Homological Algebra

Peter Jgrgensen






Contents

1 Modules 1
1.1 Definition . . . . . . . . . . ... e 1
1.2 Homomorphisms . . . ... ... ... .. ... ..., 2
1.3 Kernels, Images, Cokernels . . . . ... ... ... ... .... 3
1.4 Short Exact Sequences . . . . . . . ... ... 4

2 Classical Homological Algebra 7
2.1 Complexes and Chain Maps . . . . . . . ... ... ... ..... 7
2.2 Free Modules . . . .. ... ..o 9
2.3 Free and Projective Resolutions . . . . . ... ... .. ... ... 11
2.4 Ext and Extensions . . . . . .. ... ... ... . 0. 13

3 The Derived Category 17
3.1 Abstract Categories . . . . . . . . .. ... 17
3.2 The Homotopy Category . . . . . . . . . ... .. 18
3.3 Localisation . . . . . .. .. ... e 19
3.4 Morphisms . . . ... 20
3.5 Example: Upper Triangular Matrices . . . . . . . . .. ... ... 22



ii

CONTENTS



Chapter 1

Modules

1.1 Definition

Recall the concept of a vector space V' over the real numbers R. V is an abelian
group, and there is a scalar multiplication

RxV =V, (rv)—=rv
satisfying some conditions:
v =wv,(r+ s)v=rv+sv,r(v+w) =rv+rw,r(sv) = (rs)v.

Ezample 1.1.1. R™ is a vector space over R. Its elements are n-tuples (r1,...,7,)
of real numbers. Its abelian group structure is defined by

(r1y.cosrn) + (81,3 8n) = (11 + 81, -+, T + Sn)-

Its scalar multiplication is defined by 7(r1,...,7r,) = (rr1,..., 7).

There is nothing to stop us from making the same definition over any ring
R. The concept thus defined is called a left- R-module.

Definition 1.1.2. A left-R-module is an abelian group M with a scalar multi-
plication
RxM— M, (r,m)—rm

satisfying the same conditions as before:
Im =m, (r+ s)m =rm+ sm,r(m+n) = rm + rn,r(sm) = (rs)m.

Ezample 1.1.3. e A vectorspace over R is an R-module. In particular, R™
is an R-module.

e If R is any ring then R" is an R-module, in the same way that R™ is a
R-module.
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e An abelian group A can be viewed as a Z-module with the scalar multi-

plication
n times
/_H .
at+--+a if n >0,
na=<0 if n=0,
(—a)+---+(—a) ifn<0.
—n times

e Let k£ be a field. Then the set A of 2 by 2 upper triangular matrices over

k is a ring:
k k
+=lp ]
There are right-A-modules
P=0k), Y=(k), I=---.
The scalar multiplication of A on P and Y is given by matrix multiplica-

tion. Any finitely generated right-A-module is isomorphic to a direct sum
of copies of the indecomposable modules P, Y, and I.

1.2 Homomorphisms

Definition 1.2.1. Let M and N be left-R-modules. A homomorphism of R-

modules from M to N is an R-linear map i: M — N. That is, u(mi + me) =

p(ma) + p(mo) and 3 (pm) = ru(m).

Ezample 1.2.2. e An R-linear ma@ of -vector space is a homomorppshim of
R-module.

e A homomorphism of abelian groups is a homomorphism of Z-modules, if
the abelian groups are viewed as Z-modules

o If N is any left-R-module and n;,...,ns are elements of N, then p: R® —
N given by p(ri,...,75s) = rini + -+ + rsng is a homomorphism of R-
modules.

e Recall that over

s=lo 4
There are right-A-modules
P=0k), Y=(kk), I=--
There is an injective homomorphism
P—Y, (0p)— (0p).
There is a surjective homomorphism
Y =1

(more about this later!).
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1.3 Kernels, Images, Cokernels

Definition 1.3.1. A bijective homomorphism is called an isomorphism.

Isomorphic modules are algebraically equivalent.

Module homomorphisms are a natural generalisation of linear maps of vec-
tor spaces. Other notions can also be generalised. In particular, submodules
and quotient modules are defined analogously to sub vector spaces and quo-
tient vector spaces. Recall that a module M is an abelian group with a scalar
multiplication.

Definition 1.3.2. A submodule M’ of M is a subgroup closed under scalar
multiplication.
The quotient module M /M’ is the quotient group equipped with the scalar
multiplication
rim+ M) =rm+ M'.
Let us check that this is well defined: If mq +M' = mo+M’, then mq —mo is
in M’. Then rmj—rmsg = r(mi—meg) is alsoin M’, whence rm;+M' = rm+M’.

Example 1.3.3. Over the upper triangular matrix ring A, the injective homo-
morphism P = (0 k) — (k k) =Y means that P can be viewed as a submodule
of Y. The third, “mysterious”, module I is just Y/P.

Definition 1.3.4. Let p: M — N be a module homomorphism. The kernel of
p is the submodule ker p = {m € M | u(m) = 0}. There are homomorphisms
kerp — M £ N.

The image of p is the submodule im p = {u(m) | m € M}.
There are homomorphisms
M —»impy— N

which compose to pu.
The cokernel of pu is the quotient module coker p = N/ im p.
There are homomorphisms

M5 N - coker .

Ezample 1.3.5. e Consider the morphism of Z-modules Z 27
— ker = 0 (the homomorphism is injective).
— im = 2Z.
— coker = Z/2Z.
e The ring R = k[X]/(X?) is a left-module over itself, and R X Risa

homomorphism. The ring is spanned over k£ by 1 and X, and the homo-
morphism is determined by 1 +— X and X — X? = 0.

— ker = (X).
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— im = (X).
— coker = R/(X).
These three modules are 1-dimensional, and they are in fact isomorphic.

Kernel and cokernel have so-called universal properties.

Theorem 1.3.6. If K = M satisfies ur = 0, then k factors uniquely through
the kernel.
K

N

ker u—— M —N.
If N % C satisfies viu = 0, then v factors uniquely through the cokernel.

ML>N—»cokeru
Xfl /
C

1.4 Short Exact Sequences

Definition 1.4.1. A short exact sequence is a diagramme of module homomor-
phisms of the form

M%S NS P
where 1 is a kernel of v (in the sense of having the universal property) and v is
a cokernel of p (in the sense of having the universal property).

Note that in particular, u is injective and v is surjective!
Short exact sequences (extensions) are often written in the form

0—-M-—N—P—0.

The existence of such a short exact sequence means precisely that there exists a
module N which contains a submodule isomorphic to M such that the quotient
module is isomorphic to P.

Ezample 1.4.2. e There is a short exact sequence of Z-modules
02727 7/27 — 0.

e If m < n then there is an injective homomorphism of R-modules R™ — R™
given by
(r1y.osrm) = (1, oy Tm, 0,...,0).
The quotient R™/R™ is obtained by discarding the m first coordinates, so
it can be identified with R™~ ™. There is a short exact sequence

0—-R"— R"— R"™™ —0.
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e Over the 2 by 2 upper triangular matrix ring A, there is a short exact
sequence of right-modules

0P —=>Y —>1—0.
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Chapter 2

Classical Homological Algebra

2.1 Complexes and Chain Maps

Definition 2.1.1. A complex of R-modules is a diagramme of R-modules and
homomorphisms of the form

_9 972 1 97t a° ot
s M2 M s MO s M T M

where 9?9'~1 = 0 for each i.
This equation means im &'~ C ker &%, and the ith cohomology of the complex
is

HY (M) =kerd'/im o'

We have Hi(M) = 0 if and only if im 9°~! = ker 9, and then M is called exact
in degree 1.

Ezample 2.1.2. e If the complex
0-MENL PO

is exact then it is a short exact sequence. Exactness at M means that
0 = ker u, that is, p is injective. Exactness at P means that imv = P,
that is, v is surjective. Exactness at N means that im y = kerv. But p
can be seen as identifying M with im u, that is, as identifying M with
kerv, so u is a kernel of v. And v can be seen as identifying N/ ker p with
P, that is, as identifying N/im p with P, so v is a cokernel of p.

e Over the ring R = k[X]/(X?), there is an exact complex
o 5RES5RSRS RS
since each of the homomorphisms has kernel and image (X).

7
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e Over the integers Z, there is a complex

P= 5052237250
with H°(P) = Z /27 and all other cohomology groups 0.

e Over the ring R = k[X, Y], there is a complex

Q= 205RS RS R0 -

where the maps are given by the matrices
X
p=(XY), and o= (Y)

The zeroth cohomology group is H°(Q) = k and all the other cohomology
groups are 0.

Definition 2.1.3. A chain map of complexes of R-modules involves two com-
plexes of R-modules and homomorphisms,

-2 -1 0 1
M2 O M1 O MO Im M1 Om M?2

R R

N72 N*l NO - Nl - M2

ay? ot % N

and vertical R-module homomorphisms.
The diagram is commutative:

Mz’-‘rloa}'\/[ :8};\40,U/i

Commutativity implies that p(ker dpr) C ker(dn) and p(im dpr) C im(9y).
Hence there is a well-defined induced homomorphism

ker 04,/ im %' — ker 0/ im 9% !,

that is, . ‘
H'(M)— H'(N).

This homomorphism is denoted H®(u).
It depends functorially on u: If g and v are consecutive chain maps, then

Hi(vop) = Hi(v) o H ().
Ezample 2.1.4. Consider the complexes

P= . 505Z3%7250---
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and
Q:~~~%O~>Z'—(1—>Z%O~>~~

with cohomology H®(P) = Z/pZ and H®(Q) = 7Z/qZ.
If a is an integer such that ¢ | pa, then pa = ¢gb and there is a chain map p given

by
Z Z
1|
Z Z

H(pu): H(P) — H(Q)

‘P

0 q

The induced homomorphism

is
Z./pZ % 7./ qZ.

2.2 Free Modules

Recall that if R is a ring, then R?®, the set of s-tuples of R-elements, is a left- R-
module. Such a module (and any module isomorphic to it) is called free.

Free modules have a special property with regard to homomorphisms. De-
note by e; the tuple (0,...,0,1,0,...,0) with 1 in the ith position.

Theorem 2.2.1. If N is any left-R-module and ny,...,ns are in N, then there
is precisely one homomorphism p: R® — N with p(e;) = n; for each i.

Proof.

p((rlv s 77"3)) = p('f‘1€1 +oet Tses)
= Tlp(el) +o T+ Tsp(eS)
=ring + -+ rgns.

O

“Homomorphisms from R® are determined by the images of the basis ele-
ments eq, ..., es, and the images can be chosen freely.”
More generally, if I is any index set, then we can think of basis elements e; for i
in I and form the free left-R-module F' of formal linear combinations of the e;.
So the elements of F' are finite linear combinations rie;, + --- + rie;, with the
r; in R.
The module F has the same property with respect to homomorphisms: If N is
any left- R-module and ni are elements of NV indexed by I, then there is precisely
one homomorphism ¢: F — N with ¢(e;) = n; for each i. Namely,

p(riey, + -+ rie,) =10, + s+ Ty,
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Note that the basis elements of a free module are linearly independent:
rie;, +---+re;, =0

implies ry =--- =r; = 0.

Ezxample 2.2.2. e Any vectorspace V over R is a free R-module. If V' has
a finite generating system, then by dropping vectors from the system, we
will eventually arrive at a linearly independent generating system. Using
this system as the e; shows that V is free. For a general V', basis elements
e; can be found using Zorn’s Lemma.

e The Z-module Z/27Z is not free. It has no basis. The module has elements
Oand 1. But 1-0 =0 and 2-1 = 0 so it is impossible to find a linearly
independent set.

Free modules have the following property:

Theorem 2.2.3. Let u: M — N be a surjective module homomorphism. Let
F be a free module with basis elements e;. Let ¢: F — N be a module homo-
morphism.

M

i
F——N
@
Then there is a homomorphism ¢’ with po ¢ = .
Proof. For each p(e;) = n;, since p is surjective, we can pick m; in M with
p(m;) = n;. Define ¢': F'' — M by ¢'(e;) = m;. Then po ¢'(e; = n; = ¢(e;)
so po ¢ = . 0
If NV is a left- R-module, then a system of elements n; indexed by 7 in [ is said
to generate N if N is equal to the set of all linear combinations r1n;, +- - -+7rin;,.
For instance, taking all the elements of IV obviously gives a system of generators.
Given a system of generators n;, we can consider the free left- R-module F' with
basis elements e;, and the homomorphism
(,DZF‘—)]V7 (p(ei):ni.
It is clearly surjective since
o(riey, + -+ re;,) =rng, +-- +rng,.

Ezample 2.2.4. Over Z, the module Z/27Z has the system of generators {1}.
There is hence a surjective homomorphism from a free module with a single
basis element, ey, given by e; — 1.

Such a free module is given by Z' = Z, and the surjective homomorphism
p: Z— ZLJ27 is

o(z) =p(z-e1) =x-1= the residue class of z in Z/2X.
Note that ker ¢ = 27Z.
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2.3 Free and Projective Resolutions

Let us recall theorem 2.2.1 in the following form.

Theorem 2.3.1. Any module N permits a surjective homomorphism F — N
with F free.

The homomorphism induces an isomorphism F/K = N where K is the
kernel.
We can iterate this construction: Choose a surjection Fy — N. Let K be the
kernel and choose a surjection F; — K. Let K; be the kernel and choose a
surjection F» — K;. Continue to get

K,

SN

Fy B Fy N

NS

Ky

Definition 2.3.2. The complex --- — F, — F; — Fy — 0 — --- is called a
free resolution of the module N.

Ezample 2.3.3. e The Z-module Z/27Z permits the free resolution
02 Z BT 50—
e Over the ring R = k[X, Y], we have seen the complex

B0 RBRELR S0

where the homomorphisms were given by certain matrices. This is in fact
a free resolution of the R-module k.

Note that we used homological (lower) indices in the free resolution
o> > F > Fyp—>0—--- of N.

As a generel rule, they relate to cohomological (upper) indices via F; = F .

We have
Fo/Kg=N i=
H;(F) = o/ Ko Z 0
0 i # 0.
Let
o= F > Fp—-0—---
and

o> Gy =G> Gy —0— -
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be free resolutions of M and N, and let p: M — N be a homomorphism. We
can lift the homomorphism to the free resolutions:

N

G2 Gl GO

NS N

Ly N

So we get a chain map

Fy Fy )

N l

Go G Go

The induced homomorphism Hy(p): Ho(F) — Ho(G) is the given homomor-
phism M — N.

The lifting is not unique, but it is “unique up to homotopy”. Any two liftings,
p and ¢', differ by a chain homotopy:

By Fy Fy F, 0
VAV A
Go Gy Go Go 0

We have p; — (p;“- = 8&191 + 91_1811:

If F and G are both free resolutions of M, then the identity on M lifts to
chain maps F'— G and G — F.

The compositions F' - G — F and G — F — G also lift the identity on
M, so they are homotopic to the identity chain map. We say that F' and G are
homotopy equivalent.

As a final observation on free modules, note that a direct summand of a free
module is known as a projective module.
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0 k
It is the direct sum of the right-A-modules Y = (k k) and P = (0 k), so Y and
P are projective right-A-modules (and they are not free).

Example 2.3.4. The upper triangular ring A = [k k] is a free right-A-module.

One of the key properties of free modules remains true for projective mod-
ules:

Theorem 2.3.5. Let u: M — N be a surjective module homomorphism. Let
P be a projective module. Let m: P — N be a module homomorphism.

M

i

Then there is a homomorphism © with pon' = .

As a consequence, we can replace free resolutions with projective resolutions
above:
Homomorphisms of modules can be lifted to chain maps of projective resolutions,
and the liftings are unique up to chain homotopy.

2.4 Ext and Extensions

Let M and N be left-R-modules. By Hom(M, N) is denoted the set of homo-
morphisms of R-modules from M to N. It is clearly an abelian group. If

w: M — M’
is a homomorphism, then there is an induced homomorphism
Hom(p, N): Hom(M’, N) — Hom(M, N)

given by u' — ' o p.

Hence Hom(—, V) sends left- R-modules to abelian groups, and it sends ho-
momorphisms to homomorphisms. It is a functor from left- R-modules to abelian
groups since it satisfies Hom(id, N) = id and Hom(y' o p, N) = Hom(u, N) o
Hom(y/, N).

Let M be a left- R-module with projective resolution

P=--->5P—>P—-F—>0—---.
Applying the functor Hom(—, N) produces a new complex Hom (P, N) which is
-+ — 0 — Hom(Py, N) — Hom(P;, N) - Hom (P2, N) — - --

and we define ' '

Ext'(M,N) = H'(Hom(P, N)).
This is independent of the choice of P, because different choices of P are homo-
topy equivalent
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Ezample 2.4.1. Consider the modules Z/6Z and Z/8Z over Z. We have the free
resolution
P=50-22%250—-

of Z/6Z. Hence
Hom(P,Z/8Z) = -+ — 0 — Z/87 -5 7,/87 — 0 — - - - .
The Ext groups become
Ext®(Z/6Z,7/87) = ker(-6) = {0,4} = 7,/27.
and
Ext'(Z/6Z,7,/87) = (Z/8Z)/im(-6) = (Z/8Z)/{0,2,4,6} = 7./27.

Let p: M — M’ be a homomorphism. If P and P’ are projective resolutions
of M and M’, then p lifts to a chain map

Py Py Py 0
ml mi ml l
P P P 0

Applying the functor Hom(—, V) gives a chain map

-+ ——0——> Hom(P},N) —— Hom(P{,N) —— - --

| |

-+ —> 0 —— Hom(Py, N) —— Hom(P,,N) —— - --

Taking H® gives an induced homomorphism Ext'(M’, N) — Ext!(M, N) which
is denoted Ext’(u, N). It is well defined because 7 is unique up to homotopy.
Ext® becomes a functor in the first variable.

Ezample 2.4.2. Consider the canonical homomorphism Z/12Z — Z/6Z over Z.
There is an induced chain map of free resolutions

-12

0 A Z 0
N
0 Z——>1L 0
Applying the functor Hom(—,Z/87Z) gives
> 0—>7/82—257,/87 0

N

> 0—>7/8Z 7./81. 0

12
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The induced maps on
Ext’(Z/6Z,7./87) — Ext'(Z/127,7,/8Z)

for i = 0,1 are both the canonical injection Z/2Z — Z/4Z.

If
viN—> N

is a homomorphism, then there is an induced homomorphism
Hom (M, v): Hom(M,N) — Hom(M, N")

given by i — vopu. In other words, Hom is also a functor in its second variable.
In fact, Hom is even a bifunctor: If u: M — M’ is also a homomorphism,
then there is a commutative square of induced homomorphisms

Hom(M’, N) —— Hom(M, N)

l l

Hom(M’, N') —— Hom(M, N’)
Let M have the projective resolution
P=--5P P —>FP—>0—---.
Then v: N — N’ induces a commutative diagram

-+ ——>0——> Hom(FPy,N) —— Hom(P;, N) —— - --

_— |

-+ ——> 00— Hom(Py, N') —— Hom(P;, N') —— - -+

Taking H' gives an induced homomorphism Ext‘(M, N) — Ext*(M, N') which
is denoted Ext'(M,v). So Ext’ becomes a functor in the second variable.
In fact, it is not hard to verify that Ext*(—, —) is a bifunctor.

Definition 2.4.3. Extensions0 + B —+FE —+A—0and0— B - E — A—
0 are called equivalent if there is a commutative diagram

0 B E A 0
0 B’ E' A 0

Theorem 2.4.4. Given left-R-modules A and B, there is a bijection between the
set of equivalence classes of extensions 0 - B - E — A — 0 and Extl(A7 B).
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Proof. (Sketch):
The bijection comes as follows: Given an extension 0 - B — E — A — 0. Let
P, — Py — A — 0 be an exact sequence where P; and P, are the first terms
of a projective resolution of A. We can lift as follows, using that Py and P; are
projective:

Ky

.
/

Now P, — B represents an element of Ext' (4, B). O



Chapter 3

The Derived Category

This chapter gives a sketch of the derived category. Details are coming up in
parts 77 and ?7.

3.1 Abstract Categories

Let R be a ring. We can consider the collection of all left-R-modules. For each
pair M and N of modules, there is the set Homg (M, N) of R-homomorphisms
M — N. Composing homomorphisms give new homomorphisms. Abstracting:

Definition 3.1.1. A category C is a collection of objects and, for each pair of
objects z and y, a set Home(z,y) of morphisms. For each object x, there is
an identity morphism id, in Home(x,2). There is also a rule for composing
morphisms,

Home (z,y) x Home(y, z) — Home(x,2),  (f,9) = go f
and these data satisfy
(hog)of=ho(gof), idyof=f goid.=g.
Ezample 3.1.2. e As we saw, when R is a ring, there is a category Mod(R)
(or g Mod) whose objects are the left-R-modules and whose morphisms

are the R-homomorphisms.

e There is a category Top of topological spaces. The objects are the topo-
logical spaces and the morphisms are the continuous maps.

o Let R be a ring. There is a category C(R) (of r Comp) of complexes of

left- R-modules. The objects are the chain complexes of left- R-modules
and the morphisms are the chain maps.

17
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3.2 The Homotopy Category

Definition 3.2.1. The chain map ¢: F' — G is null homotopic if there is a
chain homotopy 6 for which ¢ = 90 + 60, i.e., p; = 0% ,0; + 0;_10 for each i.

aF aF aF
F Fy Fy F_4

A A

G2 G1 Go Gfl —_—
o5’ o a5’

Definition 3.2.2. Set
Homp gy (F,G) = Homg gy (F, G)/{null homotopic chain maps}.

It is easy to check that if ¢ is null homotopic, so is any composition ¥ o ¢ and
o X, so composition of chain maps induces a well defined composition

HOHlK(R)(F, G) X HOHIK(R)(G,H) — HOHlK(R)(F, H)

Hence there is a category K(R) whose objects are the complexes and whose
morphism sets are the Hom g () (F, ). This is known as the homotopy category
of complexes over R.

Ezample 3.2.3. Consider R as a complex concentrated in degree 0 and let G be
a complex.

0 R 0

yard
$o

G P Gy P G_4

Since R is free with generator 1, the homomorphism g is determined by its
value on 1. Since ¢ is a chain map, ¢o(1) must be in ker 95.

The ¢ for which it is possible to find a chain homotopy 6 are precisely the
ones where (g(1) is in im 9. So

Homy (g (R, G) = ker 8§ / im 0f = Ho(G).

Ezample 3.2.4. Let N be a module and view N as a complex concentrated in
degree 0. There is an obvious operation of shifting complexes one step to the
left; let us denote it by 3 (for technical reasons we will also let ¥ change the
sign of the differential). Then XN is N viewed as a complex concentrated in
(homological) degree i. Let M be a complex and consider morphisms M — XN

M; 4 M; M;_4
0 N 0

An argument similar to the previous one shows

Homg (g) (M, Y'N) = H' Hompg(M, N).
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3.3 Localisation

Definition 3.3.1. An isomorphism f in a category C is a morphism with an
inverse g such that fog =idy and go f = idx.
Definition 3.3.2. Let C be a category with a class S of morphisms. A localisa-
tion of C with respect to S is a category S~!C and a functor 7: C — S~!C with
the following universal property: If C — D is a functor sending the elements
of S to isomorphisms, then there is a unique functor S~!C — D making the
diagram commutative.

C—'=8"1C

D

Example 3.3.3. If S itself consists of isomorphisms, then S™'C = C and 7 = id¢
satisfy the universal property, so the localisation does not change C.

If S is a so-called multiplicative set, satisfying axioms reminiscent of the Ore
conditions from ring theory, then S~!C can be constructed as follows.
The objects are the same as in C. The morphisms from X to Y are equivalence
classes of diagrams of the form

7
N
X Y,

where s is in S. The diagram represents f o s~ 1.
The equivalence relation is that diagrams representing fs~! and gt ~! are equiv-
alent when they embed in a bigger commutative diagram as follows:

Z//
N
Z A
g9
s t f

X Y

where su = th is in S.
Morphisms fs~! and gt~' are composed as follows.

A/CXB
ANAN
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The existence of the commutative square

is one of the axioms of multiplicative sets.

Recall that a chain map ¢: F' — G induces homomorphisms of homology groups
H;(¢): H;(F) — H;(G). It is an easy computation to check that if ¢ is null
homotopic, then H;(y) = 0 for each i.

If fis in Homg () (F, G), then pick a chain map ¢ in the homotopy class f and
set H;(f) = H;(¢). By the above, this is well defined.

Definition 3.3.4. The homotopy class f is called a quasi-isomorphism if each
H;(f) is bijective.

Definition 3.3.5. Let S be the class of quasi-isomorphisms in K(R). The
localisation S™1K(R) is called the derived category of R. It is denoted D(R).

Ezample 3.3.6. Let P be a projective resolution of the module M. We can view
M as a complex concentrated in degree 0 and construct a chain map as follows.

b

The homomorphism Py — M is just the one which exists since P is a projective
resolution of M.

It is not hard to verify that the homotopy class of this chain map is a quasi-
isomorphism. Hence it becomes an isomorphism in the derived category. In
the derived category, a module is identified with its projective resolution, up to
isomorphism.

3.4 Morphisms

Definition 3.4.1. A complex P of left-R-modules is called K-projective if
Homg (g (P, —) sends quasi-isomorphisms to bijections.

Theorem 3.4.2. If P is the projective resolution of a left-R-module, then P
is K-projective. More generally, if P is a right-bounded complex of projective
left-R-modules, then P is K-projective.
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Proof. If P is a K-projective complex of left- R-modules and Z % P is a quasi-
isomorphism in K (R), then the induced map Homg gy (P, Z) — Homg (g (P, P)
is bijective. Hence there exists an element p in Homg (g (P, Z) which maps to
idp in HOmK(R)(P,P). [

Unravelling this, there is a morphism P 2 Z such that sop = idp. If
Z L v is also given, then there is a commutative diagram

Hence the two diagrams

nd P

Z a
SN N
P Y P Y

are equivalent, so represent the same morphism in D(R). This shows that when
mapping out of P, it is not necessary to invert s.
Elaborating the argument gives a proof of the following.

Theorem 3.4.3. Let P be a K -projective complex of left-R-modules. For any
complex Y of left-R-modules, there is an isomorphism

HOHID(R)(P, Y) = HOHIK(R)(P, Y)

Ezample 3.4.4. e Recall that when viewing R as a complex concentrated in
degree 0, we get Homg gy (R,Y) = Ho(Y). But R viewed as a complex
concentrated in degree 0 is a projective resolution of the module R, so it
is K-projective, so

HomD(R) (R, Y) = HOIHK(R) (R, Y) = H()(Y)

e Let M and N be modules, and let P be a projective resolution of M.
View M and N as complexes concentrated in degree 0. Recall that there
is a quasi-isomorphism P — M. Due to localisation, this becomes an
isomorphism in the derived category so

Hompg) (M, %'N) = Homp(g) (P, 5'N) = (x).
But P is K-projective, so we get

(x) = HomK(R)(P, ZiN) = (%%).
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Finally, by 3.2.4 and 2.4,
(x%) = H'Hompg(P,N) = Exty (M, N).

The homomorphisms of the derived category capture the Ext groups of
classical homological algebra.

3.5 Example: Upper Triangular Matrices

Recall that over the upper triangular matrix ring A = any finitely

k k

0 k|’

generated right-module is a direct sum of copies of the indecomposable modules
P=(0k), Y=(k), I=Y/P

We can give a similar description of the derived category D(A), or rather of the
full subcategory D7(A) of bounded complexes of finitely generated modules.
It turns out that in Df(A), each object is the direct sum of copies of indecom-
posable objects of the form X*P, XY, or ¥*I. In other words, each object is
the direct sum of complexes which are just P, Y, or I concentrated in a single
degree.
The inclusion P < Y and the surjection Y — I are module homomorphisms.
They induce chain maps when the modules are viewed as complexes concen-
trated in degree zero, and morphisms in K(\) and D/ ()\) ensue. Using X¢ gives
morphisms

Y'P— %Y and Y'Y — Y.
The short exact sequence

0-P—=>Y—=>I—=0

corresponds to an element in Ext} (I, P), and we know that this group is iso-
morphic to Hompy(A)(I,XP). So the short exact sequence gives a morphism
I — ¥Pin Df(A), and using ' gives morphisms

S — $HP,
We can organise the morphisms we have found graphically as follows:

zoip xir Y 3P I
SN TN N 7N TN
. »-ly P 1 XY e
This is the so-called Auslander-Reiten quiver of Df(A). It contains all the in-
decomposable objects of Df(A).
It turns out that each morphism between indecomposables is a linear combina-
tion of compositions of morphisms in the quiver, and that each composition of
two consecutive morphisms in the quiver is zero.
Combined with the knowledge that each object is a direct sum of indecompos-
able objects, this gives a very precise “picture” of the category D/ (A).



