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PREFACE

Note by the transcriber

This is a transcription of "Introduction to Di�erential Geomtry" by Eugene
Lerman.

The transcriber is currently binding the notes of Brian Conrad on di�erential
geometry. His notes are detailed, but unfortunately they are nothing more
than a colleciton of seemingly sporadic topics: in other words, they are not
well-organised. So, I looked for a compact and well-organised lecture notes on
di�erential geometry.

First, I tried �Notes on Di�erential Geometry� by Hicks, but they have a
crucial �aw: namely he assigns the same symbol X to both tangent vectors and
vector �elds, which makes a confusing and frustrating read.

Then I found Lerman's notes and decided to transcribe them in the hope
that his notes and Conrad's notes can coplement each other.

For the record, Lerman has not provided preface to his notes.
The appendix contains the material omitted in the original notes: namely,

1. the proof of the inverse function theorem,

2. the proof of Sard's theorem.

i



ii



Contents

1 Introduction: why manifolds? 1

2 Smooth manifolds 3

2.1 Digression: smooth maps from open subsets of Rn to Rm . . . . 3
2.2 De�nitions and examples of manifolds . . . . . . . . . . . . . . . 4
2.3 Maps of manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Partitions of unity . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Tangent vectors and tangent spaces 15

3.1 Tangent vectors and tangent spaces . . . . . . . . . . . . . . . . . 15
3.2 Digression: vector spaces and their duals . . . . . . . . . . . . . . 19
3.3 Di�erentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 The tangent bundle . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 The cotangent bundle . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Vector �elds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Submanifolds and the implicit function theorem 31

4.1 The inverse function theorem and a few of its consequence . . . . 31
4.2 Transversality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Embeddings, Immersions, and Rank . . . . . . . . . . . . . . . . 39

5 Appendix 41

5.1 Inverse function theorem . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Sard's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

iii



iv CONTENTS



Chapter 1

Introduction: why manifolds?

There are many di�erent ways to formulate mathematically the notion of a
`space' that occurs in di�erent branches of science and engineering. For instance
one can talk about the space of con�gurations of a physical system. This, of
course, requires a decision as to the level of details one is trying to model. For
example, we can regard the con�guration space of a system consisting of a sun
and a planet as R3 ×R3. We use three real numbers to describe the position of
the center of mass of the sun and three real numbers to describe the position of
the center of mass of the planet. In this model we assume that the sun and the
planet are simply two points in space. We also allow collisions. If we exclude
collisions (but still allow the sun and the planet to come arbitrarily close to each
other), the con

guration space is then

Q = {(x, y) ∈ R3 × R3|x 6= y}.

Here is another idealised example: the con�guration space of a penny tumbling
through the air. Fix a frame of reference. We will need a triple of real numbers
to describe the position of the penny's center of gravity and three orthonormal
vectors to describe the orientation of the penny. Thus the con

guration space in question is

Q = R3 ×O(3),

where O(3) denotes the set of 3 × 3 orthogonal matrices (recall that an n × n
matrix is orthogonal if (and only if) its columns form an orthonormal basis of
Rn).1

Exercise 1.0.1. What is the con�guration space of a penny rolling on a plane?
Manifolds constitute a particular way to formalise the notion of a con�guration
space. These are the spaces that �locally look like Rn.� The reason we will limit

1Strictly speaking the con�guration space is R3 × SO(3), where SO(3) denotes the set of

orthogonal matrices with positive determinant. Why?
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2 CHAPTER 1. INTRODUCTION: WHY MANIFOLDS?

ourselves to manifolds is that they are particularly suitable for generalising the
ideas of calculus � di�erentiation and integration. We will see that the two
examples of con�guration spaces given above: Q = {(x, y) ∈ R3 × R3|x 6= y}
and Q = R3 ×O(3) are, indeed, manifolds.

Remark 1.0.2. There are, of course, many other notions of a �space.� In linear
algebra one studies vector spaces and maps between them. In algebraic geometry
one studies spaces of solutions of polynomial equations which give rise to the
notion of an algebraic variety. In metric topology/geometry one studies metric
spaces, spaces with a notion of a distance. In point set topology and in algebraic
topology one talks about topological spaces. In analysis one may study the space
of solutions of a partial di�erential equation. In geometry and topology one may
be forced to study spaces that have singularities such as orbifolds and strati�ed
spaces. Before we can discuss orbifolds and more complicated spaces we should
�rst come to terms with manifolds which are smooth.



Chapter 2

Smooth manifolds

2.1 Digression: smooth maps from open subsets

of Rn to Rm

We start out by recalling the de�nition of a di�erentiable map.

De�nition 2.1.1. Let U ⊂ Rn be an open subset. A map f : U → Rm is
di�erentiable at a point x ∈ U if there is a linear map L : Rn → Rm so that

lim
h→0

1

‖h‖
(f(x+ h)− f(x)− Lh) = 0.

It is not hard to show that if such a map L exists, it is unique. The linear
map L is variously called the derivative of f at x, the di�erential of f at x,
. . . and is denoted by dfx or by Dfx or by Df(x) or by a similar notation.
Moreover, the matrix corresponding to L with respect to the standard basis of
Rn and Rm is the so called Jacobian matrix. That is, if f = (f1, . . . , fm) then

Dfx =


∂f1
∂x1

(x) . . . ∂f1
∂xn

(x)
...

. . .
...

∂fm
∂x1

(x) . . . ∂fm
∂xn

(x)


De�nition 2.1.2. Let U ⊂ Rn be an open subset. A map f : U → Rm is
smooth (or C∞) on the set U if all partial derivatives of f to all orders exist at
all points of U .

Here is a more �sophisticated� version of the the de�nition above. Suppose
f : U → Rm is di�erentiable at all points of U . Then we have a map g(x) :=
Dfx : U → Rnm. We can require that g is di�erentiable as a map from U to
Rnm. The derivative of g is a map from U to a bigger vector space RN for an
appropriate N . We can require that this map is di�erentiable and so on... In
other words, if all derivatives of f : U → Rn exist and are di�erentiable we say
that f is smooth.

3



4 CHAPTER 2. SMOOTH MANIFOLDS

2.2 De�nitions and examples of manifolds

A smooth manifold is a generalisation of a smooth surface in R3. A smooth
surface in S ⊂ R3 has local parameterisations: for every point p ∈ S there is an
open set V ⊂ R3 with p ∈ V and a map x : U → S ∩ V (where U ⊂ R2 is an
open set) such that

(1) x is C∞. That is x(u1, u2) = (x1(u1, u2, x2(u1, u2), x3(u1, u2)) and each
xi(u1, u2), 1 ≤ i ≤ 3 is an in�nitely di�erentiable function of u = (u1, u2) ∈
U ;

(2) x is 1-1 (injective) and onto.

The map x is a local parameterisation of S.

Example 2.2.1. The two sphere

S2 = {s ∈ R3 ‖x‖ = 1}

is a smooth surface. In fact, if p = (p1, p2, p3) ∈ S2 and p3 > 0 take V =
{x ∈ R3|x3 > 0}, U = {(u1, u2)|‖u‖ < 1} and a local parameterisation x : U →
S2 ∩ V to be x(u1, u2) = (u1, u2,

√
1− u21 − u22). It's easy to check that this

x is 1-1, onto and C∞. If p3 < 0 take the local parameterisation x(u) =
(u1, u2,−

√
1− u21 − u22). If p3 = 0 then either p1 or p2 is non-zero (or both)

and there are formulasefor local parameterisations similar to the ones above.

Note that if S is a smooth surface and xα : R2 ⊃ Uα → S and xβ : R2 ⊃
U → S are two local parameterisations with

Wαβ := xα(Uα) ∩ xβ(Uβ) 6= ∅

then
x−1β ◦ xα : x−1α (Wαβ)→ x−1β (Wαβ) ⊂ R2

is C∞.
This motivates

De�nition 2.2.2 (of a C∞ manifold, �rst approximation, not quite right).
A C∞ manifold of dimension m is a set M and a family of injective maps
{xα : Uα →M} where U ⊂ Rm are open sets, such that

(1) ∪xα(Uα) = M ;

(2) if for some pair of indices α and β, the set Wα := xα(Uα) ∩ xβ(Uβ) 6= ∅
then x−1α (Wαβ), x−1β (Wβ) are open in Rm and

x−1β ◦ xα : x−1α (Wαβ)→ x−1β (Wαβ)

are C∞.

One thing that is wrong with this de�nition is that there is no topology
speci�ed on M . The other is that instead of parameterisations one usually
works with charts that go the other way. Namely
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De�nition 2.2.3 (Chart). Let X be a topological space. An Rn (coordinate)
chart on X is a homeomorphism φ : X ⊃ U → U ′ ⊂ Rn.

Notation 2.2.4. We will often write φ : U → Rn or even (U, φ) for a coordinate
chart φ : XsupsetU → U ′ ⊂ Rn. Note that since φ takes values in Rn, it is
an n-tuple of functions φ = (x1, . . . , xn) for some functions xi : U → R, the
coordinate functions on U associated to the coordinate chart φ : U → Rn.
Notation 2.2.5. When dealing with charts it will be convenient to to adopt
the notation where the standard coordinate functions on Rn are denote by
ri, 1 ≤ i ≤ n. That is, ri assigns to a point a = (a1, . . . , an) ∈ Rn the number
ai. If φ : U → Rn is a chart then

xi = ri ◦ φ : U → R

are the coordinate functions on U .

De�nition 2.2.6 (Atlas). A C∞ atlas on a topological space X is a collection
of charts {φα : Uα → U ′α} (with all U ′'s being open subsets of one �xed Rn such
that

(1) {Uα} is an open cover of X,1 and

(2) If Uα ∩ Uβ 6= ∅, then φβ ◦ φα : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) is C∞ as a
map from an open subset of Rn to Rn. That is, changes of coordinates are
smooth.

Example 2.2.7. The identity map f : R→ R, f(x) = x is the standard chart on
R. The set {(f,R)} consisting of one chart is an atlas on R. The map g : R→ R,
g(x) = x3 is also a chart on R; it de�nes a di�erent atlas on R.

Here is a third atlas on R. For each integer n ∈ Z, φn : (n, n + 2) → R,
φn(x) = x is a chart. The set {(φn, (n, n+ 2)} is an atlas on R.

De�nition 2.2.8. We say that two atlases are equivalent if their union is also
an atlas.

The de�nition above amounts to: an atlas {xα : Uα → U ′α} is equivalent
to an atlas {yβ : Vβ → V ′β} if for any indices α, β with Uα ∩ Vβ 6= ∅ the map

xα ◦ y−1β : yβ(Uα ∩Vβ)→ xα(Uα ∩Vβ) is smooth. One can easily verify that this
is indeed an equivalence relation

Exercise 2.2.9. Convince yourself that the �rst and the third atlases in Example
2.2.7 are equivalent. Show that the �rst and the second example of atlases are
not equivalent.

De�nition 2.2.10 (Manifold). An n-dimensional (C∞) manifold is a topolog-
ical space M together with an equivalence class of C∞ atlases.

Notation 2.2.11. We will denote the manifold and the underlying topological
space by the same letter, with the equivalence class of atlases usually under-
stood.

1That is, each Uα ⊂ X is open and ∪αUα = X
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Example 2.2.12. Let M = Rn. We cover M by one open set and take the
identity map as our chart. This is the standard manifold structure on Rn.
Example 2.2.13. Let M = Cn. Again we cover Cn by one open set U = Cn and
take the identity map as our coordinate chart map φ : Cn → R2n which is given
by

φ(z1, . . . , zn) = (<z1,=z1, . . . ).

Example 2.2.14. If M is a manifold, and V ⊂ M is an open subset, then V is
naturally a manifold. Check this!

Example 2.2.15. The set Mn(R) of n × n matrices with real coe�cients is a

manifold, since it is Rn2

. The subset GL(n,R) ⊂ Mn(R) of invertible matrices
is an open subset: a matrix A is invertible if and only if its determinant is non-
zero and determinant det : Mn(R)→ R is a polynomial map, hence continuous.
Hence the subset {A ∈ Mn(R)}|detA 6= 0} is open. So by the previous example,
GL(n,R) is a manifold.

Example 2.2.16. The two-sphere S2 := {x ∈ R3|‖x‖2 = 1} is a manifold. To see
this, we give S2 the subspace topology that it inherits as a subset of R3. Next
we de�ne charts. To do this, let

U+
i = {x = (x1, x2, x3) ∈ S2 : xi > 0}

and
U−i = {x = (x1, x2, x3) ∈ S2 : xi < 0},

i = 1, 2, 3 (6 charts altogether) which gives us an open cover of S2. De-
�ne φ±1 (x) = (x2, x3), φ±2 (x) = (x1, x3), and φ±3 (x) = (x1, x2). We need to
verify that changes of coordinates are smooth. Consider, for example, φ+2 ◦
(φ+1 )−1(u1, u2) = (

√
1− u21 − u22, u2), which is smooth in its region of de�ni-

tion. The other compositions yield similar results. It follows that S2 is indeed
a manifold.

Example 2.2.17. Now we consider a slightly more interesting example of a man-
ifold, the real projective space RPn−1 which is, by de�nition, the space of lines
through the origin in Rn. To give RPn−1 a topology, we think of it as the set
of equivalence classes of nonzero vectors in Rn. That is,

RPn−1 = (Rn \ {0})/ ∼

where two non-zero vectors v and v′ are equivalent (v ∼ v′) if and only if there
is a constant λ 6= 0 such that v = λv′. Note that this is an equivalence relation.
We then have a surjective map

π : Rn \ {0} → RPn−1, π(v) = [v],

where [v] denotes the equivalence class of v ([v] is the line through v).
We put on RPn−1 the quotient topology: U ⊂ RPn−1 is open if and only if

π−1(U) is open in Rn \ {0}. I leave it to the reader to check that this topology
is Hausdor�.
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Charts here are given as follows: for each 1 ≤ i ≤ n, let

Ui = {[x1, . . . , xn] ∈ RPn−1 : xi 6= 0}

and de�ne

φi : Ui → Rn−1

by

[x1, . . . , xn] 7→
(
x1
xi
, · · · , xi−1

xi
,
xi+1

xi
, · · · xn

xi

)
.

Note that the inverse φ−1i is given by

φ−1i : (x1, · · · , xn−1) 7→ [x1, · · · , xi−1, 1, · · · , xn].

We must check that the change of coordinates maps are smooth. If j < i,
then on the interesection Ui ∩ Uj

φj◦φ−1i (u1, · · · , un−1) = φj(u1, · · · , ui−1, 1, · · · , un) =

(
u1
uj
, · · · , ui−1

uj
,

1

uj
, · · · , un

uj

)
which is smooth. Other computations are similar (and are left to the reader).

Example 2.2.18. De�ne the complex projective space CPn−1 to be the set of
complex lines through the origin in Cn and prove that it is a manifold.

Example 2.2.19. If M and N are manifolds, show that M ×N is also naturally
a manifold.

Example 2.2.20. Let V be a �nite-dimensional vector space over R. Then V is a
manifold: a choice of basis v1, . . . , vn (n = dimV ) of V de�nes a linear bijection
σ : Rn → V , σ(r1, . . . , rn) =

∑
rivi. De�ne a topology on V by requiring that σ

is a homeomorphism (that is, U ⊂ V is open ⇔ σ−1(U) ⊂ Rn is open). Check
that this is indeed a Hausdor� second countable topology. De�ne σ−1 : V → Rn
to be a chart and {σ−1 : V → Rn} to be an atlas (one chart!). Prove that a
di�erent choice of basis of V de�nes the same topology and an equivalent atlas.

Example 2.2.21. Let M be a manifold. Show that for each point x ∈ M there
is a coordinate chart φ : U → Rn with x ∈ U such that φ(x) = 04andφ(U) is
B1(0), the ball of radius 1 centered at 0.

Remark 2.2.22. In De�nition 2.2.10 we have made no assumption on the topol-
ogy of our manifolds. It is standard to assume that the manifolds are Hausdor�.
Otherwise all sorts of pathologies turn up. Another set of standard assumptions
guarantees the existence of partitions of unity (see �2.4 below). For this the sim-
plest assumption to make is that the manifold in question is second countable.
However, this assumption is too stringent and paracompactness is much more
reasonable. All of this will be discussed later on.
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2.3 Maps of manifolds

In the Bourbakist view every area of mathematics has its collection of objects
and its collection of maps between objects (or, more generally, morphisms).
(Note by the transcriber : That is the view of the categorist S. Mac Lane rather
than of Bourbaki.)
While it is enjoyable to make fun of Bourbaki and Bourbakists, there is some
merit to this point of view. A map f : M → N between two manifolds is smooth
if it is continuous and is smooth in coordinates. More precisely we have:

De�nition 2.3.1 (smooth map). Let M and N be two smooth manifolds with
atlases {(Uα, φα)} and {(Vβ , ψβ)}, respectively. A continuous map f : M → N
is a smooth map (or a morphism of C∞ manifolds) if for all α and β with

f−1(Vβ) ∩ Uα 6= ∅,

the composition

ψβ ◦ f ◦ φ−1α : φα(Uα ∩ f−1(Vβ))→ ψ(Vβ)

is C∞.

We will write C∞(M,N) to denote the set of all smooth maps from M to
N . Note that this de�nition does not depend on which atlases on M and N we
choose [check this]. Also note a special case of this deinition is that of a smooth
function on a manifold, which is a map from M to R. To wit

De�nition 2.3.2. A function f : M → R is smooth if f is continuous and if for
all coordinate charts {Uα, φα)}, f ◦ φ−1α → R is C∞. It's consistent with the
previous de�nition: we think of the real line R as a manifold with the standard
coordinate chart idR : R→ R. We denote the collection of all smooth functions
on a manifold M by C∞(M) = C∞(M,R).

Exercise 2.3.3. LetM be a manifold. Check that C∞(M) is a vector space over
the reals under the standard addition of functions and multiplication by scalars.
Is it �nite dimensional?

Exercise 2.3.4. Let M be a manifold. Check that a constant function on a
manifold M is smooth.

Here are some examples of smooth maps.

Example 2.3.5. Take M = Rn \ {0}, and let N = RPn−1. Let π : Rn \ {0} →
RPn−1 be the projection π(v) = [v]. I claim that π is a smooth map. Let's
check it.

The atlas on M is given by one chart � the inclusion φ of M into Rn. The
charts on RPn−1 are the same as last time. Note that π−1(Ui) = {v ∈ Rn \{0} :
vi 6= 0}. To see that π is smooth, we need to check that φi◦π◦φ−1 : π−1()Ui)→
Rn−1 is C∞. But note that

(φi ◦ π ◦ φ−1)(v) = φi(π(v)) = φi([v]) =

(
v1
vi
, · · · vn

vi

)
.
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Example 2.3.6. Let M = R with the coordinate chart φ(x) = x3. Let N = R
with the coordinate chart ψ(x) = x. Let f : M → N be the map x 7→ x3. Is f
a C∞ map?

ψ ◦ f ◦ φ−1)(x) = ψ ◦ f(x1/3) = ψ(x) = x,

which is smooth. So f is smooth.
Now let us see if the map h : M → N , h(x) = x is smooth. We have

ψ ◦ f ◦ φ−1)(x) = x1/3, which is not di�erentiable at 0. So h is not smooth.
Finally note that f−1 : N →M is smooth:

φ ◦ ψ−1(x) = (x1/3)3 = x.

Example 2.3.7. Constant functions are smooth maps of manifolds.

The appropriate notion of �isomorphism� in di�erential geometry is the fol-
lowing one:

De�nition 2.3.8 (Di�eomorphism). A C∞ map f : M → N between two
smooth manifolds is a di�eomorphism if f is a homeomorphism and both f
and f−1 are C∞ maps.

Example 2.3.9. The map f : M → N of Example 2.3.6 is a di�eomorphism.

Exercise 2.3.10. If M and N are manifolds, prove that M ×N is di�eomorphic
to N ×M .

Exercise 2.3.11. Show that the composition of smooth maps is smooth.

Exercise 2.3.12. Let LA : GL(n,R) → GL(n,R) be left multiplication by A ∈
GL(n,R). Prove that LA is a di�eomorphism. [Recall that GL(n,R) ⊂ Rn2

is

the set of all invertible n× n matrices and that it is open in Rn2

.]

2.4 Partitions of unity

In this subsection we de�ne partitions of unity (that is, writing the constant
function 1 as a sum of bump functions with certain properties) and prove the
existence of a partition of unity subordinate to a cover on a second countable
manifold. The existence of such partitions of unity is very useful. The proof
of the existence of the partition of unity is not terribly useful and should be
skipped on the �rst (and second) reading. The reason for this advice is that the
proof is technical and the techniques will never be used again in this course. We
start with a string of de�nitions.

De�nition 2.4.1 (second countable). A topological spaceX is second countable
if there is a countable collection of open subsets {Ui} of X such that any open
set in X is the union of some collection of Ui's. In other words, the topology of
X has a countable basis.

Example 2.4.2. The real line R with the standard topology is second countable:
the collection {Ui} is consists of open intervals (a, b) where a and b are rational
numbers.
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Similarly Rn is second countable: the collection {Ui} consists of open balls
Br(x) of rational radius r centered at points x with rational coordinates.

Remark 2.4.3. Any (topological) subspace of a second countable space is second
countable [prove it]. Hence any manifold that can be realised as a subspace of
some Rn has to be second countable.

The condition of second countability is much more than necessary for the
existence of the partition of unity. One can get away with assuming only para-
compactness. Here, for the record, is its de�nition. It takes a paragraph to state
because we have to de�ne a few more things �rst.

De�nition 2.4.4. Let M be a topological space. A collection {Uα} of subsets
of M is a cover of a subset W ⊂M if W ∪Uα. It is an open cover if each {Uα}
is open. A re�nement {Vβ} of a cover {Uα} is a cover such that for each index
β there is an index α = αβ with Vβ ⊂ Uα.

A collection of subsets {Uα} of subsets ofM is locally �nite if for every point
m ∈ M there is a neighbourhood W of M with W ∩ Uα 6= ∅ for only �nitely
many α.

Example 2.4.5. The cover {(n, n+2)}n∈Z is a locally �nite cover of R. The cover
{[− 1

n ,
1
n ]} is a cover of (−1, 1) which is not locally �nite � there is a problem

at 0.

De�nition 2.4.6 (paracompactness). A topological space is paracompact if
every open cover has a locally �nite re�nement.

Example 2.4.7. Any compact space is paracompact. We will see shortly that
second countable Hausdor� manifolds are paracompact.

De�nition 2.4.8 (support). The support supp f of a continuous function f : X →
R is the closure of the set of points where f is non-zero:

supp f = {x ∈ X : f(x) 6= 0}.

De�nition 2.4.9 (Partition of Unity). Let {Uα} be an open cover of a manifold
M . A partition of unity subordinate to the cover {Uα} is a collection of smooth
functions {ρβ : M → [0, 1]} such that:

(1) For each index βthere is an index α with supp(ρβ) ⊂ Uα.

(2) For each pointm ∈M , there is a neighbourhoodW ofm such that ρβ_W 6=
0 for only �nitely many β. That is, the collection of supports {supp ρβ} is
locally �nite.

(3)
∑
β ρβ = 1.

Remark 2.4.10. Note that we need condition (2) to make sense of the sum in
(33): by (2), for each point m ∈ M the sum

∑
ρβ(m) is actually a �nite sum.

So there are no problems with convergence.
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Theorem 2.4.11. Let M be a second countable Hausdor� manifold. Then
every open cover of M has a partition of unity subordinate to it.

Proof. (You should not read this proof the �rst time around.)
Step1. We �rst construct a collection {Xk}∞k=1 of open subsets of M such that
their closures Xk are compact, Xk ⊂ Xk+1 and M = ∪∞k=1Xk. Since M is
second countable, there is a countable basis of the topology of M . Out of this
collection of open sets choose those that have compact closure and denote them
by W1,W2, . . . . We claim that that they cover M : M = supWi. Indeed, a
point x ∈ M has a neighbourhood homeomorphic to an open subset of Rn
(n = dimM , of course). For any point y in an open set U ⊂ Rn there is a closed
ball Br(y) centered at y with Br(y) ⊂ U . Closed balls in Rn are compact.
Hence every point x ∈ M has a neighbourhood U(x) whose closure U(x) is
compact. Now U(x) is a union of a certain number of elements of the countable
basis of the topology of M . The closure of each of these elements is compact.
Therefore x ∈Wi for some index i. This proves that M = ∪Wi.

Let X1 = W1. The whole collection {Wi}∞i=1 covers X1. Since X1 is
compact, X1 = Wi1 ∪ Wi2 ∪ · · · ∪ Wip for some i1 < i2 < · · · < ip. Let

X2 = Wi1 ∪ Wi2 ∪ · · · ∪ Wip . Then X2 is compact · · · . Continuing in this
manner we get the desired collection {Xk}∞k=1.
Step2. We construct three open countable covers {Vβ,1}, {Vβ,2}, {Vβ,3} with
{Vβ,1} ⊂ {Vβ,2} ⊂ {Vβ,3}, ∪β{Vβ,1} = M and {Vβ,3} is locally �nite and sub-
ordinate to {Uα}, the cover we started out with. Note that this will prove that
any Hausdor� second countable manifold is paracompact, as promised.

Fix an index k. For each point z ∈ Xk \Xk−1 choose an open set Vz,3 such
that Vz,3 ⊂ Uα for some α, Vz,3 ⊂ Xk+1 and Vz,3 ∩ Xk−1 = ∅. Additionally
we require that there is a coordinate chart ψz mapping Vz,3 homeomorphically
onto

B3(0) := {x ∈ Rn|‖x‖ < 3}.
Let Vz,i = psi−1z Bi(0) for i = 1, 2. The open sets Vz,1 cover the compact set
Xk \Xk−1 (and are contained in Xk+1 \Xk−2). Therefore, for each k, there is a
�nite collection of Vz,1's covering Xk \Xk−1. Take all of these �nite collections.
We get a cover {Vβ,1} of M . Similarly we get two more covers: {Vβ,2} and
{Vβ,3}. Note that by construction they are locally �nite and are subordinate to
{Uα}: for each β there is α(β) with Vβ,i ⊂ Uα(β).
Step3. Now we construct a partition of unity. The function

f(t) =

{
exp−

1
t , if t > 0

0, if t ≤ 0

is smooth on all of R [this fact is not entirely trivial]. Hence

f̃(t) =

{
exp−11−t, if t < 1

0, if t ≥ 1

is smooth on all of R. Therefore h : Rn → [0,∞) given by

h(x) = f̃(‖x‖2/4)
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is also smooth. Note that h(x) > 0 for all x ∈ B2(0) and h(x) = 0 for all
x 6∈ B2(0). Therefore, for each index β,

gβ(x) =

{
h(ψβ)(x), if x ∈ Vβ,3
0, if x 6∈ Vβ,3,

where ψβ : Vβ,3 → B3(0) is the corresponding coordinate chart, is a smooth
function on M . Moreover, gβ(x) > 0 for x ∈ Vβ,1. Since the cover {Vβ,3} is
locally �nite, the sum

G(x) =
∑
β

gβ(x)

makes sense [converges for each x4] and de�nes a smooth function on M . Since
{V/beta,1} covers M , G(x) > 0 for all x ∈M . Let

ρβ(x) = gβ(x)/G(x).

Then 1 ≥ ρβ(x) ≥ 0,
∑
ρβ = 1 and supp ρβ ⊂ Vβ,3 ⊂ Uα(β). Thus the collection

{ρβ} is the desired partition of 1.

Corollary 2.4.12. LetM be a second countable Hausdor� manifold and {Ui}∞i=1

a countable open cover. Then there is a partition of unity {ρi} with supp ρi ⊂ Ui.

Proof. By Theorem 2.4.11 there is a partition of unity {τβ} with supp τβ ⊂ Ui
for some i = i(β). Let

I(i) = {β| supp τβ ⊂ Ui and supp τβ 6⊂ Uj for j < i}.

De�ne

ρi =
∑
β∈I(i)

τβ .

The collection {ρi} is the desired partition of 1.

Proposition 2.4.13. Suppose thatM is a second countable Hausdor� manifold,
K ⊂ M a closed subset and U ⊂ M an open set with K ⊂ U . Then there is a
smooth function f : M → [0, 1] such that

(1) f |K ≡ 1 and

(2) supp(f) ⊂ U .

Proof. Let U1 = U and U2 = M \K. By Corollary 2.4.12 there exists smooth
functions ρ1, rho2 : M → [0, 1] with supp ρi ⊂ Ui and ρ1 + ρ2 = 1. Since
supp ρ2 ⊂M \K, ρ2|K ≡ 0. Hence ρ1|K ≡ 1. Now let f = ρ1.

Corollary 2.4.14. Let M be a (second countable Hausdor�) manifold. uchor
any point x ∈M and any neighbourhood U of x in M there is a smooth function
f : M → R such that
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(1) f ≡ 1 on a neighbourhood V of x contained in U and

(2) supp(f) ⊂ U .

Proof. Exercise. You can use the proposition above. Alternatively prove it
directly �rst in the case where M = Rn and then use a coordinate chart around
x to prove it for arbitraryM . Is the condition thatM is second countable really
necessary?
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Chapter 3

Tangent vectors and tangent

spaces

3.1 Tangent vectors and tangent spaces

We learn in physics that a vector is an arrow sticking out of a point in space
and that a vector �eld assigns an arrow to each point in space. When we learn
linear algebra, we are told to forget this point of view: all vectors are sticking
out of one point � the origin. For the purposes of di�erential geometry the
physics point of view is correct after all: all our vectors are anchored at various
points in space.

There is another issue we need to deal with. If S ⊂ R3 is a smooth convex
surface, one can imagine that for every point p ∈ S there is a two-plane TpS
touching S at that point, a plane tangent to S at p. (It is not entirely clear that
such a plane is unique, but that's another story.) A vector tangent to S at p
would be an arrow anchored at p and lying in TpS. This raises a problem: our
manifolds are de�ned abstractly and not as subsets of some Rn. So what would
a tangent plane be in this case? and what vector space would it lie in?

There is another issue we need to deal with. If S ⊂ R3 is a smooth convex
surface, one can imagine that for every point p ∈ S there is a two-plane TpS
touching S at that point, a plane tangent to S at p. (It is not entirely clear that
such a plane is unique, but that's another story.) A vector tangent to S at p
would be an arrow anchored at p and lying in TpS. This raises a problem: our
manifolds are de�ned abstractly and not as subsets of some Rn. So what would
a tangent plane be in this case? and what vector space would it lie in?

The solution is to think of vectors as directional derivatives. A directional
derivative of a function on Rn depends on two things: a direction and the
point at which the function is being di�erentiated. For a smooth function f ∈
C∞(Rn), we write

Dvf(p) =
d

dt
|0f(p+ tv)

15
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for the directional derivative of f at a point p ∈ Rn in the direction v ∈ Rn.
Observe that

(1) the directional derivatives are linear : for any f, g ∈ C∞(Rn) and any λ, µ ∈
R

Dv(λf + µg)(p) = λDvf(p) + µDvg(p);

(2) the directional derivatives have a derivation property:

Dv(fg)(p) = f(p)Dvg(p) +Dvf(p)g(p).

This motivates the following de�nition:

De�nition 3.1.1 (Tangent vector). Let M be a manifold and a ∈ M a point.
A tangent vector to M at a is an R-linear map v : C∞(M)→ R such that

v(fg) = f(a)v(g) + g(a)v(f) (3.1.2)

for all functions f, g ∈ C∞(M).
Linear maps C∞(M)→ R satisfying (3.1.2) are also said to have a derivation

property and are called derivations (into R).

De�nition 3.1.3 (Tangent space). The tangent space TaM to a manifold M
at a point a is the collection of all tangent vectors to M at a.

Exercise 3.1.4. The tangent space TaM is a vector space over the reals. [That's
why the elements of the tangent space are called �vectors�!] That is, if v, w ∈
TaM and λ, µ ∈ R then the linear map λv + µw : C∞(M)→ R is a derivation.

Note that by our de�nition every direction derivative at a point p ∈ Rn is a
tangent vector at p to Rn. This begs a question: are there tangent vectors that
are not directional derivatives? The answer is no, tangent vectors to points of
Rn are directional derivatives and that's all there is to it:

Proposition 3.1.5. Let w ∈ TaRn be a tangent vector. That is, suppose
w : C∞(Rn)→ R is a linear map satisfying (3.1.2). Then

w(f) = Dvf(a)

for some v ∈ Rn. The same result holds with Rn replaced by some open ball
Br(a).

To prove the proposition we �rst �recall� a version of Taylor's theorem.

Lemma 3.1.6. Let f be a smooth function on Rn. Fix a point a ∈ Rn. Then
for any x ∈ Rn

f(x) = f(a) +
∑

(xi − ai)hi(x) (3.1.7)

where hi(x) are smooth functions with

hi(a) =
∂f

∂xi
(a).
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Proof. Suppose �rst that a = 0. Then, by the fundamental theorem of calculus
and chain rule,

f(x)− f(0) =

� 1

0

d

dt
f(tx)dt =

� 1

0

(∑
xi
∂f

∂xi
(tx)

)
dt =

∑
xi

� 1

0

∂f

∂xi
(tx)dt.

Let hi(x) =
� 1

0
∂f
∂xi

(tx)dt. These are the desired functions. If a 6= 0 apply the

previous argument to f(x) = f(x− a).

Remark 3.1.8. If f is a smooth function on an open ball Br(a) then (3.1.7) still
holds at all x ∈ Br(a), except now hi ∈ C∞(Br(a)). The proof is exactly the
same.

Before proving the proposition we need one more simple lemma.

Lemma 3.1.9. Let M be a manifold and w ∈ TaM a tangent vector. Then for
any constant function c we have w(c) = 0.

Proof. Apply the tangent vector w to the constant function 1:

w(1) = w(1 · 1) = 1w(1) + w(1)1 = 2w(1).⇒ w(1) = 0.

Since w is linear, for any constant function c = c · 1

w(c) = w(c · 1) = cw(1) = 0.

of Proposition 3.1.5. By Lemma 3.1.6, f(x) = f(a) +
∑

(xi − ai)hi(x). Hence

w(f) = w(f(a)) +
∑

(w(xi − ai)hi(a) + (ai − ai)w(hi))

= 0 +
∑

w(xi)hi(a) + 0 =
∑

w(xi)
∂f

∂xi
(a).

Therefore w = Dvf(a), where v = (w(x1), . . . , w(xn)).
We leave the ball version of the proof as an exercise.

Remark 3.1.10. The proof above actually shows that the derivations { ∂
∂xi
|a}

form a basis of TaRn.
For arbitrary manifolds a choice of coordinates near a point also de�nes a

basis of the tangent space at the point. To express this precisely it will be
convenient to slightly change our notation. To this end, denote the points of
Rn by r = (r1, . . . , rn). We also think of ri as a function that assign to a point
its i-th coordinate. If φ : U → Rn is a coordinate chart on a manifold M , then
φ = (r1 ◦ φ, . . . , rn ◦ φ). We then think of xi = riφ as coordinate functions on
U .

The coordinates de
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ne tangent vectors at points of U : for any a ∈ U and any f ∈ C∞(M) we
de�ne ∂

∂xi
|a by

∂

∂xi
|a(f) :=

∂

∂ri
|φ(a)(f ◦ φ−1).

It is easy to see that these are, indeed, tangent vectors. It should come as no
surprise that they form a basis of the tangent space TaM . After all, manifolds
locally look like Rn and in Rn the partial derivatives do form bases of tangent
spaces. Now let's prove this. We �rst observe that tangent vectors are local.

Lemma 3.1.11. Let M be a manifold and v ∈ TaM a tangent vector. Then
for any two functions f, g ∈ C∞(M) with f = g in a neighbourhood U of a, we
have

v(f) = v(g).

In particular, if h is constant on a neighbourhood U of a, then v(h) = 0 (cf.
Lemma 3.1.9).

Proof. As v : C∞(M) → R is R-linear, it is enough to show that v(f − g) =
0. Chose a smooth bump function ρ : M → [0, 1] with supp ρ ⊂ U which is
identically 1 on a neighborhood V of a. We then have that ρ · (f − g) = 0 on
all of M by construction. Furthermore, because v is linear, v(0) = 0, hence

0 = v(ρ(f ◦ g)) = v(ρ)(f ◦ g)(a) + ρ(a)v(f ◦ g) = v(f ◦ g).

What's the point of the lemma, aside from its esthetic appeal? If φ =
(x?1, . . . , xn) : U → Rn is a coordinate chart on a manifold M and v ∈ TaM
is a tangent vector at some point a ∈ U , then we cannot apply v to a coor-
dinate function xi. The function xi is only de�ned on U ; it is not a smooth
function on all of M . However, there is a way around this problem. Pick a
smooth bump function ρ : M → [0, 1] with supp ρ ⊂ U which is identically 1 on
some neighbourhood of a. Then xiρ is a smooth function on M and so v(xiρ)
does make sense. Moreover, this number does not depend on the choice of the
bump function: if τ : M → [0, 1] is another choice of a bump function with the
same properties, then xiρ = xiτ on some (perhaps smaller) neighborhood of a.
Therefore, by the preceding lemma, v(xiρ) = v(xiτ). We therefore de�ne

v(xi) := v(xiρ)

for some choice of the bump function ρ. Similarly, if h ∈ C∞(U) we de�ne

v(h) := v(hρ)

for some (any) choice of the appropriate bump function ρ.

Lemma 3.1.12. If φ = (x1, /dotsc, xn) : U → Rn is a coordinate chart on a
manifold M and v ∈ TaM is a tangent vector at some point a ∈ U . Then

v =
∑
i

v(xi)
∂

∂xi
|a. (3.1.13)
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Moreover, the vectors { ∂
∂xi a} form a basis of TaM .

Proof. We evaluate both sides of (3.1.13) on a function f ∈ C∞(M). It is no
loss of generality to assume that φ(U) is a ball and that φ(a) = 0. By Lemma
3.1.6,

(f ◦ φ−1)(r) = (f ◦ φ−1)(0) +
∑

rihi(r)

where hi(0) = ∂
∂ri

(f ◦ φ−1)|0. Thus,

f(x) = f(a) +
∑

xi · fi(x),

where

fi(a) =
∂

∂ri
(f ◦ φ−1)(0) =

∂

∂xi
|a(f),

for all x ∈ U . Hence, for any v ∈ TaM , we have

v(f) = v(f(a) +
∑

xifi)

=
∑

xi(a)v(fi) +
∑

v(xi)fi(a)

=
∑

v(xi)fi(a)

=
∑

v(xi)
∂

∂xi
|a(f).

This shows that { ∂
∂xi a

} span TaM . To check linear independence observe that

∂

∂xi
|a(xj) = δij ,

where δij denotes the Kronecker delta function: it's 1 if i = j and zero otherwise.

Remark 3.1.14. We have seen in the preceding discussion that for any p ∈ Rn
the tangent space TpRn is isomorphic to Rn. Explicitly the isomorphism is give
by taking a vector v ∈ Rn to the directional derivative at p in the direction of
v:

Rn '→ TpRn v 7→ Dv(·)(p).

In particular

R '→ TaR s 7→ s
d

dr
|a.

3.2 Digression: vector spaces and their duals

Given two (�ite dimensional) vector spaces V and W we denote the set of all
linear maps from V to W by Hom(V,W ). It is a vector space: any linear
combination of two linear maps is again a linear map. Of special interest is the
vector space V ∨ := Hom(V,R) of linear maps from a vector space V to R, the
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so called dual vector space. If {vi}ni=1 is a basis of V , the dual basis is a basis
{v∨i } of V ∨ de�ned by

v∨i (vj) = δij

for all 1 ≤ i, j ≤ n. This is indeed a basis. If ` ∈ V ∨ is an arbitrary functional,
then

` =
∑

`(vi)v
∨
i

because both sides of the formula above agree on the basis vectors vj (I am
tacitly using the fact that if two linear maps µ, ν : V → R agree on basis vectors,
then they agree). It follows that dimV ∨ = dimV . Finally observe that for any
vector u ∈ V ,

u =
∑

v∨i (u)vi.

Why is the formula above true? Apply v∨j to both sides.

Exercise 3.2.1. Show that a choice of basis of vector spaces V and W identi�es
Hom(V,W ) with a space of matrices. Conclude that dim Hom(V,W ) = dimV ·
dimW .

3.3 Di�erentials

De�nition 3.3.1. Let f : M → N be a smooth map of manifolds and a ∈M a
point. The di�erential of f at a is the linear map

dfa : TaM → Tf(a)N (dfa(v))(h) = v(h ◦ f)

for all v ∈ TaM and all h ∈ C∞(N).

Exercise 3.3.2. Check that the de

nition above makes sense. That is, given v ∈ TaM , check that the map

C∞(N)→ /R, h 7→ v(h ◦ f)

is a linear map satisfying (3.1.2).

We will check shortly that in the case of a smooth map f : Rn → Rm,
dfa = Dfa under the natural identi�cation TaRn ' Rn.

We next sort out what the de�nition of a di�erential amounts to in the case
where f : M → R is a smooth function (in other words the target manifold
N = R). By de�nition 3.3.1, dfa is a map from TaM to Tf(a)R ' R. That is, if
we compose dfa with the isomorphism Tf(a)R

'→ R (see Remark 3.1.14), we get
a linear map

dfa : TaM → R

By de�nition, dfa is an element of the dual vector space T∨a M := Hom(TaM,R).
I claim that
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Proposition 3.3.3. The linear map dfa is given by

dfa(v) = v(f). (3.3.4)

for any tangent vector v ∈ TaM .

Proof. Let r : R → R denote the identity map. We think of it as the standard
coordinates on R. Then for every point x ∈ R the vector d

dr |x is a basis vector
of TxR, which gives us an isomorphism

TxR→ R, t
d

dr
|x 7→ t.

The map above has a �coordinate free� description as well. It is:

TxR 3 v 7→ v(r).

Therefore
dfa(v) = (dfa(v))(r) = v(r ◦ f) = v(f).

Remark 3.3.5. It is customary not to distinguish between dfa and dfa. Thus,
in the case of f ∈ C∞(M), the di�erential dfa denotes both the linear map
dfa : TaM → Tf(a)R and the linear functional dfa : TaM → R. In other words,
from now on we drop the notation dfa and write (3.3.4) as

dfa(v) = v(f). (3.3.6)

for all f ∈ C∞(M), a ∈M , v ∈ TaM .

De�nition 3.3.7. The vector space

T∨a M := Hom(TaM,R)

is called the cotangent space of M at a.

The new concept of the di�erential allows us to re-interpret the formula
(3.1.13). Recall that a choice of coordinates φ = (x1, . . . , xn) : U → Rn on a
manifold M gives rise to basis { ∂

∂xi
|a} of TaM for any point ainU . We claim

that {(dxi)a} form the dual basis of the cotangent space T∨a M . Indeed, by
(3.3.6),

(dxj)a

(
∂

∂xi
|a
)

=
∂

∂xi
|a(xj) = δij .

Since for v ∈ TaM we have v(xi) = (dxi)a(v), (3.1.13) becomes

v =
∑

(dxi)a(v)
∂

∂xi
|a. (3.3.8)

Let f = (f1, . . . , fm) : Rn → Rm be a smooth map. We are now in the position
to compare dfa : TaRn → Tf(a)Rm with Dfa : Rn → Rm. Let r1, . . . , rn denote
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the standard coordinates on Rn and s1, . . . , sm the standard coordinates on Rm.
Using (3.3.8) we compute:

(dsi)f(a)(dfa(
∂

∂rj
|a)) = (dfa(

∂

∂rj
|a))(si) =

∂

∂rj
|a(si ◦ f)

=
∂

∂rj
|a(fi)

=
∂fi
∂rj

(a)

Thus the matrix of the linear map dfa : TaRn → Tf(a)Rm with respect to the

basis { ∂
∂rj
|a} and { ∂

∂si
|f(a)} is the Jacobian matrix of Dfa.

It is worth singling out another special case of the de�nition of a di�erential
of a map: M = R. In this case f : R → N is a smooth curve. We de�ne the
tangent vector to f at t ∈ R to be

f ′(t) := dft

(
d

dr
|t
)
.

. Note that by de�nition f ′(t) is a tangent vector in Tf(t)N , the tangent space
to N at f(t).

Exercise 3.3.9. Let M be a manifold, p ∈ M a point and v ∈ TpM a tangent
vector at the point p. Show that there is a curve γ : I →M (where I is an open
interval containing 0) with γ(0) = p and γ′(0) = v.

We next observe that the chain rule holds for the di�erentials of smooth
maps.

Theorem 3.3.10 (Chain Rule). If F : X → Y and H : Y → Z are smooth
maps of manifolds, then

d(H ◦ F )a = dHF (a) ◦ dFa

for any point a ∈ X.

Proof. Fix a ∈ X, v ∈ TaX, and f ∈ C∞(Z). Then

(d(H ◦ F )a(v))(f) = v(f ◦ (H ◦ F ))

= v((f ◦H) ◦ F )

= (dFa(v))(f ◦H)

= (dHF (a)(dFa(v)))(f).

Remark 3.3.11. Theorem 3.3.10 and Exercise 3.3.9 give us a useful way of com-
puting di�erentials dfa : TaM → Tf(a)N . By the exercise, for any v ∈ TaM we
can �nd a curve γ : I → M with γ(0) = a and γ′(0) = v. Then, by the chain
rule,

dfa(v) = dfa(γ′(0)) = dfa(dγ(
d

dr
|0)) = d(f ◦ γ)0(

d

dr
|0) = (f ◦ γ)′(0).
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Exercise 3.3.12. Prove that if F : M → N is a di�eomorphism then the di�er-
ential dFa : TaM → TF (a)N is an isomorphism.

Exercise 3.3.13. Let M and N be manifolds. Prove that for any (a, b) ∈M ×N
the tangent space T(a,b)(M ×N) is isomorphic to TaM × TbN .

Exercise 3.3.14. Suppose that γ : R→ Rn, γ(t) = (γ1(t), . . . , γn(t)) is a smooth
curve. Show that

dγ(
d

dt
) =

∑
i

γ′i(t)
∂

∂ri
,

where γ′(t) are ordinary derivatives.

3.4 The tangent bundle

De�nition 3.4.1 (provisional). The tangent bundle TM of a manifold M is
(as a set)

TM =
∐
a∈M

TaM.

Note that there is a natural projection (the tangent bundle projection)

π : TM →M

which sends a tangent vector v ∈ TaM to the corresponding point a of M .

We want to show that the tangent bundle TM itself is a manifold in a natural
way and the projection map π : TM →M is smooth. Strictly speaking, we �rst
should specify a topology on TM . However, our strategy will be di�erent. We
will �rst �nd candidates for coordinate charts on the tangent bundle TM . They
will be constructed out of coordinate charts on M . We will check that the
change of these candidate coordinates on TM is smooth. We will then use these
candidate coordinates to manufacture a topology on TM .

Let φ = (x1, . . . , xn) : U → Rn be a coordinate chart on M . Out of it we
construct a chart on TU . The �rst n functions come for free: we take the
functions x1 ◦ π, . . . , xn ◦ π. Another set of n functions come for free also: by
(3.3.8), given a vector v ∈ TaU ,

v =
∑

(dxi)a(v)
∂

∂xi
|a.

Hence, abusing the notation a bit, we get maps

dxi : TU → R, TU 3 v 7→ (dxi)a(v), where a = π(v).

Thus we de�ne a candidate coordinate chart

φ̃ := (x1 ◦ π, . . . , xn ◦ π, dx1, . . . , dxn) : TU → Rn × Rn

by
φ̃(v) = (x1(π(v)), . . . , xn(π(v)), (dx1)π(v)(v), . . . , (dxn)π(v)(v)).



24 CHAPTER 3. TANGENT VECTORS AND TANGENT SPACES

If {Uα, φα)} is an atlas on M , we get a candidate atlas {(TUα, φ̃α)} on TM .
To see why this could possibly be an atlas, we need to check that the change of
coordinates in this new purported atlas is smooth.

To this end pick two coordinate charts (U, φ = (x1, . . . , xn)) and (V, ψ =
(y1, . . . , yn)) on M with U ∩ V 6= ∅. Then T (U ∩ V ) = TU ∩ TV 6= ∅. Let

φ̃ = (x1, . . . , xn, dx1, . . . , dxn) : TU → Rn × Rn

and
ψ̃ = (y1, . . . , yn, dy1, . . . , dyn) : TV → Rn × Rn

be the corresponding candidates charts on TM . Now let us compute the change
of coordinates ψ̃ ◦ φ̃−1.

First, note that

φ̃−1(r1, . . . , rn, u1, . . . , un)

=
∑
i

ui
∂

∂xi
|φ−1(r1,...,rn,u1,...,un) ∈ Tφ−1(r1,...,rn,u1,...,un)M.

So

ψ̃(
∑

ui
∂

∂xi
|φ−1(r1,...,rn)) =

(ψ(φ−1(r1, . . . , rn)), dy1(
∑
i

ui
∂

∂xi
), . . . , dyn(

∑
i

ui
∂

∂xi
)).

But

dyj(
∑
i

ui
∂

∂xi
) =

∑
i

ui(
∂

∂xi
(yj)) =

∑
i

∂yj
∂xi

ui

=
∑
i

∂

∂ri
(rj(ψ ◦ φ−1))ui.

Thus the change of the candidate coordinates is given by

ψ̃ ◦ (̃φ)−1(r1, . . . , rn, u1, . . . , un) = (ψ ◦ φ−1(r), (
∑
i

∂y1
∂xi

(r)ui, . . . ,
∑
i

∂yn
∂xi

(r)ui))

= ψ ◦ φ1(r),

(
∂yj
∂xi

(r)

)u1...
un

).

(3.4.2)

where r = (r1, . . . , rn). Clearly ψ̃ ◦ φ̃−1 is smooth wherever it is de�ned. It

remains to de�ne a topology on TM so that the charts φ̃ : TU → φ(U)×Rn are
homeomorphisms. We declare a subset O ⊂ TM to be open if for any coordinate
chart φ : U → Rn on M , the set φ̃(O ∩ TU) ⊂ Rn × Rn is open.
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Proposition 3.4.3. The collection of open sets on TM de�ned above does
indeed form a topology. Moreover, if M is Hausdor� and second countable, so
is TM .

Proof. Left as an exercise for the reader.

We conclude that ifM is an n-dimensional Hausdor� second countable man-
ifold then ts tangent bundle TM is a 2n-dimensional Hausdor� second countable
manifold. Moreover, each coordinate chart (x1, . . . , xn) : U → Rn on M gives
rise to a coordinate chart (x1 ◦ π, . . . , xn ◦ π, dx1, . . . , dxn) : TU → R2n.

Remark 3.4.4. The following notation is suggestive: we write (m, v) ∈ TM for
v ∈ Tm(M). Strictly speaking, it is redundant since m = π(v).

Remark 3.4.5. It is customary to simply write xi : TU → R for xi ◦π : TU → R.

Exercise 3.4.6. Prove that the map π : (TM) → M is smooth and that the
di�erential dπv : Tv(TM)→ Tπ(v)M is surjective for all tangent vectors v ∈ TM .
Hint: do it in (convenient) coordinates.

3.5 The cotangent bundle

As a set, the cotangent bundle T ∗M = (TM)∨ is the disjoint union of cotangent
spaces:

T ∗M = (TM)∨ =
∐
s∈M

T ∗aM =
∐
a∈M

(TaM)∨.

Note that there is a natural projection (the cotangent bundle projection)

π : T ∗M →M

which sends a cotangent vector (a covector for short) η ∈ T ∗aM to the corre-
sponding point a of M . We make the cotangent bundle T ∗M into a manifold in
more or less the same way we made the tangent bundle into a manifold. That
is, we manufacture new coordinate charts on T ∗M out of coordinate charts on
M and check that the transition maps between the new coordinate charts are
smooth.

So let φ = (x1, . . . , xn) : U → Rn be a coordinate chart onM . Then for each
point a ∈ U the covectors {(dxi)a} form a basis of T ∗aM . The partials { ∂

∂xi
|a}

form the dual basis. Hence for any η ∈ T ∗aM ,

η =
∑

η(
∂

∂xi
|a)(dxi)a.

Therefore the partials { ∂
∂xi
} give us coordinate functions on T ∗U :

∂

∂xi
: T ∗U → Rn, T ∗U 3 η 7→ η(

∂

∂xi
|a),
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where a = η(π). We now de�ne the candidate coordinates

φ : T ∗U → Rn × Rn

by

φ = (x1 ◦ π, . . . , xn ◦ π,
∂

∂x1
, . . . ,

∂

∂xn
).

Note that

φ
−1

(r1, . . . , rn, w1, . . . , wn) =

n∑
i=1

wi(dxi)φ−1(r) ∈ T ∗φ−1(r)M,

where again we have abbreviated (r1, . . . , rn) as r. We now check the transition
maps. Let ψ = (y1, . . . , yn) : V → Rn be a coordinate chart on M with V ∩U 6=
∅. Then

ψ ◦ phi−1(r1, . . . , rn, w1, . . . , wn) = ψ(

n∑
i=1

wi(dxi)φ−1(r))

= ((ψ ◦ φ−1)(r),
∂

∂y1
(

n∑
i=1

widxi), . . . ,
∂

∂yn
(

n∑
i=1

widxi))

= ((ψ ◦ φ−1)(r),
∑
i

wi
∂xi
∂y1

, . . . ,
∑
i

wi
∂xi
∂yn

).

We conclude that

ψ ◦ φ−1(r1, . . . , rn, w1, . . . , wn) = ((ψ ◦ φ−1)(r),

(
∂xi
∂yj

(r)

)w1

...
wn

), (3.5.1)

which is smooth. The rest of the argument proceeds as in the case of the tangent
bundle.

Remark 3.5.2. Later on, when we look at the general vector bundles, it will be
instructive to compare the formulae for the change of coordinates in the tangent

and the cotangent bundles. In particular note that the matrices
(
∂yj
∂xi

(r)
)
and(

∂xi
∂yj

(r)
)
are inverse transposes of each other.

3.6 Vector �elds

A vector �eld X on a manifold M smoothly assigns to a point a ∈M a tangent
vector X(a) ∈ TaM .1 What does �smoothly� mean? If X is a vector �eld in Rn
then

X(a) =
∑

fi(a)
∂

∂ri
|a

1Sometimes this is also written Xa.
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for certain functions fi(a) ∈ R of the point a ∈ Rn. So whatever we mean by
�smooth� should amount to the functions fi being smooth. This suggests one
de�nition of a smooth vector �eld:

De�nition 3.6.1. A vector �eld X on a manifold M is smooth if for any
coordinate chart φ = (x1, . . . , xn) : U → Rn we have, for any point a ∈ U ,

X(a) =
∑

fi(a)
∂

∂ri
|a (3.6.2)

for some smooth functions fi : U → R.

There is something a bit unsatisfactory about this de�nition: is it possible
that the functions fi in (3.6.2) are smooth for one choice of coordinates and not
smooth for another choice? So we will use it as as starting point for a better one.
Note that the functions fi in (3.6.2) are smooth for one choice of coordinates
and not smooth for another choice? So we will use it as as starting point for a
better one. are given by:

fi(a) = (dxi)a(X(a)),

for any a ∈ U . Thus De�nition 3.6.1 simply says that the composite

(x1, . . . , xn, dx1, . . . , dxn) ◦X : U → Rn × Rn

is smooth. But this is the same thing as saying that the map X : M → TM is
smooth. Not every map Z : M → TM is a vector �eld: we need to make sure
that Z(a) ∈ TaM . The condition is equivalent to

π(Z(a)) = a

for all aßM . Here, as before, π : TM !→M is the natural projection. This gives
us a slightly more �sophisticated� de�nition of a vector �eld:

De�nition 3.6.3. A (smooth) vector �eld X on a manifoldM is a smooth map
X : M → TM such that π◦ = id.

There is yet another de�nition of a vector �eld, which is quite useful from
some points of view:

De�nition 3.6.4. A smooth vector �eld X on a manifold M is a linear map
X : C∞(M)→ C∞(M) such that

X(fg) = fX(g) + gX(f) for all f, g ∈ C∞(M). (3.6.5)

Proposition 3.6.6. De�nitions 3.6.3 and 3.6.4 are equivalent.

Proof. Exercise.
Here are a few hints. Given a vector �eld X : M → TM de�ne a map X̃

from C∞(M) to functions on M by

(X̃(f))(a) = Xa(f)
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for all f ∈ C∞(M) and all a ∈ M . Check that X̃(f) is a smooth function and

that the map X̃ so de�ned is a derivation. That is, show that (3.6.5) holds with

X replaced by X̃.
Conversely, given a map X̃ : C∞(M) → C∞(M) with the derivation prop-

erty as above, de�ne X : M → TM by

Xa(f) = (X̃(f))(a)

for all f ∈ C∞(M) and all a ∈M . Check that Xa is indeed a tangent vector in
TaM and that the map X : M → TM , a 7→ Xa is smooth in a.

Remark 3.6.7. From now on we will not distinguish between the two de�nitions
and will think of vector �elds as either smooth mapsM → TM satisfying certain
conditions or as R-linear maps C∞(M) → C∞(M) satisfying the appropriate
conditions. We will make no notation distinction between the two ways of
looking at vector �elds. Thus X(a) will stand for the value of a vector �eld at
a point a if a is a point. On the other hand, if f is a smooth function, X(f)
will stand for a new smooth function, the �derivative� of f with respect to the
vector �eld X.

Notation 3.6.8. There are several standard ways to denote the space of all
smooth vector �elds on a given manifold M . The two most common ones are
Γ(TM) [vector �elds are sections of the tangent bundle, see below] and χ(M).

Remark 3.6.9. 1. The space of vector �eldsΓ(TM) is a vector space over R: if
X,Y ∈ Γ(TM) are (smooth) vector �elds and λ, µ ∈ R are scalars, then their
linear combination λX + µY is de�ned by

(λX + µY )(a) := λX(a) + µY (a)

for any a ∈M . It is again a smooth vector �eld.

2. We can also multiply vector �elds onM by smooth functions: if X ∈ Γ(TM)
and f ∈ C∞(M) then fX is de�ned by

(fX)(a) := f(a)X(a)

for all a ∈M .
A fancy way of describing 2 is to say that Γ(TM) is a module over the ring

of smooth functions C∞(M). See if you can impress your date.

If X,Y ∈ Γ(TM) are two vector �elds on a manifold M then it is not true
that the R-linear map

C∞(M)→ C∞(M), f 7→ X(Y (f)).

is a vector �eld � it does not have the correct derivation property. For example,
if M = R and X = Y = d/dt, then X(Y (f)) = f ′′ and

(fg)′ = (f ′g + fg′)′ = f ′′g + 2f ′g′ + fg′′ 6= f ′g + fg′′.

However,
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Lemma 3.6.10. Let X,Y ∈ Γ(TM) be two smooth vector �elds on a manifold
M . Then the map

[X,Y ] : C∞(M)→ C∞(M), f 7→ X(Y (f))− Y (X(f)) (3.6.11)

is a vector �eld.

Proof. Clearly the map [X,Y ] is R-linear. We need to check that it has the cor-
rect derivation property. This is a mechanical computation. Pick two functions
f, g ∈ C∞(M). Then

[X,Y ](fg) = X(Y (fg))− Y (X(fg))

= X(Y (f)g + fY (g))− Y (X(f)g + fX(g))

= X(Y (f))g + Y (f)X(g) +X(f)Y (g) + fX(Y (g))

− Y (X(f))g −X(f)Y (g)− Y (f)X(g)− fY (X(g))

= X(Y (f))g − Y (X(f))g + fX(Y (g))− fY (X(g))

= ([X,Y ](f))g + f([X,Y ](g)).

De�nition 3.6.12. The Lie bracket of two vector �elds X and Y on a manifold
M is the vector �eld [X,Y ] de�ned by (3.6.11).

We now quickly recall the de�nitions of bilinear and skew-symmetric bilinear
maps, the point being that Lie bracket will turn out to be a skew-symmetric
bilinear map.

De�nition 3.6.13. Let V,U and W be three vector spaces over the reals. A
map

b : V × U →W

is bilinear if it is (R-) linear in each argument: for all u1, u2 ∈ U , c1, c2 ∈ R and
all v ∈ V ,

b(v, c1u1 + c2u2) = c1b(v, u1) + c2b(v, u2);

and for all v1, v2 ∈ V , c1, c2 ∈ R and all u ∈ U ,

b(c1v1 + c2v2, u) = c1b(v1, u) + c2b(v2, u).

De�nition 3.6.14. A bilinear map b : U × U → V is skew-symmetric if

b(u1, u2) = −b(u2, u1)

for all u1, u2 ∈ U .

It is easy to see that the Lie bracket on a manifold M is R-bilinear and
skew-symmetric. Note that it is not C∞(M)-bilinear:

[X,hY ] = X(h)Y + h[X,Y ]

for any X,Y ∈ Γ(TM), h ∈ C∞(M) (prove this).
Somewhat surprisingly the Lie bracket has a kind of derivation property:
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Lemma 3.6.15 (Jacobi identity). For any three vector �elds X,Y, Z ∈ Γ(TM)
on a manifold M

[X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]].

Here is how one sees this as a derivation property: for a vector �eld X ∈
Γ(TM) de�ne

LX : Γ(TM)→ Γ(TM)

by
LX(Y ) = [X,Y ].

With this de�nition (3.6.15) becomes:

LX([Y,Z]) = [LX(Y ), Z] + [Y, LX(Z)].

of Lemma 3.6.15. This is another computation that's easier to do yourself than
watch someone else doing it. To keep the notation from getting out of hand,
we will drop parentheses. Thus XY Zf stands for X(Y (Z(f)))) etc. We pick a
function f ∈ C∞(M) and compute:

([[X,Y ], Z] + [Y, [X,Z]])f = [X,Y ]Zf − Z[X,Y ]f + Y [X,Z]f − [X,Z]Y f

= XY Zf − Y XZf − ZXY f + ZY Xf

+ Y XZf − Y ZXf −XZY f + ZXY f

= XY Zf + ZY Xf − Y ZXf −XZY f
= X(Y Zf − ZY f) + (ZY − Y Z)Xf = [X, [Y,Z]]f.

This proves the Jacobi identity.

Equation (3.6.15) is called the Jacobi identity and is often written as

[X, [Y, Z]] + [Y, [Z, ,X]] + [Z, [X,Y ]] = 0.

(it is equivalent to (3.6.15) by skew-symmetry of [·, ·].
De�nition 3.6.16. A (real) Lie algebra is a vector space V over R (possibly
in�nite dimensional) together with a map [·, ·] : V ×V → V , a Lie bracket, such
that

(1) [·, ·] is bilinear,

(2) [·, ·] is skew-symmetric, and

(3) [·, ·] satis�es the Jacobi identity: for all v, u, w ∈ V

[u, [v, w]] = [[u, v], w] + [v, [u,w]].

Example 3.6.17. We have proved that the space of vector �elds Γ(TM) on a
manifold M forms a Lie algebra.

Example 3.6.18. R3 with the cross (vector) product is a Lie algebra.

Remark 3.6.19. The bracket on a Lie algebra can be thought of as a multipli-
cation. Note that it is not associative in general because of the Jacobi identity.

The geometric meaning of the Lie brackets of vector �elds will be discussed
later.



Chapter 4

Submanifolds and the implicit

function theorem

Given a smooth function F : Rm → Rn and a point c ∈ Rn the level set

F−1(c) := {x ∈ Rm|F (x) = c}

may or may not be a smooth manifold. For example, take f(x, y) = x2 − y2, a
smooth function on R2. Then f−1(0) is the union of two lines: y = ±x. It is not
a manifold. However, for c 6= 0, f−1(c) is a union of two smooth curves, hence
a 1 dimensional manifold. The goal of this section is to describe a su�cient
condition for the level sets F−1(c) to be manifolds. We then generalise this
to level sets of smooth maps between manifolds. The key technical result that
makes it all possible is the inverse function theorem.

4.1 The inverse function theorem and a few of its

consequence

Theorem 4.1.1 (Inverse function theorem). Let U,U ′ ⊂ Rn, be open sets and
F : U → U ′ a smooth map. Suppose for some point a ∈ U the di�erential

dFa : Rn → Rn

is invertible. Then there are open neighbourhoods U0 of a in U and U ′0 of F (a)
in U ′ such that

F : U0 → U ′0

is a di�eomorphism.

We will assume this result. (See Appendix : Chapter 5.1 for the proof.) It
is not essential that U and U ′ are open subsets of Rn � any �nite dimensional
vector space will do. It is even true with Rn replaced by a Banach space. We

31
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now discuss various consequences of the inverse function theorem. The most
famous one is the implicit function theorem. But �rst we prove the manifold
version.

Proposition 4.1.2. Let f : N →M be a smooth map of manifolds with f(p) = q
(p ∈ N, q ∈M). Suppose

dfp : TpN → TqM

is an isomorphism (invertible linear map). There there are neighbourhoods U
of p ∈ N , V of q ∈M so that

fU : U → V

is a di�eomorphism (invertible map with a smooth inverse).

Proof. Note �rst that if φ : U ′ → Rn is a coordinate chart on N then for any
z ∈ U ′ the map dφz : TzN → Tφ(z)Rn is an isomorphism (for instance if φ =

(x1, . . . , xn), dφx( ∂
∂xi

) = ∂
∂ri

).

So let p ∈ U ′ φ−→ Rn and q ∈ V ′ ψ−→ Rm be two coordinate charts on M and
N respectively. Then the diagram

U ′
f //

φ

��

V ′

ψ

��
φ(U ′)

(ψ◦f◦φ−1)

// ψ(V ′)

(4.1.3)

commutes: ψ ◦ f = (ψ ◦ f ◦ φ−1) ◦ φ. Hence the diagram of di�erentials

TpN
dfp //

dφp

��

TqM

dψq

��
Tφ(p)φ(U ′)

d(ψ◦f◦φ−1)φ(p)

// Tψ(q)ψ(V ′)

(4.1.4)

commutes as well. By the inverse function theorem, there are neighborhoods U
of φ(p) and V of ψ(q) such that

(ψ ◦ f ◦ φ−1)|U : U → V

is a di�eomorphism. Consequently,

f : φ−1(U)→ ψ−1(V )

is a di�eomorphism

Next we turn to the implicit function theorem, the vector space version.
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Theorem 4.1.5 (Implicit function theorem). Let F : Rn×Rk → Rk be a smooth
map, (a, b) ∈ mathbbRn ×Rk a point and c = F (a, b). Suppose that the restric-
tion of the di�erential

dF (a, b)|{0}×Rk : {0} × Rk × Rk

is onto. Then there are neighborhoods U of a2 ∈ Rn, W of (a, b) in Rn × Rk
and a smooth map g : U → Rk with g(a) = b such that the

F−1(c) ∩W = graph{g : U → Rk}.

That is, for (x, y) ∈W
F (x, y) = c⇔ y = g(x).

In other words the function g is implicitly de�ned by the equation F (x, g(x)) = c.

Proof. We write suggestively

∂F

∂x
(a, b)

def
= dF(a,b)|Rn×{0} ,

∂F

∂y
(a, b)

def
= dF(a,b)|{0}×Rk

.

Consider the smooth map H : Rn × Rk → Rn × Rk de�ned by

H(x, y) = (x, F (x, y))

for all (x, y) ∈ Rn × Rk. Then the di�erential of H at (a, b) is of the form

dH(a,b) =

[
I 0

∂F
∂x (a, b) ∂f

∂y (a, b)

]
where I : Rn → Rn is the identity map. By assumption ∂F

∂y (a, b) is invertible.
Hence dH(a,b) is invertible. By the inverse function theorem the function H is
invertible on a neighborhood of (a, b). Let G(u, v) = (G1(u, v), G2(u, v)) denote
its inverse, which is de�ned on a neighborhood of H(a, b) = (a, F (a, b)) = (a, c).
We may take this neighborhood to be of the form U × V , with U ⊂ Rn and
V ⊂ Rk being open. Let W = G(U × V ). Then

(u, v) = H(G(u, v)) = (G1(u, v), F (G1(u, v), G2(u, v))

for all (u, v) ∈ U × V . Hence G1(u, v) = u. Therefore

F (u,G2(u, v)) = v

for all (u, v) ∈ U × V .
Conversely, if for any (x, y) ∈W we have F (x, y) = v then

(x, y) = G(H(x, y)) = G(x, F (x, y)) = G(x, v) = (G1(x, v), G2(x, v))

and therefore y = G2(x, v). De�ne the function g : U → Rk by

g(x) = G2(x, c).

It is a smooth function and, by the above discussion,

F (x, y) = c ⇔ y = g(x)

for any (x, y) ∈W .
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Remark 4.1.6. Here is a slightly di�erent and ultimately more useful way to
look at what we have proved. The argument above shows that there is a di�eo-
morphism

H : W → U × V

mapping bijectively the set

{F = c} ∩W := {(x, y) ∈W |F (x, y) = c}

onto the set

H(W ) ∩ (Rn × {c})

This motivates the following de�nition.

De�nition 4.1.7 (Submanifold). Let M be an m-dimensional manifold. A
subset N ⊂ M is an n-dimensional embedded submanifold if for every point
q ∈ N , there is a coordinate chart φ = (x1, . . . , xm) : U → Rm with q ∈ U such
that

φ(U ∩N) = φ(U) ∩ (Rn × {0}).

That is, for all a ∈ N ∩ U ,

φ(a) = (x1(a), . . . , xn(a), 0, . . . , 0).

Such charts are said to be adapted to N .

Example 4.1.8. The sphere S2 is an embedded submanifold of R3. For example
if (x1, x2, x3) ∈ S2 and x3 > 0 then

φ(x1, x2, x3) =

(
x1, x2, x3 −

√
1− x21 − x22

)
is a chart adapted to S2 (and there are 5 more charts like this).

Thus the implicit function theorem says that, under certain conditions, por-
tions of a level set of a map F : Rn × Rk → Rk are embedded submanifolds.
Naturally the embedded submanifolds are manifolds in their own right.

Lemma 4.1.9. If N ⊂ M is an n-dimensional embedded submanifold of an
m-dimensional manifold M then it is naturally an n-dimensional manifold in
its own right, and the inclusion map ι : N ↪→M , ι(a) = a is smooth.

Proof. We make N into a topological space by giving it the subspace topology.
If φ : U → Rm is a chart on M adapted to N , then

p ◦ φ|N : N ∩ U → φ(U) ∩ Rn

is a homeomorphism. Here p : Rm → Rn is the projection

p(x1, . . . , xn, . . . , xm) = (x1, . . . , xn).
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If ψ : V → Rm is another chart adapted to N , then the map

ψ ◦φ−1 : φ(U ∩V )→ ψ(U ∩V ), φ(U ∩V )∩ (Rn×{0}) 7→ (U ∩V )∩ (Rn×{0})

is a di�eomorphism. Hence if {φα : U → Rm} is a collection of charts on M
adapted to N with M = ∪Uα then

{p ◦ φα|Uα∩N : Uα ∩N → Rn}

is an atlas on N . Checking that the inclusion map ι is smooth is easy: in
coordinates it's the inclusion

Rn → Rm, (r1, . . . , rn) 7→ (r1, . . . , rn, 0, . . . , 0)

We now generalise the implicit function theorem.

Proposition 4.1.10. LetF : Rm → Rk be a smooth map and c ∈ F (Rm) ⊂ Rk
a point. Suppose that for all points q ∈ F−12(c) the di�erential

dFq : Rm → Rk

is onto. Then the level set F−1(c) is a submanifold of Rm and (if F−1(c) is
nonempty)

dimF−1(c) = m− k(= dimRm − dimRk).

Proof. Fix a point q ∈ F−1(c). Let Z = ker dFp. Let X ⊂ Rm be the vector
space complement to Z so that

Rm = Z ⊕X ' Z ×X.

We can thus think of a point p ∈ Rm as a pair (z, x) ∈ Z ×X. By assumption
on dFq and by construction of X, the restriction

dFq|X : X → Rk

is an isomorphism of vector spaces. We now proceed as in the proof of the
implicit function theorem. Consider

H : Z ×X → Z × Rk, H(z, x) = (z, F (z, x)).

Write ∂F
∂z for dF |Z and ∂F

∂x for dF |X .
Then the di�erential of H is of the form

dH(z, x) =

[
I 0
∂F
∂z

∂F
∂x

]
.

By construction ∂F
∂x (q) : X → Rk is a bijection. Hence dHq is a bijection. By

the inverse function theorem there exist neighborhoodsW of q in Rm and U×V
of H(q) in Z × Rk such that H : W → U × V is a di�eomorphism. Moreover,
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as in the proof of the implicit function theorem H maps bijectively
{
F=c}∩W

}
to (U × V )∩ (Z ×{c}). Therefore F−1(c) = {F = c} is a submanifold of Rm of
dimension m− k, i.e,

dimZ = dimRm − dimRk.

Example 4.1.11. Consider F : Rn → R, F (x) =
∑
x2i . Then dFx = (2x1, . . . , 2xn).

Hence dFx is surjective for all nonzero x. In particular F −1(1) = {x ∈
Rn|

∑
x2i = 1} is a submanifold of Rn of dimension n − 1. This is, of course,

the standard sphere of radius 1.

De�nition 4.1.12 (Regular value). Suppose f : M → N is a smooth map of
manifolds. A point c ∈ N is a regular value of f if for all x ∈ f−1(c) the
di�erential

dfx : TxM → TcN

is surjective.

Note that Proposition 4.1.10 then simply states that non-empty preimages
of a regular values of a map F : mathbbRm → Rk are submanifolds of Rm.
Remark 4.1.13. Note that if f−1(c) = ∅, then c is a regular value of f . It seems
silly to construct a de�nition this way. The reason for the peculiar phrasing is
that it makes easier to state Sard's theorem.

Theorem 4.1.14 (Sard's theorem). Let f : M → N be a smooth map. Then
the set of regular values of f is dense in M (and in fact its compliment has
measure 0).

Note that if F : M → N maps everything to one point {c} then c is not a
regular value (the di�erential of F is 0 everywhere), but N \ {c} does consist
of regular values. So Sard's theorem does hold for constant maps, except for
the preimage of every regular value of a constant map is empty. It will take
us too far a�eld to prove Sard's theorem here, so we will give a proof in the
appendix (See �5.2.) On the other hand Proposition 4.1.10 nicely generalises to
manifolds:

Theorem 4.1.15. If c is a regular value of a smooth map of manifolds f : M →
N and if f−1(c) 6= ∅ then the level set f−1(c) is an embedded submanifold of
M of dimension

dim f−1(c) = dim(M)− dim(N).

Before we proceed with the proof of Theorem 4.1.15, we make an observation:

1. Let {φα : Uα → Rm} be an atlas on a manifold M . Suppose for some index
β there is a di�eomorphism σ : φβ(Uβ) → W ⊂ Rm (W is some open set).
Then

(i) σ ◦ φβ : Uβ → Rm is a chart on M ,
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(ii) this chart is copatible with the atlas {φα : yα → Rm}

These imply that

2. If Z is a submanifold of a manifold M and H : M → M ′ is a di�eomor-
phism, then H(Z) is a submanifold of M ′.

Proof. (of Theorem 4.1.15) It is enough to show that for every point a of f−1(c)
there is a neighbourhood U of f−1(c) such that U ∩ f−1(c) is a submanifold of
U of dimension m− n.

Let a ∈ f−1(c) be a point. Let φ : U → Rm be a chart of M with a ∈ U and
ψ : V → Rn be a chart on N with c ∈ V . Then

ψ ◦ f ◦ φ−1 : φ(U)→ V

is a smooth map. Moreover, by the chain rule,

∗d(ψ ◦ f ◦ φ−1)0 = dψc ◦ dfa ◦ d(φ−1)0.

Since dψc and dφa are isomorphisms and dfa is onto for any a2 ∈ f−1(c) by
assumption,

d(ψ ◦ f ◦ φ−1)φ(a) : Tφ(a)Rm → Tψ(c)Rn

is onto for any a ∈ f−1(c) ∩ U . By Proposition 4.1.10 (ψ ◦ f ◦ φ−1)−1(ψ(c)) =
φ(U∩f−1(c)) is a submanifold of φ(U) of dimensionm−n. Therefore U∩f−1(c)
is a submanifold of U ⊂ M of dimension m− n. Since a is arbitrary, f−1(c) is
a submanifold of M of the desired dimension.

The next statement describes the tangent bundle of a regular level set f−1(c).

Corollary 4.1.16. Suppose that c is a regular value of f : M → N and f−1(c) 6=
∅. Then for all a ∈ f−1(c),

Taf
−1(c) = ker(dfa).

Proof. Since

dimTaf
−1(c) = dim f−1(c) = dimM − dimN = dim ker dfa,

it is enough to prove that Taf
−1(a) ⊂ ker dfa. Let v ∈ Taf−1(c) be a vector. By

exercise 3.3.9 there is a curve γ : I → f−1(c) (where I is the unit interval [0, 1])
such that γ(0) = a and dγ

(
d
dt

)
= v. Since f ◦γ is a constant map, d(f ◦γ)0 = 0.

By the chain rule,

d(f ◦ γ)0

(
d

dt

)
= dfγ(0)(dγ0

(
d

dt

)
) = dfa(v)

Therefore Taf
−1(c) ⊂ ker dfa and we are done.
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Example 4.1.17. Let f : Rn → R be given by f(x) =
∑
x2i . Then, as we have

seen before, 1 is a regular value of f and dfx = (2x1, . . . , 2xn) for all x ∈ Rn.
Therefore, for any x ∈ f−1(1) = Sn−1 the tangent space TxSn−1 is naturally
isomorphic to ker{v 7→

∑
2xivi}, which is the (n − 1) dimensional hyperplane

in Rn ' TxRn orthogonal to the vector x.

Exercise 4.1.18. Show that O(n), the set of all n× n orthogonal matrices, is a
submanifold of GL(n,R).
Hint: Consider the map f : GL(n,R) → Sym(n,R) given by A 7→ AAT . Show
that the identity matrix I is a regular value of f .

4.2 Transversality

We now have enough tools to do a bit of di�erential topology.

De�nition 4.2.1 (Transversality). A smooth map F : M → N of manifolds is
transverse to a submanifold Z of N if for every z ∈ Z and any m ∈ F−1(z), we
have

TzZ + dFm(TmM) = TzN

Note that the sum is not necessarily a direct sum!.

Notation 4.2.2. We write F t Z if a map F is transverse to a submanifold Z.

Example 4.2.3. Let N = R2, M = R3, Z = S2 ⊂ M , the unit sphere. Let
f : N →M is given by f(x1, x2) = (x1, x2, 0). Then f t S2.
Remark 4.2.4. A map F : M → N is transverse to submanifold Z consisting of
one point c if and only if c is a regular value of F .

Example 4.2.5. Take M = N = R2. Consider F : M → N given by F (x, y) =
(x, x2). Then F is transverse to {0} × R, but it is not transverse to R× {0}.

Theorem 4.2.6. If a smooth map F : M → N of manifolds is transverse to a
submanifold Z of N , then F−1(Z) is a submanifold of M . Moreover,

Ta(F−1(Z)) = (dFa)−1(TF (a)Z),

for all a ∈ F−1(Z), and

dim(M)− dim(F−1(Z)) = dim(N)− dim(Z).

Proof. We �rst consider a special case: assume that

N = Rn, Z = Rk × {0} ⊂ Rk × Rn−k = Rn.

Let π : Rk × Rn−k → Rn−k denote the canonical projection map. Then

π−1(0) = Rk × {0} = Z,

hence
(π ◦ F )−1(0) = F−1(Z).
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Additionally, for all a ∈ F−1(Z)

d(π ◦ F )a(TaM) = dπF (a)(dFa(TaM)) = dπF (a)(dFa(TaM) + TF (a)Z)

= dπF (a)(Rn) = Rn−k,

where for the second equality we used the fact that dπF (a)(TF (a)Z) = 0. There-
fore 0 is a regular value of π ◦F and consequently (π ◦F )−−1(0) = F−1(Z) is
a submanifold of M . Moreover,

TaF
−1(Z) = Ta(π ◦ F )−1(0) = ker d(π ◦ F )a = ker{dπF (a) ◦ dFa}

= (dFa)−1(ker dπF (a)) = (dFa)−1(TF (a)Z).

Finally, since (dπ ◦ F )a is surjective,

dimF−1(Z) = dim(ker(dπ ◦ F )a) = dimM − dimRn−k.

Therefore

dimM − dimF−1(Z) = dimM − (dimM − dimRn−k) = dimN − dimZ.

The general case follows from the following consideration. Since Z is an embed-
ded submanifold for all z ∈ Z, there is a coordinate chart ψ = (x1, . . . , xn) : N →
Rn adapted to Z with z ∈ V . Hence psi(Z) = ψ(V ) ∩ (Rk × {0}). Now apply
the previous argument to ψ ◦ F : F−1(V )→ Rn and ψ(V ) ∩ (Rk × {0}).

Example 4.2.7. Consider two surfaces S1 and S2 in R3 such that TxS1 6= TxS2

for every x ∈ S1 ∩ S2. Then TxS1 + TxS2 = R3 for all x ∈ S1 ∩ S2.
Let F : S1 ↪→ R3 be the inclusion map. Then dFx(TxS1) = TxS1. Thus, F

is transverse to S2. By the theorem above F−1(S2) = S1 ∩ S2 is a submanifold
of S1 of dimension 1. In other words, if two surfaces are nowhere tangent then
they intersect in a collection of curves.

4.3 Embeddings, Immersions, and Rank

De�nition 4.3.1 (Immersion). A smooth map of manifold f : Z → M is an
immersion if its di�erential is injective at every point of Z.

Immersions need not be injective: consider the map f : S1 → S1, f(eiθ) =
e2iθ. It is a 2-1 map but its di�erential everywhere is a bijection.

Example 4.3.2. The inclusion map of a submanifold is a 1-1 immersion.

De�nition 4.3.3 (Submersion). A map f : M → N between smooth manifolds
is called a submersion if its di�erential at every point is surjective.

Exercise 4.3.4. Show that for any manifoldM the canonical projection π : TM →
M is a submersion � compute in the appropriate coordinates.
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Exercise 4.3.5. Show that if Z ⊂M is an embedded submanifold, then π−1(Z) ⊂
TM is an embedded submanifold of the tangent bundle TM of M . Here again
π : TM → M is the projection. Note that π−1(Z) = ∪a∈ZTaM . It is often
denoted by TM |Z .

De�nition 4.3.6 (Embedding). A smooth map of manifold f : Z → M is an
embedding if f(Z) ⊂ M is an embedded submanifold and f : Z → f(Z) is a
di�eomorphism.

This says, in particular, that every embedding is a 1-1 immersion. The
converse is not true.



Chapter 5

Appendix

5.1 Inverse function theorem

This section is a slightly edited version of �Inverse Function Theorem� by Ethan
Y. Ja�e. The reason that the transcriber adopted this one is two-fold:

1. It is written in the same spirit as �Baby-Rudin�, and

2. it is self-contained.

Theorem 5.1.1 (Inverse Function Theorem). Let U be an open set in Rn,
and let f : U → Rn be continuously di�erentiable, i.e., f is of class C1. Suppose
that x0 ∈ U and Df(x0) is invertible. Then there exists a smaller neighbourhood
V 3 x0 such that f is a homeomorphism onto its image. Furthermore, V may
be taken small enough so that f−1 is also continuously di�erentiable, with its
derivative satisfying D(f−1)y = (Df)−1f−1(y). Moreover, if f is of class Ck,

(k ∈ N ∪ {∞}), then so is f−1.

The version of the proof presented here depends on a version of the Banach
�xed point theorem with parameter, which we now state.

Theorem 5.1.2 (Banach Fixed Point Theorem). Let (X, d) be a complete met-
ric space, and T : X → X be a contraction of factor r < 1, i.e. d(Tx, Ty) ≤
rd(x, y). Then T has a unique �xed point. Furthermore, if Λ is another metric
space, and T (λ) λ ∈ Λ is a continuous family of contractions of factor r, that
is,

lim
λ→λ0

sup
x∈X

d(T (λ)x, T (λ0)x) = 0

then the �xed points of T (λ) are continuous of λ. Stated otherwise, if x(λ) is
the unique �xed point of T (λ), then the map λ 7→ x(λ) is continuous.

Proof. First we show uniqueness. If Tx = x and Ty = y, then

d(x, y) = d(Tx, Ty) ≤ rd(x, y),

41
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which is only possible if d(x, y) = 0, i.e., x = y.
Now for existence. Fix any x0 ∈ X, and consider y = limn→∞ Tn(x0). If

this exists, then

T (y) = T
(

lim
n→∞

Tn(x0)
)

= lim
n→∞

Tn+1(x0) = y,

since T is continuous. To prove convergence, notice that the sequence is Cauchy.
Indeed, for any n it is easy to see inductively that

d(Tn(x0), Tn+1(x0)) ≤ rnd(x0, T (x0)).

By the triangle inequality, it follows that for k ≥ 1

d(Tn(x0), Tn+k(x0)) ≤ d(x0, T (x0))

n+k−1∑
i=n

ri ≤ rn d(x0, T (x0))

1− r

This upper bound is independent of k, so it follows that if n,m ≥ N ,

d(Tn(x0), Tm(x0)) ≤ rN d(x0, T (x0))

1− r
,

which shows that the sequence is Cauchy.
Now for the version with parameter. Observe that

d(x(λ), x(λ0)) = d(T (λ)x(λ), T (λ0)x(λ0))

≤ d(T (λ)x(λ), T (λ)x(λ0)) + d(T (λ)x(λ0), T (λ0)x(λ0))

≤ rd(x(λ), x(λ0)) + d(T (λ)(x(λ0)), T (λ0)(x(λ0))).

Rearranging,

d(x(λ), x(λ0)) ≤ (1− r)−1d(T (λ)x(λ0), T (λ0)x(λ0))→ 0

as λ→ λ0 by continuity of the map λ 7→ T (λ).

Now we prove the inverse function theorem.

Proof. (of Inverse Function Theorem) Translating and multiplying by a linear
map, we may assume that x0 = 0, f(x0) = 0 and Df0 = id. Since f is
continuously di�erentiable, Dfx remains close to Df0 as matrices if x is close
to 0. For y ∈ Rn, with y close to 0, consider the map Ty : x 7→ x − f(x) + y.
Observe that a �xed point x of Ty is precisely an x for which f(x) = y2.

The following part should be skipped for the �rst reading. Let us
motivate the choice of this map. Let us use the notation F (x) = f(x)−x of the
sequel. Since Df0 = id, F (x) ∈ o(1) can be thought of as a perturbation of the
constant map 0, and hence f = id−F is a peturbation of the identity. We are
seeking to solve f(x) = y, i.e. (id−F )(x) = y.
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One way to motivate the choice of the map Ty is to rearrange this equality
into id(x) = F (x) + y = Ty(x), i.e., �nding a �xed point for Ty. A more brute
force approach, however, is to try to build a sequence of approximate solutions
xn to this equation, starting with x1 = y, and iteratively improving the error.
Explicitly, we may think of F (xn) + y = xn + Rn, where Rn is some error. To
improve the error, we try to perturb by adding some z of size roughly Rn to xn,
and trying to solve F (xn + z) + y = xn + z. For such z,

F (xn + z) = F (xn) +DFxnz + o(|z|)

by de�nition of the derivative, and so we are trying to solve

F (xn) + y +DFxnz + o(|z|) = xn + z, i.e. Rn +DFxnz + o(|z|) = z.

Since xn should be thought of as close to 0, DFxn is small, and thus DFxnz +
o(|z|) should be thought of as neglible compared to Rn if z is about size Rn.
Thus z = Rn is of size Rn and solves the previous equation modulo an error of

Rn+1 = DFxnRn + o(|Rn|),

which is of order smaller than Rn. Thus xn+1 := xn + z solves F (xn+1) + y =
xn+1 +Rn+1, and Rn+1 is an improved error compared to Rn.

While this idea can be turned into a formal proof, one should just notice
that

xn+1 = xn + z = xn +Rn = F (xn) + y = Ty(xn)

is just a �xed-point iteration, and so the formalisation of this proof may be
abstracted away to an invokation of the �xed point theorem, anyway. The reader
should also notice the similary of this approach to inverting the linear operator
id−F on a Banach space, if ‖F‖ < 1, via the Neumann series

∑∞
k=0 F

k; in
this case, the choice of xn above are precisely the partial sums of the Neumann
series, truncated at k = 2n−1, applied to y.

Returned from the paragragh to be skipped for the �rst reading.

Let BR denote the closed ball of radius R > 0 centred at 0. Note that BR is a
complete metric space. We will prove that if R is small enough, and y is small
enough, Ty maps BR to itself and is a contraction. We will use ‖x‖ to denote
the usual (`2) Euclidean norm on points, and for a linear map A, ‖A‖ to denote
the `2 operator norm.

Let us start by considering the map F (x) = f(x) − x. F is continuously
di�erentiable with DF0 = 0. Then for R > 0 small enough that BR ⊆ U , and
any two x, x′ ∈ BR,

‖F (x)− F (x′)‖ =

∥∥∥∥� 1

0

DF(x−x′)t+x′ · (x− x′)dt
∥∥∥∥

≤
� 1

0

‖DF(x−x′)t+x′‖‖x− x′‖dt

≤
(

sup
z∈BR

‖DFz‖
)
‖x− x′‖.
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Since DF0 = 0 and F is continuously di�erentiable, for all 0 < ε < 1, if R is
small enough, (supz∈BR‖DFz‖) ≤ ε. Fix such an ε.

Suppose ‖y‖ ≤ R(1− ε). Then we will show Ty : BR → BR is a contraction.
Fix x ∈ BR. Then we compute

‖Ty(x)‖ = ‖x− f(x) + y‖ ≤ ‖F (x)‖+ ‖y‖
= ‖F (x)− F (0)‖+ ‖y‖
≤ ‖x‖+R(1− ε) ≤ R.

Thus Ty : BR → BR.
Now for the contraction. Fix x, x′ ∈ BR. Then we compute

‖Ty(x)− Ty(x′)‖ ≤ ‖F (x)− F (x′)‖ ≤ ε‖x− x′‖.

By the �xed point theorem, Ty has a unique �xed point x ∈ BR, i.e. if ‖y‖ is
small enough, there exists a unique solution x to f(x) = y with x ∈ BR. In
other words, we have established the existence of f−1 : BR(1−ε) → BR.

We still need to prove that f is a homeomorphism. In �nite dimensions, we
can appeal to the fact that a continuous bijection between compact subsets of
Rn is a homeomorphism, and that is the end of the story.

For an extra bonus, we show that we do not need the assumption of �nite
dimensions, so we will use the version of the �xed point theorem with parameter.
We just need to prove that f−1 is continuous, i.e. the �xed points of Ty are
continuous in y. By the �xed point theorem, we just need to show that the map
y → Ty is continuous, since they all have the same contractive factor ε. We
easily compute for y, y′ ∈ BR(1−ε).

sup
x∈BR

‖Tyx− Ty0x‖ = ‖y − y′‖,

which certainly tends to 0 as y → y′. Thus f−1 is continuous. If 0 ∈ V ⊆ BR
is open, then restricting f to U , it follows that f is a homeomorphism onto its
image, which we will call W . This completes the �rst part of the theorem

Now we need to show that f−1 is continuously di�erentiable. Shrinking V
if necessary, we may assume that Dfx is nonsingular on V . Now we show that
f−1 : W → V (which we know to be a homeomorphism) is di�erentiable on
W , with derivative (Df)−1f−1(y). Since Df is non-singular and f−1 is continu-

ous, this automatically shows that (Df)−1f−1(y) is continuous, and hence f−1 is

continuously di�erentiable.
Fix y0 ∈ W , and write x0 = f−1(y0), and for any y ∈ W write x = f−1(y).

Then since f is a homeomorphism

lim
y→y0

f−1(y)− f−1(y0)− (Df)−1f−1(y0)
(y − y0)

‖y − y0‖

= lim
x→x0

x− x0 − (Df)x0
(f(x)− f(x0))

‖f(x)− f(x0)‖

= lim
x→x0

−Df−1x0

(
f(x)− f(x0)−Dfx0(x− x0)

‖x− x0‖

)
‖x− x0‖

‖f(x)− f(x0)|
.
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Since Df−1x0
is a linear map, it is continuous, and so the �rst factor converges

to 0 by de�nition of di�erentiability. The second factor is bounded above as
x→ x0. Indeed,

lim inf
x→x0

‖f(x)− f(x0)‖
‖x− x0‖

≥ lim inf
x→x0

∣∣∣∣‖Dfx0
(x− x0)‖

‖x− x0‖
− ‖f(x)− f(x0)−Dfx0

(x− x0)‖
‖x− x0‖

∣∣∣∣
= lim inf

x→x0

‖Dfx0(x− x0)‖
‖x− x0‖

≥ c > 0,

since Dfx0
invertible means that there is some c > 0 for which ‖Dfx0

(x−x0)‖ ≥
c‖x− x0‖. Putting these two things together means that

lim
y→y0

f−1(y)− f−1(y0)− (Df)−1f−1(y0)
(y − y0)

‖y − y0‖
= 0,

i.e. f−1 is di�erentiable at y0 with the desired derivative.

Lastly, we show that if f is Ck on V , then f−1 is Ck on W , without the
need to shrink V . Because we do not shrink V , if we can show this is true for
k <∞, we automatically show it's true for k =∞. First, observe that GL(n,R)

is an open subset of Mn(R) ' Rn2

, and that the inversion map I : GL(n,R)→
GL(n,R) is of class C∞ (since it is just a rational function of the entries). If f
is of class Ck, then the map Df : V → GL(n,R) is of class Ck−1. Now, from
the above, D(f−1) : W → GL(n,R) is just

D(f−1) = I ◦Df ◦ f−1,

i.e., is the composition of three maps, the �rst of which is C∞, and the second
of which is Ck−1. This argument shows that that if f−1 is of class Cr for r < k,
then D(f−1) is of class Cr, too, so that f−1 is of class Cr+1. Starting with the
case r = 1, which we know to be true, we obtain iteratively that f−1 is of class
Ck, too.

Remark 5.1.3. As mentioned in the motivation section, this proof easily extends
to in�nite dimensions, with the derivative replaced by the Fréchet derivative.
Indeed, the only thing which needs changing is Rn to whichever Banach space
X is in question, and changing the norms to the norms in the Banach spaces.
The last part about f−1 inheriting the regularity of f does not quite carry
through, as we have to manipulate maps that are k times continuously Fréchet
di�erentiable like the following.

If f : U →W is a di�erentiable function at all points in an open subset U of
V , it follows that its derivative

Df : U → L(V,W )
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is a function from U to the space L(V,W ) of all bounded linear operators from
V to W . This function may also have a derivative, the second order derivative
of f , which, by the de�nition of derivative, will be a map

D2f : U → L(V,L(V,W )).

To make it easier to work with second-order derivatives, the space on the right-
hand side is identi�ed with the Banach space L2(V × V,W ) of all continuous
bilinear maps from V to W . An element ϕ in L(V,L(V,W )) is thus identi�ed
with ψ ∈ L2(V × V,W ) such that for all x and y in V ,

ϕ(x)(y) = ψ(x, y).

(Intuitively: a function ϕ linear in x with ϕ(x) linear in y is the same as a
bilinear function ψ in x and y).

One may di�erentiate

D2f : U → L2(V × V,W )

again, to obtain the third order derivative, which at each point will be a trilinear
map,

D3f : U → L(V,L(V,L(V,W ))) ' L3(V × V × V,W )

and so on. The n-th derivative will be a function

Dnf : U → Ln(V × V × · · · × V,W ),

taking values in the Banach space of continuous multilinear maps in n arguments
from V to W . Recursively, a function f is n + 1 times di�erentiable on U if
it is n times di�erentiable on U and for each x in U there exists a continuous
multilinear map A of n+ 1 arguments such that the limit

lim
hn+1→0

‖∆−A(h1, h2, . . . , hn, hn+1)‖
‖hn+1‖

= 0 where

∆ = Dnf(x+ hn+1)(h1, h2, . . . , hn)−Dnf(x)(h1, h2, . . . , hn)

exists uniformly for h1, h2, . . . , hn in bounded sets in V . In that case, A is the
(n+ 1)st derivative of f at x.

Moreover, we may obviously identify a member of the space

Ln(V × V × · · · × V,W )

with a linear map

L(

n⊗
j=1

Vj ,W )

through the identi�cation

f(x1, x2, . . . , xn) = f(x1 ⊗ x2 ⊗ · · · ⊗ xn)

thus viewing the derivative as a linear map.
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5.2 Sard's theorem

This section is an excerpt from �Topology from the di�erentialble veiw point� by
John Milnor. The reason for the seclection is quite simple: to the knowwledge
of the transcriber, no other textbooks of manifolds and/or di�erential topology
states and proves the theorem as completely as Milnor's book.

In general, it is too much to hope that the set of critical values of a smooth
map be �nite. But this set will be �small,� in the sense indicated by the next
theorem, which was proved by A. Sard in 1942 following earlier work by A. P.
Morse.

Theorem 5.2.1. Let f : U → Rn be a smooth map, de�ned on an open set
U ⊂ Rm, and let

C = {x ∈ U | rank dfx < n}.
Then the image f(C) C Rn has Lebesgue measure zero, i.e, given any ε > 0, it is
possible to cover f(C) by a sequence of cubes in Rn having total n-dimensional
volume less than ε.

Since a set of measure zero cannot contain any nonvacuous open set, it
follows that the complement Rn \ f(C) must be everywhere dense in Rn.

Note that f should be �reasonably� smooth for the proof which we will give
later.

Before giving the proof, let us remark that We will be mainly interested in
the case m ≥ n. If m < n, then clearly C = U ; hence the theorem says simply
that f(U) has measure zero.

More generally consider a smooth map f : M → N , from a manifold of
dimension m to a manifold of dimension n. Let C be the set of all x ∈M such
that

dfx : TMx → TNf(x)

has rank less than n (i.e. is not onto). Then C will be called the set of critical
points, f(C) the set of critical values, and the complement N \ f(C) the set
of regular values of f . (This agrees with our previous de�nitions in the case
m = n.) Since M can be covered by a countable collection of neighbourhoods
each di�eomorphic to an open subset of Rm, we have:

Corollary 5.2.2 (A. B. Brown). The set of regular values of a smooth map
f : M → N is everywhere dense in N .

In order to exploit this corollary we will need the following (See Theorem
4.1.15):

Lemma 5.2.3. If f : M → N is a smooth map between manifolds of dimension
m ≥ n, and if y ∈ N is a regular value, then the set f−1(y) ⊂ M is a smooth
manifold of dimension Em− n.

Proof. Let x ∈ f−1(y). Since y is a regular value, the derivative dfx must
map TMx onto TNy. The null space N ⊂ TMx of dfx will therefore he an
(m− n)-dimensional vector space.
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At this satege we take granted the Whitney imbedding theorem which states
that any smooth manifold of dimension m can be embedded into Rk for some
integer k (actually k can be assumed to be 2m+ 1.) If M ⊂ Rk, choose a linear
map L : RktoRm−n that is nonsingular on this subspace N ⊂ TMx ⊂ Rk. Now
de�ne

F : M → N × Rm−n

by F (ξ) = (f(ξ), L(ξ)). The derivative dFx is clearly given by the formula

dFx(v) = (dfx(v), L(v)).

Thus dFx is nonsingular. Hence F maps some neighbourhood U of x di�eomor-
phically onto a neighbourhood V of (y, L(x)). Note that f−1(y) corresponds,
under F , to the hyperplane y × Rm−n. In fact F maps f−1(y) ∩ U di�eomor-
phically onto (y×Rm−n)∩ V . This proves that f−1(y) is a smooth manifold of
dimension m− n.

As an example we can give an easy proof that the unit sphere Sm−l is a
smooth manifold. Consider the function f : Rm → R de�ned by

f(x) = x21 + x22 + · · ·+ x2m.

Any y 6= 0 is a regular value, and the smooth manifold f−1(1) is the unit sphere.
If M ′ is a manifold which is contained in M , it has already been noted that

TM ′x is a subspace of TMx for x ∈ M ′. The orthogonal complement of TM ′x
in TMx is then a vector space of dimension m−m′ called the space of normal
vectors to M ′ in M at x.

In particular let M ′ = f−1(y) for a regular value y of f : M → N .

Lemma 5.2.4. The null space of dfx : TMx → TNy is precisely equal to the
tangent space TM ′x ⊂ TMx of the submanifold M ′ = f−1(y). Hence dfx maps
the orthogonal complement of TM ′x isomorphically onto TNv.

Proof. From the diagram

M ′
i //

��

M

f

��
y // N

we see that dfx maps the subspace TM ′x ⊂ TMx to zero. Counting dimensions
we see that dfx maps the space of normal vectors to M ′ isomorphically onto
TNy.


