
First Course in Topology

D. B. Fuks, V. A. Rokhlin





Foreword

Preface by the original authours (with some mod-
i�cation by the transcriber)

This book is the result of reworking part of a rather lengthy course of lectures of
which we delivered several versions at the Leningrad and Moscow Universities.
In these lectures we presented an introduction to the fundamental topics of
topology: homology theory, homotopy theory, theory of bundles, and topology
of manifolds. The structure of the course was well determined by the guiding
term elementary topology, whose main signi�cance resides in the fact that it
made us use a rather simple apparatus. In this book we have retained those
sections of the course where algebra plays a subordinate role. We plan to publish
the more algebraic part of the lectures as a separate book.

Reprocessing the lectures to produce the book resulted in the pro�ts and
losses inherent in such a situation: the rigour has increased to the detriment
of the intuitiveness, the geometric descriptions have been replaced by formulae
needing interpretations, etc. Nevertheless, it seems to us that the book retains
the main qualities of our lectures: their elementary, systematic, and pedagog-
ical features. The preparation of the reader is assumed to be limited to the
usual knowledge of set theory, algebra, and calculus which mathematics stu-
dents should master after the �rst year and a half of studies. The exposition is
accompanied by examples and exercises. We hope that the book can be used as
a topology textbook.

The most essential di�erence between the book and the corresponding part
of our lectures is the arrangement of the material: here we have followed a much
more orderly succession of topics. However, from our experience, a lecture course
in elementary topology which exaggerates in the last respect is rather tedious
and less e�cient than one which mixes geometry with algebra and applications.
This remark may serve as a warning to the teacher who would like to use our
book as a guide. In fact, it is by no means necessary to read the book in its
order; a reader who is interested in getting to the homotopy groups or to any
other topic sooner, can easily do so.

Concerning the terminology and notation, we have tried to stick to standard
usage, and have permitted ourselves only a few reforms. For example, we do not
use the terms �simplicial complexes� or �CW-complexes�, but simplicial spaces
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and cellular spaces; not �co�brations�, but Borsuk pairs; not ��bre bundles� (or
��bred products�), but Steenrod bundles. There is even one term which we do
not use in the generally accepted way: for us, a connected space refers to what
usually is called a linearly connected (or path-connected) space (we do not have
a special name for the spaces which are usually called connected). Furthermore,
we have avoided using non-standardised notations for standard objects. In fact,
in the majority of cases, our notation is just an abbreviation of the corresponding
term and can be understood by itself: for example, proj stands for projection,
incl - for inclusion, dim - for dimension, skel - for skeleton, bs - for base, etc.

Topology requires a very precise set-theoretic language, and this compelled
us to devote a special attention to this language; this is illustrated in Set-
Theoretical Terms and Notations Used in this Book, but not Generally Adopted
below. We emphasise that on these pages we only list the terms and notations,
assuming that the objects themselves are known.

In this book we rarely refer to the history of topology. We have even de-
parted from the tradition that some theorems bear the names of their real or
imaginary authors. In return, we willingly have used names of topologists in
the terminology and notations.

The organisation of the text and the system of references may be brie�y
described as follows. Each Chapter is divided into Sections, each Section -
into Subsections, each Subsection - into Numbers. The chapters, sections and
subsections have numbers and titles, while the numbers are denoted by either
(Remark, De�nition, Theorem, Lemma or Corollary preceding) their numbers.
Each fact announced without proof is called Information, and is distinguished
from the rest of the text by this title. To refer to a section, subsection, or number
within the same chapter, we do not indicate the number of the chapter, and
references within a section or subsection are similarly abbreviated. Examples:
the entries �1.2 (Section 2 of Chapter 1), Subsection 1.2.3 (Subsection 3 of
Section 2 of Chapter 1), and (Remark, say) 1.2.3.4 (No. 4 of Subsection 3 of
Section 2 of Chapter 1) are abbreviated, within Chapter 1, as �2 , Subsection
2.3, and 2.3.4, respectively; the second of these entries is abbreviated within
�1.2 as Subsection 3; the third entry is abbreviated within �1.2 and Subsection
1.2.3 as 3.4 and 4, respectively.

The Authours

Review in MathScinet by J.F. Adams

The Russian original has been reviewed [�Nauka�, Moscow, 1977; MR0645388].
Chapter 1 is a very good summary of �general topology� for the non-specialist
user. Chapters 2, 3 and 4 give comprehensive groundwork in (respectively) CW-
complexes and simplicial complexes, smooth manifolds, and �brations. Chapter
5 gives some homotopy theory, for the non-specialist user. All this is done
without any homology theory, because the authors �plan to publish the more
algebraic part of the lectures as a separate book�. For example, the notion of
�degree� is obtained from the work on di�erential topology. The English transla-
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tion is thus a useful addition to the available textbooks; probably, as the review
of the original edition suggests, it is most suited to readers �oriented towards
the advanced theory of di�erentiable manifolds�.

Remark by the transcriber

This textbook is, as far as the transcriber knows, the only �introductory homo-
topy theory� covering smooth manifolds and bundle theory in the homotopy-
theoretic context. Their treatment avoids functorial treatments, which may
be suitable for the beginning level. It is quite regrettable that this wonderful
textbook is less known than the (now classic) Hu and (more modern) Arkovitz.

The transcriber is sure that upon completing this textbook, the reader will
be ready to study axiomatic or categorical homotopy theory.
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Chapter 0

Set-Theoretical Terms and

Notations Used in this Book,

but not Generally Adopted

Mathematicians manage with a surprisingly modest collection of set-theoretic
terms and notations, which can be roughly divided into three groups.

� The �rst contains terms and notations which have attained general recog-
nition.

� The terms and notations in the second group are equally well-known, but
can be understood di�erently or have varying connotations.

� The third group consists of terms and notations used less frequently.

There is no need to de�ne terms from the �rst group. For example, the
notations X ∪ Y , X ∩ Y , and X1 × · · · × Xn for the union, intersection, and
product of sets, or the notations f : X → Y , im f and f |A : A → Y for a map,
its image, and its restriction are understood in the same way by all people. The
same is true for the notation x ∈ X and the terms one-to-one map (injective
map) and map onto (surjective map).

For the sake of precision, we must say a few words about our usage of terms
and notations from the second group. We denote the empty set by ∅. We
understand the notation X ⊂ Y in the broadest sense, i.e., the equality X = Y
is not excluded. The same is true for the term countable set : we use it both for
in�nite countable and �nite sets. The identity map of the set X is denoted by
idX , or, when there is no ambiguity about X, simply by id. We shall say that
a map is invertible if it has an inverse, i.e., it is simultaneously injective and
surjective. We let {x ∈ X| . . . } denote the set of points x of the set X which
satisfy the condition appearing instead of the three dots. A family {Xµ}µ∈M is
a map a set M onto a set of objects Xµ with µ ∈ M , de�ned by the formula
µ 7→ Xµ.
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2CHAPTER 0. SET-THEORETICAL TERMS ANDNOTATIONS USED IN THIS BOOK, BUT NOTGENERALLY ADOPTED

Next our main task is to list the terms and notations appearing in this book
and belonging to the third group.

0.1 Maps

If A is a subset of a set X, then the inclusion of A in X may be considered as
the map de�ned by the formula x 7→ x. We denote it by incl : A→ X. If there
is no ambiguity about A and X, we simply write incl.

If A is a subset of X and B is a subset of Y , then each map f : X → Y
such that f(A) ⊂ B induces a map abr f : A → B, x 7→ f(x), and called here
the abridgement (or compression) of the map f to A,B. When there is no
ambiguity about A and B, one can write abr f instead of abr f : A → B. If
B = Y , then abr f is just the usual restriction of f to A.

By a map of a sequence (X,A1, . . . , An) into a sequence (Y,B1, . . . , Bn),
where (B1, . . . , Bn) are subsets of X (respectively, Y ), we mean a sequence of
maps

(φ : X → Y, φ1 : A1 → B1, . . . , φn : An → Bn)

such that φi = abrφ. We denote such a map by

(φ,φ1, . . . , φn) : (X,A1, . . . , An)→ (Y,B1, . . . , Bn).

If the subsets A1, . . . , An and B1, . . . , Bn are �xed, then the map

f = (φ,φ1, . . . , φn)

and its �rst component φ are uniquely determined by each other and usually
we do not distinguish between them. For example, the notation

f : (X,A1, . . . , An)→ (Y,B1, . . . , Bn)

may be also used to say that f is a map of X into Y such that

f(A1) ⊂ B1, . . . , f(An) ⊂ Bn.

When we wish to emphasise explicitly this relationship between f and φ, we
shall write:

f = relφ, φ = abrs f.

Sometimes we simply write rel instead of rel id.

0.2 Quotients

We denote the quotient (or factor) set of a set X by a partition p of X by X/p.
The map X → X/p which takes each point into the element of p containing
it is called projection and is denoted by proj. A subset of X which is a union
of elements of the partition is said to be saturated. The smallest saturated set
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containing a given subset A of X (i.e., proj−1(proj(A))) is called the saturation
of A.

If p and q are partitions of X and Y , respectively, then each map f : X → Y
which transforms elements of p into elements of q induces a map X/p → Y/q ,
which takes each element A of p into the element of q which contains f(A). This
map is denoted by fact f . In particular, fact f is de�ned when q is the partition
of Y into its points, and f is constant on the elements of p. Thus, for each
map f : X → Y constant on the elements of the partition p of X we have the
corresponding map fact f : X/p → Y .

Given a map f : X → Y , the partition of X into the non-empty pre-images
of the points of Y is denoted by zer(f). The corresponding map

fact f : X/ zer(f)→ Y

is injective and is called the injective factor (or injective quotient) of the map
f .

0.3 Sums

The sum of the family of sets {xµ}µ∈M is the union of disjoint copies of the
sets Xµ, i.e., the set of pairs (x, µ) such that xµ ∈ Xµ. Notation:

∐
µ∈M Xµ.

The map of Xν (ν ∈ M) into
∐
µ∈M Xµ, de�ned by the formula x 7→ (x, ν), is

denoted by inclν .
We note that the maps inclν are injective and their images inclν(Xν) are pair-

wise disjoint and cover
∐
µ∈M Xµ Therefore, for any family {Yµ}µ∈M indexed by

the same setM , and each family of maps {fµ : Xµ → Yµ}µ∈M , there is a unique
map f :

∐
µ∈M Xµ →

∐
µ∈M Yµ which satis�es the relations f ◦ inclν = inclν ◦f .

f is called the sum of the maps f and is denoted by
∐
µinM fµ.

If M consists of the numbers 1, . . . , n, we use, along with
∐
µXµ and

∐
fµ,

the notations X1

∐
· · ·
∐
Xn and f1

∐
· · ·
∐
fn.

0.4 Products

The product X1×· · ·×Xn is mapped naturally onto its factor Xi following the
rule (x1, . . . , xn) 7→ xi. This mas is called the i-th projection and is denoted by
proji.

Given maps f1 : X1 → Y1, . . . , fn : Xn → Yn, the rule

(x1, . . . xn) 7→ (f1(x1), . . . fn(xn))

de�nes a map of the product X1×· · ·×Xn into the product Y1×· · ·×Yn, called
the product of the maps f1, . . . , fn and denoted by f1 × · · · × fn.

If p is a partition of the set X and q is a partition of the set Y , we let p × q
denote the partition of the product X × Y into the sets A × B, where A is an
element of p and B is an element of q .
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There is a natural map of X into X ×X, given by x 7→ (x, x). This is the
diagonal map and is denoted by diag or ∆. Its image

∆(X) = diag(X ×X) ⊂ X ×X

is called the diagonal of X ×X.



Chapter 1

TOPOLOGICAL SPACES

1.1 FUNDAMENTAL CONCEPTS

1.1.1 Topologies

De�nition 1.1.1.1. We say that a topological structure or, simply, a topology,
is de�ned on a set X if there is given a class of subsets of X which contains

(i) the union of any collection in the class, and

(ii) the intersection of any �nite collection in the class.

A set endowed with a topological structure is called a topological space, its
elements - points, and the sets of the given class - open sets.

A collection of sets for which we take the union or the intersection may be
empty. The union of the empty collection is ∅, while the intersection of the
empty collection of subsets of X is the entire set X. Hence ∅ and X are open
sets (in any topology).

Two examples of topological structures are:

(a) the trivial topology, whose only open sets are ∅ and X, and

(b) the discrete topology, in which all the subsets of X are open.

If X has more than one element, it is possible to de�ne other topologies on
X. For example, if X consists of two elements, a and b, then it will admit two
topologies aside from the trivial and discrete ones. In one, the open sets are
∅, a, and X, while in the second the open sets are ∅, b, and X. More serious
examples will appear in the sequel.

De�nition 1.1.1.2. A subset of a topological space is closed if its complement
is open. The class of closed sets contains the intersection of any collection of
sets from the class, and it contains the union of any �nite collection of sets from
the class. Moreover, given any class of subsets of a set X with these properties,

5
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there exists a unique topology on X such that the given class is the class of all
closed sets.

De�nition 1.1.1.3. A neighbourhood of a point of a topological space is any
open set containing the given point. A neighbourhood of a subset of a topological
space is any open set containing the given subset.

Derived Concepts

De�nition 1.1.1.4. If we consider the open sets contained in a given subset A
of a topological space X, there is one which is the largest, namely the union of
all such sets. It is called the interior part or, simply, the interior of the set A.
We denote it by intA or IntXA. Similarly, among the closed sets containing A,
there is one which is the smallest, namely the intersection of all such sets. It is
called the closure of the set A and is denoted by ClA or ClX A. The di�erence
ClA \ intA can be represented as the intersection of the closed sets ClA and
X \ intA, and is therefore closed. This set is called the boundary or frontier of
the set A and is denoted by FrA or FrX A. We remark thatX\intA = Cl(X\A)
and that A and X \A have the same boundary.

De�nition 1.1.1.5. Relative to the set A, the points of the sets intA, ClA,
FrA, and X \ ClA = int(X \ A) are called interior, adherent boundary (or
frontier) and exterior points, respectively. They can be characterised more
explicitly in terms of neighbourhoods. A point is:

(i) an interior point if it has a neighbourhood entirely contained in A;

(ii) an adherent point if each of its neighbourhoods intersects A;

(iii) a boundary point if each of its neighbourhoods intersects both A andX\A;
and

(iv) an exterior point if it has a neighbourhood which does not intersect A.

Clearly, a set is open (closed) if and only if it coincides with its interior
(respectively, closure), i.e., if it consists only of interior points (respectively, if
it contains all its boundary points).

De�nition 1.1.1.6. A subset A of a topological space X is said to be dense in
X (or everywhere dense) if ClA = X, i.e., if A intersects any non-empty open
set in X. A set A is nowhere dense if X \ ClA is everywhere dense.

Bases and Prebases

De�nition 1.1.1.7. A base of a topological space is a collection of open sets
such that any open set can be represented as a union of sets from this collection.
Equivalently, a collection Γ of open sets is a base if for any open set U and any
point x ∈ U there is V ∈ Γ such that x ∈ V ⊂ U .

A base completely determines the topology: the open sets are exactly those
which can be expressed as union of elements of the base.
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The following Proposition provides us with a standard method of introducing
a topology on a set.

Proposition 1.1.1.8. Let Γ be a collection of subsets of a set X. Then there
exists a topology on X with base Γ if and only if the intersection of every �nite
sub-collection of sets from Γ can be expressed as a union of sets from Γ.

The intersection of a �nite collection of sets belonging to a base is open;
hence the necessity of the condition. Su�ciency follows from the fact that the
class of subsets of X which are representable as unions of sets from Γ satis�es
the conditions of De�nition 1.1.1.1. The previous Theorem can be reformulated
in the following useful way.

Theorem 1.1.1.9. There is a topology on X with base Γ if and only if the sets
of Γ cover X, and for any U, V ∈ Γ and any point x ∈ U∩V , there exists W ∈ Γ
such that x ∈W ⊂ U ∩ V .

De�nition 1.1.1.10. A collection of subsets of a topological space is said to
be a prebase of the space if the intersections of �nite sub-collections of sets from
the given collection form a base.

Proposition 1.1.1.8 shows that any collection Γ of subsets of a set X is the
prebase of a unique topology on X.

De�nition 1.1.1.11. A base at the point x of a topological space X is a col-
lection of neighbourhoods of x such that any neighbourhood of x contains a
neighbourhood from this collection. A prebase at the point x is a collection of
sets such that the intersections of �nite sub-collections form a base at x.

Covers

De�nition 1.1.1.12. As a rule, the covers we shall encounter will be either
covers of a topological space by some of its subsets, or covers of a subset of a
topological space by other subsets of this space. If we need to emphasise that
a certain cover of a subset A of a topological space X consists of subsets of X
which are not necessarily included in A, we shall refer to it as a cover of the set
A in X.

A cover Γ is a re�nement of a cover ∆ if any element of Γ is contained in an
element of A.

A cover is locally �nite if any point of the space has a neighbourhood which
intersects only a �nite number of elements of the cover.

A cover is open (closed) if all its elements are open (respectively, closed)
sets.

Remark 1.1.1.13. Every open cover of a topological space X has a re�nement
whose sets belong to a given base of X.

For example, the sets of the base contained in the sets of the given cover
yield such a re�nement.
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1.1.2 Metrics

De�nition 1.1.2.1. A non-negative real function ρ de�ned on the squareX×X
of the set X is a metric on X if it satis�es three conditions:

(i) ρ(x, y) = 0 if and only if x = y;

(ii) ρ(x, y) = ρ(y, x) for all x, y ∈ X;

(iii) ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for any x, y, z ∈ X.

A metric space is a set equipped with a metric. We use the symbol dist as the
standard notation for metrics.

The values taken by a metric are called distances, and the inequality they
satisfy according to the de�nition is the triangle inequality.

Example 1.1.2.2. The standard n-dimensional Euclidean space Rn (n ≥ 0) is
the fundamental example of metric space. Rn is the set of all sequences {xi}n1
of real numbers, where the distance between two sequences {xi}n1 and {yi}n1 is
de�ned as [

∑n
1 (xi − yi)2]1/2. The line R1 is usually identi�ed with the �eld of

real numbers, denoted by R.
We obtain the de�nition of the standard Hilbert space ℓ2 by replacing the

n-term sequences {xi}n1 with in�nite sequences {xi}∞1 satisfying the condition∑∞
1 x2i <∞ and writing

∑∞
1 instead of

∑n
1 in the distance formula.

De�nition 1.1.2.3. The ball with centre x0 ∈ X and radius r > 0 in the
metric space X is the set of points x ∈ X such that dist(x0, x) ≤ r. If we
write < (respectively =) instead of ≤, we obtain the de�nition of the open ball
(respectively, of the sphere). The unit ball and the unit sphere of Rn, i.e., the
ball and sphere with centre (0, . . . , 0) and radius 1, are simply called the n-
dimensional ball Dn and the (n−1)-dimensional sphere Sn−1. In particular, D0

is just a point, S0 - a pair of points, and S−1 = ∅. Moreover, we set Dn = ∅
for n < −1 and Sn = ∅ for n ≤ −2.

De�nition 1.1.2.4. By de�nition, the distance between two sets, A and B, is
the number infx∈A,y∈B dist(x, y), and we denote it by Dist(A,B). In particular,
if a is a point, Dist(a,B) = infy∈B dist(a, y).

The diameter of the set A is the number supx,y∈A dist(x, y), denoted by
diamA. A set is bounded if its diameter is �nite.

The Metric Topology

De�nition 1.1.2.5. As a consequence of the triangle inequality, if the open
ball with centre at x0 and radius r contains a point x1, then it also contains
the open ball with centre at x1 and radius r − dist(x0, x1). Therefore, in any
metric space, the intersection of two open balls contains, together with each
point, some open ball centred at that point. Moreover, since the open balls
cover the space, they constitute the base of a certain topology (see Proposition
1.1.1.9). In this way, every metric space becomes a topological one.
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The resulting topology is called the metric topology. From now on we shall
tacitly regard the metric spaces as topological spaces, having in mind the metric
topology. In particular, this refers to Rn and ℓ2.

A topological space whose topology is the metric topology relative to some
metric is said to be metrisable.

Remark 1.1.2.6. Clearly, the open balls centred at a given point of a metric
space constitute a base at that point. The part of this base consisting of the
balls of radii 1/n (n = 1, 2, . . . ) is also a base.

De�nition 1.1.2.7. If A is a subset of a metric space X, its metric neighbour-
hood of radius r > 0 is, by de�nition, the set of all points x ∈ X such that
Dist(A, x) < r. Since this set is the union of all open balls of radius r centred
at the points of A, it is open, i.e., a genuine neighbourhood of A.

1.1.3 Subspaces

De�nition 1.1.3.1. We shall now discuss the relative topology, which trans-
forms any subset A of a topological space X into an independent topological
space. This topology is de�ned by taking its open sets to be those of the form
A ∩B, where B is an open subset of X. It is evident that all the conditions of
De�nition 1.1.1.1 are satis�ed. Moreover, the closed subsets of A in this topol-
ogy are exactly the intersections A ∩ B where B is a closed subset of X. The
subsets of the space X, equipped with the relative topology, are called subspaces
of X.

If X is a topological space and A is a subspace of X, the pair (X,A) is
called a topological pair. A topological triple is a triple (X,A,B) consisting of a
topological space X and two subspaces A, B of X, such that B ⊂ A.

Remark 1.1.3.2. Let A be a subspace of X. It is clear that any subset of A
which is open or closed in X has the same property in A. If A is open, then
every set open in A is also open in X. If A is closed, then any set closed in A
is also closed in X. In any case, if B ⊂ A ⊂ X, then ClAB = (ClX B) ∩A.

Obviously, if Γ is a base (pre-base) of the space X, then the sets A∩B with
B ∈ Γ yield a base (respectively, pre-base) of the space A.

As a direct consequence of its de�nition, the relative topology is transitive:
if B is a subset of the subspace A of X, the topologies induced on B by the
inclusions B ⊂ A and B ⊂ X coincide.

Remark 1.1.3.3. If X is a metric space and A is a subset of X, then the restric-
tion of the function dist to A × A is clearly a metric on A. Consequently, any
subset of a metric space is itself a metric space. In addition, it is obvious that
the metric topology of the latter coincides with the relative topology induced
on A by the metric topology of the ambient space X.

Example 1.1.3.4. The previous constructions greatly increase the supply of non
trivial examples of topological spaces: we can now include all the subsets of
Rn and ℓ2. In particular, the balls and spheres of Rn are topological spaces.
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Here we shall add only the cubes of Rn, de�ned by inequalities of the form
αi ≤ xi ≤ αi + a (i = 1, . . . , n), with real numbers α1, . . . , αn, a, and a > 0. If
α1 = · · · = αn = 0 and a = 1, the cube is called the unit cube In. The unit
segment I1 is also denoted by I.

Fundamental Covers

De�nition 1.1.3.5. A cover Γ of a topological space X is fundamental if each
subset A of X such that A ∩ B is open in B for all B ∈ Γ is itself open.
Equivalently, Γ is fundamental if each subset A of X such that A ∩B is closed
in B for all B ∈ Γ is itself closed.

Obviously, a cover which admits a fundamental re�nement is itself funda-
mental.

Theorem 1.1.3.6. All open covers, and all �nite or locally �nite closed covers
are fundamental.

Proof. Clearly, the claim is true for both open and �nite closed covers. Now
suppose that Γ is a locally �nite closed cover of a space X. Consider a cover ∆
of X consisting of open sets which intersect only a �nite number of elements of
Γ. Since ∆ is fundamental, it is enough to check that, given any set U ∈ ∆, the
cover of U with elements U ∩ B, B ∈ Γ, is fundamental. But this results from
the fact that the latter cover is �nite and closed.

De�nition 1.1.3.7. A triple (X,A,B), where X is a topological space and A
and B are subsets of X which constitute a fundamental cover of X, is termed a
triad. If intA∪ intB = X, or if A∪B = X with A and B closed, then (X,A,B)
is a triad.

1.1.4 Continuous Maps

De�nition 1.1.4.1. A map f of a topological space X into a topological space
Y is continuous if the preimage of each open subset of Y is open in X. Equiv-
alently, f is continuous if the pre-image of each closed set is closed.

A map
f : (X,A1, . . . , An)→ (Y,B1, . . . , Bn),

where A1, . . . , An and B1, . . . , Bn are subsets of the spaces X and Y , respec-
tively, is said to be continuous, if the map abrs f : X → Y is continuous.

A useful comment: in order for a map X → Y to be continuous, it is enough
that the pre-images of the sets comprising some pre-base of Y be open.

Remark 1.1.4.2. If f : X → Y and g : Y → Z are continuous, then the com-
position g ◦ f : X → Z is obviously continuous. Trivially, the identity map
idX : X → X is continuous for any topological space X.

According to the de�nition of the relative topology, if f : X → Y is continu-
ous and A ⊂ X, B ⊂ Y are subsets with f(A) ⊂ B, then the map abr f : A→ B
is also continuous. In particular, the restriction f |A : A → Y of a continuous
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map f : X → Y to an arbitrary subset A of X is continuous. For example, the
inclusion of a subspace into its ambient space is always continuous.

If a compression abr f of the map f : X → Y is de�ned on the entire spaceX,
then its continuity is equivalent to the continuity of f . In particular, f : X → Y
is continuous if and only if the map f : X → f(X) is continuous.

It is clear that if γ is a fundamental cover of X, then a map f : X → Y is
continuous whenever all the restrictions A ∈ Γ, are continuous. An equivalent
formulation:

Theorem 1.1.4.3. let Γ be a fundamental cover of the topological space X, and
assume that for each A ∈ Γ there is a continuous map f : A → Y , such that
fA(x) = fB(x) for all x ∈ A ∩ B (A,B ∈ Γ); then the map f : X → Y de�ned
by

f(x) = fA(x) for x ∈ A (A ∈ Γ)

is continuous.

De�nition 1.1.4.4. A continuous map is open if the images of the open sets
are open, and closed if the images of the closed sets are closed.

Obviously, a composition of open maps is open, and a composition of closed
maps is closed.

Here we note one useful su�cient condition for a map to be open:

Theorem 1.1.4.5. f : X → Y is certainly open if for each x ∈ X there is
a neighbourhood Ux of f(x) and a continuous map gx : Ux → X such that the
composition f ◦ g coincides with incl : Ux → Y .

Proof. If this is the case, then f(A) = Ux∈g
−1
x (A) for any subset A of X.

Continuity at a Point

De�nition 1.1.4.6. A map f : X → Y is continuous at the point x ∈ X if for
any neighbourhood V of the point f(x) there is a neighbourhood U of x such
that f(U ⊂ V .

One can reformulate this de�nition using fewer open sets. In fact, let us
assume that, along with the map f : X → Y , we are given an arbitrary prebase
at the point x ∈ X, ∆, and an arbitrary pre-base at the point f(x) ∈ Y , E.
Then one readily sees that f is continuous at x if and only if each neighbourhood
V ∈ E contains the image of some neighbourhood U ∈ A.

WhenX and Y are metric spaces, and∆ and E consists of open balls centred
at the points x and f(x), respectively, the last statement reduces to the usual
numerical formulation given in calculus: the map f : X → Y is continuous at
the point x ∈ X if for each ε > 0 there is δ > 0 such that distX(x, x′) < δ
implies distY (f(x), f(x′)) < ε.

Theorem 1.1.4.7. A map f : X → Y is continuous if and only if it is contin-
uous at each point of X.
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Proof. If f is continuous and V is a neighbourhood of the point f(x), then
f−1(V ) is a neighbourhood of the point x, and f(f−1(V )) ⊂ V .

If f is continuous at each point and V is open in Y , then each point of the
set f−1(V ) is an interior point, since it has a neighbourhood whose image lies
in V .

Homeomorphisms and Embeddings

Remark 1.1.4.8. If f : X → Y is an invertible continuous map, the inverse map
f−1 : Y → X is not necessarily continuous. For example, consider the identity
map of a set with the discrete topology onto the same set, but equipped with a
di�erent topology; its inverse is not continuous.

An invertible map f such that both f and f−1 are continuous is a home-
omorphism. If there is a homeomorphism X → Y , the space Y is said to be
homeomorphic to the space X.

The following maps are obviously homeomorphisms: the identity transfor-
mation of a space, the map inverse to a homeomorphism, and the composition
of two homeomorphisms. Thus, the homeomorphism of spaces is an equivalence
relation.

Example 1.1.4.9. The open ball intDn is homeomorphic to Rn. The standard
homeomorphism Rn → intDn is given by the formula

x 7→

{
2x arctan(dist(0, x))/π dist(0, x), if x ̸= 0,

0, if x = 0.

Example 1.1.4.10. The cube In is homeomorphic to Dn; its interior int In is
homeomorphic to intDn, and its boundary Fr In is homeomorphic to FrDn,
i.e., to Sn−1. The standard homeomorphisms Dn → In, intDn → int In, and
FrDn → Fr In are realised by translation with the vector

(ort1 + · · ·+ ortn)/2,

followed by central projection
(here ort1, . . . , ortn denote the vectors (1, 0, . . . , 0), . . . , (0, . . . , 0, 1).

Example 1.1.4.11. The punctured sphere Sn (i.e., Cn with one point removed)
is homeomorphic to Rn. A homeomorphism Rn → Sn \ ort1 is given by the
composition of the homeomorphism {x1, . . . , xn)} 7→ {(0, x1, . . . , xn)} of Rn
onto a subspace of Rn+1 with the stereographic projection, i.e., the central
projection of this subspace onto Sn \ ort1 from the point ort1.

De�nition 1.1.4.12. A map f : X → Y is an embedding or, more speci�cally,
a topological embedding, if abr f : X → f(X) is a homeomorphism. For example,
the inclusion of a subspace in its ambient space is an embedding.
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Retractions

De�nition 1.1.4.13. A retraction is a continuous map of a space X onto a
subspace A which is the identity map on A. A subset onto which a space can
be retracted is a retract of the space.

Each point of a topological space is a retract of this space. However, a pair
of points is already not necessarily a retract. For example, a segment cannot be
retracted onto its boundary since any such retraction would be a real continuous
function taking two values but no intermediate ones.

Theorem 1.1.4.14. A subspace A of a topological space X is a retract of X if
and only if every continuous map A→ Y can be extended to a continuous map
X → Y , for any topological space Y .

Proof. If ρ : X → A is a retraction and f : A → Y is continuous, then the
composition f ◦ ρ extends f to X.

X

ρ

��

f◦ρ

  
A

f
// Y

If every continuous map A → Y extends to a continuous map X → Y , then
extending the identity map A → A to a continuous map X → A yields a
retraction.

A
idA //

⊂
��

A

X

∃r

>>

Numerical Functions

Remark 1.1.4.15. The well-known theorem of calculus asserting that the arith-
metic operations performed upon continuous functions again produce continuous
functions is obviously true for the numerical functions de�ned on an arbitrary
topological space. Similarly, the theorem asserting the continuity of the limit
of a uniformly convergent sequence of continuous functions holds for numerical
function on a topological space.

Theorem 1.1.4.16. If X is a metric space and A is a subset of X, then the
function X → R, x 7→ Dist(x,A), is continuous.

Proof. Let x, y ∈ X and z ∈ A. Then

Dist(x,A) ≦ dist(x, z) ≤ dist(x, y) + dist(y, z).

Hence Dist(x,A) ≤ dist(x, y) + Dist(y,A) for any x, y ∈ X, and since x and y
appear symmetrically, we obtain |Dist(x,A)−Dist(y,A)| ≤ dist(x, y).
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De�nition 1.1.4.17. A subset A of a topological space X is said to be dis-
tinguishable if there is a continuous function f : X → I such that f(x) = 0 for
x ∈ A and f(x) > 0 for x ∈ X \ A. Any function with this property is said to
distinguish the set A.

A distinguishable set is obviously closed. It is also clear that any closed
subset of a metric space is distinguishable: for example, the function

x 7→ min(1,Dist(x,A))

distinguishes the closed subset A.

1.1.5 Separation Axioms

Remark 1.1.5.1. In this subsection and the two that follow, we formulate addi-
tional restriction which are often imposed on a topological structure in order to
bring the properties of the corresponding topological space closer to those that
characterize the subsets of the spaces Rn.

De�nition 1.1.5.2. More than ten �separation axioms� are known. We need
the following four.

T1. Given two arbitrary points a and b, a ̸= b, there is a neighbourhood of a
which does not contain b. Equivalent formulations: each point is a closed
set; �nite sets are closed.

T2. Two arbitrary distinct points have disjoint neighbourhoods.

T3. Any point and any closed set not containing this point have disjoint neigh-
bourhoods. An equivalent formulation: every neighbourhood of an arbi-
trary point contains the closure of a neighbourhood of this point.

T4. Any two disjoint closed sets have disjoint neighbourhoods. An equivalent
formulation: every neighbourhood of an arbitrary closed set contains the
closure of a neighbourhood of this set. Another equivalent formulation:
given an arbitrary �nite collection of pairwise disjoint closed sets, there
are neighbourhoods of these sets with pairwise disjoint closures.

De�nition 1.1.5.3. Axiom T1 is a consequence of T2, but simple examples
show that it is not a consequence of T3 or zT4. Spaces which satisfy axiom T2

are called Hausdor�, those which satisfy the axioms T1 and T3 - regular, and
those which satisfy the axioms T1 and T4 - normal.

Every normal space is regular, and every regular space is Hausdor�.

Obviously, every subspace of a Hausdor� space is Hausdor�, every subspace
of a regular space is regular, and every closed subspace of a normal space is
normal.

Information 1.1.5.4. A non-closed subspace of a normal space is not necessarily
normal; see [11].
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Theorem 1.1.5.5. Every retract of a Hausdor� space is closed.

Proof. Let A be a retract of a topological space X and let ρ : X → A be a
retraction. If b ∈ X \ A, then since X is Hausdor� and ρ is continuous, the
points b and ρ(b) have disjoint neighbourhoods, U and V , such that ρ(U) ⊂ V .
This implies that ρ(x) ̸= x for x ∈ U , i.e., U ∩A = ∅. Thus any point which is
not contained in A is an exterior point for A.

Remark by the transcriber:
The following proof may be more comprehensible. First, we need a lemma.

Lemma 1.1.5.6. Let X be a topological space. Then X is Hausdor� if and
only if the diagonal of X×X: ∆ = {(x, x) ∈ X×X|x ∈ X} is closed in X×X.

Proof. Let X be Hausdor�, then if x ̸= y there are neighbourhoods Vx and Vy
such that Vx ∩ Vy = ∅. Therefore Vx × Vy ∩∆ = ∅ and thus the complement
of ∆ is open.

Now, assume that ∆ is closed in X ×X. Then, for any point (x, y), x ̸= y,
there is an open set around it that does not intersect ∆. Therefore, there are
two sets x ∈ Vx and y ∈ Vy such that Vx × Vy doesn't intersect ∆, hence
Vx ∩ Vy = ∅.

Now we return to

Proof. Let f : X → X×X by f(x) = (r(x), x) where r : X → A is the retraction.
Since each �coordinate� is continuous, f is a continuous map (notice that the
�rst map is just the composition i ◦ r, where i inclusion of A in X). Since X is
Hausdor�, the diagonal ∆ = {(x, y) ∈ X×X|x = y} ⊂ X×X is closed. Hence,
by continuity of f ,

f−1(∆) = {x ∈ X|f(x) ∈ ∆} = {x ∈ X|r(x) = x} = {x ∈ X|x ∈ A} = A

is closed.

Theorem 1.1.5.7. Every metric space is normal.

Proof. Clearly, every metric space satis�es axiom T1. Let us verify T4. Suppose
A and B are disjoint closed subsets of a metric space, and set

U = {x|Dist(x,A) < Dist(x,B)}, V = {x|Dist(x,B) < Dist(x,A)}.

SinceDist(x,A) andDist(x,B) depend continuously on x (see Theorem 1.1.4.16),
U and V are open. Trivially, U ∩ V = ∅, A ⊂ U , and B ⊂ V .
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Urysohn Functions

Lemma 1.1.5.8. Let A and B be two closed subsets of a topological space X.
Let Γ be the collection of all neighbourhoods of A which do not intersect B, and
let ∆ be the set of dyadic rational numbers of the interval I (i.e., the numbers
m/2q with arbitrary non-negative integers m, q satisfying m ≤ 2q). If X is
normal, then there exists a mapping φ : ∆→ Γ such that

Clφ(r1) ⊂ φ(r2) for r1 < r2. (1.1.5.9)

Proof. Set φ(1) = X \ B and let φ(0) be any neighbourhood of A which is
contained, together with its closure, in X \ B (see the second formulation of
axiom ). If φ(r) is already de�ned in such a way that (1.1.5.9) holds for the
numbers r = m/2q ∈ ∆−A with q = n, we can extend the de�nition to

r = m/2n+1 ∈ A,

keeping (1.1.5.9) valid: if r = m/2n+1 ∈ A with oddm = 2k+1, we take φ(r)
to be any open set containing Clφ(k/2n) and contained along with its closure
in φ((k + 1)/2n). This induction yields a mapping φ : ∆ → Γ with property
(1.1.5.9) .

Theorem 1.1.5.10. Given two arbitrary disjoint closed subsets A and B of a
normal space X, there is a continuous function X → I, equal to 0 on A and
equal to 1 on B.

Proof. Using Lemma 1.1.5.8 and its notations, de�ne a function f : X → I by
the formula

f(x) =

{
inf{r|φ(r) ∋ x}, if x ∈ φ(1),
1, if x ∈ X \ φ(1).

It is evident that f is equal to 0 on A and to 1 on B. To show that f is
continuous, note that the intervals [0, r) and (r, 1] with r ∈ A constitute a
prebase of the segment I, and that f−1([0, r)) = ∩r′<rφ(r′), while f−1([0, r]) =
∩r ′>rφ(r′). Using property (1.1.5.9), we see that the last intersection is just
∩r′>r Clφ(r′); hence intervals [0, r) and (r, 1] have open pre-images, and f is
continuous.

De�nition 1.1.5.11. A continuous function f : X → I such that f(x) = 0 for
x ∈ A ⊂ X and f(x) = 1 for x ∈ B ⊂ X is referred to as a Urysohn function
for the pair A, B.

A Urysohn function for a pair A, B may also take the value 0 outside of
A. However, if A is distinguishable, f is any Urysohn function for the pair A,
B, and g distinguishes A, then x 7→ min(f(x) + g(x), 1) provides a Urysohn
function for A, B which is positive outside A.

One may note that the proof of Theorem 1.1.5.10 does not use axiom T4

and conclude that this theorem is true for any T4-space. The converse is also
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true: if any pair of disjoint closed subsets of X admits a Urysohn function, then
X satis�es axiom T4.

Finally, we remark that one can prove a slightly stronger version of Theorem
1.1.5.10, by composing the Urysohn function with a linear transformation

t 7→ a+ (b− a)t,

where a and b are arbitrary real numbers. The composition is a continuous
function X 7→ [a, b], equal to a on A and to b on B.

Extension Theorems

Lemma 1.1.5.12. Let F be a closed subset of the topological space X, and
let φ : F → R be a continuous function bounded in absolute value by a number
L > 0. If X is normal, then there exists a continuous function ψ : X → R such
that 

|ψ(x)| ≤ L/3 for x ∈ X,
and

|ψ(x)− φ(x)| ≤ 2L/3 for x ∈ F.
(1.1.5.13)

Proof. The subsets of F determined by the inequalities φ(x) ≤ −L/3 and
φ(x) ≥ L/3 are closed in F , and hence in X, and disjoint. Therefore, there
is a continuous function ψ : X → [−L/3, L/3], equal to −L/3 on the �rst set,
and equal to L/3 on the second (see De�nition 1.1.5.11 and the comment below).
It is clear that ψ satis�es the requirements (1.1.5.11) .

Theorem 1.1.5.14. If A is a closed subset of the normal space X, then every
continuous function A → R extends to a continuous function X → R. This
claim remains true if one takes an interval instead of the real line R.

Proof. First, let us show that every continuous map f of A into an interval can
be extended to a continuous map g of X into the same interval. Without loss
of generality, we may take the interval [−1, 1]. De�ne g as the sum of a series
of continuous functions gk : X → R which satisfy the conditions

|gk(x)| ≤ 2k−1/3k, if x ∈ X (1.1.5.15)

and

|f(x)−
k∑
0

gi(x)| ≤ (2/3)k, if x ∈ A (1.1.5.16)

The functions gk are constructed inductively: take g0 = 0 and, assuming
that g0, . . . , gn are already constructed and satisfy (??) and (1.1.5.16) for k ≤ n,
de�ne gn+1 to be the function obtained when one applies the previous lemma
to φ = f −

∑n
0 (gi|A) , F = A, and L = (2/3)n. Inequality (??) shows that the

series
∑∞

0 gk converges uniformly on X, and hence its sum g is a continuous
function (see Remark 1.1.2.6). Inequality (1.1.5.16) implies that g|A = f .
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To prove the �rst part of the theorem, notice that R is homeomorphic to the
open interval (−1, 1). We have just showed that given any continuous function
g : A→ (−1, 1), there exists a continuous g : X → [−1, 1] such that g(x) = f(x)
for all x ∈ A. Let B = g−1(−1) ∪ g−1(1). The sets A and B are closed and
disjoint; hence the pair A,B has a Urysohn function. If we multiply the latter
by g, we get the desired extension X → (−1, 1) of the function f .

Theorem 1.1.5.17. If A is a closed subset of the normal space X, then every
continuous map A → Rn extends to a continuous map X → Rn. This claim
remains true if one takes a cube instead of Rn.

To see this, it su�ces to apply Theorem 1.1.5.14 to the coordinate functions
of the given map A→ Rn.

1.1.6 Countability Axioms

De�nition 1.1.6.1. A topological space is said to satisfy the second axiom of
countability (or to be a second countable space) if it has a countable base. A
topological space is said to satisfy the �rst axiom of countability (or to be a �rst
countable space) if it has a countable base at each point. A topological space is
separable if it has a countable dense subset.

Theorem 1.1.6.2. The second axiom of countability implies the �rst axiom of
countability and the separability. A metric space is always �rst countable, and
is second countable if and only if it is separable.

It is immediate that a second countable space is �rst countable, and Remark
1.1.2.6 shows that every metric space is �rst countable. To produce a countable
dense set in a space with countable base, just pick a point in each set of a given
countable base. Given a separable metric space, the open balls centred at the
points of a countable dense set and with radii 1/n (n = 1, 2, . . . ) constitute a
countable base.

Theorem 1.1.6.3. Rn and ℓ2 are separable, and hence have a countable base.

Proof. The collection of all sequences {xi}n1 with rational xi's is a countable
dense set in Rn.
The set of all �nitely supported (i.e., having only a �nite number of non-zero
terms) sequences {xi}∞1 with rational xi's is countable and dense in ℓ2.

Theorem 1.1.6.4. Every subspace of a second countable space is second count-
able. In particular, all subspaces of Rn and ℓ2 have countable base.

Proof. Indeed, a countable base of the space induces a countable base of each
of its subspaces; see Theorem 1.1.6.2.

Theorem 1.1.6.5. In a separable space, every collection of pairwise disjoint
open subsets is countable.
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Proof. In fact, let S be a countable dense subset of the given space. For any
set in the given collection, pick a point of S contained in this set. This yields
an injective mapping of the given collection into S.

Remark 1.1.6.6. Obviously, a continuous surjective map of topological spaces
carries every dense set into a dense set. It is also clear that an open map
between two topological spaces transforms each base into a base, and each base
at a point into a base at the image of this point. Therefore, the image of a
separable space under a continuous map is separable, and the image of a �rst
or a second countable space under an open map is �rst, respectively second
countable.

Theorem 1.1.6.7. Every regular second countable space is normal.

Proof. Let A and B be closed disjoint subset of a regular second countable
space. According to the second formulation of axiom T3, each point of any of
the sets A and B has a neighbourhood whose closure does not intersect the
other set. Picking such neighbourhoods, we get open covers of A and B, and
we may assume that these covers are countable; if not, we may re�ne them by
covers made of sets belonging to a countable base (see Remark 1.1.1.13). Let us
index these two covers, writing them as U1, U2, . . . and V1, V2, . . . , and then set
U ′
n = Un \ ∩n1 ClVi and V ′

n = V \ ∪n1 ClUi. The sets U = ∪n1U ′
n and V = ∪n1V ′

n

are open and clearly disjoint. Since ClUi ∩B = ∅ and ClVi ∩ A = ∅, we have
U ⊃ A and V ⊃ B.

Embedding and Metrisation Theorems

Theorem 1.1.6.8. Every regular second countable space can be embedded in
ℓ2.

Proof. Let X be a regular space with countable base Γ. We index the pairs
(U, V ), U, V ∈ Γ, satisfying ClU ⊂ V , writing them as a sequence

(U1, V1), (U2, V2), . . . .

Now de�ne f : X → ℓ2 by the rule f(x) = {k−1φk(x)}∞1 , where φk is an arbi-
trary Urysohn function for the pair ClUk, X \ Vk (see De�nition 1.1.5.11). If
x ̸= y, then there exists an index k such that x ∈ Uk, y ∈ X \ Vk (indeed, X is
regular), and so f is injective. We show next that f is an embedding.

Since the φ′
k's are continuous, given x0 ∈ X, ε > 0, and n, there is a

neighbourhood U of x0 such that
∑n

1 (|φk(x)−φk(x0)|/k)2 < ε2/2 for all x ∈ U .
Choosing n such that

∑∞
n+1 k

−2 < ε2/2, we see that dist(f(x0), f(x)) < ε, and
so f is continuous.

Let g denote the inverse of abr f : X → f(X). Given a point y0 ∈ f(X)
and a neighbourhood U of g(y0), �nd n such that g(y0) ∈Un and Vn ∈ U . If
y = f(X) and dist(y0, y) < 1/n, then clearly |φn(g(y))−φn(y0))| < 1, which in
turn implies that g(y) ∈ V . In conclusion, for y ∈ f(X) and dist(y0, y) < 1/n,
we have g(y) ∈ U , proving the continuity of g.
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Theorem 1.1.6.9. A second countable topological space is metrisable if and
only if it is regular.

Proof. The necessity of this condition is contained in 1.1.5.7, and its su�ciency
- in 1.1.6.8.

1.1.7 Compactness

De�nition 1.1.7.1. A topological space is compact if any of its open covers
contains a �nite cover. For example, a �nite set endowed with an arbitrary
topology is compact, whereas an in�nite set endowed with the discrete topology
is not compact.

It is clear that a subspace A of a topological space X is compact if only if
from each open cover of A in X one can extract a �nite cover.

Theorem 1.1.7.2. Every closed subset of a compact space is compact.

Proof. Let A be a closed subset of the compact space X, and let ∆ be a cover
of A in X. We add the set X \ A (which is of course open) to ∆, extract a
�nite cover from the resulting open cover of X, and then delete the set X \ A
from the latter, if it still remains. This obviously yields a �nite cover of A in X
which is contained in ∆.

Theorem 1.1.7.3. In a Hausdor� space, any two compact disjoint sets have
disjoint neighbourhoods.

Proof. Let A and B denote the given sets. If B is a point, then for each point
x ∈ A consider disjoint neighbourhoods and V of x and B, and extract a �nite
cover Ux1

, . . . , Uxs
from the open cover of A given by the neighbourhoods Ux;

then ∪s1Uxi and ∩s1Vxi are disjoint neighbourhoods of the set A and the point
B.

In the general case, pick for each x ∈ B disjoint neighbourhoods Ux and Vx of
A and of x, and then extract a �nite cover Vx1

, . . . , Vxs
from the resulting cover

of B by neighbourhoods Vx; then ∩s1Uxi
and ∪s1Vxi

are disjoint neighbourhoods
of A and B.

Theorem 1.1.7.4. Every compact subset of a Hausdor� space is closed.

Proof. Indeed, from Theorem 1.1.7.3 we see that a point which is not contained
in a given compact subset of a Hausdor� space has a neighbourhood which does
not intersect this subset.

Theorem 1.1.7.5. Every compact Hausdor� space is normal.

Proof. This is a consequence of Theorems 1.1.7.3 and 1.1.7.3.
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Compactness and Fundamental Covers

Theorem 1.1.7.6. Suppose A is a compact subset of a T1-space X. Then from
every countable fundamental cover of X one can extract a �nite cover of A.

Proof. Let U1, U2, . . . be the given cover. If none of the sets ∪m1 Ui covers A,
pick a point from each set A \ ∪m1 Ui, and denote the set of all these points by
Y . It is obvious that Y is in�nite and that each intersection Y ∩ Ui is �nite.
The latter shows that Y and all its subsets are closed; hence Y is at the same
time compact (see Proposition 1.1.7.2) and discrete. But this contradicts the
fact that Y is in�nite.

Remark 1.1.7.7. The countability assumption in Theorem 1.1.7.6 is essential.
For example, the cover of a segment by all its countable subsets is fundamental,
but one cannot extract from it a countable cover.

Compactness and Maps

Theorem 1.1.7.8. The image of a compact space under a continuous map is
compact.

Proof. Let f be a continuous map of the compact space X onto a topological
space Y , and let ∆ be an open cover of Y . The setsf(V ), V ∈ f−1(∆), form
an open cover of X, and clearly a sub-cover U1, . . . , Us of this cover yields a
sub-cover f(U1), . . . , f(Us) of ∆.

Theorem 1.1.7.9. Every continuous map of a compact space into a Hausdor�
space is closed.

Proof. This is a corollary of Propositions 1.1.7.2, 1.1.7.8, and 1.1.7.4.

Theorem 1.1.7.10. Every invertible continuous map of a compact space onto
a Hausdor� space is a homeomorphism. Every injective continuous map of a
compact space into a Hausdor� space is an embedding.

Proof. These are consequences of Theorem 1.1.7.9 and of the obvious fact that
a closed invertible map is a homeomorphism.

Compactness and Metrics

Theorem 1.1.7.11. Every compact subset of a metric space can be covered by
a �nite number of open balls having radius ε, for any positive ε.

Proof. Such a cover can be extracted from any cover consisting of balls of radius
ε.

Theorem 1.1.7.12. Every compact metric space has a countable base.

Proof. To obtain such a base, it su�ces to construct, for each positive integer
n, a �nite cover of open balls of radius 1/n, and then take the union of these
covers.
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Theorem 1.1.7.13. Every compact metric space is bounded.

Proof. This is a consequence of 1.1.7.11.

Theorem 1.1.7.14. Let X be a compact topological space. Then every contin-
uous function X → R attains its absolute maximum and absolute minimum.

Proof. Theorems 1.1.7.8 and 1.1.7.13 show that the image of X in R is bounded.
Theorem 1.1.7.9 shows that this image is closed, which in turn implies that it
contains its adherent points, including its greatest lower bound and its least
upper bound.

Theorem 1.1.7.15. Let A and B be disjoint subsets of a metric space. If A is
compact and B is closed, then Dist(A,B) > 0.

Proof. Since A is compact and Dist(x,B) depends continuously on x ∈ A (see
Theorem 1.1.4.16), there exists a ∈ A such that

Dist(a,B) = inf
x∈A

Dist(x,B) = Dist(A,B)

(see Theorem 1.1.7.14). Since B is closed and a ̸∈ B, Dist(a,B) > 0, and thus
Dist(A,B) > 0.

Theorem 1.1.7.16. Suppose that f is a continuous map of a metric space X
into a topological space Y and ∆ is an open cover of Y . If X is compact, then
there is ε > 0 such that for any set A ⊂ X with diameter diamA < ε, f(A) is
contained in some element of ∆.

Proof. It is enough to show that there is an ε > 0 such that any two points
x, y ∈ X with dist(x, y) < ε are both contained in one of the sets of the cover
Γ = f−1(∆). For each x ∈ X, pick a ball centred at x and contained in one of
the sets of Γ, and let Ux be the concentric ball with half the radius. Now extract
a �nite cover Ux1

, . . . , Uxs
from the cover of X by the balls Ux. Let εi denote

the radius of Uxi , and let ε = min{ε1, . . . , εs}. If x, y ∈ X and dist(x, y) < ε,
then dist(xi, x) < εi and dist(xi, y) < dist(xi, x) + dist(x, y) < 2εi for some i.
Therefore, x and y belong to one and the same set of the cover Γ.

Compactness in Euclidean Space

Theorem 1.1.7.17. The cubes of Rn are compact.

Proof. Obviously, any cube in Rn can be divided into 2n cubes of half the edge,
and if some cover Γ of the original cube by open subsets of Rn does not contain
a �nite sub-cover, then it retains the same property as a cover of one of the
smaller cubes. An iteration of this argument yields a decreasing sequence of
cubes Q1, Q2, . . . , each of them being half the size of the preceding one, and
such that none of them is covered by a �nite collection of sets from Γ. But the
point common to all these cubes is certainly covered by some set from Γ, which
must also cover all the cubes Qk with k large enough.
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Theorem 1.1.7.18. A subset of Rn is compact if and only if it is bounded and
closed.

Proof. The necessity of these conditions is implied in Theorems 1.1.7.13 and
1.1.7.4. The su�ciency is a consequence of Propositions 1.1.7.17 and 1.1.7.2,
since any bounded subset of Rn is contained in some cube.

Local Compactness

De�nition 1.1.7.19. A topological space is locally compact if each of its points
has a neighbourhood with compact closure.

Compact spaces are obviously locally compact. The most important exam-
ples of non-compact, locally compact spaces are Rn with n > 0.

Theorem 1.1.7.20. Every closed subset of a locally compact space is locally
compact.

Proof. Indeed, if a is a point of a closed subset A of the locally compact space
X, and U is a neighbourhood of a in X with compact closure ClX U , then U ∩A
is a neighbourhood of a in A with compact closure ClA(U ∩ A). [ClA(U ∩ A),
being closed in X, is closed in the compact subset ClX U of X, and hence is
compact; see Theorem 1.1.7.2].

Theorem 1.1.7.21. Every open subset of a locally compact Hausdor� space is
locally compact.

Proof. Let a be a point of the open subset A of the locally compact space X,
and let U be a neighbourhood of a in X with compact closure ClX U . Since
the space ClX U is regular (see Proposition 1.1.7.5), a has a neighbourhood V
in ClX U such that ClClX U V ⊂ U ∩A. We show that V is a neighbourhood of
a in A with compact closure ClA V .

The set V is open in ClX U , hence in U ∩ A, which in turn implies that V
is open in A. To verify that ClA V is compact, note that the closure ClClX U V
is compact (see Proposition 1.1.7.2) and contained in U ∩A. This implies that
it equals ClU∩A V and that the latter is closed in A (see Proposition 1.1.7.4),
which �nally shows that ClU∩A V = ClA V .

Theorem 1.1.7.22. Let U be a neighbourhood of the point a of the locally
compact space X. If X is Hausdor�, then a has a neighbourhood whose closure
is compact and contained in U .

Proof. Since U is a locally compact space (see Theorem 1.1.7.21), a has a neigh-
bourhood V in U with compact closure. Since U is open, V is open in U .
Finally, since ClU V is compact and X is Hausdor�, ClU V is closed in X (see
Theorem 1.1.7.4) and thus it coincides with c_XV . We see that V is the desired
neighbourhood of a.

Theorem 1.1.7.23. Locally compact Hausdor� spaces are regular.

Proof. This is a consequence of Theorem 1.1.7.22.
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Information: Paracompactness

De�nition 1.1.7.24. A Hausdor� space is paracompact if each of its open
covers has a locally �nite re�nement. The compact Hausdor� spaces are (obvi-
ously) paracompact, and so are all the metric spaces. All paracompact spaces
are normal. For details, see [11].

One can show that a paracompact space which can be covered by open
metrisable sets is metrisable; see [13].
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1.2 CONSTRUCTIONS

1.2.1 Sums

The sum
∐
µ∈M Xµ of a family {xµ} of topological spaces becomes a topo-

logical space if we declare a subset to be open if its pre-images under all
maps inclν : Xν →

∐
Xµ are open. Equivalently, a subset of

∐
Xµ is closed

if its pre-images under all maps incl are closed. It is evident that each map
inclν : Xν →

∐
µ is an embedding and that the images inclν(Xν) are both open

and closed in
∐
Xµ.

Let {Yµ} be another family of topological spaces, indexed by the same setM ,
and let fµ : Xµ → Yµ be continuous maps. Then the map

∐
fµ :

∐
Xµ →

∐
Yµ

is obviously continuous.

Remark 1.2.1.1. If all spaces Xµ satisfy one of the axioms T1, T2, T3, or T4,
then their sum satis�es the same axiom. The same hold for the �rst axiom of
countability, and also for the properties of local compactness and metrisability
if Xµ are metric spaces, one can de�ne a metric on

∐
Xµ by the formulae:

dist(inclν(x), inclν′(x′)) =


1 if ν ̸= ν′

or if ν = ν′ and dist(x, x′) ≥ 1;

dist(x, x′) if dist(x, x′) < 1.

If each Xµ has a countable base andM is countable, then
∐
Xµ has a countable

base too. Similarly, when M is countable and each Xµ is separable,
∐
Xµ is

separable too. Finally,
∐
Xµ is compact whenever all Xµ are compact and M

is �nite.

1.2.2 Products

Remark 1.2.2.1. Let X1, . . . , Xn be topological spaces. We de�ne a topology on
X1 × · · · ×Xn by taking as a base the collection of all sets

U1 × · · · × Un ⊂ X1 × · · · × xn,

where Ui is open in Xi, i = 1, . . . , n. The conditions of Proposition 1.1.1.8 are
satis�ed by virtue of the relation

(U ′
1 × · · · × U ′

n) ∩ (U ′′
1 × · · · × U ′′

n ) = (U ′
1 ∩ U ′′

1 )× · · · × (U ′
n ∩ U ′′

n ).

The resulting topological space is called the product of the spaces X1×· · ·×Xn.
If A1, . . . , An are subspaces of X1×· · ·×Xn then the topology of the product

A1 × · · · ×An is obviously identical with the topology induced by the inclusion
A1 × · · · ×An ⊂ X1 × · · · ×Xn.

Actually, we have met with some products already. Indeed, Rn is the product
of n copies of the real line R, while In is the product of n copies of the unit
segment I.

The product X× I, where X is a topological space, is known as the cylinder
over X.
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Remark 1.2.2.2. Forming the product of spaces is a commutative and associative
operation: there are obvious canonical homeomorphisms

X1 ×X2 → X2 ×X1

(X1 ×X2)×X3 → X1 × (X2 ×X3),

(X1 × · · · ×Xn−1)×Xn = X1 × · · · ×Xn.

Moreover, sums and products of spaces satisfy the distributive law: there is a
canonical homeomorphism X × (

∐
µ∈M Yµ)→

∐
µ∈M (X × Yµ).

Theorem 1.2.2.3. If the sets A1, . . . , An are open in X1, . . . , Xn, then

A = A1 × · · · ×An

is open in X1×· · ·×Xn. If A1, . . . , An are closed, then A is closed. In all cases,
ClA = ClA1 × · · · × ClAn.

Proof. The �rst statement is a direct result of the de�nition of the topology of
X1×· · ·×Xn, while the second is a consequence of the third; so let us verify the
third statement. A point (x1, . . . , xn) ∈ X1 × · · · ×Xn is an adherent point of
A if and only if each of its base neighbourhoods U1 × · · · ×Un has a non-empty
intersection with A, i.e., if and only if for any neighbourhoods U1, . . . , Un of the
points x1, . . . , xn, Ui ∩ Ai ̸= ∅, i = 1, . . . , n. That is to say, (x1, . . . , xn) is an
adherent point of A if and only if xi is an adherent point of Ai, i = 1, . . . , n.
Therefore, ClA = ClA1 × · · · × ClAn.

Remark 1.2.2.4. We note that the projections proji c : X1 × · · · ×Xn → Xi are
continuous and open for any topological spaces X1, . . . , Xn.

The sets of the form

x01 × · · · × x0i−1 ×Xi × x0i+1 × · · · × x0n, x0j ∈ Xj (j ̸= i)

are called the �bres of the product X1 × · · · × Xn. Clearly, the restriction of
proji : X1×· · ·×Xn → Xi to any �bre x01×· · ·×x0i−1×Xi×x0i+1×· · ·×x0n is a
homeomorphism. Hence the �bres are canonically homeomorphic to the factors
of the product.

For any map f : Y → X1× · · ·×Xn, where Y,X1, . . . , Xn are arbitrary sets,
we have the corresponding maps proji ◦f : Y → Xi. Conversely, given arbitrary
f : Y → Xi, there is a unique map f : Y → X1×· · ·×Xn such that proji ◦f = fi.
Clearly, if Y,X1, . . . , Xn are topological spaces, then f is continuous if and only
if all the maps proji ◦f are continuous.

In particular, it follows that the map diag : X → X × X is continuous for
every topological space X. We make the (obvious) remark that the diagonal
diag(X) is closed if and only if X is Hausdor� (see Lemma 1.1.5.6).

Remark 1.2.2.5. Obviously, every product

f1 × · · · × fn : X1 × · · · ×Xn → Y1 × · · · × Yn

of continuous maps f1 : X1 → Y1, . . . , fn : Xn → Yn is continuous. Moreover,
f1 × · · · × fn is open whenever f1, . . . , fn are open.
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Remark 1.2.2.6. If X is a metric space, then for any points x1, x2, x′1, x
′
2 ∈ X

|dist(x′1, x′2)− dist(x1, x2)| ≤ dist(x′1, x1) + dist(x′2, x2)

clearly holds. This inequality shows that the function dist : X × X → R is
continuous.

Properties of Products

Theorem 1.2.2.7. Every product of T1-spaces is a T1-space. Every product of
Hausdor� spaces is Hausdor�. Every product of regular spaces is regular.

Proof. The �rst and second assertions are immediate. We show that a product of
T3-spacesX1, . . . , Xn is a T3-space. Let U be a neighbourhood of (x1, . . . , xn) ∈
X1×· · ·×Xn. Pick neighbourhoods U1×· · ·×Un of the points x1, . . . , xn, such
that U1 × · · · × Un ⊂ U , and �x neighbourhoods V1, . . . , Vn of the same points
with ClV1 ⊂ U1, . . .ClVn ⊂ Un. Since Cl(V1 ××Vn) = ClV1 × · · · × ClVn (see
Theorem 1.2.2.3), one has Cl(V1 ××Vn) ⊂ U .

INFORMATION. There are product of normal spaces which are not normal;
see [14].

Remark 1.2.2.8. If S1, . . . , Sn are dense sets in the spaces X1, . . . , Xn, then
S1 × · · · × Sn is obviously dense in X1 × · · · ×Xn. Consequently, a product of
separable spaces is separable.

If Γ1, . . . ,Γn are bases of X1, . . . , Xn then the sets U1 × · · · × Un with

U1 ∈ Γ1, . . . , Un ∈ Γn

form a base of the space X1 × · · · × Xn. Consequently, a product of second
countable spaces is second countable.

If now Γ1, . . . ,Γn are bases of X1, . . . , Xn at the points (x1, . . . , xn), then
the sets U1 × · · · × Un with U1 ∈ Γ1, . . . , Un ∈ Γn form a base of X1 × · · · ×Xn

at the point (x1, . . . , xn). Consequently, a product of �rst countable spaces is
�rst countable.

Theorem 1.2.2.9. Every product of metrisable spaces is metrisable.

Proof. In fact, we can say more: if X1, . . . , Xn are metric spaces, then the
formula

dist((x1, . . . , xn), (x
′
1, . . . , x

′
n)) = [

n∑
i=1

(dist(xi, x
′
i))

2]1/2

de�nes a canonical metric on the product X1 × · · · ×Xn.

Theorem 1.2.2.10. Every product of compact spaces is compact.

Proof. It su�ces to consider a product of two spaces. So letX and Y be compact
topological spaces, and let Γ be an open cover of X × Y . Consider an arbitrary
re�nement ∆ of Γ, consisting of open sets of the form U × V (see Remark
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1.1.1.13). Since the �bres x×Y are homeomorphic to Y and Y is compact, one
can �nd, for each point x ∈ X, a �nite collection ∆x = {Ui(x) × Vi(x)}n(x)i=1 of
elements of ∆ which covers X × Y (see Theorem 1.1.7.2); one may assume that
x ∈ Ui(x) for all i = 1, . . . , n(x). Since the sets Ux = ∩n(x)i=1 are open and cover
the compact space X, there exists a �nite collection Ux1

, . . . , Uxm
covering X.

It is clear that ∆′ = ∪mj=1∆xj is a cover of X × Y . Finally, replacing each set
W ∈ ∆′ by a set of Γ containing W , we produce a �nite subcover of Γ.

Theorem 1.2.2.11. Every product of locally compact spaces is locally compact.

Proof. Let U1, . . . , Un be neighbourhoods of the points x1 ∈ X1, . . . , xn ∈ Xn.
Then U1 × · · · × Un is a neighbourhood of (x1, . . . , xn) in X1 × · · · ×Xn. Fur-
thermore, its closure Cl(U1 × · · · ×Un) is just ClU1 × · · · ×ClUn (see Theorem
1.2.2.3), and so is compact whenever ClU1, . . . ,ClUn are compact (see Theorem
1.2.2.10).

An Application: A Method for Constructing Continuous Maps

Remark 1.2.2.12. Theorem 1.2.2.14 below allows us to establish continuity a
map in some situations similar to those treated by Theorem 1.1.4.3, but where
the latter is not applicable.

Lemma 1.2.2.13. Suppose that the map f : X × Q → Z is continuous and
transforms the �bre x0 ×Q into a point. If the space Q is compact, then given
any neighbourhood W of the point f(x0 ×Q), there is a neighbourhood U of x0
such that f(U ×Q) ⊂W .

Proof. Given any point q ∈ Q, �x a neighbourhood of Uq and a neighbourhood
Vq of q with f(Uq ×Vq) ⊂W . Since Q is compact, one can cover it with a �nite
collection Vq1 , . . . , Vqs . Now set U = ∩si=1Uqi .

Theorem 1.2.2.14. Suppose that X,Y, Z and Q are topological spaces, A is
a subset of X, B is a closed subset of Y , and f : X × Q → Z and g : Y → X
are continuous maps such that f(x×Q) reduces to a point for each x ∈ A, and
g(B) ⊂ A. If Q is compact, then for each continuous map φ/colonY \B → Q,
the map h : Y → Z given by

h(y) =

{
f(g(y)), φ(y)), for y ∈ Y \B,
f(g(y)×Q), for y ∈ B,

is continuous.

Proof. The map h is clearly continuous at the points of Y \ B; let us verify
its continuity at the points y ∈ B. By virtue of Lemma 1.2.2.13, given any
neighbourhood W of the point h(y), there is a neighbourhood U of the point
g(y) such that f(U ×Q) ⊂ W . The last inclusion shows that h(g−1(U)) ⊂ W ,
and �nally note that g−1(U) is a neighbourhood of y.
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Information

Information 1.2.2.15. The notion of a product of an in�nite number of topo-
logical spaces can be de�ned in a natural way; in this case too a product of
compact spaces remains compact; see [3] for details.

1.2.3 Quotients

De�nition 1.2.3.1. The quotient set X/℘ of a topological space X by any of
its partitions ℘ is equipped with a natural topology: a subset of X/℘ is open
if its pre-image under the map proj : X → X/ρ is open. Equivalently, a subset
of X/℘ is closed if its pre-image is closed. This topology is called the quotient
topology, and the set X/℘ with the quotient topology is the quotient space of
the space X by its partition ℘.

It is clear that proj : X → X/℘ is continuous.
In the special case of a partition ℘ whose elements are a single set A and the

points of X \A, X/℘ is called the quotient of the space X by A and is denoted
by X/A.

Remark 1.2.3.2. Given two topological spaces X and Y with respective par-
titions ℘ and q , and a continuous map f : X → Y which takes the elements
of ℘ into elements of q , the map fact f : X/℘ → Y/q is continuous. This is a
straightforward consequence of the de�nition of the quotient topology. Indeed,
if U → Y/q is open, then the set f−1(proj−1(U)) is open in X, and so the
identity f−1(proj−1(U)) = proj−1((fact f)−1(U)) implies that (fact f)−1(U) is
open in X/℘.

If q is the partition of Y into single points, then Y/q = Y and proj : Y → Y/q
is the identity map. In this case, f ↣ fact f de�nes a one-to-one correspondence
between continuous maps X → Y which are constant on the elements of the
partition ℘, and continuous maps X/℘→ Y .

Remark 1.2.3.3. In particular, the discussion above shows that given a contin-
uous map f : X → Y , its injective factor fact f : X/ zer(f) → Y is continuous
too. The converse is also true: every map f : X → Y can be represented as the

composition X
proj−−→ X/ zer(f)

fact f−−−→ Y , and so f is continuous whenever fact f
is continuous.

Remark 1.2.3.4. A continuous map whose injective factor is a homeomorphism
will be referred to as a factorial map (or a quotient map).

An equivalent de�nition: a map f of a topological space X into a topological
space Y is factorial if f(X) = Y , and the preimage f−1(B) of a set B ⊂ Y is
open if and only if B is open. If we substitute closed sets for open ones, we
obtain another equivalent de�nition.

Obviously, the composition of two factorial maps is factorial, and any in-
jective factorial map is a homeomorphism. Moreover, it is plain that if f is
factorial and the composition g ◦ f is continuous, then the map g is continuous.
Also, f continuous and g ◦ f factorial imply g factorial.
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The projections onto quotient spaces form the main class of factorial maps.
A crude necessary condition for a map f : X → Y with f(X) = Y to be factorial
is that f be an open or a closed map.

Remark 1.2.3.5. Taking quotients is a transitive operation: if ℘ is a partition of
X and ℘′ is a partition of X/℘, then the quotient space (X/℘)/℘′ is canonically
homeomorphic toX/q , where q partitionsX into the pre-images of the elements
of ℘′ under the projection X → X/℘. This canonical homeomorphism is de�ned
as the injective factor of the composite map X → X/℘→ (X/℘)/℘′, and is truly
a homeomorphism, because this composition is factorial (see Remark 1.2.3.4).

Theorem 1.2.3.6. If the sets A and B constitute a fundamental cover of the
space X , then

fact[incl : A→ X] : A/A ∩B → X/B

is a homeomorphism.

Proof. Given an open subset U of the quotient A/A ∩ B, it is enough to show
that V = [proj : X → X/B](fact incl(U)) is open inX. But this is a consequence
of the equalities

V ∩A = [proj : A→ A/A ∩B]−1(U)

and

V ∩B =

{
B, if proj(A ∩B) ∈ U,
∅, if proj(A ∩B) ̸∈ U.

Properties of Quotients

Remark 1.2.3.7. Obviously, a quotient space X/℘ satis�es axiom T1 if and only
if the elements of the partition ℘ are closed. Also, X/℘ is Hausdor� if and
only if any two distinct elements of ℘ have disjoint saturated neighbourhoods.
Similarly, X/℘ is a T3-space (T4-space) if and only if for any element A of ℘
and any saturated closed subset B of X (respectively, for any saturated, closed
subsets A and B of X) such that A ∩B = ∅, A and B have disjoint saturated
neighbourhoods in X.

Moreover, it is readily seen that X/℘ is second countable if and only if there
is a countable collection of open saturated sets in X such that any saturated
set can be expressed as the union of one of its subcollections.

It is immediate from Remark 1.1.6.6 that a quotient of a separable space is
separable.

Similarly, Theorem 1.1.7.8 implies that a quotient of a compact space is
compact.

Closed Partitions

De�nition 1.2.3.8. A partition ℘ of the space X is closed if proj : X → X/℘
is a closed map. An equivalent condition: saturations of closed sets are closed.
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Obviously, a partition which has only one element that is not reduced to a
point is closed if and only if this element is closed.

Theorem 1.2.3.9. The quotient of a T1-space by a closed partition is a T1-
space. The quotient of a normal space by a closed partition is normal.

Proof. Since the �rst assertion is straightforward, all we have to show is that
the quotient X/℘ of a T4-space X by a closed partition ℘ is a T4-space. Let F1

and F2 be disjoint, saturated, closed subsets of X. Since X is normal, F1 and
F2 have disjoint neighbourhoods. Furthermore, since ℘ is a closed partition,
the saturations of the complements of these neighbourhoods are closed, and
now it is clear that the complements of these saturations are disjoint saturated
neighbourhoods of F1 and F2.

Open Partitions

Remark 1.2.3.10. A partition ℘ of the space X is open if proj : X → X/℘ is an
open map. An equivalent condition: saturations of open sets are open.

If ℘ is an open partition and A is a saturated set, then the saturation of
intA is open, and hence equals intA; passing to complements, we see that the
saturation of ClA is just ClA. Therefore, in the case of an open partition, the
interior and the closure of a saturated set are saturated.

As it follows from Remark 1.1.6.6, the quotient of a �rst countable (second
countable) space by an open partition is �rst countable (respectively, second
countable).

Theorem 1.2.3.11. Let ℘ and q be open partitions of the respective spaces X
and Y . The product (X/℘)× (Y/q) is canonically homeomorphic to the quotient
(X × Y )/(℘× q).

Proof. The injective factor of the map proj×proj : X × Y → (X × Y )/(℘× q)
de�nes this canonical map, which is a homeomorphism because proj×proj is
open (see Remark 1.2.2.5).

1.2.4 Glueing

Remark 1.2.4.1. Glueing (or pasting) topological spaces is a composite operation
which consists of taking a sum and subsequently passing to a quotient. More
precisely, suppose that {xµ}µ∈M is a family of topological spaces and ℘ is a
partition of the space X =

∐
Xµ. Then we say that the quotient space X/℘ is

obtained by glueing the spaces Xµ (or according to) ℘. The composite map

Xν
inclν−−−→ X

proj−−→ X/℘

is termed the ν-th immersion and is denoted by Immν . Clearly, the sets Immν(X̸=)
yield a fundamental cover of X/℘, and a map f : X/℘→ Y , where Y is an arbi-
trary topological space, is continuous if and only if all the compositions f ◦Immν

are continuous.
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Unions

De�nition 1.2.4.2. Let {Xµ}µ∈Mbe a family of topological spaces. Suppose
that for each pair (µ, µ′) ∈ M × M there is given a subset Aµµ′ ⊂ Xµ. In
addition, suppose that for each pair (µ, µ′) ∈M×M there is given an invertible
map φµµ′ : Aµµ′ → Aµ′µ′ such that:

(i) Aµµ = Xµ and φµµ = idXµ, for any µ ∈M ;

(ii) φµµ′(Aµµ′ ∩Aµµ′′) = Aµ′µ ∩Aµ′µ′′ and the diagramme

Aµµ′ ∩Aµµ′′
abrφµµ′

//

abrφµµ′′ ((

Aµ′µ ∩Aµ′µ′′

abrφµ′µ′′vv
Aµ′′µ ∩Aµ′′µ′

is commutative for every µ, µ′, µ′′ ∈M . For x ∈
∐
Xµ, denote by Bx the subset

of
∐
Xµ consisting of all the points inclµ(φνµ(x)), where X ∈ Aνµ. The sets

Bx are pairwise disjoint and de�ne a partition of
∐
Xµ. The corresponding

quotient space is called the union of the spaces Xµ by (or along) the maps φµµ′ .

This construction is a special case of glueing, when all the immersions Immµ

are injective. Moreover, assuming that all the maps φµµ′ are homeomorphisms
and that the sets Aµµ′ are all open or all closed, we see at once that all the
maps Immµ are embeddings.

In the general case, a union of T1-spaces is clearly a T1-space.

Remark 1.2.4.3. Often the union construction is employed when all the spaces
Xµ are subsets of a set X and cover X, while Aµµ′ and φµµ′ are given by
Aµµ′ = Xµ ∩ Xµ′ and φµµ′ = id. In this situation, conditions 1.2.4.2 (i) and
1.2.4.2 (ii) are automatically ful�lled, and one may describe the union of the
Xµ's simply as the set X equipped with the following topology: a set C ⊂ X is
open (closed) if and only if the intersection C∩Xµ is open (respectively, closed)
in Xµ for any µ ∈M .
Memo by the transcriber : This topology is the one exactly used in the de�nition
of CW complexes, under the (somewhat misleading) name �weak topology�.

We devote some special attention to the case where the topology of each set
Xµ is induced by some topology already given on X. Then our construction
produces a new topology on X. It is clear that the sets open (closed) in the
old topology remain open (respectively, closed) in the new topology. Moreover,
if all the intersections Xµ ∩ Xµ′ , are open in their sets Xµ (endowed with the
initial topology), then the new topology on X induces the initial topology back
on each set Xµ; the same holds whenever all the intersections Xµ ∩ Xµ′ , are
closed in their sets Xµ.
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Limits and Filtrations

Remark 1.2.4.4. Let X0, X1, . . . be topological spaces, and let φ0 : X0 → X1,
φ1 : X1 → X2, . . . be embeddings. Set

Akk′ =

{
φk−1 ◦ · · · ◦ φk′(Xk′), if k′ < k,

Xk′ if k′ ≥ k

and

φkk′ =


abr(φk−1 ◦ · · · ◦ φk′), if k′ < k,

idXk
, if k′ = k,

abr(φk′−1 ◦ · · · ◦ φk)−1, if k′ ≥ k

The union of the spaces Xs is well-de�ned because conditions 1.2.4.2 (i) and
1.2.4.2 (ii) are obviously satis�ed. This union is called the limit of the sequence
{xk} and denoted by lim(Xk, φk) or limXk.

A speci�c property of the limit construction is that the maps

Immk : Xk → limXk

are embeddings: indeed, every closed subset A of Xk is the pre-image under
Immk of some closed subset of limXk, for example, of

∞⋃
k′=k+1

Immk′(ClXk
(φk′−1 ◦ · · · ◦ φk(A)))

Obviously, if φk(Xk) is open (closed) in Xk+1 for all k, then all the sets
Immk(Xk) are open (respectively, closed) in lim(Xk, φk).

Suppose that {X ′
k′ , φ

′
k : X

′
k → X ′

k+1} another sequence of topological spaces
and embeddings, and that for each k there is given a continuous map

fk : Xk → X ′
k,

so that all the diagrammes

Xk
fk //

φk

��

X ′
k

φ′
k

��
Xk+1

fk+1

// X ′
k+1

are commutative. Then the rule f(Immk(x)) = Immk(fk(x)) de�nes a contin-
uous map f : lim(Xk, φk) → lim(X ′

k, φ
′
k) (see Remark 1.2.3.2); f is called the

limit of the sequence f0, f1, . . . and is denoted by lim fk.

Theorem 1.2.4.5. If X0, X1, . . . are T1-spaces, then every compact subset of
limXk is contained in one of the sets Immk(Xk).
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Proof. This is a consequence of Theorem 1.1.7.6.

Theorem 1.2.4.6. If X0, X1 < . . . are normal spaces and φk(Xk) is closed in
Xk+1 for every k, then lim(Xk, φk) is normal.

Proof. Since we already know that lim(Xk, φk) is a T1-space, it su�ces to show
that there exists a Urysohn function for any pair A,B of closed disjoint subsets
of this space (see De�nition 1.1.5.11). To see this, we merely have to produce a
sequence fk : Immk(Xk) → I, such that each fk is a Urysohn function for the
pair A ∩ Immk(Xk), B ∩ Immk(Xk), and fk+1|ImmK(Xk) = fk, for each k.

As f0 take any Urysohn function for the pair A∩ Imm0(X0), B∩ Imm0(X0).
Given fk, we de�ne Immk+1 : Immk(Xk+1) → I as the (continuous) extension
of the function

gk : [Immk(Xk)] ∪ [A ∩ Immk(Xk+1)] ∪ [B ∩ Immk+1(Xk+1)]→ I,

de�ned by the formula

gk(x) =


fk(x), if x ∈ Immk(Xk),

0, if x ∈ A ∩ Immk+1(Xk+1),

1, if x ∈ B ∩ Immk+1(Xk+1)

(see Theorem 1.1.5.14). The functions gk are continuous because the sets
Immk(Xk), A∩Immk+1(Xk+1), and B∩Immk+1(Xk+1) are closed (see Theorem
1.1.4.3), which in turn is a consequence of the fact that φk(Xk), φk+1(Xk+1)
are closed.

De�nition 1.2.4.7. A sequence X0, X1, . . . of subsets of a topological space X
is a �ltration of X if, �rstly, X0 ⊂ X1 ⊂ · · · , and, secondly, the sets Xk form a
fundamental cover of X.

The �rst condition shows that the inclusions incl : Xk → Xk+1 and the limit
lim(Xk, incl) are meaningful, while the second condition is equivalent to the
following: the map X → lim(Xk, incl), which equals Immk : Xk → lim(Xk, incl)
on each Xk, is a homeomorphism. Using this canonical homeomorphism, we
may identify lim(Xk, incl) with X.

Attaching

Remark 1.2.4.8. Let X1, X2, C, and φ : C → X2 be two topological spaces, a
subset of X1, and a continuous map, respectively. Denote by ℘ the partition
of X1

∐
X2 into the points of incl1(X1 \ C) and incl2(X2 \ φ(C)), and the sets

incl1((φ
−1(x)) ∪ incl2(x) with x ∈ φ(C). The quotient space (X1

∐
X2)/℘ is

written X2 ∪φX1. We say that X2 ∪φX1 is obtained by attaching the space X1

to the space X2 by (or along) φ.
This construction is clearly a special kind of glueing, and it is plain that

Imm2: X2 → X2 ∪φ X1 is an embedding.
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If X2 reduces to a point, then X2 ∪φX1 is canonically homeomorphic to the
quotient space X1/C; the canonical homeomorphism is just

fact[Imm1 : X1 → X2 ∪φ X1].

Theorem 1.2.4.9. If X1 and X2 are normal and C is closed, then X2 ∪φ X1

is normal.

Proof. Since we already know that X2 ∪φ X1 is a T1-space (see De�nition
1.2.4.2), it su�ces to show that there exists a Urysohn function for any pair of
closed disjoint subsets A,B of X2∪φX1. Let f2 : X2 → I be a Urysohn function
for the pair Imm−1

2 (A), Imm−1
2 (B). De�ne g : C∪[Imm−1

1 (A)]∪[Imm−1
1 (B)]→ I

by

g(x) =


f2(φ(x)), if x ∈ C,
0, if x ∈ Imm−1

1 (A),

1, if x ∈ Imm−1
1 (B),

and extend it to a continuous function f1 : X1 → I (see Theorem 1.1.5.14). The
function X2 ∪φ X1 → I, de�ned as

y 7→

{
f1(x), if y ∈ Imm1(x) [x ∈ X1],

f2(x), if y ∈ Imm2(x) [x ∈ X2],

is obviously a Urysohn function for the pair A,B.

1.2.5 Projective Spaces

Remark 1.2.5.1. In this subsection we shall describe the real, complex, quater-
nionic, and Cayley projective spaces. These may be considered as examples
illustrating the previous de�nitions, but are also important spaces in their own
right.

We denote the �eld of complex numbers by C, the �eld of quaternions by H,
and the algebra of Cayley numbers by (Ca. The corresponding n-dimensional
spaces, i.e., the products of n copies C×· · ·×C, H×· · ·×H, and Ca×· · ·×Ca,
are denoted by Cn, Hn, and Can. Since every complex number is a pair of
real numbers, every quaternion a quadruplet of real numbers, and every Cayley
number an octuplet of real numbers, one can naturally identify Cn, Hn, and Can
with R2n, R3n, and R8n, respectively. In particular, the former are endowed
with natural topologies and metrics. The vector operations in Cn, Hn, and Can
(addition of vectors and left or right multiplication by scalars) are continuous
in these topologies.

De�nition 1.2.5.2. The n-dimensional real projective space RPn is de�ned as
the quotient space of Sn by its partition into pairs of diametrically opposed (=
antipodal) points. One may equivalently describe RPn as the quotient space
of Dn by its partition into the points of intDn and the pairs of diametrically
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opposed points of FrDn = Sn−1. The canonical homeomorphism permitting us
to identify these two quotient spaces is fact f , where f : Dn → Sn is de�ned by

(x1, . . . , xn) 7→ (x1, . . . , xn,
√
1− x21 − · · · − x2n).

One may also identify the points of RPn with the lines of Rn+1 which pass
through the point 0 = (0, . . . , 0) (the line passing through the points x and
−x corresponds to the pair of points x,−x ∈ Sn. The set of all these lines,
equipped with the angular metric (i.e., the distance between two lines is de�ned
as the angle between them which is less than π/2), is a metric space, and
the above natural map of RPn onto this space is clearly a homeomorphism.
This provides a third description of the real projective space. The fourth, a
coordinate description, can be obtained if one remarks that every line passing
through 0 is uniquely determined by any of its non-zero points, and that the
coordinates of any two non-zero points of such a line are proportional. This
enables us to interpret the points of RPn as classes of proportional non-zero real
sequences (x1, . . . , xn+1); the point determined by the sequence (x1, . . . , xn+1)
is denoted by (x1 : · · · : xn+1), and the numbers x1, . . . , xn+1 are called its
homogeneous coordinates. The description of the topology of RPn in terms of
the homogeneous coordinates is plain.

De�nition 1.2.5.3. All the above discussion of the space RPn can be repeated
naturally for the complex case, leading to four equivalent description of the n-
dimensional complex projective space CPn.
First description: CPn is the quotient space of the unit sphere S2n+1 of C by
its partition into the circles obtained by intersecting S2n+1 with the (complex)
lines of C which pass through the point 0.
The second description: CPn is the quotient space of the unit ball D2n of C by
its partition into the points of intD2n and the circles on FrD2n = S2n1

obtained
by intersecting S2n1

with the lines of C passing through 0. The canonical home-
omorphism between these two quotient spaces is fact f , where f : D2n → S2n+1

is given by

f(x1, . . . , x2n) = (x1, . . . , x2n,
√
1− x21 − · · · − x22n).

The third description: CPn is the set of lines of Cn+1 passing through the point
0, equipped with the topology induced by the angular metric.
The fourth description: CPn is the space of classes of (complex) proportional
non-zero complex sequences (x1, . . . , xn+1).

The notation (x1 : · · · : xn+1) introduced in De�nition 1.2.5.2 also extends
to the complex case, and the numbers x1, . . . , xn+1 are known, as in the real
case, as the homogeneous coordinates of the point (x1, . . . , xn+1).

De�nition 1.2.5.4. Since the �eld of quaternions is not commutative, one has
to distinguish between the left and the right lines in Hn. But as soon as we have
chosen one type of lines, we can automatically repeat the discussion in De�nition
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1.2.5.3 for the quaternionic case, and so obtain four equivalent descriptions of
the corresponding (left or right) n-dimensional quaternionic projective space
HPn. Since the anti-automorphism x 7→ x−1 of the multiplicative group of the
�eld H takes left lines into right ones, the right space HPn. Since the anti-
automorphism x 7→ x−1 of the multiplicative group of the �eld H takes left lines
into right ones, the right space HPn is homeomorphic to the left one.

Henceforth, we shall regard Hn as a left vector space, and accordingly HPn
will be regarded as the left projective space.

De�nition 1.2.5.5. Since the Cayley algebra is not associative, we cannot
successfully de�ne lines in Can for n > 2. In the Cayley plane Ca2 one can
de�ne a line passing through the point (0, 0) as a set {(x1, x2)|x2 = cx1}, where
c ∈ Ca; in addition, there is the vertical coordinate line {(x1, x2)|x1 = 0}. If
one identi�es Ca2 with R16, it becomes clear that these lines are 8-dimensional
subspaces. Moreover, every point di�erent from (0, 0) of Ca sits on exactly
one of these lines, and each line intersects S15 along a 7-dimensional sphere.
One can de�ne the projective Cayley line CaP 1 as the quotient space of S15 by
its partition into these 7-dimensional spheres. Of course, there are three more
description of this projective line, which are appropriately modi�ed versions of
those given in De�nitions 1.2.5.2, 1.2.5.3, and 1.2.5.4. In addition, we can de�ne
the projective Cayley plane CaP 2 as the quotient of intD16 by its partition into
the points of intD16 and the 7-dimensional spheres just described. However, an
attempt to describe the projective plane CaP in the spirit of the alternatives of
De�nitions 1.2.5.2, 1.2.5.3, and 1.2.5.4 fails. Projective Cayley spaces of higher
dimensions are not de�ned.

Remark 1.2.5.6. The spaces RP 1, CP 1, HP 1, and CaP 1 are canonically home-
omorphic to S1, S2, S4, and S8. The homeomorphism RP 1 → S1 transforms the
line x1 = 0 into ort1, and each line x2 = cx1 into the point of the punctured
sphere S1 \ ort1 which corresponds to c via the homeomorphism R1 → S1 \ ort1
described in Example 1.1.4.9. The homeomorphisms CP 1 → S2, HP 1 → S4,
and CaP 1 → S8 are similarly de�ned, when we substitute the homeomorphisms
C1 = R2 → S2 \ ort1, H1 = R4toS4 \ ort1, and Ca1 = R8 → S1 \ ort1 for the
homeomorphism R1 → S1 \ ort1.
Remark 1.2.5.7. The canonical embedding (x1, . . . , xk) 7→ (x1, . . . , xk, 0) of Rk
in Rk+1 permits identi�cation of Rk with the subspace xk+1 = 0 of Rk+1 and
may be regarded as an inclusion. This map induces inclusions Dk → Dk+1,
Sk−1 → Sk, and RP k−1 → RP k. Similarly, the inclusions Ck → Ck+1 and
Hk → Hk+1 induce inclusions CP k−1 → CP k and HP k−1 → HP k.

Set

R∞ = limRk, C∞ = limCk, H∞ = limHk,
D∞ = limDk, S∞ = limSk,

and
RP∞ = limRP k, CP∞ = limCP k, HP∞ = limHP k.
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The points of the spaces R∞, C∞, and H∞ can be naturally identi�ed with
the real, complex, and quaternionic �nitely-supported (i.e., having only a �nite
number of non-zero terms) sequences {xk}∞1 . The sphere S∞ is included in the
ball D∞, which in turn is included in the space R∞. The projective spaces RP∞,
CP∞ and HP∞ are constructed from S∞ and D∞ by taking quotients that are
limits of the quotients described in De�nitions 1.2.5.2, 1.2.5.3, and 1.2.5.4.

Remark 1.2.5.8. The previous description of CPn and HPn, and also of CaP 1

as quotient spaces of spheres, de�ne projections S2n+1 → CPn, S4n+3 → HPn,
and S15 → CaP 1, which play a distinguished role. They are called Hopf maps.
The most important Hopf maps are S3 → CP 1 = S2, S7 → HP 1 = S4, and
S15 → CaP 1 = S8.

1.2.6 More Special Constructions

De�nition 1.2.6.1. Let X be a topological space. The quotient space

(X × I)/(X × 0)

is called the cone over X and is denoted by coneX. The point proj(X × 0) is
the vertex of the cone, the set proj(X × 1) is the base of the cone, and each set
proj(x×I), x ∈ X, is a generatrix of the cone. The base of coneX is canonically
homeomorphic to X and is usually identi�ed with X. The generatrices are
obviously canonically homeomorphic to I.

For each map f from X into another topological space Y , we have the map
fact(f × idI) : coneX → coneY , which is continuous whenever f is so. This
map is denoted by cone f .

De�nition 1.2.6.2. The quotient of the product X × I by its partition whose
elements are the sets X × 0 and X × 1, and the points of the set

(X × I) \ [(X × 0) ∪ (X × 1)],

is called the suspension of X and is denoted by susX. The points proj(X × 0)
and proj(X × 1) are the vertices of the suspension, the set proj(X × 1

2 ) is its
base, and the sets proj(x × I), x ∈ X, are its generatrices. The base of susX
is canonically homeomorphic to X, while each of its generatrices is canonically
homeomorphic to I.

For each map f : X → Y there is the corresponding map

fact(f × idI) : susX → susY,

which we denote by sus f ; sus f is continuous whenever f is so.
Notice that the suspension susX can be alternatively described as coneX/X.

Remark 1.2.6.3. Let X1 and X2 be topological spaces. The quotient space of
X1×X2×I by its partition into the sets x1×X2×0 (with x1 ∈ X1), X1×x2×1
(with x2 ∈ X2), and the points of

X1 ⋆ X2 := (X1 ×X2 × I) \ [(X1 ×X2 × 0) ∪ (X1 ×X2 × 1)],
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is called the join of X1 and X2. The sets proj(X1×X2×0) and proj(X1×X2×1)
are the bases of the join, and the sets proj(x1 × x2 × I) with x1 ∈ X1 and
x2 ∈ X2 are its generatrices. The bases are obviously canonically homeomorphic
to X1 and X2, and are usually identi�ed with X1 and X2. The generatrices are
canonically homeomorphic to I.

For each pair of maps f1 : X1 → Y1 and f2 : X2 → Y2 we have the map
fact(f1 × f2 × idI) : X1 ⋆X2 → Y1 ⋆ Y2, denoted by f1 ⋆ f2; f1 ⋆ f2 is continuous
whenever both f1 and f2 are so.

The ⋆-operation is commutative, i.e., there exists a canonical homeomor-
phism X2 ⋆ X1 → X1 ⋆ X2.

We remark that the join X1 ⋆ X2 may be alternatively de�ned as

(X1

∐
X2) ∪φ (X1 ×X2 × I),

where φ : X1 × X2 × (0 ∪ 1) → X1

∐
X2 is given by φ(x1, x2, O) = incl1(x1),

φ(x1, x2, 1) = incl2(x2). It is also clear that the quotient space of X1 ⋆ X2 by
its partition whose elements are the bases X1 and X2, and the points of the set
(X1 ⋆ X2) \ (X1 ∪X2) is the suspension sus(X1 ×X2).

Remark 1.2.6.4. The iterated join (· · · ((X1 ⋆X2) ⋆X3) · · · ) ⋆Xn maybe canon-
ically embedded in the product coneX1 × · · · × coneX. This embedding is
denoted by jc or, more precisely, by jcX1,...,Xn

, and is de�ned inductively: for
n = 1 it takes x1 ∈ X1 into proj(x1, 1) ∈ coneX1, while for n ≥ 2 it is given by

jcX1,...,Xn
(proj(x, xn, t)) = ((1− t) jcX1,...,Xn−1

(x),proj(xn, t)),

where x ∈ (· · · ((X1⋆X2)⋆X3) · · · )⋆Xn−1, xn ∈ Xn, and t ∈ I; the multiplication
of a point of coneX1 × · · · × coneXn−1 by 1− t is de�ned by the rule

(1− t)(proj(x1, t1), . . . ,proj(xn−1, tn−1)) =

(proj(x1, (1− t)t1), . . . ,proj(xn−1, (1− t)tn−1)).

Clearly, the image of the embedding jcX1,...,Xn
(proj(x, xn, t)) is precisely

{(proj(x1, t1), . . . ,proj(xn, tn)) ∈ coneX1 × · · · × coneXn|t1 + · · ·+ tn = 1},

which allows us to identify the iterated join (· · · ((X1 ⋆X2) ⋆X3) · · · ) ⋆Xn with
this set.

Remark 1.2.6.5. The ⋆-operation is associative, meaning, as usual, that the two
joins (X1 ⋆ X2) ⋆ X3 and X1 ⋆ (X2 ⋆ X3) are canonically homeomorphic. The
canonical homeomorphism

(X1 ⋆ X2) ⋆ X3 → X1 ⋆ (X2 ⋆ X3)

is the composition of the canonical homeomorphism

(X1 ⋆ X2) ⋆ X3 → (X2 ⋆ X3) ⋆ X1
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with the suitable compression of the canonical homeomorphism

coneX2 × coneX3 × coneX1 → coneX1 × coneX2 × coneX3.

A consequence of the associativity of the ⋆-operation is that the multiple join
X1 ⋆ · · · ⋆ Xn is meaningful for any topological spaces X1, . . . , Xn.

Theorem 1.2.6.6. The product coneX1 × · · · × coneXn is canonically homeo-
morphic to cone(X1 ⋆ · · · ⋆ Xn).

Proof. The canonical homeomorphism

cone(X1 ⋆ · · · ⋆ Xn)→ coneX1 × · · · × coneXn

is de�ned as

proj(jc−1
X1,...Xn

(proj(x1, t1), . . . ,proj(xn, tn)), t) 7→
(proj(x1, tt1/max(t1, . . . , tn)), . . . ,proj(xn, ttn/max(t1, . . . , tn))).

Theorem 1.2.6.7. cone Sm and susSm are are canonically homeomorphic to
Dm+1 and Sm+1.

Proof. The canonical homeomorphisms cone Sm → Dm+1 and sus Sm → Sm+1

are de�ned by the formulae

proj((xl, . . . , xm+1), t) 7→ (txl, . . . , txm+1)

and
proj((x1, . . . , xm+1), t) 7→ (x1 sinπt, . . . , xm+1 sinπt, cosπt).

Theorem 1.2.6.8. The join X ⋆ D0 is canonically homeomorphic to coneX.
The join X ⋆ S0 is canonically homeomorphic to susX. The join X ⋆ Sk is
canonically homeomorphic to the iterated suspension susk+1X; in particular,
Sm1 ⋆ Sm2 is canonically homeomorphic to Sm1+m2+1.

Proof. The canonical homeomorphism X ⋆ D0 → coneX is given by

proj(x, 0, t) 7→ proj(x, t).

The canonical homeomorphism X ⋆ susX is given by the formulae

proj(x, 1, t) 7→ proj(x, (1 + t)/2),

proj(x,−1, t) 7→ proj(x, (1− t)/2).

Finally, the canonical homeomorphism X ⋆ Sk → susX is the composite map

X ⋆ Sk → susX ⋆ Sk−1 → · · · → suskX ⋆ S → susk+1X,
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where the last arrow denotes the canonical homeomorphism, and the r-th arrow,
with r ≤ k, denotes the composite canonical homeomorphism

susr−1X ⋆ Sk−r+1 → susr−1X ⋆ sus Sk−r → susr−1X ⋆ Sk
r

⋆ S0

→ susr−1X ⋆ S0 ⋆ Sk−r → susrX ⋆ Sk−r.

Remark 1.2.6.9. Combining the canonical homeomorphisms constructed in 1.2.6.6,
1.2.6.7 and 1.2.6.8, we obtain the composite homeomorphisms

Sm1 ⋆ · · · ⋆ Smn →
Sm1 ⋆ · · · ⋆ Smn−2 ⋆ Smn−1+mn+1 → · · · →
Sm1 ⋆ Sm2+···mn+n−2 → Sm1+mn+n−1,

Dm1 × · · · × Dmn → cone Sm1−1 × · · · × cone Smn−1 →
cone(Sm1−1 ⋆ · · · ⋆ Smn−1)→ cone Sm1+mn+n−1 →
Dm1+...+mn ,

and

Dm1 ⋆ · · · ⋆ Dmn → cone Sm1−1 ⋆ D0 · · · ⋆ cone Smn−1 ⋆ D0 →
cone(Sm1−1 ⋆ D0 ⋆ · · · ⋆ Smn−1−1 ⋆ D0 ⋆ Smn−1)→
cone Sm1−1 × coneD0 × · · · × cone Smn−1 × coneD0 × Smn−1 →
Dm1 × I × · · · × Dmn−1 × I × Dmn →
Dm1 × D1 × · · · × Dmn−1 × D1 × Dmn →
Dm1+···+mn+n−1

Therefore, the join Sm1 ⋆ · · · ⋆ Smn , the product Dm1 × · · · × Dmn , and the join
Dm1 ⋆ · · · ⋆ Dmn are canonically homeomorphic to the sphere Sm1+mn+n−1, the
ball Dm1+...+mn , and the ball Dm1+···+mn+n−1, respectively.

The Mapping Cylinder and the Mapping Cone

De�nition 1.2.6.10. Let f : X1 → X2 be a continuous map. The result of
attaching the product X1×I to X2 by the map X1×X2, (x, 1) 7→ f(x), is called
the mapping cylinder of f , and is denoted by Cylf . The sets Imm1(X1×0) and
Imm2(X2) are the lower and upper bases of Cylf , and the sets Imm1(x × I)
with x ∈ X1 are its generatrices.

Clearly, the bases are canonically homeomorphic to X1 and X2, and they
are usually identi�ed with these two spaces; the generatrices are canonically
homeomorphic to I. Moreover, there is a canonical retraction rt f : Cylf → X2,
de�ned on Imm1(X × I) as rt f(Imm1(x, t)) = Imm1(x, 1)[= f(x)].
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It is evident that the composite map

X1
incl−−→ Cylf

rt f−−→ X2

equals f .
If X2 = X1 and f = idX1

, then Cylf is canonically homeomorphic to the
cylinder over X1, X1 × I.

De�nition 1.2.6.11. The mapping cone of the continuous map f : X1 → X2 is
the spaceX2∪coneX , denoted by Conef (do not confuse it with cone f , which is
a map, de�ned in De�nition 1.2.6.11). Equivalent de�nition: Conef = Cylf /X1.

1.2.7 Spaces of Continuous Maps

De�nition 1.2.7.1. Let C(X,Y ) be the set of all continuous maps of a topolog-
ical space X into a topological space Y . The set of all maps φ ∈ C(X,Y ) such
that φ(A1) ⊂ B1, . . . , φ(An) ⊂ Bn, where A1, . . . , An and B1, . . . , Bn are given
subsets of X and Y , respectively, is denoted by C(X,A1, . . . , An;Y,B1, . . . , Bn).
It may be interpreted as the set of all continuous maps

(X,A1, . . . , An)→ (Y,B1, . . . , Bn).

We equip C(X,Y ) with the compact-open topology : by de�nition, this is the
topology with the pre-base consisting of all sets C(X,A;Y,B) with A compact
and B open. Together with C(X,Y ), all the sets C(X,A1, . . . , An;Y,B1, . . . , Bn)
become topological spaces.

If Y is a point, then C(X,Y ) reduces to a point. If X is discrete and con-
sists of the points x1, . . . , xn, then C(X,Y ) is canonically homeomorphic to the
product Y × · · · × Y of n copies of the space Y; this homeomorphism is given
by φ 7→ (φ(x1, . . . , φ(xn)).

To each pair of continuous maps f : X ′ → X and g : Y → Y ′ there corre-
sponds a mapping C(X,Y ) → C(X ′, Y ′), given by the rule φ 7→ g ◦ φ ◦ f . This
mapping is continuous, and we shall denote it by C(f, g).

X
φ // Y

g

��
X ′

C(f,g):φ7→g◦φ◦f
//

f

OO

Y ′

Theorem 1.2.7.2. If Y is a Hausdor� space, then so is C(X,Y ).

Proof. Indeed, if φ,ψ ∈ C(X,Y ) and φ ̸= ψ, then there is x ∈ X such that
φ(x) ̸= ψ(x). Let U and V be disjoint neighbourhoods of the points φ(x) and
ψ(x). Then C(X,x;Y, U) and C(X,x;Y, V ) are disjoint neighbourhoods of the
points φ and ψ.
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Theorem 1.2.7.3. If X is compact and Y is metrisable, then C(X,Y ) is metris-
able. Moreover, if Y is equipped with a metric, then

dist(φ,ψ) = sup
x∈X

dist(φ(x), psi(x))

de�nes a metric on C(X,Y ), compatible with its topology.

Proof. Given φ ∈ C(X,Y ), the set φ(X) can be covered by a �nite number of
balls of an arbitrarily small radius ε (see Theorem 1.1.7.11). It is clear that
ω = ∩si=1C(X,φ−1(Ui);Y, Ui) is a neighbourhood of the point φ, contained in
the ball of radius 2ε centred at φ. Therefore, every ball in C(X,Y ) contains a
neighbourhood of its centre.

On the other hand, if A ⊂ X is compact and B ⊂ Y is open, with φ(A) ⊂ B,
then C(X,A;Y,B) contains the ball with radius Dist(φ(A), Y \B) centred at φ
(see Theorem 1.1.7.15). Therefore, every neighbourhood of φ belonging to the
pre-base considered in De�nition 1.2.7.1 contains a ball centred at φ.

Theorem 1.2.7.4. For any topological spaces X and Y1, . . . , Yn, the space
C(X,Y1 × · · · × Yn) is canonically homeomorphic to the product

C(X,Y1)× · · · × C(X,Yn).

Proof. This canonical homeomorphism takes each φ ∈ C(X,Y1 × · · · × Yn) into
(proj1 ◦φ, . . . ,projn ◦φ) ∈ C(X,Y1)× · · · × C(X,Yn) (cf. Remark 1.2.2.4).

Theorem 1.2.7.5. Let ℘ be a closed partition of the compact Hausdor� space
X, and let Y be an arbitrary topological space. Then

C(proj, idY ) : C(X/℘, Y )→ C(X,Y )

is an embedding.

Proof. It su�ces to show that given a compact subset A of X/℘ and an open
subset B of Y , the set

C(proj, idY ) : [C(X/℘,A;Y,B)]

is open in C(proj, idY )[C(X/℘, Y )]. SinceX/℘ is Hausdor� (see Theorem 1.2.3.9),
A is closed. It follows that proj(A) is closed, and hence compact. Consequently,
C(X,proj−1(A);Y,B) is open in C(X,Y ), and it remains to note that

C(proj, idY )[C(X/℘,A;Y,B)] = C(X,proj−1(A);Y,B)∩C(proj, idY )[C(X/℘;Y )].
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The Mappings X × Y → Z and X → C(Y,Z)

Theorem 1.2.7.6. Suppose that X, Y and Z are topological spaces, and

φ : X × Y → Z

is continuous. Then the formula [φ∨(x)](y) = φ(x, y) de�nes a continuous
mapping φ∨ : X → C(Y,Z).

Let ψ : X → C(Y,Z) be a continuous mapping, and suppose that Y is Haus-
dor� and locally compact. Then the formula ψ∧(x, y) = [ψ(x)](y) de�nes a
continuous mapping ψ∧ : X × Y → Z.

Proof. To prove the �rst assertion, pick a point X0 ∈ X, a compact set B ⊂ Y ,
and an open set C ⊂ Z. Then it is enough to exhibit a neighbourhood U of x0
such that φ∨(U) ⊂ C(Y,B;Z,C). For each point y ∈ B �x neighbourhoods Uy
and Vy of x0 and y such that φ(Uy × Vy) ⊂ C, and then extract a �nite cover
Vy1 , . . . , VyS of B from the collection {Vy}y∈B . It is clear that U = ∪si=1Uyi is a
neighbourhood of x0 and that φ(U ×B) ⊂ ∪si=1φ(Uyi ×Vyi) ⊂ C. It remains to
remark that the inclusion φ(U×B) ⊂ C is equivalent to φ∨(U) ⊂ C(Y,B;Z,C).

To prove the second assertion, pick a point (x0, y0) ∈ X×Y and a neighbour-
hood W of the point φ∧(x0, y0). Now let us �nd a neighbourhood V of y0 with
compact closure ClV satisfying ClV ⊂ [ψ(x0)]

−1(W ) (see Theorem 1.1.7.22),
and then a neighbourhood U of x0 satisfying ψ(U) ⊂ C(Y,ClV ;Z,W ). Obvi-
ously, U × V is a neighbourhood of the point (x0, y0) and ψ∧(U × V ) ⊂W .

Theorem 1.2.7.7. The mapping C(X × Y, Z) → C(X, C(Y,Z)) de�ned by the
rule φ 7→ φ∨ (see Theorem 1.2.7.6) is continuous for any topological spaces X,
Y and Z. If X is Hausdor� and Y is Hausdor� and locally compact, then this
mapping is a homeomorphism, and its inverse is given by the rule ψ 7→ ψ∧.

Proof. The continuity of the mapping φ 7→ φ∨ results from the fact that the
pre-image of C(X,A; C(Y,Z), C(Y,B;Z,C)) under this mapping is just

C(X × Y,A×B;Z,C).

Assume that X is Hausdor� and Y is Hausdor� and locally compact. Consider
a point ψ0 ∈ C(X, C(Y ;Z)), a compact subset Q of X ×Y , a neighbourhood W
of the set ψ∧

0 (Q), and a point q ∈ Q. Now �nd a neighbourhood Uq × Vq of q
such that ψ∧

0 (Uq × ClVq) ⊂ W . Since Q is compact, its images proj1(Q) and
proj2(Q) in X and Y are also compact (see Proposition 1.1.7.8). Moreover, they
are Hausdor� spaces together with X and Y , and hence normal (see Proposition
1.1.7.5). Consequently, there exist open subsets Uprime

q of proj1(Q) and V ′
q of

proj2(Q) such that

proj1(q) ∈ U ′
q′ , Clproj1(Q) U

′
q ⊂ Uq′ ,

proj2(q) ∈ V ′
q′ , Clproj2(Q) V

′
q ⊂ Vq′
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and it is plain that the intersection (U ′
q ×V ′

q )∩Q is open in Q. Being compact,
Q can be covered by a �nite number of such intersections, say

U ′
q1 × V

′
q1 , . . . , U

′
qs × V

′
qs .

Now set

T =

s⋂
i=1

C(X,Clproj1(Q) Uqi ; C(Y,Z), C(Y,Clproj2(Q) Vqi ;Z,W )).

It is clear that T is a neighbourhood of q and that the image of T under the
mapping ψ 7→ ψ∧ is contained in C(X×Y,Q;Z,W ). We conclude that ψ 7→ ψ∧

is continuous. It is readily seen that the mappings φ 7→ φ∨ and ψ 7→ ψ∧ are
inverses of one another.

A Surprising Application

Theorem 1.2.7.8. Let f : X → X ′ be a factorial map. If the space Y Hausdor�
and locally compact, then the map f × idY : X × Y → X ′ × Y is factorial.

Proof. One can assume that X ′ = X/ zer(f) and that f is the projection

X → X/ zer(f).

Consider the projection proj : X × Y → (X × Y )/(zer(f) × zer(idY )). The
mapping Pr∨ : X → C(Y, (X×Y )/(zer(f)×zer(idY )) is constant on the elements
of the partition zer(f), and hence it induces continuous mappings

fact proj∨ : X ′ → C(Y, (X × Y )/(zer(f)× zer(idY ))

(fact proj∨)∧ : X ′ × Y → (X × Y )/(zer(f)× zer(idY )).

It it clear that the second of these mappings is the inverse of the injective factor
of f×idY : X×Y → X ′×Y . Thus the injective factor of f×idY : X×Y → X ′×Y
is a homeomorphism.

Theorem 1.2.7.9. Let f : X → X ′ and g : Y → Y ′ be factorial maps. If X ′

and Y are Hausdor� and locally compact, then the map f×g : X×Y → X ′×Y ′

is factorial.

Proof. In fact, one can express f × g as the composition

X × Y f×idY−−−−→ X ′ × Y idX′ ×g−−−−−→ X ′ × Y ′

and recall that a composition of factorial maps is again factorial.
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1.2.8 The Case of Pointed Spaces

De�nition 1.2.8.1. In the sequel, the class of topological spaces equipped
with a simple additional structure - a distinguished point (i.e, topological pairs
(X,x0), where x0 is a point) will play an important role; we call these spaces
pointed spaces, and call the distinguished point a base point. The constructions
described in the previous subsections must be naturally modi�ed when applied
to such spaces. For some of these construction, the modi�cation entails merely
the addition of a base point to the resulting space: for example, the quotient
space of pointed space (X,x0) has the natural base point proj(x0), the product of
the pointed spaces (X1, x1), . . . , (Xn, xn) has the natural base point (x1, . . . , xn),
and the space of continuous maps fromX into a pointed topological space (Y, y0)
contains the constant map const : X → Y , x 7→ y0, and hence has the natural
base point const. Other constructions such as the sum, suspension, and join
need more serious modi�cations.

We shall describe these modi�ed constructions below, and also introduce a
new one - the tensor product of pointed spaces. In every case, pointed spaces
produce pointed spaces, and base point-preserving maps again produce base
point-preserving maps. We remark that the maps fact f , C(f, g), and f1×· · ·×fn
preserve base points whenever the initial maps have this property.

We use the symbol bp as a general notation for the base points.

Bouquets and Tensor Products

De�nition 1.2.8.2. The construction below replaces the sum construction for
pointed spaces.

Let {Xµ}µ∈M be a family of topological spaces with base points. The quo-
tient space of the sum

∐
µ∈M Xµ by the subset consisting of all points ∈µ (xµ) is

called the bouquet (or the wedge) of the spaces, and is denoted by
∨
µ∈M (Xµ, xµ).

If M consists of the numbers 1, . . . , n, we also write (X1, x1)
∨
· · ·
∨
(Xn, xn).

The point proj ◦ inclν(xν) ∈
∨
(Xµ, xµ) does not depend on ν; it is called the

centre of the bouquet
∨
(Xµ, xµ), and is taken as its base point.

The bouquet
∨
(Xµ, xmu) is obviously a union of the spaces Xµ (see De�ni-

tion 1.2.4.2), and so there exist the embeddings Immν : Xν →
∨
(Xµ, xµ). The

maps projν :
∨
(Xµ, xµ)→ Xν , de�ned by

projν(Immν′ , (x) =

{
Xν′ , if ν′ ̸= ν,

x, if ν′ = ν,

are speci�c to the bouquet construction. Clearly, projν ◦ Imm = idXν and
projν ◦ Immν′ = const if ν′ ̸= ν.

If M also indexes another family of pointed spaces (Yµ, yν) and a fam-
ily of continuous maps fµ : Xµ → Yµ such that fµ(xµ) = yµ, then the map
fact(

∐
fµ) :

∨
(Xµ, xµ) →

∨
(Yµ, yµ) is well-de�ned and continuous; we denote

it by
∨
fµ.



1.2. CONSTRUCTIONS 47

De�nition 1.2.8.3. Let (X1, x1), . . . , (Xn, xn) be pointed spaces. The rules

x 7→ (x, x2, . . . , xn) [x ∈ X1], . . . , x 7→ (x1, . . . , xn−1, x) [x ∈ Xn],

de�ne canonical embeddings

X1 → X1 × · · · ×Xn, . . . , Xn → X1 × · · · ×XN ,

denoted by incl1, . . . , incln. Moreover, the rule x 7→ (proj1(x), . . . ,projn(x))
de�nes a canonical embedding

(X1, x1)
∨
· · ·
∨

(Xn, xn)→ X1 × · · · ×Xn,

which allows us to regard the bouquet (X1, x1)
∨
· · ·
∨
(Xn, xn) as a subspace

of X1 × · · · ×Xn. Clearly, incli : Xi → X1 × · · · ×Xn is the composition of the
embedding Immi : Xi → (X,x1)

∨
· · ·
∨
(Xn, xn) with the inclusion

(X,x1)
∨
· · ·
∨

(Xn, xn)→ X1 × · · · ×Xn

while the projection proji : (X,x1)
∨
· · ·
∨
(Xn, xn) → Xi is the restriction of

proji : X1 × · · · ×Xn → Xi.
The quotient space

(X,x1)⊗ · · · ⊗ (Xn, xn) := (X1 × · · · ×Xn)/[(X,x1)
∨
· · ·
∨

(Xn, xn)]

is called the tensor product of the spaces X1, . . . , Xn. The point

proj[(X1, x1)
∨
· · ·
∨

(Xn, xn)] ∈ (X,x1)⊗ · · · ⊗ (Xn, xn)

is called the centre of the tensor product (X,x1) ⊗ · · · ⊗ (Xn, xn) and is taken
as its base point.

The tensor product is a commutative and associative operation: there are
obvious canonical homeomorphisms

(X1, x1)⊗ (X2, x2)→ (X2, x2)⊗ (X1, x1)

(X1, x1)⊗ [(X2, x2)⊗ (X3, x3),bp]→ [(X1, x1)⊗ (X2, x2),bp]⊗ ((X3, x3);

this is also the way we understand the more general equality

[(X1, x1)⊗ · · · ⊗ (Xn−1, xn−1),bp]⊗ (Xn, xn) = (X1, x1)⊗ · · · ⊗ (Xn, xn).

If (Y1, y1), . . . , (Yn, yn) are other pointed spaces and

f1 : X1 → Y1, . . . , fn : Xn → Yn

are continuous, base point-preserving maps, then the map

fact(f1 × · · · × fn) : (X1, x1)⊗ · · · ⊗ (Xn, xn)→ (Y1, y1)⊗ · · · ⊗ (Yn, yn)

is well de�ned and continuous; we denote it by f1 ⊗ · · · ⊗ fn.
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Cones, Suspensions, and Joins

De�nition 1.2.8.4. The cone over the pointed space (X,x0) is de�ned as quo-
tient of the usual cone coneX by its generatrix proj(x0 × I), and is denoted by
cone(X,x0). The image of proj(x0 × I) under the projection

coneX → cone(X,x0)

is the vertex of cone(X,x0), and is taken as its base point. The image of the base
of coneX under the projection coneX → cone(X,x0) is the base of cone(X,x0);
this projection carries the �rst base onto the second one, and thus allows us to
identify the base of cone(X,x0) with X.

If (Y, y0) is another pointed space and f : X → Y is continuous, with

f(x0) = y0,

then the map fact cone f : cone(X,x0)→ cone(Y, y0) is well de�ned and contin-
uous, and we denote it simply by cone f .

Equivalently, one may describe cone(X,x0) as the quotient space of the
cylinder X × I by (X × 0) ∪ (x0 × I).

De�nition 1.2.8.5. The suspension of the pointed space (X,x0) is de�ned as
the quotient of the usual suspension susXby its generatrix proj(x0 × I), and
is denoted by sus(X,x0). The image of this generatrix under the projection
susX → sus(X,x0) is the vertex of sus(X,x0) and is taken as its base point.

If (Y, y0) is another pointed space and f : X → Y is continuous, with
f(X0) = y0, then the map fact sus f : sus(X,x0) → sus(Y, y0) is well de�ned
and continuous, and we denote it simply by sus f .

Equivalently, we may describe sus(X,x0) as the quotient space of the cylinder
X × I by (X × (0 ∪ 1)) ∪ (x0 × I), i.e., as

(X,x0)⊗ (I/(0 ∪ 1),bp) = (X,x0)⊗ (S1, ort1).

Another equivalent description: sus(X,x0) = cone(X,x0)/X.

De�nition 1.2.8.6. The join of the pointed spaces (X1, x1) and (X2, x2) is
de�ned as the quotient space of the usual join X1 ⋆ X2 by its generatrix

proj(x1 × x2 × I),

and is denoted by (X1, x1) ⋆ (X2, x2). The image of proj(x1×x2× I) under the
projection X1 ⋆X2 → (X1, x1)⋆ (X2, x2) is the centre of (X1, x1)⋆ (X2, x2), and
is taken as its base point.

If (Y1, y1) and (Y2, y2) are another pointed spaces, and f1 : X1 → Y1 and
f2 : X2 → Y2 are continuous maps such that f1(x1) = y1 and f2(x2) = y2, then
the map

fact(f1 ⋆ f2) : (X1, x1) ⋆ (X2, x2)→ (Y1, y1) ⋆ (Y2, y2))

is well-de�ned and continuous, and we denote it simply by f1 ⋆ f2.
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Theorem 1.2.8.7. For any two pointed spaces (X1, x1) and (X2, x2), the bou-
quet of suspensions is canonically homeomorphic to the suspension of bouquets:

(sus(X1, x1),bp)
∨

(sus(X2, x2),bp) ≈ sus((X1, x1)
∨

(X2, x2),bp).

Proof. The canonical homeomorphism

(sus(X1, x1),bp)
∨

(sus(X2, x2),bp)→ sus((X1, x1)
∨

(X2, x2),bp)

is given by

proj(Immi(x), t) 7→ Immi(proj(x, t)) [x ∈ Xi, i = 1, 2].

Theorem 1.2.8.8. cone(S, ort1), sus(S, ort1), and (Sm, ort1) ⋆ (Sn, ort1) are
canonically homeomorphic to Dm+1, Sm+1, and Sm+n+1, respectively.

Proof. The canonical homeomorphism sus(Sm, ort1)→ Dm+1 is de�ned as

proj((x1, . . . , xm+1), t) 7→ (tx1 + (1− t), tx2, . . . , txm+1).

Figure 1.1: Suspensions of spheres

The canonical homeomorphism sus(Sm, ort1) → Sm+1 transforms the gen-
eratrix passing through the point x ∈ Sm onto the circle on Sm+1 with centre
(ort1 +x)/2 (which degenerates to the point ort1 if x = ort1); as t varies from
0 to 1, the image of the point proj(x, t) moves uniformly on this circle, starting
from ort1, and continuing into the half space xm+1 ≤ 0 (see Fig. 1.1, left).
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Finally, the canonical homeomorphism (Sm, ort1) ⋆ (Sn, ort1) → Sm+n+1 is
de�ned on the bases Sm and Sn by the formulae

(x1, . . . , xm+1) 7→

(
3x1 + 1

4
,
x
√
3

2

2
, . . . ,

x
√
3

m+1

2
, 0, . . . , 0,

√
3(1− x1)

4

)

(x1, . . . , xn+1) 7→

(
3x1 + 1

4
, 0, . . . , 0,

x
√
3

2

2
, . . . ,

x
√
3

n+1

2
,

√
3(x1 − 1)

4

)

and maps the generatrix joining the points x ∈ Sm and x′ ∈ Sn onto the arc
of the great circle on Sm+n+1 which joins the images of x and ′, in such a way
that the lengths are linearly transformed (see Fig. 1.1, right).

De�nition 1.2.8.9. Since

cone(Sm, ort1) = (Sm, ort1)⊗ (I, 0) (see De�nition1.2.8.4), and

sus(Sm, ort1) = (Sm, ort1)⊗ (S1, ort1) (see De�nition1.2.8.5),

the homeomorphisms cone(Sm, ort1) → Dm+1 and sus(Sm, ort1) → Sm+1, de-
�ned in Proposition 1.2.8.8, lead for n ≥ 1 to the canonical homeomorphisms

Sn =

n︷ ︸︸ ︷
(S1, ort1)⊗ · · · ⊗ (S1, ort1),

Dn = (S1, ort1)⊗ · · · ⊗ (S1, ort1)︸ ︷︷ ︸
n−1

⊗(I, 0).

Now one can de�ne the maps

id⊗ · · · ⊗ id⊗proj : Dn = (S1, ort1)⊗ · · · ⊗ (S1, ort1)⊗ (I, 0)→
(S1, ort1)⊗ · · · ⊗ (S1, ort1)⊗ (I/(0 ∪ 1),bp) = Sn,
(proj⊗ · · · ⊗ proj⊗ idI) ◦ proj : In = I × · · · × I →
(I/(0 ∪ 1),bp)⊗ · · · ⊗ (I/(0 ∪ 1),bp)⊗ (I, 0) = Dn.

We denote these by DS and ID. It is clear that DS takes intDn homeomorphi-
cally onto Sn \ ort1, while ID takes homeomorphically int In onto intDn, and
int In−1 onto Sn−1 \ ort1, and carries Fr In \ int In−1 into ort1.

Since the map DS is closed (see Theorem 1.1.7.9), its injective factor

factDS : D/Sn−1 → Sn

is a homeomorphism. Consequently, for n ≥ 1, the quotient space Dn/Sn−1 is
canonically homeomorphic to Sn.

The Mappings (X,x0)⊗ (Y, y0)→ Z and X → C(Y, y0;Z, z0)

Theorem 1.2.8.10. Let (X,x0), (Y, y0) and (Z, z0) be pointed topological spaces.
If φ : (X,x0) ⊗ (Y, y0) → Z is continuous and preserves base points, then the
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formula [φ∪(x)](y) = φ(proj(x, y)) de�nes a continuous, base point-preserving
mapping (φ∪ : X → C(Y, y0;Z, z0).

Let ψ : X → C(Y, y0;Z, z0) be a continuous, base point-preserving map-
ping, and suppose that Y is Hausdor� and locally compact. Then the formula
ψ∩(proj(x, y)) = [ψ(x)](y) de�nes a continuous, base point-preserving mapping
ψ∩ : (X,x0)⊗ (Y, y0)→ Z.

Proof. Indeed,
φ∪ = abr[(φ ◦ proj : X × y → Z)∨],

while

ψ∩ ◦ (proj : X × Y → (X,x0)⊗ (Y, y0))

=[ψ ◦ (incl : C(Y, y0;Z, z0)→ C(Y, Z))]∧.

Theorem 1.2.8.11. Given arbitrary pointed topological spaces (X,x0), (Y, y0),
and (Z, z0), the mapping

C((X,x0)⊗ (Y, y0),bp;Z, z0)→ C(X,x0; C(Y, y0;Z, z0), const)

given by the formula φ 7→ φ∪ (see Theorem 1.2.8.10) is continuous. If X and
Y are Hausdor� and compact, then this mapping is a homeomorphism and its
inverse is given by the formula ψ 7→ ψ∩.

Proof. The preimage of C(X,A, x0; C(Y, y0;Z, z0), C(Y,B, y0;Z,C, z0), const) un-
der the mapping φ 7→ φ∪ is just C((X,x0) ⊗ (Y, y0),proj(A × B),bp;Z,C, z0),
which shows that φ 7→ φ∪ is continuous. Assume now that X and Y are Haus-
dor� and compact, and consider the mapping

C(proj,i dZ) : C((X,x0)⊗ (Y, y0), Z)→ C(X × Y,Z).

By Theorem 1.2.7.5, this mapping is an embedding. Consider the diagramme

C(X,A, x0; C(Y, y0;Z, z0), C(Y,B, y0;Z,C, z0), const) //

��

C((X,x0)⊗ (Y, y0), bp;Z, z0)

��
CX, C(Y,Z) // C(X × Y,Z)

where the horizontal arrows denote the mappings iψ 7→ ψ∩ and ψ 7→ ψ∧, and
the vertical arrows the composite mappings

C(X,x0; C(Y, y0;Z, z0), const)
incl−−→ C(X, C(Y, y0;Z, z0))
C(idX ,incl)−−−−−−−→ C(X, C(Y,Z))

and

C((X,x0)⊗ (Y, y0),bp;Z, z0)
incl−−→ C((X,x0)⊗ (Y, y0, Z))

C(proj,idZ)−−−−−−−→ C(X × Y,Z).
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Since this diagramme is commutative, the fact that C(proj, idZ) is an embedding
implies the continuity of ψ 7→ ψ∩. That the mappings φ 7→ φ∪ and ψ 7→ ψ∩ are
inverses of one another is plain.

1.2.9 Exercises

Exercise 1.2.9.1. Show that for each topological space X and each compact
topological space Y the map proj1 : X × Y → X is closed.

Exercise 1.2.9.2. Show that the subset of Sn de�ned by the inequality

x21 + · · ·+ x2k ≤ x2k+1 + · · ·+ x2n

in the standard coordinates of R, is homeomorphic to D× Sn−k.
Exercise 1.2.9.3. Let M , Xµ, and φµµ′ , be as in De�nition 1.2.4.2, and let X
denote the union of the spaces Xµ de�ned by the homeomorphisms φµµ′ . Show
that the maps Immµ : Xµ → X are topological embeddings whenever M has
only two elements, but when M has three elements this is not necessarily so.

Exercise 1.2.9.4. Show that for n ≥ 1 the spaces C(I, 0, 1; Sn, ort1, ort2) and
C(I, 0, 1;Sn, ort1, ort1) are homeomorphic.

Exercise 1.2.9.5. Let T be the set of all real sequences {xi}∞1 , with the topology
de�ned by the prebase consisting of all sets of the form {{xi}∞1 |a < xs < b}.
Further, let S be the quotient space of T \ 0 (where 0 = {xi = 0}∞1 ) by its
partition into rays, i.e, into the sets {{tx0i }|0 < t <∞} with {x0i ∈ T \ 0. Show
that T is metrisable, while S is regular, but has the peculiar property that every
continuous map S → R is constant.
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1.3 HOMOTOPIES

1.3.1 General De�nitions

De�nition 1.3.1.1. A continuous map f ′ : X → Y is homotopic to the con-
tinuous map f : X → Y if there is a continuous map F : X × I → Y such that
F (x, 0) = f(x) and F (x, 1) = f ′(x), for all x ∈ X. Every such map F is called
a homotopy from f to f ′ (or connecting f to f ′). One says also that F is a
homotopy of f . A map homotopic to a constant map is also said to be null
homotopic.

Often a homotopy F : X × I → Y is interpreted as a family of continuous
maps ft : X → Y , related to F via ft(x) = F (x, t) (0 ≤ t ≤ 1). According to
Theorem 1.2.7.6, the continuity of F implies that this family is continuous as
a map of the segment I into C(X,Y ). Moreover, if X is Hausdor�, then the
continuity of the family ft is equivalent to that of the map F .

Obviously, the constant homotopy F of a continuous map f : X → Y , given
by F (x, t) = f(x), connects f to f ; if the homotopy F connects f to f ′, then
the inverse homotopy, F ′, de�ned by F ′(x, t) = F (x, 1− t), connects f ′ to f ; if
the homotopy F connects f to f ′ and the homotopy F ′ connects f ′ to f ′′, then
their product F ′′, de�ned as

F ′′(x, t) =

{
F (x, 2t), for t ≤ 1/2,

F ′(x, 2t− 1), for t ≥ 1/2,

is a homotopy connecting f to f ′′. Thus homotopy is an equivalence relation,
which yields a partition of C(X,Y ) into equivalence classes, called homotopy
classes. We denote the set of these classes by π(X,Y ).

Example 1.3.1.2. An example is the rectilinear homotopy. Namely, let f and f ′

be continuous maps of a space X into a subspace Y of Rn. If for each x ∈ X
the segment joining f(x) to f ′(x) is entirely contained in Y , then

F (x, t) = (1− t)f(x) + tf ′(x)

de�nes a homotopy from f to f ′, referred to as rectilinear.
Obviously, any two maps of an arbitrary space into Rn or Dn are rectilinearly

homotopic.

Theorem 1.3.1.3. Let the maps f, f ′ : X → Y be homotopic. Then given any
continuous maps g : Y → Y ′ and h : X ′ → X, the maps g ◦ f ◦ h and g ◦ f ′ ◦ h
are homotopic.

Proof. In fact, let F : X × I → Y be a homotopy from f to f ′. Then

g ◦ F ◦ (h× idI)

is a homotopy from g ◦ f ◦ h to g ◦ f ′ ◦ h.
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Remark 1.3.1.4. As Theorem 1.3.1.3 shows, the mapping

C(h, g) : C(X,Y )→ C(X ′, Y ′)

induced by two continuous maps h : X ′ → X and g : Y → Y ′ transforms homo-
topy classes into homotopy classes. The resulting mapping

fact C(h, g) : π(X,Y )→ π(X ′, Y ′)

is denoted by π(h, g), and Theorem 1.3.1.3 implies that it depends only on the
homotopy classes of h and g.

Stationary Homotopies

De�nition 1.3.1.5. Let A be a subset of the space X. A homotopy

F : X × I → Y

is said to be stationary on A or, simply, to be an A-homotopy if F (x, t) = F (x, 0)
for all x ∈ A and t ∈ I. Two maps which can be connected by an A-homotopy
are A-homotopic. (Transcriber's note: In the Western(?) world, this notion is
called a homotopy relative to A.)

As with usual homotopy, A-homotopy de�nes an equivalence relation, divid-
ing the set of continuous maps X → Y which coincide on A with a given map
f : A → Y , into equivalence classes. The latter are called A-homotopy classes
or, in full, homotopy classes of continuous extensions of the map f to X. We
denote the set of these classes by π(X,A; f).

Notice that a rectilinear homotopy from f to f ′ (see Example 1.3.1.2) is
stationary on the set of points where f and g agree.

If one wants to specify that a certain homotopy is ordinary, i.e., not station-
ary, then one says that it is free.

Homotopy Equivalence of Spaces

De�nition 1.3.1.6. A continuous map g : Y → X is a homotopy inverse of the
continuous map f : X → Y if the composition g ◦f is homotopic to idX and the
composition f ◦ g is homotopic to idY .
(Transcriber's note: this means that there are continuous maps GF : X×I → Y
and FG : Y × I → Y such that

GF : X × I → X, GF (x, 0) = g ◦ f(x), GF (x, 1) = x

FG : Y × I → Y, FG(y, 0) = f ◦ g(y), FG(y, 1) = y

).
A continuous map which has a homotopy inverse is called a homotopy equiva-
lence. If there is a homotopy equivalence X → Y , then one says that the space
Y is homotopy equivalent to the space X.



1.3. HOMOTOPIES 55

The following are obviously homotopy equivalences: the identity map of
any space, a map which is a homotopy inverse of a homotopy equivalence, and
the composition of two homotopy equivalences. Thus, homotopy equivalence
among topological spaces is an equivalence relation. It divides the topological
spaces into classes called homotopy types (instead of saying that Y is homotopy
equivalent to X, one says also that X and Y have the same homotopy type).

Every homeomorphism is clearly a homotopy equivalence.

Theorem 1.3.1.7. If one of the continuous maps f : X → Y and g : Y → Z,
and their composition g ◦ f : X → Z are homotopy equivalences, then the other
map is also a homotopy equivalence.

Proof. Indeed, let h be a homotopy inverse of g ◦ f , and suppose that f is a
homotopy equivalence. Then f ◦ h is a homotopy inverse of g. Similarly, if g is
a homotopy equivalence, then h ◦ g is a homotopy inverse of f .

X
g◦f //

f

  

Z
h

oo

Y

g

??`` X
g◦f //

f

  

Z
h

oo

��
Y

g
??

Theorem 1.3.1.8. π(X,Y ) is a homotopy invariant. That is to say, if

g : Y → Y ′, f : X → X ′

are homotopy equivalences, then π(f, g) : π(X,Y )→ π(X ′, Y ′) is invertible.

Proof. Evidently, if f ′ (respectively, g′) is a homotopy inverse of f (respectively,
of g), then the map π(f ′, g′) is the inverse of π(f, g).

Contractible Spaces

De�nition 1.3.1.9. A space X is contractible if the map idX is homotopic to
a constant map.

R and Dn are examples of contractible spaces (see Example 1.3.1.2).

Theorem 1.3.1.10. A space is contractible if and only if it is homotopy equiv-
alent to a point.

Proof. If idX is homotopic to a constant map φ, then the map f : D0 → X
taking the value φ(X), and the map g : X → D0 are homotopy inverses of one
another: indeed, f ◦ g = φ and g ◦ f = idD0 .

If now f : D0 → X and g : X → D0 are homotopy inverses of one another,
then idX is homotopic to the constant map f ◦ g.
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Theorem 1.3.1.11. If X is contractible, then any two continuous maps of an
arbitrary topological space into X are homotopic. In particular, idX is homo-
topic to any constant map X → X.

Proof. This is a straightforward consequence of Theorems 1.3.1.10 and 1.3.1.8.

Deformation Retractions

De�nition 1.3.1.12. A retraction ρ of a topological space X onto one of its
subspaces A (see De�nition 1.1.4.13) is called a deformation (strong deforma-

tion) retraction if the composition X
ρ−→ A

incl−−→ X is homotopic (respectively,
A-homotopic) to idX . If the space X admits a deformation retraction (a strong
deformation retraction) onto A, then A is called a deformation retract (respec-
tively, a strong deformation retract) of X.

Obviously, if ρ : X → A is a deformation retraction, then ρ and the inclusion
A ↪→ X are homotopy equivalences, each being a homotopy inverse of the other.
It is clear also that any space which admits a deformation retraction onto one
of its points is contractible, and that every point of a contractible space is a
deformation retract of the ambient space.

Relative Homotopies

Remark 1.3.1.13. Let X (respectively Y ) be a space with a distinguished se-
quence of subsets A1, . . . , An (respectively, B1, . . . , Bn). A map

F : (X × I, A1 × I, . . . , An × I)→ (Y,B1, . . . , Bn)

is called a homotopy connecting the continuous maps

f, f ′ : (X,A1, . . . , An)→ (Y,B1, . . . , Bn)

if abrsF is a homotopy connecting the maps abrs f and abrs f ′. In this case,
it is evident that abr abrsF : Ai × I → Bi is a homotopy connecting the maps
abr abrs f , abr abrs f ′ : Ai → Bi. Moreover, it is readily seen that the homo-
topies

(X × I, A1 × I, . . . , An × I)→ (Y,B1, . . . , Bn)

yield an equivalence relation. This relation divides

C(X,A1, . . . , An;Y,B1, . . . , Bn)

into homotopy classes forming a set denoted by π(X,A1, . . . , An;Y,B1, . . . , Bn).
We may give an analogous de�nition of the map π(h, g) from Remark 1.3.1.4.

A continuous map g : (Y,B1, . . . , Bn) → (X,A1, . . . , An) is said to be a ho-
motopy inverse of the continuous map f : (X,A1, . . . , An) → (Y,B1, . . . , Bn) if
g◦f is homotopic to rel idX and f ◦g is homotopic to rel idY . A continuous map
possessing a homotopy inverse is called a homotopy equivalence. Two sequences
(X,A1, . . . , An) and (Y,B1, . . . , Bn) are said to be homotopy equivalent, or to
have the same homotopy type, if they are related by a homotopy equivalence.
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Theorems 1.3.1.7 and 1.3.1.8, as they stand, apply to the case of relative
homotopy.

Remark 1.3.1.14. The situation discussed in Remark 1.3.1.13 encompasses the
case when X and Y are pointed spaces (in this case A1 and B1 are points,
n = 1, and the homotopies de�ned in Remark 1.3.1.13 are just the homotopies
stationary at A1). Moreover, the de�nition of a contractible space given in
De�nition 1.3.1.9 extends to pointed spaces (however, the homotopy from idX
to a constant map must be stationary at the base point). The same is true for
Theorems 1.3.1.10 and 1.3.1.11, as well as for the de�nitions of a deformation
retraction and deformation retract, given in De�nition 1.3.1.12 (X and A must
have the same base point, and the homotopy from the composition

X
ρ−→ A

incl−−→ X

to idX must be stationary at this point). Also, the remarks in De�nition 1.3.1.12
remain valid, while the de�nition of strong deformation retraction is entirely
una�ected by the presence of a base point.

1.3.2 Paths

De�nition 1.3.2.1. A path in a topological space X is any continuous map of
the closed unit interval I into X. The points s(0) and s(1) are called the origin
and the end of the path s. Closed path (in which s(0) = s(1)) are also termed
loops.

Given a path s, the formula t 7→ s(1 − t) de�nes a new path, called the
inverse of s and denoted by s−1. Given two paths s1 and s2 with s1(1) = s2(0),
the formula

t 7→

{
s1(2t), for t ≤ 1/2,

s2(2t− 1), for t ≥ 1/2

de�nes a path, called the product of the paths s1 and s2, and denoted by s1s2.
Obviously, (s−1)−1 = and (s1s2)

−1 = s−1
2 s−1

1 .

Remark 1.3.2.2. Since I = D0× I if any path can be considered as a homotopy
of a map D0 → X. If one adopts such an interpretation, then the inverse path
becomes the inverse homotopy, while the product of paths becomes the product
of homotopies.

On the other hand, every homotopy between two continuous maps

f, f ′ : X → Y

de�nes a path in C(X,Y ), joining f and f ′ (see Proposition 1.2.7.6), and again
the inverse path corresponds to the inverse homotopy, and the product of paths
to the product of homotopies. If X is Hausdor� and locally compact, then a
homotopy connecting two maps f, f ′ : X → Y may be even de�ned as a path in
C(X,Y ) joining f and f ′.
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Remark 1.3.2.3. Since any path is a continuous map, it can be also subjected
to homotopies. Unfortunately, the generally accepted terminology for such ho-
motopies is not in complete agreement with our de�nitions in subsection 1.3.1.1
(which are also generally accepted). More precisely, when we consider paths,
the homotopies and the homotopy relation are understood always as (0 ∪ 1)-
homotopies (i.e., homotopies stationary at the extremities of the interval I) and
(0 ∪ 1)-homotopy relation, respectively. Moreover, a free homotopy of a loop is
understood always as a usual free homotopy whereby the path remains a loop
all the time (i.e., as a continuous map F : I × I → X such that F (0, t) = F (1, t)
for all t ∈ I).

1.3.3 Connectedness and k-Connectedness

Remark 1.3.3.1. The properties of topological spaces we study in this subsection
represent weaker versions of the contractibility in the absolute case, and of
deformation retractability in the relative case.

De�nition 1.3.3.2. A topological space is connected (see the Preface) if each
pair of its points can be joined by a path. (Note by the transcriber: this is
important in that we can avoid considering pathological cases like Topologist's
sine curve.) Equivalently, X is connected if the set π(D0, X) contains just an
element; see Remark 1.3.2.2.

Since π(D0, X) is a homotopy invariant, connectedness is a homotopically
invariant property. In particular, all contractible spaces are connected. For
example, Rn and Dn are connected for every n.

For n > 0, Sn is also connected: any two points of Sncan be joined by a
path, which in fact is contained in Sn \ p, where p is a third point (recall that
the punctured sphere Sn\p is homeomorphic to Rn. S0 is not connected: a path
joining −1 and 1 would be a continuous function on [0, 1], taking two distinct
values but no intermediate ones.

The only connected subsets of the real line R are the empty set, the �nite
or in�nite intervals, the �nite or in�nite semi-intervals, and the closed intervals.
Indeed, if α and β are the exact lower and upper bounds of a connected subset
A of R, then A contains the interval (α, β).

Remark 1.3.3.3. Given an arbitrary topological space X, the property of being
joined by a path de�nes a relation between its points, which obviously satis�es
all the requirements for an equivalence relation . This relation de�nes a partition
of X into subsets which are the maximal connected subsets of X, and are called
the components of X. Clearly, the set of components may be identi�ed with
π(D0, X). We denote it by compX.

Every continuous map f : X → Y induces the map

fact f = π(idD0, f) : compX → compY.

This map does not change when we replace f by an arbitrary homotopic map,
and fact f is invertible whenever f is a homotopy equivalence (see Remark 1.3.1.4
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and Theorem 1.3.1.8). It is also plain that if f(X) = Y , then

fact f(compX) = compY.

In particular, the image of a connected space under a continuous map is con-
nected.

Theorem 1.3.3.4. If X can be written as the union of two connected subsets
A1 and A2 with A1 ∩A2 ̸= ∅, then X is connected.

Proof. Indeed, a component of X which contains a point x0 ∈ A1 ∩A2 contains
also A1 and A2, i.e., contains X.

Theorem 1.3.3.5. Consider a partition of X into open sets. Then every con-
nected subset of X is contained in one of the elements of this partition. In
particular, every subset of a connected space which is both open and closed is
either empty or the whole space X.

Proof. Let A be a connected subset of X, and let U be an element of the
partition, such that U ∩ A ̸= ∅. Consider the map f : X → S0 which takes U
into 1 and X \ U into −1. Since f is continuous, f(A) is connected, whence
f(A) = 1 and A ⊂ U .

k-Connectedness

Theorem 1.3.3.6. The following properties of a continuous map f : Sr → X
with r ≥ 0 are equivalent:

(i) f is homotopic to a constant map;

(ii) f extends to a continuous map Dr+1 → X;

(iii) the compositions f ◦ DS+, f ◦ DS− : Dr → X are Sr−1-homotopic, where
DS+ and DS− are the embeddings of Dr in Sr, de�ned by

DS+(x1, . . . , xr) =
(
x1, . . . , xr,

√
1− x21 − · · · − x2r

)
and

DS−(x1, . . . , xr) =
(
x1, . . . , xr,−

√
1− x21 − · · · − x2r

)

(iv) f is ort1-homotopic to a constant map.

Proof. The proof follows the following scheme:

(i)

$,

��
(ii) ks +3 (iii)

(iv)

2:
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(i) → (ii). A homotopy F : Sr × I → X from f to a constant map takes the
upper base of the cylinder Sr × I into one point. Consequently, F may be
expressed as the composition of the map Sr × I → Dr+1, de�ned by

((x1, . . . , xr+1), t) 7→ (x1(1− t), . . . , xr+1(1− t)),

and a continuous map g : Dr+1 → X (see Remark 1.2.3.4 and Proposition
1.1.7.9), and it is clear that g|Sr = f .
(ii)→ (iii) and (ii)→ (iv). Suppose g : Dr+1 → X is a continuous extension of
f . Then the formulae

(x1, . . . , xr+1), t) 7→ g

(
x1, . . . , xr+1, (1− 2t)

√
1− x21 − · · · − x2r

)
and

(x1, . . . , xr+1), t) 7→ g(t+ (1− t)x1, (1− t)x2, . . . , (1− t)xr+1)

de�ne an Sr−1-homotopy Dr × I → X from f ◦ DS+ to f ◦ DS−, and an ort1-
homotopy Sr × I → X from f to a constant map.
(iii) → (ii). An Sr-homotopy f : Dr × I → X from f ◦ DS+ to f ◦ DS− takes
every generatrix of the cylinder Sr × I into one point. Consequently, F can be
expressed as the composition of the map Dr × I → Dr+1, de�ned by

((x1, . . . , xr), t) 7→
(
x1, . . . , xr, (2t− 1)

√
1− x21 − · · · − x2r

)
,

and some continuous map g : Dr+1 → X (see Remark 1.2.3.4 and Proposition
1.1.7.9), and it is clear that g|Sr = f .
(iv)→ (i). This implication is trivial.

De�nition 1.3.3.7. A non-empty space X is said to be k-connected (0 ≤ k ≤
∞), if any continuous map Sr → X with r ≤ k is homotopic to a constant map,
i.e., satis�es condition (i) of Proposition 1.3.3.6. Theorem 1.3.3.6 shows that
this de�nition has three more equivalent formulations, based on conditions (ii),
(iii) and (iv. Moreover, since for any continuous maps f1, f2 : Dr → X which
agree on Sr−1 there is a continuous map f : Sr → X such that f ◦ DS+ = f1
and f ◦DS− = f2, we conclude that a non-empty space X is k-connected if and
only if any continuous maps f1, f2 : Dr → X, r ≤ k, which agree on Sr−1 are
Sr−1-homotopic.

Obviously, for non-empty spaces 0-connectedness is nothing else but con-
nectedness. The 1-connected spaces are usually called simply connected. Note
that a 0-connected space is simply connected if and only if any two paths with
common extremities are homotopic.

The homotopy invariance of the sets π(Sr, X) implies that a space which is
homotopy equivalent to a k-connected space is itself k-connected. In particular,
every contractible space is ∞-connected.

The Relative Case

Theorem 1.3.3.8. The following properties of a continuous map

f : (Dr,Sr−1)→ (X,A), r > 0
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are equivalent:

(i) f is homotopic to a constant map;

(ii) abrs f is Sr−1-homotopic to a map which carries Dr into a subset of A;

Proof. (i) ⇒ (ii): If F : (Dr × I, Sr × I) → (X,A) is a homotopy from f to a
constant map, then the formula

(x, t) 7→

{
F (x/dist(0, x), 2(1− dist(0, x))), if dist(0, x) ≥ (2− t)/2,
F (2x/(2− t), t), if dist(0, x) ≤ (2− t)/2,

de�nes an Sr-homotopy D× I → X from abrs f to a map which carries Dr into
a subset of A.
(ii) ⇒ (i): If G : Dr × I → X is a homotopy stationary on Sr−1 from abrs f to
a map which carries Dr into a subset of A, consider the map F : Dr × I → X
given by

F ((x1, . . . , xr), t) =

{
G(x1, . . . , xr), 2t), if t ≤ 1/2,

G((2x1(1− t), . . . , 2xr(1− t), 1), if t ≥ 1/2.

Then relF : (Dr × I, Sr−1 × I) → (X,A) is a homotopy from f to a constant
map.

Remark 1.3.3.9. A pair (X,A) is k-connected (0 ≤ k ≤ ∞) if for any map
f : (Dr,Sr−1) → (X,A) with r ≤ k, abrs f is Sr−1-homotopic to a map whose
image is contained in A.

It is clear that the pair (X,A) is 0-connected if and only if each component
of the space X intersects A. If k > 0, then (X,A) is k-connected if and only
if every continuous map f : (Dr,Sr−1) → (X,A) with r ≤ k is homotopic to a
constant map; see Theorem 1.3.3.8.

A pair which is homotopy equivalent to a k-connected pair is k-connected.
As a consequence, we see that when A is a strong deformation retract of X, the
pair (X,A) is ∞-connected; indeed, (X,A) is homotopy equivalent to (X,X).
It will be clear later that the pair (X,A) is already ∞-connected if A is a
deformation retract of X, or even when the inclusion A → X is a homotopy
equivalence; see Remark 5.1.6.7.

1.3.4 Local Properties

De�nition 1.3.4.1. A topological space X is locally contractible at the point
x0 ∈ X if each neighbourhood U of x0 contains another neighbourhood V of x0
such that the inclusion V ↪→ U is homotopic to the constant map V → x0. A
topological space is locally contractible if it is locally contractible at any of its
points.

If we replace in these de�nitions the homotopies by x0-homotopies, the we
get the de�nitions of a space X which is strongly locally contractible at the point
x0, and of a strongly locally contractible space X.

Rn, Dn and Sn are examples of strongly locally contractible spaces.
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De�nition 1.3.4.2. A topological space X is locally connected at the point
x0 ∈ X if each neighbourhood U of x0q contains another neighbourhood V of
x0, such that any two points in V can be joined by a path in U . A topological
space is locally connected if it is locally connected at any of its points.

It is clear that a locally contractible space is locally connected. As an exam-
ple of a connected space which is not locally connected we may take the subset
of R2 consisting of the lines m1x1 +m2x2, with m1,m2 ∈ Z.

Theorem 1.3.4.3. A space is locally connected if and only if the components
of its open sets are open. In particular, in a locally connected space every neigh-
bourhood of an arbitrary point contains a connected neighbourhood of this point.

Proof. Suppose that X is locally connected, U is an open subset of X, A a
component of U , and x0 ∈ A an arbitrary point. Then, by de�nition, U contains
a neighbourhood V of x0 such that any two points in V can be joined by a path
in U . Hence V ⊂ A and x0 ∈ intA. This proves that in a locally connected
space the components of the open sets are open.

1.3.5 Borsuk Pairs

De�nition 1.3.5.1. A topological pair (X,A) is a Borsuk pair if given any
topological space Y E, any continuous map f : X → Y , and any homotopy
F : A × I → Y of the map f |A, there is a homotopy X × I → Y of f which
extends F .

A× 0
⊂ //

� _

��

f |A×0

""

X × 0� _

��

f

||
Y

A× I ⊂
//

F

<<

X × I

bb

(Transcriber's note: As stated in the Preface, this is called a �co�bration� in the
western literature.)

If (X,A,B) is a topological triple such that (X,A) and (A,B) are Borsuk
pairs, then (X,B) is obviously a Borsuk pair.

Theorem 1.3.5.2. Let (X,A) be a topological pair. Then in order for (X,A)
to be a Borsuk pair it is necessary that (X × 0) ∪ (A × I) be a retract of the
cylinder X × I. When A is closed, this condition is also su�cient.

Proof. THE NECESSITY. Any homotopy of the map

incl : X = X × 0→ (X × 0) ∪ (A× I)

which extends the homotopyincl : A× I → (X × 0) ∪ (A× I) is a retraction of
the cylinder X × I onto (X × 0) ∪ (A× I).
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THE SUFFICIENCY. Let ρ : X × I → (X × 0) ∪ (A × I) be a retraction.
Then given any topological space Y , any continuous map f : X → Y , and any
homotopy F : A× I → Y of the map f |A, the composition

X × I ρ−→ (X × 0) ∪ (A× I) G−→ Y,

where G is de�ned by

G(x, t) =

{
f(x), if t = 0,

F (x, t), if x ∈ A,

is a homotopy of f which extends F .

Remark 1.3.5.3. The following statement completes Theorem 1.3.5.22 in an
essential way. If X is Hausdor�, then the assumption that (X × 0) ∪ (A× I) is
a retract of the cylinder X × I implies automatically that A is closed.

Indeed, it su�ces to note that the above hypothesis implies that (X × 0) ∪
(A× I) is closed in X × I (see Proposition 1.1.5.5), and that A is the pre-image
of this set under the map X → X × I, x 7→ (x, 1).

Theorem 1.3.5.4. If the sets A and B form a closed cover of the space X and
(A,A ∩B) is a Borsuk pair, then (X,B) is also a Borsuk pair.

Proof. This is a consequence of Proposition 1.3.5.2; in fact, any retraction

ρ : A× I → [A× 0] ∪ [(A ∩B)× I]

de�nes a retraction X × I → (X × 0) ∪ (B × I) by

(x, t) 7→

{
ρ(x, t), if x ∈ A,
(x, t), if x ∈ B.

Theorem 1.3.5.5. If (X,A) is a Borsuk pair and A is closed, then

(Z ×X,Z ×A)

is a Borsuk pair for every topological space Z.

Proof. If ρ is a retraction of the cylinder X × I onto (X × 0) ∪ (A × I), then
idZ ×ρ is a retraction of the cylinder (Z ×X)× I = Z × (X × l) onto

[(Z ×X)× 0] ∪ [(Z ×A)× I] = Z × [(X × 0) ∪ (A× I)].
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Borsuk Pairs and Deformation Retractions

Theorem 1.3.5.6. If (X,A) is a Borsuk pair and the inclusion A ↪→ X is a
homotopy equivalence, then A is a deformation retract of X.

Proof. Let pi : X → A be a homotopy inverse of the inclusion A ↪→ X. Extend
the homotopy from π|A = π ◦ incl : A→ A to idA to a homotopy of the map π;
this yields a homotopy from π to a retraction of X onto A, which we denote by

ρ. Since the composition X π−→ A
incl−−→ X is homotopic to idX , the composition

X
ρ−→ A

incl−−→ X is also homotopic to idX , and thus ρ is a deformation retraction.

Theorem 1.3.5.7. If A is a deformation retract of X and

(X × I, (X × 0) ∪ (A× I) ∪ (X × 1))

is a Borsuk pair, then A is a strong deformation retract of X.

Proof. Let ρ : X → A be a deformation retraction, and let f : X × I → X be a

homotopy from idX to the composite map X
ρ−→ A

incl−−→ X. De�ne a homotopy

g : [(X × 0) ∪ (A× I) ∪ (X × 1)]× I → X

by

g((x, t1), t2) =


x, if t1 = 0,

f(x, (1− t2)t1), if x ∈ A,
f(ρ(x), 1− t2), if t1 = 1,

and extend it to some homotopy G : (X×I)×I → X of the map f : X×I → X.
It is clear that (x, t) 7→ G((x, t), 1) yields an A-homotopy X × I → X from idX
to incl ◦ρ.

Theorem 1.3.5.8. If (X,A) is a Borsuk pair and B is a strong deformation
retract of the space A, then the map rel : (X,B)→ (X,A) is a homotopy equiv-
alence.

Proof. Consider a B-homotopy from idA to the composition of a strong de-
formation retraction A → B and the inclusion B ↪→ A. Now extend it to a
homotopy G of idX . It is clear that the map (X,A) → (X,B), x 7→ G(x, 1), is
a homotopy inverse of rel.

Local Characteristics of Borsuk Pairs

Theorem 1.3.5.9. Suppose that (X,A) is a Borsuk pair with X normal, Y
is any topological space, and f : X → Y is any continuous map. Then given
any homotopy F of the map f |A and any neighbourhood U of A, there is an
(X \ U)-homotopy of f extending F .
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Proof. Let G be a homotopy of f extending F , and let φ be any Urysohn
function for the pair (X \ U,A). Then the formula (x, t) 7→ G(x, tφ(x)) de�nes
an (X \ U)-homotopy of f extending F .

Theorem 1.3.5.10. If (X,A) is a Borsuk pair, then there exists a neighbour-
hood U of A such that the inclusion U ↪→ X is A-homotopic to a map which
takes U into a subset of A. If X is normal and A is distinguishable (in partic-
ular, if X is metrisable and A is closed), then this condition is also su�cient,
i.e., the converse of the above statement is valid.

Proof. THE SUFFICIENCY : Let F : U × I → X be an A-homotopy such that
F (x, 0) = x and f(x, 1) ∈ A for all x ∈ U , and let φ : X → I be a Urysohn
function for the pair (A,X \U), which distinguishes A (see de�nition 1.1.5.11).
The formula

G(x, t) =

{
F (x,min(t/φ(x), 1)), if x ∈ U \A,
x, if x ∈ A,

de�nes a map G : U×I → X, and Theorem 1.2.2.14 shows that G is continuous.
This in turn implies the continuity of the map H : X × I → X × I de�ned by

H(x, t) =

{
(G(x,max(0, t− φ(x))),max(0, t− 2φ(x))) if x ∈ U,
(x, 0) if x ∈ X \ U.

It is readily seen that H(X × I) = (X × 0) ∪ (A× I) and that

abrH : X × I → (X × 0) ∪ (A× I)

is a retraction.

Theorem 1.3.5.11. Let (X,A) be a topological pair such that A is a strong
deformation retract of one of its neighbourhoods. If X is normal and A is
distinguishable (in particular, if X is metrisable and A is closed), then (X,A)
is a Borsuk pair.

Proof. This is a corollary of Theorem 1.3.5.10.

Theorem 1.3.5.12. If (X,A) is a Borsuk pair, then given any neighbourhood
V of A, there is another neighbourhood W of A, such that W ⊂ V and the
inclusion W ↪→ V is A-homotopic to a map which takes W into a subset of A.

Proof. By Theorem 1.3.5.10, there exists a neighbourhood U of A and an A-
homotopy F : U × I → X such that F (x, 0) = x and F (x, 1) ∈ A for all x ∈ U .
Now Lemma 1.2.2.13 shows that every point x ∈ U has a neighbourhood Wx

in U with F (Wx × I) ⊂ V . Set W = ∪x∈AWx. It is clear that W ⊂ V ,
F (W × I) ⊂ V , and that abrF : W × I → V is an A-homotopy from the
inclusion W → I to a map which takes W into A.

Theorem 1.3.5.13. If X is a topological space and x ∈ X is such that (X,x)
is a Borsuk pair, then X is strongly locally contractible at x. If X is normal and
locally contractible at a distinguishable point x, then (X,x) is a Borsuk pair.

Proof. This is a consequence of Theorems 1.3.5.12 and 1.3.5.10.
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1.3.6 CNRS-spaces

De�nition 1.3.6.1. A subset A of a topological space X is said to be a neigh-
bourhood retract of X if A is a retract of one of its neighbourhoods in X.

The retracts and the open sets are trivial examples of neighbourhood re-
tracts.

Theorem 1.3.6.2. If A is a neighbourhood retract of X and B is a neighbour-
hood retract of A, then B is a neighbourhood retract of X.

Proof. Indeed, let ρ : : U → A be a neighbourhood retraction for A inX, and let
σ : V → B be a neighbourhood retraction for B in A. Then σ ◦ (ρ|W ) : W → B,
where W = ρ−1(V ), is a neighbourhood retraction for B in X.

De�nition 1.3.6.3. A topological space is a CNRS-space or, simply, a CNRS, if
it is compact and can be embedded in a Euclidean space (of a certain dimension)
as a neighbourhood retract; CNRS is the abbreviation of compact neighbourhood
retract of a sphere.

Dn and Sn are obvious examples of CNRS's.

Theorem 1.3.6.4. A compact neighbourhood retract of a CNRS is a CNRS.

Proof. This is a result of Theorem 1.3.6.2.

Theorem 1.3.6.5. The image of any embedding of a CNRS in a normal space
is a neighbourhood retract.

Proof. Let f : X → Y be an embedding of the CNRS X in the normal space Y ,
and let g : X → Rn be an embedding of X such that g(X) is a neighbourhood
retract of Rn. Further, consider

f1 = [abr f : X → f(X)], g1 = [abr g : X → g(X)],

and let ρ : V → g(X) be a neighbourhood retraction. Since f(X) is closed (see
Proposition 1.1.7.9), g ◦ f−1

1 : f(X)→ Rn extends to a continuous map

h : Y → Rn

(see Theorem 1.1.5.17). It is clear that U = h−1(V ) is a neighbourhood of f(X),
and that f1 ◦ g−1

1 ◦ ρ ◦ [abrh : U → V ] is a retraction of U onto f(X).

Theorem 1.3.6.6. Given any compact neighbourhood retract X of Rn, there is
a number ε > 0 such that any two maps, f and g, of an arbitrary space Y into
X which satisfy

sup
y∈Y

dist(f(y), g(y)) < ε

are homotopic. Moreover, one may choose a homotopy stationary on the set
where f and g agree.



1.3. HOMOTOPIES 67

Proof. Let σ : U → X be a neighbourhood retraction. We show that one may
take ε to be the distance between X and Rn \U (which is positive by Theorem
1.1.7.15).

Let f, g : Y → X be continuous and satisfy supy∈Y dist(f(y), g(y)) < ε.
For any point y ∈ Y , the segment with the extremities f(y) and g(y) lies in

U . Consequently, the composite maps Y
f−→ X

incl−−→ U and Y
g−→ X

incl−−→ U
can be connected by a rectilinear homotopy F : Y × I → U , and it is plain that
σ◦F : Y ×I → X is a homotopy from f to g. Furthermore, σ◦F is is stationary
on the set where f and g agree.

Theorem 1.3.6.7. if A is a neighbourhood retract of a CNRS X, then (X,A)
is a Borsuk pair.

Proof. Let σ : U → A be a neighbourhood retraction. Consider X as a neigh-
bourhood retract of Rn and pick ε as in Theorem 1.3.6.6. Denote by V the neigh-
bourhood of A in X consisting of all the point x ∈ U for which dist(x, σ(x)) < ε,
and let φ be the composition

V
σ|V−−→ A

incl−−→ X.

Then dist(φ(x), x) < ε for x ∈ V , and φ(x) = x for x ∈ A. Hence the inclusion
V → X is A-homotopic to φ, and since φ(V ) = A, we can apply Theorem
1.3.5.10.

Theorem 1.3.6.8. Every CNRS is strongly locally contractible.

Proof. This is a consequence of De�nition 1.3.5.1, and Theorem 1.3.5.13.

Information

Information 1.3.6.9. The converse of Theorem 1.3.6.8 is also true: every locally
contractible compact subspace of a Euclidean space is a neighbourhood retract
of this space. For a proof, see [14].

1.3.7 Homotopy Properties of Topological Constructions

Remark 1.3.7.1. In this subsection we establish the homotopy invariance of some
of the constructions described in �1.2 and study the homotopy properties of the
resulting spaces.

Products

Remark 1.3.7.2. Obviously, two continuous maps f, g : Y → X1 × · · · × Xn

are homotopic if and only if proji ◦f, proji ◦g : Y → Xi are homotopic for all
i = 1, . . . , n (see Remark 1.2.2.4). In particular, X1 × · · · × xn is k-connected if
and only if all the Xi's are k-connected (0 ≤ k ≤ ∞).
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It is also clear that if the maps g1 : X1 → Y1, . . . , gn : Xn → Yn are homotopic
to the maps f1 : X1 → Y1, . . . , fn : Xn → Yn, then

g1 × · · · × gn : X1 × · · · ×Xn → Y1 × · · · × Yn and

f1 × · · · × fn : X1 × · · · ×Xn → Y1 × · · · × Yn

are homotopic; moreover, if f1, . . . , fn are homotopy equivalences, then so is
f1 × · · · × fn.
Remark 1.3.7.3. If A is a deformation retract (strong deformation retract) of X,
then A×UY is a deformation retract (respectively, a strong deformation retract)
of the product X × Y , for any space Y . In particular, if X is contractible, then
the �bres x× Y of the product X × Y are deformation retracts of X × Y .

Quotients

Remark 1.3.7.4. Since the projection X → X/ρ is continuous, the quotient
space of a connected space is connected (see Remark 1.3.3.3). Moreover, in
order that the quotient X/A of X by its subspace A be connected, it is even
enough that the pair (X,A) be 0-connected; if the components of X are open,
then the connectedness of X/A implies the 0-connectedness of (X,A).

We shall see later that neither the k-connectedness with k > 0, nor the
contractibility are, generally speaking, preserved when one takes quotients.

Theorem 1.3.7.5. Let ℘ and q be partitions of the spaces X and Y . If the
maps ft : X → Y form a homotopy and take the elements of ℘ into elements of
q, then the maps fact ft : X/℘→ Y/q also form a homotopy.

Proof. We have to verify that the map

G : (X/℘)× I → Y/q , (x, t) 7→ (fact ft)(x),

is continuous. To do this, it su�ces to note (see Remark 1.2.3.4) that the
composition

X × I proj× idI−−−−−−→ (X/℘)× I G−→ Y/q

is continuous, and that the map proj× idI is factorial. The �rst is a consequence
of the commutativity of the diagram

X × I
proj× idI //

F

��

(X/℘)× I

G

��
Y

proj
// Y/q

where F is F (x, t) = ft(x), while the second follows from Theorem 1.2.7.8.

Theorem 1.3.7.6. If f, f ′ : (X,A) → (Y,B) are homotopic, then the maps
rel fact f, rel fact f ′ : (X/A,proj(A))→ (Y/B, proj(B)) are also homotopic. If f
is a homotopy equivalence, then so is rel fact f .
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Proof. The �rst assertion is a corollary of Theorem 1.3.7.5, while the second
is a consequence of the �rst: if g : (Y,B) → (X,A) is a homotopy inverse of
f , then rel fact g : (Y/B, proj(B)) → (X/A,proj(A)) is a homotopy inverse of
rel fact f .

Theorem 1.3.7.7. If (X,A) is a Borsuk pair and A is contractible, then
rel proj : (X,A)→ (X/A,proj(A)) is a homotopy equivalence.

Proof. Let F : A× I → A be a homotopy from idA to a constant map, and let
G : X × I → X be a homotopy of idX extending F . Denote by g : X → X the
map x 7→ G(x, 1) which is homotopic to idX . Since g is constant on A, the
map fact g : X/A → X is meaningful; moreover, since fact g(proj(A)) ⊂ A, the
map rel fact g : (X/A; proj(A)) → (X,A) is also meaningful. Let us check that
rel fact g is a homotopy inverse of rel proj. Consider the homotopies

relG : (X × I, A× I)→ (X,A) and

rel factG : ((X/A)× I, proj(A)× I)→ (X/A,proj(A)).

The �rst connects the maps

rel idX , rel g : (X,A)→ (X,A)

while the second connects the maps

rel id(X/A), rel fact g : (X/A,proj(A))→ (X/A,proj(A)).

It is clear that

[rel g : (X,A)→ (X,A)] =

[rel fact g : (X/A,proj(A))→ (X,A)] ◦ [rel proj : (X,A)→ (X/A,proj(A))]

and

[rel fact g : (X/A,proj(A))→ (X/A,proj(A))] =

[rel proj : (X,A)→ (X/A,proj(A))] ◦ [rel fact g : (X/A,proj(A))→ (X,A)].

Attachings

Theorem 1.3.7.8. If (X1, C) is a Borsuk pair and φ,φ′ : C → X2 are ho-
motopic, then the spaces X2 ∪φ X1 and X2 ∪φ′ X1 are homotopy equivalent.
Moreover, there is a homotopy equivalence f : X2 ∪φX1 → X2 ∪φ′ X1 such that
the following diagram is commutative:

X2

Imm2

zz

Imm2

$$
X2 ∪φ X1

f
// X2 ∪φ′ X1

(1.3.7.9)
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Proof. Let φ : C × i→ X2 be a homotopy from φ to φ′, and let

σ : X1 × I → (x1 × 0) ∪ (C × I)

be a retraction. De�ne the maps

h : (X1 × 0) ∪ (C × I)→ X2 ∪φ X1, h′ : (X1 × 0) ∪ (CxI)→ X2 ∪φ′ X1

by

h(x, t) =

{
Imm1(x), if t = 0,

Imm2 ◦φ(x, t), if x ∈ C,

and

h′(x, t) =

{
Imm1(x), if t = 0,

Imm2 ◦ψ(x, 1− t), if x ∈ C,

Now de�ne two more maps,

f : X2 ∪φ X → X2 ∪φ′ X1, g : X2 ∪φ′ X1 → X2 ∪φ′ X1

via

f ◦ Imm1(x) = h′ ◦ σ(x, 1), f ◦ Imm2(x) = Imm2(x), and

g ◦ Imm1(x) = h ◦ σ(x, 1), g ◦ Imm2(x) = Imm2(x).

It is clear that all these maps are continuous and that the diagram (1.3.7.9) is
commutative. Moreover, it is readily seen that the map X2 ∪φX1 → X2 ∪φ′ X1

given by

(Imm1(x), t) 7→ h ◦ σ ◦ ψ(σ(x, t), t), (Imm2(x), t) 7→ Imm2(x),

where ψ : (X1× I)× I → X× I, ψ((x, u), t) = (x,max(0, t−u)) , is a homotopy
from id(X2∪φX1) to g◦f . Thus, g◦f is homotopic to id(X2∪φX1) and, similarly,
f ◦ g is homotopic to id(X2∪φ′X1) .

Lemma 1.3.7.10. If the maps f : Y → Y ′ and f ′ : Y ′ → Y are homotopy
inverses of one another, then given any homotopy F ′ : Y × I → Y from idY to
f ′ ◦ f , there is a homotopy F ′ : Y ′ × I → Y ′ from f ◦ f ′, such that the maps
f ◦ F, F ′ ◦ (f × idI) : Y × I → Y ′ are [(Y × 0) ∪ (Y × 1)]-homotopic.

Proof. Let G : Y ′ × I → Y ′ be an arbitrary homotopy from idY ′ to f ◦ f ′, and
let F ′ be the product of the following three homotopies: G, f ◦ F ◦ (f ′ × idI),
and the inverse of the homotopy G ◦ (f × idI) ◦ (f ′ × idI) . Divide the square
I2 into eight pieces, as shown in Fig. 1.2, left:
the points A1, A2, A3, A4 have the abscissae 0, 1/2, 3/4, 1, and ordinate 0,
the points B1, . . . , B6 the abscissae 0, 1/8, 1/4, 1/2, 3/4, 1, and ordinate 1/2, and
the points C1, C2 the abscissae 0, 1, and ordinate 1.
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Now de�ne a�ne maps α1 : I
2 → P1 and α2 : I

2 → P2 with the following
properties:

α1(0, 0) = B3, α1(1, 0 = B4, α1(0, 1) = A2,

α2(0, 0) = B5, α2(1, 0) = B4, α2(0, 1) = A4.

Further, for y ∈ Y de�ne a map φy : I2 → Y ′ through the conditions:

φy(α1(t1, t2)) = f(F (F (y, t2), t1) and

φy(α2(t1, t2)) = G(f ◦ F (y, t2), t1);

if 0 ≤ t ≤ 1/2, then φy(t, 0) = G(f(y), 2t); the restriction
φy|Q1

is constant on all segments parallel to the line A2B2;
φy|Q2

is constant on all segments passing through the point D1;
φy|Q3 is constant on the vertical segments;
φy|Q4 is constant on all segments parallel to the line C1B5;
φy|Q5

is constant on all segments passing through the point D2; and, at last,
φy|Q6

is constant on the vertical segments
those segments on which φy is constant are depicted in Fig. 1.2, right.

It is clear that the formula ((y, t1), t2) 7→ φy(t1, t2) de�nes a [(Y ×0)∪(Y ×1)]-
homotopy (Y × I)× I → Y ′ from f ◦ F to F ′ ◦ (f × idI).

Figure 1.2: Left and right.

Theorem 1.3.7.11. Let (X,C) be a Borsuk pair with C closed. Let φ : C → Y
be a continuous map. If f : Y → Y ′ is a homotopy equivalence, then

fact(idX ⨿f) : Y ∪φ X → Y ′ ∪f◦φ X

is also a homotopy equivalence.
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Proof. Let us �x:

(i) homotopy inverse of f , f ′ : Y ′ → Y ;

(ii) a homotopy F : Y × I → Y from idY to f ′ ◦ f ;

(iii) a homotopy F ′ : Y ′ × I → Y ′ from idY ′ → f ◦ f ′,
together with an [(Y × 0) ∪ (Y × 1)]-homotopy G : (Y × I)× I → Y ′

from f ◦ F to F ′ ◦ (f × idI) (see Lemma 1.3.7.10) ;

(iv) a retraction ρ : X × I → (X × 0) ∪ (C × I).

Further, de�ne

g : (X × 0) ∪ (C × I)→ U ∪φ X and

g′ : [(X × 0) ∪ (C × I)]× I → Y ′ ∪f◦φ X

by

g(x, t) =

{
Imm1(x), if t = 0,

Imm2 ◦F (φ(x), t), if x ∈ C,

and

g′((x, t1), t2) =

{
Imm1(x), if t1 = 0,

Imm2 ◦G((φ(x), t1), t2), if x ∈ C.

Together, these maps yield a map h : Y ′ supf◦φX → Y ∪φ X which satis�es

h(Imm1(x)) = g ◦ ρ(x, 1), h(Imm2(y
′)) = Imm2(f

′(y′)).

Now it is clear that the formulae

H(Imm1(x), t) = g ◦ ρ(x, t), H(Imm2(y
′), t) = Imm2(F (y, t)).

de�ne a homotopy H : (Y ∪φX)×I → Y ∪φX from id(Y ∪φX) to h◦fact(idX ⨿f).
Also, we see that the formulae

H ′
1(Imm1(x), t) = g′(ρ(x, t), 1), H ′

1(Imm2(y
′), t) = Imm2(F

′(y′, t)), and

H ′
2(Imm1(x), t) = g′(ρ(x, t), 1), H ′

2(Imm2(y
′), t) = Imm2(F

′(f ◦ f ′(y)),

de�ne two homotopies H ′
1, H

′
2 : (Y

′ ∪f◦φX)× I → Y ′ ∪f◦φX, whose product is
a homotopy from idY ′∪f◦φX) to fact(idX ⨿ f) ◦ h. Therefore, h is a homotopy
inverse of fact(idX ⨿f).

More Special Constructions

Theorem 1.3.7.12. coneX is contractible for any X. susX is connected for
any X. X1 ⋆ X2 is connected for any X1 and X2.
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Proof. The contractibility of the cone is obvious. The connectedness of the
suspension is a consequence of the fact that it is a quotient space of the cone.
To prove that the join X1 ⋆X2 is connected, we may check that any two points
proj(x1, x2, t),proj(x

′
1, x

′
2, t

′) ∈ X1 ⋆ X2, [(x1, x2, t), (x′1, x
′
2, t

′) ∈ X1 × X2 × I]
can be joined by the path

τ 7→


proj(x1, x2, 3τ(1− t) + t), if τ ≤ 1/3,

proj(x′1, x2, 2− 3τ), if 1/3 ≤ τ ≤ 2/3,

proj(x′1, x
′
2, t

′(3τ − 2)), if τ ≥ 2/3.

Remark 1.3.7.13. Given two homotopic maps f, g : X → Y , a straightforward
application of Proposition 1.3.7.5 shows that the maps

sus f, sus g : susX → susY

are also homotopic. As usual, we may deduce that sus f is a homotopy equiva-
lence whenever f is one.

Moreover, the same Proposition 1.3.7.5 shows that given homotopic maps
f1, g1 : X1 → Y1 and homotopic maps f2, g2 : X2 → Y2 the maps

f1 ⋆ f2, g1 ⋆ g2 : X1 ⋆ X2 → Y1 ⋆ Y2

are also homotopic. Similarly, we conclude that f1 ⋆ f2 a homotopy equivalence
whenever f1 and f2 are homotopy equivalences.

Remark 1.3.7.14. Given a continuous map f : X1 → X2, rt f : Cyl f → X2 (see
De�nition 1.2.6.10) is obviously a strong deformation retraction of the mapping
cylinder Cyl f onto X2. Hence X2 is a strong deformation retract of Cyl f .

The inclusion X1 → Cyl f is a homotopy equivalence if and only if f is a
homotopy equivalence. In fact, the composition

X1
incl−−→ Cyl f

rt f−−→ X2

coincides with f , and rt f is a homotopy equivalence.

The Case of Pointed Spaces

Remark 1.3.7.15. The results obtained in Remarks 1.3.7.2, 1.3.7.3, Theorems
1.3.7.6, 1.3.7.7, 1.3.7.11, 1.3.7.12, and Remark 1.3.7.13 have obvious analogues
for pointed spaces. Let us add that those theorems which are the analogues of
Remark 1.3.7.13 are valid for both bouquets and tensor products:

if fµ, gµ : (Xµ, xµ)→ (Yµ, yµ) are homotopic for each µ, then∨
fµ,
∨
gµ : (

∨
(Xµ, xν),bp)→ (

∨
(Yµ, yν),bp)

are homotopic, and if all the fµ's are homotopy equivalences, then so is
∨
fµ.
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Similarly, if
f1, g1 : (X1, x1)→ (Y1, y1)

and
f2, g2 : (X2, x2)→ (Y2, y2)

are homotopic, then

f1 ⊗ f2, g1 ⊗ g2 : ((X1, x1)⊗ (X2, x2),bp)→ ((Y1, y1)⊗ (Y2, y2),bp)

are homotopic; if f1 and f2 are homotopy equivalences, then so is f1 ⊗ f2.

1.3.8 Exercises

Exercise 1.3.8.1. Show that the sphere S∞ is contractible.

Exercise 1.3.8.2. Show that if (X,A) is a Borsuk pair and X is contractible,
then the quotient X/A is homotopy equivalent to susA.

Exercise 1.3.8.3. Suppose that the product of two topological spaces is home-
omorphic to the suspension of some other topological space. Prove that either
both factors of the product are contractible, or one of them reduces to a point.

Exercise 1.3.8.4. Let f1 : X1 → X2 be a homotopy equivalence. Show that X1

is a strong deformation retract of Cyl f .

Exercise 1.3.8.5. Show that if X is metrisable and x ∈ X is such that (X,x) is a
Borsuk pair, then the projection susX → sus(X,x) is a homotopy equivalence.

Exercise 1.3.8.6. Given an arbitrary connected topological space X and two
arbitrary points x, y ∈ X, show that the subset of C(I, 0;X,x) consisting of all
paths passing through the point y is contractible.



Chapter 2

CELLULAR SPACES

2.1 CELLULAR SPACES AND THEIR TOPO-
LOGICAL PROPERTIES

2.1.1 Fundamental Concepts

De�nition 2.1.1.1. A decomposition ℘ of a topological space X is called cel-
lular if there is a function d taking the set of elements of ℘ into the non-
negative integers, such that for every element e of ℘ there exists a continuous
map Dd(e) → X with the following two properties:

(i) it maps intDd(e) homeomorphically onto e;

(ii) it maps Sd(e)−1 onto a union of elements of ℘ on which d takes values
smaller than d(e).

The elements of a cellular decomposition and their closures are called cells and
closed cells, respectively. The number d(e) is the dimension of the cell e and
is usually denoted by dim e; the n-dimensional cells are also termed n-cells.
Any continuous map Dd(e) → X with the properties (i) and (ii) is said to be
characteristic for e; we use the symbol chare as a standard notation for such a
map.

Obviously, chare(Ddim e) ⊂ Cl e, and if X is Hausdor�, then

chare(Ddim e) = Cl e.

In particular, every closed cell in a cellular decomposition of a Hausdor� space
is compact. Moreover, in the case of a Hausdor� space, given any cell e, Cl e \ e
is covered by cells of dimension lower than dim e.

De�nition 2.1.1.2. A cellular decomposition is said to be rigged (or equipped)
if for each of its cells there is �xed a characteristic map. The resulting family

75
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{chare : Ddim e → X} is called a rigging (or an equipment) of the decomposition,
and the map

char :
∐

e∈X/℘

Ddim e → X

de�ned by the relations char ◦ incle = chare is called the total characteristic
map.

De�nition 2.1.1.3. According to the general de�nitions of Chapter 1 (see
Remark 1.2.4.3), the cover of the space X by the closed cells of a cellular de-
composition ℘ de�nes a new topology on X. A subset of X is closed in this
topology if and only if its intersections with the closed cells of the decomposition
℘ are closed in the initial topology of X. The new topology on X is called the
weak or cellular topology, and the process by which we pass from the initial to
the cellular topology of X is called a cellular weakening of the initial topology.
The weakening of a topology can only enlarge the supply of open and closed
sets; in particular, a Hausdor� space remains Hausdor�. In any case, it does
not a�ect the topology of the closed cells, and so the decomposition ℘ remains
cellular and retains its characteristic maps.

IfX is Hausdor� and the decomposition ℘ is endowed with a rigging {chare},
then the cellular topology can be described e�ectively in terms of the correspond-
ing total characteristic map: a subset A of X is open (closed) if and only if its
pre-image char−1(A) is open (respectively, closed). In other words, the cellular
topology is exactly that topology on X which transforms the injective factor of
the map char into a homeomorphism. Recall that the injective factor of char is
a map of the quotient space of the sum

∐
e∈X/℘ Ddim e by its partition zer(char)

onto X. The equivalence of these two de�nitions of the cellular topology results
from the fact that the maps char are closed (see Proposition 1.1.7.9).

De�nition 2.1.1.4. A cellular space is a Hausdor� topological space endowed
with a cellular decomposition which satis�es the following two conditions:

(C) every closed cell intersects only a �nite number of cells;

(W) the closed cells constitute a fundamental cover of the space.

Obviously, condition (W) implies that the cellular topology coincides with the
initial one. The notations (C) and (W) are generally accepted, and originate
from the terms closure �niteness and weak topology.

Property (C) is clearly preserved under the cellular weakening of the topol-
ogy. Therefore, a Hausdor� topological space having a cellular decomposition
satisfying (C) becomes a cellular space via cellular weakening.

Usually the terminology speci�c to cellular decompositions is applied to cel-
lular spaces too. In particular, a cellular space may be �nite, countable, and
rigged. Thus, a �nite cellular space is one that has a �nite number of cells, but
not necessarily a �nite number of points.

The dimension of a cellular space is the supremum of the dimensions of its
cells; the dimension of the empty space (which is not excluded from the family
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of cellular spaces) is taken equal to −1. The dimension - �nite or in�nite - of
the cellular space X is denoted by dimX.

We let cellrX denote the set of all r-cells of X.

Example 2.1.1.5. The simplest cellular spaces are the discrete spaces decom-
posed into 0-cells (isolated points). It is clear that all O-dimensional cellular
spaces are of this type:
Caveat a decomposition of a non-discrete Hausdor� space into 0-cells does not
satisfy condition (W).

The decomposition of the ball Dn (n > 1) into the n-cell intDn and the
0-cells which cover FrDn = Sn−1 is an example of cellular decomposition which
satis�es condition (W), but not condition (C).

The Locally Finite Case

Remark 2.1.1.6. In agreement with the general de�nitions given in De�nition
1.1.1.12, a cellular decomposition is locally �nite if every point of the given
space has a neighbourhood which intersects only a �nite number of cells. An
equivalent condition: every point has a neighbourhood which intersects only a
�nite number of closed cells.

Clearly, in a space possessing a locally �nite cellular decomposition, every
compact subset has a neighbourhood which intersects only a �nite number of
cells. As a consequence, every locally �nite cellular decomposition of a Hausdor�
space satis�es condition (C). Theorem 1.1.3.6 shows that condition (W) is
satis�ed by any locally �nite cellular decomposition. We conclude that every
Hausdor� space endowed with a �nite or locally �nite cellular decomposition is
a cellular space.

Theorem 2.1.1.7. A cellular space is locally �nite if and only if every cell
intersects only a �nite number of closed cells.

Proof. In a locally �nite cellular space the closure of an arbitrarily given cell
has a neighbourhood which intersects only a �nite number of cells (see Remark
2.1.1.6). It is clear that this neighbourhood, and hence the given cell, do not
intersect the closure of other cells.

Conversely, if every cell of a cellular space intersects only a �nite number of
closed cells, then the axioms (C) and (W) imply that the union of any collection
of closed cells is closed. Consequently, the complement of the union of all closed
cells which do not intersect an arbitrarily given cell e is a neighbourhood of e.
Since this complement cannot intersect the closed cells which do not intersect
e, it intersects only a �nite number of closed cells.

Subspaces

Lemma 2.1.1.8. Let A be a subset of the cellular space X with the following
property: if x ∈ A, then A contains the closure of the cell in which x lies. Then
any part of A whose intersections with all the closed cells contained in A are
closed is itself closed.
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Proof. Indeed, if B ⊂ A is such a part, and e is an arbitrary cell, then one can
write the intersection B∩Cl e as ∪si=1[(B∩Cl ei)∩Cl e], where e1, . . . , es are all
the cells of A which intersect Cl e, and this shows that B ∩ Cl e is closed.

De�nition 2.1.1.9. A subset of a cellular space which contains together with
each point the closure of its cell is called a subspace of the given cellular space.
Every subspace is a cellular space, with the cellular decomposition induced
by the cellular decomposition of the ambient space. By Lemma 2.1.1.8, this
decomposition satis�es condition (W), and it obviously satis�es condition (W).

As another consequence of Lemma 2.1.1.8, we see that every subspace of a
cellular space is closed. Notice also that the union and the intersection of any
collection of subspaces are again subspaces, and that every cover of a cellular
space by subspaces is fundamental.

A pair consisting of a cellular space and one of its subspaces is called a
cellular pair. Cellular triples and cellular triads are de�ned similarly.

Warning: a closed cell is not necessarily a subspace. For an example, consider
the bouquet (D1, 0)∨(S2, ort1), with the decomposition into four cells: the 0-cells
Imm1(−1) and Imm1(1), the 1-cell Imm1(intD1), and the 2-cell Imm2(S2\ort1).
This is obviously a cellular space; however, the closure of the 2-cell touches the
1-cell, but does not contain it.

Remark 2.1.1.10. The most important subspaces of a cellular space X are its
skeleta

skel0X, skel1X, . . . , skelrX, . . . ,

de�ned as skelrX = ∪dim e≤re. If X ̸= ∅, then all the skeleta are non-empty
(since the presence of cells of a certain positive dimension implies the presence
of cells of lower dimension). For formal reasons, we add the empty skeleton
skel−1X and the skeleton skel∞X = X. The sequence {skelrX}0≤r<∞ is
clearly a �ltration of X.

We remark that any map Ddim e → X which is characteristic for the cell
e takes Sdim e−1 into skeldim e−1X (in fact, we saw this already in De�nition
2.1.1.1). If X carries a rigging {chare}, then the map

abr chare : Sdim e−1 → skeldim e−1X

is called an attaching map for e, and is denoted by atte.

Theorem 2.1.1.11. Every cell of a cellular space is included in a �nite sub-
space.

Proof. Use induction on the dimension of the cell. A 0-cell is itself a subspace.
If e is a cell of positive dimension, then Cl e \ e may be covered by a �nite
number of lower dimensional cells, and the union of e with a collection of �nite
subspaces which contain these cells is a �nite subspace containing e.
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Compact Subsets

Theorem 2.1.1.12. A compact subset of a cellular space intersects only a �nite
number of cells.

Proof. Every subset A of a cellular space contains a part B which intersects at
only one point each cell intersecting A. Since B intersects any closed cell at
a �nite number of points, B and all its subsets are closed. Therefore, B must
be discrete. When A is compact, B as a discrete, closed, and compact set is
�nite.

Theorem 2.1.1.13. Every compact subset of a cellular space is contained in a
�nite subspace.

Proof. For each cell intersected by the given subset, pick a �nite subspace con-
taining this cell. The union of these subspaces is the desired �nite subspace.

Theorem 2.1.1.14. Every compact subset of a locally �nite cellular space is
contained in the interior of a �nite subspace.

Proof. Indeed, such a subset has a neighbourhood which intersects only a �nite
number of cells (cf. Remark 2.1.1.6). For each such cell, pick a �nite subspace
which contains it; the union of these subspace is again a �nite subspace and
contains the above neighbourhood.

Cellular Maps

Remark 2.1.1.15. A map of a cellular space X into a cellular space Y is said
to be cellular if it is continuous and maps the skeleton skelrX into skelr Y , for
each r.

A cellular map obviously transforms 0-cells into 0-cells. However, a cell of
positive dimension is not necessarily transformed into a single cell: for example,
consider the identity map of the segment D1, decomposed into the 0-cells −1,
1 and the 1-cell (−1, 1), onto the same segment, but decomposed now into the
0-cells −1, 0, 1 and the 1 -cells (−1, 0), (0, 1); this cellular map takes the 1-cell
(−1, 1) into the union of a 0-cell and two 1 -cells.

De�nition 2.1.1.16. A cellular map is a cellular equivalence if it is invertible
and its inverse is also cellular. An equivalent formulation: a cellular equivalence
is a homeomorphism which transforms the cellular decomposition of the domain
space exactly into the cellular decomposition of the image space. If there is a
cellular equivalence between two cellular spaces, then they are said to be cellular
equivalent. Two rigged cellular spaces related by a cellular equivalence which
transforms one rigging into the other are said to be rigged-equivalent.

If X and Y are cellular spaces, a map f : X → Y is a cellular embedding if
f(X) is a subspace of Y (de�ned as in De�nition 2.1.1.9) and abr f : X → f(X)
is a cellular equivalence.

Warning : there are cellular homeomorphisms which are not cellular equiva-
lences. An example is the homeomorphism described in Remark 2.1.1.15.
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2.1.2 Glueing Cellular Spaces From Balls

Theorem 2.1.2.1. If r ≥ 0, then the skeleton skelrX of the rigged cellular
space X is canonically homeomorphic to the space

(skelr−1X) ∪φ (
∐
e∈Mr

De = Dr)),

where Mr = cellrX and the map φ :
∐
e∈Mr

(Se = Sr−1)→ skelr−1X is de�ned
by φ ◦ incle = atte(e ∈Mr).

Proof. This canonical homeomorphism between the above spaces is the injective
factor of the map

(skelr−1X)⨿ (
∐
e∈Mr

De)→ skelrX

de�ned by the inclusion
skelr−1X → skelrX

and the maps
abr chare : De → skelrX.

Remark 2.1.2.2. The description in De�nition 2.1.1.3 of the weak topology
in terms of the total characteristic map shows that one can glue any cellular
space from balls, and even do it in a nice way. Theorem 2.1.2.1 above reduces
this glueing to a sequence of attaching processes: the r-th process transforms
skelr−1X into skelrX (r = 0, 1, . . . ), and X is de�ned, starting from the se-
quence {skelrX}, as X = lim skelrX (see Remark 2.1.1.10).

The following formal procedure transforms this description of cellular spaces
into a useful inductive method of constructing such spaces. First of all, note
that if we are given a topological space A with a rigged cellular decomposition
into cells of dimensions < q, and to A we attach a sum

∐
µ∈M (Dµ = Dq) of

q-dimensional balls by some continuous map φcolon
∐
µ∈M (Sµ = Sq−1) → A,

then we obtain a space endowed with an obvious rigged cellular decomposition
into cells of dimensions < q + 1. This space satis�es condition (W) whenever
A satis�es it, and Proposition 1.2.4.9 shows that it is normal if A is normal.
Moreover, it follows from Theorem 2.1.1.12 that this space satis�es condition
(C) provided A is cellular. Finally, we conclude that if A is a normal rigged
cellular space,then A ∪φ (

∐
µ∈M Dµ) is a normal rigged cellular space too.

These observations form the basis of our inductive construction. We start
with q = 0, i.e., take A = ∅, and at the r-th step we attach the space∐
µ∈Mr

(Dµ = Dr) to the previously constructed normal rigged cellular space
Xr−1, dimXr−1 ≤ r − 1, by a continuous map

φr :
∐
µ∈Mr

(Sµ = Sr−1)→ Xr−1.
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The r-th step yields a normal rigged cellular space Xr = Xr−1 ∪φ (
∐
µ∈Mr

Dµ),
with dimXr ≤ r. The result of the whole process is a sequence∅ = X−1, X0, X1, . . . ,
with natural cellular embeddings Xr → Xr+1, and limit space X = limXr.
According to Theorem 1.2.4.6, X is normal and is endowed with an obvious
cellular decomposition satisfying properties (C) and (W). Therefore, X is a
normal rigged cellular space, and clearly skelrX = Xr.

We say that X is an inductively glued cellular space. The discussion above
demonstrates that every rigged cellular space is rigged-equivalent to an induc-
tively glued cellular space.

Corollary 2.1.2.3. Every cellular space is normal.

2.1.3 The Canonical Cellular Decompositions of Spheres,

Balls, and Projective Space

Remark 2.1.3.1. The spheres, balls, and projective spaces admit canonical cel-
lular decompositions making them into cellular spaces. These are all rigged
cellular decompositions and will be described in the present subsection. It will
be evident in each case that properties (C) and (W) are satis�ed.

Remark 2.1.3.2. The canonical cellular decomposition of the sphere Sn with 0 ≤
n <∞, consists of the 0-cell ort1 and the n-cell Sn \ ort1. As the characteristic
map of the cell Sn \ ort1 we take DS : Dn → Sn.
Remark 2.1.3.3. The canonical cellular decomposition of the ball Dn with 1 ≤
n < ∞, is given by the 0-cell ort1, the (n − l)-cell Sn−1 \ ort1, and the n-cell
intDn. For the characteristic maps of the cells Sn−1 \ ort1 and intDn we take
the composite map

Dn−1 DS−→ Sn−1 incl−−→ Dn

and idDn , respectively.

Remark 2.1.3.4. The canonical cellular decomposition of the real projective
space RPn (0 ≤ n ≤ ∞) consists of the r-cells er = RP r \ RP r−1, where
0 ≤ r ≤ n for n <∞, and 0 ≤ r <∞ for n =∞. The composition

Dr proj−−→ RP r incl−−→ RPn

(where proj is the projection arising from the characterisation of RP r as a
quotient space of Dr, given in De�nition 1.2.5.2) is taken as the characteristic
map of the cell er.

It is clear that atter is simply proj : Sr−1 → RP r−1, and that skelr RPn =
RP r, r ≤ n.
Remark 2.1.3.5. The canonical cellular decomposition of the complex projective
space CPn (0 ≤ n ≤ ∞) consists of the 2r-cells er = CP r \ CP r−1, where
0 ≤ r ≤ n for n <∞, and 0 ≤ r <∞ for n =∞. The composition

D2r proj−−→ CP r incl−−→ CPn
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is taken as the characteristic map of the cell e2r. Obviously, skelr CPn =
CP [r/2], for r ≤ 2n.

The canonical rigged cellular decompositions of the projective spaces HPn
(0 ≤ n ≤ ∞) and (CaPn (0 ≤ n ≤ 2) are de�ned similarly. The decomposition
of HPn is given by the 4r-cells er = HP r \HP r−1 where 0 ≤ r ≤ n for n <∞,
and 0 ≤ r < ∞ for n = ∞. For CaPn the cells are er = CaP r \ CaP r−1 with
0 ≤ r ≤ n and dim er = 8r.

2.1.4 More Topological Properties of Cellular Spaces

Remark 2.1.4.1. Our task in this subsection is to examine what connections
exist between properties of cellular spaces such as compactness, local compact-
ness, separability, second countability, and metrisability, and properties of their
cellular decompositions such as �niteness, countability, and local �niteness. In-
cidentally, we prove that cellular spaces are CNRS's. Moreover, conditions for
the connectedness of a cellular space, as well as its partition into components
are studied.

Compactness and Local Compactness

Theorem 2.1.4.2. A cellular space is compact if and only if it is �nite.

Proof. The necessity of this condition is a result of Theorem 2.1.1.12. Since
every �nite cellular space can be covered by a �nite number of closed cells, the
condition is also su�cient.

Theorem 2.1.4.3. A cellular space is locally compact if and only if it is locally
�nite.

Proof. By Theorem 2.1.1.12, every neighbourhood with compact closure of an
arbitrarily given point intersects only a �nite number of cells, and hence the
condition is necessary. It is also su�cient, because the closure of a neighbour-
hood which intersects only a �nite number of cells is contained in the union of
the closures of these cells.

Embedding Theorems

Theorem 2.1.4.4. Every cellular space can be embedded in a Euclidean space
of su�ciently high dimension.

Proof. We shall proceed by induction. Given a �nite cellular space X of di-
mension n ≥ 0, and an embedding j : skeln−1X → Rq, we shall construct an
embedding J : X → R2q+n+1 (since a cellular space of dimension −1 is empty,
the �rst step of the induction is trivial). Pick a rigging of X and arrange the
n-cells of X in a sequence e1, . . . , en.
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Now let ρ =
√
y21 + · · ·+ y2n and de�ne the maps φ1, . . . , φs : D → Rq+n+1

by

φk(y1, . . . , yk) =


(0, . . . , 0, y1, . . . , yn−1, yn + 2k, 1), if ρ ≤ 1/2,

(2ρ− 1)j ◦ charek
(
y1
ρ , . . . ,

yn
ρ

)
+

(2− 2ρ)
(
0, . . . , 0, y12ρ , . . . ,

yn−1

2ρ , yn2ρ + 2k, 1
)
, if ρ ≥ 1/2

and then set

J(x) =

{
j(x), if x ∈ skeln−1X,

φk(y), if x ∈ Cl ek and x = charek(y).

This yields a continuous map J : X → Rq+n+1 and since the plane y1 =
0, . . . , yq = 0, yq+n+1 = 1 contains no parallel to Rq, J is injective. Hence,
J is an embedding (see Theorem 1.1.7.10).

Theorem 2.1.4.5. Every �nite cellular space is a CNRS.

Proof. The proof is a continuation of the previous one and also requires an
induction on n. Namely, we show that Rq ∪ J(X) is a neighbourhood retract
of Rq+n+1. This is enough: if we assume that j(skeln−1X) is a neighbourhood
retract of Rq, then J(X) is obviously a neighbourhood retract of Rq ∪ J(X).

Set

Ak = φk(intDn) and Bk = Ak ∩ {(x1, . . . , xq+n+1) : Xq+n+1 ̸= 1}.

Since the setsA1, . . . , As are pairwise disjoint and closed in Rq+n+1\∪sk=1φk(Sn−1),
they have pairwise disjoint neighbourhoods U1, . . . , Us in Rq+n+1\∪sk=1φk(Sn−1),
and clearly U1, . . . , Us are open in Rq+n+1. Moreover, since A1, . . . , As are all
homeomorphic to Rn, the identity maps A1 → A1, . . . , As → As extend to
continuous maps ψ1 : U1 → A1, . . . , ψs : Us → As (see Theorem 1.1.5.17).

Now let

Vk = {x ∈ Uk|dist(x, ψk(x)) < Dist(x,Rq)},
V = {x ∈ Rq+n+1|Dist(x,Rq) < 1/2},

and denote by ψ the orthogonal projection V → Rq. It is clear that W =
V ∪ V1 ∪ · · · ∪ Vs is a neighbourhood of Rq ∪ J(X) in Rq+n+1 and that the sets{

{[(∪sk=1 ClVk) ∩ FrV ] ∪ (∪sk=1Ak)} ∩W,
{[(∪sk=1 FrVk) ∩ ClV ∩W ] \ ∪sk=1φk(Sn−1)},

(2.1.4.6)

are disjoint and closed in Y \ ∪sk=1φk(Sn−1), where

Y = (∪sk=1 ClVk) ∩ ClV ∩W.

Let f : Y \ ∪sk=1φk(Sn−1) → I be a Urysohn function for the pair (2.1.4.6) .
Now given y ∈ ClBk, and z ∈ Rq, let uyz be the path in Rq ∪ J(X) de�ned
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as the product of the rectilinear path between y and φk(φk−1)/ dist(0, φ−1
k (y)))

with he rectilinear path between φk(φk−1)/ dist(0, φ−1
k (y))) and z. De�ne

σ : (Usk=1 ClBk)× Rq × I → Rq ∪ J(X)

by σ(y, z, t) = uyz(t) . According to Theorem 1.2.2.14, the map τ : Y → Rq ∪
J(X),

τ(x) =

{
σ(ψk(x), ψ(x), f(x)), if x ∈ (ClVk ∩ ClV ∩W ) \ φk(Sn−1),

x, if x ∈ ∪sk=1φk(Sn−1),

is continuous. By Theorem 1.1.4.3, the map W → Rq ∪ J(X) de�ned by the
formula

x 7→


ψk(x), if x ∈ ClVk ∩ (W \ V ),

ψ(x), if x ∈W \ ∪sk=1Vk,

τ(x), if x ∈ Y,

is also continuous, and it is clearly a retraction.

Connectedness. Components

Theorem 2.1.4.7. The components of a cellular space are open subspaces.

Proof. Every closed cell is connected, as the image of a ball under a character-
istic map. Therefore, a component of a cellular space contains along with each
point the closure of the cell in which the point lies, i.e., it is a subspace. The
complement of a component is the union of the remaining components and so
it is a subspace too. Consequently, this complement is closed, and hence the
component is open.

Theorem 2.1.4.8. If r ≥ 1, then the r-th skeleton skelr A of a component A of
the cellular space X is a component of skelrX. In particular, a cellular space
X is connected if and only if skel1X is connected.

Proof. Obviously, skelr A = A∩ skelrX for all r, and if B is another component
of X, then skelr A and skelr B sit in di�erent components of skelrX. Therefore,
all we have to show is that the skeletons skelr A with r ≥ 1 are connected or,
equivalently, that given a connected cellular space X, all its skeletons skelrX
(r ≥ 1) are connected. But this is plain if one notes that the construction of an
inductively glued cellular space described in Remark 2.1.2.2 cannot result in a
connected space if one of the spaces Xr with r ≥ 1 is not connected.

Theorem 2.1.4.9. Every connected locally �nite cellular space is countable.

Proof. Given a connected, locally �nite cellular space X, �x an arbitrary point
x0 ∈ X and consider the set Am of all points of X that can be joined to x0
by a path intersecting at most m cells. Since any path intersects only a �nite
number of cells (see Theorem 2.1.1.12), X = ∪∞m=1Am, and it is clear that each
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Am consists of whole cells. Therefore, all we have to verify is that each set Am
with m ≥ 1 contains only a �nite number of cells, and we do it by induction on
m.

It is readily seen that the closure of any cell contained in Am+1 intersects
the closure of some cell from Am. On the other hand, since X is locally �nite,
the closure of any cell from Am (being a compact subset of X) can intersect
only a �nite number of closed cells. Thus the number of cells in Am+1 is �nite
provided that the number of cells in Am is so, and to complete the proof note
that A1 is just one cell.

Countability Axioms and Metrisability

Theorem 2.1.4.10. A cellular space is separable if and only if it is countable.

Proof. If the cellular space X is countable, pick a countable dense set in each
cell and then take the union of all these sets to produce a countable dense set
in X.

Now suppose that X is separable. Then every point of X lies in a �nite
subspace (see Theorem 2.1.1.11). Pick such a subspace for each point of a �xed
countable dense set in X. The union of these subspaces is a countable subspace
and actually coincides with X.

Lemma 2.1.4.11. If the cellular space X has a countable base at a point x0 ∈
X, then this base contains a neighbourhood of x0 which intersects only a �nite
number of cells of X .

Proof. Suppose that this is not true. Write the elements of the given base in
a sequence and U1, U2 . . . and (using a trivial induction), select a sequence of
points x1, x2, . . . in X \ x0, such that:

(i) xi ∈ Ui;

(ii) if i ̸= j, then xi and xj sit in distinct cells.

Since any closed cell contains only a �nite number of the xi's, the set of all
xi∗'s is closed, and its complement is a neighbourhood of x0. We reached a
contradiction, because this complement contains none of the neighbourhoods
U1, U2 . . . .

Theorem 2.1.4.12. A cellular space is �rst countable if and only if it is locally
�nite.

Proof. The necessity of this condition is a corollary of Lemma 2.1.4.11. To prove
its su�ciency, use Proposition 2.1.1.14 to deduce that every point x0 of a locally
�nite cellular space has a neighbourhood U contained in a �nite subspace. By
Theorem 2.1.4.4, such a subspace, and hence U , are �rst countable spaces, and
it is obvious that a countable base of U at x0 is also a countable base of the
given space at x0.
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Theorem 2.1.4.13. A cellular space is second countable if and only if it is
countable and locally �nite.

Proof. The necessity of this condition is a corollary of 2.1.4.10 and 2.1.4.12. To
prove its su�ciency, for each closed cell we �x a neighbourhood contained in a
�nite subspace (see Theorem 2.1.1.14). As a result of Theorem 2.1.4.4, these
neighbourhoods are second countable, and it is clear that the union of their
countable bases is a countable base of the given space.

Theorem 2.1.4.14. A cellular space is metrisable if and only if it is locally
�nite.

Proof. The necessity of this condition is a corollary of Theorem 2.1.4.12. The
metrisability of a connected locally �nite cellular space follows from Propositions
2.1.4.9, 2.1.4.13, 2.1.2.3, and 1.1.6.9. Since every locally �nite cellular space is
homeomorphic to the sum of its components, and these are metrisable, the space
is metrisable too (see Theorem 2.1.4.7 and Remark 1.2.1.1).

2.1.5 Cellular Constructions

Remark 2.1.5.1. When applied to cellular spaces, the constructions described
in �2.1.2 need to be appropriately modi�ed. For certain constructions the mod-
i�cation consists merely of observing that the resulting space is endowed with a
cellular decomposition and becomes cellular; an obvious example is the sum. For
other examples, such as the product, the modi�cation also a�ects the topology
of the resulting space.

Below we describe the main modi�cations of both types. We emphasise that
all these constructions, when applied to rigged cellular spaces, produce again
rigged cellular spaces.

Cellular Product

Remark 2.1.5.2. Let X1 and X2 be topological spaces with cellular decomposi-
tions ℘1 and ℘2. Then the productX1×X2 has a natural cellular decomposition,
namely ℘1×℘2 with dim(e1×e2) = dim e1+dim e2. As a characteristic map for
the cell e1 × e2 one may take the composition of the canonical homeomorphism

Ddim e1+dim d2 → Ddim e1 × Ddim d2

with the product

chare1 × chare2 : Ddim e1 × Ddim d2 → X1 ×X2

of arbitrary characteristic maps

chare1 : Ddim e1 → X1 and chare2 : Ddim d2 → X2.

When the decompositions ℘1 and ℘2 are rigged, ℘1 × ℘2 takes on a canonical
rigging.
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If ℘1 and ℘2 ful�l property (C), then (Cz) holds for ℘1 × ℘2 too. However,
there are situations where ℘1 × ℘2 does not have property (W), even when
X1 and X2 are cellular spaces; see Exercise 2.1.6.6. The cellular space arising
from the product X1 × X2 of the cellular spaces X1 and X2 through cellular
weakening of its topology is called the cellular product of X1 and X2, and is
denoted by X1 ×C X2.

We note that the cellular weakening does not alter the topology of the com-
pact parts of the space X1 ×X2. Indeed, every compact subset of X1 ×X2 has
compact images under the projections X1 ×X2 → X1 and X1 ×X2 → X2, and
hence it can be covered by a �nite number of cells.

Theorem 2.1.5.3. If X1 is locally �nite, then X1 ×C X2 = X1 ×X2 for any
cellular space X2.

Proof. Let char1 and char2 be the total characteristic maps corresponding to
some riggings of the cellular decompositions ℘1 and ℘2 of X1 and X2. It is clear
that the total characteristic map corresponding to ℘1 × ℘2 can be expressed as
the composition∐

Ddim(e1×e2) →
∐

(Ddim e1 × Ddim e2) =

(
∐

Ddim e1)× (
∐

Ddim e2)
char1 × char2−−−−−−−−→ X1 ×X2

(2.1.5.4)

where the �rst map is the sum of the canonical homeomorphisms Ddim(e1×e2) →
Ddim e1 × Ddim e2 . Since ℘1 and ℘2 satisfy condition (W), the maps char1 and
char2 are factorial (see De�nition 2.1.1.3). Furthermore, since

∐
Ddim e2 and X1

are locally compact (see Theorem 2.1.4.3), the map char1× char2 is factorial too
(see Theorem 1.2.7.9), which in turn implies that the composite map (2.1.5.4)
is factorial. Therefore, the decomposition ℘1 × ℘2 has property (W).

Information 2.1.5.5. If every point of each of the cellular spaces X1 and X2

has a neighbourhood which intersects only a countable family of cells, then
X1 ×C X2 = X1 ×X2; see [6] for a proof.

Attaching

Remark 2.1.5.6. Consider two cellular spaces X1 and X2, a subspace C of X1,
and a cellular map φ : C → X2. According to Remark 1.2.4.8, X2 ∪φ X1 is a
well-de�ned topological space, while Corollary 2.1.2.3 and Proposition 1.2.4.9
imply that X2∪φX1 is normal. Now decompose X2∪φX1 into the sets Imm1 e1
and Imm2 e2, where e1 and e2 run over the cells in X1 \C and X2 respectively,
and put dim(Imm1 e1) = dim e1 and dim(Imm2 e2) = dim e2. This is a cellular
decomposition: as a characteristic map for Immi ei one may take the composi-
tion of an arbitrary characteristic map charei with Immi. Clearly, the only cells
that the closure of the cell Imm1 e1 intersects are either Imm1 ε1, where ε1 is
a cell in X1 intersecting Cl e1, or Imm2 ε2 where ε2 is a cell in X2 intersecting
φ(Cl e1∩C). Moreover, we see thatCl Imm2 e2 intersects only the cells Imm2 ε2,
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where ε2 is a cell in X2 intersecting Cl e2. Consequently, our decomposition has
property (C).

To see that it has property (W) too, let F be a subset of having closed
intersections with all the cells in X2 ∪φ X1. The equality

Imm−1
2 (F ) ∩ Cl e2 = Imm−1

2 (F ∩ Cl(Imm2 e2))

shows that Imm−1
2 (F ) is closed, and now the equality

Imm−1
1 (F ) ∩ Cl e1 =

{
φ−1(Imm−1

2 (F ) ∩ φ(Cl e1), if e1 ⊂ C,
Imm−1

1 (F ∩ Cl(Imm1 e1)), if e1 ⊂ X1 \ C,

proves that Imm−1
1 (F ) is closed too. We conclude that the space X2 ∪φ X1 is

cellular. It is immediate that Imm2(X2) is a subspace of X2 ∪φ X1, that Imm2

is a cellular embedding, and that the map Imm1 is cellular.
If X2 = D0, then φ : C → X2 is a cellular map for any cellular pair (X1, C),

and X2 ∪φX1 = X1/C. Thus, the previous de�nition implies that the quotient
space of a cellular space by a subspace is cellular.

Limits

Remark 2.1.5.7. Suppose that X0, X1, . . . , are cellular spaces and φ0 : X0 →
X1, φ1 : X1 → X2, . . . , are cellular embeddings. By Remark 1.2.4.4, the limit
lim(Xk, φk) is a well-de�ned topological space, which is also normal (see Corol-
lary 2.1.2.32.3 and Theorem 1.2.4.6). Now consider the decomposition of lim(Xk, φk)
into the sets Immk ek, where ek is a cell in Xk \ φk−1(Xk−1), k = 0, 1, . . . , and
put dim(Immk ek) = dim ek. If we take the composition of an arbitrary char-
acteristic map charek with Immk as a characteristic map for the cell Immk ek,
we see that this decomposition is cellular. Since it obviously satis�es conditions
(C) and (W), lim(Xk, φk) becomes a cellular space, and Immk become cellular
embeddings.

Notice that this de�nition of the limit includes as a special case the inductive
process of glueing a cellular space from balls that we discussed in subsection
2.1.2.

More Special Constructions

Remark 2.1.5.8. Since decomposing the segment I into the cells 0, 1, and int I
makes I into a �nite cellular space, the cylinder X×I is cellular for any cellular
space X; see Remark 2.1.5.2 and Theorem 2.1.5.3. The bases of X × I are
cellular subspaces (in the sense of De�nition 2.1.1.9); hence when we pass to
the quotient space coneX of X × I, and then to the quotient space susX of
coneX, we �nd ourselves in the situation covered by the construction in Remark
2.1.5.6. Therefore, the cone and the suspension over a cellular space are also
cellular spaces.

If f : X1toX2 is a cellular map, then the attaching processes which transform
X1×I into Cyl f , and coneX1 into Cone f fall again into the category described
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in Remark 2.1.5.6 Therefore, the mapping cylinder and the mapping cone of a
cellular map are cellular spaces.

De�nition 2.1.5.9. The cellular join X1 ⋆C X2 of two cellular spaces X1 and
X2 is de�ned as

X1 ⋆C X2 = (X1

∐
X2) ∪φ [(X1 ×C X2)× I],

where
φ : [(X1 ×C X2)× 0] ∪ [(X1 ×C X2)× 1]→ X1

∐
X2

is given by

φ(x1, x2, 0) = incl1(x1), φ(x1, x2, 1) = incl2(x2);

cf. Remark 1.2.6.3. Since φ is cellular, the space X1 ⋆C X2 is cellular.
According to Theorem 2.1.5.3, when X1 is locally �nite, X1⋆CX2 is topolog-

ically the same as X1 ⋆ X2. In general, the cellular decomposition of X1 ⋆C X2

is cellular for X1 ⋆X2 too, and so cellular weakening of the topology of X1 ⋆X2

yields X1 ⋆C X2. However, this process does not a�ect the topology of the
compact sets of X1 ⋆ X2; cf. Remark 2.1.5.2.

The Case of Pointed Spaces

Remark 2.1.5.10. Suppose that X is a cellular space and x0 is a 0-cell that
we take as a base point. The cone cone(X,x0) and the suspension sus(X,x0)
are quotients of coneX and susX by subspaces, and as such they are cellular
spaces. Similarly, the bouquet of a family of cellular spaces with 0-cells as base
points is the quotient of the sum of this family by a subspace, and hence is a
cellular space.

Finally, we de�ne the cellular tensor product and the cellular join of the
cellular spaces X1 and X2 with the 0-cells x1 and x2 taken as base points, as
the quotient spaces

X1 ×C X2/[(X1 × x2) ∪ (x1 ×X2)] and (X1 ⋆C X2)/(X1 ⋆ X2)

respectively. These are cellular spaces, denoted by

(X1, x1)⊗C (X2, x2) and (X1, x1) ⋆C (X2, x2).

If X1 is locally �nite, then they are identical with

(X1, x1)⊗ (X2, x2) and (X1, x1) ⋆ (X2, x2).

as topological spaces. In the general case, the cellular decompositions of

(X1, x1)⊗C (X2, x2) and (X1, x1) ⋆C (X2, x2).

are cellular for

(X1, x1)⊗ (X2, x2) and (X1, x1) ⋆ (X2, x2)
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too. Thus
(X1, x1)⊗C (X2, x2) and (X1, x1) ⋆C (X2, x2).

arise from the cellular weakening of the topologies of

(X1, x1)⊗ (X2, x2) and (X1, x1) ⋆ (X2, x2)

respectively, and it is clear that this process does not a�ect the topology of the
compact subsets of

(X1, x1)⊗ (X2, x2) and (X1, x1) ⋆ (X2, x2).

2.1.6 Exercise

Exercise 2.1.6.1. Show that given an arbitrary cellular space X and an arbitrary
point x ∈ X, there exists a cellular space Y together with a cellular homeomor-
phism f : X → Y such that f(x) ∈ skel0 Y .

Exercise 2.1.6.2. Show that the sphere S∞ and the ball D∞ are homeomorphic
to cellular spaces.

Exercise 2.1.6.3. Show that every connected, locally �nite cellular space can be
topologically embedded in R∞.

Exercise 2.1.6.4. Show that every connected, �nite dimensional, locally �nite
cellular space can be embedded in Rq, for su�ciently large q.

Exercise 2.1.6.5. Show that every �nite cellular space admits a cellular embed-
ding in a cellular space homeomorphic to Dq, for su�ciently large q.

INFORMATION. Every �nite cellular space of dimension n can be embedded
in a cellular space homeomorphic to D2n+1.

Exercise 2.1.6.6. Consider the bouquet B = Vt∈R(It = I, 0) as a cellular space
(see Remark 2.1.5.10) and show that the map id : B ×C B → B × B is not a
homeomorphism.
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2.2 SIMPLICIAL SPACES

2.2.1 Euclidean Simplices

Remark 2.2.1.1. Let A be a subset of Rn consisting of r + 1 points (r ≥ 0)
which are not contained in any (r − 1)-dimensional plane. The convex hull of
A (i.e., the smallest convex set containing A) is called the Euclidean simplex
spanned by A, and is denoted by EsiA. The points of A are the vertices of
the simplex EsiA, and the number r is its dimension. EsiA is also called a
Euclidean r-simplex.

Obviously, a point of EsiA is a vertex if and only if EsiA contains no non-
degenerate segment whose midpoint falls on the given point. Therefore, the set
A is uniquely determined by EsiA.

Every simplex spanned by a subset of A is called a face of the simplex EsiA.
It is clear that EsiA1 ∩ EsiA2 = Esi(A1 ∩A2), for any A1, A2 ⊂ A.

Two faces spanned by complementary subsets A1 and A2 of A are said to be
opposite. In this case, the formula

proj(x1, x2, t) 7→ (1− t)x1 + tx2 (x1 ∈ EsiA1, x2 ∈ EsiA2, t ∈ I)

de�nes a homeomorphism of the join EsiA1 ⋆ EsiA2 onto EsiA. Thus, every
Euclidean simplex is canonically homeomorphic to the join of any of the pairs
of its opposite faces.

Since Dr is canonically homeomorphic to any join with p + q = r − 1 (see
Remark 1.2.6.9), a trivial induction proves that both the spaces EsiA and Dr
are homeomorphic to a join of r + 1 points. We conclude that every Euclidean
r-simplex is homeomorphic to Dr.

It is clear that the boundary of the simplex EsiA in the r-plane that it
determines is precisely the union of its (r−1)-faces. Usually, this boundary and
its complement in EsiA are simply referred to as the boundary and the interior
of the simplex EsiA.

Remark 2.2.1.2. We may equivalently describe the simplex EsiA as the set
of all sums

∑
a∈A taa, where ta ≥ 0 and

∑
a∈A ta = 1. Since there is no

(r − 1)-plane containing A, the numbers ta are determined uniquely for any
point x =

∑
a∈A taa; tais called a-th barycentric coordinates of x and is denoted

by barya(x). Obviously, a face EsiB of the simplex EsiA is de�ned in the
barycentric coordinates of EsiA by the equations barya(x) = 0 for a ∈ A \ B.
Moreover, if x ∈ EsiB, then the coordinates barya(x) computed in EsiA and
EsiB coincide for all a ∈ B.

The point of EsiA having all barycentric coordinates equal, i.e, equal to
1/(r + 1), is the centre of the simplex EsiA.

Remark 2.2.1.3. A map EsiA→ EsiB is called simplicial if it is a�ne and takes
A into B. It is clear that such a map takes each face of EsiA simplicially into
a face of EsiB, and takes the interior of EsiA onto the interior of the simplex
which is its image.
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Obviously, every map A→ B extends uniquely to a simplicial map EsiA→
EsiB. If the given map A → B is injective (invertible), then its simplicial
extension EsiA→ EsiB is an embedding (respectively, a homeomorphism).

De�nition 2.2.1.4. EsiA is said to be an ordered simplex if the set A is
ordered. Since the subsets of an ordered set inherit a natural order, all the faces
of an ordered simplex are ordered simplices.

If EsiA and EsiB are ordered r-simplices, then the orders of A and B de�ne
an invertible map A → B, and hence a simplicial homeomorphism EsiA →
EsiB. Consequently, all ordered Euclidean simplices of the same dimension are
canonically simplicial homeomorphic.

Remark 2.2.1.5. The simplex spanned by the points ort1, . . . , ortr of Rr+1 is
called the unit r-simplex and is denoted by T r. This simplex is notable due to
the fact that its barycentric coordinates are the usual coordinates in Rr+1. The
given order of its vertices transforms T r into an ordered simplex, and thus every
ordered Euclidean r-simplex is canonically simplicial homeomorphic to T r.

Note that given an ordered simplex EsiA, the homeomorphism EsiA→ Dr
discussed in Remark 2.2.1.1 is now canonical. The canonical homeomorphism
T r → Dr and its inverse are denoted by TD and DT , respectively. That TD
maps the boundary (the interior) of T r onto Sr−1 (respectively, onto intDr) is
plain.

Topological Simplices

Remark 2.2.1.6. A topological space X is an ordered topological simplex of di-
mension r (or an ordered topological r-simplex ) if there exists a homeomorphism
T r → X; this is called a characteristic homeomorphism of the simplex X, while
X is sometimes referred to as the support of the simplex. For example, all or-
dered Euclidean r-simplices and the ball Dr are ordered topological r-simplices;
see Remark 2.2.1.5.

The standard way to destroy an order is to introduce simultaneously all
possible orders. Accordingly, we say that the topological space X is a topological
simplex of dimension r (or a topological r-simplex ) if there are given (r + 1)!
homeomorphisms T r → Xr , which can be transformed into each other by
simplicial homeomorphisms T r → T r. The terms characteristic homeomorphism
and support are employed in this situation too; however, now we have at our
disposal (r + 1)! equally rightful characteristic homeomorphisms.

If X is a topological r-simplex (an ordered topological r-simplex), and Y
is a topological space, then every homeomorphism X → Y transforms Y into
a topological r-simplex (respectively, into an ordered topological r-simplex).
Consequently, every homeomorphic image of a Euclidean r-simplex (ordered
Euclidean r-simplex) is a topological r-simplex (respectively, an ordered topo-
logical r-simplex).

The vertices, faces, boundary, interior, barycentric coordinates, centre, and
simplicial maps are de�ned in an obvious fashion for topological simplices. The
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faces of a topological simplex (ordered topological simplex) are topological sim-
plices (respectively, ordered topological simplices). As with a Euclidean simplex,
a topological simplex becomes an ordered one as soon as we �x an order of its
vertices.

2.2.2 Simplicial Spaces and Simplicial Maps

De�nition 2.2.2.1. A triangulation of a set X is a cover ∆ of X by topological
simplices such that:

(i) every face of an arbitrary simplex in A is again a simplex in ∆;

(ii) if a simplex in ∆ is contained in another simplex of A, then the �rst is a
face of the second;

(iii) the intersection of the supports of two overlapping simplices of ∆ is again
the support of a simplex in ∆.

A set X endowed with a triangulation is known as a simplicial space; the sim-
plices of the triangulation are called simplices of the space, and the O-simplices
are its vertices. The smallest simplex in the triangulation which contains a given
point x ∈ X is denoted by simplexx.

According to Remark 1.2.4.3, a triangulation transforms the given set into a
topological space, and Remark 1.2.4.1 shows that the supports of the simplices of
the triangulation yield a fundamental cover of this space. Since the intersection
of two simplices in the triangulation is closed in each of them, the simplices in
the triangulation keep the same topology when considered as subspaces of this
topological space (see De�nition 1.2.4.2).

Let a be a vertex of the simplicial space X. Then the a-th barycentric
coordinate barya(x) is well de�ned for any point x belonging to any simplex
which has a as one of its vertices (see Remarks 2.2.1.2 and 2.2.1.6), and we obtain
a continuous function barya : X → R if we set bara(x) = 0 for those points
x ∈ X contained in simplices which do not have a as a vertex. barya is called
the a-th barycentric function. Given two arbitrary distinct points x, y ∈ X,
there obviously is a vertex a such that barya(x) ̸= barya(y). Consequently,
every simplicial space is Hausdor�.

When a set X endowed with a triangulation already has a topology, it is
useful to �nd conditions ensuring that the topology de�ned by the triangulation
is identical with the initial one. We have an immediate necessary and su�cient
condition: the topology of each simplex in the triangulation coincides with the
topology induced by the initial topology ofX, and the cover ofX by the supports
of these simplices is fundamental in the initial topology. If this condition is
satis�ed, then the given triangulation is said to be a triangulation of the initial
topological space X. Example: the cover of a topological simplex by all its faces
is a triangulation of this simplex.

A simplicial space is ordered if its simplices are ordered in such a way that
the orders of the faces of any simplex agree with the order of the simplex itself.
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In particular, this holds whenever the order of the simplices is induced by some
order on the set of all vertices of the given space, which incidentally shows that
a simplicial space can be always ordered.

Remark 2.2.2.2. We shall presently describe a fundamental class of simplicial
spaces. Given an arbitrary non-empty set A, we let SiA denote the set of all non-
negative, �nitely supported functions φ : A → R such that

∑
a∈A φ(a) = 1. If

B ⊂ A, then we identify SiB with the subset of SiA consisting of all functions
φ ∈ SiA such that φ(x) = 0 for x ∈ A \ B. If A is �nite and has r + 1
elements, then SiA is obviously a topological simplex: indeed, SiA is a subset
of the (r + 1)-dimensional Euclidean space of all functions A → R. Moreover,
corresponding to the (r + 1)! orders on A there are (r + 1)! homeomorphisms
T r → SiA, each transforming the point (x1, . . . , xr+1) into a function taking
the values x1, . . . , xr+1; one may transform one homeomorphism into another
by composition with a simplicial homeomorphism T r → T r. In the general
case, SiA is covered by the topological simplices SiB corresponding to all �nite
subsets B of A, and it is clear that this yields a triangulation of SiA. SiA is
therefore a simplicial space, and we call it the simplex spanned by A. Ordering
SiA is equivalent to ordering the set A.

De�nition 2.2.2.3. The interiors of the simplices of a simplicial space X con-
stitute a decomposition of the set X. If we de�ne the dimension of the interior
e of the simplex s by dim e = dim s, and take as a characteristic map for e the
composition

Ddim s DT−−→ T dim s φ−→ s
incl−−→ X, (2.2.2.4)

where φ is any characteristic homeomorphism for the simplex s, then the above
decomposition becomes cellular. Since conditions (C) and (W) are clearly sat-
is�ed in this situation, and we already know that every simplicial space is Haus-
dor�, we see that this cellular decomposition transforms X into a cellular space.
Thus, every simplicial space, decomposed into the interiors of its simplices, is a
cellular space.

Since an r-simplex has (r + 1)! characteristic homeomorphisms, formula
(2.2.2.4) distinguishes (r + 1)! privileged maps in the family of all maps that
are characteristic for an r-cell in a simplicial space; we call them simplicial
characteristic maps and note that they are topological embeddings. Fixing a
simplicial characteristic map is equivalent to �xing an order of the simplex s;
hence every ordered simplicial space is canonically rigged. It is clear that the
skeleton skelrX of a simplicial space X is simply the union of all its simplices of
dimension ≤ r, and that dim(skelrX) = r for r ≤ dimX. In particular, skel0X
is the set of vertices of X. Of course, X is �nite if and only if skel0X is �nite
as a set. A simplicial space is locally �nite if and only if each of its vertices is
contained in only a �nite number of simplices (see Theorem 2.1.1.7).

Subspaces

De�nition 2.2.2.5. A subspace of a simplicial space is any subset which is
a union of whole simplices. Every subspace has a natural triangulation, and
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hence is a simplicial space. The subspaces of an ordered simplicial space are
also ordered simplicial spaces.

Obviously, a subset of a simplicial space X is a subspace of X if and only if
it is a cellular subspace of the cellular space X.

A subspace of a simplicial space X is complete if its intersection with the
support of any simplex of X is either the support of some simplex of X or empty.
An equivalent formulation: a subspace is complete if it contains, along with the
vertices of a simplex, the simplex itself.

Of course, the simplices of a simplicial space are complete subspaces. A
subspace of SiA is complete if and only if it is of the form SiB, where B ⊂ A.

Simplicial Maps

Remark 2.2.2.6. A map X → Y , where X and Y are simplicial spaces, is called
simplicial if it transforms every simplex of X simplicially into a simplex of Y .
It is clear that such a map is also cellular and maps X onto a subspace of Y .

The following facts are also immediate.
An invertible simplicial map is a homeomorphism, and its inverse is also sim-

plicial. Every injective simplicial map is a topological embedding. A simplicial
map f : X → Y is uniquely de�ned by the map abr f : skel0X → skel0 Y from
the set of vertices of X into the set of vertices of Y . A map skel0X → skel0 Y
extends to a simplicial map X → Y if and only if it carries the vertices of each
simplex of X into the vertices of a simplex of Y . A simplicial map f : XY is
injective (invertible) if and only if abr f : skel0X → skel0 Y is injective (respec-
tively, invertible).

Two simplicial spaces which can be transformed one into another by a sim-
plicial homeomorphism are said to be simplicial homeomorphic.

De�nition 2.2.2.7. A simplicial map f : X → Y , where X and Y are ordered
simplicial spaces, is monotone if f(a) ⪯ f(b) for any pair of vertices, a and b, of
X which belong to the same simplex and satisfy a < b.

Every simplicial map between simplicial spaces can be made monotone by
suitably ordering the spaces. Moreover, if X and Y are simplicial spaces and
Y is ordered, then one can transform a given simplicial map f : X → Y into
a monotone one my suitably ordering X; indeed, it su�ces to order arbitrarily
the pre-image of each vertex of Y , and then order the simplices of X by the
rule: a ≺ b whenever f(a) ≺ f(b) or f(a) = f(b) and a ≺ b in f−(f(a)).

2.2.3 Simplicial Schemes

De�nition 2.2.3.1. A simplicial scheme (or schema) is a pair (M,S), where
M is a set and S is a cover of M by �nite subsets, such that S contains, along
with each set A ∈ S, all the parts of A.

A map of the simplicial scheme (M,S) into the simplicial scheme (M ′, S′)
is a pair of maps, φ : M → M ′ and φ : S → S′, such that φ(A) = φ(A) for all
A ∈ S. The last condition shows that the map (φ,φ) of (M,S) into (M ′, S′)
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is actually uniquely determined by φ. Obviously, φ : M → M ′ de�nes a map
of the scheme (M,S) into the scheme (M ′, S′) if and only if φ(A) ∈ S′ for all
A ∈ S. If φ and φ are invertible, i.e., φ is invertible and φ(S) = S′, then
the map (φ,φ) is called an isomorphism. Two simplicial schemes which can be
related by an isomorphism are isomorphic.

A simplicial scheme (M,S) is a subscheme of the simplicial scheme (M ′, S′)
ifM ⊂M ′ and S ⊂ S′. The subscheme (M,S) is complete if A ∈ S′ and A ⊂M
imply A ∈ S.
De�nition 2.2.3.2. The simplicial scheme given by the skeleton skel0X of a
simplicial space X and the cover of skel0X by the 0-skeletons of the simplices of
X is termed the scheme of the space X and is denoted by schX. For example,
the scheme of SiA (see Remark 2.2.2.2 consists of the set A and of the cover of
A by all its �nite subsets.

The map abr f : skel0X → skel0X
′ induced by a simplicial map f : X → X ′

takes the 0-skeleton of each simplex of X into the 0-skeleton of a simplex of X ′.
Hence it de�nes a map of schX into schX ′, called the scheme of the map f and
denoted by sch f . The discussion in Remark 2.2.2.6 implies that a simplicial map
is uniquely determined by its scheme, that every map of schX into schX ′ is the
scheme of some simplicial map X → X ′, for any simplicial spaces X and X ′, and
that a simplicial map is invertible if and only if its scheme is an isomorphism.
In particular, two simplicial spaces X and X ′ are simplicial homeomorphic if
and only if their schemes schX and schX ′ are isomorphic.

Remark 2.2.3.3. If X is a subspace of the simplicial space X ′, then schX is
a subscheme of schX ′, and schX is complete if and only if X is complete.
Moreover, it is clear that every subscheme of schX ′ is the scheme of a subspace
of X ′.

In particular, let (M,S) be an arbitrary simplicial scheme, and consider the
simplex SiM . Obviously, (M,S) is a subscheme of sch SiM , and so (M,S) is
the scheme of a subspace of SiM . Thus, every simplicial scheme is the scheme
of a simplicial space. Moreover, given an arbitrary simplicial space X, we may
take (M,S) to be the scheme of X and conclude that every simplicial space X
can be simplicially embedded in Si skel0X.

De�nition 2.2.3.4. A simplicial scheme (M,S) is ordered if the sets of S are
ordered and the order of each set A ∈ S. S is compatible with the orders of
the subsets of A. A map (φ,φ) between ordered simplicial schemes (M,S) and
(M ′, S′) is monotone if φ(a) ⪯ φ(b) whenever a ⪯ b. Therefore, ordering the
scheme of a simplicial space is equivalent to ordering the space itself, and the
scheme of a simplicial map between two ordered simplicial spaces is monotone
if and only if the map itself is monotone.

2.2.4 Polyhedra

Remark 2.2.4.1. A polyhedron is a subset of Euclidean space which admits a
�nite triangulation by Euclidean simplices. Of course, the simplest polyhedra
are the Euclidean simplices.
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A subspace of a polyhedron is obviously a polyhedron.
Now any simplicial space can be simplicially embedded in the simplex spanned

by its 0-skeleton (see Remark 2.2.3.3), and when the initial space is �nite and
has q vertices, this skeleton is simplicial homeomorphic to T q−1 Therefore, every
�nite simplicial space admits a simplicial embedding in a Euclidean simplex with
the same number of vertices. Hence every �nite simplicial space is simplicial
homeomorphic to a polyhedron.

Theorem 2.2.4.2. Every �nite n-dimensional simplicial space is simplicial
homeomorphic to a polyhedron contained in R2n+1.

Proof. Since every �nite n-dimensional simplicial space can be simplicially em-
bedded in skeln T

q for q large enough (see Remark 2.2.4.1), it su�ces to con-
struct, for arbitrarily given q and n, a linear mapping f : Rq+1 → R2n+1 which
is injective on skeln T

q.
If q ≤ 2n, we may take f to be the inclusion Rq+1 → R2n+1. If q > 2n,

de�ne f by

f({xj}q+1
j=1) =


q+1∑
j=1

jixj


2n+1

i=1

.

All that remains is to verify that if x = (x1, . . . , xq+1) and x′ = (x′1, . . . , x
′
q+1)

belong to skeln T
q and f(x) = f(x′), then x = x′. Since each of the points x and

x′ lies in an n-dimensional face of T q, at most n+1 of the numbers x1, . . . , xq+1,
and n+1 of the numbers x′1, . . . , x

′
q+1 are di�erent from zero. Consequently, no

more than 2n+2 numbers x1−x′1, . . . , xq+1−x′q+1 are di�erent from zero, i.e.,
there are positive integers j1, . . . , j2n+2 such that j1 < · · · < j2n+2 ≤ 2q+1 and
xj = X ′

j for j ̸= j1, . . . , j2n+2. Since

q+1∑
j=1

xj =

q+1∑
j=1

x′j(= 1) and
q+1∑
j=1

jixj =

q+1∑
j=1

jix′j

for i = 1, . . . , 2n+ 1, we have

2n+2∑
r=1

jir(xjr − x′jr ) = 0, i = 0, . . . , 2n+ 1.

The determinant of the matrix {jir}
i=2n+1,r=2n+2
i=0,r=1 does not vanish, and so xjr =

x′jr for r = 1, . . . , 2n+ 2 and �nally x = x′.

Information 2.2.4.3. For any n there are n-dimensional polyhedra which cannot
be topologically embedded in R2n. An example is skeln T

2n+2; see [10] for a
proof.
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2.2.5 Simplicial Constructions

Remark 2.2.5.1. Many of the topological and cellular constructions described
in �1.2 and Subsection 2.1.5 can be replaced by parallel constructions which
produce simplicial spaces out of simplicial ones. The simplest examples are
the

∐
and

∨
operations: a sum of simplicial spaces and a bouquet of pointed

simplicial spaces with vertices as base points are obviously simplicial spaces.
There are also more elaborate constructions, the more important ones being
discussed below. The main one is the barycentric subdivision construction,
which re�nes triangulations and has no analogues in �1.2 and Subsection 2.1.5.

Lemma 2.2.5.2. Let Γ be a fundamental cover of the topological space X by
triangulated subspaces. Suppose that for any A,B ∈ Γ the intersection A∩B is a
complete subspace of both A and B (considered as simplicial spaces) and inherits
from A and B the same triangulation. Then there exists a unique triangulation
of X relative to which the elements of Γ become simplicial subspaces.

Proof. This triangulation of X is simply the union of the triangulations of the
elements of Γ. One may check directly that this union satis�es conditions (i),
(ii), and (iii) in De�nition 2.2.2.1 [the completeness of the intersections A ∩ B
is necessary for (iii)]. Uniqueness is also evident.

Barycentric Subdivision

De�nition 2.2.5.3. The construction below produces a new simplicial space,
baryX, from any simplicial space X, such that baryX is identical to X as a
topological space, but has a �ner triangulation, called the barycentric subdivision
of the initial triangulation.

Consider �rst a Euclidean simplexX. For an arbitrary numeration a0, . . . , ar
of the vertices of X, form the set

{x ∈ X|barya0(x) ≤ barya1(x) ≤ · · · ≤ baryar (x)}. (2.2.5.4)

It is readily seen that (2.2.5.4) is the Euclidean simplex whose vertices are the
centres of the simplices EsiA0, . . . ,EsiAr, where Ai = a0, . . . , ar. Furthermore,
the simplices of the form (2.2.5.4) corresponding to all possible numerations
of the vertices of X and their faces clearly yield a triangulation of X. This is
precisely the barycentric subdivision of the standard triangulation of the simplex
X, and it transforms X into baryX. An obvious property of this construction
is that the inclusion baryX ↪→ baryX ′ is a simplicial embedding whenever X
is a face of the simplex X ′.

Now if X is a topological simplex, we de�ne the barycentric subdivision of
its standard triangulation as the image of the barycentric subdivision of the
standard triangulation of the unit simplex T r, r = dimX, under a simplicial
homeomorphism T r → X. This is clearly a correct de�nition, i.e., the trian-
gulation of X thus obtained does not depend on the choice of the simplicial
homeomorphism T r → X among the (r + 1)! available ones.
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Finally, let X be an arbitrary simplicial space, and consider the cover of
X by its simplices, each subdivided as above. It is easy to verify that this
cover satis�es the conditions of Lemma 2.2.5.2, and hence we obtain a new
triangulation of X, which is precisely the barycentric subdivision of the initial
triangulation of X.

We note that the barycentric subdivision transforms a �nite (locally �nite)
simplicial space into a �nite (respectively, locally �nite) one. Moreover, if X is
a polyhedron, then so is baryX.

Remark 2.2.5.5. The set of vertices of the space baryX equals exactly the set
of centres of the simplices of X. The centres of the simplices s1, . . . , sm of X
are the vertices of a simplex of baryX if and only if s1, . . . , sm Can be re-
indexed to form an increasing sequence. This observation enables us to give a
concise description of the barycentric subdivision in the language of schemes:
if schX = (M,S), then sch baryX = (S, baryS), where baryS is precisely the
collection of those �nite parts of S that can be ordered by inclusion. At the
same time, we obtain a canonical order of baryX: if a, a′ ∈ skel0 baryX, then
a ≺ a′ whenever the simplex (of X) with centre a is contained in the simplex
with centre a′.

In particular the above description of sch baryX shows that baryX is a com-
plete subspace of baryX ′ whenever X is a subspace of X ′. Indeed, sch baryX
is clearly a complete subscheme of sch baryX ′.

In general, given a simplicial map f : X → X ′, the map f : baryX →
baryX ′ is not simplicial (the simplest example: take X = T 2, X ′ = T 1,
f(ort1) = ort1, f(ort2) = f(ort3) = ort2). However, the map sch f : schX →
schX ′ naturally induces a map sch baryX → sch baryX ′, and hence a simplicial
map baryX → baryX ′. The latter is denoted by bary f and is clearly always
monotone.

Theorem 2.2.5.6. If X is a polyhedron, then the maximal diameter of the
simplices of the polyhedron baryX does not exceed the maximal diameter of the
simplices of X times n/(n+ 1), where n = dimX.

Proof. It is enough to show that if X is the Euclidean simplex with vertices
a0, . . . , ar, then the diameter of the simplex (2.2.5.4) is no bigger than [r/(r +
1)] diamX. Consider the part X ′ of X de�ned by the inequality baryar (x) ≥
r/(r + 1). X ′ is the Euclidean simplex obtained by contracting X towards the
vertex ar by a factor of r/(r+ 1). Consequently, diamX ′ ≤ [r/(r+ 1)] diamX,
and we �nally note that X ′ contains the simplex (2.2.5.4).

Corollary 2.2.5.7. For any polyhedron X and any ε > 0 there is a positive
integer m such that every simplex of the polyhedron barymX has diameter < ε.

Simplicial Products

De�nition 2.2.5.8. If X1 and X2 are simplicial spaces with dimX1 > 0 and
dimX2 > 0, then it is readily seen that their cellular product X1 ×C X2 does
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not admit a triangulation such that the interiors of its simplices are products
of interiors of simplices of X1 and X2. However, we shall presently show that
X1×CX2 admits triangulations, and we shall construct a canonical triangulation
when X1 and X2 are ordered. This construction produces a simplicial space
out of X1 ×C X2, called the simplicial product of X1 and X2, and denoted by
X1 ×S X2.

To begin with, letX1 be the Euclidean simplex in Rm with vertices a0, . . . ..., aq,
and let X2 be the Euclidean simplex in Rn with vertices b0, . . . ..., br. Set for
x1 ∈ X1 and x2 ∈ X2:

αi(x1) =

i∑
k=0

baryak(x1), βj(x2) =

j∑
l=0

barybl(x2),

and arrange the numbers α0(x1), . . . , aq−1(x1), β0(x2), . . . , βr−1(x2) in a non-
decreasing sequence γ1(x1, x2), . . . , γq+r(x1, x2). Further, let Mqr denote the
collection of subsets with q elements of {1, . . . , q + r}, and let s(µ), where µ ∈
Mqr, denote the set of all points (x1, x2) ∈ X1 × X2 such that each of the
numbers γp(x1, x2), p ∈ µ is equal to one of the numbers γ0(x1), . . . , γq−1(x1).
One may check directly that there is no (q+r−1)-dimensional plane containing
the q + r + 1 points

(a0, b0), . . . , (a0, bj1−1);

(a1, bj1−1), . . . , (a1, bj2−2);

· · · · · · · · · · · · · · · · · ·
(aq−1, bjq−(q−1)), . . . , (aq−1, bjq−q);

(aq, bjq−q), . . . , (aq, br),

(2.2.5.9)

where j1, . . . jq ∈ µ, j1 < · · · jq. Also, one may verify that

q∑
k=0

jk+1−(k+1)∑
l=jk−k

[γk+l+1(x1, x2)− γk+l(x1, x2)](ak, bl) = (x1, x2)

for (x1, x2) ∈ s(µ), j0 = 0, jq+1 = q+r+1, γ0(x1, x2) = 0 and γq+r+1(x1, x2) =
1. Moreover,

q∑
k=0

jk+1−(k+1)∑
l=jk−k

[γk+l+1(x1, x2)−γk+l(x1, x2)] =
q+r∑
p=0

[γp+1(x1, x2)−γp(x1, x2)] = 1

and γp+1(x1, x2)−γp(x1, x2) ≥ 0. Consequently, the set s(µ) is contained in the
Euclidean simplex spanned by the points (2.2.5.9), and since s(µ) is obviously
convex and contains all the points (2.2.5.9), it equals this simplex. Now it is
clear that the sets s(µ) coverX1×X2, and that s(µ1)∩s(µ2) is just the Euclidean
simplex spanned by the vertices common to the simplices s(µ1) and s(µ2), for
any µ1, µ2 ∈ Mqr. As a result, the simplices s(µ) and their faces constitute a
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triangulation of the product X1×X2, and this triangulation transforms X1×X2

into X1 ×S X2. Moreover it is readily seen that if X1 and X2 are faces of the
ordered Euclidean simplicesX ′

1 andX
′
2, then the inclusionX1×SX2 → X ′

1×SX
′
2

is a simplicial embedding.
Next let X1 ×X2 be ordered topological simplices. To de�ne the simplicial

product X1 ×S X2, use the previous prescription to triangulate the product
of the unit simplices T q and T r, with q = dimX1 and r = dimX2, and then
employ the product T q×T r → X1×X2 of canonical simplicial homeomorphisms
T q → X1 and T r → X2 to carry this triangulation to X1 × X2. With the
resulting triangulation, X1 ×X2 becomes X1 ×S X2.

Finally, let X1 and X2 be arbitrary ordered simplicial spaces. It is readily
veri�ed that the cover of X1×CX2 by the product s1× s2 of simplices s1 of X1

and s2 of X2, where s1 × s2 is triangulated as above, satis�es the conditions of
Lemma 2.2.5.2. This lemma yields a triangulation which transforms X1 ×C X2

into the simplicial product X1 ×S X2.
We remark that each cell e of X1 ×C X2 can be represented as the union of

a �nite number of cells of X1 ×S X2, having dimensions ≤ dim e. In particular,
the map id : X1 ×C X2 → X1 ×S X2 is cellular.

Remark 2.2.5.10. A straightforward corollary of the simplicial product con-
struction is that the product f1 × f2 : X1 ×S X2 → X ′

1 ×S X
′
2 of two monotone

simplicial maps, f1 : X1 → X ′
1 and f2 : X2 → X ′

2, is also simplicial. It is also
plain that if X1 and X2 are subspaces of the ordered simplicial spaces X ′

1 and
X ′

2, then X1 ×S X2 is a subspace of X ′
1 ×S X

′
2.

Let us conclude with a description of the simplicial product in terms of
schemes. Suppose schX1 = (M1, S1) and schX2 = (M2, S2). Then sch(X1 ×S

X2) = (M1 ×M2, S), where S is the collection of sets A ⊂ X1 ×X2 such that:

(i) proj1(A) ∈ S1, proj2(A) ∈ S2;

(ii) if (a1, a2) ∈ A, (a′1, a′2) ∈ A, and a1 ⪯ a′1 , then a2 ⪯ a′2.

Limits

Remark 2.2.5.11. Let X0, X1, X2, . . . be simplicial spaces, together with sim-
plicial embeddings φ0 : X0 → X1, φ1 : X1 → X2, . . . . Consider the cover of
lim(Xk, φk) by the sets Immk(sk), where sk is a simplex of Xk (k = 0, 1, . . . ).
If we take for a characteristic homeomorphism of Immk(sk) the composition
of a characteristic homeomorphism T dim sk → sk with the homeomorphism
abr Immk : sk → Immk(sk), then Immk(sk) becomes a topological simplex.
It is clear that in this way the cover {Immk(sk)} becomes a triangulation of
lim(Xk, φk); hence lim(Xk, φk) is a simplicial space. As a cellular space, this
space coincides with the limit de�ned in Remark 2.1.5.7. Moreover, Immk are
simplicial embeddings.

If Xk are ordered spaces and φk are monotone, then the space lim(Xk, φk)
is ordered, and the embeddings Immk are monotone.
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Joins, Cones, and Suspensions

Remark 2.2.5.12. Let X1 and X2 be topological simplices. Then the join X1⋆X2

naturally becomes a topological simplex if we de�ne the characteristic homeo-
morphisms as

T dimX1+dimX2+1 = T1 ⋆ T2
φ1⋆φ2−−−−→ X1 ⋆ X2,

where T1 and T2 are opposite faces of the simplex T dimX1+dimX2+1 and φ1 and
φ2 are simplicial homeomorphisms (the equality T dimX1+dimX2+1 = T1 ⋆ T2
stands for the simplicial homeomorphism established in Remark 2.2.1.1). Now
one may canonically triangulate the cellular join X1 ⋆C X2 of two arbitrary
simplicial spaces X1 and X2: its simplices are the images of the simplices of X1

and X2 under the inclusions X1 → X1 ⋆CX2 and X2 → X1 ⋆CX2, and also the
images of the simplices s1 ⋆s2 under the inclusions incl ⋆ incl : s1 ⋆s2 → X1 ⋆X2,
where s1 is a simplex of X1 and s2 a simplex of X2. The resulting simplicial
space is called the simplicial join of X1 and X2, and is denoted by X1 ⋆S X2.
As a cellular space, X1 ⋆S X2 is identical to X1 ⋆C X2.

If schX1 = (M1, S1) and schX2 = (M2, S2), then clearly X1 ⋆SX2 = (M1 ⨿
M2, S), where S is the collection of non-empty subsets A of M1 ⨿M2 such that
incl−1

1 (A) ∈ S1 or incl−1
1 (A) = ∅, while incl−1

2 (A) ∈ S2 or incl−1
2 (A) = ∅. Here

incl1 : M1 →M1 ⨿M2 and incl2 : M2 →M1 ⨿M2 are the canonical mappings.
In particular, since

coneX = X ⋆ D0 and susX = X ⋆ S0

for any topological space X (see Theorem 1.2.6.8), we see that the simplicial join
construction transforms the cone and the suspension over an arbitrary simplicial
space into simplicial spaces.

Simplicial Mapping Cylinders

Remark 2.2.5.13. To a given monotone simplicial map f : X1 → X2, this con-
struction associates a simplicial space Scyl f , called the simplicial mapping cylin-
der of f . Generally speaking, Scyl f is not homeomorphic to the usual mapping
cylinder Cyl f of f (see Chapter 4 Exercise 4.6.6.12), but has similar properties.

The most suitable language for describing the space Scyl f is that of schemes.
Thus, let schX1 = (M1, S1), schX2 = (M2, S2), and sch f = (φ,Φ). We de�ne
Scyl f by the formula sch Scyl f = (M1 ⨿M2, S), where S is the collection of
(�nite) subsets A ⊂M1 ⨿M2 such that:

(i) incl−1
1 (A) ∈ S1 or incl−1

1 (A) = ∅;

(ii) φ(incl11(A)) ∪ incl−1
2 (A) ∈ S2;

(iii) if a1 ∈ incl−1
1 (A) ̸= ∅, then incl−1

2 (A) ∈ φ(S1);

(iv) if a1 ∈ incl−1
1 (A) and a2 ∈ incl−1

2 (A), then a2 ⪯ φ(a1).
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The maps incl1 and incl2 de�ne two maps schX1 → sch Scyl f and schX2 →
sch Scyl f , and hence two simplicial embeddings, X1 → Scyl f and X2 → Scyl f .
The images of these embeddings are called the (lower and upper) bases of the
cylinder Scyl f and can be identi�ed with X1 and X2. Moreover, the map
M1 × (0 ∪ 1) → M1 ⨿ M2 de�ned by (a, 0) 7→ incl1(a), (a, 1) 7→ incl2 φ(a),
induces a certain map sch(X1 ×S I) → sch Scyl f , and hence a simplicial map
X1 ×S I → Scyl f . Clearly, together with the inclusion X2 → Scyl f , this
simplicial map yields a continuous map (X1 ×S I) ⨿ X2 → Scyl f , which in
turn induces a continuous map csc f : Cyl f → Scyl f . Moreover, we see that
csc f(Cyl f) = Scyl f , and that the canonical retraction rt f : Cyl f → X2 (see
De�nition 1.2.6.10) is constant on the elements of the partition zer(csc f). Also,
the canonical X2-homotopy from id(Cyl f) to the composite map

Cyl f
rt f−−→ X2

incl−−→ Cyl f

is constant on the elements of the partition zer(csc f)×zer(id I) . Consequently,
rt f de�nes a strong deformation retraction Scyl f → X2 and the composition of
the inclusion X1 → Scyl f with this retraction obviously equals f . We conclude
that the inclusion X2 → Scyl f is always a homotopy equivalence, whereas the
inclusion X1 → Scyl f is a homotopy equivalence if and only if f is a homotopy
equivalence.

2.2.6 Stars. Links. Regular Neighbourhoods

Remark 2.2.6.1. The star of a simplex s in a simplicial space X is the union
of all simplices of X which contain s. Notation: Star s or Star(s,X). Clearly,
Star s is a subspace of X.

The open star of the simplex s is the union of the interiors of all simplices
containing s. Notation: star s or star(s,X). It is readily seen that star s is the
open set de�ned by the inequalities

barya0(x) > 0, . . . ,baryaq (x) > 0,

where a0 . . . , aq are the vertices of s. Moreover, Cl star s = Star s.
The link of the simplex s is the union of all simplices in Star s which do not

intersect s. Notation: link s or link(s,X). Clearly, link s is a subspace of the
spaces X and Star s.

The following are obvious facts.

� If s′ is a face of s, then Star s′ ⊂ Star s, star s′ ⊂ star s, link s′ ⊂ link s.

� If a0, . . . , aq are vertices which do not sit in the same simplex, then the
intersection ∩qi=0 star ai is empty. However, if a0, . . . , aq are vertices of a
simplex s, then ∩qi=0 star ai = star s.

� If X is a subspace of X ′, then star(s,X) = star(s,X ′)∩X for any simplex
s of X.
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� Moreover, ifX is complete, then Star(s,X) = Star(s,X ′)∩X and link(s,X) =
link(s,X ′) ∩X.

� Finally, if s′ is a simplex of link(s,X), then link(s′, 1k(s,X)) = link(s′′, X),
where s′′ is the smallest simplex containing s and s′.

De�nition 2.2.6.2. We can extend the de�nition of the star, open star, and
link to points of a simplicial space X: for x ∈ X, the star Starx = Star(x,X),
the open star starx = star(x,X), and the link linkx = link(x,X), are de�ned
as

Starx = Star simplexx, starx = star simplexx, and linkx = Star simplexx\star simplexx.

Obviously, starx is a neighbourhood of x, and linkx = Fr Starx = Fr starx. In
addition, the star Starx is homeomorphic to the cone over linkx. In fact, the
formula

proj(y, t) 7→ φ((1− t)φ−1(x) + tφ−1(y)),

where y ∈ linkx and t ∈ I, de�nes a canonical homeomorphism cone linkx →
Starx; here φ is any characteristic homeomorphism of any simplex containing
x and y.

Warning: the equality linkx = link simplexx holds only when x is a vertex.
If s′ is a simplex of link(s,X), then by Remarks 2.2.1.1 and 2.2.5.12, the

join s ⋆ s′ is canonically simplicial homeomorphic to the smallest simplex of
X containing both s and s′. It is clear that all these simplicial homeomor-
phisms together yield a simplicial homeomorphism s ⋆ link(s,X)→ Star(s,X).
If follows that the star Star(x,X) of any point x ∈ X is canonically simpli-
cial homeomorphic to simplexx ⋆ link(simplexx,X), and we readily see that
this simplicial homeomorphism maps the join of the boundary of six with the
link link(simplexx,X) onto link(x,X). Moreover, since Fr simplexx is home-
omorphic to Sdim simplex x−1 and the join Sdim simplex x−1 ⋆ link(simplexx,X) is
homeomorphic to the iterated suspension susdim simplex x link(simplexx,X), we
conclude that link(x,X) is homeomorphic to susdim simplex x link(simplexx,X).

The link of a point is a homotopy invariant

Lemma 2.2.6.3. Let A and B be retracts of a topological space Y . If the
inclusions i : A → Y and j : B → Y are homotopic to some maps f : A → Y
and g : B → Y such that f(A) ⊂ B and g(B) ⊂ A, then A and B are homotopy
equivalent.

Proof. Consider two arbitrary retractions, σ : Y → B and ρ : Y → A. Then the
restrictions σ|A and ρ|B are homotopy equivalences A → B and B → A, and
inverses of one another. Indeed, σ|A = σ ◦ i, ρ|B = ρ ◦ j, and the composition
ρ ◦ j ◦ σ ◦ i is homotopic to ρ ◦ j ◦ σ ◦ f = ρ ◦ f , which in turn is homotopic to
ρ ◦ i = idA. Therefore, ρ|B ◦ σ|A is homotopic to idA, and a similar argument
proves that σ|A ◦ ρ|B is homotopic to idB .
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Theorem 2.2.6.4. Let T1 and T2 be subspaces of the topological space X, and
assume that both T1 and T2 and are endowed with �nite triangulations. If x0 ∈ X
is an interior point for both T1 and T2, then the links link(x0,1 ) and link(x0, T2)
have the same homotopy type.

Proof. Let Fi denote a homotopy Star(x0, Ti) × I → X from the inclusion
Star(x0, Ti) → X to the constant map Star(x0, Ti) → x0 ∈ X, such that Fi is
rectilinear on each simplex of Star(x0, Ti) (i = 1, 2). Set Ci(t) = Fi(Star(x0, Ti)×
t) (i = 1, 2). Since star(X0, Ti) is open and Star(x0, Ti) is compact (i =
1, 2), there exists ε > 0 and δ > 0 such that C1(ε) ⊂ Star(x0, T2), C2(ε) ⊂
Star(x0, T1), C1(δ) ⊂ C2(ε), and C2(δ) ⊂ C1(ε). Moreover, since Ci(ε) \ x0 is a
retract of Star(x0, Ti) \ x0 (i = 1, 2), C1(ε) \ x0 and C2(ε) \ x0 are retracts of
Y = [Star(x0, T1) ∪ Star(x0, T2)] \ x0. Finally, the formulae

(y, t) 7→ F1(y, δt/ε) and (y, t) 7→ F2(y, δt/ε)

de�ne homotopies (C1(ε) \ x0) × I → Y and (C2(ε) \ x0) × I → Y from the
inclusions C1(ε) \ x0 → Y and C2(ε) \ x0 → Y to maps whose images lie in
C2(ε) \ x0 and C1(ε) \ x0 respectively. Consequently, C2(ε) \ x0 and C1(ε) \ x0
have the same homotopy type (see Lemma 2.2.6.3), and it remains to note that
Ci(ε) \ x0 has the same homotopy type as link(x0, Ti) (i = 1, 2).

Regular Neighbourhoods

De�nition 2.2.6.5. The regular neighbourhood of the subspace A of a simplicial
space X is the union of the open stars star(a,X) with a ∈ A or, equivalently,
the union of the open stars star(a,X) with a ∈ skel0A.

Theorem 2.2.6.6. If the subspace A is complete, then A is a deformation
retract of its regular neighbourhood U .

Proof. In fact, there is even a canonical A-homotopy h : U × I → U from idU
to the composition of a retraction U → A with the inclusion A → U . This
homotopy is given by

barya(h(x, t)) =


{1−t

∑
b∈skel0 A baryb(x)} barya(x)

1−
∑

b∈skel0 A baryb(x)
, if a ∈ skel0A,

tbarya(x), if a ∈ skel0X \ skel0A.

In particular, this shows that every subspace of a simplicial space X is a
deformation retract of its regular neighbourhood in baryX (see Remark 2.2.5.5).

Barycentric Stars and Barycentric Links

De�nition 2.2.6.7. The barycentric star of the simplex s of a simplicial space
X is the union of all simplices of baryX which have as their �rst vertex the
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centre of s. Notation: barstr or barstr(s,X). An equivalent description: barstr s
is the set of all points x ∈ X such that

barya(x)

{
= baryb(x), if a, b ∈ s ∩ skel0X,

≥ baryb(x), if a ∈ skel0X, b ∈ (X \ s) ∩ skel0X.

It is clear that the barycentric stars of the simplices of X cover X and are
subspaces of baryX. Moreover, barstr s ̸= barstr s′ whenever s ̸= s′, and
barstr s ⊂ barstr s′ whenever s ⊂ s′.

De�nition 2.2.6.8. The union of those simplices of the barycentric star barstr s
which do not contain the centre of s is the barycentric link of the simplex s,
and is denoted by barlk s. The ⋆ barstr s is clearly simplicial homeomorphic to
the cone over barlk s. Moreover, the rectilinear projection from the centre of s
induces a homeomorphism of barlk s onto the link link s of the simplex s in X
(and the barycentric subdivision of link s transforms this homeomorphism into
s simplicial one). Therefore, the pairs (barstr s,barlk s) and (cone link s, link s)
are homeomorphic.

2.2.7 Simplicial Approximation of Continuous Maps

De�nition 2.2.7.1. Let f : X → Y be a continuous map, where X and Y are
simplicial spaces. A simplicial map g : X → Y is a simplicial approximation of
f if g(x) ∈ simplex f(x) for any point x ∈ X.

Theorem 2.2.7.2. Every simplicial approximation g of the map f : X → Y is
canonically homotopic to f .

Proof. The canonical homotopy X × I → Y from f to g is an a�ne mapping
from each generatrix x× I of the cylinder X × I onto the (possibly degenerate)
rectilinear segment joining f(x) and g(x). It is clear that this homotopy is
stationary on the set of the points x ∈ X where g(x) = f(x).

Theorem 2.2.7.3. A simplicial map g : X → Y is a simplicial approximation
of the continuous map f : X → Y if and only if f(star a) ⊂ star g(a) for every
vertex a of X.

Proof. Assume �rst that g is a simplicial approximation of f , and let x ∈ star a.
Recalling that g(x) ∈ simplex f(x), that g is simplicial, and that x lies in the
interior of a simplex with vertex a, we conclude that g(x) lies in the interior of
a simplex with vertex g(a) (see 2.2.1.3). Thus, g(a) is a vertex of simplex f(x),
and hence f(x) ⊂ star g(a).

Now suppose that f(star a) ⊂ star g(a) for every vertex a of X. Pick x ∈ X;
if a0, . . . , aq are the vertices of simplex f(x), then x ∈ ∩qi=0 star ai, whence

f(x) ∈ f(∩qi=0 star ai) ⊂ ∩
q
i=0f(star ai) ⊂ ∩

q
i=0 star g(ai).

Therefore, the points g(a0), . . . , g(aq) are among the vertices of the simplex
simplex f(x), and since g(x) lies in the simplex with vertices g(a0), . . . , g(aq),
g(x) ∈ simplex f(x).
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Theorem 2.2.7.4. A continuous map f : X → Y of simplicial spaces has a
simplicial approximation if and only if for each vertex a of X there is a vertex
b of Y such that f(star a) ⊂ star b.

Proof. The necessity of this condition is an immediate consequence of Proposi-
tion 2.2.7.3. To prove its su�ciency, �x a map φ : skel0X → skel0 Y such that
f(star a) ⊂ star(φ(a) for every vertex a ∈ skel0X. If a0, . . . , aq are the vertices
of X, then ∩qi=0 star ai ̸= ∅, and the inclusions

∩qi=0 starφ(ai) ⊃ ∩
q
i=0f(star ai) ⊃ f(∩

q
i=0 star ai)

demonstrate that ∩qi=0 starφ(ai) ̸= ∅ too. This in turn implies that φ(a0), . . . , φ(aq)
are among the vertices of a simplex of Y (see Remark 2.2.6.1). Therefore, φ
extends to a simplicial map X → Y (see Remark 2.2.2.6) and, applying Propo-
sition 2.2.7.3, this extension is a simplicial approximation of f .

Theorem 2.2.7.5. For each continuous map f of a �nite simplicial space
X into a simplicial space Y there is a positive integer m such that the map
f : barymX → Y admits a simplicial approximation.

Proof. Without loss of generality, we may assume that X is a polyhedron (see
Remark 2.2.4.1). Since the open stars of the vertices of Y constitute an open
cover, there is ε > 0 such that, given any subset A of X with diamA < ε,
f(A) is contained in one of these open stars (see Theorem 1.1.7.16). Let m be
large enough so that the simplices of barymX have diameters less than ε/2 (see
Corollary 2.2.5.7). Then given any vertex of barymX, the diameter of its star is
less than ε, and Theorem 2.2.7.4 shows that f : barymX → Y has a simplicial
approximation.

2.2.8 Exercise

Exercise 2.2.8.1. Let X be a simplicial space. Show that the formula

dist(x, y) = [
∑

a∈skel0X

(barya(y)− barya(x))
2]1/2

de�nes a metric on X, and verify that the resulting metric topology coincides
with the initial topology if and only if X is locally �nite.

Exercise 2.2.8.2. Show that for every polyhedron X ⊂ Rn there is a triangu-
lation of Rn by Euclidean simplices, relative to which X becomes a simplicial
subspace of Rn.
Exercise 2.2.8.3. Show that every connected, locally �nite, n-dimensional sim-
plicial space can be simplicially embedded in R2n+1 triangulated by Euclidean
simplices.

Exercise 2.2.8.4. Let f : X → Y be continuous, where X and Y are simplicial
spaces. Produce a new triangulation of X with the following two properties:
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(a) each of its simplices is contained in one of the simplices of the original
triangulation;

(b) f has a simplicial approximation relative to the new triangulation.
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2.3 HOMOTOPY PROPERTIES OF CELLULAR
SPACES

2.3.1 Cellular Pairs

De�nition 2.3.1.1. Suppose thatX is a rigged cellular space and A is subspace
of X. Let h0 : A ∪ skel0X → I denote the function equal to zero on A and
equal to 1 on (A ∪ skel0X) \ A, and de�ne inductively a sequence of functions
hr : A ∪ skelrX → I (r = 1, 2, . . . ), such that

hr(x) =

{
hr−1(x), if x ∈ A ∪ skelr−1X,

1− τ [1− hr−1(atte(y)], if x = chare(τy)

where e ∈ cellrX \ cellA, τ ∈ I, and y ∈ Sr−1. Since the functions hr are
continuous and each of them extends the preceding one, together they yield a
continuous function X → I. This function is called the characteristic function
of the pair (X,A), and the neighbourhood of A consisting of all points of X
where the characteristic function is less than 1 is called the neat neighbourhood
of the subspace A.

Obviously, the characteristic function of the pair (X,A) vanishes on A, and
only on A; hence, every subspace of a cellular space is distinguishable.

If X is a simplicial space, then we may construct a characteristic function
starting with a simplicial rigging of X, and it is readily seen that such a func-
tion does not depend upon the choice of the rigging. In this case, the neat
neighbourhood of a subspace A is simply the regular neighbourhood of A in
baryX.

Theorem 2.3.1.2. Every subspace A of a rigged cellular space X is a strong
deformation retract of its neat neighbourhood.

Proof. Let U denote the neat neighbourhood of A in X. Since the products
(A∪skelrX)×I are subspaces of the cylinder X×I and cover it, they constitute
a fundamental cover of X × I. Therefore, their intersections with U × I, i.e.,
the cylinders Ur× I, where = Ur = U ∩ (A∪ skelrX), constitute a fundamental
cover of U × I. Let G0 be the constant homotopy of the inclusion A→ X, and
de�ne homotopies Fr : Ur × I → U , r ≥ 1, by the formula

Fr(x, t) =

{
x, if x ∈ Ur−1,

chare(((1− t)τ + t)y), if x = chare(τy),

where e ∈ cellrX \ cellr A, i ∈ (0, 1], and y ∈ Sr−1. Now construct homotopies
Gr : Ur × I, r ≥ 1, by

Gr(x, t) =


x, if 0 ≤ t ≤ 2−r,

Fr(x, 2
rt− 1), if 2−r ≤ t ≤ 2−r+1,

Gr−1(Fr(x, 1), t), if 2−r+1 ≤ t ≤ 1.
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Each homotopy Gr extends the preceding one, and together they yield an A-
homotopy U×I → U from idU to a map which takes U into A. The compression
of the last map to a map U → A is the desired strong deformation retraction.

Theorem 2.3.1.3. Every cellular pair is a Borsuk pair (i.e, has the homotopy
extension property with respect to any space).

Proof. This is a consequence of Proposition 2.3.1.2 combined with Proposition
1.3.5.11, because cellular spaces are normal, and their subspaces are distinguish-
able.

Theorem 2.3.1.4. If (X,A) is a cellular pair and the inclusion A ⊂ X is a
homotopy equivalence, then A is a strong deformation retract of X.

Proof. In order to prove this, �rst apply Propositions 2.3.1.3 and 1.3.5.6 to the
pair (X,A), then apply Proposition 2.3.1.3 to the pair (X × I, (X × 0) ∪ (A ×
I) ∪ (X × 1)) and, �nally, apply Theorem 1.3.5.7 to the pair (X,A).

Cellular Pairs and k-Connectedness

Theorem 2.3.1.5. Let k be a non-negative integer or ∞. Suppose that (X,A)
is a cellular pair such that all the cells in X \A have dimension at most k, and
let (Y,B) be an arbitrary k-connected topological pair. Then every continuous
map f : X → Y such that f(A) ⊂ B is A-homotopic to a map which takes X
into a subset of B. In particular, every continuous map of a k-dimensional
cellular space into a k-connected topological space is homotopic to a constant
map.

Proof. We exhibit a sequence of A-homotopies {Fr : (A∪skelrX)×I → Y }∞r=−1,
each extending the preceding one, and satisfying the conditions:

(i) Fr(x, 0) = f(x) for all x ∈ A ∪ skel0X;

(ii) Fr((A ∪ skelrX)× (1− 2−r−1) ⊂ B;

(iii) Fr(x, t) does not depend upon t for t ≥ 1− 2−r−1.

Then the map F : X × I → Y which equals Fr on (A ∪ skelrX) × I will be a
homotopy from f to a map which takes X into a subset of B.

We proceed by induction. De�ne F−1 as the constant homotopy of f |A,
and assume that homotopies F−1, . . . , Fq−1, each extending its predecessor and
satisfying (i)-(iii), are already constructed. If q > k, then A ∪ skelqX = X
and we simply take Fq = Fq−1. So suppose now that q ≤ k. Since the pair
((A∪ skelqX)× I, (A∪ skelq−1X)× I) is Borsuk (see Theorem 2.3.1.3), there is
a homotopy G of the map f |(A ∪ skelqX), such that G|(A∪skelq−1X)×I = Fq−1.
Using the fact that Fq−1((A∪ skelq−1X)× (1− 2−q)) ⊂ B, the formula he(y) =
G(chare(y), 1 − 2−q) de�nes a map he : Dq → Y which takes Sq−1 into B, for
each cell e ∈ cellqX \ cellq A. Now take advantage of the k-connectedness of
the pair (Y,B) to deduce that, given any cell e ∈ cellqX \ cellq A, there is an
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Sq−1-homotopy He : Dq × I → Y from he to a map whose image is a subset of
B. We put

Fq(x, t) =


Fq−1(x, t), if x ∈ A ∪ skelq−1X,

G(x, t), if 0 ≤ t ≤ 1− 2−q,

He(y, s
q+1(t− (1− 2−q)), if x = chare(y) and 1− 2−q ≤ t ≤ 1− 2−q−1,

He(y, 1) if x = chare(y) and 1− 2−q−1 ≤ t ≤ 1.

Then it is immediate that the map Fq is continuous, extends Fq−1, and ful�ls
properties (i)-(iii) with r = q.

Theorem 2.3.1.6. Let k be a non-negative integer or ∞. If the cellular pair
(X,A) is k-connected and every cell in X \ A is of dimension at most k, then
A is a strong deformation retract of X. In particular, every k-connected k-
dimensional cellular space is contractible.

Proof. Indeed, idX is A-homotopic to a map g : X → X such that g(X) ⊂
A (see Theorem 2.3.1.5), and hence abr g : X → A is a strong deformation
retraction.

2.3.2 Cellular Approximation of Continuous Maps

Lemma 2.3.2.1. Let X = A ∪φ [⨿ν∈M (Dµ = Dk+1)], where A is a topological
space and φ is a continuous map ⨿µ∈M (Sµ = Sk)→ A. Let f : Dr+1 → X be a
continuous map such that f(Sr) ⊂ A′ = Imm2(A). Then:

(I) if r < k, f is Sr-homotopic to a map g such that g(Dr+1) ⊂ A′;

(II) if r = k, f is Sr-homotopic to a map g such that there are a�ne maps
α1, . . . , as : Dk+1 → Dk+1 with four properties:

(i) the images di = αi(Dk+1) are pairwise disjoint balls lying in intDk+1;

(ii) each of the compositions g ◦ αi coincides with one of the composite
maps

Dk+1
µ

inclµ−−−→ ⨿ν∈MDν
Imm2−−−→ X; (2.3.2.2)

(iii) g(Dk+1 \ Usi=1 int di) ⊂ A′;

(iv) for k ≥ 1, the point of the ball di having the largest value of the �rst
coordinate is just αi(ort1), and the segment joining this point with
ort1 is entirely contained in Dk+1 \ ∪sj=1 (i = 1, . . . , s).

(Part (I) of this lemma, i.e., the case r < k, merely asserts that the pair
(X,A′) is k-connected, and this is the only information that we shall actually
use in the present section; part (II) is needed in �5.3.)
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Proof. Denote the composite map (2.3.2.2) by h , �x an arbitrary Euclidean
(k + 1)-simplex σ in Dk+1, and then �x in intσ an arbitrary (k + 1)-simplex τ
of the triangulation bary2 σ. The sets hµ(intσ), µ ∈ M , and X \ ∪µ∈Mhµ(τ)
constitute an open cover of X, and so there is a triangulation of Dr+1 which is
�ne enough to ensure that the image of any of its simplices under f lies in one
of the sets of this cover (see Corollary 2.2.5.7 and Theorem 1.1.7.6). Let Kµ

(respectively, L) be the union of those simplices whose images are contained in
hµ(intσ) (respectively, in X \ ∪µhµ(τ)). Obviously, the sets Kµ are pairwise
disjoint, only a �nite number of them are non-empty, Kµ and L are simplicial
subspaces of the simplicial space Dr+1, and L ∪ (∪µKµ) = Dr+1.

Now apply Proposition 2.2.7.5 to the composite maps

Kµ
abr f−−−→ hµ(σ)

(abrhµ)
−1

−−−−−−−→ bary2 σ. (2.3.2.3)

This theorem tells us that there is an m such that the maps (2.3.2.3) admit
simplicial approximations when one replacesKµ by barymKµ. We let Fµ denote
the canonical homotopy from (2.3.2.3) to the above simplicial approximation.
Since τ is not a face of any other simplex, Fµ((L ∩Kµ) × I) ∩ int τ = ∅, and
so together the homotopies Fµ de�ne a homotopy F : (L ∩ (∪µKµ)) × I →
X \ ∪µhµ(int τ). By Propositions 2.3.1.3 and 1.3.5.9, F extends to a homotopy
G : L × I → X \ ∪µX \ ∪µhµ(int τ) of the map abr f : L → X \ ∪µhµ(int τ),
stationary on B = Dr+1 \ ∪µf−1(hµ(int τ)). It is evident that the composite
maps

Kµ × I
Fµ−−→ σ

hµ|σ−−−→ X

and
L× I G−→ X \ ∪µhµ(int τ)

incl−−→ X

yield together aB-homotopy of f . This homotopy connects f to a map f1 : Dr+1 →
X such that, for every µ, the composition

barymK
abr f1−−−−→ hµ(σ)

(abrhµ)
−1

−−−−−−−→ bary2 σ

is simplicial and hµ(τ) ⊂ f1(Kµ) ⊂ hµ(σ). Since B ⊃ Sr, f1 is Sr-homotopic to
f , and to complete the proof of our lemma it su�ces to examine (I) and (II) for
f1 rather than f .

Consider an arbitrary ball δ ⊂ int τ , and let ψ denote the homeomorphism
δ → Dk+1, ψ(x) = (x− a)/ρ, where a and ρ are the centre and the radius of δ.
Moreover, let Ψ: Dk+1 × I → Dk+1 be de�ned as

Ψ(x, t) =
x− t0a

1− t0(1− ρ)

where t0 is the largest of the numbers θ ∈ [0, t] such that (x−θa)/(1−θ(1−ρ)) ∈
Dk+1. Now the family of mappings pt : : X → X, given by

pt(x) =

{
x, if x ∈ A′,

hµ ◦ ψ(h−1
µ (x), t)) if x ∈ hµ(intDk+1),
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obviously yields an A′-homotopy of idX such that p1(X \ ∪µhµ(δ)) ⊂ A′ and
p1 ◦ hµ = hµ ◦ ψ.

If r < k, then f1(Dr+1) ⊂ X\∪µhµ(δ), and to complete the proof in this case
we only need to note that (y, t) 7→ pt(f1(y)) is an Sr-homotopy from f1 to a map
whose image is included in A′. If r = k, then f−1

1 (∪µhµ(δ)) can be decomposed
into pairwise disjoint ellipsoids δ1, . . . , δs, each being a�nely mapped onto one
of the sets hµ(δ) by f1.

Let {qt} be an Sr-homotopy of idDk+1 , with the following properties:

� the preimages di = q−1
1 (δi) are balls;

� the maps abr q1 : di → δi are a�ne; and

� for k ≥ 1 the point of the ball di having the largest value of the �rst
coordinate is carried by f1 ◦ q1 into one of the points hµ(ψ−1 ort1)), and

� the segment joining this point with ort1 is entirely contained in Dk+1 \
∪sj=1 int dj .

Obviously, the formula (y, t) 7→ (f1 ◦ qt(y), t) de�nes an Sr-homotopy from f1
to a map g satisfying conditions (IIi)-(IIiv).

Theorem 2.3.2.4. Every cellular pair (X,A) with A ⊃ skelkX is k-connected
(0 ≤ k ≤ ∞). In particular, every cellular space whose k-skeleton reduces to a
point is k-connected.

Proof. Since any continuous map of a ball into X takes the ball into a subset of
one of the skeletons skelrX, it su�ces to show that all the pairs (A∪skelrX,A)
with r >k are k-connected. But this is an immediate consequence of the k-
connectedness of the pairs (A ∪ skelq+1X,A ∪ skelqX) with q ≥ k, which in
turn follows from Lemma 2.3.2.1 (see Theorem 2.1.2.1).

Corollary 2.3.2.5. Sr is (n− 1)-connected (n ≥ 1). CPn is simply connected
(0 ≤ n ≤ ∞). CaP 2 is 7-connected.

Theorem 2.3.2.6. Every continuous map f from a cellular space X into cel-
lular space Y is homotopic to a cellular map. If, in addition, f is cellular on a
subspace A of X, then f is A-homotopic to a cellular map.

Proof. Given f : X → Y , continuous onX and cellular on A, we shall construct a
sequence of maps {fr : X → Y }∞r=−1 and a sequence of homotopies {Fr : X×I →
Y )∞r=0, such that:

(i) f−1 = f ;

(ii) fr is cellular on A ∪ skelrX;

(iii) Fr is a homotopy from fr−1 to fr, stationary on A ∪ skelr−1X. Then the
formula

(x, t) 7→

{
Fr(x, 2− 2r+1(1− t)), if 1− 2−r ≤ t ≤ 1− 2 −r − 1,

Fr(X, 1), if x ∈ A ∪ skelrX and t = 1,
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will de�ne an A-homotopy from f to a cellular map.
We proceed by induction. If fr and Fr are already constructed for r < k

and satisfy (i)-(i), then by Theorems 2.3.2.4 and 2.3.1.5 there is a (skelk A ∪
skelk−1X)-homotopy from fk−1|skelk X to a map whose image is contained in
skelk Y . This homotopy together with the constant homotopy of fk−1|A∪skelk−1X

yield some (A ∪ skelk−1X)-homotopy of fk−1|A∪skelk X . Applying Theorem
2.3.1.3, the last homotopy extends to some (A ∪ skelk−1X)-homotopy of the
map fk−1, which we take as FK . Finally, set = Fk(x, 1), x ∈ X.

Theorem 2.3.2.7. Two homotopic cellular maps f, g : X → Y are cellular
homotopic. If, in addition, f and g are A-homotopic and A is a subspace of X,
then f and g are cellular A-homotopic.

Proof. Surely, every A-homotopy from f to g is a continuous map of the cylinder
X × I into Y , and is cellular on (X × (0∪ 1))∪ (A× I). By Proposition 2.3.2.6,
this map is [(X × (0 ∪ 1)) ∪ (A× I)]-homotopic to a cellular map.

2.3.3 k-Connected Cellular Pairs

Theorem 2.3.3.1. Every k-connected cellular pair (X,A) (0 ≤ k ≤ ∞) is
homotopy equivalent to a cellular pair (Y,B) such that B ⊃ skelk Y .

Proof. If k =∞, then, by Theorem 2.3.1.6, A is a strong deformation retract of
X, and hence the pair (X,A) is homotopy equivalent to (X,X).

Turning now to the case k < ∞, may assume that A ⊃ skelk−1X; indeed,
one reduces to this case by induction on k, because for k ≥ 1 every k-connected
pair is also (k − 1)-connected, while the condition A ⊃ skel−1X is trivially
ful�lled. According to Theorems 2.3.1.5 and 2.3.2.7, there is a cellular skelk A-
homotopy f : skelkX × I → X from the inclusion skelkX → X to a map which
takes skelkX into A. De�ne F : skelkX × I × I → X by F (x, t1, t2) = f(f, t1),
and set

C = (skelkX × I × 0) ∪ (skelkX × (0 ∪ 1)× I) ∪ (skelk A× I × I),
D = skelkX × I × 1.

Obviously, C and D are subspaces of the cellular space skelkX × I × I and the
map F is cellular. Now de�ne Y and B by

Y = X ∪F |C (skelkX × I × I), B = Imm2(A) ∪ Imm1(D).

By Remark 2.1.5.6, Y is a cellular space, and it is clear that B is a subspace of
Y containing skelk Y . To verify that (X,A) and (Y,B) have the same homotopy
type, note that Imm2(A) is a strong deformation retract of B and Imm2(X) is
a strong deformation retract of Y . In fact, the formula{

(Imm1(x, t1, 1), t) 7→ Imm1(x, tt1, 1) [x ∈ skelkX, t, t1 ∈ I],
(Imm2(x), t) 7→ Imm2(x) [x ∈ A, t ∈ I],
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de�nes a homotopy B×I → B, stationary on Imm2(A), from idB to a retraction
B → Imm2(A). Similarly, the formula{

(Imm1(x, t1, t2), t) 7→ Imm1(x, t1, tt2) [x ∈ skelkX, t, t1, t2 ∈ I],
(Imm2(x), t) 7→ Imm2(x) [x ∈ X, t ∈ I],

de�nes a homotopy Y ×I → Y , stationary on Imm2(Y ), from idY to a retraction
Y → Imm2(X). Consequently, the pair (Y, Imm2(A)) is homotopy equivalent
to both the pairs (Y,B) (see Theorem 1.3.5.8) and (Imm2(X), Imm2(A)), and
it remains to observe that the pairs (Imm2(X), Imm2(A)) and (X,A) are home-
omorphic.

Theorem 2.3.3.2. Every k-connected cellular space (0 ≤ k ≤ ∞) is homotopy
equivalent to a cellular space whose k-skeleton reduces to a point.

Proof. Let X be a k-connected cellular space and choose a 0-cell x0 in X.
The pair (X,x0) is homotopy equivalent to a cellular pair (X,A) such that
A ⊃ skelkX (see Theorem 2.3.3.1). Set Y = X/A. Since A is contractible, Y
has the same homotopy type as X (see Theorems 1.3.7.7 and 2.3.1.3), and it is
clear that skelk Y is just a point.

Remark 2.3.3.3. Theorem 2.3.3.2 says nothing about the dimension of the space
Y which replaces the given space X. However, its proof demonstrates that one
can always choose Y to satisfy dimY ≤ max(dimX, k+2). Our next task is to
prove that for k = 0 the last equality may be sharpened to dimY − dimX (see
Theorem 2.3.3.6).

Lemma 2.3.3.4. Let Y be a topological space, and let {Yk}∞k=0 be a fundamental
cover of Y such that Yk ∩ Yl = ∅ whenever k − l > 1. If Yk−1 ∩ Yk is a strong
deformation retract of Yk for all k ≥ 1, then Y0 is a strong deformation retract
of Y .

Proof. If Fk : Yk × I → Yk is a homotopy, stationary on Yk−1 ∩ Yk, from idYk
to

a map which takes Yk into Yk−1 ∩ Yk, then the formula

(y, t) 7→


y, if y ∈ Yk and

0 ≤ t ≤ 2−k,

Fl(Fl+1(. . . Fk(x, 1) . . . , 1), 2
lt− 1), if y ∈ Yk and

2−l ≤ t ≤ 2−l+1 (l ≤ k)

de�nes an y0-homotopy Y × I → Y from idY to a map which takes Y into
y0.

Theorem 2.3.3.5. Given any connected cellular space X, there is a contractible
one-dimensional subspace of X containing all the 0-cells.
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Proof. Fix an arbitrary 0-cell x0 in X and let Ak be the set of all 0-cells that
can be joined to x0 by a path I → skel1X which touches at most k 1-cells.
Since skel1X is connected (see Theorem 2.1.4.8), and a path can touch only a
�nite number of cells, ∪∞k=0Ak = skel0X. Now given any 0-cell x ∈ Ak \ Ak−1

with k ≥ 1, pick a closed 1 -cell c(x) joining x to some cell in Ak−1 \Ak−2 and
set

Yk =

{
x0, if k = 0,

∪y∈Ak\Ak−1
c(y), if k > 0,

and Y = ∪∞k=0Yk. Obviously, Y is a one-dimensional subspace of X containing
skel0X, and the cover {Yk} of Y satis�es the conditions of Lemma 2.3.3.4.
Therefore, Y0 is a strong deformation retract of Y , i.e, Y is contractible.

Theorem 2.3.3.6. Every connected n-dimensional cellular space is homotopy
equivalent to a cellular space of dimension at most n, and having only one 0-
cell. In particular, every connected one-dimensional cellular space is homotopy
equivalent to a bouquet of circles.

Proof. This results from Theorems 2.3.3.5, 2.3.1.3, and 1.3.7.7.

Applications to Cellular Constructions

Theorem 2.3.3.7. If the cellular space X is k-connected, then susX and
sus(X,x0), where x0 is a 0-cell, are (k + 1)-connected.

Proof. The proof reduces to three remarks.
First, since susX and sus(X,x0) have the same homotopy type (see Theo-

rems 2.1.4.5, 1.3.6.8, and 1.3.7.7), the (k+1)-connectedness of one is equivalent
to the (k + 1)-connectedness of the other.

Secondly, according to Theorem 2.3.2.4 and Remark 1.3.7.13, it is enough to
verify that sus(X,x0) is (k + 1)-connected when skelkX = x0.

And thirdly, if skelkX = x0, then the (k+1)-connectedness of sus(X,x0) is a
corollary of Theorem 2.3.2.4, because under this assumption skelk+1 sus(X,x0)
also reduces to a point.

Theorem 2.3.3.8. Suppose Xi is a ki-connected cellular space and xi is a 0-cell
of Xi, i = 1, 2. Then the tensor products (X1, x1) ⊗ (X2, x2) and (X1, x1) ⊗C

(X2, x2) are (k1 + k2 + 1)-connected.

Proof. Again, the proof reduces to three remarks.
First, since (X1, x1) ⊗ (X2, x2) induces on its compact subsets topologies

which are identical to those induced by the topology of (X1, x1) ⊗C (X2, x2),
the (k1 + k2 +1)-connectedness of one of these spaces implies the (k1 + k2 +1)-
connectedness of the other.

Secondly, using Theorem 2.3.3.1 and Remark 1.3.7.13, it is enough to verify
that (X1, x1) ⊗C (X2, x2) is (k1 + k2 + 1)-connected when skelk1 X = x1 and
skelk2 X = x2.
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Thirdly, under these circumstances, the (k1+k2+1)-connectedness of (X1, x1)⊗C

(X2, x2) follows from Proposition 2.3.3.2, because skelk1+k2+1((X1, x1)⊗C(X2, x2))
also reduces to a point.

Lemma 2.3.3.9. For any cellular spaces X1 and X2 with 0-cells x1 and x2 taken
as base points, the cellular join (X1, x1) ⋆C (X2, x2) is homotopy equivalent to
sus((X1, x1)⊗C (X2, x2),bp).

Proof. By de�nition, the spaces

(X1, x1) ⋆C (X2, x2),bp), sus((X1, x1)⊗C (X2, x2),bp)

are obtained from projection (X1×CX2)×I by taking quotients two times, and
the projection

(X1 ×C X2)× I → sus((X1, x1)⊗C (X2, x2),bp)

is constant on the elements of the partition

zer(proj : (X1 ×C X2)× I → (X1, x1)⊗C (X2, x2)).

The resulting map

f = fact[proj : (X1 ×C X2)× I → (X1, x1) ⋆C (X2, x2)] :

sus((X1, x1)⊗C (X2, x2),bp)→ (X1, x1) ⋆C (X2, x2)

is factorial (see Remark 1.2.3.4). Since the only element of the partition zer(f)
which does not reduce to a point is f−1(bp), we see that

sus((X1, x1)⊗C (X2, x2),bp) = [(X1, x1) ⋆C (X2, x2]/f
−1(bp).

Finally, note that

f−1(bp)) = [(X1, x1)⊗C (x2, x2)] ∪ [(x1, x1)⊗C (X2, x2)],

and since this union is contractible, the quotient space [(X1, x1)⋆C(X2, x2)]/f
−1(bp)

is homotopy equivalent to (X1, x1) ⋆C (X2, x2).

Theorem 2.3.3.10. Let the cellular spaces X1 and X2 be k1- and respectively
k2-connected. Then the joins X1 ⋆ X2, X1 ⋆C X2, (X1, x1) ⋆ (X2, x2), and
(X1, x1) ⋆C (X2, x2), where x1 and x2 are 0-cells, are (k1 + k2 + 2)-connected.

Proof. The proof reduces to four remarks.
First, since (X1, x1) ⋆C (X2, x2) is a quotient of X1 ⋆C X2 by a contractible

space (the closed 1 -cell x1 ⋆ x2), (X1, x1) ⋆C (X2, x2) and X1 ⋆C X2 have the
same homotopy type.

Secondly, X1 ⋆C X2 induces on its compact subsets the same topologies as
does X1 ⋆ X2, and hence the (k1 + k2 + 2)-connectedness of one of these spaces
implies the (k1 + k2 + 2)-connectedness of the other.

Thirdly, and from the same reason, (X1, x1) ⋆ (X2, x2) is (k1 + k2 + 2)-
connected if and only if (X1, x1) ⋆C (X2, x2) is (k1 + k2 + 2)-connected.

Fourthly, the ((k1 + k2 + 2)-connectedness of (X1, x1) ⋆C (X2, x2) is an im-
mediate consequence of Lemma 2.3.3.9, Theorems 2.3.3.8, and 2.3.3.7.
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2.3.4 Simplicial Approximation of Cellular Spaces

Lemma 2.3.4.1. Suppose that X and Y are cellular spaces and {Xr}∞r=0 and
{Yr}∞r=0 are �ltrations of X and Y by subspaces. Let f : X → Y be a cellular
map such that f(Xr) ⊂ Yr (0 ≤ r ≤ ∞). If all the maps abr f : Xr → Yr are
homotopy equivalence, then so is f .

Proof. Since the Zr = Cyl(abr f : Xr → Yr) are cellular subspaces of Z = Cyl f
and satisfy the conditions Zr ⊂ Zr+1 and cup∞r=0Zr = Z, they yield a �ltration
of Z (see De�nition 2.1.1.9). Thus, the image of any continuous map Dk → Z
is contained in one of the sets Zr (see Theorem 1.2.4.5), and so the pair (Z,X)
is ∞-connected provided that all the pairs (Zr, Xr) are ∞-connected. Now
note that (Zr, Xr) is ∞-connected if and only if abr f : Xr → Yr is a homotopy
equivalence; similarly, (Z,X) is ∞-connected if and only if f is a homotopy
equivalence (see Theorems 2.3.1.3, 2.3.1.6, Remarks 1.3.3.9, and 1.3.7.14).

Theorem 2.3.4.2. Given any cellular space X, there is a simplicial space which
has the same homotopy type and the same dimension as X, and is �nite or
countable together with X.

Proof. The proof consists of producing three sequences:

(1) one of simplicial spaces {Yr}∞r=0,

(2) one of simplicial embeddings {ir : Yr → Yr+1}∞r=0,

(3) and one of cellular homotopy equivalences {fr : skelr → Yr+1}∞r=0,

with the following four properties:

(i) fr|skelr−1X = ir−1 ◦ fr−1;

(ii) dimYr = dim skelrX;

(iii) if skelrX is �nite (countable), then Yr is �nite (respectively, countable);

(iv) if skelrX = skelr−1X, then Yr = Yr−1 and ir = idYr−1
.

This will enable us to de�ne the simplicial space lim(Yr, ir) having dimension
dimX, and �nite or countable together withX, as well as a cellular map f : X →
lim(Yr, ir) such that f |skelr X = Immr ◦f . Finally, we shall use Lemma 2.3.4.1
to show that f is a homotopy equivalence.

De�ne Y0 and f0 as skel0X and idskel0X , and assume that simplicial spaces
Yr, cellular homotopy equivalences fr, and simplicial embeddings ir−1, satisfying
(i)-(iv), are already constructed for r < q. By Theorem 2.1.2.1, we may represent
skelqX as skelq−1 ∪φ△, where △ = ⨿e∈cellq X(De = Dq) and φ is a continuous
map of Σ = ⨿e∈cellq X(Se = Sq) into skelq−1X.

Next triangulate △ so that Σ becomes a complete subspace and the map
fq−1 ◦ φ : Σ → Yq−1 admits a simplicial approximation gΣ → Yq−1. Further,
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order Yq−1 and Σ in such a manner that the map g becomes monotone. Applying
successively Propositions 1.3.7.11, 1.3.7.8, and then again 1.3.7.11, we obtain
three homotopy equivalences:

� a homotopy equivalence skelqX → Yq−1∪fq−1◦φ△ which agrees with fq−1

on skelq−1X;

� a homotopy equivalence Yq−1∪fq−1◦φ△→ Yq−1∪g△ which is the identity
on Yq−1;

� and a homotopy equivalence Yq−1 ∪g △ → (Scyl g) ∪incl △, where incl =
[incl : Σ → Scyl g] (see Remark 2.2.5.13), which agrees with the inclusion
Yq−1 → Scyl g on Yq−1.

At last, we may de�ne Yq as (Scyl g)∪incl△, fq as the composition of the three
homotopy equivalences above, and iq−1 as the composite embedding Yq−1 →
Scyl g → Yq. The triangulations of △ and of the cylinder Scyl g yield together
a triangulation of Yq (see Lemma 2.2.5.2). It is plain that iq−1 is a simplicial
embedding and that Yq, fq, and iq−1 satisfy conditions (i)-(iv) for r = q.

Theorem 2.3.4.3. Let X and Y be cellular spaces with X �nite and Y count-
able. Then the set π(X,Y ) is countable.

Proof. By Propositions 2.3.4.2 and 1.3.1.8, we need only consider the case when
X and Y are simplicial spaces. Under this assumption, Theorem 2.2.7.5 shows
that the cardinal of π(X,Y ) does not exceed the cardinal of the set of all sim-
plicial mappings barymX → Y (m = 0, 1, . . . ), and the latter is obviously
countable.

2.3.5 Exercises

Exercise 2.3.5.1. Suppose that the cellular spaces Xi and X ′
i are homotopy

equivalent, i = 1, 2. Show thatX1×CX2 andX ′
1×CX

′
2 are homotopy equivalent,

and that the same is true for the spaces X1 ⋆C X2 and X ′
1 ⋆C X ′

2.

Exercise 2.3.5.2. Show that every cellular space is homotopy equivalent to a
locally �nite cellular space.

Exercise 2.3.5.3. Show that every cellular pair is homotopy equivalent to a
simplicial pair, and that every �nite cellular pair is homotopy equivalent to a
�nite simplicial pair.

Exercise 2.3.5.4. Show that there is no cellular space having the same homotopy
type as the subspace of the real line consisting of the points 0 and 1/n, n =
1, 2, . . . .





Chapter 3

SMOOTH MANIFOLDS

3.1 FUNDAMENTAL CONCEPTS

3.1.1 Topological Manifolds

Remark 3.1.1.1. This chapter comprises an elementary introduction to di�eren-
tial topology. The basic objects of this theory are the smooth manifolds. They
are de�ned in the next subsection and represent (as do cellular and simplicial
spaces) topological spaces with an additional structure. The present subsection
is devoted to topological manifolds, which occupy an intermediate position be-
tween smooth manifolds and topological spaces, and do not carry an additional
structure.

Locally Euclidean Spaces

Remark 3.1.1.2. A topological space is said to be a an n-dimensional locally
Euclidean space if each of its points has a neighbourhood homeomorphic to the
space Rn or to the half space Rn−, where Rn− is the set of all points (x1, . . . , xn) ∈
Rn with x1 ≤ 0. The half space Rn− is de�ned for n ≥ 1; we do not de�ne it for
n = 0 and, accordingly, a 0-dimensional locally Euclidean space is simply a topo-
logical space such that each of its points has a neighbourhood homeomorphic
to R0, i.e., a discrete space.

In a locally Euclidean space X, the points having a neighbourhood home-
omorphic to Rn are called interior points, while the remaining ones are called
boundary points. The interior (boundary) points form the interior (respectively,
the boundary) of the locally Euclidean space X, denoted by intX (respectively
∂X). (The di�erence between the notations int, ∂ and int,Fr should prevent
us, in each context, from confusing the interior and boundary points, and the
interior part and boundary de�ned here with the interior and boundary points
and the interior part and boundary of a set in a topological space.) Clearly, the
interior of X is a dense open set, whereas the boundary of X is closed.

If each point of a topological space has a neighbourhood homeomorphic to an

121
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open subset of Rn or Rn−, then obviously it already is an n-dimensional locally
Euclidean space. Consequently, every open subset of an n-dimensional locally
Euclidean space is also an n-dimensional locally Euclidean space. In particular,
the interior of an n-dimensional Euclidean space is an n-dimensional locally
Euclidean space without boundary. Moreover, the interior and boundary of an
open subset U of a locally Euclidean space X are given by intU = U ∩ intX
and ∂U = U ∩ ∂X.

Since a locally Euclidean space is locally connected, its components are open
(see Theorem 1.3.4.3), and hence also closed.

Obvious examples of n-dimensional locally Euclidean spaces are Rn, Rn−, Sn,
and Dn. It is clear that ∂Rn = ∅ and ∂Sn = ∅. Furthermore, all the boundary
points of the half space Rn− lie in the limiting hyperplane Rn−1

1 , consisting of
the points (x1, . . . , xn) such that x1 = 0, and all the boundary points of the ball
Dn lie in the limiting sphere Sn−1.

Remark 3.1.1.3. Since the product Rn1 × Rn2 is homeomorphic to Rn1+n2 , we
see that the product X1 × X2 of two locally Euclidean spaces X1 and X2 of
dimensions n1 and n2, and without boundary, is an (n1+n2)-dimensional locally
Euclidean space. This is true in general, i.e, a productX1×· · ·×Xs of boundary-
less locally Euclidean spaces X1, . . . , Xs of dimensions n1, . . . , ns, is an (n1 +
· · ·+ ns)-dimensional boundary-less locally Euclidean space. Turning to locally
Euclidean spaces with boundary, note that the formula

((x1, . . . , xn1), (y1, . . . , yn2)) 7→ (x1, . . . , xn1 , y1, . . . , yn2)

which gives the canonical homeomorphism Rn1 × Rn2 → Rn1+n2 also de�nes a
homeomorphism Rn1

− × Rn2 → Rn1+n2
− for n1 > 0. Similarly, the formula

((x1, . . . , xn1
), (y1, . . . , yn2

)) 7→ (y1, . . . , yn2
, x1, . . . , xn1

)

de�nes a homeomorphism Rn1 × Rn2
− → Rn1+n2

− for n2 > 0, and the formula

((x1, . . . , xn1
), (y1, . . . , yn2

)) 7→ (−2x1y1, x21 − y21 , x2, . . . , xn1
, y2, . . . , yn2

)

de�nes a homeomorphism Rn1
− ×Rn2

− → Rn1+n2
− for n1 > 0, n2 > 0. Thus, each

of the products Rn1×Rn2 , Rn1×Rn2
− , and Rn1

− ×Rn2 is homeomorphic to Rn1+n2
− .

We conclude that given locally Euclidean spaces X1 and X2 of dimensions n1
and n2, the product X1×X2 is an (n1+n2)-dimensional locally Euclidean space.
In general, the product X1 × · · · × Xs of arbitrary locally Euclidean spaces of
dimensions n1, . . . , ns is an (n1 + · · ·+ns)-dimensional locally Euclidean space.

Remark 3.1.1.4. The discussion in Remark 3.1.1.2 raises two non-trivial ques-
tions.

The �rst one is whether a non-empty topological space can be a locally Eu-
clidean space of dimension n and, simultaneously, a locally Euclidean space of
a di�erent dimension n′ : n ̸= n′ ? In Chapter 4 this question is answered
negatively (see Theorem 4.6.5.11). The answer is obvious when n = 1, n′ > 1
or n′ = 1, n > 1. In fact, any connected subset of a one-dimensional locally Eu-
clidean space becomes disconnected after one removes two suitably chosen points
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(for example, two points belonging to an open subset which is homeomorphic to
R1); in contrast, every non-empty locally Euclidean space of dimension n′ > 1
contains a non-empty open subset which cannot be disconnected by removing
two points (any open subset homeomorphic to Rn′

has this property). The pic-
ture is crystal clear when n = 0 or n′ = 0. However, when n > 1, n′ > 1, the
proof requires a technique which we will develop only later.

The second question is whether we can formulate more e�cient de�nitions of
the interior and boundary points, which would permit us to actually recognise
them. For example, consider the half space Rn−. At this point we can show
only the trivial inclusion ∂Rn− ⊂ Rn−1

1 (see Remark 3.1.1.2), and we are forced
to settle for one of the extreme equalities ∂Rn− = Rn−1

1 or ∂Rn− = ∅ (which
obviously are the only possible ones). We shall prove in Chapter 4 that ∂Rn− =

Rn−1
1 (see Theorem 4.6.5.13). This equality is plain for n = 1 (assuming that

the point 0 has a neighbourhood in R1
− which is homeomorphic to R1, then by

removing 0 we would disconnect this neighbourhood; this is absurd, because
the latter cannot happen to a connected neighbourhood of 0 in R1

−). But for
n > 1, we again need techniques which are to be developed. The equality
∂Rn− = Rn−1

1 settles satisfactorily the general problem of recognising the interior
and boundary points too. Indeed, it follows that

Theorem 3.1.1.5. a point x of the n-dimensional locally Euclidean space X which
has a neighbourhood U with a homeomorphism U → Rn, is a boundary point of
U , and hence, of X, if and only if this homeomorphism takes x into a point of
the hyperplane Rn−1

1 .

For Dn this theorem asserts that ∂Dn = Sn−1.
Finally, we note that the alternative equality ∂Rn− = ∅ would obviously

imply that ∂X = ∅ for any n-dimensional locally Euclidean space.

Remark 3.1.1.6. In general, it would be more prudent not to use the theorems
formulated in Remark 3.1.1.4, i.e, the theorem on dimensions and the equality
∂Rn− = Rn−1

1 as long as they have not been proven. This indeed is the way we
shall deal with the theorem on dimensions - the only exception is a harmless
remark in 3.1.2.3. However, we have already used the equality ∂Rn− = Rn−1

1 and
we will take advantage of it again, before its proof, in Theorem 3.1.1.8 and in
Remarks 3.1.2.6, 3.1.2.7. But these are the only instances where these theorems
and their corollaries will be used before their proofs.

Theorem 3.1.1.7. The boundary of an n-dimensional locally Euclidean space
is an (n− 1)-dimensional locally Euclidean space without boundary.

Proof. Let x be a boundary point of the locally Euclidean space X and let U
be a neighbourhood of x, homeomorphic to Rn−. Then the boundary ∂U is a
neighbourhood of x in ∂X, since ∂U = U ∩ ∂X, and is homeomorphic to Rn−1,
since ∂Rn− = Rn1 (here the reference to Chapter 4 for the equality ∂Rn− = Rn1 is
unnecessary: the alternative ∂Rn− = ∅ is excluded, because ∂X ̸= ∅).
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Theorem 3.1.1.8. For any locally Euclidean spaces X1, . . . , Xs

int(X1 × · · · ×Xs) = intX1 × · · · × intXs, and

∂(X1 × · · · ×Xs) = (∂X1 × · · · ×Xs) ∪ · · · ∪ (X1 × · · · × ∂Xs).

Proof. It is enough to prove the statement for s = 2. Let xi ∈ Xi and let φi be
a homeomorphism of a neighbourhood Ui of xi onto Rni or Rni

− , i = 1, 2. Then
φ1×φ2 is a homeomorphism of the neighbourhood U1×U2 of the point (x1, x2)
onto one of the products

(1) Rn1 × Rn2 ,

(2) Rn1 × Rn2
− ,

(3) Rn1
− × Rn2 , or

(4) Rn1
− × Rn2

− ,

and composing it with one of the homeomorphisms exhibited in Remark 3.1.1.3,
we obtain a homeomorphism of U1×U2 onto Rn1+n2 or Rn1+n2

− . We denote this
composition by φ and analyse the four possible cases.

(1): If φ1(U1) = Rn1 and φ2(U2) = Rn2 , then φ1(U1 × (U2) = Rn1+n2 and
x1, x2 and (x1, x2) are all interior points.

(2): If φ1(U1) = Rn1 and φ2(U2) = Rn2
− , then φ1(U1 × (U2) = Rn1+n2

− and
φ(x1, x2) ∈ Rn1+n2

1 if and only if φ(x2) ∈ Rn2−1
1 . Thus (x1, x2) is an interior

(boundary) point if and only if x2 is an interior (respectively, boundary) point,
while x1 is an interior point.

(3): Similarly, if φ1(U1) = Rn1
− and φ2(U2) = Rn2 , then (x1, x2) is an interior

or boundary point simultaneously with x1, while x2 is an interior point.
(4): Finally, if φ1(U1) = Rn1

− and φ2(U2) = Rn2
− , then φ1(U1 × U2) =

Rn1+n2−1
1 if and only if φ(x1) ∈ Rn1−1

1 or φ(x2) ∈ Rn2−1
1 . That is to say,

(x1, x2) is a boundary point if and only if at least one of the points x1, x2 is
boundary.

Our conclusion is that in all cases (x1, x2) is an interior (boundary point) if
x1 and x2 are interior points (respectively, if x1 and x2 are boundary points).

Theorem 3.1.1.9. A locally Euclidean space is connected if and only if its
interior is connected.

Proof. This condition is obviously su�cient. Now let us show that it is also
necessary. Let X be a connected locally Euclidean space, let A be a component
of intX, and let B be the union of the remaining components. Since the closed
sets ClA and ClB cover X and X is connected, ClA ∩ ClB ̸= ∅ whenever
B ̸= ∅, and obviously ClA ∩ ClB ⊂ ∂X. Let x ∈ ClA ∩ ClB, and let U
be a neighbourhood of x homeomorphic to Rn−. Since intRn− is connected, its
homeomorphic image U ∩ intX = intU is also connected, which is impossible if
B ̸= ∅. Consequently, B = ∅ and intX is connected.
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De�nition 3.1.1.10. The topological space X∪incl : ∂X→XX constructed from
a locally Euclidean space X is called the double of X and is denoted by doppX.
The double of an n-dimensional locally Euclidean space is an n-dimensional
locally Euclidean space without boundary.

From now on, we shall identify Imm1(X) with X and we shall denote the
map abr Imm2 : X → Imm2(X) by cop, and Imm2(X) - by copX. Note that X
and copX are closed in doppX.

Manifolds

Remark 3.1.1.11. A locally Euclidean space is called a topological manifold or,
brie�y, a manifold if it is a Hausdor� topological space with countable base. A
manifold is closed if it is compact and has no boundary and open if it has no
compact components.

Comparing what was said in Remarks 3.1.1.2, 3.1.1.3, Theorem 3.1.1.7, and
De�nition 3.1.1.10 with the corresponding properties of Hausdor�, second count-
able, and compact spaces we see that:

� every open subset of an n-dimensional manifold is an n-dimensional man-
ifold;

� the interior of an n-dimensional manifold is an n-dimensional manifold
without boundary;

� the boundary of an n-dimensional manifold is an (n−1)-dimensional man-
ifold without boundary;

� the boundary of a compact manifold is a closed manifold;

� the product of s manifolds of dimensions n1, . . . , ns is an (n1 + · · ·+ ns)-
dimensional manifold;

� the double of an n-dimensional manifold is an n-dimensional manifold
without boundary;

� and the double of a compact manifold is a closed manifold.

Since the components of a manifold constitute an open cover, their number is
�nite in the compact case and countable in general (see Theorem 1.1.6.5).

Clearly Rn, Rn−, Sn and Dn, which we gave above as examples of locally
Euclidean spaces, are manifolds.

Theorem 3.1.1.12. Manifolds are locally compact.

Proof. Let x be a point of an n-dimensional manifold X. Fix a homeomorphism
φ of a neighbourhood U of x onto Rn or Rn−, and a neighbourhood V of φ(x)
in φ(U) with compact closure ClV . Let U ′ = φ−1(V ). Then obviously U ′ is
a neighbourhood of x in X, U ′ ⊂ φ−1(ClV ), and φ−1(ClV ) is compact. Thus
φ−1(ClV ) is closed and contains both the neighbourhood U ′ and its closure
ClU ′. We conclude that ClU ′ is compact.
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Theorem 3.1.1.13. Manifolds are metrisable.

Proof. Every locally compact Hausdor� space is regular (see Theorem 1.1.7.23),
and every regular second countable space is metrisable (see Theorem 1.1.6.9).

Example 3.1.1.14. The following example shows that for n ≥ 1 there are n-
dimensional locally Euclidean spaces with countable base which are not Haus-
dor�. Consider X = RncupiRn, where i = [incl : Rn \ Rn−] → Rn] . Then X
is obviously an n-dimensional, second countable, locally Euclidean space, but
for n ≥ 1 and x ∈ Rn−1

1 , any two neighbourhoods of the points Imm1(x) and
Imm2(x) in X intersect.

Information 3.1.1.15. For n ≥ 1 there are connected, Hausdor�, n-dimensional
locally Euclidean spaces that are not second countable. A two-dimensional
example can be found in [5], and a one-dimensional one - in [11], p. 164 (the
trans�nite line, or �Alexandrov's line�). Higher-dimensional examples can be
constructed from these by taking direct products with Euclidean spaces.

One-dimensional Manifolds

Remark 3.1.1.16. A zero-dimensional connected manifold obviously reduces to
a point. Theorems 3.1.1.18 and 3.1.1.20 below provide the topological clas-
si�cation of connected one-dimensional manifolds. The two-dimensional case
will be analysed in �3.5 (see Subsection 3.5.3). The topological classi�cation of
manifolds of higher dimensions is a very di�cult problem.

Lemma 3.1.1.17. If a connected Hausdor� space X can be represented as the
union of two open subsets homeomorphic to R1, then X is homeomorphic to
either R1 or S1.

Proof. Let X = U ∪V be the above representation and φ : U → R1, ψ : V → R1

- the corresponding homeomorphisms. We exclude the trivial cases U ⊂ V and
V ⊂ U , where X is homeomorphic to R1, and examine the sets φ(U ∩ V ) and
ψ(U ∩ V ).

Since the intersection U ∩ V is open in both U and V , φ(U ∩ V ) and
ψ(U ∩ V ) are open in R1 and their components are intervals. None of these
intervals is bounded: indeed, suppose that φ(U ∩ V ) contains a bounded in-
terval (a, b). Then φ−1((a, b)) is both closed in V (as the intersection of the
compact, and hence closed set φ−1([a, b]) with V ) and open in V , which implies
V = φ−1((a, b)) ⊂ U , a contradiction. Moreover, φ(U ∩ V ) ̸= R−1 because, if
not, U ⊂ V . Similarly, ψ(U ∩ V ) ̸= R−1. Finally, we are left with only two
possible cases:

(i) each of the sets φ(U ∩ V ) and ψ(U ∩ V ) is an open half line;

(ii) each of the sets φ(U ∩ V ) and ψ(U ∩ V ) the union of two disjoint open
half lines.
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Since we may multiply both φ and ψ by −1, we may assume that:
Case (i), φ(U ∩ V ) has the form (−∞, a), and ψ(U ∩ V ) - the form (b,∞).

Consider the composition

(−∞, a) = φ(U ∩ V )
abrφ−1

−−−−−→ U ∩ V abrψ−−−→ ψ(U ∩ V ) = (b,∞).

This map is injective and continuous, and hence monotone and obviously in-
creasing (if it were to decrease, the points φ−1(a) and ψ−1(b) would have no
disjoint neighbourhoods in X). Thus,

X = ψ−1((−∞, ψ(xQ]) ∪ φ−−1([(φ(x0),∞)),

for some point x0 ∈ U ∩ V , and so X is homeomorphic to R1.
Case (ii), φ(U ∩ V ) = (∞, a1) ∪ (a2,∞) and ψ(U ∩ V ) = (∞, b1) ∪ (b2,∞),

for some a1, a2, b1, b2 (a1 < a2, b1 < b2), and we may assume that the composite
homeomorphism

φ(U ∩ V )
abrφ−1

−−−−−→ U ∩ V abrψ−−−→ ψ(U ∩ V )

maps (−∞, a1) onto (b2,∞), and (a2,∞) onto (−∞, b1). Both functions (−∞, a1) 7→
(b2,∞), and (a2,∞) 7→ (−∞, b1), which represent compressions of this compos-
ite homeomorphism, are increasing (if, for example, the �rst were to decrease,
then the points φ−1(a1) and ψ−1(b2) would have no disjoint neighbourhoods in
X). We can thus write

X = ψ−1([ψ(x2), ψ(x1)]) ∪ φ−1([φ(x1), φ(x2)]),

with some points x1 ∈ φ−1((−∞, a1)) = ψ−1((b2,∞)) and x2 ∈ φ−1((a2,∞)) =
ψ−1((−∞, b2)). Therefore, X is homeomorphic to S1.

Theorem 3.1.1.18. Every compact, connected, one-dimensional manifold is
homeomorphic to either S1 or D1.

Proof. For a start, assume that the given manifold is closed. Then it can be
covered by a �nite number of open subsets homeomorphic to R1, and we may
arrange these in a sequence U1, . . . , Us such that each union Vk = U1 ∪ · · · ∪Uk
is connected. According to Lemma 3.1.1.17, the �rst of the sets V1, . . . , Vs not
homeomorphic to R1 is homeomorphic to S1, and being both open and closed,
it is the entire manifold, which is thus homeomorphic to S1.

Assume now that the manifold has a boundary. Then its double is a closed,
connected, one-dimensional manifold, and as such is homeomorphic to S1. There-
fore, the original manifold is homeomorphic to a subset of S1. Since this subset
is connected, closed, non-empty, di�erent from S1, and not reduced to a point,
it is homeomorphic to D1 .

Lemma 3.1.1.19. If a topological space X can be represented as the union of
a non-decreasing sequence of open subsets, all homeomorphic to R1, then X is
homeomorphic to R1.
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Proof. Let X = ∪Vi be the given representation. Clearly, any homeomorphism
of onto some interval (a, b) extends to a homeomorphism of Vi+1| onto one
of the intervals (a, b), (a − 1, b), (a, b + 1), or (a − 1, b + 1). Hence one can
construct inductively a sequence of intervals and a sequence of homeomorphisms
φ1 : V1 → ∆1, φ2 : V2 → ∆2, . . . such that φi = abrφi+1. The map of X onto
the interval ∪∆i, which agrees with φi on Vi, is obviously a homeomorphism.

Theorem 3.1.1.20. Every non-compact, connected, one-dimensional manifold
is homeomorphic to either R1 or R1

−.

Proof. First, assume that the given manifold X has no boundary. Then X
can be covered by a countable family of open subsets, all homeomorphic to
R1, and we can arrange these in a sequence U1, U2, . . . , such that all unions
U1 ∪ · · · ∪ Uk are connected. Then all these unions are homeomorphic to R1.
Indeed, if not, the �rst of them not homeomorphic to R1 is, according to Lemma
3.1.1.17, homeomorphic to S1, and being open and closed must coincide with
X, a contradiction. Therefore, one can apply Lemma 3.1.1.19 to our manifold
and deduce that it is homeomorphic to R1.

Now assume that X has a boundary. Then doppX is a non-compact, con-
nected, one-dimensional, boundary-less manifold, and must be homeomorphic
to R1. It follows that X is homeomorphic to a connected, closed, non-compact
subset of R, di�erent from R; as such, it is homeomorphic to R1

−.

3.1.2 Di�erentiable Structures

Remark 3.1.2.1. Recall that a real function de�ned on an open subset of Rn
is of class Cr (or a Cr-function) if it has continuous partial derivatives of all
orders up to and including r. The de�nition implies that 0 ≤ r ≤ ∞, that C0
is the class of all continuous functions, and that C∞ is the class of all functions
which have continuous partial derivatives of all orders. In addition, we say that
the real analytic functions are of class Ca (or Ca-functions). It is convenient to
consider a >∞ and thus encompass all the classes listed above by the inequality
0 ≤ r ≤ a.

Obviously, these de�nitions can be extended to real functions de�ned on
an open subset of the half space Rn−. To do this, we consider the derivatives
with respect to the �rst coordinate at the points of the boundary hyperplane
Rn− to be left derivatives, and analyticity at such points is understood as the
existence of an analytic continuation to an open set in Rn. We further extend
the de�nitions to maps of an open subset of Rn or of Rn−, into any subset of Rq:
such a map is of class Cr, or, simply, a Cr-map, if its coordinate functions are
of class Cr.
Remark 3.1.2.2. A map f of an open subset of Rn or Rn− into an open subset of
Rn or Rn− is a di�eomorphism if it is invertible and both f and f−1 are of class
C1. Two sets which can be transformed into each other by a di�eomorphism are
said to be di�eomorphic.

The following facts are contained in well-known theorems of calculus:



3.1. FUNDAMENTAL CONCEPTS 129

(i) If an open subset of Rp or Rp− is di�eomorphic to an open subset of Rn or
Rn−, then p = n.

(ii) An open subset of Rn− which is di�eomorphic to an open subset of Rn is
open in Rn.

(iii) A di�eomorphism which is the inverse of a di�eomorphism of class Cr is
itself of class Cr.

Cr-structures and Cr-spaces

Remark 3.1.2.3. The de�nitions below refer to a given set X.
A chart of dimension n on X is an invertible map of a subset of X onto an

open subset of IRp or Rp−0 The domain of a chart φ is called the support of φ
and is denoted by suppφ.

Two charts, φ and ψ, are Cr-compatible (or have a Cr-overlap) (0 ≤ r ≤ a)
if the set φ(suppφ∩ suppψ) is open in imφ, the set ψ(suppφ∩ suppψ) is open
in imψ, and the maps

φ(suppφ ∩ suppψ)
abrφ−1

−−−−−→ suppφ ∩ suppψ
abrψ−−−→ ψ(suppφ ∩ suppψ) and

ψ(suppφ ∩ suppψ)
abrψ−1

−−−−−→ suppφ ∩ suppψ
abrφ−−−→ φ(suppφ ∩ suppψ),

which are inverses of one another, are of class Cr (i.e, Cr-di�eomorphisms for
r ≥ 1 and homeomorphisms for r = 0). This condition is trivially satis�ed
whenever suppφ∩suppψ = ∅. If suppφ∩suppψ ̸= ∅, then the C1-compatibility
of the charts φ and ψ implies the equality of their dimensions. In fact, this
equality results also from the C0-compatibility of φ and ψ, as shown by Remark
3.1.1.4.

A collection of charts is an n-dimensional Cr-atlas of the set X if these charts
cover X, are n-dimensional, and each two of them are Cr-compatible. Two Cr-
atlases of X are Cr-equivalent if their union is again a Cr-atlas. This is clearly an
equivalence relation, and the equivalence classes of n-dimensional Cr-atlases of
the set X are called n-dimensional Cr-structures. The Cr-structures with r > 0
are called di�erentiable structures.

Clearly, if 0 ≤ q ≤ r, then each n-dimensional Cr-atlas is also an n-dimensional
Cq-atlas, and two equivalent Cr-atlases are also Cq-equivalent. Thus, when
0 ≤ q ≤ r every n-dimensional Cr-structure uniquely extends to a Cr-structure.

Every Cr-structure contains a maximal atlas, namely the union of all its
atlases. The latter is called the complete atlas of the structure, and its charts
are called the charts of the structure. When we pass from a Cr-structure to its
Cq-extension, the complete atlas extends too.

Remark 3.1.2.4. A set endowed with an n-dimensional Cr-structure is called an
n-dimensional Cr-space. The charts and atlases of the structure are refereed to
as the charts and atlases of the space. The complete atlas of a Cr-space X is
denoted by AtlX.
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The coordinate functions of a chart φp of the Cr-space X are called coordi-
nates on suppφ or, alternatively, local coordinates in X.

We shall denote by CqX the Cq-space obtained from the Cq-space X by
extending its Cr-structure to a Cq-structure, 0 ≤ q ≤ r.

The Cr-spaces with r ≥ q are also termed C≥q-spaces.
For examples of Cr-spaces we may look at all the open subsets X of Rn

or Rn−, with the Cr-structure de�ned by the atlas reduced to the single chart
id : X → X. In particular, for any r, the charts idRn and idRn

−
transform Rn

and Rn− into n-dimensional Cr-spaces.
Remark 3.1.2.5. Every n-dimensional locally Euclidean space has an obvious C0-
structure: its complete atlas consists of all possible homeomorphisms U → U ′,
where U is an open subset of the space and U ′ is an open subset of Rn or
Rn−. On the other hand, applying the �union of topological spaces� construction
(see Remark 1.2.4.3) to the complete atlas of a given n-dimensional C0-space,
we obtain an n-dimensional locally Euclidean space, and this transition is the
inverse of the previous one. Therefore, C0-spaces are just locally Euclidean
spaces.

Since any di�erentiable structure extends uniquely to a C0-structure, every
Cr-space with r > 0 is also a locally Euclidean space. Its topology may be
described in a more direct fashion as the topology of the union constructed
from any atlas of the structure.

Remark 3.1.2.6. Obviously, every point of an n-dimensional Cr-space X can
be covered by a chart φ of X such that imφ = Rn or Rn−. The points with
imφ = Rn are called interior points and form an open dense set, called the
interior of the space X, denoted by intX. The remaining points are called
boundary points and they form a closed set, called the boundary of X, denoted
by ∂X. These notations are in agreement with those introduced at Remark1
3.1.1.2. In fact, when r = 0, the previous and present de�nitions of the interior
and boundary points coincide.

When r > 0, we use Remark 3.1.2.2 (ii) in order to recognise the interior
and boundary points. According to this remark, when r > 0 a point X of
an n-dimensional Cr-space is a boundary point if and only if imφ ⊂ Rn− and
φ(x) ∈ Rn−1

1 , where φ is a chart on this space with x ∈ suppφ. In particular,
if we regard Rn− as a Cr-space with r > 0, then ∂Rn− = Rn−1

1 . Recall that the
corresponding statement for r = 0 appeared in Remark 3.1.1.4 and its proof
was postponed until Chapter 4.

The above characterisation of the boundary points shows that the interior
and the boundary of a Cr- space do not change when we extend its Cr-structure
to a Cq-structure, for any q ≤ r. In other words, for 0 ≤ q ≤ r, int(CqX) = intX
and ∂(CqX) = ∂X. We emphasise that the equalities int(C0X) = intX and
∂(C0X) = ∂X were proved by a reference to Remark 3.1.1.4, i.e., they depended
upon results from Chapter 4, whereas the equalities int(CqX) = intX and
∂(CqX) = ∂X for q > 0 need no such reference.

Using the relation ∂X = ∂(C0X), we see that Proposition 3.1.1.9 is valid for
Cr-spaces with r > 0 too. That is to say, a Cr-space is connected if and only if
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its interior is connected. However, this Cr-variant of Proposition 3.1.1.9 can be
proved by merely repeating the proof of the original theorem, and therefore we
can eliminate the reference to Chapter 4.

Remark 3.1.2.7. Suppose A is an open subset of an n-dimensional Cr-space X.
Then the charts of X whose supports are included in A yield a Cr-atlas of the
set A, and de�ne an n-dimensional Cr-structure on A. In this way, any open
subset of an n-dimensional Cr-space is an n-dimensional Cr-space. In particular,
the interior of any n-dimensional Cr-space is an n-dimensional Cr-space without
boundary. Moreover, the interior and the boundary of an open subset U of the
Cr-space X are obviously given by intU = U ∩ intX and ∂U = U ∩ ∂X.

Suppose φ is a chart on an n-dimensional Cr-space X. Then abrφ : ∂X ∩
suppφ → φ(∂X ∩ suppφ) is an (n − 1)-dimensional chart on ∂X. In this way
we may construct a Cr-atlas of the set ∂X, and so de�ne a Cr-structure on ∂X.
Thus, the boundary of an n-dimensional Cr-space is an (n − 1)-dimensional
Cr-space without boundary.

If φ1(φ2) is a chart on the Cr1-spaceX1 (Cr1-spaceX2) such that imφ1 = Rn1

or Rn1
− (respectively, imφ2 = Rn2 or Rn2

− ), then the composition of φ1×φ2 with
one of the homeomorphisms Rn1 × Rn2 → Rn1+n2 and Rn1

− × Rn2 → Rn1+n2
− ,

de�ned in Remark 3.1.1.3, provides an (n1+n2)-dimensional chart onX1×X2. If
∂X2 = ∅ then the charts constructed as above form a Cr-atlas of the setX1×X2,
with r = min(r1, r2), and hence de�ne a Cr-structure on X1 × X2. Thus the
product of the n1-dimensional Cr1-space X1 and the n2-dimensional Cr2-space
X2 with ∂X2 = ∅ is an (n1 + n2-dimensional Cr-space, where r = min(r1, r2).

In general, the product of the ni-dimensional Cri-spaces Xi, i = 1, . . . , s,
such that at most one of them has a boundary, is an (n1+ · · ·+ns)-dimensional
Cr-space, where r = min(r1, . . . , rs). Moreover,

int(X1 × · · · ×Xs) = intX1 × · · · ×Xs,

and if Xi is the only space having a boundary, then

∂(X1 × · · · ×Xs) = X1 × · · ·Xi−1 × ∂Xi × · · · ×Xs.

For r = 0 both formulae can be found in Theorem 3.1.1.8; for r > 0, they are
plain.

It is clear that when we extend the Cr-structure of the Cr-space X to a
Cq-structure, the Cr-structures induced on the open subsets of X and on its
boundary X also extend to Cq-structures, and that Cq(X1×· · ·×Xs) = CqX1×
· · · × CqXs. In particular, the topology de�ned by the above induced Cr-
structures coincide with the relative topology, and the product of the Cri-spaces
Xi, i = 1, . . . , s, considered as a topological space, is just the product of the
topological spaces X1, . . . , Xs.

Smooth Maps

De�nition 3.1.2.8. A continuous map f of a C≥r-space X into a C≥r-space
Y is of class Cr, or a Cr-map, if for any chart φ on X and any chart on Y , the
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composite map

φ(suppφ ∩ f−1(suppψ))
abrφ−1

−−−−−→ suppφ ∩ f−1(suppψ)
abr f−−−→ suppψ

ψ−→ imψ

is of class Cr (see Remark 3.1.2.1). Such a composite map is called a local
representative of the map f ; we use the notation loc(φ,ψ)f .

Obviously, a map f : X → Y of C≥r-spaces is of class Cr if and only if the
local representatives of f constructed for all the charts of of some atlases of X
and Y are of class Cr .

Note that this general de�nition of Cr-maps contains the de�nition given in
Remark 3.1.2.1. Now, as before, a C0-map is just a continuous map. The maps
of class C1 are called smooth, and the maps of class Ca - (real) analytic.

The composition of two C0-maps is obviously a C0-map. If A is an open
subset or the boundary of a Cr-space X, then the inclusion A ↪→ X is a Cr-
map. If A is open in X or A = ∂X, and B is open in Y or B = ∂Y , then the
compression A→ B of any Cr-map X → Y is a Cr-map.

Remark 3.1.2.9. A map f of a C≥1-space X into a C≥1-space Y is a di�eomor-
phism if it is invertible and both f and f−1 are smooth. The space Y is said
to be di�eomorphic to the space X if there is a di�eomorphism X → Y , and
Cr-di�eomorphic to X, if there is a Cr-di�eomorphism X → Y .

Of course, the identity map of a C≥1-space with r ≥ 1 is a Cr-di�eomorphism.
Also, the composition of two Cr-di�eomorphisms is a Cr-di�eomorphism, and
the inverse of a Cr-di�eomorphism is a Cr-di�eomorphism itself, as we may easily
see from Remark 3.1.2.2 (iii). Therefore, the property of being Cr-di�eomorphic
is an equivalence relation.

Using Remark 3.1.2.2 (i), we conclude that non-empty di�eomorphic spaces
have the same dimension.

Remark 3.1.2.10. Let f1 : X1 → Y1, . . . , f1 : Xm → Ym be Cr-maps with r ≥ 1
where no more than one of the spaces X1, . . . , Xm, and no more than one of the
spaces Y1, . . . , Ym, has a boundary. Then

f1 × · · · × fm : X1 × · · · ×Xm → Y1 × · · · × Ym

is obviously a Cr-map. If f1, . . . , fm are di�eomorphisms, then so is f1×· · ·×fm.
The canonical homeomorphism X1 ×X2 → X2 × x1 is a Cr-di�eomorphism

for any two Cr-spaces X1 and X2 with r ≥ 1, such that one of them has no
boundary. The canonical homeomorphisms

(X1 × · · · ×Xm−1)×Xm → X1 × · · · ×Xm and

X1 × (X2 × · · · ×Xm)→ X1 × · · · ×Xm

are Cr-di�eomorphisms for any Cr-spaces X1 × · · · ×Xm with r ≥ 1, such that
no more that one of them has a boundary.
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Subspaces

Remark 3.1.2.11. A subset A of an n-dimensional Cr-space X with r ≥ 1 is a
k-ddimensional subspace of X if each point of A is covered by a chart φ on X
such that the pair (imφ,φ(A∩suppφ)) coincides with one of the pairs (Rn,Rk),
(Rn,Rk−), or (Rn−,Rk−). If k > 0, then this condition is obviously equivalent to
the following one: each point of A is covered by a chart φ of the space X such
that φ(A ∩ suppφ) = imφ ∩ Rk or imφ ∩ Rk−.

Suppose A is a k-dimensional subspace of an n-dimensional Cr-space X, and
consider the maps abr tφ : A ∩ suppφ → φ(A ∩ suppφ) corresponding to all
charts φ on X such that φ(A ∩ suppφ) = imφ ∩ Rk or imφ ∩ Rk−. Each such
map is a k-dimensional chart on A, and together they yield a k-dimensional
Cr-atlas of A. The Cr-structure de�ned by this atlas transforms A into a k-
dimensional Cr-space. The topology of this Cr-space obviously coincides with
the relative topology.

When we extend the Cr-structure of a space to a Cq-structure with q ≥ 1,
its subspaces remain subspaces. The subspaces of CqX are called Cq-subspaces
of the original Cr-space X.

The codimension of a subspace is the di�erence between the dimension of
the ambient space and that of the subspace.

It is evident that the open subsets of a Cr-space (with r ≥ 1) are among its
subspaces; in particular, we cite its interior and its components. Warning: if
not empty, the boundary of a Cr-space is not a subspace.

It is readily seen that if A is a subspace of codimension 0 of a Cr-space X,
then intA = intA ∩ intX.

A subspace of a Cr-space is neat if it is closed as a subset and its boundary
is contained in the boundary of the space. Note that every neat subspace of
codimension 0 is made of whole components of the ambient space.

Remark 3.1.2.12. The de�nition of a subspace given in Remark 3.1.2.11 contains
implicitly the generally used method of de�ning subspaces through equations
and inequalities. Namely, according to the second variant of our de�nition,
a subset A of an n-dimensional Cr-space X (r ≥ 1) is a subspace of X of
positive dimension k if and only if each point of A has a neighbourhood U with
coordinates φ1, . . . , φn, such that the intersection A∩U is de�ned in U either by
the equations φk+1 = 0, . . . , φn = 0, or by the equations φk+1 = 0, . . . , φn = 0
and the inequality φ1 ≤ 0.

As a procedure for de�ning subspaces, this formulation has an obvious dis-
advantage; namely, we must assume from the beginning that φ1, . . . , φn are
local coordinates. We make use the implicit function theorem to make it more
e�cient.

Let X be a Cr-space (r ≥ 1), x0 ∈ X, and let f1, . . . , fm be real C1-functions
de�ned on a neighbourhood U0 of X0. We say that f1, . . . , fm are independent
at the point x0 if there is a chart φ on X with x0 ∈ suppφ and such that the
functions g1, . . . , gm : φ(U0 ∩ suppφ) → R de�ned by gi(y) = fi(φ

−1(y)) have
linearly independent gradients at the point φ(x0). The following statements are
consequences of the implicit function theorem:
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(i) if the Cr-functions f1, . . . , fm are independent at the interior point x0 of
the Cr-space X, then they can be completed to a system of coordinates in
a neighbourhood of x0;

(ii) if the Cr-functions f1, . . . , fm are independent at the boundary point x0
of the Cr-space X, and the function f1 is negative at the interior points
and zero on the boundary, then f1, . . . , fm can be completed to a system
of coordinates in a neighbourhood of x0 having f1 as the �rst coordinate.

Comparing with the previous, coordinate description of the subspaces of a Cr-
space, we see that a subset A of the n-dimensional Cr-space X is a subspace of
positive dimension k of X if:

(i) each point x0 ∈ A which is an interior point for X has a neighbourhood
U where the intersection A ∩ U is de�ned either by the equations φk+1 =
0, . . . , φn = 0, where φk+1, . . . , φ are Cr-functions independent at x0, or by
the equations φk+1 = 0, . . . , φn = 0 and the inequality φ1(x) ≤ 0, where
φ1, φk+1, . . . , φ are Cr-functions independent at x0;

(ii) each point x0 ∈ A which lies on the boundary of X has a neighbourhood
U such that the intersections intX ∩ U , ∂X ∩ U , and A ∩ U are de�ned
in U by the inequality φ1(x) < 0, by the equation φ1(x) = 0, and by the
equations φk+1 = 0, . . . , φn = 0, respectively, where φ1, φk+1, . . . , φ are
Cr-functions independent at x0.

Remark 3.1.2.13. An obvious consequence of the de�nition of a subspace is that
the interior intA of a subspace A of the Cr-space X is contained in intX, and
that the intersections ∂A∩ intX and ∂A∩ ∂X are open in ∂A, i.e, they consist
of whole components of ∂A. Moreover, it is clear that intA is a subspace of
both X and intX, while ∂A ∩ intX is a subspace of X. In particular, if A is a
neat subspace of X, then ∂A = A ∩ ∂X and intA is a neat subspace of intX,
while ∂A is a neat subspace of ∂X.

The inclusion A ↪→ X of a subspace A of a Cr-space X is obviously a Cr-map.
The compression A→ B of any Cq-map X → Y , where A (B) is a subspace of
X (respectively, Y ) is a Cq-map.

Let Ai be a subspace of the Cr-space Xi, i = 1, . . . , s, and assume that at
most one of the spaces X1, . . . , Xs has a boundary, the same being true for the
subspaces A1, . . . , As. Then A1,× · · · ×As is a subspace of X1,× · · · ×Xs, and
is a neat subspace if each Ai is neat. For example, the �bres of the product
X1,× · · · ×Xs are neat subspaces.

Let A be a subspace of the Cr-space X, and let B be a subspace of A.
Then, using the description of subspaces in Remark 3.1.2.12, we see that B is
a subspace of X; in particular, if B is a neat subspace of A and A is a neat
subspace of X, then B is also a neat subspace of X. In a similar fashion we
conclude that a neat subspace B of the Cr-space X which is contained in a neat
subspace A of X is also a neat subspace of A.
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Cr-manifolds

De�nition 3.1.2.14. A Cr-space is a Cr-manifold, or amanifold of class Cr, if it
is a topological manifold, i.e., a second-countable, Hausdor� space. A manifold
of class C0 is simply a topological manifold; see Remark 3.1.2.5. The manifolds
of class Cr with r ≥ 1 are called smooth, or di�erentiable. The manifolds of
class Ca are called (real) analytic.

Since any Cr-structure is de�ned by one of its atlases, it is interesting to
discover those properties of an atlas of a Cr-space which guarantee that the
space is Hausdor� and second-countable. Here we formulate only two obvious
conditions: if each pair of points is covered by a chart of the atlas or by two
disjoint charts of the atlas, then the space is Hausdor�; if the atlas is countable,
then the space is second-countable.

There is no need to check that a space is Hausdor� and second-countable if
the di�erentiable structure is introduced on a set which is already a topological
manifold, and the topology de�ned by the di�erentiable structure coincides with
the initial one. If the di�erentiable structure is de�ned by an atlas {φα}, then
the two topologies agree if and only if suppφα are open and cφα are homeo-
morphisms; see Remark 3.1.2.5.

A smooth manifold is closed if it is compact and has no boundary; cf. Re-
mark 3.1.1.11. Warning: at the present time the equality ∂X = ∂(C0X) is not
proven (see Remark 3.1.2.6). Therefore, we should be careful to distinguish be-
tween the smooth manifold X being closed and the topological manifold C0X
being closed.

De�nition 3.1.2.15. Reconsidering the statements made in Remarks 3.1.2.7
and 3.1.2.11 in the light of the corresponding properties of Hausdor� spaces,
second-countable spaces, and compact spaces, we may deduce the following:

� every open subset of an n-dimensional Cr-manifold is an n-dimensional
Cr-manifold;

� the interior of an n-dimensional Cr-manifold is an n-dimensional Cr-manifold
without boundary;

� the boundary of an n-dimensional Cr-manifold is an (n − 1)-dimensional
Cr-manifold without boundary;

� the boundary of a compact C -manifold is a closed C -manifold;

� the product of the Cr-manifolds X1, . . . , Xs of dimensions n1, . . . , ns, such
that no more than one of them has a boundary, is an (n1 + · · · + ns)-
dimensional Cr-manifold;

� a subspace of a Cr-manifold is a Cr-manifold.

The subspaces of smooth manifolds are called submanifolds, and the neat sub-
spaces - neat submanifolds.
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Remark 3.1.2.16. The basic examples of n-dimensional Cr-manifolds with r ≥
1 are again Rn and Rn− (see Remark 3.1.2.4 ). The submanifolds of these
spaces provide an unlimited supply of examples of Cr-manifolds. The sim-
plest are the submanifolds of Rn de�ned by one system of equations φk+1(x) =
0, . . . , φn(x) = 0, where φk+1, . . . , φn are Cr-functions de�ned on an open sub-
set of Rn and having linearly independent gradients on the set of their common
zeros. We may add to such a system the inequality φ1(x) ≤ 0, where φ1

is any Cr-function de�ned in a neighbourhood of the set of common zeros of
φk+1, . . . , φn, zero on this set, and such that the gradients of φ1, φk+1, . . . , φn
are linearly independent on the same set. For example, the sphere Sn−1 is de-
�ned, in standard coordinates, by the equation x21 + · · · + x2n − 1 = 0, and the
ball Dn - by the inequality x21 + · · · + x2n − 1 ≤ 0. Hence Sn−1 and Dn are
submanifolds of Rn and, in particular, Ca-manifolds.

The following facts are clear: Rk, for k ≤ n, and Sk, for k < n, are neat
submanifolds of Rn; Rk− and Dk are not neat submanifolds of Rn for k ≤ n; Rk−
is a neat submanifold of Rn− for k ≤ n; Sk is a neat submanifold of Sn for k ≤ n;
and Dk is a neat submanifold of Dn for k ≤ n.

Remark 3.1.2.17. Finally, we note that every real, n-dimensional vector space
has a natural Cr-structure for any r (0 ≤ r ≤ a), which makes it into an n-
dimensional Cr-manifold. This structure is de�ned by the linear charts i.e, by
the linear maps onto Rn.

3.1.3 Orientations

Remark 3.1.3.1. Consider a Cr-manifold X, and let CatlX denote the atlas
of X consisting of all the charts with connected support. If φ and ψ are two
charts on the smooth manifold X, we denote by J(φ,ψ) the Jacobian of the
map loc(φ,ψ) id, i.e, of the composite map

φ(suppφ ∩ suppψ)
abrφ=1

−−−−−→ suppφ ∩ suppψ
abrψ−−−→ ψ(suppφ ∩ suppψ).

An orientation of the smooth manifold X is a function ω : CatlX → S0 such
that ω(φ) = [sgn J(φ,ψ)](y)ω(ψ) for each two charts φ,ψ ∈ CatlX, where y
is an arbitrary point of φ(suppφ ∩ suppψ) [therefore, the function sgn J(φ,ψ)
must be constant on φ(suppφ ∩ suppψ)] . A smooth manifold endowed with
an orientation is said to be oriented. A smooth manifold which can be oriented
is orientable. Clearly, an orientation CatlX → S0 is determined by its values
on any subatlas of CatlX. Moreover, every function which carries a subatlas of
CatlX into S0 and satis�es the previous compatibility condition, i.e, its values
on two charts φ,ψ of the given subatlas are obtained one from another multiply-
ing by [sgn J(φ,ψ)](y) with y ∈ φ(suppφ ∩ suppψ), extends to an orientation
CatlX → S0. When one extends the Cr-structure of a Cr-manifold X to a Cq
structure with q < r, CatlX becomes a subatlas of Catl CqX. If q ≥ 1 , this es-
tablishes a one-to-one correspondence between the orientations of the manifolds
X and CqX.
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Remark 3.1.3.2. For each orientation ω : CatlX → S0 there exists the opposite
orientation −ω, and thus every non-empty orientable manifold has at least two
orientations.

Given two arbitrary orientations of the manifold X, the set covered by the
charts on which they agree, and the set covered by the charts on which they do
not agree are open, disjoint, and together they cover X; hence, each of them
is a union of components of the manifold X. Consequently, the orientation of
a connected manifold is uniquely determined by its value at one chart. More-
over, every smooth, connected, orientable manifold has exactly two orientations,
whereas an orientable smooth manifold with s components has 2s orientations.
The standard way of describing an orientation of a smooth connected manifold
is to indicate the charts where it is positive. For example, Rn has a natural
orientation, positive on the chart idRn .

Remark 3.1.3.3. Since any point of a zero-dimensional manifold X is covered
by only one chart of CatlX, it follows that every zero dimensional manifold is
orientable, and has actually a natural orientation, identically equal to +1. We
shall see later (in Subsection 5.3.1 and Remark 5.6.3.4) that all one-dimensional
manifolds are orientable, whereas the manifolds of dimension ≥ 2 are not nec-
essarily so.

In Chapter 5 we shall give e�ective su�cient conditions for the orientability
of a manifold of arbitrary dimension (see Subsection 5.6.3). The crudest of them
is that the manifold be simply connected.

Remark 3.1.3.4. Let A be an open subset of a smooth manifold X. Then
CatlA ⊂ CatlX, and every orientation of X induces an orientation of A; in
particular, A is orientable whenever X is. If A intersects all the components of
X, then the orientation of X is determined by the orientation induced on the
submanifold A.

In the case A = intX, we may say more: not only does each orientation of
X restrict to an orientation of the manifold intX, but also each orientation of
intX extends to an orientation of X. Indeed, for each connected subset U of X,
U ∩ intX is connected (see Remarks 3.1.2.6 and 3.1.2.7) and so the compression

abrφ : suppφ ∩ intX → φ(suppφ ∩ intX)

belongs to Catl(intX) for any φ ∈ CatlX. This enables us to extend any
orientation ω : Catl(intX) → S0 to an orientation CatlX through the formula
φ 7→ ω(abrφ). Thus, if we associate to each orientation CatlX → S0 its
restriction Catl(intX) → S0, we obtain a one-to-one correspondence between
the orientations of the manifolds X and intX. In particular, X is orientable
whenever intX is such. According to Remark 3.1.2.7, for each chart φ on the
smooth manifold X we have the corresponding chart

abrφ : suppφ ∩ ∂X → φ(suppφ ∩ ∂X)

on its boundary ∂X. It is clear that every chart in Catl ∂X is of the form abrφ,
where φ ∈ CatlX, and that for each orientation ω : CatlX → S0 of the manifold
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X we have an orientation of its boundary, de�ned by the rule abrφ 7→ ω(φ).
In particular, ∂X is orientable whenever X is such. If all the components of
X have a boundary, then the orientation of X is uniquely determined by the
orientation it induces on ∂X.

The only submanifolds of a smooth manifold X which inherit a natural
orientation when X is oriented are those of codimension zero. This orientation
has been implied in the discussion of the open subsets of X. If A is an arbitrary
submanifold of X of codimension zero, then the induced orientation is de�ned
by the orientation of its interior intA, which is open in X. In particular, A
is orientable if X is such. If A intersects all the components of X, then the
orientation of X is uniquely determined by the orientation it induces on A.

Since the manifold Rn has a natural orientation, all its n-dimensional sub-
manifolds inherit a natural orientation too. In particular, Dn carries a natural
orientation, which in turn induces an orientation of its boundary Sn−1. Warn-
ing: the orientation of S0 induced by the orientation of D1 does not coincide
with the canonical orientation of S0, considered as a zero-dimensional manifold
(see Remark 3.1.3.3).

Orientations and Di�eomorphisms

De�nition 3.1.3.5. Every di�eomorphism f : X → Y establishes a one-to-
one correspondence between the orientations of the manifolds X and Y . If both
manifolds are oriented and f transforms the orientation ofX into the orientation
of Y (into the opposite orientation of Y ), then we say that f preserves (reverses)
the orientation or that f is orientation preserving (respectively, orientation
reversing).

To determine whether a di�eomorphism f : X → Y is orientation preserving
or not, we may look at its local representatives; if X and Y are connected, it
is enough to analyse only one local representative. Namely, suppose that ωX
and ωY are orientations of the connected manifolds X and Y . Let φ ∈ CatlX
and ψ ∈ CatlY be two charts and pick x ∈ suppφ ∩ f−1(suppψ). If the sign
of the Jacobian of loc(φ,ψ)f at the point φ(x) coincides with (is opposite to)
the sign of the product ωX(φ)ωY (ψ), then f is clearly orientation preserving
(respectively, reversing).

Remark 3.1.3.6. Of special interest is the case where X = Y is a connected
manifold. It is readily seen that in this situation a di�eomorphism which pre-
serves (reverses) one orientation of X, will preserve (respectively, reverse) all
orientations of X. Therefore, in this case one can talk about an orientation
preserving (reversing) di�eomorphism without �xing an orientation. In partic-
ular, every (auto)di�eomorphism of a smooth, connected, orientable manifold
is either orientation preserving or orientation reversing.

As an example, consider a non-singular linear transformation f : Rn → Rn.
It is clear that f is a di�eomorphism and that f is orientation preserving (revers-
ing) if det f > 0 (respectively, det f < 0). If the transformation f is orthogonal,
then its compressions abr f : Dn → Dn and abr f : Sn−1 → Sn−1 are meaningful,
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are di�eomorphisms, and preserve (reverse) orientation if det f = 1 (respec-
tively, det f = −1) [here S0 is oriented as D1]. If f is given by f(x) = −x,
then det f = (−1)n. Hence this di�eomorphism and the induced antipodal
map abr f : Sn−1 → Sn−1 are orientation preserving for n even and orientation
reversing for n odd.

Orientations and Products of Manifolds

Remark 3.1.3.7. We have shown in Remark 3.1.2.7 that every product φ1×· · ·×
φs of charts φ1, . . . , φs on the smooth manifolds X1, . . . , Xs without boundary
of dimensions n1, . . . , ns, may be regarded, using the canonical identi�cation
Rn1 × · · · × Rns = Rn1+···+ns de�ned by the formula

((x11, . . . , x1n1
), . . . , (xs1, . . . xsns

)) 7→ (x11, . . . , x1n1
, . . . , xs1, . . . , xsns

)

as a chart on the product X1 × · · · ×Xs. Given orientations ω1, . . . , ωs of the
manifolds X1, . . . , Xs, let us de�ne a mapping from the collection of all charts
φ1 × · · · × φs with φ1 ∈ CatlX1, . . . , φs ∈ CatlXs, into S0 by the formula

φ1 × · · · × φs 7→ ω1(φ1), . . . , ωs(φs).

It is obvious that the above collection of charts is a subatlas of Catl(X1, . . . , Xs),
and that this mapping satis�es the compatibility condition introduced in Re-
mark 3.1.3.1. Therefore, it extends to an orientation of the manifold X1 ×
· · · × Xs, called the product of the orientations, ω1, . . . , ωs. The latter can be
de�ned even if one of the manifolds X1, . . . , Xs has a boundary: it is the ori-
entation induced by the orientation of the interior intX1 × · · · × intXs. Thus,
a product of smooth, oriented manifolds (such that no more than one of them
has a boundary) is oriented, and a product of smooth, orientable manifolds is
orientable.

We note that the orientability of X1 × · · · × Xs implies the orientability
of each factor X1, . . . , Xs. In fact, if ω is an orientation of the product and
φ1, . . . , φi−1, φi+1, . . . , φs are �xed charts of

Catl(intX1), . . . ,Catl(intXi−1),Catl(intXi+1), . . . ,Catl(intXs),

then the mapping Catl(intXi)→ S0 given by

φ 7→ ω(φ1 × · · · , φi−1 × φ× φi+1 × · · · × φs)

is an orientation of the manifold intXi.

Theorem 3.1.3.8. Suppose X1 and X2 are smooth oriented manifolds of di-
mensions n1 and n2, such that one of them has no boundary. The canonical
di�eomorphism X1 ×X2 → X2 × x1 preserves orientation if n1n2 is even and
reverses orientation if n1n2 is odd.
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Proof. Let φ1 ∈ Catl(intX1) and φ2 ∈ Catl(intX2) be charts with imφ1 = Rr1
and imφ2 = Rr2 , respectively. Clearly,

φ1 × φ2 ∈ Catl(int(X1 × x2)), φ2 × φ1 ∈ Catl(int(X2 × x1)),

and the local representative Rn1+n2 → Rn2+n1 of the canonical di�eomorphism
X1 ×X2 → X2 ×X1 relative to these charts is given by

(x1, . . . , xn1+n2
) 7→ (xn1+1, . . . , xn1+n2

, x1, . . . , xn1
).

Therefore, the Jacobian of this local representative is (−1)n1n2 .

Theorem 3.1.3.9. Suppose X1, . . . , Xs are smooth oriented manifolds of di-
mensions n1, . . . , ns such that only one, say Xi, has a boundary. Then the
canonical orientation of the product

X1 × · · · ×Xi−1 × ∂Xi ×Xi+1 × · · · ×Xs

and the natural orientation that this product receives as ∂(X1 × · · · ×Xs) di�er
by a factor of (−1)n1+···+ni−1 .

Proof. Obviously, the above orientations agree if i = 1. The case i > 1 reduces
to i = 1 with the aid of the di�eomorphisms

X1 × · · · ×Xs → Xi ×X1 × · · ·Xi−1 ×Xi+1 × · · · ×Xs

X1 × · · · ×Xi−1 × ∂Xi ×Xi+1 × · · · ×Xs → ∂Xi ×X1 × · · ·Xi−1 ×Xi+1 × · · · ×Xs.

The �rst of them is the product of the canonical di�eomorphism

(X1 × · · · ×Xi−1)×Xi → Xi × (X1 × · · ·Xi−1)

with idXi+1×···×Xs
, while the second is the product of the canonical di�eomor-

phism
(X1 × · · · ×Xi−1)× ∂Xi → ∂Xi × (X1 × · · ·Xi−1)

with idXi+1×···×Xs
. The �rst di�eomorphism preserves (reverses) the orientation

if the product (n1+· · ·+ni−1)ni is even (respectively, odd), while the second has
the same property if the product (n1 + · · ·+ ni−1)(ni − 1) is even (respectively,
odd); see Theorem 3.1.3.8. This explains the factor (−1)n1+···+ni−1 .

Orientations of Vector Spaces

Remark 3.1.3.10. Real vector spaces are smooth manifolds (see Remark 3.1.2.17)
and hence the de�nition of orientation given in Remark 3.1.3.1 applies. On the
other hand, there is a well-known, purely vectorial de�nition of an orientation
of a real vector space: an orientation is a mapping from the set of all bases of
the space into S0, which takes the same value on two bases if and only if the
matrix transforming one basis into the other has a positive determinant. This
vectorial de�nition clearly agrees with the de�nition given in Remark 3.1.3.1
and is often more convenient.
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In particular, the vectorial de�nition makes obvious the following remark.
Let f be a linear map of a real vector space V into another real vector space.
Fix a subspace V ′ ⊂ V that is mapped isomorphically by f onto im f . Then we
may represent V as the direct sum of the spaces im f and ker f . Consequently,
the orientations of any two of the three spaces V , im f , and ker f determine the
orientation of the third. As an immediate result of our de�nition, we see that
this connection between the orientations of V , im f , and ker f does not depend
upon the choice of V ′, but only on the map f .

(Transcriber's note: I have no idea what the above paragraph is referring to.
Chances are the authours are talking about the following fact.)
We have V/ ker f ≃ im f by the homomorphism theorem. Since V is a vector
space, we have V ≃ im f ⊕ ker f .

3.1.4 The Manifold of Tangent Vectors

Remark 3.1.4.1. Suppose that X is an n-dimensional Cr-manifold, r ≥ 1. For
each point x ∈ X, let AtlxX be the collection of all charts φ ∈ AtlX such that
x ∈ suppφ; recall that AtlX denotes the complete atlas of X. If φ,ψ ∈ AtlxX,
then at the point φ(x) the di�erential of the di�eomorphism

loc(φ,ψ) id : φ(suppφ ∩ suppψ)→ ψ(suppφ ∩ suppψ)

is meaningful [and is the linear map Rn → Rn whose matrix is the Jacobi
matrix of the map loc(φ,ψ) id at the point φ(x)]. We denote this di�erential by
dx(φ,ψ).

Now consider the real vector space of all the maps AtlxX → Rn (with the
natural operations). It is clear that those maps v : AtlxX → Rn which satisfy
the relation v(ψ) = dx(φ,ψ)v(φ) for any two charts φ,ψ ∈ AtlxX yield a
subspace of this vector space, i.e, they form a real vector space. The latter is
called the tangent space to X at the point x and is denoted by TangxX. The
maps in TangxX are called tangent vectors at the point x (on X), or vectors
tangent to X at x. Obviously, a tangent vector is completely de�ned by its
value on an arbitrary chart of AtlxX, and for each chart φ ∈ AtlxX and each
vector u ∈ Rn there is a vector v ∈ TangxX with v(φ) = u. Therefore, the
mapping φ# : TangxX → Rn, φ#(v) = v(φ), de�ned for a chart φ ∈ AtlxX,
is invertible. Moreover, φ# being linear, it is an isomorphism; in particular,
dimTangxX = n. The isomorphism φ−1

# takes the canonical basis ort1, . . . , ortn
of Rn into a basis of TangxX, which we shall call the φ-basis. The coordinates of
a vector v ∈ TangxX relative to the φ-basis coincide with the usual coordinates
of the vector v(φ) and are called the φ-coordinates of v.

Remark 3.1.4.2. We denote the union ∪x∈X TangxX, i.e., the space of all vectors
tangent to X, by TangX. The map TangX → X transforming Tangx → X
into x is called projection and is denoted by proj. Thus proj−1(x) = TangxX.

The set TangX has a natural topology which makes it a topological manifold.
Furthermore, for r ≥ 2, TangX has a natural di�erentiable structure. In order
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to describe these structures, we de�ne, for each chart φ ∈ AtlX, the map

tnφ : proj−1(suppφ)→ imφ× Rn, tnφ(v) = (φ ◦ proj(v), φ#(v)).

If we identify Rn×Rn with R2n, and consider imφ×Rn to be an open subset of
R2n or R−

2n, then we may interpret tnφ as a 2n-dimensional chart on TangX.
Obviously, if ψ ∈ AtlX is another chart, the composition

φ(suppφ ∩ suppψ)× Rn =

tnφ(proj−1(suppφ) ∩ proj−1(suppψ)
abr(tnφ)−1

−−−−−−−→

proj−1(suppφ) ∩ proj−1(suppψ)
abr(tnφ)−−−−−−→

tnψ(proj−1(suppφ) ∩ proj−1(suppψ)) = ψ(suppφ ∩ suppψ)× Rn

(3.1.4.3)

is given by the formula (a, u) 7→ (loc(φ,ψ) idφ−1(a)(φ,ψ)u). Equivalently, writ-
ing this composite map in coordinates, we have

(a1, . . . , an;u1, . . . , un) 7→ (b1, . . . , bn; v1, . . . , vn),

where
bj = ℓj(a1, . . . , an),

vj =
∑m
i=1Diℓj(a1, . . . , an)ui,

}
j = 1, . . . , n. (3.1.4.4)

and ℓ1, . . . , ℓn are the coordinate functions of the map loc(φ,ψ) id (Di denotes
the partial derivative with respect to the i-th coordinate). Formula (3.1.4.4)
shows that the charts tnφ and tnψ are Cr−1 compatible (we set C∞−1 = C∞

and Ca−1 = Ca). Moreover, the charts tnφ, φ ∈ AtlX, cover TangX, and
thus yield a Cr−1-atlas of the set TangX. This atlas has a countable subatlas
(since AtlX has such a subatlas). Furthermore, for any two vectors of TangX,
it has either a chart which contains both of them, or a pair of disjoint charts,
each containing one of the vectors (indeed, recall that AtlX contains, for any
two points of X, either a chart containing both of them, or a pair of disjoint
charts, each containing one of the points). Therefore, it makes TangX into
a 2n-dimensional Cr−1-manifold, which we call the total manifold of vectors
tangent to the manifold X.

Clearly, the projection TangX → X, the inclusions TangxX → TangX,
and the natural map X → TangX which takes each point x into the zero vector
of the space TangxX, are all Cr−1 maps.

Formula (3.1.4.4) shows that for r ≥ 2 the Jacobian of the composite map
(3.1.4.3) at the point (a, u) is equal to the square of the Jacobian of the map
loc(φ,p si) id at the point a. We deduce that for r ≥ 2 the manifold TangX
is always orientable and even carries a canonical orientation, namely the one
which is positive on the charts tnφ with φ ∈ CatlX.

One more remark: let X1 and X2 be two arbitrary smooth manifolds such
that ∂X2 = ∅. Then for any two points x1 ∈ X1 and x2 ∈ X2, Tangx1,x2

(X1 ×
X2) and Tangx1

X1 ⊕ Tangx2
X2 are isomorphic as vector spaces, and the iso-

morphism is natural. In addition, the isomorphisms corresponding to all pairs
(x1, x2) yield a di�eomorphism of Tang(X1 ×X2) onto TangX1 × TangX2.
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The Di�erential of a Smooth Map

Remark 3.1.4.5. Let f be a Cr-map of an m-dimensional C≥r-manifold X into
an n-dimensional C≥r-manifold Y , r ≥ 1. For a point x ∈ X and two charts
φ ∈ AtlxX and ψ ∈ Atlf(x) Y , we let dx(f ;φ,ψ) denote the di�erential of
the map loc(φ,ψ)f at the point φ(x), regarded as the linear map Rm → Rn
whose matrix is the Jacobi matrix of loc(φ,ψ)f at φ(x). If φ′ ∈ AtlxX and
ψ′ ∈ Atlf(x) Y are two other charts, then

dx(f ;φ
′, ψ′) = df(x)(ψ,ψ

′)) ◦ dx(f ;φ,ψ) ◦ dx(φ′, φ).

Combining this relation with the equalities dx(φ′, φ = φ#◦(φ′
#)

−1 and df(x)(ψ,ψ′)) =

ψ′
# ◦ ψ−1 we see that

(ψ′
#)

−1 ◦ dx(f ;φ′, ψ′) ◦ φ′
# = ψ−1

# ◦ dx(f ;φ,ψ) ◦ φ#,

i.e., the linear map ψ−1
# ◦ dx(f ;φ,ψ) ◦ φ# : TangxX → Tangf(x) Y does not

depend upon the choice of the charts φ and ψ. This linear map is called the
di�erential of the map f at the point x and is denoted by dxf . The map
TangX → Tang Y which equals dxf on TangxX for all x ∈ X is called the
di�erential of the map f and is denoted by df . The resulting diagramme

TangX
df //

proj

��

Tang Y

proj

��
X

f
// Y

is clearly commutative.
Let ℓ1, . . . , ℓn be the coordinate functions of the map loc(φ,ψ)f . Then the

local representative loc(tnφ, tnψ)df of the di�erential df is given in coordinates
by the formula

(a1, . . . , am;u1, . . . , um) 7→ (b1, . . . , bn; v1, . . . , vn),

where
bj = ℓj(a1, . . . , am),

vj =
∑m
i=1Diℓj(a1, . . . , am)ui,

}
j = 1, . . . , n.

Therefore, df is of class Cr−1.
Of course, d(h ◦ f) = dh ◦df for any smooth map h of Y into a third smooth

manifold, and df = id(TangX) when X = Y and f = idX. Also, if f is a
di�eomorphism, then df is a di�eomorphism for r ≥ 2 and a homeomorphism
for r = 1.

In the special case when X is an open subset of Rm or of Rm− , and Y is an
open subset of Rn or of Rn−, in addition to the di�erential dxf : TangXx →
Tangf(x) Y one has the classical di�erential of the map f , i.e, the linear map
Rm → Rn whose matrix is the Jacobi matrix of f at the point x. Let us identify
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the spaces TangxX and Rm (Tangf(x) Y and Rn) via the linear isomorphism
(idX)# : Tangx → Rm (respectively, (idY )# : Tangf(x) Y → Rn). Then it is
clear that dxf becomes the classical di�erential.

Remark 3.1.4.6. If A is a submanifold or the boundary of a smooth manifold
X, then the di�erential dx incl : TangxA → TangxX of inclusion incl : A → X
is a monomorphism for each point x ∈ A. Thus, we can identify the tangent
space TangxA with the subspace dx incl(TangxA) of TangxX, and TangA -
with d incl(TangA).

If A is a submanifold of Rn, then along with the identi�cation TangxA =
dx ∈ (TangxA) one has the identi�cation TangxRn = Rn via the canonical (lin-
ear) isomorphism (idRn) : TangxRn → Rn, and so TangxA becomes a subspace
of Rn.

It is easy to describe this subspace explicitly when A is de�ned in a neigh-
bourhood of x by the independent functions φk+1, . . . φn as in Remark 3.1.2.12.
In this situation, TangxA consists of all the vectors of Rn which are orthogo-
nal to the n− k vectors gradφk+1, . . . gradφn. For example, Tangx Sn−1 is the
subspace of Rn composed of all vectors orthogonal to the vector x.

Vector Fields

De�nition 3.1.4.7. A vector �eld on a smooth manifold X is a continuous
map X → TangX which takes each point x ∈ X into a vector tangent to X at
x. A trivial example is the zero vector �eld, whose value at each point x ∈ X
is the zero vector of the space TangxX (see Remark 3.1.4.2).

A smooth, n-dimensional, Cr-manifold X is Cr-parallelisable if there exist n
Cr-vector �elds f1, . . . , fn : X → TangX such that, at each point x ∈ X, the
vectors f1(x), . . . , fn(x) yield a basis of the space TangxX. For example, Rn
(regarded as a Ca-manifold) is Ca-parallelisable: a parallelisation is given by the
vector �elds which associate to each point x ∈ Rn the (idRn)-basis of the space
TangxRn.
C0-parallelisability is simply called parallelisability. It will be shown in Chap-

ter 4 (see Remark 4.6.4.3) that the parallelisability of a compact C≥r+1-manifold
with r ≤ ∞ implies its Cr-parallelisability.

INFORMATION. The Cr-parallelisability is a consequence of the paral-
lelisability of a C≥r+1-manifold even if the manifold is not compact, or if r = a.

Theorem 3.1.4.8. Suppose that the smooth manifold X is parallelised by the
Cr-vector �elds f1, . . . , fn : X → TangX. Then the formula (x, (y1, . . . , yn)) 7→
y1f1(x)+ · · ·+ynfn(x) de�nes a Cr-di�eomorphism of the product X×Rn onto
TangX. Indeed, the formula v 7→ (proj(v), (y1, . . . , yn)), where y1, . . . , yn are
the coordinates of the vector v relative to the basis f1(proj(v)), . . . , fn(proj(v))
of Tangproj(v)X, de�nes the inverse map TangX → X × Rn, and obviously
both maps are of class Cr. Thus the total manifold of vectors tangent to a
Cr-parallelisable n-dimensional smooth manifold X is Cr-di�eomorphic to the
product X × Rn.
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In particular, we deduce that every C1-parallelisable smooth manifold is ori-
entable.

Proof. (of the second statement)
In fact, TangX is orientable for any Cr-manifold X with r ≥ 2 (see Remark
3.1.4.2); hence, in our case, the product X × Rn is orientable, which in turn
implies the orientability of X (see Remark 3.1.3.7).

Example 3.1.4.9. For each odd n, there is a vector �eld with no zeros on
the sphere Sn. For example, such a vector �eld Sn → Rn+1 is given by
x = (x1, . . . , xn+1) 7→ (y1, . . . , yn+1) ∈ Rn+1, x ∈ Sn, where y2k−1 = −x2k,
y2k = x2k−1 (k = 1, . . . , (n + 1)/2); here we consider (y1, . . . , yn+1) as a vector
in Tangx Sn (see Remark 3.1.4.6).

Note that the same vector �eld can be de�ned in a more concise fashion
as the map x 7→ xi, regarding Rn+1 as C(n+1)/2. If n + 1 is divisible by 4,
Rn+1 may be regarded as H(n+1)/4, and the formulae x 7→ ort2, x 7→ ort3, and
x 7→ ort4 (ort2, ort3, and ort4 are considered here as the imaginary quaternion
units) de�ne three vector �elds on Sn which are linearly independent at each
point. If n + 1 is divisible by 8, Rn+1 may be regarded as Ca(n+1)/8, and the
formulae x 7→ ort2, . . . , ort8 (ort2, . . . , ort8 are considered here as the imaginary
Cayley units) de�ne seven vector �elds on Sn which are linearly independent
at each point. Since all the above vector �elds are analytic, this construction
shows, in particular, that S1, S3, and S8 are Ca-parallelisable.

Information 3.1.4.10. For n ̸= 0, 1, 3, 7 the sphere Sn is not parallelisable. For
a proof, see [1] and [2].

3.1.5 Embeddings, Immersions, and Submersions

Remark 3.1.5.1. A map f : X → Y of smooth manifolds is a Cr-embedding if
f(X) is a Cr-submanifold of Y and abr f : X → f(X) is a Cr-di�eomorphism.
For example, the inclusion of a submanifold into its ambient Cr-manifold is a Cr-
embedding. Since every map f : X → Y can be written as the composition of its
compression abr f : X → f(X) with the inclusion f(X) → Y , a Cr-embedding
is really a map of class Cr.

The C1-embeddings are also termed di�erentiable embeddings. Using The-
orem 3.1.5.3 we shall prove below, we can see that a di�erentiable embedding
which is of class Cr is a Cr-embedding. Moreover, it is evident that di�eren-
tiable embeddings are topological embeddings. The latter are sometimes called
C0-embeddings

A di�erentiable embedding f : X → Y is neat if f(X) is a neat submanifold
of Y . For example, the inclusion of a neat submanifold into its smooth ambient
manifold is such an embedding. Clearly, if dimX = dimY , Y is connected, and
X ̸= ∅, then every neat di�erentiable embedding X → Y is a di�eomorphism.

It is obvious that for each Cr-embedding f : X → Y and each point x ∈
X, there are charts φ ∈ Atlx CrX and ψ ∈ Atlf(x) CrY such that loc(φ,ψ)f
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coincides with one of the inclusions

Rm → Rn, Rm− → Rn, or Rm− → Rn−,

where m = dimX and n = dimY . If f is neat, then the second case must be
excluded.

Immersions

Remark 3.1.5.2. A smooth map f : X → Y of smooth manifolds is an immersion
if

(i) dxf : TangxX → Tangf(x) Y is a monomorphism for any x ∈ X;

(ii) (df)−1(Tang ∂Y ) ⊂ Tang ∂X.

We remark that condition (i) implies that dimX ≤ dimY , and condition (ii) -
that f(intX) ⊂ intY . If ∂Y = ∅, then (ii) is automatically ful�lled.

Trivially, the composition of two immersions is an immersion.
The di�erentiable embeddings are examples of immersions.

Theorem 3.1.5.3. If f : X → Y is an immersion of class Cr, then each point
of the manifold X has a neighbourhood N such that the restriction of f to N is
a Cr-embedding.

Proof. Let x0 ∈ X be an arbitrary point, and put m = dimX, n = dimY . Now
pick some charts φ ∈ AtlXx0

X, ψ ∈∈ Atlf(x0) Y , and denote by ℓ1, . . . , ℓn the
coordinate functions of the map loc(φ,ψ)f . According to condition 3.1.5.2 (i),
the Jacobi matrix of loc(φ,ψ)f at φ(x0) has rank m. Using condition 3.1.5.2
(ii, one can assume that the minor M of this matrix, constructed from its �rst
m rows, is not zero.

[If f(x0) ∈ intY , 3.1.5.2 (ii is not necessary: one can achieve M ̸= 0 by
re-indexing the local coordinates of the chart i.e, by permuting the rows of the
matrix. When f(x0) ∈ ∂Y , 3.1.5.2 (ii ensures that all the elements of the �rst
row of the Jacobi matrix, starting with the second, are zero; this allows to
achieve M ̸= 0 by re-indexing the coordinates ψ2, . . . , ψn.]

Next apply the implicit function theorem to deduce the existence of a neigh-
bourhood W of the point (ψ1f(x0)), . . . , ψm(f(x0)) in Rm in Rm and of a Cr-
embedding h : W → imφ, such that, for i = 1, . . . ,m, one has:

hi(ψ1f(x0)), . . . , ψm(f(x0)) = φi(x0) and

ℓi(h1(y1, . . . , ym), . . . , (h1(y1, . . . , ym)) = yi [(y1, . . . , ym) ∈W ],

where h1, . . . , hm are the coordinate functions of h. Let N = φ−1(h(W )).
Evidently, N is a neighbourhood of x0. Its image f(N) in φ−1(W × Rn−m) is
de�ned by the equations

ψj − ℓj(h1(ψ1, . . . , ψm), . . . , hm(ψ1, . . . , ψm)) = 0,
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and, possibly, by the additional inequality h1(ψ1, . . . , ψm) ≤ 0. Therefore, f(N)
is a Cr-submanifold of Y . The composite map

f(N)
abrψ−−−→ ψ(f(N)))→W

h−→ h(W )
(abrφ)−1

−−−−−−→ N,

(where the second map is the compression of the orthogonal projection Rn →
Rm) is of class Cr and is the inverse of the map abr f : N → f(N). We conclude
that f |N is a Cr-embedding.

Corollary 3.1.5.4. If an immersion of class Cr is a topological embedding, then
it is a Cr-embedding. In particular, every injective Cr-immersion of a compact
manifold is a Cr-embedding.

Theorem 3.1.5.5. Let f : X → Y be a smooth map such that (df)−1(Tang ∂Y ) ⊂
Tang ∂X, and let A be a compact subset of the manifold X. If f |A is injective
and the di�erential dxf is non-degenerate for each point x ∈ A, then f is a dif-
ferentiable embedding on some neighbourhood of A. In particular, if we require,
in addition to the previous conditions, that dimX = dimY and f(∂X) ⊂ ∂Y ,
then f carries a neighbourhood of A di�eomorphically onto a neighbourhood of
f(A).

Proof. Fix for each point x ∈ A a neighbourhood such that f |Ux
is a Cr-

embedding (see Theorem 3.1.5.3), and then cover A by a �nite number of such
neighbourhoods, say Ux1 , . . . , Uxs . Since the set Y ×Y \diag Y is open in Y ×Y
(see Remark 1.2.2.4), its pre-image W under the map f × f : X ×X → Y × Y
is also open. But f is injective on A; whence W ∪ [∪si=1(Uxi

× Uxi
)] contains

A× A, and is actually a neighbourhood of A× A. Next introduce a metric on
X (see Theorem 3.1.1.13, get the corresponding metric on X ×X (see Theorem
1.2.2.9), and then set

B = {x ∈ X|Dist(A, x) < Dist((X ×X) \W,A×A)/2}.

Since B is open and contains A (see Theorem 1.1.7.15), the intersection B ∩
(∪si=1Uxi

) is also open and contains A. This intersection contains a relatively
compact neighbourhood U of A, because A is compact. Moreover, B×B ⊂W ,
and so f is injective on B. We conclude that f |ClU is a topological embedding
and f |U - a di�erentiable embedding (see Corollary 3.1.5.4).

Submersions

Remark 3.1.5.6. A smooth map f : X → Y of smooth manifolds is a submersion
if:

(i) dxf : TangxX → Tangf(x) Y is an epimorphism for any x ∈ X;

(ii) dxf(Tangx ∂X) = Tangf(x) Y for any point x ∈ ∂X ∩ f−1(intX);

(iii) ∂X ∩ f−1(intY ) is a union of whole components of the manifold ∂X.
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We remark that condition (i) implies dimX ≥ dimY , and that conditions (ii)
and (iii) are automatically ful�lled whenever ∂X = ∅.

As examples, consider smooth real functions f : X → R. As in the classical
calculus, a point x ∈ X and the corresponding value f(x) are said to be critical
for f if dxf = 0. It it clear that f is a submersion if and only if the functions f
and f |∂X have no critical points.

As additional examples of submersions we cite the projections of the product
of two smooth manifolds (one of them being without boundary) onto its factors.

Theorem 3.1.5.7. A map f of a smooth m-dimensional manifold X into a
smooth n-dimensional manifold Y is a submersion of class Cr if and only if for
each point x ∈ X there are charts φ ∈ Atlx CrX and ψ ∈ Atlf(x) CrY such that
the following holds:

� f(suppφ) ⊂ suppψ;

� the pair (imφ, imψ) coincides with one of the pairs

� (Rm, Rn),
� (Rm− , Rn), or
� (Rm− , R−),

and in each case φ(x) = 0 and ψ(f(x)) = 0; the corresponding local
representative loc(φ,ψ)f can be described,

� in the �rst case, as the projection of the product Rn×Rm−n onto its
�rst factor,

� in the second case - as the projection of the product Rm−n
− ×Rn onto

its second factor,

� and in the third case - as the projection of the product Rn− × Rm−n

onto its �rst factor.

Proof. The su�ciency of this condition is obvious. Let us prove its neces-
sity. Let φ1 ∈ AtlX X and ψ1 ∈ Atlf(x) Y be arbitrary charts such that
f(suppφ1) = suppψ1, φ1(x) = 0, and ψ1(f(x)) = 0. We denote by φ1

1, . . . , φ
1
m

and ψ1
1 , . . . , ψ

1
m the corresponding coordinate functions, and by ℓ1, . . . , ℓn the

coordinate functions of the map loc(φ1, ψ1)f . We consider three distinct cases:

a) x ∈ intX, f(x) ∈ intY ;

b) x ∈ ∂X, f(x) ∈ intY ; and

c) f(x) ∈ ∂Y .

Condition 3.1.5.6 (i) says that the Jacobi matrix of the map loc(φ1, ψ1)f , com-
puted at the point 0, has rank n in each of the three cases. Condition 3.1.5.6
(ii) says that in case b) this rank does not decrease when we remove from the
matrix the �rst column. Therefore, in cases a) and c) we may assume that the



3.1. FUNDAMENTAL CONCEPTS 149

minor constructed from the �rst n columns does not vanish, while in case b) the
same is true for the minor constructed from the last n columns. Moreover, in
case c), 0 is a boundary point of imφ1 in Rm, and the function ℓ1 vanishes on
φ1(∂X ∩ imφ1) in a neighbourhood of this point. Indeed, the �rst part of the
last assertion follows from the fact that is a non-positive function, vanishes at
0, and has non-zero gradient at 0; now the second part of the assertion is seen
to be a consequence of 3.1.5.6 (iii).

We pass from φ1, ψ1 to the required charts φ, ψ through the intermediary
charts φ2 ∈ Atlx CrX and ψ2 ∈ Atlf(x) CrY . In cases a) and c), φ2 is the chart
whose local coordinates are the restrictions of the functions

ℓ1 ◦ φ1, . . . , ℓn ◦ φ1, φ1
n+1, . . . φ

1
m

to a small enough neighbourhood U2 of the point x, while ψ2 is the chart
abrψ1 : V2 → ψ1(V2), where V2 = f(U2). In case b), φ2 and ψ2 are similarly
de�ned,

ℓ1 ◦ φ1, . . . , ℓn ◦ φ1, φ1
n+1, . . . φ

1
m

by the functions
φ1
1, . . . φ

1
m−n, ℓ1 ◦ φ1, . . . , ℓn ◦ φ1.

In all cases f(U2) = V2 and obviously in cases a) and c), the map loc(φ2, ψ2)f
is given in the new coordinates φ2

1, . . . φ
2
m and ψ2

1 , . . . ψ
2
n by the formulae ψ2

1 =
φ2
1, . . . , ψ

2
n = φ2

n, whereas in case b) the corresponding formulae are ψ2
1 =

φ2
m−n+1, . . . , ψ

2
n = φ2

m. Fix a positive ε and de�ne the subsets U and V of U2

and V2 by the inequalities

|φ2
i | < ε (i = 1, . . . ,m) and |ψ2

j | < ε (j = 1, . . . , n)

respectively. It is clear that for ε small enough, the charts φ, ψ with suppφ = U ,
suppψ = V , and local coordinates

φi(y) =
φ2
i (y)

ε− |φ2
i |

(i = 1, . . . ,m), ψj(z) =
ψ2
j (y)

ε− |ψ2
j |

(j = 1, . . . , n)

have the desired properties.

Corollary 3.1.5.8. If f : X → Y is a submersion, then f(intX) ⊂ intY ,
f−1(∂Y ) ⊂ ∂X, and the maps abr f : intX → intY and abr f : f−1(∂Y )→ ∂X
are submersions.

If f : X → Y is a submersion of class Cr, then f−1(y) is a neat Cr-submanifold
of X for y ∈ intY , and a neat Cr-submanifold of ∂X for y ∈ ∂Y .

Every submersion is an open map.
The composition of two submersions is a submersion.

Theorem 3.1.5.9. A Cr-map f : X → Y satisfying condition 3.1.5.6 (iii) is a
submersion if and only if for each point x0 ∈ X there is a neighbourhood V of
the point f(x0) and a Cr-map g : V → X, such that f(g(y)) = y for all y ∈ V
and g(f(x0)) = x0.
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Proof. The su�ciency of this condition is clear, its necessity results from The-
orem 3.1.5.7.

Theorem 3.1.5.10. Let f : X → Y be a submersion of class Cr such that
f(X) = Y , and let h be a map of Y into a third manifold. If the composition
h ◦ f is of class Cr, then h is of class Cr too.

Proof. According to Theorem 3.1.5.9, one can �nd for each point of Y a neigh-
bourhood V and a Cr-map g : V → X such that f ◦ g = [incl : V → Y ], and
hence h|V = (h ◦ f) ◦ g.

3.1.6 Complex Structures

Remark 3.1.6.1. Recall that a map of an open subset of Cm into a subset of Cn
is holomorphic if its coordinate functions are holomorphic, and biholomorphic
if it is invertible and both the map and its inverse are holomorphic. Obviously,
in the last case we must have m = n; cf. Remark 3.1.2.2.

If we regard Cm and Cn as R2m and R2n, respectively, then the holomor-
phic maps become Ca-maps, and the biholomorphic ones - Ca-di�eomorphisms.
A smooth map of an open subset of R2m into a subset of R2n is holomorphic
relative to the complex structures on R2m and R2n resulting from the identi�ca-
tions R2m = Cm and R2n = Cn] if and only if it satis�es the Cauchy-Riemann
conditions. Evidently, a map which is the inverse of a di�eomorphism satisfying
the Cauchy-Riemann conditions also satis�es these conditions. Consequently,
every holomorphic di�eomorphism is a biholomorphic map.

Remark 3.1.6.2. Suppose that a holomorphic map between subsets of Cn has
a non-degenerate di�erential at some point. Then it retains the same prop-
erty when considered as a Ca-map, and hence it maps a neighbourhood of the
given point di�eomorphically onto its image. Thus, a holomorphic map whose
Jacobian does not vanish at a point maps a neighbourhood of the point biholo-
morphically onto its image.

This statement is the exact analogue, and also the result of the theorem
concerning local inversion of a smooth map in the real case. In a similar fash-
ion, one can translate a more general theorem from the real calculus into the
complex language - the implicit function theorem. Namely, let f be a holo-
morphic map of an open subset A of Cm × Cn into Cn, and let (z0, w0) ∈ A
be such that f(z0, w0) = 0. Suppose that the Jacobian of f with respect to
the second variable does not vanish at (z0, w0). The complex implicit function
theorem states the existence of a neighbourhood U of the point z0 in Cm, of a
neighbourhood V of the point w0 in Cn, and of a holomorphic map g : U → V ,
such that U ×V ⊂ A and the pre-image of 0 under f |U×V is precisely the graph
of g.

Remark 3.1.6.3. A linear transformation of Cn is also linear as a transformation
of R2n; hence to each complex n×n-matrix C one can associate a real 2n× 2n-
matrix R. If C = A + iB and z = x + iy are the decompositions of the
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matrix C and the vector z ∈ Cn into real and imaginary parts, then Cz =
(Ax−By) + i(Bx+Ay), and

R =

[
A −B
B A

]
.

In particular, detR = |detC|. Indeed, if we add to the �rst block-row of R
the second, multiplied by i, and then add to the second block-column the �rst,
multiplied by −i, we obtain the matrix[

C 0
B C

]
,

which has the same determinant as R.

Complex Manifolds

De�nition 3.1.6.4. An n-dimensional complex chart on the set X is an invert-
ible mapping of a subset of X onto an open subset of Cn. Two complex charts,
φ and ψ, are compatible if the set φ(suppφ ∩ suppψ) is open in imϖ, the set
ψ(suppφ ∩ suppψ) is open in imψ, and the composite maps

φ(suppφ ∩ suppψ)
abrφ−1

−−−−−→ suppφ ∩ suppψ
abrψ−−−→ ψ(suppφ ∩ suppψ) and

ψ(suppφ ∩ suppψ)
abrψ−1

−−−−−→ suppφ ∩ suppψ
abrφ−−−→ φ(suppφ ∩ suppψ),

which are inverses of each other, are holomorphic (here supp is de�ned as in
the real case). If two overlapping charts of dimensions m and n are compatible,
then m = n.

A collection of complex charts is an n-dimensional holomorphic atlas of the
set X if these charts cover X, are n-dimensional, and are pairwise compatible.
Two holomorphic atlases are holomorphically equivalent if their union is again
an atlas. The family of n-dimensional holomorphic atlases of X is divided into
disjoint classes of holomorphically equivalent atlases. These classes are called
n-dimensional complex structures on X.

Remark 3.1.6.5. Any n-dimensional complex chart may be regarded as a 2n-
dimensional real chart, i.e., a 2n-dimensional chart in the sense of Remark
3.1.2.3. Furthermore, compatible complex charts yield Ca-compatible charts,
holomorphic atlases yield Ca-atlases, and holomorphically equivalent atlases
yield Ca-equivalent atlases. Therefore, an n-dimensional complex structure on
the set X induces a 2n-dimensional Ca-structure on X. For us, the most im-
portant case occurs when this Ca-structure makes X into a manifold, i.e, when
it de�nes a Hausdor�, second countable topology. A set X equipped with an
n-dimensional complex structure enjoying this property is an n-dimensional
complex manifold.

We let AtlX denote the complete atlas of the complex manifold X, i.e., the
collection of all charts of all atlases of its complex structure.
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De�nition 3.1.6.6. A continuous map f : X → Y between complex manifolds
is holomorphic if all its local representatives are holomorphic, i.e., the maps
φ(suppφ ∩ f−1(suppψ)) → imψ, x 7→ ψ(f(φ−1(x))), constructed by means of
the charts φ ∈ AtlX and ψ ∈ AtlY , are holomorphic. A map f : X → Y is
biholomorphic if it is holomorphic, invertible, and its inverse is also holomor-
phic. Two complex manifolds which can be transformed one into another by a
biholomorphic map are said to be biholomorphically equivalent.

If complex manifolds are considered as Ca-manifolds, the holomorphic maps
become Ca-maps, and the biholomorphic maps - Ca-di�eomorphisms.

De�nition 3.1.6.7. Let A be a subset of an n-dimensional complex manifold
X. A is a k-dimensional submanifold of X if for each point x ∈ A there is a
chart φ ∈ AtlX such that x ∈ suppφ and φ(suppφ ∩ A) = imφ ∩ Ck. The
charts abrφ : suppφ ∩ A→ imφ ∩ Ck derived from the charts φ ∈ AtlX form
a k-dimensional holomorphic atlas of the set A, thus transforming A into a
complex manifold.

The notion of independent functions de�ned in Remark 3.1.2.12 makes sense
for the complex case too. Therefore, using the implicit function theorem,
we deduce that a subset A of the complex n-dimensional manifold X is a k-
dimensional submanifold of X if and only if for each point x0 ∈ A there are a
neighbourhood U of x0 in X and holomorphic functions φk+1, . . . , φn : U → C,
independent at x0, and such that the intersection A ∩ U is de�ned in U by the
equations φk+1(x) = 0, . . . , φn(x) = 0; cf. Remark 3.1.2.12.

If the complex manifold X is regarded as a Ca-manifold, then a submanifold
remains a submanifold and its Ca-structure induced from the Ca-structure of X
is identical to the Ca-structure induced by its own complex structure.

If A is a submanifold of the complex manifold X, then the inclusion A→ X
is holomorphic.

A map f : X → Y between complex manifolds is a holomorphic embedding
if abr f : X → f(X) is a biholomorphic map of X onto a submanifold of Y .
In this case f is the composition of the biholomorphic map X → f(X) and
the inclusion f(X) → Y . We conclude that every holomorphic embedding is a
holomorphic map.

Remark 3.1.6.8. SupposeX1, . . . , Xs are complex manifolds of dimensions n1, . . . , ns.
The products φ1 × · · · × φs of all charts φ1 ∈ AtlXi form an (n1 + · · · + ns)-
dimensional holomorphic atlas of the set X1 × · · · ×Xs, transforming it into an
(n1+ · · ·+ns)-dimensional complex manifold. Considered as a Ca-manifold, the
latter is just the product of the Ca-manifolds X1, . . . , Xs.

Remark 3.1.6.9. The same de�nitions of tangent vectors, tangent vector spaces,
total manifold of tangent vectors, and di�erential of a map (see Subsection 3.1.4)
apply in the complex case. The space TangxX tangent to the n-dimensional
complex manifold X at the point x is an n-dimensional complex vector space;
the total manifold TangX is a 2n-dimensional complex manifold, and the pro-
jection TangX → X is holomorphic. The di�erential dxf of a holomorphic
map f : X → Y at the point x ∈ X is a linear mapping TangxX → Tangf(x) Y
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of complex vector spaces, and the di�erential df is a holomorphic mapping
TangX → Tang Y .

Again, the tangent spaces TangxX and the manifold TangX may be con-
sidered as real vector spaces and as a Ca-manifold, respectively. As one may
guess, they coincide with the tangent space and the total manifold of tangent
vectors to X, regarded as a Ca-manifold. The di�erential of a holomorphic map
f , regarded as a Ca-map, coincides with the di�erential of the Ca-map f .

The simplest examples of complex manifolds are the spaces Cn themselves.
We obtain an unlimited supply of additional examples by de�ning submanifolds
of Cn through systems of equations; cf. Remark 3.1.2.16. However, this method
will never produce compact manifolds of positive dimension. In fact,

Theorem 3.1.6.10. Every compact submanifold of Cn has dimension zero.

Proof. To convince ourselves that this is true, it is enough to show that on a
compact manifold the only holomorphic functions are the constants. This is a
straightforward consequence of the well-known theorem stating that a function
holomorphic on an open subset of the complex line C which attains its maxi-
mum modulus is constant. Now suppose X is a compact, connected, complex
manifold, and f : X → C is holomorphic. Let c be a value of f such that |c| =
max|f(w)|, and let x ∈ X be such that f(x) = c. Then for each chart φ ∈ AtlX
with x ∈ suppφ and imφ = intD2 dimX , and for each point y ∈ suppφ, the set
of complex numbers z such that (1−z)φ(x)+zφ(y) ∈ imφ is an open disc with
centre 0 and radius greater than 1. The formula z 7→ f(φ−1((1−z)φ(x)+zφ(y)))
de�nes a holomorphic function on this disc, which attains its maximum modulus
as 0. Since such a function is necessarily a constant, we see that f(y) = c by
setting z = 0 and z = 1. Therefore, the set f−1(c) is open. Because f−1(c) is
also closed and non-empty, it is all of X.

Examples of compact complex manifolds will appear in �3.2.

Manifolds of Complex Origin

De�nition 3.1.6.11. Every complex manifold gives rise to a Ca-manifold when
we pass from complex to real numbers, as described in Remark 3.1.6.5. A Ca-
manifold arising in this way is called a manifold of complex origin.

Clearly, the manifolds of complex origin are even-dimensional and have no
boundary. They are orientable, and if the original complex structure is known,
they receive a canonical orientation, namely that orientation which is positive
on the real connected charts which arise from the charts of the complete atlas of
the complex structure when we pass to the reals. (Using Remark 3.1.6.3 we see
that the compatibility condition required in Remark 3.1.3.1 is satis�ed.) It is
also clear that the products of manifolds of complex origin are again manifolds
of complex origin.
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3.1.7 Exercises

Exercise 3.1.7.1. Show that a non-empty, closed, smooth manifold of dimension
n > 0 cannot be immersed in Rn.
Exercise 3.1.7.2. Show that the equation z21+ · · ·+zn = 1 de�nes a submanifold
of Cn which is Ca-di�eomorphic to Tang Sn−1.

Exercise 3.1.7.3. Show that the map f : S2 → R4, de�ned by the formula

f(x1, x2, x3) = (x21 − x22, x1x2, x1x3, x2x3),

is an immersion and that f(S2) is a submanifold of R4 di�eomorphic to RP 2.

Exercise 3.1.7.4. Show that if one of the numbers n1, . . . , ns is odd and s > 1,
then the manifold Sn1 × · · · × Sns is parallelisable.
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3.2 STIEFEL ANDGRASSMANNMANIFOLDS

3.2.1 Stiefel Manifolds

Remark 3.2.1.1. We denote by RV (n, k), or simply by V (n, k) (0 ≤ k ≤ n), the
set of linear isometric maps Rk → R. Such a map is uniquely determined by the
images of the vectors ort1, . . . , ortk ∈ Rk, i.e, by an orthonormal k-frame in Rn.
The coordinates of the vectors of this frame form the matrix of the map, which
has n rows and k columns. In this way, V (n, k) can be interpreted as the set of
orthonormal k-frames in Rn, or as the set of the n× k-matrices ∥vsi∥ such that

n∑
s=1

vsivsj = δij (1 ≤ i ≤ j ≤ k). (3.2.1.2)

We may regard a matrix ∥vsi∥ as a point of Rnk, if we index its entries vsi in
dictionary order. Thus V (n, k) becomes the subset of Rnk de�ned by the equa-
tions (3.2.1.2). An easy computation shows that the gradients of the left-hand
sides of 3.2.1.2) do not vanish and are pairwise orthogonal on this subset. Hence
V (n, k) is an [nk − k(k + 1)/2]-dimensional Ca-submanifold without boundary
of Rnk (see Remark 3.1.2.12). V (n, k) is called the Stiefel manifold.

Clearly, V (n, 0) reduces to a point, V (n, 1) is just the sphere Sn, and V (n, 2)
is the submanifold of all vectors of unit length in Tang Sn−1.

Remark 3.2.1.3. The points of V (n, n) are orthogonal transformations of Rn
, or orthogonal matrices of order n, and V (n, n) is usually denoted by O(n).
The composition of transformation (multiplication of matrices) induces a group
structure on O(n). The subgroup of O(n) consisting of all matrices with de-
terminant +1 is denoted by SO(n). The two sets SO(n) and O(n) \ SO(n) are
open in O(n)), and hence are Ca-manifolds. They are actually Ca-di�eomorphic:
multiplication by an arbitrary matrix from O(n) \ SO(n) establishes a di�eo-
morphism. Moreover, the manifold SO(n) is canonically Ca-di�eomorphic to
V (n, n− 1): a matrix from V (n, n− 1) is carried by this di�eomorphism into a
matrix from SO(n) through the addition of a column; that is to say, we complete
each orthonormal (n− 1)-frame in Rn to a positive orthonormal n-frame.

We further note that SO(2) = V (2, 1) = S1, and the group structure on
SO(2) agrees with the group structure on the circle S1, considered as the mul-
tiplicative group of complex numbers of modulus 1.

Remark 3.2.1.4. The inclusion Rn → Rn+q induces a Ca-embedding V (n, k)→
V (n+ q, k), which transforms each map φ : Rk → Rn into the composite map

Rk φ−→ Rn incl−−→ Rn+q.

There is also a canonical Ca-embedding V (n, k)→ V (n+ q, k+ q), which trans-
forms φ : Rk → Rn into the map

Rk+q = Rk × Rq φ×id−−−→ Rn × Rq = Rn+q
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Finally, the inclusion Rk−q → Rk induces a Ca-submersion

V (n, k)→ V (n, k − q),

which transforms each map φ : Rk → Rn into the composite map

Rk−q incl−−→ Rk φ−→ Rn,

i.e, each frame (v1, . . . , vk) is taken into the frame (v1, . . . , vk−q). Using The-
orem 3.1.5.9, it is readily seen that this is indeed a submersion, because given
any frame (v01 , . . . , v

0
k) ∈ V (n, k) we have an explicit construction of the neigh-

bourhood V of the frame (v01 , . . . , v
0
k−q) ∈ V (n, k − q) and of the Ca-map

g : V → V (n, k) which are required by this Theorem. In fact, one can take
as V the set of frames ((v1, . . . , vk−q) ∈ V (n, k − q) such that the vectors

v1, . . . , vk−q, v
0
k−q+1, . . . , v

0
k

are linearly independent and then, for (v1, . . . , vk−q) ∈ V de�ne g((v1, . . . , vk−q)
to be the frame obtained from

(v1, . . . , vk−q, v
0
k−q+1, . . . , v

0
k)

through standard orthogonalisation. Let us add that the pre-image of an arbi-
trary frame (v01 , . . . , v

0
k−q) ∈ V (n, k−q) under this submersion is the submanifold

of V (n, k) consisting of all the frames

(v01 , . . . , v
0
k−q, v

0
k−q+1, . . . , v

0
k),

where (v0k−q+1, . . . , v
0
k) is an orthonormal q-frame of the (n−k+ q)-dimensional

subspace of Rn which is orthogonal to the vectors v01 , . . . , v
0
k−q; in particular,

this submanifold is di�eomorphic to V (n− k + q, q).

Remark 3.2.1.5. We see from equations (3.2.1.2) that the set V (n, k) is bounded
and closed in Rnk. Therefore, V (n, k) is a closed manifold.

The manifold V (n, n− 1) = SO(n) is connected: each matrix of SO(n) can
be expressed as cu(φ1, . . . , φr)c

−1, where

u(φ1, . . . , φr) =



cosφ1 − sinφ1

sinφ1 cosφ1

. . . 0
cosφr − sinφr
sinφr cosφr

0 1
. . .

1


(with φ1, . . . , φr ∈ R) and c is an orthogonal matrix. Therefore, each matrix
can be joined to the identity matrix by the path

t 7→ cu((1− t)φ1, . . . , (1− t)φr)c1.
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Since the manifolds V (n, k) with k < n − 1 are the images under continuous
maps of V (n, n − 1) (see Remark 3.2.1.4), they are also connected. For n > 0,
V (n, n) has two connected components: SO(n) and O(n) \ SO(n).

The Complex Case

Remark 3.2.1.6. Let CV (n, k), 0 ≤ k ≤ n, be the set of linear isometric maps
Ck → Cn. In other words, CV (n, k) consists of the orthonormal k-frames in Cn
or, equivalently, of the complex n× k-matrices ∥vsj∥ such that

n∑
s=1

vsivsj = δij (1 ≤ i ≤ j ≤ k).

These equations show that CV (n, k) is a subset of Cnk = R2nk. Now we sepa-
rate their real and imaginary parts and obtain k2 real equations such that the
gradients of their left-hand sides do not vanish and are pairwise orthogonal on
CV (n, k). Thus CV (n, k) is a (2nk − k2)-dimensional Ca-submanifold without
boundary of R2nk, called the complex Stiefel manifold.

Warning: CV (n, k) is not a complex manifold in the sense of Remark 3.1.6.5.
The present de�nition does not equip it with a complex structure; in fact, such
a structure does not exist in general, since CV (n, k) is odd-dimensional for k
odd.

Clearly, CV (n, 0) reduces to a point, and CV (n, 1) is just the sphere S2n−1.
he points of the manifold CV (n, n) are unitary transformations of Cn, and
CV (n, n) is usually denoted by U(n). Like O(n), U(n) is a group under the
composition operation ◦. The subgroup of U(n) consisting of all matrices with
determinant 1 is denoted by SU(n) and is a Ca-submanifold of U(n), canonically
di�eomorphic to CV (n, n− 1) (cf. Remark 3.2.1.3).

The manifold U(n) is canonically di�eomorphic to SU(n) × S1: this di�eo-
morphism takes each pair (u, z) ∈ SU(n)× S1 into the matrix obtained from u
by multiplying its �rst row by z.

Warning: this di�eomorphism is not a group isomorphism between the direct
product of groups SU(n)× S1 and U(n).

The Ca-embeddings

CV (n, k)→ CV (n+ q, k) and CV (n, k)→ CV (n+ q, k + 1),

and the Ca-submersion

CV (n, k)→ CV (n, k − q)

are de�ned exactly as in the real case. Moreover, since each linear isometric
map Ck → Cn may be regarded as a linear isometric map R2k → R2n, there is
a canonical Ca-embedding CV (n, k)→ RV (2n, 2k).

The manifolds CV (n, k) are compact. Moreover, they are all connected.
Indeed, CV (n, k) = U(n) is connected, because every unitary matrix can be
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expressed as cu(φ1, . . . , φn)c
−1, where

u(φ1, . . . , φn) =

exp(iφ1) 0
. . .

0 exp(iφn)

 (φ1, . . . , φn ∈ R),

and c is a unitary matrix, and then joined to the identity matrix by the path

t 7→ cu((1− t)φ1, . . . , (1− t)φn).

The manifolds CV (n, k) with k < n are connected as continuous images of
CV (n, n).

The Quaternionic Case

Remark 3.2.1.7. The discussion in Remark 3.2.1.6 can be repeated almost word
for word if one replaces the �eld of complex numbers by the skew �eld of quater-
nions.

(Recall that Hn is considered as a left vector space; see De�nition 1.2.5.4;
consequently, a linear map H → Hn is left-linear here, and the scalar product
of the vectors (u1, . . . , un) and (v1, . . . , vn) is de�ned as

∑n
i=1 uivi).

In this way, we obtain:

� the Ca-manifold without boundary HV (n, k) (0 ≤ k ≤ n) of dimension
4nk − (2k2 − k), called the quaternionic Stiefel manifold ;

� the Ca-embeddings HV (n, k)→ HV (n+ q, k),
HV (n, k)→ HV (n+ q, k + q), and HV (n, k)→ (V (2n, 2k); and

� the Ca-submersion HV (n, k)→ HV (n, k − q).

Clearly, HV (n, 0) reduces to a point, and HV (n, 1) is just S4n−1. The manifold
HV (n, n) is usually denoted by Sp(n) its points are the linear isometric trans-
formations of Hn, and the composition of transformations makes Sp(n) into a
group.

All the manifolds HV (n, k) are compact and connected. Since the proof of
connectedness along the lines in Remarks 3.2.1.5 or 3.2.1.6 requires the normal
form of a matrix form Sp(n), which is less known than the normal forms for
SO(n) and U(n), we remark that a di�erent proof of connectedness is given in
Chapter 5 (see Corollary 5.2.7.4).

Non-compact Stiefel Manifolds

Remark 3.2.1.8. Let RV ′(n, k), or simply V ′(n, k), 0 ≤ k ≤ n, denote the set of
linear monomorphisms Rk → Rn. Alternatively, one may describe V ′(n, k) as
the set of non-degenerate k-frames in Rn, or as the set of the real n×k-matrices
of rank k. Clearly, this set is open in the space Rnk of all real n × k-matrices,
and hence V ′(n, k) is an nk-dimensional Ca-manifold containing V (n, k) as a
submanifold.
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Let T (k,R), or simply T (k), be the set of real upper triangular matrices of
order k with positive diagonal entries. Trivially, T (k) is open in the space of all
upper triangular matrices of order k, Rk(k+1)/2, and is actually di�eomorphic
to Rk(k+1)/2. If we orthogonalise a given non-degenerate k-frame in Rn via
the standard procedure, then the matrix corresponding to this frame takes the
form ut, where u ∈ V (n, k) and t ∈ T (k). Moreover, it is obvious that this
representation is unique and de�nes a di�eomorphism V ′(n, k)→ V (n, k)×T (k),
transforming V (n, k) into the �bre V (n, k)×E, where E is the identity matrix.
Therefore, the manifold V ′(n, k) is Ca-di�eomorphic to V (n, k)×Rk(k+1)/2, and
V (n, k) is its strong deformation retract. In particular, V ′(n, k) is connected for
k < n, and V ′(n, n) has two components.

Again, V ′(n, 0) reduces to a point, while V ′(n, 1) coincides with Rn \ 0. The
manifold V ′(n, n) is usually denoted by GL(n,R) and its points are the non-
degenerate linear transformations of Rn or, equivalently, the non-degenerate
matrices of order n. The composition of transformations (multiplication of
matrices) de�nes a group structure on GL(n,R). The subgroup of GL(n,R)
consisting of all matrices with positive determinant is denoted by GL+(n,R).
The sets GL+(n,R) and GL(n,R) \ GL+(n,R) are open in GL(n,R) and Ca-
di�eomorphic to SO(n) × Rn(n+1)/2; in fact, they are the components of the
manifold GL(n,R).

Corresponding to each monomorphism ϖ : Rk → Rn we have the composite
maps

Rk φ−→ Rn incl−−→ Rn+q,

Rk+q id−→ Rk+q φ×id−−−→ Rn × Rq id−→ Rn+q and

Rk−q incl−−→ Rk φ−→ Rn,

and so we obtain the Ca-embeddings

V ′(n, k)→ V ′(n+ q, k),

V ′(n, k)→ V ′(n+ q, k + q),

and the Ca-submersion
V ′(n, k)→ V ′(n, k − q),

respectively; cf. Remark 3.2.1.4.

Remark 3.2.1.9. We let CV ′(n, k) (0 ≤ k ≤ n) denote the set of linear monomor-
phisms (Ck → Cn. Alternatively, CV ′(n, k) is the set of non-degenerate k-frames
in Cn, or the set of complex n×k-matrices of rank k. Again, it it clear that this
is an open set in the space Cnk of all complex n× k-matrices. Thus CV ′(n, k)
is a 2nk-dimensional Ca-manifold containing CV (n, k) as a submanifold.

Repeating what was said in Remark 3.2.1.8 (with obvious modi�cations), we
obtain a Ca-di�eomorphism CV ′(n, k) → CV (n, k) × T (k,C), where T (k,C) is
the manifold of complex upper triangular matrices of order k with positive diag-
onal elements. Clearly, T (k,C) is Ca-di�eomorphic Rk2 , and hence CV ′(n, k) is
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di�eomorphic to CV (n, k)×Rk2 . In particular, the manifolds CV ′(n, k) are all
connected. CV ′(n, 0) reduces to a point, while CV ′(n, 1) is just Cn \ 0. Usually
the manifold CV ′(n, n) is denoted by GL(n,C); it consists of all non-degenerate
linear transformations of Cn, and is a group with group operation ◦. There are
also the natural Ca-embeddings

CV ′(n, k)→ CV ′(n+ q, k),

CV ′(n, k)→ CV ′(n+ q, k + q),

as well as the Ca-submersion

CV ′(n, k)→ CV ′(n, k − q).

Remark 3.2.1.10. If we replace the commutative �elds R and C by the skew
�eld H in the previous de�nitions, we obtain:

� the 4nk-dimensional Ca-manifold HV ′(n, k) of all linear monomorphisms
Hk → Hn;

� the Ca-di�eomorphism HV ′(n, k)→ HV (n, k)× R2k2−k;

� the Ca-embeddings

HV ′(n, k)→ HV ′(n+ q, k) and

HV ′(n, k)→ HV ′(n+ q, k + q)

� and �nally, the Ca-submersion HV ′(n, k)→ HV ′(n, k − q).

As before, HV ′(n, 0) reduces to a point, while HV ′(n, 1) is just H \ 0. The
manifold HV ′(n, n) consists of all non-degenerate linear transformations of Hn,
is a group with group operation ◦, and is usually denoted by GL(n,H).

3.2.2 Grassmann Manifolds

Remark 3.2.2.1. Let RG(n, k), or simply G(n, k), 0 ≤ k ≤ n, be the set of k-
dimensional linear subspaces (or k-planes passing through 0 ) of Rn. If γ is such
a plane, we let Uγ denote the collection of planes in G(n, k) whose projection on
γ is non-degenerate. Let us �x an orthonormal basis e = {e1, . . . , ek} of γ and
complete it to an orthonormal basis of Rn, adding a frame ε = {ε1, . . . , εn−k}.
For each γ′ ∈ Uγ there exists a unique frame u1, . . . , uk in γ′ which projects onto
e. Expressing the vectors u1, . . . , uk in terms of the basis e1, . . . , ek, ε1, . . . , εn−k,
we obtain

ui = ei +

n−k∑
s=1

cisεs (i = 1, . . . , k; cis ∈ R)

This construction yields a map φ(e, ε) from the set Uγ into the space Rk(n−k)
of real k × (n − k)-matrices. Obviously, φ(e, ε) is invertible, and the collection
of maps φ(e, ε)) obtained from all the pairs e, ε is a Ca-atlas of the set G(n, k).
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Since any two planes in G(n, k) are contained in some set Uγ , the topology
de�ned by the atlas {φ(e, ε)} is Hausdor�. Moreover, this atlas contains �nite
subatlases (for example, the subatlas consisting of the charts φ(e, ε) where e and
ε are subframes of the standard frame ort1, . . . , ortn of Rn), and hence the above
topology has a countable base. Thus, the atlas {φ(e, ε)} transforms G(n, k) into
a k(n− k)-dimensional Ca-manifold, called the Grassmann manifold.

Clearly, G(n, 0) and G(n, n) both reduce to points, and G(n, 1), as a set and
a topological space, is identical to RPn−1. So we see that the space RPn−1 has
a Ca-structure compatible with its topology, and hence RPn−1 is an (n − 1)-
dimensional Ca-manifold. We remark that this Ca-structure may be described
directly and conveniently as follows: for k = 1, the �nite atlas of the manifold
G(n, k) given above consists of n charts

φ1 : U1 → Rn−1, . . . , φn : Un → Rn−1,

de�ned in homogeneous coordinates by the formulae

Ui = {(x1 : · · · : xn)|xi ̸= 0},
φi((x1 : · · · : xn)) = (x1 xi, . . . xi−1/xu, xi+1/xi, . . . xn/xi).

It is also clear that relative to this Ca-structure, the canonical homeomorphism
RP 1 → S1 (see Remark 1.2.5.6) becomes a Ca-di�eomorphism.

Remark 3.2.2.2. Obviously, we may modify the de�nition of the manifoldG(n, k)
by replacing the non-oriented planes with oriented ones. More precisely, G(n, k)
is replaced by the set G+(n, k) of oriented k-dimensional planes (oriented k-
planes, for short) of Rn passing through 0. One has to modify the set Uγ
accordingly and take it to be the collection of all planes in G+(n, k) whose
projections onto the plane γ ∈ G+(n, k) are non-degenerate and orientation
preserving. The maps φ(e, ε) : U → Rn(n−k) are de�ned as in Remark 3.2.2.1
and again they form a Ca-atlas possessing �nite subatlases. Since any pair of
points of G+(n, k) is covered by a set of the form Uγ ∪ Uγ , where the plane γ
di�ers from γ only by its orientation (obviously, Uγ ∪ Uγ = ∅) , the topology
de�ned by the atlas {φ(e, ε)} is Hausdor�. The k(n−k)-dimensional Ca-manifold
so obtained is termed the upper Grassmann manifold.

The manifolds G+(n, 0) and G+(n, n) are canonically homeomorphic to S0,
while G+(n, 1) is canonically di�eomorphic to Sn−1: under this di�eomorphism
each point x ∈ Sn−1 goes into the oriented line de�ned by the pair of points
0, x.

Remark 3.2.2.3. If one associates to each plane γ ∈ G(n, k) its orthogonal
complement, one obtains a mapping of G(n, k) onto G(n, n−k) which is clearly
a Ca-di�eomorphism. A Ca-di�eomorphism G+(n, k)→ G+(n, n−k) is similarly
de�ned, if the orientation given to the orthogonal plane γ⊥ and the orientation of
γ behave in accordance to the classical rule: let a basis of γ⊥ which is compatible
with this orientation be written to the right of a basis of γ which is compatible
with its orientation; then the resulting basis of Rn should be compatible with the
standard orientation of Rn (see Remark 3.1.3.10). In particular, G(n, n− 1) =
RPn−1 and G+(n, n− 1) = Sn−1.
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The inclusion Rn → Rn+q induces obvious Ca-embeddings G(n, k)→ G(n+
q, k) and G+(n, k)→ G+(n+q, k). Furthermore, the formula γ 7→ γ×Rq de�nes
Ca-embeddings G(n, k)→ G(n+ q, n+k) and G+(n, k)→ G+(n+ q, n+k) (the
orientation of the product γ × Rq is de�ned by the orientation of its factors -
see Remark 3.1.3.7). These embeddings and the previous di�eomorphisms form
the following commutative diagrams:

G(n, k) //

��

G(n+ q, k)

��
G(n, n− k) // G(n+ q, n− k + q)

G+(n, k) //

��

G+(n+ q, k)

��
G+(n, n− k) // G+(n+ q, n− k + q)

The map G+(n, k)→ G(n, k) which takes each oriented plane and �forgets� its
orientation is clearly a Ca-submersion such that the pre-image of each point
of G(n, k) consists of just two points. For k = 1 we recover the projection
Sn−1 → RPn−1.

If to each frame from V (n, k) we associate the oriented plane that it spans,
we obtain a Ca-map V (n, k) → G+(n, k). This is a submersion, a fact that
can be readily checked with the aid of Theorem 3.1.5.9, if for a given frame
v0 ∈ V (n, k) one explicitly indicates the neighbourhood V of the oriented plane
γ0 spanned by v0 and the map g : V → V (n, k) which are needed in this theorem.
One can take V = Uγ0 (see Remark 3.2.2.2) and de�ne g(γ) for each γ ∈ V to
be the frame which is obtained from v0 after projection on γ and standard
orthogonalisation. The pre-image of an oriented plane γ ∈ G+(n, k) under this
submersion is the set of all orthonormal positive k-frames of γ and, in particular,
is di�eomorphic to SO(k).

The map of V (n, k) onto G(n, k) which takes each frame into the non-
oriented plane that it spans is also a submersion. In fact, it is exactly the com-
position of the two previous submersions. The pre-image of a plane γ ∈ G(n, k)
consists of all the orthonormal frames of γ and, in particular, is di�eomorphic
to O(k).

Finally, the maps V ′(n, k)→ G+(n, k) and V ′(n, k)→ G(n, k), which trans-
form each frame into the plane that it spans are both submersions. The pre-
images of the points of G+(n, k) and G(n, k) under these maps are di�eomorphic
to GL+(k,R) and GL(k,R), respectively.

Since the manifolds G(n, k) and G+(n, k) are continuous images of V (n, k),
they are compact and, excepting G+(n, 0) and G+(n, n), connected.

The family of manifolds G(n, k) (k ̸= 0, n) contains both orientable and
non-orientable manifolds. More precisely,

Theorem 3.2.2.4. for k ̸= 0, G(n, k) is orientable if n is even and non-
orientable if n is odd.

Proof. To see this, use the atlas made of the charts φ(e, ε), where e and ε are
complementary subframes of the standard basis of Rn, with the order of vectors
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they inherit from this basis (cf. Remark 3.2.2.1). Denote the indices of the
vectors of e by

j1(e), . . . , jk(e) (1 ≤ j1(e) < · · · < jk(e) ≤ n),

and say that two charts φ(e, ε) and φ(e′, ε′) of the atlas are contiguous if there
exists ℓ such that jℓ(e′) = jℓ(e)± 1 and jp(e′) = jp(e) for p ̸= ℓ. Obviously, for
k ̸= 0, n we can always exhibit contiguous charts, and actually any two charts
in the atlas may be connected by a �nite chain of charts such that each two
neighbouring charts in the chain are contiguous.

Suppose that cis and c′is are the coordinate functions of two contiguous
charts, φ(e, ε) and φ(e′, ε′), such that jℓ(e′) = jℓ(e) + 1. Then it is readily seen
that the coordinate cℓm with m = jℓ− ℓ+1 does not vanish on the intersection
of the supports of the two charts, but takes all the remaining real values on this
intersection. A simple computation shows that

c′is =


(ciscℓm − cimcℓs)c−1

ℓm, if i ̸= ℓ, s ̸= m,

cℓsc
−1
ℓm, if i = ℓ, s ̸= m,

−cimc−1
ℓm, if i ̸= ℓ, s = m,

c−1
ℓm, if i = ℓ, s = m,

and thus the Jacobian is [see Remark 3.1.3.1]

J(φ(e, ε), φ(e′, ε′)) = (−1)nc−nℓm .

If n is odd, this Jacobian takes both positive and negative values; hence the
manifold G(n, k) is not orientable for such n. For n even, the formula

φ(e, ε) 7→ (−1)k[j1(e)+···+jk(e)]

de�nes a map of the atlas under consideration into S0, which satis�es the
compatibility condition in Remark 3.1.3.1: this condition obviously holds for
contiguous charts, which in turn implies the compatibility for non-contiguous
charts. Hence, for n even G(n, k) is orientable.

Remark 3.2.2.5. The next constructions produce Ca-embeddings of G(n, k) and
G+(n, k) in Euclidean spaces; see also Exercise 3.2.4.8.

Let us start with G+(n, k). For a matrix v ∈ V ′(n, k), let Mi1···ik(v) be
the minor constructed from the rows with indices i1, . . . ik, and put Ni1···ik(v) =
Mi1···ik(v)/µ(v), where µ(v) is the positive square root of the sum of the squares
of all minors having maximal order. The functions Ni1···ik : V

′(n, k) → R are
clearly analytic. Moreover, if two frames in V ′(n, k), v1 and v2, span the same
k-plane, then Ni1···ik(v

1) = Ni1···ik(v
2). Therefore, the map

Ni1···ik : V
′(n, k)→ R(

n
k)

with coordinate functions Ni1···ik is the composition of the canonical submersion
V ′(n, k)→ G+(n, k), de�ned in Remark 3.2.2.3, with a Ca-map

g+ : G+(n, k)→ R(
n
k)
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(see Theorem 3.1.5.10). We next show that g+ is a Ca-embedding.
Using Corollary 3.1.5.4, it su�ces to verify that g+ is an injective immersion.

To demonstrate that g+ is injective, one has to show that if v1, v2 ∈ V ′(n, k) and
N(v1) = N(v2), then the n × 2k-matrix constructed by adjoining the matrices
v1 and v2 has rank k. But this is plain, because any (k+1)×(k+1)-minor of this
n× 2k-matrix, constructed from k columns of v1 and one column of v2 is equal
to zero (expand the minor with respect to the column of v2). To verify that g+
is an immersion, it is enough to show that at each point γ0 ∈ G+(n, k), the rank
of the di�erential g+ is k(n− k). This in turn will be true if we can prove that
at each point v0 ∈ V ′(n, k), the di�erential dv0N has rank ≥ k(n− k). Finally,
to obtain this property of dv0N , we prove that at each point v0 ∈ V ′(n, k), the
di�erential dv0M has rank ≥ k(n− k) + 1, where

M : V ′(n, k)→ R(
n
k)

is the map with coordinate functions Mi1···ik . So let A be any k × k-submatrix
of the matrix v ∈ V ′(n, k) such that A is non-degenerate for v = v0, and let vi0j0
be an element of A such that its cofactor, call it α, does not vanish for v = v0.
Next isolate those minors Mi1···ik(v) of the matrix v which have at least k − 1
rows in common with A, and then form a submatrix of the Jacobi matrix of the
map M as follows. Take the derivatives of the chosen minors with respect to
those elements of the matrix v which do not appear in A and the one derivative
with respect to vi0j0 . We obtain a square matrix of order k(n − k) + 1 which
has, in a neighbourhood of the point v0 (and for a suitable arrangement of the
rows and columns) the form

(At)−1 detA 0 0 β1
0 (At)−1 detA 0

. . .
...

0 0 (At)−1 detA βk(n−k)
0 0 α


where t indicates transposition. The determinant of this matrix is equal to
α(detA)(n−k)(k−1) and therefore does not vanish.

Now let us turn to G(n, k) and compose the embedding g+ with the map

q : R(
n
k) → R(

n
k)((

n
k)+1)/2

de�ned as

q(x1, . . . , x(nk)
) =

(x21, x1x2, . . . x1x(nk)
, x21, x2x3, . . . , x2x(nk)

, . . . , x(nk)−1x(nk)
, x2(nk)

).

Clearly, the restriction q|
R(

n
k)\0

is a Ca-immersion, and q(x) = q(y) if and only

if x = ±y. Since the equality g+(γ′) = g+(γ) holds for planes γ, γ′ ∈ G+(n, k)
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which coincide geometrically (but have opposite orientations), we see that q◦g+
is a Ca-immersion ofG+(n, k) into R(

n
k)((

n
k)+1)/2. Moreover, q◦g+(γ′) = q◦g+(γ)

if and only if γ and γ′ coincide or di�er only by their orientations. Therefore, the
map fact(q◦g+) : G(n, k)→ R(

n
k)((

n
k)+1)/2 is well de�ned and is a Ca-embedding.

Information 3.2.2.6. The coordinate functions g+i1···ik of the map g+ : G+(n, k)→
R(

n
k) satisfy the relations

g+i1···ikg
+
j1···jk −

k∑
s=1

g+i1···ik−1js
g+j1···is−1ikjs+1···jk = 0.

Considering these relations as equations relative to the coordinates in R(
n
k), they

de�ne a subset of R(
n
k) which is exactly g+(G+(n, k)). See [9] for details.

The numbers g+i1···ik(γ) are known as the Grassmann-Plücker coordinates of
the oriented plane γ.

The Complex and Quaternionic Cases

Remark 3.2.2.7. To obtain the complex version of the manifold RG(n, k), one
has to take k-dimensional planes of Cn passing through 0 instead of k-dimensional
planes of Rn passing through 0. The result is a complex manifold CG(n, k) of
dimension k(n− k), called the complex Grassmann manifold.

Obviously, CG(n, 0)) and CG(n, n) reduce to points, whereas CG(n, 1)) co-
incides, as a topological space, with CPn−1. Thus we equip the projective
space CPn−1 with a complex structure compatible with its topology, which
makes CPn−1 into an (n − 1)-dimensional complex manifold. This structure
may be given in homogeneous coordinates just as we described the Ca-structure
of RPn−1]. Relative to this structure the canonical homeomorphism CP 1 → S2
(see Remark 1.2.5.6) becomes a Ca-di�eomorphism.

The complex analogues constructed in Remark 3.2.2.3, are de�ned in an ob-
vious way:

Real Complex The analogue is a
G(n, k)→ G(n, n− k) CG(n, k)→ CG(n, n− k) biholomorphic map
G(n, k)→ G(n+ q, k) CG(n, k)→ CG(n+ q, k) holomorphic embedding

G(n, k)→ G(n+ q, k + q) CG(n, k)→ CG(n+ q, k + q) holomorphic embedding
V (n, k)→ G(n, k) CV (n, k)→ CG(n, k) Ca-submersion
V ′(n, k)→ G(n, k) CV ′(n, k)→ CG(n, k) Ca-submersion

We mention also the Ca-embedding CG(n, k) → CG+(2n, 2k): when we
transform Cn into R2n, every k-plane becomes an oriented 2k-plane.

The manifold CG(n, k) is the image of CV (n, k) under a continuous map,
and as such it is compact and connected. Moreover, it readily seen that CG(n, k)
can be analytically embedded in R(

2n
2k): the composition of the embeddings

CG(n, k)→ CG+(2n, 2k)→ R(
2n
2k)

is a Ca-embedding.
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Remark 3.2.2.8. Substituting quaternions for complex numbers in these def-
initions, we obtain a connected 4k(n − k)-dimensional Ca-manifold HG(n, k),
called the quaternionic Grassmann manifold. For k = 0, n, HG(n, k) reduces
to a point. For k = 1, n − 1, HG(n, k) is topologically the quaternionic pro-
jective space HPn−1. Thus HPn−1 becomes a Ca-manifold, and the canonical
homeomorphism HPn−1 → S4 becomes a Ca-di�eomorphism.

The quaternionic analogues of the maps described in Remarks 3.2.2.3 and
3.2.2.7 are Ca-maps. In particular, there is a canonical Ca-embeddingHG(n, k)→
G+(4n, 4k). Composing it with the canonical embedding G+(4n, 4k) → R(

4n
4k),

we obtain a Ca-embedding HG(n, k)→ R(
4n
4k).

Remark 3.2.2.9. The maps

S2n−1 = CV (n, 1)→ CG(n, 1) = CPn−1 and

S4n−1 = HV (n, 1)→ HG(n, 1) = HPn−1,

which are particular cases of the canonical maps in Remark 3.2.2.7 and coincide
with the corresponding Hopf maps (see Remark 1.2.5.8). As a result, we see
that these Hopf maps are Ca-submersions. The Hopf map S15 → S8 is a Ca-
submersion too, a fact that follows directly from its de�nition.

Projective Cayley Plane

Remark 3.2.2.10. The projective Cayley plane is also equipped with a Ca-
structure which transforms CaP 2 into a Ca-manifold. We next describe this
structure.

Identify R16 with Ca2, and R17 with Ca2 × R, and then de�ne three maps
D16 → S16 by the formulae

(y1, y2) 7→ (2(1− ρ2)1/2y1, 2(1− ρ2)1/2y2, 2ρ2 − 1),

(y1, y2) 7→ (2y1y2, 2(1− ρ2)1/2y1, 1− 2|y1|2),
(y1, y2) 7→ (2(1− ρ2)1/2y2, 2y2y1, 1− 2|y2|2)

where y1, y2 ∈ Ca and ρ = (|y1|2 + |y2|2)1/2 (the �rst map is just DS, but we do
not use this fact explicitly). These three maps yield a map

F : D16 → S16 × S16 × S16,

and one can easily verify that

zer(F ) = zer[proj : D16 → CaP 2].

Since the injective factor of F is a topological embedding of the quotient space
D16/ zer(F ) into S16 × S16 × S16 (see Theorem 1.1.7.10), and since, according
to the last equality, this quotient space coincides with D16/ zer(proj) = CaP 2,
we can identify CaP 2 with F (D16). To transform CaP 2 into a Ca-manifold, it
su�ces to show that F (D16) is a Ca-submanifold of S16 × S16 × S16.
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De�ne f, g : S16 \ ort17 → S16 as

f(u1, u2, t) = (
u2u1
1− t

, u1,
|u2|2

1− t
− t), g(u1, u2, t) = (u2,

u1u2
1− t

,
|u1|2

1− t
− t),

u1, u2 ∈ Ca, t ∈ R,

and consider the three maps h1, h2, h3 : S16 \ ort17 → S16 × S16 × S16 given by

h1(x) = (x, f(x), g(x)), h2(x) = (g(x), x, f(x)), h3(x) = (f(x), g(x), x).

Since f and g are analytic, h1, h2 and h3 are analytic embeddings. One can
check directly that

F (D16) ∩ proj−1
i (S16 \ ort17) = hi(S16 \ ort17).

Therefore, the left-hand side intersections are Ca-submanifolds of S16×S16×S16,
and it remains to note that

∪i proj−1
i (S16 \ ort17) = S16 × S16 × S16 \ (ort17, ort17, ort17),

and that (ort17, ort17, ort17) ̸∈ F (D16).

Non-compact Grassmann Manifolds

Remark 3.2.2.11. We denote by RG′(n, k), or simply by G′(n, k) (0 ≤ k ≤
n) the set of all k-dimensional planes of Rn, i.e., the planes need not pass
through 0. It is clear that given a plane γ′ ∈ G′(n, k), there is a unique (k+1)-
plane γ in Rn+1 that passes both through 0 and the k-plane which results by
translating γ′ by the vector ortn+1. Moreover, the formula γ 7→ γ′ de�nes an
injective mapping G′(n, k) → G(n + 1, k + 1), which has an open image. So
we may regard G′(n, k) as an open subset of the manifold G(n + 1, k + 1). In
particular, G′(n, k) is a (k + 1)(n − k)-dimensional Ca-manifold. We call it
the non-compact Grassmann manifold. G′(n, k) can be mapped naturally onto
G(n, k): for each plane γ′ ∈ G′(n, k), consider the parallel plane γ ∈ G(n, k).
It is a straightforward consequence of Theorem 3.1.5.9 that this map is a Ca-
submersion (one can take the entire G(n, k) for the required neighbourhood V
of γ in G(n, k), and one can take the map which takes each plane from G(n, k)
into the parallel plane passing through an arbitrary, but �xed point of γ′, for the
required g). The pre-image of a plane γ ∈ G(n, k) under this submersion is the
set of all k-planes of Rn which are parallel to γ, and is canonically di�eomorphic
to the orthogonal complement γ⊥ of γ (a unique k-plane parallel to γ passes
through each point of γ⊥).

The oriented, complex, and quaternionic versions of these de�nitions are
immediate.

3.2.3 Some Low-Dimensional Stiefel and GrassmannMan-

ifolds

Theorem 3.2.3.1. SO(3) is canonically Ca-di�eomorphic to RP 3.
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Proof. We let shi denote the map of R3 into R3
1 which takes (y1, y2, y3) into

(0, y1, y2, y3). The canonical Ca-di�eomorphism RP 3 → SO(3) takes the line
of R3

1 passing through the point x ∈ R4 \ 0 into the orthogonal transformation
φ : R3 → R3 de�ned by the quaternionic formula φ(y) = shi−1(x shi(y)x−1).
The inverse di�eomorphism SO(3)→ R3 takes each transformation φ : R3 → R3

into the line consisting of the quaternions of the form

q − shi(φ(ort1))q ort2− shi(φ(ort2))q ort3− shi(φ(ort3))q ort4,

where q is an arbitrary quaternion, and ort2, ort3 , and ort4 are regarded as
quaternion units. It is routine to check that quaternions of this form describe
precisely a line and that the constructed maps RP 3 → SO(3) and SO(3)→ R3

are inverses of one another.

Theorem 3.2.3.2. RV (4, 2) is canonically Ca-di�eomorphic to S3 × S2.

Proof. The canonical Ca-di�eomorphism S3 × S2 → RV (4, 2) takes the pair
(x, y) ∈ S3 × S2 into the frame {x, x shi(y)}.

Theorem 3.2.3.3. SO(4) is canonically Ca-di�eomorphic to S3 × SO(3).

Proof. The canonical Ca-di�eomorphism S3 × SO(3)→ SO(4) is de�ned by the
quaternion formula (x, {y, z}) 7→ {x, x shi(y), x shi(z)} (here the points of the
manifolds SO(3) and SO(4) are interpreted as frames).

Theorem 3.2.3.4. G+(4, 2) is canonically Ca-di�eomorphic to S2 × S2.

Proof. The canonical Ca-di�eomorphism G+(4, 2)→ S2 × S2 takes the oriented
plane spanned by the frame {x, y} ∈ V (4, 2) into the pair (shi−1(xy−1), shi−1(x−1y)).
The inverse di�eomorphism transforms each pair (u, v) ∈ S2 × S2 into the
two-dimensional plane consisting of quaternions of the form shi(u)q + q shi(v),
where q is an arbitrary quaternion. Again, it is routine to check that the
pair (shi−1(xy−1), shi−1(x−1y)) is uniquely determined by the oriented plane
spanned by the frame {x, y}, that the quaternions shi(u)q + q shi(v) �ll ex-
actly a two-dimensional plane, and that the maps G+(4, 2) → S2 × S2 and
S2 × S2 → G+(4, 2) constructed above are inverses of one another.

3.2.4 Exercises

Exercise 3.2.4.1. A homogeneous polynomial in n + 1 variables and with real
(complex) coe�cients is non-singular if there are no points in Rn+1 \ 0 (re-
spectively, in n+1 \ 0) where all its partial derivatives vanish. Show that the
projection Rn+1 \ 0 → RPn (respectively, Cn+1 \ 0 → CPn) transforms the
set of zeros di�erent from 0 of such a polynomial into a submanifold of RPn
(respectively, CPn) .
Exercise 3.2.4.2. Let p(x1, x2, x3) be a non-singular homogeneous polynomial of
degree k with real coe�cients. Show that the submanifold of the projective plane
RP 2 de�ned by the equation p(x1, x2, x3) = 0 has an orientable neighbourhood
if and only if k is even.
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Exercise 3.2.4.3. Let p(x1, x2, x3) be a non-singular homogeneous polynomial
of degree 3 with real coe�cients. Show that the submanifold of RP 2 de�ned by
the equation p(x1, x2, x3) = 0 is homeomorphic to either S1 or S1⨿S1, and that
both cases are realised.

Exercise 3.2.4.4. Show that the equation x21 + x22 + x23 = 0 de�nes in CP 2 a
submanifold homeomorphic to S2.
Exercise 3.2.4.5. Show that the equation x31 + x32 + x33 = 0 de�nes in CP 2 a
submanifold homeomorphic to S1 × S1.
Exercise 3.2.4.6. Show that the equation x21 + x22 + x23 + x24 = 0 de�nes in CP 3

a submanifold homeomorphic to S2 × S2.
Exercise 3.2.4.7. Show that RG(n, k) (CG(n, k)) admits a Ca-embedding in

RP (
n
k)−1 (respectively, CP (

n
k)−1).

Exercise 3.2.4.8. Show that the map RG(n, k) → Rn2

which takes each plane
γ ∈ RG(n, k) into the matrix of the composite map

Rn proj−−→ γ
incl−−→ Rn

(where proj is the orthogonal projection) is a Ca-embedding. Show that the
same is true for the map CG(n, k)→ Cn2

which takes each plane γ ∈ CG(n, k)
into the matrix of the composite map

Cn proj−−→ γ
incl−−→ Cn

Exercise 3.2.4.9. Show that RV (8, k) is Ca-di�eomorphic to S7 × RV (7, k − 1)
(1 ≤ k ≤ 8). Show that CV (4, k) is Ca-di�eomorphic to S7 × CV (3, k − 1)
(1 ≤ k ≤ 4).
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3.3 A DIGRESSION: THREE THEOREMS FROM
CALCULUS

3.3.1 Polynomial Approximation of Functions

Remark 3.3.1.1. The purpose of this section is to state and prove three theorems
from calculus, namely Theorem 3.3.1.7, 3.3.2.3, and 3.3.3.5. They di�er in
character and we grouped them together here because all three are needed in
this chapter, and none of them is included in the traditional calculus course.

The main theorem of this subsection, Theorem 3.3.1.7, is a corollary of
Lemma 3.3.1.4, whose proof, in turn, requires Lemma 3.3.1.2.

Lemma 3.3.1.2. For any positive δ < 1

lim
k→∞

1

ak

� δ

−δ
(1− t2)kdt = 1.

where

ak =

� 1

−1

(1− t2)kdt. (3.3.1.3)

Proof. This is an easy consequence of the inequalities

0 < 1− 1

ak

� δ

−δ
(1− t2)kdt < 2(1− δ)

δ

(
1− δ2

a− δ2/4

)k
The left inequality is plain, while the right one follows from the estimates

ak −
� δ

−δ
(1− t2)kdt = 2

� 1

δ

(1− t2)kdt < 2(1− δ)(1− δ2)k

and

ak >

� δ/2

−δ/2
(1− t2)kdt > δ(1− δ2/4)k.

Lemma 3.3.1.4. There exists a sequence of mappings

{pk : C(In,R)→ C(Rn,R)}∞k=1

such that:

(i) pk(f) is a polynomial for any f ∈ C(In,R) and any k;

(ii) if f equals 0 on Fr In, then the sequence {pk|In converges uniformly to f ;

(iii) if f equals 0 on Fr In and has continuous partial derivative Dif , then
pk(Dif) = Dipk(f).
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Proof. For f ∈ C(ln,R) we set

[pk(f)](x1, . . . , xn) =
1

ank

�
In
f(t1, . . . , tn)

n∏
j=1

[1−(tj−xj)2]kdt1 · · · dtn (3.3.1.5)

where ak is de�ned by (3.3.1.3). This clearly de�nes a polynomial and therefore
we must check only properties (ii) and (iii).

To check (ii), we extend the function f to Rn, setting f(x) = 0 for x ∈ Rn\In,
and denote byM the maximum of |f(x)|. Given an arbitrary ε > 0, we can �nd
δ, 0 < δ < 1, such that

|f(x′1, . . . , x′n)− f(x1, . . . , xn)| < ε/2 for |x′1 − x1| < δ, . . . , |x′n − xn| < δ.

Moreover, we can �nd a number K such that

1−

(
1

ak

� δ

−δ
(1− t2)kdt

)n
<

ε

4M

for all k > K (see Lemma 3.3.1.2). We next show that |[pk(f)](x) − f(x)| < ε
for x ∈ In and k > K.

Write [pk(f)](x)− f(x) as

1

ak

�
[−1,1]n

(f(t1 + x1, . . . , tn + xn)− f(x1, . . . , xn))
n∏
j=1

(1− t2j )kdt1 · · · dtn

and then replace the integrand by its absolute value. Now divide the new inte-
gral into two integrals, one over the cube [−δ, δ]n and one over its complement
[−1, 1]n \ [−δ, δ]n. We obtain

|[pk(f)](x)− f(x)| ≤

1

ak

�
[−δ,δ]n

(f(t1 + x1, . . . , tn + xn)− f(x1, . . . , xn))
n∏
j=1

(1− t2j )kdt1 · · · dtn+

1

ak

�
[−1,1]n\[−δ,δ]n

(f(t1 + x1, . . . , tn + xn)− f(x1, . . . , xn))
n∏
j=1

(1− t2j )kdt1 · · · dtn.

The �rst term is smaller than ε/2, since

|f(t1 + x1, . . . , tn + xn)− f(x1, . . . , xn)| < ε/2

for (t1, . . . , tn) ∈ [−δ, δ] and

1

ak

�
[−1,1]n

n∏
j=1

(1− t2j )kdt1 · · · dtn =

(
1

ak

� δ

−δ
(1− t2)kdt

)n
< 1.

The second term is also smaller than ε/2, since

|f(t1 + x1, . . . , tn + xn)− f(x1, . . . , xn)| ≤ 2M
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1

ak

�
[−1,1]n\[−δ,δ]n

n∏
j=1

(1− t2j )kdt1 · · · dtn =

1

ak

�
[−1,1]n

n∏
j=1

(1− t2j )kdt1 · · · dtn −
1

ak

�
[−δ,δ]n

n∏
j=1

(1− t2j )kdt1 · · · dtn =

1−

(
1

ak

� δ

−δ
(1− t2)kdt

)n
<

ε

4M
.

Therefore, |[pk(f)](x)− f(x)| ≤ ε.
To check property (iii), replace f by Dif in de�nition (3.3.1.5) and then

integrate by parts with respect to ti in the right-hand side. We obtain

[pk(Dif)](x1, . . . , xn) =

− 1

ak

�
In
f(t1, . . . , tn)

∂

∂ti

n∏
j=1

(1− (tj − xj)2)kdt1 · · · dtn.
(3.3.1.6)

Since
∂

∂ti

n∏
j=1

(1− (tj − xj)2)k = − ∂

∂xi

n∏
j=1

(1− (tj − xj)2)k,

the right-hand side of (3.3.1.6) is equal to [Dipk(f)](x1, . . . , xn).

Theorem 3.3.1.7. Suppose X is a compact set in Rn and f is a real function
de�ned and of class C in a neighbourhood of X. If r ≤ ∞ then for any ε > 0
and any non-negative integer s ≤ r, there is a polynomial g : Rn → R such that

max
x∈X
|Ds1

1 · · ·D
sn
1 g(x)−Ds1

1 · · ·D
sn
1 f(x)| < ε

for any collection s1, . . . , sn of non-negative integers with s1 + · · ·+ sn ≤ s.

Proof. Clearly, one can assume that X ⊂ int In. Denote by U the neighbour-
hood of X mentioned above, and let β : Rn → R be any Cr-function equal to 0
on Dn and equal to 1 outside the concentric ball of radius 2. For y ∈ (In \U)∪
Fr In, we let d(y) denote the ball of centre y and radius Dist(y,X)/4. Cover
(In \ U) ∪ Fr In by a �nite number of balls int d(y), say int d(y1), . . . , int d(yp),
and de�ne h : In → R as

h(y) =

{
f(y)

∏p
i=1 β(4(y − yi)/Dist(yi, X)), if y ∈ U,

0, if y ̸∈ U.

Then h is of class Cr, agrees with f on X, and vanishes on a neighbourhood of
Fr In . This shows that one can take g to be pk(h), with pk as in Lemma 3.3.1.4
and k large enough.
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3.3.2 Singular Values

Remark 3.3.2.1. In the present subsection we assume that we are given open
subset U of Rn and a C∞-map f : U → Rq with q ≥ 1. We let F denote the set
of points in U where the rank of the Jacobi matrix of f is less than q. Our aim
is to prove Theorem 3.3.2.3, which is needed in the next section (see Theorem
3.4.7.4).

We need two auxiliary notations: fj for the j-th coordinate function of
the map f (j = 1, . . . , n) and FS for the set of points in U where all partial
derivatives of order 1, . . . , s of the functions f vanish. Clearly, Fs is closed in U
and F ⊃ F1 ⊃ F2 · · · .

Lemma 3.3.2.2. Suppose s > (n/q)− 1 and C is any compact part of the set
Fs. The image f(C) is nowhere dense.

Proof. It is enough to show that for any n-dimensional cube Q ⊂ U , the set
f(C ∩Q) is nowhere dense. Indeed, one can cover C by a �nite number of such
cubes, and use the fact that a �nite union of nowhere dense sets is nowhere
dense.

Let a be the edge length of Q. Consider the standard partition of Q into
mn small cubes of edge length a/m (with m an arbitrary positive integer). Let
Q′ be a small cube in this partition which intersects C. Now apply Taylor's
theorem to the functions fj and use the fact that their partial derivatives of
order s+ 1 are bounded on Q to show that there is a constant b such that

dist(f(x), f(y)) ≤ b[dist(x, y)]s+1

for any x ∈ Fs ∩ Q, y ∈ Q. Since Q′ has diameter a
√
n/m, we see that f(Q′)

is contained in a ball of radius b(a
√
n/m)s+1. Therefore, f(Q′) is contained

in a q-dimensional cube with edge length 2b(a
√
n/m)s+1, and f(C ∩ Q) - in

a union of no more than mn such cubes. The volume of each such cube is
[2b(a

√
n/m)s+1]q, and so the sum of their volumes does not exceed

mn[2b(a
√
n/m)s+1]q = cmn−q(s+ 1)

where c is independent of m. By hypothesis, this sum goes to 0 as m → ∞.
This shows that the set f(C ∩Q) can have no interior points. Since the latter
is a closed set, it is also nowhere dense.

Theorem 3.3.2.3. The image f(C) of any compact part of the set F is nowhere
dense.

Proof. We proceed inductively on n. For n = 0 there is nothing to prove; hence
it is enough to show that the theorem holds for n = k + 1 if it holds for n = k.

We start with the special case F1 = ∅. Since C is compact, it su�ces to �nd,
for each point x ∈ C, a neighbourhood V in U such that f(C ∩ V ) is nowhere
dense. Assume that Dk+1fq(x) ̸= 0 (we can always achieve this by re-indexing
the coordinates in Rk+1 and Rq) and consider the map g : U → Rk+1 de�ned
by the formula

y = (y1, . . . , yk+1) 7→ (y1, . . . , yk, fq(y)).
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Its Jacobian at the point x does not vanish (being equal to Dk+1fq); hence g is
a C∞-di�eomorphism of a neighbourhood W of x onto a neighbourhood of g(x).
Now one can take as V any neighbourhood of x with compact closure included
in W . To see this, set h to be the composite map

g(W )
(abr g)−1

−−−−−−→W
ab f−−→ Rq.

It transforms each point from g(W ) into a point which has the same last coor-
dinate. In particular, for any real number u, h can be compressed to a map

g(W ) ∩ [Rk × u] 7→ Rq−1 × u.

If we identify g(W ) ∩ [Rk × u] with its orthogonal projection on Rk in the
standard fashion, and Rq−1 × u - with its orthogonal projection on Rq−1, we
obtain a C-map hu of an open subset of Rk into Rq−1. Clearly, the Jacobi
matrix of hu at the point (y1, . . . , yk) is obtained from the Jacobi matrix of the
map h at the point (y1, . . . , yk, u) by deleting the last column and the last row,
which has the form 0, . . . , 0, 1. Therefore, the rank of the �rst matrix is less
than q − 1 if and only if the rank of the second matrix is less than q, i.e, if
(y1, . . . , yk, u) ∈ g(F ∩W ). Applying the induction hypothesis to hu, we deduce
that the intersection of h(g(C∩ClV )) with each hyperplane Rq−1×u is nowhere
dense in Rq−1×u. But if this is the case, h(g(C∩ClV )) has no interior points in
Rq and we need only note that this set is closed and coincides with f(C ∩ClV ).

Now let us turn to a second special case: C ⊂ Fs and Fs+1 = ∅ (for some
s). Again, it is enough to exhibit for each point x ∈ C a neighbourhood V in
U such that the set f(C ∩ V ) is nowhere dense. Let φ be a derivative of order
s of one of the functions fj which satis�es the following condition: one of the
derivatives Diφ, say Dk+1φ, does not vanish at the point x. Consider the map
g : U → Rq+1 de�ned as

y = (y1, . . . , yk+1) 7→ (y1, . . . , yk, φ(y)).

Its Jacobian does not vanish at x (being equal to Dkφ); hence g yields a C∞-
di�eomorphism of a neighbourhood W of x onto a neighbourhood of g(x). We
show, with the aid of the composite map

g(W )
(abr g)−1

−−−−−−→W
ab f−−→ Rq (3.3.2.4)

that one can take any neighbourhood of x with compact closure included in W
for V . To do this, note that g(C) ⊂ Rk and restrict the map (3.3.2.4) to a map
h : g(W ) ∩ Rk → Rq. Clearly, all the derivatives of order ≤ s of the coordinate
functions of h vanish on g(C ∩W ). Using the induction hypothesis, it is evident
that h carries the compact parts of the set g(C ∩W ) into nowhere dense sets.
Finally, we observe that g(C ∩ ClV ) is a compact part of g(C ∩W ), and that
h(g(C ∩ ClV )) is just f(C ∩ ClV ).

At last, we come to the general case. According to Lemma 3.3.2.2, there
exists a number r such that the set f(C ∩Fr) is nowhere dense. We shall prove
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by induction on r, i.e, assuming that f(C ∩Fr) is nowhere dense, we show that,
for r = 1, f(C) is nowhere dense, and for r > 1, f(C ∩ Fr−1) is nowhere dense.

Let G be an open non-empty subset of Rq. Since C ∩ Fr is compact and
f(C ∩ Fr) is nowhere dense, the set C ∩ Fr has a neighbourhood N in Rn such
that ClN is compact and ClN ⊂ U , f(ClN) ̸⊃ G. Next replace the map f by
its restriction to U \ Fr and C - by the set

C ′ =

{
C \N, if r = 1

(C \ Fr) \N, if r > 1.

Now we are back to one of the cases covered by the �rst part of the proof
(namely, in the �rst case for r = 1, and in the second one for r > 1). Therefore,
we conclude that f(C ′) does not cover G \ f(ClN). Consequently, if r = 1 the
set f(C ∩ Fr) does not cover G, while if r > 1 the set f(C ∩ Fr) does not cover
G. This completes the proof, because f(C) and f(C ∩ Fr−1 are closed.

Information 3.3.2.5. In Theorem 3.3.2.3, the condition that f be C∞-smooth is
unnecessarily strong: in fact, the proof uses only the fact that f is of class Cr,
with r = 2 + max(n − q, 0). A more precise analysis shows that this r can be
decreased by 1 (see, for example, [21]), but no further (for q = 1, this is showed
in [23], and the case q > 1 reduces easily to the case q = 1).

3.3.3 Non-degenerate Critical Points

Remark 3.3.3.1. Let f be a real C2-function de�ned on an open subset of Rn.
A critical point y of f is non-degenerate if the second di�erential of f at y
(considered as a quadratic form) has rank n. The index of the second di�erential
of f at y (i.e, the number of negative squares in the diagonal representation of
this form) is called the index of the point y and is denoted by indf y.

We remark that if φ is a C2-di�eomorphism of an open subset U of Rn onto
another open subset of Rn and y is a non-degenerate critical point of f : U → R,
then φ(y) is a non-degenerate critical point of the function f ◦ φ : φ(U) → R,
and indf◦φ φ(y) = indf y. Both conclusions remain true in the more general
situation where φ is only of class C1 but the function f ◦ φ is of class C2.

Now consider the function Rn → R de�ned as

(x1, . . . , xn) 7→ −x21 − · · · − x2k + x2k+1 + · · ·+ x2n + c, (3.3.3.2)

where c is a real number (0 ≤ k ≤ n). This function has a unique critical point,
at 0, which clearly is non-degenerate and of index k. The main goal in the
present subsection is to show that, in a suitably chosen system of coordinates,
any su�ciently smooth function has the above form (3.3.3.2) in the vicinity of
a non-degenerate critical point.

Lemma 3.3.3.3. Let V be an open ball in Rn with centre 0, and let f : V → R be
a Cr-function, r ≥ 1, with f(0) = 0. There are Cr−1-functions f1, . . . fn : V → R
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such that

f(x) =

n∑
i=1

xifi(x) (3.3.3.4)

for all points x = (x1, . . . , xn) ∈ V .

Proof. To prove the lemma, it is enough to set

fi(x) =

� 1

0

Dif(tx)dt,

and then observe that (3.3.3.4) is an immediate consequence of the equality

∂

∂t
f(tx) =

n∑
i=1

xiDif(tx).

Theorem 3.3.3.5. Suppose that y is a non-degenerate critical point of a Cr-
function f de�ned on an open subset of Rn. If r ≥ 3, then there exist a neigh-
bourhood U of y and a di�eomorphism φ of U onto a neighbourhood V of 0, such

that the restriction f |U coincides with the composite map U
φ−→ V

3.3.3.2−−−−→ R,
where k = indf y and c = f(y).

Proof. Without loss of generality, we may assume that y = 0 and f(y) = 0. By
Lemma 3.3.3.3,

f(x) =

n∑
i=1

xifi(x)

in some neighbourhood of 0, where fi are Cr−1-functions. Di�erentiating, we
obtain Dif(x) =

∑n
j=1 xjDifj(x), since f1(0) = · · · = fn(0). Again we apply

Lemma 3.3.3.3 and write, in a neighbourhood V0 of 0,

fi(x) =

n∑
j=1

xjfij(x) (i = 1, . . . , n)

with Cr−2-functions fij . Therefore, for x ∈ V0,

f(x) =

n∑
i,j=1

gij(x)xixj ,

where gij(x) = (fij(x) + fji(x))/2. Clearly, gij(0) = DiDjf(0)/2.
The subsequent constructions mimic the standard reduction of a quadratic

form to canonical form through linear transformations. For p = 0, . . . , n, we
construct neighbourhoods Vp andWp of the point 0 in Rn, Cr−2-di�eomorphisms
φp : WptoVp, and also Cr−2-functions gpij : Vp → R, i, j = p+1, . . . , n, such that:

(i) Wp ⊂ Vp−1;
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(ii) φp = 0;

(iii) the composite map

Vp
φ−1

p−−→Wp
incl−−→ Vp−1

φ−1
p−1−−−→ · · ·

φ−1
1−−→W1

incl−−→ V0
abr f−−−→ R

is represented by the formula

x 7→ ±x21 ± · · · ± x2p +
n∑

ij=p+1

gpij(x)xixj ; (3.3.3.6)

(iv) gij = gji.

Then we will have �nished, since one could take

φ−1
1 (· · · (φ−1

n (Vn)) · · · )

for V , de�ne φ as the composition

V
abrφ1−−−−→ φ1(V )

abrφ2−−−−→ φ2(φ1)
abrφ2−−−−→ · · · abrφn−−−−→ Vn

abrπ−−−→ π(Vn),

where π is a suitable permutation of the standard coordinates in Rn, and set
U = φ−1(V ).

The neighbourhood V0 is already given. We let W0 = V0, φ0 = idV0,
g0ij = gij , and assume that we have constructed Vp, Wp, φ′

p, and gij satisfying
(i) , (ii), (iii), and (iv) for p ≤ q. It is clear that 0 is a non-degenerate critical
point of the function (3.3.3.6) with p = q. Hence the matrix G = ∥gpij(0)∥ki,j=q+1

is non-degenerate and there exists a non-degenerate (n− q)× (n− q)-matrix A
such that the left upper element of the matrix AtGA is not zero. Let ℓ denote
the linear transformation of Rn having matrix[

E 0
0 A

]
where E is the q × q-identity matrix. The composition of the di�eomorphism
abr ℓ : ℓ−1(Vq)→ Vq with the function (3.3.1.6) is given by

x 7→ ±x21 ± · · · ± x2q +
n∑

i,j=q+1

hij(x)xixj ,

where hij = hji and hq+1,q+1 ̸= 0. Now consider the subset L of ℓ−1(Vq)
consisting of all the points x where hq+1,q+1 ̸= 0 and has the same sign as
hq+1,q+1(0), and then de�ne ψ : L→ Rn as

ψ(x) = (x1, . . . , xq, ξ
√
|hq+1,q+1(x)|, xq+2, . . . , xn),
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where

ξ = xq+1 +
∑
s>q+1

xs
hs,q+1(x)

hq+1,q+1(x)
.

A simple computation shows that the Jacobian of ψ at the point 0 does not
vanish. Therefore, the compression of ψ to a neighbourhood M of 0 and to
its image ψ(M) is a Cr−2-di�eomorphism. It is now readily veri�ed that the
sets Vq+1 = ψ(M) and Wq+1 = ℓ(M), the map φq+1 : Wq+1 → Vq+1 de�ned by
φq+1(x) = ψ(ℓ−1(x)), and the functions gq+1

ij : Vq+1 → R de�ned as

gq+1
ij (x) = hij(x)−

hi,q+1(x)hj,q+1(x)

hq+1,q+1(x)

enjoy the properties (i), (ii), (iii), and (iv).
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3.4 EMBEDDINGS. IMMERSIONS. SMOOTH-
INGS. APPROXIMATIONS

3.4.1 Spaces of Smooth Maps

Remark 3.4.1.1. Let X and X ′ be C≥r-manifolds (0 ≤ r ≤ a). We denote by
Cr(X,X ′) the set of all Cr-mapsX → X ′. If r ≤ ∞, we equip Cr(X,X ′) with the
Cr-topology which makes Cr(X,X ′) into a topological space, as follows. Given
two arbitrary charts φ ∈ AtlX and φ′ ∈ AtlX ′, a sequence of non-negative
integers r1, . . . , rn with n = dimX and r1 + · · · + rn ≤ r, a compact subset A
of imφ, and an open subset A′ of Rn′

, where n′ = dimX ′, consider the subset
of Cr(X,X ′) consisting of all maps f such that

[Dr1
1 · · ·Drn

n loc(φ,φ′)f ](A) ⊂ A′.

These subsets form a prebase of the Cr-topology on Cr(X,X ′).
Clearly, C0(X,X ′)→ C(X,X ′), and the C0-topology is simply the compact-

open topology (see De�nition 1.2.7.1). Also, for s < r, the inclusion Cr(X,X ′)→
Cs(X,X ′) is obviously continuous. Another direct consequence of the de�nition
of the Cr-topology is that all the spaces Cr(X,X ′) are regular. In addition,
we note that the sets closed (open) in Cr(X,X ′) are exactly those sets closed
(respectively, open) in all the Cr-topologies with r �nite.

For each pair of Cr-maps f : Y → X and f ′ : Y ′ → X ′, there is a map
Cr(X,X ′) → Cr(Y, Y ′) de�ned by the formula g 7→ f ′ ◦ g ◦ f , and denoted by
Cr(f, f ′).

X
g //

Cr(f,f ′)

��

X ′

f ′

��
Y

f

OO

f ′◦g◦f
// Y ′

Obviously, C0(f, f ′) = C(f, f ′) (see De�nition 1.2.7.1), Cr(f, f ′) = abr Cs(f, f ′)
for s < r, and Cr(f, f ′) is continuous for all r ≤ ∞.

We list some particular subsets of Cr(X,X ′) which are important in the se-
quel. These are the sets of all Cr-embeddings, Cr-immersions, Cr-submersions,
and Cr-di�eomorphismsX → X ′, and they are denoted by Embr(X,X ′, Immr(X,X ′),
Submr(X,X ′), and Diffr(X,X ′), respectively (1 ≤ r ≤ a). Moreover, we let
Cr∂(X,X ′) denote the set of all Cr-maps f : X → X ′ such that f(∂X) ⊂ ∂X ′

and dxf(TangX) ⊂ Tangf(x)(∂X
′) for all x ∈ ∂X. Usually one writes DiffrX

instead of Diffr(X,X).
For 1 ≤ r ≤ ∞, the map Cr∂(X,X ′) → Cr(∂X, ∂X ′), de�ned as f 7→ abr f

is continuous, and the map Cr(X,X ′) → Cr−1(TangX,TangX ′), de�ned as
f 7→ df is a topological embedding.

Theorem 3.4.1.2. If X is compact, then the set Immr(X,X ′) is open in
Cr∂(X,X ′) (1 ≤ r ≤ ∞).
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Proof. We have to exhibit, for a given Cr∂-immersion f0 : X → X ′, a neigh-
bourhood of f0 in Cr∂(X,X ′) consisting only of immersions. To do this, pick
for each point x ∈ X two charts, φx ∈ AtlxX and φ′

x ∈ AtlxX
′, such that

f0(suppφ) ⊂ suppφ′
x and loc(φx, φ

′
x)f equals one of the inclusions Rn → Rn′

,
Rn− → Rn′

, or Rn− → Rn′

− , (see Proposition 3.1.5.3 and Remark 3.1.5.1; here
n = dimX and n′ = dimX ′). Now cover X with a �nite number of sets
Ux = φ−1

x (intDn), say Ux1 , . . . , Uxs , and denote by Ui the subset of Cr(X,X ′)
consisting of all the maps f such that f(ClUxi) ⊂ suppφ′

xi
and the upper n×n-

minor of the Jacobi matrix of the map loc(φxi
, φ′

xi
)f has no zeros on Dn. The

intersection U1 ∩ · · · ∩ Us is the desired neighbourhood of the map f0.

Theorem 3.4.1.3. If X is compact and X ′ has no boundary, then the set
Submr(X,X ′) is open in Cr(X,X ′) (1 ≤ r ≤ ∞).

Proof. We have to exhibit, for a given Cr-submersion f0 : X → X ′, a neigh-
bourhood of f0 in Cr(X,X ′) consisting only of submersions. Again, for each
point x ∈ X we choose charts φx ∈ AtlxX and φ′

x ∈ Atl′xX, such that
f0(suppφx) ⊂ suppφ′

x and loc(φx, φ
′
x)f equals one of the orthogonal projec-

tions Rn → Rn′
, Rn− → Rn′

(see Theorem 3.1.5.7). Now cover X with a �nite
number of sets Ux = φ−1

x (intDn), say Ux1 , . . . , Uxs , and denote by Ui the subset
of Cr(X,X ′) consisting of all maps f such that f(Clxi) ⊂ suppφxi and the left
n′ × n′-minor of the Jacobi matrix of the map loc(φ,φ′)f has no zeros on Dn.
The intersection U1 ∩ · · · ∩ Us is the desired neighbourhood of the map f0.

Theorem 3.4.1.4. If X is compact, then the set Embr(X,X ′) is open in
Cr(X,X ′) (1 ≤ r ≤ ∞).

Proof. Given a Cr-embedding f0 : X → X ′, Theorems 3.4.1.2 and Corollary
3.1.5.4 show that it is enough to produce a neighbourhood of f0 in Cr(X,X ′)
consisting only of injective maps. For each point x ∈ X, choose two charts, φx ∈
AtlxX and φ′

x ∈ AtlxX
′, such that f0(suppφx) ⊂ suppφ′

x and loc(φx, φ
′
x)f

coincides with one of the inclusions Rn− → Rn′
, or Rn− → Rn′

− (see Remark
3.1.5.1). Now cover X with a �nite number of sets Ux = φ−1

x (intDn), say
Ux1

, . . . , Uxs
. Let Ui be the subset of Cr(X,X ′) consisting of all maps f such

that f(ClUxi) ⊂ suppφ′
xi

and, if we symmetrise the upper n × n-part of the
Jacobi matrix of loc(φxi , φ

′
xi)f and take all the principal minors, they are all

positive on the ball Dn. (The principal minors are the left-upper minors; the
symmetrised matrix is half the sum of the matrix with its transpose.) Finally,
denote by U that part of Cr(X,X ′) consisting of all maps such that the preimage
of any point of ′ lies in one of the sets Uxi . Let us show that the intersection
V = U1 ∩ · · · ∩ Us ∩ U is a neighbourhood of f0 with the necessary property. It
is clear that f0 ∈ V and that all the sets Ui are open. Hence it su�ces to verify
that:

(i) U is open, and

(ii) the maps in Ui are injective.
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To prove (i), note that U is the preimage of the set

W = C(X ×X, (X ×X) \ ∪i(Uxi
× Uxi

);X ′ ×X ′, (X ′ ×X ′) \ diag(X ′))

under the continuous mapping

Cr(X,X ′)→ C(X ×X,X ′ ×X ′), f 7→ f × f.

Since (X ×X) \ ∪i(Uxi × Uxi) is compact and (X ′ ×X ′) \ diag(X ′) is open in
X ′ ×X ′ (see Remark 1.2.2.4), W is open in C(X ×X,X ′ ×X ′) and U is open
in Cr(X,X ′).

To prove (ii), given a map f ∈ Ui and arbitrary distinct points y, z ∈ Uxi
,

let s : I → R be the function which takes each point t ∈ I into the inner product
of the vectors v = φxi

(z)− φxi
(y) and

[loc(φxi , φ
′
xi
)f ]((1− t)φxi(y) + tφxi(z))− loc(φxi , φ

′
xi
)f(y),

computed in Rn′
. Next denote by J(u) the symmetrised upper n × n-part of

the Jacobi matrix of the map loc(φxi , φ
′
xi
)f at the point u ∈ intDn, and by qt -

the bilinear form Rn × Rn → Rn having the matrix J((1− t)φxi
(y) + tφxi

(z)).
The function s is smooth and its derivative at the point t is precisely qt(v, v),
and is therefore positive (as a consequence of the de�nition of Ui). Moreover,
s(0) = 0, which implies that s(1) > 0, i.e., f(y) ̸= f(z).

Corollary 3.4.1.5. If X is compact, then the set of neat Cr-embeddings X →
X ′ is open in Cr∂(X,X ′) (1 ≤ r ≤ ∞).

Proof. This is an immediate corollary of Theorem 3.4.1.4 since the set in ques-
tion is just Embr(X,X ′) ∩ Cr∂(X,X ′).

Corollary 3.4.1.6. If X is compact, then the set Diffr(X,X ′) is open in
Cr∂(X,X ′) (1 ≤ r ≤ ∞).

Proof. This is a corollary of Corollary 3.4.1.5 (see Remark 3.1.5.1).

3.4.2 The Simplest Embedding Theorems

Theorem 3.4.2.1. Every compact C≥r-manifold, 1 ≤ r ≤ ∞, admits a Cr-
embedding in a Euclidean space of su�ciently high dimension.

Proof. Let n be the dimension of the given manifold X, and let α : Rn → I be a
Cr-function equal to 1 on Dn, smaller than 1 outside Dn, and equal to 0 outside
the concentric ball of radius 2. For each point x ∈ X, �x a chart φx ∈ AtlxX
with imφx = Rn or Rn−, and φx = 0. De�ne a map jx : X → R × Rn by the
formula

jx(y) =

{
(α(φx(y)), α(φx(y))φx(y), if y ∈ suppφx,

(0, 0), if y ∈ X \ suppφx.



182 CHAPTER 3. SMOOTH MANIFOLDS

Now cover X by a �nite number of sets Ux = φ−1
x (intDn), say Ux1 , . . . , Uxs ,

and de�ne

j : X → (R× Rn)× · · · × (R× Rn) = Rs(n+1), y 7→ (jx1
(y), . . . , jxs

(y)).

The map j is of class Cr and injective: if y ∈ Uxi
and y′ ̸= y, then jxi

(y′) ̸=
jxi

(y).
Indeed, if y′ ̸∈ Uxi

, then α(φxi
(y′)) < 1, whereas α(φxi

(y)) = 1; if y′ ∈ Uxi
,

then
α(φxi(y

′))φxi(y
′) = φxi(y

′) ̸= φxi(y) = α(φx(y))φx(y)

Moreover, j is an immersion, since jxi is an immersion on Uxi (the second
component X → Rn of the map j agrees with φxi

on Uxi
). Therefore, j is a

Cr-embedding (see Corollary 3.1.5.4).

Supplement for the Case of Non-empty Boundary

Lemma 3.4.2.2. On any compact C≥r-manifold, 1 ≤ r ≤ ∞, there is a (real)
Cr-function h, equal to 0 on ∂X, positive on intX, and having no critical points
on ∂X.

Proof. Let α : Rn → I , n = dimX, be a Cr-function equal to 1 on Dn and equal
to 0 outside the concentric ball of radius 2. For each point x ∈ ∂X �x a chart
φx ∈ AtlxX such that imφx = Rn− and φx(x) = 0, and de�ne two functions
fx, gx : X → R through the formulae

(fx(y), gx(y)) =

{
(1− α(φx(y)), β(φx)), if y ∈ suppφx,

(1, 0) if y ∈ X \ suppφx,

Here β : Rn → R is given by β(t1, . . . , tn) = t1α(t1, . . . , tn). Covering ∂X by a
�nite number of sets Ux = φ−1

x (intDn), say Ux1
, . . . , Uxs

, and setting

h(y) =

s∏
i=1

fxi(y) +

s∑
i=1

gxi(y),

we obtain the needed function h : X → R. In fact, h vanishes identically on ∂X,
since f is equal to 0 on Uxi

and all the functions gxi
vanish identically on ∂X;

h is positive on intX, since all the functions fxi
, gxi

are non-negative and gxi

is positive at all points of intX, excepting the zeros of fxi
. Finally, h has no

critical points on ∂X, since
∑
gxi

has no critical points on ∂X (the derivative
with respect to the �rst coordinate of the local representative loc(φxk

, idR)gxi ,
i.e, of the composition (φxi |suppφxk

) ◦ φ−1
xk
, is negative on Dn ∩ Rn−1

1 for k =i
and non-positive on Dn ∩ Rn−1

1 for all k), while
∏
fxi

vanishes identically on
∪Uxi

.

Theorem 3.4.2.3. Every compact C≥r-manifold, 1 ≤ r ≤ ∞, admits a neat
Cr-embedding in a Euclidean space of su�ciently high dimension.

Proof. The formula x 7→ (−h(x), j(x)), where j is an arbitrary Cr-embedding in
Rn (see Theorem 3.4.2.1), and h is the function constructed in Lemma 3.4.2.2,
de�nes a neat Cr-embedding in Rq+1

− = R1
− × Rq.



3.4. EMBEDDINGS. IMMERSIONS. SMOOTHINGS. APPROXIMATIONS183

Information

Remark 3.4.2.4. The compactness assumption and the condition that r ̸= a
may be eliminated from the formulations of 3.4.2.1 and 3.4.2.3. Any smooth
manifold of class C≥r, with r ≤ ∞ or r = a, compact or not, can be Cr-embedded
in Euclidean space, and any smooth manifold of class C≥r, with r ≤ ∞ or r = a,
compact or not, admits a neat C≥r-embedding Euclidean space. For proofs see
[22] and [8].

We should mention that the case r = a in Theorems 3.4.2.1 and 3.4.2.3 is
exceedingly di�cult and this is the reason why we excluded it here. In the sequel
we shall exclude it from other formulations too: cf., for example, Theorems
3.4.4.2, 3.4.5.3, 3.4.6.5, and 4.6.2.7.

3.4.3 Transversalisations and Tubes

Remark 3.4.3.1. In this subsection, we consider the image in Euclidean space
of a smooth manifold under a di�erentiable embedding and study the structure
of a neighbourhood of this image. The results are concentrated in Theorems
3.4.3.4, 3.4.3.5, and 3.4.3.7, and serve as the technical basis for the remaining
part of the present section.

Remark 3.4.3.2. Let j be a di�erentiable embedding of the smooth, closed, n-
dimensional manifold X in Rq. A transversalisation of j is a continuous map
τ : X → G(q, q−n) such that, for each point x ∈ X, the plane τ(x) is transverse
to the plane dxj(TangxX) (i.e., the two planes intersect at only one point). A
basic example is the normal transversalisation which associates to each point
x ∈ X the corresponding normal plane (i.e., the orthogonal complement to
dxj(TangxX) in Rq); if j is of class Cr, then its normal transversalisation is
obviously of class Cr−1 (cf. Remark 3.1.4.2).

Given an embedding j : X → Rq and a transversalisation τ : X → G(q, q−n)
of j, one can construct the natural map τ̃ : X → G′(q, q − n), which takes each
point x into the plane j(x) + τ(x) (which is parallel to τ(x) and passes through
j(x)). We denote the ball and the sphere with centre j(x) and radius ρ in
j(x) + i(x) by dτ (x, ρ) and sτ (x, ρ), respectively. The unions ∪x∈Xdτ (x, ρ) and
∪x∈X [dτ (x, ρ) \ sτ (x, ρ)] are called the tube (or the tubular neighbourhood) and
the open tube (or the open tubular neighbourhood) of radius ρ of the transver-
salisation τ , and are denoted by Tubτ ρand tubτ ρ, respectively.

A tube Tubτ ρ is said to be neat if there is a σ > ρ such that:

(i) the open balls dτ (x, σ)\sτ (x, σ), x ∈ X, are pairwise disjoint and the open
tube tubτ σ they form is a neighbourhood of j(X) in Rq;

(ii) the map of this neighbourhood onto X, which transforms all the points of
dτ (x, σ) \ sτ (x, σ) into x, is smooth.

The restrictions of the last map to Tubτ ρ or tubτ ρ (which obviously do not
depend on the choice of σ) are called projections and are denoted by projτ .

If Tubτ ρ is neat, then all the tubes Tubτ ρ′ with ρ′ < ρ are obviously neat.



184 CHAPTER 3. SMOOTH MANIFOLDS

Warning: it may happen that the normal transversalisation does not have a
neat tube, or even a tube such that the balls dtau(x, ρ) are disjoint; see Exercise
3.4.11.4.

Remark 3.4.3.3. The following construction enables us to represent a neat tubu-
lar neighbourhood as the image of some ideal model of itself, and is required in
the proofs of Theorems 3.4.3.4 and 3.4.3.5.

Let Tuτ be that subset of the product X × Rq consisting of all the pairs
(x, t) with t ∈ τ(x). For ρ > 0, we let Tuτ ρ and tuτ ρ denote the pieces of
Tuτ such that dist(0, t) ≤ ρ and dist(0, t) < ρ, respectively. We also denote
by nat : Tuτ → Rq the map given by nat(x, t) = j(x) + t. nat is obviously
an isometry of each plane x × τ(x) onto the corresponding plane j(x) + τ(x),
and transforms Tuτ ρ (tuτ ρ) exactly into Tubτρ (respectively, tubτ ρ). It is
also clear that nat is injective on Tuτ ρ(tuτρ) if and only if the balls dτ (x, ρ)
(respectively, the open balls dτ (x, ρ)\sτ (x, ρ)) are pairwise disjoint. In this case
nat transforms the restriction to Tuτ ρ of the projection proj1 : X × Rq → X
into the projection projτ : Tubτ ρ→ X (respectively, the restriction to tuτ ρ of
proj1 into projτ : tubτ → X).

We are interested only in smooth transversalisations τ . If j and τ are Cr-
maps with r ≥ 1, then X × Rq is a C≥r-manifold, Tuτ is a neat q-dimensional
submanifold of X × Rq (without boundary), and nat is a Cr-map. Moreover,
in this case Tuτ ρ is a compact q-dimensional submanifold of Tuτ such that
int(Tuτ ρ) = tuτ ρ and the restriction of the projection proj 1 : X × Rq → X to
each of the manifolds Tuτ , Tuτ ρ, and tuτ ρ is a Cr-submersion.

Theorem 3.4.3.4. Let the maps j and τ be of class Cr, r ≥ 1. If Tubτ ρ is
a neat tube, then it is a Cr-submanifold of Rq with int(Tubτ ρ) = tubτ ρ, and
projτ : Tubτ ρ→ X is a Cr-submersion.

Proof. Let σ > ρ be such that the conditions (i) and (ii) in Remark 3.4.3.2
are satis�ed. As Remark 3.4.3.3 shows, the map abr nat : tuτ σ → tubτ σ is
invertible and its inverse abr nat−1 : : tubτ σ → tuτ σ is obviously given by
y 7→ (projτ (y), y − j ◦ projτ (y)). This formula shows that abr nat−1 is smooth
and thus a Cr-di�eomorphism. Now it is evident that the properties of Tubτ ρ
and the projection projτ : Tubτ ρ → X which we have to verify are conse-
quences of the properties established in Remark 3.4.3.3 for their models Tuτ ρ
and abr proj1 : Tuτ ρ→ X.

Theorem 3.4.3.5. Every smooth transversalisation has a neat tube.

Proof. Let τ be a smooth transversalisation of the embedding j : X → Rq. Since
the planes τ(x) and dxj(TangxX) are transverse, the di�erential dx,t nat is non-
degenerate when t = 0. Hence, nat de�nes a di�eomorphism of a neighbourhood
U of X × 0 in Tuτ onto a neighbourhood of j(X) (see Theorem 3.1.5.5). It is
clear that if Tuτ ρ ⊂ U , then Tubτρ is a neat tube of the transversalisation
τ .
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Lemma 3.4.3.6. Suppose X and X ′ are closed C≥r-manifolds, 1 ≤ r ≤ ∞.
If there exists a Cr-embedding of X ′ in Euclidean space together with a Cr-
transversalisation, then the set Cr(X,X ′) is dense in C(X,X ′).

Proof. Fix a Cr-embedding j : X → Rq, and a Cr-embedding j′ : X ′ → Rq′

together with a Cr-transversalisation τprime. It su�ces to show that given an
arbitrary continuous map f : X → X ′ and an arbitrary ε > 0, there is a Cr-map
g : X → X ′ such that

max
x∈X

dist(j′ ◦ f(x), j′ ◦ g(x)) < ε

(see Theorem 1.2.7.3). We construct the neat tube Tubτ ′ρ′ with ρ′ ≤ ε/2 and
choose

δ
def
= min(ε/2,Dist(j′(X ′),Rq

′
\ tubτ ′ ρ′)).

Note that δ > 0 (see Theorem 1.1.7.15). Then, according to Theorem 1.1.5.17,
the composition

j(X)
(abr j)−1

−−−−−−→ X
f−→ X ′ j′−→ Rq

′

extends to a continuous map f1 : Rq → Rq′ . Now Theorem 3.3.1.7 yields a map
g1 : Rq → Rq′ with polynomial components and such that

max
x∈X

dist(f1 ◦ j(x), g1 ◦ j(x)) < δ.

This in turn shows that g1 ◦ j(X) ⊂ tubτ ′ , ρ′, and it is clear that g(x) =
projτ (g1 ◦ j(x)) de�nes the desired map g : X → X ′.

Theorem 3.4.3.7. Every Cr-embedding of a closed C≥r-manifold, 1 ≤ r ≤ a,
in Euclidean space admits a Cr-transversalisation.

Proof. If r = a,∞, the normal transversalisation will su�ce. If 1 ≤ r < ∞,
the existence of the normal transversalisation shows that the set of all transver-
salisations of a given Cr-embedding j : X → Rq is not empty. Since the lat-
ter set is (trivially) open in C(X,G(q, q − dimX)), it is enough to show that
Cr(X,G(q, q − dimX)) is dense in C(X,G(q, q − dimX)). But this is a conse-
quence of Lemma 3.4.3.6, because G(q, q−dimX) can be analytically embedded
in Euclidean space.

3.4.4 Smoothing Maps in the Case of Closed Manifolds

Remark 3.4.4.1. Now we arrive at the main topic of the present section � ap-
proximating maps of one smooth manifold into another by maps which are more
regular in a sense or another as, for example, maps of a higher di�erentiability
class, or embeddings, or immersions.

In this subsection we consider only approximations which raise the di�eren-
tiability class of maps without improving their other properties, and we restrict
ourselves to the simplest case � that of the closed manifolds.
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Theorem 3.4.4.2. If r ≤ ∞ then for any closed C≥r-manifolds X and X ′ and
any s < r, the set Cr(X,X ′) is dense in Cs(X,X ′). The same is true when
r = a provided that X and X ′ can be Ca-embedded in Euclidean spaces.

Proof. We have to show that given a map f ∈ Cs(X,X ′) and a neighbourhood
U of f in Cs(X,X ′), there is a Cr-map in U . Fix Cr-embeddings j : X → Rq and
j′ : X ′ → Rq′ , corresponding transversalisations τ and τ ′, and corresponding
neat tubes Tubτ ρ and Tubτ ′ ρ′. Now consider the mapping

Cs(abr j,projτ ′) : Cs(Tubτ (ρ/2, tubτ , ρ′)→ Cs(X,X ′),

where abr j = [abr j : X → Tubτ (ρ/2)] (see Remark 3.4.1.1). Since it takes
Cr-maps into Cr-maps, it su�ces to prove that the preimage V of U under this
mapping intersects Cr(Tubτ (ρ/2), tubτ ′ , ρ′). But V is open and contains the
restriction to Tubτ (ρ/2) of the composition

tubτ ρ
proj τ−−−−→ X

f−→ X ′ abr j′−−−→ tubτ ′ ρ′. (3.4.4.3)

The image of this restriction is compact, and so it lies at a positive distance
from Rq′ \tubτ ′ ρ′. Consequently, there exists ε > 0 such that if, at the points of
Tubτ (ρ/2), the partial derivatives of order 0, 1, . . . , s of the coordinate functions
of a map g ∈ Cs(Tubτ (ρ/2),Rq

′
) di�er from the corresponding partial derivatives

of the map (3.4.4.3) by less than ε, then

g(Tubτ (ρ/2)) ⊂ tubτ ′ ρ′ and [abr g : Tubτ (ρ/2)→ tubτ ′ ρ] ∈ V.

Finally, apply Theorem 3.3.1.7 to the coordinate functions of (3.4.4.3) to deduce
that there exists a map g with polynomial coordinate functions whose partial
derivatives have the property above. Thus V ∩Cr(Tubτ (ρ/2), tubτ ′ ρ′) ̸= ∅.

Remark 3.4.4.4. Comparing Theorem 3.4.4.2 with the Theorems 3.4.1.2, 3.4.1.3,
3.4.1.4, and Corollary 3.4.1.6, we see that for r ≤ ∞ and 1 ≤ s < r, and for
any given closed C≥r-manifolds X and X ′, the following holds: Immr(X,X ′) is
dense in Imms(X,X ′), Submr(X,X ′) is dense in Subms(X,X ′), Embr(X,X ′)
is dense in Embs(X,X ′), and �nally Diffr(X,X ′) is dense in Diffs(X,X ′). The
same is true when r = a provided that X and X ′ can be Ca-embedded in
Euclidean spaces.

Corollary 3.4.4.5. If two closed C≥r-manifolds, 1 ≤ r ≤ ∞, are di�eomorphic,
then they are Cr-di�eomorphic. The same is true for r = a provided that X and
X ′ can be Ca-embedded in Euclidean spaces.

Information 3.4.4.6. Two closed homeomorphic Ca-manifolds are not necessarily
di�eomorphic. Historically, the �rst such examples where Ca-manifolds which
are homeomorphic, but not di�eomorphic to S7; see [15].
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Supplement to to Theorem 2

Theorem 3.4.4.7. If r ≤ ∞, then Cr(X,X ′) is dense in Cs(X,X ′), s < r, in
the following more general situation too: X is a closed C≥r-manifold and X ′ is
an open subset of a closed C≥r-manifold Y . The same is true for r = a if X
and Y can be Ca-embedded in Euclidean spaces.

Proof. The proof reduces to observing that the mapping

Cs(id, incl) : Cs(X,X ′)/toCs(X,Y )

is a topological embedding with open image which carries Cr(X,X ′) into the in-
tersection of this image with Cr(X,Y ). Since Cr(X,Y ) is dense in Cs(X,Y ), the
above intersection is dense in this image, and Cr(X,X ′) is dense in Cs(X,X ′).

Lemma 3.4.4.8. Every pair of disjoint closed subsets of a closed Cr-manifold
with r ≤ ∞ has a Urysohn function of class Cr.

Proof. Let φ : X → I be an arbitrary Urysohn function for the given pair of
subsets A, B of X. According to Theorem 3.4.4.7 , there is a Cr-function
ψ : X → R such that maxx∈X |ψ(x) − φ(x)| < 1/3. If now λ : R → I is a Cr-
function such that λ(y) = 0 for y ≤ 1/3 and λ(y) = 1 for y ≥ 2/3, then λ ◦ ψ is
obviously a Urysohn Cr-function for the pair A, B.

Theorem 3.4.4.9. Let X and X ′ be closed C≥r-manifolds and let A be a closed
subset of X. If 0 ≤ s < r ≤ ∞, then that part of Cs(X,X ′) consisting of the
Cr-extensions of a given map φ : A → X ′ is dense in the part of Cs(X,X ′)
consisting of the extensions of φ which are of class Cr in a neighbourhood of A
(the neighbourhood depends upon the extension).

Proof. Let f ∈ Cs(X,X ′) be an extension of φ which is of class Cr in a neigh-
bourhood U of A. Given a neighbourhood U of f in Cs(X,X ′), we have to
show that U contains a Cr-extension of φ. Fix a Cr-embedding j′ : X ′ → Rq′ ,
a Cr-transversalisation τ ′ of j′ and a neat tube Tubτ ′ ρ′, and denote by V the
piece of Cs(X,X ′) consisting of all the maps g such that

max
x∈X

dist(j′ ◦ f(x), j′ ◦ g(x)) < Dist(j′(X),Rq
′
\ tubτ ′ ρ′).

It is obvious that V is open and that for any g ∈ V, x ∈ X, the segment with
endpoints j′ ◦ f(x), j′ ◦ g(x) is contained in tubτ ′ ρ′. Next construct a Urysohn
Cr-function ψ for the pair A, X \ U (see Lemma 3.4.4.8) and consider the map
Φ: V → Cs(X,X ′) which transforms g into the map

x 7→ projτ ′((1− ψ(x))j′ ◦ f(x) + ψ(x)j′ ◦ g(x)).

One may check directly that Φ is continuous and Φ(f) = f ; hence the set Φ−1(U)
is open and non-empty. Now Theorem 3.4.4.2 shows that φ−1(U) contains a Cr-
map. Finally, we note that Φ takes Cr-maps into Cr-extensions of φ.
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Theorem 3.4.4.10. Suppose that X and X ′ are closed C≥r-manifolds and A
is a submanifold of X which is itself closed as a manifold. Let φ : A → X ′

be a Cr-map. If 0 ≤ s < r ≤ ∞, then that part of Cs(X,X ′) consisting of
the Cr-extensions of φ is dense in the part of Cs(X,X ′) consisting of all the
Cs-extensions of φ.

Proof. Given a Cs-extension of φ and a neighbourhood U of this extension
in Cs(X,X ′), we have to show that U contains a Cr-extension of φ. Fix Cr-
embeddings j : X → Rq and j′ : X ′ → Rq′ , a Cr-transversalisation τ of the
embedding j|A : A→ Rq and a Cr-transversalisation τ ′ of j′, and corresponding
neat tubes Tubτ ρ and Tubτ ′ ρ′. Further, denote by V the piece of Cs(X,X ′)
consisting of all the maps g such that

max
x∈X

dist(j′ ◦ φ(x), j′ ◦ g(x)) < Dist(j′(X ′),Rq
′
\ tubτ ′ ρ′).

Obviously, V is open and contains all the Cs-extensions of φ to X. Now take
any Urysohn Cr-function ψ for the pair X \ j−1](tubτ ρ), A and consider the
mapping Φ: V → Cs(X,X ′) which transforms each map g into the map

x 7→


projτ ′ (j ◦ g(x) + ψ(x)[j′ ◦ φ ◦ projτ (j(x))− j′ ◦ g ◦ projτ (j(x))]),

if j(x) ∈ Tubτ ρ,

g(x), if j(x) ̸∈ Tubτ ρ.

It is clear that Φ is continuous and that Φ(g) = g whenever g extends φ. This im-
plies that Φ−1(U) is an open non-empty set which, according to Theorem 3.4.4.2,
contains a Cr-map. Finally, note that Φ takes Cr-maps into Cr-extensions of
φ.

3.4.5 Glueing Manifolds Smoothly

Remark 3.4.5.1. Our main task in this subsection is to make the necessary
preparations for extending the basic approximation theorems given in the pre-
vious subsection, i.e., Theorem 3.4.4.2, Remark 3.4.4.4 and Corollary 3.4.4.5, in
their non-analytic version, to include compact manifolds with boundary. The
main tool used in the extension is that of smooth doubling of a compact mani-
fold, an operation which transforms it into a closed manifold. However, we �nd
it convenient to de�ne and study a more general operation, which is useful for
other purposes too - the smooth glueing of smooth compact manifolds. To begin
with, we need to investigate the structure of a smooth compact manifold in the
vicinity of its boundary.

De�nition 3.4.5.2. A collaring of a compact Cr-manifold X (0 ≤ r ≤ a) is a
Cr-embedding of the cylinder ∂X × I into X, which takes the point (x, 0) into
x, for each x ∈ ∂X. The image of ∂X × I under such an embedding is known
as a collar (on X).

If X is a smooth manifold (i.e., r ≥ 1), a collaring is a di�erentiable embed-
ding and its image is a submanifold of codimension 0, whose boundary consists
of ∂X and of a submanifold of intX di�eomorphic to ∂X.
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Theorem 3.4.5.3. If 1 ≤ r ≤ ∞, every compact Cr-manifold admits a collar-
ing.

Proof. Let X be the given manifold. Pick a neat Cr-embedding j : X → Rq (see
Theorem 3.4.2.3), a Cr-transversalisation τ of the composite embedding

X
abr j−−−→ Rq−

incl−−→ Rq,

and a neat tube Tubτ ρ. Consider the map φ : j(tubτ ρ) → ∂X × R1
−, de�ned

as x 7→ (projτ (j(x), j1(x)), where j1 is the �rst coordinate function of j. Since
j is neat, the di�erential dxφ is non-degenerate at each point x ∈ ∂X, so that
φ realises a di�eomorphism of a neighbourhood of ∂X onto a neighbourhood
of ∂X × 0 (see Theorem 3.1.5.5). Now let ε > 0 be small enough so that the
product ∂X × [−ε, 0] is contained in the previous neighbourhood. Then the
formula (x, t) 7→ φ−1(x,−εt) obviously de�nes a collaring of X.

Information 3.4.5.4. The compact topological manifolds (r = 0) and the com-
pact analytic manifolds (r = a) admit collarings too. The case r = 0 is consid-
ered in [4].

Glueing

Remark 3.4.5.5. Suppose thatX andX ′ are compact n-dimensional Cr-manifolds
with r ≥ 1, and let C and C ′ be submanifolds of ∂X and ∂X ′, respectively, con-
sisting of whole components of these boundaries. Assuming that C and C ′ are
di�eomorphic, pick a Cr-di�eomorphism φ : C → C ′ and attach X to X ′ by the
composite map

C
φ−→ C ′ incl−−→ X ′

(see Remark 1.2.4.8). The resulting space Y = X ′ ∪incl ◦φX is obviously a com-
pact, n-dimensional, topological manifold. However, if X and X ′ have collars
then it turns out that Y has a natural Cr-structure that makes it into a collared
Cr-manifold. The atlas that de�nes this Cr-structure consists of the charts of
Atl(X \ C) and Atl(X ′ \ C ′) (we regard X and X ′ as parts of Y ), as well as
the charts Ψ constructed from both the charts ψ ∈ AtlC and the collarings
k : ∂X × I → X and k′ : ∂X ′ × I → X ′ by the formulae

suppΨ = k(suppψ × [0, 1)) ∪ k′(suppψ × [0, 1))

and
Ψ(k(z, t)) = (ψ(z),−t)
Ψ(k′(z, t)) = (ψ(z), t)

}
z ∈ C, t ∈ [0, 1)

(imψ ⊂ Rn−1 and imΨ = imψ × (−1, 1) ⊂ Rn−1 ×R = Rn) . It is readily seen
that these charts are all pairwise compatible. One constructs a collar on the
resulting Cr-manifold Y from those pieces of the collarings k and k′ which are
preserved under the above procedure. We say that the di�eomorphism φ glues
X and X ′ into Y . It is clear that ∂Y = (∂X \C) ∪ (∂X ′ \C ′) and that X, X ′,
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and C are submanifolds of Y . The pieces of the collarings k and k′ which are
related to C and C ′ yield a two-sided collaring of the manifold C in Y , i.e., a
Cr-embedding C × [−1, 1] → Y such that (z, 0) 7→ z; its image is a two-sided
collar of C in Y .

In the particular situation X ′ = X, C ′ = C = ∂X, and φ = id∂X , we use
the term doubling instead of glueing and denote Y by doppX. This de�nition
agrees with De�nition 3.1.1.10, i.e., C0(doppX) = dopp(C0X).

Now suppose that X and X ′ are oriented manifolds and C and C ′ are
equipped with the induced orientations (see Remark 3.1.3.4). If φ is orientation
preserving, then Y is orientable and can be actually oriented in a canonical way.
This canonical orientation is that which induces the original orientation on X
and the orientation opposite to the original one on X ′. In particular, doppX is
oriented for any oriented manifold X.

The simplest examples show that the Cr-structure on Y depends not only
upon the Cr-structures of the manifolds X and X ′ and the di�eomorphism φ,
but also upon the collarings k and k′. Our next objective is to demonstrate
that for r ̸= a this last dependence is eliminated if we regard Y as distinct up
to Cr-di�eomorphisms.

Lemma 3.4.5.6. Let X and X ′ be closed Cr-manifolds, 1 ≤ r ≤ ∞, and let
f : X × [−1, 1] → X ′ × [−1, 1] be such that f(X × [−1, 0]) ⊂ X ′ × (−1, 0] and
f(X × [0, 1]) ⊂ X ′ × [0, 1). Assume that abr f : X × [−1, 0]→ X ′ × (−1, 0] and
abr f : X × [0, 1] → X ′ × [0, 1) are di�erentiable embeddings of class Cr, while
abr f : X × 0 → X ′ × 0 is a di�eomorphism. Then there exists a Cr-embedding
g : X × [−1, 1]→ X ′ × [−1, 1] such that

g = f on (X × [−1,−1/2]) ∪ (X × 0) ∪ (X × [1/2, 1]),

g(X × [−1, 0]) = f(X × [−1, 0]),
g(X × [0, 1]) = f(X × [0, 1]).

Proof. In the proof that follows we let f1 and f2 denote the composite maps

X ′

X × [−1, 1]
f //

f1

77

f2 ''

X ′ × [−1, 1]

proj1

OO

proj2

��
[−1, 1]

respectively.
For a start, assume that for some positive ε the map f1 is constant on each

set x × [−ε, ε], x ∈ X. In this case, �x positive numbers δ and η, such that
δ ≤ min(ε, 1/2) and for any x ∈ X the derivative of the function t 7→ f2(x, t) is
not less than η on the intervals [−δ, 0) and (0, δ].
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Note that the existence of such δ and η results from the continuity of the
functions X × [−1, 0] → R and X × [0, 1] → R, given by the formula (x, t) 7→
∂f2(x, t)∂τ |τ=t (for t = 0 one takes the left derivative for the �rst function and
the right derivative for the second one), and the positivity of both functions
on X × 0. Since X is compact, these functions are bounded from below by a
positive constant on X × 0, and hence on X × [−δ, δ] for some δ > 0.

To proceed further, pick a Cr-function α : [−δ, δ]→ I such that

α(t) =

{
0 for |t| < δ/4,

1 for |t| ≥ δ/2.

It is not hard to verify that the formula

g(x, t) =

{
(f1(x, t), (1− α(t))ηt+ α(t)f2(x, t)), if |t| ≤ δ,
f(x, t), if |t| ≥ δ,

de�nes a map g : X × [−1, 1]→ X ′ × [−1, 1] with the desired properties.
In the general case, choose 0 < ε1 ≤ 1/2 such that the map φr : X → X ′,

de�ned as φt(x) = f1(x, t), is a di�eomorphism for all |t| ≤ ε1.
Note that the existence of such an ε1 is a consequence of:

� the continuous dependence of φt on t in the Cr-topology,

� the fact that φt is a di�eomorphism (recall that abr f : X × 0→ X ′ × 0 is
a di�eomorphism), and

� the fact that Diff(X,X ′) is open in Cr(X,X ′) (see Corollary 3.4.1.6).

Let γ : [−ε1, ε1]→ R be a non-decreasing Cr-function such that

γ(t) =

{
0 for |t| ≤ ε/4,
t for |t| ≥ ε/2.

Now de�ne f̃ : X × [−1, 1]→ X ′ × [−1, 1] by

f̃(x, t) =

{
f(φ−1

t ◦ φγ(t)(x), t), if |t| ≤ ε1,
f(x, t), if |t| ≥ ε1.

Then f̃ satis�es all the conditions imposed to f in the statement of the lemma.
Moreover, f̃ satis�es the extra conditions under which the lemma has already
been proved, namely that the composite map

X × [−1, 1] f̃−→ X ′ × [−1, 1] proj1−−−→ X ′

is constant on the sets x× [−ε, ε], with ε = ε1/4. The map g corresponding to
f̃ via the above procedure has the needed properties because f̃ agrees with f
on (X × [−1,−1/2]) ∪ (X × 0) ∪ (X × [1/2, 1]).
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Theorem 3.4.5.7. Suppose that X1, X
′
1, X2, and X

′
2 are collared Cr-manifolds,

1 ≤ r ≤ ∞, C1, C
′
1, C2, and C

′
2 are pieces of their boundaries consisting of whole

components, and φ1 : C1 → C ′
1, and φ2 : C2 → C ′

2 are Cr-di�eomorphisms.
Assume that there are Cr-di�eomorphisms F : X1 → X2 and F ′ : X ′

1 → X ′
2,

such that F (C1) = C2, F
′(C ′

1) = C ′
2 and the diagram

C1
φ1 //

abrF

��

C ′
1

abrF ′

��
C2 φ2

// C ′
2

is commutative. If Y1 is the result of glueing and X1 and X ′
1 by φ1, and Y2 is

the result of glueing and X2 and X ′
2 by φ2, then the manifolds Y1 and Y2 are

Cr-di�eomorphic. Moreover, there exists a Cr-di�eomorphism G : Y1 → Y2 such
that G(X ′

1) = X ′
2, G(C1) = C2, and [abrG : C1 → C2] = [abrF : C1 → C2].

Proof. Let ℓ1 : C1 × [−1, 1]→ Y1 and ℓ2 : C2 × [−1, 1]→ Y2 be two-sided collar-
ings. Denote by H : Y1 → Y2 the map de�ned by the formulae

H =

{
[incl : X2 → Y2] ◦ F on X1

[incl : X ′
2 → Y2] ◦ F ′ on X ′

1

and choose ε > 0 so that H ◦ ℓ1(C1 × [−ε, ε]) ⊂ ℓ2(C2 × [−1, 1]). Now apply
Lemma 3.4.5.6 to the map

f : C1 × [−1, 1]→ C2 × [−1, 1], (z, t) 7→ ℓ−1
2 (H ◦ ℓ1(z, εt)).

This lemma guarantees the existence of a Cr-embedding g : C1× [−1, 1]→ C2×
[−1, 1] with

g = f on (C1 × [−1,−1/2]) ∪ (C1 × 0) ∪ (C1 × [1/2, 1]),

and satis�es

g(C1 × [−1, 0]) = f(C1 × [−1, 0]), g(C1 × [0, 1]) = f(C1 × [0, 1]).

Clearly,

G(y) =

{
H(y) if y ̸∈ (C1 × [−ε, ε]),
ℓ2 ◦ g(z, t/ε), if y = ℓ1(z, t) with z1 ∈ C1, t ∈ [−ε, ε],

de�nes the required Cr-di�eomorphism G : Y1 → Y2.

Cutting

Theorem 3.4.5.8. Let Y be a Cr-manifold, 1 ≤ r ≤ ∞, and let X and X ′ be
compact submanifolds of Y such that dimX = dimX ′ = dimY and Y = X∪X ′.
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If C = X ∩ X ′ is a piece of both boundaries ∂X and ∂X ′ consisting of whole
components of ∂X and ∂X ′, then there is a Cr-embedding ℓ : C × [−1, 1] → Y
such that

ℓ(z, 0) = z for any point z ∈ C,
ℓ(C × [−1, 0)) ⊂ intX, ℓ(C × (0, 1]) ⊂ intX ′.

Proof. Fix a Cr-embedding j : Y → Rq, a Cr-transversalisation τ of the embed-
ding j|C : C → Rq, and a neat tube Tubτ ρ. Consider the map φ : C → Sq−1

which takes each point z ∈ C into the unit vector tangent to j(Y ) at the point
j(z), contained in τ(z), and pointing towards j(X ′). φ is continuous (in fact, of
class Cr−1), and so Theorem 3.4.4.2 yields a Cr-map φ1 : C → Sq−1 such that
the inner product ⟨φ(z), φ1(z)⟩ is positive on C. De�ne

ψ : tubτ ρ→ C × R, z 7→ (projτ (z), ⟨z − j ◦ projτ (z), (φ1(z)⟩).

Clearly, ψ is of class Cr and for z ∈ C the di�erential

dj(z)ψ : Tangj(z)(tubτ ρ)→ Tang(z,0)(C × R) = (Tangz C)⊕ R

induces an isomorphism of Tangj(z) j(C) onto Tangz C and carries the vector
φ(z) into ⟨φ(z), φ1(z)⟩ ∈ R. Moreover, both Tangj(z) j(C) and φ(z) are con-
tained in Tangj(z) j(Y ); hence dj(z)ψ takes Tangj(z) j(Y ) onto Tang(z,0)(C×R).
Since dimTangj(z) = dimTang(z,0)(C × R), we see that dj(zψTangj(z)j(Y )

' i.e.,
the linear map dj(z)(ψ|j(Y )∩tubτ ρ), is an isomorphism. By Theorem 3.1.5.5,
ψ|j(Y )∩tubτ ρ, de�nes a di�eomorphism from a neighbourhood of j(C) onto
a neighbourhood of C × 0 Accordingly, C × [−ε, ε] will lie in the previous
neighbourhood provided that ε > 0 is small enough. Now it is plain that
ℓ(z, t) = j−1(ψ−1(z, εt)) de�nes the desired embedding ℓ : C × [−1, 1]→ Y .

Corollary 3.4.5.9. Let Y be a Cr-manifold, 1 ≤ r ≤ ∞, and let X and X ′

be compact submanifolds of Y such that dimX = dimX ′ = dimY and Y =
X ∪ X ′. If X ∩ X ′ is a piece of both boundaries ∂X and ∂X ′, consisting of
whole components of ∂X and ∂X ′, then idX and idX′ together de�ne a Cr-
di�eomorphism of Y onto the manifold obtained from the appropriately collared
manifolds X and X ′ glueing X and X ′ by id(X ∩X ′).

The Simplest Application

Theorem 3.4.5.10. Every smooth compact manifold is a CNRS.

Proof. When the manifold is closed, this is a consequence of Theorems 3.4.2.1,
3.4.3.7, and 3.4.3.5, because the image of a smooth manifold under a di�eren-
tiable embedding in Euclidean space is the retract of the interior of a neat tube
corresponding to a smooth transversalisation of the given embedding. Theorem
1.3.6.4 enables us to reduce the case of manifolds with boundary to the closed
case; namely, any compact smooth manifold has a smooth closed double (see
Remark 3.4.5.5), and is obviously a retract of this double.
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3.4.6 Smoothing Maps in the Presence of a Boundary

Remark 3.4.6.1. The main results of this subsection are Thor ems 3.4.6.5,
3.4.6.10 and which generalise Theorem 3.4.4.2. Lemma 3.4.6.2 is necessary to
the proof of Lemma 3.4.6.3, Lemma 3.4.6.3 - to the proof of Lemma 3.4.6.4, and
Lemma 3.4.6.4 - to the proof of Theorem 3.4.6.5. Finally, Lemmas 3.4.6.7 and
3.4.6.8 are necessary to the proof of Theorem 3.4.6.10.

Lemma 3.4.6.2. Let Y be a C≥r-manifold with r <∞, and let f : Y ×R1
− → R

be a Cr-function. Then the function F : Y × R→ R de�ned by

F (y, t) =

{
f(y, t), if t ≤ 0,∑
k=0 r(−1)k

(
r+1
k+1

)
f(y,−kt), if t ≥ 0

is also of class Cr.
Proof. All we must check is that the two expressions de�ning F , as well as their
partial derivatives with respect to t and local coordinates on Y agree for t = 0.
To see this, it su�ces to note that the equality

r∑
k=0

(−1)k+s
(
r + 1

k + 1

)
ksDsφ(0) = Dsφ(0)

holds for s ≤ r and any Cs-function φ : R1
− → R. Indeed, this last equality is

equivalent to
s∑

k=−1

(−1)k
(
r + 1

k + 1

)
ks = 0 (s ≤ r)

and this is valid if we interpret the sum as the �(r + 1)-th di�erence� of the
integral function k → ks computed at k = −1.

Lemma 3.4.6.3. Let X be a collared C≥r-manifold. If 1 ≤ r <∞, then every
function in Cr(X,R) extends to a function in Cr(doppX,R).
Proof. Fix a two-sided collaring of the manifold X in doppX, ℓ : ∂X× [−1, 1]→
doppX (see Remark 3.4.5.5), and pick a Cr-function α : R→ I such that

α(t) =

{
1 for t ≤ 0, and

0 for t ≥ 1/r.

Let φ ∈ Cr(X,R). Consider the function f : ∂X → R1
− de�ned by the formula

f(y, t) =

{
α(t)φ(ℓ(y, t)), if t ≤ 1/r,

0, if t ≥ 1/r.

Since f is Cr, Lemma 3.4.6.2 processes it into a Cr-function F : ∂X × jR → R
(take Y = ∂X). Now it is plain that

ψ(x) =


0, if x ∈ doppX \ (X ∪ ℓ(∂X × [0, 1/r])),

φ(x), if x ∈ X,
F (ℓ−1(x)), if x ∈ ℓ(∂X × [0, 1/r]),
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de�nes a Cr-function ψ : doppX → R extending φ.

Lemma 3.4.6.4. Let X be a collared C≥r-manifold, and let X ′ be a closed
C≥r-manifold. If 0 ≤ r <∞, then every map in Cr(X,X ′) extends to a map in
Cr(doppX,X ′).

Proof. This is evident when r = 0. Suppose r > 0 and f ∈ Cr(X,X ′). Fix
a Cr-embedding j′ : X ′ → Rq, a Cr-transversalisation τ ′ of j′, and a neat tube
Tubτ ′ ρ′. Lemma 3.4.6.3 ensures that the coordinate functions of j′ ◦ f extend
to Cr-functions doppX → R, i.e., j′ ◦ f extends to a Cr-map g : doppX → Rq.
Let U be the neighbourhood of ∂X in X consisting of the points x such that

dist(j′ ◦ f(x), g(cop(x))) < Dist(j′(X ′),Rq
′
\ tubτ ′ ρ′).

Now construct a Urysohn Cr-function φ : doppX → I for the pairX, cop(X\U).
It is clear that for any x ∈ X the segment with endpoints j′◦f(x) and g(cop(x))
lies in tubτ ′ ρ′. Moreover, we see that the formulae

h(x) = j′ ◦ f(x), if x ∈ X,
h(cop(x)) = j′ ◦ f(x), if x ∈ X \ U,
h(cop(x)) = (1− φ(cop(x)))g(cop(x)) + φ(cop(x))j′ ◦ f(x), if x ∈ ClU,

de�ne a Cr-map h : doppX → Rq′ which extends j′◦f and satis�es h(doppX) ⊂
tubτ ′ ρ′. Finally, the composite map

doppX
abr j−−−→ tubτ ′ ρ′

projτ′−−−−→ X ′

is the desired Cr-extension of f to doppX.

Theorem 3.4.6.5. Let X and X ′ be compact C≥r-manifolds with X ′ closed. If
0 ≤ s < r ≤ ∞, then:

(i) Cr(X,X ′ is dense in Cs(X,X ′);

(ii) given an arbitrary Cr-map φ : ∂X → X ′, that part of Cr(X,X ′) consisting
of the Cr-extensions of φ is dense in the part of Cs(X,X ′) consisting of
the Cs-extensions of Φ.

Proof. The mapping

Cs(incl : X → doppX, idX ′) : Cs(doppX,X ′)→ Cs(X,X ′)

transforms Cr-maps into Cs-maps and, according to Lemma 3.4.6.4, its image is
precisely Cs(X,X ′). Hence,
(i) is a consequence of the fact that Cr(doppX,X1) is dense in Cs(doppX,X ′)
(see Theorem 3.4.4.2), while
(ii) follows from the fact that the set of all CrC-extensions of φ is dense in
the part of Cs(doppX,X ′) consisting of the Cs-extensions of φ (see Theorem
3.4.4.10).
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Corollary 3.4.6.6. Let X and X ′ be closed C≥r-manifolds, 1 ≤ r ≤ ∞. If two
maps in Cr(X,X ′) are homotopic, then they can be connected by a Cr-homotopy
X × I → X ′.

Lemma 3.4.6.7. Let X and X ′ be compact C≥r-manifolds, 1 ≤ r ≤ ∞. Then
the mapping Cr∂(X,X ′)→ Cr(∂X, ∂X ′), f 7→ abr f , is open.

Proof. We have already seen in Remark 3.4.1.1 that this mapping is continuous.
We presently show that it is open. Given a map f ∈ Cr∂(X,X ′), it is enough
to �nd a neighbourhood U of the map abr f : ∂X → ∂X ′ and a continuous
mapping Φ: U → Cr(∂X, ∂X ′) such that Φ(abr f) = f and [abr(Φ(g)) : ∂X →
∂X ′] = g for all g ∈ U (see Theorem 1.1.4.5). Fix collarings k : ∂X × I → X
and k′ : ∂X ′ × I → X ′, a Cr-embedding j′ : ∂X ′ → Rq′ , a C -transversalisation
τ ′ of j′, and a neat tube Tubτ ′ ρ′. Now construct a Cr-function α : I → I such
that

α(t) =

{
1 for 0 ≤ t ≤ 1/3, and

0 for 2/3 ≤ t ≤ 1,

and choose ε > 0 with f(k(∂X × [0, ε]) ⊂ k′(∂X ′ × I). Let f1 and f2 be the
composite maps

∂X ′

∂X × [0, ε]
abr k //

f1
//

f2 00

k(∂X × [0, ε])
abr f // k′(∂X ′ × I)

(abr k′)−1

// (∂X ′ × I)

proj1

OO

proj2
��
I

We de�ne U as the set of all g ∈ Cr(∂X, ∂X ′) such that

max
y∈∂X

dist(j′ ◦ f(y), j′ ◦ g(y)) < Dist(j′(∂X ′),Rq
′
\ tubτ ′ ρ′),

and de�ne Φ as

[Φ(g)](x) = f(x), if x ∈ X \ k(∂X × [0, ε]),

[Φ(g)](k(y, t)) = k′(projτ ′(j′(f1(y, t)) + α(t/ε)[j′(f(y))− j′(g(y))]), f2(y, t)),
if y ∈ ∂X, t ∈ [0, ε].

It is routine to check that U and Φ have the needed properties.

Lemma 3.4.6.8. Let X and X ′ be compact C≥r-manifolds. If 1 ≤ r ≤ ∞, then
the set of all composite maps

X
f−→ X ′ incl−−→ doppX ′

with f ∈ Cr(X,X ′) is open in that part of Cr(X,doppX ′) consisting of the
extensions of all maps ∂X,→ ∂X ′.
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Proof. Let f0 ∈ Cr∂(X,X ′) and denote by g0 the composite map

X
f0−→ X ′ incl−−→ doppX ′.

Fix a collaring of X, k : ∂X×I → X and a two-sided collaring of ∂X ′ in doppX,
ℓ′ : ∂X ′ × [−1, 1]→ doppX ′. Further, take positive δ, η such that:

(i) g0(k(∂X × [0, δ]) ⊂ ℓ′(∂X ′ × (−1, 1));

(ii) for any y ∈ ∂X the derivative of the function

[0, δ]→ [−1, 1]

t 7→ [proj2 : ∂X × [−1, 1]→ [−1, 1]](ℓ′−1
(g0 ◦ k(y, t))

(3.4.6.9)

is everywhere less than −η.

[The function ∂X × [0, 1]→ R, which carries each point (y, t) to the derivative
of the function (3.4.6.9) at the point t, is continuous on ∂X× [0, 1] and negative
on ∂X × 0. Since ∂X is compact, this function is bounded above by a negative
constant on ∂X × 0, and hence on ∂X × [0, δ], for some positive δ. This ensures
the existence of δ and η as above.]

Clearly, the Cr-maps g : X → doppX ′ which ful�l conditions (i) and (i)
(writing g instead of g0) and satisfy g(X \ k(∂X × [0, δ))) ⊂ intX ′ form an
open set in Cr(X,doppX ′). It remains to observe that the intersection of this
set with that part of Cr(X,doppX ′) consisting of the extensions of all maps
∂X → ∂X ′ is a neighbourhood of g0 in the set of all composite maps

X
f−→ X ′ incl−−→ doppX ′, f ∈ Cr∂(X,X ′).

Theorem 3.4.6.10. Let X and X ′ be compact C≥r-manifolds. If 1 ≤ r ≤ ∞,
then

(i) Cr∂(X,X ′) is dense in Cs∂(X,X ′).

(ii) the part of Cs∂(X,X ′) consisting of all Cr∂-extensions of a given map

φ ∈ Cr(∂X, ∂X ′)

is dense in the part of Cs∂(X,X ′) consisting of all Cs∂-extensions of φ.

Proof. Lemma 3.4.6.7 and Theorem 3.4.4.2 (the latter applied to the manifolds
∂X and ∂X ′) show that the set of all maps g ∈ Cs∂(X,X ′) such that

[abr g : ∂X → ∂X ′] ∈ Cr(∂X, ∂X ′)

is dense in Cs∂(X,X ′). Therefore, (i) is a consequence of (ii).
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To prove (ii), suppose that f ∈ Cs∂(X,X ′) is an extension of φ, and let U
be a neighbourhood of f in Cs∂(X,X ′). We have to show that U contains a
Cr-extension of φ. Consider the composite map

X
f−→ X ′ incl−−→ doppX.

By virtue of Lemma 3.4.6.8, this map has a neighbourhood V in Cs(X,doppX ′)
such that for any g ∈ V with g(∂X) ⊂ ∂X ′ one has

g(X) ⊂ X ′ and [abr g : ∂X → ∂X ′] ∈ U .

Thus, it su�ces to �nd a Cr-extension of φ in V; but such an extension is
provided by Theorem 3.4.6.5.

Remark 3.4.6.11. Comparing Theorems 3.4.6.5 and 3.4.6.10 with Theorems
3.4.1.2 - 3.4.1.4 and Corollaries 3.4.1.5 - 3.4.1.5, we arrive at the following state-
ments for 1 ≤ s < r ≤ ∞. Given any compact C≥r-manifold X and any closed
C≥r-manifold X ′, Immr(X,X ′) is dense in Imms(X,X ′), Submr(X,X ′) is dense
in Subms(X,X ′), and Embr(X,X ′) is dense in Embs(X,X ′). For any compact
C≥r-manifoldsX andX ′, the set of neat embeddings in Cr(X,X ′) is dense in the
set of neat embeddings in Cs(X,X ′), and Diffr(X,X ′) is dense in Diffs(X,X ′).

Corollary 3.4.6.12. Two compact C≥r-manifolds, 1 ≤ r ≤ ∞, which are dif-
feomorphic are Cr-di�eomorphic.

Information 3.4.6.13. As with Theorem 3.4.4.2, Theorems 3.4.6.5 and 3.4.6.10
remain valid for r = a too (cf. Remark 3.4.2.4). We excluded this case in view
of its di�culty.

Theorems 3.4.4.2, 3.4.6.5 and 3.4.6.10 (as well as their Ca-variants) also hold
for non-compact X and X ′. However, this generalisation is of limited interest.
For example, it does not su�ce if one wants to eliminate the compactness as-
sumption in Corollary 3.4.6.12 (which is actually possible). The appropriate ex-
tensions of Theorems 3.4.4.2, Theorems 3.4.6.5 and 3.4.6.10 to the non-compact
case are related to topologies which are stronger than those de�ned in Remark
3.4.1.1, and require analytic tools stronger than Theorem 3.3.1.7.

3.4.7 General Position

Remark 3.4.7.1. The main result of this subsection is the �nal Theorem 3.4.7.7,
which constitutes the basis of a large part of the material below. We emphasise
that this theorem is formulated and proved only in the C∞-case. In Subsection
3.4.9 we add a statement covering the case of Cr-maps with r �nite (see Theorem
3.4.9.10).

The technical part of the subsection is concentrated in Theorem 3.4.7.2,
which establishes the fundamental topological property of the spaces Cr(X,X ′),
and Theorem 3.4.7.4, which represents the only corollary of Theorem 3.3.2.3
that we need.

To simplify the formulations of Theorems 3.4.7.2 and 3.4.7.3, we give a spe-
cial name to those topological spaces where the intersection of any countable
collection of dense open sets is dense: we call them Baire spaces.
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Technicalities

Theorem 3.4.7.2. Cr(X,X ′) is a Baire space for any C≥r manifolds X and
X ′ with 0 ≤ r ≤ ∞.

Proof. We have to show that given arbitrary open dense subsets U1,U2, . . .
of Cr(X,X ′), and an arbitrary open subset W of Cr(X,X ′), the intersection
W ∩(∩i=1∞Ui) is not empty. Let {φi}∞i=1 and {ψi}∞i=1 be atlases of the manifold
X, indexed so that the set Ki = Cl suppψi is compact and contained in suppφi
and ψi = abrφi for all i. Similarly, let {φ′

j}∞j=1 and {ψ′
j}∞j=1 be atlases of X ′,

indexed so that the set K ′
j = Cl suppψ′

j ⊂ suppφ′
j and ψ

′
j = abrφ′

j for all j.
We construct a sequence of Cr-maps f1 : X → X ′, f1 : X → X ′, . . . , a sequence
V1,V2, . . . of open subsets of Cr(X,X ′), and a sequence of positive integers
n(1), n(2), . . . , such that:

(i) fi ∈ Vi;

(ii) if i ≥ 2, then Vi ⊂ Vi−1;

(iii) ClVi ⊂ W ∩ Ui;

(iv) fi(Ki) ⊂ ∪n(i)j=1 suppψ
′
j ;

(v) if s ≤ i and t ≤ n(s), then fi(Ks ∩ f−1
s (K ′

t)) ⊂ suppφ′
t;

(vi) if i ≥ 2, s ≤ i, and t ≤ n(s), then the partial derivatives of order
≤ min(r, i − 2) of the coordinate functions of the local representatives
loc(φs, φ

′
t)fi and loc(φs, φ

′
t)fi−1 di�er by less than 2−i at the points of

φs(Ks ∩ f−1
s (K ′

t).

Then we will have �nished the proof. Indeed, (v) and (vi) imply that for any s,
t such that t ≤ n(s) the sequence

{loc(φs, φ′
t)fi|φs(suppψs∩f−1

s (suppψ′
t))
}∞i=s,

together with all its partial derivatives of order ≤ r converges uniformly on
φs(suppψs ∩ f−1

s (suppψ′
t)) to a Cr-map

gst : φs(suppψs ∩ f−1
s (suppψ′

t))→ imψ′
t.

Moreover, the composite maps

suppψs ∩ f−1
s (suppψ′

t)
abrφs−−−−→ φs(suppψs ∩ f−1

s (suppψ′
t))

gst−−→ imφ′
t

(φ′
t)

−1

−−−−→ suppφ′
t

together de�ne a Cr-map g : X → X ′ [(iv) shows that the sets suppψs ∩
f−1
s (suppψ′

t) cover X and clearly the maps gst are compatible on the inter-
sections of these sets]. g is the limit (in Cr(X,X ′)) of the sequence f1, f2, . . .
and (i)-(iii) show that g ∈ W ∩ (∩∞i=1Ui).
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We proceed by induction. Take f1 to be any element ofW∩U1, and take V1
to be any neighbourhood of f1 (in Cr(X,X ′)) such that ClV1 ⊂ W ∩ U1 (recall
that Cr(X,X ′) is a regular space - see Remark 3.4.1.1). Assume that for some
k ≥ 2, the maps fi ∈ Cr(X,X ′), the open sets Vi ⊂ Cr(X,X ′), and the positive
integers n(i) with i < k have been de�ned and satisfy (i)-(vi). We let G denote
the set of all Cr-maps g : X → X ′ such that for s ≤ k − 1 and t ≤ n(s)

g(Ks ∩ f−1
s (K ′

t)) ⊂ suppφ′
t,

and all partial derivative of order ≤ min(r, k − 2) of the coordinate functions
of the local representatives loc(φs, φ

′
t)g and loc(φs, φ

′
t)fk−1 di�er by less than

2−k at the points of φs(Ks ∩ f−1
s (K ′

t)). Obviously, G is open and fk−1 ∈ G.
Therefore, G∩Vk−1 ̸= ∅ and, since Uk is dense, G∩(Vk−1∩Uk) ̸= ∅. Choose Vk
to be any non-empty open set with ClVk ⊂ G∩Vk−1∩Uk, fk to be any element
of Vk and n(k) to be any positive integer such that fk(Kk) ⊂ ∪n(k)t=1 suppψ′

t. It
is readily seen that the objects Vk, fk, and n(k) satisfy conditions (i) - (vi) for
i = k.

Theorem 3.4.7.3. Every topological manifold is a Baire space.

Proof. This is a special case of Theorem 3.4.7.2: in fact, the topological manifold
X may be regarded as the space C0(D0, X).

Theorem 3.4.7.4. Let X and X ′ be manifolds of class C∞ or Ca . If f : X →
X ′ is a C∞-map and F is the set of all points x ∈ X such that dxf(TangxX) ̸=
Tangf(x)X

′, then f(F ) is the union of a countable family of nowhere dense sets.

Proof. Let Φ and Φ′ be arbitrary countable atlases of the manifolds X and X ′.
For each pair (φ,φ′) ∈ Φ × Φ′, write supp(φ ∩ f−1(suppφ′)) as the union of a
sequence of compact sets K1(φ,φ

′),K2(φ,φ
′), . . . , and let Ci(φ,φ′) be the set

of all points x ∈ Ki(φ,φ
′) such that the rank of the Jacobi matrix of loc(φ,φ′)f

at φ(x) is less than dimX ′. Theorem 3.3.2.3 shows that the sets f(Ci(φ,φ′))
are all nowhere dense, and obviously f(F ) = ∪if(Ci(φ,φ′)).

The Basic Theorem

Remark 3.4.7.5. Let X1, X2, and X ′ be smooth manifolds, and let A1 and A2

be subsets of X1 and X2. Two smooth maps f1 : X1 → X ′ and f2 : X2 → X ′ are
said to be transverse (one to the other) on A1, A2 if for any x1 ∈ A1, x2 ∈ A2

with f1(x1) = f1(x1), the vector space Tangf(x1)X
′ is spanned by its subspaces

dx1
f1(Tangx1

X1) and dx2
f2(Tangx2

X2), and the following holds:

� if x1 ∈ ∂X1, then Tangf(x1)X
′ is already spanned by its subspaces

dx1
f1(Tangx1

∂X1) and dx2
f2(Tangx2

X2);

� if x2 ∈ ∂X2, then Tangf(x1)X
′ is already spanned by its subspaces

dx1
f1(Tangx1

X1) and dx2
f2(Tangx2

∂X2);
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� if x1 ∈ ∂X1, and x2 ∈ ∂X2 then Tangf(x1)X
′ is already spanned by its

subspaces dx1f1(Tangx1
∂X1) and dx2f2(Tangx2

∂X2);

Two maps f1 : X1 → X ′ and f2 : X2 → X ′ which are transverse on X1, X2 are
simply referred to as transverse.

Let us make three obvious remarks.

First if dimX1+dimX2 < dimX ′, then the fact that f1 and f2 are transverse
on A1, A2 implies that f1(A1) ∩ f2(A2) = ∅.

Secondly if f! and f2 are transverse on AA1, A2, then they are transverse on
some neighbourhoods of A1 and A2.

Thirdly if X1, X2, and X ′ are of class Cr with 1 ≤ r ≤ ∞, and A1, A2 are
compact, then given f2 ∈ Cr(X2, X

′), the set of all f1 ∈ Cr(X1, X
′) such

that f! and f2 are transverse on A1, A2 is open in Cr(X1, X
′).

Lemma 3.4.7.6. Suppose X1 and X2 are C∞- or Ca-manifolds and f1 : X1 →
Rq′ and f2 : X2 → Rq′ are C∞-maps. Then there is a dense set V in Rq′ such
that for each vector v ∈ V , the map X1 → Rq′ de�ned by x1 7→ f1(x1) + v is
transverse to f2.

Proof. We may take V to be the set of all v ∈ Rq′ which satisfy the following
condition. Consider the four maps intX1 × intX2 → Rq′ , intX1 × ∂X2 → Rq′ ,
∂X1× intX2 → Rq′ , and ∂X1×∂X2 → Rq′ , given by (x1, x2) 7→ f2(x2)−f1(x1).
Then given any of these maps, v is not the image of a point where the di�erential
of that map has rank less than q′. The map x1 7→ f1(x1) + v with v ∈ V is
obviously transverse to f2, and theorems 3.4.7.4 and 3.4.7.3 show that V is dense
in Rq′ .

Theorem 3.4.7.7. Let X1, X2, and X
′ be C∞- or Ca-manifolds with ∂X ′ = ∅.

If f2 : X2 → X ′ is a C∞-map, then the subset of C∞(X1, X
′) consisting of all

maps transverse to f2 is the intersection of a countable collection of dense open
sets.

Proof. For two sets A1 ⊂ X1 and A2 ⊂ X2, we let F(A1, A2) denote the set of
all C∞-maps f1 : X1 → X ′ such that f1and f2 are transverse on A1, A2. If A1

and A2 are compact, then F(A1, A2) is obviously open in C∞(X1, X
′), and we

shall presently show that if A1 and A2 are compact, then F(A1, A2) is dense in
C∞(X1, X

′). These two facts are enough: express X1 as the union of a sequence
of compact sets K11,K12, . . . , express X2 as the union of a sequence of compact
sets K21,K22, . . . , and then observe that the part in which we are interested
(i.e, F(X1, X2)) can be written as ∩i,jF(K1i,K2j).

Thus, suppose that A1 and A2 are compact, and let U be a neighbourhood
(in C∞(X1, X

′)) of an arbitrarily given map g1 : X1 → X ′. We have to produce
a map contained in both F(A1, A2) and U . We do this in two steps: �rst, we
compress U to a neighbourhood V of g1 having a more special form, and then
construct a map belonging to F(A1, A2) and V.
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Let dimX1 = q1, dimX2 = q2, and dimX ′ = q′. To begin building the
neighbourhood V, �x for each point x′ ∈ f2(A2) a chart φ′

x′ ∈ Atlx′ X ′ with
imφ′

x′ = Rq′ and φ′
x′(x′) = 0. Further, �x for each point x2 ∈ A2 a chart φ2x2

∈
Atlx2

X2 such that imφ2x2
= Rq2 orimφ2x2

= Rq2− , φ2x2
(x2) = 0, Cl suppφ2x2

is
compact, and f2(Cl suppφ2x2) ⊂ [φ′

f2(x2)
]−1(intDq′). Now cover A2 by a �nite

number of sets φ−1
2x2

(intDq2), say φ−1
2x21

(intDq2), . . . , φ−1
2x2ℓ

(intDq2) and denote
the chart φ′

f2(x2j)
(x2) simply by ψ′

j′ , and the chart φ2x2j - by ψ2j . Continuing,
for each point x1 ∈ A1 choose a chart φ1x1

∈ Atlx1
X1 such that imφ1x1

= Rq2
or imφ1x1

= Rq2− , φ1x1
(x1) = 0, Cl suppφ1x1

is compact, and g1(Cl suppφ1x1
)

is contained in one of the sets X ′ \f2(Cl suppψ2j), [ψ′
j ]
−1(intDq′), for any given

j = 1, . . . , ℓ. Finally, cover A1 by a �nite number of the sets φ−1
1x1

(intDq1) , say
φ−1
1x11

(intDq1), . . . , φ−1
1x1k

(intDq1), and denote the chart φ1x1i
by ψ1i. At last,

we may de�ne V as the subset of U consisting of all maps h1 : X1 → X ′ such
that:

h1(Cl suppψ1i) ⊂X ′ \ f2(Cl suppψ2j) if g1(Cl suppψ1i) ⊂ X ′ \ f2(Cl suppψ2j),

h1(Cl suppψ1i) ⊂X ′ \ (ψ′
j)

−1(intDq
′
) if g1(Cl suppψ1i) ⊂ X ′ \ f2(intDq

′
).

That V is a neighbourhood of g1 in C∞(X1, X
′) is plain.

Turning now to the �nal part of the construction, arrange the pairs (i, j),
i = 1, . . . , k, j = 1, . . . , ℓ, in a sequence (i1, j1), . . . , (im, jm), withm = k·ℓ. Next
construct inductively maps h01, . . . , h

m
1 : X1 → X ′ with the following properties:

(i) hs1 ∈ V;

(ii) if r ≤ s, then the maps hr1 and f2 are transverse on ψ−1
1ir

(Dq1), ψ−1
2jr

(Dq2).

Then hm1 will belong to F(A1, A2) ∩ V.
Put h01 = f1 and assume that the maps h satisfying (i) and (ii) are already

de�ned for s < t ≤ m. If the maps ht−1
1 and f2 are transverse on ψ−1

1it
(Dq1),

ψ−1
2jt

(Dq2), put ht1 = ht−1
1 . Otherwise, ht−1

1 (ψ1it(Dq1)) ⊂ (ψ1jt)
−1(Dq′), and

Lemma 3.4.7.6 guarantees the existence of a set V dense in Rq′ such that the
composite map

imψ1it

loc(ψ1it ,ψ
′
jt
)ht−1

1−−−−−−−−−−−→ Rq
′ x 7→x+v−−−−−→ Rq

′

is transverse to loc(ψ2jt , ψjt)f2 : imψ2jt → Rq′ , for each v ∈ V . Pick a C∞-
function α : Rq′ → R, equal to 1 on D and equal to 0 outside the concentric ball
Dq′ of radius 2. Now for v ∈ V de�ne gv : X1 → X ′ by

gv(X1) =


ht−1
1 (x1),

if x1 ∈ X1 \ (ht−1
1 )−1[(ψ′

jt
)−1(2Dq′)],

(ψ′
jt
)−1((ψ′

jt
)(ht−1

1 (x1)) + α((ht−1
1 (x1)))v),

if x1 ∈ (ht−1
1 )−1(suppψ′

jt
)

We easily see that g0 = ht−1
1 , that gV is C∞, and that the map Rq′ → C∞(X1, X

′),
v 7→ gv, is continuous. Consequently, there is an open set U ⊂ Rq′ , such that
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0 ∈ U and for v ∈ U the map gv ∈ V, and gv and f2 are transverse on ψ−1
1ir

(Dq1),
ψ−1
2jt

(Dq2) for r < t.
On the other hand, the de�nition of V shows that for v ∈ V , gv f2 are

transverse on ψ−1
1ir

(Dq1), ψ−1
2jt

(Dq2), and hence one may take ht1 = gv for any
v ∈ U ∩ V .

3.4.8 Maps Transverse to a Submanifold

Remark 3.4.8.1. Theorem 3.4.7.7 is used mainly when X2 is a submanifold of
X ′ and f2 is the corresponding inclusion. In such a situation we use a simpler
terminology; namely, instead of saying that the map f1 : X1 → X ′ is transverse
to the inclusion incl : X2 → X ′, we say that f1 is transverse to X2. Then
Theorem 3.4.7.7 states that if X1 and X ′ are of class C∞ or Ca and ∂X ′ = ∅,
then the set of all maps in C∞(X1, X

′) which are transverse to X2 is dense in
C∞(X1, X

′).
The more special case, when both X1 and X2 are submanifolds of a manifold

X ′ and f1 and f2 are the corresponding inclusions, deserves particular atten-
tion. If the maps incl : X1 → X ′ and in: incl : X2 → X ′ are transverse, we
say that the submanifolds X1 and X2 themselves are transverse. Comparing
Theorems 3.4.7.7 and 3.4.1.4, we see that given arbitrary submanifolds X1 and
X2 of a closed, C∞ or Ca-manifold X ′, every neighbourhood of the inclusion
incl : X1 → X ′ in C∞(X1, X

′) contains embeddings transverse to X2. The last
statement is frequently formulated in a more geometric and less formal fashion:
two submanifolds can be made transverse through an arbitrarily small displace-
ment of either of them.

Of course, the C<∞-complement to Theorem 3.4.7.7 that was mentioned in
Remark 3.4.7.1 (Theorem 3.4.9.10) applies to these special cases too. However,
note that in order to bring two submanifolds into general position in this way
one must displace both of them, and not only one.

Theorem 3.4.8.2. Suppose X1 and X ′ are Cr-manifolds (1 ≤ r ≤ a) with
dimX1 = q1 and dimX ′ = q′, and X2 is a submanifold of X ′ with dimX2 = q2.
Let f1 : X1 → X ′ be a Cr-map transverse to X2 and such that f1(∂X) ∩ ∂X2 ⊂
∂X ′. Then X12 = f−1

1 (X2) is a (q1 + q2 − q′)-dimensional Cr-submanifold of
X1 with ∂X12 = f−1

1 (∂X2). Moreover, this submanifold is neat whenever X2 is
neat. Finally, the linear map

fact dx1
f1 : Tangx1

X1/Tangx1
X12 → Tangf1(x1)X

′/Tangf1(x1)X2 (3.4.8.3)

is an isomorphism for any point x1 ∈ X1.
(It is understood that a submanifold of negative dimension is void.)

Proof. Note that the second assertion is a straightforward supplement to the
�rst, while the third assertion becomes evident if one observes that both quotient
spaces appearing in (3.4.8.3) have the same dimension. Therefore, we have to
prove only the �rst assertion, and in order to do this, we follow the scheme in
Remark 3.4.8.1.
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To begin with, consider, given x1 ∈ X12, all possible positions of the point
f1(x1). The case f1(x1) ∈ intX2 ∩ ∂X ′ is excluded, because intX2 ∩ ∂X ′ = ∅
(X2 is a submanifold of X ′). If x1 ∈ X1, the case f1(x1) ∈ ∂X2∩∂X ′ is excluded
since it would contradict the assumption that f1 is transverse to X2 (if x1 ∈ X1

and f1(x1) ∈ ∂X2 ∩ ∂X ′, then the spaces im dx1
f1 and Tangf1(x1

∂X2 are both
contained in Tangf1(x1) ∂X

′, and so they cannot span Tangf1(x1)X
′.) When

x1 ∈ ∂X1, the relation f1(x1) ∈ ∂X2∩intX ′ is impossible since f1(∂X1)∩∂X2 ⊂
∂X ′. Therefore, we are left with four possibilities:

(i) x1 ∈ intX1, f1(x1) ∈ intX2 ∩ intX ′;

(ii) x1 ∈ intX1, f1(x1) ∈ ∂X2 ∩ intX ′;

(iii) x1 ∈ ∂X1, f1(x1) ∈ intX2 ∩ intX ′;

(iv) x1 ∈ ∂X1, f1(x1) ∈ ∂X2 ∩ ∂X ′.

Fix a chart φ′ ∈ Atlf1(x1) CrX ′ which transforms the triple

(supp cφ′, X2 ∩ suppφ′, f1(x1))

into one of the triples (Rq′ ,Rq2 , 0), (Rq′ ,Rq2− , 0), or (Rq
′

− ,R
q2
− , 0), with corre-

sponding local coordinates φ′
1, . . . , φ

′
q′ . De�ne

ψ1, . . . , ψq : f
−1
1 (suppφ′)→ R, ψi(x) = φ′

i(f1(x)).

In cases (i), (iii), and (iv) above, the intersection X12 ∩ f−1
1 (suppφ′) is de�ned

by the equations ψq2+1(x) = 0, . . . , ψq′(x) = 0, and in the case (ii) - by the
same equations and the inequality ψ1(x) < 0. Let us verify that for all cases
(i)-(iv), the above equations and inequality satisfy the independence conditions
displayed in Remark 3.1.2.12.

In case (i) , we have to show that ψq2+1, . . . , ψq′ are independent at the point
x1. This follows from the equality

dim(∩q
′

j=q2+1 ker(dx1
ψj) = q′ − q2,

which in turn follows from the trivial inclusion

dx1
f1(∩q

′

j=q2+1 ker(dx1
ψj)) ⊂ Tangf1(x1)X2

and the equality

Tangf1(x1)X
′ = im dx1

f1 +Tangf1(x1)X2

(which is part of the de�nition of transversality).
In case (ii) , we have to show that ψ1, ψq2+1, . . . , ψq′ are independent at x1.

The proof is a repeat of the previous one, except that one must replace the
equality

Tangf1(x1)X
′ = im dx1f1 +Tangf1(x1)X2
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by

Tangf1(x1)X
′ = im dx1

f1 +Tangf1(x1) ∂X2.

Finally, in cases (iii) and (iv), we have to produce a Cr-function

ψ : f−1
1 (suppφ′)→ R

which is zero on ∂X1 ∩ f−1
1 (suppφ′), negative on intX1 ∩ f−1

1 (suppφ′), and
is such that ψ1, ψq2+1, . . . , ψq′ , are independent at x1. The existence of such a
function is equivalent i to the restrictions of ψq2+1, . . . , ψq′ to ∂X1∩f−1

1 (suppφ′)
being independent at x1. The latter can be proved as in (i), employing the
equality

Tangf1(x1)X
′ = im dx1

(f1|∂X1
) + Tangf1(x1)X2

rather than

Tangf1(x1)X
′ = im dx1f1 +Tangf1(x1)X2.

Corollary 3.4.8.4. Let X1 and be X2 transverse submanifolds of a smooth
manifold X ′, and assume that X1 is neat. Then X1∩X2 is a (dimX1+dimX2−
dimX ′)-dimensional submanifold of X ′, and is neat whenever X2 is neat.

The Simplest Applications

Theorem 3.4.8.5. Let A be a closed subset of a closed Cr-manifold X, and
let U be a neighbourhood of A. If 1 ≤ r ≤ ∞, then there is in U a compact
submanifold B of codimension 0 such that A ⊂ intB.

Proof. Let φ : X → I be a Urysohn Cr-function for the pair A,X\U (see Lemma
3.4.4.8), and suppose that c ∈ (0, 1) is not a critical value of φ (see Remark
3.4.8.11. Set B = φ−1([0, c]). Then B is the preimage of the submanifold

(−∞, c] of R under the composite Cr-map X
φ−→ I

incl−−→ R. Since the latter is
transverse to (−∞, c], B is a submanifold of codimension 0. It is immediate
from the construction that B is closed as a subset, that A ⊂ intB, and that
B ⊂ U .

Theorem 3.4.8.6. Every CNRS is homeomorphic to a retract of a closed,
orientable, C∞-manifold.

Proof. Let j be an embedding of the CNRS X in Sq, with q large enough, and
let U be a neighbourhood of j(X) which retracts on j(X). Theorem 3.4.8.5
provides a compact submanifold B ⊂ U such that B ⊃ j(X), and clearly j(X)
is a retract of the double of B.
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3.4.9 Raising the Smoothness Class of a Manifold

Remark 3.4.9.1. The main results of this subsection are Theorems 3.4.9.6 and
3.4.9.8. Lemmas 3.4.9.2-3.4.9.5 are needed for the proof of Theorem 3.4.9.6,
while Lemma 3.4.9.7 in conjunction with Theorem 3.4.9.6 yield Theorem 3.4.9.8.

Lemma 3.4.9.2. Let X and X ′ be C≥r-manifolds, 1 ≤ r ≤ ∞, X compact,
and ∂X ′ = ∅. Suppose A′ is a submanifold of X ′, f : X → X ′ is a Cr-map
transverse to A′ such that f(∂X) ⊂ X ′ \ A′, and ρ : X → f−1(A′) is both a
retraction and a Cr-submersion. Then there is a neighbourhood U of the map f
in Cr(X,X ′) such that every g ∈ U satis�es:

(i) g is transverse to A′;

(ii) g(∂X) ⊂ X ′ \A′;

(iii) ρ|g−1(A′) : g−1(A′)→ f−1(A′) is a submersion,

Proof. We obtain U as the intersection of three open sets, U1, U2 and U3.

� U1 is the set of all maps in Cr(X,X ′) which are transverse to A′.

� U2 is the set of all g ∈ Cr(X,X ′) with g(∂X) ⊂ X ′ \A′.

� U3 is the set of all g ∈ Cr(X,X ′) such that the intersection of the subspaces
ker dxρ and (dxg)

−1(Tangg(x)A
′) of TangxX reduces to 0 for all points

x ∈ g−1(A′).

We already know that U1 is open (see Remark 3.4.7.5). The openness of U2 is
a consequence of the compactness of ∂X and the openness of X ′ \A′. To prove
that U3 is open, we shall describe it in a di�erent way. Fix a Cr-embedding
j : X → Rq and let C ⊂ TangX be the subset of all vectors u such that
dρ(u) = 0 and < dj(u), dj(u) >= 1. Then clearly U3 is just the set of all
g ∈ Cr(X,X ′) such that dg(C) ⊂ TangX ′ \ TangA′. The openness of this last
set is a consequence of the following facts: C is compact, TangX ′ \ TangA′

is open in (TangX ′), and the mapping Cr(X,X ′) → Cr−1(TangX,TangX ′),
which takes each g ∈ Cr(X,X ′) into dg, is continuous (see Remark 3.4.1.1).
Therefore, U is open, and we see at once that f ∈ U and that any map g ∈ U
satis�es (i) and (ii). It is easily checked that (iii) also holds: indeed, g ∈ U1
implies that g−1(A′) is a neat submanifold of X (see Theorem 3.4.8.2); since
g ∈ U2, g−1(A′) ⊂ intX, and as such it is closed as an independent manifold.
Finally, g ∈ U3 implies that the di�erential dx(ρ|g−1(A′) is non-degenerate at
all points x ∈ g−1(A′).

Lemma 3.4.9.3. Let X and X ′ be smooth closed manifolds of equal dimensions,
and let f : X → X ′ be a submersion. If X ′ is connected and the preimage under
f of one of its points reduces to a point, then f is a di�eomorphism.
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Proof. It su�ces to show that f is invertible. Let A′ = f(X), and denote by B′

the set of all x′ ∈ X such that f(x′) consists of more than one point. Being a
submersion, the map f is open (see Corollary 3.1.5.8), so A′ is an open set. Also,
B′ is open: if f(x1) = f(x2) = x′ and x1 ̸= x2, then x1 and x2 have disjoint
neighbourhoods, U1 and U2, in X such that f |U1

and f |U2
are di�erentiable

embeddings, and f(U1) ∩ f(U2) is a neighbourhood of x′ contained in B′. On
the other hand, A′ is closed because X is compact. Also, B′ is closed, because
if U1, . . . , Us are open sets coveringX and such that the restrictions f |Ui

are
di�erentiable embeddings, then

B′ = ∩si=1f(X \ Ui),

and the sets f(X \ Ui) are closed. Finally, since X ′ is connected, A′ ̸= ∅, and
B′ ̸= X ′, we have A′ = X ′ and B′ = ∅, i.e., f is invertible.

Lemma 3.4.9.4. Suppose X is a compact Cr-submanifold of Rq, 1 ≤ r ≤ ∞,
U is a neighbourhood of X in Rq, and X ′ is an open subset of a closed Ca-
manifold admitting a Ca-embedding in Euclidean space. If f ∈ Cr(U,X ′), then
every neighbourhood in Cr(X,X ′) of the restriction f |X contains the restriction
of some map belonging to Ca(U,X ′).

Proof. For a start, suppose that X ′ is itself a closed Ca-manifold. Denote by U
the given neighbourhood of f |X in Cr(X,X ′), and �x a Ca-embedding j′ : X ′ →
Rq, a Ca-transversalisation τ ′ of j′, and a neat tube Tubτ ′ ρ′. Since

Cr(id,projτ ′) : Cr(X, tubτ ′ ρ′)→ Cr(X,X ′)

is continuous, the preimage of U under this mapping is open; moreover, it is not
empty because it contains the composite map

[abr j′ : X ′ → tubτ ′ ρ′] ◦ f.

Therefore, Theorem 3.3.1.7 yields a map g : U → tubτ ′ ρ′ with polynomial com-
ponents, such that g|X belongs to the above preimage of U . Clearly, the com-
position projτ ′ ◦g is the desired map belonging to Ca(U,X ′).

One can reduce the general case to the above situation: if X ′ is an open
subset of the closed Ca-manifold Y , then

Cr(id, incl) : Cr(X,X ′)→ Cr(X,Y )

is a topological embedding with open image, and transforms Ca(X,X ′ into the
intersection of this image with Ca(X,Y ) (cf. Theorem 3.4.4.7).

Lemma 3.4.9.5. For each compact, q-dimensional Cr-submanifold X of Rq,
1 ≤ r ≤ a, and each compact subset A of Rq, the set of all Cr-embeddings
f : X → Rq with f(intX) ⊃ A is open in Rq(X,Rq).

(In the present subsection we shall apply Lemma 3.4.9.5 only in the case
where A is a point. However, we shall need it in full generality in the next
subsection.)
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Proof. For a start, suppose that A is the ball in Rq with centre c and radius
ρ. Let f : X → Rq be an embedding of class Rq such that f(intX) ⊃ A, and
denote by U the set of all Rq-embeddings g : X → Rq satisfying for any x ∈ X
the inequality

dist(f(x), g(x)) < min(ρ,Dist(f(FrX), A)).

Since U is open in Cr(X,Rq) (see Theorem 3.4.1.4) and f ∈ U , it is enough to
show that g(intX) ⊃ A for any g ∈ U . But if g ∈ U , then g(FrX)∩A = ∅ and
thus the two sets g(X) ∩A and g(intX) ∩A are equal, while the �rst is closed
in A and the second is open in A. Moreover, g(intX) ∩ A ⊃ g(f−1(c)) (since
dist(g(f−1(c)), c) < ρ), so that g(intX)∩A ̸= ∅. Consequently, g(intX)∩A =
A, i.e., (intX) ⊃ A.

The more general situation where A is the union of a �nite number of balls
reduces to the case already considered. To prove the theorem in the most
general case, it remains to observe that for any Cr-embedding f : X → Rq with
f(intX) ⊃ A, there is a �nite number of balls whose union contains A and is
contained in f(intX).

Theorem 3.4.9.6. Every closed Cr-manifold X with 1 ≤ r ≤ ∞ is Cr-di�eomorphic
to a Ca-submanifold of Euclidean space.

Proof. It is su�cient to consider a connected manifold X. Fix a Cr-embedding
j : X → Rq, a Cr-transversalisation τ of j, and a neat tube Tubτ ρ. Consider
the map f : Tubτ ρ→ G′(q, n = dimX) which takes each point y ∈ Tubτ ρ into
the plane y − j ◦ projτ (y) + (τ ◦ projτ (y))⊥ (which passes through the point
y− j ◦projτ (y) and is orthogonal to τ ◦projτ (y)). It is clear that f is transverse
to G(q, n) (even the maps f |proj−1

τ
, x ∈ X, are transverse to G(q, n)) and that

f−1(G(q, n)) = j(X). Pick some point x0 ∈ X and let V ⊂ G′(q, n) be the
set of all planes transverse to τ(c0) (i.e., intersecting τ(x0) at only one point)
. Finally, let π be the map V → τ(x0) which takes each plane belonging to V
into its intersection with τ(x0). According to Lemma 3.4.9.2, f |Tubτ

(ρ/2) has
in Cr(Tubτ (ρ/2), G′(q, n)) a neighbourhood U such that if g ∈ U , then:

1. g is transverse to G(q, n);

2. g(∂ Tubτ (ρ/2)) ⊂ G′(q, n) \G(q, n);

3. abr projτ : g
−1(G′(q, n))→ X is a submersion.

Moreover, as Lemma 3.4.9.5 shows, the set of all Cr-embeddings

φ : dτ (x0, ρ/2)→ τ(x0)

with φ(int dτ (x0, ρ/2)) ∋ 0 is open in Cr(dτ (x0, ρ/2)), τ(x0)). Hence f |Tubτ (ρ/2)

has in Cr(Tubτ (ρ/2), G′(q, n)) a neighbourhood V such that for each g ∈ V
one has g(dτ (x0, ρ/2)), τ(x0)). Hence f |Tubτ (ρ/2) has in Cr(dτ (x0, ρ/2)) ⊂ V
and π ◦ [abr g : dτ (x0, ρ/2) → V ] is a Cr-embedding whose image contains 0.
Since G′(q, n) is an open subset of a closed Ca-manifold (see Remark 3.2.2.11),
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Lemma 3.4.9.4 guarantees the existence of a Ca-map h : tubτ ρ→ G′(q, n) whose
restriction to Tubτ (ρ/2) belongs to U ∩ V. Set Y = [h|Tubτ (ρ/2)]

−1(G(q, n)).
By virtue of Theorem 3.4.8.2, Y is a Ca-manifold, and we have only to verify
that projτ |Y : Y → X is a di�eomorphism. But this claim follows from Lemma
3.4.9.3. Indeed, since h|Tubτ (ρ/2) ∈ U ∩ V, the conditions of this lemma are
satis�ed: the fact that h|Tubτ (ρ/2) ∈ U shows that projτ |Y is a submersion,
while h|Tubτ (ρ/2) ∈ V implies that the preimage (projτ |Y )−1(x0) reduces to a
point.

Lemma 3.4.9.7. Let X be a closed Cr-manifold with 1 ≤ r ≤ ∞, and let A and
B be compact submanifolds of X such that A ⊂ intB and dimB = dimX. If
B is endowed with the C∞-structure which is the restriction of its Cr-structure,
then for any closed C∞-manifold X ′, that part of the space Cr(X,X ′) consisting
of all extensions of maps from C∞(A,X ′) is dense in Cr(X,X ′).

Proof. Suppose f ∈ Cr(X,X ′) and U is a neighbourhood of f in Cr(X,X ′).
We have to produce in U a map extending a map from C∞(A,X ′). Fix a C∞-
embedding j′ : X ′ → Rq′ , a C∞-transversalisation τ ′ of j′, and a neat tube
Tubτ ′ , ρ′. Let V ⊂ Cr(B,X ′) be the set of all maps g such that

max
x∈B

dist(j′ ◦ f(x), j′(g(x))) < Dist(j′(X ′),Rq
′
\ tubτ ′ ρ′).

Clearly, V is open and the segment with endpoints j′ ◦ f(x) and j′(g(x)) lies in
tubτ ′ ρ′, for any g ∈ 1V and x ∈ B. Now choose a neighbourhood U of ∂B in
B such that ClU ∩A = ∅, construct a Urysohn C∞-function φ : B → I for the
pair ClU , A, and consider the mapping Φ: V → Cr(X,X ′) which takes g ∈ V
into the map

x 7→

{
f(x), if x ∈ X \B,
projτ ′((1− φ(x))j′ ◦ f(x) + φ(x)j′(g(x))), if x ∈ B.

Obviously, Φ is continuous, and Φ(f |B) = f . These properties of Φ show that
the set Φ−1(U) is open and non-empty. Applying Theorem 3.4.6.5, we deduce
that Φ−1(U) contains a C∞-map. Finally, note that Φ transforms C∞-maps into
extensions of maps from C∞(A,X ′).

Theorem 3.4.9.8. Every compact Cr-manifold with 1 ≤ r <∞ is Cr-di�eomorphic
to a C∞-manifold. Moreover, if X is a compact Cr-manifold with 1 ≤ r < ∞,
Y is a C∞-manifold, and ψ : Y → ∂X is a Cr-di�eomorphism, then there exists
a C∞-manifold X ′ together with a Cr-di�eomorphism φ : X → X ′, such that the
composite map

Y
ψ−→ ∂X

abrφ−−−→ ∂X ′

is a C∞-di�eomorphism.

Proof. Composing the Cr-di�eomorphism ψ × id : Y × [−1, 1] → ∂X × [−1, 1]
with an arbitrary two-sided Cr-collaring ∂X × [−1, 1] → doppX, we obtain a
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Cr-embedding Y × [−1, 1] → doppX. Since Y × [−1, 1] is a C∞-manifold, the
image B of this embedding inherits a C∞-structure which is the restriction of
the induced Cr-structure, and obviously ∂X ⊂ intB. Theorem 3.4.9.6 provides
a closed Ca-manifold Z together with a Cr-di�eomorphism doppX → Z. In
addition, Lemma 3.4.9.7 and Corollary 3.4.1.6 imply that this Cr-di�eomorphism
may be taken of class C∞ on ∂X. Now set X ′ to be the image of X under the
di�eomorphism chosen in this way, and take φ to be the compression of this
di�eomorphism to a di�eomorphism X → X ′. It is immediate that X ′ and φ
have the desired properties.

Information 3.4.9.9. Theorems 3.4.9.6 and 3.4.9.8 can be substantially strength-
ened: they are valid for non-compact manifolds too, and in Theorem 3.4.9.8 one
may replace ∞ by a. However, one cannot eliminate the hypothesis that r ≥ 1
from these theorems: there exist closed topological manifolds which are not
homeomorphic to smooth manifolds. The �rst example of this kind appeared in
[12].

Application: A Supplement to Theorem 3.4.7.7

Theorem 3.4.9.10. Let X1 and X2 be compact C≥r-manifolds with 1 ≤ r ≤ ∞.
If X ′ is closed, then the pairs (f1, f2) of transverse maps form a dense set in
Cr(X1, X

′)× Cr(X2, X
′).

Proof. By Theorem 3.4.9.8, there exist C∞-manifolds Y1, and Y2, together with
Cr-di�eomorphisms Y1 → X1, Y2 → X2 and Y ′ → X ′. Hence it is enough to
prove that the pairs of transverse maps are dense in Cr(Y1, Y ′)×Cr(Y2, Y ′). By
Theorem 3.4.7.7, these pairs are dense in C∞(Y1, Y

′)×C∞(Y2, Y
′), and according

to Theorem 3.4.6.5 this product is dense in Cr(Y1, Y ′)× Cr(Y2, Y ′).

3.4.10 Approximation of Maps by Embeddings and Im-

mersions

Remark 3.4.10.1. In this subsection we complete the programme outlined in
Remark 3.4.4.1. The main results are Theorems thm:03-4-10-4 and thm:03-4-
10-5. Lemma 3.4.10.3 is our basic tool, and this same lemma can be used to
derive many other corollaries; see, in particular, Exercises 3.4.11.11, 3.4.11.12,
and 3.4.11.13.

Auxiliary Manifolds

Remark 3.4.10.2. Suppose X is a closed n-dimensional C≥r-manifolds with 1 ≤
r ≤ a, and let j : X → Rq be an embedding of class Cr. Also, let m be a positive
integer such that 0 < m ≤ q. We shall need two constructions.

The �rst construction We denote byAux1 or, more speci�cally byAux1(j;m),
that subset of TangX ×G(q,m) consisting of the pairs (u, γ) such that

< dj(u), dj(u) >= 1 and dj(u) ∈ γ.
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Further, de�ne

aux1 : Aux1 → G′(q,m), (u, y) 7→ j(proj(u))+γ, proj = [proj : TangX → X].

Note that Aux1 is a [2n− 1+ (m− 1)(q−m)]-dimensional submanifold of
TangX ×G(q,m). Indeed, it is the preimage of the submanifold

Sq−1 ×G(q,m) ⊂ Rq ×G′(q,m)

under the mapping

TangX ×G(q,m)→ Rq ×G′(q,m), (u, γ) 7→ (dj(u), dj(u) + γ);

this mapping is transverse to Sq−1 ×G(q,m).

aux1 is of class Cr−1 and its image consists of those m-planes of Rq which
contain lines tangent to j(X).

The second construction We denote byAux2 or, more speci�cally byAux2(j;m),
the subset of X ×X ×G(q,m) consisting of the triples (x, x′, γ) such that
x ̸= x′ and j(x′)− j(x) ∈ γ. Further, de�ne

aux2 : Aux2 → G′(q,m), (x, x′, γ) 7→ j(x) + γ.

Note that Aux2 is a [2n + (m − 1)(q − m)]-dimensional submanifold of
X ×X ×G(q,m). Indeed, it is the preimage of the submanifold G(q,m)
of G′(q,m) under the mapping

((X ×X) \ diagX)×G(q,m)→ G′(q,m), (x, x′, γ) 7→ j(x′)− j(x) + γ;

this mapping is transverse to G(q,m).

aux2 is of class Cr and its image consists of those m-planes of Rq which
intersect j(X) at more than one point.

The Basic Theorems

Lemma 3.4.10.3. Let X be a closed n-dimensional C≥r-manifold, 1 ≤ r ≤ ∞,
and let j : X → Rq be an embedding of class Cr together with a Cr-transversalisation
τ : X → G′(q, q − n) and a neat tube Tubτ ρ. Then there exist a neighbourhood
U of the map τ̃ : X → G′(q, q − n) (see Remark 3.4.3.2) in Cr(X,G′(q, q − n))
and a continuous mapping Φ: U → DiffrX such that, for each map g ∈ U :

(i) [j ◦ Φ(g)](x) ∈ g(x) for all x ∈ X;

(ii) the map
τg : X → G(q, q − n), x 7→ g(x)− [j ◦ Φ(g)](x)

is a transversalisation of the embedding j ◦ Φ(g) : X → Rq;

(iii) some neat tube of this transversalisation contains Tubτ (ρ/2).
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Proof. Given g ∈ Cr(X,G′(q, q−n)), let hg : Tubτ ρ→ Rq denote the map which
carries each point y ∈ Tubτ ρ into its image under the orthogonal projection onto
the plane g(proj(y)). Obviously,

Cr(X,G′(q, q − n))→ Cr(Tubτ ρ,Rq), g 7→ hg

is a continuous mapping, and if g = τ̃ , then hg = [incl : Tubτ ρ → Rq]. Con-
sequently, τ̃ has a neighbourhood V in Cr(X,G′(q, q − n)) such that, for any
g ∈ V, hg is a Cr-embedding and hg(tubτ ρ) ⊃ Tubτ (ρ/2) (see Lemma 3.4.9.5).
For g ∈ V, let ig denote the composition

x
abr j−−−→ Tubτ (ρ/2)

(abrhg)
−1

−−−−−−−→ h−1
g (Tubτ (ρ/2))

incl−−→ Tubτ ρ
projτ−−−→ X

An obvious veri�cation shows that g 7→ ig is a continuous mapping V →
Cr(X,X), and that ĩτ = id. Therefore, τ̃ has a neighbourhood U in V such
that ig is a di�eomorphism for all g ∈ U . Set Φ(g) = i−1

g for g ∈ U . It is imme-
diate that Φ is continuous and that U and Φ satisfy the conditions (i)-(iii).

Theorem 3.4.10.4. Suppose X is a compact n-dimensional C≥r-manifold, 1 ≤
r ≤ ∞, and X ′ is a closed n-dimensional C≥r-manifold. Then for n′ ≥ 2n,
Immr(X,X ′) is dense in Cr(X,X ′), and for n′ ≥ 2n+1, Embr(X,X ′) is dense
in Cr(X,X ′).

Proof. Without loss of generality, we shall prove these statements in the case
r = ∞; when r < ∞, we simply apply Theorems 3.4.9.6 and 3.4.6.5 to reduce
to the �rst case.

Let f ∈ C∞(X,X ′), and let U be a neighbourhood of f . We have to show
that, for n′ ≥ 2n, U contains an immersion, and that for n′ ≥ 2n+1, U contains
an embedding.

Fix C∞-embeddings j : X → Rq and j′ : X ′ → Rq′ , and de�ne an embedding

J ′ : X ′ → Rq+q
′
= Rq × Rq

′
, x′ 7→ (j′(x′), 0).

Further, pick a C∞-transversalisation τ ′ of J ′ and a neat tube Tubτ ′ ρ′. Then
Jt(x) = (j′(f(x), tj(x)) de�nes a C∞-embedding Jt : X → Rq+q′ , for any �xed
t > 0. Pick ε small enough so that Jε(X) ⊂ Tubτ ′ , (ρ′/2) and denote Jε
simply by J . Applying Lemma 3.4.10.3 (to the manifold X ′, the embedding J ′,
the transversalisation τ ′ and the tube Tubτ ′ ρ′), we conclude that there are a
neighbourhood U ′ of the map τ̃ ′ in C∞(X ′, G′(q′+q, q′+q−n)) and a continuous
mapping Φ′ : U ′ → Diff∞X ′ such that, for each g′ ∈ U ′:

(i) [J ′ ◦ Φ′(g′)](x′) ∈ g′(x′) for all x′ ∈ X ′;

(ii) the map

τ ′g′ : X
′ → G(q′ + q, q′ + q − n′), (x′) 7→ g′(x′)− [J ′ ◦ Φ′(g′)](x′)

is a transversalisation of the embedding J ′ ◦ Φ′(g′);
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(iii) some neat tube of this transversalisation contains Tubτ ′(ρ′/2).

Now consider the mapping

Ψ′ : U ′ → C∞(X,X ′), [Ψ′(g′)](x) = projτ ′
g′
(J(x)).

We see that Ψ′ is continuous and Ψ′(τ ′) = f . Hence, (Ψ′)−1(U) is open in
C∞(X ′, G′(q′+ q, q′+ q−n′)) and non-empty. This fact together with Theorem
3.4.7.7 show that (Ψ′)−1(U) contains a map h transverse to each of the maps

aux1 : Aux1(J ; q
′ + q − n′)→ G′(q′ + q, q′ + q − n′)

aux2 : Aux2(J ; q
′ + q − n′)→ G′(q′ + q, q′ + q − n′).

We shall presently show that Ψ′(h) is an immersion for n′ ≥ 2n, and a di�eren-
tiable embedding for n′ ≥ 2n+1. This will complete the proof, since Ψ′(h) ∈ U .

The inequality n′ ≥ 2n is equivalent to

dimX ′ + dimAux1(J ; q
′ + q − n′) < dimG′(q′ + q, q′ + q − n′);

hence for n′ ≥ 2n the fact that aux1 and h are transverse means that h(X ′)
does not intersect im aux1, i.e., none of the planes h(x′), x′ ∈ X ′, contains a line
tangent to J(X). The latter, in turn, means that the di�erential dy(projτ ′

h
|J(x))

of the restriction projτ ′
h
|J(x) is a monomorphism for any point y ∈ J(X). Thus

projτ ′
h
|J(x) and also Ψ′(h), are immersions.

Similarly, the inequality n′ ≥ 2n+ 1 is equivalent to

dimX ′ + dimAux2(J ; q
′ + q − n′) < dimG′(q′ + q, q′ + q − n′);

hence for n′ ≥ 2n+1 the fact that aux2 and h are transverse means that h(X ′)
does not intersect im aux2, i.e., none of the planes h(x′), x′ ∈ X ′, intersects J(X)
at more than one point. This says that the restriction projτ ′

h
|J(x) is injective.

We see at once that Ψ′(h) is also an injective map, and since it is an immersion,
Ψ′(h) is a di�erentiable embedding (see Corollary 3.1.5.4).

Embeddings and Immersions in Euclidean Spaces

Theorem 3.4.10.5. Every compact n-dimensional C≥r-manifold with 1 ≤ r ≤
∞ can be Cr-immersed in R2n and Cr-embedded in R2n+1.

Proof. This is a consequence of Theorem 3.4.10.4 (where we take X to be the
given manifold, and set �rst X ′ = S2n, and then X ′ = S2n+1; we disregard the
trivial case n = 0).

Information 3.4.10.6. As a matter of fact, every n-dimensional C≥r-manifold
with r > 1 admits a Cr-embedding in R2n whenever n ≥ 1, and a Cr-immersion
in R2n−1 whenever n ≥ 2. If n > 0 and is not a power of 2, then every
C≥r-manifold with r ≥ 1 admits a Cr-embedding in R2n−1. However, for each
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n = 2s, s ≥ 0, there are smooth, closed, n-dimensional manifolds which can-
not be even topologically embedded in R2n−1 (such an example is RPn). Ev-
ery n-dimensional Cr-manifold, r ≥ 1, without closed components, can be Cr-
embedded in R2n−1. Every orientable n-dimensional C≥r-manifold with r ≥ 1
and n ̸= 1, 4 can be Cr-embedded in R2n−1. [it is not known whether a smooth,
closed, orientable, four-dimensional manifold admits a di�erentiable embedding
in R7; a topological embedding always exists.]

More information, details, and references can be found in [20] and [18].

3.4.11 Exercises

Exercise 3.4.11.1. Show that for any C≥r-manifolds X and X ′, with 0 ≤ r ≤ ∞,
the space Cr(X,X ′) has a countable base.

Exercise 3.4.11.2. Let X be a compact C≥r-manifold, 1 ≤ r ≤ ∞ and let X'
be an arbitrary C≥r-manifold. Show that the set Submr(X,X ′) ∩ Cr∂(X,X ′) is
open in Cr∂(X,X ′).

Exercise 3.4.11.3. Show that every compact topological manifold is a CNRS.
[cf. Theorem 3.4.5.10.]

Exercise 3.4.11.4. Suppose X is the smooth one-dimensional submanifold of R2,
closed as an independent manifold, and containing the graph of the function x 7→
sin(1/x) de�ned on the interval (0, 1). Let τ be the normal transversalisation of
the inclusion X → R2. Show that for any ρ the segment dτ ((0, 0), ρ) intersects
a segment dτ (x, ρ) for some x ̸= (0, 0). [cf. Remark 3.4.3.2.]

Exercise 3.4.11.5. Suppose X is a compact Cr-manifold with 1 ≤ r ≤ ∞, and
A is a submanifold of X. Show that for a suitable collaring of X, A∪ cop(A) is
a submanifold of doppX.

Exercise 3.4.11.6. Let X and Y be compact Cr-manifold with 1 ≤ r ≤ ∞.
Check that:

(i) the productX×Y has a Cr-structure which induces the usual Cr-structures
on interX × Y and X × intY ;

(ii) the Cr-manifold obtained by equipping X × Y with a Cr-structure having
these properties is unique up to a di�eomorphism.

Exercise 3.4.11.7. Let X1, X2, and X be compact C∞-manifolds, and let f2 ∈
C∞∂ (X2, X

′). Show that the subset of C∞∂ (X1, X
′) consisting of all maps trans-

verse to f2 is dense in C∞∂ (X1, X
′).

Exercise 3.4.11.8. Let X1, X2, X ′, and f2 be as in exercise 3.4.11.7. Show that
for any C∞-map φ : ∂X1 → ∂X ′ transverse to abr f2 : ∂X2 → ∂X ′, the subset
of C∞− (X1, X

′) consisting of all the extensions of φ which are transverse to f2
is dense in the subspace of C∞∂ (X1, X

′) consisting of all the extensions of ϕ.

Exercise 3.4.11.9. Let X and X ′ be compact C≥r-manifolds with 1 ≤ r ≤ ∞,
and let φ : partialX → ∂X ′ be a Cr-immersion. If dimX ′ > 2 dimX, show that
the subset of Cr∂(X,X ′) consisting of all Cr-immersions that extend φ is dense
in the subspace of Cr∂(X,X ′) consisting of all extensions of φ.



3.4. EMBEDDINGS. IMMERSIONS. SMOOTHINGS. APPROXIMATIONS215

Exercise 3.4.11.10. Let X and X ′ be compact C≥r-manifolds with 1 ≤ r ≤ ∞,
and let φ : ∂X → ∂X ′ be a Cr-embedding. If dimX ′ ≥ 2 dimX + 1, show that
the subset of Cr∂(X,X ′) consisting of all Cr-embeddings that extend φ is dense
in the subspace of Cr∂(X,X ′) consisting of all extensions of φ. [In particular,
every compact n-dimensional C≥r-manifold admits a neat embedding in D2n+1.]

Exercise 3.4.11.11. Let X and X ′ be closed C≥r-manifolds with 1 ≤ r ≤ ∞.
Show that the set of all Cr-maps f : X → X ′ such that Tangf(x1)X

′ = im dx1f+
im dx2

f for any two distinct points x1, x2 ∈ X with f(x1) = f(x2), is dense in
Cr(X,X ′).

Exercise 3.4.11.12. Let X and X ′ be closed C≥r-manifolds with 1 ≤ r ≤ ∞.
If dimX ′ = 2dimX − 1, show that the set of all Cr-maps f : X → X ′ such
that rank dxf = dimX for all but a �nite number of points x ∈ X, where
rank dxf = dimX − 1, is dense in Cr(X,X ′).

Exercise 3.4.11.13. Let X and X ′be closed C≥r-manifolds with 1 ≤ r ≤ ∞. If
2 dimX ′ > 3 dimX, show that the set of all Cr-maps f : X → X ′ such that the
preimage of each point of X ′ under f contains at most two points, is dense in
Cr(X,X ′).
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3.5 THE SIMPLEST STRUCTURE THEOREMS

3.5.1 Morse Functions

Remark 3.5.1.1. The central result of this section is Theorem 3.5.2.10, whose
main conclusion is that every compact n-dimensional C∞-manifold can be ob-
tained from an empty n-dimensional manifold through a �nite number of fairly
standard operations, namely, by attaching handles. The entire present subsec-
tion and that part of Subsection 3.5.2 preceding Theorem 3.5.2.10 are essentially
devoted to the preparation of its formulation and proof. The remaining part of
Subsection 3.5.2 contains corollaries of Theorem 3.5.2.10. In Subsection 3.5.3
this theorem is used to e�ectively classify the compact smooth two-dimensional
manifolds.

It should come as no surprise that, in contrast to the previous sections, here
we consider, in general, only the C∞-case: the theorems concerning smoothing of
di�eomorphisms and manifolds (i.e., Corollaries 3.4.4.5, 3.4.6.12, and Theorems
3.4.9.6, 3.4.9.8) show that we may replace the class C∞ by any class Cr, 1 ≤ r <
∞, without a�ecting the theory discussed here.

Cobordisms and Morse Functions

De�nition 3.5.1.2. A compact C∞-manifold X is called a cobordism if its
boundary ∂X is the disjoint union of two parts, ∂0X and ∂1X, each consisting
of whole components of ∂X. Those two parts are termed the beginning and the
end of the cobordism X. Each of them may be empty; when both are empty, X
is closed. In general, given a compact C∞-manifold, one can transform it into
a cobordism in 2ℓ ways, where ℓ is the number of components of ∂X. Among
these cobordisms, there is one without beginning (∂0X = ∅, ∂1X = ∂X) and
one without end (∂0X = ∂X, ∂1X = ∅).

Two cobordisms, X and X ′, are said to be di�eomorphic if there is a di�eo-
morphism (and hence a C∞-di�eomorphism) f : X → X ′ such that f(∂0X) =
∂0X

′ and f(∂1X) = ∂1X
′.

Suppose that X and X ′ are two cobordisms such that ∂1X and ∂0X
′ are

di�eomorphic, and let φ : ∂1X → ∂0X
′ be a C∞-di�eomorphism. Then one can

form a manifold Y by glueing the somehow collared manifolds X and X ′ with
the aid of φ. Now Y naturally becomes a cobordism if we set ∂0Y = ∂0X
and ∂1Y = ∂1X

′. We say that the cobordism Y is the result of glueing the
cobordisms X and X ′ by φ. If the cobordisms X and X ′ are oriented and φ is
orientation reversing (here the orientations of ∂1X and ∂0X ′ are those induced
by the orientations of X and X ′; see Remark 3.1.3.4), then one can orient Y in
such a manner that both embeddings, X → Y and X ′ → Y , become orientation
preserving. Warning: this de�nition of the orientation of the glued cobordism
is not in accordance with the de�nition of the orientation of a glued manifold,
given in Remark 3.4.5.5.

Two smooth closed manifolds, V0 and V1, are cobordant if there is a cobor-
dism with the beginning and the end di�eomorphic to V0 and V1, respectively.
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If, in addition, V0 and V1 are oriented, and there is an oriented cobordism X
such that one of the di�eomorphisms V0 → ∂0X and V1 → ∂1X preserves ori-
entation, whereas the other reverses it, then we say that V0 and V1 are oriented
cobordant. Clearly, the cobordism and oriented cobordism relations are re�exive
and symmetric, and since cobordisms can be glued, they are also transitive, i.e.,
they are genuine equivalence relations.

De�nition 3.5.1.3. A critical point x of a C2-function f : X → R, where
X is a C≥2-manifold is non-degenerate if for some chart φ ∈ Atlx C

2X (and
hence for any such chart) φ(x) is a non-degenerate critical point of the function
(f |suppφ) ◦ φ−1 : imφ → R (see Remark 3.3.3.1). The corresponding index is
independent of the choice of the chart φ (see Remark 3.3.3.1), and is called the
index of the point x relative to f .

Suppose X is a cobordism, and let f : X → R be a C∞-function; f is aMorse
function if the following holds:

� im f ⊂ I;

� f−1(0) = ∂0X, and f−1(1) = ∂1X;

� all critical points of f lie in intX and are non-degenerate.

We say that a Morse function is proper if its values at distinct critical points
are distinct.

The Local Structure of Morse Functions

Theorem 3.5.1.4. Suppose that X is an n-dimensional cobordism and f : X →
R is a Morse function. Then for every point x ∈ X there is a chart φ ∈ AtlxX
with φ(x) = 0, such that the restriction f |suppϖ coincides with the composite
map

suppφ
φ−→ imφ→ R,

where the second arrow denotes one of the following functions:

(t1, . . . , tn) 7→


−t1, if x ∈ ∂0X;

1 + t1, if x ∈ ∂1X;

f(x) + t1, if x ∈ intX is not a critical point of f ;

Proof. To prove the �rst three cases we need only remark that the function
X → R, de�ned by

y 7→

{
f(y)− x for x ∈ intX ∪ ∂1X
−f(y) for x ∈ ∂0X

can be completed, in a neighbourhood of x, to a system of coordinates (see
Remark 3.1.2.12). For the fourth case, we refer to Theorem 3.3.3.5.

Corollary 3.5.1.5. A Morse function has only a �nite number of critical points.
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An Existence Theorem

Lemma 3.5.1.6. Given any C∞-function f : Dn → R, there exists an open
dense subset A of Rn such that for a ∈ A the function Dn → R de�ned by

x 7→ f(x)− < a, x > (3.5.1.7)

has no degenerate critical points.

Proof. Consider the map grad f : Dn → R with coordinate functionsD1f, . . . ,Dnf .
One may take A to be Rn\[grad f ](F ), where F = {x ∈ Dn| rank dx grad f < n}.
F is clearly open, and Theorem 3.4.7.4 implies that it is also dense in R. More-
over, it is evident that if x ∈ Dn is a critical point of the function (3.5.1.7),
then [grad f ](x) = a, and the matrix of the second-order partial derivatives of
(3.5.1.7) at x is precisely the matrix of the di�erential dx grad f relative to the
standard coordinates in TangxDn and TangaRn. Therefore, if a ∈ A, then this
matrix of second-order partial derivatives is non-singular.

Theorem 3.5.1.8. On every cobordism there is a proper Morse function.

Proof. First, let us show that if there exists some Morse function on the cobor-
dism X, then there exists a proper Morse function on X. Let x1, . . . , xm be
the critical points of the Morse function f : X → R, and let U1, . . . , Um be pair-
wise disjoint neighbourhoods of these points in intX. Further, let V1, . . . , Vm
be neighbourhoods of x1, . . . , xm such that ClV1 ⊂ U1, . . . ,ClVm ⊂ Um, and
let φ1, . . . , φm be Urysohn C∞-functions for the pairs X \ U1,ClV1), . . . , (X \
Um,ClVm). (The existence of such Urysohn functions results from Lemma
3.4.4.8, applied here to the double of the manifold X.) Clearly, if the numbers
ε1, . . . , εm are small enough, then the function

X → R, x 7→ f(x) + ε1φ1(x) + · · ·+ εmφm(x)

is, together with f , a Morse function, and its only critical points are x1, . . . , xm.
Moreover, its values at the points x1, . . . , xm are f(x1)+ε1, . . . f(xm)+εm, and
so, by choosing suitable ε1, . . . , εm one can force these values to be distinct.

Now we show that there exists Morse functions onX. Fix a collaring k : ∂X×
I → X and a C∞-function β : I → I which equals 1 on the segment [0, 1/2] and
vanishes on a neighbourhood of 1. Next de�ne g : X → R by the formulae

g(x) =
1

2
, for x ∈ X \ k(∂X × [0, 1)),

g(k(z, t)) =

{
1
2 + 1

2 (t− 1)β(t), for z ∈ ∂0X, t ∈ I,
1
2 + 1

2 (1− t)β(t), for z ∈ ∂1X, t ∈ I.

It is clear that g is C∞, takes X into I, ∂0X into 0, and ∂1X into 1, and has
no critical points in k(∂X × [0, 1/2]). Pick charts φ1, . . . , φs ∈ AtlX such that
imφ1 = · · · imφs = Rn, n = dimX, and the sets φ−1

1 (intDn), . . . , φ−1
s (intDn)

cover X \ k(∂X × [0, 1/2]). Further, choose a C∞-function α : Rn → I which
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equals 1 on Dn and 0 outside the concentric ball 2Dn of radius 2. Using induc-
tion, we shall build functions g0, . . . , gs : X → R, such that gi coincides with
g in a neighbourhood of ∂X, maps intX into int I, has no critical points in
k(∂X × [0, 1/2]), and has no degenerate critical points in ∪ij=1φ

−1
j (Dn). Then

gs will be a Morse function on X.
Let g0 = g and assume that for some k ≥ 1 functions enjoying the required

properties are already constructed for i < k. For each point a ∈ Rn, the formula

ha(x) =

{
gk−1(x), if x ∈ X \ φ−1

k (2Dn),
gk−1− < a,φk > α ◦ φk(x), if x ∈ suppφk,

de�nes a C∞-function ha : X → R which agrees with gk−1 in a neighbourhood
of ∂X, and for a = 0 coincides with gk−1 on all of X. Clearly, the point 0 has
a neighbourhood U in Rn such that for a ∈ U the function ha has no critical
points in k(∂X × [0, 1/2]), has no degenerate critical points in ∪k−1

j=1φ
−1
j (Dn),

and maps intX into int I. Thus, by Lemma 3.5.1.6, we can �nd a ∈ U such
that ha also has no degenerate critical points in φ−1

k (Dn), and hence we can
take gk = ha for such a value of a.

3.5.2 Cobordisms and Surgery

Remark 3.5.2.1. This subsection is devoted to two types of special operations on
cobordisms, called attaching of handles and spherical modi�cations. The former
were already mentioned in Remark 3.5.1.1. Spherical modi�cations are simpler
that the attaching of handles, but their applications are more limited: we shall
de�ne them solely for the closed case, and starting with a closed C∞-manifold
they are capable of producing only manifolds cobordant with the given one.

Standard Cobordisms

De�nition 3.5.2.2. We de�ne standard cobordisms of two kinds:

� the standard trivial cobordisms, and

� the standard elementary cobordisms of index k.

On every standard cobordism there is a standard Morse function.
A standard trivial cobordism is constructed by taking an arbitrary closed

C∞-manifold V and simply forming the cylinder V × I, with ∂0(V × I) = V × 0
and ∂1(V × I) = V × 1. The corresponding standard Morse function is de�ned
as (v, t) 7→ t and has no critical points.

The standard elementary cobordism of index k is de�ned for an arbitrary
closed (n − 1)-dimensional C∞-manifold V with n ≥ k, and an arbitrary C∞-
embedding φ : Sk−1×Dn−k → V , and is denoted by El(V, φ). Up to a canonical
homeomorphism, El(V, φ) is simply (V × I) ∪φ1

(Dk × Dn−k), where the map
φ1 : Sk−1×Dn−k → V ×I is de�ned by φ1(x, y) = (φ(x, y), 1). To de�ne El(V, φ)
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as a C∞-manifold, we let E(n, k) denote the set

{(t1, . . . , tn) ∈ Rn|
n∑
k+1

t2i− ≤ 1, |
k∑
i=1

t2i −
n∑
k+1

t2i | ≤
1

16
}

and let el denote the homeomorphism of the intersection

E(n, k) ∩ [Rn \ (Rk × int(
1

2
Dn−k))]

onto the cylinder

φ(Sk × (Dn−k \ int(1
2
Dn−k)))× I

given by the formula

(t1, . . . , tn) 7→ (φ((t1, . . . , tk)/(t
2
1, . . . , t

2
k)

1/2, (tk+1, . . . , tn)),

8(
1

16
− t21 − · · · t2k + t2k+1 + · · ·+ t2n)).

As a topological space, El(V, φ) is the result of glueing the cylinder [V \φ(Sk ×
int( 12D

n−k))]× I and E(n, k) by the homeomorphism el (see Fig. 3.1).

Figure 3.1: (n = 2, k = 1)

The C∞-structure on El(V, φ) is �xed by an atlas consisting of the charts of
arbitrary atlases of the C∞-manifolds

[V \ φ(Sk−1 × (
1

2
Dn−k))]× I and E(n, k) ∩ (Rk × intDn−k)
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(these manifolds are regarded as parts of the space El(V, φ)). The beginning of
∂0 El(V, φ) is formed by the two sets

[V \ φ(Sk−1 × (
1

2
Dn−k))]× 0, and

{(t1, . . . , tn) ∈ E(n, k)| − t21 − · · · − t2k + t2k+1 · · ·+ tn = − 1

16
}.

Similarly, the sets

[V \ φ(Sk−1 × (
1

2
Dn−k))]× 1, and

{(t1, . . . , tn) ∈ E(n, k)| − t21 − · · · − t2k + t2k+1 · · ·+ tn =
1

16
},

constitute the end ∂1 El(V, φ). The standard Morse function on El(V, φ) is given
by the two functions

[V \ φ(Sk−1 × int(
1

2
Dn−k))]× I → R, E(n, k)→ R,

de�ned by the formulae

(v, t) 7→ t, (t1, . . . , tn) 7→ 8(
1

16
− t21 − · · · − t2k + t2k+1 + · · ·+ t2n)

respectively. It has a unique critical point 0 ∈ E(n, k), of index k. We use the
symbol mo to denote the standard Morse function.

Using Fig. 3.1 as a guide, it is readily seen that the manifold El(V, φ)
is homeomorphic to (V × I) ∪φ1

(Dk × Dn−k). The formulae describing this
canonical homeomorphism are cumbersome, and we shall not burden the reader
with their precise form.

The basic property shared by all standard cobordisms constructed from a
given manifold V is that the beginning of each is canonically C∞-di�eomorphic
to V . For the standard trivial cobordism, this di�eomorphism is v 7→ (v, 0). In
the case of the cobordism El(V, φ), the di�eomorphism is de�ned as v 7→ (v, 0)
on the part

V \ φ(Sk−1 × int(
1

2
Dn−k))→ [V \ φ(Sk−1 × int(

1

2
Dn−k))]× 0,

and as

φ(Sk−1 × Dn−k)→

{(t1, . . . tn) ∈ E(n, k)| − t21 − · · · − t2k + t2k+1 + · · ·+ t2n =
1

16
},

tk)(tk+1, . . . tn)) 7→

(t1

√
1

16
+ t2k+1 + · · ·+ t2n, . . . , t1

√
1

16
+ t2k+1 + · · ·+ t2n, tk+1, . . . , tn)
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Remark 3.5.2.3. The construction of the standard elementary cobordism the
simplest when the index k is 0 or n.

If k = 0, then φ embeds the empty set into V , E(n, k) is the ball 1
4D

n and el
is a homeomorphism of empty sets. In this case the similarity dilatation (with
coe�cient 4) of the ball E(n, k) transforms El(V, φ) into the sum (V × I)⨿Dn
with

∂0[(V × I)⨿ Dn] = incl1(V × 0), ∂1[(V × I)⨿ Dn] = (V × 1)⨿ Sn−1;

it also transforms the standard Morse function mo into the function{
V × I → R, (v, t) 7→ t,

Dn → R, (t1, . . . , tn) 7→ (1 + t21 + · · ·+ t2n)/2.

If k = n, then φ embeds Sn−1 into V , the image of this embedding being one of
the components of V (see Remark 3.1.5.1). Again, E(n, k) is the ball 1

4D
n and

el is a homeomorphism of empty sets. Here the similarity dilatation of the ball
E(n, k) transforms El(V, φ) into the sum ([V \ φ(Sn−1)]× I)⨿ Dn with

∂0{([V \ φ(Sn−1)]× I)⨿ Dn} = ([V \ φ(Sn−1)]× 0)⨿ Sn−1,

∂1{([V \ φ(Sn−1)]× I)⨿ Dn} = incl1([V \ φ(Sn−1)]× 1);

while the standard Morse function mo is taken into the function{
[V \ φ(Sn−1)]× I → R, (v, t) 7→ t,

Dn → R, (t1, . . . , tn) 7→ (1− t21 + · · · − t2n)/2.

We also remark that k = 0 and k = n are the only values of the index for which
the standard elementary cobordism can have a connected boundary: for k = 0
the boundary is connected if and only if the initial manifold V is empty, while
for k = n the boundary is connected if and only if φ is a di�eomorphism. We
have seen that in both cases the cobordism is di�eomorphic to Dn.

Trivial Cobordisms and Elementary Cobordisms

De�nition 3.5.2.4. A cobordism is said to be trivial if it is di�eomorphic to
a standard trivial cobordism. A cobordism is an elementary cobordism of index
k if it is di�eomorphic to a standard elementary cobordism of index k.

From these de�nitions it follows that if X is a trivial cobordism, then the
manifolds ∂0X and ∂1X are di�eomorphic, and that on a trivial cobordism there
is a Morse function without critical points, whereas on an elementary cobordism
of index k there is a Morse function with a single critical point of index k and
no other critical points.

Lemma 3.5.2.5. Suppose X and X ′ are two cobordisms such that the manifolds
∂1X and ∂0X

′ are di�eomorphic. If X ′ is trivial, the the cobordism obtained by
glueing X and X ′ by an arbitrary C∞-di�eomorophism ∂1X → ∂0X

′ (and using
arbitrary collarings of X and X ′) is di�eomorphic to X.
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Proof. Corollary 3.4.5.9 shows that given a C∞-di�eomorphism φ : ∂1X → ∂0X
′,

it su�ces to produce two C∞-embeddings, j : X → X and j′ : X ′ → X, such
that

j(X) ∪ j′(X ′) = X, j(X) ∩ j′(X ′) = j(∂1X) = j′(∂0X
′),

and the composite di�eomorphism

∂0X
′ abr j′−−−→ j′(∂0X

′)
abr j−1

−−−−−→ ∂1X

coincides with φ−1. In order to accomplish this, let us �x:

� a collaring k : ∂X × I → X;

� a C∞-di�eomorphism f : X ′ → ∂0X
′ × I such that f(x′) = (x′, 0) for all

x′ ∈ ∂X ′;

� an increasing C∞-function α : I → I, such that

α(t) =

{
1/2 + t/3 for t ≤ 3/4,

t for t ≥ 7/8.

Further, using the function

β : I → I, t 7→ (1− t)/2,

set 
j(x) = x, if x ∈ X \ k(∂1 × [0, 1)),

j(k(z, t)) = k(z, α(t)), if z ∈ ∂1X, t ∈ I,
j′(x′) = k ◦ (φ−1 × β) ◦ f(x′), if x′ ∈ X ′.

We can verify directly that j and j′ have the required properties.

Lemma 3.5.2.6. If on a cobordism there is a Morse function without critical
point, then the cobordism is trivial,

Proof. Let f : X → R be a Morse function with no critical points. According to
Corollary 3.1.5.8 (or, if one prefers, to Theorem 3.4.8.2), the preimage f−1(t)
of any point t ∈ (0, 1) is a neat submanifold of X; moreover, f−1(t) is obviously
closed as an independent manifold (the preimages f−1(0) = ∂0X and f−1(1) =
∂1X are also closed manifolds). By Theorems 3.4.5.3 and 3.4.5.8, the manifold
f−1(t) has a neighbourhood Ut together with a C∞-submersion πt : Ut → f−1(t)
which is the identity map on f−1(t), for each �xed t ∈ I. De�ne, for t ∈ I, a
C∞-map

Ft : Ut → f−1(t)× I, x 7→ (πt(x), f(x)).

Obviously, the di�erential dtFt is non-degenerate for x ∈ f−1(t), and Ft induces
a di�eomorphism of f−1(t) onto f−1(t)×t. Consequently, Ft is a C∞-embedding
on a neighbourhood of f−1(t) (see 3.1.5.5), i.e., there is a neighbourhood ∆t

of the point t in I such that Ft induces a di�eomorphism of F−1
t (∆t) onto
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f−1(t) ×∆t. Let m be large enough so that if we divide I into m intervals of
length 1/m, then each such interval is contained in one of the sets ∆t. Then all
the cobordisms f−1([(i− 1)/m, i/m]), with

∂0f
−1([(i−1)/m, i/m]) = f−1((i−1)/m), ∂1f

−1([(i−1)/m, i/m]) = f−1(i/m),

are trivial, and now Lemma 3.5.2.5 shows that the entire cobordism X is trivial.

Theorem 3.5.2.7. If on a cobordism X there is a Morse function with a single
critical point of index k and no other critical points, then X is an elementary
cobordism of index k.

Proof. The proof is quite long and we shall begin by constructing an auxiliary
cobordism Y .

Fix a Morse function f : X → I with a single critical point of index k, say x,
and no other critical points. By Theorem 3.5.1.4, there is a chart φ ∈ AtlxX,
φ(x) = 0, such that f |suppφ equals the composition of φ with the function
imφ→ R given by

(t1, . . . , tn) 7→ f(x)− t21 − · · · − t2k + t2k+1 + · · ·+ t2n.

Obviously, imφ contains the subset A of Rn determined (in the standard coor-
dinates) by the inequalities:

t2k+1 + · · ·+ t2n ≤ 4ε2,

− ε
2

16
≤− t21 − · · · − t2k + t2k+1 + · · ·+ t2n ≤

ε2

16
,

for some ε > 0. Let

B = A ∩ (Rk × (Rn−k \ int(ε
2
Dn−k))).

As a topological space, Y is the result of glueing the subset

f−1([f(x)− ε

16
, f(x) +

ε

16
]) \ φ−1(A \B)

of X and the product Sk−1 × 2Dn−k × I by the homeomorphism

φ−1(B)→ Sk−1 × [2Dn−k \ int(ε
2
Dn−k)]× I

given by

φ−1(t1, . . . , tn) 7→(
(t1, . . . , tk)√
(t21 + · · ·+ t2k)

, (tk+1, . . . , tn),
8

ε2
(
ε2

16
− t21 − · · · − t2k + t2k+1 + · · ·+ t2n)

)
.
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[Here we use the inequalities − ε2

16 < f(x) < 1− ε2

16 , which are immediate conse-
quences of the inclusion A ⊂ imφ.]

The C∞-structure of Y is �xed by the atlas consisting of arbitrary atlases of
the C∞-manifolds

f−1([f(x)− ε2

16
, f(x) +

ε2

16
]) \ φ−1(A \B)

and
Sk−1 × int(2Dn−k)× I

The beginning ∂?0Y is the union of the two sets

f−1(f(x)− ε2

16
) \ φ−1(A \B)f−1 ∩ (f(x)− ε2

16
)

and
Sk−1 × int(2Dn−k)× 0.

Similarly, the end ∂1Y is the union of the two sets

f−1(f(x)− ε2

16
) \ φ−1(A \B)f−1 ∩ (f(x)− ε2

16
)

and
Sk−1 × int(2Dn−k)× 1.

The functions

f−1([f(x)− ε2

16
, f(x) +

ε2

16
]) \ φ−1(A \B)→ R

y 7→ 8

ε2
(
ε2

16
+ f(y)− f(x)),

and

Sk−1 × int(2Dn−k)× I → R,
(u, v, t) 7→ [u ∈ Sk−1, v ∈ int(2Dn−k), t ∈ I],

yield together a function g : Y → R. It is readily seen that g is a Morse function
with no critical points. (In virtue of Lemma 3.5.2.6, this implies that Y is
a trivial cobordism; however, in what follows this property of Y is not used
directly.) Now consider the composite embedding

Sk−1×Dn−k (z1,z2)7→(z1,z2,1/2)−−−−−−−−−−−−−→ Sk−1×Dn−k×I incl−−→ Sk−1×int(2Dn−k)×I incl−−→ Y

and its compression ψ : Sk−1 × Dn−k → g−1(1/2). To complete the proof of
the theorem we shall presently verify that the cobordism X is di�eomorphic to
El(g−1(1/2), ψ).
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As a preliminary step, we �nd a number δ, 0 < δ < 1/2, and a C∞-
di�eomorphism

H : g−1(
1

2
)× [

1

2
− δ, 1

2
+ δ]→ g−1([

1

2
− δ, 1

2
+ δ]),

such that

H((u, v,
1

2
), t) = (u, v, t)

for all u ∈ Sk−1, v ∈ Dn−k, and t ∈ [ 12 − δ,
1
2 + δ].

By Theorem 3.4.5.8, one can �nd η, 0 < η < 1/2, such that there is a
C∞-submersion π : g−1(( 12 − η,

1
2 + η)) → g−1( 12 ) which is the identity map on

g−1( 12 ). Fix a C
∞-function α : R n− k → R, equal to 1 on Dn−k and to 0 outside

2Dn−k, and de�ne a new C∞-submersion ρ : g−1(( 12 − η,
1
2 + η)) → g−1( 12 ) by

the formula

ρ(y) =


π(y), if y ̸∈ Sk−1 × int(2Dn−k)× I,
π(u, v,−1 + (t− 1)(1− α(v))), if y = (u, v, t),

where u ∈ Sk−1, v ∈ 2Dn−k, t ∈ I.

Further, de�ne

G : g−1((
1

2
− η, 1

2
+ η))→ g−1(

1

2
)× (

1

2
− η, 1

2
+ η)

by G(y) = (ρ(y), g(y)). Since G induces a di�eomorphism of g−1( 12 ) onto
g−1( 12 ) ×

1
2 and the di�erential dyG is non-degenerate as long as y ∈ g−1( 12 ),

there is δ, 0 < δ < η, such that the restriction of G to g−1([ 12 − δ,
1
2 + δ]) is a

C∞-embedding. Now it is clear that one can take for H the map

(abrG)−1 : g−1([
1

2
)× [

1

2
− δ, 1

2
+ δ]→ g−1([

1

2
− δ, 1

2
+ δ]).

Finally, to show that the cobordisms X and El(g−1 1
2 , ψ) are di�eomorphic, cut

each of them into three cobordisms:

� X into the cobordisms

f−1([0, f(x)− δε2

8 ]),

f−1([f(x)− δε2

8 , f(x) +
δε2

8 ]),

f−1([f(x) + δε2

8 , 1]),

� El(g−1( 12 ), ψ) into the conformisms

mo−1([0, 12 − δ]),
mo−1([ 12 − δ,

1
2 + δ]),

mo−1([ 12 + δ, 1]).
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By Lemma 3.5.2.6, the �rst and the third cobordisms in each of these triples are
trivial, and hence the second cobordism is di�eomorphic to the entire cobordism.
Therefore, it is enough to exhibit a di�eomorphism

mo−1([
1

2
− δ, 1

2
8 + δ]→ f−1([f(x)− δε2

8
, f(x) +

δε2

8
]).

To do this, consider the composite map

(g−1(
1

2
) \ ψ(Sk−1 × intDn−k))× [

1

2
− δ, 1

2
+ δ]

abrH−−−→

(Y \ (Sk−1 × intDn−k)× I)) ∩ g−1([
1

2
− δ, 1

2
+ δ])

id−→

(X \ φ−1(Rk × intDn−k)) ∩ f−1([f(x)− δε2

8
, f(x) +

δε2

8
]),

and the map

E(n, k) ∩mo−1([
1

2
− δ, 1

2
+ δ])→

φ−1(imφ ∩ (Rk × εDn−k)) ∩ f−1([f(x)− δε2

8
, f(x) +

δε2

8
])

given by the formula

(t1, . . . , tn) 7→ φ−1(εt1, . . . , εtn),

which together provide the desired di�eomorphism.

Corollary 3.5.2.8. Suppose that on a given n-dimensional cobordism X with
connected boundary there exists a Morse function with a unique critical point.
Then X is di�eomorphic to Dn.

Attaching Handless

De�nition 3.5.2.9. Let X be an n-dimensional cobordism and let φ : Sk−1 ×
Dn−k → ∂1X be a C∞-embedding. The result of glueing X and the elementary
cobordism El(∂1X,φ) by the canonical di�eomorphism ∂1X → ∂0 El(∂1X,φ)
(see De�nition 3.5.2.2) is said to be obtained from X by attaching a handle of
index k.

By attaching a handle of index 0 to X we replace, up to a di�eomorphism,
X by X ⨿ Dn; the new component of the boundary, i.e., incl2(Sn−1), is added
to ∂1X. To attach a handle of index n, we actually glue X and Dn by a
di�eomorphism of one of the components of ∂1X onto Sn−1.

Theorem 3.5.2.10. Every cobordism X can be obtained, up to a di�eomor-
phism, from the standard trivial cobordism ∂0X×I, by attaching a �nite number
of handles. Moreover, given any proper Morse function f : X → R, one may
choose these handles so that their number will not exceed the number of critical
points of f .
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Proof. We prove this statement by induction on the number of critical points
of f . If f has no critical points, Lemma 3.5.2.6 su�ces. If f has m ≥ 1 critical
points, then there is c ∈ (0, 1) such that one of the critical values of f is greater
than c, while the remaining ones are smaller than c. We cut X into two cobor-
disms: f−1([0, c]) and f−1([c, 1]). On f−1([0, c]) there is a proper Morse function
with m − 1 critical points, for example, x 7→ f(x)/c. On f−1([c, 1])) there is a
Morse function with a unique critical point, for example, x 7→ (f(x)−c)/(1−c).
Finally, note that by Theorem 3.5.2.7 the second cobordism is elementary.

Theorem 3.5.2.11. A closed n-dimensional C∞-manifold X on which there is
Morse function having only two critical points is homeomorphic to Sn.

Proof. We remark (leaving the trivial case n = 0 aside) that every Morse func-
tion with only two critical points is proper (the two points are necessarily a
maximum and a minimum). Thus Theorem 3.5.2.10 shows that X can be ob-
tained from an empty manifold by attaching two handles. Obviously, the �rst
handle has index 0, and the second index n, and hence X actually results from
glueing two copies of Dn by a di�eomorphism of Sn−1.

A Homotopy Corollary

Lemma 3.5.2.12. The cobordism El(V, φ) is homotopy equivalent to V ∪f Dk,
where f : Sk−1 → V is given by f(y) = φ(y, 0). Moreover, there is a homotopy
equivalence V ∪f Dk → El(V, φ) which agrees on V with the inclusion V [=
∂0 El(V, φ)]→ El(V, φ).

Proof. One can assemble such a homotopy equivalence from the above inclusion
V → El(V, φ) and the embedding Dk → El(V, φ) which takes each point x ∈ Dk
into the point x/4 ∈ E(n, k). To complete the proof, it is enough to remark
that the constructed mapping V ∪f Dk → El(V, φ) is a topological embedding
whose image is a strong deformation retract of El(V, φ).

Theorem 3.5.2.13. Every compact n-dimensional smooth manifold is homo-
topy equivalent to a �nite cellular space of dimension ≤ n.

Proof. The discussion in De�nition 3.5.1.2 implies that one may assume that the
given manifold is a cobordism with an empty beginning. Therefore, all we have
to show is that if an n-dimensional cobordism is homotopy equivalent to a �nite
cellular space of dimension ≤ n, then it retains this property after we attach to it
an arbitrary handle; see Theorem 3.5.2.10. But from Lemma 3.5.2.12 it follows
that attaching a handle of index k to a cobordism X has the same homotopy
e�ect as attaching Dk to X by some embedding f : Sk−1 → X. Now replace
X by a �nite cellular space Y of dimension ≤ n with the same homotopy type,
replace the map f by its composition with a homotopy equivalence X → Y , and
subsequently replace this composition by a homotopic cellular map g : Sk−1 → Y
(see Theorem 2.3.2.6). By Theorem 1.3.7.8, the cobordism which results by
attaching a handle of index k to X is homotopy equivalent to the space Y ∪gDk;
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according to Remark 2.1.5.6, Y ∪g Dk is a �nite cellular space of dimension
≤ n.

De�nition 3.5.2.14. Let V be a closed n-dimensional C∞-manifold, and let
φ : Sk−1 × Dn−k+1 → V be a C∞-embedding. Fix arbitrary collars on

Y \ φ(Sk−1 × intDn−k+1) and Dk × Sn−k,

and then glue these manifolds by the di�eomorphism

abrφ : Sk−1 × Sn−k → φ(Sk−1 × Sn−k)

of the boundary of the second onto the boundary of the �rst. We say that
the glued manifold is obtained from V by a spherical modi�cation along the
embedding φ1. The number k is the index of the modi�cation.

Theorem 3.5.2.15. If the cobordism X ′ is obtained from the cobordism X by
attaching a handle using an embedding φ : Sk−1 × Dn−k → ∂1X, then ∂1X

′ is
obtained from by a spherical modi�cation along the same embedding φ : Sk−1 ×
Dn−k → ∂1X.

Proof. Since ∂1Xprime = ∂1 El(∂1X,φ), we actually claim that ∂1 El(∂1X,φ) is
obtained from ∂1X by a spherical modi�cation along φ. Recall that El(∂1X,φ)
is the result of glueing the spaces [∂1X \φ(Sk−1× int( 12D

n−k))]× I and E(n, k)
by el (see De�nition 3.5.2.2). Obviously, [∂1X \ φ(Sk−1 × intDn−k)] × 1 and
E(n, k) ∩ ∂1 El(∂1X,φ) are compact (n − 1)-dimensional submanifolds of the
manifold ∂1 El(∂1X,φ), which they cover, and they intersect along their common
boundary. Consider the mappings

proj1 : [∂1X \ φ(Sk−1 × intDn−k)]× 1→ ∂1X φ(Sk−1 × intDn−k)

and

ψ : E(n, k) ∩ ∂1 El(∂1X,φ)→ Dk × Sn−k−1,

ψ(t1, . . . , tn) =

16

15
(t1, . . . , tn),

(tk+1, . . . , tn)√
(t2k+1,+ · · ·+ t2n)

 .

It is clear that ψ is a C∞-di�eomorphism such that proj(ψ−1(z1, z2)) = φ(z1, z2)
for all z1 ∈ Sk−1 and z2 ∈ Sn−k−1. Now applying Corollary 3.4.5.9, we see that
∂1 El(∂1X,φ) is really obtained by glueing the manifolds

∂1X \ φ(Sk−1 × intDn−k) and Dk × Sn−k−1

by abrφ.

Corollary 3.5.2.16. Given an arbitrary cobordism X, the manifold ∂1X can
be obtained from ∂0X through a �nite number of spherical modi�cations. In
particular, the boundary of an arbitrary compact C∞-manifold can be obtained
from an empty manifold through a �nite number of spherical modi�cations.

1Translator's note: or by doing a surgery on V using φ.
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3.5.3 Two-dimensional Manifolds

Remark 3.5.3.1. The theory presented in the two previous subsections repre-
sents, �rst of all, an attempt to somehow visualise, survey, and classify smooth
compact manifolds of a given dimension. To apply this theory in complex situa-
tions, one needs to develop it further, but in the simplest cases Theorem 3.5.2.10
emerges as a su�ciently e�ective tool. For example, in the one-dimensional case
every standard cobordism is a sum of segments, and hence Theorem 3.5.2.100
implies that every smooth compact one-dimensional manifold is di�eomorphic
to the sum of a �nite number of segments and circles.
Warning: although this di�erentiable classi�cation coincides with the topolog-
ical classi�cation given in Theorem 3.1.1.18, it has an entirely di�erent meaning.
[We add that also in the non-compact case (which, due to its relative complexity,
is not considered in our book in any systematic way), the di�erentiable classi-
�cation of one-dimensional manifolds is identical with the topological one; see
Exercise 3.5.4.1.]

The present subsection is devoted to the di�erentiable classi�cation of the
smooth, compact, two-dimensional manifolds, and again Theorem 3.5.2.10 is
enough. We begin by drawing up a list of model manifolds (which play the same
role as the segments and circles in the one-dimensional case). Next we show that
every smooth, compact, connected, two dimensional manifold is di�eomorphic
to one of the models. No two of the model manifolds are di�eomorphic or
homeomorphic. However, we prove this fact only in Chapter 5 (see Remark ??);
here we merely prepare the geometric part of the proof, describing for the closed
model manifolds canonical rigged cellular decomposition, and for the non-closed
model manifolds - the bouquets of circles to which they are homotopy equivalent.
As we did in the classi�cation of one-dimensional manifolds, we shall not worry
about the di�erentiability class (cf. Remark 3.5.1.1).

Model Surfaces

Remark 3.5.3.2. We begin with the elementary model surfaces: the spheres with
holes and the Möbius strips.

A sphere with ℓ hole is S2 with the interiors of ℓ pairwise disjoint spherical
caps (segments) removed; its boundary is a sum of ℓ circles and inherits a well-
de�ned orientation. A sphere with one hole is di�eomorphic to D2, while a
sphere with two holes is di�eomorphic to the cylinder S1×D1; we call the latter
a handle (do not confuse with the "handles" in Subsection 3.5.2 !).

A Möbius strip is a submanifold of R3 produced by the motion of a segment
of length 1 whose middle glides along a circle S1 in such a manner that the
segment remains normal to the circle and turns uniformly through a total angle
π (see Fig. 3.2). Every Möbiu strip is a non-orientable compact submanifold of
R3 with boundary di�eomorphic to S1.

The list of all model surfaces is:

� the empty two-dimensional manifold,
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Figure 3.2:

� the spheres with handles and holes,

� the spheres with cross-caps.

A sphere with g handles and ℓ holes (g ≥ 0, ℓ ≥ 0) is de�ned as the result
of glueing a sphere with 2g + ℓ holes and a sum of g handles by an orienta-
tion preserving di�eomorphism from the boundary of the sum of handles onto
the union of 2g components of the sphere with holes. This object is a smooth,
compact, orientable, two dimensional manifold, uniquely de�ned up to an orien-
tation preserving di�eomorphism by the numbers g and ℓ, and whose boundary
is di�eomorphic to a sum of ℓ circles. This manifold coincides with S2 if g = 0,
ℓ = 0; it is di�eomorphic to D2 if g = 0, ℓ = 1, and to S1 × S1 if g = 1, ℓ = 0,
and then it is known as a torus; for g = 2 and ℓ = 0, it is called a double
torus or a pretzel. For any g and ℓ, a sphere with g handles and ℓ holes can be
di�erentiably embedded in R3; for g = 3 and ℓ = 2, the standard embedding is
depicted in Fig.3.3.

Figure 3.3:

A sphere with h cross-caps and ℓ holes (h ≥ 0, ℓ ≥ 0) is de�ned as the
result of glueing a sphere with h + ℓ holes and a sum of h Möbius strips by
a di�eomorphism of the boundary of the sum of strips onto the union of h
components of the sphere with holes. One obtains a smooth, compact, two-
dimensional manifold, uniquely de�ned up to a di�eomorphism by the numbers
h and ℓ, and whose boundary is di�eomorphic to a sum of ℓ circles. This
manifold is orientable only for h = 0. For h = 1, ℓ = 0, it is di�eomorphic to
RP 2, and for h = 1, ℓ = 1, to a Möbius strip.

For h = 2, ℓ = 0, this manifold is called the Klein bottle and is well known
because of its immersion in R3, depicted in Fig. 3.4; for h = 2, ℓ = 1, it is
called a disc with an inverted handle and is depicted in Fig. 3.5, on the left
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Figure 3.4:

(the drawing on the right in Fig. 3.5 demonstrates that by glueing a disc with
an inverted handle and a usual disc by a di�eomorphism of their boundaries we
actually get a Klein bottle).

Figure 3.5:

We emphasise that in our list of model manifolds, the cross-caps do not meet
with the handles, i.e., we excluded the case of a sphere with holes to which we
attach both handles and Möbius strips. We show in Lemma 3.5.3.3 that for
h ≥ 1, every sphere with g handles, h cross-caps, and ℓ holes is di�eomorphic
to a sphere with 2g + h cross-caps and ℓ holes.

Auxiliary Propositions

Lemma 3.5.3.3. Let X1 and X2 be smooth, compact, two-dimensional mani-
folds, and let φ be a di�eomorphism of a component of ∂1X onto a component
of ∂2X. Denote by X the manifold obtained by glueing X1 and X2 by φ. Then
:

(i) if X1 and X2 are di�eomorphic to a sphere with g1 handles and ℓ1 holes,
and to a sphere with g2 handles and ℓ2 holes, respectively, then X is dif-
feomorphic to a sphere with g1 + g2 handles and ℓ1 + ℓ2 holes;

(ii) if X1 and X2 are di�eomorphic to a sphere with h1 cross-caps and ℓ1
holes, and to a sphere with h2 cross-caps and ℓ2 holes, respectively, then
X is di�eomorphic to a sphere with h1 + h2 cross-caps and ℓ1 + ℓ2 holes;
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(iii) if X1 and X2 are di�eomorphic to a sphere with g1 handles and ℓ1 holes,
and to a sphere with h2 > 0 cross-caps and ℓ2 holes, respectively, then X
is di�eomorphic to a sphere with 2g1+h2 cross-caps and ℓ1+ ℓ2− 2 holes.

Proof. The only case which needs proof is (iii), where we see immediately that
X is di�eomorphic to a sphere with g1 handles, h2 cross-caps, and ℓ1 + ℓ2 − 2
holes.

To begin with, suppose that g1 = 1, h2 = 1, and ℓ1 + ℓ2 − 2 = 1. Then X is
di�eomorphic to a Möbius strip with a handle attached; see the left drawing in
Fig. 3.6.

Figure 3.6:

The last manifold is obviously di�eomorphic to a Möbius strip with an in-
verted handle, as that in the right drawing in Fig. 3.6, and hence can be cut
into a sphere with one cross-cap and a disc with an inverted handle. According
to (ii), this implies that X is di�eomorphic to a sphere with three cross-caps
and one hole.

In the general case, we use induction on g1. If g1 = 0, there is nothing to
prove. If g1 > 0, then X can be glued from a sphere with g1 − 1 handles, cross-
caps, and ℓ1 + ℓ2 − 1 holes and a sphere with one handle, one cross-cap, and
one hole. But we already proved that this second manifold is di�eomorphic to
a sphere with three cross-caps and one hole. Consequently, X is di�eomorphic
to a sphere with g1 − 1 handles, h2 +2 cross-caps, and ℓ1 + ℓ2 − 2 holes, and so
di�eomorphic to a sphere with 2g1 + h2 cross-caps and ℓ1 + ℓ2 − 2 holes.

Lemma 3.5.3.4. Let X be a smooth, compact, connected, two-dimensional
manifold, and let X ′ be the result of attaching a handle to X by a di�eomor-
phism of the boundary of the handle onto the union of two components of ∂X.
Then:

(i) if X is di�eomorphic to a sphere with g handles and ℓ holes, then X ′ is
di�eomorphic to a sphere with g+1 handles and ℓ−2 holes, or to a sphere
with 2g + 2 cross-caps and ℓ− 2 holes;

(ii) if X is di�eomorphic to a sphere with h cross-caps and ℓ holes, then X ′ is
di�eomorphic to a sphere with h+ 2 cross-caps and ℓ− 2 holes.
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Proof. This is a corollary of Lemma 3.5.3.3: indeed, in both cases one can cut
X ′ into two manifolds, such that the �rst one di�ers from X by having one hole
less, while the second is di�eomorphic to a sphere with one handle and one hole,
or to a disc with an inverted handle.

Theorem 3.5.3.5. Let X1 and X2 be smooth, compact, two-dimensional mani-
folds, and let φ be a di�eomorphism of a non-empty union of whole components
of ∂2X2 onto a non-empty union of whole components of ∂1X. Denote by X
the manifold glued from X1 and X2 by means of φ. If both X1 and X2 are dif-
feomorphic to model surfaces, then X is also di�eomorphic to one of the model
surfaces.

Proof. This is a consequence of Lemmas 3.5.3.3 and 3.5.3.4, because glueing by
means of φ is equivalent to �rst glueing by the di�eomorphism of one of the
components of ∂2X2 onto the corresponding component of ∂1X, obtained by
compressing φ, and subsequently attaching a number of handles equal to half the
number of the components of ∂1X and ∂2X which remain to be identi�ed.

The Main Theorem

Theorem 3.5.3.6. Every smooth, connected, compact, two-dimensional mani-
fold is di�eomorphic to one of the model surfaces.

Proof. Applying Theorems 2.10 and 5, all we need to show is that the compo-
nents of the elementary two-dimensional cobordisms are di�eomorphic to model
surfaces. And this is not hard to check directly by examining all possible cases,
if we recall that every smooth, closed, one-dimensional manifold is di�eomor-
phic to a sum of circles. To spell it out,every elementary cobordism of index
0 constructed from a sum of m circles is di�eomorphic to a sum of m spheres
with two holes and a sphere with one hole. Next, every elementary cobordism
of index 2 constructed from a sum of m circles (and a di�erentiable embedding
of a circle in this sum) is di�eomorphic to a sum of m−1 spheres with two holes
and a sphere with one hole. And �nally, every elementary cobordism of index 1
constructed from a sum of m circles and a di�erentiable embedding of S0 × D1

in this sum is di�eomorphic to one of the following three manifolds:

� a sum of m− 2 spheres with two holes and a sphere with three holes;

� a sum of m− 1 spheres with two holes and a sphere with three holes;

� a sum of m − 1 spheres with two holes and a sphere with one cross-cap
and two holes.

For m = 2, one see the three cases in Fig. 3.7.

Information 3.5.3.7. Every compact, connected, two-dimensional topological
manifold is homeomorphic to one of the model surfaces.
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Figure 3.7:

Cellular Decompositions of the Closed Model Surfaces

Remark 3.5.3.8. The closed model surfaces possess standard rigged cellular de-
compositions, which generalize the canonical decompositions of the sphere S2,
the complex projective space CP 2, and the torus S1 × S1 into two cells, three
cells, and four cells, respectively. Each of these standard decompositions, except
the no-cell decomposition of the empty model surface, contains only one 0-cell
and only one 2-cell, while the number of 1-cells is 2g for a sphere with g han-
dles, and h for a sphere with h cross-caps. Therefore, the 1-skeleton of a sphere
with g handles is a bouquet of 2g circles, while the 1-skeleton of a sphere with
h cross-caps is a bouquet of h circles. Moreover, the description of the entire
rigged cellular decomposition reduces to the characterisation of the attaching
map for the 2-cell, i.e., of a certain map of S1 into the aforementioned bouquet.

We disregard the values g = 0, 1 and h = 0, 1, already considered, and for
the case of a sphere with g handles, we represent S1 as the contour of a regular
polygon with �rst vertex ort1 and 4g edges, arranged successively as

a1, b1, a
′
1, b

′
1, . . . , ag, bg, a

′
g, b

′
g

In the case of a sphere with h cross-caps, we represent S1 as the contour of a reg-
ular polygon with �rst vertex ort1 and 2h edges, which are arranged successively
as

c1, c
′
1, . . . , ch, c

′
h.

In both cases we form a quotient space of S1 by identifying each edge with the
corresponding �primed� edge, as follows: a1 is identi�ed with a′1, and b1 with
b′1 through a re�ection with respect to a line (relative to which these edges are
symmetric), while c1 is identi�ed with c′1 through a rotation of the polygon
(around its centre). In either of cases the quotient space is a bouquet of circles:
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in the �rst case the number of circles is 2g, and in the second h. The projection
of S1 onto this quotient space is the required attaching map.

Of course, we still have to convince the reader that the cellular spaces pro-
duced in this manner are homeomorphic to the model surfaces. To this end, let
us divide our 4g-gon into a g-gon and g pentagons, by drawing diagonals which
cut out quadruplets ai, bi, a′i, b

′
i. Similarly, we divide our 2h-gon into a h-gon

and h triangles, by drawing diagonals which cut out pairs ci, c′i (see Fig. 3.8).

Figure 3.8: g = 3, h = 3

Identifying the edges and the way described above, all the vertices of the
remaining g-gon become one and the same point, thus transforming the g-gon
into a sphere with g circular apertures; at the same time, the edges of the
pentagons are identi�ed in such a manner that each pentagon becomes a torus
with a circular aperture. Attaching these holed tori to the holed sphere in such
a way as to restore all that was destroyed by the auxiliary (diagonal) cuts,
we obtain, up to a homeomorphism, a sphere with g handles. Similarly, the
prescribed identi�cations of the edges ci, c′i take all the vertices of the h-gon
into one and the same point, thus transforming the h-gon into a sphere with
h circular apertures; at the same time, each triangle becomes a Möbius strip,
since two of its edges are identi�ed. Attaching these strips to the holed sphere,
we obtain, up to a homeomorphism,a sphere with h cross-caps. [Warning: the
boundaries of the previous circular apertures (in the sphere) have a common
point, and for g = 2 or h = 2, they even coincide.]

The Homotopy Structure of the Non-closed Model Surfaces

Theorem 3.5.3.9. A sphere with g handles and ℓ holes is homotopy equivalent
to a bouquet of 2g + ℓ − 1 circles. A sphere with h cross-caps and ℓ holes is
homotopy equivalent to a bouquet of h+ ℓ− 1 circles.

Proof. To prove these assertions, we �rst note that by attaching the 4g-gon to
the bouquet of 2g circles as in Remark 3.5.3.8, we produce, up to a homeo-
morphism, a sphere with g handles and ℓ holes, provided we �rst remove the
interiors of ℓ pairwise disjoint discs from the interior of the 4g-gon. Now let us
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arrange these discs such that every line passing through the �rst vertex, ort1,
intersects no more than one of them. Denote by A the set consisting of:

(i) the contour of the 4g-gon;

(ii) the 2ℓ − 2 segments tangent to ℓ − 1 of the removed discs and passing
through ort1;

(iii) the outer arcs of the boundaries of these discs having as endpoints the
tangency points.

Then A is obviously a strong deformation retract of the holed 4g-gon. If we now
project this 4g-gon onto the sphere with g handles, the above strong deformation
retraction is transformed into a strong deformation retraction of the holed sphere
with g handles onto the image of A under the projection. Finally, note that this
image is manifestly homeomorphic to a bouquet of 2g + ℓ− 1 circles.

The proof for a sphere with h cross-caps and ℓ holes is a verbatim repetition
of the previous argument, with the 4g-gon replaced by the 2h-gon.

3.5.4 Exercises

Exercise 3.5.4.1. Show that every smooth, connected, non-compact, one-dimensional
manifold is homeomorphic to a line or a half-line (see Remark 3.5.3.1).

Exercise 3.5.4.2. De�ne a submanifold of CP 2 in homogeneous coordinates by
the equation zm1 + zm2 + zm3 = 0, and show that it is di�eomorphic to a sphere
with (m− 1)(m− 2)/2 handles (see Exercises 3.2.4.4 and 3.2.4.5).

Exercise 3.5.4.3. Show that the subset of CP 1 × CP 1 consisting of the points
((z1 : z2), (w1 : w2)) such that zq1(w

p
1 + wp2) = z22(w

p
1 − wp2) is a manifold

di�eomorphic to a sphere with (p− 1)(q − 1) handles.

Exercise 3.5.4.4. Show that every smooth, closed, connected, orientable, three-
dimensional manifold can be obtained by glueing two copies of a handle-body
by a di�eomorphism of its boundary. (A handle-body is a part of R3 bounded
by a sphere with handles which is standardly embedded in R3) .

Exercise 3.5.4.5. Consider the manifold obtained by glueing two copies of the
solid torus S1 × D2 by a di�eomorphism of its boundary S1 × S1, given by the
formula (z1, z2) 7→ (za1z

b
2, z

c
1z
d
2), where a, b, c, d are integers satisfying ad− bc =

±1. Show that this manifold is di�eomorphic to S3 for a = 0, to S2 × S1 for
a = ±1, and to RP 3 for a = ±2.
Exercise 3.5.4.6. Show that on every connected closed C∞-manifold there is a
Morse function with a unique local minimum and a unique local maximum.

Exercise 3.5.4.7. Show that on every connected cobordism X with non-empty
∂0X and ∂1X there is a proper Morse function with no local maxima and minima
lying in intX.

Exercise 3.5.4.8. Show that on every cobordism there is a proper Morse function
such that, for any of its critical points x1 and x2, of indices k1 and k2, k1 < k2
implies f(x1) < f(x2).
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Exercise 3.5.4.9. Suppose that on a cobordism X there is a Morse function with
no critical points of index 1 and that the manifold ∂0X is orientable. Show that
the cobordism X is orientable and that every orientation of ∂0X is induced by
some orientation of X.



Chapter 4

BUNDLES

4.1 BUNDLESWITHOUTGROUP STRUCTURE

4.1.1 General De�nitions

De�nition 4.1.1.1. A bundle is a triple (T, p,B), where T and B are topolog-
ical spaces and p : T → B is a continuous map. The spaces T and B are called
the total space and the base of the bundle (T, p,B), respectively, and the map
p is its projection. For a bundle ξ, we denote its total space, its base, and its
projection by tl(ξ), bs(ξ), and proj(ξ), respectively: ξ = (tl(ξ),proj(ξ),bs(ξ)).

The preimage [proj(ξ)]−1(b) of a point b ∈ bs(ξ) is called the �bre of the
bundle ξ over the point b.

A section of the bundle ξ is a continuous map s : bsξ → tl(ξ) such that
proj(ξ)◦s = idbs(ξ). Two sections of ξ are homotopic if they can be connected by
a homotopy consisting only of sections, i.e., by a homotopy h : bs(ξ)×I → tl(ξ)
such that proj(ξ) ◦ h equals proj1 : bs(ξ)× I → bs(ξ).

The restriction of the bundle ξ to a subspace B ⊂ bs(ξ) is the bundle

ξ|B
def
= ([proj(ξ)]−1(B), abr proj(ξ), B).

The product of the bundles ξ1 and ξ2 is the bundle

(tl(ξ1)× tl(ξ2),proj(ξ1)× proj(ξ2),bs(ξ1)× bs(ξ2))

denoted ξ1×ξ2. The �bre of ξ1×ξ2 over a point (b1, b2) ∈ bs(ξ1×ξ2) is precisely
the product of the �bres [proj(ξ1)]−1(b1) and [proj(ξ2)]

−1(b2).

De�nition 4.1.1.2. A map of the bundle ξ′ into the bundle ξ is a pair of
continuous maps F : tl(ξ′)→ tl(ξ), f : bs(ξ′)→ bs(ξ), such that the diagram

tl(ξ′)
F //

proj(ξ′)

��

tl(ξ)

proj(ξ)

��
bs(ξ′)

f
// bs(ξ)

(4.1.1.3)

239
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is commutative. If Φ = (F, f) is such a pair, we write Φ : ξ′ → ξ, F = tl(Φ),
f = bs(Φ).

A map Φ: ξ′ → ξ is said to be an isomorphism if tl(Φ) and bs(Φ) are
homeomorphisms, and an equivalence if, in addition, bs(ξ′) = bs(ξ) and bs(Φ) =
idbs(ξ). If there is an isomorphism (equivalence) between ξ′ and ξ, then the
bundles ξ′ and ξ are said to be isomorphic (respectively, equivalent).

A map Φ : ξ′ → ξ is called an inclusion if tl(Φ) and bs(Φ) are inclusions. For
example, given any subset B of bs(ξ), the inclusions incl : [proj(ξ)]−1(B)→ tl(ξ)
and incl : B → bs(ξ), form the inclusion of the bundle ξ|B in ξ.

The commutativity of the diagram (4.1.1.3) implies that F is a �bre pre-
serving map (or a �bred map), i.e., it takes each �bre of ξ′ into a �bre of ξ.
Obviously, if proj(ξ′)(tl(ξ′)) = bs(ξ′), then given an arbitrary �bre preserving
map F : tl(ξ′) → tl(ξ) there is a unique map f : bs(ξ′) → bs(ξ), which makes
diagram (4.1.1.3) commutative. Moreover, if the map proj(ξ′) is factorial, then
the continuity of F implies the continuity of f . Therefore, we have

Theorem 4.1.1.4. if ξ′ is a bundle with factorial projection, then given any
�bre preserving map F : tl(ξ′) → tl(ξ), there is one and only one continuous
map Φ : ξ′ → ξ such that tl(Φ) = F .

Remark 4.1.1.5. Let f be a continuous map of a topological space B into the
base of a bundle ξ. We may de�ne a new bundle having base B, total space
{(b, x) ∈ B × tl(ξ)|f(b) = [proj(ξ)](x)}, and projection - the restriction of the
projection proj1 : B× tl(ξ)→ B to the last space. This new bundle is called the
bundle induced from ξ by f , and is denoted by f !ξ.

It is clear that the restriction of the projection proj2 : B × tl(ξ) → tl(ξ) to
tl(f !(ξ)) de�nes for each b ∈ bs((f !(ξ)) a homeomorphism of the �bre of f !(ξ)
over the point b onto the �bre of ξ over the point f(b) ∈ bs(ξ), and determines,
together with f , a map f !(ξ) → ξ. This map is called the adjoint of f and is
denoted by adj f .

The following observations also need no proofs or explanations. If f is a
homeomorphism, then the adjoint map adj f : f !(ξ) → ξ is an isomorphism; if,
in addition, f = idbs(ξ) then adj f is an equivalence. If f is an inclusion, then
adj f : f !(ξ) → ξ establishes an equivalence between f !(ξ) and ξ|B . Finally,
given arbitrary continuous maps f : B → bs(ξ) and g : B′ → B, the bundles
(f ◦ g)!(ξ) and g!(f !(ξ)) are canonically equivalent.

De�nition 4.1.1.6. If Φ: ξ′ → ξ is a map of bundles, then the formula x 7→
([proj(ξ′)](x), [(tl(Φ)](x)) de�nes a continuous map tl(ξ′)→ tl([bs(Φ)]!(ξ)). This
map de�nes, together with idbs(ξ′), a map of ξ′ into the bundle [bs(Φ)]!(ξ), which
we denote by corrΦ; we say that corrΦ corrects the map Φ.

Obviously, adj(bs(Φ)) ◦ corrΦ = Φ.

4.1.2 Locally Trivial Bundles

De�nition 4.1.2.1. The obvious example of a bundle having a given base B
and �bres homeomorphic to a given space F is the standard trivial bundle (or
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the product bundle) (B × F,proj1, B). Its �bres are the �bres b × F of the
product B × F , and are obviously canonically homeomorphic to F .

Notice that there is a one-to-one correspondence between the continuous
functions B → F and the sections B → B × F of the standard trivial bundle
(B×F,proj1, B): for each function f : B → F there is the corresponding section

s : B → B × F, b 7→ (b, f(b));

we say that f and s are associated.

De�nition 4.1.2.2. A bundle ξ is trivial or, more speci�cally, topologically
trivial, if it is equivalent to a standard trivial bundle. Any equivalence between
a standard trivial bundle and ξ, is referred to as a trivialisation of ξ.

A bundle ξ is locally trivial or, more speci�cally, topologically locally trivial,
if every point of bsξ has a neighbourhood U such that the bundle ξ|U is trivial.

Since the projection of a product of topological spaces onto one of its factors
is an open map, the projection of a trivial bundle is open, and hence so is the
projection of a locally trivial bundle.

It is immediate that the product of two trivial (locally trivial) bundles is a
trivial (respectively, locally trivial) bundle. Furthermore, any bundle induced
from a trivial (locally trivial) bundle is trivial (respectively, locally trivial). If
f : B → bsξ is constant, then f !ξ is a trivial bundle, for any ξ.

Remark 4.1.2.3. The �bres of a trivial bundle are, as those of the standard triv-
ial bundle, homeomorphic to each other. However, in a trivial, but not standard
trivial bundle, these homeomorphisms are not canonical any longer. If the base
of a locally trivial bundle is connected, then its �bres are also mutually home-
omorphic; indeed, the set of the points of the base having �bres homeomorphic
to a given �bre is open, and the sets of this type form a partition of the base
(see Theorem 1.3.3.5).

On the other hand, the example of the locally trivial bundle

((B × F )⨿ (B′ × F ′),proj1⨿proj1, B ⨿B′)

where B, F , B′, and F ′ are arbitrary topological spaces, demonstrates that in
a locally trivial bundle the �bres over points situated in di�erent components
of the base are not necessarily homeomorphic. Moreover, we see that there are
locally trivial bundles which are not trivial.

A non-trivial, locally trivial bundle may have a connected base; see Theorem
4.1.2.5 and Example 4.1.2.6.

Coverings

Remark 4.1.2.4. A locally trivial bundle is a covering in the broad sense if all
its �bres are discrete spaces. In this case the total space and the projection are
usually called a covering space and a covering projection, respectively.1 Clearly

1Translator's note: Frequently, the terms covering space and covering projection are them-
selves used to designate the whole covering.
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, every point of a covering space has a neighbourhood such that the restriction
of the projection to this neighbourhood is a homeomorphism onto its image in
the base.

A covering in the broad sense is said to be a covering in the narrow sense
or, simply, a covering, if both the covering and base spaces are connected and
non-empty. According to Remark 4.1.2.33, all the �bres of a covering have the
same cardinality, called the number of sheets (or the multiplicity) of the given
covering.

Theorem 4.1.2.5. A covering whose number of sheets is greater than one can-
not be trivial.

Proof. Indeed, the total space of a trivial bundle is homeomorphic to the product
of the base and a �bre, and hence it cannot be connected when the �bre is
discrete and has more than one point.

Example 4.1.2.6. The bundle (S1,helm,S1), where

helm : S1 → S1, z 7→ zm,

is an m-sheeted covering for any m ̸= 0. The bundle (R1,hel,S1), where
hel : R1 → S1 is de�ned as hel(x) = e2πix, is a countably-sheeted covering.

If k ̸= 0, n, then the bundle having total space G+(n, k), base G(n, k), and
projection equal to the submersion exhibited in Remark 3.2.2.3, is a two-sheeted
covering. In particular, so is (Sn,proj,RPn) for n ≥ 1.

Finally, let us show that every sphere with h cross-caps admits as a two-
sheeted covering space a sphere with h− 1 handles (see Subsection 3.5.3); here
h is an arbitrary positive integer. For h = 1, we already encountered such a
covering, namely (S2,proj,RP 2). Generally, one may construct it starting with
h copies of (S2,proj,RP 2). To do this, restrict one copy of (S2,proj,RP 2) to a
covering over the projective plane with h − 1 holes, and restrict the remaining
h − 1 copies to coverings over the projective plane with one hole (i.e., over
the Möbius strip). Now glue the bases of these h restricted coverings into a
sphere with h cross-caps by di�eomorphisms of the boundaries of the holes.
The resulting glued space is the base of a new covering, whose total space is
obtained by glueing the h total spaces of the above restricted coverings: one
of these total spaces is a sphere with h − 1 pairs of antipodal holes, while the
remaining h−1 total spaces are spheres with two antipodal holes, i.e., cylinders
over circles. (Each of these h− 1 cylinders has two possible covering attaching
maps, and we may use either one of them.) Since �sealing� a pair of holes by a
cylinder results in replacing this pair by a handle, what we actually obtain is a
two-sheeted covering having a sphere with h cross-caps as the base and a sphere
with h− 1 handles as the total space.
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4.1.3 Serre Bundles

De�nition 4.1.3.1. A bundle ξ is a Serre bundle2 if it satis�es Serre's condi-
tion: for any positive integer r or r = 0, and every continuous maps f : Ir → bsξ
and f̃0 : Ir → tl(ξ), related by proj(ξ) ◦ f̃0 = f |Ir−1 , there is a continuous map
f̃ : Ir → tl(ξ) such that proj(ξ) ◦ f̃ = f and f̃ |Ir−1 = f̃0. (We identify the cube
Ir−1 with that face of Ir whose points have the last coordinate equal to zero;
see Remark 1.2.5.7.)

Ir−1 f̃0 //� _

��

tl(ξ)

proj(ξ)

��
Ir

f
//

f̃
<<

bs(ξ)

The requirement that proj(ξ)◦f = f appearing in Serre's condition is fundamen-
tal in the theory of bundles, and is encountered also when f and f̃ are de�ned
on spaces other than cubes. If two maps, f̃ : X → tl(ξ) and f : X → bs(ξ),
satisfy this last requirement, we say that f̃ covers f (or that f̃ is a lifting or
lift of f ; we also say that f can be lifted to tl(ξ); this terminology is valid for
arbitrary ξ and X.

Obviously, the product of two Serre bundles and a bundle induced from a
Serre bundle are again Serre bundles.

Example 4.1.3.2. Examples of bundles which do not satisfy Serre's condition
are (I, p, I), where p(x) = x/2 or p(x) = 4x(1−x). In the �rst case, take r = 1,
f = idI , f̃0(0) = 0; in the second case, take r = 2, f(x1, x2) = 4x1(1−x1)(1−x2),
f̃0 = idI . Then there is no continuous map such that p ◦ f̃ = f and f̃ |Ir−1 = f̃0.

We remark that the �rst bundle has both empty and non-empty �bres, while
the second has a single connected �bre, the others being not connected. As we
shall see later (see Theorem 5.4.3.6), such features of a bundle are not compatible
with Serre's condition when the base is connected.

Serre's Condition is Local

Theorem 4.1.3.3. If every point of the base bsξ of a bundle ξ has a neighbour-
hood U such that ξ|U is a Serre bundle, then ξ itself is a Serre bundle.

Proof. Let f : In → bs(ξ) and f̃0 : In−1 → tl(ξ) be continuous maps satisfying
proj(ξ) ◦ f̃0 = f |In−1 . Since bs(ξ) can be covered by open sets such that the
restriction of ξ to each of these sets satis�es Serre's condition, Theorem 1.1.7.16
yields a positive integer N such that every cube of edge 1/N contained in In is
taken by f into one of these open sets. Divide In into Nn cubes of edge 1/N ,
arrange these cubes in dictionary order Q1, . . . , QNn , and set

Wi = In−1 ∪ (∪ij=1Qj), Q′
i = Qi ∩Wi−1.

2Translator's note: Frequently called a Serre �bre space or a weak �bration.
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It is clear that In−1 =W0 ⊂W1 ⊂ · · · ⊂WNn = In, and examining all possible
cases, we see that each pair (Qi, Q′

i) is homeomorphic to (In, In−1). Now assume
that for some i ≤ Nn there is a map f̃i−1 : Wi−1 → tl(ξ), such that

proj(ξ) ◦ f = f |Wi−1
, f̃i−1|In−1 = f̃0.

Set gi = f |Qi and g̃0i = f̃i−1|Q′
i
. Since the restriction ξ|f(Qi) satis�es Serre's

condition, there is a continuous map g̃i : tl(ξ) such that

proj(ξ) ◦ g̃i = gi and g̃i|Q′
i
= g̃0i.

Furthermore, because f̃i−1 and g̃i agree on Wi−1 ∩Qi = Q′
i together they form

a continuous map f̃i : Wi−1 ∪Qi → tl(ξ), and obviously proj(ξ) ◦ f̃i = f |Wi
and

f̃i|In−1 = f̃0. This shows that induction on i works, starting with i = 0, and
the result is a map f̃ = f̃Nn such that proj(ξ) ◦ f̃ = f and f̃i|In−1 = f̃0.

Serre's Condition and Local Triviality

Theorem 4.1.3.4. Every locally trivial bundle is a Serre bundle.

Proof. By Theorem 4.1.3.3, one need only consider the case (B × F,proj1B),
where B and F are arbitrary topological spaces. Let

f : In → B and f̃0 : I
n−1 → B × F

be continuous maps such that proj1 ◦f̃0 = f |In−1 . De�ne f̃ : In → B × f as

f̃(x1, . . . , xn) = (f(x1, . . . , xn),proj2 ◦f0(x1, . . . , xn−1)).

Clearly, proj1 ◦f̃ = f and f̃ |In−1 = f̃0.

Example 4.1.3.5. The following example demonstrates that there are Serre bun-
dles which are not locally trivial. Let T be the triangle in R2 with vertices
(0, 0), (0, 1), and (1, 0), and let p1, p2 : T → I be de�ned by p1(x1, x2) = x1,
p2(x1, x2) = x2 . The bundle (T, p1, I) is not locally trivial; indeed, the �bres
over the points 0 and 1 are not homeomorphic. However, (T, p1, I) does sat-
isfy Serre's condition: if f : In → I and f̃0 : I

n−1 → T are continuous, and
p1 ◦ f̃0 = f then the map f̃ : In → T de�ned by

f̃(x1, . . . , xn) = (f(x1, . . . , xn),min(1− f(x1, . . . , xn),proj2 ◦f0(x1, . . . , xn−1)))

is continuous, covers f , and equals f̃0 on In−1.

In−1 f̃0 //� _

��

T

p1

��
In

f
//

f̃

==

I
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This example shows also that in a Serre bundle with connected base there can
be non-homeomorphic �bres. Actually, there are Serre bundles with connected
base and in which some �bres are not even homotopy equivalent, being instead
equivalent in a certain weaker sense (see Exercise 5.4.4.3 and Theorem 5.4.3.6)
.

The Covering Homotopy Theorem

Theorem 4.1.3.6. Suppose that ξ is a Serre bundle and (X,A) is a cellular

pair. Then for every continuous map f̃ : X× → tl(ξ), every homotopy F : X ×
I → bs(ξ) of proj(ξ) ◦ f̃ , and every homotopy G : A× I → tl(ξ) of f̃ |A covering

F |A×I , there is a homotopy of f̃ which covers F and extends G.

Proof. Assume that X is rigged, and that for some r ≥ 0 there is a homotopy
F̃r−1 : (A ∪ skelr−1X)× I → tl(ξ) of f̃ |AA∪skelr−1X covering F |(A∪skelr−1X)×I .
If e is an r-ce11 from X \ A, then φe(x, t) = F (char(x), t) de�nes a continuous
map φe : Dr × I → bs(ξ), while the formula

φ̃0,e(x, t) =

{
f̃(char(x)), if t = 0,

F̃r−1(chare(x), t), if x ∈ Sr−1,

de�nes a continuous map φ̃0,e : (Dr × 0) ∪ (Sr−1 × I) → tl(ξ). Obviously, the
pairs (Dr × I, (Dr × 0) ∪ (Sr1 × I)) and (Ir+1, Ir) are homeomorphic, and

proj(ξ) ◦ φ̃0,e = φe|(Dr×0)∪(Sr−1×I).

Consequently, there is a continuous map φ̃e : Dr × I → tl(ξ) covering ϕe and
extending φ̃0,e. Since φ̃e(x, t) = F̃r−1(chare(x), t) for all x ∈ Sr−1, the maps φ̃e
corresponding to all r-cells from X \ A together with F̃r−1 yield a continuous
map F̃r : (A ∪ skelrX)× I → tl(ξ), and it is evident that the following holds:

proj(ξ) ◦ F̃r = F |(A∪skelr X)×I , F̃r = F |(A∪skelr−1X)×I = F̃r−1.

Hence, we may use induction on r, setting F̃−1 = G, to produce a sequence

{F̃r : (A ∪ skelrX)× I → tl(ξ)}∞r=−1

of homotopies which extend each other. These homotopies de�ne a homotopy
of f̃ covering F and extending G.

Theorem 4.1.3.7. Let X be a cellular space and let f̃ : X → tl(ξ) be continu-

ous. If ξ is a Serre bundle, then every homotopy of proj(ξ) ◦ f̃ is covered by a

homotopy of f̃ .

Proof. This is precisely Theorem 4.1.3.6 for the absolute case A = ∅, the proof
is immediate. We note that for X = In, Theorem 4.1.3.7 reduces to Serre's
condition for r = n+ 1.
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The Case of Coverings

Proposition 4.1.3.8. Suppose that ξ is a covering in the broad sense, X is a
connected topological space, and f, g : X → tl(ξ) are continuous maps. If

proj(ξ) ◦ f = proj(ξ) ◦ g

and f equals g at some point, then f = g.

Proof. Since the set {x ∈ X|f(x) ̸= g(x)} is open and, by assumption, its
complement is not empty, it su�ces to show that this complement is also open.
In other words, let us verify that if f(x0) = g(x0), then x0 has a neighbourhood
U such that f(x) = g(x) for all x ∈ U . Let V be a neighbourhood of f(x0) such
that proj(ξ)|V : V → [proj(ξ)](V ) is a homeomorphism (see Remark 4.1.2.4),
and take U to be any neighbourhood of x0 with f(U) ⊂ V and g(U) ⊂ V .
Since [proj(ξ)](f(x)) = [proj(ξ)](g(x)) for all x ∈ X, we have f(x) = g(x) for
all x ∈ U .

Theorem 4.1.3.9. Suppose that ξ is a covering in the broad sense, X is a
connected cellular space with a distinguished 0-cell x0, and f, g : Xto tl(ξ) are
continuous. If the maps proj(ξ)◦f and proj(ξ)◦g are x0-homotopic and f(x0) =
g(x0), then f and g are x0-homotopic.

Proof. By Theorem 4.1.3.6, any x0-homotopy from proj(ξ) ◦ f to proj(ξ) ◦ g is
covered by an x0-homotopy from f to some map h. Since h(x0) = f(x0) = g(x0)
and proj(ξ) ◦ h = proj(ξ) ◦ g, Proposition 4.1.3.8 yields h = g.

4.1.4 Bundles With Map Spaces as Total Spaces.

De�nition 4.1.4.1. We say that a bundle ξ satis�es the strong Serre condition3

if for every topological space X, every continuous map f̃ : X → tl(ξ), and every
homotopy F of proj(ξ) ◦ f̃ there is a homotopy of f̃ which covers F .

X
f̃ //� _

��

tl(ξ)

proj(ξ)

��
X × I

F
//

F̃

;;

bs(ξ)

If we replace X by a cube of arbitrary dimension, then this becomes the sim-
ple Serre condition; moreover, when X is restricted to be an arbitrary cellular
space, we obtain again a condition equivalent to the simple Serre condition; see
Theorem 4.1.3.7.

Theorem 4.1.4.2. Let (X,A) and Y be a Borsuk pair (= co�bration) and a
topological space, respectively. If X is Hausdor� and locally compact, then the
bundle

(C(X,Y ), C(incl, id), C(A, Y ))

3Translator's note: Such a bundle is frequently called a Hurewicz �bre space or a �bration.
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satis�es the strong Serre condition.

Proof. Consider a topological space Z, a continuous map f̃ : Z → C(X,Y ), and
a homotopy F : Z × I → C(A, Y ) of C(incl, id) ◦ f̃ . Since X is Hausdor� and
locally compact, the maps g̃ : Z × X → Y and G : Z × A × I → Y given by
g̃(z, x) = (f̃)∧(z, x) = [f̃(z)](x) and G(z, x, t) = [F (z, t)](x) are continuous (see
Theorem 1.2.7.6). It is clear that G is a homotopy of g̃|Z×A. Now (Z×X,Z×A)
is a Borsuk pair (see Theorem 1.3.5.5 and Remark 1.3.5.3), and hence G extends
to a homotopy G̃ of g̃.

Z ×A× 0
⊂ //

� _

��

g̃|Z×A×0

$$

Z ×X × 0� _

��

G

yy
Y

Z ×A× I ⊂
//

g̃

::

Z ×X × I
G̃

ee

Finally, the formula [F̃ (z, t)](x) = G̃(z, x, t) de�nes a homotopy F̃ : Z × I →
C(X,Y ) of f̃ which covers F .

Z
f̃ //� _

��

C(X,Y )

C(incl,id)
��

Z × I
F
//

F̃

::

C(A, Y )

Theorem 4.1.4.3. In a bundle with connected base and satisfying the strong
Serre condition, the �bres are pairwise homotopy equivalent.

Proof. Let ξ be the given bundle, and let s be a path joining two given points
of bs(ξ). Set F0 = [proj(ξ)]−1(s(0)) and F1 = [proj(ξ)]−1(s(1)). Now consider
two homotopies J0 : F0 × I → bs(ξ) and J1 : F1 × I → bs(ξ) of the composite
maps

F0
incl−−→ tl(ξ)

proj(ξ)−−−−→ bs(ξ) and F1
incl−−→ tl(ξ)

proj(ξ)−−−−→ bs(ξ),

respectively, given by J0(x, t) = s(t) and J1(x, t) = s−1(t). Since ξ satis�es the
strong Serre condition, J0 and J1 are covered by two homotopies,

J̃0 : F0 × I → tl(ξ) and J̃1 : F1 × I → tl(ξ)

of the maps incl : F0 → tl(ξ) and incl : F1 → tl(ξ), respectively. Now we have

J̃0(F0 × 1) ⊂ F1, J̃1(F1 × 1) ⊂ F0
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and hence there are well-de�ned maps

f0 : F0 → F1, x 7→ J̃0(x, 1) and f1 : F1 → F0, x 7→ J̃1(x, 1).

We next show that f1 ◦ f0 is homotopic to idF0
, and since the construction is

symmetric, f0 ◦ f1 will be homotopic to idF1
.

The formulae

j(x, t) =

{
J̃0(x, 2t), if t ≤ 1/2,

J̃1(f0(x), 2t− 1) if t ≥ 1/2.

and
H(x, t, τ) = s((1− τ)(1− |1− 2t|)

de�ne a map j : F0 × I → tl(ξ), and a homotopy H : (F0 × I) × I → bs(ξ) of
proj(ξ)◦j. Again, using Serre's strong condition, H can be lifted to a homotopy
H̃ : (F0× I)× I → tl(ξ) of j. Since (1− τ)(1−|1−2t|) = 0 for τ = 1 or t = 0, 1,
we see that

H̃((F0 × (0 ∪ 1))× I) ∪ H̃((F0 × I)× 1) ⊂ F0.

Therefore, the formula

K(x, t) =


H̃((x, 0), 3t), if t ≤ 1/3,

H̃((x, 3t− 1), 1), if 1/3 ≤ t ≤ 1/3,

H̃((x, 1), 3− 3t), if t ≥ 2/3.

de�nes a homotopy K : F0 × I → F0. Since

K(x, 0) = H̃((x, 0), 0) = j(x, 0) = J̃(x, 0) = x and

K(x, 1) = H̃((x, 1), 0) = j(x, 1) = J̃(f0x, 1) = f1(f0(x)),

it follows that K is a homotopy from idF0
to f1 ◦ f0.

Theorem 4.1.4.4. Given arbitrary points x0, x1, x
′
0, x

′
1 of a connected topo-

logical space X, the spaces C(I, 0, 1;X,x0, x1) and C(I, 0, 1;X,x′0, x′1) have the
same homotopy type

Proof. C(I, 0, 1;X,x0, x1) and C(I, 0, 1;X,x′0, x′1) are the �bres of the bundle
(C(I,X), C(incl, id), C(0∪1), X)) over the points (x0, x1) and (x′0, x

′
1) of its base

C(0 ∪ 1), X)) = X × X; hence by Theorems 4.1.4.2 and 4.1.4.3, they have the
same homotopy type.

The Adjoint Serre Bundle

De�nition 4.1.4.5. Given an arbitrary bundle ξ, we let adjξ denote the bundle
with the same base, total space

{(x, s) ∈ tl(ξ)× C(I, bs(ξ))|s(0) = proj(ξ)(x)},

and projection (x, s) 7→ s(1). We call adjξ the bundle adjoint to ξ.
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Notice that the total spaces tl(adj ξ) and tl(ξ) have the same homotopy type:
the formulae x 7→ (x, ux) and (x, s) 7→ x, where ux is the constant path in bs(ξ)
with ux(0) = [proj(ξ)](x), de�ne homotopy equivalences tl(ξ) → tl(adj ξ) and
tl(adj ξ) → tl(ξ) which are inverses to one another. Indeed, the composition of
the �rst map with the second one is idtl(ξ), while the composition of the second
map with the �rst one is homotopic to idtladjξ via the homotopy ((x, s), t) 7→
(x, st), where st is the path in bsξ de�ned by st(τ) = s(tτ).

Theorem 4.1.4.6. The bundle adj ξ satis�es the strong Serre condition for any
bundle ξ.

Proof. Consider a topological space Z, a continuous map f̃ : Z → tl(adj ξ), and
a homotopy F : Z × I → bs(adj ξ)(= bs(ξ)) of proj(adj ξ) ◦ f̃ . Denote by g1 and
g2 the composite maps

tl(ξ)

Z
f̃ // tl(adj ξ)

incl // C(I, bs(ξ))

proj1

77

proj2 ''
C(I, bs(ξ))

and de�ne a homotopy g : Z × I → (I, bs(ξ)) by

[g(z, t)](τ) =

{
[g2(z)](τ(1 + t)), if τ ≤ 1/(1 + t),

F (z, τ(1 + t)− 1), if τ ≥ 1/(1 + t).

It is readily veri�ed that the following diagramme commutes.

Z
f̃ //� _

��

tl(adj ξ)

proj(adj ξ)

��
Z × I

F
//

F̃

77

bs(adj ξ)(= bs(ξ))

4.1.5 Exercises

Exercise 4.1.5.1. Show that for any g ≥ 1 a sphere with g handles admits a
sphere with 2g − 1 handles as a covering space.
Exercise 4.1.5.2. Show that for any h ≥ 1 a sphere with h cross-caps admits a
sphere with 2h− 2 cross-caps as a covering space.
Exercise 4.1.5.3. Show that the spaces C(S1, ort1;RPn, (1 : 0 : · · · : 0)) and
C(S1, ort1;Sn, ort1)× S0 are homeomorphic for any n ≥ 1.
Exercise 4.1.5.4. Show that the bundle with total space C(I, 0;Sn, ort1), base
Sn, and projection s 7→ s(1), is locally trivial (see Exercise 1.2.9.4).
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4.2 A DIGRESSION: TOPOLOGICAL GROUPS
AND TRANSFORMATION GROUPS

4.2.1 Topological Groups

De�nition 4.2.1.1. A set G is a topological group or a group space if it is
endowed with both a topology and a group structure such that the group op-
erations, i.e, the maps G × G → G, (g, h) 7→ gh, G → G, and g 7→ g−1, are
continuous. Obviously, the continuity of these two maps is equivalent to the
continuity of the single map G×G→ G, (g, h) 7→ g−1h.

By the de�nition of the (product) topology on G×G, the continuity of the
map (g, h) 7→ gh at the point (g0, h0) means that for every neighbourhood W
of the point g0h0 one can �nd neighbourhoods U and V of g0 and h0 such that
UV ⊂ W . Similarly, the continuity of the map (g, h) 7→ g−1h means that for
every neighbourhood W of the point g0 and h0 there are neighbourhoods U and
V of g0 and h0 such that U−1V ⊂W .

Clearly, every group becomes a topological group if it is equipped with the
discrete topology.

Remark 4.2.1.2. The continuity of the group operations implies that the left and
right translations by group elements (i.e., the maps G → G given by g 7→ ag
and g 7→ ga), and the map g 7→ g1 are homeomorphisms of the space G. In
particular, if B ⊂ G is open or closed, then so are the sets B−1, aB and Ba, for
all a ∈ G.

We note also that if B is open and A is arbitrary, then AB and BA are
open. Indeed, AB = ∪a∈AaB and BA = ∪a∈ABa.

Subgroups and Quotients

Remark 4.2.1.3. Any subset H of the topological group G which is a subgroup
in the algebraic sense inherits both a group structure and a topology from G,
and it is immediate that the group operations in H are continuous.

A subgroup of a topological group is normal if it is normal in the algebraic
sense. As in ordinary group theory, normal subgroups are termed also normal
divisors or invariant subgroups.

An example of a normal subgroup of a topological group G, which has no
analogue in ordinary group theory, is the component of the identity, i.e., that
component of the space G which contains the identity element, eG, of G. This
component is obviously a subgroup: if u and v are paths joining eG with g and
h, respectively, then the path t 7→ u(t)−1v(t) joins eG with g−1h. Since the
inner automorphisms of G are continuous and take eG into itself, this subgroup
is normal. It is also clear that the cosets of this subgroup in G are exactly the
components of the space G, and the corresponding quotient group coincides, as
a set, with compG.

Theorem 4.2.1.4. Every open subgroup of a topological group is also closed.
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Proof. In fact, the complement of an open subgroup is a union of left cosets and
by Remark 4.2.1.2 each of these cosets is open. Therefore, the complement is
also open.

De�nition 4.2.1.5. The partition of a topological group G into the left cosets
of a subgroup H is denoted by zer(G,H), and the corresponding quotient space
is called the space of left cosets of H in G and is denoted by G/H. We shall
not need here right coset spaces.

The basic topological property of the partition zer(G,H) and of the projec-
tion G → G/H is their openness. Indeed, the saturation of a set B relative to
zer(G,H) equals BH, which is an open set whenever B is open (see Remark
4.2.1.2).

Theorem 4.2.1.6. Given a topological group, the space of left cosets of a closed
subgroup is regular. In particular, a topological group whose identity element is
closed is regular.

Proof. Since the cosets gH are closed (see Remark 4.2.1.2), G/H satis�es Axiom
T1. To show that G/H additionally satis�es Axiom T3, it su�ces to produce,
given a coset g0H and a neighbourhood U of g0H which is saturated relative to
zer(G,H), a saturated neighbourhood V of g0H such that ClV ⊂ U . To see this,
suppose that we have such a neighbourhood. Then for every point proj(g0) ∈
G/H and every neighbourhood proj(U) of proj(g0), there is a neighbourhood,
proj(V ), of proj(g0), such that Cl proj(V ) ⊂ proj(U). The last inclusion follows
from the inclusion proj(V ) ⊂ proj(ClV ) together with the fact that proj(ClV )
is closed (which follows from the fact that ClV is closed and saturated; ClV is
saturated because the partition zer(G,H) is open; see Remark 1.2.3.10).

Now to produce the desired neighbourhood V , note that e−1
G g0 = g0 and so

the points eG and g0 have neighbourhoods W and W0 such that W−1W0 ⊂ U .
Set V = W0H. If g ∈ ClV , then Wg, being a neighbourhood of g, intersects
V , i.e., there exist w ∈ W , w0 ∈ W0, and h ∈ H such that wg = w0h. We
have g = w−1w0h, and thus g = w−1w0h ∈ W−1W0H ⊂ UH = U . Therefore,
ClV ⊂ U .

De�nition 4.2.1.7. Let H be a normal subgroup of the topological group G.
According to ordinary group theory, the set of cosets G/H is endowed with a
group structure. Let us show that the map G/H×G/H → G/H, (x, y) 7→ x−1y,
is continuous.

First, note that the composition ψ : G×G→ G/H of the map G×G→ G,
(g, h) 7→ g−1h, with the projection G → G/H is constant on the elements of
the partition zer(G,H) × zer(G/H). Secondly, the map (x, y) 7→ x−1y equals
factψ ◦ α−1, where

α−1 : G/H ×G/H → (G×G)/(zer(G,H)× zer(G,H))

is the inverse of the injective factor, α, of the map

proj×proj : G×G→ G/H ×G/H,
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and
factψ : (G×G)/(zer(G,H)→ zer(G,H))→ G/H.

Since the partition zer(G,H) is open, α is a homeomorphism (see Theorem
1.2.3.11), and this implies that the map (x, y) 7→ x−1y is continuous.

We conclude that G/H is a topological group; G/H is called the factor group
of the topological group G by H.

Homomorphisms

Remark 4.2.1.8. A map f : G→ G′, where G and G′ are topological groups, is
a homomorphism if it is an algebraic homomorphism as well as continuous.

As in ordinary group theory, the kernel ker f of f is de�ned as the preimage
of the identity of G′. A homomorphism f is a monomorphism if it is injective,
i.e., if its kernel ker f is the identity element of G, and an epimorphism if its
image im f = f(G) is all of G′. An example of monomorphism (epimorphism) is
the inclusion of a subgroup in a topological group (respectively, the projection
of a topological group onto a factor group).

An invertible homomorphism whose inverse is also a homomorphism is called
an isomorphism. In other words, an isomorphism of topological groups is a map
which is both an algebraic homomorphism and a homeomorphism.

Theorem 4.2.1.9. Let f : G → G′ be a homomorphism of topological groups.
Then

(i) im f is a subgroup of G′, and the compression abr f : G → im f is an
epimorphism;

(ii) ker f is a normal subgroup of G, and the injective factor of f ,

fact f : G/ ker f → G′,

is a monomorphism.

Proof. In addition to recognising that this copies a well-known statement of
ordinary group theory, one has to check that the maps abr f and fact f are
continuous, which is trivial.

Theorem 4.2.1.10. An epimorphism f : G → G′ is open if and only if its
injective factor, fact f : G/ ker f → G′, is an isomorphism.

Proof. The necessity of this condition is obvious. The openness of the projection
G→ G/ ker f shows that the condition is also su�cient.

Theorem 4.2.1.11. An epimorphism of a compact topological group onto a
topological group with closed identity element is open.

Proof. Let f : G→ G′ be the given epimorphism. Since G is compact, G/ ker f
is compact. Moreover, as the identity element ofG′ is closed, G′ is Hausdor� (see
Theorem 4.2.1.6). Finally, fact f : G/ ker f → G′ is invertible and continuous,
and hence in our case a homeomorphism (see Theorem 1.1.7.10). Applying
Theorem 4.2.1.10, f is open.
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Direct Products

De�nition 4.2.1.12. Let G1 and G2 be topological groups. In ordinary group
theory, the product G1 × G2 is given a group structure, and in topology it is
given a topology (see Remark 1.2.2.1), and it is clear that these two structures
are compatible in the sense of De�nition 4.2.1.1, i.e., the group operations in
G1 ×G2 are continuous. The result is a topological group G1 ×G2, called the
direct product of the topological groups G1 and G2.

This product operation is both commutative and associative: there are ob-
vious canonical isomorphisms

G1 ×G2 → G2 ×G1, (G1 ×G2)×G3 → G1 × (G2 ×G3).

We remark that the inclusions

incl1 : G1 → G1 ×G2, x1 7→ (x1, eG2
)

incl2 : G2 → G1 ×G2, x2 7→ (eG1
, x2)

are monomorphisms (of topological groups), while the projections

proj1 : G1 ×G2 → G1, proj2 : G1 ×G2 → G2

are open epimorphisms such that ker proj1 = incl2(G2) and ker proj2 = incl1(G1).
The last observation together with Theorem 4.2.1.10 imply

fact proj1 : (G1 ×G2)/ incl2(G2)
≃−→ G1,

fact proj2 : (G1 ×G2)/ incl1(G1)
≃−→ G2.

De�nition 4.2.1.13. We say that the topological group G decomposes into the
direct product of its subgroups G1 and G2 if the map G1 × G2, (g1, g2) 7→ g1g2
is an isomorphism of topological groups. If this is the case, the groups G and
G1 and G2 are usually identi�ed via this isomorphism.

Recall that a similar de�nition exists in ordinary group theory, only there the
isomorphism is simply an algebraic isomorphism. Moreover, in that theory, G
decomposes into the direct product of its subgroups G1 and G2 if and only if G1

andG2 generateG, are normal subgroups ofG, andG1∩G2 = eG. Consequently,
if these conditions are satis�ed in our case, then (g1, g2) 7→ g1g2 is an algebraic
isomorphism. This map is obviously continuous; however, there are obvious
examples where the algebraic inverse isomorphism is not continuous. But the
algebraic inverse isomorphism is continuous whenever the space G is compact
and Hausdor�. Therefore, every compact Hausdor� topological group which
decomposes algebraically into the direct product of two subgroups, decomposes
also into the direct product of these subgroups in the sense of our topological
de�nition.
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The Simplest Examples

Remark 4.2.1.14. The real line R with addition as the group operation is a
topological group, as is the space Rn. Obviously, Rn = R× · · · × R (n factors;
the product is understood as in De�nition 4.2.1.12).

Remark 4.2.1.15. The punctured real line R⋆ = R \ 0, with multiplication as
group operation, is a topological group. Its subgroup R⋆+ consisting of the
positive reals, is isomorphic to R: an isomorphism R → R⋆+ is provided by the
exponential function x 7→ ax, with arbitrary a ̸= 1. Another evident subgroup
of R⋆ is S0, and obviously R⋆ = S0 × R⋆+.

The punctured complex line C⋆ = C \ 0 and the punctured quaternionic
line H⋆ = H \ 0 are also topological groups under multiplication. Here S1 is a
subgroup of C⋆, S3 is a subgroup of H⋆, and C⋆ = S1 × R⋆+, H⋆ = S3 × R⋆+.

Remark 4.2.1.16. The map hel : R → S1 (see Example 4.1.2.6) is an open
epimorphism. Its kernel is the subgroup of integers, Z, of R, and hence the
factor group R/Z is isomorphic to S1.

The map hel× · · ·×hel : Rn → (S1)n = S1×· · ·×S1 is also an open epimor-
phism. Its kernel is the integer lattice, Z× · · · × Z = Zn, of Rn, and hence the
factor group Rn/Zn is isomorphic to (S1)n.

Remark 4.2.1.17. The subgroup of S3 consisting of the real quaternions (i.e., of
the quaternions (x1, x2, x3, x4) such that x1 = x2 = x3 = 0) is simply S0. This
is a normal subgroup, and the factor group S3/S0 is, as a topological space, the
same as RP 3.

The subgroup of S3 consisting of the complex quaternions (i.e., of the quater-
nions (x1, x2, x3, x4) such that x3 = x4 = 0) is simply S1. However, this is not
a normal subgroup. The coset space S3/S1 is canonically homeomorphic to S2:
this canonical homeomorphism is provided by the injective factor of the Hopf
map S3 → S2 (obviously, zer(S3,S1) = zer(S3 → S2)).

4.2.2 Groups of Homeomorphism

Remark 4.2.2.1. By Remark 1.1.4.8, the homeomorphisms of a topological space
are a subgroup of the group SymX of all invertible transformations X → X,
i.e., they form a group under the ◦ (composition) operation. We denote the
group of homeomorphisms of X by TopX.

We may de�ne two topologies on TopX. The �rst one is induced by the
inclusion TopX ⊂ C(X,X) (see De�nition 1.2.7.1), i.e., is de�ned by the prebase
consisting of the sets Nb(K,O) = C(X,K;X,O)∩TopX, with K compact and
O0 open. The second topology is de�ned by the prebase consisting of the sets
U , U−1 where U is open in the �rst topology. Equivalently, the second topology
is generated by the prebase consisting of the sets Nb(K,O), [Nb(K,O)]−1.

Lemma 4.2.2.2. If X is a locally compact Hausdor� space, then the map
TopX × TopX → TopX, (g, h) 7→ gh(= g ◦ h), is continuous in either of
the above topologies.
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Proof. If gh ∈ Nb(K,O), then h(K) ⊂ g−1(O), and by Theorem 1.1.7.22, every
point of h(K) has a neighbourhood whose closure is compact and contained
in g−1(O). Let O′ denote the union of a �nite collection of such neighbour-
hoods which cover h(K). Clearly, ClO′ is compact, and g ∈ Nb(ClO′, O),
h ∈ Nb(K,O′), Nb(ClO′, O)Nb(K,O′) ⊂ Nb(K,O) .

Now if gh ∈ [Nb(K,O)]−1, then h−1g−1 ∈ Nb(K,O), and the above ar-
gument yields two sets, U, V ⊂ TopX, open in the �rst topology, and such
that h−1 ∈ V , g−1 ∈ U , V U ⊂ Nb(K,O). Clearly, g ∈ U−1, h ∈ V −1, and
U−1V −1 ⊂ [Nb(K,O)]−1.

Theorem 4.2.2.3. If X is a locally compact Hausdor� space, then TopX,
equipped with the second topology, is a topological group.

Proof. This is a corollary of Lemma 4.2.2.2 and of the obvious continuity of the
map g 7→ g−1 in the second topology.

Theorem 4.2.2.4. If X is a compact Hausdor� space, then the �rst and the
second topologies on TopX are identical.

Proof. This is an immediate corollary of the relation

[Nb(K,O)]−1 = Nb(X \O,X \K).

Lemma 4.2.2.5. Let X be a locally compact, locally connected, Hausdor� space.
Then for a prebase of the second topology on TopX it su�ce to take the sets
of the form Nb(K,O), where K is the closure of a connected open set and O is
open.

Proof. Given a compact K, an open O, and a homeomorphism f ∈ Nb(K,O),
it su�ces to produce connected open sets U1, . . . , Us with compact closures,
such that f ∈ ∩s1 Nb(ClUi, O) ⊂ Nb(K,O). For each point x ∈ K, �x a
connected neighbourhood of x, Vx with ClVx compact and ClVx ⊂ f−1(O) (see
Theorems 1.1.7.22 and 1.3.4.3). Now cover K by a �nite number of the Vx's, say
Vx1 , . . . , Vxs . It is clear that the sets Ui = Vxi have the required properties.

Theorem 4.2.2.6. If X is a locally compact, locally connected, Hausdor� space,
then the two topologies on TopX are identical.

Proof. By Lemma 4.2.2.5, given an open connected U with compact ClU , an
open O, and a homeomorphism f ∈ Nb(ClU,O), it is enough to �nd a subset
U ⊂ TopX, open in the �rst topology, and such that f ∈ U ⊂ Nb(ClU,O).
Leaving aside the trivial case U = ∅, we �x a point x0 ∈ f(U) and �nd a set
W with compact closure contained in O, such that f(ClU) ⊂W , and then take
an open set V satisfying f(ClU) ⊂ V ⊂ ClV ⊂W . Now set

U = Nb(x0, U) ∩Nb(ClW \ U, f−1(O) \ ClU).
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The inclusion f ∈ U is trivial, and it remains is to show that U−1 ⊂ Nb(ClU,O),
i.e., that g−1(ClU) ⊂ O for any g ∈ U . But

g ∈ U ⇒ g(ClW \ U) ⊂ f−1(O) \ ClU,

whence U ⊂ g(V ) ∪ g(X \ ClW ). Since g(V ) and g(X \ ClW ) are open and
disjoint, and U is connected, we have only two possibilities: either U ∩g(U) = ∅
or U ⊂ g(V ). Since g ∈ U , g(x0) ∈ U ; since x0 ∈ f(U) ⊂ V , g(x0) ∈ g(V ).
Consequently, U ∩ g(V ) ̸= ∅, and thus U ⊂ g(V ), i.e., g−1(U) ⊂ V . Finally,
g−1(ClU) ⊂ ClV ⊂ O.

Groups of Di�eomorphisms

Note: the following �7� is numbered as �8� in the original Russian text.

Remark 4.2.2.7. Let X be a C≥r-manifold, 1 ≤ r ≤ ∞. By Remark 3.1.2.9,
the set of its Cr-di�eomorphisms, DiffrX, is a group under the composition
operation. By Remark 3.4.1.1, DiffrX can be endowed with the Cr-topology.
We show that these two structures are compatible and conclude that DiffrX is
a topological group.

Obviously, the case r = ∞ reduces to r < ∞, and so we may assume from
the beginning that r is �nite. Consider the mapping

d ◦ · · · ◦ d︸ ︷︷ ︸
r

: DiffrX → Top(Tang · · ·Tang︸ ︷︷ ︸
r

X).

This is clearly a group monomorphism. Moreover, by Remark 3.4.1.1, d ◦ · · · ◦ d
is a topological embedding when the group Top(Tang · · ·TangX) is equipped
with the second topology. However, the �rst and the second topologies on
Top(Tang · · ·TangX) coincide (see Theorem 4.2.2.6), and hence the operations
◦ and f 7→ f−1 are continuous in these topologies. Consequently, both opera-
tions are continuous in DiffrX also.

Let us add that the inclusion DiffrX → TopX is a monomorphism of topo-
logical groups, and that the same is true for the inclusions DiffrX → DiffsX
with s < r.

The Classical Groups

Note: the following �10� and �11� are numbered as �9� and �10� in the original
Russian text.

De�nition 4.2.2.8. The analytic manifolds O(n), SO(n), U(n), SU(n), Sp(n),
and also GL(n,R), GL+(n,R), GL(n,C), GL(n,H), de�ned in Subsection 3.2.1
(see Remarks 3.1.1.2 and 3.2.1.10 - 3.2.1.10) and endowed there with group
structures, are obviously topological groups. O(n) is called the orthogonal group,
SO(n) - the special orthogonal group, U(n) - the unitary group, SU(n) - the
special unitary group, and Sp(n) - the symplectic group. GL(n,R), GL(n,C),
andGL(n,H) are known as the general linear groups. It is immediate that SO(n)
is the component of the identity of O(n), while GL+(n,R) is the component of
the identity of GL(n,R).
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Remark 4.2.2.9. The topological group GL(n,R) is manifestly a subgroup of the
topological group TopRn (in the sense of Remark 4.2.1.3). In the same sense,
O(n), SO(n), and GL+(n,R) are subgroups of TopRn.

Similarly, GL(n,C) and its subgroups U(n), SU(n), are subgroups of TopCn,
while GL(n,H) and its subgroup Sp(n) are subgroups of TopHn.

We also note that the inclusionsU(n) ⊂ SO(2n), Sp(n) ⊂ SU(2n), GL(n,C) ⊂
GL+(2n,R), and GL(n,H) ⊂ GL(2n,C) are inclusions of a subgroup into a
group in the sense of Remark 4.2.1.3.

4.2.3 Actions

De�nition 4.2.3.1. An action of the group G on a set X is a map µ : G×X →
X with the following two properties:

(i) µ(eG, x) = x;

(ii) if µ(g1, x) = x1 and µ(g2, x1) = x2, then µ(g2g1, x) = x2.

The image of µ(g, x) under the given action is usually denoted by gx, and so
one may write conditions (i), (ii) in the form:

� eGx = x,

� g2(g1x) = (g2g1)x.

G×G×X
(idG,µ)//

(◦G,idX)

��

G×X

µ

��
G×X

µ
// X

(g2, g1, x)
� //

_

��

(g2, g1x = x1)_

��
(g2g1, x)

� // x2 = (g2g1)x = g2(g1x) = g2x1

Every element g ∈ G de�nes a map X → X, x 7→ gx, called the transformation
induced by the element g. We see from (i) and (ii) that

� this map is invertible (its inverse is the transformation induced by g−1),

� the map G→ SymX which takes each g into the corresponding transfor-
mation is a homomorphism.

We call it the adjoint homomorphism of the given action. Actually, this homo-
morphism uniquely determines the action, and it is clear that every homomor-
phism h : G→ SymX is the adjoint homomorphism of a certain action, namely,
of (g, x) 7→ (h(g))x. Therefore, an action of a group G on X can be interpreted
as a homomorphism G→ SymX.

We are mainly interested in the case where the adjoint homomorphism is
a monomorphism. An action with this property is said to be e�ective. Gen-
erally, the kernel of the adjoint homomorphism will be referred to as the non-
e�ectiveness kernel of the given action. If K is this kernel, then we can write the
adjoint homomorphism as the composition of the projection G→ G/K with the
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monomorphism G/K → SymX. Moreover, the action itself may be expressed
as the composition of the map

proj× idX : G×X → G/K ×X

with the e�ective action G/K × X → X. We call the action G/K × X → X
the e�ective factor of the action G×X → X.

The image of the set G× x under a given action G×X → X is a subset of
X called the orbit of the point x. Obviously, the orbits of two points are either
identical or disjoint, and hence the orbits partition X. An action with only one
orbit is said to be transitive. In general, we denote the space of orbits by X/G.

If h : G1 → G is a group homomorphism, then by composing the mapping
h× idX : G1×X → G×X with an action G×X → X of G on X, we obtain an
action of G1 on X. We say that this new action is induced by the initial action
via the homomorphism h. The adjoint homomorphism of the induced action
is simply the composition of h with the adjoint homomorphism of the initial
action. If h is a monomorphism (epimorphism), then an e�ective (respectively,
transitive) action induces an e�ective (respectively, a transitive) one.

If G1 is a subgroup of G and h is the inclusion of G1 in G, then we say that
the induced action is obtained by restricting (or by reducing) the group G to G1;
we also say that the initial action is obtained by extending (or by prolonging)
the group G1 to G. The discussion above shows that when one restricts the
group, an e�ective action remains e�ective. Also, when one extends the group,
a transitive action remains transitive.

A subset X1 of X is invariant under the action G×X → X if it is saturated
with respect to the partition of X into orbits. If this is the case, then we have
an action G×X1 → X1, and clearly this is e�ective whenever the initial action
G×X → X is e�ective.

Given two actions, G1 ×X1 → X1 and G2 ×X2 → X2, their product is the
action de�ned by

(G1 ×G2)× (X1 ×X2)→ X1 ×X2, (g1, g2)(x1, x2) = (g1x1, g2x2).

A product of e�ective (transitive) actions is again e�ective (respectively, tran-
sitive).

Given two actions, G × X → X and G × X ′ → X ′, of the same group, a
map f : X → X ′ is a G-map (or a G-equivariant map) if f(gx) = gf(x) for all
x ∈ X and g ∈ G.

G×X //

(idG,f)

��

X

f

��
G×X ′ // X ′

(g, x) � //
_

��

gx_

��
(g, f(x)) � // g(fx) = f(gx)

We can describe the more general situation when we are given two actions,
G × X → X and G′ × X ′ → X ′1, of di�erent groups, and a homomorphism
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γ : G→ G′; then f : X → X ′ is called a γ-map if f(gx) = γ(g)f(x) for all x ∈ X
and g ∈ G.

G×X //

(γ,f)

��

X

f

��
G′ ×X ′ // X ′

(g, x) � //
_

��

gx_

��
(γ(g), f(x))

� // γ(g)(f(x)) = f(gx)

Two actions, G × X → X and G × X ′ → X ′, are equivalent if there is an
invertible G-map X → X ′.

Remark 4.2.3.2. The action de�ned in De�nition 4.2.3.1 should actually be
called a left action, to distinguish it from a right action, which is de�ned as a
map X ×G→ X with the following two properties:

(i) µ(x, eG) = x;

(ii) if µ(x, g1) = x1 and µ(x1, g2) = x2, then µ(x, g1g2) = x2.

For a right action, we write xg instead of gx, and properties (i), (ii) in the form:

� xeG = x,

� (xg1)g2 = x(g1g2).

X ×G×G
(µ,idG)//

(idX ,◦G)

��

X ×G

µ

��
X ×G

µ
// X

(x, g1, g2)
� //

_

��

(xg1 = x1, g2)_

��
(x, g1g2)

� // x2 = x(g1g2) = (xg1)g2 = x1g2

Furthermore, the adjoint homomorphism becomes the adjoint anti-homomorphism,
and the rest of the discussion in De�nition 4.2.3.1 can be repeated word for word
for a right action.

It is clear that the formula xg = g−1x transforms a left action into a right
one, and that the formula gx = xg−1 yields the inverse transformation. We say
that the actions thus related are conjugate.

Henceforth, by action we shall mean a left action, unless we mention explic-
itly that we are dealing with a right action.

Remark 4.2.3.3. If the transformations induced by the elements of the group G,
acting on X from the left (right), are elements of a subgroup H of SymX, then
the action (respectively, right action) of G can be thought of as a homomorphism
(respectively, anti-homomorphism) of G into H. In this case we say that G acts
on X (respectively, acts from the right on X) by transformations from H.

The group H is not always indicated explicitly. For example, if X is a
topological space and H = TopX, then one simply says that G acts on X (acts
on X from the right) by homeomorphisms. Similarly, if X is a group and H is
a group of automorphisms of X, then one says that G acts on X (respectively,
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acts on X from the right) by automorphisms; in this case, the action itself will
be referred to as a group-action.

Important special examples are the actions G×G→ G given by (g, x) 7→ gx
or (g, x) 7→ gxg−1, and the right actions G× F → G given by (x, g) 7→ xg and
(x, g) 7→ g−1xg (here all the products are taken in G). These are called, in
order: the left canonical action, the left inner action, the right canonical action,
and the right inner action. The canonical actions are e�ective and transitive,
while the inner actions are group-actions.

Let us remark that by restricting the left canonical action G×G→ G to the
action G1×G→ G, where G1 is a subgroup of G, the orbits become the (right)
cosets of G1. Thus, the two interpretations (the usual group-theoretic one, and
that given in De�nition 4.2.3.1) of the notation G/G1 agree (if we denote the
right coset space also by G/G1).

De�nition 4.2.3.4. The following generalisation of the left canonical action
is already of general importance. Let G1 be a subgroup of G. Since every left
translation takes left cosets into left cosets, the map (g, x) 7→ gx induces a map
G×G/G1 → G/G1, and this is clearly an action, called the canonical action of
the group G on G/G1 . It is transitive, and its non-e�ectiveness kernel is the
intersection of all subgroups of G which are conjugate to G1. The projection
G→ G/G1 is a G-map with respect to the left canonical action of G on G and
the canonical action of G on G/G1.

It turns out that every transitive action of G is equivalent to the canonical
action on some quotient G/G1. Speci�cally, let G × X → X be a transitive
action, and let x1 ∈ X be an arbitrarily chosen point. Consider the map f : G→
X, g 7→ gx1. The preimage of x1 under f is a subgroup G1 of G, while the
preimages under f of points x ∈ X, x ̸= x1, are left cosets of G1. It is routine
to check that the injective factor of f , fact f : G/G1 → X, is a G-map.

The subgroup G1 has a special name: it is known as the isotropy (or stability,
or stationary) subgroup of the action G × X → X , or of the group G, at the
point x1. Obviously, the isotropy subgroup at the point gx1 is gG1g

−1, and so
the isotropy subgroups of a transitive action of G constitute exactly one of its
classes of conjugate subgroups.

Continuous Actions

De�nition 4.2.3.5. A continuous action of a topological group G on a topo-
logical space X is a continuous map G×X → X which is an action in the sense
of De�nition 4.2.3.1.

For a continuous action, the transformations induced by the elements of the
group are manifestly homeomorphisms. Therefore, the adjoint homomorphism
of a continuous action G ×X → X can be compressed to an algebraic isomor-
phism G→ TopX. By Theorem 1.2.7.6, this last homomorphism is continuous
in the �rst topology of the group TopX (see Remark 4.2.2.1). If, in addition, X
is Hausdor� and locally compact, then the existence of a continuous (in the �rst
topology on TopX) compression G → TopX of the adjoint homomorphism of
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the given action is equivalent to the continuity of the action. It is clear that
an algebraic homomorphism G→ TopX which is continuous in one of the two
topologies of TopX is continuous also in the other one, and we know that if
X is locally compact and Hausdor�, then TopX with the second topology is a
topological group (see Theorem 4.2.2.3). Therefore,

Theorem 4.2.3.6. if X is a locally compact Hausdor� space, then a continuous
action of G on X may be de�ned as a homomorphism G→ TopX of topological
groups (see Remark 4.2.1.8).

A discrete group which acts by homeomorphisms always acts continuously.
Thus, we may regard the actions of non-topologised groups which act by home-
omorphisms as continuous actions.

De�nition 4.2.3.7. A G-space is a topological space endowed with a contin-
uous action of the group G. A G-space is called e�ective if the action of G
is e�ective. In the general case, by shifting to the e�ective factor of the ac-
tion of G, the given G-space becomes an e�ective (G/K)-space, where K is the
non-e�ectiveness kernel.

When the action G ×X → X is continuous, X/G is a topological space (a
quotient space ofX), known as an orbit space. Since the saturation of any subset
A ⊂ X with respect to the partition of X into orbits is the union of the sets gA,
g ∈ G, this partition is always open. When the group G is �nite, the partition
into orbits is also closed. In particular, X/G is second countable together with
X, and when G is �nite, X/G is normal together with X; see Remark 1.2.3.10
and Theorem 1.2.3.9. Let us add that the partition into orbits is again closed
whenever X is compact and Hausdor� and G is compact. Indeed, in this case
the action G ×X → X is a closed map, and since it transforms every product
G× A into the saturation of the set A, this saturation is closed whenever A is
closed.

By restricting the topological group G to a subgroup G1, we transform every
G-space into a G1-space. Any invariant subspace of a G-space is obviously a
G-space; the G-spaces of this type are termed subspaces of the initial G-space.
The product of two continuous actions is continuous, and hence the product of
a G1-space with a G2-space is a (G1 ×G2)-space.

One can de�ne the notions of G-map and γ-map for the case of continuous
actions. To spell it out, a G-map (or a G-equivariant map) of a G-space into
another G-space is any continuous map which is a G-map in the sense of De�-
nition 4.2.3.1; similarly, a γ-map of a G-space into a G′-space is any continuous
map which is also a γ-map in the sense of De�nition 4.2.3.1 (here γ : G → G′

is a homomorphism of topological groups). Two continuous actions of G are
equivalent if the corresponding G-spaces are G-homeomorphic.

When G is a topological group, the special actions introduced in Remark
4.2.3.3, i.e., the left canonical and left inner actions, are continuous.

As in Remark 4.2.3.3, the notation G/G1 can be interpreted in two ways
(as the space of cosets of G1 in G and as an orbit space), but again the two
interpretations agree.
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Theorem 4.2.3.8. The canonical action of a group G on the space G/G1 of
cosets of a subgroup G1 is also continuous.

Proof. To see this, consider the composition ψ : G × G → G/G1 of the map
G × G → G, (g, h) 7→ gh, with the projection G → G/G1 . Clearly, ψ is
constant on the elements of the partition zer(G, eG)×zer(G,G1)). Furthermore,
the action G×G/G1 → G/G1 in which we are interested is the composition of
the map

G×G/G1 → +(G×G)/(zer(G, eG)× zer(G,G1)),

given by the inverse of the injective factor of idG×proj : G× → G×G/G1, with

factψ : (G×G)/(zer(G, eG)× zer(G,G1))→ G/G1.

Since the partitions (zer(G, eG) and zer(G,G1) are open, the above injective
factor is a homeomorphism (see Theorem 1.2.3.11), which in turn implies the
continuity of the action of G on G/G1.

Therefore,

De�nition 4.2.3.9. G/G1 becomes a G-space with respect to the canonical
action G×G/G1 → G/G1, and is called a homogeneous space.

The equivalence between an arbitrary transitive action G × X → X and
the canonical action of G on G/G1, where G1 is an isotropy subgroup, is not
complete in the case of continuous actions. More precisely, the map f : G→ X,
g 7→= gx1, and its injective factor, fact f : G/G1 → X, are indeed continuous,
but as the next example (provided by the translator) shows that (fact f)−1 is
not necessarily continuous.

Example 4.2.3.10 ((An �irrational �ow� on the torus)). Think of S1 as the set
of complex numbers of modulus 1 and let α be irrational, i.e, α ∈ R \Q. Take
G = R, X = S1 × S1, and de�ne

G×X → X, (t, (exp 2πx, exp 2πy)) 7→ (exp 2π(x+ t), exp 2π(y + αt)),

However, (fact f)−1 is continuous provided that G is compact and X is
Hausdor�, i.e.,

Theorem 4.2.3.11. every transitive continuous action of a compact topological
group on a Hausdor� topological space with a distinguished point is canonically
equivalent to the canonical action of the group on the space of cosets of the
isotropy group at the distinguished point.

Remark 4.2.3.12. A continuous action G × X → X is free if for every point
x ∈ X the map G→ X given by g 7→ gx is an embedding.

Every free action is clearly e�ective. Moreover, if the action G × X → X
is free, then by restricting G to one of its subgroups, or by restricting X to
one of its G-subspaces, the action remains free. A product of free actions is
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free. The canonical action G × G → G is free, while the canonical action
G×G/G1 → G/G1 is not free unless G = eG.

Given a free action G × X → X, consider the bundle (X,proj, X/G). If
every point x ∈ X has a neighbourhood U such that gU ∩ g′U = ∅ for all
g, g′ ∈ G with g ̸= g′ (which happens, in particular, when G is �nite and X is
Hausdor�), then the image of U under the projection proj : X → X/G is open,
and the restriction of the bundle (X,proj, X/G) to proj(U) is a trivial bundle
with discrete �bres. Therefore, in this case (X,proj, X/G) is a covering in the
broad sense.

De�nition 4.2.3.13. A continuous right action of a topological group G on
a topological space X is a continuous map X × G → X which is also a right
action in the sense of Remark 4.2.3.2.

All de�nitions and facts discussed in De�nition 4.2.3.5, Theorem 4.2.3.6,
De�nition 4.2.3.7, and Remark 4.2.3.12 can be adapted immediately to the
case of right actions. In particular, a topological space endowed with a right
continuous action is called a right G-space. We keep the simple term G-space
only for left G-spaces.

Examples

Remark 4.2.3.14. Let X be a topological space. The identity homomorphism

TopX → TopX

de�nes an e�ective action of TopX on X, and hence an e�ective action of
any subgroup of TopX on X. If X is Hausdor� and locally compact, then
TopX is a topological group and all these actions are continuous. In particular,
GL(n,R), GL+(n,R), O(n), and SO(n) act e�ectively and continuously on Rn,
while GL(n,C), U(n), and SU(n) act the same manner on Cn, and GL(n,H)
and Sp(n) on - Hn.

Given an arbitrary C≥r-manifold X with r ≤ ∞, the inclusion

DiffrX → TopX

de�nes an e�ective and continuous action of DiffrX on X.

Remark 4.2.3.15. Since Sn−1 is invariant under the action of O(n) on Rn, O(n)
and its subgroup SO(n) act continuously on Sn−1 Similarly, U(n) and SU(n),
being subgroups of O(2n), act continuously on S2n−1, while Sp(n), being a
subgroup of O(4n), acts continuously on S4n−1. All these actions are e�ective,
and, if we exclude the trivial cases SO(1) × S0 → S0 and SU(1) × S1 → S1,
transitive.

The isotropy subgroups of the actions

O(n)× Sn−1 → Sn−1 and SO(n)× Sn−1 → Sn−1

at ortn are exactly O(n − 1) and SO(n − 1). Similarly, the isotropy subgroups
of the actions

U(n)× S2n−1 → S2n−1 and SU(n)× S2n−1 → S2n−1
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at ort2n are U(n− 1) and SU(n− 1), while the isotropy subgroup of the action
Sp(n) × S4n−1 → S4n−1 at ort4n is Sp(n − 1). The corresponding homeomor-
phisms,

O(n)/O(n− 1)→ Sn−1, SO(n)/ SO(n− 1)→ Sn−1, U(n)/U(n− 1)→ S2n−1,

SU(n)/ SU(n− 1)→ S2n−1, Sp(n)/ Sp(n− 1)→ S4n−1

(see Theorem 4.2.3.8 and De�nition 4.2.3.9) equal the injective factors of the
submersions

V (n, n)[= O(n)]→ V (n, 1)[= Sn−1], V (n, n− 1)→ V (n, 1),

CV (n, n)→ CV (n, 1), CV (n, n− 1)→ CV (n, 1), HV (n, n)→ HV (n, 1),

de�ned in Subsection 3.2.1 (see Remarks 3.2.1.4, 3.2.1.6, and 3.2.1.7).
If we restrict O(n), U(n), and Sp(n) (n ≥ 1) to their subgroups which con-

sists of scalar multiples of the identity matrix, and which are usually identi�ed
with S0, S1 and S3, respectively, we obtain continuous actions

S0 × Sn−1 → Sn−1, S1 × S2n−1 → S2n−1, S3 × S4n−1 → S4n−1.

These are free actions, and the corresponding orbit spaces are

Sn−1/S0 = RPn−1, S2n−1/S1 = CPn−1, S4n−1/S3 = HPn−1.

We remark also that Dn, D2n, and D4n are invariant under the actions of O(n),
U(n), and Sp(n) on Rn, Cn, and Hn. Hence O(n) and SO(n) act continuously
on Dn, U(n), and SU(n) act continuously on D2n, and Sp(n) acts continuously
on D4n. All these actions are e�ective.

Remark 4.2.3.16. The groups O(n) and SO(n) (O(k) and SO(k)) act contin-
uously from the left (right) on the Stiefel manifolds V (n, k): the left actions
are de�ned by (g, v) 7→ g ◦ v [g ∈ O(n) or SO(n), v ∈ V (n, k); g and v are
regarded as linear maps]; the right actions are given by (v, g) 7→ v ◦g. Similarly,
U(n) and SU(n) (U(k) and SU(k)) act continuously from the left (respectively,
from the right) on CV (n, k), and Sp(n) (Sp(k)) acts continuously from the left
(respectively, from the right) on HV (n, k).

For k ̸= 0, all the left actions are e�ective, and the only intransitive ones are

SO(n)× V (n, n)→ V (n, n) and SU(n)× CV (n, n)→ CV (n, n), n ≥ 1.

The isotropy subgroups of O(n) and SO(n) at the point

[(x1, . . . , xk) 7→ (0, . . . , 0, x1, . . . , xk)] ∈ V (n, k)

(the elements of V (n, k) are considered as linear isometric maps Rk → Rn)
coincide with O(n − k) and SO(n − k). Similarly, the isotropy subgroups of
U(n), SU(n), and Sp(n) at the points

[(x1, . . . , xk) 7→ (0, . . . , 0, x1, . . . , xk)] of CV (n, k) and HV (n, k)
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coincide with U(n−k), SU(n−k), and Sp(n−k), respectively. The corresponding
homeomorphisms

O(n)/O(n− k)→ V (n, k), SO(n)/ SO(n− k)→ V (n, k),

U(n)/U(n− k)→ CV (n, k), SU(n)/ SU(n− k)→ CV (n, k),

Sp(n)/ Sp(n− k)→ HV (n, k),

are precisely the injective factors of the maps

O(n)→ V (n, k), SO(n)→ V (n, k), U(n)→ CV (n, k),

SU(n)→ CV (n, k), Sp(n)→ HV (n, k),

de�ned in Subsection 3.2.1 (see Remarks 3.2.1.4, 3.2.1.6, and 3.2.1.7). When
k = 1, these actions reduce to those discussed in Remark 4.2.3.15.

All the right actions are free. The corresponding orbit spaces,

V (n, k)/O(k), V (n, k)/ SO(k), CV (n, k)/U(k), CV (n, k)/ SU(k),

HV (n, k)/ Sp(k),

are canonically homeomorphic to the Grassmann manifolds G(n, k), G+(n, k),
CG(n, k), and HG(n, k), respectively; the corresponding canonical homeomor-
phisms are the injective factors of the maps

V (n, k)→ G(n, k), V (n, k)→ G+(n, k), CV (n, k)→ CG(n, k),
HV (n, k)→ HG(n, k),

de�ned in Subsection 3.2.2 (see Remarks 3.2.2.3, 3.2.2.7, and 3.2.2.8).

Remark 4.2.3.17. The same formulae, i.e., (g, v) 7→ g ◦ v, (g, v) 7→ v ◦ g, de�ne
left actions of GL(n,R) and GL+(n,R) on V ′(n, k), of GL(n,C) on CV ′(n, k),
and of GL(n,H) on HV ′(n, k), and right actions of GL(k,R) and GL+(k,R) on
V ′(n, k), of GL(k,C) on CV ′(n, k) and of GL(k,H) on HV ′(n, k).

All the left actions are e�ective and, excepting the action

GL+(n,R)× V ′(n, n)→ V ′(n, n),

transitive. The isotropy subgroups of GL(n,R), GL(n,C), and GL(n,H) at the
points

[(x1, . . . , xk) 7→ (0, . . . , 0, x1, . . . , xk)]

of V ′(n, k), CV ′(n, k), and HV ′(n, k) are

GL(n− k,R), GL(n− k,C), GL(n− k,H),

respectively. The corresponding homeomorphisms

GL(n,R)/GL(n− k,R)→ V ′(n, k), GL(n,C)/GL(n− k,C)→ CV ′(n, k),

GL(n,H)/GL(n− k,H)→ HV ′(n, k)
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are the injective factors of the maps

GL(n,R)→ RV ′(n, k), GL(n,C)→ CV ′(n, k), GL(n,H)→ HV ′(n, k),

de�ned in Subsection 3.2.1 (see Remarks 3.2.1.8, 3.2.1.9, and 3.2.1.10). The
isotropy subgroup of GL+(n,R) at the point

[(x1, . . . , xk) 7→ (0, . . . , 0, x1, . . . , xk)] ∈ V ′(n, k)

is GL+(n− k,R).
All the right actions are free. The corresponding orbit spaces,

V ′(n, k)/GL(k,R), V ′(n, k)/GL+(k,R), CV ′(n, k)/GL(k,C),
HV ′(n, k)/GL(k,H),

are canonically homeomorphic to the Grassmann manifolds G(n, k), G+(n, k),
CG(n, k), and HG(n, k); the corresponding canonical homeomorphisms are the
injective factors of the maps

V ′(n, k)→ G(n, k), V ′(n, k)→ G+(n, k), CV ′(n, k)→ CG(n, k),
HV ′(n, k)→ HG(n, k),

de�ned in Subsection 3.2.2 (see Remarks 3.2.2.3, 3.2.2.7, and 3.2.2.8).

Remark 4.2.3.18. GL(n,R) and its subgroups GL+(n,R), O(n), and SO(n) ob-
viously act continuously from the left on the Grassmann manifolds G(n, k),
G+(n, k). Similarly, GL(n,C) and its subgroups U(n) and SU(n) act continu-
ously from the left on CG(n, k), while GL(n,H) and Sp(n) act continuously from
the left on HG(n, k). For k odd, the actions of O(n) and SO(n) on G+(n, k) are
e�ective. The non-e�ectiveness kernels of the actions GL(n,R) × G+(n, k) →
G+(n, k) and GL+(n, k)×G+(n, k)→ G+(n, k) for k odd consist of scalar ma-
trices with positive diagonal elements. If we exclude the trivial cases k = 0
and k = n, the non-e�ectiveness kernels of the remaining actions consists of
all scalar matrices contained in the corresponding group. The only intransitive
actions are

GL(n,R)×G+(n, 0)→ G+(n, 0), GL+(n,R)×G+(n, 0)→ G+(n, 0),

O(n)×G+(n, 0)→ G+(n, 0), SO(n)×G+(n, 0)→ G+(n, 0),

GL+(n,R)×G+(n, n)→ G+(n, n), SO(n)×G+(n, n)→ G+(n, n).

Take the + plane x1 = 0, . . . , xn−k = 0 (oriented in the case of G+(n, k)) as a
distinguished point in the manifolds G(n, k), G(n, k), CG(n, k), and HG(n, k).
Then the isotropy subgroups of the actions

GL(n,R)×G(n, k)→ G(n, k), GL(n,R)×G(n, k)→ G+(n, k),

GL(n,C)× CG(n, k)→ CG(n, k), GL(n,H)×HG(n, k)→ HG(n, k)
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at these distinguished points are the subgroups of all matrices of the form[
A C
0 B

]
,

where A and B are non-singular matrices of order n−k and k, respectively, and
C is an arbitrary (n−k)×k matrix (and B ∈ GL+(k,R) in the case of G(n, k)).

If we restrict the acting group to a subgroup, then the new isotropy sub-
group is the intersection of the original isotropy subgroup with the new acting
group. In particular, for the actions of O(n) on G(n, k) and G+(n, k), the ac-
tion of SO(n) on G+(n, k), the action of U(n) on CG(n, k), and the action of
Sp(n) on HG(n, k), the corresponding isotropy subgroups are the images of the
monomorphisms

O(n− k)×O(k)→ O(n), O(n− k)× SO(k)→ O(n),

SO(n− k)× SO(k)→ SO(n), U(n− k)×U(k)→ U(n),

Sp(n− k)× Sp(k)→ Sp(n),

all de�ned by the matrix formula

(A,B)→
[
A 0
0 B

]
.

If we identify these product with their images, we obtain canonical homeomor-
phisms

O(n)/[O(n− k)×O(k)]→ G(n, k), O(n)/[O(n− k)× SO(k)]→ G+(n, k),

SO(n)/[SO(n− k)× SO(k)]→ G+(n, k), U(n)/[U(n− k)× U(k)]→ G(n, k),

Sp(n)/[Sp(n− k)× Sp(k)]→ HG(n, k).

Remark 4.2.3.19. Let m, ℓ1, . . . , ℓn be relatively prime positive integers. The
complex-number formula

(k, (z1, . . . , zn)) 7→ (z1 exp(2πikℓ1/m), . . . , zn exp(2πikℓn/m)),

k ∈ Z, (z1, . . . , zn) ∈ S2n−1

de�nes an action Z × S2n−1 → S2n−1 with non-e�ectiveness kernel mZ, which
becomes, by shifting to the e�ective factor, a free action of the group Zm =
Z/mZ. The orbit space S2n−1/(Z/mZ is denoted by L(m; ℓ1, . . . , ℓn) and is
called a lens (or a lens space).

There are also in�nite lenses L(m; ℓ1, ℓ2, . . . ), with m, ℓq, ℓ2, . . . relatively
prime positive integers. The lens L(m; ℓ1, ℓ2, . . . ) de�ned as the orbit space of
the free action resulting from passing to the e�ective factor of the action

(k, (z1, . . . , )) 7→ (z1 exp(2πikℓ1/m), z2 exp(2πikℓ2/m), . . . )

of on S∞. An equivalent description:

L(m; ℓ1, ℓ2, . . . ) = lim−→
incl

(L(m; ℓ1, . . . , ℓn)),

incl : L(m; ℓ1, . . . , ℓn)→ L(m; ℓ1, . . . , ℓn+1).
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The in�nite lens L(m; 1, 1, . . . ) is denoted simply by L(m).
According to Remark 4.2.3.12, the triples

(S2n−1,proj, L(m; ℓ1, . . . , ℓn)), (S∞,proj, L(m; ℓ1, ℓ2, . . . ))

are coverings.

Remark 4.2.3.20. The formula (y, x) 7→ yxy−1, where x and y are quaternions
and y has norm 1, de�nes a continuous action S3 × R4 → R4. The space R3

1 of
imaginary quaternions is invariant under this action, and hence R3

1, and also R3,
are 3-spaces. [We identify R3

1 with R3 via the map shi : R3 → R3
1; see Theorem

3.2.3.1.] The non-e�ectiveness kernel of the action S3 × R3 → R3 is obviously
S0, and now it is clear that the e�ective action of the factor group S3/S0 = RP 3

on R3 becomes the standard action of SO(3) on R3 (see Remark 4.2.3.15) under
the canonical identi�cation of the spaces RP 3 and SO(3) (see Theorem 3.2.3.1).

Example 4.2.3.21. Let P be a convex regular polyhedron in R3 (a tetrahedron,
cube, octahedron, dodecahedron, or icosahedron) with centre 0. Let GP be
the subgroup of SO(3) consisting of those rotations which take P into itself,
and let G̃P be the preimage of GP under the projection S3 → SO(3) (see
Remark 4.2.3.20). Obviously, GP and G̃P do not change if we replace P by
the dual polyhedron, while they are transformed into conjugate subgroups of
SO(3) and if we replace P by any convex regular polyhedron with the same
number of faces and centre 0. Therefore, in SO(3) (S3) there are exactly three
classes of conjugate subgroups GP (respectively, G̃P ). The groups in the �rst
class are called tetrahedral groups (respectively, binary tetrahedral groups), those
in the second class - cube or octahedral groups (respectively, binary cube or
octahedral groups), and those in the third class - dodecahedral or icosahedral
groups (respectively, binary dodecahedral and icosahedral groups).

To every rotation in GP we may associate the image of a marked oriented
edge of the polyhedron P , and in this way de�ne an invertible mapping of the
group GP onto the set of oriented edges of P . Consequently, the order of the
group GP is twice the number of edges of P , i.e., 12 when P is a tetrahedron,
24 when P is a cube or octahedron, and 60 when P is a dodecahedron or an
icosahedron. The corresponding binary groups G̃P have order 24, 48, and 120.

The coset spaces SO(3)/GP and S3/G̃P are orbit spaces of the free actions
induced by the left canonical actions of SO(3) and S3 under the inclusions
GP → SO(3) and G̃P → S3. Therefore, the triples (SO(3),proj,SO(3)/GP )

and (S3,proj,S3/G̃P ) are coverings (see Remark 4.2.3.12). Obviously, we can
write SO(3)/GP = S3/G̃P .

4.2.4 Exercises

Exercise 4.2.4.1. Show that for any smooth manifold X the �rst and the second
topologies on TopX coincide.

Exercise 4.2.4.2. Let X denote the subset of R consisting of the points 0 and 2n,
all n ∈ Z. Show that the �rst and the second topologies on TopX are distinct.
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Exercise 4.2.4.3. Show that the canonical di�eomorphism SU(2) → S3 (see
Remark 3.2.1.6) is a group isomorphism.

Exercise 4.2.4.4. Show that the lenses L(m; ℓ1, . . . , ℓk) and L(m; ℓ′1, . . . , ℓ
′
k) are

homeomorphic whenever for each i the sum ℓi + ℓ′i or the di�erence ℓi − ℓ′i is a
multiple of m.

Exercise 4.2.4.5. Show that the submanifold Tang1 RP 2 of TangRP 2 consisting
of the unit tangent vectors (i.e., of the images under the map dproj : Tang S2 →
TangRP of the unit tangent vectors) is homeomorphic to the lens L(4; 1, 1).

Exercise 4.2.4.6. Consider the action of Z/2Z on the manifold V (3, 2) of unit
vectors tangent to S2, where the non-zero element of takes each vector v into
−v. Show that the orbit space V (3, 2)/(Z/2Z) is homeomorphic to (4; 1, 1).

Exercise 4.2.4.7. Consider the action (Z/2Z) × Tang1 RP 2 → Tang1 RP 2 (see
Exercise 4.2.4.5), where the non-zero element of takes each vector v into −v.
Show that the orbit space Tang1 RP 2/(Z/2Z) is homeomorphic to the coset
space S/H, where H is the subgroup of S3 consisting of the quaternions ± ort1,
± ort2, ± ort3, ± ort4.

Exercise 4.2.4.8. Consider the action (Z/2Z)×CP 2 → CP 2, where the non-zero
element of Z/2Z takes each point ((z1 : z2 : z3) into ((z1 : z2 : z3)). Show that
the orbit space CP 2/(Z/2Z) is homeomorphic to S4.
Exercise 4.2.4.9. Consider the action Z/2Z on CP 1 ×CP 1, where the non-zero
element of Z/2Z takes each point ((z1 : z2), (w1 : w2)) into ((z1 : z2), (w1 : w2)).
Show that the orbit space CP 1 × CP 1/Z/2Z is homeomorphic to S4.
Exercise 4.2.4.10. Consider the action of Z/2Z on S2 × S2, where the non-zero
element of Z/2Z takes each point (x, y) into (y, x). Show that the orbit space
S2 × S2/Z/2Z is homomorphic to CP 2.
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4.3 BUNDLES WITH A GROUP STRUCTURE

4.3.1 Spaces With F-Structure

Remark 4.3.1.1. The bundles which we encounter most frequently have �bres
that besides being merely topological spaces, carry some additional structure:
for example, they may be vector, Euclidean, or Hermitian spaces. In the present
section we shall introduce this concept of additional structure into the theory
of bundles.

We begin by giving an exact description of the necessary type of structures
and then �t them systematically into the basic de�nitions of the theory, given
in �4.1 (see Subsections 4.1.1 and 4.1.2).

De�nition 4.3.1.2. Let G be a topological group, and let F be an e�ective
G-space. We say that the topological space W is endowed with an F -structure
if there is given a non-empty set A of homeomorphism F →W such that, for an
arbitrarily �xed homeomorphism α/inA, a given homeomorphism β : F → W
belongs to A if and only if β−1 ◦ α is the transformation induced by one of the
elements of G. The homeomorphisms of A are called marked.

Every marked homeomorphism naturally carries the action of G from F to
W . If G is commutative, then the resulting action G × W → W does not
depend upon the choice of the marked homeomorphism, and hence in this case
the F -structure reduces to the action of G. If G is not commutative, then an
F -structure does not de�ne a canonical action of G on W .

We remark that F itself has a canonical F -structure, namely that whose
marked homeomorphisms are the transformations induced by the elements of
G.

In the simplest case when G is the trivial group, a space with an F -structure
is simply a topological space canonically homeomorphic to F .

Example 4.3.1.3. If G = GL(n,R) and F = Rn with the usual action of this
group, then a space with an F -structure is nothing else but an n-dimensional
vector space, and �xing a marked homeomorphism is simply �xing a basis of
the space.

Example 4.3.1.4. If G is one of the groups GL(n,R), O(n), or SO(n), and F is
Rn with the usual action of these groups, then a space with an F -structure is an
oriented n-dimensional real vector space, ann-dimensional Euclidean space, or
an oriented n-dimensional Euclidean space, respectively. When G is GL(n,C) or
U(n), and F is Cn with the usual action of G, then a space with an F -structure
is an n-dimensional complex vector space, or an n-dimensional Hermitian space,
respectively.

Example 4.3.1.5. If G = DiffrX, where X = F is a Cr-manifold (1 ≤ r ≤ a)
and G acts as usual, then a space with an F -structure is a Cr-manifold which
is Cr-di�eomorphic to X.

Example 4.3.1.6. If G = TopX, where X is a locally compact Hausdor� space,
and F = X with the usual action of TopX, then a space with an F -structure
is simply a topological space homeomorphic to X.
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Example 4.3.1.7. If G is the group of all simplicial auto-homeomorphisms of the
unit simplex Tn, and F = Tn with the standard action of this group, then a
space with an F -structure is simply an n-dimensional topological simplex.

Remark 4.3.1.8. A homeomorphism W → W ′, where W and W ′ are spaces
with F -structure, which takes the set of marked homeomorphisms of W into
the set of marked homeomorphisms of W ′, is called an isomorphism or, more
speci�cally, an F -isomorphism.

In each of the previous examples, the F -isomorphisms form a well-known
class of maps: in the �rst and the �fth cases they are the linear isomorphism,
in the second - the orientation preserving linear isomorphisms, in the third and
sixth - the linear isometric isomorphisms, in the fourth - the orientation preserv-
ing linear isomorphisms, in the seventh - the Cr-di�eomorphisms, in the eighth
- the homeomorphisms, and in the ninth - the simplicial homeomorphisms.

Remark 4.3.1.9. Given a space W with an F -structure and a space W ′ with an
F ′-structure, the product W ×W ′ is obviously a space with an F ×F ′-structure
(see De�nition 4.2.3.7); the marked homeomorphisms F × F ′ → W ×W ′ are
those of the form α× α′, where α and α′ are marked homeomorphisms.

If the G1-space F1 is obtained from the G-space F by reducing the group
G to G′, then by returning to F from F1 every space W1 with an F1-structure
becomes a space W with an F -structure: topologically, W is the same as W1,
while the new marked homeomorphisms are de�ned as the compositions of the
transformations induced by the elements of G with the old marked homeomor-
phisms. We say that W is obtained from W1 by extending (or prolonging) the
group G1 to G.

4.3.2 Steenrod Bundles

De�nition 4.3.2.1. Let G and F be a topological group and an e�ective G-
space, respectively. A bundle ξ is a weak F -bundle, or a W − F -bundle, if each
of its �bres is endowed with an F -structure. In this case, F and G are called the
standard �bre and the structure group of ξ, respectively. The set of all marked
homeomorphisms from F onto the �bres of ξ is denoted by MH(ξ). The group
G acts naturally from the right on MH(ξ) by the rule:

[αg](y) = α(gy) α ∈MH(ξ), g ∈ G, y ∈ F.

If ξ is aW −F -bundle and f : B → bs(ξ) is continuous, then clearly the induced
bundle f !(ξ) is a W − F -bundle: the F -structures on its �bres are de�ned via
the homeomorphisms

abr tl(adj f) : [proj(f !(ξ))]−1(b)→ [proj(ξ)]−1(f(b)), b ∈ B.

Given two W − F -bundles, ξ and η, a map f of ξ into η is called a W − F -map
if the maps abr tl(f) from the �bres of ξ into the �bres of η are isomorphisms
(see Remark 4.3.1.8). A W − F -map which is an isomorphism (respectively,
equivalence) in the pure topological sense, i.e., in the sense of De�nition 4.1.1.2,
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is called aW −F -isomorphism (respectively, a w−F -equivalence). TwoW −F -
bundles which can be mapped into each other by aW−F -isomorphism (W−F -
equivalence) are said to be W −F -isomorphic (respectively, W −F -equivalent).

To eachW−F -map f : ξ → η corresponds the mapMH(ξ)→MH(η), which
takes each marked homeomorphism α : F → [proj(ξ)]−1(b) into the composite
homeomorphism

F
α−→ (proj ξ)−1(b)

abr tl(f)−−−−−→ [proj(η)]−1(bs(f(b))).

Moreover, we see that MH(f) is a G-map with respect to the natural right
actions of G on MH(ξ) and MH(η).

The standard trivial bundle, (B×F,proj1, B), with B an arbitrary topologi-
cal space, is obviously aW−F -bundle: the F -structures on its �bres are de�ned
by the homeomorphisms F → b × f , y 7→ (b, y). As in Subsection 4.1.2, every
W − F -bundle which is W − F -equivalent to a standard trivial W − F -bundle
is called a W − F -trivial W − F -bundle.

De�nition 4.3.2.2. A bundle ξ is a strong F -bundle or, simply, an F -bundle
if it is a W − F -bundle and MH(ξ) is endowed with a topology.

If ξ is an F -bundle and f : B → bs(ξ) is continuous, then the induced bundle
f !(ξ) is also an F -bundle: to introduce a topology on MH(f !(ξ)), we use the
injective mapping

MH(f !(ξ))→ B ×MH(ξ), α 7→ ([proj(f !(ξ))](α(F )), [MH(adj f)](α)).

A map f : ξ → η, where ξ and η are F -bundles, is said to be an F -map if it
is a W − F -map andMH(f) is continuous. AnF-map f is an F -isomorphism
(F -equivalence) if it is an isomorphism (respectively, equivalence) in the pure
topological sense and MH(f) is a homeomorphism.

The standard trivial bundle (B × F,proj1, B), with B an arbitrary topo-
logical space, is obviously an F -bundle: the F -structures of its �bres were al-
ready introduced in De�nition 4.3.2.1, and one can introduce a topology on
MH((B×F,proj1, B)) by means of the invertible mapping B×G→MH((B×
F,proj1, B)), which takes each pair (b, g) into the homeomorphism F → b ×
F, y 7→ (b, gy). An F -bundle which is F -equivalent to a standard trivial bundle
is called F -trivial, and every such equivalence is an F -trivialisation.

De�nition 4.3.2.3. The F -bundle ξ, is locally F -trivial if every point of bs(ξ)
has a neighbourhood U such that the restriction ξ|U is F -trivial. The locally
F -trivial bundles are called Steenrod F -bundles.

Steenrod bundles play a major role in what follows, which accounts also for
the importance of the F -bundles. The weak F -bundles are only auxiliary.

We remark that for Steenrod bundles the canonical right action of the struc-
ture group on the space of marked homeomorphisms is continuous and free. This
is plainly true in the standard trivial case, to which the general case reduces.
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Remark 4.3.2.4. If ξ is a Steenrod F -bundle and f : B → bs(ξ) is continuous,
then the induced bundle f !(ξ) is again a Steenrod F -bundle: by De�nition
4.3.2.2, f !(ξ) is an F -bundle, and the obvious fact that f !(ξ) is F -trivial if ξ
is so implies the local F -triviality of f !(ξ). Clearly, the map adj f : f !(ξ) →
ξ is an F -map, the canonical equivalence id!bs(ξ)(ξ) → ξ, and the canonical
equivalences of the form g!(f !(ξ)) → (f ◦ g)!(ξ) (see Remark 4.1.1.5), are F -
equivalences. Moreover, given any F -map h of ξ into another Steenrod F -
bundle, the correcting map, corrh , is an F -map. (Recall De�nition 4.1.1.6.)

The product of a Steenrod F -bundle ξ with a Steenrod F ′-bundle ξ′ is a
Steenrod F × F ′-bundle: the F × F ′-structures on its �bres is de�ned as in
Remark 4.3.1.9; the topology on MH(ξ × ξ′) is introduced by means of the
invertible mapping

MH(ξ)×MH(ξ′)→MH(ξ × ξ′), (α, α′) 7→ α× α′;

the local F × F ′-triviality of the resulting F × F ′-bundle follows from the fact
that it is F × F ′-trivial whenever ξ is F -trivial and ξ′ is F ′-trivial.

If the G1-space F1 comes from the e�ective G-space F by reducing the group
G to G1, then by returning to F from F1, every Steenrod F1-bundle becomes a
Steenrod F -bundle ξ:

� topologically, ξ is the same as ξ1;

� the F -structures on the �bres of ξ are those described in Remark 4.3.1.9;

� further, to de�ne a topology on MH(ξ), consider the action

G1 × (G×MH(ξ1))→ G×MH(ξ1), (g1, (g, α)) 7→ (g1g, α
−1g1),

where G1 acts canonically from the right on MH(xß1) (see De�nition
4.3.2.1), and then use the invertible mapping (G×MH(ξ1))/G1 →MH(ξ),
which takes the orbit of the pair (g, α) into the homeomorphism y 7→
α(gy), to transfer the topology of (G×MH(ξ1))/G1 to MH(ξ);

� �nally, the local F -triviality of the resulting F -bundle is a consequence of
its F -triviality in the case when ξ1 is F1-trivial.

This transformation of F1-bundles into F -bundles is known as the extension
(or prolongation) of the structure group. It takes F1-maps into F -maps, and
F1-equivalences into F -equivalences. It is also clear that the extension of the
structure group commutes with the induction operation; that is to say, if ξ is
obtained from ξ1 by extension of the structure group and f : B → bs(ξ) is an
arbitrary continuous map, then f !(ξ) is obtained from f !(ξ1) by extension of the
structure group.

Theorem 4.3.2.5. Every Steenrod F -bundle with trivial structure group is F -
trivial.
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Proof. Let ξ be a Steenrod bundle with standard �bre F and trivial structure
group. Let Γ be an open cover of bs(ξ) such that the bundle ξ|U is F -trivial
for any U ∈ Γ. Set η = (bs(ξ) × F,proj1,bs(ξ)). Clearly, the F -trivialisation
η|U → ξ|U is unique for any U ∈ Γ, and these F -trivialisations together yield
an F -trivialisation η → ξ.

Theorems About F -maps

Theorem 4.3.2.6. Suppose that ξ and ξ′ are Steenrod bundles with standard
�bre F , B is a topological space, and p : B → bs(ξ) is a factorial map. If
τ : tl(ξ)→ tl(ξ′) and β : bs(ξ)→ bs(ξ′) are maps such that (τ ◦ tl(adj p), β ◦ p)
is an F -map p!(ξ)→ ξ′, then (τ, β) is an F -map ξ → ξ′.

Proof. We need only check the continuity of β, τ , andMH(τ, β). The continuity
of β is an immediate consequence of the continuity of the composition β ◦ p and
the fact that p is factorial (see Remark 1.2.3.4). As for τ and MH(τ, β), it is
enough to verify their continuity when ξ and ξ′ are standard trivial F -bundles.
In this situation, τ is given by τ(b, y) = (β(b), φ(b)y), where φ is some map from
bs(ξ) into the structure group G. Moreover, if we use the homeomorphisms

B ×G→MH(p!(ξ)), bs(ξ)×G→MH(ξ), bs(ξ′)×G→MH(ξ′)

(which de�ne the topologies on MH(p!(ξ)), MH(ξ), and MH(ξ′), respectively;
see De�nition 4.3.2.2), then the maps

MH(τ ◦ tl(adj p), β ◦ p) : MH(p!(ξ))→MH(ξ′),

MH(τ, β) : MH(ξ)→MH(ξ′)

are transformed into the maps

B ×G→ bs(ξ′)×G, (b, g) 7→ (β ◦ p(b), (φ ◦ p(¬))g),
bs(ξ)×G→ bs(ξ′)×G, (b, g) 7→ (β(b), φ(b)g),

respectively. The �rst formula shows that φ ◦ p is continuous, and since p is
factorial, φ is continuous. Finally, the continuity of φ implies the continuity of
τ and MH(τ, β).

Corollary 4.3.2.7. Suppose that ξ and ξ′ are Steenrod bundles with standard
�bre F and β : bs(ξ) → bs(ξ′) is continuous. If τ : tl(ξ) → tl(ξ′) is a map
such that the restrictions τ |[proj(ξ)]−1(U), β|u form an F -map ξ|U → ξ′, for each
element U of some fundamental cover of bs(ξ), then (τ, β) is an F -map ξ → ξ′.

Proof. This is a corollary of Theorem 4.3.2.6: take p to be the map proj : ⨿U∈Γ

U → bs(ξ), where Γ is the given fundamental cover of bs(ξ).

Theorem 4.3.2.8. If the Steenrod F -bundles ξ and ξ′ have the same base, then
every F -map f : ξ → ξ′ with bs(f) = idbs(ξ) is an F -equivalence.
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Proof. All we need to prove is that [tl(f)]−1 and [MH(f)]−1 are continuous, and
it su�ces to examine the case when ξ′ = ξ and ξ is a standard trivial F -bundle.
Then tl(f), [tl(f)]−1 : bs(ξ)× F → bs(ξ)× F are given by

(b, y) 7→ (b, φ(b)y), (b, g) 7→ (b, ψ(b)y) [b ∈ bs(ξ), y ∈ F ].

where φ and ψ are some maps from bs(ξ) into the structure group G. Moreover,
if we use the topologising homeomorphism bs(ξ) × G → MH(ξ), then MH(f)
and [MH(f)]−1 become the maps bs(ξ)×G→ bs(ξ)×G given by

(b, g) 7→ (b, φ(b)g), (b, g) 7→ (b, ψ(b)g) [b ∈ bs(ξ), g ∈ G].

Obviously, ψ(b) = [φ(b)]−1, and thus the continuity of MH(f) �rst implies the
continuity of φ and ψ, and then the continuity of and [MH(f)]−1.

Corollary 4.3.2.9. The correcting map, corr f , is an F -equivalence for every
F -map f between Steenrod F -bundles.

Principal Bundles

De�nition 4.3.2.10. A Steenrod bundle is called principal if its standard �bre
is the structure group G which acts canonically from the left on itself (see
De�nition 4.2.3.7). We take the liberty to denote the last G-space simply by G
and, accordingly, the principal bundles with structure group G will be referred
to as Steenrod G-bundles.

A fundamental property of the principal bundles is that their spaces of
marked homeomorphisms can be identi�ed with their total spaces. More pre-
cisely, given a principal G-bundle ξ, the formula α 7→ α(eG) de�nes a homeo-
morphism MH(ξ) → tl(ξ). For a standard trivial bundle, this is evident, and
the general case is readily reduced to the standard trivial one.

If we identify MH(ξ) and tl(ξ) via the homeomorphism α 7→ α(eG), then
the natural right action of G on MH(ξ) (see De�nition 4.3.2.1) becomes the
free right action of G on tl(ξ). This free, action, tl)ξ)×G→ tl(ξ), can be also
described directly: its orbits are exactly the �bres of ξ, and on each �bre the
action is simply the right canonical action, transferred from G to the �bre by
means of marked homeomorphisms.

Remark 4.3.2.11. This construction of the free right action of G on the total
space of a principal bundle with structure group G can be partially reversed.
Assume that the topological group G acts continuously and freely from the
right on the topological space X, and consider the bundle (X,proj, X/G). Its
�bres (orbits) carry natural G-structures: the marked homeomorphisms G →
proj−1(b) (b ∈ X/G) are given by g 7→ xg, x ∈ proj−1(b). Since to distinct points
x correspond distinct homeomorphisms g 7→ xg, we obtain also an invertible map
of X onto the set of marked homeomorphisms, and thus we get a topology on
the last set. Therefore, (X,proj, X/G) is a G-bundle.

To explain why we called this last construction a partial inversion of the
original one, apply it now to the right action tl(ξ) × G → tl(ξ) described in
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De�nition 4.3.2.10; the resulting bundle is exactly ξ . More precisely, the injec-
tive factor of the projection proj(ξ) maps tl(ξ)/G onto bs(ξ), and together with
idtl(ξ) forms a G-isomorphism (tl(ξ),proj, tl(ξ)/G)→ ξ.

Theorem 4.3.2.12. If the G-bundle (X,proj, X/G), de�ned by a free right
action of G , has a section, then it is G-trivial. In particular, every Steenrod
G-bundle having a section is G-trivial.

Proof. Indeed, if s : X/G→ X is a section, then the map

f : ((X/G)×G,proj1, X/G)→ (X,proj1, X/G), given by tl(f(b, g)) = s(b)g,

is a G-trivialisation of the bundle (X,proj, X/G).

Corollary 4.3.2.13. If the G-bundle (X,proj, X/G), de�ned by a free right
action of G, is topologically trivial, then it is G-trivial. If (X,proj, X/G) is
locally topologically trivial, then it is locally G-trivial, i.e., it is a Steenrod G-
bundle.

4.3.3 Associated Bundles

Remark 4.3.3.1. Let G be a topological group, and let F and F ′ be e�ective
G-spaces. The construction below associates to each Steenrod F -bundle ξ a
certain Steenrod F ′-bundle having the same base.

The formula g(α, y) = (αg, g−1y), where g ∈ G, α ∈ MH(ξ), and y ∈ F ′,
de�nes a right action of G on MH(ξ)xF ′ (here G acts canonically from the
right on MH(ξ); see De�nition 4.3.2.3). Let ξ′ denote the bundle with to-
tal space (MH(ξ) × F ′)/G, base bs(ξ), and whose projection takes the or-
bit of a pair (α, y) ∈ MH(ξ) × F ′ into the point (proj(ξ))(α(F )). The �-
bres of this bundle carry a natural F ′-structure: the marked homeomorphisms
F ′ → [(proj(ξ′)]−1(b) are given by y 7→ proj(α, y), where α ∈ MH(ξ) is such
that α(F ) = [proj(ξ)]−1(b). Since distinct homeomorphisms α yield distinct
homeomorphisms y 7→ proj(α, y), we obtain at the same time an invertible map
MH(ξ) → MH(ξ′), which we use to topologise MH(ξ′), and thus make from
an F ′-bundle. Finally, ξ′|U is ′-trivial for each set U such that ξ|U is F -trivial.
Consequently, ξ′ is locally F ′-trivial, i.e., it is a Steenrod F ′-bundle. We say
that is the F ′-bundle associated with ξ and denote it by assoc(ξ, F ′).

Remark 4.3.3.2. We add four remarks to the above description of the assoc
construction:

(i) The map tl(ξ) → (MH(ξ) × F )/G which takes each point x ∈ tl(ξ) into
the orbit consisting of the pairs (α, y) ∈ MH(ξ) × F with α(y) = x,
is obviously a homeomorphism; together with idbs(ξ), this map de�nes
an F -equivalence ξ → assoc(ξ, F ). Therefore, the bundle assoc(ξ, F ) is
canonically F -equivalent to ξ.

(ii) The invertible map MH(ξ) → MH(assoc(ξ, F ′)) that we used to topol-
ogise MH(assoc(ξ, F ′)), is a G-map with respect to the right canonical
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actions of G on MH(ξ) and MH(assoc(ξ, F ′)). As a corollary, we may
state that, given an arbitrary e�ective G-space F ′′, the product of the
above invertible G-map with id′′F is a G-map

MH(ξ)× F ′′ →MH(assoc(ξ, F ′))× F ′′,

where G acts fro the right on MH(ξ) × F ′′ and MH(assoc(ξ, F ′)) × F ′′

by g(α, y) = (αg, g−1y). The resulting homeomorphism

(MH(ξ)× F ′′)/G→ (MH(assoc(ξ, F ′))× F ′′)/G,

together with idbs(ξ) de�ne an F ′′-equivalence

assoc(ξ, F ′′)→ assoc(assoc(ξ, F ′), F ′′).

Therefore, the bundles assoc(assoc(ξ, F ′), F ′′) and assoc(ξ, F ′′) are canon-
ically F ′′-equivalent.

(iii) The bundle assoc(ξ,G), i.e., the principal bundle associated with ξ is
canonically G-isomorphic to the G-bundle (MH(ξ),proj,MH(ξ)/G) de-
�ned by the canonical right action of G on MH(ξ) (see Remark 4.3.2.11).
The canonical G-isomorphism (MH(ξ),proj,MH(ξ)/G) → assoc(ξ,G) is
given by the homeomorphismMH(ξ)→ (MH(ξ)×G)/G which takes each
α ∈MH(ξ) into the orbit of (α, eG).

(iv) If F ′ is a subspace of the G-space F ′′ (see De�nition 4.2.3.7), then

(MH(ξ)× F ′)/G ⊂ (MH(ξ)× F ′′/G,

and the inclusion

(MH(ξ)× F ′)/G→ (MH(ξ)× F ′′)/G

together with idbs(ξ), yield an inclusion of the bundle assoc(ξ, F ′) into
assoc(ξ, F ′′). Moreover, MH(assoc(ξ, F ′)) is exactly the set of maps

abrα : F ′ → α(F ′), α ∈MH(assoc(ξ, F ′′)).

Behaviour With Respect to Maps

De�nition 4.3.3.3. Let F and F ′ again be e�ective G-spaces, and suppose
that ξ and η are Steenrod bundles with standard �bre F , and f : ξ − toη is an
arbitrary F -map. De�ne the map

assoc(f, F ′) : assoc(ξ, F ′)→ assoc(η, F ′)

by the formulae

bs(assoc(f, F ′)) = bs(f) and

tl(assoc(f, F ′)) = [fact(MH(f)× idF ′) : (MH(ξ)× F ′)/G(MH(η)× F ′/G].



278 CHAPTER 4. BUNDLES

Remark 4.3.3.4. It is clear that assoc(f, F ′) is an F ′-map. Moreover, assoc(f, F ′)
is an F ′-isomorphism (F ′-equivalence) whenever f is an F -isomorphism (respec-
tively, F -equivalence). Next, consider the diagrammes

ξ //

��

assoc(ξ, F )

assoc(f,F )

��
η // assoc(η, F )

assoc(ξ, F ′′) //

��

assoc(assoc(ξ, F ′), F ′′)

assoc(assoc(f,F ′),F ′′)

��
assoc(η, F ′′) // assoc(assoc(η, F ′), F ′′)

and
(MH(ξ),proj,MH(ξ)/G) //

(MH(f),factMH(f)

��

assoc(ξ,G)

assoc(f,G)

��
(MH(η),proj,MH(η)/G) // assoc(η,G)

where F ′′ is any e�ective G-space, and the horizontal arrows denote successively
the canonical F -equivalences described in Remark 4.3.3.2 (i) and 4.3.3.2 (ii), and
the canonical F -isomorphisms from Remark 4.3.3.2 (iii). These diagrammes
clearly commute.

Remark 4.3.3.5. The assoc and induction operations commute. Namely, the
map

corr[assoc(adjh, F ′)] : assoc(h!(ξ), F ′)→ h!(assoc(ξ, F ′))

is an F ′-equivalence, for any Steenrod F -bundle ξ and any continuous map
h : B → bs(ξ); see Corollary 4.3.2.9.

Furthermore, the assoc operation commutes with the extension of the struc-
ture group. That is to say, let F1 and F ′

1 be the e�ective G1-spaces obtained
from F and F ′ by reducing the group G to a subgroup G1. If the Steenrod
F1-bundle ξ1 is taken into ξ by the extension of the group G1 to G, then the
map

fact(incl× idF ′) : (MH(ξ1)× F ′
1)/G1 → (MH(ξ)× F ′)/G,

where incl = [incl : MH(ξ1) → MH(ξ)], de�nes an F ′-equivalence between the
bundle obtained from assoc(ξ1, F

′
1) by extending G1 to G, and assoc(ξ, F ′).

Weakly Associated Bundles

Remark 4.3.3.6. The construction described in Remark 4.3.3.11 can be gener-
alised to the situation where the action of G on F ′ is not e�ective: we need
only shift, as a preliminary step, to the e�ective factor of this action, and thus
transform F ′ into an e�ective G/K-space, F˜ ′, where K is the non-e�ectiveness
kernel. Therefore, assoc(ξ, F ′) may be de�ned for any Steenrod F -bundle ξ, and
any G-space F ′ and is, in the general case, a Steenrod bundle with structure
group G/K and standard �bre F˜ ′. We say that assoc(ξ, F ′) is weakly associated
with ξ.

The map assoc(f, F ′) de�ned in De�nition 4.3.3.3 remains viable under this
extension of the assoc construction, and becomes an F˜ ′-map. The properties of
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assoc discussed in Remarks 4.3.3.2, 4.3.3.4, and 4.3.3.5 must be modi�ed in an
obvious manner; for example, when F ′′ is not e�ective (but F ′ is e�ective), the
canonical F ′′-equivalence

assoc(ξ, F ′′)→ assoc(assoc(ξ, F ′), F ′′)

becomes an F˜ ′-equivalence.

Sections Associated with F -Maps

Remark 4.3.3.7. Let ξ and ξ′ be Steenrod bundles with structure group G and
standard �bre F , and let f : bs(ξ) → bs(ξprime), be continuous. The con-
struction below establishes a one-to-one correspondence between the F -maps
h : ξ → ξ′ with bs(h) = f and the sections of a specially constructed bundle,
Fibr(ξ, ξ′; f).

Let G× denote the group G endowed with the action of the group G × G
given by (g1, g2)g = g1gg

−1
2 (generally speaking, this is not an e�ective action).

Set
Fibr(ξ, ξ′; f) = assoc(diag!(ξ × f !(ξ′)), G×),

where diag = [diag : bs(ξ)→ bs(ξ)×bs(ξ)], and assoc is taken in the weak sense
of Remark 4.3.3.6. It is clear that for every F -map h such that bs(h) = f and
every point b ∈ bs(ξ) , the composite homeomorphism

F
α−→[proj(ξ)]−1(b)

abr tl(h)−−−−−→ [proj(ξ′)]−1(f(b))
[abr tl(adj f)]−1

−−−−−−−−−−→

[proj f !(ξ′)]−1(β(F ))
β−1

−−→ F,

where

α ∈MH(ξ), proj(ξ(α(F ))) = b, β ∈MH(f !(ξ′)), proj(f !(ξ′(β(F )))) = b,

is simply one of the transformations F → F induced by the elements of G. We
denote the corresponding element by g(α, β), and note that

g(αg1, βg2) = g1g(α, β)g
−1
2 ∀g1, g2 ∈ G

(here G acts canonically from the right onMH(ξ) andMH(f !(ξ′)). This shows
that the orbit of the pair

(α× β, g(α, β)) ∈MH(ξ × f !(ξ′))×G×

under the right action of G × G on MH(ξ × f !(ξ′)) × G×, constructed as in
Remark 4.3.3.1, does not depend upon the choice of α and β, provided h and b
are �xed. When h is �xed, the map bs(ξ) → (MH(ξ × f !(ξ′)) × G×)/(G × G)
taking b ∈ bs(ξ) into this orbit is continuous and manifestly a section of the
bundle Fibr(ξ, ξ′; f). We call it the section associated with h and denote it by
h×. The correspondence h 7→ h× de�nes an invertible map from the set of
all F -maps h : ξ → ξ′ with bs(h) = f onto the set of sections of Fibr(ξ, ξ′; f):
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the inverse map takes each section s : bs(ξ)→ tl(Fibr(ξ, ξ′; f)) into the F -map
h : ξ → ξ′ given by

tl(h(x)) = tl(adj f(βx(gx(α
−1(x))))),

where x ∈ tl(ξ), αx ∈ MH(ξ), βx ∈ MH(f !(ξ′)), gx ∈ G, and (αx × βx, gx) ∈
s ◦ proj(ξ(x)).

Let us remark that when bs(ξ) = bs)ξ) and f = idbs(ξ), an F -map h : ξ → ξ′

with bs(h) = f is simply an F -equivalence (see Theorem 4.3.2.8). Therefore,
when ξ and ξ[′] have the same base, the above construction yields a one-to-
one correspondence between the F -equivalences ξ → ξ′ and the sections of the
bundle Fibr(ξ, ξ′; idbs(ξ)).

4.3.4 Ehresmann-Feldbau Bundles

De�nition 4.3.4.1. An Ehresmann-Feldbau bundle is a W-F-bundle which is
locally W-F-trivial; the last means that every point of the base has a neigh-
bourhood such that the restriction of the bundle to this neighbourhood is W-
F-trivial.

The theory of Ehresmann-Feldbau bundles is a variant of the theory of bun-
dles with a group structure; it is simpler than the theory of Steenrod bundles
(there are fewer structures), but also less pithy (there are no associated bundles).
This relative poverty nearly deprives it of any independent value; however, the
fact that it is equivalent, for a large class of standard �bres which includes the
most important cases, to the theory of Steenrod bundles, makes it useful, as it
enables us to simplify the latter.

The Case of Topologically E�ective Actions

De�nition 4.3.4.2. A continuous e�ective action G × X → X is said to be
topologically e�ective if given any topological space Y and any map f : Y → G,
the continuity of the composite map

Y ×X f×id−−−→ G×X → X (4.3.4.3)

implies the continuity of f . In this case we also say that the G-space X is
topologically e�ective.

Clearly, if we reduce the group, a topologically e�ective action remains so,
and every G-space which has a topologically e�ective subspace is itself topolog-
ically e�ective.

The free actions are immediate examples of topologically e�ective actions; in
particular, the left canonical action of a topological group (on itself) is always
topologically e�ective. Also, the usual actions of GL(n,R) and of its subgroups
on Rn are all topologically e�ective.



4.3. BUNDLES WITH A GROUP STRUCTURE 281

Theorem 4.3.4.4. In order that a G-space be topologically e�ective, it is nec-
essary that the map c : G → C(X,X), which takes each g ∈ G into the trans-
formation induced by g, be a topological embedding; if X is locally compact and
Hausdor�, then this condition is also su�cient.

Proof. The necessity is plain (take Y = c(G) and f = [(abr c)−1 : c(G) → G]).
Now assume that the condition is satis�ed. Then the continuity of f : Y → G is

equivalent to the continuity of the composite map Y
f−→ G

c−→ C(X,X). By The-
orem 1.2.7.6, for X locally compact and Hausdor� the last map is continuous
because so is the map (4.3.4.3). In particular, for G compact, every e�ective, lo-
cally compact Hausdor�G-space is topologically e�ective (see Theorems 1.1.7.10
and 1.2.7.2). If X is Hausdor�, locally compact, and locally connected, then
the usual action of the group TopX on X is topologically e�ective, and the
same holds when X is Hausdor� and compact (see Lemma 4.2.2.5 and Theorem
4.2.2.6).

Theorem 4.3.4.5. If the standard �bre F is topologically e�ective, then every
W-F-map (respectively, W-F-isomorphism, W-F-equivalence) between Steenrod
bundles is an F-map (respectively, F-isomorphism, F-equivalence).

Proof. Let ξ and ξ′ be Steenrod F -bundles. We need only prove the continuity
of the mapMH(f) corresponding to the given W-F-map f : ξ → ξ′ and we may
assume that ξ and ξ′ are standard trivial bundles. In this case,

tl(ξ) = bs(ξ)× F, tl(ξ′) = bs(ξ′)× F,

and tl(f) is given by (b, y) 7→ (bs(f(b)), φ(b)y), where φ is some map of bs(ξ)
into the structure group G. At the same time, if we use the canonical homeo-
morphisms

bs(ξ)×G→MH(ξ), bs(ξ′)×G→MH(ξ′)

(see De�nition 4.3.2.2), then MH(f) becomes the map

bs(ξ)×G→ bs(ξ′)×G, (b, g) 7→ (bs(f(b), φ(b)g).

The continuity of tl(f) implies the continuity of the composition

proj2 ◦ tl(f) : bs(ξ)× F → F,

which equals the composition

bs(ξ)× F φ×id−−−→ G× F → F,

where the last arrow denotes the action. Since this action is topologically e�ec-
tive, φ is continuous, and so is MH(f).

Theorem 4.3.4.6. Given an Ehresmann-Feldbau bundle with a topologically
e�ective standard �bre, there is a unique topology on the set of its marked home-
omorphisms which transforms this bundle into a Steenrod bundle.
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Proof. The uniqueness of this topology is a consequence of Theorem 4.3.4.5. Let
us prove its existence. Let ξ be an Ehresmann-Feldbau bundle with topologically
e�ective �bre F . Cover bs(ξ) by open sets U such that ξ|U is W-F-trivial, and
�x W-F-equivalences hU : (U × F,proj1, U) → ξ|U . Now topologise the sets
MH(ξ|U ) with the aid of the maps

MH(hU ) : MH((U × F,proj1, U))→MH(ξ|U ).

We obtain a cover of MH(ξ) by topological spaces MH(ξ|U ), and Theorem
4.3.4.5 shows that these spaces induce the same topologies on their intersections,
as required for the construction in Remark 1.2.4.3. The topology on MH(ξ)
produced by this construction transforms ξ into a Steenrod bundle.

Locally Trivial Bundles as Ehresmann-Feldbau Bundles

Remark 4.3.4.7. If F is a locally compact Hausdor� space endowed with the
usual action of the group TopF , then an Ehresmann-Feldbau W-F-bundle is
simply a locally trivial bundle with �bres homeomorphic to F . Therefore, any
ordinary locally trivial bundle whose �bres are locally compact Hausdor� spaces
homeomorphic one to another, may be regarded as an Ehresmann-Feldbau bun-
dle, and as such it has an implicit group structure. If, in addition, the �bres are
locally connected or compact, then such bundles can be also regarded as Steen-
rod bundles. We remark that the last assertion is also true for all coverings in
the broad sense with connected bases.

4.3.5 Exercises

Exercise 4.3.5.1. Show that all the e�ective actions listed in Remarks 4.2.3.15,
4.2.3.16, 4.2.3.17, and 4.2.3.18 are topologically e�ective.

Exercise 4.3.5.2. Let X be an arbitrary Cr-manifold (r ≥ 1) of positive dimen-
sion. Show that the usual action of DiffrX on X is topologically e�ective.

Exercise 4.3.5.3. Consider R as a Z-space with the action (n, t) 7→ t+n (n ∈ Z,
t ∈ R), and using the same formula, extend this action to an action of the
additive group R, equipped with the discrete topology. Show that this extension
of the structure group takes assoc((R,hel,S1),R) into a bundle which is not
trivial as a Steenrod bundle, but is trivial as an Ehresmann-Feldbau bundle.
(Cf. Theorem 4.3.4.5.)

Exercise 4.3.5.4. Suppose that G is a connected topological group, F is an e�ec-
tive G-space, and ξ is a non-trivial Steenrod F -bundle with simply connected
base. Denote Gδ, F δ, and ξδ the group G equipped with the discrete topol-
ogy, the space F , regarded as a G -space, and the bundle ξ, regarded as a W-F
-bundle, respectively. Show that there is no topology on the set of marked home-
omorphisms of ξδ which makes from ξδ a Steenrod F δ-bundle. (Cf. Theorem
4.3.4.6.)
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4.4 THE CLASSIFICATION OF STEENROD BUN-
DLES

4.4.1 Spaces With F-Structure

Remark 4.4.1.1. We now turn to the problem of classifying the Steenrod bundles
with a given standard �bre F and a given cellular base B with respect to F -
equivalence. Our main achievement in this section is to establish a canonical
one-to-one correspondence between the classes of F -equivalent bundles over B
and the homotopy classes of maps from B into a specially constructed space
that depends only upon the structure group. This correspondence reduces the
given classi�cation problem to a problem in ordinary homotopy theory.

Lemmas About F -Trivial Bundles

Lemma 4.4.1.2. Let ξ be a Steenrod bundle with standard �bre F , and let B1

and B2 be closed subspaces of bs(ξ), such that B1 ∪B2 = bs(ξ) and B1 ∩B2 is
a retract of B2. If the restrictions ξ|BB1 and ξ|B2 are F-trivial, then ξ is also
F -trivial.

Proof. Choose a retraction ρ : B2 → B1 ∩ b2 and two F -trivialisations,

h1 : η1 = (B1 × F,proj1, B1)→ ξ|B1
, h2 : η2 = (B2 × F,proj1, B2)→ ξ|B2

and denote by f the composite F -equivalence

η2|B1∩B2

id //

f

��

η1|B1∩B2

abrh1

��
η2|B1∩B2

ξ|B1∩B2
abrh−1

2

oo

Obviously, tl(f) is given by

(b, y) 7→ (b, (φ(b))y, [b ∈ B1 ∩B2, y ∈ F ],

where φ is some map of B1 ∩ B2 into the structure group G. Moreover, if we
use the canonical homeomorphism

(B1 ∩B2)×G→MH(ξ|B1∩B2
),

then MH(f) becomes the map

(B1 ∩B2)×G→ (B1 ∩B2)×G, (b, g) 7→ (b, (φ(b))g) [b ∈ B1 ∩B2, g ∈ G].

Therefore, the continuity of MH(f) implies the continuity of φ, which in turn
yields the continuity of the map

B2 × F → B2 × F, (b, y) 7→ (b, (φ ◦ ρ(b))y).
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But this last map, together with idB2 , form an F -equivalence f ′ : η2 → η2, and
the obvious equality

f = [abr f ′ : η2|B1∩B2 → η2|B1∩B2 ]

shows that the composite F -maps

η1
h1−→ ξ|B1

incl−−→ ξ, η1
f ′

−→ η2
h2−→ ξ|B2

incl−−→ ξ

coincide on B1 ∩ B2. By Corollary 4.3.2.7, from this it follows that these two
maps yield an F -map (B × F,proj1, B) → ξ. Finally, by Theorem 4.3.2.8, the
last map is an F -equivalence.

Lemma 4.4.1.3. Every Steenrod F -bundle with base In is F -trivial.

Proof. Let η be an arbitrary Steenrod F -bundle with bs(η) = In. Find a positive
integer N such that η is F -trivial over any cube of edge 1/N contained in In.
Now divide In, as usual, into Nn such cubes, arrange them in lexicographical
order Q1, . . . , QNn , and set Wj = ∪ij=1Qj . Induction shows that η is F -trivial
over each of the sets W1, . . . ,WNn : to go from Wi to Wi+1, apply Lemma
4.4.1.2 to ξ = η|Wi+1

, B1 =Wi, and B2 = Qi+1. We conclude that η is F -trivial
over WNn = In.

Lemma 4.4.1.4. Let ξ1 and ξ2 be Steenrod bundles with common standard
�bre F and common base B, and let A be a retract of B. If ξ1 and ξ2 are F -
trivial, then for every F -equivalence h : ξ1|A → ξ2|A there is an F -equivalence
h′ : ξ1 → ξ2 such that [abrh′ : ξ1|A → ξ2|A] = h.

Proof. It is enough to prove this assertion for the case where ξ1 is the standard
trivial F -bundle (B × F,proj1, B), and ξ2 = ξ1. Let ρ : B → A be a retraction.
Obviously, tl(h) is given by

(a, y) 7→ (a, (φ(a))y) a ∈ A, y ∈ F,

where φ is some map of A into the structure group G. Moreover, via the
canonical homeomorphism

A×G→MH(ξ1|A)[=MH(ξ2|A)], MH(h)

becomes the map

A×G→ A×G, (a, g) 7→ (a, (φ(a))g) a ∈ A, g ∈ G.

Therefore, the continuity of MH(h) implies the continuity of φ, which in turn
implies the continuity of the map

B × F → B × F, (b, y) 7→ (b, (φ ◦ ρp(b))y).

The latter and idB yield an F -equivalence h′ : ξ1 → ξ2 which extends h.
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The Homotopy Invariance of the Induced Bundle

Theorem 4.4.1.5. Let ξ be a Steenrod bundle with standard �bre F , and let
f1 and f2 be continuous maps of a cellular space X into bs(ξ). If f1 and f2 are
homotopic, then the bundles f !1(ξ) and f

!
2(ξ) are F -equivalent. Moreover, if f1

and f2 are A-homotopic, where A is a cellular subspace of X, then there is an
F -equivalence f !1(ξ)→ f !2(ξ) which is the identity on (f !1(ξ))|A.

Proof. Pick an A-homotopy, H : X × I → bs(ξ), from f1 to f2, and set ξ =
(f !1ξ)×(I, idI , I), ξ2 = H !ξ. It is clear that ξ1|(X×0)∪(A×I) = ξ2|(X×0)∪(A×I) and
that the canonical homeomorphism X → X × 1 transforms ξ1|X×1 and ξ2|X×1

into f !1ξ and f !2ξ, respectively. Therefore, it su�ces to �nd an F -equivalence
ξ1 → ξ2 which is the identity over (X × 0) ∪ (A× I).

We produce such an F -equivalence by taking the limit of a sequence of F -
equivalences, hi : ξ1|Ci → ξ1|Ci where Ci = (X × 0) ∪ (A × I) ∪ (skeliX × I),
such that each map hi extends the preceding one. Take h−1 to be the identity
map, and assume that the F -equivalence hi is already constructed. To get hi+1,
suppose that X is rigged, and for each cell e ∈ celli+1X \ celli+1A consider the
bundles

[abr(chare× idI)]
!(ξ1|Ci

) = [(chare× id I)!ξ1]|(Di+1×0)∪(Si×I)

[abr(chare× idI)]
!(ξ2|Ci

) = [(chare× id I)!ξ2]|(Di+1×0)∪(Si×I)

where

abr(chare× idI) = [abr(chare× idI) : (Di+1 × 0) ∪ (Si × I)→ Ci].

Let ge denote the F -equivalence of these bundles de�ned by hi. By Lemma
4.4.1.3,

(chare× idI)
!(ξ1), (chare× idI)

!(ξ2)

are F -trivial, and since (Di+1 × 0) ∪ (Si × I) is a retract of Di+1 × I, Lemma
4.4.1.4 shows that ge extends to an F -equivalence

g̃e : (chare× id I)!ξ1 → (chare× id I)!ξ2

Further, note that the map tl g̃e is constant on the elements of the partition
zer(tl adj(chare× idI)) and apply Theorem 4.3.2.6, with

B = Di+1 × I, p = [abr(chare× idI) : Di+1 × I → Cl e× I]

to conclude that the composite map

(chare× idI)
!ξ1

g̃e−→ (chare× idI)
!ξ2

abr(chare × idI)−−−−−−−−−−→ ξ2|Cl e×I

de�nes an F -map ξ1|Cl e×I → ξ2|Cl e×I . By Theorem 4.3.2.8, this is an F -
equivalence, which we denote by he. Now note that for any cells e1, e2 ∈
celli+1X \ celli+1A, tlhe1 and tlhe2 agree over (Cl e1 × I) ∩ (Cl e2 × I), and
that for each cell e ∈ celli+1X \ celli+1, tlheand tlhi agree over (Cle×I) ∩ Ci.
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Since the sets Ci and Cl e × I, e ∈ celli+1X \ celli+1A, constitute a funda-
mental cover of Ci+1, we use Corollary 4.3.2.7 to conclude that hi and he,
e ∈ celli+1X \ celli+1A, form together an F -map ξ1|Ci+1

→ ξ2|Ci+1
. We take

this map for hi+1 and note that it obviously extends hi; moreover, by Corollary
4.3.2.7, h−1

i+1 is also an F -map.
To check the rest, i.e., that the sequence {hi : ξ1|Ci+1

→ ξ2|Ci+1
} converges

to an F -equivalence ξ1 → ξ2, it is enough to remark that the sets constitute a
fundamental cover of X × I, and then apply Corollary 4.3.2.7 to the sequences
{hi} and {h−1

i }.

The Sets Stnrd(B,F )

Remark 4.4.1.6. We let Stnrd(B,F ) denote the set of F -equivalence classes of
Steenrod F -bundles over B. Below we shall study the mappings of this set
into itself, de�ned by the induced bundle construction, by the extension of the
structure group, and by the associated bundle construction.

(Transcriber′snote: Here the original authours try to avoid functional
treatment(s). This has the advantage that it does not force the reader to swallow
a lot of category theory �rst, but in the end the reader may want to reconstruct
everything in the framework of axiomatic homotopy theory.)

For any continuous map f : B′ → B, the rule ξ 7→ f !ξ

tl(f !ξ) //

��

tl(ξ)

��
B′

f
// B

de�nes a mapping
f ! : Stnrd(B,F )→ Stnrd(B′, F ).

If B′ is a cellular space, Theorem 4.4.1.5 shows that f ! depends only on the
homotopy class of f . In particular, if B and B′ are both cellular and f is a
homotopy equivalence, then f ! is invertible.

The extension of the structure group, which transforms the G1-space F into
the e�ective G-space F , de�nes a mapping

ext : Stnrd(B,F1)→ Stnrd(B,F ),

for any topological space B. This mapping is natural: that is to say, the dia-
gramme

Stnrd(B,F1)
ext //

f !

��

Stnrd(B,F )

f !

��
Stnrd(B′, F1) ext

// Stnrd(B′, F )

commutes for any continuous map f : B′ → B; see Remark 4.3.2.4.
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Given another e�ective G-space, F ′, the rule ξ 7→ assoc(ξ, F ′) de�nes for
any topological space B a mapping

assoc : Stnrd(B,F )→ Stnrd(B,F ′).

This mapping is invertible [its inverse is assoc : Stnrd(B,F ′) → Stnrd(B,F )]
and also natural, i.e., the diagramme

Stnrd(B,F )
assoc //

f !

��

Stnrd(B,F ′)

f !

��
Stnrd(B′, F )

assoc
// Stnrd(B′, F ′)

commutes for any continuous map f : B′ → B; see Remark 4.3.3.5.
Moreover, the diagram

Stnrd(B,F1)
assoc //

f !

��

Stnrd(B,F ′
1)

f !

��
Stnrd(B,F )

assoc
// Stnrd(B,F ′)

(4.4.1.7)

commutes for any topological space B, any e�ective G1-spaces F1 and F ′
1, and

any e�ective G-spaces, F and F ′, obtained from F1 and F ′
1 by extension of the

structure group; see Remarks 4.3.3.5 and 4.3.3.6.

4.4.2 Universal Bundles

Remark 4.4.2.1. Let F be an e�ective G-space. By Theorem 4.4.1.5, given any
Steenrod F -bundle ξ, any cellular space B, and any continuous map f : B →
bs(ξ), we may consider the bundle f !ξ. This de�nes a mapping π(B, bs ξ) →
Stnrd(B,F ), which we denote by induz(B, ξ): induz(B, ξ) (the homotopy class
of f) = the F -equivalence class of f !ξ.

The following diagramme is obviously commutative for any topological space
C and any continuous map g : C → bs ξ

π(B,C)
induz(B,g!ξ) //

π(idB ,g) &&

Stnrd(B,F )

induz(B,ξ)ww
π(B, bs ξ)

Similarly, the diagramme

π(B, bs ξ)
induz(B,assoc(ξ,f ′) //

induz(B,ξ) ''

Stnrd(B,F ′)

assoc
ww

Stnrd(B,F )
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commutes for any e�ective G-space F ′.

De�nition 4.4.2.2. A Steenrod F -bundle ζ is called universal if the map
induz(B, ζ) is invertible for any cellular space B. In other words, a Steenrod
F -bundle ζ is universal if:

(i) given any Steenrod F -bundle ξ with cellular base, there is a continuous
map f : bs ξ → bs ζ such that the bundle f !ζ is F -equivalent to ξ,

(ii) if for two arbitrary continuous maps, f1 and f2, of a cellular space into bs ζ
the bundles f !1ζ and f

!
2ζ are F -equivalent, then f1 and f2 are homotopic.

Conditions (i) and (ii) have an equivalent formulation respectively:

(i)') given any Steenrod F -bundle ξ with cellular base, there is an F -map
ξ → ζ. Indeed, if f : bs ξ → bs ζ is continuous and g : ξ → f !ζ is an F -
equivalence, then adj f ◦g : ξ → ζ is an F -map. Conversely, if h : ξ → ζ is
an F -map, then corrh : ξ → (bs(h))!ζ is an F -equivalence (see Corollary
4.3.2.9).

(ii)') given any Steenrod F -bundle ξ with cellular base and any F -maps h0, h1 : ξ →
ζ, bsh0 and bsh1 are homotopic. Indeed, suppose that ξ, h0, h1 have
these properties; then both bundles, (bs(h0))!ζ and (bs(h1))

!ζ, are F -
equivalent to ξ, and so, by (ii), bs(h0)) and bs(h1) are homotopic. Con-
versely, if f0 and f1 are continuous maps of a cellular space into bs ξ and
h : f !0ζ → f1!ζ is an F -equivalence, then f0 = bs adj f0, f1 = bs(adj f1◦h)
and, by (ii'), f0 and f1 are homotopic.

We remark also that both (i') and (ii') (and hence (i) and (ii)) are consequences
of the following condition: given an arbitrary F -bundle ξ with cellular base and
an arbitrary subspace A of bs ξ, every F -map ξ|A → ζ extends to an F -map
ξ → ζ. To see that this condition implies (i'), it su�ces to take A = ∅. To see
that it implies (ii'), take the F -bundle ξ × (I, idI , I), the subspace

A = (bs ξ × 0) ∪ (bs ξ × 1) ⊂ bs(ξ × (I, idI , I)) = bs ξ × I,

and take as the F -map that must be extended

g : ξ × (I, idI , I)|(bs ξ×0)∪(bs ξ×1) → ζ,

with

bs g(b, 0) = bsh0(b),bs g(b, 1) = bsh1(b) [b ∈ bs ξ],

tl g(x, 0) = tlh0(x), tl g(x, 1) = tlh1(x) [x ∈ tl ξ].

Theorem 4.4.2.3. Every bundle induced from a universal bundle by a homo-
topy equivalence is universal.

Proof. Indeed, if ζ is a universal F -bundle and f : B → bs ζ is a homotopy
equivalence, then the map induz(B, f !ζ) coincides with induz(B, ζ) ◦ π(f, idB)
for any cellular space (see Remark 4.4.2.1), and hence it is invertible.
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Theorem 4.4.2.4. If the F -bundles ζ and ζ ′ are universal and bs(ζ) and bs(ζ ′)
are cellular spaces, then bs(g) : bs(ζ)→ bs(ζ ′) is a homotopy equivalence for any
F -map g : ζ → ζ ′.

Proof. Pick an F -map g : ζ ′ → ζ. Since g′ ◦ g : ζ ′ → ζ ′ and g′ ◦ g : ζ → ζ are
F-maps, condition in De�nition 4.4.2.2 (ii') implies that the map

bs(g′) ◦ bs(g) = bs(g′ ◦ g) (respectively, bs(g) ◦ bs(g′) = bs(g ◦ g′))

is homotopic to id(bs(ζ)) (respectively, to id(bs(ζ′)).

Theorem 4.4.2.5. A bundle associated with a universal bundle is itself univer-
sal.

Proof. Indeed, let ζ be a universal F -bundle and let F ′ be another e�ective
G-space. Then for any cellular space B, induz(B, assoc(ζ, F ′)) is precisely the
composition of the maps induz(B, ζ) and assoc : Stnrd(B,F ) → Stnrd(B,F ′)
(see Remark 4.4.2.1), and hence is invertible.

Classifying Spaces

Theorem 4.4.2.6. As Theorem 4.4.2.5 shows, the base of a universal bundle
with structure group G is simultaneously the base of all universal bundles with
structure group G and all possible standard �bres, and so we may say that it
does not depend upon the choice of the standard �bre. This base is called a
classifying space of the group G.

From Theorem 4.4.2.3 it follows that every space which has the same homo-
topy type as a classifying space of G is itself a classifying space of G. Moreover,
it results from Theorem 4.4.2.4 that any two cellular classifying spaces of G have
the same homotopy type.

k-Universal Bundles

De�nition 4.4.2.7. A Steenrod F -bundle ζ is called k-universal if

induz(B, ζ) : π(B, bs(ζ))→ Stnrd(B,F )

is surjective for each cellular space B of dimension ≤ k and injective for each
cellular space B of dimension ≤ k − 1. In other words, a Steenrod F -bundle ζ
is k-universal if:

a) given any Steenrod F -bundle 5ξ with cellular base of dimension ≤ k, there is
a continuous map f : bs ξ → bs ζ such that the bundle f !(ξ) is F -equivalent
to ξ,

b) any two continuous maps, f0 and f1, from a cellular space of dimension
≤ k − 1 into bs ζ, such that the bundles f !0(ζ) and f

!
1(ζ) are F -equivalent,

are homotopic.
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Equivalent conditions are:

a') given any Steenrod F -bundle ξ with cellular base of dimension ≤ k, there
is an F -map ξ → ζ and

b') for any Steenrod F -bundle ξ with cellular base of dimension ≤ k − 1 and
any F -maps g0, g1 : ξ → ζ, bs(g0) and bs(g1) are homotopic.

In all these formulations k is a positive integer, and the universal bundles
are sometimes termed ∞-universal. Every k-universal bundle is obviously ℓ-
universal for ℓ ≤ k. Moreover, Theorems 2.3.2.6 and 2.3.2.7 show that the
restriction of a k-universal bundle with cellular base to a subspace of the base
which contains its ℓ-skeleton is ℓ-universal, for any ℓ ≤ k.

Theorems 4.4.2.3 and 4.4.2.5 have immediate analogues for k-universal bun-
dles: every bundle induced from a k-universal bundle by a homotopy equivalence
is k-universal; a bundle associated with a k-universal bundle is itself k-universal.

4.4.3 The Milnor Bundles

De�nition 4.4.3.1. Below we shall construct for any topological group G a
principal bundle with structure group G, called the Milnor G-bundle and de-
noted by MilG. In Remarks 4.4.3.2, 4.4.3.5 and Theorems 4.4.3.3, 4.4.3.5 we
shall prove that MilG is a universal G-bundle.

Let TG(k) denote the join of k copies of the group G. Then TG(k) embeds
naturally in TG(k+1) (as a base of the join TG(k)⋆G = TG(k+1)) and so the
TG = lim−→k

TG(k) is meaningful. The right action G×G→ G, (g1, g) 7→ g−1g1,
extends to a free, continuous, right action of G on TG(k). Since the inclusions
TG(k)→ TG(k+1) are G-maps with respect to this action, G acts also on TG.
Therefore, a G-bundle (TG,proj, TG/G) results, and this is MilG.

If G1 is a subgroup of G, then there exist the inclusions

incl ⋆ · · · ⋆ incl︸ ︷︷ ︸
k

: TG1(k)→ TG(k) (k = 1, 2, . . . ),

where incl = [incl : G1 → G], and all of them are incl-maps. Moreover, they are
compatible with the embeddings

TG(k)→ TG(k + 1), TG1(k)→ TG1(k + 1),

and hence the limit map TG1 → TG is meaningful (see Remark 1.2.4.4). This
map is also an incl-map, and together with the map TG1/G1 → TG/G that it
induces, it clearly yields an (incl, incl)-map MilG1 → MilG. Therefore, to each
inclusion G1 → G corresponds an (incl, incl)-map MilG1 → MilG.

MilG is Locally Trivial

Remark 4.4.3.2. It is convenient to identify TG(k) with that subspace of the
product coneG× · · · × coneG︸ ︷︷ ︸

k

which consists of the points {proj(gi, ti)}ki=1 such
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that t1 + · · ·+ tk = 1, and is canonically homeomorphic to TG(k) (see Remark
1.2.6.4; here proj = [proj : G×I → coneG]). After this identi�cation, the points
of TG may be represented as sequences {proj(gi, ti)}∞i=1 such that

∑
ti = 1 and

only a �nite number of the ti's are non-zero. Now the right action of G on TG
(see De�nition 4.4.3.1) is described as proj(gi, ti)g = {proj(g−1gi, ti)}.

Theorem 4.4.3.3. MilG is locally G-trivial.

Proof. Let Us be the collection of sequences {proj(gi, ti)} with ts ̸= 0, and
consider the sets projMilG(U1),projMilG(U2), . . . . These sets are open, cover
TG/G, and over each of them the bundle MilG is G-trivial: the G-trivialisation

projMilG(Us)×G→ (projMilG)−1(projMilG(Us)) [= Us]

takes each point (x, g) into the sequence {proj(gi, ti)} determined by the condi-
tions: projMilG({proj(gi, ti)}) = x and gs = g.

Mi G is Universal

Theorem 4.4.3.4. MilG is universal.

Proof. According to De�nition 4.4.2.2, it su�ces to show that given any G-
bundle ξ with cellular base and any subspaceA ⊂ bs ξ, everyG-map f : ξ|AtoMilG
extends to a G-map ξ → MilG.

We consider �rst the case bs ξ = Dr+1, A = Sr, for some r. Then ξ is G-
trivial (see Remark 4.4.1.3), and we may actually assume that ξ is the standard
trivial G-bundle (Dr+1 × G,proj1,Dr+1). The desired extension h : ξ → MilG
has an explicit description: let k be the smallest number s such that TG(s) ⊃
tl(f(Sr × eG), and let φi denote the composite map

Sr ×G abr tl(f)−−−−−→ TG(k)
incl−−→ coneG× · · · × coneG︸ ︷︷ ︸

k

proj1−−−→ coneG

(i = 1, . . . , k); further, de�ne iψ : Dr+1 ×G→ TG(k + 1) by

ψ(ty, g) = (tφ1(y), . . . , tφk(y),proj(g, 1− t)),

where y ∈ Sr, t ∈ I, and proj = [proj : G × I → coneG]. Now set tl(h) =
[incl : TG(k + 1)→ TG] ◦ ψ.

The general case reduces to this special one. Indeed, assume that the space
bs ξ is rigged and that a G-map h : ξ|A∪skelr bs(ξ) → MilG extending f is already
available. The above argument shows that for each cell

e ∈ cellr+1 bs(ξ) \ cellr+1A

the G-map

fe = hr ◦ [abr char : Sr → A ∪ skelr bs(ξ)] : char!e(ξ)|Sr → MilG
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extends to a G-map ge : char!q(ξ)→ MilG, and it is clear that tl(ge) is constant
on the elements of the partition zer(tl adjChare). Applying Theorem 4.3.2.6
(with B = Dr+1 and p = [abrChare : Dr+1 → Cl e]), we see that ge de�nes a
G-map ξ|Cl e → MilG, which we denote by h0. Further, note that for any cells

e1, e2 ∈ cellr+1 bs(ξ) \ cellr+1A,

tl(he1) and tl(he2) agree over Cl e1 ∩ Cl e2, and that for any cell

e ∈ cellr+1 bs(ξ) \ cellr+1A,

tl(he) and tl(hr) agree over Cl e∩ (A∪ skelr bs(ξ)). This implies that hr and he,
e ∈ cellr+1 bs(ξ) \ cellr+1A, yield together a G-map

hr+1 : ξ|A∪skelr+1 bs(ξ) → MilG

extending hr (see Corollary 4.3.2.7). Therefore, using induction, we can produce
a sequence

{hs : ξ|A∪skels bs(ξ) → MilG}∞s=−1

of G-maps with h−1 = f , such that hs extends hs−1 for all s ≥ 0. Since the sets
A ∪ skels bs(ξ) constitute a fundamental cover of bs(ξ), using again Corollary
4.3.2.7 we conclude that the hs's yield a G-map ξ → MilG extending f .

A Promise

Remark 4.4.3.5. The base of the bundle MilG is not a cellular space. However,
we shall see in Chapter 5 that for any topological groupG there are also universal
G-bundles with cellular base; see Theorem 5.6.1.4. By De�nition 4.4.2.7, this
will imply the existence of k-universal G-bundles with cellular base of dimension
≤ k, for any given topological group G and any positive integer k.

4.4.4 Reductions of the Structure Group

De�nition 4.4.4.1. We say that the Steenrod F1-bundle ξ1 with structure
group G1 is obtained from the Steenrod F -bundle ξ with structure group G by
reducing the group G to G1 if ξ is obtained from ξ1 by extending the group G1

to G.
While the extension of the structure group of a Steenrod bundle is a well-

de�ned operation, the reduction of the structure group cannot be carried out
for every Steenrod bundle, and even when it is possible, it may produce bundles
which are not equivalent with respect to the reduced group. In other words, the
mapping

ext : Stnrd(B,F )→ Stnrd(B,F ) (4.4.4.2)

de�ned in Remark 4.4.1.6 may be both non-surjective and non-injective.
We remark that the set-theoretic properties of the mapping (4.4.4.2) are

uniquely determined by the triple B, G, G1, i.e., they are preserved when we
replace F and F1 by other e�ective G-spaces and their corresponding G1-spaces,
while keeping B, G, and G1 the same; this is plain from diagramme (4.4.1.7).
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Recall that given a cellular space B, Stnrd(B,F ) can be interpreted as the
set of homotopy classes of continuous maps from B into a classifying space of
the structure group. Below we describe (4.4.4.2) in the same homotopy terms.

De�nition 4.4.4.3. Let G, G1, F , F1 be as in De�nition 4.4.4.1, and let ζ
and ζ1 be universal bundles with standard �bres F and F1. A continuous map
ψ : bs(ζ1) → bs ζ is called classifying if ψ!(ζ) is F -equivalent to the bundle
obtained from ζ1 by extending the structure group G1 to G. By the de�nition
of a universal bundle, such a map exists whenever bs(zeta1) is a cellular space,
and so it certainly exists when ζ1 = MilG and ζ1 = MilG1 (see De�nition
4.4.3.1).

Theorem 4.4.4.4. Our main claim is that the diagramme

Stnrd(B,F1)
ext // Stnrd(B,F )

π(B, bs(ζ1))
π(idB ,ψ)

//

induz(B,ζ1)

OO

π(B, bs(ζ))

induz(B,ζ)

OO
(4.4.4.5)

commutes for any classifying map ψ and any cellular space B.

Proof. The composition induz(B,C) ◦ π(idB , ζ) takes the homotopy class of
f1 : B → bs ζ1 into the class of the bundle (ψ ◦ f1)!(ζ), while the same ho-
motopy class is taken by ext ◦ induz(B, ζ1) into the class of the bundle ob-
tained from f1)

!ζ1 extending the structure group G1 to G. Since the exten-
sion of the structure group and the induction construction commute (see Re-
mark 4.4.1.6), the last class contains f !1(ψ

!ζ), and it remains to observe that
f !1(ψ

!ζ) = (ψ ◦ f1)!ζ.

Remark 4.4.4.6. The commutativity of the diagramme (4.4.4.5) and the invert-
ibility of its vertical mappings imply that induz(B, ζ1) is an injective mapping
from the set of homotopy classes of maps g : B → bs(ζ1), such that ψ ◦ g is
homotopic to a given map f : B → bs(ζ), onto the set of classes of F1-equivalent
F1-bundles which are obtained from f !ζ by reducing the structure group G to
G1. In particular, a Steenrod F -bundle ξ with cellular base admits the reduc-
tion of the group G to G1 if and only if any continuous map f : bs ξ → bs ζ
such that f !(ζ) is F -equivalent to ξ is homotopic to the composition of some
continuous map bs(ξ)→ bs(ζ1) with ψ.

4.4.5 Exercises

Exercise 4.4.5.1. Given a topological group G and a positive integer k, denote
by Mil(G, k) the restriction of the bundle MilG to TG(k)/G, i.e., the bundle
(TG(k),proj, TG(k)/G). Show that Mil(G, k) is a (k − 1)-universal G-bundle.

Exercise 4.4.5.2. Show that Mil(Z/2Z) is isomorphic to (S∞,proj,RP∞), while
Mil(Z/2Z, k) (see Exercise 4.4.5.1) is isomorphic to (Sk−1,proj,RP k−1).
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Exercise 4.4.5.3. Show that MilS1 is isomorphic to (S∞,proj,CP∞), while
Mil(S1, k) is isomorphic to (S2k−1,proj,CP k−1).

Exercise 4.4.5.4. Let X be a compact n-dimensional Cr-manifold, 1 ≤ r ≤ ∞.
Consider the right action of DiffrX on Embr(X,Rq), given by

(j, φ) 7→ j ◦ φ, [j ∈ Embr(X,Rq), φ ∈ DiffrX],

and the limit right action of DiffX on

lim(Embr(X,Rq), abr Cr(idX, incl) : Embr(X,Rq)→ Embr(X,Rq+1)).

Show that

(limEmbr(X,Rq),proj, [limEmbr(X,Rq)]/DiffrX)

is a universal DiffrX-bundle, while

(Embr(X,Rq),proj,Embr(X,Rq)/DiffrX)

is a (q − 2n− 1)-universal DiffrX-bundle, for any q ≥ 2n+ 1.
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4.5 VECTOR BUNDLES

4.5.1 General De�nitions

Remark 4.5.1.1. The main objective of this section is to study those Steenrod
bundles whose standard �bre is either Rn with the usual action of one of the
groups GL(n,R), GL+(n,R), O(n), or SO(n), or Cn with the usual action of
GL(n,C) or U(n).

Since all the standard �bres listed above are topologically e�ective, the cor-
responding bundles may be also regarded as Ehresmann�Feldbau bundles with
the same standard �bres (see Subsection 4.3.4). We shall proceed in this way
and ignore completely the topology on the set of marked homeomorphisms in
the course of the entire section.

To simplify the discussion, we introduce a special notation for the above
standard �bres: GLRn, GL+ Rn, ORn, SORn, and GLCn, UCn.

Standard Fibre GLRn

De�nition 4.5.1.2. A Steenrod bundle with standard �bre GLRn is called an
n-dimensional real vector bundle.

Since a space with a GLRn-structure is simply an n-dimensional real vec-
tor space (see Example 4.3.1.3), a W-GLRn-bundle is simply a bundle whose
�bres are n-dimensional real vector spaces. Moreover, a W-GLRn-equivalence
of W-GLRn-bundles is an equivalence that is linear on �bres. Therefore, an n-
dimensional real vector bundle is a bundle whose �bres are n-dimensional real
vector spaces, and which is locally trivial in the natural vector sense: every point
of the base has a neighbourhood U over which the given bundle is equivalent to
(U × Rn,proj1, U) via an equivalence which is linear on each �bre.

Theorem 4.5.1.3. A bundle ξ whose �bres are n-dimensional real vector spaces
is an n-dimensional real vector bundle (i.e., ξ is locally trivial in the previous
vector sense) if and only if:

1. ξ is topologically locally trivial;

2. the partial vector operations in tl(ξ), i.e., the maps

R× tl(ξ)→ tl(ξ), (λ, x) 7→ λx,

{(x1, x2) ∈ tl(ξ)× tl(ξ)|proj ξ(x1) = proj ξ(x2)} → tl(ξ)),

(x1, x2) 7→ x1 + x2

are continuous.

Proof. The necessity of these conditions is obvious. Let us verify their su�-
ciency. Let b0 ∈ bs(ξ). Fix an arbitrary basis, v1, . . . , vn, of the vector space
(proj(ξ))−1(b0), a neighbourhood U of b0 such that ξ|U is topologically trivial,
and a trivialisation h : (U × Rn,proj1, U)→ ξ|U . De�ne a map,

h′ : (U × Rn,proj1, U)→ ξ,
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linear on �bres, by the formula

tl(h′(b, orti) = tlh(b,proj2 ◦ tlh−1(vi)), proj2 = [proj2 : U × Rn → Rn].

Now pick disjoint neighbourhoods, K and N , of the set

proj2 ◦ tl(h−1) ◦ tlh′(b0 × Sn−1)

and of the point
proj2 ◦ tl(h−1) ◦ tlh′(b0, 0) ∈ Rn,

respectively, and denote by V the neighbourhood of b0 consisting of all b ∈ U
such that tlh′(b × Sn−1) ⊂ tlh(b ×K) and tlh′(b, 0) ∈ tlh(b × N). It is clear
that

b ∈ V =⇒ tlh′(b, 0) ̸∈ tlh′(b× Sn−1),

and thus the map abrh′ : (V × Rn,proj1, V ) → ξ|V is non-degenerate on each
�bre. Consequently, we can apply Theorem 4.3.2.8 to abrh′, taking F to be
Rn, regarded as a TopRn-space ((V × Rn,proj1, V ) and ξ|V are thought of
as Steenrod F -bundles; see Remark 4.3.4.7). We conclude that abrh′ is an
equivalence in the topological sense, and since abrh′ is also linear on �bres, the
proof is complete.

Standard Fibre ORn

De�nition 4.5.1.4. A Steenrod bundle with standard �bre ORn is called an
n-dimensional Euclidean bundle.

Since a space with an ORn-structure is an n-dimensional Euclidean space,
a W-ORn-bundle is simply a bundle whose �bres are n-dimensional Euclidean
spaces. Moreover, it is clear that any W-ORn-equivalence of W-ORn-bundles
is an equivalence which is an orthogonal map on each �bre. Therefore, an
n-dimensional Euclidean bundle is a bundle whose �bres are n-dimensional Eu-
clidean spaces and which is locally trivial in the natural Euclidean sense: every
point of the base has a neighbourhood U over which the bundle is equivalent to
(U ×Rn,proj1, U) via an equivalence which is an orthogonal map on each �bre.

Theorem 4.5.1.5. A bundle ξ whose �bres are n-dimensional Euclidean spaces
is an n-dimensional Euclidean bundle (i.e., ξ is locally trivial in the Euclidean
sense) if and only if it satis�es

(i) ξ is topologically locally trivial;

(ii) the partial vector operations in tl(ξ), i.e., the maps

R× tl(ξ)→ tl(ξ), (λ, x) 7→ λx,

{(x1, x2) ∈ tl(ξ)× tl(ξ)|proj ξ(x1) = proj ξ(x2)} → tl(ξ)),

(x1, x2) 7→ x1 + x2

are continuous.
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(iii) the function tl(ξ)→ R, which takes each its length, is continuous.

Note that (i) and (ii) are identical to 1. and 2. of Theorem 4.5.1.3.

Proof. These conditions are obviously necessary. Let us verify that they are
also su�cient. By Theorem (4.5.1.3), (i) and (ii) imply that every point of
bs(ξ) has a neighbourhood U together with a trivialisation linear on �bres,
h : (U × Rn,proj1, U) → ξ|U . Let v1(b), . . . , vn(b) be the basis of the vec-
tor space (proj(ξ))−1(b), b ∈ U , resulting from the standard orthogonalisa-
tion of the basis tlh(b, ort1), . . . , tlh(b, ortn). Now (iii) shows that the vectors
v1(b), . . . , vn(b) depend continuously on b, and it is clear that the map linear on
�bres, h′ : (U ×Rn,proj1, U)→ ξ|U given by tlh′(b, orti) = vi(b) (i = 1, . . . , n),
is a trivialisation, orthogonal on each �bre, of the bundle ξ|U .

Remark 4.5.1.6. Since O(n) ⊂ GLRn, every n-dimensional Euclidean bundle ξ
determines a unique n-dimensional real vector bundle ξ′, through extension of
the structure group. One may use Theorem 4.5.1.5 to interpret the reduction
of the structure group transforming ξ′ into ξ as enriching the bundle ξ′ with an
additional structure: namely, a Euclidean metric on each �bre, such that the
corresponding length function tl ξ′ → R is continuous. This additional structure
is termed a Euclidean metric on ξ′.

Standard Fibres GL+ Rn and SORn

De�nition 4.5.1.7. A Steenrod bundle with standard �bre GL+Rn (respec-
tively, SORn) is called an n-dimensional oriented vector bundle (respectively,
an n-dimensional oriented Euclidean bundle).

Since a space with GL+ Rn-structure (SORn-structure) is simply an n-
dimensional oriented vector space (respectively, an n-dimensional oriented Eu-
clidean space), a W-GL+ Rn-bundle (a W-SORn-bundle) is simply a bundle
whose �bres are n-dimensional oriented vector (respectively, Euclidean) spaces.
It is also plain that a W-GL+ Rn-equivalence of W-GL+ Rn-bundles (a W-
SORn-equivalence of W-SORn-bundles) is simply an equivalence which is orien-
tation preserving and linear (respectively, orthogonal) on �bres. Consequently,
an n-dimensional oriented vector bundle (Euclidean bundle) is a bundle whose
�bres are n-dimensional oriented vector spaces (respectively, Euclidean spaces),
and which is locally trivial in the following sense: every point of the base has
a neighbourhood over which the bundle has a trivialisation that is orientation
preserving and linear (respectively, orthogonal) on �bres.

Remark 4.5.1.8. To obtain a version of Theorem 4.5.1.3 which is suitable for the
oriented case, note that the orientation existing on each �bre of an n-dimensional
oriented vector bundle ξ maps the set of non-degenerate n-frames of the given
�bre into S0. Furthermore, the set of all non-degenerate n-frames of the �bres of
ξ is the total space of the associated bundle assoc(ξ, V ′(n, n)) [where GL+(n,R)
acts on V ′(n, n) as usual; see Theorem 2.3.1.3], and the orientations of the �bres
combine to de�ne a map tl assoc(ξ, V ′(n, n)) → S0. The �oriented� version of
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Theorem 4.5.1.3 asserts that a bundleξ whose �bres are n-dimensional oriented
real vector spaces is an n-dimensional oriented vector bundle if and only it
satis�es conditions (1) and (2) of Theorem 4.5.1.3 and the condition
(iv): the function tl assoc(ξ, V ′(n, n)) → S0, de�ned by the orientations of the
�bres of ξ, is continuous.

Theorem 4.5.1.5 must be modi�ed in a similar fashion. Namely, given an n-
dimensional oriented Euclidean bundle ξ, the orientation of each �bre of ξ maps
the set of orthonormal n-frames of the given �bre into S0. Since the set of all
orthonormal n-frames of all �bres of ξ equals the total space of the associated
bundle assoc(ξ, V (n, n)), we obtain a function tl assoc(ξ, V (n, n)) → S0. The
�oriented� version of Theorem 4.5.1.5 asserts that a bundle ξ whose �bres are n-
dimensional oriented Euclidean spaces is an n-dimensional oriented Euclidean
bundle if and only if it satis�es conditions (1) and (2) of Theorem 4.5.1.3,
condition (iii) of Theorem 4.5.1.5, and condition
(v) : the function tl assoc(ξ, V (n, n)) → S0, de�ned by the orientations of the
�bres of ξ, is continuous.

De�nition 4.5.1.9. Since GL+(n,R) ⊂ GL(n,R), every n-dimensional ori-
ented real vector bundle ξ determines a unique n-dimensional real vector bundle
ξ′, obtained from ξ by extending the structure group. As it follows from the
discussion in Remark 4.5.1.8, when we reduce the structure group and produce
ξ from ξ′, we are endowing the �bres of ξ′' with orientations which combine to
de�ne a continuous map

assoc(ξ′, V ′(n, n) = GL(n,R))→ S0.

This additional structure is termed an orientation of the bundle ξ′.
Similarly, the inclusion SO(n) ⊂ O(n) associates with every n-dimensional

oriented Euclidean bundle ξ a unique n-dimensional Euclidean bundle ξ′, ob-
tained from ξ by extension of the structure group. Again, the reduction of the
structure group which transforms ξ′ into ξ is seen to provide ξ′ with an ori-
entation, i.e., as orienting its �bres in such a manner that the corresponding
function

tl assoc(ξ′, V (n, n) = O(n))→ S0

is continuous.
The real vector and Euclidean bundles possessing orientations are refereed

to as orientable. Since every orientation may be replaced by the opposite one,
as a result of multiplication by −1, every orientable bundle has at least two
orientations.

Standard Fibres GLCn and UCn

De�nition 4.5.1.10. A Steenrod bundle with standard �bre GLCn (UCn) is
called an n-dimensional complex vector (respectively, Hermitian) bundle.

Our discussion of real vector bundles in Theorem 4.5.1.2 and Theorem 4.5.1.3
carries over, word-for-word, for complex vector bundles, and the same is true
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for the discussion in De�nition 4.5.1.4, Theorem 4.5.1.5, and Remark 4.5.1.6
of Euclidean bundles and the Hermitian bundles. In particular, a W-GLCn-
bundle (W-UCn-bundle) is simply a bundle whose �bres are n-dimensional com-
plex vector spaces (respectively, n-dimensional Hermitian spaces); a W-GLCn-
equivalence (W-UCn-equivalence) of W-GLCn-bundles(respectively, W-UCn-
bundles) is simply an equivalence linear (respectively, Hermitian) on �bres; a
W-GLCn-bundle (W-UCn-bundle) is locally trivial if and only if it is topolog-
ically locally trivial and, in addition, the vector operations (respectively, the
vector operations and the length function) are continuous; the reduction of the
structure group which turns a given complex vector bundle, ξ′ into a Hermi-
tian bundle ξ, may be interpreted as endowing ξ′ with a Hermitian metric, i.e.,
as supplying a Hermitian metric (inner product) on each �bre of ξ′, in such a
manner that the resulting length function is continuous on tl(ξ′).

De�nition 4.5.1.11. Given an arbitrary n-dimensional complex vector bun-
dle ξ, we may construct an n-dimensional complex vector bundle, conj ξ, by
replacing each marked homeomorphism α with the composition α ◦ conj, where
conj : Cn → Cn is the usual complex conjugation; conj ξ is called the bundle
conjugate to ξ.

This construction carries over to Hermitian bundles and produces again Her-
mitian bundles, i.e., to every n-dimensional Hermitian bundle ξ there corre-
sponds the conjugate Hermitian bundle conj ξ.

De�nition 4.5.1.12. The extension of structure group de�ned by the inclusion
GL(n,C) ⊂ GL(2n,R) turns n-dimensional complex vector bundles into 2n-
dimensional real vector bundles. Similarly, the extension de�ned by the inclu-
sion U(n) ⊂ O(2n) turns n-dimensional Hermitian bundles into 2n-dimensional
Euclidean bundles. In both cases we call the extension of the structure group
reali�cation, and we denote by Rξ the bundle obtained from ξ by reali�cation.

We recall that the additional structure which turns a given 2n-dimensional
real vector space into an n-dimensional complex space may be described as
a linear transformation whose square equals − id (a �multiplication by −i�).
Similarly, the additional structure which turns a given 2n-dimensional Eu-
clidean space into an n-dimensional Hermitian space may be described as an
orthogonal transformation whose square equals − id. Accordingly, the addi-
tional structure which distinguishes between the n-dimensional complex bun-
dle ξ and Rξ may be regarded as a GLR2n-equivalence, I : Rξ → Rξ, such
that I2 = −(idRξ) (the minus sign is de�ned �bre-wise),and that which distin-
guishes between the n-dimensional Hermitian bundle ξ and Rξ � as an OR2n

-equivalence,I : Rξ → Rξ, such that I2 = −(idRξ). Moreover, we may think of
the reduction of structure group which turns Rξ into ξ as endowing Rξ, with
one of the last two equivalences.

Obviously, R conj ξ = Rξ for any complex vector or Hermitian bundle ξ, and
the shift ξ 7→ conj ξ may be described in the previous language as the shift
I 7→ −I.
Remark 4.5.1.13. Since we have not only GL(n,C) ⊂ GL(2n,R) and U(n) ⊂
O(2n), but also GL(n,C) ⊂ GL+(2n,R) and U(n) ⊂ SO(2n), the reali�cation



300 CHAPTER 4. BUNDLES

of a given n-dimensional complex vector or Hermitian bundle may be e�ected
in two steps: one may �rst extend GL(n,C) to GL+(2n,R) (U(n) to SO(2n)),
and then extend GL+(2n,R) to GL(2n,R) (respectively, SO(2n) to O(2n)).
Therefore, every complex vector or Hermitian bundle ξ provides Rξ with a
canonical orientation.

Maps

De�nition 4.5.1.14. A map of a real or complex vector bundle into another
is said to be linear if it is linear on �bres. Those linear maps which are non-
degenerate (injective) on �bres are called linear monomorphisms. A map be-
tween Euclidean bundles which is both isometric and linear on �bres is called an
orthogonal monomorphism. A map between Hermitian bundles which is both
isometric and linear on �bres is called a unitary monomorphism.

Note that a linear monomorphism between n-dimensional vector bundles
is nothing else but a GLRn-map in the real case and a GLCn-map in the
complex case. Similarly, an orthogonal (unitary) monomorphism between two
n-dimensional Euclidean (respectively, Hermitian) bundles is simply an ORn-
map (respectively, a UCn-map)) .

Vector Fields

De�nition 4.5.1.15. Sections of vector bundles are called vector �elds. This
term is applied equally to the real and complex vector bundles, to the Euclidean
and Hermitian bundles, and to the oriented bundles of both types.

A sequence of k vector �elds is termed a �eld of k-frames. A point of the
base where the corresponding frame is degenerate is a singularity of the given
�eld. A �eld of k-frames with no singularities in an n-dimensional vector bundle
may be regarded as a section of the associated bundle with �bre RV ′(n, k) or
CV ′(n, k). Similarly, a �eld of orthonormal k-frames with no singularities in an
n-dimensional Euclidean or Hermitian bundle may be thought of as a section of
the associated bundle with �bre RV (n, k) or CV (n, k) [in all cases, the structure
group acts as usual].

For every vector bundle there is the zero vector �eld, which takes each point
of the base into the zero vector of the �bre over the given point. As we shall see,
there are vector bundles having no sections without zeros. An n-dimensional
real (complex) vector bundle ξ admits a �eld of n-frames with no singularities
if and only if ξ is GLRn-trivial (respectively, GLCn-trivial); conversely, any
such �eld yields a GLRn-trivialisation (respectively, a GLCn-trivialisation) of
ξ. Similarly, for an n-dimensional Euclidean (Hermitian) bundle ξ, giving a �eld
of orthonormal n-frames is equivalent to giving an ORn-trivialisation (respec-
tively, a UCn-trivialisation) of ξ. Moreover, given an n-dimensional oriented
real vector (Euclidean) bundle ξ, a �eld of n-frames without singularities (re-
spectively, a �eld of orthonormal n-frames) such that the orientations of the
�bres are positive on the frames of the �eld, yields a GL+ Rn-trivialisation (re-
spectively, an SORn-trivialisation) of ξ.
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4.5.2 Constructions

Remark 4.5.2.1. In this subsection we discuss a number of constructions which
shall be applied afterwards to vector, Euclidean, and Hermitian bundles, and
which were not covered by the general theory of Steenrod bundles from �4.3.

Subbundles

De�nition 4.5.2.2. Let ξ be an n-dimensional real vector bundle, and let g be a
section of the bundle assoc(ξ,RG(n, k)) weakly associated with ξ [here GL(n,R)
acts on RG(n, k) in the usual way], i.e., a continuous function which takes each
point b ∈ bs ξ into a k-dimensional subspace of the �bre (proj(ξ))−1(b). Denote
by T the union of all these k-dimensional subspaces, and let ξ|g be the bundle
(T, proj(ξ)|T ,bs(ξ)). Since the �bres of ξ|g are the subspaces singled out by g,
ξ|g is a GLRk-bundle, and it is clear that ξ|g is locally GLRk-trivial.

In fact, let ξ be the standard trivial bundle (B × Rn,proj1, B). Given b0 ∈
B, choose a linear isomorphism ℓ : Rk → g(b0). Then for a su�ciently small
neighbourhood U of b0, the restriction of ξ|g to U admits even a canonical
GLRn-trivialisation,

h : (U × Rk,proj1, U)→ (ξ|g)|U , tl(h(b, v)) = projb(b, ℓ(v));

here projb denotes the projection of the �bre b× Rn onto its subspace g(b).
Therefore, ξ|g is a k-dimensional real vector bundle. We call it the subbundle

of ξ associated with g.

Remark 4.5.2.3. The subbundles of Euclidean, complex vector, or Hermitian
bundles are de�ned similarly. In the Euclidean case, RG(n, k) is regarded as
an O(n)-space, g remains a section of assoc(ξ,RG(n, k)), and the resulting sub-
bundle ξ|g, turns out to be Euclidean (its local ORk-triviality is a consequence
of its local triviality linear on �bres, established in De�nition 4.5.2.2, and of
the continuity of the length; see Theorem 4.5.1.5). The discussion in De�nition
4.5.2.2 carries over, word-for word, to the complex case: all we have to do is
to replace R by C [in particular, the GL(n,R)-space RG(n, k) must be replaced
by the GL(n,C)-space CG(n, k)]. The resulting subbundle, ξ|g, is a complex
vector bundle. Finally, in the Hermitian case, CG(n, k) is considered as a U(n)-
space and the sub-bundle ξ|g is Hermitian (ξ|g is locally UCk -trivial because
it is locally trivial, linearly on �bres, and the length function is continuous; see
De�nition 4.5.1.10).

De�nition 4.5.2.4. It is clear that the inclusion ξ|g → ξ is a linear monomor-
phism in both vector cases, an orthogonal monomorphism in the Euclidean case,
and a unitary monomorphism in the Hermitian case. Conversely, to every lin-
ear, orthogonal, or unitary monomorphism, f : ξ1 → ξ, with bs(ξ1) = bs(ξ) and
bs(f) = id, there corresponds a subbundle of ξ, namely the subbundle asso-
ciated with the section b 7→ tl f((proj(ξ1))

−1(b)) of assoc(ξ,RG(n, dim ξ1)) or
assoc(ξ,CG(n, dim ξ1)). This subbundle is the image of the monomorphism f ,
denoted im f . By Theorem 4.3.2.8, abr f : ξ1 → im f is a GLRn−, GLCn-, ORn-,
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or UCn-equivalence, depending on whether we are in the real vector, complex
vector, Euclidean, or Hermitian case.

We note that the correcting map, corr f : ξ1 → (bs f)!(ξ), which is a linear,
orthogonal, or unitary monomorphism together with f (see Remark 4.3.2.4),
always satis�es bs corr f = id. Therefore, im corr f is meaningful for any linear,
orthogonal, or unitary monomorphism f .

Orthogonal Complements and Quotient Bundles

De�nition 4.5.2.5. If ξ is an n-dimensional Euclidean (Hermitian) bundle,
then to each section g of assoc(ξ,RG(n, k)) (respectively, of assoc(ξ,CG(n, k)))
there corresponds the section g⊥ orthogonal to g: g⊥ is the section of assoc(ξ,RG(n, n−
k)) (respectively, of assoc(ξ,CG(n, n− k))) which takes each b ∈ bs(ξ) into the
orthogonal complement of the subspace g(b) in the �bre (proj(ξ))−1(b). There-
fore, to every k-dimensional subbundle η = ξ|g of the n-dimensional Euclidean
or Hermitian bundle ξ there corresponds an (n−k)-dimensional subbundle, ξg⊥ ,
called the orthogonal complement of the subbundle η, and denoted η⊥.

De�nition 4.5.2.6. A subbundle of a vector bundle has no orthogonal com-
plement, but a corresponding quotient bundle is well de�ned. Namely, let η be
a k-dimensional subbundle of the n-dimensional real or complex vector bundle
ξ. Consider the bundle (T, fact proj(ξ),bs(ξ)), where T is the quotient space of
tl(ξ) by its partition into the sets x + (proj(ξ))−1(b), with x ∈ (proj(ξ))−1(b).
The �bres of this bundle are the quotient spaces (proj(ξ))−1(b)/(proj(η))−1(b),
and so it is a GLRnk

- or GLCnk

�bundle. (T, fact proj(ξ),bs(ξ)) is called the
quotient bundle of ξ by η, denoted by ξ/η.

This construction and the previous one are related: indeed, if we apply
the quotient bundle construction to a Euclidean or Hermitian bundle, we ob-
tain the result of the orthogonal complement construction. More precisely, in
the Euclidean case each quotient (proj(ξ))−1(b)/(proj(ξ))−1(b) is an (n − k)-
dimensional Euclidean space; hence, ξ/η is an ORn−k-bundle, and the map
h : η → ξ/η, given by tlh(x) = proj(x), where proj = [proj : tl(ξ)→ tl(ξ/η)], is
anORn-equivalence. Similarly, in the Hermitian case, (proj(ξ))−1(b)/(proj(ξ))−1(b)
are (n − k)-dimensional Hermitian spaces, and hence ξ/η is a UCn−k-bundle,
and the same h is a UCn−k-equivalence. Therefore, the quotient bundle of a
Euclidean (Hermitian) bundle ξ by a subbundle η is a Euclidean (respectively,
Hermitian) bundle of dimension dim ξ − dim η.

From this it is readily seen that the quotient of a vector bundle ξ by a
subbundle η is a vector bundle of dimension dim ξ−dim η. All we have to check
is that ξ/η is locally trivial linearly on �bres whenever ξ is a standard trivial
bundle. But this is immediate from the previous discussion if we note that such
a ξ may be assumed to be Euclidean in the real case, and Hermitian in the
complex case .

Remark 4.5.2.7. For real vector or Euclidean bundles, the orientation of each of
the three spaces, (proj(ξ))−1(b), (proj(η))−1(b), (proj(ξ))−1(b)/(proj(η))−1(b),
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is uniquely determined by the orientations of the other two (see Remark 3.1.3.10).
Consequently, the orientability of two out of the three bundles, ξ, η, ξ/η implies
the orientability of the third, and given orientations of two of them canonically
determine the orientation of the third.

Sums

De�nition 4.5.2.8. The vector bundle ξ is said to decompose into the (direct)
sum of its subbundles ξ1 and ξ2 if each �bre (proj(ξ))−1(b) is the direct sum
of its subspaces (proj(ξ)1)−1(b) and (proj(ξ2))

−1(b). A Euclidean or Hermitian
bundle ξ decomposes into the (orthogonal) sum of its subbundles ξ1 and ξ2 if each
�bre (proj(ξ))−1(b) is the orthogonal sum of (proj(ξ)1)−1(b) and (proj(ξ2))

−1(b).

In the Euclidean and Hermitian cases, every subbundle ξ1 of the given bundle
ξ splits ξ into the sum of its subbundles ξ1 and ξ⊥1 . We show in Subsection 4.5.4
that given any vector bundle ξ with cellular base and any subbundle ξ1 of ξ,
there is a subbundle ξ2 of ξ such that ξ decomposes into the direct sum of ξ1
and ξ2; see Remark 4.5.4.7.

If the vector bundle ξ decomposes into the sum of its subbundles ξ1 and ξ2,
then the quotient bundle ξ/ξ1 is canonicallyGLRdim ξ2- orGLCdim ξ2-equivalent
to ξ2: this canonical equivalence h : ξ2 → ξ/ξ1 is given by

tlh(x) = proj(x), proj = [proj : tl(ξ)→ tl(ξ/ξ1)].

Such an equivalence exists also in the Euclidean and Hermitian cases, when
O or U replaces GL (in fact, we have already established this in De�nition
??). We now introduce a construction which reverses the above process and,
in particular, allows us to recover a bundle which decomposes into a sum of
subbundles from its summands.

De�nition 4.5.2.9. Let ξ1 and ξ2 be real vector bundles of dimensions n1 and
n2 and with common base. Then ξ1×ξ2 is a Steenrod bundle with base bs(ξ1)×
bs(ξ2) and structure group GL(n1,R) × GL(n2,R). The bundle diag!(ξ1 × ξ2)
where diag : bs(ξ1) → bs(ξ1) × bs(ξ1), has the same structure group (and base
bs(ξ1)). Extending this group to GL(n1 + n2,R), we turn diag!(ξ1× ξ2) into an
(n1 +n2)-dimensional real vector bundle, called the (direct) sum of the bundles
ξ1 and ξ2, and denoted ξ1 ⊕ ξ2.

In the Euclidean, complex vector, and Hermitian cases, the de�nition and
notation of a sum of two bundles are the same. In the Euclidean case, O(n1)×
O(n2) is extended to O(n1 + n2), in the complex vector case, GL(n1,C) ×
GL(n2,C) is extended to GL(n1 + n2,C), and in the Hermitian case, U(n1) ×
U(n2) is extended to U(n1+n2); moreover, a sum of Euclidean, complex vector,
or Hermitian bundles is again a Euclidean, complex vector, or Hermitian bundle,
respectively.

In all cases,

bs(ξ1 ⊕ ξ2) = bs(ξ1)(= bs(ξ2)),

(proj(ξ1 ⊕ ξ2))−1(b) = (proj(ξ1))
−1(b)⊕ (proj(ξ2))

−1(b);
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the last sum is orthogonal in the Euclidean and Hermitian situations. These
equalities de�ne linear, orthogonal, or unitary monomorphisms, ξ1 → ξ1 ⊕ ξ2
and ξ2 → ξ1 ⊕ ξ2 which act as the identity on the base. These monomorphisms
identify ξ1 and ξ2 with subbundles of ξ1 ⊕ ξ2 and split ξ1 ⊕ ξ2 into the sum of
these subbundles.

Note that the same identi�cations allow us to take the quotients (ξ1⊕ξ2)/ξ1
and ξ1⊕ξ2/ξ2 and using the canonical equivalences de�ned in De�nition 4.5.2.8,
we may actually write (ξ1 ⊕ ξ2)/ξ1 = ξ2 and (ξ1 ⊕ ξ2)/ξ2 = ξ1. In particular, in
the real vector and Euclidean cases, the orientability of two out of the three bun-
dles, ξ1 ξ2, and ξ1⊕ξ2 implies the orientability of the third, and the orientations
of any two of them de�ne canonically an orientation of the third.

Let us add that ξ⊕ξ is always orientable and has a canonical orientation, for
any real vector or Euclidean bundle ξ. This canonical orientation is determined
on each �bre by arbitrary orientations of its summands, provided that we take
identical orientations for both summands.

De�nition 4.5.2.10. The sum of a real vector or Euclidean bundle ξ and the
one-dimensional trivial GLR1- or OR1-bundle (bs(ξ)×R,proj1,bs(ξ)) is called
the suspension of ξ, and is denoted by sus ξ. Similarly, for any complex vector
or Hermitian bundle ξ, the suspension of ξ, sus ξ, is the sum of ξ and the one-
dimensional standard trivial GLC1- or UC1-bundle (bs(ξ)× (C,proj1,bs(ξ)).

Two real vector bundles, ξ1 and ξ2 with bs(ξ1) = bs(ξ2) are said to be stably
equivalent if there exist k1 and k2 such that dim ξ1 + k1 = dim ξ2 + k2 and the
bundles susk1 ξ1 and susk2 ξ2 are GLRdim ξ1+k1-equivalent. Stable equivalence of
Euclidean, complex vector, and Hermitian bundles is similarly de�ned (replacing
GLRdim ξ1+k1 by ORdim ξ1+k1 , GLCdim ξ1+k1 , and UCdim ξ1+k1 , respectively).
A bundle which is stably equivalent to a standard trivial bundle is called stably
trivial.

Finally, we note that for real vector or Euclidean bundles, the orientability
of one of the bundles ξ and sus ξ implies the orientability of the other, and any
orientation of one of them canonically de�nes an orientation of the other; see
De�nition 4.5.2.9.

Complexi�cation

De�nition 4.5.2.11. Given an n-dimensional real vector bundle ξ, consider the
map I : ξ⊕ ξ → ξ⊕ ξ, given by tl I(x, y) = (−y, x) [x and y sit in the same �bre
of ξ]. Obviously, I is a GLR2n-equivalence satisfying I2 = − id. Therefore, I
turns ξ⊕ξ into an n-dimensional complex vector bundle (see De�nition 4.5.1.12),
called the complexi�cation of ξ, and denoted Cξ.

If ξ is an n-dimensional Euclidean bundle, the same construction turns ξ⊕ ξ
into an n-dimensional Hermitian bundle, which is also called the complexi�cation
of ξ and is denoted Cξ.

The operation ξ → Cξ is called complexi�cation in both cases. Note that
RCξ = ξ ⊕ ξ in both cases.
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Remark 4.5.2.12. Each of the bundles RCξ and ξ ⊕ ξ, appearing in the last
equality, carries a canonical orientation; see Remark 4.5.1.13 and De�nition
4.5.2.9. It may be shown that these orientations coincide when n ≡ 0, 1 mod 4,
and are opposite when n ≡ 2, 3 mod 4.

Indeed, pick an arbitrary �bre (proj(ξ))−1(b) of ξ and an arbitrary basis
(respectively, orthonormal basis) v1, . . . , vn in (proj(ξ))−1(b). The canonical
orientation of the �bre (proj(ξ))−1(b)× (proj(ξ))−1(b) of RC takes the value +1
on the basis (v1, 0), (0, v1), . . . , (vn, 0), (0, vn)) of this �bre, and the same holds
for the canonical orientation of the �bre (proj(ξ))−1(b)× (proj(ξ))−1(b) of ξ⊕ ξ
and its basis (v1, 0), (0, v1), . . . , (vn, 0), (0, vn)). It remains to note that, in order
to shift from one basis to the other, we have to perform n(n−1)/2 permutations
of adjacent vectors, and that this number is even for n ≡ 0, 1 mod 4, and odd
for n ≡ 2, 3 mod 4.

Theorem 4.5.2.13. The map

conj : Cξ → conjCξ, given by tl conj(x, y) = (x,−y),

is a GLCn-equivalence (UCn-equivalence) for any n-dimensional real vector
(respectively, Euclidean) bundle ξ.

Proof. Indeed, the equivalences I1, I2 : ξ ⊕ ξ → ξ ⊕ ξ, which turn ξ ⊕ ξ into Cξ
and conjCξ, are given by

tl I1(x, y) = (−y, x), I2 = −I1,

and hence I2 ◦ conj = conj ◦I1.

Theorem 4.5.2.14. The map

K : ξ⊕ conj ξ → CRξ, given by tlK(x, y) = (
1

2
)(x+ y),

1

2
(tl I(y)− tl I(x))),

where I is the equivalence which turns Rξ into ξ, is a GLCn-equivalence (UCn-
equivalence) for any n-dimensional complex vector (respectively, Hermitian)
bundle.

Proof. The equivalences I1, I2 : Rξ ⊕ Rξ → Rξ ⊕ Rξ, which turn Rξ ⊕ Rξ into
ξ ⊕ conj ξ, and CRξ, are given by

tl I1(x, y) = (tl I(x),− tl I(y)), tl I2(x, y) = (−y, x),

and hence I2 ◦K = K ◦ I1.

4.5.3 The Classical Universal Vector Bundles

Remark 4.5.3.1. The main value of the construction in Subsection 4.4.3 is that it
establishes the existence of a universal G-bundle for a completely arbitrary topo-
logical group G. However, for the groups GL(n,R), GL+(n,R), O(n), SO(n),
GL(n,C), and U(n), there are more convenient, classical constructions, which
are described in the present subsection.
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The Grassmann Spaces

De�nition 4.5.3.2. Set

G(∞, n) = lim(G(m,n), incl : G(m,n)→ G(m+ 1, n)),

G+(∞, n) = lim(G+(m,n), incl : G+(m,n)→ G+(m+ 1, n)),

CG(∞, n) = lim(CG(m,n), inclCG(m,n)→ CG(m+ 1, n)).

G(∞, n) consists of all n-dimensional planes of R∞ passing through 0, and is
called the n-th (real) Grassmann space. Similarly, the n-th upper Grassmann
space, G+(∞, n), consists of all oriented n-dimensional planes in R∞ passing
through 0. Finally, the n-th complex Grassmann space, CG(∞, n), consists of
all n-dimensional planes in C passing through 0.

The canonical maps:

G(m,n)→ G(m,n), CG(m,n)→ G(2m, 2n), CG(m,n)→ G+(2m, 2n),

G(m,n)→ G(m+ q, n+ q), G+(m,n)→ G+(m+ q, n+ q),

CG(m,n)→ CG(m+ q, n+ q)

(see Remarks 3.2.2.3 and 3.2.2.7) de�ne for any n the following maps:

G+(∞, n)→ G(∞, n), CG(∞, n)→ G(∞, 2n), CG(∞, n)→ G+(∞, 2n),
G(∞, n)→ G(∞, n+ q), G+(∞, n→ G+(∞, n+ q),

CG(∞, n)→ CG(∞, n+ q).

The �rst of these maps (as the canonical map G+(m,n) → G(m,n) with m <
∞) is a two-sheeted covering projection; the second is the composition of the
�rst and the third; and all these maps, except the �rst, are embeddings.

Remark 4.5.3.3. The Grassmann spaces possess natural cellular decompositions
which we shall presently describe.

First consider G(∞, n). Let Ωn denote the set of all sequences of integers,
ω = {ω(1), . . . , ω(n)}, with 0 ≤ ω(1) ≤ · · · ≤ ω(n), and let us agree to add the
term ω(0) = 0 to each sequence ω ∈ Ωn. Further, let e(ω) denote the subset of
G(∞, n) consisting of those n-planes γ in R∞ (passing through 0) such that

dim(γ ∩ Rm) = max{s|ω(s) + s ≤ m},

for all m. We show that the sets e(ω), ω ∈ Ωn, yield a cellular decomposition
of G(∞, n), with dim e(ω) = d(w), where d(ω) = ω(1) + · · ·+ ω(n).

We have to produce a characteristic map, chare(ω) : Dd(ω) → G(∞, n). Fix
ω and, for points u, v ∈ Sω(n)+n−1 such that u + v ̸= 0, denote by r(u, v) ∈
SO(ω(n)+n) the orthogonal transformation which takes u into v and keeps �xed
all the vectors of Rω(n)+n which are orthogonal to u and v. Further, let Hi de-
note the ω(i)-dimensional hemisphere consisting of all points (x1, . . . xω(i)+i) ∈
Sω(i)−i−1 such that xω(j)+j = 0 for j = 1, . . . , i+ 1, and xω(i)+i) ≥ 0. Consider



4.5. VECTOR BUNDLES 307

the map φ : H1 × · · · ×Hn → G(∞, n) which takes each sequence (u1, . . . , un)
into the plane spanned by the n-frame: (which is obviously orthonormal)

u1,[r(ortω(1)+1, u1)](u2), . . . ,

[r(ortω(1)+1, u1) ◦ · · · ◦ r(ortω(n−1)]n−1, un−1)](un).
(4.5.3.4)

Then φ is continuous and maps int(H1 × · · · ×Hn) into e(ω), and ∂(H1 × · · · ×
Hn) into a union of sets e(ω′) with d(ω′)) < d(ω). Moreover, its compression
abrφ : int(H1 × · · · ×Hn) → e(ω) is a homeomorphism: its inverse takes each
plane γ ∈ e(ω) into the sequence (u1, . . . , un), with

u1 = v1, u2 = [r(ortω(1)+1), u1]
−1(v2), . . . ,

un = [r(ortω(1)+1, u1) ◦ · · · ◦ [r(ortω(n−1)+n−1, un−1)]
−1(vn),

where v1, . . . , vn is an orthogonal basis of γ, selected in such a way that vi sits
in the hemisphere xω(i)+i > 0 of Sω(i)+i−1 (the vectors v1, . . . , vn are uniquely
determined by these requirements). Therefore, one may take chare(ω) to be the
composition

Dd(ω) → Dω(1) × · · · × Dω(n) → H1 × · · · ×Hn
φ−→ G(∞, n),

where the left map is the inverse of the homeomorphism indicated in Remark
1.2.6.9, and the middle map is the product of the homeomorphisms Dω(i)Hi

given by

(x1, . . . , xω(i)) 7→

(x1, . . . , xω(i), 0, xω(i)+1, . . . , Xω(2), 0, . . . , 0, xω(i−1)+1, . . . , xω(i), (1−
ω(i)∑
1

x2j )
1/2).

The cellular decomposition of G+(∞, n) has twice as many cells as that of
G(∞, n). Namely, over each cell e(ω) sit two cells, e+(ω) and e−(ω), ofG+(∞, n),
which are homeomorphically mapped onto e(ω) by the projection G+(∞, n)→
G(∞, n): e+(ω) is made up of planes oriented in such a way that the orientation
is positive on the basis v1, . . . , vn described above, while e−(ω) is made up of
the same planes, but with the opposite orientations. The characteristic maps
for e+(ω) and e−(ω) are constructed in the same manner as chare(ω), but now
the plane spanned by the frame (4.5.3.4) is oriented [its orientation is positive
(negative) on (4.5.3.4) for e+(ω) (respectively, for e−(ω))].

The cellular decomposition of CG(∞, n) is given by the cells Ce(ω), ω ∈ Ωn,
which are de�ned precisely as the e(ω)'s if one replaces R∞ and Rm by C∞ and
Cm; dimCe(ω) = 2d(ω), and charCe(ω) is the exact complex-Hermitian analogue
of the map chare(ω).

Remark 4.5.3.5. The above cellular decompositions contain only a �nite num-
ber of cells of a given dimension, and hence satisfy property (C). Since each of
the manifolds G(m,n), G+(m,n), and CG(m,n) is covered by a �nite number
of cells, and since these manifolds constitute fundamental covers of the spaces
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G(∞, n), G+(∞, n), and CG(∞n), our cellular decompositions satisfy also prop-
erty (W). Finally, from Theorem 1.2.4.6 it follows that G(∞, n), G+(∞, n),
and CG(∞n) are normal. Therefore, the above cellular decompositions turn
G(∞, n), G+(∞, n), and CG(∞n) into cellular spaces.

It is clear that G(m,n), G+(m,n), and CG(m,n) are subspaces of G(∞, n),
G+(∞, n), and CG(∞n) in the cellular sense, and so they are cellular spaces
too.

For n = 1, G(m,n)), CG(m,n), G(∞, n), and CG(∞, n) are simply RPm−1,
CPm−1, RP∞, and CP∞, respectively, and the above cellular decompositions
are identical with those described in Remarks 2.1.3.4 and 2.1.3.5.

Remark 4.5.3.6. Note that the canonical embeddings

G(∞, n)→ G(∞, n+q), G+(∞, n)→ G+(∞, n+q), CG(∞, n)→ CG(∞, n+q)

(see De�nition 4.5.3.2) are cellular. The image of the �rst, the second and the
third respectively contain

skelnG(∞, n+ q), skelnG+(∞, n+ q), skel2n+1 CG(∞, n+ q).

The inclusions

G(m,n) ⊃ skelm−nG(∞, n), G+(m,n) ⊃ skelm−nG+(∞, n),
CG(m,n) ⊃ skel2m−2n+1 CG(∞, n)

are equally evident.

The Grassmann Bundles

De�nition 4.5.3.7. Let 0 ≤ n ≤ m ≤ ∞ and n < ∞. We let T (m,n),
T+(m,n), and CT (m,n), denote those subsets of the respective productsG(m,n)×
Rm, G+(m,n)×Rm, and CG(m,n)×Cm, consisting of all pairs (γ, x) such that
x ∈ γ. Consider the bundles (T (m,n),proj, G(m,n)), (T (m,n),proj, G+(m,n)),
and (CT (m,n),proj,CG(m,n)), where proj(γ, x) = γ. The �bres of the �rst
(second; third) bundle are Euclidean spaces (respectively, oriented Euclidean
spaces; Hermitian spaces). Moreover, the �rst (second; third) bundle is lo-
cally W-ORn-trivial (respectively, locally W-SORn-trivial; locally W-UCn-
trivial), and hence it is a Euclidean (respectively, oriented Euclidean; Hermi-
tian) bundle. We denote these bundles by Grass(m,O(n)), Grass(m, SO(n)),
and Grass(m,U(n)). In addition, by extending the respective structure groups,
O(n), SO(n), and U(n), to GL(n,R), GL+(n,R), and GL(n,C), we obtain bun-
dles denoted byGrass(m,GL(n,R)), Grass(m,GL+(n,R)), andGrass(m,GL(n,C)).
The bundles of these six series are called Grassmann bundles. For m = ∞, we
use the simpler notations GrassO(n), Grass SO(n), GrassU(n), GrassGL(n,R),
GrassGL+(n,R) , and GrassGL(n,C).

Note that for m < ∞, Grass(m,O(n)) is nothing else but the subbundle
of the standard trivial bundle (G(m,n) × Rm,proj, G(m,n)) (viewed as a Eu-
clidean bundle) associated with the diagonal section, γ 7→ (γ, γ) of the bundle
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(G(m,n) × G(m,n),proj1, G(m,n)). The same holds, with obvious modi�ca-
tions, for the remaining �ve series.

Theorem 4.5.3.8. The bundles GrassG with G = GL(n,R), GL(n,R), O(n),
SO(n), GL(n,C), U(n) are universal.

Proof. The proofs for the di�erent groups G di�er only in some obvious details,
and are all very similar to the proof of Theorem 4.4.3.4. We shall treat here
only the group GL(n,R). According to De�nition 4.4.2.2, it su�ces to show
that given any n-dimensional real vector bundle ξ with cellular base and any
subspace A ⊂ bs)ξ), every GLRn-map g : ξ|A → GrassGL(n,R) extends to a
GLRn-map ξ → GrassGL(n,R).

Assume �rst that bs(ξ) = Dr+1 (for some r) and A = Sr. In this case ξ is
GLRn-trivial, and so we may actually assume that ξ is the standard trivial bun-
dle (Dr+1×Rn,proj1,Dr+1). The desired extension of g, f : ξ → GrassGL(n,R),
can be described explicitly: let g1 be the composite map

Sr × Rn tl(g)−−−→ tl(GrassGL(n,R)) incl−−→ G(∞, n)× R∞ proj2−−−→ R∞

and de�ne f1 : Dr+1 × Rn → R∞ by

f1(ty, (x1, . . . , xn)) = tg1(y, (x1, . . . , xn))+(1−t2)1/2(0, . . . , 0︸ ︷︷ ︸
m

, x1, . . . , xn, 0, . . . ),

where y ∈ Sr, t ∈ I, and m is the smallest number s such that Rs ⊃ g1(Sr ×
Sn−1); �nally, set tl(f(y, x)) = (f1(y × Rn), f1(y, x)).

The general case reduces to this special situation. Assume that the cellular
space bs(ξ) is rigged and that we already have a GLRn-map

fr : ξ|A∪skelr bs(ξ) → GrassGL(n,R)

which extends g. The above argument shows that for every cell e ∈ cellr+1 bs(ξ)\
cellr+1A the GLRn-map

ge = fr ◦ adj[abr chare : Sr → A ∪ skelr bs(ξ)] : char!e ξ|Sr → GrassGL(n,R)

extends to a GLRn-map he : char!e ξ → GrassGL(n,R), and it is clear that
tl(he) is constant on the elements of the partition zer(tl adj chare). Applying
Theorem 4.3.2.6 (with B = Dr+1 and p = [abrChare : Dr+1 → Cl(e)]), we con-
clude that he de�nes a GLRn-map ξ|Cl(e) → GrassGL(n,R), which we denote
by fe.

Now note that for any two cells,

e1, e2 ∈ cellr+1 bs(ξ) \ cellr+1A,

tl(fe) and tl(fr) agree over Cl(e1) ∩ Cl(e2), and that for any cell

e ∈ cellr+1 bs(ξ) \ cellr+1A,
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tl(fe) and tl(fr) agree over Cl(e) ∩ (A ∪ skelr bs(ξ)). From this compatibility it
follows that the maps fr and fe, e ∈ cellr+1 bs(ξ) \ cellr+1A, combine to de�ne
a GLRn-map

fr+1 : ξ|A∪skelr+1
bs(ξ)→ GrassGL(n,R)

which extends r; see Corollary 4.3.2.7. Therefore, using induction, we can pro-
duce a sequence of GLRn-maps,

{fs : ξ|A∪skels bs(ξ)→ GrassGL(n,R)∞s=−1}

such that $f−1 = g and fs extends fs−1, s ≥ 0. Finally, the maps fs de�ne a
GLRn-map ξ → GrassGL(n,R) extending g.

Corollary 4.5.3.9. The bundles

Grass(m,GL(n,R)),Grass+(m,GL(n,R)),Grass(m,O(n)),Grass(m, SO(n))

are (m− n)-universal. The bundles

Grass(m,GL(n,C)),Grass(m,U(n))

are (2m− 2n+ 1)-universal

Proof. This is a corollary of Theorem 4.5.3.8 (see Remark 4.5.3.6 and De�nition
4.4.2.7).

Associated Principal Bundles

De�nition 4.5.3.10. When m < ∞, the total spaces of the principal bundles
associated with the Grassmann bundles

Grass(m,GL(n,R)), Grass(m,GL+(n,R)), Grass(m,GL(n,C)),
Grass(m,O(n)), Grass(m,SO(n)), Grass(m,U(n)),

are obviously V ′(m,n), V ′(m,n), CV ′(m,n), and V (m,n), V (m,n), CV (m,n).
The corresponding projections are the maps described in Remarks 3.2.2.3 and
3.2.2.7:

V ′(m,n)→ G(m,n), V ′(m,n)→ G+(m,n), CV ′(m,n)→ CG(m,n),
V (m,n)→ G(m,n), V (m,n)→ G+(m,n), CV (m,n)→ CG(m,n).

(4.5.3.11)

The same is true form =∞, if V ′(∞, n), CV ′(∞, n), V (∞, n), and CV (m,n)
are understood as lim−→(V ′(m,n), incl), lim−→(CV ′(m,n), incl), lim−→(V (m,n), incl),
and lim−→(CV (m,n), incl), and the projections (4.5.3.11) with m = ∞ as the
limits of the projections (4.5.3.11), m < ∞. V ′(∞, n), CV ′(∞, n), V (∞, n),
and CV (m,n) are are called Stiefel spaces.

It is clear that for m < ∞0 the canonical right actions of the structure
groups on the above total spaces (see De�nition 4.3.2.10) are exactly the right
actions described in Remarks 4.2.3.16 and 4.2.3.17, while for m = ∞ they are
the colimits (inductive limits) of the latter.
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The Bundles assoc(GrassO(1),O(1)) and assoc(GrassU(1),U(1))

Theorem 4.5.3.12. The principal bundle associated with GrassO(1) is O(1)-
isomorphic to MilO(1). The principal bundle associated with GrassU(1) is
U(1)-isomorphic to MilU(1).

Proof. It su�ces to �nd an O(1)-homeomorphism

tl(MilO(1))→ tl(assoc(GrassO(1),O(1))),

when we regard tl(MilO(1)) and

tl(assoc(GrassO(1),O(1))) = V (∞, 1)[= S∞]

as right O(1)-spaces ; similarly, viewing tl(MilU(1)) and

tl(assoc(GrassU(1),U(1))) = CV (∞, 1)[= S∞]

as right U(1)-spaces, we need only exhibit a U(1)-homeomorphism

tl(MilU(1))→ tl(assoc(GrassU(1),U(1)));

see Corollary 4.3.2.9 and De�nition 4.3.2.10. In both cases such a homeomor-
phism is given by the formula

{proj(gi, ti)}∞i=1 → {gi
√
ti}∞i=1.

The meaning of the left-hand side was explained in Remark 4.4.3.2, while in the
right-hand side the elements gi of O(1) or U(1) are thought of as numbers (the
following inclusions are used: V (∞, 1) ⊂ R∞, CV (∞, 1) ⊂ C∞, O(1) = S0 ⊂ R,
and U(1) = S1 ⊂ C.

4.5.4 The Most Important Reductions of the Structure

Group

Remark 4.5.4.1. The use of Grassmann bundles enables us to apply the scheme
presented in Subsection 4.4.4 to the problems raised in Subsection 4.5.1 con-
cerning reductions of the structure group. This is the subject of the present
subsection.

Recall that the reductions corresponding to the inclusions

O(n) ⊂ GL(n,R), SO(n) ⊂ GL+(n,R), U(n) ⊂ GL(n,C), (4.5.4.2)

are equivalent to the introduction of a Euclidean or Hermitian metric, while the
reductions resulting from the inclusions

GL+(n,R) ⊂ GL(n,R), SO(n) ⊂ O(n), (4.5.4.3)

are equivalent to the introduction of an orientation. Finally, the reductions
resulting from the inclusions

GL(n,C) ⊂ GL(2n,R), U(n) ⊂ O(2n), (4.5.4.4)
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mean the introduction of a complex structure.
For each of the inclusions (4.5.4.2), (4.5.4.3), and (4.5.4.4), we shall exhibit

a canonical classifying map, and then list the most obvious consequences of
these constructions. Moreover, we shall carry out the same programme for the
inclusions

GL(n− s,R) ⊂ GL(n,R), GL+(n− s,R) ⊂ GL+(n,R),
GL(n− s,C) ⊂ GL(n,C),

(4.5.4.5)

and

O(n− s) ⊂ O(n), SO(n− s) ⊂ SO(n), U(n− s) ⊂ U(n). (4.5.4.6)

The reductions of the structure group corresponding to the six inclusions (4.5.4.5)
and (4.5.4.6) may be interpreted as the representation of the given n-dimensional
bundle as the s-fold suspension of an (n− s)-dimensional bundle.

Remark 4.5.4.7. The outlined programme is simple to carry out for inclusions
(4.5.4.2). Indeed, the bundles GrassGL(n,R) and GrassO(n) have the same
base, G(∞, n), and the same is true for GrassGL+(n,R) and Grass SO(n),
with the base G+(∞, n), and for GrassGL(n,C) and GrassU(n), with the base
CG(∞, n). It is obvious that in all three cases the identity map of the base is
classifying. Therefore, the mappings

ext : Stnrd(B,ORn)→ Stnrd(B,GLRn),
ext : Stnrd(B, SORn)→ Stnrd(B,GL+ Rn),
ext : Stnrd(B,UCn)→ Stnrd(B,GLCn)

are invertible for any cellular space B; see De�nition 4.4.4.3. In particular, every
real (complex) vector bundle with cellular base admits a Euclidean (respectively,
Hermitian) metric.

As a corollary, we obtain the theorem already formulated in De�nition
4.5.2.8: given any vector bundle ξ with cellular base and any subbundle ξ1,
there exists a subbundle ξ2 of ξ such that ξ decomposes into the sum of ξ1 and
ξ2.

Remark 4.5.4.8. Similarly, the projection G+(∞, n)→ G(∞, n) is classifying for
both inclusions (4.5.4.3), while the inclusion CG(∞, n)→ G(∞, 2n) is classify-
ing for both inclusions (4.5.4.4). However, a study of the homotopy properties
of these classifying maps is already a quite di�cult task. We shall return to the
�rst of them in �5.6, armed with more sophisticated tools.

Remark 4.5.4.9. For the inclusions (4.5.4.5) and (4.5.4.6) there are also obvious
classifying maps:

for both left inclusions, - the canonical embedding G(∞, n− s)→ G(∞, n),
for both middle inclusions - the canonical embedding G+(∞, n− s)→ G(∞, n),
for both last inclusions - the canonical embedding CG(∞, n− s)→ CG(∞, n)



4.5. VECTOR BUNDLES 313

(see De�nition 4.5.3.2). Identifying G(∞, n−s), G+(∞, n−s), and CG(∞, n−s)
with their images under these embeddings, and using Remark 4.5.3.6, we can
write:

G(∞, n− s) ⊃ skeln−sG(∞, n), G+(∞, n− s) ⊃ skeln−sG(∞, n)
CG(∞, n− s) ⊃ skel2n−2s+1 CG(∞, n).

From the �rst inclusion it follows that the pair (G(∞, n), G(∞, n−s)) is (n−s)-
connected (see Theorem 2.3.2.4), which in turn implies (by Theorems 2.3.2.6 and
2.3.2.7) that the map

π(id, incl) : π(B,G(∞, n− s))→ π(B,G(∞, n))

is invertible for any cellular space B with dimB ≤ n− s, and surjective for any
cellular space B with dimB = n− s. Consequently,

ext : Stnrd(B,GLRn−s)→ Stnrd(B,GLRn)
ext : Stnrd(B,ORn−s)→ Stnrd(B,ORn)

are invertible for any cellular B with dimB ≤ n − s, and surjective for any
cellular B with dimB = n − s. In exactly the same manner the inclusion
G+(∞, n− s) ⊃ skeln−sG+(∞, n) leads to the invertibility (surjectivity) of the
mappings

ext : Stnrd(B,GL+ Rn−s)→ Stnrd(B,GL+ Rn)
ext : Stnrd(B, SORn−s)→ Stnrd(B, SORn)

for any cellular B with dimB ≤ n − s (respectively, dimB = n − s), while
the inclusion CG(∞, n − s) ⊃ skel2n−2s+1 CG(∞, n) implies the invertibility
(surjectivity) of the mappings

ext : Stnrd(B,GLCn−s)→ Stnrd(B,GLCn)
ext : Stnrd(B,UCn−s)→ Stnrd(B,UCn)

for any cellular B with dimB ≤ 2(n − s) (respectively, dimB = 2n − 2s + 1).
Therefore, every n-dimensional real (complex) vector bundle with cellular base
of dimension ≤ n − s (respectively, ≤ 2n − 2s + 1) is GLRn-equivalent (re-
spectively, GLCn-equivalent) to the s-fold suspension of an (n− s)-dimensional
bundle; furthermore, if given two (n − s)-dimensional real (complex) vector
bundles with cellular base of dimension < n − s (respectively, < 2n − 2s + 1)
their s-fold suspensions are GLRn-equivalent (respectively, GLCn-equivalent),
then the bundles themselves are GLRn−s-equivalent (respectively, GLCn−sS-
equivalent).

4.5.5 Exercises

Exercise 4.5.5.1. Let ξ be an n-dimensional real vector bundle. Show assoc(ξ,Rn\
0) is equivalent (in the sense of De�nition 4.1.1.2) to the bundle with total space
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{xG ∈ tl(ξ)|x ̸= 0} and whose projection is the restriction of proj(ξ) to this sub-
space of tl(ξ) .

Let ξ be an n-dimensional Euclidean bundle. Show that assoc(ξ,Dn) and
assoc(ξ,Sn−1) are equivalent to the bundles whose total spaces are the subspaces
of tl(ξ) consisting of the vectors of length ≤ 1 and = 1, respectively, and whose
projections are the appropriate restrictions of proj ξ.

Exercise 4.5.5.2. Let ξ be an n-dimensional real (complex) vector bundle. Show
that assoc(ξ, V ′(n, k)) (respectively, assoc(ξ,CV ′(n, k))) is equivalent with the
bundle with total space

{(x1, . . . , xk) ∈ tl(ξ)× · · · × tl(ξ)︸ ︷︷ ︸
k

|proj ξ(x1)) = · · · = proj(ξ(xk)),

x1, . . . , xk linearly independent,

and whose projection is the restriction of the composite map

tl(ξ)× · · · × tl(ξ)
proj1−−−→ tl(ξ)

proj(ξ)−−−−→→ bs(ξ).

Let ξ be an n-dimensional Euclidean (Hermitian) bundle. Show that assoc(ξ, V (n, k))
(respectively, assoc(ξ,CV (n, k))) is equivalent with the bundle with total space

{(x1, . . . , xk) ∈ tl(ξ)× · · · × tl(ξ)︸ ︷︷ ︸
k

|proj ξ(x1)) = · · · = proj(ξ(xk)),

x1, . . . , xk is an orthonormal frame,

and whose projection is the restriction of the composite map

tl(ξ)× · · · × tl(ξ)
proj1−−−→ tl(ξ)

proj(ξ)−−−−→→ bs(ξ).

Exercise 4.5.5.3. Consider the spaces T and S introduced in Exercise 1.2.9.5.
Now GL+(1,R) acts on T \ 0 from the right by ({xi}, t) 7→ {txi}. Clearly
(T \ 0)/GL+(1,R) = S. Show that the GL+(1,R)-bundle de�ned by this ac-
tion is locally trivial, but not trivial. Show that the associated oriented one-
dimensional real vector bundle does not admit a Euclidean metric.
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4.6 SMOOTH BUNDLES

4.6.1 Fundamental Concepts

De�nition 4.6.1.1. Let 1 ≤ r ≤ a. A bundle ξ is called a bundle of class Cr, or
a C-bundle if tl(ξ) and bs(ξ) are Cr-manifolds, and for each point b0 ∈ bs(ξ) there
are a neighbourhood U of b0, a Cr-manifold F with ∂F = ∅ if ∂U ̸= ∅, and a Cr-
di�eomorphism h : U × F → (proj(ξ))−1(U), such that (proj(ξ))−1(h(b, x)) = b
for all b ∈ U and x ∈ F .

U × F h //

proj1
''

(proj(ξ))−1(U) ⊂

proj(ξ)

��

tl(ξ)

proj(ξ)

��
b0 ∈ U ⊂ bs(ξ)

The Cs-bundles with s ≥ r will be referred to as bundles of class ≥ r, or C≥r-
bundles. The C≥1-bundles are called smooth.

If ξ is a Cr-bundle, then proj(ξ) is obviously a Cr-submersion. In particular,
the �bres of a smooth bundle are neat submanifolds of the total manifold tl(ξ)
(see Corollary 3.1.5.8). Moreover, the �bres over points belonging to the same
component of the base of a Cr-bundle are pairwise Cr-di�eomorphic. If bs(ξ) is
connected and ∂ bs(ξ) ̸= ∅, then the �bres have no boundary, and

∂ tl(ξ) = (proj(ξ))−1(∂ bs(ξ)),

whereas if ∂ bs(ξ) = ∅, then

∂ tl(ξ) = ∪b∈bs)ξ)∂[(proj(ξ))
−1(b)];

in the �rst situation, the restriction

(∂ tl(ξ), abr proj(ξ), ∂[(proj(ξ))−1(b)]

of the bundle ξ to ∂ bs(ξ) is a Cr-bundle, whereas in the second

(∂ tl(ξ), abr proj(ξ),bs(ξ))

is a Cr-bundle.
Given two Cr-bundles, ξ1 and ξ2 such that ∂ bs(ξ) = ∅ and ∂ tl = ∅, the

product ξ1 × ξ2 is a Cr-bundle.
The restriction of a Cr-bundle to a neat submanifold of its base is clearly a

Cr-bundle.
Suppose that ξ is a Cr-bundle, B is a Cr-manifold, and f : B → bs(ξ) is a Cr-

map such that the �bre (proj(ξ))−1(f(b)) has no boundary for all b ∈ ∂B. Then
f !(ξ) is a Cr-bundle, and we say that the bundle f !(ξ) is neatly induced. For
example, given a Cr-bundle ξ, incl!(ξ) is always neatly induced when incl is either
the inclusion of a neat submanifold incl bs(ξ), or the inclusion ∂ bs(ξ)→ bs(ξ);
obviously, incl!(ξ) coincides, as a Cr-bundle, with the corresponding restriction
of ξ.
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De�nition 4.6.1.2. Let 0 ≤ s ≤ r. A map φ from one C≥r-bundle into
another is said to be a Cs-map (a Cs-isomorphism) if tl(ξ) and bs(ξ) are Cs-maps
(respectively, Cs-di�eomorphisms for s ≥ 1, and homeomorphisms for s = 0). A
Cs-isomorphism which is also an equivalence is called a Cs-equivalence.

A C≥r-bundle Â¿ is said to be Cs-trivial if it is Cs-equivalent to a standard
trivial bundle (bs(ξ) × F,proj1,bs(ξ)), where F is a Cr-manifold (such that
∂F = ∅ if ∂ bs(ξ) ̸= ∅). Every Cr-bundle is obviously locally Cr-trivial, meaning
that each point of bs(ξ) has a neighbourhood U such that ξ|U is Cr-trivial; in
particular, every smooth bundle is topologically locally trivial.

If f !(ξ) is neatly induced from the C≥r-bundle ξ by a Cr -map f , then
adj f : f !(ξ) → ξ s a Cr-map. Furthermore, if φ : ξ′ → ξ is a Cr-map, where
ξ and ξ′ are Cr-bundles, and (bs(φ))!(ξ) is neatly induced, then corrφ : ξ′ →
(bs(φ))!(ξ) is also a Cr-map.

Smooth Bundles and Submersions

Theorem 4.6.1.3. Let r ≤ ∞ and let f : X → Y be a Cr-submersion, where
X and Y are Cr-manifolds, X is compact, and f−1(∂Y ) = ∂X. Then (X, f, Y )
is a Cr-bundle. The same holds true when r = a, provided that X admits a
Ca-embedding in Euclidean space.

(See Exercise 4.6.6.1 for a supplement to this theorem.)

Proof. It su�ces to examine the case f(X) = Y : indeed, in the general case the
set f(X) is both open (see Corollary 3.1.5.8) and closed (see Theorem 1.1.7.9),
and hence is a union of whole components of Y . We show that for each point
y0 ∈ Y there are a neighbourhood U of y0, a closed Cr-manifold F , and a Cr-
di�eomorphism h : U × f → f−1(U), such that f(h(y, x)) = y for all y ∈ U and
x ∈ F .

From Corollary 3.1.5.8 (or, if it is more convenient, from Theorem 3.4.8.2),
it follows that f−1(y0) is a neat submanifold of X for y0 ∈ intY , and a neat
submanifold of ∂X for y0 ∈ ∂Y , and in both cases f−1(y0) is closed as an
independent manifold. Set F = f−1(y0), and pick a Cr-embedding j : X → Rq,
a Cr-transversalisation τ of the embedding j|F : F → Rq and a neat tube Tubτ ρ.
Now consider the map

φ : j−1(tubτ ρ)→ Y × F, φ(x) = (f(x),projτ (j(x))).

The following properties of φ are immediate:

� φ is of class Cr;

� φ(∂(j−1(tubτ ρ))) ⊂ ∂(Y × f);

� φ is injective on F ;

� the di�erential dxφ is non-degenerate for all x ∈ F .

Since F is compact, we conclude that φ de�nes a di�eomorphism of a neighbour-
hood of F onto a neighbourhood of φ(F ) = y0×F (see Theorem 3.1.5.5). Using
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once more the compactness of F , we see that the last neighbourhood contains
a set of the form V × F , where V is a neighbourhood of y0 (in Y ). Let U be a
smaller neighbourhood of y0, such that j(f−1(U)) ⊂ tubτ ρ. Then φ−1(U×F ) =
f−1(U), and we can �nally set h = (abrφ)−1 : U × F → f−1(U).

Example 4.6.1.4. The bundles

(V (n, k),proj, G(n, k)), (V (n, k),proj, G+(n, k)), (CV (n, k),proj,CG(n, k)),
(HV (n, k),proj,HG(n, k)),

whose projections are the submersions de�ned in Subsection 3.2.2, are principal
Ca-bundles with structure groups O(k), SO(k), U(k), and Sp(k), respectively.
Similarly,

(V (n, k),proj, V (n, k − q)), (CV (n, k),proj,CG(n, k − q)),
(HV (n, k),proj,HG(n, k − q)),

whose projections are the submersions de�ned in Subsection 3.2.1, are Steenrod
Ca-bundles with structure group

O(n− k + q), U(n− k + q), Sp(n− k + q),

and standard �bres

V (n− k + q, q), CV (n− k + q, q), HV (n− k + q, q)

(on which the above groups act canonically; see Remark 4.2.3.16). The coverings

(R,hel,S1), (S1,helm,S1), (G+(n, k),proj, G(n, k)),

de�ned in Example 4.1.2.6, are also principal Ca-bundles.
Among the previously listed principal Ca-bundles we �nd

(S3,proj,S2), (S7,proj,S4),

whose projections are the Hopf submersions (see Remark 3.2.2.9); they are called
the Hopf bundles. The Hopf submersion S15 → S8 de�nes a Ca-bundle, which is
also known as a Hopf bundle; its �bres are di�eomorphic to S7 (but this bundle
is not endowed with any special structure group).

The Smooth Bundles as Steenrod Bundles

Remark 4.6.1.5. Let F be a Cr-manifold with r ≥ 1. According to Remark
4.2.3.14, F is an e�ective Diffr F -space, and thus every Cr-bundle ξ whose �bres
are Cr-di�eomorphic to F is a W-F-bundle (see Example 4.3.1.5 and De�nition
4.3.2.1). Moreover, ξ is clearly locally W-F-trivial, i.e., it is a Ehresmann�
Feldbau bundle. However, the procedure that enabled us in Subsection 4.3.4 to
turn Ehresmann-Feldbau bundles into Steenrod bundles does not work here: as
we already had the occasion to note (see Exercise 4.3.5.2), when dimF > 0, the
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natural action of Diffr F on F is not topologically e�ective. Nevertheless, the set
MH(ξ) carries a natural topology, transferred from Cr(F, tl(ξ)) with the aid of
the injective mapping MH(ξ) → Cr(F, tl(ξ)) which takes each di�eomorphism
α ∈ MH(ξ) into the map [incl : α(F ) → tl(ξ)] ◦ α. It is clear that with this
topology on MH(ξ), ξ becomes a Steenrod F -bundle.

It is instructive to compare the implicit group structures described above for
smooth bundles with the implicit group structures of locally trivial bundles (see
Remark 4.3.4.7). Here we merely mention two di�culties encountered in the
di�erential situation. Firstly, not every Steenrod F -bundle can be smoothed -
the fact that its base need not be a manifold is already an obstruction. Sec-
ondly, simple examples show that there are F -maps of Cr-bundles with �bres
di�eomorphic to F , which are not Cr-maps.

4.6.2 Smoothings and Approximations

Remark 4.6.2.1. This subsection is similar in character with �3.4: here we gener-
alise some of the results obtained there for smooth manifolds to smooth bundles.
Although part of these results are indeed rather important, some problems are
not touched upon at all. For the sake of brevity, we shall consider below only
the closed case; the reader can �nd some additional information concerning the
(more general) compact case in Subsection 4.6.6 (see Exercises 4.6.6.2-4.6.6.5).

We shall need two notations, for 0 ≤ s ≤ r: if ξ is a Cr-bundle, we let
Sects ξ denote the set of all Cs-sections of ξ; and if ξ and ξ′ are Cr-bundles, we
let Cs(ξ, ξ′) denote the space of all Cs-maps ξ → ξ′. If s ̸= a, both sets carry
natural topologies: Sects ξ is a subspace of Cs(bs(ξ), tl(ξ)), while Cs(ξ, ξ′) is a
subspace of the product Cs(tl(ξ), tl(ξ′))× Cs(bs(ξ),bs(ξ′)).

ξ-Transversalisations and Tubes

Our immediate task is to adapt the de�nitions and theorems of Subsection 3.4.3
for use in the more general setting of this subsection.

De�nition 4.6.2.2. We start with the transversalisations. Let ξ be a smooth
bundle such that tl(ξ) is closed, and let j : tl(ξ) → Rq be a di�erentiable em-
bedding. A continuous map t : tl(ξ) → G(q, q − n), where n = dim tl(ξ) −
dimbs(ξ), is called a ξ-transversalisation of the embedding j if the restric-
tion τ |(proj(ξ))−1(y) is a transversalisation of the embedding j|(proj(ξ))−1(y) for
all points y ∈ bs(ξ). A fundamental example is the normal ξ-transversalisation,
which takes each point x ∈ tl(ξ) into the orthogonal complement of the plane
dxj(Tang[(proj(ξ)]

−1(proj(ξ)(x)))) in Rq. Our ξ-version of Theorem 3.4.3.7
asserts that if ξ, and j are of class Cr (1 ≤ r ≤ a), then j admits a ξ-
transversalisation of class Cr. The proof is an obvious modi�cation of that
of Theorem 3.4.3.7.

Now we move on to tubes. Let τ be an arbitrary ξ-transversalisation of
the embedding j. We de�ne the tube Tubτ ρ and the open tube tubτ ρ as the
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following subsets of bs(ξ)× Rq:

Tubτ ρ = ∪x∈tl(ξ)((proj(ξ))(x)× dτ (x, ρ))
tubτ ρ = ∪x∈tl(ξ)((proj(ξ))(x)× (dτ (x, ρ) \ sτ (x, ρ))),

where dτ (x, ρ) and sτ (x, ρ) are the ball, and respectively the sphere, with centre
j(x) and radius ρ in the plane j(x) + τ(x). Equivalently,

Tubτ ρ = ∪y∈bs(ξ)(y × Tubτ |(proj(ξ))−1(y)
ρ)

tubτ ρ = ∪y∈bs(ξ)(y × tubτ |(proj(ξ))−1(y)
ρ).

The tube Tubτ ρ is neat if there is a σ > ρ such that:

� the sets (proj(ξ))(x)× (dτ (x, σ) \ sτ (x, σ)) are pairwise disjoint,

� tubτ σ is open in bs(ξ)× Rq,

� the map tubτ σ → tl(ξ), which takes (proj(ξ))(x) × (dτ (x, σ) \ sτ (x, σ))
into x, is smooth.

The restrictions of this last map to Tubτ ρ and tubτρ are called projections and
are denoted by projτ (they clearly do not depend upon the choice of σ). If ξ, j,
and τ are of class Cr, r ≥ 1, then the following are true:

� there exists a neat tube;

� every neat tube Tubτ ρ is a submanifold of bs(ξ)× Rq, with intTubτ ρ =
tubτ ρ;

� projτ : Tubτ ρ→ tl(ξ) is a Cr-submersion.

Again, the proof is an obvious modi�cation of the proofs of Theorems 3.4.3.4
and 3.4.3.5. We must also modify appropriately the construction in Remark
3.4.3.3: now the model Tuτ is de�ned as the subset

{(x, t) ∈ tl(ξ)× Rq|t ∈ τ(x)} ⊂ tl(ξ)× Rq,

while nat : Tuτ → bs(ξ)× Rq is given by nat(x, t) = ([projτ (ξ)](x), j(x) + t).

The Basic Theorems

Theorem 4.6.2.3. Let ≤ ∞ and let ξ and ξ′ be Cr-bundles with closed total
spaces tl(ξ) and tl(ξ′), and closed bases bs(ξ) and bs(ξ′). Then Cr(ξ, ξ′) is dense
in Cs(ξ, ξ′) for any s < r. The same holds r = a, provided that tl(ξ), tl(ξ′),
bs(ξ) and bs(ξ′) admit Ca-embeddings in Euclidean spaces.

Proof. Pick a Cr-embedding j′ : tl(ξ′) → Rq′ , a ξ′-transversalisation τ ′ of j′ of
class Cr, and a neat tube Tubτ ′ ρ′. Let U denote the subset of

Cs(tl(ξ), tl(ξ′)× Cs(bs(ξ),bs(ξ′))
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consisting of all the pairs

(F : tl(ξ)→ tl(ξ′), f : bs(ξ)→ bs(ξ′))

such that (f((proj(ξ))(x)), j′(F (x))) ∈ tubτ ′ ρ′ for all x ∈ tl)ξ). Then U is open
and contains Cs(ξ, ξ′). For (F, f) ∈ U , de�ne Φ(F, f) : tl(ξ)→ tl(ξ′) by

x 7→ projτ ′(f((proj(ξ))(x)), j′(F (x))).

Obviously, (φ(F, f), f) ∈ Cs(ξ, ξ′) and the map

Ψ: U → Cs(ξ, ξ′),Ψ(F, f) = (Φ(F, f), f),

is a retraction which takes

U ∩ (Cr(tl(ξ), tl(ξ′))× Cr(bs(ξ),bs(ξ′)))

into Cr(ξ, ξ′). Since

Cr(tl(ξ), tl(ξ′))× Cr(bs(ξ),bs(ξ′))

is dense in,
Cs(tl(ξ), tl(ξ′))× Cs(bs(ξ),bs(ξ′))

(see Theorem 3.4.4.2), the existence of such a retraction implies that Cs((ξ, ξ′)
is dense in Cs((ξ, ξ′).

Theorem 4.6.2.4. Let s < r ≤ ∞, let ξ and ξ′ be arbitrary C≥r-bundles such
that tl(ξ), tl(ξ′), bs(ξ), bs(ξ′) are closed manifolds, and let f : bs(ξ) → bs(ξ′)
be a Cr-map. Then the set

{Φ ∈ Cr(ξ, ξ′)|bs(Φ) = f}

is dense in
{Φ ∈ Cs(ξ, ξ′)|bs(Φ) = f}.

The same holds true for r = a, provided that tl(ξ), tl(ξ′) admit Ca-embeddings
in Euclidean spaces.

Proof. Let F denote the subspace of Cs(bs(ξ),bs(ξ′)) consisting of the maps
tl(Φ) such that Φ ∈ Cs(ξ, ξ′) and bs(Φ) = f . We show that F ∩Cr(ξ, ξ′) is dense
in F

Pick a Cr-embedding j′ : tl(ξ′ → Rq, a ξ′-transversalisation τ ′ of j′ of class
Cr, and a neat tube Tubτ ′ ρ. Consider the subset U ⊂ Cs(tl(ξ), tl(ξ′)) consisting
of all maps F : tl(ξ) → tl(ξ′) such that f((proj(ξ))(x), j′(F (x))) ∈ tubτ ′ ρ for
all x ∈ tl(ξ). It is clear that U is open and contains F . Moreover, the mapping
U → F , transforming each F ∈ U into the map

x 7→ projτ ′(f((proj(ξ))(x)), j′(F (x))).

is a retraction which takes

U ∩ (Cr(tl(ξ), tl(ξ′))× Cr(bs(ξ),bs(ξ′)))

into F ∩Cr(ξ, ξ′). Since Cr(tl(ξ), tl(ξ′)) is dense in Cs(tl(ξ), tl(ξ′)), the existence
of such a retraction shows that F ∩ Cs((ξ, ξ′) is dense in F , as claimed.
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Theorem 4.6.2.5. Let r ≤ ∞, and let ξ and ξ′ be arbitrary C≥r-bundles such
that the manifolds tl(ξ), tl(ξ′), bs(ξ) and bs(ξ′) are closed. If 0 < s < r, then the
set of all Cr-isomorphisms (Cr-equivalences) ξ → ξ′ is dense in the subspace of
all Cs-isomorphisms (respectively, Cs-equivalences) of Cs(ξ, ξ′). The same holds
true for r = a, provided that tl(ξ), tl(ξ′), bs(ξ), bs(ξ′) (respectively, tl(ξ) and
tl(ξ′)) admit Ca-embeddings in Euclidean spaces.

Proof. This is a consequence of Theorems 4.6.2.3, 4.6.2.4, and Corollary 3.4.1.6.

Corollary 4.6.2.6. If two C≥r-bundles with closed total manifolds and bases are
C1-isomorphic and r < ∞, then they are Cr-isomorphic. The same holds true
for r = a, provided that the total manifolds and the bases admit Ca-embeddings
in Euclidean spaces.

If two C≥r-bundles with closed total manifolds are C1-equivalent and r ≤ ∞
then they are Cr-equivalent. The same holds true for r = a, provided that the
total manifolds and the bases admit Ca-embeddings in Euclidean spaces.

Theorem 4.6.2.7. If r ≤ ∞, then given any Cr-bundle ξ with closed tl(ξ) and
bs(ξ), the space Sectr(ξ) is dense in Sects(ξ), for any s < r. The same holds
true for r = a, provided that tl(ξ) and bs(ξ) admit Ca-embeddings in Euclidean
spaces.

Proof. This is a result of Theorem 4.6.2.4, applied to the bundles ξ and (bs(ξ), idbs(ξ),bs(ξ))
and to the map idbs(ξ).

Theorem 4.6.2.8. Every C≥r-bundle ξ such that tl(ξ) and bs(ξ) are closed
manifolds is Cr-isomorphic to a Ca-bundle η with the property that tl(η) and
bs(η) can be Ca-embedded in Euclidean spaces.

Proof. By Theorem 3.4.9.6, there exist Ca-manifolds, T and B, admitting Ca-
embeddings in Euclidean spaces, together with Cr-di�eomorphisms

F : T → tl(ξ), f : B → bs(ξ).

Pick a Cr-embedding j : tl(ξ)→ Rq a ξ-transversalisation τ of j of class Cr, and
a neat tube Tubτ ρ. Let U denote the subset of Cr(T,B) consisting of all the
submersions p : T → B such that the image of the composite map

T
diag−−−→ T × T (f◦p)×(j◦F )−−−−−−−−→ bs(ξ)× Rq

is contained in tubτ ρ. Obviously:

� U is open;

� f−1 ◦ proj(ξ) ◦ F ∈ U ;

� the mapping Φ: U → Cr(T, tl(ξ)), which takes each g ∈ U into the map
x 7→ projτ (f ◦ g(x), j ◦F (x)), is continuous and Φ(f−1 ◦ proj(ξ) ◦F ) = F .
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Since F is a Cr-di�eomorphism, there is a neighbourhood V of f−1 ◦proj(ξ) ◦F
in Cr(T,B) with the property that V ⊂ U and Φ(g) is a Cr-di�eomorphism
for all g ∈ V. Now pick some Ca-map h and set η = (T, h,B). By Theorem
4.6.1.3, η is a Ca-bundle, and it is plain that Φ(h) and f yield a Cr-isomorphism
η → ξ.

4.6.3 Smooth Vector Bundles

Remark 4.6.3.1. Usually, when we encounter a bundle which is smooth, it car-
ries some additional structures, most frequently a group structure of Steenrod
type. In such cases, smoothness plays the same role as does the topology in the
theory of Steenrod bundles discussed earlier (��4.3, 4.4), and it is natural to try
developing this analogy into a weighty theory of smooth Steenrod bundles.

Unfortunately, such a program is beyond the scope of our book. Therefore,
we shall restrict ourselves to the basic facts concerning smooth vector bundles,
which are of main interest to this study, and can be derived in a less cumbersome
manner than the general theory.

We remark that because the �bres of a vector bundle of positive dimension
are not compact, it is not possible to deduce the smoothing and approximation
theorems below (Theorems 4.6.3.8 - 4.6.3.12) from the results of the previous
subsection without resorting to additional devices. However, we prefer to give
simple, straightforward proofs of these theorems, so that this subsection becomes
independent of the previous one.

Fundamental Concepts

De�nition 4.6.3.2. ξ is an n-dimensional real vector Cr-bundle (1 ≤ r ≤ a)
if it is both an n-dimensional real vector bundle and a Cr-bundle, and these
two structures are compatible, meaning that the restriction of ξ over a small
enough neighbourhood of an arbitrary point of bs(ξ) is Cr-GLRn-trivial (i.e.,
is Cr-GLRn-equivalent to a standard trivial bundle, where, of course, a Cr-
GLRn-equivalence is just a GLRn-equivalence which is simultaneously a Cr-
equivalence). The Euclidean, complex vector, and Hermitian Cr-bundles are
similarly de�ned.

Products of vector, Euclidean, or Hermitian C≥r-bundles, as well as bun-
dles induced (in particular, obtained by reducing) such bundles, are again C≥r-
bundles of the same kind, provided the conditions imposed by the corresponding
de�nitions from Subsection 4.6.1 (see De�nition 4.6.1.2) are ful�lled.

We add that the statements and proofs of Theorem 4.3.2.8 and Corollary
4.3.2.9 carry over, with obvious modi�cations, to vector, Euclidean, and Her-
mitian C≥r-bundles. Here we formulate only the Cr-GLRn-version of Corollary
4.3.2.9: let f : ξ → η be a Cr-GLRn-map, where ξ and η are C≥r-GLRn-bundles,
and suppose that the bundle (bs(f))!η is neatly induced (see De�nition 4.6.1.1.);
then corr f is a Cr-GLRn-equivalence.
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Remark 4.6.3.3. The explicit descriptions of the vector, Euclidean, and Hermi-
tian bundles, given in Subsection 4.5.1, have obvious Cr-analogues (1 ≤ r ≤ a).
The Cr-analogue of Theorem 4.5.1.3 asserts that a Cr-bundle whose �bres are
n-dimensional real vector spaces is an n-dimensional real vector Cr-bundle if
and only if the partial vector operations indicated in Theorem 4.5.1.3 are Cr-
maps. Similarly, the Theorem Cr-analogue of Theorem 4.5.1.5 asserts that a
Cr-bundle whose �bres are n-dimensional Euclidean is an n-dimensional Eu-
clidean Cr-bundle if and only if the partial vector operations and the metric
(equivalently, the square of the length of vectors, considered as a function on
the total space) are of class Cr. In particular, in order to turn a real vector
Cr-bundle into a Euclidean Cr-bundle, one has to equip it with a Euclidean Cr-
metric. The corresponding complex formulations (i.e., the Cr-analogues of the
theorems in De�nition 4.5.1.10) are obtained by replacing Euclidean bundles
and Euclidean metrics by Hermitian bundles and Hermitian metrics.

Smooth Grassmann Bundles

Remark 4.6.3.4. The Grassmann bundles de�ned in De�nition 4.5.3.7 provide
(for m < ∞) fundamental examples of smooth vector, Euclidean, and Her-
mitian bundles. Namely, if 0 ≤ n ≤ m < ∞, then Grass(m,GL(n,R)),
Grass(m,GL(n,C)), Grass(m,O(n)), andGrass(m,U(n)) are obviously real vec-
tor, complex vector, Euclidean, and Hermitian Ca-bundles, respectively, all of
them n-dimensional. The third (fourth) bundle di�ers from the �rst (respec-
tively, second) by having a Euclidean Ca-metric (respectively, a Hermitian Cr-
metric).

Theorem 4.6.3.5 below may be thought of as a weakened Cr-analogue (for
r ̸= a) of that part of Corollary 4.5.3.9 concerning Grass(m,GL(n,R)) and
Grass(m,GL(n,C)).

Theorem 4.6.3.5. Let ξ be an n-dimensional real (complex) vector Cr-bundle
with compact base. If r ̸= a, then there are a numberm and a Cr-map f : bs(ξ)→
G(m,n) (respectively, f : bs(ξ)→ CG(m,n)) such that ξ is Cr-GLRn-equivalent
to the bundle f ! Grass(m,GL(n,R)) (respectively, Cr-GLC-equivalent to the
bundle f ! Grass(m,GL(n,C))).

Proof. Since the proofs of the real and complex cases di�er only in some obvious
details, we shall prove only the former. Choose, for every point b ∈ bs(ξ), a chart
ψb ∈ Atlb bs(ξ) such that

ψb(suppψb, b) = (Rq, 0) or (Rq−, 0) [q = dimbs(ξ)]

and ξ|suppψb
is Cr-GLRn-trivial, and then �x a Cr-GLRn-trivialisation,

τb : (suppψb × Rn,proj1, suppψb)→ ξ|suppψb
.

Now cover bs(ξ) by a �nite number of sets ψ−1
b (Dq), say ψ−1

b1
(Dq), . . . , ψ−1

bs
(Dq)

and pick a Cr-function α : Rq → R which equals 1 on Dq and 0 outside 2Dq.
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Finally, de�ne H1, . . . ,Hs : tl(ξ)→ R by

Hi(x) =

{
α(ψbi((proj(ξ))(x))) proj2 ◦ tl τ−1

bi
(x), if x ∈ (proj(ξ))−1(suppψbi),

0, if x ̸∈ (proj(ξ))−1(suppψbi),

where proj2 = [proj2 : suppψbi × Rn → Rn]. De�ne

H : tl(ξ)→ Rn × · · · × Rn = Rsn, H(x) = (H1(x), . . . ,Hs(x)).

Clearly, H is a Cr-map and its restrictions H|(proj(ξ))−1(b) are linear monomor-
phisms for all b ∈ bs(ξ). Set m = sn and

f : bs(ξ)→ G(m,n), f(b) = H((proj(ξ))−1(b).

To verify that the bundles ξ and f ! Grass(m,GL(n,R)) are Cr-GLRn-equivalent,
it is enough to produce a Cr-GLRn-map φ : ξ → Grass(m,GL(n,R)) with
bs(φ) = f . Such a φ is de�ned by

tl(φ) : tl(ξ)→ tl(Grass(m,GL(n,R))), tl(φ)(x) = (f(proj(ξ))(x), H(x))

(recall that tlGrass(m,GL(n,R)) = {(γ, y) ∈ G(m,n)× Rn|y ∈ γ}).

An Application

Theorem 4.6.3.6. If 1 ≤ r ≤ ∞, then every real (complex) vector Cr-bundle
with compact base has a Euclidean (respectively, Hermitian) Cr-metric.

Proof. Since Grass(m,GL(n,R)) (Grass(m,GL(n,C))) has a Euclidean (respec-
tively, Hermitian) Ca-metric, Theorem 4.6.3.6 is a consequence of Theorem
4.6.3.5.

Smoothings and Approximations

Remark 4.6.3.7. Given two real or complex vector C≥r-bundles, ξ and ξ′, and
a Cs-map f : bs(ξ′) → bs(ξ) with r ≥ s ≥ 0, we let Ls(ξ, ξ′; f) denote, in
Theorems 4.6.3.8 and 4.6.3.10 below, the set of all linear Cs-maps φ : ξ′ → ξ
such that bs(φ) = f . If s ̸= a, then Ls(ξ, ξ′; f) inherits a natural topology as a
subset of Cs(ξ′, ξ).

When dim ξ = dim ξ′ = n, bs ξ = bs ξ′, and f = id, Ls(ξ, ξ′; f) contains
the set of all Cr-GLRn-equivalences ξ′ → ξ in the real case, and the set of all
Cs-GLCn-equivalences ξ′ → ξ in the complex case. In both cases this subset is
open for any s ̸= a.

Notice that among the spaces Ls(ξ, ξ′; f) we �nd Sects(ξ), 0 ≤ s ≤ r
(see Remark 4.6.2.1). More precisely, Sects(ξ) is canonically homeomorphic
to Ls(ξ, ξ′; f), where ξ′ is the standard trivial bundle (bs(ξ) × R,proj1,bs(ξ)),
and f = idbs(ξ); the canonical homeomorphism Ls(ξ, ξ′; f) → Sects(ξ) takes
each map φ : ξ′ → ξ into the section b 7→ (tl(φ))(b, 1).
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Theorem 4.6.3.8. Let ξ and ξ′ be real or complex vector C≥r-bundles with
compact bases. If 0 ≤ s < r ≤ ∞, then Lr(ξ, ξ′; f) is dense in Ls(ξ, ξ′; f) for
any Cr-map f : bs(ξ′)→ bs(ξ).

Proof. Since the proofs of the real and complex cases di�er only in some obvious
details, we shall again prove only the former. By Theorem 4.6.3.5, we may
assume that

ξ = g! Grass(m,GL(n,R)), g′! Grass(m′,GL(n′,R),

where
g : bs(ξ)→ G(m,n), g′ : bs(ξ′)→ G(m′, n′)

are some Cr-maps. Then we can identify tl(ξ) with the Cr-submanifold

{(b, y) ∈ bs(ξ)× Rm|y = g(b)} ⊂ bs(ξ)× Rn

and, similarly, tl(ξ′) with the Cr-submanifold

{(b′, y′) ∈ bs(ξ′)× Rm
′
|y′ = g(b′)} ⊂ bs(ξ′)× Rn

′
.

The orthogonal projections of Rm onto its subspaces g(b) with b ∈ bs(ξ) combine
to de�ne a Cr-map p : bs(ξ)×Rm → tl(ξ), and a Cr-map p : bs(ξ′)×Rm′ → tl(ξ′)
is similarly de�ned.

Let A be the Euclidean space of all linear maps Rm → Rm′
(which is the

same as the space of all real (m×m′)-matrices; cf. Remarks 3.2.1.1 or 3.2.1.8),
and consider the mappings

Φ: Ls(ξ, ξ′; f)→ Cs(bs(ξ′), A), Ψ: Cs(bs(ξ′), A)→> Ls(ξ, ξ′; f),

given by

{[Φ(φ)](b′)}(y′) = [proj2 : bs(ξ)× Rm → Rm](tl(φ) ◦ p′(b′, y′))
[tl(ψ(h))](b′, y′) = p(f(b′), [h(b′)](y′))

(where φ ∈ Ls(ξ, ξ′; f), b′ ∈ bs(ξ′), y′ ∈ Rm′
, and h ∈ Cs(bs(ξ′), A)). Clearly,

ψ is continuous (and so is φ) and takes Cr-maps into Cr-maps. Moreover,
ψ ◦ φ = idLs(ξ,ξ′;f), and hence ψ is surjective. Since Cr(bs ξ′, A) is dense
in Cs(bs ξ′, A) (see Theorem 3.4.6.5), we conclude that Lr(ξ, ξ′; f) is dense in
Ls(ξ, ξ′; f). [Explanation: Theorem 3.4.6.5 is applied after we have completed
the space A to a sphere by adding a point; cf. Theorem 3.4.4.2 and 3.4.4.7.]

Theorem 4.6.3.9. Let ξ be a real or complex vector C≥r-bundle with compact
base. If 0 ≤ s < r ≤ ∞, then Sectr(ξ) is dense in Sects(ξ).

Proof. This is a consequence of Theorem 4.6.3.8: Sectr(ξ) = Lr(ξ, ξ′; idbs(ξ))
and Sects(ξ) = Ls(ξ, ξ′; idbs(ξ)), where ξ′ = (bs(ξ)×R,proj1,bs(ξ)); see Remark
4.6.3.7.
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Theorem 4.6.3.10. Let ξ and ξ[′] be n-dimensional real (complex) vector C≥r-
bundles with common compact base. If 0 ≤ s < r ≤ ∞, then the set of Cr-
GLRn-equivalences (respectively, Cr-GLCn-equivalences) ξ′ → ξ is dense in
the subset of Ls(ξ, ξ′; id) consisting of all Cs-GLRn-equivalences (respectively,
Cs-GLCn-equivalences) .

Proof. Since the last subset is open in Ls(ξ, ξ′; id), Theorem 4.6.3.10 is a con-
sequence of Theorem 4.6.3.8.

Corollary 4.6.3.11. If two n-dimensional real (complex) vectorC≥r-bundles
with compact base are GLRn-equivalent (respectively, GLCn�equivalent) and
r ̸= a, then they are Cr-GLRn-equivalent (respectively, Cr-GLCn-equivalent) .

Theorem 4.6.3.12. If the base of the n-dimensional real (complex) vector bun-
dle ξ is a compact C≥r-manifold with 1 ≤ r ≤ ∞, then ξ is GLRn-equivalent
(GLCRn-equivalent) to a real (complex) vector C≥r-bundle. If the base of the
n-dimensional real (complex) vector Cs-bundle ξ is a compact C≥r-manifold,
where 1 ≤ r ≤ ∞, then ξ is Cs-GLRn-equivalent (Cs-GLCn-equivalent) to a
real (complex) vector C≥r-bundle.

Proof. We shall prove again only the real case. Let ξ be an n-dimensional real
vector bundle with bs(ξ) a compact C≥r-manifold. By Corollary 4.5.3.9 and
Theorem 3.5.2.13, ξ is GLRn-equivalent to f ! Grass(m,GL(n,R)), where m is
large enough and f is some continuous map bs(ξ) → G(m,n). If ξ is an n-
dimensional real vector Cs-bundle such that bs(ξ) is a compact C≥r-manifold,
then by Theorem 4.6.3.5 ξ is Cs-GLRn-equivalent to f ! Grass(m,GL(n,R)),
where m is large enough and f is some Cs-map bs)ξ) → G(m,n). In both
cases f is homotopic to a C≥r-map g : bs(ξ)→ G(m,n) (see Theorems 3.4.6.5,
1.3.6.6, and 3.4.5.10), so that ξ is GLRn-equivalent to g! Grass(m,GL(n,R))
(see Theorem 4.4.1.5). This completes the proof of the �rst claim; as for the
second, we need only add that, by Corollary 4.6.3.11, ξ is Cs-GLRn-equivalent
to g! Grass(m,GL(n,R)).

Constructions

Remark 4.6.3.13. We conclude this subsection with a short review of the con-
structions described in �4.5.

By de�nition, a Cs-subbundle of a (real or complex) vector Cr-bundle ξ is a
subbundle of ξ in the sense of De�nition 4.5.2.2 or Remark 4.5.2.3, whose total
space is a Cs-submanifold of tl(ξ). A Cs-subbundle is clearly a vector Cs-bundle.
The Cs-subbundles of Euclidean or Hermitian Cr-bundles are similarly de�ned.
The Cr-bundles of Cr-bundles will be simply referred to as subbundles.

According to De�nition 4.5.2.5, every subbundle η of a Euclidean or Hermi-
tian bundle ξ has an orthogonal complement η⊥, and it is clear that:

� η⊥ is a Cs-subbundle of ξ together with η;

� the canonical equivalence η⊥ → ξ/η (see De�nition ??) turns ξ/η into a
Euclidean or Hermitian Cs-bundle (and thus becomes a Cs-equivalence).
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We see that in the (real or complex) vector Cs-case, ξ/η becomes a vector
Cs-bundle by introducing on ξ a (Euclidean or Hermitian) Cs-metric. Recall,
however, that we have established the existence of such a metric only under the
assumptions that the base is compact and s ̸= a (see Theorem 4.6.3.6).

Let ξ1 and ξ2 be real vector Cr-bundles with a common boundary-less base.
Then the construction of ξ1 ⊕ ξ2 (see De�nition 4.5.2.9) shows that this sum
is again a real vector Cr-bundle. The di�culty occurring when the base has a
boundary (i.e., the fact that the product ξ1×ξ2 is not de�ned as a Cs-bundle)can
be circumvented with the aid of the formulae

tl(ξ1 ⊕ ξ2) = tl((proj(ξ1))
!ξ2), proj(ξ1 ⊕ ξ2) = (proj(ξ2)) ◦ proj((proj(ξ1))!ξ2).

If the conditions in De�nition 4.5.2.9 are satis�ed, then these formulas are equiv-
alent to the de�nition of and this remains valid under our present circumstances,
provided that the base has no boundary; the same formulas are now taken as the
de�nition of the sum when the boundary is present. One can repeat the argu-
ment for complex vector, Euclidean, and Hermitian Cr-bundles. In particular,
we can de�ne the suspension (see De�nition 4.5.1.10) of a Cr-bundle.

The Cr-variants of the other constructions described in �4.5 and their mutual
relations are already evident. In particular, the conjugate of a complex vector
(Hermitian) Cr-bundle is a complex (respectively, Hermitian) Cr-bundle; the
reali�cation (see De�nition 4.5.1.12) of a complex vector (Hermitian) Cr-bundle
is a real vector (respectively, Euclidean) Cr-bundle; the complexi�cation (see
De�nition 4.5.2.11) of a real vector (Euclidean) Cr-bundle is a complex vector
(respectively, Hermitian) Cr-bundle; and in the Cr-versions of Theorems 4.5.2.13
and 4.5.2.13, the equivalences conj and K become Cr-equivalences.

4.6.4 Tangent and Normal Bundles

Remark 4.6.4.1. The basic notions of tangent and normal bundles have actually
already been introduced and used in Chapter 3. However, only now,that we
have acquired the idea of a smooth vector bundle, can we present the full-
�edged de�nitions of tangent and normal bundles and give them the general,
correct treatment that they deserve.

Tangent Bundles

De�nition 4.6.4.2. Recall that in Chapter 3 we de�ned, for an arbitrarily
given Cr-manifold with r ≥ 1, the real vector spaces TangxX (x ∈ X), the
Cr−1-manifold TangX, and the projection proj : TangX → X (see Remarks
3.1.4.1 and 3.1.4.2). Comparing these objects with the general de�nitions given
in De�nitions 4.5.1.2 and 4.6.3.2, we readily see that (TangX,proj, X) is a real
vector bundle of dimension dimX and, for r ≥ 2, a real vector Cr−1-bundle of
dimension dimX, called the tangent bundle of the manifold X, and is denoted
by tangX.

Similarly, confronting the de�nition of the di�erential df : TangX → Tang Y
of a Cr−1-map f : X → Y (see Remark 3.1.4.5) with the general de�nitions given
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in De�nitions 4.5.1.14 and 4.6.3.2, we conclude that (df, f) is a linear Cr−1-map
tangX → tang Y . If f is a Cr−1-di�eomorphism then (df, f) is a linear Cr−1-
isomorphism.

Remark 4.6.4.3. The notion of vector �eld has been de�ned twice: once for
smooth manifolds (see De�nition 3.1.4.7), and once for vector, Euclidean, and
Hermitian bundles (see De�nition 4.5.1.15). Now it is plain that the second
de�nition generalises the �rst one: a vector �eld on a smooth manifold X is
simply a vector �eld in its tangent bundle TangX.

In particular, the parallelisability (Cs-parallelisability) of an n-dimensional
smooth manifold X is equivalent to the GLRn-triviality (respectively, Cs-GLR-
triviality) of the bundle tangX. Comparing this with Corollary 4.6.3.11, we see
that a parallelisable compact Cr-manifold with r ≤ ∞ is Cr−1 -parallelisable.

De�nition 4.6.4.4. A smooth manifold is stably parallelisable if its tangent
bundle is stably trivial. The discussion in Remark 4.5.4.9 and Theorem 3.5.2.13
show that if a compact manifold is stably parallelisable, then the stabilisation
occurs already at the �rst step, i.e., the bundle sus tangX is GLRn+1-trivial
for any stably parallelisable n-dimensional manifold X.

Remark 4.6.4.5. Recall that, given a point x of the smooth manifold X, each
chart φ ∈ AtlxX de�nes a φ-basis for the tangent space TangX, and the matrix
of the transformation from the φ)-basis to the ψ-basis is just the Jacobi matrix
of the map loc(φ,ψ) id, computed at φ(x). From this it follows that the values of
any orientation of X (assumed on the charts of CatlX) are correctly transferred
to the bases of the spaces TangxX, and in this manner an orientation is de�ned
on the bundle tangX. This procedure is clearly reversible, and hence there is a
one-to-one correspondence between the orientations of the smooth manifold X
and the orientations of its tangent bundle tangX. In particular, X is orientable
if and only if tangX is orientable, and tangX is a GL+ Rn-bundle for any
oriented smooth n-dimensional manifold X.

We already know that every parallelisable manifold is orientable (see Theo-
rem 3.1.4.8 and Remark 4.6.4.3). Now we can add that every stably parallelis-
able manifold is also orientable.

De�nition 4.6.4.6. One attractive feature of tangent bundles is that they
can naturally be induced from Grassmann bundles. Namely, if j : X → Rq
is a Cr-immersion (for example, a Cr-embedding), then dj maps each tangent
space TangxX onto an n-dimensional plane of passing through 0. Thus a map
t : X → G(q, n) is de�ned, and it is clear that tangX is nothing else but
t! Grass(q,GL(n,R)) (up to a correcting Cr−1-GLRn-equivalence) . [In fact,
this obvious observation is older that the theory of bundles and was one of the
factors which stimulated its creation.] If X is orientable, then one can gener-
alise this observation and replace G(q, n), the standard �bre GLRn, and the
bundle Grass(q,GL(n,R)), by G(q, n), GL+Rn, and Grass(q,GL+(n,R)), re-
spectively. In all cases t is known as a tangential map. If j is an embedding
and no orientation is involved, then t coincides with the composition of the nor-
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mal transversalisation X → G(q, q − n) of j with the canonical di�eomorphism
G(q, q − n)→ G(q, n) (see Remark 3.2.2.3).

De�nition 4.6.4.7. A smooth manifold whose tangent bundle is equipped with
a Euclidean metric is called a Riemannian manifold. In this case the metric is
usually termed a Riemannian metric. If X is of class Cr, then the metric can be
at most of class Cr−1. In fact, Theorem 4.6.3.6 shows that there is a Riemannian
Cr−1-metric on every compact Cr-manifold with 1 ≤ r ≤ ∞. Incidentally, the
same result may be extracted from Theorem 3.4.2.1. It is customary to look
upon the tangent bundle of a Riemannian manifold as a Euclidean bundle. If
the metric is of class Cs, s ≥ 1, then this bundle is a Euclidean Cs-bundle.

Normal Bundles

De�nition 4.6.4.8. The initial data involved in the concept of normal bundle
are two smooth manifolds, X and X ′, and an immersion j : X → X ′. The most
important case is that of an embedding j. In the de�nitions below n = dimX
and n′ = dimX ′.

Let us examine �rst the simplest case: X is a submanifold of the Riemannian
manifold X ′, and j is the inclusion X → X ′. One may naturally view tangX as
a subbundle of tangX ′|X . By De�nition 4.5.2.5, has in tangX ′|X an orthogonal
complement, (tangX)⊥. This is an (n′−n)-dimensional Euclidean bundle with
base X, called the normal bundle of X, and denoted normX. If X and X ′

are of class C≥r with r ≥ 2, and the Riemannian metric is of class Cr−1, then
normX is a Euclidean C≥r−1-bundle; see Remark 4.6.3.13. In all cases, the sum
tangX ⊕normX is canonically ORn′

-equivalent to tangX ′|X ; when X and X ′

are of class C≥r with r ≥ 2, this equivalence is of class Cr−1.
To de�ne the normal bundle for an arbitrary immersion j : X → X ′ and

without recourse to a Riemannian metric, we have to replace the restriction
tangX ′|X by the induced bundle j! tangX ′ and then pass to a quotient instead
of taking an orthogonal complement. More exactly, the normal bundle, norm j,
of the immersion j : X → X ′, with X and X ′ smooth manifolds, is de�ned as

norm j = j! tangX ′/ im corr(dj, j).

This formula de�nes an (n′ − n)-dimensional real vector bundle over X. The
sum tangX ⊕ normX is canonically GLRn-equivalent to the induced bundle
j! tangX ′. Unfortunately, there is less to say about the di�erentiability class of
norm j and of the canonical equivalence j! tangX ′ → tangX ⊕ norm j: if X ′ is
either compact or di�eomorphic to an open subset of a compact manifold, and j
is Cr with 2 ≤ r ≤ r, then norm j is a real vector C≥r−1-bundle, while the above
canonical equivalence is Cr−1. These limitations are obviously due to the fact
that we have had no theorems which guarantee the existence of a Riemannian
metric in the non-compact and analytic situations.

If j is an inclusion, we may simply write normX instead of norm j.
Notice that, as the de�nition of the normal bundle norm j shows, the ori-

entability of two of the three bundles j! tangX ′, tangX, and norm j implies
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the orientability of the third, and given orientations on two of them canonically
de�ne the orientation of the third; see Remark 4.5.2.7. Comparing this with the
discussion in Remark 4.6.4.5, we see that if X ′ is orientable, then the orientabil-
ity of norm j is equivalent to the orientability of the manifold X; moreover, if
X ′ is oriented, then the orientations of X ′ and of norm j canonically determine
each other.

Remark 4.6.4.9. The introduction of tangent and normal bundles allows us to
better formulate and essentially complete the main result of Subsection 3.4.8,
i.e., Theorem 3.4.8.2.

We may sharpen the formulation of the third part of this theorem, which
asserts that the linear homomorphisms fact dx1

f1 are actually isomorphisms.
Now we can say that the maps fact dx1

f1 combine with abr f1 : X12 → X2 to
de�ne a linear isomorphism from the normal bundle of the manifold X12 (taken
in X1) onto the normal bundle of the manifold X2 (taken in X ′). When X ′

is compact and 2 ≤ r ≤ ∞, this is a linear Cr−1-isomorphism normX12 →
normX2.

To complete Theorem 3.4.8.2, we consider orientations. Namely, suppose
that X1, X ′, and X2 are orientable (oriented). Then, as an immediate conse-
quence of Remark 4.6.4.5 and De�nition 4.6.4.8, the manifold, X12 is orientable
(respectively, canonically oriented). In particular, under the assumptions of
Corollary 3.4.8.4, the orientability of X ′, X1, and X2 implies the orientability
of X1∩X2, and given orientations of X ′, X1, and X2 canonically orient X1∩X2.

Theorem 4.6.4.10. An n-dimensional smooth compact manifold is stably par-
allelisable if and only if it admits a di�erentiable embedding in some Rq having
a GLRq−n-trivial normal bundle.

Proof. Let j : X → Rq be an embedding enjoying the above property. Then
tangX ⊕ norm j is GLR-equivalent to j! tangRq, and hence the condition is
su�cient. To prove its necessity, consider an arbitrary di�erentiable embed-

ding j : X → Rq and the composite embedding X
j−→ Rq incl−−→ Rq+n+k, where

k is large enough so that the suspension sus tangX is GLR-trivial (actually,
it su�ces to take k = 1; see De�nition 4.6.4.4). The normal bundle of this
composite embedding is just susn+k norm j, and it is GLRq+k-trivial, being
GLRq+k-equivalent to the bundle

norm j ⊕ sus tangX = susk(norm j ⊕ tangX) = susk(j! tangRq).

The Complex Case

De�nition 4.6.4.11. The basic de�nitions of this subsection, i.e., those the
tangent bundle, tangX, Riemannian metric, and normal bundles, normX and
normj, carry over,word-for-word, to complex manifolds. The bundles become
complex bundles, the Riemannian metric is replaced by a Hermitian one, while
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j is assumed to be a holomorphic immersion (i.e., to be locally a holomor-
phic embedding). If f : X → X ′ is holomorphic, then (df, f) is a linear map
tangX → tangX ′. The de�nition and properties of tangential maps are pre-
served, but they become less universal (see Theorem 3.1.6.10). Finally, the
reali�cation of a complex manifold (see Remark 3.1.6.9) leads to the reali�ca-
tion of its tangent bundle (see De�nition 4.5.1.12 and Remark 4.5.1.13), and
turns Hermitian metrics into Riemannian ones.

It is impossible not to notice the eclectic character of these de�nitions. The
reason for this inconsistency is that, whereas the notion of di�erentiable struc-
ture, which lies at the heart of the theory of smooth vector bundles, is speci�-
cally a real notion even when we pass to complex vector bundles, in the complex
case the tangent and normal bundles carry an additional, complex-di�erentiable
structure - the so-called holomorphic structure. Unfortunately, the theory of
holomorphic vector bundles is beyond the scope of this book.

4.6.5 Degree

De�nition 4.6.5.1. In this subsection we shall apply some of the simplest re-
sults of di�erential topology to homotopy theory. Namely, given any oriented,
compact, smooth manifold X, any oriented, compact, connected, smooth man-
ifold Y with dimY = dimX, and any continuous map f : (X, ∂X) → (Y, ∂Y ),
we de�ne an integer which depends only upon the homotopy class of f . This
number is called the degree of the map f and is denoted by deg f .

Although the degree deg f is a global characteristic of f , and is actually
de�ned for maps which are merely continuous, we shall approach this notion by
in�nitesimal methods: we start by assuming that

f ∈ C(X, ∂X;Y, ∂Y ) ∩ C1(X,Y )

and choose a point y ∈ intY such that f is transverse to y. Consider f−1(y). It
consists of a �nite number of points, each of them having a neighbourhood which
is mapped di�eomorphically by f onto a neighbourhood of y (see Theorems
3.4.8.2 and 3.1.5.5), and each of these di�eomorphisms is either orientation
preserving or orientation reversing, where the neighbourhoods are oriented in
agreement with the orientations of X and Y (see Remark 4.6.4.9). The degree
of the map f at the point y, denoted degy f , is the number of the points of
f(y) where the orientation is preserved, minus the number of points of f−1(y)
where the orientation is reversed. A popular shorter version of this de�nition
is: degy f is the algebraic number of the preimages of the point y.

In this de�nition of degy f , the assumption that y ∈ intY is essential. How-
ever, one may repeat the de�nition for a boundary point y, provided that

f ∈ C1∂(X,Y ) ∩ C(X, intX;Y, intY )

and abr f : ∂X → ∂Y is transverse to y. The degree degy f thus de�ned is
obviously the same as degy[abr f : f

−1(Z) → Z], where Z is the component of
∂Y containing y.

We add that if the degree is de�ned for a point y, i.e., either
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� y ∈ intY , f ∈ C(X, ∂X;Y, ∂Y ) ∩ C1(X,Y ), and f is transverse to y, or

� y ∈ ∂Y , f ∈ C1∂(X,Y ) ∩ C(X, intX;Y, intY ), and abr f : ∂X → ∂Y is
transverse to y,

then it is de�ned for any point y′ in a neighbourhood of y (in Y ), and degy′ f =
degy f .

Lemma 4.6.5.2. Let X and Y be oriented, compact, C∞-manifolds, with dimX =
dimY and Y connected, and let

g, h ∈ C∞∂ (X,Y ) ∩ C(X, intX;Y, intY ).

Further, let y, z ∈ Y be such that degy g and degz h are de�ned (see De�nition
4.6.5.1). If the maps

rel g, relh : (X, ∂X)→ (Y, ∂Y )

are homotopic, then degz h = degy g.

Proof. We disregard the trivial case dimY = 0 and assume for a start that
h = g. Using De�nition 4.6.5.1, we �nd neighbourhoods U and V of y and z,
such that

degy′ g = degy g,∀y′ ∈ U, degz′ h = degz h,∀z′ ∈ V.

It is clear that one can join y to z by a path which is a C∞-embedding I → Y . By
Theorems 3.4.1.4 and 3.4.7.7, there is a path s : I → intY such that s(0) ∈ U ,
s(1) ∈ V , and s is a C∞-embedding transverse to g. The preimage g−1(s(I)) is
an oriented, compact, one-dimensional C∞-submanifold of X, and

∂g−1(s(I)) = g−1(s(0)) ∪ g−1(s(1))

(see Theorem 3.4.8.2 and Remark 4.6.4.9). Obviously,

degs(0) g = degs(0) abr g, degs(1) g = degs(1) abr g,

where abr g = [abr g : g−1(s(I)) → s(I)]. But the contribution of a point from
g−1(s(1)) to degs(1) abr g equals the value of the orientation which this point
inherits a s a component of ∂g−1(s(I)). Similarly, the contribution of a point
from g−1(s(0)) to degs(0) abr g is opposite to the value of the orientation which
this point inherits as a component of ∂g−1(s(I)). Consequently, degs(1) g −
degs(0) g is the number of points of ∂g−1(s(I)) which inherit the orientation
+1 from g−1(s(I)), minus the number of points of ∂g(s(I)) which inherit the
orientation −1 from g−1(s(I)). However, this di�erence must be 0, because
every component of g−1(s(I)) is di�eomorphic to either S1 or D1 (see Remark
3.5.3.1).

Now drop the assumption that h = g, and suppose that Y is closed. Then
X is also closed, and from the fact that g and h are homotopic it follows that
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there exists a C∞-homotopy F from g to h (see Corollary 3.4.6.6). The map
Φ : X × I → Y × I, Φ(x, t) = (F (x, t), t), obviously belongs to the intersection

C∞∂ (X × I, Y × I) ∩ C(X × I, int(X × I);Y × I, int(Y × I)).

Furthermore, if we identify X × 0 and X × 1 with X, and Y × 0 and Y × 1 with
Y , then abrΦ: X × 0 → Y × 0 and abrΦ: X × 1 → Y × 1 become g and h,
and we can write deg(y,0) Φ = degy g and deg(z,1) Φ = degz h. By the argument
above, deg(z,1) Φ = deg(y,0) Φ and thus degz h = degy g.

Finally, if ∂Y ̸= ∅, we �nd a component Z of ∂Y and points y′, z′ ∈ Z such
that abr g : ∂X → ∂Y is transverse to y′, while abrh : ∂X → ∂Y is transverse
to z′. We already know that

degy g = degy′ g, degz h = degz′ h,

while, according to De�nition 4.6.5.1,

degy′ g = degy′ [abr g : g
−1(Z)→ Z]

degz′ h = degz′ [abrh : h
−1(Z)→ Z].

But

degy′ [abr g : g
−1(Z)→ Z] = degz′ [abrh : h

−1(Z)→ Z]. (4.6.5.3)

Indeed, since rel g and relh are homotopic, h−1(Z) = g−1(Z), and thus (4.6.5.3)
follows from that part of the lemma which we have already proved.

Lemma 4.6.5.4. For any compact C∞-manifolds X and Y , the set

C∞∂ (X,Y ) ∩ C(X, intX;Y, intY )

is dense in C(X, ∂X;Y, ∂Y ).

Proof. Construct the doubles, doppX and doppY , together with two-sided col-
larings

k : ∂X × D1 → doppX, ℓ : ∂Y × D1 → doppY

Pick a C∞-embedding j : doppY → Rq, a C∞-transversalisation τ of j|∂Y ′
and a neat tube Tubτ ρ. Then it su�ces, given a map f ∈ C(X, ∂X;Y, ∂Y ) and
ε > 0, to �nd

C∞∂ (X,Y ) ∩ C(X, intX;Y, intY )

such that dist(j(f(x)), j(g(x))) < ε for all x ∈ X. To produce such a g, we shall
construct successively three auxiliary maps, h1, h2, h3 : doppX → doppY .

The map h1 is very simply de�ned by

h1(x) = f(x), h1(cop(x)) = cop(f(x)) [x ∈ X].

To construct h2, �x δ, 0 < δ < 1, such that:
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(i) dist(j ◦ ℓ(z, t), j ◦ ℓ(z, t′)) < e/4 for |t− t′| < δ where z ∈ ∂Y, t, t′ ∈ D1;

(ii) dist(j(h1(k(z, t))), j(h1(k(z, t
′)))) < ε/4 for |t−t′| < δ where z ∈ ∂Y, t, t′ ∈

D1;

(iii) for any z ∈ ∂Y , the ball with centre j(z) and radius δ lies in Tubτ ρ, while
its image under the map j◦projτ : Tubτ ρ→ Rq lies in the ball with centre
j(z) and radius ε/4.

[The existence of such a δ is a consequence of the continuity of j, k, ℓ, h1, and
projτ .] Further, pick a C∞-map ϖ : ∂X → ∂Y such that

dist(j(φ(z)), j ◦ f(z)) < δ ∀z ∈ ∂X

(Theorem 3.4.4.2 guarantees that such a map φ exists), and de�ne, for each
t ∈ I, the map

φt : ∂X → ∂Y, φt(x) = projτ (tj(φ(x)) + (1− t)j ◦ f(x)).

Next, pick a C∞-map α : R→ R such that

α(t) =

{
0 for |t| ≤ 1/3,

1 for |t| ≥ 2/3,

and de�ne k1 : X → X and ℓ1 : Y → Y by{
k1(k(z, t)) = k(z, (1− δ)t+ δ), if z ∈ ∂X, t ∈ I,
k1(x) = x, if x ∈ X \ k(∂X × I),

and {
ℓ1(ℓ(z, t)) = ℓ(z, (1− δ)t+ δ), if z ∈ ∂Y, t ∈ I,
ℓ1(y) = y, if y ∈ Y \ ℓ(∂Y × I), .

It is clear that k1 and ℓ1 are topological embeddings. Now de�ne h2 by
h2(k(z, t)) = ℓ(φα(δt)(z), t), if z ∈ ∂X, |t| < δ,

h2(x) = ℓ1(f(k
−1
1 (x))), if x ∈ X \ k(∂X × [0, δ)),

h2(cop(x)) = cop(ℓ1(f(k
−1
1 (x))) if x ∈ X \ k(∂X × [0, δ)).

Then the following facts are evident:

� h2 ∈ C(doppX, intX, ∂X : doppY, intY, ∂Y );

� dist(j ◦ h1(x), j ◦ h2(x)) < ε/2 for all xin doppX;

� the restriction of h2 to k(∂X × [−δ/3, δ/3]) is of class C∞;

� if z ∈ ∂X, then im dz(h2|k(partialX×[−δ/3,δ/3])) ̸⊂ Tangh2(z) ∂Y .
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Finally, take h3 to be any C∞-map doppX → doppY which equals h2 on
k(∂X × [−δ/6, δ/6] and enjoys the properties:

h3(X \ k(∂X × [0, δ/6))) ⊂ intY ;

h3(cop(X \ k(∂X × [0, δ/6))) ⊂ cop(intY );

dist(j ◦ h3(x), j ◦ h2(x)) < ε/2 ∀x ∈ X.

[Theorem 3.4.4.9 guarantees that such an 3 exists.]
Clearly, h3(X) ⊂ Y . Now de�ne the desired map g by g = [abrh3 : X → Y ],

and check directly that it has all the necessary properties.

De�nition 4.6.5.5. Let X and Y be (as in De�nition 4.6.5.1) oriented, com-
pact, manifolds with dimX = dimY , and let f ∈ C(X, ∂X;Y, ∂Y ). Restrict
the di�erentiable structures of the manifolds X and Y to C∞-structures (see
Theorem3.4.9.8), and �nd a map g ∈ C∞∂ (X,Y ) ∩ C(X, ∂X;Y, ∂Y ) which is
close enough to f in the C0-topology, and such that the maps f, g : X → Y ,
as well as the maps abr f, abr g : ∂X → ∂Y are homotopic (see Lemma 4.6.5.4,
Theorems 3.4.5.10, and 1.3.6.6).

Now compute degy g at some point y ∈ intY such that g is transverse to
y. By Lemma 4.6.5.2, degy g does not depend upon the choice of g or y, while
Remark 3.4.6.11 and Corollary 3.4.1.6 show that degyg does not depend upon the
modality of restricting the di�erentiable structures of X and Y to C∞-structures
(according to the aforementioned theorems, the C∞-manifolds resulting from the
restriction of the di�erentiable structure of a given compact, smooth manifold,
e�ected in two distinct ways, are C∞-di�eomorphic via a di�eomorphism which
can be as C0-close to the identity di�eomorphism as we choose). We call degy g
the degree of the map f , denoted deg f .

The main properties of the degree are immediate consequences of its de�ni-
tion and of Lemmas 4.6.5.2 and 4.6.5.4. We list here some of them:

1. if f, f ′ : (X, ∂X) → (Y, ∂Y ) are homotopic, then deg f = deg f ′ (by
Lemma 4.6.5.2);

2. the degree of the composite map (X, ∂X)
f−→ (Y, ∂Y )

g−→ (Z, ∂Z) is deg f ·
deg g (by the de�nition of deg);

3. the degree of the identity map is 1 (trivial);

4. if f : : (X, ∂X) → (Y, ∂Y ) is a homotopy equivalence, then deg f = 1
(proof: if g is a homotopy inverse of f , then deg f · deg g = deg(g ◦ f) =
deg id(X,∂X)=1);

5. if f : (X, ∂X) → (Y, ∂Y ) is such that f(X) ̸= Y , then deg f = 0 (indeed,
one can approximate f as closely as desired by a map from

C∞∂ (X,Y ) ∩ C(X, intX;Y, intY )

enjoying the same properties);
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6. if Z is any component of Y , then

deg[f : (X, ∂X)→ (Y, ∂Y )] = deg[abr f : f−1(Z)→ Z]

(a result of the discussion in De�nition 4.6.5.1) and, in particular, deg f =
0 whenever X is closed but Y is not.

As examples, consider the maps

f : (Dn,Sn−1)→ (Dn,Sn−1)

and abr f : Sn−1 → Sn−1, de�ned by an orthogonal (n× n)-matrix V (n ≥ 2) .
Obviously, deg f = deg abr f = detV , i.e.,

deg f = deg abr f =

{
1 if V ∈ SO(n),

−1 if V ∈ O(n) \ SO(n).

Thus, the degree of the antipodal map Sn−1 → Sn−1, x 7→ −x, equals 1 if n is
even and −1 if n is odd.

The Non-oriented Case

De�nition 4.6.5.6. The discussion in De�nition 4.6.5.1, Lemmas 4.6.5.2, and
4.6.5.4 can be carried over to non-oriented manifolds if we replace integers by
integers modulo 2. This enables us to de�ne deg f ∈ Z/2Z for any continuous
map f : (X, ∂X) → (Y, ∂Y ), where X and Y are smooth, compact manifolds,
and Y is connected (no orientability needed). All the properties of the inte-
gral degree listed in De�nition 4.6.5.5 are preserved. For the case of oriented
manifolds, when both degrees (the integral and mod 2) are de�ned, we con-
tinue to use the same notation for both, because misunderstandings are usually
eliminated by the context.

Applications

Theorem 4.6.5.7. Smooth closed manifolds of positive dimension are not con-
tractible.

Proof. This is plain if the given manifold is not connected. In the connected
case, the degree of the identity map of a closed manifold is 1, whereas the degree
of any map which takes the whole manifold into one of its points is zero (here
we use the -degree de�ned in De�nition 4.6.5.6).

Theorem 4.6.5.8. If n ̸= m, then Sn and Sm are not homotopy equivalent.

Proof. Indeed, if m < n, then every continuous map Sm → Sn is homotopic to a
constant map (see Corollary 2.3.2.5 and Theorem 2.3.1.6), whereas id : Sn → Sn
is not homotopic to a constant map (see Theorem 4.6.5.7).

Theorem 4.6.5.9. The boundary of a non-empty, compact, smooth manifold
is not a retract of the manifold.
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Proof. It su�ces to assume that the given manifold X is compact, smooth,
connected, and with ∂X ̸= ∅. Let ρ : X → ∂X be a retraction, and let Z be

any component of ∂X. Consider the composite map X
ρ−→ X

incl−−→ X. Since its
image is not all of X, its degree is 0 (see De�nitions 4.6.5.5 and 4.6.5.6). On
the other hand, this degree equals the degree of abr(incl ◦ρ) : Z → Z, which is
1, the last map being idZ.

Theorem 4.6.5.10. Every continuous map Dn → Dn has a �xed point.

Proof. Suppose that f : Dn → Dn is continuous and has no �xed points. Then
the map Dn → Sn−1 taking each point x ∈ Dn into its projection on Sn−1 from
the point f(x) is a retraction, and hence Sn−1 is a retract of Dn: contradiction
(see Theorem 4.6.5.9).

Theorem 4.6.5.11. If an m-dimensional locally Euclidean space is homeomor-
phic to an n-dimensional locally Euclidean space, then n = m. (Cf. Remark
3.1.1.4).

Proof. Every point of Rq can be covered (in Rq) by a Euclidean q-simplex.
Therefore, every point of a q-dimensional locally Euclidean space lies in the
interior of a �nitely-triangulated subset, and its link in this subset is homeo-
morphic to Sq−1. By Theorem 2.2.6.4, this link is a homotopy invariant, and
Theorem 4.6.5.8 shows that the spheres Sn and Sm cannot have the same ho-
motopy type unless m = n.

Remark 4.6.5.12. Theorem 4.6.5.11 clari�es not only the de�nition of a locally
Euclidean space, but also that of a cellular space. Namely, it shows that the
dimension of a cell is uniquely determined by this cell.

Therefore, the dimension function which we introduced into the de�nition of
the cellular decomposition as an additional element of its structure, is actually
redundant, being completely determined by the decomposition itself.

Theorem 4.6.5.13. The boundary of the half space Rn− is Rn+1
1 .

(Cf. Remark 3.1.1.4.)

Proof. It su�ces to show that the point 0 has in Rn− no neighbourhood homeo-
morphic to Rn; see Remark 3.1.1.4.

Assume that such a neighbourhood exists. Then 0 is an interior point of a
�nitely-triangulated subset of this neighbourhood, where its link is homeomor-
phic to Sn−1 (cf. the proof of Theorem 4.6.5.11). On the other hand, 0 is an
interior point of a �nitely-triangulated subset, where its link is homeomorphic
to Dn−1: take any Euclidean n-simplex which lies in Rn− and contains 0 in the
interior of one of its (n− 1)-faces. Since Sn−1 is not contractible, whereas Dn−1

is, we contradict Theorem 2.2.6.4.
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4.6.6 Exercises

Exercise 4.6.6.1. Let r ≤ ∞, and let f : X → Y be a Cr-submersion, where
X and Y are Cr-manifolds, X compact and Y closed. Show that (X, f, Y )
is a Cr-bundle. (Combined with Theorem 4.6.1.3, this result shows that for
r ≤ ∞, (X, f, Y ) is a Cr-bundle whenever X is a compact Cr-manifold and Y is
a Cr-manifold, while f : X → Y is a Cr-submersion.)

Exercise 4.6.6.2. Let 1 ≤ r ≤ ∞, and let ξ be a Cr-bundle with closed base.
Show that there is a collaring k : ∂ tl(ξ) × I → tl(ξ), such that k(z × I) ⊂
(proj(ξ))−1(proj(ξ)(z)) for every point z ∈ ∂ tl(ξ).
Exercise 4.6.6.3. Let 1 ≤ r ≤ ∞, and let ξ be a Cr-bundle with

∂ tl(ξ) = (proj(ξ))−1(∂ bs(ξ)).

Show that there are collarings

k : ∂ bs(ξ)× I → bs(ξ), ℓ : ∂ tl(ξ)× I → tl(ξ)

such that the diagram

∂ tl(ξ)× I ℓ //

abr proj(ξ)×idI

��

tl(ξ)

proj(ξ)

��
∂ bs(ξ)× I

k
// bs(ξ)

commutes.

Exercise 4.6.6.4. Show that if r ≤ ∞, then for every C≥r-bundle ξ with compact
bs(ξ) and tl(ξ), Sectr(ξ) is dense in Sects(ξ) for any s < r. (This generalises
Theorem 4.6.2.7 for r ̸= a.)

Exercise 4.6.6.5. Show that every C≥r-bundle ξ with compact bs(ξ) and tl(ξ) is
Cr-isomorphic to a C∞-bundle (cf. Theorem 4.6.2.8).

Exercise 4.6.6.6. Show that sus tangRPn is Ca-GLRn+1-equivalent to the sum
of n + 1 copies of Grass(n + 1,GL(1,R)), while sus tangCPn is Ca-GLCn+1-
equivalent to the sum of n+ 1 copies of Grass(n+ 1,GL(1,C)).
Exercise 4.6.6.7. Show that the normal bundle of the Ca-embedding G(m,n)→
G(m+1, n), described in Remark 3.2.2.3, is Ca-GLRn-equivalent toGrass(m,GL(n,R)),
while the normal bundle of the Ca-embedding CG(m,n) → CG(m + 1, n), de-
scribed in Remark 3.2.2.7, is Ca-GLCn-equivalent to Grass(m,GL(n,C)).
Exercise 4.6.6.8. Let p1, . . . , pn+1 be homogeneous complex polynomials of de-
gree m in +1 variables, whose only common zero is the point 0. Show that the
map CPn → CPn given by

(z1 : · · · : zn+1) 7→ (p1(z1 . . . , zn+1) : · · · : pn+1(z1 . . . , zn+1))

has degree mn.
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Exercise 4.6.6.9. Show that for n ≥ 1 every continuous map Sn → Sn whose
degree is not (−1)n+1 has a �xed point.

Exercise 4.6.6.10. Show that for n ≥ 1 every continuous map Sn → Sn having
odd degree transforms some pair of antipodal points into another such pair.

Exercise 4.6.6.11. Show that for odd n > 1 the degree of any map Sn → RPn
is even.

Exercise 4.6.6.12. Let f be a simplicial map of the standard 2-simplex onto the
standard 1-simplex. Show that the simplicial mapping cylinder, Scyl f , is not
homeomorphic to Cyl f .





Chapter 5

HOMOTOPY GROUPS

5.1 THE GENERAL THEORY

5.1.1 Absolute Homotopy Groups

De�nition 5.1.1.1. Let (X,x0) be a pointed space, and let r ≥ 0 be an in-
teger. To simplify the notation, let us agree to write Sphr(X,x0) for the set
C(I,Fr I;X,x0) of all continuous maps (I,Fr I)→ (X,x0) and denote the set of
homotopy classes of such maps (i.e., π(Ir,Fr Ir;X,x0) by πr(X,x0). The ele-
ments of Sphr(X,x0) will be referred to as r-dimensional spheroids (or simply
r-spheroids) of the space X with origin x0.

For r > 0 and two arbitrary spheroids φ,ψ ∈ Sphr(X,x0), we de�ne their
product, φψ, as the spheroid in Sphr(X,x0 given by

φψ(t1, t2, . . . , tr) =

{
φ(2t1, t2, . . . , tr), if 0 ≤ t1 ≤ 1/2,

ψ(2t1 − 1, t2, . . . , tr), if 1/2 ≤ t1 ≤ 1.
(5.1.1.2)

For r > 0 and φ ∈ Sphr(X,x0), the spheroid φ
−1, called the inverse of φ, is

de�ned by φ−1(t1, t2, . . . , tr) = φ(1− t1, t2, . . . , tr). Obviously, if φ,φ1, ψ, ψ1 ∈
Sphr(X,x0) are such that φ1 is homotopic to φ and ψ1 is homotopic to ψ,
then the spheroids φ1ψ1 and φψ are homotopic. Therefore, (5.1.1.2) de�nes a
multiplication on πr(X,x0). It turns out that

Theorem 5.1.1.3. this multiplication is associative, that the homotopy class
of the constant spheroid const (which takes Ir into x0) is a two-sided identity
element and that the homotopy classes of the spheroids φ and φ−1 are inverses
of one another.

Proof. The associativity of the multiplication means that the products (φψ)χ
and φ(ψχ) are homotopic for any spheroids φ,ψ, χ ∈ Sphr(X,x0). Indeed, the

341
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formula

((t1, t2, . . . , tr), t) 7→


φ
(

4t1
11+t , t2, . . . , tr

)
, if 0 ≤ t1 ≤ 1+t

4 ,

ψ(4t1 − t− 1, t2, . . . , tr), if 1+t
4 ≤ t1 ≤

2+t
4 ,

χ
(

4t1−t−2
2−t , t2, . . . , tr

)
, if 2+t

4 ≤ t1 ≤ 1,

(5.1.1.4)
de�nes a homotopy Ir × I → X from (φψ)χ to φ(ψχ)-

To prove the second claim, we have to show that the products φ(const) and
(const)φ are both homotopic to φ, for any φ ∈ Sphr(X,x0). The formulae

((t1, t2, . . . , tr), t) 7→

{
φ
(

2t1
1+t , t2, . . . , tr

)
, if 0 ≤ t1 ≤ 1+t

2 ,

x0, if 1+t
2 ≤ t1 ≤ 1,

(5.1.1.5)

and

((t1, t2, . . . , tr), t) 7→

{
x0, if 0 ≤ t1 ≤ 1+t

2 ,

φ
(

2t1−1+t
1+t , t2, . . . , tr

)
, if 1+t

2 ≤ t1 ≤ 1,
(5.1.1.6)

de�ne homotopies from φ(const) and (const)φ to φ.
Finally, the third claim is that the products φφ−1 and φ−1φ are both ho-

motopic to const: indeed, a homotopy from φφ−1 to const is given by

((t1, t2, . . . , tr), t) 7→


φ(2t1, t2, . . . , tr), if 0 ≤ t1 ≤ 1−t

2 ,

φ(1− t1, t2, . . . , tr), if 1−t
2 ≤ t1 ≤

1+t
2 ,

φ(2− 2t1, t2, . . . , tr), if 1+t
2 ≤ t1 ≤ 1.

(5.1.1.7)

The set πr(X,x0), r > 0, with this group structure is called the r-th homo-
topy group of the space X at the point x0.

If r > 0, then each r-spheroid maps Ir into the component X0 of X con-
taining x0. Consequently, for r > 0 the groups πr(X,x0) an πr(X0, x0) are
isomorphic.

By Theorem 2.3.4.3, for a countable cellular space X all the sets πr(X,x0)
are countable.

The Case r = 0

De�nition 5.1.1.8. Since Ir is a point and Fr Ir = ∅, Sph0(X,x0) and
π0(X,x0) can be identi�ed with X and with the set compX of components
of X, respectively. π0(X,x0) has no natural group structure. However, it does
have a distinguished element which, in analogy with the higher-dimensional case,
will be referred to as an identity: this is the homotopy class of the 0-spheroid
const, i.e., the component of X containing x0.

To be able to use the same language for the cases r > 0 and r = 0, we
shall call π0(X,x0) the 0-th homotopy group of X at x0, and we shall apply



5.1. THE GENERAL THEORY 343

the group-theoretic terminology to sets with distinguished elements and their
maps. In particular, by a direct product we understand the usual product, a
homomorphism is a map preserving distinguished elements, the kernel of a ho-
momorphism is the preimage of the distinguished element, and an isomorphism
is an invertible homomorphism.

The Case r = 1

Remark 5.1.1.9. One-dimensional spheroids are nothing else but closed paths,
and the multiplication, inversion, and homotopy of spheroids, as de�ned in
Theorem 5.1.1.3, coincide with the multiplication, inversion, and homotopy of
paths, as de�ned in De�nition 1.3.2.1 and Remark 1.3.2.3. The 1-st homotopy
group is alternatively known as the fundamental group. It was de�ned some
decades before the higher homotopy groups were introduced, and we shall see
below that it holds a special position amongst the homotopy groups.

Remark 5.1.1.10. When r = 1 the homotopies (5.1.1.4)-(5.1.1.7) are de�ned not
only for loops φ, ψ, χ with common origin: the only condition that the paths φ,
ψ, χ must satisfy is that the products involved be meaningful. As in the case of
loops, the homotopy class of a product is uniquely determined by the homotopy
classes of its factors, provided that the origin of the paths in the second class
coincides with the end of the paths in the �rst class. This multiplication is
associative; the class of the constant path is a left identity element for the class
of paths with the same origin, and a right identity element for the class of
paths with the same end; and the classes of the paths s and s−1 are inverses
of one another, i.e., their product, taken in any order, is homotopic with the
corresponding identity element.

The Case r > 1

Theorem 5.1.1.11. For r > 1 the group πr(X,x0) is Abelian.

Proof. We have to verify that the products φψ and ψφ are homotopic for any
spheroids φψ ∈ Sphr(X,x0), r > 1. Consider the following three homotopies
Ir × I → X:

((t1, t2, t3, . . . , tr), t) 7→
φ(2t1, (1 + t)t2, t3, . . . , tr), if 0 ≤ t1 ≤ 1

2 , 0 ≤ t2 ≤ 1
1+t ,

ψ(2t1 − 1, (1 + t)t2 − t, t3, . . . , tr), if 1
2 ≤ t1 ≤ 1, t

1+t ≤ t2 ≤ 1,

x0, otherwise;

((t1, t2, t3, . . . , tr), t) 7→
φ(2t1 − t, 2t2, t3, . . . , tr), if t

2 ≤ t1 ≤
1+t
2 , 0 ≤ t2 ≤ 1

2 ,

ψ(2t1 + t− 1, 2t2 − 1, t3, . . . , tr), if 1−t
2 ≤ t1 ≤

2−t
2 , 1

2 ≤ t2 ≤ 1,

x0, otherwise;
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and

((t1, t2, t3, . . . , tr), t) 7→
φ(2t1 − 1, (2− t)t2, t3, . . . , tr), if 1

2 ≤ t1 ≤ 1, 0 ≤ t2 ≤ 1
2−t ,

ψ(2t1, (2− t)t2 + t− 1, t3, . . . , tr), if 0 ≤ t1 ≤ 1
2 ,

1−t
2−t ≤ t2 ≤ 1,

x0, otherwise;

Their successive product is a homotopy from ϖψ to ψφ. [These homotopies
are pictured in Fig. 5.1, where the shaded regions are mapped into x0.]

Figure 5.1: (r = 2)

Behaviour Under Continuous Maps

De�nition 5.1.1.12. Let f : (X,x0)→ (X ′, x′0) be a continuous map of pointed
spaces. Then to each spheroid φ : (Ir,Fr Ir) → (X,x0) there corresponds the
spheroid f ◦ φ : (Ir,Fr Ir)→ (X ′, x′0). This de�nes a map

f# = f#r : Sphr(X,x0)→ Sphr(X
′, x′0),

and clearly f# takes homotopic spheroids into homotopic ones, and takes the
constant spheroid into the constant one. Moreover, f#r(φψ) = f#r(φ)f#r(ψ)
for r > 0. Therefore, f#r de�nes a homomorphism πr(X,x0)→ πr(X

′, x′0)) for
each r > 0, called the homomorphism induced by the map f , and denoted f∗ or,
more speci�cally, f∗r.

Theorem 5.1.1.13. For any two continuous maps, f : (X,x0) → (Y, y0) and
g : (Y, y0)→ (Z, z0), and any r > 0,

(g ◦ f)∗r = g∗r ◦ f∗r.
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If f = id(X,x0), then f∗r = idπr(X,x0).

Proof. (g ◦ f)#r = g#r ◦ f#r and id(X,x0)#r
= id Sphr(X,x0).

Theorem 5.1.1.14. If the continuous maps f, f ′ : (X,x0)→ (Y, y0) are homo-
topic, then f∗r = f ′∗r for all r. If f : (X,x0)→ (Y, y0) is a homotopy equivalence,
then f∗r is an isomorphism for all r.

Proof. The spheroids f ◦ φ and fφ ◦ φ are homotopic for any φ ∈ Sphr(X,x0),
which proves the �rst assertion. The second assertion follows from the equalities
g∗r ◦ f∗r = (g ◦ f)∗r = id and f∗r◦ = (f ◦ g)∗r = id, where g is any homotopy
inverse of f (see Theorem 5.1.1.13).

A Multiplication Theorem

Theorem 5.1.1.15. Let (X,x0) and (Y, y0) be arbitrary pointed spaces. Then
for any r ≥ 0 the homotopy group πr(X × Y, (x0, y0)) is canonically isomorphic
to the direct product πr(X,x0)× πr(Y, y0). The canonical isomorphism πr(X ×
Y, (x0, y0)) → πr(X,x0) × πr(Y, y0) is given by α 7→ (proj1∗(α),proj2∗(α)). If
(X ′, x′0) and (Y ′, y′0) is another pair of pointed spaces and f : (X,x0)→ (X ′, x′0)
and g : (Y, y0)→ (Y ′, y′0) are continuous, then the diagramme

πr(X × Y, (x0, y0)) //

(f×g)∗
��

πr(X,x0)× πr(Y, y0)

f∗×g∗
��

πr(X
′ × Y ′, (x′0, y

′
0)) // πr(X

′, x′0)× πr(Y ′, y′0)

commutes (the horizontal maps are the canonical homomorphisms).

Proof. The proof is immediate.

5.1.2 A Digression: Local Systems

De�nition 5.1.2.1. We say that on the topological space X there is given a
local system of groups if for each point x ∈ X there is a group Gx, and for each
path s : I → X there is a homomorphism Ts : Gs(0) → Gs(1), such that three
conditions are satis�ed:

(i) if s1(0) = s(1), then Tss1 = Ts1 ◦ Ts;

(ii) if s is a constant path, then Ts is the identical automorphism of Gs(0);

(iii) if s and s1 are homotopic paths, then Ts = Ts1 .

Condition (iii) shows that we may write Tσinstead of Ts, where σ is the homo-
topy class of the path s. Moreover, from (i)-(iii) it follows that all the homo-
morphisms Ts (Tσ) are actually isomorphisms, and that T−1

s = Ts−1 (respec-
tively, T−1

σ = Tσ−1): indeed, using Remark 5.1.1.10, the paths ss−1 and s−1s
are homotopic to a constant path, and hence Ts−1 ◦ Ts = Tss−1 = idGs(0)

and
Ts ◦ Ts−1 = Tss−1 = idGs(1).

The isomorphism Ts is called the translation along s.
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Remark 5.1.2.2. In particular, if s is a loop with origin x or, equivalently, if σ is
an element of the fundamental group π1(X,x), then Ts = Tσ is an automorphism
of Gx. Comparing this with conditions (i) and (ii) in De�nition 5.1.2.1, we see
that the rule σ 7→ Tσ de�nes a right group-action of π1(X,x) on Gx.

To each path s : I → X there corresponds a natural isomorphism ts : π1(X, s(0))→
π1(X, s(1)), given by tsω = σ−1ωσ, where σ is the homotopy class of s; some-
times we denote ts by tσ. One can check directly that Ts : Gs(0) → Gs(1) is a tσ
map (see De�nition 4.2.3.1).

De�nition 5.1.2.3. Let

(X, {Gx}, {Ts}), (X ′, {G′
x′}, {T ′

s′})

be local systems of groups, given on two spaces, X and X ′, and let f : X → X ′

be continuous. Let us assume further that for each point x ∈ X we are given
a homomorphism h : Gx → G′

f(x). We say that the homomorphisms hx and
the map f form a homomorphism of the �rst local system into the second if
hs(1) ◦ Ts = T ′

f◦s ◦ hs(0) for any path s : I → X. A homomorphism (f, {hx}) is
an isomorphism if f is a homeomorphism and all hx are isomorphisms; (f, {hx})
is an equivalence if it is an isomorphism and, in addition, X ′ = X and f = idX .

If (X ′, {G′
x′}, {T ′

s′}) is a local system of groups and f : X → X ′ is continuous,
then the induced local system (X, {Gx}, {Ts}) arises on X: set Gx = G′

f(x) and
Ts = T ′

f◦s. Obviously, (f, {idGx}) is a homomorphism of the induced local
system into the original one.

Theorem 5.1.2.4. Let X be a connected space with base point x0. Two local
systems of groups, (X, {Gx}, {Ts}) and (X ′, {G′

x′}, {T ′
s′}), are equivalent if and

only if the two corresponding actions of π1(X,x0) on Gx0
and Gx′

0
are isomor-

phic, i.e., if and only if there is a group isomorphism Gx0 → Gx′
0
which is also

a π1(X,x0)-map.

Proof. That the actions of π1(X,x0) on Gx0 and Gx′
0
arising from equivalent

local systems are isomorphic is obvious. To prove the converse, �x a π1(X,x0)-
isomorphism h : Gx0

→ Gx′
0
and choose, for each x ∈ X, some path sx with

origin x0 and end x. It is readily veri�ed that (id, {hx}), where hx = T ′
sx◦h◦T

−1
Sx

,
is an equivalence.

Remark 5.1.2.5. A local system of groups on a topological space X is said to
be simple if it is equivalent to a canonical simple local system (X, {Gx}, {Ts}),
where all the Gx are equal to some �xed group G, and all the homomorphisms
Ts are the identical automorphism of G.

By Theorem 5.1.2.4, a local system of groups on a connected topological
spaceX with base point x0 is simple if and only if the induced action of π1(X,x0)
on G is the identical action. In particular, a local system is simple whenever
π1(X,x0) is trivial or the groups Gx are all isomorphic to Z/2Z.
Remark 5.1.2.6. It is readily seen that the discussion above may be extended
from local systems of groups to local systems of other algebraic objects, such as
vector spaces or rings.
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In the present section we shall encounter, in addition to local systems of
groups, local systems of sets with an identity (a distinguished element).

5.1.3 Local Systems of Homotopy Groups of Topological

Spaces

De�nition 5.1.3.1. Two spheroids, φ0 ∈ Sphr(X,x0) and φ1 ∈ Sphr(X,x1),
are said to be freely homotopic if the maps abrsφ0, abrsφ1 : I

r → X can be
connected by a homotopy consisting only of spheroids. More precisely φ0 and
φ1 are freely homotopic if there is a continuous map h : Ir × I → X, constant
on each set Fr Ir × t (t ∈ I), and such that h(y, 0) = φ0(y), h(y, 1) = φ1(y) for
all y ∈ Ir.

An essential element of such a homotopy is the path described by the origin
of the spheroid, i.e., t 7→ h(Fr Ir×t). We say that h is a free homotopy connecting
the spheroids φ0 and φ1 along this path.

Theorem 5.1.3.2. Every spheroid with origin x0 admits a free homotopy along
any path with origin x0. Free homotopies of homotopic spheroids along homo-
topic paths produce homotopic spheroids.

Proof. Let φ ∈ Sphr(X,x0), and let s be a path with s(0) = x0. To exhibit
a free homotopy of φ along s, it is enough to extend somehow the homotopy
(y, t) 7→ s(t) [y ∈ Fr Ir, t ∈ I] of the constant map φ|Fr Ir to a homotopy of
φ : lr → X. (That such an extension exists follows from Theorem 2.3.1.3.)

To prove the second claim, let φ0 and φ′
0 be homotopic spheroids, and let

h, h′ : Ir × I → X be free homotopies of φ0 and φ′
0 along the homotopic paths

s and s′. To show that the spheroids φ1 and φ′
1 are homo topic, where

φ1(T1, . . . , tr) = h((t1, . . . , tr), t), φ′
1(T1, . . . , tr) = h′((t1, . . . , tr), t)

pick some homotopies, : Ir × I → X, from φ0 to φ′
0, and g : I × I → X, from s

to s′, and de�ne a subset K of the cube lr+2 = Ir×I×I and a map H : K → X,
as follows:

K = FrRr+2 Ir+2 \ [(intRr+1 Ir+1)× 1]

H(y, u, v) =


f(y, u), if v = 0,

g(u, v), if y ∈ FrRr Ir,

h(y, v), if u = 0,

h′(y, v), if u = 1

where y ∈ Ir, u ∈ I, v ∈ I.
There exists a homeomorphism k : Ir × I → K such that k(y, u) = (y, u, 1)

for all (y, u) ∈ Fr(Ir × I); for example, take the inverse of the homeomorphism
k1 : K → Ir × I,

k1(y, u, v) = (y0,
1

2
) +

1

2
(1 + v)(y − y0, u−

1

2
),
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where y = (ort1 + · · · + ortr)/2. Now it is clear that H ◦ k : Ir × I → X is a
homotopy from φ1 to φ′

1.

De�nition 5.1.3.3. According to the previous theorem, the free homotopies
along a path s : I → X de�ne a map Ts : πr(X, s(0)) → πr(X, s(1)) for any
r ≥ 0. The same theorem demonstrates that the maps Ts ful�l property 5.1.2.1
(iii), and it is obvious that they enjoy also the properties 5.1.2.1 (i), 5.1.2.1
(ii), and are homomorphisms. The resulting local system, (X, {(X,x)}, {Ts}),
is a local system of groups for any r ≥ 1, and a local system of sets with
distinguished elements for r = 0; (X, {(X,x)}, {Ts}) is called the local system
of the r-th homotopy groups of X. In particular, π1(X,x) acts naturally from
the right on πr(X,x), for any x ∈ X and r ≥ 1.

Theorem 5.1.3.4. If r = 1, then the isomorphism Ts acts by the rule Ts =
σ−1ωσ, where σ is the homotopy class of the path s (i.e., Ts coincides with
the homomorphism ts from Remark 5.1.2.2). In particular, the right action of
π1(X,x) on π1(X,x) is the inner right action.

Proof. Let w be any loop in the class ω, and de�ne a path st : I → X, t ∈ I, by
st(y) = s(ty). Consider the loop wt = (s−1

t w)st. Since s0 is the constant path,
belongs to ω, and the formula (y, t) 7→ wt(y) de�nes a free homotopy I×I → X
from w0 to the loop w1 = (s−1w)s along s; w1 belongs to the class σ−1ωσ.

De�nition 5.1.3.5. As De�nition 5.1.3.3 shows, for arbitrary �xed r all the
homotopy groups πr(X,x0) of a connected topological space X are isomorphic.
For r = 1, this was already a corollary of Remark 5.1.2.2.

A space X is r-simple if it is connected and the local system of its r-th ho-
motopy groups is simple.
(Remark by the transcriber : For the de�nition of �simplicity�, see Remark
5.1.2.5.)

In this case, the groups πr(X,x) are not only isomorphic, but are manifestly
canonically isomorphic, and hence they may be identi�ed with a unique group,
πr(X), referred to as the r-th homotopy group of X without base point. The
elements of πr(X) are classes of freely homotopic spheroids. A space is simple
if it is r-simple for all r.

If X is not r-simple, then one cannot use the isomorphisms Ts to identify the
groups πr(X,x) with di�erent x. In this situation one can speak of the group
πr(X) of X only as an abstract group.

Obviously, the local system of the 0-th homotopy groups of a topological
space is always simple, and for connected spaces, it becomes a local system of
sets, each reduced to one point.

According to Theorem 5.1.3.4, a space is 1-simple if and only if it is connected
and its fundamental group is Abelian (see Remark 5.1.2.5).

Remark 5.1.3.6. As De�nition 5.1.1.12 shows, every continuous map f : X → X ′

induces a a homomorphism f = (f∗)X : πr(X,x)→ πr(X
′, f(x)), for any x ∈ X.

If h is a free homotopy from the spheroid φ0 to the spheroid φ1 along the path
s, then f ◦ h is a free homotopy from f ◦ φ0 to f ◦ φ1 along the path f ◦ s,
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and so (f∗)s(1) ◦ Ts = Tf◦s ◦ (f∗)s(0). Thus, given any r ≥ 0, the induced
homomorphisms (f∗r)X combine with f to de�ne a homomorphism of the local
system of the r-th homotopy groups of X into the local system of the r-th
homotopy groups of X ′.

Three special cases deserve to be mentioned:

(a) X is r-simple;

(b) X ′ is r-simple;

(c) X and X ′ are both r-simple.

In case (a), the homomorphisms (f∗r)X take the same group, πr(X), into
π(X ′, f(x)), x ∈ X, and for any path s : I → X the diagramme

πr(X)
(f∗)s(0)

ww

(f∗)s(1)

''
πr(X

′, f ◦ s(0))
Tf◦s

// πr(X
′, f ◦ s(1))

commutes. In case (b) , the homomorphisms (f∗r)X map the groups πr(X),
x ∈ X, into the same group, πr(X ′), and for any path s : I → X the diagramme

πr(X, s(0))
Ts //

(f∗)s(0) &&

πr(X, s(1))

(f∗)s(1)xx
πr(X

′)

commutes. Finally, in case (c), the local systems of the r-th homotopy groups
of X and X ′ reduce to two groups, πr(X) and πr(X ′), and the homomorphisms
(f∗r)X become one homomorphism f∗r : πr(X)→ πr(X

′).

Theorem 5.1.3.7. If f : X → X ′ is a homotopy equivalence, then all induced
homomorphisms (f∗r)(X) : pir(X,x)→ πr(X

′, f(x)) are isomorphisms.

Proof. Let f ′ : X ′ → X be a homotopy inverse of f . If H : X × I → X is a
homotopy from f ′ ◦ f to idX , then given any spheroid φ ∈ Sphr(X,x), the map
Ir × I → I, (y, t) 7→ H(φ(y), t), is a free homotopy from φ to the spheroid
f ′ ◦ f ◦ Sphr(X, f ′ ◦ f(x)), along the path s, s(t) = H(x, t). Therefore, the
homomorphism

(f ′∗)f(x) ◦ (f∗)x = ((f ′ ◦ f)∗)x : πr(X,x)→ πr(X, f
′ ◦ f(x))

is simply the translation Ts; In particular, it is an isomorphism, implying that
(f ′∗)f(x) is an epimorphism. On the other hand, (f∗)f ′◦f(x) ◦ (f ′∗)f(x) is also an
isomorphism, and so (f ′∗)f(x) a monomorphism. We conclude that (f ′∗)f(x) an
isomorphism, and hence so is (f∗)x = [(f ′∗)f(x)]

−1 ◦ Ts.
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Theorem 5.1.3.8. Let (X,x0) be a pointed topological space, and let 0 ≤ k <
∞. The homotopy groups πr(X,x0) are trivial for all r ≤ k if and only if X is
k-connected. The homotopy groups πr(X,x0) are all trivial if and only if X is
∞-connected

Proof. If X is k-connected, then πr(X,x0) is trivial for all r ≤ k: to see this,
compare the de�nition of πr(X,x0) and that of k-connectedness (see De�nition
1.3.3.7; in Theorem 1.3.3.6 one can replace (Dr+1,Sr) by the homeomorphic pair
(Ir+1,Fr Ir+1)). The same two de�nitions prove the converse statement, since
the triviality of πr(X,x0) for all r ≤ k implies the triviality of πr(X,x) for all
r ≤ k and any x ∈ X (see De�nitions 5.1.1.8 and 5.1.3.5).

5.1.4 Relative Homotopy Groups

De�nition 5.1.4.1. Set Jr−1 = FRrIr \ intRr−1 Ir−1. Given any topologi-
cal pair (X,A) with base point x0 ∈ A and any positive integer r, we let
Sphr(X,A, x0) denote the set C(Ir,Fr Ir, Jr−1;X,A, x0) of all continuous maps
(Ir,Fr Ir, Jr−1) → (X,A, x0). The elements of Sphr(X,A, x0) are called r-
dimensional spheroids (or r-spheroids) with origin x0 of the pair (X,A). The
set πr(Ir,Fr Ir, Jr−1;X,A, x0) of homotopy classes of such spheroids is simply
denoted by πr(X,A, x0).

Notice that every spheroid φ ∈ Sphr(X,A, x0), such that φ(Ir) ⊂ A, is
homotopic to the constant spheroid. In fact, there is even a standard homotopy
Ir × I → I from φ to the constant spheroid:

((t1, . . . , tr−1, tr), t) 7→ (t1, . . . , tr−1, (1− t)tr + t).

A 1-spheroid with origin x0 of the pair (X,A) is simply a path with origin
in A and end x0. Warning : a homotopy of such a spheroid is stationary at the
point 1, but if A is not reduced to x0, it is not necessarily stationary at the
point 0.

When r > 2, formula (5.1.1.2) de�nes a multiplication on Sphr(X,A, x0),
and this induces a multiplication on πr(X,A, x0), which turns πr(X,A, x0) into
a group. The identity element of πr(X,A, x0) is the homotopy class of the
constant spheroid, while the class of the spheroid φ−1, with

φ−1(t1, t2, . . . , tr) = φ(1− t1, t2, . . . , tr),

is the inverse of the class of φ. The proof of these assertions is entirely analogous
to that given in the case of absolute homotopy groups.

For r ≥ 2, πr(X,A, x0) is called the r-th homotopy group of the pair (X,A)
at the point x0. The �rst homotopy group of (X,A) at x0 is de�ned to be the set
π1(X,A, x0) with an identity (a distinguished element), namely the homotopy
class of the constant 1-spheroid.

IfA = x0, then πr(X,A, x0) equals πr(X,x0) (i.e., πr(X,x0, x0) and πr(X,x0)
coincide as groups for r ≥ 2, and as sets with distinguished elements for r = 1).

For r > 1, πr(X,A, x0) is canonically isomorphic to πr(X0, A0, x0) , where
X0 and A0 are the components of X and A which contain x0.
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For r > 2, πr(X,A, x0) is Abelian; the proof entails obvious modi�cations
of the proof of Theorem 5.1.1.11.

De�nition 5.1.4.2. Every continuous map f : (X,A, x0)→ (X ′, A′, x′0) yields
the induced homomorphism f∗ : πr(X,A, x0) → πr(X

′, A′, x′0), r ≥ 1, de�ned
as in the absolute case. If A = x0 and A′ = x′0, we recover the absolute
induced homomorphism, f∗ : πr(X,x0) → πr(X

′, x′0). As with the absolute
case, (g ◦ f)∗ = g∗ ◦ f∗ and id∗ = id. If f and f ′ are homotopic, then f∗ = f ′∗.
If f is a homotopy equivalence, then f∗ is an isomorphism.

The Boundary Homomorphism

De�nition 5.1.4.3. Given a spheroid φ ∈ Sphr(X,A, x0), its compression,
abrφ : (Ir−1,Fr Ir−1) → (A, x0), is a spheroid belonging to Sphr−1(A, x0),
called the boundary of φ, and denoted ∂φ. The resulting map, ∂ : Sphr(X,A, x0)→
Sphr−1(A, x0), takes homotopic spheroids into homotopic ones, takes the sum of
two spheroids into the sum of their boundaries, and takes the constant spheroid
into the constant one. Therefore, it de�nes, for every r ≥ 1, a homomorphism
∂ : πr(X,A, x0)→ πr−1(A, x0), called the boundary homomorphism.

Given any continuous map, f : (X,A, x0)→ (X ′, A′, x′0), the diagramme

πr(X,A, x0)
∂ //

f∗

��

πr−1(A, x0)

(abr f)∗

��
πr(X

′, A′, x′0) ∂
// πr−1(A

′, x′0)

commutes for any r ≥ 1. Indeed, we already know that the similar diagram
with Sph instead of π, and with f# and (abr f)# instead of f∗ and (abr f)∗,
commutes.

Local Systems of Homotopy Groups of a Topological Pair

De�nition 5.1.4.4. Two spheroids, φ0 ∈ Sphr(X,A, x0) and φ1 ∈ Sphr(X,A, x1),
are said to be freely homotopic if there is a homotopy from φ0 to φ1 consisting
only of spheroids, where φ0 to φ1 are viewed as maps (Ir,Fr I − r) → (X,A).
In other words, φ0 to φ1 are freely homotopic if there is a map h : Ir × I → I
such that h(Fr Ir × I) ⊂ A, h is constant on every set Jr−1 × t (t ∈ I), and
h(y, 0) = φ0(y), h(y, 1) = φ1(y) for all y ∈ Ir. We say that h is a free homotopy
from φ0 to φ1, along the path t 7→ h(Jr−1 × t).

Theorem 5.1.4.5. Every spheroid with origin x0 of (X,A) admits a free homo-
topy along any given path, s : I → A, with s(0) = x0. Moreover, free homotopies
of homotopic spheroids along homotopic paths of A produce homotopic spheroids.

Proof. The proof di�ers from that of Theorem 5.1.3.2 in two details:
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� in the �rst part of the proof, we have to start with abrφ : Jr−1 → A
(instead of φ|Fr Ir ) and extend its homotopy, (y, t) 7→ s(t), initially to a
homotopy of abrφ : Fr Ir → A, and then to a homotopy of φ : Ir → X;

� in the second part of the proof, we must replace g : I×I → X by g : I×I →
A.

This theorem shows that given a path s : I → A, the free homotopies along
s de�ne a map Ts : πr(X,A, s(0)) → πr(X,A, s(1)) (for each r ≥ 1). As in
the absolute case, Ts are homomorphisms and enjoy properties 5.1.2.1 (i)-(iii).
Therefore, a local system, (A, {πr(X,A, x)}, {Ts}), arises on A, which is a local
system of groups for r ≥ 2, and a local system of sets with distinguished elements
for r = 1. This is the local system of the r-th homotopy groups of the pair (X,A).
In particular, for any x ∈ A and r ≥ 1, π1(A, x0) acts naturally from the right
on πr(X,A, x); this is a group-action for r > 1, and it �xes the distinguished
element for r = 1.

From the existence of this local system it follows that, for any r ≥ 1, the
r-th homotopy groups πr(X,A, x), x ∈ A, are all isomorphic whenever A is
connected.

A pair (X,A) with A connected is said to be r-simple if the local system
of its r-th homotopy groups is simple. In this case all the homotopy groups
πr(X,A, x), x ∈ A, can be identi�ed with a single group, the r-th homotopy
group of the pair (X,A) without base point, πr(X,A); the elements of πr(X,A)
are classes of freely homotopic spheroids. A pair is simple if it is r-simple for
any r ≥ 1. For example, every pointed space is a simple pair.

Remark 5.1.4.6. Given any pair (X,A) and any path s : I → A, the diagramme

πr(X,A, s(0))
∂ //

Ts

��

πr−1(A, s(0))

Ts

��
πr(X,A, s(1))

∂
// πr−1(A, s(1))

obviously commutes. Therefore, the boundary homomorphisms, ∂ = ∂x(X,A, x)→
πr−1(A, x), combine with idA to de�ne a homomorphism of the local system of
the r-th homotopy groups of the pair (X,A) into the local system of the (r−1)-th
homotopy groups of the space A.

Further, given any continuous map, f : (X,A) → (X ′, A′), the homomor-
phisms

f∗ = (f∗)x : πr(X,A, x)→ πr(X
′, A′, f(x)),

combined with f to de�ne a homomorphism of the local system of the r-th ho-
motopy groups of the pair (X,A) into the corresponding local system of (X ′, A′).
As in Remark 5.1.3.6, we mention three special cases:

(a) (X,A) is r-simple;
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(b) (X ′, A′) is r-simple;

(c) both (X,A) and (X ′, A′) are r-simple.

In cases (a) and (b), any path s : I → A yields commutative diagrammes similar
to those in Remark 5.1.3.6; in case (c), the local systems of the r-th homo-
topy groups of the pairs (X,A) and (X ′, A′) reduce to single groups, πr(X,A)
and πr(X

′, A′), while the homomorphisms reduce to a single homomorphism,
f∗ : πr(X,A)→ πr(X

′, A′).

Theorem 5.1.4.7. If f is a homotopy equivalence, then all the homomorphisms
(f∗)x are isomorphisms.

Proof. The proof is similar to that given in the absolute case (see Theorem
5.1.3.7).

Theorem 5.1.4.8. Let (X,A) be a pair with base point x0 ∈ A. If X, A are
connected, then the triviality of all the homotopy groups πr(X,A, x0) is equiv-
alent to the ∞-connectedness of (X,A); the triviality of the homotopy groups
πr(X,A, x0) for 1 ≤ r ≤ k is equivalent to the k-connectedness of (X,A).

Proof. The proof is a repetition of the proof of Theorem 5.1.3.8, with obvious
modi�cations (instead of referring to De�nition 1.3.3.7, we refer to Remark
1.3.3.9).

The Group π2(X,A, x0)

Theorem 5.1.4.9. If α, β ∈ π2(X,A, x0), then α−1βα = T∂αβ.

Proof. (For an alternative proof, see Subsection 5.1.10). We have to check that,
given two arbitrary spheroids, φ,ψ ∈ Sphr(X,A, x0), there is a free homotopy
from psi to φ−1ψφ along the loop ∂φ. We shall exhibit such a homotopy as a
family of maps, χt : I2 → X (t ∈ I), constructed as follows.

Set f(t) = 1
16 −

1
8 |t−

1
2 |, and divide I2 into eight parts, as shown in Fig. 5.2:

the points A1(t), A2(t), A3(t), A4(t) have abscissae f(t), t/4, 1− (t/2), 1−f(t),
respectively, while the points B1(t), B2(t), B3(t), B4(t) lie above these points
at the height 1 − f(t). Further, let αj : Qj(t) → I2, j = 1, 2, 3, be the a�ne
maps de�ned by the conditions

α1(A1(t)) = (t, 0), α1(A2(t)) = (0, 0), α1(B1(t)) = (t, 1),

α2(A2(t)) = (0, 0), α2(A3(t)) = (1, 0), α2(B2(t)) = (0, 1),

α3(A3(t)) = (0, 0), α3(A4(t)) = (t, 0), α3(B3(t)) = (0, 1).

Now set

χt|Q1(t) = φ ◦ α1, χt|Q2(t) = ψ ◦ α2, χt|Q3(t) = φ ◦ α3

and consider the resulting continuous map Q1(t) ∪Q2(t) ∪Q3(t)→ X. Extend
it �rstly to a map ∪71Qi(t)→ X which is constant on the horizontals in Q4(t)∪
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Figure 5.2:

Q5(t) and on the verticals in Q6(t) ∪ Q7(t), and then to a map ∪81Qi(t) → X
which is constant on the horizontals in Q89(t). (The latter is possible, since the
already extended map∪71Qi(t) → X is constant on the segment [B1(t), B4(t)],
and assumes the same values at those points of the segments [B1(t), (0, 1)] and
[B4(t), (1, 1)] which lie at the same height.) The continuity of the map I2× I →
X de�ned by the family χt : I2 → X follows from its continuity on each of the
eight polyhedrons ∪t∈I(Qi(t)× t), 1 ≤ i ≤ 8.

The Action of the Group π1(X,x0) on π1(X,A, x0)

De�nition 5.1.4.10. Given a spheroid w ∈ Sphr(X,A, x0) and a loop s ∈
Sph1(X,x0), the product ws is well de�ned, and obviously ws ∈ Sph1(X,A, x0).
Moreover, the homotopy class of ws is uniquely determined by the homo-
topy classes of w and s, and hence we may de�ne the product ωσ for any
ω ∈ π1(X,A, x0) and σ ∈ π1(X,x0). Using again the homotopies described
in Theorem 5.1.1.3, we see that ω(σσ′) = (ω)σ)σ′ and ωeπ1(X,x0) = ω for any
ω ∈ π1(X,A, x0) and σ, σ′ ∈ π1(X,x0). That is to say, the rule (ω, σ) 7→ ωσ
de�nes a right action Of π1(X,x0) on π1(X,A, x0).

If A = x0, then we clearly recover the canonical right action of the group
π1(X,x0) (on itself) . It is readily seen that the translation

Ts : (X,A, s(0))→ (X,A, s(1))

is a [Tincl ◦s : π1(X, s(0)) → tπ1(X, s(1))]-map for any path s : I → A, i.e.,
Ts(ωσ) = Ts(ω)Tincl ◦s(σ) for all σ ∈ π1(X, s(0)) and ω ∈ π1(X,A, s(0)). Fur-
thermore, given any continuous map f : (X,A, x0) → (X ′, A′, x′0), the homo-
morphism

f∗ : π1(X,A, x0)→ π1(X
′, A′, x′0)
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is a f∗ : π1(X,x0)→ π1(X
′, x′0)-map, i.e.,

f∗(ωσ) = f∗(ω)f∗(σ) ∀ω ∈ π1(X,A, x0),∀σ ∈ π1(X,x0).

In particular, if we consider the map rel = [incl : (X,x0, x0)→ (X,A, x0)], then

(rel∗ ω)σ = rel∗(ωσ)

for all ω, σ ∈ π1(X,x0).

Theorem 5.1.4.11. For any ω ∈ π1(X,A, x0) and σinπ1(A, x0) we have

Tσω = ω(incl∗ σ),

where incl = [incl : (A, x0)→ (X,x0)].

Proof. Let w and s be spheroids in the classes ω and σ. Consider, for each �xed
t ∈ I, the path st : I → A given by st(y) = s(ty), and set wt = w(incl ◦st). Since
s0 is a constant path, w and w0 are homotopic. On the other hand, the formula
(y, t) 7→ wt(y) de�nes a free homotopy I × I → I from w0 to w1 = w(incl ◦s),
along s.

5.1.5 A Digression: Sequences of Groups and Homomor-

phisms, and π-Sequences

De�nition 5.1.5.1. A sequence of groups and homomorphism is a �nite or
in�nite (on one or both sides) sequence of groups such that for each two adjacent
groups, Gi and Gi+1, there is given a homomorphism Gi → Gi+1.

A homomorphism of a sequence of groups and homomorphisms, into another
such sequence,

{Gi, hi : Gi → Gi+1} into {G′
i, h

′
i : G

′
i → G′

i+1}

is a sequence of homomorphisms {Hi : Gi → Gi+1} such that the diagram

Gi−1

hi−1 //

Hi−1

��

Gi
hi //

Hi

��

Gi+1

Hi+1

��
G′
i−1

h′
i−1

// G′
i

h′
i

// G′
i+1

commutes. A homomorphism {Hi} such that each Hi : Gi → G′
i is and isomor-

phism is called an isomorphism.

De�nition 5.1.5.2. A sequence of groups and homomorphisms, {Gi, hi}, is
exact if for each group Gi, excepting the initial and �nal ones, the kernel kerhi
of the homomorphism hi equals the image imhi−1 of the homomorphism hi−1.

The following three properties are common to all exact sequences {Gi, hi}.
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(i) If Gi is an inner (i.e., neither initial, nor �nal) term of the given sequence,
then hi−1 is trivial if and only if hi is a monomorphism, while hi is trivial
if and only if hi−1 is an epimorphism; hi−1 and hi are both trivial if and
only if the group Gi is trivial.

(ii) If Gi and Gi+1 are inner terms, then hi−1 and hi+1 are simultaneously
trivial if and only if hi is an isomorphism.

(iii) In particular, the triviality of Gi−1 and Gi+1 implies the triviality of Gi,
while the triviality of Gi−1 and Gi+2 implies that hi is an isomorphism.

De�nition 5.1.5.3. An exact sequence of the form

1→ F
f−→ G

g−→ H → 1

is called short (here 1 denotes the trivial group). An example is

1→ F
incl−−→ G

proj−−→ G/F → 1,

where F is a normal subgroup of G. This example has a universal character:
every short exact sequence,

1→ F
f−→ G

g−→ H → 1

is canonically isomorphic to a sequence of this type, namely, to

1→ im f
incl−−→ G

proj−−→ G/ im f → 1;

the canonical isomorphism is obviously

{id1, abr f : F → im f, idG, h 7→ proj(g−1(h)), id1}.

Splitting

De�nition 5.1.5.4. Let {Gi, hi} be a sequence of groups and homomorphisms.
We say that this sequence is split from the right at the term Gα by the homo-
morphism ζ : Gα+1 → Gα if hα ◦ ζ = idGα+1

. Such a splitting is said to be
normal if im ζ is a normal subgroup of Gα.

Similarly, {Gi, hi} is split from the left at the term Gα by the homomorphism
ζ : Gα → Gα−1 if ζ ◦ hα−1 = idGα−1 . We sometimes say simply that the given
sequence is split, or that it splits (at right or at left) at Gα.

Lemma 5.1.5.5. Let A and B be groups, and let u : A → B and v : B → A
be homomorphisms. If im v is a normal subgroup of A and u ◦ v = idB, then
A = keru× im v.

Proof. Every element a ∈ A can be represented as [a(v ◦ u(a))−1](v ◦ u(a)), and
obviously a(v ◦ u(a))−1 ∈ keru and v ◦ u(a) ∈ im v. If a ∈ keru ∩ im v, then
u(a) = eB , and there is b ∈ B with v(b) = a. Thus, b = u ◦ v(b) = u(a) = eB
and a = v(b) = eA.
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Theorem 5.1.5.6. If the exact sequence {Gi, hi} splits normally from the right
at Gα and splits from the right at Gα−3, then it also splits from the left at
Gα , and Gα

∼
= Gα−1 × Gα+1. More precisely, under these hypotheses, hα−1is

a monomorphism, hα is an epimorphism, and Gα decomposes into the direct
product of imhα−1 and a subgroup which is mapped isomorphically onto Gα+1

by hα. Moreover, every homomorphism ζ : Gα+1 → Gα which splits the sequence
from the right is a monomorphism, and if ζ is also normally splitting, then for
a direct complement of imhα−1 one may take im ζ.

Proof. The equality Gα = imhα−1 × im ζ is a consequence of Lemma 5.1.5.5
and of the exactness of the given sequence. From hα ◦ ζ = idGα+1

, it follows
that hα is an epimorphism and that ζ is a monomorphism. Since {Gi, hi} splits
from the right at Gα−3, hα−3 is an epimorphism, and now the exactness of
{Gi, hi} implies that hα−2 is trivial, while hα−1 is a monomorphism. Finally, as
a homomorphism splitting the given sequence at from the left one can take the
homomorphism which is the inverse of on an equals the identity on im ζ.

Theorem 5.1.5.7. If the exact sequence {Gi, hi} splits from the left at Gα and
Gα+3, then it splits normally from the right at Gα, and

Gα
∼
= Gα−1 ×Gα+1.

More precisely, under these hypotheses, hα−1 is a monomorphism, hα is an
epimorphism, and Gα decomposes into the direct product of imhα−1 and a sub-
group which is mapped isomorphically onto Gα+1 by hα. Moreover, every ho-
momorphism ζ : : Gα → Gα−1 which splits the sequence from the left is an
epimorphism, and for a direct complement of imhα−1 one can take ker ζ.

Proof. The equality Gα = imhα−1 × im ζ is a consequence of Lemma 5.1.5.5.
From ζ ◦ hα−1 = idGα−1

it follows that hα−1 is a monomorphism and that ζ is
an epimorphism. Since {Gi, hi} splits from the left at Gα+3 and is exact, hα3
is an epimorphism. As a homomorphism splitting the given sequence normally
from the right at Gα, one can take the composition

Gα+1 = Gα/ kerhα = Gα/ imhα−1 = (imhα−1×ker ζ)/ imhα−1 = ker ζ
incl−−→ Gα.

Theorem 5.1.5.8. An exact sequence

1→ F
f−→ G

g−→ H → 1

splits at G from the left if and only if it splits at G normally from the right,
and this happens if and only if the subgroup im f = ker g of G has a direct
complement.

Proof. This is a corollary of Lemma 5.1.5.5.
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Five Lemma

Theorem 5.1.5.9. If

G1
h1 //

φ1

��

G2
h2 //

φ2

��

G3
h3 //

φ3

��

G4
h1 //

φ4

��

G5

φ5

��
G′

1
h′
1

// G′
2

h′
2

// G′
3

h′
3

// G′
4

h′
4

// G′
5

is a homomorphism of exact sequences, and if φ1 is an epimorphism, φ2, φ4

are isomorphisms, and φ5 is a monomorphism, then φ3 is an isomorphism.

Proof. Let us show �rst that φ3 is a monomorphism. If a ∈ kerφ3, then φ4 ◦
h3(a) = h′3 ◦ φ3(a) = eG′

4
, and so h3(a) = eG4

, i.e., a ∈ kerh3 = imh2 . Let
a = h2(b), b ∈ G2. Since

h′2 ◦ φ2(b) = φ3 ◦ h2(b) = φ3(a) = eG′
3

there is c ∈ G′
1 such that h′1(c) = φ2(b). Therefore, there is d ∈ G1 such that

h′1 ◦ φ1(d) = φ2(b). On the other hand, h′1 ◦ φ1(d) = φ2 ◦ h1(d), and hence
φ2(b) = φ2 ◦ h1(d). Consequently, b = h1(d) and a = h2 ◦ h1(d) = eG3

.
Now let us verify that φ3 is an epimorphism. Let a ∈ G′

3. Then

φ5 ◦ h4 ◦ φ−1
4 ◦ h′3(a) = h′4 ◦ h′3(a) = eG′

5
,

and so h4 ◦ φ−1
4 ◦ h3(a) = eG′

5
, i.e., φ−1

4 ◦ h′3(a) ∈ kerh4 = imh3. Let

φ−1
4 ◦ h′3(a) = h3(b), b ∈ G3.

Since

h′3(a(φ3(b))
−1) = (φ4◦φ−1

4 ◦h′3(a))(h′3◦φ3(b))
−1 = φ4(φ

−1
4 ◦h′3(a))(h′3(b))−1) = eG′

4
,

there is c ∈ G′
2 such that h′2(c) = a(φ3(b))

−1, and hence there is d ∈ G2 such
that h′2 ◦ φ2(d) = a(φ3(b))

−1. On the other hand, h′2 ◦ φ2(d) = φ3 ◦ h2(d), and
hence a(φ3(b))

−1 = φ3 ◦ h2(d). Consequently, a = φ3(h2(d)b).

π-Sequences

Remark 5.1.5.10. In the next subsections we shall handle the so-called homotopy
sequences. These are rather cumbersome entities which are similar to sequences
of groups and homomorphisms, but possess additional properties and structures.
Such sequences are encountered in various geometric situations, but they are
all algebraically related. The rest of the present subsection is devoted to a
preliminary, purely algebraic description and study of these sequences.

De�nition 5.1.5.11. Consider a left-in�nite sequence

→ Π7
ρ6−→ Π6

ρ5−→ Π5
ρ4−→ Π4

ρ3−→ Π3
ρ2−→ Π2

ρ1−→ Π1
ρ0−→ Π0, (5.1.5.12)

where:
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Π0, Π1, Π2 are sets with an identity (distinguished element),

Π3, Π4, Π5 are groups,

Π6, Π7, . . . are Abelian groups,

ρ0, ρ1, ρ2 are homomorphisms in the sense of De�nition 5.1.1.8,

ρ3, ρ4, . . . are group homomorphism.

Then (5.1.5.12) is called a π-sequence if there are given

right group-actions of Π3 on the groups Π3k with k ≥ 2,

right group-actions of Π4 on the groups Π3k+1 with k ≥ 2,

right group-actions of Π4 on the groups Π3k−1 with k ≥ 2,

right group-actions of Π3 on the set Π2,

such that

(i) ρ3k is a ρ3-homomorphism for all k ≥ 2;

(ii) ρ3k+1 a Π4-homomorphism for all k ≥ 2;

(iii) ρ3k−1 is a Π4-homomorphism for all k ≥ 2, with respect to the right
group-action of Π4 on Π3k induced by the given action of on Π3 via ρ3;

(iv) ρ4 is a Π4-homomorphism with respect to the right inner action of Π4;

(v) the transformation of the group Π2 induced by the image ρ4(α) ∈ Π4 of
an arbitrary element α ∈ Π4 is the inner automorphism β 7→ α−1βα;

(vi) the transformation of the set Π2 induced by an arbitrary element α ∈ Π3

coincides on ρ2(Π3) with the transformation ρ2(ω)σ = ρ2(ωσ).

A homomorphism of the π-sequence {Πi, ρi}∞i=0 into the π-sequence {Π′
i, ρ

′
i}∞i=0

is a sequence of homomorphisms hi : Πi → Π′
i such that

ρi ◦ hi+1 = hi ◦ ρi for all i ≥ 0;

h′3k, h
′
3k+1 and h

′
3k−1 (k ≥ 2) are h3-, h4- and h5-homomorphisms, respectively;

h2(ω)h3(σ) = h2(ωσ) for all ω ∈ Π2 and σ ∈ Π3.

An isomorphism is a homomorphism such that all hi's are isomorphisms.

Remark 5.1.5.13. Among conditions (i)-(vi) above, two refer to ρ4, namely (iv)
and (v). From (iv) it follows that if Π4 acts identically on Π5, then im ρ4 is
contained in the centre of the group Π4. From (v) it follows that if Π4 acts
identically on Π5, then Π5 is Abelian, and that the converse is true provided ρ4
is an epimorphism. In general, (v) implies that ker ρ4 is contained in the centre
of Π5.
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De�nition 5.1.5.14. The π-sequence (5.1.5.12) is exact if ker ρi = im ρi+1 for
all i ≥ 0 and, in addition, the preimages of the elements of Π1 under ρ1 are
nothing but the orbits of the action of Π3 on π2.

The π-sequence (5.1.5.12) is exact and i ≥ 0 is arbitrary, then obviously the
homomorphism ρi is trivial if and only if ρi+1 is an epimorphism, while ker ρi
is trivial if and only if ρi+1 is trivial. In general, when i ≥ 3, ker ρi is trivial
if and only ρi is injective, because ρi is a group homomorphism. Further, the
triviality of ker ρ2 means that ρ2 is injective: if ρ2(α) = ρ2(β), then

ρ2(αβ
−1) = ρ2(α)β

−1 = ρ2(β)β
−1 = ρ2(ββ

−1) = ρ2(eP i3)

[see condition (vi) in De�nition 5.1.5.11], and hence α = β. The triviality of
ker ρ0 does not imply the injectivity of ρ0, and this is also valid for ker ρ1 and
ρ1. However, in the case of an exact π-sequence (5.1.5.12), the injectivity of ρ1
is guaranteed if the group is trivial, or if it acts identically on Π2.

The above discussion makes clear that,

in the case of an exact π-sequence (5.1.5.12) and for i ≥ 1, the triviality of ρi
and ρi+2 is equivalent to the invertibility of ρi+1,

the triviality of Πi and Πi+2 implies the triviality of Πi−1,

the triviality of Πi−1 and Πi+2 implies the invertibility of ρi (cf. De�nition
5.1.5.2).

Theorem 5.1.5.15. Let (5.1.5.12) be an exact π-sequence. If the action of Π4

on Π2 induced by the action of Π3 via ρ3 is identical, then im ρ3 is a normal
subgroup of Π3. The converse is true provided ρ2 is an epimorphism.

Proof. Assume that Π4 acts identically on Π2. If α ∈ Π4, β ∈ Π3, then
ρ2(β)ρ3(α) = ρ2(β), and hence

ρ2(βρ3(α)β
−1) = ρ2(βρ3(α))β

−1 = [ρ2(β)ρ3(α)]β
−1 = ρ2(β)β

−1 = ρ2(ββ
−1) = eΠ2

[see condition (vi) in De�nition vi]. Therefore, βρ3(α)β−1 ∈ ker ρ2 = im ρ3, and
hence im ρ3 is a normal subgroup of Π3.

Now assume that ρ2 is an epimorphism and that im ρ3 is a normal subgroup
of Π3. If α ∈ Π4 and γ ∈ Π2, then there is β ∈ Π3 such that = ρ2 = γ, and
since βρ3(α)β−1 ∈ im ρ3 = ker ρ2, we have

γρ3(α) = ρ2(β)ρ3(α) = ρ2(βρ3(α)) = ρ2(βρ3(α)β
−1β) = eΠ2β

= ρ2(eΠ3)β = ρ2(β) = γ

[see again (vi) in De�nition vi]. Consequently, Π4 acts identically on Π2.

Remark 5.1.5.16. Every sequence of Abelian groups and group homomorphisms
of the form (5.1.5.12) can be viewed as a π-sequence, where the action of Π3 on
Π3k, k ≥ 2, and the actions of Π4 on Π3k+1 and Π3k−1, k ≥ 2, are identical,
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while the action of Π3 on Π2 is given by ωσ = ωρ2(σ) [ω ∈ Π2, σ ∈ Π3]. Then it
is readily seen that a sequence which is exact in the sense of De�nition 5.1.5.2
is also exact as a π-sequence, and that the homomorphisms of sequences in the
sense of De�nition 5.1.5.1 are also homomorphisms in the sense of De�nition
5.1.5.11.

Splitting of π�Sequences

De�nition 5.1.5.17. We say that the π-sequence (5.1.5.12) is split from the
right at the term Πα by the homomorphism ζ : Πα−1 → Πα if ρα−1 ◦ζ = idΠα−1 .
This splitting is normal if

α = 0, 1, 2 or

α ≥ 3 and im ζ is a normal subgroup of Πα.

We say that the π-sequence (5.1.5.12) is split from the left at the term Πα by the
homomorphism ζ : Πα → Πα+1 if ζ ◦ ρα = idΠα+1

. (ζ is a group homomorphism
when this makes sense, and a homomorphism of sets with identity elements
otherwise.)

Theorem 5.1.5.18. If α ≥ 5, then any right splitting of the π-sequence (5.1.5.12)
at Πα is normal. If (5.1.5.12) is exact and Π4 acts identically on Π5, then any
right splitting at Π4 is normal.

Proof. Since for α > 5 the groups Πα are Abelian, we need consider a only Π4

and Π5. Suppose that the homomorphism ζ : Π4 → Π5 splits (5.1.5.12) from
the right at Π5. If α, β ∈ Π5, then

βαβ−1 = [βζ(ρ4(β
−1))][ζ(ρ4(β))αβ

−1]

= [ζ(ρ4(β))αβ
−1][βζ(ρ4(β

−1))] = ζ(ρ4(β))αζ(ρ4(β
−1));

permuting the factors is permissible because βζ(ρ4(β−1)) ∈ ker ρ4 (as shown by
the equality ρ4 ◦ ζ = idΠ4

), and hence βζ(ρ4(β−1)) belongs to the centre of Π5

(see Remark 5.1.5.13). This representation of βαβ−1 shows that if α ∈ im ζ,
then βαβ−1 ∈ im ζ for all β ∈ Π5.

Now suppose that ζ : Π3 → Π4 splits the exact π-sequence (5.1.5.12) from
the right at Pi4, and that Π4 acts identically on Π5. If α, β ∈ Π4, then

βαβ−1 = [βζ(ρ3(β
−1))][ζ(ρ3(β))αβ

−1]

= [ζ(ρ3(β))αβ
−1][βζ(ρ3(β

−1))] = ζ(ρ3(β))αζ(ρ3(β
−1));

permuting the factors is permissible because βζ(ρ3(β−1)) ∈ ker ρ4 (as shown by
the equality ρ3 ◦ ζ = idΠ3

), and hence βζ(ρ3(β−1)) belongs to the centre of Π4.
(see Remark 5.1.5.13). This representation of βαβ−1 shows that if α ∈ im ζ,
then βαβ−1 ∈ im ζ for all β ∈ Π4.
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Remark 5.1.5.19. Let the π-sequence (5.1.5.12) be exact, normally split from
right at Πα and split from the right at Πα+3. If α ≥ 4, then, according to
Theorem 5.1.5.6, sequence (5.1.5.12) also splits from the left at Πα, and Πα
decomposes into the product of a subgroup canonically isomorphic to Πα+1 and
a subgroup isomorphic to Πα. When α = 1, 2, 3, (5.1.5.12) also splits from the
left at Πα (to see this, repeat the arguments of Theorem 5.1.5.6), but obvious
examples demonstrate that the above isomorphism Πα

∼
= Πα+1 × Πα−1 is not

necessarily valid.
Now let the π-sequence (5.1.5.12 be exact and split from the left at Πα and

Πα−3. If α ≥ 6, then, according to Theorem 5.1.5.7, (5.1.5.12) is normally
split from the right at Πα, and Πα decomposes into the product of a subgroup
canonically isomorphic to Πα+1 and a subgroup isomorphic to Πα−1. A word-
for-word repetition of the arguments in Theorem 5.1.5.7 shows that this holds
also for α = 4, 5. If α = 3, all we can say is that (5.1.5.12) splits from the right
at Π3.

In what follows, we shall often encounter π-sequences which are exact, and
split at every third term. The discussion above shows that if the π-sequence
(5.1.5.12) is exact and normally split from the right (split from the left) at every
term Πi0+3k with i0 + 3k ≥ 1, then it also splits from the left at these terms
(respectively, it also splits from the right at Πi0+3k with i0 + 3k ≥ 3, and splits
normally from the right at Πi0+3k for i0 + 3k ≥ 4).

The π-Variant of the Five Lemma

Theorem 5.1.5.20. Let {Πi, ρi}∞i=0 and {Π′
i, ρ

′
i}∞i=0 be exact π-sequences, and

let {hi : Πi → Π′
i}∞i=0 be a homomorphism of the �rst sequence into the second.

If hα−1 and hα+1 are isomorphisms and kerhα−2 = eΠα−2
, imhα+2 = Π′

α+2,
then kerhα = eΠα and imhα = Π′

α (and hence hα is a group isomorphism for
all α ≥ 3).

Proof. If α ≥ 5, then this is contained in theorem 5.1.5.9. The proof for α =
2, 3, 4 is similar.

5.1.6 The Homotopy Sequence of a Pair

De�nition 5.1.6.1. Let (X,A) be a topological pair with base point x0 ∈
A. According to Subsections subsect:05-1-1 and 5.1.4, the homotopy groups
πr(X,x0) and
pir(A, x0) are de�ned for any r ≥ 0, whereas the homotopy groups πr(X,A, x0)
are de�ned for any r ≥ 1. Moreover, by De�nition 5.1.4.3, there are the ho-
momorphisms ∂ : πr(X,A, x0) → πr−1(A, x0). To these we add the homomor-
phisms incl∗ : πr(A, x0) → πr(X,x0) and rel∗ : πr(X,x0) → πr(X,A, x0), in-
duced by the inclusions incl : A → X and rel : (X,x0, x0) → (X,A, x0). These
three series of homotopy groups and three series of homomorphisms can be
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assembled into the left-in�nite sequence

· · · ∂−→π2(A, x0)
incl∗−−−→ π2(X,x0)

rel∗−−→ π2(X,A, x0)
∂−→ π1(A, x0)

incl∗−−−→

π1(X,x0)
rel∗−−→ π1(X,A, x0)

∂−→ π0(A, x0)
incl∗−−−→ π0(X,x0)

(5.1.6.2)

Here, all the terms, except for the last six, are Abelian groups, all the terms,
except for the last three, are groups, the last three terms are sets with an identity,
all the maps, except for the last three, are group homomorphisms, and the last
three maps are homomorphisms of sets with identity. By De�nitions 5.1.3.3
and 5.1.4.4, π1(X,x0) acts from the right on πr(X,x0), while π1(A, x0) acts
from the right on πr(A, x0) and πr(X,A, x0), and all these are group-actions.
Furthermore, the homomorphisms incl∗, rel∗, and ∂ are compatible with these
actions, as required in De�nition 5.1.5.11 (see Remarks 5.1.3.6, 5.1.4.6, and
Theorem 5.1.3.4), and α−1βα = T∂αβ for all α, β ∈ π2(X,A, x0) (see Theorem
5.1.4.9). From De�nition 5.1.4.10 and Theorem 5.1.4.11 it follows that π1(X,x0)
acts from the right on π1(X,A, x0) in such a manner that rel∗(ω)σ = rel∗(ωσ)
for all ω, σ ∈ π1(X,x0). Therefore, (5.1.6.2) is a π-sequence, called the homotopy
sequence of the pair (X,A) with base point x0.

Theorem 5.1.6.3. Sequence (5.1.6.2) is exact.

Proof. The proof is a routine, direct veri�cation of the six inclusions im incl∗ ⊂
ker rel∗, ker rel∗ ⊂ im incl∗, im rel∗ ⊂ ker ∂, ker ∂ ⊂ im rel∗, im ∂ ⊂ ker incl∗, and
ker incl∗ ⊂ im ∂, plus a justi�cation of the fact that, given α, β ∈ πr(X,A, x0),
there is a α ∈ π1(X,x0) such that ασ = β if and only if ∂α = ∂β.

Theorem 5.1.6.4. Given any path s : I → A, the vertical isomorphisms

// πr(A, s(0))
incl∗//

Ts��

πr(X, s(0))
rel∗ //

Tincl ◦s��

πr(X,A, s(0))
∂ //

Ts��

πr−1(A, s(0)) //

Ts��
// πr(A, s(1))

incl∗

// πr(X, s(1))
rel∗

// πr(X,A, s(1))
∂
// πr−1(A, s(0)) //

de�ne an isomorphism of the �rst sequence onto the second.

Proof. The commutativity of the �rst square has been established in Remark
5.1.3.6, while the commutativity of the second and the third in Remark 5.1.4.6.
From the fact that the local systems (A, {πr(A, x)}, {Ts}), (X, {πr(, x)}, {Ts}),
and (A, {πr(X,A, x)}, {Ts}) satisfy property in De�nition 5.1.2.1 (i), and from
the equality Ts(ωσ) = Ts(ω)Tincl ◦s(σ) [σ ∈ π1(X, s(0)), ω ∈ π1(X,A, s(0))],
deduced in De�nition 5.1.4.10, it follows that the vertical homomorphisms are
compatible with the actions of the fundamental groups.
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Theorem 5.1.6.5. Given a continuous map f : (X,A, x0) → (X ′, A′, x′0), the
vertical homomorphisms

// πr(A, x(0))
incl∗ //

(abr f)∗��

πr(X,x(0))
rel∗ //

f∗��

πr(X,A, x(0))
∂ //

f∗��

πr−1(A, x(0)) //

(abr f)∗��
// πr(A

′, x(0)
′)

incl∗

// πr(X
′, x(0)

′)
rel∗

// πr(X
′, A′, x(0)

′)
∂
// πr−1(A

′, x(0)
′) //

(5.1.6.6)
induced by f yield a homomorphism of the �rst sequence into the second.

Proof. The commutativity of the �rst two squares follows from Theorem 5.1.1.13
and De�nition 5.1.4.2. The commutativity of the third square has been estab-
lished in De�nition 5.1.4.3, and the compatibility of the vertical homomorphisms
with the actions of the fundamental groups - in Remarks 5.1.3.6, 5.1.4.6, and
De�nition 5.1.4.10.

The Most Important Special Cases

Remark 5.1.6.7. If X is ∞-connected, then all the homomorphisms

∂ : πr(X,A, x0)→ πr−1(A, x0)

are isomorphisms. If X is k-connected and k <∞, then

∂ : πr(X,A, x0)→ πr−1(A, x0)

is an isomorphism for all r ≤ k, while

∂ : πk+1(X,A, x0)→ πk(A, x0)

is an epimorphism. The converse of both statements is true provided that X is
connected.

If A is ∞-connected, then all the homomorphisms

rel∗ : (X,x0)→ πr(X,A, x0)

are isomorphisms. If A is k-connected, and k <∞ then

rel∗ : πk+1(X,x0)→ πk+1(X,A, x0)

is an isomorphism for all r ≤ k, while

rel∗ : πk+1(X,x0)→ πk+1(X,A, x0)

is an epimorphism. If one of the spaces X, A is connected, then again, the
converse of both statements is true.

If the pair (X,A) is ∞-connected, then all the homomorphisms

incl∗ : πr(A, x0)→ πr(X,x0)
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are isomorphisms. If (X,A) is k-connected and k <∞, then

incl∗ : πr(A, x0)→ πr(X,x0)

is an isomorphism for all r < k, while

incl∗ : πk(A, x0)→ πk(X,x0)

is an epimorphism. The converse is true in both cases (with no supplementary
conditions). In particular, if incl : A → X is a homotopy equivalence, then the
pair (X,A) is ∞-connected (see Theorem 5.1.3.7 and cf. Remark 1.3.3.9).

Theorem 5.1.6.8. If A is a retract of X, then the sequence (5.1.6.2) splits
from the left at πr(X,x0), and any retraction ρ : X → A induces splitting ho-
momorphisms ρ∗ : πr(X,x0)→ πr(A, x0).

Proof. Since ρ ◦ incl = idA, ρ∗ ◦ incl∗ = idπr(A,x0).

Theorem 5.1.6.9. Suppose that (X,x0) can be contracted to (A, x0), i.e., idX is
x0-homotopic to some map h : X → X such that h(X) ⊂ A. Then the sequence
(5.1.6.2) splits from the right at πr(A, x0), and as splitting homomorphisms one
may take (abrh)∗ : πr(X,x00→ πr(A, x0).

Proof. The composition incl ◦ abrh is x0-homotopic to idX , and hence

incl∗ ◦(abrh)∗ = idπr(X,x0)

Corollary 5.1.6.10. Suppose that (A, x0) is contractible in (X,x0), i.e., the
inclusion A ↪→ X is x0-homotopic to the constant map. Then the sequence
(5.1.6.2) splits from the right at πr(X,A, x0). As splitting homomorphisms
πr(A, x0) → πr+1(X,A, x0) one may take those induced by the maps, given
by

γr : Sphr(A, x0)→ Sphr+1(X,A, x0), [γr(φ)](t1, . . . , tr) = h(φ(t1, . . . , tr), tr+1),

[φ ∈ Sphr(A, x0)],

where h : A× I → X is any homotopy from incl : A ↪→ X to the constant map.

Proof. This is a corollary of the obvious equality ∂ ◦ γr = idSphr(A,x0).

Remark 5.1.6.11. The following remarks are concerned not with the homotopy
sequences of pairs themselves, but with the homomorphism (5.1.6.6) induced by
a map f : (X,A, x0)→ (X ′, A′, x′0) between pairs with base point.

The π-variant of the Five Lemma (see Theorem 5.1.5.20) shows that:

� if

(abr f)∗ : πr(A, x0)→ πr(A
′, x′0), ∀r ≥ 0,

f∗ : πr(X,A, x0)→ πr(X
′, A′, x′0), ∀r ≥ 1,

are isomorphisms, then so are f∗ : πr(X,x0)→ πr(X
′, x′0), for all r ≥ 1;
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� if

f∗ : πr(X,x0)→ πr(X
′, x′0), ∀r ≥ 1,

f∗ : πr(X,A, x0)→ πr(X
′, A′, x′0), ∀r ≥ 1,

are isomorphisms, then so are (abr f)∗ : πr(A, x0)→ πr(A
′, x′0), ∀r ≥ 1;

� if

f∗ : πr(X,x0)→ πr(X
′, x′0), ∀r ≥ 0,

(abr f)∗ : πr(A, x0)→ πr(A
′, x′0), ∀r ≥ 0,

are isomorphisms, then

� so are f∗ : πr(X,A, x0)→ πr(X
′, A′, x′0), for all r ≥ 2,

� while f∗ : πr(X,A, x0)→ − > πr(X
′, A′, x′0) is an epimorphism with

trivial kernel.

In the last case, f∗ : π1(X,A, x0)→ π1(X
′, A′, x′0) is not necessarily injective;

see Example 5.3.8.9. However, this map is certainly injective (and hence, an
isomorphism) if we assume, in addition, that all the homomorphisms

(abr f)∗ : πr(A, x)→ πr(A
′, f(x)), x ∈ A,

are epimorphic. To see this, let ω1, ω2 with f∗(ω1) = f∗(ω2), and let w1 and w2

be spheroids in the classes ω1 and ω2. Then there is a path s′ : I → A′ such
that s′(0) = f ◦ w1(1), s′(1) = f ◦ w2(1), and the loop

((f ◦ w1)([incl : A
′ → X ′] ◦ s′))(f ◦ w2)

−1 (5.1.6.12)

is homotopic to the constant loop. Since (abr f)∗ : π1(A, x0) → π1(A
′, x′0) is

an isomorphism and (abr f)∗ : π1(A,w1) → π1(A
′, f(w′

1)) is an epimorphism,
there is a path s : I → A such that s(0) = w1(1), s(1) = w2(1), and the path
abr f ◦ s : I → A′ is homotopic to s′. For such a choice of s, f takes the loop

(w1([incl : A→ X] ◦ s))w−1
2 (5.1.6.13)

into a loop homotopic to (5.1.6.12), and therefore homotopic to the constant
loop. Finally, from the fact that f∗ : π1(X,x0) → π1(X

′, x′0) is an isomor-
phism, it follows that (5.1.6.13) itself is homotopic to the constant loop, i.e., the
spheroids w1 and w2 are homotopic, and ω1 = ω2.

The Homotopy Sequence of a Triple

De�nition 5.1.6.14. Let (X,A,B) be a topological triple with base point
x0 ∈ B. According to Subsection 5.1.4, when r ≥ 1 the homotopy groups

πr(X,A, x0), πr(X,B, x0), πr(A,B, x0)
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and the homomorphisms

incl∗ : πr(A,B, x0)→ πr(X,B, x0), rel∗ : πr(X,B, x0)→ πr(X,A, x0),

induced by the inclusions incl : (A,B) → (X,B) and rel : (X,B) → (X,A), are
well de�ned. If r ≥ 2, we de�ne an additional homomorphism,

∂ : (X,A, x0)→ πr−1(A,B, x0),

as the composition of the boundary homomorphism πr(X,A, x0)→ πr−1(A, x0)
and the homomorphism πr−1(A, x0)→ πr−1(A,B, x0), induced by the inclusion
(A, x0, x0)→ (A,B, x0).

Now we may assemble these three series of groups and three series of homo-
morphisms into a left-in�nite sequence

· · · ∂−→ π2(A,B, x0)
incl∗−−−→ π2(X,B, x0)

rel∗−−→ π2(X,A, x0)

∂−→ π1(A,B, x0)
incl∗−−−→ π1(X,B, x0)

rel∗−−→ π1(X,A, x0)
(5.1.6.15)

As was (5.1.6.2), (5.1.6.15) is a π-sequence:

the right group-actions of π2(X,A, x0) on the groups πr(X,A, x0), and the right
group-actions of π2(X,B, x0) on the groups πr(A,B, x0) and πr(X,B, x0),
are induced by the actions of π1(A, x0) and π1(B, x0) via the homomor-
phisms ∂ : pi2(X,A, x0)→ π1(A, x0) and ∂ : pi2(X,B, x0)→ π1(B, x0);

similarly, the right action of π2(X,A, x0) on π1(A,B, x0) is induced by the
action of π1(A, x0) via the homomorphism ∂ : π2(X,A, x0)→ π1(A, x0);

�nally, De�nition 5.1.4.4, Remark 5.1.4.6, Theorem 5.1.4.9, and De�nition
5.1.4.10 show that the conditions imposed by De�nition 5.1.5.11 are sat-
is�ed.

π-Sequence (5.1.6.15) is called the homotopy sequence of the triple (X,A,B)
with base point x0.

Sequence (5.1.6.15) is exact; cf. Theorem 5.1.6.3.
Given any path s : I → B, the translations

πr(X,A, s(0))→ πr(X,A, s(1)), πr(X,B, s(0))→ πr(X,B, s(1)),

πr(A,B, s(0))→ πr(A,B, s(1))

de�ne an isomorphism of the homotopy sequence of the triple (X,A,B) with
base point s(0) into the homotopy sequence of the triple (X,A,B) with base
point s(1); cf. Theorem 5.1.6.4.

Given any continuous map f from a triple (X,A,B) with base point x0 into
a triple (X ′, A′, B′) with base point x′0 (x ∈ B, x′0 ∈ B′), the homomorphisms

f∗ : πr(X,A, x0)→ πr(X
′, A′, x′0), f∗ : πr(X,B, x0)→ πr(X

′, B′, x′0),

(abr f)∗ : πr(A,B, x0)→ πr(A
′, B′, x′0),

constitute a homomorphism from the homotopy sequence of the �rst triple into
the homotopy sequence of the second triple; cf. Theorem 5.1.6.5.
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5.1.7 The Local System of Homotopy Groups of the Fibres

of a Serre Bundle

De�nition 5.1.7.1. Suppose that ξ is a Serre bundle, F0 and F1 are �bres of ξ,
and x0 ∈ F0, x1 ∈ F1. Two spheroids, φ0 ∈ Sphr(F0, x0) and φ1 ∈ Sphr(F1, x0),
are said to be �bre homotopic if the spheroids

[incl : F0 → tl(ξ)]◦φ0 ∈ Sphr(tl(ξ), x0), [incl : F1 → tl(ξ)]◦φ1 ∈ Sphr(tl(ξ), x1)

can be connected by a free homotopy consisting of spheroids of tl(ξ) which take
Ir into �bres of ξ. In other words, φ0 and φ1 are �bre homotopic if there is
a map h : Ir × I → tl(ξ) such that: h is constant on each set Fr Ir × t, t ∈ I,
h(y, 0) = φ0, h(y, 1) = φ1, y ∈ Ir, and the map proj(ξ) ◦ h is constant on each
set Ir× t, t ∈ I. We say that h is a �bre homotopy from φ0 to φ1 along the path
t 7→ h(Fr Ir × t).

Theorem 5.1.7.2. Given any spheroid φ with origin of the �bre F0, there is a
�bre homotopy of φ along any path with origin x0 in tl(ξ). Fibre homotopies of
homotopic spheroids along homotopic paths of tl(ξ), always lead to homotopic
spheroids. Fibre homotopies of freely homotopic spheroids along paths which
cover homotopic paths of bs(ξ) lead to freely homotopic spheroids.

Proof. Let s : I → tl(ξ) be a path with s(0) = x0, and let φ ∈ Sphr(F0, x0).
De�ne homotopies

H : Ir × I → bs(ξ), H(y, t) = proj(ξ) ◦ s(t),
G : Ir × I → tl(ξ), G(y, t) = s(t).

Since

H(y, 0) = proj(ξ)(φ(y)), ∀y ∈ Ir, G(y, 0) = φ(y) ∀y ∈ Fr Ir,

there is a homotopy, H̃ : Ir × I → tl(ξ), which covers H and satis�es

H̃(y, t) = G(y, t), ∀y ∈ Fr Ir, H̃(y, 0) = φ(y), ∀y ∈ Ir

(see Theorem 4.1.3.6). H̃ is manifestly a �bre homotopy of φ along s.
To prove the second assertion, it su�ces to show that two spheroids, φ,ψ ∈

Sphr(F0, x0), which are �bre homotopic along a loop s : I → tl(ξ) homotopic
with the constant loop, are homotopic in the usual sense. Choose a �bre homo-
topy φ : I × I → tl(ξ), from φ to ψ along s, and a homotopy h : I × I → tl(ξ),
from s to the constant loop. Now de�ne

f̃ : Ir+1 → tl(ξ), (t1, . . . , tr+1) 7→ φ((t1, . . . , tr), tr+1),

H : Ir+1 × I → bs(ξ), ((t1, . . . , tr), t) 7→ proj(ξ) ◦ h(tr+1, t),

G : Fr Ir+1 × I → tl(ξ),

((t1, . . . , tr+1), t) 7→


φ(t1, . . . , tr+1), t), if tr+1 = 0,

ψ(t1, . . . , tr+1), t), if tr+1 = 0,

h(tr+1, t), if(t1, . . . , tr+1) ∈ Fr Ir.
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Since

H(y, 0) = proj(ξ)(f̃(y)), y ∈ Ir+1,

G(y, 0) = f̃(y), y ∈ Fr Ir+1,

there is a homotopy H̃ : Ir+1 × I → tl(ξ), which covers H and satis�es

H̃(y, t) = G(y, t), y ∈ Fr Ir+1

H̃(y, 0) = f̃(y), y ∈ Ir+1.

Now let ψ((t1, . . . , tr), t) = H̃((t1, . . . , tr), t), 1) and note thatΨ: Ir×ItimesI →
F0 is a (usual) homotopy from φ to ψ.

Let us prove the last part of the theorem. Suppose that the spheroids
φ0 ∈ Sphr(F0, x0) and φ1 ∈ Sphr(F1, x1) are �bre homotopic along the path
u : I → tl(ξ), and that the same holds for the spheroids ψ0 ∈ Sphr(F0, x0)
and ψ1 ∈ Sphr(F1, x1) and the path v : I → tl(ξ). Further, suppose that the
paths proj(ξ) ◦ u,proj(ξ) ◦ v : I → bs(ξ), are homotopic, and that φ0 and ψ0

are freely homotopic along a path w : I → F0. The last means that there is a
�bre homotopy from φ0 to ψ0 along the path w0 = [incl : F0 → tl(ξ)] ◦ w. It is
clear that the loop proj(ξ)◦(u−1(w0v)) : I → bs(ξ) is homotopic to the constant
loop, which in turn implies that the path u−1(w0v) is homotopic to some path
w1 : I → tl(ξ) with w1(I) ⊂ F1 (see Theorem 4.1.3.6). By the �rst part of the
theorem, there exists a �bre homotopy of φ1 along w1, and now the second part
guarantees that this homotopy yields a spheroid which is homotopic to ψ1 [φ1

is �bre homotopic to ψ1 along the path u−1(w0v)]. Consequently, φ1 is �bre
homotopic to ψ1 along a path in F1, i.e., the spheroids φ1 and ψ1 are freely
homotopic.

De�nition 5.1.7.3. By Theorem 5.1.7.2, the �bre homotopies along a given
path s : I → tl(ξ) de�ne (for any r ≥ 0) a map

Ts : πr(F0, s(0))→ πr(F1, s(1)),

F0 = (proj(ξ))−1(proj(ξ)(s(0))), F1 = (proj(ξ))−1(proj(ξ)(s(1))).

The maps Ts are obviously homomorphisms and satisfy conditions (i)-(iii) in
De�nition 5.1.2.1. Therefore, a local system

(tl(ξ), {πr(proj(ξ))−1(proj(ξ)(x), x)}, {Ts})

arises on tl(ξ). This is a local system of groups for r ≥ 1, and a local system of
sets with identity for r = 0. It is called the upper local system of the r-th homo-
topy groups of the �bres of ξ. In particular, given any x ∈ tl(ξ) and r ≥ 1, there
is a natural right group-action of π1(tl(ξ), x) on πr(proj(ξ))−1(proj(ξ)(x), x).

Clearly, by restricting this local system to any �bre of ξ we obtain the
local system of the r-th homotopy groups of the given �bre. Moreover, the
homomorphisms

incl∗ : πr(proj(ξ))
−1(proj(ξ)(x), x)→ πr(tl(ξ), x)
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combine with idtl(ξ) to de�ne a homomorphism of the upper local system into
the local system of the r-th homotopy groups of tl(ξ).

De�nition 5.1.7.4. Suppose now that the �bres of ξ are r-simple. Then, given
any point bin bs(ξ), all the homotopy groups

πr((proj(ξ))
−1(b), x), x ∈ (proj(ξ))−1(b),

may be identi�ed with a unique group, πr((proj(ξ))−1(b) (see De�nition 5.1.3.5).
In this case, for any path s : I → bs(ξ), we can de�ne

Ts : πr((proj(ξ))
−1(s(0)))→ πr((proj(ξ))

−1(s(1)))

to be the translation

T̃s : πr((proj(ξ))
−1(s(0)), s̃(0))→ πr((proj(ξ))

−1(s(1)), s̃(1))

along some path s̃ : I → tl)ξ), which covers s; from Theorem 5.1.7.2 it follows
that Ts does not depend upon the choice of s. The maps Ts are obviously
homomorphisms and satisfy properties (i)-(iii) in De�nition 5.1.2.1. Therefore,
a local system

(bs(ξ), {πr((proj(ξ))−1(b))}, {Ts})
arises on bs(ξ), which consists of groups (sets with identity) for any r ≥ 1 (re-
spectively, for r = 0). This is called the lower local system of the r-th homotopy
groups of the �bres of ξ. In particular, for any r ≥ 1 and any b ∈ bs(ξ), there
is a natural right group-action of π1(bs(ξ), b) on πr((proj(ξ))−1(b)).

It is readily seen that the lower local system induces the upper local system,
de�ned in De�nition 5.1.7.3 on tl(ξ), via the projection proj(ξ).

Remark 5.1.7.5. Let φ : ξ → ξ1 be a map of Serre bundles. Then tl(φ) and the
homomorphisms

abr(tl(φ))∗ : πr((proj(ξ))
−1(proj(ξ)(x), x)→

πr((proj(ξ))
−1(proj(ξ1)(tl(φ)(x)), tl(φ)(x)) [x ∈ tl(ξ)]

combine to de�ne a homomorphism of the upper local system of the r-th homo-
topy groups of the �bres of ξ into the similar system for ξ1. Furthermore, if the
�bres of ξ and ξ1 are r-simple, then bs(φ) and

πr((proj(ξ))
−1(b))→ pir((proj(ξ))

−1(bs(φ)(b))) [b ∈ bs(ξ)]

combine to de�ne a homomorphism of the lower local system of the r-th homo-
topy groups of the �bres of ξ into the similar system for ξ1.

5.1.8 The Homotopy Sequence of a Serre Bundle

Lemma 5.1.8.1. Let ξ be a Serre bundle with a base point x0 ∈ tl(ξ), and let
B be a subset of bs(ξ) with b0 = proj(ξ)(x0) ∈ B. Then

(proj(ξ))∗ : πr(tl(ξ), (proj(ξ))
−1(B), x0)→ πr(bs(ξ), B, x0)
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and, in particular,

(proj(ξ))∗ : πr(tl(ξ), (proj(ξ))
−1(b0), b0)→ πr(bs(ξ), b0)

are isomorphisms for any r ≥ 1.

Proof. (proj(ξ))∗ is epimorphic.
Let φ ∈ Sphr(bs(ξ), B, b0). De�ne

f̃ : Ir−1 → tl(ξ), f̃(Ir−1) = x0

H : Ir−1 × I → bs(ξ), H((t1, . . . , tr−1), t) = φ(t1, . . . , 1− t),
G : Fr Ir−1 × I → tl(ξ), G(Fr Ir−1 × I) = x0.

Since H(y, 0) = (proj(ξ))(f̃(y)) for y ∈ Ir−1, and G(y, 0) = f̃(y) for y ∈ Fr Ir−1,
there is a homotopy H̃ : Ir−1 × I → tl(ξ), which covers H and equals G on
Fr Ir−1 × I (see Theorem 4.1.3.6). Now the formula

ψ(t1, . . . , tr) = H̃((t1, . . . , tr−1), 1− tr)

de�nes a spheroid

ψ ∈ Sphr(tl(ξ), (proj(ξ))
−1(B), x0)

such that (proj(ξ))#(ψ) = φ.
(proj(ξ))∗ is monomorphic.

Let
ψ ∈ Sphr(tl(ξ), (proj(ξ))

−1(B), x0),

and suppose that the spheroid

(proj(ξ))#(ψ) ∈ Sphr(bs(ξ), B, b0)

is homotopic to the constant spheroid. Choose a homotopy φ : Ir × I → bs(ξ)
from (proj(ξ))#(ψ) to the constant spheroid, and de�ne

f̃ : Ir → tl(ξ), f̃(Ir) = x0,

H : Ir × I → bs(ξ), H((t1, . . . . , tr), t) = φ((t1, . . . . , tr−1, 1− t), tr),
G : Fr Ir × I → tl(ξ),

G((t1, . . . . , tr), t) =

{
ψ(t1, . . . . , tr−1, 1− t), if tr = 0,

x0, if (t1, . . . . , tr) ∈ Fr Ir, tr ̸= 0.

Since H(y, 0) = (proj(ξ))(f̃(y)) for y ∈ Ir, and G(y, 0) = f̃(y) for y ∈ Fr Ir,
there exists a homotopy H̃ : Ir × I → tl(ξ) which covers H and equals G on
Fr Ir × I. Now it is plain that

ψ(t1, . . . , tr, t) = H̃((t1, . . . , tr−1, t), 1− tr)

de�nes a homotopy ψ : Ir × I → tl(ξ) from ψ to the constant spheroid.
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The Action of π1(bs(ξ), b0) on comp(F0)

Remark 5.1.8.2. Let ξ be a Serre bundle with base point b0 ∈ bs(ξ). Set F0 =
(proj(ξ))−1(b0) and de�ne a right action of the group π1((

	
ξ), b0) on comp(F0)

as follows: for C ∈ comp(F0) and σ ∈ π1(bs(ξ), b0), Cσ is the component of F0

which contains the origins of those paths which end in C and cover loops in the
class σ. That this action is well de�ned follows from Lemma 5.1.8.1: a path
which ends in C and covers a loop in the class σ can be regarded as a spheroid
of the pair (tl(ξ), F0) with origin in C, and which is carried into a loop in class
σ by (proj(ξ))#. If s1 ∈ Sph1(tl(ξ), F0, x1) and s2 ∈ Sph1(tl(ξ), F0, x2) are two
such spheroids, and w is a path in C with w(0) = x1 and w(1) = x2, then the
loops (proj(ξ))#(s1w) and (proj(ξ))#(s2) are homotopic. Now Lemma 5.1.8.1
implies that the spheroids s1w, s2 ∈ Sphr(tl(ξ), F0, x2) are homotopic, which,
in turn, implies that the components of F0 containing s1(0) and s2(0) coincide.
It is readily seen that this is indeed a right action.

This action is compatible with the action of the fundamental group of tl(ξ)
on the homotopy groups of the �bres of ξ (see De�nition 5.1.7.3), namely
C(proj(ξ))∗(σ) = TσC for all C ∈ comp(F0) = π0(F0, x0), σ ∈ π1(tl(ξ), x0),
and x0 ∈ F0. Moreover, if f : ξ → ξ′ is a map of Serre bundles, then

fact abr tl(f) : comp(F0)→ comp(proj(ξ′))−1(bs(f)(b0))),

where
abr tl(f) = [abr tl(f) : F0 → proj(ξ′)−1(bs(f)(b0))],

is a [(bs(f))∗ : π1(bs(ξ), b0)→ π1(bs(ξ
′),bs(f)(b0))]-map.

Theorem 5.1.8.3. If C ∈ comp(F0) and x0 ∈ C, then the isotropy subgroup
of π1(bs(ξ), b0) at x0 (see De�nition 4.2.3.4) equals the image of the homomor-
phism (proj(ξ))∗ : π1(tl(ξ), x0)→ π1(bs(ξ), b0).

Proof. In fact, the equality Cσ = C means that there is a path s : I → tl(ξ) such
that s(0), s(1) ∈ C and s covers a loop in the class σ. This, in turn, guarantees
the existence of a loop with origin x0 which covers a loop in the class σ.

Construction of the Sequence

De�nition 5.1.8.4. Let ξ be a Serre bundle with base point x0 ∈ tl(ξ). Let
b0 = (proj(ξ))(x0), F0 = (proj(ξ))−1(b0), and apply Lemma 5.1.8.1 to transform
the homotopy sequence of the pair (tl(ξ), F0) with base point x0 into a new
sequence. Namely, for each r ≥ 1, we replace

� the homotopy group πr(tl(ξ), F0, x0) by πr(bs(ξ), b0),

� the homomorphism rel∗ : πr(tl(ξ), x0)→ πr(tl(ξ), F0, x0) - by its composi-
tion with the isomorphism (proj(ξ))∗ : πr(tl(ξ), F0, x0)→ πr(bs(ξ), b0),

� the homomorphism ∂πr(tl(ξ), F0, x0) → πr−1(tl(ξ), x0) - by the composi-
tion ∆ = ∂ ◦ (proj(ξ))−1 : πr(tl(ξ), F0, x0)→ (bs(ξ), b0, b0)
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Since the composition of the inclusion rel : (tl(ξ), x0, x0) → (tl(ξ), b0, b0) with
the projection proj(ξ) : (tl(ξ), F0, x0)→ (bs(ξ), b0, b0) is simply

proj(ξ) : (tl(ξ), x0, x0)→ (bs(ξ), b0)

we see that [(proj(ξ))∗ : πr(tl(ξ), F0, x0) → πr(bs(ξ), b0)] ◦ rel∗ is nothing else
but

(proj(ξ))∗ : πr(tl(ξ), x0)→ πr(bs(ξ), b0).

Finally, if we attach the homotopy group π0(bs(ξ), b0) to the right of the result-
ing sequence by means of the homomorphism

(proj(ξ))∗ : π0(tl(ξ), x0)→ π0(bs(ξ), b0)

we obtain the sequence

→π2(F0, x0)
incl∗−−−→ π2(tl(ξ), x0)

proj(ξ)−−−−→ π2(bs(ξ), b0)
∆−→

π1(F0, x0)
incl∗−−−→ π1(tl(ξ), x0)

proj(ξ)−−−−→ π1(bs(ξ), b0)
∆−→

π0(F0, x0)
incl∗−−−→ π0(tl(ξ), x0)

proj(ξ)−−−−→ π0(bs(ξ), b0).

(5.1.8.5)

By De�nitions 5.1.3.3, 5.1.7.3, and Remark 5.1.8.2, there are right group-actions
of π1(tl(ξ), x0) on πr(tl(ξ), x0) and πr(F0, x0), and also a right action of π1(bs(ξ), b0)
on the set π0(F0, x0). The homomorphisms incl∗, (proj(ξ))∗, and ∆ are compat-
ible with these actions, as required by De�nition 5.1.5.11 (see Remarks 5.1.3.6,
5.1.4.6, De�nition 5.1.7.3, and Remark 5.1.8.2). Therefore, (5.1.8.5) is a π-
sequence, called the homotopy sequence of the bundle ξ with base point x0.

Theorem 5.1.8.6. Sequence (5.1.8.5) is exact.

Proof. This is a corollary of the exactness of the homotopy sequence of the pair
(tl(ξ), F0) and of two additional and evident facts:

� the kernel of (proj(ξ))∗ : π0(tl(ξ), x0) → π0(bs(ξ), b0) equals the image of
incl∗ π0(F0, x0)→ π0(tl(ξ), x0);

� α, β ∈ π0(F0, x0), there is σ ∈ π1(bs(ξ), b0) such that β = α◦σ if and only
if incl∗(α) = incl∗(β).

Theorem 5.1.8.7. Given a map f : ξ → ξ′, of Serre bundles, the vertical ho-
momorphisms

// πr(F0, x0)
incl∗ //

(abr tl(f))∗

��

πr(tl(ξ), x0)
(proj(ξ))∗//

((tl(f))∗

��

πr(bs(ξ), b0)
∆ //

((bs(f))∗

��

πr−1(F0, x0) //

(abr tl(f))∗

��
// πr(F

′
0, x0) incl∗

// πr(tl(ξ
′), x′0)

(proj(ξ′))∗

// πr(bs(ξ
′), b′0) ∆

// πr−1(F
′
0, x

′
0) //

where x′0 = tl(f)(x0), b
′
0 = bs(f)(b0), and F

′
0 = (proj(ξ′))−1(b′0), constitute a

homomorphism of the �rst homotopy sequence into the second.
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Proof. The commutativity of the �rst two squares follows from Theorem 5.1.1.13,
while the commutativity of the third follows from De�nitions 5.1.4.2 and 5.1.4.2.
The compatibility of the vertical homomorphisms with the actions of the funda-
mental groups was established in Remarks5.1.3.6, 5.1.4.6, 5.1.7.5, and 5.1.8.2.

The Most Important Special Cases

Remark 5.1.8.8. If tl(ξ) is ∞-connected, then all the homomorphisms

∆: πr(bs(ξ), b0)→ πr−1(F0, x0)

are isomorphisms. If tl(ξ) is k-connected and k <∞, then

∆: πr(bs(ξ), b0)→ πr−1(F0, x0)

is an isomorphism for all r ≤ k, while

∆: πk+1(bs(ξ), b0)→ πk(F0, x0)

is an epimorphism. If tl(ξ) is connected, then the converse is true in both cases.
If bs(ξ) is ∞-connected, then all the homomorphisms

incl∗ : πr(F0, x0)→ πr(tl(ξ), x0)

are isomorphisms. If bs(ξ) is k-connected and k <∞,

incl∗ : πr(F0, x0)→ πr(tl(ξ), x0)

is an isomorphism for all r ≤ k, while

incl∗ : πk+1(F0, x0)→ πk+1

is an epimorphism. If bs(ξ) is connected, then the converse is true in both cases.
If F0 is ∞-connected, then all the homomorphisms

(proj(ξ))∗ : πr(tl(ξ), x0)→ πr(bs(ξ), b0)

are isomorphisms. If F0 is k-connected and k <∞, then

(proj(ξ))∗ : πr(tl(ξ), x0)→ πr(bs(ξ), b0)

is an isomorphism for all r ≤ k, while

(proj(ξ))∗ : πk+1(tl(ξ), x0)→ πk+1(bs(ξ), b0)

is an epimorphism. The converse is true in both cases (with no supplementary
conditions).



5.1. THE GENERAL THEORY 375

Theorem 5.1.8.9. If the bundle ξ has a section s such that s(b0) = x0,
then sequence (5.1.8.2) splits from the right at the terms πr(tl(ξ), x0), and
s∗ : πr(bs(ξ), b0)→ πr(tl(ξ), x0) are splitting homomorphisms for any such sec-
tion, s : (bs(ξ), b0)→ (tl(ξ), x0).

Proof. Since (proj(ξ)) ◦ s = idbs(ξ), (proj(ξ))∗ ◦ s∗ = idπr(bs(ξ), b0).

Theorem 5.1.8.10. If F0 is a retract of tl(ξ), then sequence (5.1.8.5) splits
from the left at the terms πr(tl(ξ), x0), and any retraction ρ : tl(ξ)→ F0 induces
splitting homomorphisms ρ∗ : πr(tl(ξ), x0)→ πr(F0, x0).

Proof. Since ρ ◦ incl = idF0
, ρ∗ ◦ incl∗ = idπr(F0,x0).

Theorem 5.1.8.11. If the inclusion incl : F0 → tl(ξ) is x0-homotopic to the
constant map, then sequence (5.1.8.5) splits from the right at the terms πr(bs(ξ), b0).
Moreover, given any x0-homotopy h : F0 × I → tl(ξ) from incl to the constant
map, consider the maps

γr : Sphr(F0, x0)→ Sphr+1(bs(ξ), b0)

given by

[γr(φ)](t1, . . . , tr+1) = proj(ξ) ◦ h(φ(t1, . . . , tr), tr+1), φ ∈ Sphr(F0, x0).

Then the homomorphisms πr(F0, x0) → πr+1(bs(ξ), b0) induced by γr split the
sequence.

Proof. Given an arbitrary spheroid Sphr(F0, x0), it su�ces to �nd a spheroid
ψ ∈ Sphr+1(tl(ξ), F0, b0) such that ∂ψ = φ and (proj(ξ))# = γr(φ). We can
set, for example, ψ(t1, . . . , tr+1) = h(φ(t1, . . . , tr), tr+1).

Theorem 5.1.8.12. If proj(ξ) is x0-homotopic to the constant map, then se-
quence (5.1.8.5) splits from the left at πr(F0, x0). Moreover, given any x0-
homotopy h : tl(ξ)× I → bs(ξ), from proj(ξ) to the constant map, consider the
maps

γr : Sphr(F0, x0)→ Sphr+1(bs(ξ), b0),

[γr(φ)](t1, . . . , tr+1) = h(φ(t1, . . . , tr)), tr+1), φ ∈ Sphr(F0, x0).

Then the homomorphisms πr(F0, x0) → πr+1(bs(ξ), b0) Induced by γr split the
sequence.

Proof. Given an arbitrary spheroid ψ ∈ Sphr+1(tl(ξ), F0, s0), it su�ces to show
that the spheroids γr◦∂(φ) and (proj(ξ))#(ψ), which belong to Sphr+1(bs(ξ), b0),
are homotopic. Clearly the formula

((t1, . . . , tr), t) 7→ h(ψ(t1, . . . , tr, ttr+1), (1− t)tr+1)

de�nes such a homotopy.
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Corollary 5.1.8.13. If ξ is a covering in the broad sense, then

(proj(ξ))∗ : πr(tl(ξ), x0)→ (bs(ξ), b0)

is an isomorphism for r ≥ 2, and a monomorphism for r = 1. If ξ is a covering
(in the narrow sense) , then, in addition, the map

fact∆: π1(bs(ξ), b0)/ im(proj(ξ))∗ → F0

induced by ∆: π1(bs(ξ), b0)→ π0(F0, X0) = F0 is invertible.

Proof. This is a corollary of the exactness of the homotopy sequence of the
bundle and of the fact that πr(F0x0) = 0 for all r > 0 and π0(tl(ξ), x0) = 0
whenever ξ is a covering in the narrow sense.

Remark 5.1.8.14. Let ξ and ξ′ be Serre bundles with base points x0 ∈ tl(ξ) and
x′0 ∈ tl(ξ′), and let f : ξ → ξ′, with tl(f)(x0) = x′0. Set

b0 = (proj(ξ))(x0), b′0 = (proj(ξ′))(x′0),

F0 = (proj(ξ))−1(b0), F ′
0 = (proj(ξ′))−1(b′0).

From Theorems 5.1.8.7 and 5.1.5.20, we derive the following conclusions.

� If

(bs(f))∗ : πr(bs(ξ), b0)→ πr(bs(ξ
′), b′0), r ≥ 1,

(abr tl(f))∗ : πr(F0, x0)→ πr(F
′
0, x

′
0), r ≥ 0,

are isomorphisms, then so are

(tl(f))∗ : πr(tl(ξ), x0)→ πr(tl(ξ
′), x′0), r ≥ 1.

� If

(tl(f))∗ : πr(tl(ξ), x0)→ πr(tl(ξ
′), x′0), r ≥ 0,

(abr tl(f))∗ : πr(F0, x0)→ πr(F
′
0, x

′
0), r ≥ 0,

are isomorphisms, then so are

(bs(f))∗ : πr(bs(ξ), b0)→ πr(bs(ξ
′), b′0), r ≥ 1.

� If

(bs(f))∗ : πr(bs(ξ), b0)→ πr(bs(ξ
′), b′0), r ≥ 0,

(tl(f))∗ : πr(tl(ξ), x0)→ πr(tl(ξ
′), x′0), r ≥ 0,

are isomorphisms, then so are

(abr tl(f))∗ : πr(F0, x0)→ πr(F
′
0, x

′
0), r ≥ 1,

while
(abr tl(f))∗ : π0(F0, x0)→ π0(F

′
0, x

′
0)

is an epimorphism with trivial kernel.



5.1. THE GENERAL THEORY 377

We remark that in the last case,

(abr tl(f))∗ : π0(F0, x0)→ π0(F
′
0, x

′
0)

is also an isomorphism if we make the additional assumption that all the homo-
morphisms

(tl(f))∗ : π1(tl(ξ), x0)→ π1(tl(ξ
′), x′0), x ∈ F0

are epimorphisms. Indeed, let x1, x2 ∈ F0 be such that tl(f)(x1) and tl(f)(x2)
lie in the same component of the �bre F ′

0, and let s′ : I → F ′
0 be a path with

s′(0) = tl(f)(x1), s′(1) = tl(f)(x2). Since (tl(f))∗ : π0(tl(ξ), x0)→ π0(tl(ξ
′), x′0)

is an isomorphism, and (tl(f))∗ : π1(tl(ξ), x1) → π1(tl(ξ
′), (tl(f))f(x1)) is an

epimorphism, there is a path s : I → tl(ξ) such that s(0) = x1, s(1) = x2, and
(tl(f)) ◦ s : I → tl(ξ′) is homotopic to the path [incl : F ′

0 → tl(ξ′)] ◦ s′. Then
the loop (proj(ξ′)) ◦ tl(f) ◦ s is homotopic to the constant loop, and from the
fact that (bs(f))∗ : π1(bs(ξ), b0) → π1(bs(ξ

′), b′0) is an isomorphism it follows
that proj(ξ) ◦ s is also homotopic to the constant loop. Now, applying Theorem
4.1.3.6 to the map s, an arbitrary homotopy from proj(ξ) ◦ s to the constant
loop, and the constant homotopy of the map s|Fr I , we obtain a homotopy from
s to a path u : I → tl(ξ) such that u(I) ⊂ F0, u(0) = x1, and u(1) = x2.

5.1.9 The In�uence of Other Structures Upon Homotopy

Groups

Remark 5.1.9.1. In this subsection we discuss the most elementary properties
of homotopy groups which are due to the presence of an additional, group-like
structure, compatible with the topology of the space under consideration. The
most important such property we shall consider is simplicity.

The Case of Topological Groups

Theorem 5.1.9.2. If X is a topological group and s : I → X is an arbitrary
path, then the translation πr(X, s(0)) → πr(X, s(1)) coincides, for any r ≥
0, with the isomorphism induced by the left group translation by the element
[s(1)][s(0)]−1.

Proof. In fact, there is even a canonical free homotopy from any spheroid φ ∈
Sphr(X, s(0)) to [s(1)][s(0)]−1φ along s, given by

((t1, . . . , tr), t) 7→ [s(t)][s(0)]−1φ(t1, . . . , tr).

Corollary 5.1.9.3. The components of a topological group are simple spaces.
In particular, the fundamental groups of these components are Abelian.

Remark 5.1.9.4. If X is a topological group, then, besides the multiplication
on the sets Sphr(X, e = eX) de�ned in De�nition 5.1.1.1, there is another one,
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resulting from the group operation on X [the product of two spheroids φ,ψ ∈
Sphr(X, e) is given by y 7→ φ(y)ψ(y)]. Moreover, the second product makes also
sense for r = 0, when the �rst product is not even de�ned. Obviously, this new
multiplication turns Sphr(X, e), r ≥ 0, into a group; the spheroids homotopic
to the constant one form a normal subgroup, and the resulting quotient group
equals, as a set, πr(X, e). When r = 0, π0(X, e) equals the quotient group
X/X0, where X0 is the component of e. When r ≥ 1, the new group structure
on πr(X, e) coincides with the original one; in fact, given φ,ψ ∈ Sphr(X, e), the
formula

((t1, . . . , tr), t) 7→

φ(min(1,
2t1
1 + t

), t2, . . . , tr)ψ(max(0,
2t1 + t− 1

1 + t
), t2, . . . , tr)

de�nes a homotopy Ir × I → X from the original product of φ and ψ to the
new one.

Let us add that the existing multiplication on X also turns the set

Ux∈X Sphr(X,x)

of all spheroids of X into a group. The spheroids homotopic to the constant
ones form a normal subgroup, and the resulting quotient group is canonically
isomorphic to πr(X, e), for any r ≥ 1.

Remark 5.1.9.5. Every inner automorphism of the topological group X induces
automorphisms of the groups πr(X, e), and thus the inner right action of X
de�nes a right group-action of X on each group πr(X, e). The transformations
induced by the elements of the subgroup X0 (see Remark 5.1.9.4) are all identi-
cal: if w : I → X is a path with s(0) = e and s(1) = x, and φ ∈ Sphr(X, e), then
the formula (y, t) 7→ [w(t)]−1φ(y)w(t)de�nes a homotopy I × I → X from φ to
the spheroid y 7→ x−1φ(y)x. Therefore, there are natural right group-actions of
π0(X, e) = X/X0 on the groups πr(X, e).

The Case of Homogeneous Spaces

Theorem 5.1.9.6. Let G be a topological group, and let H be a connected
subgroup of G. If (G,proj, X = G/H) is a Serre bundle, then given any path
s : I → X, the translation πr(X, s(0)) → πr(X, s(1)) coincides, for any r ≥ 0,
with the isomorphism induced by any transformation of X (under the canonical
action) which is given by an element of G which takes s(0) into s(1).

Proof. Let g ∈ G be any element such that gs(0) = s(1), and let s̃ : I → G be
any path covering s. Since s̃(1) and gs̃(0) lie in the same coset of H, and since
the cosets of a connected group are connected, there is a path w in the coset
containing s̃(1) and gs̃(0) such that w(0) = s̃(1) and w(1) = gs̃(0). Now given
any φ ∈ Sphr(X, s(0)), the formula

((t1, . . . , tr), t) 7→ [s1(t)][s1(0)]
−1φ(t1, . . . , tr)
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where s1 = s̃w, de�nes a free homotopy lr × I → X from φ to [s1(1)][s(0)]
−1φ,

along a path homotopic to s (namely, the product of s and the constant path).

Corollary 5.1.9.7. If H is a connected subgroup of the topological group G
and (G,proj, G/H) is a Serre bundle, then the components of G/H are simple
spaces. In particular, the fundamental groups of the components of G/H are
Abelian.

Remark 5.1.9.8. Henceforth, (G,proj, G/H) will automatically be a Serre bun-
dle (as required in Theorem 5.1.9.6 and Corollary 5.1.9.7): G and its quo-
tient space G/H will always be closed smooth manifolds, while the projection
G → G/H will be a submersion and, by Theorems 4.6.1.3 and 4.1.3.4, these
properties imply that (G,proj, G/H) is a Serre bundle.

The Case of H-Spaces

De�nition 5.1.9.9. A pointed topological space (X, e) is called an H-space if
there exists a continuous map µ : X × X → X such that µ(e, e) = e, and the
maps X → X, given by x 7→ µ(e, x) and x 7→ µ(x, e), are e-homotopic to idX .
The map µ is called a multiplication, and e is called an identity (or a homotopy
identity). Usually, one writes xy instead of µ(x, y).

An H-space X is homotopy associative if the maps X × X × X → X,
given by (x1, x2, x3) 7→ (x1x2)x3 and (x1, x2, x3) 7→ x1(x2x3), are homotopic,
and homotopy commutative (or Abelian) if the maps X × X → X, given by
(x1, x2) 7→ x1x2 and (x1, x2) 7→ x2x1, are homotopic.

Given a H-space X, a continuous map ν : X → X is said to be a homotopy
inverse if the maps X → X, given by x 7→ xν(x) andx 7→ ν(x)x, are homotopic
to the constant map which takes X into e. Usually, one writes x−1 instead of
ν(x).

The primary examples of H-spaces are topological groups. Every topologi-
cal group (viewed as a H-space) is homotopy associative and has a homotopy
inverse, and every Abelian topological group is homotopy Abelian.

Remark 5.1.9.10. The spaces of spheroids provide another important class of
H-spaces. For a given pointed topological space (X,x0), the sets Sphr(X,x0)
with r ≥ 1 become H-spaces if we equip them with the topology they inherit
as subsets of C(Ir, X) and with the usual multiplication, and take the con-
stant spheroid as the identity. In fact, the map φ 7→ (const)φ is homotopic to
idSphr(X,x0) via the const-homotopy Sphr(X,x0) × I → Sphr(X,x0), given by
(φ, t) 7→ φt, where φt is the spheroid whose value at the point (t1, . . . , tr) ∈ Ir is
given by the right-hand side of formula (5.1.1.5); further, the map φ/toφ(const)
is homotopic to idSphr(X,x0) via the const-homotopy which is similarly de�ned
by formula (5.1.1.6). The H-spaces Sphr(X,x0) are homotopy associative and
have a homotopy inverse for r ≥ 1, and are homotopy Abelian for r ≥ 2; the
formulae in Subsection 5.1.1 again provide us with the necessary homotopies.



380 CHAPTER 5. HOMOTOPY GROUPS

Similarly, given any topological pair (X,A) with base point x0, the sets
Sphr(X,A, x0) with r ≥ 2 are homotopy associative H-spaces possessing a ho-
motopy inverse. If r ≥ 3, these H-spaces are homotopy Abelian.

Theorem 5.1.9.11. Every connected H-space is simple and, in particular, has
an Abelian fundamental group.

Proof. Suppose X is a connected H-space with identity e, φ ∈ Sphr(X, e) with
arbitrary r, and s ∈ Sph1(X, e) is a loop. Then, the formula (y, t) 7→ s(t)φ(y)
de�nes a free homotopy Ir × I → X from the spheroid y 7→ eφ(y) (which is ho-
motopic to φ) to the same spheroid y 7→ eφ(y), along the loop t 7→ s(t)e (which
is homotopic to s) . Thus, π1(X, e) acts identically on the groups πr(X, e).

Remark 5.1.9.12. It is clear that the second description of the homotopy groups
πr(X, e), given in Remark 5.1.9.4 for the case of topological groups, carries over
to H-spaces X with identity e. Generally speaking, the multiplication that each
set Sphr(X, e) inherits from X does not turn this set into a group. However,
this multiplication does induce the usual group structure on πr(X, e), r ≥ 1.
Moreover, if X is homotopy associative and has a homotopy inverse, then the
set π0(X, e) is a group.

The Local System of Homotopy Groups of the Total Space of a Prin-
cipal Bundle

Lemma 5.1.9.13. Let ξ be a principal bundle with structure group G, and let
u, v : I → tl(ξ) be paths satisfying proj(ξ) ◦ u = proj(ξ) ◦ v. If g0, g1 ∈ G are
such that u(0)g0 = v0 and u(1)g1 = v(1) [here G acts canonically from the right
on tl(ξ); see De�nition 4.3.2.10], then the diagramme

πr(tl(ξ), u(0))
Tu //

��

πr(tl(ξ), u(1))

��
πr(tl(ξ), v(0))

Tv

// πr(tl(ξ), v(1))

where the vertical isomorphisms are induced by the transformations x 7→ xg0
and x 7→ xg1, commutes.

Proof. Recall that the canonical right action tl(ξ) × G → tl(ξ) is free and its
orbits coincide with the �bres of ξ. Since u(t) and v(t) lie in the same �bre,
for each t ∈ I there is a unique g(t) ∈ G such that u(t)g(t) = v(t). Therefore,
if h : Ir × I → tl(ξ) is a free homotopy from φ0 ∈ Sphr(tl(ξ), u(0)) to φ1 ∈
Sphr(tl(ξ), u(1)) along u, then (y, t) 7→ h(y, t)g(t) yields a free homotopy from
the spheroid y 7→ φ0g0 to the spheroid y 7→ φ1g1 along v.

De�nition 5.1.9.14. Suppose that ξ is a principal bundle, b ∈ bs(ξ), and
r ≥ 0. The right canonical action of the structure group of ξ on tl(ξ) induces
isomorphisms between the homotopy groups πr(tl(ξ), x) with x ∈ (proj(ξ))−1(b),
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and so we may identify these groups. We shall call the resulting group (which
actually is a group for r > 0 and a set with identity for r = 0) the r-th homotopy
group of the space tl(ξ) over b, and we shall write πr(tl(ξ), b).

Given a path s : I → bs(ξ), we de�ne Ts : (tl(ξ), s(0)) → πr(tl(ξ), s(1)) as
the translation Ts : (tl(ξ), s̃(0))→ πr(tl(ξ), s̃(1)) along any path s̃ which covers
s. That this is well de�ned follows from Lemma 5.1.9.13. Obviously, Ts are
homomorphisms and satisfy conditions 5.1.2.1 (i)-(iii). Therefore, we have pro-
duced a local system on bs(ξ), (bs(ξ), {πr(tl(ξ), b)}, {Ts}) , which we call the
lower local system of the r-th homotopy groups of the total space of ξ.

It is clear that the local system on tl(ξ) induced by this system via proj(ξ)
is nothing but the usual local system of the r-th homotopy groups of tl(ξ).

Given a monomorphism φ : : G→ G′ and r ≥ 0, every φ-map of the Steen-
rod G-bundle ξ into the Steenrod G′-bundle ξ′ induces a homomorphism of the
lower local system of the r-th homotopy groups of tl(ξ) into the corresponding
system of tl(ξ′).

The Homotopy Sequence of a Principal Bundle

De�nition 5.1.9.15. Let ξ be a principal G-bundle with base point x0 ∈ tl(ξ).
If in sequence (5.1.8.5) we replace (F0, x0) by the Pair (G, e = eG) [which is
canonically homeomorphic to (F0, x0) via g 7→ x0g] and attach 1 to the right of
the resulting sequence, we obtain

→π2(G, e)
incl∗−−−→ π2(tl(ξ), x0)

(proj(ξ))∗−−−−−−→ π2(bs(ξ), b0)

∆−→π1(G, e)
incl∗−−−→ π1(tl(ξ), x0)

(proj(ξ))∗−−−−−−→ π1(bs(ξ), b0)

∆−→π0(G, e)
incl∗−−−→ π0(tl(ξ), x0)

(proj(ξ))∗−−−−−−→ π0(bs(ξ), b0)→ 1

(b0 = (proj(ξ))(x0).

(5.1.9.16)

Recall that π0(G, e) is a group (see Remark 5.1.9.4) and that π1(G, e) is
Abelian (see Corollary 5.1.9.3). It is immediate that∆: π1(bs(ξ), b0)→ π0(G, e)
is a group homomorphism. Moreover, π0(G, e) acts from the right on πr(G, e)
(see Remark 5.1.9.5), while π1(bs(ξ), b0) acts similarly on both πr(bs(ξ), b0 (see
De�nition 5.1.3.3) and πr(tl(ξ), x0) = πr(tl(ξ), b0) (see De�nition 5.1.9.14).
The canonical right action tl(ξ) × G → tl(ξ) induces a right action of G on
π0(tl(ξ), x0) = comp(tl(ξ)), and thus a right action of π0(G, e) on π0(tl(ξ), x0).
[We regard π0(G, e) as the quotient group of G by the component of e; see Re-
mark 5.1.9.4. The action of this component on π0(tl(ξ), x0) is identical.] Finally,
it is clear that the homomorphisms incl∗, proj∗, and ∆ are compatible with the
above actions, as required in De�nition 5.1.5.11. Consequently, (5.1.9.16) is a
π-sequence, called the homotopy sequence of the G-bundle ξ with base point x0.

Obviously, (proj(ξ))∗ : π0(tl(ξ), x0) → π0(bs(ξ), b0) is an epimorphism, and
the partition of π0(tl(ξ), x0) into the orbits of π0(G, e) is exactly zer((proj(ξ))∗).
Therefore, sequence (5.1.9.16) is exact.

Given a monomorphism φ : G′ → G, every φ-map f of the principal G′-
bundle ξ′ with base point x′0 ∈ tl(ξ′) into the principal G-bundle ξ with base
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point x0 ∈ tl(ξ), such that tl f(x′0) = x0, induces a homomorphism of the
homotopy sequence of ξ′ into the homotopy sequence of ξ.

5.1.10 Alternative Descriptions of the Homotopy Groups

De�nition 5.1.10.1. The spheroid DS ◦ ID ∈ Sphr(Sr, ort1) (see De�nition
1.2.8.9) is called the fundamental spheroid of the sphere Sr, denoted IS, and
we let sphr denote the element of πr(Sr, ort1) that it de�nes. The spheroid
ID ∈ Sphr(Dr,Sr−1, ort1) is called the fundamental spheroid of the ball Dr, and
we let kugr denote the element of πr(Dr,Sr−1, ort1) that it de�nes.

Obviously, ∂(ID) = IS, whence ∂(kugr) = sphr−1.

Remark 5.1.10.2. We let Sph⃝r (X,x0) denote the set of all continuous maps
from the pointed space (Sr, ort1) into the pointed space (X,x0), and de�ne

IS# : Sph⃝r (X,x0)→ Sphr(X,x0), φ 7→ φ ◦ IS.

Clearly, this map is invertible, and Theorem 1.3.7.6 implies that two maps,
φ,ψ ∈ Sph⃝r (X,x0), are homotopic if and only if the spheroids IS#(φ), IS#(ψ)
are homotopic. Consequently, replacing our �cubic� spheroids and their homo-
topies by the �spheric� spheroids from Sph⃝r (X,x0) and their homotopies, we
are led to an equivalent description of the set πr(X,x0).

It is readily seen that the identity spheroid idSr belongs to the class sphr,
and that the element of πr(X,x0) given by a spheroid

f : (Sr, ort1)→ (X,x0)

equals f∗(sphr).
If r ≥ 1, then IS# transfers the multiplication in Sphr(X,x0) to Sph

⃝
r (X,x0).

The resulting multiplication in Sph⃝r (X,x0) may also be described directly: the
product

φψ : (Sr, ort1) = (S1, ort1)⊗ · · · ⊗ (S1, ort1)→ (X,x0)

of the spheroids

φ,ψ : (Sr, ort1) = (S1, ort1)⊗ · · · ⊗ (S1, ort1)→ (X,x0)

is given by

φψ(y1, y2, . . . , yr) =

{
φ(y21 , y2, . . . , yr), if ℑy1 ≥ 0,

π(y21 , y2, . . . , yr), if ℑy1 ≤ 0,
(5.1.10.3)

where y1, y2, . . . , yr are complex numbers of modulus 1, and ℑ denotes the imagi-
nary part. The multiplication that this operation induces on πr(X,x0) coincides
with the existing one. One can use (5.1.10.3) to study directly the homotopy
properties of the multiplication in Sph⃝r (X,x0) and get an independent descrip-
tion of the homotopy groups πr(X,x0) in the language of spheric spheroids.
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It is particularly simple to describe in this language the spheroid

φ−1 = (IS#)−1([IS#(φ)]−1)

that is, the inverse of the spheroid

φ ∈ Sph⃝r (X,x0) : φ
−1(x1, x2, x3, . . . , xr+1) = φ(x1,−x2, x3, . . . xr+1)

De�nition 5.1.10.4. Let Sphr⃝(X,A, x0) be the set of all continuous maps
(Dr,Sr−1, ort1)→ (X,A, x0), and de�ne

ID# : Sph⃝r (X,A, x0)→ Sphr(X,A, x0), φ 7→ φ ◦ ID.

This map is invertible, and Theorem 1.3.7.6 implies that two maps,

φ,ψ ∈ Sph⃝r (X,A, x0)

are homotopic if and only if the spheroids ID#(φ) and ID#(ψ) are homo-
topic. If r ≥ 2, then ID# transfers the multiplication from Sphr(X,A, x0)
to Sph⃝r (X,A, x0). The resulting multiplication in Sph⃝r (X,A, x0) may also be
described directly: given two maps,

φ,ψ : (Dr, ort1) = (S1, ort1)⊗ · · · ⊗ (S1, ort1)⊗ (I, 1)→ (X,x0),

formula (5.1.10.3), where y1, . . . , yr−1 are complex numbers of modulus 1 and
yr ∈ I, de�nes a map

φψ : (Dr, ort1)→ (X,x0),

and this map belongs to Sph⃝r (X,A, x0) whenever φ,ψ ∈ Sph⃝r (X,A, x0). As
in the absolute case, φ−1 = (ID#)([ID#(φ)]−1), that is, the inverse of the
spheroid φ ∈ Sph⃝r (X,A, x0), is given by

φ−1(x1, x2, x3, . . . , xr) = φ(x1,−x2, x3, . . . , xr).

Therefore, by replacing the cubic spheroids by spheric ones, we get an ade-
quate description of the homotopy groups πr(X,A, x0).

Obviously, the identity spheroid idDr belongs to the class kugr, and the
element of πr(X,A, x0) given by a spheroid f : (Dr,Sr−1, ort1) → (X,A, x0)
equals f∗(kugr).

Unlike the cubic sets Sphr(X,x0, x0) and Sphr(X,x0), the sets Sph
⃝
r (X,x0, x0)

and Sph⃝r (X,x0) are not identical, being merely related through the canonical
invertible map

(ID#)−1 ◦ (IS#) : Sph⃝r (X,x0)→ Sph⃝r (X,x0, x0);

this map can be described more directly as φ 7→ φ ◦ DS.
The boundary ∂φ of a spheric spheroid φ ∈ Sph⃝r (X,A, x0) is the element

∂φ ∈ Sphr−1(A, x0) given by

∂φ = [abrφ : (Sr−1, ort1)→ (A, x0)].

Clearly, IS#◦∂ = ∂◦ID#, which demonstrates that this de�nition of the bound-
ary leads to the same boundary homomorphism ∂ : πr(X,A, x0)→ πr−1(A, x0)
as the cubic theory does.
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Remark 5.1.10.5. For each continuous map,

f : (X,x0)→ (X ′, x′0) or f : (X,A, x0)→ (X ′, A′, x′0)

we have the map

f# : Sph⃝r (X,x0)→ Sph⃝r (X ′, x′0) or f# : Sph⃝r (X,A, x0)→ Sph⃝r (X ′, A′, x′0)

given by f#(φ) = f ◦φ. Trivially, IS#◦f# = f#◦IS# and ID#◦f# = f#◦ID#,
so that these maps f# lead to the same induced homomorphisms

f∗ : πr(X,x0)→ πr(X
′, x′0) and f∗ : πr(X,A, x0)→ πr(X

′, A′, x′0)

as the cubic theory does.
A free homotopy from a spheroid φ0 ∈ Sph⃝r (X,x0) to a spheroid ψ0 ∈

Sph⃝r (X,x1) along a path s : I → X is de�ned as a usual homotopy Sr×I → X
from φ0 to φ1 which takes (ort1, t) into s(t) for any t ∈ I. If h is such a
homotopy, then h ◦ (IS × idI) is a free homotopy from IS#(φ0) ∈ Sphr(X,x0)
to IS#(φ1) ∈ Sphr(X,x1) along s. Therefore, the spheric free homotopies along
s yield the same isomorphism Ts : πr(X,x0) → πr(X,x1) as do the cubic ones.
It is readily seen that all this carries over to the relative case.

An Alternative Proof of Theorem 5.1.4.9

Remark 5.1.10.6. Using spheric spheroids and the homotopy sequence of a pair,
one can give a second proof of Theorem 5.1.4.9, which is less direct but, in
return, more transparent.

Consider �rst a model situation: X = (D2, ort1)∨(D2, ort1), A = (S1, ort1)∨
(S1, ort1), x0 is the centre of both bouquets, α = Imm1∗(kug2), and β =
Imm2∗(kug2). Since ∂(α−1βα) = (∂α)−1(∂β)(∂α) = T∂α∂β (see Theorem
5.1.3.4) and T∂α∂β = ∂T∂αβ (see Remark 5.1.4.6), we have ∂(α−1βα) = ∂T∂αβ.
Moreover, since X is contractible, β is an isomorphism (see Remark 5.1.6.7),
and hence α−1βα = T∂αβ.

In the general case, pick two arbitrary spheroids 4φ,ψ ∈ Sph⃝r (X,A, x0) in
the classes α, β and de�ne

f : ((D2, ort1) ∨ (D2, ort1), (S1, ort1) ∨ (S1, ort1)→ (X,A)

by
f(Imm1(x)) = φ(x), f(Imm2(x)) = ψ(x), x ∈ D2.

Since φ = f ◦ Imm1, ψ = f ◦ Imm2, we have

α = (f ◦ Imm1)∗(kug2), β = (f ◦ Imm2)∗(kug2),

and hence

α−1βα = f∗([Imm1∗(kug2)]
−1[Imm2∗(kug2)][Imm1∗(kug2)]

= f∗(T∂◦Imm1∗(kug2)
Imm2∗(kug2)) = T∂αβ.
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Spheroids in Spheroid Spaces

Remark 5.1.10.7. Let (X,x0) be a pointed space. With every spheroid φ ∈
Sphr+s(X,x0) we may associate an r-spheroid of the space Sphs(X,x0) [see
Remark 5.1.9.10] with base point the constant spheroid, by means of each of
the formulae

[ψ(t1, . . . , tr)](u1, . . . , us) = φ(t1, . . . , tr, u1, . . . , us),

[ψ(t1, . . . , tr)](u1, . . . , us) = φ(u1, . . . , us, t1, . . . , tr).

This leads to two maps,

Cub,Buc: Sphr+s(X,x0)→ Sphr(Sphs(X,x0), const).

These maps are invertible and both they and their inverses take homotopic
spheroids into homotopic ones. If r > 0, then the multiplication in Sphr+s(X,x0)
is transferred by Cub into the usual multiplication in Sphr(Sphs(X,x0), const)
[that is, the multiplication of spheroids]. If s > 0, then the multiplication in
Sphr+s(X,x0) is transferred by Buc into the multiplication in Sphr(Sphs(X,x0), const)
which arises from the fact that Sphs(X,x0) is an H-space with identity element
const (see Theorem 5.1.9.11 and Remark 5.1.9.10). Therefore, when r + s > 0,
the maps Cub and Buc de�ne group isomorphisms,

cub,buc: πr+s(X,x0)→ πr(Sphs(X,x0), const)

[the group structure ofπ0(Sphs(X,x0), const), s > 0, was explained in Re-
mark 5.1.9.12]. Therefore, one can identify πr(X,x0) with any of the groups
(Sphr−q(X,x0), const) with q ≤ r.

Finally, note that the isomorphism cub: πr(X,x0)→ πr−1(Sph1(X,x0), const)
appears also as the isomorphism ∆: (X,x0) → πr−1(Sph1(X,x0), const) in the
homotopy sequence of the Serre bundle

ξ = (C(I, 0;X,x0), abr C([incl : Fr I → I], id), X = C(Fr I, 0;X,x0)),

whose �bre over the point x0 is Sph1(X,x0). That ξ is a Serre bundle follows
from Theorem 4.1.4.2.

5.1.11 Additional Theorems

Theorem 5.1.11.1. Let d1, . . . , dm be pairwise disjoint balls in Rr such that
d1, . . . , dm ⊂ Dr, and let g ∈ Sph⃝r (X,A, x0) be a spheroid with g(C) ⊂
A, where C = Dr \ ∪mi=1 int di. Let τi : Dr → Dr denote the map τi(y) =
(centre of di) + (radius of di)y. Suppose further that the segments joining the
points τ1(ort1), . . . , τm(ort1) to ort1 are contained in C. Then, for r > 2,

γ = (Ts1γ1)(Ts2γ2) · · · (Tsmγm), (5.1.11.2)
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where γ ∈ πr(X,A, x0) and γi ∈ πr(X,A, g ◦ τi(ort1)) are the elements repre-
sented by the spheroids g and g ◦ τi ∈ Sph⃝r (X,A, g ◦ τi(ort1)), and si is the
path in A given by

si(t) = g((1− t)τi(ort1) + t ort1), i = 1, . . . ,m.

The same conclusion holds true for r = 2, provided d1, . . . , dm are indexed
naturally, i.e., each of the 2-frames (τi(ort1) − ort1, τi+1(ort1) − ort1) de�nes
the natural orientation of R2.

Proof. The proof is quite involved and we proceed by induction on m. We make
two preliminary remarks, denoting by ℓi the (rectilinear) path in C given by
ℓi(t) = (1− t)τi(ort1) + t ort1.

1. For given d1, . . . , dm , it su�ces to prove the theorem when

(X,A, x0) = (Dr, C, ort1), g = rel idDr , si = ℓi.

Indeed, g∗ : (Dr, C, ort1)→ πr(X,A, x0) takes the class of the spheroid rel idDr

into γ, while it takes the class of the spheroid τi translated along ℓi, into Tsiγi.

2. For a given m, it su�ces to prove the theorem for a standard choice of
d1, . . . , dm, namely, for the balls of radius 1/2m centred at

m− 1

m
ort2,

m− 3

m
ort2, . . . ,

3−m
m

ort2,
1−m
m

ort2 .

To see this, consider, along with these standard balls and the corresponding
C, τi, ℓi, arbitrary balls d′1, . . . , d

′
m satisfying the conditions of the theorem,

with the corresponding C ′, τ ′i , ℓ
′
i. Clearly, there exists a continuous map

h : Dr → Dr, which is Sr-homotopic to idDr and satis�es h(C) ⊂ C ′, h ◦ τi =
τ ′i , and h ◦ ℓi = ℓi′. Then

relh∗ : πr(Dr, C, ort1)→ πr(Dr, C ′, ort1)

takes the class of the spheroid idDr into the class of idDr , while taking the
class of the spheroid τi translated along ℓi, into the class of the spheroid τ ′i
translated along ℓ′i, i = 1, . . . ,m.

Now back to our induction. The cases m = 0 and m = 1 are trivial; consider
m = 2. By our remarks, we may assume that (X,A, x0) = (Dr, C, ort1), g = id,
and d1, d2 are the standard balls (with radius 1/4 and centres ort2 /2 and
− ort2 /2). Let ρφ denote the rotation of Dr by an angle φ around the subspace
given by the equations x1 = x2 = 0. Further, consider the homotopies Dr×I →
Dr given by

(y, t) 7→ [(1 + t)ρπt/2(y)− 2 ort2]/4,

(y, t) 7→ [(1 + t)ρ−πt/2(y) + 2 ort2]/4,
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(y ∈ Dr, t ∈ I). These can be viewed as free homotopies of spheroids of the pair
Dr, C) ; as such, they connect τ1 and τ2 with two spheroids with origin 0, σ1 and
σ2 along two paths, which we call u1 and u2. Obviously, u

−1
1 ℓ1 and u−1

2 ℓ2 are
both homotopic to the rectilinear path ℓ which joins 0 to ort1. Consequently,
the product of the classes obtained by translating the classes of τ1 and τ2 to ort1
along ℓ1 and ℓ2 is the same as the product of the classes obtained by translating
the classes of σ1 and σ2 to ort1 along ℓ, that is, the class of the product of
the spheroids σ1 and σ2 translated to ort1 along ℓ. It remains to observe that
there is a free homotopy from the product σ1σ2 to idDr along ℓ, for example, a
rectilinear homotopy.

Finally, let m ≥ 3. As in the case m = 2, we shall assume that

(X,A, x0) = (Dr, C, ort1), g = id,

and d1, . . . , dm are the standard balls with radius 1/2m and centres

m− 1

m
ort2,

m− 3

m
ort2, . . . ,

3−m
m

ort2,
1−m
m

ort2 .

Let d be the ball of radius 3/2m centred at 2−m
m ort2 (note that dm−1, dm ⊂ d),

and let τ : Dr → Dr be de�ned by τ(y) = (centre of d)+(radius of d)y. Further,
let ℓ, u, and v be the rectilinear paths joining τ(ort1) to ort1, τ(ort1) to τm(ort1),
and τm(ort1) to τ(ort1), respectively. We let δ ∈ πr(Dr, C, τ(ort1)) denote the
class of τ . Since the products uℓ, vℓ are clearly homotopic to the paths ℓm−1,
ℓm,

Tℓ1γ1 · · ·Tℓmγm = Tℓ1γ1 · · ·Tℓm−2γm−2Tℓ(Tuγm−1Tvγm). (5.1.11.3)

Now apply the theorem, �rst for the case of two factors, and then for the
case of m− 1 factors, to conclude that

Tuγm−1Tvγm = δ

Tℓ1γ1 · · ·Tℓm−2
γm−2δ = γ.

(5.1.11.4)

(In the �rst case, the theorem is applied to (X,A, x0) = (Dr, C, τ(ort1)), g = τ ,
and the balls τ−1(dm−1), τ−1(dm), while in the second case we take (X,A, x0) =
(Dr, C, ort1), g = id, and the balls d1, . . . , dm−2, d). At last, (5.1.11.3), and
(5.1.11.4) yield (5.1.11.2).

Theorem 5.1.11.5. Let X = lim(Xk, φk), where Xk are T1-spaces, and let
x ∈ X,x0 ∈ X0, x1 ∈ X1, . . . be points such that Immk(xk) = x. If for some r
all the homomorphisms (φK)∗r : πr(Xk, xk)→ πr(Xk+1, xk+1) are isomorphism,
then so are (Immk)∗r : πr(Xk, xk)→ πr(X,x) (with the same r).

Proof. Notice that, according to Theorem 1.2.4.5, every spheroid Ir → X may
be expressed as the composition of a spheroid Ir → Xℓ with the embedding
Immℓ, for ℓ large enough; similarly, every homotopy Ir × I → X is the com-
position of some homotopy Ir × I → Xℓ with Immell, for ℓ large enough. Now
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the fact that (Immk)∗r are epimorphisms and monomorphisms is seen to be a
consequence of the analogous properties of the compositions

(φℓ−1)∗r ◦ (φℓ−2)∗r ◦ · · · ◦ (φk)∗r : πr(Xk, xk)→ πr(Xℓ, xℓ).

5.1.12 Exercises

Exercise 5.1.12.1. Let (X,x0) be a pointed space and suppose that there is given
a right group-action of π1(X,x0) on a group G. Show that there exists a local
system of groups, (X, {Gx}, {Ts}), with Gx0 = G, which determines the given
action.

Exercise 5.1.12.2. Let (X,A) be a cellular pair with base point x0 ∈ A, and
suppose that X is countable. Show that all the groups πr(X,A, x0) are count-
able.

Exercise 5.1.12.3. Let (X,A) be a cellular pair with base point x0 ∈ A, and
suppose that the groups pir(X,x0) and πr(A, x0) are �nitely generated (for all
r ≥ 1). Show that if X is simply connected, then the groups πr(X,A, x0) with
r ≥ 2 are also �nitely generated.

Exercise 5.1.12.4. Let ξ be a Serre bundle, and let E be a subspace of tl(ξ)
such that (E, (proj(ξ))|E ,bs(ξ)) is also a Serre bundle. Show that for any point
x ∈ E and any r ≥ 1

incl∗ : πr((proj(ξ))
−1((proj(ξ))(x)), (proj(ξ))−1((proj(ξ))(x)∩E, x)→ πr(tl(ξ), E, x)

is an isomorphism.

Exercise 5.1.12.5. Show that if the base of a covering is k-simple, then its total
space is also k-simple.

Exercise 5.1.12.6. Let r > 0 and s > 0. Show that the homomorphisms

cub,buc: πr+s(X,x0)→ πr(Sphs(X,x0), const)

di�er only by the constant factor (−1)rs.
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5.2 THE HOMOTOPY GROUPS OF SPHERES
AND OF CLASSICAL MANIFOLDS

5.2.1 Suspension in the Homotopy Groups of Spheres

De�nition 5.2.1.1. The suspension of a spheroid φ ∈ Sphr(X,x0) is the
spheroid susφ ∈ Sphr+1(sus(X,x0),bp), given by

susφ(t1, . . . , tr+1) = proj(φ(t1, . . . , tr), tr+1), proj = [proj : X×I → sus(X,x0)].

Obviously, suspensions of homotopic spheroids are homotopic, the suspension
of the product of two spheroids of positive dimensions equals the product of
their suspensions, and the suspension of the constant spheroid is again the con-
stant spheroid. Consequently, the mapping φ 7→ susφ yields a homomorphism
pir(X,x0) → πr+1(sus(X,x0),bp) , for any r ≥ 0. This homomorphism is also
called suspension and is denoted by sus.

Recall that we have already de�ned the suspension of a continuous map
on two occasions: in De�nition 1.2.6.2, for maps of topological spaces, and in
De�nition 1.2.8.5, for maps of pointed topological spaces. The present, third
de�nition, is more special; it concerns maps from the pair (I,Fr Ir) into pointed
spaces, and has no intersection with the previous ones. At the same time, it is
compatible with the second de�nition, in the sense that we may obtain the third
de�nition from the latter by shifting from spheric spheroids to cubic ones. More
precisely, the spheroids in Sph⃝r (X,x0), being maps between pointed spaces,
have suspensions in the sense of De�nition 1.2.8.5, and the diagramme

Sph⃝r (X,x0)
sus //

IS#

��

Sph⃝r+1(sus(X,x0),bp)

IS#

��
Sphr(X,x0) sus

// Sphr+1(sus(X,x0),bp)

commutes.
Let us add two important, yet obvious remarks. Firstly, if f : (X,x0) →

(Y, y0) is continuous, then the diagramme

πr(X,x0)
sus //

f∗

��

πr+1(sus(X,x0),bp)

(sus f)∗

��
πr(Y, y0) sus

// πr+1(sus(Y, y0),bp)

(where sus f is understood as in De�nition 1.2.8.5) commutes for any r ≥ 0.
Secondly, since (sus(Sn, ort1),bp) = (Sn+1, ort1), our construction, when ap-
plied to spheres, yields a homomorphism πr(Sn, ort1) → πr+1(Sn+1, ort1). The
main theorem of this subsection, Theorem 5.2.1.4, is devoted precisely to this
homomorphism.
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Remark 5.2.1.2. Alternatively, one can describe

sus : πr(X,x0)→ πr+1(sus(X,x0),bp)

by means of the map

lp : (X,x0)→ Sph1(sus(X,x0),bp), [lp(x)](t) = (x, t).

Namely, every spheroid φ ∈ Sphr(X,x0) is taken into susφ by the composition

Sphr(X,x0)
lp#−−→ Sphr(Sph1(sus(X,x0),bp), const)

Cub−−→ Sphr+1(sus(X,x0),bp)

(see Remark 5.1.10.7), and hence the homomorphism

sus : πr(X,x0)→ πr+1(sus(X,x0),bp)

may be de�ned as sus = cub ◦ lp∗ (to check this facts is routine).
A new description of the homomorphism sus emerges if we view sus(X,x0)

as the quotient space of the cone cone(X,x0) by its base (which is identi-
�ed with X). Indeed, given any φ ∈ Sphr(X,x0), consider the spheroid in
Sphr+1(cone(X,x0), X, x0) de�ned as

(t1, . . . , tr+1) 7→ (φ(t1, . . . , tr), tr+1).

The latter is taken into susφ by the map

proj# : Sphr+1(cone(X,x0), X, x0)→ Sphr+1(sus(X,x0),bp),

proj = [proj : cone(X,x0)→ sus(X,x0],

and is transformed back into φ by the map

∂ : Sphr+1(cone(X,x0), X, x0)→ Sphr(X,x0).

Consequently, sus : πr(X,x0)→ πr+1(sus(X,x0),bp) is nothing but the compo-
sition

πr(X,x0)
∂−1

−−→ πr+1(cone(X,x0), X, x0)
proj∗−−−→ πr+1(sus(X,x0),bp)

(∂ : πr+1(cone(X,x0), X, x0) → πr(X,x0) is invertible because the cone is con-
tractible; see Remark 5.1.6.7).

If, for example, (X,x0) = (Sn, ort1), then cone(X,x0) = Dn+1, sus(X,x0) =
Sn+1 and proj = DS.

The Suspension Theorem

Lemma 5.2.1.3. Let K and L be closed disjoint subsets of Im, and assume that
K is covered by a �nite number of k-dimensional planes, that L is covered by a
�nite number of ℓ-dimensional planes, and that K∩Fr Im ⊂ Im−1× [0, 1/2) and
L∩Fr lm ⊂ Im−1 × (1/2, 1]. If k+ ℓ ≤ m− 2, then there is a Fr Im -homotopy,
F : Im × I → Im, such that:
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(i) the maps Im → Im which form F are homeomorphisms, and their inverses
also form a homotopy;

(ii) F connects idIm with a map Im → Im which takes K into Im−1 × [0, 1/2]
and L into Im−1 × [1/2, 1].

Proof. Suppose �rst that L ⊂ Im−1 × [1/2, 1]. Since the lines which intersect
both K and L constitute a set which can be covered by a �nite number of
planes of dimension k + ℓ+ 1 ≤ m− 1, there is a point a ∈ int Im−1 × (0, 1/2)
which does not lie on any such line. Let us project K and L on Fr Im from
a. Their images are closed disjoint subsets of Fr Im, and so there is a Urysohn
function, α : Fr Im → I, for these images. Choose ε > 0 such that the similarity
transformation with centre a and coe�cient ε pulls Im into Im × [0, 1/2], while
the similarity transformation with the same centre and coe�cient 1/(1 − ε)
does not take K ∩ (Im × [1/2, 1]) out of Im. Now let φx : I → Im denote the
rectilinear path which joins a to a given point x ∈ Fr Im, and let ψt : I → I
denote the homeomorphism which takes linearly [0, (1 + t)/2] onto [0, (1− t)/2]
and [(1 + t)/2, 1] onto [(1− t)/2, 1]. The formula

F (φx(u), t) = φx ◦ ψt(1−ε)α(x)(u),

where x ∈ Fr Im and t, u ∈ I, de�nes the desired homotopy.
To reduce everything to this special case, we produce, in the general case, a

Fr Im-homotopy F : Im×I → Im which satis�es property (i) and connects idIm
with a map which takes L into Im × [1/2, 1]. We can de�ne such a homotopy
F by

F ((x, u), t) = (x, ψ−tδ(u)), [x ∈ Im−1, t, u ∈ I],

where δ ∈ (0, 1) is any number such that L ⊂ Im−1 × [(1− δ)/2, 1].

Theorem 5.2.1.4. sus : πr(Sn, ort1)→ πr+1(Sn+1, ort1) is an isomorphism for
r ≤ 2n− 2 and an epimorphism for r = 2n− 1.

Proof. a) To see that sus is epimorphic for r ≤ 2n − 1, we have to verify
that, given any spheroid φ ∈ Sphr+1(Sn+1, ort1), there is a spheroid ψ ∈
Sphr(Sn, ort1) such that susψ is homotopic to φ.

The proof is quite simple when φ(Ir × [0, 1/2]) is contained in the upper
half {xn+2 ≥ 0} of Sn+1 while φ(Ir × [1/2, 1]) is contained in the lower half
{xn+2 ≤ 0} of Sn+1 (here x1, . . . , xn+2 are the standard coordinates in Rn+2).
In this case, φ(Ir × (1/2)) lies in the intersection of these two hemispheres, i.e.,
φ(Ir × (1/2)) ⊂ Sn, and the required psi is given by

ψ(t1, . . . , tr) = φ(t1, . . . , tr, 1/2).

The formula

((t1, . . . , tr), t) 7→


φ(t1, . . . , tr,

tr+1

1−t ) if 0 ≤ tr+1 ≤ 1−t
2 ,

proj(φ(t1, . . . , tr,
1
2 ), tr+1) if 1−t

2 ≤ tr+1 ≤ 1+t
2 ,

φ(t1, . . . , tr,
tr+1−t
1−t ) if 1+t

2 ≤ tr+1 ≤ 1,
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where proj = [proj : Sn×I → sus(Sn, ort1)], de�nes a homotopy from φ to susψ.
Consider now the more general case where φ−1(ortn+2) ⊂ Ir × [0, 1/2) and

φ−1(− ortn+2) ⊂ Ir × (1/2, 1]. This case is readily reduced to the previous one.
Indeed, pick ε > 0 such that the last coordinate of φ(y) is ≤ 1− ε (≥ −(1− ε))
for all y ∈ Ir × [1/2, 1] (respectively, for all y ∈ Ir × [0, 1/2]). Now de�ne
h : (Sn+1, ort1)→ (Sn+1, ort1) by

h(x1, . . . , xn+2) =


(x1, . . . , xn+1, (x

2
n+2 − (1− ε2)1/2))/(1− (1− ε2))1/2,

if |xn+2| ≥ 1− ε,
(x1, . . . , xn+1, 0)/(x

2
1 + . . .+ x2n+1)

1/2,

if |xn+2| ≤ 1− ε,

[This map stretches the polar caps of Sn+1, de�ned by the inequalities xn+2 ≥
1− ε and xn+2 ≤ −(1− ε) over the upper and lower hemispheres, respectively,
and contracts the equatorial belt −(1 − ε) < xn+2 < 1 − ε to the equator
Sn.] It is clear that h is ort1-homotopic to idSn+1 [such a homotopy moves each
point x ∈ Sn+1 uniformly towards h(x) along the shortest arc of the great circle
passing through x and h(x)]. Moreover, h ◦ φ takes Ir × [0, 1/2] into the upper
hemisphere, and takes Ir × [1/2, 1] into the lower hemisphere.

Finally, in the most general case, we triangulate Sn+1 in such a way that ort1
becomes a vertex, while ortn+2 and ortn+2 become interior points of (n + 1)-
simplices, and then consider a rectilinear triangulation of In which ensures that
φ has simplicial approximations. Let φ1 be such an approximation. Then the
sets K = φ−1

1 (ortn+2) and L = φ−1
1 (− ortn+2) satisfy the conditions of Lemma

5.2.1.3, with m = r + 1 and k = ℓ = r − n [here the intersections K ∩ Fr Ir+1

and L ∩ Fr Ir+1 are actually empty]. Let G : Ir+1 × r → Ir+1 be the homotopy
made up of the inverses of the homeomorphisms which form the homotopy F
provided by Lemma 5.2.1.3. The spheroid φ1 is obviously homotopic to φ, and
we need only remark that

φ1 ◦ relG : (Ir+1 × I,Fr Ir+1 × I)→ (Sn+1, ort1)

is a homotopy from φ1 to a spheroid φ2 such that φ−1
2 (ortn+2) ⊂ Ir × [0, 1/2]

and φ−1
2 (− ortn+2) ⊂ Ir × [1/2, 1].

b) To see that sus is a monomorphism for r ≤ 2n+2, we must show that every
spheroid ψ : (Ir,Fr Ir) → (Sn, ort1) whose suspension susψ : (Ir+1,Fr Ir+1) →
(Sn+1, ort1) is homotopic to the constant spheroid is itself homotopic to the
constant spheroid.

Let φ : (Ir+1 × I,Fr Ir+1 × I) → (Sn+1, ort1) be a homotopy from susψ
to const. Consider a triangulation of Sn+1 with the properties: the equator
Sn is a simplicial subspace, ort1 is a vertex, and ortn+2, − ortn+2 are interior
points of (n + 1)-simplices. Further, triangulate rectilinearly Ir+1 × I = Ir ×
I × I so that Ir × (1/2) × 0 is a simplicial subspace and φ admits simplicial
approximations. If φ1 is such an approximation, then φ1(I

r × (1/2)× 0) ⊂ Sn,
and the formula ψ(y) = (y, 1/2, 0) de�nes a spheroid ψ1 : (I

r,Fr Ir)→ (Sn, ort1)
which is homotopic to ψ. Consider the map

perm: Ir+2 → Ir+2, (t1, . . . , tr+1, tr+2) 7→ (t1, . . . , tr, tr+2, tr+1)



5.2. THE HOMOTOPYGROUPS OF SPHERES ANDOF CLASSICALMANIFOLDS393

Clearly, K = perm(ψ−1
1 (ortn+2) and L = perm(ψ−1

1 (− ortn+2)) satisfy the con-
ditions of Lemma 5.2.1.3, with m = r + 2 and k = ℓ = r − n + 1. Thus,
let G : Ir+2 × I → Ir+2 be the homotopy made up of the inverses of the
homeomorphisms which form the homotopy F provided by this lemma, and let
ρ : Sn+1 \ (ortn+2 ∪(− ortn+2)) → Sn be a retraction. One may verify directly
that

(y, t) 7→ ρ(φ1 ◦ perm ◦G(y, t, 1/2), 1)

(where (y, t, 1/2) ∈ Ir+2 = Ir × ×I) is a homotopy Ir × I → Sn from ψ1 to
const.

The Series {πn+k(Sn, ort1)}

De�nition 5.2.1.5. The main content of Theorem 5.2.1.4 is that each of the
series

· · · sus−−→ πr(Sn, ort1)
sus−−→ πr+1(Sn+1, ort1)

sus−−→ πr+2(Sn+2, ort1)
sus−−→ · · · .

of homotopy groups of spheres, connected by the suspension, stabilises. That
is to say, in the k-th series {πn+k(Sn, ort1)}, the groups πn+k(Sn, ort1) with
n ≥ k + 2 are isomorphic via suspension. This canonical isomorphism enables
us to identify the groups πn+k(Sn, ort1), n ≥ k + 2, with a single group, called
the stable group of the series πn+k(Sn, ort1); we denote it by Stab(k).

5.2.2 The Simplest Homotopy Groups of Spheres

Theorem 5.2.2.1. The groups πr(Sn) with r < n are trivial. In particular,
Stab(k) = 0 whenever k < 0.

Proof. This is a corollary of Theorems 2.3.2.4 and 5.1.3.8.

The Homotopy Groups of the Circle

Theorem 5.2.2.2. If r > 1, πr(S1) is trivial. π1(S1, ort1) is an in�nite cyclic
group with generator sph1.

Proof. The proof uses the covering (R,hel,S1) [see Example 4.1.2.6]. First,
notice that hel(0) = ort1 and hel−1(ort1) = Z. Since the line R is contractible,
its homotopy groups are trivial, and hence, by Theorem 5.1.8.13 so is πr(S1, ort1)
for any r > 1, and ∆: π1(S1, ort1) → π0(Z, 0) = Z is invertible. Moreover,
(R,hel,S1) is obviously a principal bundle with structure group Z, so that ∆
is a group homomorphism (see De�nition 5.1.9.15). Therefore, ∆ is a group
isomorphism, and it remains to observe that ∆(sph1) = −1.

Remark 5.2.2.3. The proof above computes the homotopy groups of the circle
as quick as lightning by applying the general theory to the covering (R,hel,S1).
Such an approach is natural as the general theory is already available to us.
However, it conceals the fact that the computation is in fact quite elementary.
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Since the fundamental group of the circle has both a historical and intrinsic
importance, we shall not spare a few more lines, and we shall redo the proof of
the equality π1(S1, ort1) = Z in an elementary way, which reveals those simple
aspects of the general theory that are really necessary. Namely, we need only
the following two facts: every path in S1 with origin ort1 is covered by a path
in R with origin 0; two paths in R, with origin 0, which cover homotopic paths
in S1 have the same end. (Cf. De�nition 5.6.2.1).

Proof. Now to the proof: consider the powers of the fundamental loop IS : I →
S1 (with the natural order of multiplication), and let un denote the n-th power
(n ∈ Z). Let ũn : I → R be the path with origin 0 covering the loop un. Obvi-
ously, ũn(1) = n, and so the loops un are pairwise non-homotopic. Moreover,
given any loop u : I → S1 with origin ort1, the covering path ũ : I → R with
origin 0 ends at an integer. Consequently, ũ is homotopic to one of the paths
ũn, and thus u is homotopic to one of the loops un. In other words, the classes
(sph1)

n with n ∈ Z are pairwise distinct and exhaust π1(S1, ort1).

Corollaries

Corollary 5.2.2.4. The pair (D2,S1) is simple. πr(D2,S1) is trivial for any
r ̸= 2. π2(D2,S1, ort1) is an in�nite cyclic group with generator kug2.

Proof. These are all consequences of Theorem 5.2.2.2 and of the fact that D2

is contractible, which implies that ∂ : πr(D2,S1, ort1) → πr−1(S1, ort1) is an
isomorphism for any r ≥ 1 (see Remark 5.1.6.7).

Corollary 5.2.2.5. It follows from Theorems 5.2.2.1 and 5.2.2.2 that for n ≥ 1,
Sn is a simple space. Similarly, Theorem 5.2.2.1 and Corollary 5.2.2.4 show that
for n ≥ 2 the pair (Dn,Sn−1) is simple.

In particular, given any point y ∈ Sn with n ≥ 1, the group πn(Sn, y) can be
identi�ed with πn(Sn, ort1), and given any point y ∈ Sn−1 with n ≥ 2, the group
πn(Dn,Sn−1, y) can be identi�ed with πn(Dn,Sn−1, ort). Therefore, for r ≥ 1,
a continuous map f : S → X, with X a topological space, de�nes an element
of πr(X,x) for any point x ∈ f(Sr), and not only for x = f(ort1). Similarly,
for r ≥ 2, a continuous map f : (Dr,Sr−1) → (X,A), with (X,A) a topological
pair, de�nes an element of πr(X,A, x) for any x ∈ f(Sr−1), and not only for
x = f(ort1).

The Groups πn(Sn)

Theorem 5.2.2.6. For n ≥ 1, sus : πn(Sn, ort1) → πn+1(Sn+1, ort1) is an
isomorphism and sus(sphn) = sphn+1.

Proof. By Theorem 5.2.1.4, sus : πn(Sn, ort1) → πn+1(Sn+1, ort1) is an isomor-
phism for n ≥ 2, and an epimorphism for n = 1. To prove that this epimorphism
is also a monomorphism, we use the homotopy properties of the Hopf bundle
(S3,proj,S2) [see Example 4.6.1.4]: the segment

π2(S−3) = 0→ π2(S2)→ π1(S1)→ π1(S3) = 0
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of its homotopy sequence (see Theorem 5.2.2.1) demonstrates that π2(S2) =
π1(S1). Since π1(S1) = Z (see Theorem 5.2.2.2), sus : π1(S1, ort1)→ π2(S2, ort1)
cannot have a non-trivial kernel. The equality sus(sphn) = sphn+1 is obvious.

Theorem 5.2.2.7. If n ≥ 1, πn(Sn, ort1) is an in�nite cyclic group with gen-
erator sphn. In particular, Stab(O) = Z.

Proof. For n = 1, this statement is a repetition of a part of Theorem 5.2.2.2,
while for n > 1 it results from Theorems 5.2.2.2 and 5.2.2.6.

Corollary 5.2.2.8. If n ≥ 2, πn(Dn,Sn, ort1) is an in�nite cyclic group with
generator kugn.

Remark 5.2.2.9. For each n ≥ 1, Theorem 5.2.2.7 establishes a canonical iso-
morphism πn(Sn) → Z. In particular, it associates with each continuous map
f : Sn → Sn an integer, and it is not hard to see that this is nothing but the
degree deg f , as de�ned in Subsection 4.6.5. This is a consequence of three ev-
ident facts: deg(sus f) = deg f ; the class k sph1 is represented by the spheroid
helk. (see Example 4.1.2.6); and deg(helk) = k.

Similarly, for each n ≥ 2, Corollary 5.2.2.8 establishes a canonical isomor-
phism πn(Dn,Sn−1)→ Z. In particular, it associates with each continuous map
f : (Dn,Sn−1) → (Dn,Sn−1) an integer, which coincides with deg f , as de�ned
in Subsection 4.6.5.

Further Information Obtained From the Hopf Bundles

Theorem 5.2.2.10. If r ≥ 3, the homomorphism proj∗ : πr(S3) → π2(S2) in-
duced by the Hopf map proj : S3 → S2 is an isomorphism. In particular, π3(S2)
is canonically isomorphic to Z, and is generated by proj∗(sph3), i.e., by the class
of the Hopf map itself.

Proof. This is plain from the segment

πr(S1) = 0→ πr(S3)→ πr(S2)→ πr−1(S1) = 0

of the homotopy sequence of the Hopf bundle (S3,proj,S2).

Theorem 5.2.2.11. If r ≥ 1, the homomorphism proj∗ : πr(S7) → πr(S4) in-
duced by the Hopf map proj : S7 → S4 maps πr(S7) isomorphically onto a sub-
group of pir(S4) which has a direct complement isomorphic to πr−1(S3). In
particular, π7(S4) ∼= Z⊕ π6(S3).

Proof. This is a consequence of Theorem 5.1.8.11, when applied to the Hopf
bundle (S7,proj,S4).

Theorem 5.2.2.12. If r ≥ 1, the homomorphism proj∗ : πr(S15) → πr(S8)
induced by the Hopf map proj : S15 → S8 maps πr(S15) isomorphically onto a
subgroup of pir(S8) which has a direct complement isomorphic to πr−1(S7). In
particular, π15(S8) ∼= Z⊕ π14(S7).
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Proof. This is a consequence of Theorem 5.1.8.11, when applied to the Hopf
bundle (S15,proj,S8).

Theorem 5.2.2.13. The composite maps

πr−1(S1)
sus−−→ πr(S2)

∆−→ πr−1(S1), πr−1(S3)
sus−−→ πr(S4)

∆−→ πr−1(S3),

πr−1(S7)
sus−−→ πr(S8)

∆−→ πr−1(S7),

where the homomorphisms ∆ correspond to the Hopf bundles, coincide for any
r ≥ 1 with idπr−1(S1), idπr−1(S3), and idπr−1(S7), respectively.

Proof. Let q be 2, 4, or 8, and consider the map χ : Dq → Sq−1 given by

χ(x1, . . . , xq) = (x1, . . . , xq, (1− x21 − · · · − x2q), 0, . . . , 0).

Its restriction to Sq−1 is simply the inclusion Sq−1 → S2q−1, while proj ◦χ, where
proj is the Hopf map proj : S2q−1 → Sq, simply DS : Dq → Sq. Therefore, the
diagram

πr(S2q−1,Sq−1)

rel proj∗

xx

∂

''
πr(Sq) πr−1(Sq−1)

πr(Dq,Sq−1)

relDS∗

ff

∂

77

OO

commutes; here the vertical homomorphisms are induced by relχ : (Dq,Sq−1)→
(S2q−1,Sq−1). Moreover, rel proj∗ and the lower ∂ are isomorphisms (see Lemma
5.1.8.1 and Remark 5.1.6.7), and from the above commutativity it follows that
the composite homomorphism

πr−1(Sq−1)
∂−1

−−→ πr(Dq,Sq−1)
rel∗ DS∗−−−−−→ πr(Sq)

(rel proj∗)
−1

−−−−−−−−→ πr(S2q−1,Sq−1)
∂−→ πr−1(Sq−1)

equals idπr−1(Sq−1). To complete the proof, notice that relDS∗ ◦ ∂−1 = sus (see
Remark 5.2.1.2) and ∂ ◦ (rel proj∗)−1 = ∆ (see De�nition 5.1.8.4).

Remark 5.2.2.14. It follows from Theorem 5.2.2.13 and Remark 5.1.8.8 that
susπ5(S3)→ π6(S4) and susπ13(S7)→ π14(S8) are isomorphisms, that is, in the
two series {πn+2(Sn)} and {πn+6(Sn)} (as in the series {πn(Sn)}) stabilisation
begins at least one step earlier than guaranteed by Theorem 5.2.1.4.
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5.2.3 The Composition Product

De�nition 5.2.3.1. Let X be a space with base point x0. Given two spheroids,
φ ∈ Sph⃝p (X,x0) and ψ ∈ Sph⃝q (Sp, ort1), the composition φ ◦ ψ(Sq, ort1) →
(X,x0) is a spheroid in Sph⃝q (X,x0), and the homotopy class of the latter is
uniquely determined by the homotopy classes of φ and ψ. Therefore, for any
two classes, α ∈ πr(X,x0) and β ∈ πq(Sp), one may de�ne the composition
α ◦ β ∈ πq(X,x0). Equivalently, we can set α ◦ β = φ∗(β), where φ is any
representative of α.

The following facts need no proof:

� if α ∈ πp(X,x0), then α ◦ sphp = α;

� if α ∈ πp(X,x0), β ∈ πq(Sp) and f : X → Y is continuous, then f∗(α◦β) =
(f∗(α)) ◦ β;

� if α ∈ πp(X,x0) and β ∈ πq(Sp) then sus(α ◦ β) = susα ◦ susβ;

� if α ∈ πp(X,x0) and β1, β2 ∈ πq(Sp), then α ◦ (β1 + β2) = α ◦ β1 + α ◦ β2;
[in particular, α ◦ k sphp = kα for all α ∈ πp(X,x0) and k ∈ Z].

The last property is called right distributivity, to distinguish it from the left
distributivity, which amounts to (α1+α2) ◦β = α1 ◦β+α2 ◦β for any α1, α2 ∈
πp(X,x0) and β ∈ piq(Sp). In genera1, left distributivity does not hold; see
Theorem 5.2.3.2 and Lemma 5.2.3.6, and also Exercise 5.2.9.1.

Theorem 5.2.3.2. Given any α1, α2 ∈ πp(X,x0) and β ∈ πq−1(Sp−1),

(α1 + α2) ◦ susβ = α1 ◦ β + α2 ◦ susβ. (5.2.3.3)

In particular,
(k sphp) ◦ susβ = k susβ

for any β ∈ πq−1(Sp−1) and k ∈ Z.

Proof. Pick representatives φ1, φ2 ∈ Sph⃝p (X,x0) and ψ ∈ Sph⃝q−1(Sp−1, ort1)
of the classes α1, α2 and β, respectively, and let p1 and p2 denote the projections
proj : Sp−1×I → sus(Sp−1, ort1) = Sp and proj : Sq−1×I → sus(Sq−1, ort1) = Sq.
By de�nition (see Remark 5.1.10.2), the class α1 + α2 is represented by the
spheroid

p1(x, t) 7→

{
φ1 ◦ p1(x, 2t), if 0 ≤ t ≤ 1/2,

φ2 ◦ p2(x, 2t− 1), if 1/2 ≤ t ≤ 1,

while susβ is represented by the spheroid p2(x, t) 7→ p1(ψ(x), t) (see Remark
5.2.1.1). This shows that both sides of (5.2.3.3) are represented by the spheroid

p2(x, t) 7→

{
φ1 ◦ p1(ψ(x), 2t), if 0 ≤ t ≤ 1/2,

φ2 ◦ p2(ψ(x), 2t− 1), if 1/2 ≤ t ≤ 1,
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The Ring Stab

Lemma 5.2.3.4. Let k, ℓ, and n be non-negative integers, with n > 0. Then
for any α ∈ πn+k(Sn) and β ∈ πn+ℓ(Sn),

susn α ◦ susn+k α = (−1)kℓ susn β ◦ susn+ℓ α.

Proof. Pick representatives φ ∈ Sph⃝n+k(Sn, ort1) and ψ ∈ Sph⃝n+ℓ(Sn, ort1) of
the classes α and β, and for non-negative integers, p and q, let perm(p, q) be
the (auto)homeomorphism of the sphere Sp+q = (A1, ort1)⊗· · ·⊗ (S1, ort1) (see
De�nition 1.2.8.9) which permutes the factors according to the rule

((1, . . . , p+ q) 7→ (p+ 1, . . . , p+ q, 1, . . . , p).

One may check directly that the following two compositions are equal:

susn φ ◦ perm(n, n+ k) ◦ susn+k ψ ◦ perm(n+ k, n+ ℓ) : S2n+k+ℓ → Sn,
perm(n, n) ◦ susn φ ◦ perm(n, n+ ℓ) ◦ susn+ℓ ψ : S2n+k+ℓ → Sn.

Since deg perm(p, q) = (−1)pq, this yields

susα ◦ [(−1)n(n+k) sph2n+k] ◦ susn+k β ◦ [(−1)(n+k)(n+ℓ) sph2n+k+ℓ]

= [(−1)n
2

sph2n] ◦ susn β ◦ [(−1)n(n+ℓ) sph2n+ℓ] ◦ susn+ℓ α.

Using the right and left distributivities (see De�nition 5.2.3.11 and Theorem
5.2.3.22), it is not hard to reduce this equality to the form

(−1)n(n+k)+(n+k)(n+ℓ) susn α ◦ susn+k β = (−1)n
2+n(n+ℓ) susn β ◦ susn+ℓ α,

and now we note that [n(n+k)+(n+k)(n+ℓ)]−[n2+n(n+ℓ)] ≡ kℓ( mod 2).

De�nition 5.2.3.5. We set Stab = ⊕k = 0∞ Stab(k) and identify each group
Stab(k) with its image under the natural embedding Stab(k) → Stab. The
operation ◦ transforms Stab into a ring: if α ∈ πn+k(Sn) and β ∈ πn+k+ℓ(Sn)
then sus(α ◦ β) = susα ◦ susβ (see De�nition 5.2.3.1). Therefore, ◦ is well
de�ned as a distributive multiplication Stab(k) × Stab(ℓ) → Stab(k + ℓ) (see
De�nition 5.2.3.1 and Theorem 5.2.3.2), and can be extended bi-distributively to
a multiplication Stab×Stab→ Stab. It results from De�nition 5.2.3.1, Theorem
5.2.3.2, and Lemma 5.2.3.4 that the ring Stab is associative, has the identity
sph = sph1 = sph2 = · · · and is skew-commutative, meaning that β ◦ α =
(−1)kℓα ◦ β for any α ∈ Stab(k) and β ∈ Stab(ℓ).

An Application

Lemma 5.2.3.6. The composition (− sph2) ◦proj∗(sph3), proj : S3 → S2 is the
Hopf map, equals proj∗(sph3).
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Proof. This is a consequence of the commutativity of the diagram

S3 //

proj
��

S3

proj
��

S2 // S2

where the horizontal maps are the spheroids (x1, x2, x3, x4) 7→ (x1,−x2, x3,−x4))
and (x1, x2, x3) → (x1,−x2, x3), which represent the classes sph3 and − sph2,
respectively.

Theorem 5.2.3.7. The group Stab(1) has at most two elements.

Proof. Since π4(S3) is already stable, and susπ3(S2) → π4(S3) is epimorphic
(see Theorem 5.2.1.4), it su�ces to show that ker sus contains the 2[proj : S3 →
S2]∗(sph3), i.e., twice the generator of π3(S2) (see Theorem 5.2.2.10). Indeed,
since

2 proj∗(sph3) = proj∗(sph3) + proj∗(sph3)

= sph2 ◦ proj∗(sph3) + (− sph2) ◦ proj∗(sph3)

(see Lemma 5.2.3.6), we get

sus(2 proj∗(sph3)) = sph3 ◦ sus(proj∗(sph3)) + (− sph3 ◦(proj∗(sph3))

(see De�nition 5.2.3.1), and we note that the right-hand side of the last equality
is 0 (according to Theorem 5.2.3.2).

5.2.4 Information: Homotopy Groups of Spheres

Remark 5.2.4.1. For a long time the study and computation of homotopy groups
of spheres was at the centre of the attention of topologists. It was hoped that one
could succeed in solving this problem and that other, more di�cult problems in
homotopy theory could be reduced to a considerable extent to it. Deep results
have actually been obtained in both these directions; the initial hopes, however,
have not been realised. Gradually it became clear that from the homotopy
point of view the sphere is not elementary, but rather an intricate, complicated
object. On the other hand, the information acquired about the homotopy groups
of spheres found unexpected applications, �rst of all in di�erential topology.

Below we discuss a (rather small) part of these results: general results in
Remark 5.2.4.2, and those of tabular character in Remark 5.2.4.3. For more
complete information, references, and proofs, see [7].

Remark 5.2.4.2. π4m−1(S2m), m = 1, 2, . . . , are the only in�nite groups among
πr(Sn) with r > n. Each of these in�nite groups is isomorphic to a direct sum
Z⊕ (�nite group).

For an odd prime p, the order of the group Stab(2m(p − 1) − 1) with 1 ≤
m ≤ p − 1 is divisible by p, but not by p2, while the order of Stab(k) with
k < 2p(p− 1)− 2 is not divisible by p if k ̸≡ −1 mod 2(p− 1).
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Remark 5.2.4.3. Among the groups πr(Sn) which have been computed are all
πn+k(Sn) with k ≤ 22, and all Stab(k) with k ≤ 7. The group πn+k(Sn) with
n ≥ 2 and 1 ≤ k ≤ 7 are displayed in Table 5.1.

n⧹k 1 2 3 4 5 6 7
2 Z Z/2Z Z/2Z Z/12Z Z/2Z Z/2Z Z/3Z
3 Z/2Z Z/2Z Z/12Z Z/2Z Z/2Z Z/3Z Z/15Z
4 Z/2Z Z⊕ Z/12Z Z/2Z⊕ Z/2Z Z/2Z⊕ Z/2Z Z/2Z⊕ Z/24Z Z/15Z
5 Z/24Z Z/2Z Z/2Z Z/2Z Z/30Z
6 0 Z Z/2Z Z/60Z
7 0 Z/2Z Z/120Z
8 Z/2Z Z⊕ Z/120Z
9 Z/240Z

Table 5.1: πn+k(Sn) with n ≥ 2 and 1 ≤ k ≤ 7

In Table 5.2, where proj always denotes one of the Hopf maps S3 → S2,
S7 → S4, or S15 → S8, we indicate the generators of the groups Stab(k) with
k = 1, . . . , 7.

Groups Generators
Stab(1) = π4(S3)[∼= Z/2Z] sus(proj∗(sph3))
Stab(2) = π6(S4)[∼= Z/2Z] sus2(proj∗(sph3)) ◦ sus3(proj∗(sph3))
Stab(3) = π8(S5)[∼= Z/24Z] sus(proj∗(sph7))
Stab(4) = π10(S6)[= 0] -
Stab(5) = π12(S7)[= 0] -

Stab(6) = π14(S8)[∼= Z/2Z] sus4(proj∗(sph7)) ◦ sus7(proj∗(sph7))
Stab(7) = π16(S9)[∼= Z/240Z] sus(proj∗(sph15))

Table 5.2: Stab(k) and generators for Hopf �brations

We add the relations

sus3(proj∗(sph3)) ◦ sus4(proj∗(sph3)) ◦ sus5(proj∗(sph3)) = 12 sus(proj∗(sph7)),

sus7(proj∗(sph3)) ◦ sus6(proj∗(sph7)) ◦ sus9(proj∗(sph7)) = 120 sus(proj∗(sph15)),

which give, together with Table 1, a complete description of ⊕7
k=1 Stab(k), a

part of Stab.

The groups Stab(k) with k = 8, . . . , 15 are listed in Table 5.3.
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k Stab k k Stab k
8 Z/2Z⊕ Z/2Z 12 0
9 Z/2Z⊕ Z/2Z⊕ Z/2Z 13 Z/3Z
10 Z/2Z 14 Z/6Z⊕ Z/2Z
11 Z/504Z 15 Z/480Z⊕ Z/2Z

Table 5.3: Stab(k) with k = 8, . . . , 15

5.2.5 The Homotopy Groups of Projective Spaces and Lenses

Theorem 5.2.5.1. Let 2 ≤ n ≤ ∞. π1(RPn, (1 : 0 : 0 : · · · )) has two elements
and is generated by the class of the loop rp: I → RPn given by rp(t) = (cosπt :
sinπt : 0 : 0 : · · · ). πr(RPn, (1 : 0 : 0 : · · · )) is isomorphic to πr(Sn) for all
r ̸= 1 [in particular, this group is trivial for n = ∞] and the isomorphism is
induced by the projection Sn → RPn. RPn is simple for n odd, and is not
n-simple for n even.

(The case n = 1 has been considered in Theorem 5.2.2.2.)

Proof. All assertions concerning the groups πr(RPn, (1 : 0 : 0 : · · · )) follow
from Theorem 5.1.8.13, when applied to the covering (Sn,proj,RPn). Since the
fundamental group of RPn is Abelian RPn is 1-simple. Now let r ≥ 2, and
consider the automorphism

Trp : πr(RPn, (1 : 0 : 0 : · · · ))→ πr(RPn, (1 : 0 : 0 : · · · )).

) Let r̃p be the path in Sn which covers rp and has origin ort1. Then from the
(obvious) commutativity of the diagramme

πr(Sn, ort1)
Tr̃p //

proj∗
��

πr(Sn,− ort1)

proj∗
��

πr(Sn, ort1)
(− idSn )∗oo

proj∗uu
πr(RPn, (1 : 0 : 0 : · · · ))

Trp

// πr(RPn, (1 : 0 : 0 : · · · ))

If we make the identi�cation πr(Sn,− ort1) = πr(Sn, ort1) = πr(Sn) (see Corol-
lary 5.2.2.5), then we see that Trp is the identity if and only if

(− idSn)∗ : πr(Sn) → πr(Sn)

is the identity. Finally, note that if n is odd, then − idSn and idSn are homotopic,
and hence (− idSn)∗ : πr(Sn) → πr(Sn) is the identity automorphism for all r,
while if n is even,

[(− idnS)∗ : (Sn)→ πr(Sn)] = − idπn(Sn) .



402 CHAPTER 5. HOMOTOPY GROUPS

Theorem 5.2.5.2. Let 1 ̸= n ̸= ∞. π2(CPn, (1 : 0 : 0 : · · · )) is isomorphic
to Z and is generated by the class of the spheroid incl : S2 = CP 1 → CPn.
πr(CPn, (1 : 0 : 0 : · · · )) is isomorphic to πr(S2n+1) for any r ̸= 2 [in particular,
this group is trivial for n =∞], and the isomorphism is induced by the projection
S2n+1 → CPn.

(For n = 1 this theorem repeats Theorem 5.2.2.10.)

Proof. We make two claims:

� incl∗ : π2(CP 1, (1 : 0))→ π2(
n, (1 : 0 : 0 : · · · )) is an isomorphism;

� proj∗ : πr(S2n+1, ort1) → πr(CP r, (1 : 0 : 0 : · · · )) is an isomorphism for
all r ̸= 2.

The �rst follows from the 3-connectedness of the pair (CP 1,CP 1) (see Theorem
2.3.2.4 and Remark 2.1.3.5), while the second is a consequence of the homotopy
sequence of the bundle (S2n+1,proj, n) and Theorem 5.2.2.2.

Theorem 5.2.5.3. Let 1 ̸= n ̸=∞ and r ≥ 1. The homomorphism induced by
the projection S4n+3 → HPn maps πr(S4n+3) isomorphically onto a subgroup of
πr(HPn, (1 : 0 : 0 : · · · )) which has a direct complement isomorphic to πr−1(S3).
In particular, πr(HPn, (1 : 0 : 0 : · · · )) isomorphic to πr−1(S3) for all r ≥ 1.

(For n = 1 this theorem repeats Theorem 5.2.2.11.)

Proof. We need only apply Theorem 5.1.8.11 to the bundle, (S4n+3,proj,HPn).

Theorem 5.2.5.4. The lenses L(m; ℓ1, . . . , ℓn) and L(m; ℓ1, ℓ2, . . . ) are simple.
π1(L(m; ℓ1, . . . , ℓn)) and π1(L(m; ℓ1, ℓ2, . . . )) are isomorphic to Z/mZ. If r ≥ 2,
πr(L(m; ℓ1, . . . , ℓn)) is isomorphic to πr(S2n−1), and the isomorphism is induced
by the projection S2n−1 → L(m; ℓ1, . . . , ℓn). πr(L(m; ℓ1, ℓ2, . . . )) is trivial for all
r ≥ 2.

Proof. The proof is clearly a generalisation of the �rst part of the proof of
Theorem 5.2.5.1.

5.2.6 The Homotopy Groups of Classical Groups

Theorem 5.2.6.1. The inclusion homomorphism πr(SO(n))→ πr(SO(n+ 1))
is an isomorphism for r ≤ n− 2 and an epimorphism for r = n− 1.

π1(SO(n)) ∼=

{
Z for n = 2,

Z/2Z for n ≥ 3,
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and is generated by the class of the inclusion S1 = SO(2)→ SO(n). π2(SO(n))
is trivial for all n.

π3(SO(n)) ∼=


0 for n ≤ 2,

Z for n = 3,

Z⊕ Z for n = 4,

(Z⊕ Z)/(a cyclic subgroup) for n ≥ 5.

Proof. The triviality of the groups π2(SO(2)), π3(SO(2)), π2(SO(3)), and π2(SO(4)),
and the isomorphisms π1(SO(2)) ∼= Z, π1(SO(3)) ∼= Z/2Z, π3(SO(3)) ∼= Z, and
π3(SO(4)) ∼= Z ⊕ Z all result from the equalities SO(2) = S1, SO(3) = RP 3,
and SO(4) = RP 3 × S3 (see Remark 3.2.1.3, Theorem 3.2.3.1, and Remark
3.2.2.3), and Theorems 5.2.2.2, 5.2.2.7, and 5.2.5.1. The rest is a consequence
of the homotopy sequence of the bundle (SO(n + 1),proj,Sn) with base point
id ∈ SO(n+ 1); see Example 4.6.1.4.

Theorem 5.2.6.2. The inclusion homomorphism πr ∗ (U(n)) → πr(U(n+ 1))
is an isomorphism for r ≤ 2n − 1 and an epimorphism for r = 2n. If n ≥ 1,
π1(U(n)) is isomorphic to Z and is generated by the class of the inclusion S1 =
U(1)→ U(n). π2(U(n)) is trivial for all n.

π3(U(n)) ∼=

{
0 for n = 1,

Z for n ≥ 2.

The inclusion homomorphism π1(U(n))→ πr(SO(2n)) is epimorphic for all n.

Proof. These are corollaries of the equalities [incl : U(1) → SO(2)] = id and
U(2) = S1×S3, and of the homotopy sequence of the bundle (U(n+1),proj,S2n+1)
with base point id ∈ U(n+ 1); see Example 4.6.1.4.

Theorem 5.2.6.3. The inclusion homomorphism πr(Sp(n)) → πr(Sp(n + 1))
is an isomorphism for r ≤ 4n + 1 and an epimorphism for r = 4n + 2. In
particular, if r ≤ 5 and n ≥ 1, πr(Sp(n)) is isomorphic to πr(Sp(1) = S3).

Proof. This can be seen from the homotopy sequence of the bundle (Sp(n +
1),proj,S4n+3) with base point id ∈ Sp(n+ 1); see Example 4.6.1.4.

Stabilisation

De�nition 5.2.6.4. Theorems 5.2.6.1, 5.2.6.2 and 5.2.6.3 show that for r ≥ 1,
each series of groups

πr(SO(1))→ πr(SO(2))→ π3(SO(3))→ · · · ,
πr(U(1))→ πr(U(2))→ πr(U(3))→ · · · ,
πr(Sp(1))→ πr(Sp(2))→ πr(Sp(3))→ · · · ,

stabilises: the �rst one, starting with πr(SO(r + 2)), the second one, with
πr(U([r + 2)/2])), and the third one, with πr(Sp([(r + 2)/4])). The groups



404 CHAPTER 5. HOMOTOPY GROUPS

πr(SO(n)) with n ≥ r + 2, πr(U(n)) with n ≥ [(r + 2)/2], and πr(Sp(n))
with n ≥ [(r + 2)/4] are said to be stable, and are denoted by πr(SO), πr(U),
and πr(Sp), respectively. By Theorem 5.2.6.1, πr(SO) ∼= Z, π2(SO) = 0, and
π3(SO) ∼= (Z⊕ Z)/(cyclic subgroup). By Theorem 5.2.6.2, π1(U) ∼= Z, π2(U) =
0, and π3(U) ∼= Z. Finally, by Theorem 5.2.6.3, π1(Sp) = 0, π2(Sp) = 0, and
π3(Sp) ∼= Z.

The notations πr(SO), πr(U), and πr(Sp) have also a direct meaning: they
represent the ordinary r-th homotopy groups of the limit spaces SO = limSO(n),
U = limU(n), and Sp = limSp(n), respectively (see Theorem 5.1.11.5).

Information

Remark 5.2.6.5. The homotopy groups πr(SO), πr(U), and πr(Sp) have been
explicitly computed. Namely, for any r ≥ 1 there are canonical isomorphisms
πr(SO) → πr+8(SO), πr(Sp) → πr+8(Sp), and πr(U) → πr+2(U), and the �rst
seven homotopy groups of SO and Sp, together with the �rst two homotopy
groups of U are displayed in the following tables.

r 1 2 3 4 5 6 7 8
πr(SO) Z/2Z 0 Z 0 0 0 Z Z/2Z
πr(Sp) 0 0 Z Z/2Z Z/2Z 0 Z 0

Table 5.4:

r 1 2
πr(U) Z 0

Table 5.5:

For a proof, see [17].
There are also many unstable homotopy groups of the manifolds SO(n),

U(n), and Sp(n) which have been computed. For example, π2n(U(n)) ∼= Z/n!Z,

π4n+2(Sp(n)) ∼=

{
Z/(2n+ 1)!Z for n even,

Z/2[(2n+ 1)!]Z for n odd.

For details and references for the proofs, see [7].

5.2.7 The Homotopy Groups of Stiefel Manifolds and Spaces

Lemma 5.2.7.1. Let k < n. Then

� The manifold V (n, k) is simple.

� The inclusion homomorphism πr(V (n, k)) → πr(V (n + 1, k + 1)) is an
isomorphism for r < n− 1 and an epimorphism for r = n− 1.
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� If n is odd and k = 1, the last epimorphism is also an isomorphism.

� The manifolds CV (n, k) and HV (n, k) are all simple.

� The inclusion homomorphism πr(CV (n, k))→ πr(CV (n+1, k+1)) is an
isomorphism for r < 2n and an epimorphism for r = 2n.

� The inclusion homomorphism πr(HV (n, k))→ πr(HV (n+1, k+1)) is an
isomorphism for r < 4n+ 2 and an epimorphism for r = 4n+ 2.

Proof. The fact that the Stiefel manifolds are simple may be seen from the equal-
ities V (n, k) = SO(n)/ SO(n− k), CV (n, k) = U(n)/U(n− k), and HV (n, k) =
Sp(n)/Sp(n − k) (see Remark 4.2.3.16 and Corollary 5.1.9.7). To prove the
rest, use the homotopy sequences of the bundles (V (n + 1, k + 1),proj,Sn),
(CV (n+1, k+1),proj,S2n+1), and (HV (n+1, k+1),proj,S4n+3) described in
Example 4.6.1.4, taking the inclusions Rk → Rn, Ck → Cn, and Hk → Hn as
base points (in the respective total spaces). In the real case, we take advantage,
in addition, of the fact that for n odd, the bundle (V (n+1, 2),proj,Sn) admits
a section (see Example 3.1.4.9); for n odd and k = 1, this ensures that the
�rst of the aforementioned homotopy sequences splits from the left at the terms
πr(V (n+ 1, k + 1)) (see Theorem 5.1.8.9.)

Corollary 5.2.7.2. If k < n , then the manifold V (n, k) is (n−k−1)-connected.
πn−k(V (n, k)) with 0 < k < n is cyclic and is generated by the class of the
inclusion Sn−k = V (n − k + 1, 1) → V (n, k); this group is in�nite whenever
n− k is even or k = 1.

Proof. This is a corollary of Lemma 5.2.7.1: when r < n− k,

πr(V (n, k)) ∼= πr(V (n− 1, k − 1)) ∼= · · · ∼= πr(V (n− k + 1, 1)) = πr(Sn−k) = 0,

while in the sequence

πn−k(Sn−k) = πn−k(V (n−k+1, 1))→ πn−k(V (n−k+2, 2))→ · · · → πn−k, (V (n, k))

all the maps are isomorphisms, except for the �rst which is an isomorphism for
n− k even and an epimorphism for n− k odd.

Corollary 5.2.7.3. The manifold CV (n, k) is 2(n− k)-connected .

π2n−2k+1(CV (n, k)) ∼= Z

is generated by the class of the inclusion

S2n−2k+1 = CV (n− k + 1, 1)→ CV (n, k)

Proof. This is a corollary of Lemma 5.2.7.1 : when r ≤ 2n − 2k + 1, in the
sequence

πr(S2n−2k+1) = πr(CV (n−k+1, 1))→ πr(CV (n−k+2, 2))→ · · · → πr, (CV (n, k))

all the arrows are isomorphisms.
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Corollary 5.2.7.4. The manifold HV (n, k) is (4n− 4k + 2)-connected.

π4n−4k+3(HV (n, k)) ∼= Z

is generated by the class of the inclusion

S4n−4k+3 = HV (n− k + 1, 1)→ HV (n, k).

Proof. This is also a corollary of Lemma 5.2.7.1: if r ≤ 4n− 4k+3 (actually, if
r ≤ 4n− 4k + 5), then in the sequence

πr(S4n−4k+3) = πr(HV (n−k+1, 1))→ πr(HV (n−k+2, 2))→ · · · → πr, (HV (n, k))

all the arrows are isomorphisms.

Theorem 5.2.7.5. The spaces V (∞, k) and CV (∞, k) (see De�nition 4.5.3.10),
as well as

HV (∞, k) = lim−→(HV (n, k), incl : HV (n, k)→ HV (n+ 1, k))

are ∞-connected.

Proof. This follows from Corollaries 5.2.7.2, 5.2.7.3, 5.2.7.4, and Theorem 5.1.11.5.

5.2.8 The Homotopy Groups of Grassmann Manifolds and

Spaces

Remark 5.2.8.1. In this subsection the computation of the most important ho-
motopy groups of the Grassmann manifolds G(n, k), G+(n, k), CG(n, k), and
HG(n, k), and of the Grassmann spaces G(∞, k), G+(∞, k), CG(∞, k) (see Def-
inition 4.5.3.2) and

HG(∞, k) = lim−→(HG(n, k), incl : HG(n, k)→ HG(n+ 1, k))

is reduced to the computation of the homotopy groups of the corresponding
classical groups.

Grassmann manifolds and spaces are taken care of together, and thus n may
also take the value ∞.

Theorem 5.2.8.2. If k > 0 and 0 < r < n − k, then πr(G+(n, k)) is iso-
morphic to πr−1(SO(k)), and the inclusion homomorphism πr(G+(n, k)) →
πr(G+(n

′, k)) is an isomorphism for all n′ > n.

Proof. The �rst claim results from Theorems Corollary 5.2.7.2 and Theorem
5.2.7.5, and the homotopy sequence of the bundle (V (n, k),proj, G+(n, k)), de-
�ned in Example 4.6.1.4, with the inclusion Rk → Rn as base point. The second
claim results from the commutativity of the diagramme

πr(G+(n, k))
∆ //

incl∗
��

πr−1(SO(k))

incl∗=id

��
πr(G+(n

′, k))
∆
// πr−1(SO(k))
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(see Theorem 5.1.8.7).

Theorem 5.2.8.3.

πr(G(n, k)) ∼= πr(G+(n, k)), 0 < k < n and r ≥ 2,

π1(G(n, k)) ∼=

{
Z for n = 2 and r ≥ 2,

Z/2Z for 0 < k < n and n ≥ 3.

Proof. SinceG(2, 1) is homeomorphic to S1, Theorem 5.2.2.2 yields π1(G(2, 1)) ∼=
Z. If we now apply Theorem 5.1.8.13 to the canonical two�sheeted covering
(G+(n, k),proj, G(n, k)), the rest is plain.

Theorem 5.2.8.4. If 0 < r < 2n−2k+1, then πr(CG(n, k)) ∼= πr−1(U(k)), and
the inclusion homomorphism πr(CG(n, k))→ πr(CG(n′, k)) is an isomorphism
for all n′ > n.

Proof. The proof repeats that of Theorem 5.2.8.2 mutatis mutandis.

Theorem 5.2.8.5. If 0 < r < 4n− 4k + 3, then πr(HG(n, k)) ∼= πr−1(Sp(k)),
and the inclusion homomorphism πr(HG(n, k))→ πr(HG(n′, k)) is an isomor-
phism for all n′ > n.

Proof. Again, the proof repeats that of Theorem 5.2.8.2 mutatis mutandis.

5.2.9 Exercises

Exercise 5.2.9.1. Let q = 2, 4, 8, and let proj : S2q−1toSq be the Hopf map. Show
that for any integer k

(k sphq) ◦ proj∗(sph2q−1) = k2 proj∗(sph2q−1).

Exercise 5.2.9.2. Show that for any positive integer n, RPn is (n+ 1)-simple.

Exercise 5.2.9.3. Let n be even and k be odd. Show that G(n, k) is simple.

Exercise 5.2.9.4. Let 3 ≤ n ≤ ∞. Show that G(n, 2) is not 2-simple.

Exercise 5.2.9.5. Show that the inclusion homomorphisms

πr(SO(3))→ πr(SO(4)), πr(SO(7))→ πr(SO(8)), πr(U(1))→ πr(U(2)),

πr(U(3))→ πr(U(4)), πr(Sp(1))→ πr(Sp(2))

are monomorphic for any integer r.

Exercise 5.2.9.6. Consider the map CV (n, k)→ V (2n, 2k− 1) which takes each
k-frame (v1, . . . , vk) of Cn into (v1, iv1, . . . , vk−1, ivk−1, vk) of Cn, considered as
R2n. Show that the homomorphism

π2n−2k+1(CV (n, k))→ π2n2k+1(V (2n, 2k − 1))

induced by this map takes the generator of π2n−2k+1(CV (n, k)) indicated in
Corollary 5.2.7.3 into the generator of π2n−2k+1(V (2n, 2k − 1)) indicated in
Corollary 5.2.7.2.



408 CHAPTER 5. HOMOTOPY GROUPS

5.3 HOMOTOPYGROUPS OF CELLULAR SPACES

5.3.1 The Homotopy Groups of One-dimensional Cellular

Spaces

De�nition 5.3.1.1. In this subsection we compute the homotopy groups of
a bouquet B =

∨
µ∈M (Sµ = S1, ort1) constructed from an arbitrary family,

{Sµ = S1}µ∈M of circles. As usual, the base point bp will be the centre of the
bouquet.

To simplify the exposition, we let uµ and αµ denote the loop de�ned by the
inclusion Immµ : S1 → B, i.e., the loop Immµ ◦IS : I → B, and the homotopy
class of uµ, i.e., Immµ∗(sph1), respectively. A loop will be referred to as standard
if it is of the form (· · · ((v1v2)v3) · · · vn−1)vn, where each of the factors v1, . . . , vn
is either one of the loops uµ or one of their inverses u−1

µ and, in addition, two
loops uµ, u−1

µ with the same µ are not allowed to be adjacent. The case n = 0
is not excluded: then, the product is simply the constant loop with origin bp.

Lemma 5.3.1.2. There is a covering (B̃, p, B) with the following two properties:

(i) B̃ is contractible;

(ii) the paths which cover standard loops and originate at some point x0 of the
�bre F0 = p−1(bp) end at distinct points of F0, and F0 is exhausted by the
ends of these paths.

Proof. Let us agree to denote by GF (M), as usual, the free group generated
by the set M . We equip GF (M) with the discrete topology, form the bouquet
A =

∨
µ∈M (Dµ = D1, 0), and then the product A × GF (M). Further, let ℘

be the partition of A×GF (M) into the pairs {(Immmu(1), g), (Immµ(−1), gµ)}
with y ∈ M and g ∈ GF (M), and the points which do not appear in any of
these pairs, and denote by ρ the composition

A×GF (M)
proj1−−−→ A

∨
µ(DSµ=DS)
−−−−−−−−→ B.

Then ρ is obviously constant on the elements of ℘. Now set

B̃ = [A×GF (M)]/℘, p = [fact ρ : B̃ → B], x0 = proj(a0, e),

where a0 is the centre of the bouquet A, e = eGF (M), and

proj = [proj : A×GF (M)→ B̃].

Then it is readily seen that (B̃, p, B) is a covering with F0 = proj(a0×GF (M))
and x0 ∈ F0.

The contractibility of B̃ follows from Lemma 2.3.3.4: in fact, the subspaces
proj(A × [GF (M) \ GFn−1(M)]) of B̃, where GFn(M) is the part of GF (M)
consisting of words of length ≤ n, satisfy the conditions of this lemma. The
path with origin x0 which covers the standard path

(· · · (uε1µ1
uε2µ2

) · · · )uεnµn
[ε1, . . . , εn = ±1],
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ends at the point proj(a0, g), with g = uε1µ1
uε2µ2
· · ·uεnµn

. Clearly, the ends of these
paths are pairwise distinct and exhaust F0.

Theorem 5.3.1.3. The groups πr(B) with r > 1 are trivial, whereas π1(B, bp)
is a free group with free generators αµ .

Proof. The proof is based on Lemma 5.3.1.2 and uses the same notation. Since
B̃ is contractible, all its homotopy groups are trivial, and hence so are the groups
πr(B) with r > 1; moreover, the map ∆: π1(B, bp) → π0(F0, x0) is invertible
(see Theorem 5.1.8.13). Combining the invertibility of ∆ with property (ii) of
the covering (B̃, p, B), we see that the homotopy classes of the standard loops
are pairwise distinct and exhaust π1(B, bp). Consequently, π1(B, bp) is a free
group with generators αµ, µ ∈M .

Corollary 5.3.1.4. The fundamental group of a connected one-dimensional
cellular space is free, whereas its higher homotopy groups are trivial.

Proof. This is a corollary of Theorem 5.3.1.3, because every connected one-
dimensional cellular space is homotopy equivalent to a bouquet of circles (see
Theorem 2.3.3.6).

5.3.2 The E�ect of Attaching Balls

Remark 5.3.2.1. Let X = A ∪φ [
∐
µ∈M (Dµ = Dk+1)], where A is a connected

topological space, and φ is a continuous map
∐
µ∈M (Sµ = Sk)→ A (see Lemma

2.3.2.1), and let x0 ∈ A. In this subsection we exhibit a system of generators
for the group πk+1(X,A, x0) [k ≥ 1].

We remark that the homotopy groups πr(X,A) with r ≤ k are trivial (see
Lemma 2.3.2.1), whereas for r > k+1, πr(X,A) is already a much more compli-
cated object: in the simplest case, when A is just a point and the family {Dµ}
consists of a single ball, πr(X,A) equals πr(Sk+1).

In Theorem 5.3.2.2 below, fµ denotes the composite map

Dk+1 inclµ−−−→
∐
ν

Dν
Immµ−−−−→ X,

and αµ ∈ πk+1(X,A, fµ(ort1)) is the class of the spheroid

fµ : (Dk+1,Sk, ort1)→ (X,A, fµ(ort1)).

Theorem 5.3.2.2. Let wµ : I → A be an arbitrary path joining the points
fµ(ort1) and x0. If k ≥ 1, then πn+k(X,A, x0) is generated over π1(A, x0) by
the classes βµ = Twµ

αµ [i.e., it is generated, in the usual sense, by the classes
Tωβµ with ω ∈ πk+1(X,A, x0)].

Proof. We claim that every element β ∈ πk+1(X,A, x0) can be represented as

β =

m∏
i=1

[Tωi(βµi)]
±1 (µi ∈M, ωi ∈ π1(A, x0)). (5.3.2.3)
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By Lemma 2.3.2.1, there is a spheroid g ∈ Sph⃝k+1(X,A, x0) in the class µ,
and similarity transformations σ1, . . . , σm mapping Dk+1 onto pairwise disjoint
balls d1, . . . , dm ⊂ intDk+1, with the following properties:

� the point of di having the largest value of the �rst coordinate coincides
with σi(ort1);

� the segment joining this point with ort1 lies in C = Dk+1 \ ∪mi=1 int di;

� the composition Dk+1 σi−→ di
incl−−→ Dk+1 g−→ X is identical with one of the

maps fµ;

� g(C) ⊂ A.

Now it is clear that, if we suitably re-index the balls d1, . . . , dm, thenX, A, x0, g,
and d1, . . . , dm satisfy the conditions of Theorem 5.1.11.1, and hence we have, in
the notation of this theorem, γ =

∏m
i=1 Tsi(γi). In our case, γ = β and γi = α±1

µi
;

the last equality is a consequence of the fact that αµi and γi are the elements
of πk+1(X,A, fµi(ort1)) represented by the spheroids fµi and g ◦ τi, which are
transformed one into another by the orthogonal transformations of Dk+1, σ−1

i ◦
abr τi, (abr τi)−1 ◦ σi (which are inverses of one another). Consequently, β =∏m
i=1 Tsi(α

±1
µi

), and to obtain (5.3.2.3), we need only write ωi for the class of
the loop w−1

µi
si.

Corollary 5.3.2.4. Under the hypotheses of Theorem 5.3.2.2, the inclusion
homomorphism πr(A, x0) → πr(X,x0) is an isomorphism for r ≤ k − 1, and
an epimorphism for r = k. The kernel of this epimorphism is generated over
π1(A, x0) by the classes ∂βµ = Twµ

(∂αµ) [i.e., by the classes of the attaching
spheroids ∂fµ, translated to x0].

Theorem 5.3.2.5. Let (X,A) be a cellular pair with base point x0. If A is
connected and A ⊃ skelkX, with k ≥ 1, then πr(X,A) is trivial for all r ≤ k.
Moreover, πk+1(X,A, x0) is generated over π1(A, x0) by the classes of the char-
acteristic maps of the (k+1)-cells in X \A (regarded as spheroids), translated to
x0 along arbitrary paths. The inclusion homomorphism πr(A, x0) → πr(X,x0)
is an isomorphism for r ≤ k − 1 and an epimorphism for r = k; the kernel of
the latter is generated over π1(A, x0) by the classes of the attaching spheroids of
the (k + 1)-cells in X \A, translated to x0 along arbitrary paths.

Proof. When X \ A ⊂ skelk+1, all these assertions follow from Remark 5.3.2.1,
Theorem 5.3.2.2, and Corollary 5.3.2.4. The general case is reduced to this
special situation by Theorem 2.3.2.6.

5.3.3 The Fundamental Group of a Cellular Space

Remark 5.3.3.1. In this subsection we present an e�ective method for computing
the fundamental group of a cellular space possessing a single 0-cell. This last
condition is not a serious limitation, since, �rstly, it is ful�lled in the most
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important cases and, secondly, every connected space can be transformed, by
taking a rather simple quotient, into a homotopy equivalent space which meets
our requirement (see Subsection 2.3.3). It is by no means di�cult to generalise
the computation scheme to arbitrary cellular spaces; however, the exposition is
cumbersome.

Remark 5.3.3.2. Let X be a cellular space with a single 0-cell x0. Since x0 is
also the unique 0-cell of skel1X, this skeleton is homeomorphic to a bouquet
of circles. Consequently, π1(skel 1X,x0) is the free group generated by the
homotopy classes of the characteristic loops, i.e., of the characteristic maps of
the 1 -cells (see Theorem 5.3.1.3).

According to Theorem 5.3.2.5, incl∗ : π1(skel 1X,x0) → π1(X,x0) is an epi-
morphism whose kernel is generated over π1(skel1X,x0) by the homotopy classes
of the attaching maps of the 2-cells of X, translated to x0 along arbitrary paths.
In our case, π1(skel1X,x0) acts as a group of inner automorphisms, and hence
ker incl∗ is the smallest normal subgroup of π1(X,x0) containing the above el-
ements. Thus, the fundamental group that we want to compute is canonically
isomorphic to the quotient group of π1(skel1X,x0) by this normal subgroup.

Remark 5.3.3.3. The discussion above shows that in order to compute π1(X,x0)
it su�ces to know the 1-skeleton of X and the attaching maps of the 2-cells of
X. Given these data, we can exhibit a system of generators and relations for
π1(X,x0): to each 1-cell corresponds a generator, namely the class of the re-
spective characteristic loop; each 2-cells de�nes a relation, namely that the class
of the attaching map of the given 2-cell, when translated to x0 and expressed
in terms of generators, must be equal to the identity element of π1(X,x0). In a
very simpli�ed fashion, we may say that a set of generators of π1(X,x0) consists
of the 1-cells of X, while a system of relations consists of the 2-cells.

We remark that the system of relations is not entirely canonical, because
it depends upon the choice of the paths along which we do the translation;
consequently, the left-hand sides of the relations are determined only up to
conjugation.

Lemma 5.3.3.4. The fundamental group of a �nite connected cellular space
has a presentation given by a �nite number of generators and relations.

An Additional Theorem

De�nition 5.3.3.5. If A and B are subspaces of the topological space X, with
inclusions

A

i′

  
A ∩B

i

;;

j ##

X

B
j′

>>
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and x0 ∈ A ∩ B, then the rule α ⋆ β 7→ i′∗(α)j
′
∗(β) de�nes a homomorphism

π1(A, x0) ⋆ π1(B, x0) → π1(X,x0) [⋆ denotes the free product], whose kernel
contains all the elements of the form i∗(δ)j∗(δ) with δ ∈ π1(A ∩B, x0). There-
fore, the same rule de�nes a homomorphism

[π1(A, x0) ⋆ π1(B, x0)]/ vk(X,A,B, x0)→ π1(X,x0), (5.3.3.6)

where vk(X,A,B, x0) designates the smallest normal subgroup of π1(A, x0) ⋆
π1(B, x0) → π1(X,x0) containing the indicated elements (and is known as
the van Kampen subgroup). Furthermore, homomorphism (5.3.3.6) is natural,
meaning that the diagramme

[π1(A, x0) ⋆ π1(B, x0)]/ vk(X,A,B, x0) //

��

π1(X,x0)

��
[π1(A

′, x′0) ⋆ π1(B
′, x′0)]/ vk(X

′, A′, B′, x′0) // π1(X
′, x′0)

produced by a continuous map (X,A,B, x0) → (X ′, A′, B′, x′0) always com-
mutes.

Theorem 5.3.3.7. Let (X,A,B) be a cellular triad (i.e., a cellular space X
with two subspaces, A and B, such that A ∪B = X), and let x0 ∈ D = A ∩B.
If A, B, and D are connected, then (5.3.3.6) is an isomorphism.

(This theorem will be generalised in the next section; see Remark 5.4.3.12.)

Proof. Let us assume �rst that X has a single 0-cell x0. By Remark 5.3.3.3,
the fundamental group at x0 of any of the spaces A, B, C, or D admits a
presentation by generators and relations corresponding to its 1-cells and respec-
tively its 2-cells. Therefore, the system of generators and relations of π1(X,x0)
(π1(D,x0)) is the union (respectively, intersection) of the systems of generators
and relations of π1(A, x0) and π1(B, x0), and the homomorphisms i∗, j∗, i′∗ and
j′∗ from De�nition 5.3.3.5 act as the identity on generators. Using the systems
of generators and relations of π1(A, x0) and π1(B, x0) we may build a system of
generators and relations of the group π1(A, x0) ⋆ π1(B, x0); however, the gener-
ators corresponding to the 1-cells in D must be counted twice. With this choice
of generators and relations, the homomorphism

π1(A, x0) ⋆ π1(B, x0)→ π1(X,x0), α ⋆ β 7→ i′∗(α)j
′
∗(β),

is the identity on generators, and its kernel is generated by the elements obtained
by identifying the generators corresponding to the 1 -cells in D. This completes
the proof of the case that we considered.

To reduce the general case to this special one, we shall transfer the ori-
gin from x0 to an arbitrary 0-cell e0 in D (by a translation inside D), and
then replace the quadruplet (X,A,B, e0) by a homotopy equivalent quadruplet
(X ′, A′, B′, e0′) with a single 0-cell, e′0, and such that A′ ∪B′ = X ′. We exhibit
such a quadruplet by taking quotients twice:
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� �rst, the quotient of X by a contractible one-dimensional subspace of D
containing skel0D (see Theorem 2.3.3.5 and De�nition 1.3.3.7, and cf.
Theorem 2.3.3.6),

� and subsequently the quotient of the resulting space by the union (bou-
quet) of contractible one-dimensional subspaces of the quotients of A and
B containing the 0-skeletons of these quotients.

Corollary 5.3.3.8. If A and B are cellular spaces with 0-cells a and b as base
points, then π1((A, a)

∨
(B, b),bp) ∼= π1(A, a) ⋆ π1(B, b).

5.3.4 Homotopy Groups of Compact Surfaces

Remark 5.3.4.1. Recall that a sphere with handles and cross-caps and at one
hole is homotopy equivalent to a bouquet of circles, the number of circles being
2g+ℓ−1 when g handles and ℓ holes are present, and h+ℓ−1 when h cross-caps
and ℓ holes are present (see Theorem 3.5.3.9). Thus, the fundamental group of
such a surface is free, having 2g + ℓ − 1 or h + ℓ − 1 generators, respectively,
whereas the higher homotopy groups are trivial; see Theorem 5.3.1.3.

Below we shall discuss the homotopy groups of closed surfaces, i.e., of spheres
with handles or cross-caps, but no holes. First (using the cellular decomposi-
tions indicated in Subsection 3.5.3, and Remark 5.3.3.3) we compute the fun-
damental groups, and then (by means of a simple device) we handle the higher
homotopy groups. We disregard the sphere and the projective space, whose
homotopy groups have been computed in the previous section (see Theorems
5.2.2.7, 5.2.2.10, Remark 5.2.4.3, and Theorem 5.2.5.1), and need no further
comment.

The Fundamental Groups of Closed Surfaces

Remark 5.3.4.2. The cellular decomposition of a sphere with g handles, con-
structed in Remark 3.5.3.8, contains one 0-cell e0, 2g 1-cells a1, b1, . . . ag, bg,
and one 2-cell, whose attaching map takes ort1 into e0. Let α1, β1, . . . αg, βg
denote the generators of the fundamental group of the 1 -skeleton of the given
surface which correspond to the 1-cells a1, b1, . . . ag, bg. The the homotopy class
of the above attaching map (regarded as a loop) is the word

α1β1α
−1
1 β−1

1 · · ·αgβgα−1
g β−1

g .

Therefore, the fundamental group of our surface at the point e0 may be described
as the group with generators a1, b1, . . . ag, bg, and the relation

a1b1a
−1
1 b−1

1 · · · agbga−1
g b−1

g = 1.

The cellular decomposition of a sphere with h cross-caps (see Remark 3.5.3.8)
contains one 0-cell e0, h 1-cells c1, . . . , ch, and one 2-cell. Repeating the previous
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argument with the obvious changes, we see that the fundamental group of this
surface at e0 can be described as the group with generators c1, . . . , ch and the
relation

c1c1 · · · chch = 1.

Remark 5.3.4.3. It is important to note that the groups computed in Remark
5.3.4.2 are pairwise non-isomorphic. (To see this, factor each fundamental group
by its commutator subgroup: for a sphere with g handles this yields a free
Abelian group of rank 2g, while in the case of a sphere with h cross-caps the
result is the direct sum of a free Abelian group of rank h−1 and a group of order
2.) In particular, the closed model surfaces are pairwise non-homeomorphic.

From this it is readily seen that the compact model surfaces are also pairwise
non-homeomorphic: it su�ces to seal up the holes by discs. The number of holes
is a topological invariant, because it equals the number of components of the
boundary (see Remark 3.1.1.4 and Theorem 4.6.5.13).

The Higher Homotopy Groups

Theorem 5.3.4.4. Let P be a sphere with g handles. If g ≥ 1 and r ≥ 2, then
πr(P ) = 0.

Proof. It is clear that P admits as a covering space the in�nite garland P̃
constructed from S1 × R by

� �rst removing small open discs centred at the points (ort1, 2k) [k = 0,±1, . . . ]

� and then glueing a sphere with g − 1 handles and one hole in the place of
each such disc (see Fig. 5.3).

Figure 5.3: (g = 3)

Denote by P̃n the �nite garland constructed in the same fashion from the product
S1 × [−2n− 1, 2n+ 1]. Obviously, P̃n is a sphere with (2n+ 1)(g − 1) handles
and two holes, so that πr(P̃n) = 0 for all r ≥ 2 (see Remark 5.3.4.1). Since P̃ =

lim−→(P̃n, incl : P̃n → P̃n+1), we also have πr(P̃ ) = 0 for all r ≥ 2 (see Theorem
5.1.11.5). Consequently, πr(P ) = 0 for all r ≥ 2 (see Theorem 5.1.8.13).

Corollary 5.3.4.5. Let P be a sphere with h cross-caps. If h ≥ 2 and r ≥ 2,
then πr(P ) = 0.
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Proof. Since P admits a sphere with h − 1 as covering space (see Example
4.1.2.6), this is a corollary of Theorem 5.3.4.4.

5.3.5 The Homotopy Groups of Bouquets

Remark 5.3.5.1. Suppose that we are given a family {(Xµ, xµ)} of pointed
T1-spaces, and consider the bouquet B =

∨
µ∈M (Xµ, xµ). Then the formula

Imm({αµ}µ∈M ) =
∑
µ∈M Immµ∗(αµ) de�nes a homomorphism

Imm: ⊕µ∈M πr(Xµ, xµ)→ πr(B, bp)

for any r ≥ 2. This homomorphism is natural, i.e., if B′ =
∨
µ′∈M ′(X ′

µ, x
′
µ)

is another bouquet of T1-spaces, σ : M ′ → M is arbitrary, and fµ′ : (X ′, x′) →
(Xσ(µ′), xσ(µ′)) are continuous, then the following diagramme commutes

⊕µ′∈M ′πr(X
′
µ, x

′
µ)

Imm //

��

πr(B
′,bp)

��
⊕µ∈Mπr(Xµ, xµ)

Imm
// πr(B, bp)

(5.3.5.2)

where the left vertical map is the homomorphism

{α′
µ′}µ′∈M ′ 7→

 ∑
µ′∈σ−1(µ)

(fµ′)∗(α
′
µ′)


µ′∈M ′

and the right vertical map is the homomorphism induced by the map

B′ → B, Immµ′(y′µ′) 7→ Immσ(µ′) ◦fµ(y′µ′) [y′µ′ ∈ X ′
µ′ , µ′ ∈M ′].

Lemma 5.3.5.3. Given any α ∈ πr(B, bp) [r ≥ 1], there is Ð° �nite set M ′ ⊂
M such that

� projµ′(α) = 0 if µ ∈M \M ′;
� α lies in the image of the homomorphism πr(B

′,bp)→ πr(B, bp) induced
by the natural embedding of the bouquet B′ =

∨
µ∈M ′(Xµ, xµ) in B.

Proof. We only have to observe that for any spheroid φ ∈ Sph(r B, bp), φ(I
r) is

covered by a �nite number of sets Immµ(X). [Indeed, since φ(Ir) is compact
and every point of X is closed in X, we can choose a point in each non-empty
intersection φ(Ir)∩ Immµ(Xµ \ xµ) and in this way produce a set which, being
both discrete and compact, is �nite.]

Remark 5.3.5.4. Let r ≥ 2 and de�ne the map Pr: πr(B, bp)→ ⊕µ∈Mπr(Xµ, xµ)
by Pr(α) = {proj

µ∗(α)}µ∈M (Lemma 5.3.5.3 shows that this de�nition is cor-
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rect). Obviously, Pr is a homomorphism and diagramme (5.3.5.2) remains com-

mutative when we replace Imm−−−→ by Pr←−.

⊕µ′∈M ′πr(X
′
µ, x

′
µ)

��

πr(B
′,bp)

Proo

��
⊕µ∈Mπr(Xµ, xµ) πr(B, bp)

Pr
oo

(5.3.5.5)

If M is �nite, then Pr equals the composition of the homomorphism

πr(B, bp)→ πr(
∏
µ∈M

Xµ, {xµ})

induced by the inclusion B →
∏
µ∈M Xµ (see De�nition 1.2.8.3) with the

canonical isomorphism πr(
∏
µ∈M Xµ, {xµ}) → ⊕µ∈Mπr(Xµ, xµ) (see Theorem

5.1.1.15).

Theorem 5.3.5.6. Pr ◦ Imm equals the identity automorphism of the group
⊕µ∈Mπr(Xµ, xµ). In particular, Pr is epimorphic, Imm is monomorphic, and
πr(B, bp) = kerPr⊕ im Imm.

Proof. Since projµ ◦ Immµ = idXµ
and projν ◦ Immµ(Xν) = xν for ν ̸= µ,

Pr ◦ Imm({αµ}µ∈M ) = Pr[
∑
µ∈M

Immµ∗(αµ)]

= {
∑
µ∈M

(projν ◦ Immµ)(αµ)}ν∈M = {αν}ν∈M

for any αµ ∈ πr(Xµ, xµ) and µ ∈M .

Theorem 5.3.5.7. Let (Xµ, xµ) be cellular pairs, and let m, kµ (µinM) be
positive integers such that kµ + kν ≥ m for ν ̸= µ, and for any ν

πs(Xµ, xµ) = 0 for 1 ≤ s ≤ kµ.

If 2 ≤ r ≤ m, then

Imm: ⊕µ∈M πr(Xµ, xµ)→ πr(B, bp)

Pr: πr(B, bp)→ ⊕µ∈Mπr(Xµ, xµ)

are isomorphisms.

This theorem will be generalised in the next section; see De�nition 5.4.3.1.

Proof. Suppose �rst that M is �nite. By Theorem 2.3.3.2 and the fact that
Imm is natural (see Remark 5.3.5.1), we may assume that skelkµ Xµ reduces to
the point xµ for all µ ∈M . In this case, B ⊃ skelm+1X, where X is the cellular
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product of the spaces Xµ. By Theorem 2.3.2.4, incl∗ : πr(B, bp)→ πr(X,bp) is
an isomorphism for r ≤ m. According to Theorem 5.1.1.15,

incl∗ ◦ Imm: ⊕µ∈M πr(Xµ, xµ)→ πr(B, bp)

is an isomorphism for any r. Therefore, Imm is an isomorphism for r ≤ m.
In the general case, Lemma 5.3.5.3 shows that for any α ∈ πr(B, bp) and

r ≤ m, there is a �nite sub-bouquet B′ = ∨µ′∈M ′ , (Xµ, xµ) of B such that α
lies in the image of the homomorphism πr(B

′,bp)→ πr(B, bp) induced by the
natural embedding B′ → B. Using Remark 5.3.5.1, this homomorphism is part
of the commutative diagramme

⊕µ′∈M ′πr(X
′
µ, x

′
µ)

Imm //

��

πr(B
′,bp)

��
⊕µ∈Mπr(Xµ, xµ)

Imm
// πr(B, bp)

(5.3.5.8)

But we have already proved that the upper Imm is an isomorphism, so that α
also lies in the image of our (lower) Imm. Therefore, the latter is an epimor-
phism and this, combined with Theorem 5.3.5.6, implies that Imm and Pr are
isomorphisms.

Corollary 5.3.5.9. Let B be a bouquet of n-dimensional spheres, constructed
from a family {(§µ = Sn, ort1)}µ∈M . If n ≥ 2, then the groups πr(B) with
r < n are trivial, whereas πn(B, bp) is a free Abelian group with free generators
Immµ∗(sphn).

5.3.6 The Homotopy Groups of a k-Connected Cellular

Pair

Lemma 5.3.6.1. (A diagramme lemma) Consider the following commutative
diagramme of groups and homomorphisms

□
γ //

α

��

□

δ
��

□
β
// □

If α, β, and γ are epimorphic and kerβ ⊂ α(ker γ), then δ is epimorphic,
kerβ = α(ker γ), and ker δ = γ(kerα).

Proof. Since the diagramme is commutative and α, β are epimorphic, δ is epi-
morphic. The commutativity of the diagramme implies also that α(ker γ) ⊂
kerβ and γ(kerα) ⊂ ker δ. Let us verify that ker δ ⊂ γ(kerα). Pick d ∈ ker δ. If
d = γ(a), then α(a) ∈ kerβ (again by commutativity), whence α(a) ∈ α(ker γ),
i.e., there is c ∈ ker γ such that α(c) = α(a). The last equality yields ac−1 ∈
kerα, and we have d = γ(a) = γ(ac−1) ∈ γ(kerα).
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Theorem 5.3.6.2. Let (X,A) be a cellular pair with base point x0 ∈ A. If
A is connected and, for r ≤ k, πr(X,A) = 0, then proj∗ : πk+1 : (X,A, x0) →
πk+1(X/A,proj(x0)) is epimorphic, and for k ≥ 1 ker proj∗ is the smallest sub-
group of πk+1(X,A, x0) containing all the �ratios� (Tσα)α

−1 with α ∈ πk+1(X,A, x0)
and σ ∈ π1(A, x0). For k = 0, the situation is described by the commutative
diagramme

π1(A, x0)
incl∗ // π1(X,x0)

rel∗ //

abrs proj∗ ((

π1(X,A, x0)

proj∗
��

πk+1(X/A,proj(x0))

(5.3.6.3)

where abrs proj∗ and rel∗ are also epimorphic, and ker(abrs proj∗) is the smallest
normal subgroup of πr(X,x0) which contains ker rel∗ = ℑ incl∗.

(This theorem will be generalised in the next section; see Remark 5.4.3.15.

Proof. The proof is quite involved.
PROOF OF THE CASE k ≥ 1. Suppose �rst that X \ A consists only

of (k+1)-cells and, as a consequence, X/A is a bouquet of (k+1)�dimensional
spheres. For each cell e ∈ X \ A, consider the homotopy class of its charac-
teristic map (viewed as a spheroid of the pair (X,A)), and translate it to x0,
denoting the resulting element of πk+1(X,A, x0) by αe. Set βe = proj∗(αe).
By Theorem 5.3.2.5, the classes (Tσα) with σ ∈ π1(A, x0) form a system of
generators of πk+1(X,A, x0), and by Corollary 5.3.5.9, the classes βe form a
system of independent generators of the Abelian group πk+1(X/A,proj(x0)).
Moreover, it is obvious that projr∗(Tσα) = proj∗(α) for all α ∈ πk+1(X,A, x0)
and σ ∈ π1(A, x0), and these facts will su�ce to complete the proof of the
theorem for k ≥ 1. Since βe = proj∗(αe) generate πk+1(X/A,proj(x0)), proj∗
is epimorphic. Further, since proj∗(Tσα) = proj∗(α), we have (Tσα)α

−1 ∈
ker proj∗. Let us show that the ratios (Tσα)α

−1 generate ker proj∗. If k > 1
and the class ξ

∏
(e,σ)(Tσαe)

λ(e,σ) [with only a �nite number of non-zero inte-
gers λ(e, σ)] belongs to ker proj∗, then

∑
σ λ(e, σ) = 0 for any cell e (because∑

e[
∑
σ λ(e, σ)]βe = proj∗(α) = 0), and thus ξ =

∏
(e,σ[(Tσαe)α

−1
e ]λ(e,σ). When

k = 1, this argument is valid only after we factor πk+1(X,A, x0) by its commu-
tator subgroup, and it only demonstrates that every element of ker proj∗ is a
product of the above form multiplied by some commutators. However, since in
π2(X,A, x0) each commutator γ−1δγδ1 equals (T∂γδ)δ−1 (see Theorem 5.1.4.9),
we obtain again the desired decomposition of ξ into ratios (Tσα)α−1.

In the general situation, we �rst transform (X,A) into a k-connected pair,
removing those components of X which do not contain x0, and then replace it
by a homotopy equivalent pair (X ′, A′) such that skelkX ′ ⊂ A′ (see Theorems
5.1.4.8 and 2.3.3.1). Thus, we may assume that skelk ⊂ A. Now set Y =
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A ∪ skelk+1X and consider the commutative diagramme

πk+1(Y,A, x0)
i=incl∗ //

p′=proj∗
��

πk+1(X,A, x0)

p=proj∗
��

πk+1(Y/A,proj(x0))
i′=incl∗

// πk+1(X/A,proj(x0))

Here i, i′, and p′ are epimorphic:

� i because skelk+1X ⊂ Y ,

� i′ because skelk+1(X/A) ⊂ Y/A,

� and p′ because of the proof above.

We claim that our diagramme also satis�es the last condition of Lemma 5.3.6.1:
ker i′ ⊂ p′(ker i).

To see this, note that every (k + 2)-cell from (X/A) \ (Y/A) is the image
under p of some cell e from X \ Y , and its corresponding attaching map can be
expressed as proj ◦ atte. By Theorem 5.3.2.5, this implies that

ker i′ ⊂ proj∗(ker incl∗), incl∗ = [incl∗ : πk+1(Y, x0)→ πk+1(X,x0)],

proj∗ = [proj∗ : πk+1(Y, x0)→ πk+1(Y/A,proj(x0))].

Since the diagramme

πk+1(Y, y0)
incl∗ //

rel∗

��

πk+1(X,x0)

rel∗

��
πk+1(Y,A, x0)

i
// πk+1(X,A, x0)

commutes and proj∗ = p′ ◦ [rel∗ colonπk+1(Y, x0)→ πk+1(Y,A, x0)], we see that
proj∗(ker incl∗) ⊂ p′(ker i), whence ker i′ ⊂ p′(ker i).

Applying Lemma 5.3.6.1, we conclude that p is epimorphic and ker p =
i(ker p′). We have proved already that ker p′ is generated by the ratios (Tσα)α−1)
with α ∈ πk+1(Y,A, x0) and σ ∈ π1(A, x0). Since i((Tσα)α−1) = [Tσ(i(α))](i(α))

−1

and i is epimorphic, ker p is generated by the ratios (Tσα)α
−1) with α ∈

πk+1(X,A, x0) and σ ∈ π1(A, x0).
PROOF OF THE CASE k = 0. The commutativity of (5.3.6.3) is obvi-

ous, while the fact that rel∗ is epimorphic results from the connectedness of A.
It remains to verify that abrs proj∗ is an epimorphism with the indicated kernel.
If x0 is the unique 0-cell of X, this follows from Remark 5.3.3.3: indeed, the
system of generators and relations for (X/A,proj(x0)) given in Remark 5.3.3.3
can be obtained from the system of generators and relations for π1(X,x0), also
appearing in Remark 5.3.3.3, by deleting the 1-cells and 2-cells of A. When x0
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is not the unique 0-cell of X, we may still reduce to this special case by translat-
ing inside A the origin at some 0-cell e0, and subsequently replacing the triple
(X,A, e0) by a homotopy equivalent triple (X ′, A′, e′0) having a single 0-cell e′0.
To produce such a triple, we take quotients twice:

� �rst the quotient of X by a one-dimensional contractible subspace of A
containing skel0A,

� and then the quotient of the resulting space by a one-dimensional con-
tractible subspace which contains all its 0-cells

(cf. the proof of Theorem 5.3.3.7).

Theorem 5.3.6.4. Let X be a cellular space, and let A be a simply connected
subspace of X. Then X/A is k-connected (0 ≤ k ≤ ∞) if and only if the
pair (X,A) is k-connected. If this condition is ful�lled for some k < ∞, then
proj∗ : πk+1(X,A, x0)→ πk+1(X/A,proj(x0)) is an isomorphism.

Proof. The second assertion is an obvious corollary of Theorems 5.3.6.2 and
5.1.4.8. The �rst assertion follows from the second by induction on k. However,
note that to deduce the k-connectedness of X/A from the k-connectedness of
(X,A), Theorems 2.3.3.1 and 2.3.3.2 su�ce.

Corollary 5.3.6.5. If the cellular space X with the 0-cell x0 as base point is
k-connected, then sus : πk+1(X,x0)→ πk+2(sus(X,x0),bp) is an isomorphism.

Proof. This is a corollary of Theorem 5.3.6.4 (see Remark 5.2.1.2).

INFORMATION

Remark 5.3.6.6. Under the assumptions of Theorem 5.3.6.4, if A is ℓ-connected
(1 ≤ ℓ ≤ ∞), then proj∗ : πr(X,A, x0) → πr(X/A,proj(x0)) is an isomorphism
for r ≤ k + ℓ and an epimorphism for r = k + ℓ+ 1.

Under the assumptions of Corollary 5.3.6.5, sus : πr(X,x0)→ πr+1(sus(X,x0),bp)
is an isomorphism for r ≤ 2k and an epimorphism for r = 2k + 1 (cf. Theorem
5.2.1.4).

5.3.7 Spaces with Prescribed Homotopy Groups

Lemma 5.3.7.1. Let π be a group and n a positive integer. If π is Abelian or if
n = 1, then there is a connected cellular space X such that all the groups πr(X)
with r ̸= n are trivial, whereas πn(X) ∼= π.1

Proof. We proceed by induction and construct connected cellular spacesX0, X1, . . . ,
with base points x0, x1, . . . , and base-point preserving cellular embeddings φ0 : X0 →
X1, ϖ1 : X1 → X2, . . . such that:

1Translator's note. A space with such homotopy groups is known as a cellular K(π, n)-
space or as a cellular space of type (π, n).



5.3. HOMOTOPY GROUPS OF CELLULAR SPACES 421

(i) the groups πr(Xk, xk) with r < n and n < r ≤ n+ k are trivial;

(ii) πn(Xk, xk) is isomorphic to π;

(iii) φk∗ : πn(XK , xk)→ πn(Xk+1, xk+1) is an isomorphism.

Then the space X = lim−→(Xk, φk) will have the desired properties (see Remark
2.1.5.7 and Theorem 5.1.11.5).

To produce (X0, x0), write π as a factor group F/F ′, where F is a free
group if n = 1, and a free Abelian group if n > 1. Let B and B′ be bouquets
of n-dimensional spheres such that πn(B, bp) = F and πn(B

′,bp′) = F ′ (see
Theorem 5.3.1.3 and Corollary 5.3.5.9). Further, let f : (B′,bp′) → (B, bp) be
a continuous map such that f∗ : πn(B′,bp) → πn(B, bp) equals the inclusion
F ′ → F (one can construct such a map out of a family of spheroids whose
classes in πn(B, bp) = F constitute a free system of generators for F ′). Now
replace each sphere in B′ by the ball that it bounds and take X0 to be the
result of attaching this new bouquet (of balls) to B by f . Theorem 5.3.1.3,
Corollaries 5.3.5.9, and 5.3.2.4 show that X0 and x0 = Imm1(bp)[= Imm2(bp)]
satisfy conditions (i) and (ii) for k = 0.

Assume that for some i ≥ 1, pointed spaces (Xk, xk), k < i, and maps φk,
k < i − 1, are already constructed and satisfy conditions (i), (ii), and (iii).
Represent πn+i(Xi−1, xi−1) as the factor group of a free Abelian group, say G,
and then construct a bouquet C of (n+ i)-dimensional spheres, together with a
map g : (C,bp) → (Xi−1, xi−1) such that g∗ : πn+1(C,bp) → πn+1(Xi−1, xi−1)
equals the projection G→ πn+i(Xi−1, xi−1). [To establish the existence of such
a C and g, one may proceed as in the proof of the existence of B′ and f above;
however, here Theorem 5.3.1.3 is not necessary.] Now replace each sphere of C
by the ball that it bounds and then attach the resulting bouquet to Xi−1 by g
to obtain Xi. Finally, set x = Imm2(Xi−1) and φi−1 = Imm2. The fact that
(Xi, xi) satis�es (i), (ii) for k = i, and φß−1 satis�es (iii) for k = i − 1, is a
consequence of Corollary 5.3.2.4.

Theorem 5.3.7.2. Given an arbitrary group π1 and arbitrary Abelian groups
π2, π3, . . . , there exists a connected cellular space X such that πr(X) ∼= πr (r =
1, 2, . . . ).

Proof. Let X1, X2, . . . be connected cellular spaces with 0-cells x1, x2, . . . as
base points, such that the groups πr(Xk) are trivial for r ̸= k, whereas πk(Xk) ∼=
πk (see Lemma 5.3.7.1). De�ne inductively cellular spaces Y0, Y1, . . . and cellular
embeddings ψk : Yk → Yk+1 by Y0 = D0, Yk+1 = Yk ×c Xk+1, and ψk(y) =
(y, xk+1). Applying Theorems 5.1.1.15 and 5.1.11.5, the space X = lim−→(Xk, ψk)
has the desired properties.

5.3.8 Eight Instructive Examples

Example 5.3.8.1. If r > 1, then the r-th homotopy group of a �nite, connected
cellular space is not necessarily �nitely generated (cf. Lemma 5.3.3.4). The
bouquet (Sr, ort1) ∨ (S1, ort1) is a simple illustration of this phenomenon: its
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r-th homotopy group (r > 1) is a free Abelian group of in�nite rank. Indeed,
(Sr, ort1) ∨ (S1, ort1) has a covering space which is homotopy equivalent to an
in�nite bouquet of r-dimensional spheres: to produce such a space, attach one
copy of Sr in one point at each integer point of the real line R.

INFORMATION. The homotopy groups of a �nite cellular space with �nite
fundamental group are �nitely generated. For a proof, see [19].

Example 5.3.8.2. Under the conditions of Theorem 5.1.6.8, the subgroup ker rel∗ =
im incl∗ of π1(X,x0) is not necessarily normal (cf. 5.1.5.15).
Example: X is the bouquet of two circles, A the �rst circle, x0 the centre of the
bouquet, and ρ takes the second circle into x0.

Example 5.3.8.3. Under the conditions of Theorem 5.1.6.9, the right splitting of
the homotopy sequence of the pair (X,A) at π1(X,x0) is not necessarily normal
(cf. Theorem 5.1.5.18).
Example: X = (D2, ort1)∨ (S1, ort1), A = (S1, ort1)∨ (S1, ort1), x0 is the centre
of both bouquets, and h = [Imm2 : S1 → X] ◦ [proj2 : X → S1].
Example 5.3.8.4. For any k ≥ 0 there exist k-connected pairs (X,A) with A
connected, which are not (k + 1)-simple; moreover, under the conditions of
Theorem 5.3.6.2, and for any k ≥ 0, the epimornhism proj∗ : pik+1(X,A, x0)→
πk+1(X/A,proj(x0)) is not necessarily an isomorphism.
Example: X = (Sk+1, ort1) ∨ (S1, ort1), A = Imm2(S1) (cf. Examples 5.3.8.1
and 5.3.8.3).

Example 5.3.8.5. The second homotopy group of a pair (X,A) with connected
A is not necessarily Abelian, even when π?1(A) is Abelian and X is simply
connected.
The simplest example: A = S1 × S1, x0 = (ort1, ort1), and X is the result of
attaching two copies of D2 to A by the maps S1 → A given by y 7→ (y, ort1)
and y 7→ (ort1, y). Then π1(A) = Z⊗ Z, π2(A) = 0, π1(X) = 0, π2(X) ∼= Z
(X is homotopy equivalent to S2), and we have the exact sequence

0
incl∗−−−→ Z rel∗−−→ π2(X,A, x0)

∂−→ Z⊕ Z incl∗−−−→ 0 (5.3.8.6)

which shows, in particular, that ∂ is epimorphic. Assuming that π2(X,A, x0)
is Abelian, it follows from Theorem 5.1.4.9 that π1(A, x0) acts identically on
π2(X,A, x0), whence, by Theorem 5.3.2.2, rank π2(X,A, x0) ≤ 2. The latter
contradicts the exactness of (5.3.8.6).

Example 5.3.8.7. There exist 1-connected pairs (X,A) such that

proj∗ : π3(X,A, x0)→ π3(X/A,proj(x0))

is not even epimorphic.
Example: X = D2, A = S1, x0 = ort1. Here πr(X,A) = 0 for r ̸= 2, whereas
π3(X/A) ∼= Z (X/A is homeomorphic to S2).

Example 5.3.8.8. For any k ≥ 2, there are (k−1)-connected but not k-connected
cellular pairs (X,A) with X and A connected and X/A contractible. To con-
struct an example, let

σ ∈ π1((S1, ort1) ∨ (Sk, ort1),bp), α ∈ πk((S1, ort1) ∨ (Sk, ort1),bp),
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designate the classes of the spheroids

Imm1 : S1 → (S1, ort1) ∨ (Sk, ort1), Imm2 : Sk → (S1, ort1) ∨ (Sk, ort1),

respectively. Next, attach Dk+1 to (S1, ort1)∨(Sk, ort1) by an arbitrary spheroid
Sk → (S1, ort1)∨ (Sk, ort1) in the homotopy class 2α− Tσα. Take the resulting
cellular space as X, and the circle skel1X as A. The quotient space X/A may be
described as the result of attaching Dk+1 to Sk by a map Sk → Sk homotopic to
idSk , which implies that X/A is contractible (see Theorem 1.3.7.8). It is evident
that X and A are connected and that (X,A) is (k − 1)-connected; therefore, it
remains to check that πk(X) is not trivial.
By Example 5.3.8.1 πk((S1, ort1) ∨ (Sk, ort1),bp) is a free Abelian group with
free generators αn = Tnσ α (n = 0,±1, . . . ), while πk(X) is the factor group of
πk((S1, ort1) ∨ (Sk, ort1),bp) by its subgroup generated by the elements 2αn −
αn+1. (see Theorem 5.3.6.2). Consequently, πk(X) is isomorphic to the additive
group of binary rational numbers.

Example 5.3.8.9. The homomorphism f∗ : π1(X,A, x0)→ π1(X
′, A′, x′) induced

by a continuous map f : (X,A, x0) → (X ′, A′, x′) is not necessarily an isomor-
phism even if all the homomorphisms

f∗ : πr(X,x0)→ πr(X
′, x′0), (abr f)∗ : πr(A, x0)→ πr(A

′, x′)

are isomorphisms.
Example: X = X ′ = (S1, ort1) ∨ (I, 0), A = Imm1(ort2) ∪ Imm2(1),
A′ = Imm1(S1) ∪ Imm2(1), x0 = x′0 = Imm2(1), and f = rel idX .

5.3.9 Exercises

Exercise 5.3.9.1. Consider the subset of (C2 de�ned by the equation xp1 = xq2
where p and q are coprime integers, and intersect it with the sphere S−3. Show
that the fundamental group of the complement of this intersection in S3 is
isomorphic to the group with generators α1, α2, which are connected by the
relation αp1 = αq2.

Figure 5.4: p = 2, q = 3

The above intersections (with various p, q) are all homeomorphic to a circle
and lie on the torus |x1| =

√
2/2, |x2| =

√
2/2 which is contained in S3; they
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are called torus knots. A torus knot and the torus which carries it are depicted
in Fig. 5.4 as they lie in R3 = S3 \ bp.
Exercise 5.3.9.2. Consider the submanifold of CP 2 de�ned by the equation
xm1 + xm2 + xm3 = 0 with m a positive integer (cf. Exercise 3.5.4.2). Show that
the fundamental group of the complement of this submanifold is isomorphic to
Z/mZ.
Exercise 5.3.9.3. Consider the submanifold of non-zero vectors in the total space
of the tangent bundle of a sphere with g handles, and show that its fundamental
group is isomorphic to the group with generators a1, . . . ag, b1, b1, . . . bg, d, which
are connected by the relations

a1b1a
−1
−1b

−1
1 · · · agbga−1

g b−1
g = d2−2g,

a1d = da1, . . . , agd = dag, b1d = db1, . . . , bgd = dbg.

Exercise 5.3.9.4. Consider the submanifold of non-zero vectors in the total space
of the tangent bundle of a sphere with h cross-caps, and show that its funda-
mental group is isomorphic to the group with generators c1, . . . , ch, d, which are
connected by the relations

c1c1 · · · chch = d2−h, c1d = dc1, . . . , chd = dch.

Exercise 5.3.9.5. Let π be any group which can be presented by a �nite num-
ber of generators and relations. Show that there exists a smooth, closed 4-
dimensional manifold whose fundamental group is isomorphic to π.

Exercise 5.3.9.6. Show that every smooth, closed, oriented manifold of dimen-
sion ̸= 0, 3, is oriented cobordant to a simply connected manifold,

INFORMATION. This is also valid for dimension 3.

Exercise 5.3.9.7. Show that in Example 5.3.8.5, π2(X,A, x0) is isomorphic to
the group with generators a, b, c, which are connected by the relations

ac = ca, bc = cb, aba−1b−1 = c.
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5.4 WEAK HOMOTOPY EQUIVALENCE

5.4.1 Fundamental Concepts

De�nition 5.4.1.1. If X and Y are topological spaces, a continuous map
f : X → Y is called a weak homotopy equivalence if f∗ : πr(X,x)→ πr(Y, f(x))
is an isomorphism for all r ≥ 0 and all x ∈ X. To justify this term, we remark
that every homotopy equivalence is a weak homotopy equivalence and that the
converse is not true. The �rst fact was established in Theorem 5.1.3.7; for the
second, see De�nition 5.4.3.5.

The composition of two weak homotopy equivalences is obviously a weak
homotopy equivalence.

Theorem 5.4.1.2. Let f : X → Y be a weak homotopy equivalence. Then for
any cellular pair (K,L) and continuous maps φ : : K → Y and ψ : : L → X
with f ◦ψ = φ|L there is a continuous map χ : : K → X such that χ|L = ψ and
f ◦ χ is L-homotopic to φ. The converse is also true; moreover, if f : X → Y
is continuous and has the property that for any continuous maps, φ : Dr → Y
and ψ : Sr−1 → X (r ≥ 0) with f ◦ ψ = φ|Sr−1 , there is a continuous map
χ : Dr → X such that χ|Sr−1 = ψ and f ◦ χ is Sr−1-homotopic to φ, then f is a
weak homotopy equivalence.

Proof. To prove the �rst part, consider the mapping cylinder Cyl f (see De�ni-
tion 1.2.6.10). By Theorem 2.3.1.3, there exists a homotopy φ : K × I → Cyl f
of the composition

K
φ−→ Y

incl−−→ Cyl f,

such that φ(z, t) = Imm1(ψ(z), 1− t) for all z ∈ L, t ∈ I. Since

rt f ◦ [incl : X → Cyl f ] = f

and f is a weak homotopy equivalence, while rt f is a homotopy equivalence,
we conclude that incl is a weak homotopy equivalence. Hence,

incl∗ : πr(X,x)→ πr(Cyl f, x)

is an isomorphism for all r ≥ 0 and all x ∈ X. Thus, (Cyl f,X) is an ∞-
connected pair (see Remark 5.1.6.7), and since φ(L × 1) ⊂ X, there is an
L-homotopy K × I → Cyl f such that ψ(x, 0) = φ(x, 1) for all x ∈ K, and
ψ(K×1) ⊂ X (see Theorem 2.3.1.6). Now de�ne χ : K → X by χ(x) = φ(x, 1).
Obviously, χ|L = ψ, and the product of the homotopies rt f ◦ φ and rt f ◦ ψ is
an L-homotopy from f ◦ χ to φ.

To prove the second part, we must check that f∗ : πr(X,x) → πr(Y, f(x))
is both epimorphic and monomorphic for all r ≥ 0 and x ∈ X. To see that f∗
is epimorphic, set ψ(Sr−1) = x and take φ to be some spheroid (Dr,Sr−1) →
(Y, f(x)) of an arbitrarily given class β ∈ πr(Y, f(x)); the resulting spheroid
χ : (Dr,Sr−1)→ (X,x) de�nes a class α ∈ πr(X,x), and it is clear that f∗(α) =
β. Finally, to show that f∗ is monomorphic, pick α ∈ πr(X,x) with f∗(α) = 0,
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take ψ to be some spheroid of class α, and take φ to be any continuous map
Dr+1 → Y such that φ|Sr = f ◦ ψ; the resulting map χ : Dr+1 → X extends ψ,
and hence α = 0.

Theorem 5.4.1.3. If f : X → Y is a weak homotopy equivalence, then the
mapping π(id, f) : π(M,X)→ π(M,Y ) is invertible for any cellular space M .

Proof. The �rst part of Theorem 5.4.1.2 shows that, given a class β ∈ π(M,Y ),
there is an α ∈ π(M,X) such that [π(id, f)](α) = β: we need only set K =M ,
L = ∅, and take φ to be any map in the class β. Further, given arbitrary
continuous maps φ0, φ1 : M → X, it follows from the same �rst part of Theorem
5.4.1.2 that if the compositions f ◦φ0 and f ◦φ1 are homotopic, then so are φ0

and φ1: indeed, take K =M × I, L = (M × 0) ∪ (M × 1), and

φ : (M × 0) ∪ (M × 1)→ X, φ(x, 0) = φ0(x), φ(x, 1) = φ1(x), x ∈M,

and take for ψp any homotopy M × I → X from f ◦ φ0 to f ◦ φ1.

The Case of Cellular Spaces

Theorem 5.4.1.4. If X and Y are cellular spaces, then every weak homotopy
equivalence X → Y is a homotopy equivalence.

Proof. Suppose f : X → Y is a weak homotopy equivalence. By Theorem
5.4.1.3, the mapping π(id, f) : π(Y,X)→ π(Y, Y ) is invertible, and hence there
is a map g : Y → X whose homotopy class is taken by π(id, f) into the class
of idY . That is to say, f ◦ g is homotopic to idY , and it remains to verify that
g ◦ f is homotopic to idX . The latter is a consequence of the invertibility of
π(id, f) : π(X,X)→ π(X,Y ), because this mapping takes the homotopy classes
of g◦f and idX into the same element (indeed, f ◦g◦f and f are homotopic).

Remark 5.4.1.5. Theorem 5.4.1.4 states that two connected cellular spaces, X
and Y , are homotopy equivalent whenever there is a continuous map X → Y
which induces isomorphisms of the homotopy groups, but it certainly does not
guarantee that X and Y are homotopy equivalent if their homotopy groups are
just isomorphic. In fact, we have simple examples to show that the latter is not
true. Take X = Sp × RP q, Y = Sq × RP p, and suppose that 1 < p < q. By
Theorems 5.2.5.1 and 5.1.1.15, πr(X) ∼= πr(Y ) for all r. However, X and Y
are not homotopy equivalent. Indeed, the map proj1 : Sp × RP q → Sp induces
a group isomorphism πp(Sp × RP q) → πp(Sp). We next show that there is
no continuous map f : Sp × RP q → Sp which induces a group isomorphism
πp(Sp × RP q)→ πp(Sp). Assuming that such an f exists, the composition

Sp proj−−→ RP p x 7→(ort1,x)−−−−−−−→ Sq × RP q f−→ Sp (5.4.1.6)

induces an automorphism of πp(Sp). On the other hand (by Theorem 2.3.2.6),
every continuous map RP p → Sp is homotopic to a map which takes RP p−1

into ort1, and thus (5.4.1.6) is homotopic to the composition of the composite
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projection Sp → RP p/RP p−1 = Sp with some continuous map Sp → Sp. Conse-
quently, (5.4.1.6) cannot have degree ±1, since the above composite projection
has degree 0 when p is even and degree 2 when p is odd. A contradiction.

The following example illustrates the same phenomenon in the simply con-
nected case. Set X = S3 × CP∞ and Y = S2. By Theorems 5.2.2.10, 5.2.5.2,
and 5.1.1.15, πr(X) ∼= πr(Y ) for all r. However, X and Y have not the same
homotopy type. Indeed, proj1 : S3 ×CP∞ → S3 is not null homotopic (because
it induces a group isomorphism π3(S3 × CP∞) = Z → π3(S3) = Z). On the
other hand, every continuous map S2 → S3 is null homotopic.

De�nition 5.4.1.7. We say that a topological space is homotopy �t if it is
homotopy equivalent to a cellular space. From Theorem 5.4.1.4 it follows that
if X and Y are homotopy �t, then every weak homotopy equivalence X → Y is
a homotopy equivalence.

By Theorem 3.5.2.13, all smooth compact manifolds are homotopy �t.
An example of a space which is not homotopy �t was given in Exercise

2.3.5.4. This space is not connected. For an example of a connected (and even
∞-connected) space which is not homotopy �t, see Exercise 5.4.4.1 below.

INFORMATION. Every CNRS is homotopy �t, and the same holds true
for every topological manifold (compact or not). A product of homotopy �t
spaces is homotopy �t. If Y is homotopy �t, then C(X,Y ) is homotopy �t
for any compact space X. If Y has the homotopy type of a countable cellular
space, then C(X,Y ) has the homotopy type of a countable cellular space, for
any compact space X with countable base. For proofs, see [16].

k-Equivalence

De�nition 5.4.1.8. Let X and Y be topological spaces. A continuous map
f : X → Y is a k-equivalence if, for all x ∈ X, f∗ : πr(X,x) → (Y, f(x)) is
an isomorphism for r < k and an epimorphism for r = k. Here k is a non-
negative integer; sometimes, weak homotopy equivalences are referred to as
∞-equivalences.

A composition of two k-equivalences is obviously a k-equivalence.

Theorem 5.4.1.9. Let f : X → Y be a k-equivalence. Then for any cellular pair
(K,L) with K \ L ⊂ skelkK and continuous maps φ : K → Y and ψ : L → X
with f ◦ ψ = φ|L there is a continuous map χ : K → X such that χ|L = ψ and
f ◦ χ is L-homotopic to φ. The converse is also true; moreover, if f : X → Y
is continuous and has the property that for any continuous maps φ : Dr → Y
and ψ : Sr−1 → X (0 ≤ r ≤ k) with f ◦ ψ = φ|Sr−1 there is a continuous map
χ : Dr → X such that χ|Sr−1 = ψ and f ◦ χ is Sr−1-homotopic to φ, then f is a
k-equivalence.

Proof. The proof repeats that of Theorem 5.4.1.2, mutatis mutandis:

� in the �rst part, the pair (Cyl f,X) is now k-connected;
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� in the second part, to see that f∗ is epimorphic (monomorphic), we take
r ≤ k (respectively, r < k).

Theorem 5.4.1.10. If f : X → Y is a k-equivalence, then the mapping

π(id, f) : π(M,X)→ (M,Y )

is invertible (surjective) for any cellular space M with dimM < k (respectively,
dimM = k) .

Proof. The proof repeats that of Theorem 5.4.1.3, except that we need Theorem
5.4.1.9 instead of Theorem 5.4.1.2.

Theorem 5.4.1.11. If X and Y are cellular spaces with dimX < k and
dimY ≤ k, then every k-equivalence X → Y is a homotopy equivalence.

Proof. The proof repeats that of Theorem 5.4.1.4, except that we need Theorem
5.4.1.10 instead of Theorem 5.4.1.3.

The Relative Case

De�nition 5.4.1.12. If (X,A) and (Y,B) are topological pairs, a continu-
ous map f : (X,A) → (Y,B) is said to be a weak homotopy equivalence if
abrs f : X → Y and abr f(= abr abrs f) : A → B are weak homotopy equiv-
alences.

We remark that if f : (X,A)→ (Y,B) is a weak homotopy equivalence, then
f∗ : πr(X,A, x)→ πr(Y,B, f(x)) is an isomorphism for all r ≥ 1 and all x ∈ A.
To see this, apply the 5-Lemma (see Theorem 5.1.5.20) to the homomorphism
induced by f from the homotopy sequence of the pair (X,A) into the homotopy
sequence of the pair (Y,B).

As another corollary of the 5-Lemma, we have the following result: suppose
that

� f : (X,A ̸= ∅)→ (Y,B) is continuous,

� one of the maps abrs f : X → Y , abr f : A → B is a weak homotopy
equivalent

� for any x ∈ A all the homomorphisms

f∗ : πr(X,A, x)→ (Y,B, f(x)), r ≥ 1,

(abrs f)∗ : π0(X,x)→ π0(Y, f(x)), (abr f)∗ : π0(A, x)→ π0(B, f(x))

are isomorphisms.

Then f is a weak homotopy equivalence.
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Theorem 5.4.1.13. If f : (X,A) → (Y,B) is a weak homotopy equivalence,
then the mapping π(id, f) : π(M,N ;X,A)→ π(M,N ;Y,B) is invertible for any
cellular pair (M,N).

Proof. Let us show �rst that every continuous map φ : (M,N) → (Y,B) is
homotopic to the composition of some continuous map (M,N) → (Y,B) with
f . By Theorem 5.4.1.2, there is a continuous map ψ : N → A whose composition
with abr f : A→ B is homotopic to abrφ : N → B. Using Theorem 2.3.1.3, any
homotopy from abrφ to abr f◦ψ may be extended to a homotopy of φ, and hence
there is a φ′ : (M,N)→ (Y,B) homotopic to φ and satisfying abrφ′ = abr f ◦ψ.
Finally, again using Theorem 5.4.1.2, we see that there is a continuous map
χ : M → X extending ψ and such that f ◦ χ is N -homotopic to φ′. Obviously,
χ(N)subsetB and the maps f ◦ χ, φ : (M,N)→ (Y,B) are homotopic.

To complete the proof, we have to show, given two continuous maps

φ0, φ1 : (M,N)→ (X,A)

such that

� f ◦ φ0 and f ◦ φ1 are homotopic,

� φ0 and φ1 are also homotopic.

Let Φ: (M × I,N × I) → (Y,B) be a homotopy from f ◦ φ0 to f ◦ φ1. By
Theorem 5.4.1.2, there is a homotopy Psi : N × I → A from abrφ0 : N → A
to abrφ1 : N → A, such that abr f ◦ Ψ is [(N × 0) ∪ (N × 1)]-homotopic to
abrφ : N × I → B. Further, by Theorem 2.3.1.3, every [(N × 0) ∪ (N × 1)]-
homotopy from abrφ to abr f ◦Ψ extends to a [(M × 0) ∪ (M × 1)]−homotopy
of φ. Consequently, there is a homotopy φ′ : : (M × I,N × I) → (Y,B) from
f ◦ φ0 to f ◦ φ1 such that [abrφ′ : N × I → B] = abr f ◦ Ψ. Finally, we apply
Theorem 5.4.1.2 again to deduce that there exists a continuous map Ξ: M × I
extending Ψ, such that ξ(x, 0) = φ0(x), Ξ(x, 1) = φ1(x) for all x ∈M . In other
words, Ξ is a homotopy from φ0 to φ1.

Theorem 5.4.1.14. If (X,A) and (Y,B) are cellular pairs, then every weak
homotopy equivalence (X,A)→ (Y,B) is a homotopy equivalence.

Proof. The proof repeats that of Theorem 5.4.1.4, but one must refer to Theo-
rem 5.4.1.13 instead of Theorem 5.4.1.3.

5.4.2 Weak Homotopy Equivalence and Constructions

Remark 5.4.2.1. Many of the operations on maps which were described in �1.2
carry weak homotopy equivalences into weak homotopy equivalences. For exam-
ple, it is clear that

∐
µ fµ :

∐
µXµ →

∐
µX

′
µ is a weak homotopy equivalence

for any family {fµ : Xµ → X ′
µ}µ∈M of weak homotopy equivalences; similarly,

f1 × · · · × fn : X1 × · · · ×Xn → X ′
1 × · · · ×X ′

n is a weak homotopy equivalence
for any weak homotopy equivalences f1 : X1 → X ′

1, . . . , fn : Xn → X ′
n. Also,
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the limit of a sequence of of weak homotopy equivalences is a weak homotopy
equivalence.

Similar results for other constructions need supplementary arguments, or
hold only under additional assumptions. The present subsection is devoted to
such results.

Theorem 5.4.2.2. Let f : (X,A,B)→ (X ′, A′, B′) be a map of triads such that
abr f : A→ A′, abr f : B → B′, and abr f : A∩B → A′ ∩B′ are weak homotopy
equivalences. If intA∪ intB = X and intA′∪ intB′ = X ′, then abrs f : X → X ′

is a weak homotopy equivalence.

Proof. Using Theorem 5.4.1.2, and given continuous maps φ : Dr → X ′ and
ψ : Sr−1 → X with f ◦ ψ = φ|Sr−1 , it su�ces to produce a continuous map
χ : Dr → X such that χ|Sr−1 = ψ and f ◦ χ is Sr−1-homotopic to φ. Obviously,

U = [φ−1(intA′)∩ intDr]∪ψ−1(intA), V = [φ−1(intB′)∩ intDr]∪ψ−1(intB)

are open and cover Dr. Therefore, there is an ε > 0 such that any subset of Dr
with diameter less than ε is contained in U or V . Now triangulate Sr−1 so that
the diameter of each simplex is less than ε, and then extend the triangulation to
Dr, preserving this property. Let K (L) be the union of all simplices contained
in U (respectively, V ). It is clear that K and L are simplicial subspaces of Dr
such that

ψ(K ∩ Sr−1) ⊂ intA, ψ(L ∩ Sr−1) ⊂ intB, φ(K) ⊂ intA′, φ(L) ⊂ intB′

By Theorem 5.4.1.2, there is a continuous map χ0 : K ∩ L → A ∩ B such that
χ0|J∩L∩Sr−1 = abrψ and the composition of χ0 with abr f : A ∩B → A′ ∩B′ is
(K∩L∩Sr−1)-homotopic to abrφ : K∩L→ A′∩B′. By Theorem 2.3.1.3, every
(K ∩ L ∩ Sr−1)-homotopy from abrφ : K ∩ L → A′ ∩ B′ to abr f ◦ χ0 extends
to a (K ∩ Sr−1)-homotopy of abrφ : K → A′ and to a (L ∩ Sr−1)-homotopy of
abr : L∩B′. The two resulting homotopies combine to de�ne an Sr−1-homotopy
from φ to a map φ′ : Dr → X ′ which satis�es φ|K∩L = (f |A∩B)◦χ0, φ′(K) ⊂ A′,
and φ′(L) ⊂ B′. Finally, apply Theorem 5.4.1.2 again to deduce that there are
continuous maps χ1 : K → A and χ2 : L→ B with the following properties:

� χ0 = abrχ1, χ0 = abrχ2;

� the composition of χ1 with abr f : A → A′ is (K ∩ L)-homotopic to
abrφ′ : K → A′;

� the composition of χ2 with abr f : B → B′ is (K ∩ L)-homotopic to
abrφ′ : L→ B′.

Now the desired map χ : Dr → X is obtained by combining χ1 and χ2.

Theorem 5.4.2.3. Suppose that (X,C) and (X ′, C ′) are Borsuk pairs, Y and
Y ′ are topological spaces, and φ : C → Y , φ′ : C ′ → Y ′, f : (X,C) → (X ′, C ′)
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and g : Y → Y ′ are continuous, with g ◦ φ = φ′ ◦ abr f . If f and g are weak
homotopy equivalences, then the formulae

F ◦ [Imm1 : X → Y ∪φ X] = [Imm1 : X
′ → Y ′ ∪φ′ X ′] ◦ f,

F ◦ [Imm2 : Y → Y ∪φ X] = [Imm2 : Y
′ → Y ′ ∪φ′ X ′] ◦ g,

de�ne a weak homotopy equivalence F : Y ∪φ X → Y ′ ∪φ′ X ′.

Proof. Let us glue X, Y , and C × I, identifying each point (c, 0) ∈ C × I with
c ∈ X, and each point (c, 1) ∈ C × I with φ(c) ∈ Y . Let Z denote the resulting
space and, to avoid confusion, denote the maps Imm1 : X → Z, Imm2 : Y → Z,
and Imm3 : C×I → Z by α, β, and γ. First, we want to show that the formulae

h ◦ α = [Imm1 : X → Y ∪φ X], h ◦ β = [Imm2 : Y → Y ∪φ X],

h ◦ γ = [Imm2 : Y → Y ∪φ X] ◦ φ ◦ [proj1 : C × I → C],

de�ne a homotopy equivalence h : Z → Y ∪φ X. To this end, extend the the
homotopy γ : C × I → Z to a homotopy Γ: X × I → Z of the map α and de�ne
k : Y ∪φ X → Z by

k(Imm1(x)) = Γ(x, 1) [x ∈ X], k ◦ Imm2 = β.

Then the formulae

H(Imm1(x), t) = h(Γ(x, t)) for x ∈ X, t ∈ I,
H(Imm2(x), t) = Imm2 for y ∈ Y, t ∈ I,
K(α(x), t) = Γ(x, t) for x ∈ X, t ∈ l,
K(β(y), t) = β(y) for y ∈ Y, t ∈ I,
K(γ(c, t), u) = γ(c, tu− u+ 1), for c ∈ C, t ∈ I, u ∈ I,

de�ne a homotopy H : (Y ∪φ X) × I → Y ∪φ X from h ◦ k to id(Y ∪φX) and a
homotopy K : Z × I → Z from k ◦ h to idZ . Consequently, k is a homotopy
inverse to h.

Now repeat all this for X ′, C ′, Y ′, φ′, . . . . We obtain a space Z ′, continuous
maps α′ : X ′ → Z ′, β′ : X ′ → Z ′, γ′ : C ′ × I → Z ′, and a homotopy equivalence
h′ : Y ′ ∪φ′ X ′ → Z ′. Let G : Z → Z ′ denote the map de�ned by

G ◦ α = α′ ◦ f, G ◦ β = β′ ◦ g, G ◦ γ = γ′ ◦ (abr f × idI).

It is clear that G maps the triad

(Z,α(X) ∪ γ(C × [0, 1/2]), β(Y ) ∪ γ(C × I))

into the triad

(Z ′, α′(X ′) ∪ γ′(C ′ × [0, 1/2]), β′(Y ′) ∪ γ′(C ′ × I)).
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At the same time, all the conditions of Theorem 5.4.2.2 are ful�lled. Thus,
applying this theorem, G is a weak homotopy equivalence. Finally, the commu-
tativity of the diagramme

Y ∪φ X
F //

h

��

Y ′ ∪φ′ X ′

h′

��
Z

G
// Z ′

implies that F is a weak homotopy equivalence.

Corollary 5.4.2.4. Let f : (X,A,B) → (X ′, A′, B′) be a map of triads such
that abr f : A → A′, abr f : B → B′, and abr f : A ∩ B → A′ ∩ B′ are weak
homotopy equivalences. If (A,A ∩ B) and (A′, A′ ∩ B′) are Borsuk pairs, then
abrs f : X → X ′ is a weak homotopy equivalence.

Proof. This is a corollary of Theorem 5.4.2.3, because

X = B ∪incl A, incl = [incl : A ∩B → B],

X ′ = B′ ∪incl A′, incl = [incl : A′ ∩B′ → B′].

Theorem 5.4.2.5. Let (X,A) and (X ′, A′) be Borsuk pairs. If

f : (X,A)→ (X ′, A′)

is a weak homotopy equivalence, then so is fact f : X/A→ X ′/A′.

Proof. It su�ces to apply Theorem 5.4.2.3 for Y = D0, Y ′ = D0.

Theorem 5.4.2.6. If f : X → X ′ is a weak homotopy equivalence, then so is
sus : susX → susX ′.

Proof. It su�ces to apply Theorem 5.4.2.5 to the map

rel cone f : (coneX,X)→ (coneX ′, X ′).

Theorem 5.4.2.7. If f : X → X ′ and g : Y → Y ′ are weak homotopy equiva-
lences, then so is f ⋆ g : X ⋆ Y → X ′ ⋆ Y ′.

Proof. Let A and B be the images of X×Y × [0, 2/3] and X×Y × [1/3, 1] under
the projection X × Y × I → X ⋆ Y . Similarly, let A′ and B′ be the images of
X ′×Y ′×[0, 2/3] andX ′×Y ′×[1/3, 1] under the projectionX ′×Y ′×I → X ′⋆Y ′.
Obviously, (f ⋆ g)(A) ⊂ A′, (f ⋆ g)(B) ⊂ B′, and

rel(f ⋆ g) : (X ⋆ Y,A,B)→ (X ′ ⋆ Y ′, A′, B′)

satis�es the conditions of Theorem 5.4.2.2. Therefore, f ⋆ g is a weak homotopy
equivalence.
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Theorem 5.4.2.8. If f : X → Y is a weak homotopy equivalence and K is a lo-
cally �nite cellular space, then C(id, f) : C(K,X)→ C(K,Y ) is a weak homotopy
equivalence.

Proof. Given arbitrary continuous maps

φ : Dr → C(K,Y ), ψ : Sr−1 → C(K,Y ), with C(id, f) ◦ ψ = φ|Sr−1 ,

we need only exhibit a continuous map χ : Dr → C(K,Y ) such that χ|Sr−1 = ψ
and C(id, f) ◦ χ is Sr−1-homotopic to φ (see Theorem 5.4.1.2). Consider the
maps φ̂ : Dr ×K → Y , ψ̂ : Sr−1 ×K → Y (see Theorems 1.2.7.6 and 2.1.4.3),
which are continuous and satisfy f ◦ ψ̂ = φ̂|Sr−1 . The �rst part of Theorem
5.4.1.2 applies to φ̂ and ψ̂ and yields a continuous map α : (Dr ×K)→ X such
that α|Sr−1×K = ψ̂ as well as an (Sr−1 ×K)-homotopy h : (Dr ×K) × I → Y ,
from φ̂ to f ◦α. Denote by H the composition of the canonical homeomorphism
(Dr × I) × K → (Dr × K) × I with h, and set χ = α∨ (see again Theorem
1.2.7.6). It is clear that χ|Sr−1 = ψ and that H∨ is an Sr−1-homotopy from φ
to C(id, f) ◦ χ.

Corollary 5.4.2.9. Let Xµ and X ′
µ be topological spaces with base points xµ

and x′µ such that (Xµ, xµ) and (X ′
µ, x

′
µ) are Borsuk pairs. If

fµ : (Xµ, xµ)→ (X ′
µ, x

′
µ)

are weak homotopy equivalences, then so is ∨µfµ : ∨µ (Xµ, xµ)→ ∨µ(X ′
µ, x

′
µ).

Proof. This is a corollary of Theorem 5.4.2.5.

5.4.3 Cellular Approximations of Topological Spaces

De�nition 5.4.3.1. A cellular approximation of the topological space X is any
pair (K,φ) consisting of a cellular space K and a weak homotopy equivalence
φ : K → X.

Example: if X is a Hausdor� space with a cellular decomposition enjoying
the property that each compact subset of X intersects only a �nite number of
cells, then (X̃, idX), where X̃ is the cellular space obtained from X through
the cellular weakening of its topology, is a cellular approximation of X. In
particular, if X1, . . . , Xn are cellular spaces, then (X1 ×c · · · ×c Xn, id) is a
cellular approximation of X1, . . . , Xn, while (X1 ⋆c · · · ⋆c Xn, id) is a cellular
approximation of (X1 ⋆ · · · ⋆ Xn, id).

Theorem 5.4.3.2. Every topological space admits cellular approximations.

Proof. We observe �rst that cellular approximations of the components of a
topological space yield a cellular approximation of the entire space, while the
case of an empty space is trivial. Thus, we may assume that the space X
we want to approximate is connected and non-empty. We shall construct a
sequence K0,K1, . . . of cellular spaces with 0-cells y0, y1, . . . as base points, a
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sequence of continuous maps φi : (Ki, yi) → (X,x0), i = 0, 1, . . . (here x0 ∈ X
is an arbitrarily �xed point) and, �nally, a sequence of cellular embeddings
ηi : (Ki−1, yi) → (Ki, yi), i = 1, 2, . . . , such that φi is an i-equivalence and
φi ◦ ηi = φi−1. Then the pair (lim−→Ki, lim−→φi) will be a cellular approximation
of X (see Theorem 5.1.11.5).

We proceed by induction. Set K0 = D0, y0 = D0, φ0(K0) = x0, and assume
that Ki, yi, φi, ηi, i < r, have been de�ned and enjoy the required properties.
Pick a spheroid fα : Sr → X in each homotopy class α ∈ πr(X,x0). Further,
for any class β ∈ N , where N = ker[(φr−1)∗ : πr−1(Kr−1, yr−1) → πr(X,x0)],
pick a spheroid gβ : Sr−1 → Kr−1 of class β, together with a continuous map
hβ : Dr → X satisfying h|Sr−1 = φr−1 ◦ gβ . The maps fα, gβ , and hβ (with
α ∈ πr(X,x0) and β ∈ N) combine to de�ne three other continuous maps:

f : ∨α∈πr(X,x0) (Sα = Sr, ort1)→ X,

g :
∐
β∈N

(Sβ = Sr−1)→ Kr−1, g :
∐
β∈N

(Dβ = Dr)→ X.

Now set

Kr = [(Kr−1 ∪g (
∐
β∈N

Dβ)), Imm2(yr−1)] ∨ [(∨α∈πr(X,x0)(Sα,bp)),bp]

and de�ne ηr to be the composition

Kr−1
Imm2−−−→ Kr−1 ∪g (

∐
β∈N

Dβ)
Imm1−−−→ Kr,

φr : Kr → X to be the map assembled from φr−1, h, and f , and yr to be
ηr(yr−1). Applying Corollary 5.3.2.4 and Theorem 5.3.5.7, we see that φr is
an r-equivalence, and it is clear that φr ◦ ηr = φr−1 and that ηr is a cellular
embedding.

Theorem 5.4.3.3. Let (K,φ) and (K ′, φ′) be cellular approximations of topo-
logical spaces X and X ′, and let f : X → X ′ be an arbitrary continuous map.
Then there is a continuous map g : K → K ′ such that the diagramme

K
g //

φ

��

K ′

φ′

��
X

f
// X ′

is homotopy commutative (i.e. , the maps f ◦φ and φ′ ◦ g are homotopic). This
property uniquely de�nes the homotopy class of g.

Proof. The mapping π(id, φ′) : π(K,K ′)→ π(K,X ′) is invertible (see Theorem
5.4.1.3), and thus in π(K,K ′) there is a unique element which is taken by
π(id, φ′) into the class of f ◦ φ.
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Theorem 5.4.3.4. Let (K,φ) and (K ′, φ′) be two cellular approximations of
the same topological space X. Then there is a homotopy equivalence g : K → K ′

such that φ′ ◦ g is homotopic to φ.

Proof. To obtain g, apply Theorem 5.4.3.3 to X ′ = X and f = idX . To get a
homotopy inverse g′ to g, interchange the roles of (K ′, φ′) and (K,φ). Finally,
apply Theorem 5.4.3.3 again to show that g ◦g′ and g′ ◦g are homotopic to idK′

and idK , respectively.

Weak Homotopy Equivalence of an Equivalence Relation

De�nition 5.4.3.5. Two topological spaces are said to be weakly homotopy
equivalent if they admit cellular approximations (K,φ) and (L,ψ) with K = L.
It is clear that this de�nes an equivalence relation (in the usual, set-theoretic
sense).

Let X and Y be topological spaces such that there is a weak homotopy
equivalence f : X → Y . Then X and Y are weakly homotopy equivalent. In-
deed, if (K,φ) is a cellular approximation of X, then (K, f ◦ φ) is a cellular
approximation of Y . The converse is false: there are examples of weakly homo-
topy equivalent spaces X, Y such that there is no weak homotopy equivalence
X → Y and no weak homotopy equivalence Y → X. See Exercise 5.4.4.2 below
for such an example.

Two homotopy equivalent spaces are certainly weakly homotopy equivalent.
The converse is false: for example, every topological space is weakly homotopy
equivalent to a cellular one (see Theorem 5.4.3.2), but not every topological
space has the homotopy type of a cellular space (see De�nition 5.4.1.7). On
the other hand, Theorem 5.4.1.4 shows that two weakly homotopy equivalent
cellular spaces are actually homotopy equivalent.

Weak Homotopy Equivalence of the Fibres of a Serre Bundle

Theorem 5.4.3.6. Any two �bres of a Serre bundle with connected base are
weakly homotopy equivalent.

Proof. Let ξ be the given Serre bundle with bs ξ connected, and let b0, b1 ∈ bs ξ.
Pick a path s : I → bs ξ with s(0) = b0, s(1) = b1, and a cellular approximation
(K,φ) of the �bre (proj ξ)−1(b0). The map f̃ = [incl : (proj ξ)−1(b0)→ tl ξ] ◦ φ
and the homotopy F : K × I → bs ξ, F (x, t) = s(t), satisfy F (x, 0) = (proj ξ) ◦
f̃(x) [x ∈ K], and hence there is a homotopy F̃ : K × I → tl ξ of f̃ which covers
F (see Theorem 4.1.3.6). Now de�ne ψ : K → (proj ξ)−1(b1) by x 7→ F̃ (x, 1)
and check that ψ is a weak homotopy equivalence.

To do this, given any x ∈ K and any spheroid g ∈ Sphr(K,x), note that
the formula (y, t) 7→ F̃ (g(y), t) de�nes a �bre homotopy (see De�nition 5.1.7.1)
from the spheroid φ#(g) to the spheroid ψ#(g) along the path s : I → tl ξ given
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by t 7→ F̃ (g(ort1), t). Consequently, the diagramme

πr(K,x)

φ∗

vv

ψ∗

((
πr((proj ξ)

−1(b0), φx)
Ts̃

// πr((proj ξ)
−1(b1), ψx)

commutes (the translation Ts̃ is de�ned in De�nition 5.1.7.3). Since Ts̃ is an
isomorphism, the invertibility of φ∗ implies the invertibility of ψ∗.

Cellular Approximations of Topological Pairs

De�nition 5.4.3.7. A cellular approximation of the topological pair (X,A) is
any pair [(K,L), φ] consisting of a cellular pair (K,L) and a weak homotopy
equivalence φ : (K,L)→ (X,A).

When A and L are points, a cellular approximation [(K,L), φ] of (X,A) is
termed a cellular approximation of the pointed space (X,A).

Theorem 5.4.3.8. Every topological pair (X,A) admits cellular approxima-
tions. Moreover, given any cellular approximation (L,ψ) of the subspace A,
there is a cellular approximation [(K,L), φ] of (X,A) with ψ = abrφ.

Proof. Let (M,χ) be a cellular approximation of X (see Theorem 5.4.3.2), and
let g : L→M be a cellular map such thatχ◦g is homotopic to [incl : A→ X]◦ψ
(see Theorems 5.4.3.3 and 2.3.2.6). Set K = Cyl g and de�ne φ to be the
relativisation of the map K → X given by χ and some homotopy L × I → X
from [incl : A → X] ◦ ψ to χ ◦ g. Obviously, φ is a weak homotopy equivalence
and abrφ = ψ.

Theorem 5.4.3.9. Let [(K,L), φ] and [(K ′, L′), φ′] be cellular approximations
of the topological pairs (X,A) and (X ′,′ ), and let f : (X,A) → (X ′, A′) be an
arbitrary continuous map. Then there is a continuous map g : (K,L)→ (K ′, L′)
(unique up to homotopies) such that the diagramme

K,L
g //

φ

��

K ′, L′

φ′

��
X,A

f
// X ′, A′

is homotopy commutative. If [(K,L), φ] and [(K ′, L′), φ′] are cellular approx-
imations of the same topological pair, then there is a homotopy equivalence
g : (K,L)→ (K ′, L′) such that φ′ ◦ g is homotopic to f ◦ φ.

Proof. The proof repeats the proofs of Theorems 5.4.3.3 and 5.4.3.4, except that
one has to refer to Theorem 5.4.1.13 instead of Theorem 5.4.1.3.
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Cellular Approximations and Constructions

Remark 5.4.3.10. It is clear that if (Kµ, φµ) are cellular approximations of the
spaces Xµ (µ ∈ M), then (

∐
µ∈M Kµ,

∐
µ∈M φµ) is a cellular approximation of∐

µ∈M Xµ. Also, applying Corollary 5.4.2.9, we see that if (Xµ, xµ) are Borsuk
pairs (xµ ∈ Xµ are base points) and [(Kµ, yµ), φµ] are cellular approximations
of these pointed spaces, then [∨µ(Kµ, yµ),∨µφµ] is a cellular approximation of
the bouquet ∨µ(Xµ, xµ).

Further, if (K1, φ1), . . . , (Kn, φn) are cellular approximations of X1, . . . , Xn,
then

(K1 ×c · · · ×c Kn, φ1 × · · · × φn)

is a cellular approximation of X1× · · · ×Xn (see Remark 5.4.2.1 and De�nition
5.4.3.1). In the same circumstances,

(K1 ×c · · · ⋆c Kn, φ1 ⋆ · · · ⋆ φn)

is a cellular approximation of X1 ⋆ · · ·⋆Xn (see Theorem 5.4.2.7). In particular,
(susK, susφ) is a cellular approximation of susX whenever (K,φ) is a cellular
approximation of X.

If [(K,L), φ] is a cellular approximation of the Borsuk pair (X,A), then
(K/L, factφ : K/L→ X/A) is a cellular approximation of X/A This is a corol-
lary of Theorem 5.4.2.5.

An Application: Generalisation of Theorems 5.3.3.7, 5.3.5.7, and
5.3.6.2

Lemma 5.4.3.11. Let (X,A,B) be a triad with the property that either

intA ∪ intB = X or (A,A ∩B)

is a Borsuk pair. Then there exist a cellular triad (K,L,M) and a continuous
map f : (K,L,M) → (X,A,B) such that abrs f : K → X, abr f : L → A, and
abr f : L ∩M → A ∩B are weak homotopy equivalences.

Proof. By Theorem 5.4.3.2, A∩B has a cellular approximation, say (N,χ) and
the latter can be extended to cellular approximations [(L′, N), φ] and [(M ′, N), ψ]
of the pairs (A,A ∩ B) and (B,B ∩ A), as shown by Theorem 5.4.3.8. Next,
attach the cylinder N × I to L′ ⨿M ′ by the map

(N × 0) ∪ (N × 1)→ L⨿M, (x, 0) 7→ incl1(x), (x, 1) 7→ incl2(x),

and call the resulting cellular space K. Now identify N × I, L′, and M ′ with
their images in K and set L = (N × I)∪L′, M = (N × I)∪M ′. The composite
maps

N × I proj1−−−→ N
χ−→ A ∩B incl−−→ X,

L′ φ−→ A
incl−−→ X, and M ′ ψ−→ B

incl−−→ X
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jointly de�ne the map f : (K,L,M)→ (X,A,B). Obviously, intL∪ intM = K
and abr f : L → A, abr f : M → B, and abr f : L ∩ M → A ∩ B are weak
homotopy equivalences. Therefore, so is abrs f : K → X (see Theorem 5.4.2.2
and Corollary 5.4.2.4) .

Remark 5.4.3.12. The homomorphism

[π1(A, x0) ⋆ π1(B, x0)]/ vk(X,A,B, x0)→ π1(X,x0), (5.4.3.13)

de�ned in De�nition 5.3.3.5, is an isomorphism not only for a cellular triad
(X,A,B) with A, B, A ∩ B connected (as asserted by Theorem 5.3.3.7), but
also for any triad (X,A,B) such that A, B, A ∩ B are connected and either
intA∪ intB = X or (A,A∩B) is a Borsuk pair. In fact, this follows from The-
orem 5.3.3.7 and Lemma reflem:05-4-3-11, since the homomorphism (5.4.3.13)
is natural.

In particular, we see that the fundamental group of the bouquet of two spaces
is canonically isomorphic to the free product of the fundamental groups of these
spaces under the only assumption that each space forms, together with its base
point, a Borsuk pair (cf. Corollary 5.3.3.8).

Remark 5.4.3.14. Concerning Theorem 5.3.5.7, we can weaken the demand that
the pairs (Xµ, xµ) be cellular and instead ask only that they be Borsuk pairs.
That this is possible is guaranteed by Theorem 5.4.3.8, the discussion of bou-
quets in De�nition 5.4.3.10, an the commutativity of diagramme (5.3.5.2) in
Remark 5.3.5.1.

Remark 5.4.3.15. Theorem 5.3.6.2 and its corollary Theorem 5.3.6.4 are valid
not only for cellular pairs, but also for arbitrary Borsuk pairs. This general-
isation follows from Theorem 5.4.3.8 and the last statement on quotients in
De�nition 5.4.3.10.

5.4.4 Exercises

Exercise 5.4.4.1. Consider the unionX of the graph of the function x 7→ sin(1/x)
on the interval 0 < x ≤ 1/π and the broken line made of the four segments with
the successive vertices (1/π, 0), (1/π, 2), (−1, 2), (−1, 0), and (0, 0). Show that
X is Â�-connected but not homotopy �t. (Cf. De�nition 5.4.1.7)

Exercise 5.4.4.2. Let A = {0, 2n|n ∈ Z} ⊂ R (cf. Exercise 4.2.4.2). Show
that the spacesX = Z ⨿ (A × S1) and Y = A ⨿ (Z × S1) are weakly homotopy
equivalent, but there is no weak homotopy equivalence X → Y , and no weak
homotopy equivalence Y → X. (Cf. De�nition 5.4.3.5.)

Exercise 5.4.4.3. Let X denote the subset of R3 consisting of the segment I and
the sequence of segments with endpoints n ort1 , ort1 +ort3 /n (n = 1, 2, . . . ).
Show that (X, (x1, x2, x3) → x1, I) is a Serre bundle, but there exists �bres
which are not homotopy equivalent.
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Exercise 5.4.4.4. Suppose (X,x0), (Y, y0) are pointed topological spaces, Z is
a cellular space with a 0-cell z0 for base point, and f : X → Y is a weak ho-
motopy equivalence with f(x0) = y0. Show that abr C(id, f) : C(Z, x0;X,x0)→
C(Z, z0;Y, y0) is a weak homotopy equivalence. (Cf. Theorem 5.4.2.8.) Â�
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5.5 THE WHITEHEAD PRODUCT

5.5.1 The Class Whd(m,n)

Remark 5.5.1.1. In this section we de�ne and study some of the properties of an
operation on the elements of homotopy groups. In a certain sense, this operation
generalises the action of the fundamental group on the homotopy groups. The
de�nition assumes that a pair m, n of positive integers is given.

The present subsection is devoted to a very speci�c preliminary construction.
Recall (see Remarks 2.1.3.2 and 2.1.5.2) that the cellular decomposition of Sm×
Sn, determined by the standard decompositions of Sm and Sn (each having
two cells) consists of four cells: an (m + n)-cell and three other cells which
form the bouquet (Sm, ort1) ∨ (Sn, ort1). We denote this bouquet by B(m,n)
or, simply, by B. The standard characteristic map of the (m + n)-cell is the
composition of the canonical homeomorphism Dm+n → Dm × Dn (see Remark
1.2.6.9) with the map DS × DS; it takes Sm+n−1 into B, and takes the point
(ort1 +ortm+1)/

√
2 into bp = (ort1, ort1). Therefore, this characteristic map

de�nes an element of the group πm+n(Sm × Sn, B,bp) (see Corollary 5.2.2.5),
which we call Whd(m,n) or, simply, Whd. Also, we write whd(m,n) or, simply,
whd, for the element ∂(Whd) ∈ πm+n−1(B, bp), i.e., the class of the attaching
spheroid Sm+n−1 → B.

We need two additional notations: θ for the homeomorphism B(m,n) →
B(n,m) which permutes Sm and Sn, and µ for the product of the spheroids
Imm1, Imm2 : (Sn, ort1)→ (B(m,n),bp) when m = n.

Theorem 5.5.1.2. The class Whd has in�nite order.

Proof. It is enough to establish that Whd is of in�nite order and that

∂ : πm+n(Sm × Sn, B,bp)→ πm+n−1(B, bp)

is monomorphic The �rst is a consequence of the fact that the homomorphism

proj∗ : πm+n(Sm × Sn, B,bp)→ πm+n(Sm × Sn)/B = Sm+n,proj(bp)) = Z

takes Whd into a generator of the right-hand group. The second claim follows
from the exactness of the homotopy sequence of the pair (Sm×Sn, B) with base
point bp, because incl∗ : πm+n(B, bp)→ πm+n(Sm × Sn,bp) is epimorphic (see
Theorem 5.3.5.6).

Theorem 5.5.1.3. The isomorphism

θ∗ : πm+n−1(B(m,n),bp)→ πm+n−1(B(n,m),bp)

takes whd(m,n) into (−1)mn whd(n,m).

Proof. This results from the commutativity of the diagramme

Sm+n−1 //

��

Sm+n−1

��
B(m,n)

θ
// B(n,m)
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where the vertical maps are the attaching spheroids which represent the classes
whd(m,n) and whd(n,m) (see Remark 5.5.1.1), while the upper horizontal map
is given by (x1, . . . , xm+n) 7→ (xm+1, . . . , xm+n, x1, . . . , xm) (and its degree is
(−1)mn).

Theorem 5.5.1.4. If m = 1, then

whd(m,n) = Imm2(sphn)[TImm1
(sph1) Imm2∗(sphn)]

−1.

In particular, whd(1, 1) = α2α1α
−1
2 α1−1 , where (as in Subsection 5.3.1), α1 ,

α2 denote the elements Imm1∗(sph1), Imm2∗(sph1) ∈ π1(B(1, 1),bp).

Proof. According to Remark 5.5.1.1, whd(1, n) is represented by the spheroid
Sn → B(1, n),

(x1, . . . , xn+1) 7→

{
Imm1 ◦DS(

√
2x1), if |x1| ≤ 1/

√
2,

Imm2 ◦DS(
√
2(x2, . . . , xn+1)), if |x1| ≥ 1/

√
2.

This is obviously homotopic to the product of the spheroid

(x1, . . . , xn+1) 7→

{
bp, if x1 ≤ 1/

√
2,

Imm2 ◦DS(
√
2(x2, . . . , xn+1)), if x1 ≥ 1/

√
2,

(5.5.1.5)
with the spheroid obtained by translating the spheroid

(x1, . . . , xn+1) 7→

{
Imm2 ◦DS(

√
2(x2, . . . , xn+1)), if x1 ≤ −1/

√
2,

bp, if x1 ≥ −1/
√
2,

(5.5.1.6)
along the path t 7→ Imm1 ◦DS(1− 2t). Now it remains to observe that the class
of (5.5.1.5) is Imm2∗(sphn), the class of (5.5.1.6) is Imm2∗(sphn)

−1, and the
class of the above path is Imm1∗(sph1).

Theorem 5.5.1.7. The class whd(m,n) belongs to the kernel of each of the
following three homomorphisms:

proj1∗ : πm+n−1(B, bp)→ πm+n−1(Sm, ort1),
proj2∗ : πm+n−1(B, bp)→ πm+n−1(Sn, ort1),
incl∗ : πm+n−1(B, bp)→ πm+n−1(Sm × Sn,bp).

Proof. For incl∗ this results from the exactness of the homotopy sequence of the
pair (Sm × Sn, B) with base point bp. For the �rst and the second homomor-
phisms, use the equalities

[proj1 : B → Sm] = [proj1 : Sm × Sn → Sm] ◦ incl,
[proj2 : B → Sn] = [proj2 : Sm × Sn → Sn] ◦ incl .
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Theorem 5.5.1.8. The homomorphism

(idSm ∨µ)∗ : πm+n−1(B(m,n),bp)→ πm+n−1((Sm, ort1) ∨ (B(n, n),bp),bp)

takes whd(m,n) into

[(idSm ∨ Imm1)∗(whd(m,n))][(idSm ∨ Imm2)∗(whd(m,n))].

Proof. Whenm = 1 or n = 1 this follows from Theorems 5.5.1.4 and 5.5.1.3; now
letm > 1 and n > 1. The bouquet (Sm, ort1)∨(B(n, n),bp) is simply connected,
and it yields the product Sm × B(n, n) when we add two (m + n)-cells with
attaching spheroids Sm+n−1 → (Sm, ort1)∨(B(n, n),bp) belonging to the classes
(idSm ∨ Imm1)∗(whd(m,n)) and (idSm ∨ Imm2)∗(whd(m,n)). Consequently, the
kernel of the homomorphism

incl∗ : πm+n−1(Sm, ort1) ∨ (B(n, n),bp),bp)→ πm+n−1(Sm ×B(n, n),bp)

is generated by the indicated classes. This kernel contains also the class

(idSm ∨µ)∗(whd(m,n)).

To see this, note that whd(m,n) sits in the kernel of the homomorphism induced
by the inclusion B(m,n)→ Sm×Sn (see Theorem 5.5.1.7), while idSm ∨µ is the
compression of the map idSm ×µ : Sm × Sn → Sm ×B(n, n). Therefore

(idSm ∨µ)∗(whd(m,n)) =
[(idSm ∨ Imm1)∗(whd(m,n))]

k1 [(idSm ∨ Imm2)∗(whd(m,n))]
k2

(5.5.1.9)

with k1, k2 ∈ Z, and we shall presently show that k1 = k2 = 1.
The compositions (idSm ∨proj1) ◦ (idSm ∨µ) and (idSm ∨proj2) ◦ (idSm ∨µ),

where proj1, proj2 are the projections of B(n, n) onto Sn, are both homotopic
to idB(m,n). At the same time,

(idSm ∨proj1) ◦ (idSm ∨ Imm1) = (idSm ∨proj2) ◦ (idSm ∨ Imm2) = idB(m,n) .

while both

(idSm ∨proj1) ◦ (idSm ∨ Imm2), (idSm ∨proj2) ◦ (idSm ∨ Imm1)

equal the composition

B(m,n)
proj1−−−→ Sm Imm1−−−→ B(m,n).

Now applying the homomorphisms (idSm ∨proj1)∗ and (idSm ∨proj2)∗ to both
members of (5.5.1.9) and using Theorem 5.5.1.7, we get whd(m,n) = whd(m,n)k1 ,
whd(m,n) = whd(m,n)k2 . Finally, these equalities yield, by virtue of Theorem
5.5.1.2, k1 = 1, k2 = 1.
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Theorem 5.5.1.10. The class whd(m,n) belongs to the kernel of the homo-
morphism

sus : πm+n−1(B(m,n),bp)→ πm+n(sus(B(m,n),bp) = B(m+ 1, n+ 1),bp).

Proof. By Remark 5.2.1.1, the diagramme

πm+n−1(Sm, ort1)

sus

��

πm+n−1(B(m,n),bp)
proj1∗oo proj2∗ //

sus

��

πm+n−1(Sn, ort1)

sus

��
πm+n(Sm, ort1) πm+n(B(m,n),bp)

proj1∗

oo
proj2∗

// πm+n(Sn, ort1)

commutes. This, combined with Theorem 5.5.1.7, shows that sus(whd(m,n))
belongs to the kernels of proj1∗ and proj2∗ and thus to the kernel of the homo-
morphism

πm+n(B(m+ 1, n+ 1),bp)→ πm+n(Sm+1, ort1)⊕ πm+n(Sn+1, ort1)

given by proj1∗ and proj2∗. Finally, recall that the last homomorphism is an
isomorphism (see Theorem 5.3.5.7).

5.5.2 De�nition and the Simplest Properties of the White-

head Product

De�nition 5.5.2.1. Let (X,x0) be a pointed topological space, and let α ∈
πm(X,x0), β ∈ πn(X,x0). Clearly, the homotopy class of the map

h : (B, bp)→ (X,x0)

de�ned by arbitrary spheroids (Sm, ort1) → (X,x0) and (Sn, ort1) → (X,x0)
representing α and β is independent of the choice of these spheroids. Therefore,
the element h∗(whd(m,n)) ∈ πm+n−1(X,x0) is determined solely by the classes
α and β. This element is called the Whitehead product of α and β, denoted
[α, β].

Notice that in terms of this de�nition, whd(m,n) itself is the Whitehead
product of the classes of the spheroids

Imm1 : (Sm, ort1)→ (B, bp), Imm2 : (Sn, ort1)→ (B, bp),

i.e.,
whd(m,n) = [Imm1∗(sphm), Imm1∗(sphn)].

It is readily cheeked that f∗([α, β]) = [f∗(α), f∗(β)] for any α ∈ πm(X,x0),
β ∈ πn(X,x0), and continuous f : (X,x0) → (Y, y0). Furthermore, Ts([α, β]) =
[Tsα, Tsβ] for any α ∈ πm(X,x0), β ∈ πn(X,x0), and any path s : I → X with
s(0) = x0.



444 CHAPTER 5. HOMOTOPY GROUPS

Theorem 5.5.2.2. If α ∈ πm(X,x0), β ∈ πn(X,x0), then

[β, α] = (−1)mn[α, β].

Proof. Indeed, if h : (B, bp) → (X,x0) is the map de�ned by two spheroids,
(Sm, ort1)→ (X,x0) and (Sn, ort1)→ (X,x0) which represent the classes α and
β, then

[β, α] = (h ◦ θ)∗(whd(n,m)) = h∗(θ∗(whd(n,m))

= h∗((−1)mn whd(m,n)) = (−1)mn[α, β]

(see Theorem 5.5.1.3).

Theorem 5.5.2.3. If α ∈ (X,x0) and β1, β2 ∈ πn(X,x0 with n > 1, then
[α, β1 + β2] = [α, β1] + [α, β2]. If α1, α2 ∈ πm(X,x0) with m > 1 and β ∈
πn(X,x0), then [α1 + α2, β] = [α1, β] + [α2, β].

Proof. Because of Theorem 5.5.2.2, one has to prove only the �rst equality. Con-
sider the map h : ((Sm, ort1)∨ (B(n, n),bp),bp)→ (X,x0) de�ned by arbitrary
spheroids, f : (Sm, ort1)→ (X,x0) and g1, g2 : (Sn, ort1)→ (X,x0), representing
the classes α and β1, β2, respectively. Then the map (B(m,n),bp) → (X,x0)
de�ned by f and g1 equals h ◦ (idSm ∨ Imm1), the map de�ned by f and g2
equals h ◦ (idSm ∨ Imm2), and �nally the map de�ned by f and the product of
the spheroids g1 and g2 equals h ◦ (idSm ∨µ). Hence,

[α, β1 + β2] = h∗ ◦ (idSm ∨µ)∗(whd(m,n))
= h∗((idSm ∨ Imm1)∗(whd(m,n)) + h∗((idSm ∨ Imm2)∗(whd(m,n))

= (h∗ ◦ (idSm ∨ Imm1))∗(whd(m,n))

+ (h∗ ◦ (idSm ∨ Imm2))∗(whd(m,n))

= [α, β1] + [α, β2].

Theorem 5.5.2.4. If α ∈ π1(X,x0), β ∈ πn(X,x0) with n ≥ 1, then [α, β] =
β(Tαβ)

−1. In particular, [α, β] = βαβ−1α−1 for any α, β ∈ π1(X,x0).

Proof. This is a corollary of Theorem 5.5.1.4.

Theorem 5.5.2.5. For any α ∈ πm(X,x0), β ∈ πn(X,x0), the product [α, β]
belongs to the kernel of the homomorphism

sus : πm+n−1(X,x0)→ πm+n(sus(X,x0),bp).

Proof. This is a corollary of Theorem 5.5.1.10.

Theorem 5.5.2.6. For any α ∈ πm(X,x0), β ∈ πn(X,x0) the product

[Imm1∗(α), Imm2∗(β)]
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belongs to the kernel of each of the homomorphisms:

proj1∗ : πm+n−1((X,x0) ∨ (Y, y0),bp)→ πm+n−1(X,x0),

proj2∗ : πm+n−1((X,x0) ∨ (Y, y0),bp)→ πm+n−1(Y, y0),

incl ∗ : πm+n−1((X,x0) ∨ (Y, y0),bp)→ πm+n−1(X × Y, bp).

Proof. This is a corollary of Theorem 5.5.1.7.

Remark 5.5.2.7. Generally speaking, the Whitehead product is not associative.
This was already implicit in Theorem 5.5.2.4: if we let (as in Subsection 5.3.1)
α1, α2, α3 denote the elements Imm1∗(sph1), Imm2∗(sph1), Imm3∗(sph1) of
π1((S1, ort1) ∨ (S1, ort1) ∨ (S1, ort1),bp), then

[[α1, α2], α3] = α3α2α1α
−1
2 α1

1α
−1
3 α1α2α

−1
1 α−1

2 , whereas

[α1, [α2, α3]] = α3α2α
−1
3 α−1

2 α1α2α3α
−1
2 α−1

3 α−1
1

A second example can be found in Exercise 5.5.4.2 below,

The Case of H-Spaces

Theorem 5.5.2.8. If X is a H-space, then [α, β] = 0 for any x0 ∈ X, α ∈
πm(X,x0), β ∈ πn(X,x0).

This generalises Theorem 5.1.9.11.

Proof. It is enough to consider the case where x0 is the identity. Let

f : (Sm, ortl)→ (X,x0) and g : (Sn, ortl)→ (X,x0)

be spheroids in the classes α and β. De�ne h : (Sm × Sn,bp) → (X,x0) and
spheroids f1 : (Sm, ortl)→ (X,x0) and g1 : (Sn, ortl)→ (X,x0) by

h(x, y) = f(x)g(y), f1(y) = f(y)x0, g1(y) = g(y)x0.

Obviously, f1 and g1 are homotopic to f and g, while the map (B, bp)→ (X,x0)
de�ned by f1 and g1 equals h|B = h ◦ [incl : B → Sm × Sn]. Consequently,

[α, β] = (h ◦ incl)∗(whd(m,n)) = h∗ ◦ incl∗(whd(m,n)).

Since incl∗(whd(m,n)) = 0, we get [α, β] = 0.

5.5.3 Application

Theorem 5.5.3.1. Let (X,x0) and (Y, y0) be pointed spaces, and let k and ℓ be
non-negative integers. If X is k-connected, Y is ℓ-connected, and (X,x0) and
(Y, y0) are Borsuk pairs, then the kernel of the homomorphism

incl∗ : πk+ℓ+1((X,x0) ∨ (Y, u0),bp)→ πk+ℓ+1(X × Y,bp)

is generated, as a subgroup of πk+ℓ+1((X,x0) ∨ (Y, y0),bp), by the products
[Imm1∗(α), Imm2∗(β)] with α ∈ πk+1(X,x0) and β ∈ πℓ+1(Y, y0).
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(Cf. Theorem 5.3.5.7 and Remark 5.4.3.14.)

Proof. By Theorem 5.5.2.6, [Imm1∗(α), Imm2∗(β)] ∈ ker incl∗ for all α ∈ πk+1(X,x0)
and β ∈ πℓ+1(Y, y0). To see that these products actually generate ker incl∗, note
that Remark 5.4.2.1, Corollary 5.4.2.9, and Theorem 2.3.3.2 together guaran-
tee that it su�ces to examine the case where (X,x0) and (Y, y0) are cellular
spaces with skelk+ℓ+1X = x0 and skelk+ℓ+1 Y = y0. Under these circum-
stances, skelk+ℓ+1(X × Y ) ⊂ (X,x0) ∨ (Y, y0), and the classes of the attaching
maps of the (k+ ℓ+2)-cells in (X×Y ) \ [(X,x0)∨ (Y, y0)] are Whitehead prod-
ucts of the classes of the characteristic maps of the (k + 1)-cells in Imm1(X)
and the classes of the characteristic maps of the (ℓ+ 1)-cells in Imm2(Y ) (this
is an immediate consequence of De�nition 5.5.2.1). Therefore,

� when k > 0 and ℓ > 0, ker incl∗ is generated by the classes

[Imm1∗(α), Imm2∗(β)]

with α ∈ πk+1(X,x0) and β ∈ πℓ+1(Y, y0) (see Theorem 5.3.2.5);

� when k > 0 and ℓ = 0, ker incl∗ is generated by the classes

TImm2∗(σ)[Imm1∗(α), Imm2∗(β)]

with α ∈ πk+1(X,x0) and β, σ ∈ π1(Y, y0) (see Theorem 5.3.2.5);

� when k = 0 and ℓ > 0, ker incl∗ is generated by the classes

TImm1∗(σ)[Imm1∗(α), Imm2∗(β)]

with α, σ ∈ π1(X,x0) and β, σ ∈ πℓ+1(Y, y0) (see Theorem 5.3.2.5);

� �nally, when k = ℓ = 0, ker incl∗ is generated by the classes

TImm1∗(σ1) Imm2∗(ω1··· Imm1∗(σq) Imm2∗(ωq))[Imm1∗(α), Imm2∗(β)]

with α, σ1, . . . , σq ∈ π1(X,x0) and β, ω1, . . . , ωq ∈ π1(Y, y0) (see Subsec-
tion 5.3.3).

Now all it remains is to observe that

(i)

TImm1∗(σ)[Imm1∗(α), Imm2∗(β)] =

− [Imm1∗(σ), Imm2∗(β)] + [Imm1∗(ασ), Imm2∗(β)]

for any α, σ ∈ π1(X,x0) and β ∈ πℓ+1(Y, y0) with ℓ > 0;

(ii)

TImm2∗(σ)[Imm1∗(α), Imm2∗(β)] =

− [Imm1∗(α), Imm2∗(σ)] + [Imm1∗(α), Imm2∗(βσ)]

for any α, σ ∈ π1(X,x0) and β ∈ πℓ+1(Y, y0) with ℓ > 0;
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(iii)

TImm1∗(σ) Imm2∗(ω)[Imm1∗(α), Imm2∗(β)] =

[Imm1∗(σ), Imm2∗(ωβ)]
−1[Imm1∗(ασ), Imm2∗(ωβ)]∗

[Imm1∗(σα), Imm2∗(ω)]
−1[Imm1∗(σ), Imm2∗(ω)]

for any α, σ ∈ π1(X,x0) and β ∈ π1(Y, y0);
(see Theorem 5.5.2.4).

Theorem 5.5.3.2. The class [sphn, sphn] has in�nite order in π2n−1(Sn) for
every even positive integer n. In particular, the groups π4k−1(S2k) with k ≥ 1
are in�nite.

(Cf. Subsections 5.2.2 and 5.2.4.)

Proof. Since

µ∗[sphn, sphn] = [µ∗(sphn), µ∗(sphn)]

= [Imm1∗(sphn) + Imm2∗(sphn), Imm1∗(sphn) + Imm2∗(sphn)]

= [Imm1∗(sphn), Imm1∗(sphn)] + [Imm2∗(sphn), Imm2∗(sphn)]

+ 2[Imm1∗(sphn), Imm2∗(sphn)]

= Imm1∗[sphn, sphn] + Imm2∗[sphn, sphn] + 2whd(n, n),

we obtain

2whd(n, n) = yµ∗[sphn, sphn]− Imm1∗[sphn, sphn]− Imm2∗[sphn, sphn].

Now assuming that [sphn, sphn] has �nite order, the class whd(n, n) would have
�nite order too, contradicting Theorem 5.5.1.2.

Theorem 5.5.3.3. The kernel of sus : π2n−1(Sn) → π2n(S2n+1) is in�nite for
every positive integer n.

Proof. This is a corollary of Theorems 5.5.3.2 and 5.5.2.5.

5.5.4 Exercises

Exercise 5.5.4.1. Compute the third homotopy group of a bouquet of two-
dimensional spheres.

Exercise 5.5.4.2. Show that if

α = Imm1∗(sph1)inπ1(B(1, 2),bp), β = γ = Imm2∗(sph2) ∈ π2(B(1, 2),bp),

then
[[α, β], γ] ̸= [α, [β, γ]].

Exercise 5.5.4.3. Show that

(−1)pm[[α, β], γ] + (−1mn[[β, γ], α] + (−1)np[[γ, α], β] = 0,

for any α ∈ πm(X,x0), β ∈ πn(X,x0), and γ ∈ πp(X,x0) with m > 1, n > 1,
and p > 1.
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5.6 CONTINUATION OF THE THEORYOF BUN-
DLES

5.6.1 Weak Homotopy Equivalence and Steenrod Bundles

De�nition 5.6.1.1. Two Steenrod bundles, ξ1 and ξ2, with the same standard
�bre F , are said to be k-equivalent if there exist a cellular space B and φ!

2(ξ2)
are F -equivalent. Here 0 ≤ k ≤ ∞; the most important case is k = ∞, and
two ∞-equivalent Steenrod bundles are also referred to as weakly homotopy
equivalent.

Clearly, every bundle induced from a Steenrod bundle by a k-equivalence
is k-equivalent with the original bundle. Moreover, bases of weakly homotopy
equivalent Steenrod bundles are weakly homotopy equivalent, and by Theorem
5.1.5.9 this holds true for their total spaces, too. [To see this, consider the maps
adjφ1 : φ

!
1ξ1 → ξ1 and adjφ2 : φ

!
2ξ2 → ξ2 and the homomorphisms that they

induce from the homotopy sequences of the bundles φ!
1ξ1 and φ!

2ξ2 into the
homotopy sequences of the bundles ξ1 and ξ2 respectively, and apply to these
homomorphisms Theorem 5.1.5.20.]

Theorem 5.6.1.2. Let ζ1 and ζ2 be Steenrod bundles with the same standard
�bre F . Suppose that ζ1 is universal. Then ζ2 is universal if and only if it is
weakly homotopy equivalent to ζ1.

Proof. We �rst show that the condition is su�cient, i.e., that given any Steenrod
bundle ξ with standard �bre F and cellular base, any (cellular) subspace B of
bs ξ, and any continuous map φ : B → bs ζ2 such that φ!ζ2 is F -equivalent to
ξ|B , there exists a continuous map ψ : bs ξ → bs ζ2 such that ψ|B = φ and the
bundle ψ!ζ2 is F -equivalent to ξ (see De�nition 4.4.2.2). By De�nition 5.6.1.1,
we can produce a cellular space K together with weak homotopy equivalences,
f1 : K → bs ζ1 and f1 : K → bs ζ1, such that f !1ζ1 and f !2ζ2 are F -equivalent.
Using Theorem 5.4.1.2, there is a continuous g : B → K such that f2 ◦ g is
homotopic to φ. Therefore, in the chain of F -bundles:

(f1 ◦ g)!ζ1 = g!(f !1ζ1), g!(f !1ζ2) = (f2 ◦ g)!ζ2, φ!ζ2, ξ|B ,

the adjacent bundles are F -equivalent, and hence so are (f1◦g)!ζ1 and ξ|B . Since
ζ1 is universal, there is a continuous h : bs ξ → bs ζ1 such that hB = f1 ◦ g and
the bundles h!ζ1 and ξ are F -equivalent (see again De�nition 4.4.2.2). Further,
since f is a weak homotopy equivalence, there is a continuous k : bs ξ → K
such that k|B = g and f1 ◦ k, h are homotopic (see Theorem 5.4.1.2). The
restriction of f1 ◦ k : bs ξ → bs ζ2 to B equals f2 ◦ g, and hence is homotopic to
φ. Consequently, there is a continuous map ψ : bs ξ → bs ζ2 homotopic to f2 ◦k
such that ψ|B = φ. Now the fact that the adjacent bundles in the chain

ψ!ζ2, (f2 ◦ k)!ζ2 = k!(f !2ζ1), k!(f !1ζ1 = (f1 ◦ k)!ζ1, h!ζ1, ξ,

are F -equivalent implies the F -equivalence of the bundles ψ!ζ2 and ξ.
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We may use what we just proved to show that the condition of the theorem
is also necessary. In fact, assume that ζ1 and ζ2 are universal, and let (K,φ1)
and (K,φ2) be cellular approximations of bs ζ1 and bs ζ2 . Since φ!

1ζ1 and φ
!
2ζ2

are weakly homotopy equivalent, they are both universal. Hence, K1 and K2

are homotopy equivalent (see De�nition 4.4.2.2).

Corollary 5.6.1.3. If X and Y are classifying spaces of the same topological
group, then X and Y are weakly homotopy equivalent.

Theorem 5.6.1.4. Given any topological group G, there is a universal G-bundle
with cellular base.

Proof. This follows from Remark 4.4.3.4, Theorems 5.4.3.2, and 5.6.1.2.

Theorem 5.6.1.5. A principal bundle is universal if and only if its total space
is ∞-connected.

Proof. First, let ξ be a universal G-bundle. Applying Theorem 5.6.1.2, K is
weakly homotopy equivalent to MilG. Since tlMilG is ∞-connected (see The-
orems 2.3.3.10, 5.4.2.7, and 5.1.11.5), tl ξ is also ∞-connected (see De�nition
5.6.1.1).

Now let ξ be a Steenrod G-bundle with ∞-connected total space tl ξ. Pick
a cellular approximation (K,φ) of bs ξ and consider the G-bundle φ!ξ. Since
the bundle MilG is universal, there is a continuous ψ : K → bsMilG such that
ψ!ξ is G-equivalent to ψ! MilG. Furthermore, tlMilG and tl(φ!ξ) are ∞Â�-
connected, and the latter implies the∞-connectedness of tl(ψ! MilG). Applying
Theorem 5.1.5.20 (to the homomorphism from the homotopy sequence of the
bundle ψ! MilG into the homotopy sequence of the bundle MilG induced by
the map adjψ : ψ! MilG→ MilG), we see that is a weak homotopy equivalence.
Thus, ξ is weakly homotopy equivalent to MilG , and so ξ is universal (see
Theorem 5.6.1.2).

Theorem 5.6.1.6. If X is a classifying space of the topological group G, then
for any r ≥ 1 the groups πr(X) and πr−1(G) are isomorphic.

Proof. Indeed, by Theorem 5.6.1.5, the homomorphisms ∆ �guring in the ho-
motopy sequence of the universal G-bundle with base X are isomorphisms (see
Remark 5.1.8.8).

Theorem 5.6.1.7. If X1 and X2 are classifying spaces of the topological groups
G1 and G2, then X1 ×X2 is a classifying space of G1 ×G2.

Proof. Given a universal G1-bundle ξ1 and a universal G2-bundle ξ2, it is enough
to verify that the (G1 × G2)-bundle ξ1 × ξ2 is universal. But this follows from
Theorems 5.6.1.5 and 5.1.1.15.

Theorem 5.6.1.8. Theorems 5.6.1.2 and 5.6.1.5 carry over to k-universal bun-
dles. Thus, if ζ1 and ζ2 are Steenrod bundles with the same standard �bre and
ζ1 is k-universal, then ζ2 is k-universal if and only if it is k-equivalent to ζ1 and
a principal bundle is k-universal if and only if its total space is k-connected.
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Proof. The proofs repeat those of Theorems 5.6.1.2 and 5.6.1.5, mutatis mutan-
dis.

An Application: Universal Principal Bundles for Finitely Generated
Abelian Groups

Theorem 5.6.1.9. For arbitrary n and m1, . . . ,mℓ,

(R× · · · × R︸ ︷︷ ︸
n

×S∞ × · · · × S∞︸ ︷︷ ︸
ℓ

,hel× · · · × hel︸ ︷︷ ︸
n

×proj× · · · × proj︸ ︷︷ ︸
ℓ

,

S1 × · · · × S1 × L(m1)× · · · × L(mℓ))

is a universal Zn ⊕ Z/m1Z⊕ · · · ⊕ Z/mℓZ)-bundle. In particular, S1 is a clas-
sifying space for Z, while L(m) is a classifying space for Z/mZ.

Proof. Since R and S∞ are ∞-connected, this follows immediately from Theo-
rems 5.6.1.5 and 5.1.1.15.

5.6.2 Theory of Coverings

De�nition 5.6.2.1. The main achievement of the present section is a clear
enumeration of the covering spaces of non-pathological connected spaces and a
criterion for the equivalence of two given coverings. Our instrument will be the
fundamental group. The analysis is elementary enough: in fact, all we use from
the whole theory of bundles may be concentrated in the following two theorems,
where it is assumed that a covering ξ together with a base point x ∈ tl(ξ) are
given. Then:

(i) every path in bs ξ with origin (proj ξ)(x) is covered by one and only one
path in tl ξ with origin x;

(ii) if two paths in bs ξ with common origin (proj ξ)(x) are homotopic, then
the paths in tl ξ which cover them are also homotopic and, in particular,
have the same end.

(These assertions are straightforward corollaries of Theorems 4.1.3.6 and Propo-
sition 4.1.3.8.)

It is true that here and there we do refer to other facts from the theory of
bundles (for example, to Theorem 5.1.8.13), but all these can be readily deduced
from (i) and (ii).

At the heart of the theory of coverings lies the de�nition of the group of a
covering. Recall that, according to Theorem 5.1.8.13,

proj∗ : π1(tl ξ, x)→ π1(bs ξ, (proj ξ)(x))

is a monomorphism for any covering ξ with base point x ∈ tl ξ. We call the
image of proj∗ the group of the covering ξ with base point x, and denote it by
grp ξ(x).
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Theorem 5.6.2.2. Let (proj ξ)(x1) = (proj ξ)(x0) and let s be a path in tl ξ
beginning at x0and ending at x1. Then grp ξ(x1) = σ[grp ξ(x0)]σ

−1, where σ is
the homotopy class of the loop (proj ξ) ◦ s. In particular, if

(proj ξ)(x0) = (proj ξ)(x1),

then grp(x0) and grp ξ(x1) are conjugate subgroups of π1(bs ξ, x0). The converse
is also true: the groups grp ξ(x) with x ∈ (proj ξ)1((proj ξ)(x0)) exhaust the
subgroups of (bs ξ,proj ξ(x0) which are conjugate to grp ξ(x0).

Proof. In fact,

grp ξ(x1) = proj ξ∗(π1(tl ξ, x1)) = proj ξ∗ ◦ Ts(π1(tl ξ, x0))
= Tproj ξ◦s ◦ proj ξ∗(tl ξ, x0)) = Tproj ξ◦s(grp ξ(x0)) = σ[grp ξ(x0)]σ

−1.

These equalities demonstrate that for every σ ∈ π1(bs ξ,proj ξ(x0)) the group
σ[grp ξ(x0)]σ

−1 equals grp ξ(s1), where s is a path in tl ξ with origin x0 and
which covers some path in the class σ.

The Hierarchy of Coverings

De�nition 5.6.2.3. We say that the covering ξ, with base point x0 ∈ tl ξ is
subordinate to the covering ξ′ with base point x′0 ∈ tl ξ′, if bs ξ′ = bs ξ and there
exists a continuous map φ : ξ′ξ such that bsφ = idbs ξ, and tlφ(x′0) = x0. In
this case, the map φ is called a subordination.

Obviously, if φ : ξprime → ξ is a subordination, then (tl ξ′, tlφ, tl ξ) is a
covering.

Theorem 5.6.2.4. If a subordination exists, then it is unique.

Proof. Suppose that the covering ξ with base point x0 is subordinate to the
covering ξ′ with base point x′0, and let φ and ψ be two such subordinations.
Then, if x′ ∈ tl ξ′ is arbitrary and s : I → tl ξ′ is such that s(0) = x′0, s(1) = x′,
then the paths tlφ ◦ s and tlψ ◦ s cover the same path, proj ξ′ ◦ s, in bs ξ and
have the same origin. Therefore, tlφ ◦ s = tlψ ◦ s and tlφ(x′) = tlφ ◦ s(1) =
tlψ ◦ s(1) = tlψ(x′).

Theorem 5.6.2.5. If two coverings with base points are mutually subordinate,
then the corresponding subordinations are equivalences which are inverses of one
another.

Proof. Let φ : ξ′ → ξ and φ′ : ξ → ξ′ be subordinations. Then φ′ ◦ φ : ξ′ → ξ′

and φ ◦ φ′ : ξ → ξ are also subordinations. By Theorem 5.6.2.4, φ′ ◦ φ = idξ′

and φ ◦ φ′ = idξ.

Lemma 5.6.2.6. Let ξ and ξ′ be coverings with base points x0 ∈ ξ and x′0 ∈
ξ′, and such that bs ξ′ = bs ξ, (proj ξ′)(x′0) = (proj ξ)(x0), and grp ξ′(x′0) ⊂
grp ξ(x0). If the paths s′1, s

′
2 : I → tl ξprime have the common origin x′0 and a

common end, then the paths in tl ξ which cover proj ξ′ ◦ s′1 and proj ξ′ ◦ s′2 and
have origin x0 also have a common end.
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Proof. Let s1 and s2 be the path in tl ξ, with origin x0 which cover proj ξ◦s′1 and
proj ξ ◦ s′1. The class of the loop (proj ξ ◦ s′1)(proj ξ ◦ s′1) belongs to grp ξ′(x′0),
and hence to grp ξ(x0). Consequently, the path in tl ξ, with origin x0 which
covers this loop is closed; moreover, it can be expressed as the product of a path
which covers proj ξ ◦ s′1 (and which, having origin x0, coincides with s1) with
a path which covers (proj ξ ◦ s′1) (and which, having origin x0, coincides with
s−1
2 ). Therefore, s1 and s2 have the same end.

Theorem 5.6.2.7. Let ξ and ξ′ be coverings with base points x0 ∈ tl ξ and
xprime0 ∈ tl ξ′, such that bs ξ′ = bs ξ, (proj ξ′)(x′0) = (proj ξ)(x0).

(i) If ξ is subordinate to ξ′, then grp′(x′0) ⊂ grp ξ(x0);

(ii) If grp′(x′0) ⊂ grp ξ(x0) and bs ξ is locally connected, then ξ is subordinate
to ξ′.

Proof. Assertion (i) is trivial, so let us prove (ii). For each point x′ ∈ tl ξ′,
consider the common end of all paths in tl ξ which start at x0 and cover paths of
the form proj ξ′◦u′, where u′ is a path in tl ξ′ such that u′(0) = x′0, u

′(1) = x′ (see
Lemma 5.6.2.6). This de�nes a map F : ξ′ → tl ξ satisfying proj ξ ◦ F = proj ξ′,
and all we have to check is the continuity of F . So let x′ ∈ tl ξ′ and U be a
neighbourhood of F (x′). We shall produce a neighbourhood U ′ of x′ such that
F (U ′) ⊂ U .

To do this, letW ⊂ bs ξ be a neighbourhood of proj ξ′(x′) such that there are
neighbourhoods, V ′ of x′ and V of F (x′), which are homeomorphically mapped
by proj ξ′ and respectively proj ξ onto W . Since bs ξ is locally connected, we
can �nd a neighbourhood W1 ⊂ W of proj ξ′(x′) such that every point of W1

can be joined to proj ξ′(x′) by a path in W . Now set V ′
1 = V ′∩ (proj ξ′)−1(W1),

V1 = V ∩ (proj ξ−1)(W1), and U ′ = V ′
1 ∩ (proj ξ′)−1(proj ξ(U)). Obviously,

x′ ∈ U ′. Let us check that F (U ′) ⊂ U .
Let y′ ∈ U ′. Since ab proj ξ′ : V ′ →W is a homeomorphism, there is a path

v′ : I → tl ξ′ such that v′(I) ⊂ V ′ and v′(0) = x′, v′(1) = y′. De�ne v : I → tl ξ
by

v(t) = (proj ξ|V )−1(proj ξ′ ◦ v′(t)),

pick a path u′ : I → tl ξ′ with the property that u′(0) = x0, u′(1) = x′, and
consider the path u : I → tl ξ with u(0) = x0, u(1) = F (x′), and u covers the
path proj ξ′ ◦u′. Clearly, (u′v′)(0) = x0, (u′v′)(1) = y′, while the path uv covers
proj ξ′ ◦ (u′v′) and (uv)(0) = x0. Therefore, (uv)(1) = F (v′), and hence

F (y′) = v(1) = (proj ξ|V )−1(proj ξ′(y′)) ∈ V ∩ (proj ξ)−1(proj ξ′(U ′)) ⊂ U.

Corollary 5.6.2.8. Two coverings, ξ and ξ′, with bs ξ′ = bs ξ a locally con-
nected space, are equivalent if and only if for some points x0 ∈ tl ξ and x′0 ∈ tl ξ′,
such that (proj ξ′)(x′0) = (proj ξ)(x0), the groups grp ξ(x0) and grp ξ′(x′0) are
conjugate in π1(bs ξ,proj ξ(x0)).
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The Group of Automorphisms of a Covering

Remark 5.6.2.9. As with the automorphisms (i.e., self-equivalences) of an arbi-
trary bundle ξ, the automorphisms of a covering ξ, form a group Aut ξ. 2 Its
structure is described in Theorem 5.6.2.10 below, where x0 designates, as usual,
a base point in tl ξ, and two new notations are used. Namely, let eval be the
map from Aut ξ into the �bre (proj ξ)−1(proj ξ(x0)) given by eval(φ) = tlφ(x0),
and let Reg be the set the set of all points x ∈ (proj ξ)−1(proj ξ(x0)) such that
grp ξ(x) = grp ξ(x0). From Theorem 5.6.2.2 it follows that the preimage of Reg
under the map

∆: π1(bs ξ,proj ξ(x0))→ π0((proj ξ)
−1(proj ξ(x0)), x0) = (proj ξ)−1(proj ξ(x0)).

is nothing else but the normaliser Nr(grp ξ(x0)) in π1(bs ξ,proj ξ(x0)) of the
group grp ξ(x0). [Recall that, given a subgroup H of a group G, its normaliser
Nr(H) is the set of all g ∈ G such that gHg−1 = H; Nr(H) is a subgroup of G
and contains H as a normal subgroup.] Therefore, ∆ induces an invertible map

fact abr∆: Nr(grp ξ, (x0))/ grp ξ(x0)→ Reg .

Theorem 5.6.2.10. eval is injective, eval(Aut ξ) ⊂ Reg, and the composition

Aut
abr eval−−−−−→ Reg

(fact abr δ)−1

−−−−−−−−→ Nr(grp ξ, (x0)/ grp ξ(x0)

is an anti-homomorphism. If the base bs ξ is locally connected, then

eval(Aut ξ) = Reg,

and hence the group Aut ξ is anti-isomorphic to Nr(grp ξ, (x0)/ grp ξ(x0). If, in
addition, ξ is regular (see De�nition 5.6.2.11 below), then

Nr(grp ξ(x0)) = π1(bs ξ,proj ξ(x0))

and Aut ξ is anti-isomorphic π1(bs ξ,proj ξ(x0))/ grp ξ(x0).

Proof. Since every automorphism φ ∈ Aut ξ may be thought of as a subordina-
tion of the covering ξ with base point tlφ(x0) to the covering ξ with base point
x0 , the injectivity of eval is immediate from Theorem 5.6.2.5. Similarly, the
inclusion eval(Aut ξ) ⊂ Reg follows from part (i) of Theorem 5.6.2.7, while the
equality eval(Aut ξ) = Reg results, when bs ξ is locally connected, from part (ii)
of the same theorem. Finally, that (fact abr∆) ◦ eval is an anti-homomorphism
is plain.

Regular Coverings

De�nition 5.6.2.11. A covering ξ is regular if for some point x0 ∈ tl ξ,
grp ξ(x0) is a normal subgroup of π1(bs ξ,proj ξ(x0)). In this case grp ξ(x) is

2Translator's note: the elements of Aut ξ are also known as covering transformations or
deck transformations.
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a normal subgroup of π1(bs ξ,proj ξ(x)) for all x ∈ tl ξ, as seen from Theorem
5.6.2.2.

If ξ, is regular, then again using Theorem 5.6.2.2, the groups grp ξ(x) with
(x ∈ proj ξ)−1(b) are all equal for each �xed b ∈ bs ξ.

We remark that every two-sheeted covering is regular (because every sub-
group of index 2 is normal). More examples of regular coverings are (R,hel,S1),
(S1,helm,S1) [see Example 4.1.2.6], (S2n−1,proj, L(m; ℓ1, . . . , ℓn)) [see Remark
4.2.3.19] , and (S3,proj,S3/G̃P ), where P is a tetrahedron, a cube, or a dodec-
ahedron [see Example 4.2.3.21]. An example of a non-regular covering is given
in Fig. 5.5 (where the two points marked A are identi�ed, as are the two points
marked B);

Figure 5.5:

its non-regularity is a result of the following theorem.

Theorem 5.6.2.12. A covering ξ, is regular if and only if there is a point
x0 ∈ tl ξ, with the property that given any loop s : I → tl ξ, with s(0) = x0
and any point x ∈ (proj ξ)−1(proj ξ, (x0)), the path with origin x and covering
proj ξ ◦ s is closed.

Proof. Indeed, the last condition means that each element of grp ξ(x0) also be-
longs to every group grp ξ(x) with x ∈ (proj ξ)−1(proj ξ, (x0)), and this implies
that every subgroup of π1(bs ξ,proj ξ, (x0)) which is conjugate with grp ξ(x0)
actually equals grp ξ(x0) [see Theorem 5.6.2.2].

Theorem 5.6.2.13. A covering ξ is regular if and only if it is equivalent to a
principal bundle. The structure group of such a bundle is discrete and isomor-
phic to G = π1(bs ξ,proj ξ(x0))/ grp ξ(x0). Two Steenrod G-bundles which are
equivalent to ξ are themselves G-equivalent.

Proof. By De�nition 4.3.2.10 and Remark 4.3.2.11, ξ is equivalent to a Steenrod
G-bundle if and only if there exists a free, continuous right action of G on tl ξ
whose orbits are precisely the �bres of ξ; in particular, G is necessarily discrete.
Moreover, the transformation of tl ξ determined by such an action yield the
automorphisms of ξ. Finally, by Remark 5.6.2.9, such an action exists if and
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only if ξ is regular and G is anti-isomorphic to Aut ξ, i.e., is isomorphic to the
group π1(bs ξ,proj ξ(x0)/ grp ξ(x0).

Existence of Coverings

De�nition 5.6.2.14. A topological space X is said to be semi-locally simply
connected if every point x ∈ X has a neighbourhood U such that incl∗ : π1(U, x)→
π1(X,x) is trivial.

Obviously, the class of semi-locally simply connected spaces contains all sim-
ply connected spaces and all locally contractible spaces [and, among the latter,
all locally Euclidean spaces, all CNRS's (see Theorem 1.3.6.8), in particular, all
cellular spaces (see Theorem 2.1.4.5)].

Theorem 5.6.2.15. Every space which has a simply connected covering space
is semi-locally simply connected.

Proof. In fact, let ξ be a covering projection with tl ξ simply connected and let
b ∈ bs ξ. Then the homomorphism incl∗ : π1(U, b) → π1(bs ξ, b) is trivial for
every neighbourhood U of b such that ξ|U is trivial.

Theorem 5.6.2.16. Let B be a connected, locally connected, and semi-locally
simply connected space, let b0 ∈ B, and let π be any subgroup of π1(B, b0).
Then there exists a covering ξ with base point x0 ∈ tl ξ such that bs ξ = B,
proj ξ(x0) = b0, and grp ξ(x0) = π.

Proof. Consider C(I, 0;B, b0), identify any two paths s1, s2 in this set whenever
s1(1) = s2(1) and the homotopy class of s1s

−1
2 belongs to ξ, and denote the

resulting quotient space by E. Further, given open subsets U of B and V of U ,
and any path s : I → B, with s(0) = b0, s(1) ∈ V , let Nb(U, V ; s) be the subset
of E consisting of the equivalence classes of the paths sw with w(I) ⊂ U and
w(1) ∈ V . The sets Nb(U, V ; s) satisfy the conditions of Theorem 1.1.1.9, and
thus yield a base for a topology on E. [Information: this topology coincides
with the quotient topology that E inherits as a quotient of the topological
space C(I, 0;B, b0).] The map p : E → B which takes each point from E into
the common end of the paths which represent it is clearly continuous and open.
We set ξ = (E, p,B) and take for x0 the point of ξ represented by the constant
path. Then p(x0) = b0. Let us show that ξ is a covering and that grp ξ(x0) = π.

We �rst verify that 4ξ is a covering in the broad sense. Pick an arbitrary
point b ∈ B and �nd a neighbourhood U of b such that the inclusion homomor-
phism π1(U, b)→ π1(B, b) is trivial, and then a neighbourhood V of b in U such
that b can be joined to every point of V by a path in U . We claim that ξ|V is
a trivial bundle with discrete �bre.

To see this, consider an arbitrary path s : I → B such that s(0) = bp, s(1) =
b, and for each coset α ∈ π1(B, b0)/π choose a loop u : I → B representing some
element of α. The sets Nb(U, V ;uαs) are open and pairwise disjoint [if the
paths (usα)w and (usα1

)w1 with w(I) ⊂ U , w1(I) ⊂ U , de�ne the same point
of E, then α = α1: indeed, the loop ((usα)w)(usα1

)w1)
−1, and hence the loop
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uαu
−1
α1

homotopic to it, are elements of a class that belongs to π] . Also, the
sets Nb(U, V ;uαs) cover p−1(V ) [every path s′ with s′(0) = b0, s′(1) ∈ V , is
homotopic to a path of the form (us)w, where u is a loop and w(I) ⊂ U : and
example of such a path is (((s′w−1)s−1)s)w, where w : I → U is any path with
w(0) = b, w(1) = s′(1)]. Finally, the maps abr p : Nb(U, V ;us) → V are open
(because p is) and invertible [if the paths (uαs)w, (uαs)w1 with w(I) ⊂ U ,
w1(I) ⊂ U , have the same end, then they are homotopic]; that is, abr p are
homeomorphisms. Consequently, ξ|V is a trivial bundle with discrete �bre, as
asserted.

The last thing to prove is that E is connected and that a path in E which
has origin x0 and covers a loop from a homotopy class σ ∈ π1(B, b0) is closed
if and only if σ ∈ π. Given s : I → B with s(0) = b0, let s̃ : I → E be the path
which takes each t ∈ I into the point of E represented by the path τ 7→ s(tτ).
Clearly, s(0) = x0, s(1) is the point of E represented by s, and s̃ covers s. This
has two consequences:

� every point of E can be joined to x0 by a path,

� given a loop with origin b0, the end of the path which starts at x0 and
covers it is precisely the point of E represented by the given loop.

The �rst shows that E is connected, while the second implies that, given a loop
with origin b0, the path which covers it and has origin b0 ends at x0 if and only
if the homotopy class of the given loop belongs π.

De�nition 5.6.2.17. The previous theorem completes the theory of coverings
with a �xed base. Combined with Theorem 5.6.2.7, it establishes a one-to-one
correspondence between the equivalence classes of coverings over a connected,
locally connected, and semi-locally simply connected space B with base point b0
and the classes of conjugate subgroups of π1(B, b0). It transforms the hierarchy
of coverings into the usual, set-theoretic hierarchy of subgroups, and the normal
subgroups correspond to the regular coverings. The covering corresponding to
the trivial subgroup has a simply connected total space. Since every covering
is subordinate to this one, it is called universal. (Warning: do not confuse this
universality with the notion of universality de�ned in the theory of Steenrod
bundles. Note, however, that among the universal Steenrod bundles one �nds
also universal coverings, namely the universal principal bundles with discrete
structure groups; see Theorem 5.6.1.5 and cf. Theorem 5.6.2.18).

An Application: Classifying Spaces of Discrete Groups

Theorem 5.6.2.18. In order that a connected topological space X be a classi-
fying space of a given discrete group π, it is necessary that the groups πr(X) be
trivial for all r ≥ 2 and that π1(X) be isomorphic to π. If X is locally connected
and semi-locally simply connected, then this condition is also su�cient.

Proof. Necessity results from Theorems 5.6.1.5, 5.6.2.13, and De�nition 5.1.9.15.
Su�ciency results from Theorem 5.6.2.16, 5.1.8.13, and 5.6.1.5.
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Coverings Maps

Theorem 5.6.2.19. Let ξ, and ξ′ be coverings with base points x0 ∈ tl ξ, and
x′0 ∈ tl ξ′, and let f : (bs ξ′,proj ξ′(x′))→ (bs ξ,proj ξ(x0)) be a continuous map.
Then the inclusion f∗(grp ξ

′(x′0)) ⊂ grp ξ(x0) is a necessary condition for the
existence of a continuous map φ : ξ′ → ξ such that bsφ = f and tlφ(x′) = x0.
If bs ξ′ is locally connected, then this condition is also su�cient. If such a φ
exists, then it is unique.

Proof. Assume that such a φ exists. Then from the commutative diagramme
(see Theorem 5.1.8.7)

π1(tl ξ
′, x0)

tlφ∗ //

proj ξ′∗
��

π1(tl ξ, x0)

proj ξ∗

��
π1(bs ξ

′,proj ξ′(x′0)) bsφ∗
// π1(bs ξ,proj ξ(x0))

it follows that f∗(grp ξ′(x′0)) ⊂ grp ξ(x0).
Now let us prove the converse. Consider the bundle f !ξ together with

the map adj f : f !ξ → ξ. Let y′0 ∈ (proj f !ξ)−1(proj ξ′(x′0)) be such that
tl adj f(y′0) = x0. Further, let Y ′ be the component of tl(f !ξ) containing y′0,
and let p′ be the restriction of proj f !ξ to Y ′. Obviously, (Y ′, p′,bs ξ′) is a cov-
ering tl adj f and f combine to de�ne a map (Y ′, p′,bs ξ′) → ξ, and tl adj f |Y ′

is injective on every �bre of (Y ′, p′,bs ξ′). In the diagramme

π1(Y
′, y′0)

(proj)′∗ //

abr tl adj f∗

��

π1(bs ξ
′,proj ξ′(x′0)

∆ //

f∗

��

π0((p
′)−1(proj ξ′(x′0), y

′
0)

(abr tl adj f∗
��

π1(tl ξ, x0)
(proj ξ∗

// π1(bs ξ,proj(x0))
∆
// π0((proj ξ)

−1(proj ξ′(x0), x0))

the rows are exact, while the left vertical homomorphism is monomorphic. Con-
sequently, f−1

∗ (im((proj ξ)∗)) = im p′∗, whence im p′∗ ⊃ grp ξ′(x′0). Since bs ξ′ is
locally connected, the last inclusion shows that the covering (Y ′, p′,bs ξ′) with
base point y′0 is subordinate to the covering ξ

′ with base point x′0. If ψ
′ is such

a subordination, then (tl adj f |Y ′) ◦ tlψ′ and f combine to de�ne the desired
map φ.

Finally, we claim that φ is unique. Indeed, suppose φ1 : ξ
′ → ξ is another

map with bsφ1 = f and tlφ1(x
′
0) = x0. Then for every point x′ ∈ tl ξ′ and every

path s′ : I → tl ξ′ with s′(0) = x′0, s
′(1) = x′, the paths tlφ◦s and tlφ1◦s′ cover

f ◦ proj ξ′ ◦ s′ and have the same origin x0. Therefore, in these circumstances
tlφ ◦ s′ = tlφ1 ◦ s′, and hence tlφ(x′) = tlφ ◦ s′(1) = tlφ1s

′(1) = tlφ1(x
′).

Theorem 5.6.2.20. Suppose ξ is a covering with base point x0 ∈ tl ξ, Y is a
locally connected space with base point y0, and f(Y, y0) → (bs ξ,proj ξ(x0)) is
continuous. If f∗(π1(Y, y0) ⊂ grp ξ(x0) [in particular, if Y is simply connected],
then there is a map F : (Y, y0)→ (tl ξ£, x0) which covers f .



458 CHAPTER 5. HOMOTOPY GROUPS

(Cf. Proposition 4.1.3.8.)

Proof. To see this, apply Theorem 5.6.2.19 to ξ and ξ′ = (Y, idY , Y ).

Coverings and Additional Structures

Remark 5.6.2.21. There is an important general principle asserting that under
favourable conditions an additional structure de�ned on the base of a given cov-
ering can be lifted to the covering space. To conclude our study of coverings, we
apply this principle to three structures: di�erentiable, cellular, and simplicial.
Further applications appear in Exercises 5.6.5.10 and 5.6.5.11.

Concerning di�erentiable structures, we restrict ourselves from the onset to
manifolds, i.e., we assume that bs ξ is a Cr-manifold (1 ≤ r ≤ a) and that the
number of sheets of ξ is countable. We know that every chart φ ∈ Atl bs ξ
such that the bundle ξ|suppφ is trivial has a family of copies in tl ξ which cover
(proj ξ)−1(suppφ). Obviously, these copies (taken for all φ ∈ Atl bs ξ) constitute
a Cr-atlas of the space tl ξ. This atlas provides tl ξ with a Cr-structure and turns
it into a Cr-manifold. The fundamental property of this lifted structure, and
the one which de�nes it uniquely, is that relative to this structure proj ξ is a
Cr-submersion, i.e., that ξ is a Cr-bundle. Let us add that the orientability of
bs ξ implies the orientability of tl ξ.

We can similarly lift a cellular structure. However, to lift the cells and their
characteristic maps we need Theorem 5.6.2.20. As a result, the total space of
the given covering with cellular base becomes a cellular space (rigged whenever
the base is rigged), and the projection becomes a cellular map.

Lifting a simplicial structure may be viewed as a special case of lifting a
cellular one. The total space of a covering with simplicial base thus becomes a
simplicial space (ordered whenever the base is so), and the projection becomes
a simplicial map.

Remark 5.6.2.22. In all the three cases considered above, the lifted structure is
invariant under the automorphism of the given covering. It is clear, at least if
the covering ξ, is regular, that every di�erentiable or cellular structure de�ned
on tl ξ and invariant under the automorphisms of ξ can be lowered to bs ξ, i.e.,
the given structure on tl ξ is the result of lifting a similar structure from bs ξ
(this becomes true also for simplicial structures after we e�ect the barycentric
subdivision twice). For example, the lenses and the quotient spaces of S3 by the
binary tetrahedral, cube, or icosahedral groups (see Example 4.2.3.21) are reg-
ularly covered by the corresponding spheres (see Remark 4.3.2.11 and Theorem
5.6.2.13), and hence are Ca-manifolds.

If the given covering ξ is a Cr-bundle, then the Cr-structure on tl ξ is au-
tomatically invariant under the automorphisms of ξ. In this case, the lowered
Cr-structure surely coincides with the original Cr-structure on bs ξ. This is ex-
actly what happens to all the coverings described in Example 4.1.2.6 and, in
particular, to (R,hel,S1), (S1,helm,S1), and (Sn,proj,RPn).
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5.6.3 Orientations

Remark 5.6.3.1. In the present subsection the technique developed in the previ-
ous one is applied to the orientability problems considered in ��3.1 and 4.5 (see
Subsections 3.1.3, 4.5.1, 4.5.4). We follow the recipe of Subsection 4.5.1, which
applies to bundles over arbitrary spaces, in contrast to the recipe of Subsection
4.5.4), which yields the same results, but only for bundles over a cellular base.

Remark 5.6.3.2. Let ξ be an n-dimensional real vector bundle. Consider the as-
sociated principal bundle, assoc(ξ,GL(n,R)), and construct the orbit space of
the right action of GL+(n,R) on tl assoc(ξ,GL(n,R)) obtained by the restriction
to GL+(n,R) of the canonical right action of GL(n,R) on tl assoc(ξ,GL(n,R))
[see De�nition4.3.2.10]. Denote this orbit space by bs+ ξ, and observe that it is
the total space of a bundle with base bs ξ and projection fact proj assoc(ξ,GL(n,R)).
It is clear that (bs+ ξ, fact proj assoc(ξ,GL(n,R)),bs ξ) is a two-sheeted covering
in the broad sense; we denote it by Or ξ.

One may view the points of bs+ ξ as pairs (x, ε), where x ∈ bs ξ and ε
is an orientation of the �bre (proj ξ)−1(x). This permits us to look upon a
simultaneous orientation of all the �bres of ξ as a map s : bs ξ → bs+ ξ such that
projOr ξ ◦ s = idbs ξ. Clearly, the compatibility (in the sense of Remark 4.5.1.8)
of the orientation given by s on the �bres of ξ is equivalent to the continuity
of s. Thus, the orientations of the bundle ξ turn out to be the sections of the
bundle Or ξ.

We list the most important corollaries of the above discussion:

(i) a bundle ξ is orientable if and only if the bundle Or ξ is trivial;

(ii) if the base bs ξ is locally connected and the fundamental groups of its
components have no subgroups of index 2 (the last happens, in partic-
ular, whenever the components of bs ξ are simply connected), then ξ is
orientable.

(iii) if ξ is orientable, then the number of its orientations equals the number
of maps compbs ξ → S0 (and, in particular, equals 2m if bs ξ has m < ∞
components).

Remark 5.6.3.3. We would like to make another remark concerning the previous
construction. Given a real vector bundle ξ, consider the bundle with base bs+ ξ,
induced from ξ by the projection projOr ξ. Here we note that ξ+ possesses
a canonical orientation. Namely, the orientation of its �bre (proj ξ+)

−1(x, ε)
(where x ∈ bs ξ and ε is an orientation of the �bre (proj ξ)−1(x)) is simply the
orientation ε, transferred to (proj ξ+)

−1(x, ε) by the isomorphism

abr tl adj(projOr ξ) : (proj ξ+)
−1(x, ε)→ (proj ξ)−−1(x);

that these orientations are compatible in the sense of Remark 4.5.1.8 is plain.
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The Case of Smooth Manifolds

Remark 5.6.3.4. Orienting a smooth manifold is the same as orienting its tangent
bundle (see Remark 4.6.4.5), and hence the discussion in Remark 5.6.3.2 carries
over to the orientability and orientations of smooth manifolds. In particular,
a manifold X is orientable if and only if the bundle Or tangX (which is a
two-sheeted covering in the broad sense with base X) is trivial. Also, a smooth
manifold is automatically orientable if the fundamental groups of its components
have no subgroups of index 2 (as happens when all its components are simply
connected).

Let us add that, according to Theorem 5.6.2.21, the space tl Or tangX is a
smooth manifold. By Remark 5.6.3.3, the latter carries a canonical orientation.
IfX is connected and non-orientable, thenOr tangX is a (two-sheeted) covering;
we call it the orientation-covering of the manifold X.

5.6.4 Some Bundles Over Spheres

Remark 5.6.4.1. In this subsection we present the most elementary results con-
cerning orientable real vector bundles and complex vector bundles over lower-
dimensional spheres. This topic has independent interest and, at the same time,
illustrates the general theory.

Recall that the classes of GL+ Rn-equivalent GL+ Rn-bundles over a given
cellular base are in a one-to-one correspondence with the homotopy classes of
continuous maps of this base into G+(∞, n). Similarly, the classes of GLCn-
equivalentGLCn-bundles over a cellular base are in a one-to-one correspondence
with the homotopy classes of continuous maps of this base into CG(∞, n). [See
Theorem 4.5.3.8.] If the base is Sr, r ≥ 1, then the fact that GL+ Rn and GLCn
are simple spaces implies that the aforementioned homotopy classes may be
thought of as elements of the groups πr(G+(∞, n)) and πr(CG(∞, n)), respec-
tively. Since these groups are isomorphic to πr−1(SO(n)) and πr−1(U(n)) (see
Theorems 5.2.8.2 and 5.2.8.4), it follows that the classes of GL+ Rn-equivalent
GL+ Rn-bundles over Sr (r ≥ 1) are in a natural one-to-one correspondence
with the elements of πr−1(SO(n)), while the classes of GLCn-equivalent GLCn-
bundles over Sr (r ≥ 1) are in a natural one to - one correspondence with the
elements of πr−1(U(n)). Since we already know πr−1(SO(n)) and πr−1(U(n))
for some small values of r (see Subsection 5.2.6), we get the classi�cation of the
corresponding bundles, which we shall outline with minimum of details below.
Some supplements appear in Exercises 5.6.5.19-5.6.5.19.

We note that this method works in a considerably more general situation.
Namely, let G be a topological group, and let F be an e�ective G-space. Ac-
cording to the general theory of bundles (see Subsection 4.4.2), the elements of
Stnrd(Sq, F ) are in a natural one-to�one correspondence with the elements of
π(Sq, X), where X is any classifying space of G. If X is q-simple (for example,
if G is connected), then π(Sq, X) coincides with πq(X) and, for q ≥ 1, with
πq−1(G) (see Theorem 5.6.1.6).
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The Real Oriented Case

Remark 5.6.4.2. Since π0(SO(n)) is trivial, every GL+ Rn-bundle over S1 is
GL+ Rn-trivial, for any positive integer n.

Since π1(SO(1)) is trivial, π1(SO(2)) ∼= Z, and π1(SO(n)) ∼= Z/2Z for all
n ≥ 3, it follows that:

� every GL+ R1-bundle over S2 is GL+ R1-trivial;

� the pairwise GL+ R2-non-equivalent GL+ Rn-bundles over S2 form an in-
�nite and countable collection;

� for n ≥ 3, the number of pairwiseGL+ Rn-non-equivalentGL+ Rn-bundles
over S2 is 2.

Since π2(SO(n)) is trivial, everyGL+ Rn-bundle over S3 isGL+ Rn-trivial,for
any positive integer n.

Since π3(SO(1)) and π3(SO(2)) are trivial, whereas π3(SO(n)), n ≥ 3, is
in�nite and countable, it follows that:

� every GL+ R1-bundle over S4 is GL+ R1-trivial;

� every GL+ R2-bundle over S4 is GL+ R2-trivial;

� for n ≥ 3, the pairwise GL+ Rn-non-equivalent GL+ Rn-bundles over S4
form an in�nite and countable collection.

The Complex Case

Remark 5.6.4.3. Since π0(U(n)) is trivial, every GLCn-bundle over S1is GLCn-
trivial, for any positive integer n.

Since π1(U(n)) ∼= Z for all n ≥ 1, the classes of pairwise GLCn-non-
equivalent GLCn-bundles over S2 form an in�nite and countable collection,
for any positive integer n.

Since π2(U(n)) is trivial, every GLCn-bundle over S3 is GLCn-trivial, for
any positive integer n.

Since π2(U(1)) is trivial and π3(U(n)) ∼= Z for all n ≥ 2, it follows that:

� every GLCn-bundle over S4 is GLCn-trivial;

� if n ≥ 2, the pairwise GLCn-non-equivalent GLCn-bundles over S4 form
an in�nite and countable collection.

5.6.5 Exercises

Exercise 5.6.5.1. Show that a smooth two-dimensional manifold does not admit
the disc D2 as a covering space (unless the given manifold is homeomorphic to
D2, and then the covering projection is the corresponding homeomorphism).

Exercise 5.6.5.2. Show that a smooth, compact two-dimensional manifold does
not admit the half plane R− as a covering space.
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Exercise 5.6.5.3. Show that a sphere with g handles admits a sphere with g̃
handles as an m-sheeted covering space if and only if g̃ − 1 = m(g − 1). [Cf.
Exercise 4.1.5.1.]

Exercise 5.6.5.4. Show that a sphere with h cross-caps admits a sphere with h̃
cross-caps as an m-sheeted covering space if and only if h̃− 2 = m(h− 2). [Cf.
Exercise 4.1.5.2.]

Exercise 5.6.5.5. Show that a sphere with h cross-caps admits a sphere with g
handles as a covering space if and only if m is even and g − 1 = m(h− 2)/2.

Exercise 5.6.5.6. Show that the Klein bottle admits a topological space as a
covering space with non-identical covering projection if and only if the given
space is homeomorphic to the Klein bottle, to the interior of a Möbius strip, or
to one of the products R× R, R× S1, S1 × S1.
Exercise 5.6.5.7. Let π1, π2, π3, . . . be arbitrary groups, with πk Abelian for
k ≥ 2, and suppose that there is given a right group action of π1 on πk, k≥2.
Show that there is a cellular space X with base point x0 together with an
isomorphism f1 : π1 → π1(X,x0), such that the group πk(X,x0) is f -isomorphic
to πk for all k ≥ 2.

Exercise 5.6.5.8. Let ξ be a covering with bs ξ an n-dimensional locally Eu-
clidean space. Prove that tl ξ is an n-dimensional locally Euclidean space with
boundary ∂ tl ξ = (proj ξ)−1(∂ bs ξ).

Exercise 5.6.5.9. Show that every covering space of a locally �nite cellular space
is locally �nite (see Theorem 5.6.2.21).

Exercise 5.6.5.10. Let ξ be a covering with bs ξ a topological group. Prove that,
given any point x ∈ (proj ξ)−1(ebs ξ), on tl ξ there is one and only one group
structure, which turns tl ξ into a topological group with identity x, and turns
proj ξ into a homomorphism.

Exercise 5.6.5.11. Let ξ be a covering with a �nite number of sheets, such that
a connected, compact topological group acts transitively on bs ξ. Prove that
one can de�ne a transitive action of a connected, compact topological group on
tl ξ.

Exercise 5.6.5.12. Let ξ be a two-sheeted covering with bs ξ a non-orientable
smooth manifold and tl ξ orientable. Show that ξ is equivalent to the orientation-
covering of bs ξ.

Exercise 5.6.5.13. Let X be a non-orientable smooth manifold and assume that
X admits an orientable manifold Y as a covering space. Show that Y is also a
covering space of tl Or tangX.

Exercise 5.6.5.14. Show that:

(i) for each positive integer n there is a unique (up to GLRn-equivalences)
GLRn-non-trivial GLRn-bundle over S1 and that for n = 1 its total space
is homeomorphic to the interior of a Möbius strip;

(ii) the pairwise GLR2-non-equivalent GLR2-bundles over S2 form an in�nite
and countable collection;
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(iii) for n ≥ 3, the number of pairwise GLRn-non-equivalent GLRn-bundles
over S2 is equal to 2;

(iv) for any positive integer n, every GLRn-bundle over S3 is GLRn-trivial;

(v) every GLR2-bundle over S4 is GLR2-trivial;

(vi) for n ≥ 3, the pairwise GLRn-non-equivalent GLRn-bundles over S4 form
an in�nite and countable collection.

Exercise 5.6.5.15. Show that for r ≥ 2 every GLR1-bundle over S is GLR1-
trivial.

Exercise 5.6.5.16. Let r ≥ 3. Show that:

(i) every GLR2-bundle over Sr is GLR2-trivial;

(ii) every GLR2
+-bundle over Sr is GL+ R2-trivial;

(iii) every GLC1-bundle over Sr is GLC1-trivial.

Exercise 5.6.5.17. Show that two GL+ R2-bundles over S2 become equivalent by
extending the structure group GLR2

+ to GLR2 if and only if the corresponding
elements of π1(SO(2)) [see Remark 5.6.4.1] are either equal or inverses of one
another.

Exercise 5.6.5.18. Show that for every non-trivial OR2-bundle ξ with bs ξ = S2
the space tl assoc(ξ,S1) is homeomorphic to one of the lenses L(m; 1, 1) [here
O(2) acts canonically on S1].
Exercise 5.6.5.19. Show that for n ≥ 2 the number of pairwise GLCn-non-
equivalent GLCn-bundles over S5 does not exceed 2.

INFORMATION. Actually, the last number is 2 if n = 2, and 1 if n > 2.
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