'o) —>7T1(X,A, CEO) (5363)

proj.
abrs proj,

Thy1(X/A, proj(zo))

where abrs proj, and rel, are also epimorphic, and ker(abrs proj,) is the smallest
normal subgroup of m.(X, z¢) which contains kerrel, = Sincl,.

(This theorem will be generalised in the next section; see Remark 5.4.3.15.

Proof. The proof is quite involved.

PROOF OF THE CASE k > 1. Suppose first that X \ A consists only
of (k+ 1)-cells and, as a consequence, X/A is a bouquet of (k + 1)—dimensional
spheres. For each cell e € X \ A, consider the homotopy class of its charac-
teristic map (viewed as a spheroid of the pair (X, A)), and translate it to xq,
denoting the resulting element of my1(X, A, 29) by a.. Set 8. = proj,(a.).
By Theorem 5.3.2.5, the classes (T,a) with o € m1(A, o) form a system of
generators of m;41(X, 4, 20), and by Corollary 5.3.5.9, the classes §. form a
system of independent generators of the Abelian group mj41(X/A, proj(xo)).
Moreover, it is obvious that proj,.,(Ty«a) = proj,(«) for all « € w1 (X, A, )
and o € m(A4,x0), and these facts will suffice to complete the proof of the
theorem for k > 1. Since S. = proj,(«a.) generate mx1(X/A, proj(zo)), proj,
is epimorphic. Further, since proj,(T,a) = proj,(a), we have (T,a)a"t €
ker proj,. Let us show that the ratios (T,a)a~! generate kerproj,. If k > 1
and the class EH(67U)(T0ae))‘(e*") [with only a finite number of non-zero inte-
gers A(e,0)| belongs to ker proj,, then > _A(e,0) = 0 for any cell e (because
> [32, A€, 0)]8e = proj,.(a) = 0), and thus & =[], ,[(Toac)a;']M). When
k =1, this argument is valid only after we factor mx1(X, 4, z¢) by its commu-
tator subgroup, and it only demonstrates that every element of ker proj, is a
product of the above form multiplied by some commutators. However, since in
ma(X, A, zo) each commutator v~ 15y equals (T,6)6 ! (see Theorem 5.1.4.9),
we obtain again the desired decomposition of ¢ into ratios (T,a)a L.

In the general situation, we first transform (X, A) into a k-connected pair,
removing those components of X which do not contain zg, and then replace it
by a homotopy equivalent pair (X', A’) such that skel, X’ C A’ (see Theorems
5.1.4.8 and 2.3.3.1). Thus, we may assume that skely C A. Now set ¥V =
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A Uskelg1 X and consider the commutative diagramme

i=incl,

1 (Y, A, 20) Tr1(X, A, o)

p'=proj, J/ lp—prOj*

1 (Y/A, proj(xo))iﬁ 1 (X /A, proj(zg))

Here ¢, 7/, and p’ are epimorphic:
e i because skelg 11 X C Y,
e i/ because skel;11(X/A) C Y/A,
e and p’ because of the proof above.

We claim that our diagramme also satisfies the last condition of Lemma 5.3.6.1:
keri’ C p’(ker1).

To see this, note that every (k + 2)-cell from (X/A) \ (Y/A) is the image
under p of some cell e from X \ Y, and its corresponding attaching map can be
expressed as projoatt.. By Theorem 5.3.2.5, this implies that

keri' C proj, (kerincly), incl, = [incl.: mp11(Y,20) = mpt1(X, 20)],
proj. = [proj.: mri1(Y, o) = mrr1(Y/A, proj(zo))].

Since the diagramme

el
Th+1(Y, Yo) ———> 1 (X, 7o)

rel. l irel*

7T/€+1 (Y) Aa .TO) ? 7Tk+l (Xa A7 xo)

commutes and proj, = p’ o [rel, colonmy1(Y, o) — mry1(Y, A, z0)], we see that
proj, (kerincl,) C p'(ker), whence keri’ C p’(ker4).

Applying Lemma 5.3.6.1, we conclude that p is epimorphic and kerp =
i(ker p'). We have proved already that ker p’ is generated by the ratios (T,a)a 1)
with o € 41 (Y, A, 20) and o € w1(A, o). Sincei((Tya)a™t) = [T, (i(a))](i(a)) ™!
and i is epimorphic, kerp is generated by the ratios (T,a)a~™!) with a €
7Tk+1(X, A, 1’0) and o € 7T1(A, {IT()).

PROOF OF THE CASE k = 0. The commutativity of (5.3.6.3) is obvi-
ous, while the fact that rel, is epimorphic results from the connectedness of A.
It remains to verify that abrs proj, is an epimorphism with the indicated kernel.
If xg is the unique O-cell of X, this follows from Remark 5.3.3.3: indeed, the
system of generators and relations for (X /A, proj(zo)) given in Remark 5.3.3.3
can be obtained from the system of generators and relations for m; (X, x¢), also
appearing in Remark 5.3.3.3, by deleting the 1-cells and 2-cells of A. When zq
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is not the unique 0-cell of X, we may still reduce to this special case by translat-
ing inside A the origin at some 0-cell ey, and subsequently replacing the triple
(X, A, ep) by a homotopy equivalent triple (X', A’, ef,) having a single 0-cell ef,.
To produce such a triple, we take quotients twice:

e first the quotient of X by a one-dimensional contractible subspace of A
containing skely A,

e and then the quotient of the resulting space by a one-dimensional con-
tractible subspace which contains all its 0-cells

(cf. the proof of Theorem 5.3.3.7). O

Theorem 5.3.6.4. Let X be a cellular space, and let A be a simply connected
subspace of X. Then X/A is k-connected (0 < k < o0) if and only if the
pair (X, A) is k-connected. If this condition is fulfilled for some k < oo, then
proj, : m+1(X, A, o) = 71 (X/A, proj(zg)) is an isomorphism.

Proof. The second assertion is an obvious corollary of Theorems 5.3.6.2 and
5.1.4.8. The first assertion follows from the second by induction on k. However,
note that to deduce the k-connectedness of X/A from the k-connectedness of
(X, A), Theorems 2.3.3.1 and 2.3.3.2 suffice. O

Corollary 5.3.6.5. If the cellular space X with the 0-cell x¢ as base point is
k-connected, then sus: mp41(X, x0) = Tgro(sus(X, xo),bp) is an isomorphism.

Proof. This is a corollary of Theorem 5.3.6.4 (see Remark 5.2.1.2). O

INFORMATION

Remark 5.3.6.6. Under the assumptions of Theorem 5.3.6.4, if A is ¢-connected
(1 < ¢ < ), then proj,: m.(X, A, x9) — m.(X/A, proj(zo)) is an isomorphism
for r < k4 ¢ and an epimorphism for r = k 4+ ¢ + 1.

Under the assumptions of Corollary 5.3.6.5, sus: m,.(X, z¢) — 7,41 (sus(X, xo), bp)
is an isomorphism for r < 2k and an epimorphism for » = 2k + 1 (cf. Theorem
5.2.1.4).

5.3.7 Spaces with Prescribed Homotopy Groups

Lemma 5.3.7.1. Let 7 be a group and n a positive integer. If w is Abelian or if
n = 1, then there is a connected cellular space X such that all the groups m.(X)
with r # n are trivial, whereas m,(X) = .1

Proof. We proceed by induction and construct connected cellular spaces X, X1, ...,
with base points xg, x1, . . ., and base-point preserving cellular embeddings pg: Xg —
Xl,wl: X — XQ, ... such that:

!Translator’s note. A space with such homotopy groups is known as a cellular K(m,n)-
space or as a cellular space of type (m,n).
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(i) the groups 7, (X, zx) with r <n and n < r < n 4+ k are trivial;
(ii) 7 (Xg, zx) is isomorphic to T;
(iil) ks (XK, xk) = Tp(Xk+1, Tg+1) is an isomorphism.

Then the space X = lig(Xk, ¢k) will have the desired properties (see Remark
2.1.5.7 and Theorem 5.1.11.5).

To produce (X, zo), write m as a factor group F/F’, where F is a free
group if n = 1, and a free Abelian group if n > 1. Let B and B’ be bouquets
of n-dimensional spheres such that 7,(B,bp) = F and m,(B’,bp’) = F’ (see
Theorem 5.3.1.3 and Corollary 5.3.5.9). Further, let f: (B’,bp’) — (B,bp) be
a continuous map such that f.: m,(B’,bp) — 7,(B,bp) equals the inclusion
F' — F (one can construct such a map out of a family of spheroids whose
classes in m,(B,bp) = F constitute a free system of generators for F”’). Now
replace each sphere in B’ by the ball that it bounds and take Xy to be the
result of attaching this new bouquet (of balls) to B by f. Theorem 5.3.1.3,
Corollaries 5.3.5.9, and 5.3.2.4 show that X, and z¢ = Imm; (bp)[= Imms(bp)]
satisfy conditions (i) and (ii) for & = 0.

Assume that for some i > 1, pointed spaces (X, xy), k < 4, and maps ¢,
k < i —1, are already constructed and satisfy conditions (i), (ii), and (iii).
Represent m,4;(X;—1,2;—1) as the factor group of a free Abelian group, say G,
and then construct a bouquet C of (n + i)-dimensional spheres, together with a
map ¢g: (C,bp) — (X;—1,x;-1) such that g.: m,4+1(C,bp) = Tpi1(Xi—1,2i-1)
equals the projection G — m,,4+;(X;—1,z;—1). [To establish the existence of such
a C and g, one may proceed as in the proof of the existence of B’ and f above;
however, here Theorem 5.3.1.3 is not necessary.] Now replace each sphere of C'
by the ball that it bounds and then attach the resulting bouquet to X;_; by g
to obtain X;. Finally, set £ = Imms(X;_1) and ¢;—1 = Immy. The fact that
(X, x;) satisfies (i), (ii) for k = 4, and @g_1 satisfies (iii) for k = i — 1, is a
consequence of Corollary 5.3.2.4. O

Theorem 5.3.7.2. Given an arbitrary group w1 and arbitrary Abelian groups
T9, T3, . .., there exists a connected cellular space X such that 7.(X) 2 7w, (r =
1,2,...).

Proof. Let X1, X5,... be connected cellular spaces with O-cells x1,zs,... as
base points, such that the groups 7,.(X}) are trivial for r # k, whereas m(X}) =
7 (see Lemma 5.3.7.1). Define inductively cellular spaces Yy, Y7, ... and cellular
embeddings ¥5: Yy — Yee1 by Yo = DY, Vi1 = Vi X Xpy1, and Yp(y) =
(y,xk+1). Applying Theorems 5.1.1.15 and 5.1.11.5, the space X = M(Xkﬂbk)
has the desired properties. O

5.3.8 Eight Instructive Examples

Example 5.3.8.1. If » > 1, then the r-th homotopy group of a finite, connected
cellular space is not necessarily finitely generated (cf. Lemma 5.3.3.4). The
bouquet (S",ort;) V (St orty) is a simple illustration of this phenomenon: its
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r-th homotopy group (r > 1) is a free Abelian group of infinite rank. Indeed,
(S",orty) V (S, ort;) has a covering space which is homotopy equivalent to an
infinite bouquet of r-dimensional spheres: to produce such a space, attach one
copy of S” in one point at each integer point of the real line R.

INFORMATION. The homotopy groups of a finite cellular space with finite
fundamental group are finitely generated. For a proof, see [19].
Ezxample 5.3.8.2. Under the conditions of Theorem 5.1.6.8, the subgroup ker rel, =
imincl, of 71 (X, zo) is not necessarily normal (cf. 5.1.5.15).
Example: X is the bouquet of two circles, A the first circle, zg the centre of the
bouquet, and p takes the second circle into zg.

Ezxample 5.3.8.3. Under the conditions of Theorem 5.1.6.9, the right splitting of
the homotopy sequence of the pair (X, A) at 71 (X, zo) is not necessarily normal
(cf. Theorem 5.1.5.18).

Example: X = (D? orty)V (St orty), A = (S, orty) Vv (S, orty), o is the centre
of both bouquets, and h = [Immsy: S — X] o [proj,: X — St].

Ezample 5.3.8.4. For any k > 0 there exist k-connected pairs (X, A) with A
connected, which are not (k + 1)-simple; moreover, under the conditions of
Theorem 5.3.6.2, and for any k& > 0, the epimornhism proj, : pix+1(X, A4, z9) —
741 (X /A, proj(xp)) is not necessarily an isomorphism.

Example: X = (S¥*1 orty) v (St,orty), A = Immy(S') (cf. Examples 5.3.8.1
and 5.3.8.3).

Ezample 5.3.8.5. The second homotopy group of a pair (X, A) with connected
A is not necessarily Abelian, even when 7?71(A) is Abelian and X is simply
connected.

The simplest example: A = S x S, x5 = (orty,orty), and X is the result of
attaching two copies of D? to A by the maps S' — A given by y + (y,ort;)
and y — (orty,y). Then m(A) =Z®Z, ma(A) =0, m(X) =0, m(X) 2 Z

(X is homotopy equivalent to S?), and we have the exact sequence

incl, rel,

02 7 X (X, Ayz) S 2z 2 0 (5.3.8.6)

which shows, in particular, that O is epimorphic. Assuming that 7o (X, A, )
is Abelian, it follows from Theorem 5.1.4.9 that (A, zo) acts identically on
72 (X, A, zg), whence, by Theorem 5.3.2.2, rank mo(X, A,20) < 2. The latter
contradicts the exactness of (5.3.8.6).

Ezample 5.3.8.7. There exist 1-connected pairs (X, A) such that
pI'Oj* : 7T3(Xa A7 J}o) — 7T3(X/A, pI‘Oj($0))

is not even epimorphic.

Example: X = D?, A = S!, 2y = ort;. Here 7,.(X,A) = 0 for r # 2, whereas
m3(X/A) 2 Z (X/A is homeomorphic to S?).

Ezample 5.3.8.8. For any k > 2, there are (k—1)-connected but not k-connected
cellular pairs (X, A) with X and A connected and X/A contractible. To con-
struct an example, let

o€ m((Shorty) Vv (Sk,ortl),bp), o€ ﬂ'k((Sl,ortl) v (Sk,ortl),bp),
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designate the classes of the spheroids
Imm;: S' — (S orty) vV (S¥,orty), TImmgy: S¥ — (S'orty) v (SF, ort,),

respectively. Next, attach D¥*! to (S!, ort;)V (S¥,ort;) by an arbitrary spheroid
SF — (S, orty) v (S¥, orty) in the homotopy class 2ac — T, . Take the resulting
cellular space as X, and the circle skel; X as A. The quotient space X/A may be
described as the result of attaching D**! to S¥ by a map S*¥ — S* homotopic to
idgr, which implies that X/A is contractible (see Theorem 1.3.7.8). It is evident
that X and A are connected and that (X, A) is (k — 1)-connected; therefore, it
remains to check that 7 (X) is not trivial.

By Example 5.3.8.1 7 ((S!,orty) V (S¥,0rt;),bp) is a free Abelian group with
free generators o, = Toa (n = 0,+£1,...), while m(X) is the factor group of
7x((S*, ort1) V (S¥, orty ), bp) by its subgroup generated by the elements 2c,, —
ap+1. (see Theorem 5.3.6.2). Consequently, 7, (X) is isomorphic to the additive
group of binary rational numbers.

Ezample 5.3.8.9. The homomorphism f,: 71(X, 4, x¢) — 71 (X', A’, ') induced
by a continuous map f: (X, A, x9) — (X', A’,2’) is not necessarily an isomor-
phism even if all the homomorphisms

for (X, 20) = (X', 2p),  (abr f): m.(A,20) = 7. (A", 2)

are isomorphisms.
Example: X = X' = (S}, ort1) V (1,0), A = Imm; (orty) U Immsy (1),
A" = Imm; (S') UTmmy(1), o = zf = Immgy(1), and f = relidy.

5.3.9 Exercises

Ezercise 5.3.9.1. Consider the subset of (C* defined by the equation 2% = 2
where p and ¢ are coprime integers, and intersect it with the sphere S™3. Show
that the fundamental group of the complement of this intersection in S? is
isomorphic to the group with generators «;, s, which are connected by the
relation of = .

Figure 5.4: p=2,q=3

The above intersections (with various p, ¢) are all homeomorphic to a circle
and lie on the torus |v1| = v/2/2, |z2| = v/2/2 which is contained in S?; they
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are called torus knots. A torus knot and the torus which carries it are depicted
in Fig. 5.4 as they lie in R® = S\ bp.

Exercise 5.3.9.2. Consider the submanifold of CP? defined by the equation
2" + 25 4+ 2§ = 0 with m a positive integer (cf. Exercise 3.5.4.2). Show that
the fundamental group of the complement of this submanifold is isomorphic to
Z/mZ.

Exercise 5.3.9.3. Consider the submanifold of non-zero vectors in the total space
of the tangent bundle of a sphere with ¢ handles, and show that its fundamental
group is isomorphic to the group with generators ay,...ag4,b1,b1,...bg,d, which
are connected by the relations

arbia”iby " - agbgay byt = d*7%,

ard =dai,...,aqd =dag, bid=4dby,...,byd = db,.
Ezercise 5.3.9.4. Consider the submanifold of non-zero vectors in the total space
of the tangent bundle of a sphere with A cross-caps, and show that its funda-

mental group is isomorphic to the group with generators ¢y, ..., cp, d, which are
connected by the relations

cier--epep =d*M, eid =dey, ... end = dey,.

Ezercise 5.3.9.5. Let m be any group which can be presented by a finite num-
ber of generators and relations. Show that there exists a smooth, closed 4-
dimensional manifold whose fundamental group is isomorphic to .

Ezercise 5.3.9.6. Show that every smooth, closed, oriented manifold of dimen-
sion # 0, 3, is oriented cobordant to a simply connected manifold,

INFORMATION. This is also valid for dimension 3.
Ezercise 5.3.9.7. Show that in Example 5.3.8.5, mo(X, A, xo) is isomorphic to

the group with generators a, b, ¢, which are connected by the relations

ac=ca, bc=cb, aba lb"!=c.
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54 WEAK HOMOTOPY EQUIVALENCE

5.4.1 Fundamental Concepts

Definition 5.4.1.1. If X and Y are topological spaces, a continuous map
f: X =Y is called a weak homotopy equivalence if f.: m.(X,z) — m.(Y, f(x))
is an isomorphism for all » > 0 and all x € X. To justify this term, we remark
that every homotopy equivalence is a weak homotopy equivalence and that the
converse is not true. The first fact was established in Theorem 5.1.3.7; for the
second, see Definition 5.4.3.5.

The composition of two weak homotopy equivalences is obviously a weak
homotopy equivalence.

Theorem 5.4.1.2. Let f: X — Y be a weak homotopy equivalence. Then for
any cellular pair (K,L) and continuous maps ¢: : K =Y and¢: : L - X
with f o1 = ¢|, there is a continuous map x: : K — X such that x|p = ¢ and
f ox is L-homotopic to ¢. The converse is also true; moreover, if f: X —Y
is continuous and has the property that for any continuous maps, p: D" — Y
and : ST — X (r > 0) with f oy = @|g—1, there is a continuous map
x: D" — X such that x|s-—1 = and f ox is S"~1-homotopic to p, then f is a
weak homotopy equivalence.

Proof. To prove the first part, consider the mapping cylinder Cyl f (see Defini-
tion 1.2.6.10). By Theorem 2.3.1.3, there exists a homotopy ¢: K x I — Cyl f
of the composition

K%y 2 oy,
such that p(z,t) = Imm; (¢(2),1 —t) for all z € L, t € I. Since

rt folincl: X — Cylf] = f

and f is a weak homotopy equivalence, while rt f is a homotopy equivalence,
we conclude that incl is a weak homotopy equivalence. Hence,

incly: m (X, 2) = 7. (Cyl f, z)

is an isomorphism for all » > 0 and all z € X. Thus, (Cylf, X) is an oo-
connected pair (see Remark 5.1.6.7), and since ¢(L x 1) C X, there is an
L-homotopy K x I — Cyl f such that ¢¥(z,0) = ¢(z,1) for all z € K, and
(K x1) C X (see Theorem 2.3.1.6). Now define x: K — X by x(z) = ¢(z, 1).
Obviously, x|z = ¢, and the product of the homotopies rt f o ¢ and rt f o 1) is
an L-homotopy from f o x to ¢.

To prove the second part, we must check that f.: 7. (X, z) — 7.(Y, f(x))
is both epimorphic and monomorphic for all » > 0 and x € X. To see that f,
is epimorphic, set ¥ (S""1) = x and take ¢ to be some spheroid (D",S"!) —
(Y, f(z)) of an arbitrarily given class 8 € m.(Y, f(x)); the resulting spheroid
x: (D", S™"1) — (X, z) defines a class a € 7,.(X, ), and it is clear that f.(a) =
B. Finally, to show that f. is monomorphic, pick a € 7. (X, x) with f.(a) =0,
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take 1 to be some spheroid of class a, and take ¢ to be any continuous map
D"+ — Y such that p|s- = f o 1); the resulting map x: D™*! — X extends 1,
and hence a = 0. O

Theorem 5.4.1.3. If f: X — Y is a weak homotopy equivalence, then the
mapping 7(id, f): 7(M, X) — 7(M,Y’) is invertible for any cellular space M.

Proof. The first part of Theorem 5.4.1.2 shows that, given a class § € m(M,Y),
there is an « € (M, X) such that [ (id, f)](«) = B: we need only set K = M,
L = @, and take ¢ to be any map in the class 8. Further, given arbitrary
continuous maps g, ¢1: M — X, it follows from the same first part of Theorem
5.4.1.2 that if the compositions f o ¢ and f o 1 are homotopic, then so are g
and ;: indeed, take K =M x I, L= (M x 0)U (M x 1), and

p: (M x0) UM x1) =X, o0 =¢o(x), 1) =pi(z), zeM,

and take for ¢p any homotopy M x I — X from f o g to f o 1. O

The Case of Cellular Spaces

Theorem 5.4.1.4. If X and Y are cellular spaces, then every weak homotopy
equivalence X — 'Y is a homotopy equivalence.

Proof. Suppose f: X — Y is a weak homotopy equivalence. By Theorem
5.4.1.3, the mapping 7(id, f): 7(Y, X) — «(Y,Y) is invertible, and hence there
is amap g: Y — X whose homotopy class is taken by 7(id, f) into the class
of idy. That is to say, f o g is homotopic to idy, and it remains to verify that
g o [ is homotopic to idx. The latter is a consequence of the invertibility of
w(id, f): (X, X) = 7(X,Y), because this mapping takes the homotopy classes
of gof and idx into the same element (indeed, fogo f and f are homotopic). O

Remark 5.4.1.5. Theorem 5.4.1.4 states that two connected cellular spaces, X
and Y, are homotopy equivalent whenever there is a continuous map X — Y
which induces isomorphisms of the homotopy groups, but it certainly does not
guarantee that X and Y are homotopy equivalent if their homotopy groups are
just isomorphic. In fact, we have simple examples to show that the latter is not
true. Take X = SP x RP?, Y = S? x RPP, and suppose that 1 < p < ¢q. By
Theorems 5.2.5.1 and 5.1.1.15, 7.(X) = 7.(Y) for all ». However, X and Y
are not homotopy equivalent. Indeed, the map proj,: S? x RP¢ — SP induces
a group isomorphism 7,(S? x RP?) — m,(SP). We next show that there is
no continuous map f: SP x RP? — SP which induces a group isomorphism
Tp(SP x RPY) — 7,(SP). Assuming that such an f exists, the composition

z+— (orty,x)

sp P, p pp s? x« RP? Ly sp (5.4.1.6)

induces an automorphism of m,(SP). On the other hand (by Theorem 2.3.2.6),
every continuous map RPP — SP is homotopic to a map which takes RPP~!
into orty, and thus (5.4.1.6) is homotopic to the composition of the composite
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projection SP? — RPP/RPP~! = SP with some continuous map S? — SP. Conse-
quently, (5.4.1.6) cannot have degree +1, since the above composite projection
has degree 0 when p is even and degree 2 when p is odd. A contradiction.

The following example illustrates the same phenomenon in the simply con-
nected case. Set X = S3 x CP*™ and Y = S%. By Theorems 5.2.2.10, 5.2.5.2,
and 5.1.1.15, 7,.(X) = 71, (Y) for all ». However, X and Y have not the same
homotopy type. Indeed, proj; : S* x CP* — S is not null homotopic (because
it induces a group isomorphism 73(S?* x CP®) = Z — 73(S?) = Z). On the
other hand, every continuous map S? — S? is null homotopic.

Definition 5.4.1.7. We say that a topological space is homotopy fit if it is
homotopy equivalent to a cellular space. From Theorem 5.4.1.4 it follows that
if X and Y are homotopy fit, then every weak homotopy equivalence X — Y is
a homotopy equivalence.

By Theorem 3.5.2.13, all smooth compact manifolds are homotopy fit.

An example of a space which is not homotopy fit was given in Exercise
2.3.5.4. This space is not connected. For an example of a connected (and even
oo-connected) space which is not homotopy fit, see Exercise 5.4.4.1 below.

INFORMATION. Every CNRS is homotopy fit, and the same holds true
for every topological manifold (compact or not). A product of homotopy fit
spaces is homotopy fit. If Y is homotopy fit, then C(X,Y’) is homotopy fit
for any compact space X. If Y has the homotopy type of a countable cellular
space, then C(X,Y) has the homotopy type of a countable cellular space, for
any compact space X with countable base. For proofs, see [16].

k-Equivalence

Definition 5.4.1.8. Let X and Y be topological spaces. A continuous map
f: X — Y is a k-equivalence if, for all z € X, f.: 7. (X,z) — (Y, f(z)) is
an isomorphism for r < k and an epimorphism for » = k. Here k is a non-
negative integer; sometimes, weak homotopy equivalences are referred to as
oo-equivalences.

A composition of two k-equivalences is obviously a k-equivalence.

Theorem 5.4.1.9. Let f: X — Y be a k-equivalence. Then for any cellular pair
(K, L) with K\ L C skely K and continuous maps ¢: K =Y and ¢p: L — X
with f o1 = ¢| there is a continuous map x: K — X such that x| = ¢ and
f o x is L-homotopic to p. The converse is also true; moreover, if f: X =Y
is continuous and has the property that for any continuous maps ¢: D" — Y
and ¢: STt — X (0 < r < k) with f ot = p|g-—1 there is a continuous map
x: D" — X such that X|s-—1 = and f ox is S L-homotopic to p, then f is a
k-equivalence.

Proof. The proof repeats that of Theorem 5.4.1.2, mutatis mutandis:

e in the first part, the pair (Cyl f, X) is now k-connected;
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e in the second part, to see that f, is epimorphic (monomorphic), we take
r < k (respectively, r < k).

O
Theorem 5.4.1.10. If f: X — Y is a k-equivalence, then the mapping
w(id, f): 7(M, X) — (M,Y)

is invertible (surjective) for any cellular space M with dim M < k (respectively,
dimM =k) .

Proof. The proof repeats that of Theorem 5.4.1.3, except that we need Theorem
5.4.1.9 instead of Theorem 5.4.1.2. U

Theorem 5.4.1.11. If X and Y are cellular spaces with dim X < k and
dimY < k, then every k-equivalence X — Y is a homotopy equivalence.

Proof. The proof repeats that of Theorem 5.4.1.4, except that we need Theorem
5.4.1.10 instead of Theorem 5.4.1.3. O

The Relative Case

Definition 5.4.1.12. If (X, A) and (Y, B) are topological pairs, a continu-
ous map f: (X,A) — (Y,B) is said to be a weak homotopy equivalence if
abrs f: X — Y and abr f(= abrabrs f): A — B are weak homotopy equiv-
alences.

We remark that if f: (X, A) — (Y, B) is a weak homotopy equivalence, then
for (X, A x) = m.(Y, B, f(2)) is an isomorphism for all » > 1 and all « € A.
To see this, apply the 5-Lemma (see Theorem 5.1.5.20) to the homomorphism
induced by f from the homotopy sequence of the pair (X, A) into the homotopy
sequence of the pair (Y, B).

As another corollary of the 5-Lemma, we have the following result: suppose
that

e f: (X, A+#2)— (Y,B) is continuous,

e one of the maps abrs f: X — Y, abrf: A — B is a weak homotopy
equivalent

e for any z € A all the homomorphisms

feoom (X, Ayz) = (Y, B, f(2), r2>1,
(abrs f).: mo(X,z) = mo(Y, f(x)), (abr f).: mo(A,z) = 7o(B, f(x))

are isomorphisms.

Then f is a weak homotopy equivalence.
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Theorem 5.4.1.13. If f: (X, A) — (Y, B) is a weak homotopy equivalence,
then the mapping w(id, f): 7(M, N; X, A) — n(M, N;Y, B) is invertible for any
cellular pair (M, N).

Proof. Let us show first that every continuous map ¢: (M,N) — (Y, B) is
homotopic to the composition of some continuous map (M, N) — (Y, B) with
f. By Theorem 5.4.1.2, there is a continuous map ¥: N — A whose composition
with abr f: A — B is homotopic to abr¢: N — B. Using Theorem 2.3.1.3, any
homotopy from abr ¢ to abr foy may be extended to a homotopy of ¢, and hence
thereis a ¢’': (M, N) — (Y, B) homotopic to ¢ and satisfying abr ¢’ = abr f o).
Finally, again using Theorem 5.4.1.2, we see that there is a continuous map
x: M — X extending ¢ and such that f o x is N-homotopic to ¢’. Obviously,
X(N)subset B and the maps f o x,¢: (M, N) — (Y, B) are homotopic.
To complete the proof, we have to show, given two continuous maps

vo,01: (M,N) = (X, A)
such that
e foygand f oy are homotopic,
e o and ¢, are also homotopic.

Let ®: (M x I, N x I) — (Y, B) be a homotopy from f o ¢y to f o ;. By
Theorem 5.4.1.2, there is a homotopy Psi: N x I — A from abryg: N — A
to abrgy: N — A, such that abr f o ¥ is [(N x 0) U (N x 1)]-homotopic to
abry: N x I — B. Further, by Theorem 2.3.1.3, every [(N x 0) U (N x 1)]-
homotopy from abr ¢ to abr f o ¥ extends to a [(M x 0) U (M x 1)]—homotopy
of ¢. Consequently, there is a homotopy ¢': : (M x I, N x I) — (Y, B) from
fowo to f oy such that [abr¢’: N x I — B] = abr f o ¥. Finally, we apply
Theorem 5.4.1.2 again to deduce that there exists a continuous map =: M x [
extending ¥, such that £(z,0) = ¢o(z), Z(z,1) = p1(z) for all x € M. In other
words, = is a homotopy from g to ;. O

Theorem 5.4.1.14. If (X, A) and (Y, B) are cellular pairs, then every weak
homotopy equivalence (X, A) — (Y, B) is a homotopy equivalence.

Proof. The proof repeats that of Theorem 5.4.1.4, but one must refer to Theo-
rem 5.4.1.13 instead of Theorem 5.4.1.3. O

5.4.2 Weak Homotopy Equivalence and Constructions

Remark 5.4.2.1. Many of the operations on maps which were described in §1.2
carry weak homotopy equivalences into weak homotopy equivalences. For exam-
ple, it is clear that Hu fu: Hu X, — Hu X, is a weak homotopy equivalence
for any family {f.: X, — X/ },en of weak homotopy equivalences; similarly,
fixeoo X fn: X1 x - x X, > X] x--- x X! is a weak homotopy equivalence
for any weak homotopy equivalences f1: X1 — X1{,..., fn: X, — X/ . Also,
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the limit of a sequence of of weak homotopy equivalences is a weak homotopy
equivalence.

Similar results for other constructions need supplementary arguments, or
hold only under additional assumptions. The present subsection is devoted to
such results.

Theorem 5.4.2.2. Let f: (X, A, B) — (X', A’, B") be a map of triads such that
abrf: A— A’ abr f: B— B’, and abr f: ANB — A'NB’ are weak homotopy
equivalences. If int AUint B = X and int A’Uint B’ = X', then abrs f: X — X’
18 a weak homotopy equivalence.

Proof. Using Theorem 5.4.1.2, and given continuous maps ¢: D" — X’ and
Y: S — X with f o = @|g—1, it suffices to produce a continuous map
x: D" — X such that x|s-—1 =1 and f oy is S"~!-homotopic to . Obviously,

U =[p (int A)NintD"JUy L (int A), V = [p ' (int B')Nint D"|Usy ! (int B)

are open and cover D". Therefore, there is an € > 0 such that any subset of D"
with diameter less than ¢ is contained in U or V. Now triangulate S"~' so that
the diameter of each simplex is less than €, and then extend the triangulation to
D", preserving this property. Let K (L) be the union of all simplices contained
in U (respectively, V). It is clear that K and L are simplicial subspaces of D"
such that

Y(KNS™Y cintA, (LNS™H CintB, ¢(K)CintA’, (L) CintB’

By Theorem 5.4.1.2; there is a continuous map xo: K N L — AN B such that
Xo|snrns——1 = abr and the composition of yo with abr f: ANB — A’ N B’ is
(KNLNS"!)-homotopic to abr p: KNL — A’'NB’. By Theorem 2.3.1.3, every
(K N LNS"™1)-homotopy from abry: K N L — A’ N B’ to abr f o xo extends
to a (K N S"~!)-homotopy of abrp: K — A’ and to a (L N S"~1)-homotopy of
abr: LNB’. The two resulting homotopies combine to define an S"~!-homotopy
from ¢ to amap ¢’: D" — X’ which satisfies ¢|xnr. = (flans)oxo, ¢’ (K) C A,
and ¢'(L) C B’. Finally, apply Theorem 5.4.1.2 again to deduce that there are
continuous maps x1: K — A and y2: L — B with the following properties:

e Yo = abrxi, xo = abr xo;

e the composition of x; with abrf: A — A’ is (K N L)-homotopic to

abro’: K — A;

e the composition of yo with abr f: B — B’ is (K N L)-homotopic to
abr¢’: L — B'.

Now the desired map x: D" — X is obtained by combining x; and xa. O

Theorem 5.4.2.3. Suppose that (X,C) and (X',C") are Borsuk pairs, Y and
Y’ are topological spaces, and p: C =Y, ¢': C' =Y’ f: (X,C) = (X',C")
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and g: Y — Y’ are continuous, with go o = ¢ oabr f. If f and g are weak
homotopy equivalences, then the formulae

Fo[lmmi: X - Y U, X] = [Imm;y: X' — Y Uy X']o f,
Fo[lmmy:Y =Y U, X] = [Immy: Y — Y Uy X']0g,
define a weak homotopy equivalence F:' Y U, X — YU, X'.

Proof. Let us glue X, Y, and C x I, identifying each point (¢,0) € C x I with
¢ € X, and each point (¢,1) € C x I with ¢(c) € Y. Let Z denote the resulting
space and, to avoid confusion, denote the maps Imm;: X — Z, Imms: Y — Z,
and Immg: CxI — Z by «, 3, and ~. First, we want to show that the formulae

hooa=[Imm;: X =Y U, X], hof=[Immy:Y =Y U, X],
hoy=[Immy: Y —Y U, X]opo[proj,: C x I — (],
define a homotopy equivalence h: Z — Y U, X. To this end, extend the the
homotopy v: C x I — Z to a homotopy I': X x I — Z of the map « and define
kE:Y U, X — Z by
E(Imm;(x)) =T(x,1) [z € X], kolmm,=g.

Then the formulae

H(Imm; (z),t) = h(I(x,t)) for ze€X, tel,
H(Immg(z),t) = Immy for yeY, tel,
K(a(x),t) =T (x,t) for zeX, tel,
K(B(y),t) = By) for yeY, tel,
K(v(e,t),u) =v(c,tu —u+1), for ceC, tel, wel,

define a homotopy H: (Y Uy, X) x I — Y U, X from hok to idyy, x) and a
homotopy K: Z x I — Z from ko h to idz. Consequently, k£ is a homotopy
inverse to h.

Now repeat all this for X', C",Y’,¢’,.... We obtain a space Z’, continuous
maps o': X' - 7' B X' = Z' +": C'" x I — Z', and a homotopy equivalence
h':Y' Uy X' — Z'. Let G: Z — Z' denote the map defined by

Goa=d'of, Gof=fog, Goy=+o(abrfxid).
It is clear that G maps the triad
(Z,a(X) UA(C x [0,1/2]), B(Y) U(C x I))
into the triad

(2", (X") Uy(C" x [0,1/2]), B'(Y) U~/ (C" x I)).
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At the same time, all the conditions of Theorem 5.4.2.2 are fulfilled. Thus,
applying this theorem, G is a weak homotopy equivalence. Finally, the commu-
tativity of the diagramme

YU, X ¥ U, X/

hl i’“

77
G
implies that F' is a weak homotopy equivalence. O

Corollary 5.4.2.4. Let f: (X,A,B) — (X', A, B’) be a map of triads such
that abr f: A — A’, abrf: B — B’, and abr f: ANB — A’ N B’ are weak
homotopy equivalences. If (A, AN B) and (A’, A’ N B’) are Borsuk pairs, then
abrs f: X — X' is a weak homotopy equivalence.

Proof. This is a corollary of Theorem 5.4.2.3, because

X = BUjpa 4, incl = [incl: AN B — B,
X' =B Upa 4, incl = [incl: A'Nn B’ — B'].

O
Theorem 5.4.2.5. Let (X, A) and (X', A") be Borsuk pairs. If
£ 06 A) = (X', 4)
is a weak homotopy equivalence, then so is fact f: X/A — X'/A’.
Proof. Tt suffices to apply Theorem 5.4.2.3 for Y =DV, Y/ = DV, O

Theorem 5.4.2.6. If f: X — X' is a weak homotopy equivalence, then so is
sus: sus X — sus X',

Proof. Tt suffices to apply Theorem 5.4.2.5 to the map
rel cone f: (cone X, X) — (cone X', X').
O

Theorem 5.4.2.7. If f: X — X' and g: Y — Y’ are weak homotopy equiva-
lences, then sois fxg: XxY — X' xY".

Proof. Let A and B be the images of X xY x[0,2/3] and X xY x[1/3, 1] under
the projection X x Y x I — X xY. Similarly, let A’ and B’ be the images of
X’'xY’'x][0,2/3] and X' xY”x[1/3,1] under the projection X' xY’'xI — X'xY".
Obviously, (f *g)(A) C A’, (f xg)(B) C B’, and

rel(fxg): (XxY,A,B) — (X' xY' A", B')

satisfies the conditions of Theorem 5.4.2.2. Therefore, f x g is a weak homotopy
equivalence. O
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Theorem 5.4.2.8. If f: X — Y is a weak homotopy equivalence and K is a lo-
cally finite cellular space, then C(id, f): C(K,X) — C(K,Y) is a weak homotopy
equivalence.

Proof. Given arbitrary continuous maps
0: D" = C(K,Y), ¢:S7!' = C(K,Y), with C(id, f) ot = p|s1,

we need only exhibit a continuous map x: D" — C(K,Y) such that x|s—1 = ¢
and C(id, f) o x is S""!-homotopic to ¢ (see Theorem 5.4.1.2). Consider the
maps @: D" x K — Y, ¢: S x K — Y (see Theorems 1.2.7.6 and 2.1.4.3),
which are continuous and satisfy f o 121\ = @|gr—1. The first part of Theorem
5.4.1.2 applies to $ and ¢ and yields a continuous map a: (D" x K) — X such
that a|g—1xx = 121\ as well as an (S"~! x K)-homotopy h: (D" x K) x [ =Y,
from @ to foa. Denote by H the composition of the canonical homeomorphism
(D" xI) x K — (D" x K) x I with h, and set x = a" (see again Theorem
1.2.7.6). It is clear that x|s—1 = ¢ and that H" is an S"~!-homotopy from ¢
to C(id, f) o x. O

Corollary 5.4.2.9. Let X, and XL be topological spaces with base points x,,
and x;, such that (X, r,) and (X, x)) are Borsuk pairs. If

fu: (Xuaxu) — (XL,JZZL)

are weak homotopy equivalences, then so is V, fu: V. (X, x,) — V(X 2),).

Proof. This is a corollary of Theorem 5.4.2.5. O

5.4.3 Cellular Approximations of Topological Spaces

Definition 5.4.3.1. A cellular approzimation of the topological space X is any
pair (K, ) consisting of a cellular space K and a weak homotopy equivalence
p: K = X.

Example: if X is a Hausdorff space with a cellular decomposition enjoying
the property that each compact subset of X intersects only a finite number of
cells, then (X,idx), where X is the cellular space obtained from X through
the cellular weakening of its topology, is a cellular approximation of X. In
particular, if Xy,..., X, are cellular spaces, then (X; x. -+ X, X,,id) is a
cellular approximation of Xi,...,X,, while (X1 x. -+ %, X,,id) is a cellular
approximation of (X x---x X,,,id).

Theorem 5.4.3.2. Fvery topological space admits cellular approximations.

Proof. We observe first that cellular approximations of the components of a
topological space yield a cellular approximation of the entire space, while the
case of an empty space is trivial. Thus, we may assume that the space X
we want to approximate is connected and non-empty. We shall construct a
sequence K, K1,... of cellular spaces with O-cells yg,v1,... as base points, a
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sequence of continuous maps ¢;: (K;,v;) = (X, 20), 4 =0,1,... (here zp € X
is an arbitrarily fixed point) and, finally, a sequence of cellular embeddings
ni: (Ki—1,y:) — (Ki,y:), ¢ = 1,2,..., such that ¢; is an i-equivalence and
w; o1n; = p;_1. Then the pair (13 K; 1 IE%) will be a cellular approximation
of X (see Theorem 5.1.11.5).

We proceed by induction. Set Ky =D, yo = DY, v(Kp) = 70, and assume
that K;, v, @i, 7, © < r, have been defined and enjoy the required properties.
Pick a spheroid f,: S" — X in each homotopy class « € 7,.(X,xo). Further,
for any class 8 € N, where N = ker[(¢r—1)s: mro1 (K1, ¥r—1) = 7 (X, Z0)],
pick a spheroid gg: S"~! — K,_; of class 3, together with a continuous map
hg: D" — X satisfying hlsr—1 = ¢,_1 0 g3. The maps fo, gg, and hg (with
a € (X, 20) and B € N) combine to define three other continuous maps:

f: \/OLETK‘T(X z0) (S =5 OI‘tl) — X,

g: [ITSs=5" =K1, g: [[(Ds=D") - X.
BEN BEN
Now set
K, = [(KTfl Ug (H Dﬂ)>71mm2<yrfl)] N [(VQGm(X,xo)(Sa’bp))abp]
BEN

and define 7,. to be the composition

Kooy 225 Ko U (][] Ds) ™5 K,
BEN

pr: K. — X to be the map assembled from ¢,_1, h, and f, and y, to be
Nr(yr—1). Applying Corollary 5.3.2.4 and Theorem 5.3.5.7, we see that ¢, is
an r-equivalence, and it is clear that ¢, o7, = ¢,_1 and that 7, is a cellular
embedding. O

Theorem 5.4.3.3. Let (K, ) and (K',¢') be cellular approzimations of topo-
logical spaces X and X', and let f: X — X' be an arbitrary continuous map.
Then there is a continuous map g: K — K’ such that the diagramme

K- K

'

X——=X'
f

is homotopy commutative (i.e. , the maps f oy and ¢’ og are homotopic). This
property uniquely defines the homotopy class of g.

Proof. The mapping 7 (id, ¢'): (K, K') — w(K, X') is invertible (see Theorem
5.4.1.3), and thus in 7(K, K’) there is a unique element which is taken by
7(id, ¢') into the class of f o . O
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Theorem 5.4.3.4. Let (K, ) and (K',¢’) be two cellular approzimations of
the same topological space X. Then there is a homotopy equivalence g: K — K’
such that ¢’ o g is homotopic to .

Proof. To obtain g, apply Theorem 5.4.3.3 to X’ = X and f = idy. To get a
homotopy inverse g’ to g, interchange the roles of (K',¢') and (K, ¢). Finally,
apply Theorem 5.4.3.3 again to show that gog’ and ¢’ o g are homotopic to idg-
and idg, respectively. O

‘Weak Homotopy Equivalence of an Equivalence Relation

Definition 5.4.3.5. Two topological spaces are said to be weakly homotopy
equivalent if they admit cellular approximations (K, ¢) and (L, ) with K = L.
It is clear that this defines an equivalence relation (in the usual, set-theoretic
sense).

Let X and Y be topological spaces such that there is a weak homotopy
equivalence f: X — Y. Then X and Y are weakly homotopy equivalent. In-
deed, if (K, ) is a cellular approximation of X, then (K, f o ¢) is a cellular
approximation of Y. The converse is false: there are examples of weakly homo-
topy equivalent spaces X, Y such that there is no weak homotopy equivalence
X — Y and no weak homotopy equivalence Y — X. See Exercise 5.4.4.2 below
for such an example.

Two homotopy equivalent spaces are certainly weakly homotopy equivalent.
The converse is false: for example, every topological space is weakly homotopy
equivalent to a cellular one (see Theorem 5.4.3.2), but not every topological
space has the homotopy type of a cellular space (see Definition 5.4.1.7). On
the other hand, Theorem 5.4.1.4 shows that two weakly homotopy equivalent
cellular spaces are actually homotopy equivalent.

Weak Homotopy Equivalence of the Fibres of a Serre Bundle

Theorem 5.4.3.6. Any two fibres of a Serre bundle with connected base are
weakly homotopy equivalent.

Proof. Let £ be the given Serre bundle with bs ¢ connected, and let by, by € bs&.
Pick a path s: I — bs& with s(0) = by, s(1) = by, and a cellular approximation
(K, ¢) of the fibre (proj&)~1(by). The map f = [incl: (proj&)~1(by) — t1¢] o o
and the homotopy F': K x I — bs¢&, F(x,t) = s(t), satisty F(z,0) = (proj§) o
f(x) [x € K], and hence there is a homotopy F:KxI— t1€ of fwhich covers
F (see Theorem 4.1.3.6). Now define ¢: K — (proj¢)~1(by) by z — F(z,1)
and check that ¢ is a weak homotopy equivalence.

To do this, given any € K and any spheroid g € Sph, (K, x), note that
the formula (y,¢) — F(g(y),t) defines a fibre homotopy (see Definition 5.1.7.1)
from the spheroid ¢« (g) to the spheroid ¢4 (g) along the path s: I — t1€ given
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by t — ﬁ(g(ortl), t). Consequently, the diagramme

(K, x)
’/TT((prO,]. 5)71(170)’9017) T Wr((pI‘Oj E)il(bl)vwm)

commutes (the translation T is defined in Definition 5.1.7.3). Since T% is an
isomorphism, the invertibility of ¢, implies the invertibility of .. O

Cellular Approximations of Topological Pairs

Definition 5.4.3.7. A cellular approxzimation of the topological pair (X, A) is
any pair [(K, L), ] consisting of a cellular pair (K, L) and a weak homotopy
equivalence ¢: (K, L) — (X, A).

When A and L are points, a cellular approximation [(K, L), ¢] of (X, A) is
termed a cellular approzimation of the pointed space (X, A).

Theorem 5.4.3.8. Every topological pair (X, A) admits cellular approzima-
tions. Moreover, given any cellular approzimation (L,) of the subspace A,
there is a cellular approzimation [(K, L), ] of (X, A) with ¢ = abr .

Proof. Let (M, x) be a cellular approximation of X (see Theorem 5.4.3.2), and
let g: L — M be a cellular map such thaty o g is homotopic to [incl: A — X]oe)
(see Theorems 5.4.3.3 and 2.3.2.6). Set K = Cylg and define ¢ to be the
relativisation of the map K — X given by x and some homotopy L x [ — X
from [incl: A — X] o4 to x o g. Obviously, ¢ is a weak homotopy equivalence
and abry = 1. O

Theorem 5.4.3.9. Let [(K, L), ] and [(K',L"), '] be cellular approzimations
of the topological pairs (X, A) and (X')), and let f: (X, A) — (X', A’) be an
arbitrary continuous map. Then there is a continuous map g: (K, L) — (K', L")
(unique up to homotopies) such that the diagramme

K,L—2sK I

L

X,AHfX/,AI

is homotopy commutative. If [(K,L),¢] and [(K',L"),¢'] are cellular approx-
imations of the same topological pair, then there is a homotopy equivalence
g: (K,L) — (K', L") such that ¢’ o g is homotopic to f o .

Proof. The proof repeats the proofs of Theorems 5.4.3.3 and 5.4.3.4, except that
one has to refer to Theorem 5.4.1.13 instead of Theorem 5.4.1.3. O
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Cellular Approximations and Constructions

Remark 5.4.3.10. It is clear that if (K, ¢, ) are cellular approximations of the
spaces X, (1 € M), then (HueM K,, HueM ©,) is a cellular approximation of
HueM X, Also, applying Corollary 5.4.2.9, we see that if (X,,,z,) are Borsuk
pairs (z, € X, are base points) and [(K,, y.), ¢,] are cellular approximations
of these pointed spaces, then [V, (K, y.),Vueul is a cellular approximation of
the bouquet V, (X, z,).

Further, if (K1, ¢1), ..., (Kn, pn) are cellular approximations of X7, ..., X,,
then

(Kl FOREE XCK’n,aSDl X oo X@n)

is a cellular approximation of X x --- x X,, (see Remark 5.4.2.1 and Definition
5.4.3.1). In the same circumstances,

(Kl Xc"'*cKn;QOl*"'*(Pn)

is a cellular approximation of X *--- % X,, (see Theorem 5.4.2.7). In particular,
(sus K, sus ¢) is a cellular approximation of sus X whenever (K, ) is a cellular
approximation of X.

If [(K,L),¢] is a cellular approximation of the Borsuk pair (X, A), then
(K/L,factp: K/L — X/A) is a cellular approximation of X/A This is a corol-
lary of Theorem 5.4.2.5.

An Application: Generalisation of Theorems 5.3.3.7, 5.3.5.7, and
5.3.6.2

Lemma 5.4.3.11. Let (X, A, B) be a triad with the property that either
intAUIntB=X or (A4,ANDB)

is a Borsuk pair. Then there exist a cellular triad (K, L, M) and a continuous
map f: (K,L,M) — (X, A, B) such that abrs f: K — X, abr f: L — A, and
abr f: LN M — AN B are weak homotopy equivalences.

Proof. By Theorem 5.4.3.2, AN B has a cellular approximation, say (NN, x) and
the latter can be extended to cellular approximations [(L’, N), ¢] and [(M’, N), ]
of the pairs (4, AN B) and (B,B N A), as shown by Theorem 5.4.3.8. Next,
attach the cylinder N x I to L' IT M’ by the map

(NXxO0U(Nx1)—=LIOM, (x,0) incli(z), (x,1)— incly(z),

and call the resulting cellular space K. Now identify N x I, L', and M’ with
their images in K and set L = (N xI)UL', M = (N x I)UM’. The composite
maps

proj; incl

NxI 22 NS AnB 2S5 X

)

% Am x  and M Y% B2 x
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jointly define the map f: (K, L, M) — (X, A, B). Obviously, int LUint M = K
and abrf: L — A, abrf: M — B, and abrf: LN M — AN B are weak
homotopy equivalences. Therefore, so is abrs f: K — X (see Theorem 5.4.2.2
and Corollary 5.4.2.4) . O

Remark 5.4.3.12. The homomorphism
[m1(A, z0) * ™1 (B, z0)]/ vk(X, A, B, xo) — m (X, xo), (5.4.3.13)

defined in Definition 5.3.3.5, is an isomorphism not only for a cellular triad
(X,A,B) with A, B, AN B connected (as asserted by Theorem 5.3.3.7), but
also for any triad (X, A, B) such that A, B, AN B are connected and either
int AUint B = X or (A, AN B) is a Borsuk pair. In fact, this follows from The-
orem 5.3.3.7 and Lemma reflem:05-4-3-11, since the homomorphism (5.4.3.13)
is natural.

In particular, we see that the fundamental group of the bouquet of two spaces
is canonically isomorphic to the free product of the fundamental groups of these
spaces under the only assumption that each space forms, together with its base
point, a Borsuk pair (cf. Corollary 5.3.3.8).

Remark 5.4.3.14. Concerning Theorem 5.3.5.7, we can weaken the demand that
the pairs (X, z,) be cellular and instead ask only that they be Borsuk pairs.
That this is possible is guaranteed by Theorem 5.4.3.8, the discussion of bou-
quets in Definition 5.4.3.10, an the commutativity of diagramme (5.3.5.2) in
Remark 5.3.5.1.

Remark 5.4.3.15. Theorem 5.3.6.2 and its corollary Theorem 5.3.6.4 are valid
not only for cellular pairs, but also for arbitrary Borsuk pairs. This general-
isation follows from Theorem 5.4.3.8 and the last statement on quotients in
Definition 5.4.3.10.

5.4.4 Exercises

Ezercise 5.4.4.1. Consider the union X of the graph of the function = — sin(1/x)
on the interval 0 < z < 1/7 and the broken line made of the four segments with
the successive vertices (1/7,0), (1/7,2), (—1,2), (—1,0), and (0,0). Show that
X is A«-connected but not homotopy fit. (Cf. Definition 5.4.1.7)

Ezercise 5.4.4.2. Let A = {0,2"|n € Z} C R (cf. Exercise 4.2.4.2). Show
that the spacesX = ZI1 (A x S') and Y = Al (Z x S') are weakly homotopy
equivalent, but there is no weak homotopy equivalence X — Y, and no weak
homotopy equivalence Y — X. (Cf. Definition 5.4.3.5.)

Exercise 5.4.4.3. Let X denote the subset of R? consisting of the segment I and
the sequence of segments with endpoints nort; , orty +orts /n (n = 1,2,...).
Show that (X, (z1,22,23) — 21,1) is a Serre bundle, but there exists fibres
which are not homotopy equivalent.
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Ezercise 5.4.4.4. Suppose (X, zg), (Y,y0) are pointed topological spaces, Z is
a cellular space with a 0-cell zy for base point, and f: X — Y is a weak ho-
motopy equivalence with f(zg) = yo. Show that abrC(id, f): C(Z, z¢; X, x0) —
C(Z, 20:Y, 1) is a weak homotopy equivalence. (Cf. Theorem 5.4.2.8.) A§
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5.5 THE WHITEHEAD PRODUCT
5.5.1 The Class Whd(m,n)

Remark 5.5.1.1. In this section we define and study some of the properties of an
operation on the elements of homotopy groups. In a certain sense, this operation
generalises the action of the fundamental group on the homotopy groups. The
definition assumes that a pair m, n of positive integers is given.

The present subsection is devoted to a very specific preliminary construction.
Recall (see Remarks 2.1.3.2 and 2.1.5.2) that the cellular decomposition of S™ x
S™, determined by the standard decompositions of S™ and S™ (each having
two cells) consists of four cells: an (m + n)-cell and three other cells which
form the bouquet (S™,orty) V (S™,ort;). We denote this bouquet by B(m,n)
or, simply, by B. The standard characteristic map of the (m + n)-cell is the
composition of the canonical homeomorphism D" — D™ x D" (see Remark
1.2.6.9) with the map DS x DS; it takes S™*"~1 into B, and takes the point
(orty +orty,41)/v/2 into bp = (orty,ort;). Therefore, this characteristic map
defines an element of the group m,;,4+,(S™ x S, B,bp) (see Corollary 5.2.2.5),
which we call Whd(m, n) or, simply, Whd. Also, we write whd(m,n) or, simply,
whd, for the element O(Whd) € 7, 4+n—1(B,bp), i.e., the class of the attaching
spheroid S™t7~1 — B.

We need two additional notations: 6 for the homeomorphism B(m,n) —
B(n,m) which permutes S™ and S", and p for the product of the spheroids
Immy, Imms: (S, ort;) — (B(m,n),bp) when m = n.

Theorem 5.5.1.2. The class Whd has infinite order.
Proof. 1t is enough to establish that Whd is of infinite order and that
O Tntn(S™ x S", B,bp) = Tmin—1(B,bp)
is monomorphic The first is a consequence of the fact that the homomorphism
Proj, : Tm+n(S™ X §", B,bD) = Tynin(S™ x §")/B = S™*", proj(bp)) = Z

takes Whd into a generator of the right-hand group. The second claim follows
from the exactness of the homotopy sequence of the pair (S™ x S", B) with base
point bp, because incly: T4 (B, bp) = Tmin(S™ x S™ bp) is epimorphic (see
Theorem 5.3.5.6). O

Theorem 5.5.1.3. The isomorphism

0y Tman—1(B(m,n),bp) = mmin—1(B(n,m),bp)
takes whd(m,n) into (—1)™" whd(n,m).
Proof. This results from the commutativity of the diagramme

Sernf 1 Sm+n7 1

.

B(m,n) — B(n,m)
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where the vertical maps are the attaching spheroids which represent the classes
whd(m, n) and whd(n, m) (see Remark 5.5.1.1), while the upper horizontal map
is given by (z1,...,Zmin) = (@mi1s-- o Tomtn, T1,- .., Tm) (and its degree is
(=1)mm). O

Theorem 5.5.1.4. If m =1, then
whd(m, n) = Immg(sph,, ) [Timm, (sph; ) Imma, (sph,,)] "

In particular, whd(1,1) = agalaglalfl, where (as in Subsection 5.3.1), oy ,
ay denote the elements Tmmy, (sph, ), Immas, (sph;) € w1 (B(1,1), bp).

Proof. According to Remark 5.5.1.1, whd(1,n) is represented by the spheroid
S"* — B(1,n),

Imm; oDS(v/221), if |z < 1/v2,

sy Ty — .
(@1 To+1) {Immg oDS(V2(z2, ...\ Tny1)), if o] > 1/V2.

This is obviously homotopic to the product of the spheroid

. . bp, if < 1/\/57
1y Tn+1 Immsy ODS(\/i(Q;Q,...,xn+1>)7 if 2> 1/\/5’
(5.5.1.5)

with the spheroid obtained by translating the spheroid

Immgy oDS(V2(x2, . .., Tni1)), if < -1/V2,
> —1/V2,
(5.5.1.6)
along the path ¢t — Imm; oDS(1 — 2¢). Now it remains to observe that the class
of (5.5.1.5) is Immay,(sph,,), the class of (5.5.1.6) is Imma, (sph,,) ™!, and the
class of the above path is Immj. (sph;). O

N i — A
(1 Tn+1) {bp, if a4

Theorem 5.5.1.7. The class whd(m,n) belongs to the kernel of each of the
following three homomorphisms:

Projis: Tmtn—1(B,bp) = Tmin_1(S™,orty),
Projoy: Tman—1(B,bp) = Tmin—_1(S", orty),
incly: Tmin—1(B,bp) = Tmin—1(S™ x S™, bp).

Proof. For incl, this results from the exactness of the homotopy sequence of the
pair (S™ x S™, B) with base point bp. For the first and the second homomor-
phisms, use the equalities

[proj;: B — S™]| = [proj;: S™ x S® — S§™] o incl,
[proj,: B — S"] = [proj,: S™ x S™ — S"] o incl.
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Theorem 5.5.1.8. The homomorphism
(idgm Vi) s: Tman—1(B(m,n),bp) = Tman—1((S™,ort1) V (B(n,n),bp), bp)
takes whd(m,n) into
(g v Ty ) (whel (m, )] [(idge V Ty ), (whd(m, 7))

Proof. When m = 1 orn = 1 this follows from Theorems 5.5.1.4 and 5.5.1.3; now
let m > 1 and n > 1. The bouquet (S™,ort1)V(B(n,n), bp) is simply connected,
and it yields the product S™ x B(n,n) when we add two (m + n)-cells with
attaching spheroids S™*"~1 — (S™ ort;)V(B(n,n), bp) belonging to the classes
(idgm V Imm; ). (whd(m,n)) and (idg= V Imms),(whd(m, n)). Consequently, the
kernel of the homomorphism

incly: Tmin—1(8™,ort1) V (B(n,n),bp),bp) = Tmin-1(S™ X B(n,n),bp)
is generated by the indicated classes. This kernel contains also the class
(idgm V)« (whd(m, n)).

To see this, note that whd(m,n) sits in the kernel of the homomorphism induced
by the inclusion B(m,n) — S™ x S™ (see Theorem 5.5.1.7), while idgm Vpu is the
compression of the map idgm xpu: S™ x §* — §™ x B(n,n). Therefore

(idsm V). (whd(m,n)) =

[(idgm V Immy ). (whd(m, n))]* [(idgm V Immy)..(whd(m, n))]"? (5:5.19)

with k1, ks € Z, and we shall presently show that k1 = ko = 1.

The compositions (idgm V proj;) o (idsm V) and (idgm V proj,) o (idsm Vi),
where proj,, proj, are the projections of B(n,n) onto S™, are both homotopic
to idg(m,n). At the same time,

(idsm V proj;) o (idsm VImm;) = (idsm V projs) o (idsm VImmsy) = idg(pm,n) -
while both
(idgm V proj,) o (idgm VImmy), (idgm V proj,) o (idgm V Immy)
equal the composition
B(m,n) Projy, gm Immi, B(m,n).

Now applying the homomorphisms (idgm V proj; ). and (idsm V projs). to both
members of (5.5.1.9) and using Theorem 5.5.1.7, we get whd(m,n) = whd(m,n)*:,
whd(m,n) = whd(m, n)*2. Finally, these equalities yield, by virtue of Theorem

5.5.1.2, ky = 1, ko = 1. O
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Theorem 5.5.1.10. The class whd(m,n) belongs to the kernel of the homo-
morphism

sus: Tmtn—1(B(m,n),bp) = Tmin(sus(B(m,n),bp) = B(m + 1,n+ 1), bp).
Proof. By Remark 5.2.1.1, the diagramme

Projy. Projs,
Tmtn—1(S™, orty) - r Tmtn—1(B(m,n),bp) —= Tmtn—1(S", orty)

sus \L \L sus J{sus

Tm4n(S™, 0rty) ~ i Tm+4n(B(m,n), bp) oo Tm4n (S, 0rty)

commutes. This, combined with Theorem 5.5.1.7, shows that sus(whd(m,n))
belongs to the kernels of proj,, and proj,, and thus to the kernel of the homo-
morphism

Toman(B(m + 1,14 1),bp) = Tpyn(S™T ort) @ Ty (ST orty)

given by proj;, and proj,,. Finally, recall that the last homomorphism is an
isomorphism (see Theorem 5.3.5.7). O

5.5.2 Definition and the Simplest Properties of the White-
head Product

Definition 5.5.2.1. Let (X,xz) be a pointed topological space, and let o €
Tm (X, 2g), B € mn (X, z0). Clearly, the homotopy class of the map

h: (B,bp) — (X, o)

defined by arbitrary spheroids (S™,ort;) — (X,x0) and (S™,ort1) — (X, z0)
representing « and f is independent of the choice of these spheroids. Therefore,
the element h,(whd(m,n)) € Tp4n—1(X, xo) is determined solely by the classes
« and B. This element is called the Whitehead product of o and 3, denoted
[0, 8]

Notice that in terms of this definition, whd(m,n) itself is the Whitehead
product of the classes of the spheroids

Imm; : (S™,orty) = (B,bp), Imms: (S",ort;) — (B,bp),

i.e.,
whd(m, n) = [lmmy.(sph,, ), Imm; . (sph,,)].

It is readily cheeked that f.([o,8]) = [f«(@), f«(B)] for any a € m, (X, zo),
B € mp(X, o), and continuous f: (X,x0) — (Y,yo0). Furthermore, Ts([o, 8]) =
[Tsa, Tsf] for any « € 7, (X, xg), B € mn(X,zg), and any path s: I — X with
s(0) = zp.
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Theorem 5.5.2.2. If a € 7,,(X, x0), 5 € mn(X, z0), then
(8, 0] = (=1)""[ex, B].

Proof. Indeed, if h: (B,bp) — (X, z0) is the map defined by two spheroids,
(S™, ort1) — (X, o) and (S™,orty) — (X, z9) which represent the classes « and
5, then

[8,0] = (ho8).(whd(n,m)) = h.(0.(whd(n, m))
= h((=1)™" whd(m,n)) = (=1)""[a, f]

(see Theorem 5.5.1.3). O

Theorem 5.5.2.3. If o € (X,z0) and p1,52 € (X, x0 with n > 1, then
[a, B1 + B2] = [, B1] + [a, B2]- If an, 0 € (X, 20) with m > 1 and 5 €
70 (X, x0), then [on 4 g, B] = [a1, ] + [a, B].

Proof. Because of Theorem 5.5.2.2, one has to prove only the first equality. Con-
sider the map h: ((S™,orty) V (B(n,n),bp),bp) = (X, zo) defined by arbitrary
spheroids, f: (S™, ort1) = (X, zo) and g1, 92: (S™,0rt;) — (X, x0), representing
the classes a and f31, 2, respectively. Then the map (B(m,n),bp) — (X, zg)
defined by f and g; equals h o (idg» VImm;), the map defined by f and g
equals h o (idgm VImmsy), and finally the map defined by f and the product of
the spheroids ¢g; and go equals h o (idgm V). Hence,

[, B1 + B2] = hy o (idgm V)« (whd(m, n))
= h,((idgm VImm; ). (whd(m,n)) + h.((idgm V Imms), (whd(m,n))
= (hy o (idgm VImmy)).(whd(m,n))
+ (hs o (idgm VImmy)).(whd(m,n))

= [o, Bu] + [, Ba].
O
Theorem 5.5.2.4. If o« € m1(X,x0), 8 € mp(X,x0) with n > 1, then [, 8] =
B(T.B)~ . In particular, [o, 5] = BaB~ta™! for any a, B € 71 (X, x0).
Proof. This is a corollary of Theorem 5.5.1.4. O

Theorem 5.5.2.5. For any a € 7, (X, 20), B € mn(X,x0), the product [a, 5]
belongs to the kernel of the homomorphism

Sus: Tpmtn—1(X, o) = Tmyn(sus(X, xo), bp).
Proof. This is a corollary of Theorem 5.5.1.10. O
Theorem 5.5.2.6. For any a € m,,(X,z0), 8 € (X, z0) the product

[Immy. (), Immo, (B)]
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belongs to the kernel of each of the homomorphisms:

projl*: 7Tm+n—1((X7 930) \ (Ya y0)7 bp) — 7Tm+n_1(X, :170)5
pI‘OjQ*Z 7Tm+n—1((X7 xO) \ (Ya yO)a bp) — 7rm+n—1(Y7 yo),
incl *: 7Tm+n71((Xu xO) N (K yO)vbp) — 7Tm+n71(X xY, bp)

Proof. This is a corollary of Theorem 5.5.1.7. O

Remark 5.5.2.7. Generally speaking, the Whitehead product is not associative.
This was already implicit in Theorem 5.5.2.4: if we let (as in Subsection 5.3.1)
a1, g, as denote the elements Imm;,(sph;), Imms,(sph;), Imms,(sph;) of
71 ((S*, orty) Vv (St orty) V (S, orty), bp), then

([, ], ag] = agagalaglaiaglalagal_laz_l, whereas

(a1, [a, as]] = 043012043_1042_1041042@30[2_104;1041_1

A second example can be found in Exercise 5.5.4.2 below,

The Case of H-Spaces

Theorem 5.5.2.8. If X is a H-space, then [a, 5] = 0 for any 20 € X, a €
Tm (X, x0), B € (X, x0)-

This generalises Theorem 5.1.9.11.
Proof. Tt is enough to consider the case where x( is the identity. Let
f:(S™orty) = (X,29) and g: (S" ort;) = (X, z0)

be spheroids in the classes a and 3. Define h: (S™ x S, bp) — (X,z¢) and
spheroids f1: (S™,ort;) — (X, z¢) and g1 : (S",ort;) — (X, zo) by

h(z,y) = f(x)g(y), fi(y) = f(y)zo, g1(y) = g(y)zo.

Obviously, f1 and g7 are homotopic to f and g, while the map (B, bp) — (X, o)
defined by f; and g1 equals h|p = ho [incl: B — S™ x S"]. Consequently,

[, B] = (h oincl),(whd(m,n)) = h, o incl,(whd(m,n)).
Since incl.(whd(m,n)) = 0, we get [, 8] = 0. O

5.5.3 Application

Theorem 5.5.3.1. Let (X, xg) and (Y, yo) be pointed spaces, and let k and £ be
non-negative integers. If X is k-connected, Y is (-connected, and (X, ) and
(Y,yo0) are Borsuk pairs, then the kernel of the homomorphism

incly: Ty (X, 20) V (Y, u0), bp) = mhpeq1(X x Y, bp)

is generated, as a subgroup of mpie41((X,z0) V (Y,40),bp), by the products
[Imm;y . («), Immo, (8)] with a € mp1(X, 20) and € me41(Y, yo)-
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(Cf. Theorem 5.3.5.7 and Remark 5.4.3.14.)

Proof. By Theorem 5.5.2.6, [Imm;. (), Imms, (5)] € kerincl, for all & € w41 (X, zo)
and 3 € mp41(Y, yo). To see that these products actually generate ker incl,, note
that Remark 5.4.2.1, Corollary 5.4.2.9, and Theorem 2.3.3.2 together guaran-

tee that it suffices to examine the case where (X, z) and (Y,yo) are cellular
spaces with skelyip41 X = z¢ and skelgysy1 Y = yo. Under these circum-
stances, skelpo41(X X Y) C (X,20) V (Y, 90), and the classes of the attaching
maps of the (k+ £+ 2)-cells in (X x Y)\ [(X, zo) V (Y, yo)] are Whitehead prod-
ucts of the classes of the characteristic maps of the (k 4 1)-cells in Imm; (X)
and the classes of the characteristic maps of the (£ + 1)-cells in Immy(Y") (this

is an immediate consequence of Definition 5.5.2.1). Therefore,

e when k£ > 0 and ¢ > 0, kerincl, is generated by the classes
[Tmmy, (o), Tmm, (8)]
with a € m41(X, 29) and 8 € 711 (Y, yo) (see Theorem 5.3.2.5);
e when k£ > 0 and ¢ = 0, kerincl, is generated by the classes
Timm,. (o) [Immy, (@), Immo.(5)]
with o € m1(X, 20) and 8,0 € m1(Y,yo) (see Theorem 5.3.2.5);
e when k£ =0 and ¢ > 0, kerincl, is generated by the classes
Tty (o) [fmmy, (@), Immo, (3)]
with a,0 € m1 (X, z9) and 5,0 € me41(Y, yo) (see Theorem 5.3.2.5);
e finally, when k£ = ¢ = 0, kerincl, is generated by the classes
Timm,. (01) Tmma. (w; -+ Immy. (o) Imma. (wg)) 1M1, (@), Tmma, (5)]

with a,01,...,04 € m(X,20) and S,w1,...,wq € (Y, y0) (see Subsec-
tion 5.3.3).

Now all it remains is to observe that

(i)
TImml*(a) [Imml* (Oé), Imm2*(6)] =
— [Immy . (o), Imms, (8)] + [Imm.(ao), Imma, (3)]

for any o, 0 € m (X, x0) and 8 € w1 (Y, yo) with £ > 0;

(i)
Timmg*(a) [Imml* (a)a Immo, (B)} =
— [Immy.(a), Imma,(0)] + [Imm . (@), Imms, (Bo)]

for any o, 0 € m (X, x0) and 8 € w41 (Y, yo) with £ > 0;
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(iii)
Timm,. (o) Imma. (o) Iy, (@), Imma. (8)] =
[Immy, (o), Immay, (wB)] ™ [Immy, (ao), Immay, (w3)]*
[Immy, (o), Imma, (w)] ™! Immy, (o), Imma, (w)]
for any o, 0 € m1 (X, z0) and 3 € 71 (Y, y0);
(see Theorem 5.5.2.4). O

Theorem 5.5.3.2. The class [sph,,,sph,] has infinite order in wa,_1(S™) for
every even positive integer n. In particular, the groups my,_1(S?*) with k > 1
are infinite.

(Cf. Subsections 5.2.2 and 5.2.4.)

Proof. Since

«(sphy,), pc(sphy )]
Imm;. (sph,,) + Immo, (sph,, ), Imm;..(sph,,) + Immo, (sph,, )]

t«[sph,,,sph,,] = |
[
[Immy . (sph,, ), Immi. (sph,,)] + [Imms, (sph,, ), Imm, (sph,,)]
+ 2[Imm;.(sph,, ), Imma, (sph,, )]

Imm;.[sph,,, sph,,] + Imms,[sph,,, sph,,] + 2 whd(n,n),

we obtain
2whd(n,n) = yu.[sph,,, sph,,] — Imm;, [sph,,, sph,] — Immo,[sph,, sph,,].

Now assuming that [sph,,, sph,,] has finite order, the class whd(n,n) would have
finite order too, contradicting Theorem 5.5.1.2. O

Theorem 5.5.3.3. The kernel of sus: mo,_1(S™) — 72, (S***1) is infinite for
every positive integer n.

Proof. This is a corollary of Theorems 5.5.3.2 and 5.5.2.5. O

5.5.4 Exercises

Ezercise 5.5.4.1. Compute the third homotopy group of a bouquet of two-
dimensional spheres.

Ezxercise 5.5.4.2. Show that if
a = Imm;, (sph, )inmi(B(1,2),bp), B = = Imms.(sphy) € m3(B(1,2),bp),
then
Havﬁ]”ﬂ # [av [677]]
Ezxercise 5.5.4.3. Show that
(=1)P™[[e, Bl, 7] + (=1""[[B, 7], a] + (=1)"[[,a], B] = 0,

for any o € (X, 20), B € mo(X,20), and v € mp(X, 20) with m > 1, n > 1,
and p > 1.
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5.6 CONTINUATION OF THE THEORY OF BUN-
DLES

5.6.1 Weak Homotopy Equivalence and Steenrod Bundles

Definition 5.6.1.1. Two Steenrod bundles, £; and &, with the same standard
fibre F, are said to be k-equivalent if there exist a cellular space B and ¢} (&2)
are F-equivalent. Here 0 < k < o0; the most important case is k = oo, and
two oo-equivalent Steenrod bundles are also referred to as weakly homotopy
equivalent.

Clearly, every bundle induced from a Steenrod bundle by a k-equivalence
is k-equivalent with the original bundle. Moreover, bases of weakly homotopy
equivalent Steenrod bundles are weakly homotopy equivalent, and by Theorem
5.1.5.9 this holds true for their total spaces, too. [To see this, consider the maps
adjp1: @h& — & and adj @o: hés — & and the homomorphisms that they
induce from the homotopy sequences of the bundles )& and )¢, into the
homotopy sequences of the bundles £; and & respectively, and apply to these
homomorphisms Theorem 5.1.5.20.]

Theorem 5.6.1.2. Let (1 and (3 be Steenrod bundles with the same standard
fibre F. Suppose that (1 is universal. Then (5 is universal if and only if it is
weakly homotopy equivalent to (1.

Proof. We first show that the condition is sufficient, i.e., that given any Steenrod
bundle ¢ with standard fibre F' and cellular base, any (cellular) subspace B of
bs¢, and any continuous map ¢: B — bs(y such that ¢'(s is F-equivalent to
¢|B, there exists a continuous map ¥: bs& — bs (s such that ¥|g = ¢ and the
bundle 1'(s is F-equivalent to ¢ (see Definition 4.4.2.2). By Definition 5.6.1.1,
we can produce a cellular space K together with weak homotopy equivalences,
fi: K — bs¢ and fi: K — bs(y, such that f{¢; and fi(s are F-equivalent.
Using Theorem 5.4.1.2, there is a continuous g: B — K such that f; o g is
homotopic to ¢. Therefore, in the chain of F-bundles:

(fiog)'G=d"(f1C1), 9 (iG)=(f2009)'C ¢'C, b,

the adjacent bundles are F-equivalent, and hence so are (f;0¢9)'¢; and £|p. Since
(; is universal, there is a continuous h: bs& — bs(; such that hg = f; o g and
the bundles 2'¢; and ¢ are F-equivalent (see again Definition 4.4.2.2). Further,
since f is a weak homotopy equivalence, there is a continuous k: bs¢ — K
such that k|g = ¢ and f; o k, h are homotopic (see Theorem 5.4.1.2). The
restriction of f; o k: bsé — bs(s to B equals f5 o g, and hence is homotopic to
. Consequently, there is a continuous map 1: bs€ — bs (s homotopic to faok
such that ¢|g = ¢. Now the fact that the adjacent bundles in the chain

Vo, (f20k)'G=k(f0), K(iG=(fiok) G, K&, &

are F-equivalent implies the F-equivalence of the bundles 1'(, and &.
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We may use what we just proved to show that the condition of the theorem
is also necessary. In fact, assume that ¢; and (> are universal, and let (K, ¢1)
and (K, s) be cellular approximations of bs ¢(; and bs ¢y . Since ¢} ¢; and (o
are weakly homotopy equivalent, they are both universal. Hence, K; and K,
are homotopy equivalent (see Definition 4.4.2.2). O

Corollary 5.6.1.3. If X and Y are classifying spaces of the same topological
group, then X and Y are weakly homotopy equivalent.

Theorem 5.6.1.4. Given any topological group G, there is a universal G-bundle
with cellular base.

Proof. This follows from Remark 4.4.3.4, Theorems 5.4.3.2, and 5.6.1.2. O

Theorem 5.6.1.5. A principal bundle is universal if and only if its total space
is co-connected.

Proof. First, let £ be a universal G-bundle. Applying Theorem 5.6.1.2, K is
weakly homotopy equivalent to MilG. Since tI Mil G is oo-connected (see The-
orems 2.3.3.10, 5.4.2.7, and 5.1.11.5), t1£ is also oo-connected (see Definition
5.6.1.1).

Now let ¢ be a Steenrod G-bundle with oo-connected total space t1€. Pick
a cellular approximation (K, ) of bs¢ and consider the G-bundle '¢. Since
the bundle Mil G is universal, there is a continuous ¢ : K — bs Mil G such that
Y'¢ is G-equivalent to 1' MilG. Furthermore, t1MilG and tl(¢'¢) are ooAx-
connected, and the latter implies the oo-connectedness of t1(1)' Mil G). Applying
Theorem 5.1.5.20 (to the homomorphism from the homotopy sequence of the
bundle ' MilG into the homotopy sequence of the bundle MilG induced by
the map adj¢: ¥' MilG — Mil G), we see that is a weak homotopy equivalence.
Thus, ¢ is weakly homotopy equivalent to MilG , and so { is universal (see
Theorem 5.6.1.2). O

Theorem 5.6.1.6. If X is a classifying space of the topological group G, then
for any r > 1 the groups 7.(X) and w._1(G) are isomorphic.

Proof. Indeed, by Theorem 5.6.1.5, the homomorphisms A figuring in the ho-
motopy sequence of the universal G-bundle with base X are isomorphisms (see
Remark 5.1.8.8). O

Theorem 5.6.1.7. If X and X5 are classifying spaces of the topological groups
G1 and Ga, then X1 x Xo is a classifying space of G1 X Gs.

Proof. Given a universal G1-bundle &; and a universal Go-bundle &5, it is enough
to verify that the (G x Gz)-bundle & x &3 is universal. But this follows from
Theorems 5.6.1.5 and 5.1.1.15. L]

Theorem 5.6.1.8. Theorems 5.6.1.2 and 5.6.1.5 carry over to k-universal bun-
dles. Thus, if (1 and (3 are Steenrod bundles with the same standard fibre and
(1 1s k-universal, then (o is k-universal if and only if it is k-equivalent to (; and
a principal bundle is k-universal if and only if its total space is k-connected.
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Proof. The proofs repeat those of Theorems 5.6.1.2 and 5.6.1.5, mutatis mutan-
dis. O

An Application: Universal Principal Bundles for Finitely Generated
Abelian Groups

Theorem 5.6.1.9. For arbitrary n and mq, ..., my,

Rx: -+ xRxS®x-- xS hel X+ x hel x proj x - -+ X proj,

n J4 n £
St x -+ x St x L(my) x --- x L(my))

is a universal Z" ® 71 Z & - - - ® Z/myZ)-bundle. In particular, S* is a clas-
sifying space for Z, while L(m) is a classifying space for Z./mZ.

Proof. Since R and S°° are oo-connected, this follows immediately from Theo-
rems 5.6.1.5 and 5.1.1.15. O

5.6.2 Theory of Coverings

Definition 5.6.2.1. The main achievement of the present section is a clear
enumeration of the covering spaces of non-pathological connected spaces and a
criterion for the equivalence of two given coverings. Our instrument will be the
fundamental group. The analysis is elementary enough: in fact, all we use from
the whole theory of bundles may be concentrated in the following two theorems,
where it is assumed that a covering £ together with a base point = € t1(§) are
given. Then:

(i) every path in bs¢ with origin (proj&)(z) is covered by one and only one
path in t1¢ with origin z;

(ii) if two paths in bs¢& with common origin (proj¢)(z) are homotopic, then
the paths in t1€ which cover them are also homotopic and, in particular,
have the same end.

(These assertions are straightforward corollaries of Theorems 4.1.3.6 and Propo-
sition 4.1.3.8.)

It is true that here and there we do refer to other facts from the theory of
bundles (for example, to Theorem 5.1.8.13), but all these can be readily deduced
from (i) and (ii).

At the heart of the theory of coverings lies the definition of the group of a
covering. Recall that, according to Theorem 5.1.8.13,

proj,.: mi(t1€, #) — mi (bs ¢, (proj&)(z))

is a monomorphism for any covering £ with base point z € t1£&. We call the
image of proj, the group of the covering & with base point x, and denote it by

grp&(x).
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Theorem 5.6.2.2. Let (proj&)(z1) = (proj&)(xo) and let s be a path in t1€
beginning at xoand ending at x1. Then grp&(x1) = olgrp&(xo)]o~t, where o is
the homotopy class of the loop (proj€&) o s. In particular, if

(proj&)(zo) = (proj&)(z1),

then grp(xo) and grp &(x1) are conjugate subgroups of w1 (bs&, xo). The converse
is also true: the groups grp&(z) with x € (proj&)'((proj&)(xo)) ezhaust the
subgroups of (bs§, proj&(xg) which are conjugate to grp&(xo).

Proof. In fact,

grpé(z1) = proj & (m(t1€, #1)) = proj&x o Ty(m1(t1€, o))
- Tproj gos © Proj 6* (tlga (EO)) = Tproj £Os(grp €($0)) = O'[gl‘p g(mo)]a_l'

These equalities demonstrate that for every o € w1 (bs&, proj&(xzg)) the group
olgrp&(zo)]o~! equals grp&(sy), where s is a path in t1¢ with origin 2y and
which covers some path in the class o. O

The Hierarchy of Coverings

Definition 5.6.2.3. We say that the covering &, with base point xy € tl1€ is
subordinate to the covering & with base point xf, € t1¢’, if bs{’ = bs¢ and there
exists a continuous map ¢: £’¢ such that bs ¢ = idpse, and tlp(z) = zo. In
this case, the map ¢ is called a subordination.

Obviously, if ¢: &Pr™me — ¢ is a subordination, then (t1&',tlip,tl1¢) is a
covering.

Theorem 5.6.2.4. If a subordination exists, then it is unique.

Proof. Suppose that the covering £ with base point xg is subordinate to the
covering &’ with base point zj,, and let ¢ and 1 be two such subordinations.
Then, if ' € t1¢’ is arbitrary and s: I — t1¢’ is such that s(0) = z(, s(1) = 2/,
then the paths tlyp o s and tl4 o s cover the same path, proj&’ os, in bs¢ and
have the same origin. Therefore, tlp o s = tli o s and tlp(z’) = tlp o s(1) =
tlep o s(1) = tlep(a'). O

Theorem 5.6.2.5. If two coverings with base points are mutually subordinate,
then the corresponding subordinations are equivalences which are inverses of one
another.

Proof. Let @: & — & and ¢': £ — £ be subordinations. Then ¢’ o p: & — &
and @ o ¢': &€ — £ are also subordinations. By Theorem 5.6.2.4, ¢’ 0 ¢ = idg
and ¢ o ¢’ = ide. O

Lemma 5.6.2.6. Let & and &' be coverings with base points xo € € and xf, €
¢, and such that bs¢' = bs¢, (proj&’)(zy) = (projé)(wo), and grp’(zp) C
grp&(xo). If the paths sy, sh: I — t1€P™™¢ have the common origin z( and a
common end, then the paths in t1& which cover proj¢&’ o s} and proj&’ o sf and
have origin xy also have a common end.
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Proof. Let s; and s be the path in t1¢€, with origin xy which cover proj£os) and
proj¢ o sj. The class of the loop (proj& o s})(proj& o s7) belongs to grp &' (xy),
and hence to grp&(zg). Consequently, the path in t1¢€, with origin xzy which
covers this loop is closed; moreover, it can be expressed as the product of a path
which covers proj€ o s} (and which, having origin x, coincides with s;) with
a path which covers (proj¢ o s7) (and which, having origin zq, coincides with
851). Therefore, s; and sy have the same end. O

Theorem 5.6.2.7. Let & and & be coverings with base points xo € tl€ and
zp"" e tl¢’, such that bs&’ = bs&, (proj&’)(z() = (proj&)(zo).

(i) If € is subordinate to &', then grp’(z() C grp&(zo);

(i1) If grp’(z() C grp&(zo) and bs& is locally connected, then £ is subordinate
to &'.

Proof. Assertion (i) is trivial, so let us prove (ii). For each point 2’ € tl¢’,
consider the common end of all paths in t1£ which start at zo and cover paths of
the form proj &’ou’, where v’ is a path in t1£’ such that u/(0) = x{, v/(1) = 2’ (see
Lemma 5.6.2.6). This defines a map F: & — tl1¢ satisfying proj & o F' = proj &,
and all we have to check is the continuity of F. So let 2’ € t1¢' and U be a
neighbourhood of F(z'). We shall produce a neighbourhood U’ of 2’ such that
F{U)cCU.

To do this, let W C bs & be a neighbourhood of proj &’(z") such that there are
neighbourhoods, V' of 2’ and V of F(2’), which are homeomorphically mapped
by proj&’ and respectively proj& onto W. Since bs¢ is locally connected, we
can find a neighbourhood Wy C W of proj¢’(z’) such that every point of Wy
can be joined to proj{ (2") by a path in W. Now set V] = V' N (proj &)=t (W),
V1 = VN (proj& ) (W), and U’ = V{ N (proj &)~ (proj&(U)). Obviously,
a’ € U'. Let us check that F(U') C U.

Let 3/ € U’. Since abproj&’: V! — W is a homeomorphism, there is a path
v': I — t1¢ such that v'(I) C V' and v'(0) = 2/, v'(1) = y/. Define v: I — t1¢
by

o(t) = (proj€ly) ~(proj€’ o v'(¢)),
pick a path u': I — t1¢&' with the property that v/(0) = o, v/(1) = 2/, and
consider the path u: I — t1¢ with u(0) = zg, u(1) = F(2’), and u covers the

path proj&’ ou’. Clearly, (v'v')(0) = xo, (u'v")(1) = ¢/, while the path uv covers
proj¢&’ o (u'v") and (uv)(0) = xg. Therefore, (uv)(1) = F(v'), and hence

v(1) = (proj€lv) ™! (proj€'(y)) € V N (proj &)~ (proj &’ (U”)) C U.
O

Corollary 5.6.2.8. Two coverings, £ and &', with bs&’ = bs& a locally con-
nected space, are equivalent if and only if for some points xo € t1€ and xj, € t1&,
such that (proj&’)(xz() = (proj&)(xo), the groups grp&(xo) and grp&’(xy) are
congugate in 71 (bs&, proj&(zy)).
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The Group of Automorphisms of a Covering

Remark 5.6.2.9. As with the automorphisms (i.e., self-equivalences) of an arbi-
trary bundle £, the automorphisms of a covering £, form a group Aut&. 2 Its
structure is described in Theorem 5.6.2.10 below, where zy designates, as usual,
a base point in tl1£, and two new notations are used. Namely, let eval be the
map from Aut ¢ into the fibre (proj &) =1 (proj&(wzg)) given by eval(p) = tlo(zo),
and let Reg be the set the set of all points z € (proj &)~ (proj&(zo)) such that
grpé(x) = grp&(zp). From Theorem 5.6.2.2 it follows that the preimage of Reg
under the map

A i (bs€, proj€(zo)) — mo((proj&) ™" (proj&(xo)), xo) = (proj )~ (proj(zo)).

is nothing else but the normaliser Nr(grp&(xg)) in 71 (bs&, proj&(xzo)) of the
group grp&(zp). [Recall that, given a subgroup H of a group G, its normaliser
Nr(H) is the set of all g € G such that gHg~! = H; Nr(H) is a subgroup of G
and contains H as a normal subgroup.] Therefore, A induces an invertible map

fact abr A: Nr(grpé&, (z9))/ erp&(xo) — Reg.
Theorem 5.6.2.10. eval is injective, eval(Aut£) C Reg, and the composition

(fact abr §) !

Aut 2259, Reg Nr(grp &, (20)/ grp & (o)

is an anti-homomorphism. If the base bs& is locally connected, then
eval(Aut &) = Reg,

and hence the group Aut§ is anti-isomorphic to Nr(grp&, (xo)/ grp&(zo). If, in
addition, & is regqular (see Definition 5.6.2.11 below), then

Nr(grp&(x0)) = m1(bs &, proj&(zo))
and Aut & is anti-isomorphic m1(bs&, proj&(zo))/ grp &(zo).

Proof. Since every automorphism ¢ € Aut £ may be thought of as a subordina-
tion of the covering & with base point tl(xg) to the covering & with base point
xo , the injectivity of eval is immediate from Theorem 5.6.2.5. Similarly, the
inclusion eval(Aut &) C Reg follows from part (i) of Theorem 5.6.2.7, while the
equality eval(Aut &) = Reg results, when bs ¢ is locally connected, from part (ii)
of the same theorem. Finally, that (fact abr A) o eval is an anti-homomorphism
is plain. O

Regular Coverings

Definition 5.6.2.11. A covering £ is regular if for some point zy € tl&,
erp&(zp) is a normal subgroup of m(bs&, proj&(zg)). In this case grp&(x) is

2Translator’s note: the elements of Aut& are also known as covering transformations or
deck transformations.
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a normal subgroup of 71 (bs§, proj&(x)) for all x € tl1€, as seen from Theorem
5.6.2.2.

If &, is regular, then again using Theorem 5.6.2.2, the groups grp {(x) with
(x € proj&)~1(b) are all equal for each fixed b € bs €.

We remark that every two-sheeted covering is regular (because every sub-
group of index 2 is normal). More examples of regular coverings are (R, hel, S*),
(S, hel,y,, S') [see Example 4.1.2.6], (S*"~1, proj, L(m; {1, ...,4,)) [see Remark
4.2.3.19] , and (S?’,proj7S3/(f¥\]3), where P is a tetrahedron, a cube, or a dodec-
ahedron [see Example 4.2.3.21]. An example of a non-regular covering is given
in Fig. 5.5 (where the two points marked A are identified, as are the two points
marked B);

pr

Jitt

Figure 5.5:

its non-regularity is a result of the following theorem.

Theorem 5.6.2.12. A covering &, is reqular if and only if there is a point
xo € t1€, with the property that given any loop s: I — tl€, with s(0) = xg
and any point x € (proj &)~ (projé, (o)), the path with origin x and covering
proj& o s is closed.

Proof. Indeed, the last condition means that each element of grp£(zg) also be-
longs to every group grp&(x) with o € (proj &)~ (projé&, (x¢)), and this implies
that every subgroup of m(bs¢&, proj&, (zo)) which is conjugate with grp£(zo)
actually equals grp &(zo) [see Theorem 5.6.2.2]. O

Theorem 5.6.2.13. A covering £ is reqular if and only if it is equivalent to a
principal bundle. The structure group of such a bundle is discrete and isomor-
phic to G = m1(bs&, proj&(xzg))/ erp&(xo). Two Steenrod G-bundles which are
equivalent to € are themselves G-equivalent.

Proof. By Definition 4.3.2.10 and Remark 4.3.2.11, £ is equivalent to a Steenrod
G-bundle if and only if there exists a free, continuous right action of G on tl1€
whose orbits are precisely the fibres of £; in particular, G is necessarily discrete.
Moreover, the transformation of t1¢ determined by such an action yield the
automorphisms of £. Finally, by Remark 5.6.2.9, such an action exists if and
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only if £ is regular and G is anti-isomorphic to Auté, i.e., is isomorphic to the
group 1 (bs &, proj&(zo)/ grp (o). H

Existence of Coverings

Definition 5.6.2.14. A topological space X is said to be semi-locally simply
connected if every point x € X has a neighbourhood U such that incl, : m (U, ) —
m (X, x) is trivial.

Obviously, the class of semi-locally simply connected spaces contains all sim-
ply connected spaces and all locally contractible spaces [and, among the latter,
all locally Euclidean spaces, all CNRS’s (see Theorem 1.3.6.8), in particular, all
cellular spaces (see Theorem 2.1.4.5)].

Theorem 5.6.2.15. Every space which has a simply connected covering space
1s semi-locally simply connected.

Proof. In fact, let € be a covering projection with t1¢ simply connected and let
b € bs¢. Then the homomorphism incl,: 71 (U,b) — m1(bs§,b) is trivial for
every neighbourhood U of b such that |y is trivial. O

Theorem 5.6.2.16. Let B be a connected, locally connected, and semi-locally
simply connected space, let by € B, and let m be any subgroup of w1 (B, bo).
Then there exists a covering £ with base point xo € tl& such that bs¢ = B,
proj&(xzo) = by, and grp&(xg) = 7.

Proof. Consider C(I,0; B, by), identify any two paths s1, s5 in this set whenever
51(1) = s2(1) and the homotopy class of s1s; " belongs to &, and denote the
resulting quotient space by E. Further, given open subsets U of B and V of U,
and any path s: I — B, with s(0) = by, s(1) € V, let Nb(U, V; s) be the subset
of E consisting of the equivalence classes of the paths sw with w(I) C U and
w(l) € V. The sets Nb(U, V; s) satisfy the conditions of Theorem 1.1.1.9, and
thus yield a base for a topology on E. [Information: this topology coincides
with the quotient topology that F inherits as a quotient of the topological
space C(I,0; B,bp).] The map p: E — B which takes each point from E into
the common end of the paths which represent it is clearly continuous and open.
We set £ = (E, p, B) and take for x( the point of £ represented by the constant
path. Then p(z¢) = bg. Let us show that ¢ is a covering and that grp &(xg) = 7.

We first verify that 4€ is a covering in the broad sense. Pick an arbitrary
point b € B and find a neighbourhood U of b such that the inclusion homomor-
phism 71 (U, b) — 71(B, b) is trivial, and then a neighbourhood V of b in U such
that b can be joined to every point of V by a path in U. We claim that &|y is
a trivial bundle with discrete fibre.

To see this, consider an arbitrary path s: I — B such that s(0) = bp, s(1) =
b, and for each coset o € 71(B, bg) /7 choose a loop u: I — B representing some
element of a. The sets Nb(U,V;uqs) are open and pairwise disjoint [if the
paths (usq)w and (usq, )wy with w(I) C U, wi(I) C U, define the same point
of E, then a = aj: indeed, the loop ((usy)w)(usa, )wi)~ !, and hence the loop
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uaugll homotopic to it, are elements of a class that belongs to 7] . Also, the
sets Nb(U, V;ugys) cover p~1(V) [every path s’ with s'(0) = by, s'(1) € V, is
homotopic to a path of the form (us)w, where u is a loop and w(I) C U: and
example of such a path is (((s'w™!)s™1)s)w, where w: I — U is any path with
w(0) = b, w(l) = §'(1)]. Finally, the maps abrp: Nb(U,V;us) — V are open
(because p is) and invertible [if the paths (uqs)w, (uqs)wi with w(I) C U,
wy(I) C U, have the same end, then they are homotopic|; that is, abrp are
homeomorphisms. Consequently, £|y is a trivial bundle with discrete fibre, as
asserted.

The last thing to prove is that F is connected and that a path in E which
has origin xg and covers a loop from a homotopy class o € 71 (B, bp) is closed
if and only if 0 € m. Given s: I — B with s(0) = by, let 5: I — E be the path
which takes each ¢ € I into the point of E represented by the path 7+ s(¢7).
Clearly, s(0) = zq, s(1) is the point of F represented by s, and § covers s. This
has two consequences:

e every point of E can be joined to xy by a path,

e given a loop with origin by, the end of the path which starts at z¢ and
covers it is precisely the point of E represented by the given loop.

The first shows that E is connected, while the second implies that, given a loop
with origin by, the path which covers it and has origin by ends at x if and only
if the homotopy class of the given loop belongs 7. O

Definition 5.6.2.17. The previous theorem completes the theory of coverings
with a fixed base. Combined with Theorem 5.6.2.7, it establishes a one-to-one
correspondence between the equivalence classes of coverings over a connected,
locally connected, and semi-locally simply connected space B with base point by
and the classes of conjugate subgroups of 71 (B, by). It transforms the hierarchy
of coverings into the usual, set-theoretic hierarchy of subgroups, and the normal
subgroups correspond to the regular coverings. The covering corresponding to
the trivial subgroup has a simply connected total space. Since every covering
is subordinate to this one, it is called universal. (Warning: do not confuse this
universality with the notion of universality defined in the theory of Steenrod
bundles. Note, however, that among the universal Steenrod bundles one finds
also universal coverings, namely the universal principal bundles with discrete
structure groups; see Theorem 5.6.1.5 and cf. Theorem 5.6.2.18).

An Application: Classifying Spaces of Discrete Groups

Theorem 5.6.2.18. In order that a connected topological space X be a classi-
fying space of a given discrete group 7, it is necessary that the groups m.(X) be
trivial for all v > 2 and that 71(X) be isomorphic to w. If X is locally connected
and semi-locally simply connected, then this condition is also sufficient.

Proof. Necessity results from Theorems 5.6.1.5, 5.6.2.13, and Definition 5.1.9.15.
Sufficiency results from Theorem 5.6.2.16, 5.1.8.13, and 5.6.1.5. O
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Coverings Maps

Theorem 5.6.2.19. Let &, and &' be coverings with base points xy € t1£, and
xp € t1E, and let f: (bs&’,proj&'(a’)) — (bs&, proj&(zo)) be a continuous map.
Then the inclusion f.(grp&'(z()) C grp&(zo) is a necessary condition for the
existence of a continuous map ¢: & — & such that bsp = f and tlp(z') = .
If bs¢&’ is locally connected, then this condition is also sufficient. If such a ¢
exists, then it is unique.

Proof. Assume that such a ¢ exists. Then from the commutative diagramme
(see Theorem 5.1.8.7)

ﬂl(tlgl,xo) de- Wl(tlf,l‘o)

proj &, i lpmj &~

1 (bs €' proj €' (7)) = m (bs €, proj ()
it follows that f.(grp&’(x()) C grp&(xo).

Now let us prove the converse. Consider the bundle f'¢ together with
the map adjf: f'¢ — & Let y) € (proj f'&)~'(proj&'(x})) be such that
tladj f(yh) = wo. Further, let Y’ be the component of tl(f'¢) containing y,
and let p’ be the restriction of proj f'¢ to Y. Obviously, (Y’,p’,bs¢’) is a cov-
ering tladj f and f combine to define a map (Y',p’,bs¢’) — &, and tladj f|y~
is injective on every fibre of (Y”,p’,bs¢’). In the diagramme

(proj). , A P
m (Y’ ) —= mi(bs¢’, proj € (z) —=—=mo((p') ™" (proj &' (x(), yo)

abr tl adj f*l lf* i(abr tladj fa

w1 (1€, z0) oot 71 (bs &, proj(xzo)) —x 7o((proj &)~ (proj &' (z0), z0))

the rows are exact, while the left vertical homomorphism is monomorphic. Con-
sequently, f(im((proj¢).)) = imp/,, whence imp, O grp &’(z(). Since bs¢’ is
locally connected, the last inclusion shows that the covering (Y”,p’,bs¢’) with
base point y(, is subordinate to the covering & with base point zy. If ¢’ is such
a subordination, then (tladj f|y) o tl¢)’ and f combine to define the desired
map .

Finally, we claim that ¢ is unique. Indeed, suppose @1: & — £ is another
map with bs p; = f and tl¢; (2f) = xo. Then for every point 2’ € t1¢" and every
path s': I — t1& with s'(0) = z{, s'(1) = 2/, the paths tlgpos and tl p; 05’ cover
foproj& os’ and have the same origin xg. Therefore, in these circumstances
tloos’ =tlp; os’, and hence tlp(a') =tlpo s’ (1) =tles'(1) =tlpi(a). O

Theorem 5.6.2.20. Suppose £ is a covering with base point xo € t1€, Y is a
locally connected space with base point yo, and f(Y,yo) — (bs&, proj&(zo)) is
continwous. If f.(m1(Y,y0) C grp&(zo) [in particular, if Y is simply connected],
then there is a map F: (Y,yo) — (t1€.£,x0) which covers f.
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(Cf. Proposition 4.1.3.8.)

Proof. To see this, apply Theorem 5.6.2.19 to £ and &' = (Y,idy,Y). O

Coverings and Additional Structures

Remark 5.6.2.21. There is an important general principle asserting that under
favourable conditions an additional structure defined on the base of a given cov-
ering can be lifted to the covering space. To conclude our study of coverings, we
apply this principle to three structures: differentiable, cellular, and simplicial.
Further applications appear in Exercises 5.6.5.10 and 5.6.5.11.

Concerning differentiable structures, we restrict ourselves from the onset to
manifolds, i.e., we assume that bs¢{ is a C"-manifold (1 < r < a) and that the
number of sheets of ¢ is countable. We know that every chart ¢ € Atlbs¢
such that the bundle &|upp, is trivial has a family of copies in t1{ which cover
(proj &)~ (supp ¢). Obviously, these copies (taken for all o € Atlbs¢) constitute
a C"-atlas of the space t1£. This atlas provides t1 € with a C"-structure and turns
it into a C"-manifold. The fundamental property of this lifted structure, and
the one which defines it uniquely, is that relative to this structure proj¢ is a
C"-submersion, i.e., that £ is a C"-bundle. Let us add that the orientability of
bs € implies the orientability of t1€.

We can similarly lift a cellular structure. However, to lift the cells and their
characteristic maps we need Theorem 5.6.2.20. As a result, the total space of
the given covering with cellular base becomes a cellular space (rigged whenever
the base is rigged), and the projection becomes a cellular map.

Lifting a simplicial structure may be viewed as a special case of lifting a
cellular one. The total space of a covering with simplicial base thus becomes a
simplicial space (ordered whenever the base is so), and the projection becomes
a simplicial map.

Remark 5.6.2.22. In all the three cases considered above, the lifted structure is
invariant under the automorphism of the given covering. It is clear, at least if
the covering &, is regular, that every differentiable or cellular structure defined
on t1¢ and invariant under the automorphisms of £ can be lowered to bs¢, i.e.,
the given structure on tl¢ is the result of lifting a similar structure from bs¢&
(this becomes true also for simplicial structures after we effect the barycentric
subdivision twice). For example, the lenses and the quotient spaces of S® by the
binary tetrahedral, cube, or icosahedral groups (see Example 4.2.3.21) are reg-
ularly covered by the corresponding spheres (see Remark 4.3.2.11 and Theorem
5.6.2.13), and hence are C*-manifolds.

If the given covering £ is a C"-bundle, then the C"-structure on tl¢ is au-
tomatically invariant under the automorphisms of £. In this case, the lowered
C"-structure surely coincides with the original C"-structure on bs&. This is ex-
actly what happens to all the coverings described in Example 4.1.2.6 and, in
particular, to (R, hel, St), (S!, hel,,,S'), and (S", proj, RP™).
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5.6.3 Orientations

Remark 5.6.3.1. In the present subsection the technique developed in the previ-
ous one is applied to the orientability problems considered in §§3.1 and 4.5 (see
Subsections 3.1.3, 4.5.1, 4.5.4). We follow the recipe of Subsection 4.5.1, which
applies to bundles over arbitrary spaces, in contrast to the recipe of Subsection
4.5.4), which yields the same results, but only for bundles over a cellular base.

Remark 5.6.3.2. Let £ be an n-dimensional real vector bundle. Consider the as-
sociated principal bundle, assoc(&, GL(n,R)), and construct the orbit space of
the right action of GL4 (n, R) on tlassoc(§, GL(n,R)) obtained by the restriction
to GL4(n,R) of the canonical right action of GL(n,R) on tlassoc(¢, GL(n,R))
[see Definition4.3.2.10]. Denote this orbit space by bs; £, and observe that it is
the total space of a bundle with base bs € and projection fact proj assoc(¢, GL(n, R)).
It is clear that (bsy &, fact proj assoc(§, GL(n,R)), bs¢) is a two-sheeted covering
in the broad sense; we denote it by Oré.

One may view the points of bsy & as pairs (x,¢), where x € bs¢ and ¢
is an orientation of the fibre (proj¢)~!(x). This permits us to look upon a
simultaneous orientation of all the fibres of £ as a map s: bs¢ — bsy & such that
projOr{os =idpse. Clearly, the compatibility (in the sense of Remark 4.5.1.8)
of the orientation given by s on the fibres of ¢ is equivalent to the continuity
of s. Thus, the orientations of the bundle £ turn out to be the sections of the
bundle Oré.

We list the most important corollaries of the above discussion:
(i) a bundle £ is orientable if and only if the bundle Or¢ is trivial;

(ii) if the base bs¢ is locally connected and the fundamental groups of its
components have no subgroups of index 2 (the last happens, in partic-
ular, whenever the components of bs¢ are simply connected), then ¢ is
orientable.

(iii) if ¢ is orientable, then the number of its orientations equals the number
of maps compbs¢ — S° (and, in particular, equals 2™ if bs £ has m < oo
components).

Remark 5.6.3.3. We would like to make another remark concerning the previous
construction. Given a real vector bundle £, consider the bundle with base bs &,
induced from ¢ by the projection projOré. Here we note that £, possesses
a canonical orientation. Namely, the orientation of its fibre (proj&y)~!(z,¢)
(where 2 € bs€¢ and ¢ is an orientation of the fibre (proj&)~!(x)) is simply the
orientation e, transferred to (proj&y)~!(z,e) by the isomorphism

abr tladj(proj Or &) (proj&+) ™ (x,¢) — (proj &) — —L();

that these orientations are compatible in the sense of Remark 4.5.1.8 is plain.
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The Case of Smooth Manifolds

Remark 5.6.3.4. Orienting a smooth manifold is the same as orienting its tangent
bundle (see Remark 4.6.4.5), and hence the discussion in Remark 5.6.3.2 carries
over to the orientability and orientations of smooth manifolds. In particular,
a manifold X is orientable if and only if the bundle Ortang X (which is a
two-sheeted covering in the broad sense with base X) is trivial. Also, a smooth
manifold is automatically orientable if the fundamental groups of its components
have no subgroups of index 2 (as happens when all its components are simply
connected).

Let us add that, according to Theorem 5.6.2.21, the space t1 Ortang X is a
smooth manifold. By Remark 5.6.3.3, the latter carries a canonical orientation.
If X is connected and non-orientable, then Or tang X is a (two-sheeted) covering;
we call it the orientation-covering of the manifold X.

5.6.4 Some Bundles Over Spheres

Remark 5.6.4.1. In this subsection we present the most elementary results con-
cerning orientable real vector bundles and complex vector bundles over lower-
dimensional spheres. This topic has independent interest and, at the same time,
illustrates the general theory.

Recall that the classes of GL R"-equivalent GL; R"-bundles over a given
cellular base are in a one-to-one correspondence with the homotopy classes of
continuous maps of this base into G4 (co,n). Similarly, the classes of GL C"-
equivalent GL C"-bundles over a cellular base are in a one-to-one correspondence
with the homotopy classes of continuous maps of this base into CG(oco,n). [See
Theorem 4.5.3.8.] If the base is S”, r > 1, then the fact that GL; R™ and GLC"
are simple spaces implies that the aforementioned homotopy classes may be
thought of as elements of the groups (G4 (00, n)) and 7,.(CG(oc0,n)), respec-
tively. Since these groups are isomorphic to m,._1(SO(n)) and m._1(U(n)) (see
Theorems 5.2.8.2 and 5.2.8.4), it follows that the classes of GL R™-equivalent
GL; R™-bundles over S” (r > 1) are in a natural one-to-one correspondence
with the elements of 7,._1(SO(n)), while the classes of GL C"-equivalent GL C™-
bundles over S” (r > 1) are in a natural one to - one correspondence with the
elements of m,_1(U(n)). Since we already know 7,_1(SO(n)) and m,_1(U(n))
for some small values of r (see Subsection 5.2.6), we get the classification of the
corresponding bundles, which we shall outline with minimum of details below.
Some supplements appear in Exercises 5.6.5.19-5.6.5.19.

We note that this method works in a considerably more general situation.
Namely, let G be a topological group, and let F' be an effective G-space. Ac-
cording to the general theory of bundles (see Subsection 4.4.2), the elements of
Stnrd(S?, F') are in a natural one-to—one correspondence with the elements of
m(S?, X), where X is any classifying space of G. If X is g-simple (for example,
if G is connected), then 7(S?, X) coincides with 7,(X) and, for ¢ > 1, with
7g—1(G) (see Theorem 5.6.1.6).
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The Real Oriented Case

Remark 5.6.4.2. Since mo(SO(n)) is trivial, every GL, R"-bundle over S! is
GL, R™-trivial, for any positive integer n.

Since w1 (SO(1)) is trivial, 71(SO(2)) = Z, and m1(SO(n)) = Z/2Z for all
n > 3, it follows that:

e every GL, R'-bundle over S? is GL, Rl-trivial;

e the pairwise GL R%-non-equivalent GL, R™-bundles over S? form an in-
finite and countable collection;

e for n > 3, the number of pairwise GL; R™-non-equivalent GL; R™-bundles
over S? is 2.

Since m2(SO(n)) is trivial, every GL, R™-bundle over S? is GL, R"-trivial,for
any positive integer n.

Since m3(SO(1)) and 73(SO(2)) are trivial, whereas 73(SO(n)), n > 3, is
infinite and countable, it follows that:

e every GL, R'-bundle over S* is GL R!-trivial;
e every GL, R2-bundle over S* is GL R2-trivial;

e for n > 3, the pairwise GL; R"-non-equivalent GL, R™-bundles over S*
form an infinite and countable collection.

The Complex Case

Remark 5.6.4.3. Since mo(U(n)) is trivial, every GL C"-bundle over S'is GL C"-
trivial, for any positive integer n.

Since 71 (U(n)) = Z for all n > 1, the classes of pairwise GL C"-non-
equivalent GL C™-bundles over S? form an infinite and countable collection,
for any positive integer n.

Since mo(U(n)) is trivial, every GL C"-bundle over S? is GL C"-trivial, for
any positive integer n.

Since m2(U(1)) is trivial and m3(U(n)) 2 Z for all n > 2, it follows that:

e every GL C™-bundle over S* is GL C™-trivial;

e if n > 2, the pairwise GL C"-non-equivalent GL C"-bundles over S* form
an infinite and countable collection.

5.6.5 Exercises

Exercise 5.6.5.1. Show that a smooth two-dimensional manifold does not admit
the disc D? as a covering space (unless the given manifold is homeomorphic to
D2, and then the covering projection is the corresponding homeomorphism).

Ezercise 5.6.5.2. Show that a smooth, compact two-dimensional manifold does
not admit the half plane R_ as a covering space.
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Exercise 5.6.5.3. Show that a sphere with g handles admits a sphere with ¢
handles as an m-sheeted covering space if and only if g — 1 = m(g — 1). [Cf.
Exercise 4.1.5.1.]

Ezercise 5.6.5.4. Show that a sphere with h cross-caps admits a sphere with h
cross-caps as an m-sheeted covering space if and only if h — 2 = m(h — 2). [Cf.
Exercise 4.1.5.2.]

Ezercise 5.6.5.5. Show that a sphere with A cross-caps admits a sphere with g
handles as a covering space if and only if m is even and g — 1 = m(h — 2)/2.

Exercise 5.6.5.6. Show that the Klein bottle admits a topological space as a
covering space with non-identical covering projection if and only if the given
space is homeomorphic to the Klein bottle, to the interior of a Md&bius strip, or
to one of the products R x R, R x S, S! x S!.

Exercise 5.6.5.7. Let mp,mo,m3,... be arbitrary groups, with 7, Abelian for
k > 2, and suppose that there is given a right group action of 7 on my, k=2.
Show that there is a cellular space X with base point zy together with an
isomorphism f;: m; — m1 (X, z¢), such that the group 7 (X, z¢) is f-isomorphic
to my, for all k > 2.

Exercise 5.6.5.8. Let £ be a covering with bs¢ an n-dimensional locally Eu-
clidean space. Prove that tl¢ is an n-dimensional locally Euclidean space with
boundary dtl1¢ = (proj&) (O bs&).

Ezercise 5.6.5.9. Show that every covering space of a locally finite cellular space
is locally finite (see Theorem 5.6.2.21).

Ezercise 5.6.5.10. Let & be a covering with bs ¢ a topological group. Prove that,
given any point x € (proj f)_l(ebsg), on tl¢ there is one and only one group
structure, which turns tl¢ into a topological group with identity x, and turns
proj ¢ into a homomorphism.

Exercise 5.6.5.11. Let & be a covering with a finite number of sheets, such that
a connected, compact topological group acts transitively on bs&. Prove that
one can define a transitive action of a connected, compact topological group on
tlE.

Ezercise 5.6.5.12. Let & be a two-sheeted covering with bs¢& a non-orientable
smooth manifold and t1 £ orientable. Show that £ is equivalent to the orientation-
covering of bs¢.

Ezercise 5.6.5.13. Let X be a non-orientable smooth manifold and assume that
X admits an orientable manifold Y as a covering space. Show that Y is also a
covering space of t1 Ortang X.

Ezercise 5.6.5.14. Show that:
(i) for each positive integer n there is a unique (up to GL R™-equivalences)

GLR"-non-trivial GLR"-bundle over S! and that for n = 1 its total space
is homeomorphic to the interior of a Md&bius strip;

(i) the pairwise GL R?-non-equivalent GL R2-bundles over S? form an infinite
and countable collection;
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(iii) for n > 3, the number of pairwise GL R™-non-equivalent GL R”-bundles
over S? is equal to 2;

(iv) for any positive integer n, every GLR"-bundle over S? is GL R"-trivial;
(v) every GLR2-bundle over S* is GL R2-trivial;

(vi) for n > 3, the pairwise GL R"-non-equivalent GL R™-bundles over S* form
an infinite and countable collection.

Ezercise 5.6.5.15. Show that for r > 2 every GLR!'-bundle over S is GLR!-
trivial.

Ezxercise 5.6.5.16. Let » > 3. Show that:
(i) every GLR2-bundle over S™ is GL R2-trivial;
(ii) every GLR?-bundle over S™ is GL R?-trivial;
(iii) every GL C!-bundle over S™ is GL C!-trivial.

Ezxercise 5.6.5.17. Show that two GL R?-bundles over S? become equivalent by
extending the structure group GL Ri to GLR? if and only if the corresponding
elements of m1(SO(2)) [see Remark 5.6.4.1] are either equal or inverses of one
another.

Ezercise 5.6.5.18. Show that for every non-trivial O R2-bundle ¢ with bs & = S?
the space tlassoc(¢,S') is homeomorphic to one of the lenses L(m;1,1) [here
O(2) acts canonically on S!|.

Ezercise 5.6.5.19. Show that for n > 2 the number of pairwise GL C™-non-
equivalent GL C™-bundles over S® does not exceed 2.

INFORMATION. Actually, the last number is 2 if n = 2, and 1 if n > 2.
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