

Bescovitch's theorem on towers of quadratic extensions

Bill Dubuque

A theorem of Bescovitch asserts that if \mathbb{Q} is the field of rational numbers and p_1, p_2, \dots, p_r be distinct primes, then $[\mathbb{Q}(\sqrt{p_1}, \dots, \sqrt{p_r}) : \mathbb{Q}] = 2^r$.

We prove a slightly more general fact, namely:

Let Q be a field with $\text{char } Q \neq 2$ and $L = Q(S)$ be an extension of Q generated by n square roots $S = \{\sqrt{a}, \sqrt{b}, \dots\}$ of elements $a, b, \dots \in Q$. If every nonempty subset of S has product $\notin Q$ then each successive adjunction $Q(\sqrt{a}), Q(\sqrt{a}, \sqrt{b}), \dots$ doubles degree over Q so, in total, $[L : Q] = 2^n$. Thus the 2^n subproducts of the product of S are a basis of the extension L/Q . First we need a lemma.

Lemma 1. *Let K be a field with $\text{char } K \neq 2$ and $a, b \in K$ with $\sqrt{a}, \sqrt{b}, \sqrt{ab} \notin K$. Then $[K(\sqrt{a}, \sqrt{b}) : K] = 4$.*

Proof. Let $L = K(\sqrt{b})$. As $[L : K] = 2$ by $\sqrt{b} \notin K$, it suffices to show that $[L(\sqrt{a}) : L] = 2$. This fails only if $\sqrt{a} \in L = K(\sqrt{b}) \Rightarrow \sqrt{a} = r + s\sqrt{b}$ for $r, s \in K$. But this does not hold, because squaring yields

$$a = r^2 + bs^2 + 2rs\sqrt{b}, \quad (2)$$

which is contrary to the hypotheses as the followings show:

$$rs \neq 0 \Rightarrow \sqrt{b} \in K \quad \text{by solving (2) for } \sqrt{b}, \quad (\text{Note that } 2 \neq 0.)$$

$$s = 0 \Rightarrow \sqrt{a} \in K \quad \text{via } \sqrt{a} = r + s\sqrt{b} = r \in K$$

$$r = 0 \Rightarrow \sqrt{ab} \in K \quad \text{via } \sqrt{a} = s\sqrt{b}, \quad \text{thus } \sqrt{ab} = sb$$

□

Theorem 3. *Let Q be a field with $\text{char } Q \neq 2$ and $L = Q(S)$ be an extension of Q generated by n square roots $S = \{\sqrt{a}, \sqrt{b}, \dots\}$ of elements $a, b, \dots \in Q$. If every nonempty subset of S has product $\notin Q$ then each successive adjunction $Q(\sqrt{a}), Q(\sqrt{a}, \sqrt{b}), \dots$ doubles degree over Q so, in total, $[L : Q] = 2^n$. Thus the 2^n subproducts of the product of S are a basis of the extension L/Q .*

Proof. We proceed by induction on the tower height $n = \text{number of root adjunctions}$. The Lemma above implies $[1, \sqrt{a}][1, \sqrt{b}] = [1, \sqrt{a}, \sqrt{b}, \sqrt{ab}]$ is a Q -vector space basis of $Q(\sqrt{a}, \sqrt{b})$ if and only if 1 is the only basis element in Q . We must lift this to $n > 2$: $[1, \sqrt{a}][1, \sqrt{b}][1, \sqrt{c}] \dots$ (2^n elements).

$n = 1 : L = Q(\sqrt{a})$ so $[L: Q] = 2$ since $\sqrt{a} \notin Q$ by hypothesis.

$n > 1 : L = K(\sqrt{a}, \sqrt{b})K$ of height $n - 2$. By induction hypothesis we have $[K: Q] = 2^{n-2}$ so we need only show $[L: K] = 4$, since then $[L: Q] = [L: K][K: Q] = 4 \cdot 2^{n-2} = 2^n$. The lemma above shows $[L: K] = 4$ if $r = \sqrt{a}, \sqrt{b}, \sqrt{ab}$ for $a, b \notin K$ which holds as an induction on $K(r)$ of height $n - 1$ shows $[K(r): K] = 2 \Rightarrow r \notin K$.

□