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PREFACE

Note by the transcriber

This is a transcription of "Introduction to Differential Geomtry" by Eugene
Lerman.

The transcriber is currently binding the notes of Brian Conrad on differential
geometry. His notes are detailed, but unfortunately they are nothing more
than a colleciton of seemingly sporadic topics: in other words, they are not
well-organised. So, I looked for a compact and well-organised lecture notes on
differential geometry.

First, I tried “Notes on Differential Geometry” by Hicks, but they have a
crucial flaw: namely he assigns the same symbol X to both tangent vectors and
vector fields, which makes a confusing and frustrating read.

Then I found Lerman’s notes and decided to transcribe them in the hope
that his notes and Conrad’s notes can coplement each other.

For the record, Lerman has not provided preface to his notes.

The appendix contains the material omitted in the original notes: namely,

1. the proof of the inverse function theorem,

2. the proof of Sard’s theorem.
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Chapter 1

Introduction: why manifolds?

There are many different ways to formulate mathematically the notion of a
‘space’ that occurs in different branches of science and engineering. For instance
one can talk about the space of configurations of a physical system. This, of
course, requires a decision as to the level of details one is trying to model. For
example, we can regard the configuration space of a system consisting of a sun
and a planet as R? x R3. We use three real numbers to describe the position of
the center of mass of the sun and three real numbers to describe the position of
the center of mass of the planet. In this model we assume that the sun and the
planet are simply two points in space. We also allow collisions. If we exclude
collisions (but still allow the sun and the planet to come arbitrarily close to each
other), the con
guration space is then

Q ={(z,y) e R® x R?|z # y}.

Here is another idealised example: the configuration space of a penny tumbling
through the air. Fix a frame of reference. We will need a triple of real numbers
to describe the position of the penny’s center of gravity and three orthonormal
vectors to describe the orientation of the penny. Thus the con

guration space in question is

Q=R x 0(3),

where O(3) denotes the set of 3 x 3 orthogonal matrices (recall that an n x n
matrix is orthogonal if (and only if) its columns form an orthonormal basis of
Rn)_l

Exercise 1.0.1. What is the configuration space of a penny rolling on a plane?
Manifolds constitute a particular way to formalise the notion of a configuration
space. These are the spaces that “locally look like R™.” The reason we will limit

IStrictly speaking the configuration space is R3 x SO(3), where SO(3) denotes the set of
orthogonal matrices with positive determinant. Why?
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ourselves to manifolds is that they are particularly suitable for generalising the
ideas of calculus — differentiation and integration. We will see that the two
examples of configuration spaces given above: Q = {(z,y) € R® x R3|z # y}
and Q = R3 x O(3) are, indeed, manifolds.

Remark 1.0.2. There are, of course, many other notions of a “space.” In linear
algebra one studies vector spaces and maps between them. In algebraic geometry
one studies spaces of solutions of polynomial equations which give rise to the
notion of an algebraic variety. In metric topology/geometry one studies metric
spaces, spaces with a notion of a distance. In point set topology and in algebraic
topology one talks about topological spaces. In analysis one may study the space
of solutions of a partial differential equation. In geometry and topology one may
be forced to study spaces that have singularities such as orbifolds and stratified
spaces. Before we can discuss orbifolds and more complicated spaces we should
first come to terms with manifolds which are smooth.



Chapter 2

Smooth manifolds

2.1 Digression: smooth maps from open subsets
of R” to R™

We start out, by recalling the definition of a differentiable map.

Definition 2.1.1. Let U C R™ be an open subset. A map f: U — R™ is
differentiable at a point x € U if there is a linear map L: R™ — R™ so that

1
}lLiE% m(f(x +h)— f(x) — Lh) =0.
It is not hard to show that if such a map L exists, it is unique. The linear
map L is variously called the derivative of f at x, the differential of f at =x,
. and is denoted by df, or by Df, or by Df(z) or by a similar notation.
Moreover, the matrix corresponding to L with respect to the standard basis of
R™ and R™ is the so called Jacobian matriz. That is, if f = (f1,..., fm) then

) )
@) ... ()
8 m 8 m

Yo(z) ... G=(2)

Definition 2.1.2. Let U C R" be an open subset. A map f: U — R™ is
smooth (or C°°) on the set U if all partial derivatives of f to all orders exist at
all points of U.

Here is a more “sophisticated” version of the the definition above. Suppose
f: U — R™ is differentiable at all points of U. Then we have a map g(x) :=
Df,: U — R™. We can require that ¢ is differentiable as a map from U to
R™. The derivative of ¢ is a map from U to a bigger vector space RY for an
appropriate N. We can require that this map is differentiable and so on... In
other words, if all derivatives of f: U — R exist and are differentiable we say
that f is smooth.
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2.2 Definitions and examples of manifolds

A smooth manifold is a generalisation of a smooth surface in R3. A smooth
surface in S C R? has local parameterisations: for every point p € S there is an
open set V C R3 with p € V and a map z: U — SNV (where U C R? is an
open set) such that

(1) z is C*. That is x(u1,u2) = (x1(u1,us, z2(ur,us), z3(us, uz)) and each
x;(u1,uz),1 <1i<3is an infinitely differentiable function of v = (u1,us) €
U;

(2) z is 1-1 (injective) and onto.

The map z is a local parameterisation of S.

Ezample 2.2.1. The two sphere
§2={s € R af = 1)

is a smooth surface. In fact, if p = (p1,p2,p3) € S? and p3 > 0 take V =
{z € R®|xg > 0}, U = {(u1,u2)|||ul| < 1} and a local parameterisation z: U —
S2 NV to be x(uy,uz) = (u1,u2, /1 —u? —u2). It’s easy to check that this
x is 1-1, onto and C*. If p3 < 0 take the local parameterisation z(u) =

(u1,ug, —/1 —u? —u3). If p3 = 0 then either p; or py is non-zero (or both)
and there are formulasefor local parameterisations similar to the ones above.

Note that if S is a smooth surface and z,: R? D U, — S and z5: R? D
U — S are two local parameterisations with
Wap i=za(Ua) N2p(Up) # @
then
x;l 0x: xyt (Wap) — scgl(Wag) C R?
is O,
This motivates

Definition 2.2.2 (of a C° manifold, first approximation, not quite right).
A C° manifold of dimension m is a set M and a family of injective maps
{Zo: Uy — M} where U C R™ are open sets, such that

(1) Uxa(Ua) = M;

(2) if for some pair of indices o and 8, the set Wy, := z4(Us) Nz5(Us) # @
then z; ' (Wag), 5" (Wp) are open in R™ and

x,gl 0y 2y (Wap) — xgl(Waﬁ)
are C'*°.

One thing that is wrong with this definition is that there is no topology
specified on M. The other is that instead of parameterisations one usually
works with charts that go the other way. Namely
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Definition 2.2.3 (Chart). Let X be a topological space. An R™ (coordinate)
chart on X is a homeomorphism ¢: X D U — U’ C R".

Notation 2.2.4. We will often write ¢: U — R™ or even (U, ¢) for a coordinate
chart ¢: XsupsetU — U’ C R™. Note that since ¢ takes values in R", it is
an n-tuple of functions ¢ = (z1,...,x,) for some functions z;: U — R, the
coordinate functions on U associated to the coordinate chart ¢: U — R™.

Notation 2.2.5. When dealing with charts it will be convenient to to adopt
the notation where the standard coordinate functions on R™ are denote by
ri,1 < i < n. That is, r; assigns to a point a = (ay,...,a,) € R™ the number
a;. If ¢: U — R"™ is a chart then

zi=1r;0¢0:U =R
are the coordinate functions on U.

Definition 2.2.6 (Atlas). A C*° atlas on a topological space X is a collection
of charts {¢o: U, — UL} (with all U”’s being open subsets of one fixed R™ such
that

(1) {U,} is an open cover of X, and

(2) ¥ U, NUg # @, then ¢g 0 ¢o: ¢a(Us NUs) — ¢p(Uy NUp) is C= as a
map from an open subset of R” to R™. That is, changes of coordinates are
smooth.

Ezample 2.2.7. The identity map f: R — R, f(z) = z is the standard chart on
R. The set {(f,R)} consisting of one chart is an atlas on R. The map g: R — R,
g(z) = 2? is also a chart on R; it defines a different atlas on R.

Here is a third atlas on R. For each integer n € Z, ¢,: (n,n +2) — R,
¢n(x) = x is a chart. The set {(¢n, (n,n + 2)} is an atlas on R.

Definition 2.2.8. We say that two atlases are equivalent if their union is also
an atlas.

The definition above amounts to: an atlas {x,: Uy — UL} is equivalent
to an atlas {yg: Vg — Vg} if for any indices o, 8 with U, N Vs # @ the map
T O ygl :yg(UaNV3) = 24 (Uy NVp) is smooth. One can easily verify that this
is indeed an equivalence relation
Ezercise 2.2.9. Convince yourself that the first and the third atlases in Example

2.2.7 are equivalent. Show that the first and the second example of atlases are
not equivalent.

Definition 2.2.10 (Manifold). An n-dimensional (C*) manifold is a topolog-
ical space M together with an equivalence class of C"*° atlases.

Notation 2.2.11. We will denote the manifold and the underlying topological
space by the same letter, with the equivalence class of atlases usually under-
stood.

1That is, each Uy C X is open and UaUqsy = X
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Ezample 2.2.12. Let M = R™. We cover M by one open set and take the
identity map as our chart. This is the standard manifold structure on R".

Example 2.2.13. Let M = C". Again we cover C™ by one open set U = C" and
take the identity map as our coordinate chart map ¢: C* — R?" which is given
by

¢(z1, ce ,Zn) = (3%2’1, Szl, cee )

Example 2.2.14. If M is a manifold, and V' C M is an open subset, then V is
naturally a manifold. Check this!

Ezample 2.2.15. The set M, (R) of n x n matrices with real coeffcients is a
manifold, since it is R"". The subset GL(n, R) C M, (R) of invertible matrices
is an open subset: a matrix A is invertible if and only if its determinant is non-
zero and determinant det: M, (R) — R is a polynomial map, hence continuous.
Hence the subset {A € M,,(R)}|det A # 0} is open. So by the previous example,
GL(n,R) is a manifold.

Ezample 2.2.16. The two-sphere S? := {x € R?|||z||> = 1} is a manifold. To see
this, we give S? the subspace topology that it inherits as a subset of R3. Next
we define charts. To do this, let

Ut ={z = (v1,72,23) € S 1 2; > 0}

and

U~ ={z = (21,72,73) € $* : 7; < 0},
i = 1,2,3 (6 charts altogether) which gives us an open cover of S2. De-
fine ¢ (z) = (w2,23), 65 (x) = (x1,23), and ¢ (x) = (x1,22). We need to

verify that changes of coordinates are smooth. Consider, for example, ¢3 o
(67) " (u1,u2) = (/1 —u? —u3,uz), which is smooth in its region of defini-
tion. The other compositions yield similar results. It follows that S? is indeed
a manifold.

Example 2.2.17. Now we consider a slightly more interesting example of a man-
ifold, the real projective space RP™~! which is, by definition, the space of lines
through the origin in R™. To give RP"~! a topology, we think of it as the set
of equivalence classes of nonzero vectors in R™. That is,

RP"! = (R™\ {0})/ ~

where two non-zero vectors v and v’ are equivalent (v ~ v') if and only if there
is a constant A # 0 such that v = \v’. Note that this is an equivalence relation.
We then have a surjective map

m: R"\ {0} = RP"!,  7(v) = [v],

where [v] denotes the equivalence class of v ([v] is the line through v).

We put on RP™"! the quotient topology: U C RP™! is open if and only if
7 Y(U) is open in R™\ {0}. I leave it to the reader to check that this topology
is Hausdorff.
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Charts here are given as follows: for each 1 <i < n, let

Uy ={[z1,..., 2] ERP" i 2; #£0}

and define
(bil U, — R
by
x Ti—1 Ti41 T
[xlv"'vxn]}_} Ty Ty T st )
Zq T Zq T

Note that the inverse ¢;1 is given by
¢7;_1: (lev"' 7xn—1) — [xly' o a'ri—1717"' 77:71]-

We must check that the change of coordinates maps are smooth. If j < 1,
then on the interesection U; N U;

(5% Ui—1 1 Up

¢jo¢i—1(u1,... ’un_l) — ¢j(u17... 7U’i—17]~7“' 7un) — (

) )
U uj Uy

which is smooth. Other computations are similar (and are left to the reader).

Example 2.2.18. Define the complex projective space CP,,_; to be the set of
complex lines through the origin in C" and prove that it is a manifold.

Example 2.2.19. If M and N are manifolds, show that M x N is also naturally
a manifold.

Example 2.2.20. Let V be a finite-dimensional vector space over R. Then V is a
manifold: a choice of basis vy, ...,v, (n = dim V') of V defines a linear bijection
o:R" = V,o(r1,...,r) =Y rv;. Define a topology on V' by requiring that o
is a homeomorphism (that is, U C V is open < o~ 1(U) C R" is open). Check
that this is indeed a Hausdorff second countable topology. Define 0=!: V — R"
to be a chart and {c=!': V — R"} to be an atlas (one chart!). Prove that a
different choice of basis of V' defines the same topology and an equivalent atlas.

Ezample 2.2.21. Let M be a manifold. Show that for each point z € M there
is a coordinate chart ¢: U — R™ with x € U such that ¢(z) = 0dandp(U) is
B1(0), the ball of radius 1 centered at 0.

Remark 2.2.22. In Definition 2.2.10 we have made no assumption on the topol-
ogy of our manifolds. It is standard to assume that the manifolds are Hausdorff.
Otherwise all sorts of pathologies turn up. Another set of standard assumptions
guarantees the existence of partitions of unity (see §2.4 below). For this the sim-
plest assumption to make is that the manifold in question is second countable.
However, this assumption is too stringent and paracompactness is much more
reasonable. All of this will be discussed later on.
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2.3 Maps of manifolds

In the Bourbakist view every area of mathematics has its collection of objects
and its collection of maps between objects (or, more generally, morphisms).
(Note by the transcriber: That is the view of the categorist S. Mac Lane rather
than of Bourbaki.)

While it is enjoyable to make fun of Bourbaki and Bourbakists, there is some
merit to this point of view. A map f: M — N between two manifolds is smooth
if it is continuous and is smooth in coordinates. More precisely we have:

Definition 2.3.1 (smooth map). Let M and N be two smooth manifolds with
atlases {(Uy, ¢o)} and {(Vs,15)}, respectively. A continuous map f: M — N
is a smooth map (or a morphism of C°° manifolds) if for all o and 3 with

fﬁl(vﬁ) NU, 7& g,
the composition

Ygo fody't da(UaN fH(Vs)) = 1(Vp)
is C°.

We will write C°°(M, N) to denote the set of all smooth maps from M to
N. Note that this definition does not depend on which atlases on M and N we
choose [check this]. Also note a special case of this deinition is that of a smooth
function on a manifold, which is a map from M to R. To wit

Definition 2.3.2. A function f: M — R is smooth if f is continuous and if for
all coordinate charts {U,, da)}, f o ¢, — R is C. It’s consistent with the
previous definition: we think of the real line R as a manifold with the standard
coordinate chart idg: R — R. We denote the collection of all smooth functions
on a manifold M by C>*(M) = C*(M,R).

Ezercise 2.3.3. Let M be a manifold. Check that C*° (M) is a vector space over
the reals under the standard addition of functions and multiplication by scalars.
Is it finite dimensional?

Exercise 2.3.4. Let M be a manifold. Check that a constant function on a
manifold M is smooth.

Here are some examples of smooth maps.

Ezample 2.3.5. Take M = R™\ {0}, and let N = RP"~!, Let 7: R"\ {0} —
RP"! be the projection 7(v) = [v]. I claim that 7 is a smooth map. Let’s
check it.

The atlas on M is given by one chart — the inclusion ¢ of M into R™. The
charts on RP"~! are the same as last time. Note that 71 (U;) = {v € R"\ {0} :
v; # 0}. To see that 7 is smooth, we need to check that ¢;omop=t: 7= 1()U;) —
R"~! is C*°. But note that

(@r0m067)0) = (o) = oxle) = (2, 2).

)
Vi Vi
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Ezample 2.3.6. Let M = R with the coordinate chart ¢(z) = 23. Let N = R
with the coordinate chart ¢(x) = x. Let f: M — N be the map = — 23. Is f
a C* map?
vofoo )a)=vof@'?) =y() =u,

which is smooth. So f is smooth.

Now let us see if the map h: M — N, h(z) = z is smooth. We have
Yo fop 1) (x) = x'/3, which is not differentiable at 0. So h is not smooth.
Finally note that f~': N — M is smooth:

g0y~ Ha) = (a"?)* =z,

Ezample 2.3.7. Constant functions are smooth maps of manifolds.

The appropriate notion of “isomorphism” in differential geometry is the fol-
lowing one:

Definition 2.3.8 (Diffeomorphism). A C* map f: M — N between two
smooth manifolds is a diffeomorphism if f is a homeomorphism and both f
and f~! are C* maps.

Ezample 2.3.9. The map f: M — N of Example 2.3.6 is a diffeomorphism.

Ezercise 2.3.10. If M and N are manifolds, prove that M x N is diffeomorphic
to N x M.

Exercise 2.3.11. Show that the composition of smooth maps is smooth.

Ezercise 2.3.12. Let Ls: GL(n,R) — GL(n,R) be left multiplication by A €
GL(n,R). Prove that Ly is a diffeomorphism. [Recall that GL(n,R) C R"" is
the set of all invertible n x n matrices and that it is open in R"z.]

2.4 Partitions of unity

In this subsection we define partitions of unity (that is, writing the constant
function 1 as a sum of bump functions with certain properties) and prove the
existence of a partition of unity subordinate to a cover on a second countable
manifold. The existence of such partitions of unity is very useful. The proof
of the existence of the partition of unity is not terribly useful and should be
skipped on the first (and second) reading. The reason for this advice is that the
proof is technical and the techniques will never be used again in this course. We
start with a string of definitions.

Definition 2.4.1 (second countable). A topological space X is second countable
if there is a countable collection of open subsets {U;} of X such that any open
set in X is the union of some collection of U;’s. In other words, the topology of
X has a countable basis.

Ezample 2.4.2. The real line R with the standard topology is second countable:
the collection {U;} is consists of open intervals (a,b) where a and b are rational
numbers.
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Similarly R™ is second countable: the collection {U;} consists of open balls
B, (z) of rational radius r centered at points  with rational coordinates.

Remark 2.4.3. Any (topological) subspace of a second countable space is second
countable [prove it]. Hence any manifold that can be realised as a subspace of
some R™ has to be second countable.

The condition of second countability is much more than necessary for the
existence of the partition of unity. One can get away with assuming only para-
compactness. Here, for the record, is its definition. It takes a paragraph to state
because we have to define a few more things first.

Definition 2.4.4. Let M be a topological space. A collection {U,} of subsets
of M is a cover of a subset W C M if WUU,. It is an open cover if each {U,}
is open. A refinement {Vz} of a cover {U,} is a cover such that for each index
B there is an index a = af with V3 C U,.

A collection of subsets {U, } of subsets of M is locally finite if for every point
m € M there is a neighbourhood W of M with W N U, # @ for only finitely
many o.

Ezample 2.4.5. The cover {(n,n+2)},¢z is a locally finite cover of R. The cover
{[-2,1]} is a cover of (—1,1) which is not locally finite — there is a problem

at 0.

Definition 2.4.6 (paracompactness). A topological space is paracompact if
every open cover has a locally finite refinement.

Example 2.4.7. Any compact space is paracompact. We will see shortly that
second countable Hausdorff manifolds are paracompact.

Definition 2.4.8 (support). The support supp f of a continuous function f: X —
R is the closure of the set of points where f is non-zero:

supp f = {z € X : f(z) # 0}.

Definition 2.4.9 (Partition of Unity). Let {U,} be an open cover of a manifold
M. A partition of unity subordinate to the cover {U,} is a collection of smooth
functions {pg: M — [0,1]} such that:

(1) For each index Bthere is an index « with supp(pg) C U,.

(2) For each point m € M, there is a neighbourhood W of m such that pg_ W #
0 for only finitely many £. That is, the collection of supports {supp pg} is
locally finite.

(3) 2pps=1.

Remark 2.4.10. Note that we need condition (2) to make sense of the sum in
(33): by (2), for each point m € M the sum ) pg(m) is actually a finite sum.
So there are no problems with convergence.
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Theorem 2.4.11. Let M be a second countable Hausdorff manifold. Then
every open cover of M has a partition of unity subordinate to it.

Proof. (You should not read this proof the first time around.)

Stepl. We first construct a collection {X}72, of open subsets of M such that
their closures X, are compact, Xj C Xjy1 and M = U, X;. Since M is
second countable, there is a countable basis of the topology of M. Out of this
collection of open sets choose those that have compact closure and denote them
by Wi, Was,.... We claim that that they cover M: M = sup W;. Indeed, a
point z € M has a neighbourhood homeomorphic to an open subset of R"
(n = dim M, of course). For any point y in an open set U C R™ there is a closed
ball B,(y) centered at y with B,(y) C U. Closed balls in R" are compact.
Hence every point z € M has a neighbourhood U(x) whose closure U(x) is
compact. Now U(z) is a union of a certain number of elements of the countable
basis of the topology of M. The closure of each of these elements is compact.
Therefore x € W; for some index ¢. This proves that M = UW;.

Let X; = Wj. The whole collection {W;}32, covers X;. Since X; is

compact, X; = W;, UW,;, U--- U W, for some iy < iz < -+ < ip. Let
Xy = Wi, UW;, U---UW,,. Then X, is compact ---. Continuing in this
manner we get the desired collection {X}}7 ;.
Step2. We construct three open countable covers {Vz1}, {Vs.2}, {Vs3} with
{V1} C {Va2} C {Vs3}, Us{Vs1} = M and {Vz 3} is locally finite and sub-
ordinate to {U,}, the cover we started out with. Note that this will prove that
any Hausdorff second countable manifold is paracompact, as promised.

Fix an index k. For each point z € X}, \ Xj_1 choose an open set V.3 such
that V, 3 C U, for some «, V, 3 C Xpy1 and V, 3N Xj_1 = @. Additionally
we require that there is a coordinate chart v, mapping V., 3 homeomorphically
onto

B3(0) := {z € R"|||z|| < 3}.

Let V,; = psi;'B;(0) for i = 1,2. The open sets V, 1 cover the compact set
X\ Xy_1 (and are contained in Xy 1\ Xj_2). Therefore, for each k, there is a
finite collection of V ;’s covering X1\ X_1. Take all of these finite collections.
We get a cover {Vz1} of M. Similarly we get two more covers: {V3o} and
{Vs,3}. Note that by construction they are locally finite and are subordinate to
{Uq4}: for each B there is o(B3) with Vs ; C Uy (g).

Step3. Now we construct a partition of unity. The function

1
exp ¢, if t>0
t =
ug {0, if t<0

is smooth on all of R [this fact is not entirely trivial]. Hence

—11—¢ ;
~ exp , if t<1
f(t) = .

0, if t>1

is smooth on all of R. Therefore h: R™ — [0, 00) given by

hiw) = f(ll=]?/4)
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is also smooth. Note that h(z) > 0 for all x € B3(0) and h(z) = 0 for all
x & By(0). Therefore, for each index 3,

) hWe)(z), if x € Vs
90 (@) = {0, if 2 Vi,

where 95: Vg3 — B3(0) is the corresponding coordinate chart, is a smooth
function on M. Moreover, gg(z) > 0 for x € Vj 1. Since the cover {Vz3} is
locally finite, the sum

Gla) =) gs(x)
B

makes sense [converges for each z4] and defines a smooth function on M. Since
{Vibeta,1} covers M, G(z) > 0 for all z € M. Let

ps(x) = gs(z)/G(2).

Then 1 > pg(x) >0, Y pg =1 and supp pg C V.3 C Uy(g)- Thus the collection
{pp} is the desired partition of 1. O

Corollary 2.4.12. Let M be a second countable Hausdorff manifold and {U;}$2,
a countable open cover. Then there is a partition of unity {p;} with supp p; C U,.

Proof. By Theorem 2.4.11 there is a partition of unity {73} with supp7s C U;
for some i = i(8). Let

I(i) = {B|supp7s C U; and supp7s ¢ U; for j <i}.

Define
Pi = Z T3-
BEI(i)
The collection {p;} is the desired partition of 1. O

Proposition 2.4.13. Suppose that M is a second countable Hausdorff manifold,
K C M a closed subset and U C M an open set with K C U. Then there is a
smooth function f: M — [0,1] such that

(1) flxk =1 and

(2) supp(f) C U.

Proof. Let Uy = U and Us = M \ K. By Corollary 2.4.12 there exists smooth
functions pi,rhoy: M — [0,1] with suppp; C U; and p; + p2 = 1. Since
supp p2 C M\ K, p2|x = 0. Hence p1|x = 1. Now let f = p;. O

Corollary 2.4.14. Let M be a (second countable Hausdorff) manifold. uchor
any point x € M and any neighbourhood U of x in M there is a smooth function
f: M — R such that
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(1) f =1 on a neighbourhood V' of x contained in U and

(2) supp(f) C U.

Proof. Exercise. You can use the proposition above. Alternatively prove it
directly first in the case where M = R™ and then use a coordinate chart around
x to prove it for arbitrary M. Is the condition that M is second countable really
necessary? O
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Chapter 3

Tangent vectors and tangent
spaces

3.1 Tangent vectors and tangent spaces

We learn in physics that a vector is an arrow sticking out of a point in space
and that a vector field assigns an arrow to each point in space. When we learn
linear algebra, we are told to forget this point of view: all vectors are sticking
out of one point — the origin. For the purposes of differential geometry the
physics point of view is correct after all: all our vectors are anchored at various
points in space.

There is another issue we need to deal with. If S C R3 is a smooth convex
surface, one can imagine that for every point p € S there is a two-plane 7,5
touching S at that point, a plane tangent to S at p. (It is not entirely clear that
such a plane is unique, but that’s another story.) A vector tangent to S at p
would be an arrow anchored at p and lying in 7,,S. This raises a problem: our
manifolds are defined abstractly and not as subsets of some R™. So what would
a tangent plane be in this case? and what vector space would it lie in?

There is another issue we need to deal with. If S C R? is a smooth convex
surface, one can imagine that for every point p € S there is a two-plane 7,5
touching S at that point, a plane tangent to S at p. (It is not entirely clear that
such a plane is unique, but that’s another story.) A vector tangent to S at p
would be an arrow anchored at p and lying in 7},S. This raises a problem: our
manifolds are defined abstractly and not as subsets of some R™. So what would
a tangent plane be in this case? and what vector space would it lie in?

The solution is to think of vectors as directional derivatives. A directional
derivative of a function on R™ depends on two things: a direction and the
point at which the function is being differentiated. For a smooth function f €
C>(R™), we write

D, f(p) = % of (p+ tv)

15
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for the directional derivative of f at a point p € R™ in the direction v € R™.
Observe that

(1) the directional derivatives are linear: for any f,g € C*°(R™) and any A\, u €
R

Dy(\f + pg)(p) = ADy f(p) + uDyg(p);

(2) the directional derivatives have a derivation property:
Dy(f9)(p) = f(p)Dug(p) + Do f(p)g(p).

This motivates the following definition:

Definition 3.1.1 (Tangent vector). Let M be a manifold and ¢ € M a point.
A tangent vector to M at a is an R-linear map v: C°°(M) — R such that

v(fg) = fla)v(g) + g(a)o(f) (3.1.2)

for all functions f,g € C*(M).
Linear maps C*° (M) — R satisfying (3.1.2) are also said to have a derivation
property and are called derivations (into R).

Definition 3.1.3 (Tangent space). The tangent space T,M to a manifold M
at a point a is the collection of all tangent vectors to M at a.

Ezercise 3.1.4. The tangent space T, M is a vector space over the reals. [That’s
why the elements of the tangent space are called “vectors™| That is, if v,w €
T.M and A, 1 € R then the linear map Av + pw: C°°(M) — R is a derivation.

Note that by our definition every direction derivative at a point p € R™ is a
tangent vector at p to R™. This begs a question: are there tangent vectors that
are not directional derivatives? The answer is no, tangent vectors to points of
R™ are directional derivatives and that’s all there is to it:

Proposition 3.1.5. Let w € T,R™ be a tangent vector. That is, suppose
w: C®(R"™) = R is a linear map satisfying (3.1.2). Then

w(f) = Dy f(a)

for some v € R™. The same result holds with R™ replaced by some open ball
B, (a).

To prove the proposition we first “recall” a version of Taylor’s theorem.

Lemma 3.1.6. Let f be a smooth function on R™. Fiz a point a € R™. Then
for any x € R™

f@) = fla) + (i — ai)hi(x) (3.1.7)

where h;(x) are smooth functions with

hi(a) = gfz (a).
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Proof. Suppose first that a = 0. Then, by the fundamental theorem of calculus
and chain rule,

1

F@) — fO) = [ 2 prayin = /(Zx

0

)dt sz i 6:@ x)dt.

Let hi(z) = [ Bj (tz)dt. These are the desired functions. If a # 0 apply the
previous argument to f(z) = f(z — a). O

Remark 3.1.8. If f is a smooth function on an open ball B, (a) then (3.1.7) still
holds at all z € B,(a), except now h; € C°°(B,(a)). The proof is exactly the
same.

Before proving the proposition we need one more simple lemma.

Lemma 3.1.9. Let M be a manifold and w € T, M a tangent vector. Then for
any constant function ¢ we have w(c) = 0.

Proof. Apply the tangent vector w to the constant function 1:
w(l)=w(l-1) =1lw(l) +w(l)l =2w(1). = w(l) =0.
Since w is linear, for any constant function c =c¢-1
w(c) =w(c-1) =cw(l) =0.
O

of Proposition 3.1.5. By Lemma 3.1.6, f(z) = f(a) + >_(x; — a;)h;(z). Hence
w(f) = w(f(a)) + Y (w(zi — ai)hi(a) + (a; — a;)w(h;))
=0+ > w(z)hi(a)+0=>Y w(x )663{1( ).

Therefore w = D, f(a), where v = (w(x1), ..., w(x,)).
We leave the ball version of the proof as an exercise. O

Remark 3.1.10. The proof above actually shows that the derivations {z2-|q}
form a basis of T,R".

For arbitrary manifolds a choice of coordinates near a point also defines a
basis of the tangent space at the point. To express this precisely it will be
convenient to slightly change our notation. To this end, denote the points of

R™ by r = (r1,...,7,). We also think of r; as a function that assign to a point
its é-th coordinate. If ¢: U — R™ is a coordinate chart on a manifold M, then
o= (r10¢,...,rp0®). We then think of x; = r;¢ as coordinate functions on
U.

The coordinates de
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ne tangent vectors at points of U: for any a € U and any f € C*(M) we
define 52|, by

0 0
(973?1‘ a(f) = 67”|¢(a)(fo (bil)'

It is easy to see that these are, indeed, tangent vectors. It should come as no
surprise that they form a basis of the tangent space T, M. After all, manifolds

locally look like R™ and in R™ the partial derivatives do form bases of tangent
spaces. Now let’s prove this. We first observe that tangent vectors are local.

Lemma 3.1.11. Let M be a manifold and v € T,M a tangent vector. Then
for any two functions f,g € C*°(M) with f = g in a neighbourhood U of a, we
have

v(f) = v(g).
In particular, if h is constant on a neighbourhood U of a, then v(h) = 0 (cf.
Lemma 8.1.9).

Proof. As v: C*°(M) — R is R-linear, it is enough to show that v(f — g) =
0. Chose a smooth bump function p: M — [0,1] with suppp C U which is
identically 1 on a neighborhood V of a. We then have that p- (f —¢) = 0 on
all of M by construction. Furthermore, because v is linear, v(0) = 0, hence

0=uv(p(fog))=v(p)(fog)la)+pla)(fog)=urv(fog).
O

What’s the point of the lemma, aside from its esthetic appeal? If ¢ =
(x?1,...,2,): U — R™ is a coordinate chart on a manifold M and v € T,M
is a tangent vector at some point a € U, then we cannot apply v to a coor-
dinate function x;. The function z; is only defined on U; it is not a smooth
function on all of M. However, there is a way around this problem. Pick a
smooth bump function p: M — [0, 1] with supp p C U which is identically 1 on
some neighbourhood of a. Then z;p is a smooth function on M and so v(z;p)
does make sense. Moreover, this number does not depend on the choice of the
bump function: if 7: M — [0, 1] is another choice of a bump function with the
same properties, then z;p = x;7 on some (perhaps smaller) neighborhood of a.
Therefore, by the preceding lemma, v(z;p) = v(z;7). We therefore define

o(ws) = vlzip)

for some choice of the bump function p. Similarly, if h € C>°(U) we define
v(h) := v(hp)

for some (any) choice of the appropriate bump function p.

Lemma 3.1.12. If ¢ = (x1, /dotsc,x,): U — R™ is a coordinate chart on a
manifold M and v € T,M is a tangent vector at some point a € U. Then

v = Zv(azi)%b. (3.1.13)
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Moreover, the vectors {% o} form a basis of T, M.

Proof. We evaluate both sides of (3.1.13) on a function f € C*°(M). It is no
loss of generality to assume that ¢(U) is a ball and that ¢(a) = 0. By Lemma
3.1.6,

(fod " )(r) = (fod ")(0)+ > rihi(r)

where h;(0) = 3?%' (fod™1)|o. Thus,

fla) = fla)+ Y wi filx),

where

0
fila) = or;

for all x € U. Hence, for any v € T, M, we have
v(f) =v(f(a) + szfl)
=Y wi(a(fi) +Y_ (@) fi(a)
= S e fila)
= 3 vle) ()

(foo™h)(0) = aTCila(f),

This shows that {% o} span T, M. To check linear independence observe that

0

%'“(xj) = 0ij,

where §;; denotes the Kronecker delta function: it’s 1if i = j and zero otherwise.
O

Remark 3.1.14. We have seen in the preceding discussion that for any p € R™
the tangent space T,R" is isomorphic to R"™. Explicitly the isomorphism is give
by taking a vector v € R™ to the directional derivative at p in the direction of
v:
R" 5 T,R" v+ D,(-)(p).
In particular
~ d

R=T,R s+ s—|a.

dr

3.2 Digression: vector spaces and their duals

Given two (fiite dimensional) vector spaces V' and W we denote the set of all
linear maps from V to W by Hom(V,W). It is a vector space: any linear
combination of two linear maps is again a linear map. Of special interest is the
vector space V'V := Hom(V,R) of linear maps from a vector space V to R, the
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so called dual vector space. If {v;}? , is a basis of V, the dual basis is a basis
{v)} of VV defined by
vi’ (v5) = 0

for all 1 < 4,5 < n. This is indeed a basis. If £ € V'V is an arbitrary functional,

then
(= Z £(v;)vy

because both sides of the formula above agree on the basis vectors v; (I am
tacitly using the fact that if two linear maps p, v: V' — R agree on basis vectors,
then they agree). It follows that dim V'V = dim V. Finally observe that for any

vector u € V,
u = Z v (u)v;.

Why is the formula above true? Apply v;/ to both sides.

Ezercise 3.2.1. Show that a choice of basis of vector spaces V' and W identifies
Hom(V, W) with a space of matrices. Conclude that dim Hom(V, W) = dimV -
dim W.

3.3 Differentials

Definition 3.3.1. Let f: M — N be a smooth map of manifolds and a € M a
point. The differential of f at a is the linear map

Afo: TM = TyN - (dfa())(B) = v(ho f)
for all v € T,M and all h € C*°(N).

Exercise 3.3.2. Check that the de
nition above makes sense. That is, given v € T, M, check that the map

C*(N)— /R, hw—wv(hof)

is a linear map satisfying (3.1.2).

We will check shortly that in the case of a smooth map f: R"™ — R™,
df, = Df, under the natural identification 7,R™ ~ R",

We next sort out what the definition of a differential amounts to in the case
where f: M — R is a smooth function (in other words the target manifold
N =R). By definition 3.3.1, df, is a map from T4 M to TR ~ R. That is, if
we compose df, with the isomorphism T’ ,)R SR (see Remark 3.1.14), we get
a linear map

dfy: ToM — R

By definition, df, is an element of the dual vector space T,/ M := Hom (T, M, R).
I claim that
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Proposition 3.3.3. The linear map df, is given by
dfa(v) = v(f). (3.34)

for any tangent vector v € T, M.

Proof. Let r: R — R denote the identity map. We think of it as the standard
coordinates on R. Then for every point x € R the vector $|$ is a basis vector
of T, R, which gives us an isomorphism

d
T.R—-R, t—|,—t
dr
The map above has a “coordinate free” description as well. It is:
T.R> v v(r).

Therefore
dfa(v) = (dfa(v))(r) = v(ro f) =v(f).
O

Remark 3.3.5. It is customary not to distinguish between df, and df,. Thus,
in the case of f € C°°(M), the differential df, denotes both the linear map
dfo: ToM — Tpoy)R and the linear functional df,: T,M — R. In other words,
from now on we drop the notation df, and write (3.3.4) as

dfa(v) = v(f). (3.3.6)
forall f € C*(M),ae M,veT,M.
Definition 3.3.7. The vector space
T,) M := Hom(T,M,R)
is called the cotangent space of M at a.

The new concept of the differential allows us to re-interpret the formula
(3.1.13). Recall that a choice of coordinates ¢ = (x1,...,2,): U — R™ on a
manifold M gives rise to basis {a%i‘a} of T, M for any point ainU. We claim
that {(dz;)q} form the dual basis of the cotangent space T,) M. Indeed, by
(3.3.6),

0 0
(@)ool ) = o hte) = i
Since for v € T, M we have v(z;) = (dz;)q(v), (3.1.13) becomes

v = Z(dmi)a(v)%b. (3.3.8)

Let f=(f1,..., fm): R" = R™ be a smooth map. We are now in the position
to compare dfa: T,R™ — TpyR™ with D f,: R" — R™. Let rq,...,r, denote
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the standard coordinates on R™ and s1, ..., s, the standard coordinates on R™.
Using (3.3.8) we compute:

0
alea(siOf)

- i|a<fi>
oI,
(‘37“3( @)

Thus the matrix of the linear map df,: ToR™ — Ty ,)R™ with respect to the
basis {8‘2 |} and {Bs |#(a)} is the Jacobian matrix of Df,.

It is worth singling out another special case of the definition of a differential
of a map: M = R. In this case f: R — N is a smooth curve. We define the
tangent vector to f at t € R to be

r) =i (1)

. Note that by definition f’(¢) is a tangent vector in TN, the tangent space
to N at f(t).

FEzercise 3.3.9. Let M be a manifold, p € M a point and v € T, M a tangent
vector at the point p. Show that there is a curve v: I — M (where I is an open
interval containing 0) with v(0) = p and /(0) = v.

<dsi>f(a><dfa<8‘la>> - <dfa<fm|a>><si> -

We next observe that the chain rule holds for the differentials of smooth
maps.

Theorem 3.3.10 (Chain Rule). If F: X — Y and H: Y — Z are smooth
maps of manifolds, then

d(HoF), =dHp(q) o dFy,
for any point a € X.
Proof. Fixa € X, v €T, X, and f € C*(Z). Then
(d(H o F)a(v))(f) = v(f o (Ho F))
=v((foH)oF)
(dFa(v))(f o H)
= (dHp (o) (dFa(v)))(f)-

O

Remark 3.3.11. Theorem 3.3.10 and Exercise 3.3.9 give us a useful way of com-
puting differentials df,: To M — Ty, N. By the exercise, for any v € T,M we
can find a curve v: I — M with v(0) = a and 4/(0) = v. Then, by the chain
rule,

Falv) = ' (0)) = Al Io)) = d(f 0ol 5 10) = (F 07 (0).
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Exercise 3.3.12. Prove that if F': M — N is a diffeomorphism then the differ-
ential dF,: ToM — Tr(q) N is an isomorphism.

Ezercise 3.3.13. Let M and N be manifolds. Prove that for any (a,b) € M x N
the tangent space T(, ) (M x N) is isomorphic to To M x TyN.

Ezercise 3.3.14. Suppose that v: R — R"™, v(t) = (y1(t), ..., (t)) is a smooth

curve. Show that J 9
P p— T
() = ToiOz

where +/(t) are ordinary derivatives.

3.4 The tangent bundle

Definition 3.4.1 (provisional). The tangent bundle TM of a manifold M is
(as a set)
™ = [] T.M.
a€M

Note that there is a natural projection (the tangent bundle projection)
m:TM — M

which sends a tangent vector v € T, M to the corresponding point a of M.

We want to show that the tangent bundle 7'M itself is a manifold in a natural
way and the projection map 7: TM — M is smooth. Strictly speaking, we first
should specify a topology on T'M. However, our strategy will be different. We
will first find candidates for coordinate charts on the tangent bundle T'M. They
will be constructed out of coordinate charts on M. We will check that the
change of these candidate coordinates on T'M is smooth. We will then use these
candidate coordinates to manufacture a topology on T'M.

Let ¢ = (z1,...,2,): U — R™ be a coordinate chart on M. Out of it we
construct a chart on TU. The first n functions come for free: we take the
functions z1 om,...,x, o w. Another set of n functions come for free also: by
(3.3.8), given a vector v € T, U,

0= Y (dr)a(v) o

Hence, abusing the notation a bit, we get maps
dr;: TU - R, TU>vwr (dz;)e(v), where a=m(v).

Thus we define a candidate coordinate chart

¢:=(rrom,...,xpomdry,...,dx,): TU - R" x R"

by

(b(v) = (xl (W(U))7 s ’xn(ﬂ-(v))’ (dxl)w(v)(v)7 SRR (dmn)ﬂ(v) (U))
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If {Us, ¢a)} is an atlas on M, we get a candidate atlas {(TUy, ¢a)} on TM.
To see why this could possibly be an atlas, we need to check that the change of
coordinates in this new purported atlas is smooth.

To this end pick two coordinate charts (U, ¢ = (z1,...,2,)) and (V,9 =
(Y1,.--»yn)) on M with UNV #@. Then T(UNV)=TUNTV # &. Let

o= (21,...,Zpn,dx1,...,dx,): TU = R" x R"

and B
V=W s Yn,AY1, ..., dyn): TV = R® x R"

be the corresponding candidates charts on 7'M . Now let us compute the change
of coordinates o ¢~ 1.
First, note that

¢ (r, .. rn,ul, ey Up)

_: :ul ‘(b 1("‘1» ST U ey U, ) er’ (Tl7"')T7l7u17-“7un)M.

So
Zul ) (71, ,rn))
0
(w(qb (Tl""’ dy1 Zul - 7 7dyn(zuz%))
But
0 o oy,
dy; (3 Ui ) = Z“i(%(?}j)) =2 ., Lu

- Z%mwow»ui

Thus the change of the candidate coordinates is given by

io(d))_l(rl,...,rn,ul,...,un):(1/)o¢_1(7‘),( 8y1 ) Uy Zay”

axl
o “
_ Yj .
—vod ). (320 )) D
Un,
(3.4.2)
where r = (r1,...,rn). Clearly ¢ o ¢~ is smooth wherever it is defined. It

remains to define a topology on T'M so that the charts 5: TU — ¢(U) x R™ are
homeomorphisms. We declare a subset O C T'M to be open if for any coordinate
chart ¢: U — R™ on M, the set (O NTU) C R™ x R™ is open.
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Proposition 3.4.3. The collection of open sets on TM defined above does
indeed form a topology. Moreover, if M is Hausdorff and second countable, so
is TM.

Proof. Left as an exercise for the reader. O

We conclude that if M is an n-dimensional Hausdorff second countable man-
ifold then ts tangent bundle T'M is a 2n-dimensional Hausdorff second countable
manifold. Moreover, each coordinate chart (x1,...,2,): U — R™ on M gives
rise to a coordinate chart (o, ..., 2, om, dxy,. .., dx,): TU — R,

Remark 3.4.4. The following notation is suggestive: we write (m,v) € TM for
v € T, (M). Strictly speaking, it is redundant since m = 7 (v).

Remark 3.4.5. It is customary to simply write z;: TU — R for z;om: TU — R.

Ezercise 3.4.6. Prove that the map m: (I'M) — M is smooth and that the
differential dmr, : T,(T M) — Ty ()M is surjective for all tangent vectors v € T'M.
Hint: do it in (convenient) coordinates.

3.5 The cotangent bundle

As a set, the cotangent bundle T*M = (T'M)" is the disjoint union of cotangent
spaces:
M = (TM)" = [[ 7o M = [] (T.M)".
seM aceM

Note that there is a natural projection (the cotangent bundle projection)
m:T*"M — M

which sends a cotangent vector (a covector for short) n € T, M to the corre-
sponding point a of M. We make the cotangent bundle 7* M into a manifold in
more or less the same way we made the tangent bundle into a manifold. That
is, we manufacture new coordinate charts on T*M out of coordinate charts on
M and check that the transition maps between the new coordinate charts are
smooth.

So let ¢ = (x1,...,2,): U — R™ be a coordinate chart on M. Then for each
point a € U the covectors {(dx;),} form a basis of T M. The partials {a%i|a}
form the dual basis. Hence for any n € T M,

1= Y la) @i

Therefore the partials {52} give us coordinate functions on T*U:

0 0
. T*U - R", T* <
oz, U — R", U9n»—>n(axi|a),
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where a = n(7). We now define the candidate coordinates

: T*U — R" x R"

by
¢ = (7, ow,...,mnow,aixl,uw%)
Note that
671(7“17 ey TR, W, e, W) = i wi(d2i)g=1(ry € Ty () M,
i=1
where again we have abbreviated (r1,...,7,) as . We now check the transition

maps. Let ¢ = (y1,...,yn): V — R"™ be a coordinate chart on M with VNU #
&. Then

- —1 _
Yophi (ri,...,Tn,W1,..., W) = w(Zwi(dxi)Wl(,,))
i=1

= (o b)), %(dem L 3%(2 widay)

- a‘r’b axz
=((op ")(r), i wi%""’zwiayn)'

We conclude that

w1

508 0 ) = (oo . (G200 ) | ) @

Wn,

which is smooth. The rest of the argument proceeds as in the case of the tangent
bundle.

Remark 3.5.2. Later on, when we look at the general vector bundles, it will be

instructive to compare the formulae for the change of coordinates in the tangent

and the cotangent bundles. In particular note that the matrices (%(T)) and

(g;‘? (r)) are inverse transposes of each other.
J

3.6 Vector fields

A vector field X on a manifold M smoothly assigns to a point a € M a tangent
vector X (a) € T,M." What does “smoothly” mean? If X is a vector field in R
then

X(@) = 3 fila) o

LSometimes this is also written Xg.
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for certain functions f;(a) € R of the point a € R™. So whatever we mean by
“smooth” should amount to the functions f; being smooth. This suggests one
definition of a smooth vector field:

Definition 3.6.1. A vector field X on a manifold M is smooth if for any
coordinate chart ¢ = (z1,...,x,): U — R™ we have, for any point a € U,

X(a) = Zfi(a)a%la (3.6.2)

for some smooth functions f;: U — R.

There is something a bit unsatisfactory about this definition: is it possible
that the functions f; in (3.6.2) are smooth for one choice of coordinates and not
smooth for another choice? So we will use it as as starting point for a better one.
Note that the functions f; in (3.6.2) are smooth for one choice of coordinates
and not smooth for another choice? So we will use it as as starting point for a
better one. are given by:

fila) = (dzi)a(X (a)),
for any a € U. Thus Definition 3.6.1 simply says that the composite
(x1,...,xp,d21,...,dx,) 0 X: U - R" x R"

is smooth. But this is the same thing as saying that the map X: M — TM is
smooth. Not every map Z: M — TM is a vector field: we need to make sure
that Z(a) € T, M. The condition is equivalent to

m(Z(a)) =a

for all aBM . Here, as before, w: TM! — M is the natural projection. This gives
us a slightly more “sophisticated” definition of a vector field:

Definition 3.6.3. A (smooth) vector field X on a manifold M is a smooth map
X: M — TM such that mo = id.

There is yet another definition of a vector field, which is quite useful from
some points of view:

Definition 3.6.4. A smooth vector field X on a manifold M is a linear map
X:C>®(M) — C*(M) such that

X(fg)=fX(g) +gX(f) foral f geC®(M). (3.6.5)
Proposition 3.6.6. Definitions 3.6.3 and 3.6.4 are equivalent.

Proof. Exercise. B
Here are a few hints. Given a vector field X: M — TM define a map X
from C'*°(M) to functions on M by

(X(N)(a) = Xa(f)
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for all f € C°°(M) and all a € M. Check that X (f) is a smooth function and
that the map X so defined is a derivation. That is, show that (3.6.5) holds with

X replaced by X. _
Conversely, given a map X: C*°(M) — C°°(M) with the derivation prop-
erty as above, define X: M — TM by

Xa(f) = (X(f))(a)

for all f € C°°(M) and all a € M. Check that X, is indeed a tangent vector in
T, M and that the map X: M — TM, a — X, is smooth in a. O

Remark 3.6.7. From now on we will not distinguish between the two definitions
and will think of vector fields as either smooth maps M — T'M satisfying certain
conditions or as R-linear maps C*°(M) — C>(M) satisfying the appropriate
conditions. We will make no notation distinction between the two ways of
looking at vector fields. Thus X (a) will stand for the value of a vector field at
a point a if a is a point. On the other hand, if f is a smooth function, X (f)
will stand for a new smooth function, the “derivative” of f with respect to the
vector field X.

Notation 3.6.8. There are several standard ways to denote the space of all
smooth vector fields on a given manifold M. The two most common ones are
(T M) [vector fields are sections of the tangent bundle, see below] and x(M).

Remark 3.6.9. 1. The space of vector fieldsI'(T'M) is a vector space over R: if
X,Y e (T M) are (smooth) vector fields and A, € R are scalars, then their
linear combination AX + uY is defined by

(AX 4+ pY)(a) :== AX(a) + pnY (a)
for any a € M. It is again a smooth vector field.

2. We can also multiply vector fields on M by smooth functions: if X € T'(T'M)
and f € C*°(M) then fX is defined by

(fX)(a) == f(a)X(a)

for all a € M.
A fancy way of describing 2 is to say that I'(T'M) is a module over the ring
of smooth functions C*°(M). See if you can impress your date.

If X,Y € I'(TM) are two vector fields on a manifold M then it is not true
that the R-linear map

Co(M) = C=(M), = X(Y(f))

is a vector field — it does not have the correct derivation property. For example,
it M=Rand X =Y =d/dt, then X(Y(f)) = f” and

(fo) =g+ 1d) =r"g+2f'd +fg" # fg+fg"

However,
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Lemma 3.6.10. Let X,Y € T'(T'M) be two smooth vector fields on a manifold
M. Then the map

[X,Y]: (M) = C™(M), f—= X(Y(f))—Y(X(f)) (3.6.11)
is a vector field.

Proof. Clearly the map [X,Y] is R-linear. We need to check that it has the cor-
rect derivation property. This is a mechanical computation. Pick two functions
fig € C(M). Then

(X, Y](fg) = X(Y(f9)) — Y (X(f9))
= XY (f)g+ fY(9) —Y(X(f)g+ fX(9))
= XY (g +Y(f)X(g) +X(f)Y(9) + fX(Y(g))
= Y(X(f))g - X(f)Y(9) - Y(f)X(9) — fY(X(9))
= XY (f)g-Y(X(f)g+ [X(Y(9) - [Y(X(9))
= ([X,Y](f))g + f([X,Y](9))

Definition 3.6.12. The Lie bracket of two vector fields X and Y on a manifold
M is the vector field [X,Y] defined by (3.6.11).

We now quickly recall the definitions of bilinear and skew-symmetric bilinear
maps, the point being that Lie bracket will turn out to be a skew-symmetric
bilinear map.

Definition 3.6.13. Let V,U and W be three vector spaces over the reals. A
map
b: VxU—->W

is bilinear if it is (R-) linear in each argument: for all uy,us € U, ¢1,¢2 € R and
allv eV,
b(v, crur + caug) = c1b(v,u1) + c2b(v, ug);

and for all vy,v2 €V, ¢1,c0 € R and all u € U,
b(civ1 + cava, u) = c1b(v1, u) + cab(va, w).
Definition 3.6.14. A bilinear map b: U x U — V is skew-symmetric if
b(uy,us) = —b(ug, ur)
for all uq,us € U.

It is easy to see that the Lie bracket on a manifold M is R-bilinear and
skew-symmetric. Note that it is not C°°(M)-bilinear:

[X,hY] = X(h)Y + h[X,Y]

for any X,Y e I(T M), h € C*(M) (prove this).
Somewhat surprisingly the Lie bracket has a kind of derivation property:
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Lemma 3.6.15 (Jacobi identity). For any three vector fields X,Y,Z € T'(T'M)
on a manifold M

[Xa [K Z” = [[X7 Y],Z] + [Yv [Xv Z]]

Here is how one sees this as a derivation property: for a vector field X €
['(T'M) define
Lx:T(TM)—=T(TM)

by
LX(Y) = [Xv Y}
With this definition (3.6.15) becomes:
Lx([Y,Z]) = [Lx(Y), Z] + [V, Lx(Z)].
of Lemma 3.6.15. This is another computation that’s easier to do yourself than
watch someone else doing it. To keep the notation from getting out of hand,

we will drop parentheses. Thus XY Z f stands for X (Y (Z(f)))) etc. We pick a
function f € C*°(M) and compute:

(XYL Z1+ [V [X, Z]))f = (X, Y]Z2f - ZIX,Y]f+ Y[X, Z]f - [X, Z]Y f
— XYZf-YXZf - ZXYf+ZYXS
CYXZf-YIXf—XZYf+ ZXYF
= XYZf+ZYXf-YZXf-XZYf
= X(YZf - 2Y )+ (ZY —YZ2)Xf = [X,[Y, Z]If.
This proves the Jacobi identity. O
Equation (3.6.15) is called the Jacobi identity and is often written as
(X, [Y, 2l + [V, [Z,, X]] + [Z,[X, Y]] = 0.
(it is equivalent to (3.6.15) by skew-symmetry of [-,].
Definition 3.6.16. A (real) Lie algebra is a vector space V over R (possibly

infinite dimensional) together with a map [-,-]: V' x V' — V| a Lie bracket, such
that
(1) [, ] is bilinear,
(2) [,] is skew-symmetric, and
(3) [, ] satisfies the Jacobi identity: for all v,u,w € V'
[u, [v, w]] = [[u, v}, w] + [v, [u, w]].

Ezample 3.6.17. We have proved that the space of vector fields T'(T'M) on a
manifold M forms a Lie algebra.

Ezample 3.6.18. R? with the cross (vector) product is a Lie algebra.

Remark 3.6.19. The bracket on a Lie algebra can be thought of as a multipli-

cation. Note that it is not associative in general because of the Jacobi identity.
The geometric meaning of the Lie brackets of vector fields will be discussed

later.



Chapter 4

Submanifolds and the implicit
function theorem

Given a smooth function F': R™ — R"™ and a point ¢ € R™ the level set
F~c) :={z e R™"|F(x) = ¢}

may or may not be a smooth manifold. For example, take f(z,y) = 2% — 32, a
smooth function on R?. Then f~1(0) is the union of two lines: y = +x. It is not
a manifold. However, for ¢ # 0, f~1(c) is a union of two smooth curves, hence
a 1 dimensional manifold. The goal of this section is to describe a sufficient
condition for the level sets F~!(c) to be manifolds. We then generalise this
to level sets of smooth maps between manifolds. The key technical result that
makes it all possible is the inverse function theorem.

4.1 The inverse function theorem and a few of its
consequence

Theorem 4.1.1 (Inverse function theorem). Let U, U’ C R™, be open sets and
F:U — U’ a smooth map. Suppose for some point a € U the differential

dF,: R" — R"

is invertible. Then there are open neighbourhoods Uy of a in U and U} of F(a)
in U’ such that
F:Uy— Ué

is a diffeomorphism.

We will assume this result. (See Appendix : Chapter 5.1 for the proof.) It
is not essential that U and U’ are open subsets of R™ — any finite dimensional
vector space will do. It is even true with R™ replaced by a Banach space. We

31
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now discuss various consequences of the inverse function theorem. The most
famous one is the implicit function theorem. But first we prove the manifold
version.

Proposition 4.1.2. Let f: N — M be a smooth map of manifolds with f(p) = q
(p € N,qe M). Suppose
df,: T,N — T,M

is an isomorphism (invertible linear map). There there are neighbourhoods U
ofpe N,V of g € M so that

fU: U—-V
is a diffeomorphism (invertible map with a smooth inverse).

Proof. Note first that if ¢: U’ — R"™ is a coordinate chart on N then for any
z € U’ the map d¢.: T.N — TyyR"™ is an isomorphism (for instance if ¢ =

($1,~~-7$n)7d¢z(%) = 8‘1 .

So let p € U’ 2 R" and qgeV’ % R™ be two coordinate charts on M and
N respectively. Then the diagram

!

UvV—m~>——> v (4.1.3)

N !
o(U") Tvofer ) Y(V')

commutes: Yo f = (o fod 1) op. Hence the diagram of differentials

d P
T,N d T,M (4.1.4)

dop i ldwq

Ty $(U”") Ty (V')

_—
d(pofod ™) 4(p)

commutes as well. By the inverse function theorem, there are neighborhoods U
of ¢(p) and V of 9(q) such that

(Wofod Ng: UV
is a diffeomorphism. Consequently,
fro7HO) =97 (V)
is a diffeomorphism O

Next we turn to the implicit function theorem, the vector space version.
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Theorem 4.1.5 (Implicit function theorem). Let F': R" xR* — R¥ be a smooth
map, (a,b) € mathbbR™ x R* a point and ¢ = F(a,b). Suppose that the restric-
tion of the differential

dF(a,b)|(oyxre: {0} x R* x R¥

is onto. Then there are neighborhoods U of a2 € R", W of (a,b) in R™ x R¥
and a smooth map g: U — R* with g(a) = b such that the
F~Ye)nW = graph{g: U — R*}.
That is, for (z,y) € W
F(z,y) =cey=g(x)
In other words the function g is implicitly defined by the equation F(z, g(x)) = c.
Proof. We write suggestively

oF def def
%(a,b) = dF(a,b)hR”x{O}’ Fy(aqb) = dF(avb)l{o}X]Rk'

Consider the smooth map H: R" x R¥ — R™ x RF defined by
H(z,y) = (z, F(z,y))
for all (z,y) € R™ x R¥. Then the differential of H at (a,b) is of the form
1 0

dH (a4 =
(@b = |9 (a,b)  L(a,b)

oF

where I: R® — R" is the identity map. By assumption %—i(a, b) is invertible.

Hence dH, ) is invertible. By the inverse function theorem the function H is
invertible on a neighborhood of (a,b). Let G(u,v) = (G1(u,v), G2(u,v)) denote
its inverse, which is defined on a neighborhood of H(a,b) = (a, F(a,b)) = (a,c).
We may take this neighborhood to be of the form U x V, with U C R™ and
V C R* being open. Let W = G(U x V). Then

(u,v) = H(G(u,v)) = (G1(u,v), F(G1(u, v), G2(u,v))
for all (u,v) € U x V. Hence G1(u,v) = u. Therefore
F(u,Ga(u,v)) =v

for all (u,v) € U x V.
Conversely, if for any (x,y) € W we have F(x,y) = v then

(z,y) = G(H(z,y)) = G(z, F(2,y)) = G(x,v) = (G1(x,v), Ga(z,v))
and therefore y = Gy(z,v). Define the function g: U — R¥ by
9(z) = Ga(x,c).
It is a smooth function and, by the above discussion,
Fla,y)=c & y=g()
for any (x,y) € W. O
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Remark 4.1.6. Here is a slightly different and ultimately more useful way to
look at what we have proved. The argument above shows that there is a diffeo-
morphism

H:W->UxV

mapping bijectively the set
{F=c}nNW:={(z,y) € W|F(z,y) = ¢}

onto the set
HW) N (R" x {c})

This motivates the following definition.

Definition 4.1.7 (Submanifold). Let M be an m-dimensional manifold. A
subset N C M is an n-dimensional embedded submanifold if for every point
q € N, there is a coordinate chart ¢ = (z1,...,2m,): U = R™ with ¢ € U such
that

6(U N N) = 6(U) N (R x {0}).

That is, for alla € NNU,
¢(a) = (z1(a), ..., z,(a),0,...,0).
Such charts are said to be adapted to N.
Example 4.1.8. The sphere 52 is an embedded submanifold of R3. For example
if (21,79, 73) € S? and z3 > 0 then

d(x1,22,23) = <$17$2,$3 —y/1—a%— x%)

is a chart adapted to S? (and there are 5 more charts like this).

Thus the implicit function theorem says that, under certain conditions, por-
tions of a level set of a map F: R” x R¥ — R* are embedded submanifolds.
Naturally the embedded submanifolds are manifolds in their own right.

Lemma 4.1.9. If N C M is an n-dimensional embedded submanifold of an
m-dimensional manifold M then it is naturally an n-dimensional manifold in
its own right, and the inclusion map v: N — M, 1(a) = a is smooth.

Proof. We make N into a topological space by giving it the subspace topology.
If : U — R™ is a chart on M adapted to N, then

podly: NNU — ¢(U)NR"
is a homeomorphism. Here p: R™ — R" is the projection

P(T1y ey Ty ey Tn) = (T2, oy Tn).
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If 4: V — R™ is another chart adapted to N, then the map
Yot p(UNV) = p(UNV), o(UNV)N(R" x{0}) = (UNV)N(R" x {0})

is a diffeomorphism. Hence if {¢,: U — R™} is a collection of charts on M
adapted to N with M = UU, then

{podalunn: Us NN — R"}

is an atlas on N. Checking that the inclusion map ¢ is smooth is easy: in
coordinates it’s the inclusion

R™ - R™,  (r1,...,70) — (r1,...,74,0,...,0)

We now generalise the implicit function theorem.

Proposition 4.1.10. LetF: R™ — R* be a smooth map and c € F(R™) C R*
a point. Suppose that for all points ¢ € F~12(c) the differential

dFy: R™ — RF

is onto. Then the level set F~1(c) is a submanifold of R™ and (if F~1(c) is
nonempty)
dim F~!(¢) = m — k(= dimR™ — dim R¥).

Proof. Fix a point ¢ € F~!(c). Let Z = kerdF,. Let X C R™ be the vector
space complement to Z so that

R"=Z®dX ~7ZxX.

We can thus think of a point p € R™ as a pair (z,z) € Z x X. By assumption
on dF, and by construction of X, the restriction

dF,|x: X — RF

is an isomorphism of vector spaces. We now proceed as in the proof of the
implicit function theorem. Consider

H:ZxX —ZxRF, H(z,z)=(2,F(z,x)).

Write %—f for dF'|z and %—i for dF|x.
Then the differential of H is of the form

I 0

0z ox
By construction ‘g—i(q): X — RF is a bijection. Hence dH, is a bijection. By
the inverse function theorem there exist neighborhoods W of ¢ in R™ and U x V'

of H(q) in Z x R¥ such that H: W — U x V is a diffeomorphism. Moreover,
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as in the proof of the implicit function theorem H maps bijectively { F:c}mW}
to (U x V)N (Z x {c}). Therefore F~1(c) = {F = ¢} is a submanifold of R™ of
dimension m — k, i.e,

dim Z = dimR™ — dim R".

O

Example 4.1.11. Consider F': R* — R, F(z) = Y. 22. Then dF, = (2z1,...,21,).
Hence dF, is surjective for all nonzero z. In particular FF —1(1) = {z €
R"| > 2? = 1} is a submanifold of R™ of dimension n — 1. This is, of course,
the standard sphere of radius 1.

Definition 4.1.12 (Regular value). Suppose f: M — N is a smooth map of
manifolds. A point ¢ € N is a regular value of f if for all x € f~1(c) the
differential

dfy: TyM — T.N

is surjective.

Note that Proposition 4.1.10 then simply states that non-empty preimages
of a regular values of a map F': mathbbR™ — R* are submanifolds of R™.

Remark 4.1.13. Note that if f~!(c) = @, then c is a regular value of f. It seems
silly to construct a definition this way. The reason for the peculiar phrasing is
that it makes easier to state Sard’s theorem.

Theorem 4.1.14 (Sard’s theorem). Let f: M — N be a smooth map. Then
the set of reqular values of f is dense in M (and in fact its compliment has
measure 0).

Note that if F': M — N maps everything to one point {c} then c is not a
regular value (the differential of F' is 0 everywhere), but N \ {c} does consist
of regular values. So Sard’s theorem does hold for constant maps, except for
the preimage of every regular value of a constant map is empty. It will take
us too far afield to prove Sard’s theorem here, so we will give a proof in the
appendix (See §5.2.) On the other hand Proposition 4.1.10 nicely generalises to
manifolds:

Theorem 4.1.15. If ¢ is a reqular value of a smooth map of manifolds f: M —
N and if f~1(c) # @ then the level set f~1(c) is an embedded submanifold of
M of dimension

dim f~1(¢) = dim(M) — dim(N).

Before we proceed with the proof of Theorem 4.1.15, we make an observation:

1. Let {¢o: Uy — R™} be an atlas on a manifold M. Suppose for some index
B there is a diffeomorphism o: ¢5(Ug) — W C R™ (W is some open set).
Then

(i) copg: Us — R™ is a chart on M,
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(ii) this chart is copatible with the atlas {¢q : yo — R™}
These imply that

2. If Z is a submanifold of a manifold M and H: M — M’ is a diffeomor-
phism, then H(Z) is a submanifold of M.

Proof. (of Theorem 4.1.15) It is enough to show that for every point a of f~1(c)
there is a neighbourhood U of f~!(c) such that U N f~!(c) is a submanifold of
U of dimension m — n.

Let a € f~!(c) be a point. Let ¢: U — R™ be a chart of M with a € U and
¥:V — R" be a chart on N with ¢ € V. Then

Ypofop t:pU) =V

is a smooth map. Moreover, by the chain rule,

#d(o f o o—1)g = dibe 0 dfa 0 d(6 Mo

Since di. and d¢, are isomorphisms and df, is onto for any a2 € f~!(c) by
assumption,

d(w o f o (b_l)d)(a): T¢(G)Rm — Tw(c)Rn

is onto for any a € f~1(¢) N U. By Proposition 4.1.10 (v o f o ¢=1)~1((c))
#(UNf~1(c)) is a submanifold of ¢(U) of dimension m—n. Therefore UN f~!(c
is a submanifold of U C M of dimension m — n. Since a is arbitrary, f~1(c)
a submanifold of M of the desired dimension.

~

Oa

The next statement describes the tangent bundle of a regular level set f~1(c).

Corollary 4.1.16. Suppose that c is a regular value of f: M — N and f~'(c) #
@. Then for all a € f~1(c),

T.f Y (c) = ker(dfa).
Proof. Since
dim T, f~*(¢) = dim f~*(¢) = dim M — dim N = dim ker df,,
it is enough to prove that T, f ~*(a) C ker df,. Let v € T, f~'(c) be a vector. By
exercise 3.3.9 there is a curve v: I — f~1(c) (where I is the unit interval [0, 1])

such that v(0) = a and dv (&) = v. Since for is a constant map, d(fo7)o = 0.
By the chain rule,

d(fov)o <jt> = df(0)(do (i)) = dfa(v)

Therefore T, f ~1(c) C ker df, and we are done. O



38CHAPTER 4. SUBMANIFOLDS AND THE IMPLICIT FUNCTION THEOREM

Ezample 4.1.17. Let f: R® — R be given by f(z) = >_z?. Then, as we have
seen before, 1 is a regular value of f and df, = (2z1,...,2xz,) for all z € R™.
Therefore, for any z € f~1(1) = S*~! the tangent space T,S"~! is naturally
isomorphic to ker{v — > 2z;v;}, which is the (n — 1) dimensional hyperplane
in R™ ~ T, R™ orthogonal to the vector z.

Ezercise 4.1.18. Show that O(n), the set of all n x n orthogonal matrices, is a
submanifold of GL(n,R).

Hint: Consider the map f: GL(n,R) — Sym(n,R) given by A — AAT. Show
that the identity matrix I is a regular value of f.

4.2 Transversality

We now have enough tools to do a bit of differential topology.

Definition 4.2.1 (Transversality). A smooth map F: M — N of manifolds is
transverse to a submanifold Z of N if for every z € Z and any m € F~1(z), we
have

T.7 +dF,(T,,M) =T,N

Note that the sum is not necessarily a direct sum!.

Notation 4.2.2. We write F' th Z if a map F' is transverse to a submanifold Z.

Ezample 4.2.3. Let N = R2, M = R3, Z = S? C M, the unit sphere. Let
f: N — M is given by f(xy1,22) = (21,72,0). Then f M S2.

Remark 4.2.4. A map F: M — N is transverse to submanifold Z consisting of
one point c if and only if ¢ is a regular value of F.

Ezample 4.2.5. Take M = N = R%. Consider F': M — N given by F(x,y) =
(x,22). Then F is transverse to {0} x R, but it is not transverse to R x {0}.

Theorem 4.2.6. If a smooth map F': M — N of manifolds is transverse to a
submanifold Z of N, then F~1(Z) is a submanifold of M. Moreover,

T,(F~1(2)) = (dF) " (Tr@w2),
for alla € F~Y(Z), and
dim(M) — dim(F~(Z)) = dim(N) — dim(Z).
Proof. We first consider a special case: assume that
N=R", Z=RFx{0} cR*xR"*=R"
Let m: R* x R"~* — R"* denote the canonical projection map. Then
7~ 10) =R* x {0} = Z,

hence
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Additionally, for all a € F~1(2)

d(ﬂ' o F)a(TaM> = d?TF(a)(dFa(TaM>) = dﬂ-F(a) (dFa(TaM) + TF(a)Z)
= d?TF(a)(]Rn) = Rn_k,
where for the second equality we used the fact that dmp(q)(T'r@)Z) = 0. There-
fore 0 is a regular value of 7o F and consequently (7o F) — —1(0) = F~1(Z) is
a submanifold of M. Moreover,
T.F~Y(Z) =Ty(m o F)~'(0) = kerd(m o F), = ker{dmp(q) o dF,}
= (dF,) " (kerdrp(q)) = (dFa) (Tp(a) Z).

Finally, since (dm o F'), is surjective,
dim F~1(Z) = dim(ker(dr o F),) = dim M — dimR"*.
Therefore
dim M — dim F~(Z) = dim M — (dim M — dimR"~*) = dim N — dim Z.

The general case follows from the following consideration. Since Z is an embed-
ded submanifold for all z € Z, there is a coordinate chart ) = (z1,...,z,): N —
R™ adapted to Z with z € V. Hence psi(Z) = (V) N (R* x {0}). Now apply
the previous argument to 1o F': F~1(V) — R™ and ¥(V) N (R* x {0}). O

Ezample 4.2.7. Consider two surfaces S; and Sy in R3 such that 7,.5; #+ T.5
for every € S; N Sy. Then TS, + T,,So = R3 for all z € S; N Ss.

Let F': S; — R? be the inclusion map. Then dF,(T,S;) = T;S;. Thus, F
is transverse to Sy. By the theorem above F~1(S;) = S; N Sy is a submanifold
of S of dimension 1. In other words, if two surfaces are nowhere tangent then
they intersect in a collection of curves.

4.3 Embeddings, Immersions, and Rank

Definition 4.3.1 (Immersion). A smooth map of manifold f: Z — M is an
immersion if its differential is injective at every point of Z.

Immersions need not be injective: consider the map f: S' — S!, f(e??) =
e?? Tt is a 2-1 map but its differential everywhere is a bijection.
Example 4.3.2. The inclusion map of a submanifold is a 1-1 immersion.

Definition 4.3.3 (Submersion). A map f: M — N between smooth manifolds
is called a submersion if its differential at every point is surjective.

Ezercise 4.3.4. Show that for any manifold M the canonical projection w: TM —
M is a submersion — compute in the appropriate coordinates.
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Ezercise 4.3.5. Show that if Z C M is an embedded submanifold, then 771(Z) C
TM is an embedded submanifold of the tangent bundle TM of M. Here again
7w: TM — M is the projection. Note that 771(Z) = UuezTo M. It is often
denoted by TM|z.

Definition 4.3.6 (Embedding). A smooth map of manifold f: Z — M is an
embedding if f(Z) C M is an embedded submanifold and f: Z — f(Z) is a
diffeomorphism.

This says, in particular, that every embedding is a 1-1 immersion. The
converse is not true.



Chapter 5

Appendix

5.1 Inverse function theorem

This section is a slightly edited version of “Inverse Function Theorem” by Ethan
Y. Jaffe. The reason that the transcriber adopted this one is two-fold:

1. It is written in the same spirit as “Baby-Rudin”, and
2. it is self-contained.

Theorem 5.1.1 (Inverse Function Theorem). Let U be an open set in R™,
and let f: U — R™ be continuously differentiable, i.e., f is of class C*. Suppose
that xg € U and D f(xq) is invertible. Then there exists a smaller neighbourhood
V' 3 x¢ such that f is a homeomorphism onto its image. Furthermore, V. may
be taken small enough so that f~' is also continuously differentiable, with its
derivative satisfying D(f~1), = (Df);,ll(y) Moreover, if f is of class C*,
(k € NU {c0}), then so is f~1.

The version of the proof presented here depends on a version of the Banach
fixed point theorem with parameter, which we now state.

Theorem 5.1.2 (Banach Fixed Point Theorem). Let (X,d) be a complete met-
ric space, and T: X — X be a contraction of factor r < 1, i.e. d(Tz,Ty) <
rd(x,y). Then T has a unique fized point. Furthermore, if A is another metric
space, and T(A) A € A is a continuous family of contractions of factor r, that
is,

lim sup d(T'(A\)z, T(Ao)x) =0
A— Ao rzeX

then the fized points of T(\) are continuous of A. Stated otherwise, if x(\) is
the unique fized point of T(X), then the map A — x()\) is continuous.

Proof. First we show uniqueness. If Tx = x and T'y = y, then
d(z,y) = d(Tz,Ty) < rd(z,y),

41
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which is only possible if d(z,y) =0, i.e., z = y.
Now for existence. Fix any zy € X, and consider y = lim,, oo T"(xq). If
this exists, then

T(y)=T ( lim T”(xo)) = lim 7" (z) =y,

n—oo n—oo

since T' is continuous. To prove convergence, notice that the sequence is Cauchy.
Indeed, for any n it is easy to see inductively that

d(T™(x0), T" ™ (20)) < r"d(xo, T(20)).
By the triangle inequality, it follows that for k£ > 1
n+k 1

AT 20 T o) < dloo Tao) 3 vt <" Ao, Tlrw)

This upper bound is independent of k, so it follows that if n,m > N,

AT (w0), T (ay) < ¥ AT E0D),

which shows that the sequence is Cauchy.
Now for the version with parameter. Observe that

d(z(A),z(Ao)) = d(T(N)x(A), T(No)z(No))
< d(T(N)z(A), T(N)x(Ao)) + d(T(N)x(Ao), T(Ao)z(Ao))
< rd(z(A),z(Ao)) + d(T'(AN)(2(Xo)), T(Xo)(z(o)))-

Rearranging,
d(z(N), (X)) < (1 —7)"1d(T(N)z(Xo), T(Xo)z(Ao)) — 0
as A — A\p by continuity of the map A — T()). O
Now we prove the inverse function theorem.

Proof. (of Inverse Function Theorem) Translating and multiplying by a linear
map, we may assume that zo = 0, f(z9) = 0 and Dfy = id. Since f is
continuously differentiable, D f, remains close to D fy as matrices if x is close
to 0. For y € R™, with y close to 0, consider the map T,:  — x — f(x) + y.
Observe that a fixed point x of T} is precisely an z for which f(z) = y°.

The following part should be skipped for the first reading. Let us
motivate the choice of this map. Let us use the notation F'(z) = f(x) — x of the
sequel. Since Dfy =1id, F'(z) € o(1) can be thought of as a perturbation of the
constant map 0, and hence f = id —F is a peturbation of the identity. We are
seeking to solve f(x) =y, i.e. (id—F)(z) =y.
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One way to motivate the choice of the map T}, is to rearrange this equality
into id(z) = F(z) +y = T,(2), i.e., finding a fixed point for T),. A more brute
force approach, however, is to try to build a sequence of approximate solutions
T, to this equation, starting with x; = y, and iteratively improving the error.
Explicitly, we may think of F'(z,)+y = x,, + R,, where R, is some error. To
improve the error, we try to perturb by adding some z of size roughly R,, to x,,
and trying to solve F(x, + z) + y = x,, + 2. For such z,

F(zy, + z) = F(z,) + DF,, 2z + o(]#])
by definition of the derivative, and so we are trying to solve
F(zp)+y+ DF, 24 0(]z]) =z, + 2, ie. R,+ DF, z+o(|z]) =z.

Since x, should be thought of as close to 0, DF},, is small, and thus DF,_ z +
o(]z]) should be thought of as neglible compared to R,, if z is about size R,,.
Thus z = R,, is of size R,, and solves the previous equation modulo an error of

R.+1 = DF, R, + o(|R,]),

which is of order smaller than R,,. Thus z,1 := z,, + 2z solves F(zp41) +y =
Tpt1 + Rnt1, and Ry, is an improved error compared to R,,.

While this idea can be turned into a formal proof, one should just notice
that

Tpy1 =Tn+2=ap+ Ry, =F(z,)+y=T,(zn)

is just a fixed-point iteration, and so the formalisation of this proof may be
abstracted away to an invokation of the fixed point theorem, anyway. The reader
should also notice the similary of this approach to inverting the linear operator
id —F on a Banach space, if ||[F|| < 1, via the Neumann series > .-, F*; in
this case, the choice of x,, above are precisely the partial sums of the Neumann
series, truncated at k = 27!, applied to y.

Returned from the paragragh to be skipped for the first reading.
Let Bgr denote the closed ball of radius R > 0 centred at 0. Note that Bg is a
complete metric space. We will prove that if R is small enough, and y is small
enough, T, maps Bg to itself and is a contraction. We will use ||z|| to denote
the usual (¢2) Euclidean norm on points, and for a linear map A, || A to denote
the ¢2 operator norm.

Let us start by considering the map F(x) = f(x) — z. F is continuously
differentiable with DFy = 0. Then for R > 0 small enough that Bg C U, and
any two z,z’ € Bg,

1
1P~ P = | [ DFumapissr o= ot
0
1
< [ 1P el =o'l

< (sup ||DFZ||) o — 2]l
2€BRr
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Since DFy = 0 and F is continuously differentiable, for all 0 < e < 1, if R is
small enough, (sup,cp,|[DF.||) <e. Fix such an ¢.

Suppose |y|| < R(1 —¢). Then we will show T,: B — Bp is a contraction.
Fix x € Bgr. Then we compute

I, @)]l = lle = () +yll < [P @)+
= |F(x) ~ POl + ly]
< |z + R —&) < R

Thus Tyl Br — Bg.
Now for the contraction. Fix z,2’ € Bg. Then we compute

ITy(2) = Ty(@)]| < | F(x) = F(2')]| < ellx — a'].

By the fixed point theorem, T, has a unique fixed point € Bpg, i.e. if ||y| is
small enough, there exists a unique solution x to f(z) = y with z € Bg. In
other words, we have established the existence of f~!: Br(1-¢) = Br-

We still need to prove that f is a homeomorphism. In finite dimensions, we
can appeal to the fact that a continuous bijection between compact subsets of
R™ is a homeomorphism, and that is the end of the story.

For an extra bonus, we show that we do not need the assumption of finite
dimensions, so we will use the version of the fixed point theorem with parameter.
We just need to prove that f~! is continuous, i.e. the fixed points of T} are
continuous in y. By the fixed point theorem, we just need to show that the map
y — T, is continuous, since they all have the same contractive factor e. We
easily compute for y,y" € Bp(1_e).

sup | Tyx — Tyl = [ly — ',
xEBR

which certainly tends to 0 as y — 3. Thus f~! is continuous. If 0 € V C Bg
is open, then restricting f to U, it follows that f is a homeomorphism onto its
image, which we will call W. This completes the first part of the theorem

Now we need to show that ! is continuously differentiable. Shrinking V
if necessary, we may assume that D f, is nonsingular on V' . Now we show that
f~': W — V (which we know to be a homeomorphism) is differentiable on
W, with derivative (D f)Jj,l1 )" Since Df is non-singular and f~! is continu-
ous, this automatically shows that (Df);,ll(y) is continuous, and hence f~! is
continuously differentiable.

Fix yo € W, and write 29 = f~!(yo), and for any y € W write z = f~1(y).
Then since f is a homeomorphism

f_l(y) - f_l(yO) - (Df);,ll(yo)(y —%0)

i =l
= a0 (DN (@)~ fa)
25, TF@) — flwo)]

Tr—rTo

— lim —Df-! f(x) = f(x0) — D fay(x — 20) llz — 2o
"o ( Iz = oll >||f(x>—f<xo>|'
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Since D f;ol is a linear map, it is continuous, and so the first factor converges
to 0 by definition of differentiability. The second factor is bounded above as
T — xo. Indeed,

@)~ o)l
L e = ol
i | 1PSaule = 20l 1) = £(z0) = Dz = o)
a0 [ — o [z — 2o
:hminfw > >0,
a=wo [l — |

since D f,, invertible means that there is some ¢ > 0 for which || D f,, (x —xz¢)]|| >
cllz — xg||. Putting these two things together means that

- 1Y) = M wo) = (D)7 oy (v — 0) o,
T ly —yoll

i.e. f~1is differentiable at yo with the desired derivative.

Lastly, we show that if f is C*¥ on V, then f=! is C* on W, without the
need to shrink V. Because we do not shrink V', if we can show this is true for
k < oo, we automatically show it’s true for k = co. First, observe that GL(n,R)
is an open subset of M, (R) ~ R”z, and that the inversion map I: GL(n,R) —
GL(n,R) is of class C* (since it is just a rational function of the entries). If f
is of class C*, then the map Df: V — GL(n,R) is of class C¥~1. Now, from
the above, D(f~1): W — GL(n,R) is just

D(f7')=IoDfo [,

i.e., is the composition of three maps, the first of which is C*°, and the second
of which is C*~1. This argument shows that that if f~! is of class C" for r < k,
then D(f~1) is of class C", too, so that f~!is of class C"*!. Starting with the
case r = 1, which we know to be true, we obtain iteratively that f~! is of class
C*, too. O

Remark 5.1.3. As mentioned in the motivation section, this proof easily extends
to infinite dimensions, with the derivative replaced by the Fréchet derivative.
Indeed, the only thing which needs changing is R™ to whichever Banach space
X is in question, and changing the norms to the norms in the Banach spaces.
The last part about f~' inheriting the regularity of f does not quite carry
through, as we have to manipulate maps that are k times continuously Fréchet
differentiable like the following.

If f: U — W is a differentiable function at all points in an open subset U of
V, it follows that its derivative

Df: U — L(V,W)
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is a function from U to the space L(V, W) of all bounded linear operators from
V to W. This function may also have a derivative, the second order derivative
of f, which, by the definition of derivative, will be a map

D?f: U — L(V,L(V,W)).

To make it easier to work with second-order derivatives, the space on the right-
hand side is identified with the Banach space L?(V x V, W) of all continuous
bilinear maps from V to W. An element ¢ in L(V, L(V,W)) is thus identified
with ¢ € L2(V x V,W) such that for all x and y in V,

o(z)(y) = P(z,y).

(Intuitively: a function ¢ linear in x with ¢(z) linear in y is the same as a
bilinear function v in x and y).
One may differentiate

D*f: U — LAV x V, W)

again, to obtain the third order derivative, which at each point will be a trilinear
map,
D3f: U — L(V,L(V,L(V,W))) ~ L*(V x V x V, W)

and so on. The n-th derivative will be a function
D"f:U—L"(VXVx-xV,W),

taking values in the Banach space of continuous multilinear maps in n arguments
from V to W. Recursively, a function f is n 4+ 1 times differentiable on U if
it is n times differentiable on U and for each x in U there exists a continuous
multilinear map A of n 4+ 1 arguments such that the limit

li ||A7A(h1ah27"'7hn7hn+l)”
1m

o0 Mol

A= an(l' + hn+1)(h1, hg, ey hn) — an(l‘>(h1, hg, ey hn)

=0 where

exists uniformly for hy, ho, ..., h, in bounded sets in V. In that case, A is the
(n + 1)st derivative of f at .
Moreover, we may obviously identify a member of the space

L"VXVx--xV,W)
with a linear map
L@ Vi, W)
j=1
through the identification
f(xlvl'Qv"';xn) :f(xl ®x2®®xn)

thus viewing the derivative as a linear map.
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5.2 Sard’s theorem

This section is an excerpt from “Topology from the differentialble veiw point” by
John Milnor. The reason for the seclection is quite simple: to the knowwledge
of the transcriber, no other textbooks of manifolds and/or differential topology
states and proves the theorem as completely as Milnor’s book.

In general, it is too much to hope that the set of critical values of a smooth
map be finite. But this set will be “small,” in the sense indicated by the next
theorem, which was proved by A. Sard in 1942 following earlier work by A. P.
Morse.

Theorem 5.2.1. Let f: U — R™ be a smooth map, defined on an open set
U CR™, and let
C = {x € U|rank df,, < n}.

Then the image f(C) C Rn has Lebesgue measure zero, i.e, given any € > 0, it is
possible to cover f(C) by a sequence of cubes in R™ having total n-dimensional
volume less than €.

Since a set of measure zero cannot contain any nonvacuous open set, it
follows that the complement R™ \ f(C) must be everywhere dense in R™.

Note that f should be “reasonably” smooth for the proof which we will give
later.

Before giving the proof, let us remark that We will be mainly interested in
the case m > n. If m < n, then clearly C' = U; hence the theorem says simply
that f(U) has measure zero.

More generally consider a smooth map f: M — N, from a manifold of
dimension m to a manifold of dimension n. Let C be the set of all x € M such
that

dfw: TM, — TNf(I)

has rank less than n (i.e. is not onto). Then C will be called the set of critical
points, f(C) the set of critical values, and the complement N \ f(C) the set
of regular values of f. (This agrees with our previous definitions in the case
m = n.) Since M can be covered by a countable collection of neighbourhoods
each diffeomorphic to an open subset of R™, we have:

Corollary 5.2.2 (A. B. Brown). The set of reqular values of a smooth map
f: M — N is everywhere dense in N.

In order to exploit this corollary we will need the following (See Theorem
4.1.15):

Lemma 5.2.3. If f: M — N is a smooth map between manifolds of dimension
m >n, and if y € N is a regular value, then the set f~(y) C M is a smooth
manifold of dimension Em — n.

Proof. Let € f~1(y). Since y is a regular value, the derivative df, must
map T'M, onto T'N,. The null space 1 C T'M, of df, will therefore he an
(m — n)-dimensional vector space.
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At this satege we take granted the Whitney imbedding theorem which states
that any smooth manifold of dimension m can be embedded into R* for some
integer k (actually k can be assumed to be 2m 4+ 1.) If M C R¥, choose a linear
map L: RFtoR™™™ that is nonsingular on this subspace %1 ¢ TM, C R¥. Now
define

F:M— NxR"™™"

by F(&) = (f(€), L(€)). The derivative dF}, is clearly given by the formula
dF,(v) = (dfy(v), L(v)).

Thus dF} is nonsingular. Hence F' maps some neighbourhood U of = diffeomor-
phically onto a neighbourhood V of (y, L(z)). Note that f~!(y) corresponds,
under F, to the hyperplane y x R™~", In fact F maps f~!(y) N U diffeomor-
phically onto (y x R™~")N V. This proves that f~!(y) is a smooth manifold of
dimension m — n. O

As an example we can give an easy proof that the unit sphere S~ is a
smooth manifold. Consider the function f: R™ — R defined by

fl@)y=ai+a3+ - +a2,

Any y # 01is a regular value, and the smooth manifold f~1(1) is the unit sphere.
If M’ is a manifold which is contained in M, it has already been noted that
TM, is a subspace of TM,, for x € M’. The orthogonal complement of TM,
in TM, is then a vector space of dimension m — m’ called the space of normal
vectors to M’ in M at x.
In particular let M’ = f~1(y) for a regular value y of f: M — N.

Lemma 5.2.4. The null space of df,: TM, — TN, is precisely equal to the
tangent space TM! C TM, of the submanifold M' = f~'(y). Hence df, maps
the orthogonal complement of T M|, isomorphically onto TN,,.

Proof. From the diagram
M — =M

|

y——=N

we see that df, maps the subspace TM. C TM,, to zero. Counting dimensions
we see that df, maps the space of normal vectors to M’ isomorphically onto
TN,. O



