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Chapter 1

Modules

1.1 De�nition

Recall the concept of a vector space V over the real numbers R. V is an abelian
group, and there is a scalar multiplication

R× V → V, (r, v) 7→ rv

satisfying some conditions:

1v = v, (r + s)v = rv + sv, r(v + w) = rv + rw, r(sv) = (rs)v.

Example 1.1.1. Rn is a vector space over R. Its elements are n-tuples (r1, . . . , rn)
of real numbers. Its abelian group structure is de�ned by

(r1, . . . , rn) + (s1, . . . , sn) = (r1 + s1, . . . , rn + sn).

Its scalar multiplication is de�ned by r(r1, . . . , rn) = (rr1, . . . , rrn).

There is nothing to stop us from making the same de�nition over any ring
R. The concept thus de�ned is called a left-R-module.

De�nition 1.1.2. A left-R-module is an abelian group M with a scalar multi-
plication

R×M →M, (r,m) 7→ rm

satisfying the same conditions as before:

1m = m, (r + s)m = rm+ sm, r(m+ n) = rm+ rn, r(sm) = (rs)m.

Example 1.1.3. • A vectorspace over R is an R-module. In particular, Rn
is an R-module.

• If R is any ring then Rn is an R-module, in the same way that Rn is a
R-module.

1



2 CHAPTER 1. MODULES

• An abelian group A can be viewed as a Z-module with the scalar multi-
plication

na =



n times︷ ︸︸ ︷
a+ · · ·+ a if n > 0,

0 if n = 0,

(−a) + · · ·+ (−a)︸ ︷︷ ︸
−n times

if n < 0.

• Let k be a �eld. Then the set Λ of 2 by 2 upper triangular matrices over
k is a ring:

Λ =

[
k k
0 k

]
There are right-Λ-modules

P = (0 k), Y = (k k), I = · · · .

The scalar multiplication of Λ on P and Y is given by matrix multiplica-
tion. Any �nitely generated right-Λ-module is isomorphic to a direct sum
of copies of the indecomposable modules P , Y , and I.

1.2 Homomorphisms

De�nition 1.2.1. Let M and N be left-R-modules. A homomorphism of R-
modules from M to N is an R-linear map 1

4 : M → N . That is, µ(m1 +m2) =
µ(m1) + µ(m2) and 1

4 (µm) = rµ(m).

Example 1.2.2. • An R-linear ma@ of -vector space is a homomorppshim of
R-module.

• A homomorphism of abelian groups is a homomorphism of Z-modules, if
the abelian groups are viewed as Z-modules

• If N is any left-R-module and n1, . . . , ns are elements of N , then ρ : Rs →
N given by ρ(r1, . . . , rs) = r1n1 + · · · + rsns is a homomorphism of R-
modules.

• Recall that over

Λ =

[
k k
0 k

]
There are right-Λ-modules

P = (0 k), Y = (k k), I = · · · .

There is an injective homomorphism

P → Y, (0 p) 7→ (0 p).

There is a surjective homomorphism

Y → I

(more about this later!).
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1.3 Kernels, Images, Cokernels

De�nition 1.3.1. A bijective homomorphism is called an isomorphism.

Isomorphic modules are algebraically equivalent.
Module homomorphisms are a natural generalisation of linear maps of vec-

tor spaces. Other notions can also be generalised. In particular, submodules
and quotient modules are de�ned analogously to sub vector spaces and quo-
tient vector spaces. Recall that a module M is an abelian group with a scalar
multiplication.

De�nition 1.3.2. A submodule M ′ of M is a subgroup closed under scalar
multiplication.
The quotient module M/M ′ is the quotient group equipped with the scalar
multiplication

r(m+M ′) = rm+M ′.

Let us check that this is well de�ned: Ifm1 +M ′ = m2 +M ′, thenm1−m2 is
inM ′. Then rm1−rm2 = r(m1−m2) is also inM ′, whence rm1+M ′ = rm+M ′.

Example 1.3.3. Over the upper triangular matrix ring Λ, the injective homo-
morphism P = (0 k)→ (k k) = Y means that P can be viewed as a submodule
of Y . The third, �mysterious�, module I is just Y/P .

De�nition 1.3.4. Let µ : M → N be a module homomorphism. The kernel of
µ is the submodule kerµ = {m ∈M | µ(m) = 0}. There are homomorphisms

kerµ ↪→M
µ−→ N.

The image of µ is the submodule imµ = {µ(m) | m ∈M}.
There are homomorphisms

M � imµ ↪→ N

which compose to µ.
The cokernel of µ is the quotient module cokerµ = N/ imµ.
There are homomorphisms

M
µ−→ N � cokerµ.

Example 1.3.5. • Consider the morphism of Z-modules Z ·2−→ Z.

� ker = 0 (the homomorphism is injective).

� im = 2Z.
� coker = Z/2Z.

• The ring R = k[X]/(X2) is a left-module over itself, and R
·X−−→ R is a

homomorphism. The ring is spanned over k by 1 and X, and the homo-
morphism is determined by 1 7→ X and X 7→ X2 = 0.

� ker = (X).
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� im = (X).

� coker = R/(X).

These three modules are 1-dimensional, and they are in fact isomorphic.

Kernel and cokernel have so-called universal properties.

Theorem 1.3.6. If K
κ−→ M satis�es µκ = 0, then κ factors uniquely through

the kernel.

K

||
κ

��

0

  
kerµ �

� // M
µ
// N.

If N
ν−→ C satis�es νµ = 0, then ν factors uniquely through the cokernel.

M
µ //

0   

N // //

ν

��

cokerµ

{{
C

1.4 Short Exact Sequences

De�nition 1.4.1. A short exact sequence is a diagramme of module homomor-
phisms of the form

M
ν−→ N

ν−→ P

where µ is a kernel of ν (in the sense of having the universal property) and ν is
a cokernel of µ (in the sense of having the universal property).

Note that in particular, µ is injective and ν is surjective!
Short exact sequences (extensions) are often written in the form

0→M → N → P → 0.

The existence of such a short exact sequence means precisely that there exists a
module N which contains a submodule isomorphic to M such that the quotient
module is isomorphic to P .

Example 1.4.2. • There is a short exact sequence of Z-modules

0→ Z ·2−→ Z→ Z/2Z→ 0.

• Ifm ≤ n then there is an injective homomorphism of R-modules Rm → Rn

given by
(r1, . . . , rm) 7→ (r1, . . . , rm, 0, . . . , 0).

The quotient Rn/Rm is obtained by discarding the m �rst coordinates, so
it can be identi�ed with Rn−m. There is a short exact sequence

0→ Rm → Rn → Rn−m → 0.
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• Over the 2 by 2 upper triangular matrix ring Λ, there is a short exact
sequence of right-modules

0→ P → Y → I → 0.
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Chapter 2

Classical Homological Algebra

2.1 Complexes and Chain Maps

De�nition 2.1.1. A complex of R-modules is a diagramme of R-modules and
homomorphisms of the form

· · · →M−2 ∂−2

−−→M−1 ∂−1

−−→M0 ∂0

−→M1 ∂1

−→M2 → · · ·

where ∂i∂i−1 = 0 for each i.
This equation means im ∂i−1 ⊆ ker ∂i, and the ith cohomology of the complex
is

Hi(M) = ker ∂i/ im ∂i−1.

We have Hi(M) = 0 if and only if im ∂i−1 = ker ∂i, and then M is called exact

in degree i.

Example 2.1.2. • If the complex

0→M
µ−→ N

ν−→ P → 0

is exact then it is a short exact sequence. Exactness at M means that
0 = kerµ, that is, µ is injective. Exactness at P means that im ν = P ,
that is, ν is surjective. Exactness at N means that imµ = ker ν. But µ
can be seen as identifying M with imµ, that is, as identifying M with
ker ν, so µ is a kernel of ν. And ν can be seen as identifying N/ kerµ with
P , that is, as identifying N/ imµ with P , so ν is a cokernel of µ.

• Over the ring R = k[X]/(X2), there is an exact complex

· · · → R
·X−−→ R

·X−−→ R
·X−−→ R→ · · ·

since each of the homomorphisms has kernel and image (X).

7



8 CHAPTER 2. CLASSICAL HOMOLOGICAL ALGEBRA

• Over the integers Z, there is a complex

P = · · · → 0→ Z ·2−→ Z→ 0→ · · ·

with H0(P ) = Z/2Z and all other cohomology groups 0.

• Over the ring R = k[X,Y ], there is a complex

Q = · · · → 0→ R
ϕ−→ R2 ψ−→ R→ 0→ · · ·

where the maps are given by the matrices

ϕ = (X Y ), and ψ =

(
X

Y

)
.

The zeroth cohomology group is H0(Q) = k and all the other cohomology
groups are 0.

De�nition 2.1.3. A chain map of complexes of R-modules involves two com-
plexes of R-modules and homomorphisms,

· · · // M−2
∂−2
M //

µ−2

��

M−1
∂−1
M //

µ−1

��

M0
∂0
M //

µ0

��

M1
∂1
M //

µ1

��

M2 //

µ2

��

· · ·

· · · // N−2

∂−2
N

// N−1

∂−1
N

// N0

∂0
N

// N1

∂1
N

// M2 // · · ·

and vertical R-module homomorphisms.
The diagram is commutative:

µi+1 ◦ ∂iM = ∂iM ◦ µi

Commutativity implies that µ(ker ∂M ) ⊆ ker(∂N ) and µ(im ∂M ) ⊆ im(∂N ).
Hence there is a well-de�ned induced homomorphism

ker ∂iM/ im ∂i−1
M → ker ∂iN/ im ∂i−1

N ,

that is,

Hi(M)→ Hi(N).

This homomorphism is denoted Hi(µ).
It depends functorially on µ: If µ and ν are consecutive chain maps, then

Hi(ν ◦ µ) = Hi(ν) ◦Hi(µ).

Example 2.1.4. Consider the complexes

P = · · · → 0→ Z ·p−→ Z→ 0→ · · ·
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and
Q = · · · → 0→ Z ·q−→ Z→ 0→ · · ·

with cohomology H0(P ) = Z/pZ and H0(Q) = Z/qZ.
If a is an integer such that q | pa, then pa = qb and there is a chain map µ given
by

· · · // 0 // Z
·p //

·b
��

Z //

·a
��

0 // · · ·

· · · // 0 // Z
·q // Z // 0 // · · ·

The induced homomorphism

H0(µ) : H0(P )→ H0(Q)

is
Z/pZ ·a−→ Z/qZ.

2.2 Free Modules

Recall that if R is a ring, then Rs, the set of s-tuples of R-elements, is a left-R-
module. Such a module (and any module isomorphic to it) is called free.

Free modules have a special property with regard to homomorphisms. De-
note by ei the tuple (0, . . . , 0, 1, 0, . . . , 0) with 1 in the ith position.

Theorem 2.2.1. If N is any left-R-module and n1, . . . , ns are in N , then there

is precisely one homomorphism ρ : Rs → N with ρ(ei) = ni for each i.

Proof.

ρ((r1, . . . , rs)) = ρ(r1e1 + · · ·+ rses)

= r1ρ(e1) + · · ·+ rsρ(es)

= r1n1 + · · ·+ rsns.

�Homomorphisms from Rs are determined by the images of the basis ele-
ments e1, . . . , es, and the images can be chosen freely.�
More generally, if I is any index set, then we can think of basis elements ei for i
in I and form the free left-R-module F of formal linear combinations of the ei.
So the elements of F are �nite linear combinations r1ei1 + · · · + rteit with the
rj in R.
The module F has the same property with respect to homomorphisms: If N is
any left-R-module and ni are elements of N indexed by I, then there is precisely
one homomorphism ϕ : F → N with ϕ(ei) = ni for each i. Namely,

ϕ(r1ei1 + · · ·+ rteit) = r1ni1 + · · ·+ rtnit .
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Note that the basis elements of a free module are linearly independent:

r1ei1 + · · ·+ reit = 0

implies r1 = · · · = rt = 0.

Example 2.2.2. • Any vectorspace V over R is a free R-module. If V has
a �nite generating system, then by dropping vectors from the system, we
will eventually arrive at a linearly independent generating system. Using
this system as the ei shows that V is free. For a general V , basis elements
ei can be found using Zorn's Lemma.

• The Z-module Z/2Z is not free. It has no basis. The module has elements
0 and 1. But 1 · 0 = 0 and 2 · 1 = 0 so it is impossible to �nd a linearly
independent set.

Free modules have the following property:

Theorem 2.2.3. Let µ : M → N be a surjective module homomorphism. Let

F be a free module with basis elements ei. Let ϕ : F → N be a module homo-

morphism.

M

µ

��
F

ϕ
//

>>

N

Then there is a homomorphism ϕ′ with µ ◦ ϕ′ = ϕ.

Proof. For each ϕ(ei) = ni, since µ is surjective, we can pick mi in M with
µ(mi) = ni. De�ne ϕ

′ : F → M by ϕ′(ei) = mi. Then µ ◦ ϕ′(ei) = ni = ϕ(ei)
so µ ◦ ϕ′ = ϕ.

If N is a left-R-module, then a system of elements ni indexed by i in I is said
to generate N if N is equal to the set of all linear combinations r1ni1 +· · ·+rtnit .
For instance, taking all the elements of N obviously gives a system of generators.
Given a system of generators ni, we can consider the free left-R-module F with
basis elements ei, and the homomorphism

ϕ : F → N, ϕ(ei) = ni.

It is clearly surjective since

ϕ(r1ei1 + · · ·+ rteit) = r1ni1 + · · ·+ rtnit .

Example 2.2.4. Over Z, the module Z/2Z has the system of generators {1}.
There is hence a surjective homomorphism from a free module with a single
basis element, e1, given by e1 7→ 1.
Such a free module is given by Z1 = Z, and the surjective homomorphism
ϕ : Z→ Z/2Z is

ϕ(x) = ϕ(x · e1) = x · 1 = the residue class of x in Z/2X.

Note that kerϕ = 2Z.
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2.3 Free and Projective Resolutions

Let us recall theorem 2.2.1 in the following form.

Theorem 2.3.1. Any module N permits a surjective homomorphism F → N
with F free.

The homomorphism induces an isomorphism F/K ∼= N where K is the
kernel.
We can iterate this construction: Choose a surjection F0 → N . Let K0 be the
kernel and choose a surjection F1 → K0. Let K1 be the kernel and choose a
surjection F2 → K1. Continue to get

K1 � p

  
· · · // F2

//

>> >>

F1
//

    

F0
// // N

K0

. �

>>

De�nition 2.3.2. The complex · · · → F2 → F1 → F0 → 0 → · · · is called a
free resolution of the module N .

Example 2.3.3. • The Z-module Z/2Z permits the free resolution

· · · → 0→ Z ·2−→ Z→ 0→ · · · .

• Over the ring R = k[X,Y ], we have seen the complex

· · · → 0→ R
ϕ−→ R2 ψ−→ R→ 0→ · · ·

where the homomorphisms were given by certain matrices. This is in fact
a free resolution of the R-module k.

Note that we used homological (lower) indices in the free resolution

· · · → F2 → F1 → F0 → 0→ · · · of N.

As a generel rule, they relate to cohomological (upper) indices via Fi = F−i.
We have

Hi(F ) =

{
F0/K0

∼= N i = 0

0 i 6= 0.

Let
· · · → F2 → F1 → F0 → 0→ · · ·

and
· · · → G2 → G1 → G0 → 0→ · · ·
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be free resolutions of M and N , and let µ : M → N be a homomorphism. We
can lift the homomorphism to the free resolutions:

K0

!!

��

· · · // F2
//

!!

��

F1
//

==

��

F0

  

��

K1

==

��

M

��

L0

!!
· · · // G2

//

!!

G1
//

==

G0

  
L1

==

N

So we get a chain map

· · · // F2
//

ϕ2

��

F1
//

ϕ1

��

F0
//

ϕ0

��

0 //

��

· · ·

· · · // G2
// G1

// G0
// 0 // · · ·

The induced homomorphism H0(ϕ) : H0(F ) → H0(G) is the given homomor-
phism M → N .

The lifting is not unique, but it is �unique up to homotopy�. Any two liftings,
ϕ and ϕ′, di�er by a chain homotopy:

· · · // F2
//

��

F1
//

��

θ1

}}

F0
//

��

θ0

}}

F0
//

��

0 //

��

· · ·

· · · // G2
// G1

// G0
// G0

// 0 // · · ·

We have ϕi − ϕ′ui = ∂Gi+1θi + θi−1∂
F
i .

If F and G are both free resolutions of M , then the identity on M lifts to
chain maps F → G and G→ F .

The compositions F → G → F and G → F → G also lift the identity on
M , so they are homotopic to the identity chain map. We say that F and G are
homotopy equivalent.

As a �nal observation on free modules, note that a direct summand of a free
module is known as a projective module.
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Example 2.3.4. The upper triangular ring Λ =

[
k k
0 k

]
is a free right-Λ-module.

It is the direct sum of the right-Λ-modules Y = (k k) and P = (0 k), so Y and
P are projective right-Λ-modules (and they are not free).

One of the key properties of free modules remains true for projective mod-
ules:

Theorem 2.3.5. Let µ : M → N be a surjective module homomorphism. Let

P be a projective module. Let π : P → N be a module homomorphism.

M

µ

��
P

π
//

>>

N

Then there is a homomorphism π′ with µ ◦ π′ = π.

As a consequence, we can replace free resolutions with projective resolutions
above:
Homomorphisms of modules can be lifted to chain maps of projective resolutions,
and the liftings are unique up to chain homotopy.

2.4 Ext and Extensions

Let M and N be left-R-modules. By Hom(M,N) is denoted the set of homo-
morphisms of R-modules from M to N . It is clearly an abelian group. If

µ : M →M ′

is a homomorphism, then there is an induced homomorphism

Hom(µ,N) : Hom(M ′, N)→ Hom(M,N)

given by µ′ 7→ µ′ ◦ µ.
Hence Hom(−, N) sends left-R-modules to abelian groups, and it sends ho-

momorphisms to homomorphisms. It is a functor from left-R-modules to abelian
groups since it satis�es Hom(id, N) = id and Hom(µ′ ◦ µ,N) = Hom(µ,N) ◦
Hom(µ′, N).

Let M be a left-R-module with projective resolution

P = · · · → P2 → P1 → P0 → 0→ · · · .

Applying the functor Hom(−, N) produces a new complex Hom(P,N) which is

· · · → 0→ Hom(P0, N)→ Hom(P1, N)→ Hom(P2, N)→ · · ·

and we de�ne
Exti(M,N) = Hi(Hom(P,N)).

This is independent of the choice of P , because di�erent choices of P are homo-
topy equivalent
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Example 2.4.1. Consider the modules Z/6Z and Z/8Z over Z. We have the free
resolution

P = · · · → 0→ Z ·6−→ Z→ 0→ · · ·
of Z/6Z. Hence

Hom(P,Z/8Z) = · · · → 0→ Z/8Z ·6−→ Z/8Z→ 0→ · · · .

The Ext groups become

Ext0(Z/6Z,Z/8Z) = ker(·6) = {0, 4} ∼= Z/2Z

and

Ext1(Z/6Z,Z/8Z) = (Z/8Z)/ im(·6) = (Z/8Z)/{0, 2, 4, 6} ∼= Z/2Z.

Let µ : M →M ′ be a homomorphism. If P and P ′ are projective resolutions
of M and M ′, then µ lifts to a chain map

· · · // P2
//

π2

��

P1
//

π1

��

P0
//

π0

��

0 //

��

· · ·

· · · // P ′2 // P ′1 // P ′0 // 0 // · · ·.

Applying the functor Hom(−, N) gives a chain map

· · · // 0 //

��

Hom(P ′0, N) //

��

Hom(P ′1, N) //

��

· · ·

· · · // 0 // Hom(P0, N) // Hom(P1, N) // · · ·

Taking Hi gives an induced homomorphism Exti(M ′, N)→ Exti(M,N) which
is denoted Exti(µ,N). It is well de�ned because π is unique up to homotopy.
Exti becomes a functor in the �rst variable.

Example 2.4.2. Consider the canonical homomorphism Z/12Z→ Z/6Z over Z.
There is an induced chain map of free resolutions

· · · // 0 //

��

Z ·12 //

·2
��

Z //

·1
��

0 //

��

· · ·

· · · // 0 // Z
·6
// Z // 0 // · · ·

Applying the functor Hom(−,Z/8Z) gives

· · · // 0 //

��

Z/8Z ·6 //

·1
��

Z/8Z //

·2
��

0 //

��

· · ·

· · · // 0 // Z/8Z
·12
// Z/8Z // 0 // · · ·
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The induced maps on

Exti(Z/6Z,Z/8Z)→ Exti(Z/12Z,Z/8Z)

for i = 0, 1 are both the canonical injection Z/2Z→ Z/4Z.
If

ν : N → N ′

is a homomorphism, then there is an induced homomorphism

Hom(M,ν) : Hom(M,N)→ Hom(M,N ′)

given by µ 7→ ν ◦µ. In other words, Hom is also a functor in its second variable.

In fact, Hom is even a bifunctor : If µ : M → M ′ is also a homomorphism,
then there is a commutative square of induced homomorphisms

Hom(M ′, N) //

��

Hom(M,N)

��
Hom(M ′, N ′) // Hom(M,N ′)

Let M have the projective resolution

P = · · · → P2 → P1 → P0 → 0→ · · · .

Then ν : N → N ′ induces a commutative diagram

· · · // 0 //

��

Hom(P0, N) //

��

Hom(P1, N) //

��

· · ·

· · · // 0 // Hom(P0, N
′) // Hom(P1, N

′) // · · ·

Taking Hi gives an induced homomorphism Exti(M,N)→ Exti(M,N ′) which
is denoted Exti(M,ν). So Exti becomes a functor in the second variable.

In fact, it is not hard to verify that Exti(−,−) is a bifunctor.

De�nition 2.4.3. Extensions 0→ B → E → A→ 0 and 0→ B → E′ → A→
0 are called equivalent if there is a commutative diagram

0 // B // E //

��

A // 0

0 // B′ // E′ // A′ // 0

Theorem 2.4.4. Given left-R-modules A and B, there is a bijection between the

set of equivalence classes of extensions 0→ B → E → A→ 0 and Ext1(A,B).



16 CHAPTER 2. CLASSICAL HOMOLOGICAL ALGEBRA

Proof. (Sketch):
The bijection comes as follows: Given an extension 0→ B → E → A→ 0. Let
P1 → P0 → A → 0 be an exact sequence where P1 and P0 are the �rst terms
of a projective resolution of A. We can lift as follows, using that P0 and P1 are
projective:

K0

  

��

P1
//

>>

��

P0

  

��

B

!!

A

��

B //

==

E

  
A

Now P1 → B represents an element of Ext1(A,B).



Chapter 3

The Derived Category

This chapter gives a sketch of the derived category. Details are coming up in
parts ?? and ??.

3.1 Abstract Categories

Let R be a ring. We can consider the collection of all left-R-modules. For each
pair M and N of modules, there is the set HomR(M,N) of R-homomorphisms
M → N . Composing homomorphisms give new homomorphisms. Abstracting:

De�nition 3.1.1. A category C is a collection of objects and, for each pair of
objects x and y, a set HomC(x, y) of morphisms. For each object x, there is
an identity morphism idx in HomC(x, x). There is also a rule for composing
morphisms,

HomC(x, y)×HomC(y, z)→ HomC(x, z), (f, g) 7→ g ◦ f

and these data satisfy

(h ◦ g) ◦ f = h ◦ (g ◦ f), idy ◦ f = f, g ◦ idx = g.

Example 3.1.2. • As we saw, when R is a ring, there is a category Mod(R)
(or R Mod) whose objects are the left-R-modules and whose morphisms
are the R-homomorphisms.

• There is a category Top of topological spaces. The objects are the topo-
logical spaces and the morphisms are the continuous maps.

• Let R be a ring. There is a category C(R) (of R Comp) of complexes of
left-R-modules. The objects are the chain complexes of left-R-modules
and the morphisms are the chain maps.

17
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3.2 The Homotopy Category

De�nition 3.2.1. The chain map ϕ : F → G is null homotopic if there is a
chain homotopy θ for which ϕ = ∂θ + θ∂, i.e., ϕi = ∂Gi+1θi + θi−1∂

G
i for each i.

· · · // F2

∂F
2 //

ϕ2

��

F1

∂F
1 //

ϕ1

��

θ1

~~

F0

∂F
0 //

ϕ0

��

θ0

~~

F−1
//

ϕ−1

��

θ−1

}}

· · ·

· · · // G2
∂G
2

// G1
∂G
1

// G0
∂G
0

// G−1
// · · ·

De�nition 3.2.2. Set

HomK(R)(F,G) = HomC(R)(F,G)/{null homotopic chain maps}.

It is easy to check that if ϕ is null homotopic, so is any composition ψ ◦ ϕ and
ϕ ◦ χ, so composition of chain maps induces a well de�ned composition

HomK(R)(F,G)×HomK(R)(G,H)→ HomK(R)(F,H).

Hence there is a category K(R) whose objects are the complexes and whose
morphism sets are the HomK(R)(F,G). This is known as the homotopy category

of complexes over R.

Example 3.2.3. Consider R as a complex concentrated in degree 0 and let G be
a complex.

· · · // 0 //

��

R //

ϕ0

��

θ0

}}

0 //

��||

· · ·

· · · // G1
∂G
1

// G0
∂G
0

// G−1
// · · ·

Since R is free with generator 1, the homomorphism ϕ0 is determined by its
value on 1. Since ϕ is a chain map, ϕ0(1) must be in ker ∂Go .

The ϕ for which it is possible to �nd a chain homotopy θ are precisely the
ones where ϕ0(1) is in im ∂G1 . So

HomK(R)(R,G) = ker ∂G0 / im ∂G1 = H0(G).

Example 3.2.4. Let N be a module and view N as a complex concentrated in
degree 0. There is an obvious operation of shifting complexes one step to the
left; let us denote it by Σ (for technical reasons we will also let Σ change the
sign of the di�erential). Then ΣiN is N viewed as a complex concentrated in
(homological) degree i. LetM be a complex and consider morphismsM → ΣiN .

· · · // Mi+1
//

��

Mi
//

��

Mi−1
//

��

· · ·

· · · // 0 // N // 0 // · · ·
An argument similar to the previous one shows

HomK(R)(M,ΣiN) ∼= Hi HomR(M,N).
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3.3 Localisation

De�nition 3.3.1. An isomorphism f in a category C is a morphism with an
inverse g such that f ◦ g = idY and g ◦ f = idX .

De�nition 3.3.2. Let C be a category with a class S of morphisms. A localisa-

tion of C with respect to S is a category S−1C and a functor π : C → S−1C with
the following universal property: If C → D is a functor sending the elements
of S to isomorphisms, then there is a unique functor S−1C → D making the
diagram commutative.

C π //

��

S−1C

||
D

Example 3.3.3. If S itself consists of isomorphisms, then S−1C = C and π = idC
satisfy the universal property, so the localisation does not change C.

If S is a so-called multiplicative set, satisfying axioms reminiscent of the Ore
conditions from ring theory, then S−1C can be constructed as follows.
The objects are the same as in C. The morphisms from X to Y are equivalence
classes of diagrams of the form

Z

s

��

f

��
X Y,

where s is in S. The diagram represents f ◦ s−1.
The equivalence relation is that diagrams representing fs−1 and gt−1 are equiv-
alent when they embed in a bigger commutative diagram as follows:

Z ′′

u

~~

h

!!
Z

s�� f
**

Z ′

t

tt

g

  
X Y

where su = th is in S.
Morphisms fs−1 and gt−1 are composed as follows.

C

u

��

h

  
A

s~~ f ��

B

t~~

g

��
X Y Z
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The existence of the commutative square

C

u

��

h

  
A

f ��

B

t~~
Y

is one of the axioms of multiplicative sets.
Recall that a chain map ϕ : F → G induces homomorphisms of homology groups
Hi(ϕ) : Hi(F ) → Hi(G). It is an easy computation to check that if ϕ is null
homotopic, then Hi(ϕ) = 0 for each i.
If f is in HomK(R)(F,G), then pick a chain map ϕ in the homotopy class f and
set Hi(f) = Hi(ϕ). By the above, this is well de�ned.

De�nition 3.3.4. The homotopy class f is called a quasi-isomorphism if each
Hi(f) is bijective.

De�nition 3.3.5. Let S be the class of quasi-isomorphisms in K(R). The
localisation S−1K(R) is called the derived category of R. It is denoted D(R).

Example 3.3.6. Let P be a projective resolution of the moduleM . We can view
M as a complex concentrated in degree 0 and construct a chain map as follows.

· · · // P2
//

��

P1
//

��

P0
//

��

0 //

��

· · ·

· · · // 0 // 0 // M // 0 // · · ·

The homomorphism P0 →M is just the one which exists since P is a projective
resolution of M .
It is not hard to verify that the homotopy class of this chain map is a quasi-
isomorphism. Hence it becomes an isomorphism in the derived category. In
the derived category, a module is identi�ed with its projective resolution, up to
isomorphism.

3.4 Morphisms

De�nition 3.4.1. A complex P of left-R-modules is called K-projective if
HomK(R)(P,−) sends quasi-isomorphisms to bijections.

Theorem 3.4.2. If P is the projective resolution of a left-R-module, then P
is K-projective. More generally, if P is a right-bounded complex of projective

left-R-modules, then P is K-projective.
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Proof. If P is a K-projective complex of left-R-modules and Z
s−→ P is a quasi-

isomorphism inK(R), then the induced map HomK(R)(P,Z)→ HomK(R)(P, P )
is bijective. Hence there exists an element p in HomK(R)(P,Z) which maps to
idP in HomK(R)(P, P ).

Unravelling this, there is a morphism P
p−→ Z such that s ◦ p = idP . If

Z
f−→ Y is also given, then there is a commutative diagram

P

idP

��

p

��
f◦p

��

Z

s
�� f   

P Y.

Hence the two diagrams

Z

s

��

f

��
P Y

and P

id

��

f◦p

��
P Y

are equivalent, so represent the same morphism in D(R). This shows that when
mapping out of P , it is not necessary to invert s.

Elaborating the argument gives a proof of the following.

Theorem 3.4.3. Let P be a K-projective complex of left-R-modules. For any

complex Y of left-R-modules, there is an isomorphism

HomD(R)(P, Y ) ∼= HomK(R)(P, Y ).

Example 3.4.4. • Recall that when viewing R as a complex concentrated in
degree 0, we get HomK(R)(R, Y ) ∼= H0(Y ). But R viewed as a complex
concentrated in degree 0 is a projective resolution of the module R, so it
is K-projective, so

HomD(R)(R, Y ) ∼= HomK(R)(R, Y ) ∼= H0(Y ).

• Let M and N be modules, and let P be a projective resolution of M .
View M and N as complexes concentrated in degree 0. Recall that there
is a quasi-isomorphism P → M . Due to localisation, this becomes an
isomorphism in the derived category so

HomD(R)(M,ΣiN) ∼= HomD(R)(P,Σ
iN) = (∗).

But P is K-projective, so we get

(∗) ∼= HomK(R)(P,Σ
iN) = (∗∗).
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Finally, by 3.2.4 and 2.4,

(∗∗) ∼= Hi HomR(P,N) = ExtiR(M,N).

The homomorphisms of the derived category capture the Ext groups of
classical homological algebra.

3.5 Example: Upper Triangular Matrices

Recall that over the upper triangular matrix ring Λ =

[
k k
0 k

]
, any �nitely

generated right-module is a direct sum of copies of the indecomposable modules

P = (0 k), Y = (k k), I = Y/P.

We can give a similar description of the derived category D(Λ), or rather of the
full subcategory Df (Λ) of bounded complexes of �nitely generated modules.
It turns out that in Df (Λ), each object is the direct sum of copies of indecom-
posable objects of the form ΣiP,ΣiY , or ΣiI. In other words, each object is
the direct sum of complexes which are just P, Y , or I concentrated in a single
degree.
The inclusion P ↪→ Y and the surjection Y � I are module homomorphisms.
They induce chain maps when the modules are viewed as complexes concen-
trated in degree zero, and morphisms in K(λ) and Df (λ) ensue. Using Σi gives
morphisms

ΣiP → ΣiY and ΣiY → ΣiI.

The short exact sequence

0→ P → Y → I → 0

corresponds to an element in Ext1Λ(I, P ), and we know that this group is iso-
morphic to HomDf (Λ)(I,ΣP ). So the short exact sequence gives a morphism
I → ΣP in Df (Λ), and using Σi gives morphisms

ΣiI → Σi+1P.

We can organise the morphisms we have found graphically as follows:

Σ−1P
''

Σ−1I
$$

Y
��

ΣP
##

ΣI
""

· · ·
99

Σ−1Y

77

P

??

I

==

ΣY

;;

· · ·

This is the so-called Auslander-Reiten quiver of Df (Λ). It contains all the in-
decomposable objects of Df (Λ).
It turns out that each morphism between indecomposables is a linear combina-
tion of compositions of morphisms in the quiver, and that each composition of
two consecutive morphisms in the quiver is zero.
Combined with the knowledge that each object is a direct sum of indecompos-
able objects, this gives a very precise �picture� of the category Df (Λ).


