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Introduction

This is my study note on �K-theory� by M. F. Atiyah. I tried to �ll in the details
while preserving the original treatment.

Caveat: the numbering of theorems, propositions etc. are altered due to the
restriction of LATEX.

The original introduction

These notes are based on the course of lectures I gave at Harvard I the fall of
1964. They constitute a self-contained account of vector bundles and K-theory
assuming only the rudiments of point-set topology and linear algebra. One of
the features of the treatment is that no use is made of ordinary homology or
cohomology theory. In fact rational cohomology is de�ned in terms of K-theory.

The theory is taken as far as the solution of the Hopf invariant problem
and a start is made on the J-homomorphism. In addition to the lecture notes
proper two papers of mine published since 1964 have been reproduced at the
end. The �rst, dealing with operations, is a natural supplement to the material
in Chapter III. It provides an alternative approach to operations which is less
slick but more fundamental than the Grothendieck method of Chapter III and
it relates operations and �ltration. Actually the lectures deal with compact
spaces not cell-complexes and so the skeleton-�ltration does not �gure in the
notes. The second paper provides a new approach to real K-theory and so �lls
an obvious gap in the lecture notes.

iii
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Chapter 1

Vector Bundles

1.1 Basic de�nitions

We shall develop the theory of complex vector bundles only, though much of the
elementary theory is the same for real and symplectic bundles. Therefore, by
vector space, we shall always understand complex vector space unless otherwise
speci�ed.

Let X be a topological space. A family of vector spaces over X is a topo-
logical space E, together with:

(i) a continuous map p : E → X

(ii) a �nite dimensional vector space structure on each

Ex = p−1(x) for x ∈ X,

compatible with the topology on Ex induced from E.

The map p is called the projection map, the space E is called the total space of
the family, the space X is called the base space of the family, and if x ∈ X, E
is called the �bre over x.

A section of a family p : E → X is a continuous map s : X → E such that
ps(x) = x for all x ∈ X.

A homomorphism from one family p : E → X to another family q : F → X
is a continuous map φ : E → F such that:

(i) qφ = p

(ii) for each x ∈ X, φ : Ex → Fx is a linear map of vector spaces.

We say that φ is an isomorphism if φ is bijective and φ−1 is continuous. If there
exists an isomorphism between E and F , we say that they are isomorphic.

Example 1.1.1. Let V be a vector space, and let E = X × V , p : E → X be the
projection onto the �rst factor. E is called the product family with �bre V . If
F is any family which is isomorphic to some product family, F is said to be a
trivial family.
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2 CHAPTER 1. VECTOR BUNDLES

If Y is a subspace of X , and if E is a family of vector spaces over X
with projection p, p : p−1(Y ) → Y is clearly a family over Y . We call it the
restriction of E to Y , and denote it by E | Y . More generally, if Y is any
space, and f : Y → X is a continuous map, then we de�ne the induced family
f∗(p) : f∗(E)→ Y as follows:

f∗(E) is the subspace of Y ×E consisting of all points (y, e) such that f(y) =
p(e), together with the obvious projection maps and vector space structures
on the �bres. If g : Z → Y , then there is a natural isomorphism g∗f∗(E) ∼=
(fg)∗(E) given by sending each point of the form (z, e) into the point (z, g(z), e),
where z ∈ Z, e ∈ E. If f : Y → X is an inclusion map, clearly there is an
isomorphism E | Y ∼= f∗(E) given by sending each e ∈ E into the corresponding
(p(e), e).

A family E of vector spaces over X is said to be locally trivial if every x ∈ X
possesses a neighbourhood U such that E | U is trivial. A locally trivial family
will also be called a vector bundle. A trivial family will be called a trivial bundle.
If f : Y → X, and if E is a vector bundle over X, it is easy to see that f∗(E) is
a vector bundle over Y . We shall call f∗(E) the induced bundle in this case.

Example 1.1.2. Let V be a vector space, and let X be its associated projective
space. We de�ne E ⊂ X × V to be the set of all (x, v) such that x ∈ X, v ∈ V ,
and v lies in the line determining x. We leave it to the reader to show that E
is actually a vector bundle.

Notice that if E is a vector bundle over X, then dim(Ex) is a locally constant
function on X, and hence is a constant on each connected component of X. If
dim(Ex) is a constant on the whole X, then E is said to have a dimension,
and the dimension of E is the common number dim(E) for all x. (Caution:
the dimension of E so de�ned is usually di�erent from the dimension of E as a
topological space. )

Since a vector bundle is locally trivial, any section of a vector bundle is
locally described by a vector valued function on the base space (See the remark
below.)

Remark 1.1.3. Let p : E → B be a (real, for example) vector bundle. It is
locally trivial, that is, if you take a small open set U ⊂ B, then you can �nd
an isomorphism φ : p−1(U) ∼= U ×Rn, compatible with p (meaning that φ(ξ) =
(p(ξ), something)).

Now a section s : B → E of p is a map such that p◦s = idB . So if you restrict
to the small open set U , then s(b) ∈ p−1(b) ⊂ p−1(U), therefore φ(s(b)) =
(p(s(b)), something) = (b, something). Call the �something� σ(b) (it depends on
b), then you get a map σ : U → Rn (determined by s). This is what is meant
by �locally a section is given by a vector valued function on the base space�: the
vector valued function is σ.

If E is a vector bundle, we denote by Γ(E) the set of all sections of E. Since
the set of functions on a space with values in a �xed vector space is itself a
vector space, we see that Γ(E) is a vector space in a natural way.

Suppose that V,W are vector spaces, and that E = X × V, F = X × W
are the corresponding product bundles. Then any homomorphism φ : E → F
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determines a map Φ: X → Hom(V,W ) by the formula φ(x, v) = (x,Φ(x)v).
Moreover, if we give Hom(V,W ) its usual topology, then Φ is continuous; con-
versely, any such continuous map Φ: X → Hom(V,W ) determines a homomor-
phism φ : E → F . (This is most easily seen by taking bases {ei} and {fj} for V
and W respectively. Then each Φ(x) is represented by a matrix Φ(x)i,j , where

Φ(x)ei =
∑
j

Φ(x)i,jfj .

The continuity of either φ or Φ is equivalent to the continuity of the functions
Φi,j .)

Let Iso(V,W ) ⊂ Hom(V,W ) be the subspace of all isomorphisms between V
and W . Clearly, Iso(V,W ) is an open set in Hom(V,W ). Further, the inverse
map T 7→ T−1 gives us a continuous map Iso(V,W )→ Iso(W,V ). Suppose that
φ : E → F is such that φx : Ex → Fx is an isomorphism for all x ∈ X. This
is equivalent to the statement that Φ(X) ⊂ Iso(V,W ). The map x 7→ Φ(x)−1

de�nes Ψ: X → Iso(W,V ), which is continuous. Thus the corresponding map
ψ : F → E is continuous. Thus φ : E → F is an isomorphism if and only if
it is bijective or, equivalently, φ is an isomorphism if and only if each φx is
an isomorphism. Further, since Iso(V,W ) is open in Hom(V,W ), we see that
for any homomorphism φ, the set of those points x ∈ X for which φx is an
isomorphism form an open subset of X. All these assertions are local in nature,
and therefore are valid for vector bundles as well as for trivial families.

Remark 1.1.4. The �nite dimensionality of V is basic to the previous argument.
If one wants to consider in�nite dimensional vector bundles, then one must
distinguish between the di�erent operator topologies on Hom(V,W ).

1.2 Operations on vector bundles

Natural operations on vector spaces, such as direct sum and tensor product, can
be extended to vector bundles. The only troublesome question is how one should
topologise the resulting spaces. We shall give a general method for extending
operations from vector spaces to vector bundles which will handle all of these
problems uniformly.

Let T be a functor which carries �nite dimensional vector spaces into �nite
dimensional vector spaces. For simplicity, we assume that T is a covariant
functor of one variable. Thus, to every vector space V , we have an associated
vector space T (V ). We shall say that T is a continuous functor if for all V and
W , the map T : Hom(V,W )→ Hom(T (V ), T (W )) is continuous.

If E is a vector bundle, we de�ne the set T (E) to be the union

∪x∈XT (Ex),

and, if φ : E → F , we de�ne T (φ) : T (E)→ T (F ) by the maps T (φx) : T (Ex)→
T (Fx). What we must show is that T (E) has a natural topology, and that, in
this topology, T (φ) is continuous.
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We begin by de�ning T (E) in the case that E is a product bundle. If
E = X × V , we de�ne T (E) to be X × T (V ) in the product topology. Suppose
that F = X × W , and that φ : E → F is a homomorphism. Let Φ: X →
Hom(V,W ) be the corresponding map. Since, by hypothesis, T : Hom(V,W )→
Hom(T (V ), T (W )) is continuous, TΦ: X → Hom(T (V ), T (W )) is continuous.
Thus T (φ) : X ×T (V )→ X ×T (W ) is also continuous. If φ is an isomorphism,
then Tφ will be an isomorphism since it is continuous and an isomorphism on
each �bre.

Now suppose that E is trivial, but has no preferred product structure.
Choose an isomorphism α : E → X × V , and topologise T (E) by requiring
T (α) : T (E) → X × T (V ) to be a homeomorphism. If β : E → X ×W is any
other isomorphism, by letting φ = βα−1 above, we see that T (α) and T (β)
induce the same topology on T (E), since T (φ) = T (β)T (α)−l is a homeomor-
phism. Thus, the topology on E does not depend on the choice of α. Further,
if Y ⊂ X, it is clear that the topology on T (E) | Y is the same as that on
T (E | Y ). Finally, if φ : E → F is a homomorphism of trivial bundles, we see
that T (φ) : T (E)→ T (F ) is continuous, and therefore is a homomorphism.

Now suppose that E is any vector bundle. Then if U ⊂ X is such that E | U
is trivial, we topologise T (E | U) as above. We topologise T (E) by taking for
the open sets, those subsets V ⊂ T (E) such that V ∩ (T (E) | U) is open in
T (E | U) for all open U ⊂ X for which E | U is trivial. The reader can now
easily verify that if Y ⊂ X, the topology on T (E | Y ) is the same as that on
T (E) | Y , and that, if φ : E → F is any homomorphism, T (φ) : T (E)→ T (F )
is also a homomorphism.

If f : Y → X is a continuous map and E is a vector bundle over X then, for
any continuous functor T , we have a natural isomorphism

f∗T (E) ∼= Tf∗(E).

The case when T has several variables both covariant and contravariant, pro-
ceeds similarly. Therefore we can de�ne for vector bundles E, F corresponding
bundles:

(i) E ⊕ F , their direct sum

(ii) E ⊗ F , their tensor product

(iii) Hom(E,F )

(iv) E∗, the dual bundle of E

(v) λi(E), where λi is the ith exterior power.

We also obtain natural isomorphisms

(i) E ⊕ F ∼= F ⊕ E

(ii) E ⊗ F ∼= F ⊗ E

(iii) E ⊗ (F ′ ⊕ F ′′) ∼= (E ⊗ F ′)⊕ (E ⊗ F ′′)
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(iv) Hom(E,F ) ∼= E∗ ⊗ F

(v) λk(E ⊕ F ) ∼= ⊕i+j=k(λi(E)⊗ λj(F )).

Finally, notice that sections of Hom(E,F ) correspond in a 1 − 1 fashion
with homomorphisms φ : E → F . We therefore de�ne HOM(E,F ) to be the
vector space of all homomorphisms from E to F , and make the identi�cation
HOM(E,F ) = Γ(Hom(E,F )).

1.3 Sub-bundles and quotient bundles

Let E be a vector bundle. A sub-bundle of E is a subset of E which is a bundle
in the induced structure.

A homomorphism φ : F → E is called a monomorphism (respectively epi-
morphism) if each φx : Fx → Ex is a monomorphism (respectively epimor-
phism). Notice that φ : F → E is a monomorphism if and only if φ∗ : E∗ → F ∗

is an epimorphism. If F is a sub-bundle of E, and if φ : F → E is the inclusion
map, then φ is a monomorphism.

Lemma 1.3.1. If φ : F → E is, a monomorphism, then φ(F ) is a sub-bundle
of E, and φ : F → φ(F ) is an isomorphism.

Proof. φ : F → φ(F ) is a bijection, so if φ(F ) is a subbundle, φ is an isomor-
phism. Thus we need only show that φ(F ) is a sub-bundle.

The problem is local, so it su�ces to consider the case when E and F are
product bundles. Let E = X × V and let x ∈ X; choose Wx ⊂ V to be a
subspace complementary to φ(Fx). G = X ×Wx is a sub-bundle of E. De�ne
θ : F ⊕G→ E by θ(a⊕ b) = φ(a) + i(b), where i : G→ E is the inclusion. By
construction, θx is an isomorphism. Thus, there exists an open neighbourhood
U of x such that θ | U is an isomorphism. F is a sub-bundle of F ⊕ G, so
θ(F ) = φ(F ) is a sub-bundle of θ(F ⊕G) = E on U .

Notice that in our argument, we have shown more than we have stated.
We have shown that if φ : F → E, then the set of points for which φx is a
monomorphism form an open set. Also, we have shown that, locally, a sub-
bundle is a direct summand. This second fact allows us to de�ne quotient
bundles.

De�nition 1.3.2. If F is a sub-bundle of E, the quotient bundle E/F is the
union of all the vector spaces Ex/Fx given the quotient topology.

Since F is locally a direct summand in E, we see that E/F is locally trivial,
and thus is a bundle. This justi�es the terminology.

1f φ : F → E is an arbitrary homomorphism, the function dim(kerφx) need
not be constant, or even locally constant.

De�nition 1.3.3. φ : F → E is said to be a strict homomorphism if dim(kerφx)
is locally constant.



6 CHAPTER 1. VECTOR BUNDLES

Proposition 1.3.4. If φ : F → E is strict, then:

(i) ker(φ) = ∪x ker(φx) is a sub-bundle of F

(ii) im(φ) = ∪x im(φx) is a sub-bundle of E

(iii) coker(φ) = ∪x coker(φx) is a bundle in the quotient structure.

Proof. Notice that (ii) implies (iii). We �rst prove (ii). The problem is local,
so we can assume F = X × V for some V . Given x ∈ X, we choose Wx ⊂
V complementary to ker(φx) in V . Put G = X × Wx; then φ induces, by
composition with the inclusion, a homomorphism, ψ : G → E, such that ψx is
a monomorphism. Thus ψ is a monomorphism in some neighbourhood U of x.
Therefore, ψ(G) | U is a sub-bundle of E | U . However, ψ(G) ⊂ φ(F ) , and
since dim(φ(Fy)) is constant for all y, and

dim(ψ(Gx) = dim(ψ(Gx)) = dim(φ(Fx)) = dim(φ(Fy))

for all y ∈ U,ψ(G) | U = φ(F ) | U . Thus φ(F ) is a sub-bundle of E.
Finally, we must prove (i). Clearly, φ∗ : E∗ → F ∗ is strict. Since F ∗ →

coker(φ∗) is an epimorphism, (coker(φ∗))∗ → F ∗ is a monomorphism. However,
for each x we have a natural commutative diagram

ker(φx)

��

// Fx

��
coker(φ∗

x)
∗ // F ∗∗

x

in which the vertical arrows are isomorphisms. Thus ker(φ) ∼= (coker(φ∗))∗ and
so, by Lemma 1.3.1, is a sub-bundle of F .

Again, we have proved something more than we have stated. Our argument
shows that for any x ∈ X, dimφx(Fx) ≤ dimφy(Fy) for all y ∈ U , U some
neighbourhood of x. Thus, rank(φx) is an upper semi-continuous function of
x.

De�nition 1.3.5. A projection operator P : E → E is a homomorphism such
that P 2 = P .

Notice that rank(Px) + rank(1− Px) = dimEx so that, since both rank(Px)
and rank(1 − Px) are upper semicontinuous functions of x , they are locally
constant. Thus both P and 1 − P are strict homomorphisms. Since ker(P ) =
(1− P )E, E is the direct sum of the two sub-bundles PE and (1− P )E. Thus
any projection operator P : E → E determines a direct sum decomposition
E = (PE)⊕ (1− P )E).

We now consider metrics on vector bundles. We de�ne a functor Herm which
assigns to each vector space V the vector space Herm(V ) of all Hermitian forms
on V . By the techniques of Section 1.2, this allows us to de�ne a vector bundle
Herm(E) for every bundle E.
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De�nition 1.3.6. A metric on a bundle E is any section h : X → Herm(E)
such that h(x) is positive de�nite for all x ∈ X. A bundle with a speci�ed
metric is called a Hermitian bundle.

Suppose that E is a bundle, F is a sub-bundle of E, and that h is a Hermitian
metric on E. Then for each x ∈ X we consider the orthogonal projection
Px : Ex → Fx de�ned by the metric. This de�nes a map P : E → F which we
shall now check is continuous. The problem being local, we may assume F is
trivial, so that we have sections f1, · · · , fn of F giving a basis in each �bre.
Then for v ∈ Fx we have

Px(v) =
∑
i

hx(v, fi(x))fi(x).

Since h is continuous this implies that P is continuous. Thus P is a projection
operator on E. If F⊥

x is the subspace of Ex which is orthogonal to Fx under
h, we see that F⊥ = ∪xF⊥

x is the kernel of P , and thus is a sub-bundle of E,
and that E ∼= F ⊕ F⊥. Thus, a metric provides any sub-bundle with a de�nite
complementary sub-bundle.

Remark 1.3.7. So far, most of our arguments have been of a very general na-
ture, and we could have replaced �continuous� with �algebraic�, �di�erentiable�,
�analytic', etc. without any trouble. In the next section, our arguments become
less general.

1.4 Vector bundles on compact spaces

In order to proceed further, we must make some restriction on the sort of base
spaces which we consider. We shall assume from now on that our base spaces
are compact Hausdor�. We leave it to the reader to notice which results hold
for more general base spaces.

Recall that if f : X → V is a continuous vector-valued function, the support
of f (written supp .f) is the closure of f−1(V \ {0}).

We need the following results from point set topology. We state them in
vector forms which are clearly equivalent to the usual forms

Theorem 1.4.1 (Tietze Extension). Let X be a normal space, Y ⊂ X a closed
subspace, V a real vector space, and f : Y → V a continuous map. Then there
exists a continuous map g : X → V such that g | Y = f .

Theorem 1.4.2 (Existence of Partitions of Unity). Let X be a compact Haus-
dor� space, {Ui a �nite open covering. Then there exist continuous maps
fi : X → R such that:

1. fi(x) ≥ 0 ∀x ∈ X,

2. supp(fi) ⊂ Ui,

3.
∑
i fi(x) = 1 ∀x ∈ X.
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Such a collection {fi} is called a partition of unity.

We �rst give a bundle form of the Tietze extension theorem.

Lemma 1.4.3. Let X be compact Hausdor�, Y ⊂ X be a closed subspace, and
E be a bundle over X. Then any section s : Y → E | Y can be extended to X.

Proof. Let s ∈ Γ(E | Y ). Since, locally, s is a vector-valued function, we can
apply the Tietze extension theorem to show that for each x ∈ X, there exists
an open set U containing x and t ∈ Γ(E | U) such that t | U ∩ Y = s | U ∩ Y .
Since X is compact, we can �nd a �nite sub-cover {Uα} by such open sets. Let
tα ∈ Γ(E | Uα) be the corresponding sections and let {pα} be a partition of
unity with supp(pα) ⊂ Uα. We de�ne Sα ∈ Γ(E) by

Sα =

{
pα(x)tα(x) if x ∈ Uα,
0 otherwise.

Then
∑
Sα is a section of E and its restriction to Y is clearly s.

Lemma 1.4.4. Let Y be a closed subspace of a compact Hausdor� space X, and
let E,F be two vector bundles over X. If f : E | Y → F | Y is an isomorphism,
then there exists an open set U containing Y and an extension f : E | U → F | U
which is an isomorphism.

Proof. f is a section of Hom(E | Y, F | Y ), and thus, extends to a section
of Hom(E,F ). Let U be the set of those points for which this map is an
isomorphism. Then U is open and contains Y .

Lemma 1.4.5. Let Y be a compact Hausdor� space, ft : Y → X (0 ≤ t ≤ 1)
be a homotopy and E be a vector bundle over X. Then

f∗0E
∼= f∗1E.

Proof. Let I denote the unit interval and let f : Y × I → X be the homotopy:
f(y, t) = ft(y). Let π : Y × I → Y denote the standard projection. Now apply
Lemma 1.4.4 to the bundles f∗E, π∗f∗t E and the subspace Y ×{t} of Y × I, on
which there is an obvious isomorphism s. By the compactness of Y we deduce
that f∗E and π∗f∗t E are isomorphic in some strip Y × δt where δt denotes a
neighbourhood of {t} in I. Hence the isomorphism class of f∗t E is a locally
constant function of t. Since I is connected this implies it is constant, whence

f∗0E
∼= f∗1E.

We shall use Vect(X) to denote the set of isomorphism classes of vector
bundles on X, and Vectn(X) to denote the subset of Vect(X) given by bundles
of dimension n. Vect(X) is an abelian semi-group under the operation ⊕. In
Vect(X) we have one naturally distinguished element - the class of the trivial
bundle of dimension n.
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Lemma 1.4.6. 1. If f : X → Y is a homotopy equivalence, then f∗ : Vect(Y )→
Vect(X) is bijective.

2. If X is contractible, every bundle over X is trivial and Vect(X) is iso-
morphic to the non-negative integers.

Lemma 1.4.7. If E is a bundle over X × I, and π : X × I → X × {0} is the
projection, E is isomorphic to π∗(E | X × {0}).

Both these lemmas are immediate consequences of Lemma 1.4.5.
Suppose now Y is closed in X , E is a vector bundle over X and α : E |

Y → Y × V is an isomorphism. We refer to α as a trivialisation of E over Y .
Let π : Y × V → V denote the projection and de�ne an equivalence relation on
E | Y by

e ∼ e′ ⇔ πα(e) = πα(e′).

We extend this by the identity on E | (X\Y ) and we let E/α denote the quotient
space of E given by this equivalence relation. It has a natural structure of a
family of vector spaces over X/Y . We assert that E/α is in fact a vector bundle.
To see this we have only to verify at the base point Y/Y ofX/Y . Now by Lemma
1.4.4 we can extend α to an isomorphism α̃ : E | U → U × V for some open set
U containing Y . Then α̃ induces an isomorphism

(E | U)/α ∼= (U/Y )× V

which establishes the local triviality of E/α.
Suppose α0, α1 are homotopic trivialisations of E over Y . This means that

we have a trivialisation β of E×I over Y ×I ⊂ X×I inducing α0 and α1 at the
two end points of I. Let f : (X | Y )× I → (X × I)/(Y × I) be the natural map.
Then f∗(E × I/β) is a bundle on (X/V )× I whose restriction to (X/Y )× {i}
is E/αi(i = 0, 1). Hence by Lemma 1.4.5

E/α0
∼= E/α1.

To summarise we have established

Lemma 1.4.8. A trivialisation α of a bundle E over Y ⊂ X de�nes a bundle
E/α over X/Y . The isomorphism class of E/α depends only on the homotopy
class of α.

Using this we shall now prove

Lemma 1.4.9. Let Y ⊂ X be a closed contractible subspace. Then f : X →
X/Y induces a bijection f∗ : Vect(X/Y )→ Vect(X).

Proof. Let E be a bundle on X. Then by Lemma 1.4.6 E | Y is trivial. Thus
trivialisations α : E | Y → Y ×V exist. Moreover, two such trivialisations di�er
by an automorphism of Y × V , i.e., by a map Y → GL(V ). But GL(V ) =
GL(n,C) is connected and V is contractible. Thus α is unique up to homotopy
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and so the isomorphism class of E | α is uniquely determined by that of E.
Thus we have constructed a map

Vect(X)→ Vect(X/Y )

and this is clearly a two-sided inverse for f∗. Hence f∗ is bijective as asserted.

Vector bundles are frequently constructed by a glueing or clutching construc-
tion which we shall now describe. Let

X = X1 ∪X2, A = X1 ∩X2,

all the spaces being compact. Assume that Ei is a vector bundle over Xi and
that φ : E1 | A→ E2 | A is an isomorphism. Then we de�ne the vector bundle
E1∪φE2 on X as follows. As a topological space E1∪φE2 is the quotient of the
disjoint sum E1 + E2 by the equivalence relation which identi�es e1 ∈ E1 | A
with φ(e1) ∈ E2 | A. Identifying X with the corresponding quotient of Xl+X2

we obtain a natural projection p : E1 ∪φ E2 → X, and p−1(x) has a natural
vector space structure. It remains to show that E1∪φE2 is locally trivial. Since

(E1 ∪φ E2) | (X \A) = E1 | (X1 \A) + E2 | (X2 \A)

the local triviality at points x /∈ A follows from that of E1 and E2. Therefore,
let a ∈ A and let VI be a closed neighbourhood of a in Xl over which E1 is
trivial, so that we have an isomorphism

θ1 : E1 | V1 → V1 × Cn.

Restricting to A we get an isomorphism

θA1 : E1 | (V1 ∩A)→ (V1 ∩A)× Cn.

Let
θA2 : E2 | (V1 ∩A)→ (V1 ∩A)× Cn.

be the isomorphism corresponding to θA1 under φ. By Lemma 1.4.4 this can be
extended to an isomorphism

θ2 : E2 | V2 → V2 × Cn.

where V2 is a neighbourhood of a in X2. The pair θ1, θ2 then de�nes in an
obvious way an isomorphism

θ1 ∪φ θ2 : (E1 ∪φ E2) | (V1 ∪ V2)→ (V1 ∪ V2)× Cn.

establishing the local triviality of E1 ∪φ E2. Elementary properties of this con-
struction are. the following:



1.4. VECTOR BUNDLES ON COMPACT SPACES 11

1. If E is a bundle over X and Ei = E | Xi, then the identity de�nes an
isomorphism IA : E1 | A→ E2 | A, and

E1 ∪IA E2
∼= E.

2. If βi : Ei → E′
i are isomorphisms on Xi and φ′β1 = β2φ, then

E1 ∪φ E2
∼= E′

1 ∪φ′ E′
2.

3. If (Ei, φ) and (E′
i, φ

′) are two �clutching data� on the Xi, then

(E1 ∪φ E2)⊕ (E′
1 ∪φ′ E′

2)
∼= (E1 ⊕ E′

1) ∪φ⊕φ′ (E2 ⊕ E′
2),

(E1 ∪φ E2)⊗ (E′
1 ∪φ′ E′

2)
∼= (E1 ⊗ E′

1) ∪φ⊗φ′ (E2 ⊗ E′
2),

(E1 ∪φ E2)
∗ ∼= E∗

1 ∪(φ∗)−1 E∗
2 .

Moreover, we also have

Lemma 1.4.10. The isomorphism class of E1 ∪φ E2 depends only on the ho-
motopy class of the isomorphism φ : E1 | A→ E2 | A.

Proof. A homotopy of isomorphisms E1 | A→ E2 | A means an isomorphism

Φ: (π∗E1 | A)× I → (π∗E2 | A)× I,

where I is the unit interval and π : X × I → X is the projection. Let

ft : X → X × I

be de�ned by ft(x) = x× {t} and denote by

φt : E1 | A→ E2 | A

the isomorphism induced from Φ by ft. Then

E1 ∪φt E2
∼= f∗t (π

∗E1 ∪Φ π∗E2).

Since f0 and f1 are homotopic, it follows from Lemma 1.4.5 that

E1 ∪φ0
E2
∼= E1 ∪φ1

E2

as required.

Remark 1.4.11. The �collapsing� and �clutching� constructions for bundles (on
X/Y and Xl ∪ X2 respectively) are both special cases of a general process of
forming bundles over quotient spaces. We leave it as an exercise to the reader
to give a precise general formulation.

We shall denote by [X,Y ] the set of homotopy classes of maps X → Y .

Lemma 1.4.12. For any X, there is a natural isomorphism Vectn(S(X) ∼=
[X,GL(n,C)] where S(X) denotes the suspension of X.
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Proof. Write S(X) as C+(X)∪C−(X), where C+(X) = ([0, 1/2]×X)/{0}×X
, C−(X) = ([1/2, 1] × X)/{1} × X. Then C+(X) ∩ C−(X) = X. If E is any
n-dimensional bundle over S(X), E | C+(X) and E | C−(X) are trivial since
C+(X) and C−(X) are contractible. Let α± : E | C±(X) → C±(X) × V be
such isomorphisms. Then (α+ | X)(α− | X)−1 : X × V → X × V is a bundle
map, and thus de�nes a map α of X into GL(n,C) = Iso(V ). Since both C+(X)
and C−(X) are contractible, the homotopy classes of both α+ and α− are well
de�ned, and thus the homotopy class of α is well de�ned. Thus we have a
natural map θ : Vectn(S(X)) → [X,GL(n,C]. The clutching construction on
the other hand de�nes by Lemma 1.4.10 a map

φ : [X,GL(n,C)]→ Vectn(S(X)).

It is clear that θ and φ are inverses of each other and so are bijections.

We have just seen that Vectn(S(X)) has a homotopy theoretic interpretation.
We now give a similar interpretation to Vectn(X). First we must establish some
simple facts about quotient bundles.

Lemma 1.4.13. Let E be any bundle over X. Then there exists a (Hermitian)
metric on E.

Proof. A metric on a vector space V de�nes a metric on the product bundle
X × V . Hence metrics exist on trivial bundles. Let {Uα} be a �nite open
covering of X such that E | Uα is trivial and let hα be a metric for E | Uα. Let
{Pα be a partition of unity with supp pα ⊂ Uα and de�ne

kα(x) =

{
pαhα(x) for x ∈ Uα,
0 otherwise.

Then kα is a section of Herm(E) and is positive semi-de�nite. But for any
x ∈ X there exists α such that pα(x) > 0 (since

∑
α pα = 1) and so x ∈ Uα.

Hence, for this α, kα(x) is positive de�nite. Hence
∑
α kα(x) is positive de�nite

for all x ∈ X and so k =
∑
kα is a metric for E.

De�nition 1.4.14. A sequence of vector bundle homomorphisms

→ E → F → · · ·

is said to be exact if for each x ∈ X the sequence of vectorÂ· space morphisms

→ Ex → Fx → · · ·

is exact.

Corollary 1.4.15. Let

0→ E′ φ′

−→ E
φ′′−−→ E′′ → 0

be an exact sequence of bundles over X. Then there exists an isomorphism
E ∼= E′ ⊕ E′′.
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Proof. Give E a metric. Then E ∼= E′ ⊕ (E′)⊥. However, (E′)⊥ ∼= E′′.

De�nition 1.4.16. A subspace V ⊂ Γ(E) is said to be ample if

φ : X × V → E

is a surjection, where φ(x, s) = s(x).

Lemma 1.4.17. If E is any bundle over a compact Hausdor� space X, then
Γ(E) contains a �nite dimensional ample subspace.

Proof. Let {U} be a �nite open covering of X such that E | Uα is trivial for
each α, and let {pα be a partition of unity with supp pα ⊂ Uα. Since E | Uα is
trivial we can �nd a �nite dimensional ample subspace Vα ⊂ Γ(E | Uα). Now
de�ne

θα : Vα → Γ(E)

by

θαvα(x) =

{
pα · vα(x) if x ∈ Uα
0 otherwise

The θα de�ne a homomorphism

θ :
∏
α

Vα → Γ(E)

and the image of θ is a �nite dimensional Subspace of Γ(E); in fact, for each
x ∈ X there exists α with pα(x) > 0 and so the map

θα(Vα)→ Ex

is surjective.

Corollary 1.4.18. If E is any bundle, there exists an epimorphism φ : X ×
Cm → E for some integer m.

Corollary 1.4.19. If E is any bundle, there exists a bundle F such that E⊕F
is trivial.

We are now in a position to prove the existence of a homotopy theoretic
de�nition for Vectn(X). We �rst introduce Grassmann manifolds. If V is any
vector space, and n any integer, the set Gn(V ) is the set of all subspaces of
V of codimension n. If V is given some Hermitian metric, each subspace of V
determines a projection operator. This de�nes a map Gn(V )→ End(V ) , where
End(V ) is the set of endomorphisms of V . We give Gn(V ) the topology induced
by this map.

Suppose that E is a bundle over a space X, V is a vector space, and φ : X×
V → E is an epimorphism. If we map X into Gn(V ) by assigning to x the
subspace ker(φx), this map is continuous for any metric on V (here n = dim(E)).
We call the map X → Gn(V ) the map induced by φ.
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Let V be a vector space, and let F ⊂ Gn(V )×V be the sub-bundle consisting
of all points (g, v) such that v ∈ g. Then, if E = (Gn(V )×V )/F is the quotient
bundle, E is called the classifying bundle over Gn(V ).

Notice that if E′ is a bundle over X, and φ : X×V → E′ is an epimorphism,
then if f : X → Gn(V ) is the map induced by φ, we have E′ ∼= f∗(E), where E
is the classifying bundle.

Suppose that h is a metric on V . We denote by Gn(Vh) the set Gn(V ) with
the topology induced by h. If h′ is another metric on V , then the epimorphism
Gn(Vh)× V → E (where E is the classifying bundle) induces the identity map
Gn(Vh)→ Gn(Vh′) Thus the identity map is continuous. Thus, the topology on
Gn(V ) does not depend on the metric.

Now consider the natural projections

Cm → Cm−1

given by (z1, · · · , zm) 7→ (zl, · · · , zm−l). These induce continuous maps

ιm−1 : Gn(Cm)→ Gn(Cm−1).

If E(m) denotes the classifying bundle over Gn(Cm) it is immediate that

ι∗m−1(Em) ∼= E(m−l).

Theorem 1.4.20. The map

lim−→
m

[X,Gn(Cm)]→ Vectn(X)

induced by f 7→ f∗(E(m)) for f : X → Gn(Cm), is an isomorphism for all
compact Hausdor� spaces X.

Proof. We shall construct an inverse map. If E is a bundle over X, there exists
(by 1.4.18) an epimorphism φ : X×Cm → E. Let f : X → Gn(Cm) be the map
induced by φ. If we can show that the homotopy class of f (in Gn(V m

′
)) for

m′ su�ciently large does not depend on the choice of φ, then we construct our
inverse map Vectn(X)→ lim−→m

[X,Gn(V
m)] by sending E to the homotopy class

of f .
Suppose that φi : X × Cmi → E are two epimorphisms (i = 0, 1). Let

gi : X → Gn(Cmi) be the map induced by φ1. De�ne ψt : X ×Cm0 ×Cm1 → E
by ψt(x, v0, v1) = (1 − t)φ0(x, v0) + tφl(x, v1). This is an epimorphism. Let
ft : X → Gn(Cm0 ⊕Cm1) be the map induced by ψt. If we identify Cm0 ⊕Cm1

with Cm0 × Cm1 by

(z1, · · · , zm0
)⊕ (u1, · · · , um1

) 7→ (z1, · · · , zm0
, · · · , u1, · · ·um1

)

then we have
f0 = j0g0, f1 = Tj1g1

where ji : Gn(Cmi)→ Gn(Cm0+m1) is the natural inclusion and

T : Gn(Cm0+m1)→ Gn(Cm0+m1)
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is the map induced by a permutation of coordinates in Cm0+m1 , and so is ho-
motopic to the identity. Hence j1g1 is homotopic to f1 and hence to j0g0 as
required.

Remark 1.4.21. It is possible to interpret vector bundles as modules in the
following way. Let C(X) denote the ring of continuous complex-valued functions
on X. If E is a vector bundle over X then Γ(E) is a C(X) - module under point-
wise multiplication, i. e. ,

fs(x) = f(x)s(x) f ∈ C(X), s ∈ Γ(E).

Moreover a homomorphism φ : E → F determines a C(X) -module homomor-
phism

Γφ : Γ(C)→ Γ(F ).

Thus Γ is a functor from the category V of vector bundles overX to the category
M of C(X) -modules. If E is trivial of dimension n. then Γ(E) is free of rank
n. If F is also trivial then

Γ: HOM(E,F )→ HomC(X)(Γ(E),Γ(F ))

is bijective. In fact, choosing isomorphisms E ∼= X × V, F ∼= X ×W we have

HOM(E,F ) ∼= HomC(V,W )X ∼= C(X)⊗HomC(V,W )
∼= HomC(X)(Γ(E),Γ(F )).

Thus Γ induces an equivalence between the category T of trivial vector bundles
to the category F of free C(X)-modules of �nite rank. Let Proj(T ) denote the
sub-category of V whose objects are images of projection operators in T , and
let Proj(F ) ⊂M be de�ned similarly. Then it follows at once that Γ induces
an equivalence of categories

Proj(T )→ Proj(F ).

But, by (1.4.19), Proj(T ) = V . By de�nition Proj(F ) is the category of
�nitely-generated projective C(X)-modules. Thus we have established the fol-
lowing:

Proposition 1.4.22. Γ induces an equivalence between the category of vector bun-
dles over X and the category of �nitely generated projective modules over C(X).

1.5 Additional structures

In linear algebra one frequently considers vector spaces with some additional
structure, and we can do the same for vector bundles. For example we have
already discussed hermitian metrics. The next most obvious example is to
consider non-degenerate bilinear forms. Thus if V is a vector bundle a non-
degenerate bilinear form on V means an element T of HOM(V ⊗ V, 1) which
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induces a non-degenerate element of Hom(V ⊗ V, 1) for all x ∈ X. Equivalently
T may be regarded as an element of ISO(V, V ∗). The vector bundle V together
with this isomorphism T will be called a self-dual bundle.

If T is symmetric, i. e., if Tx is symmetric for all s ∈ X, we shall call (V, T )
an orthogonal bundle. If T is skew-symmetric, i, e� if Tx is skew-symmetric for
all x ∈ X, we shall call (V, T ) a symplectic bundle.

Alternatively we may consider pairs (V, T ) with T ∈ ISO(V, V ) where V
denotes the complex conjugate bundle of V (obtained by applying the �complex
conjugate functor� to V ). Such a (V, T ) may be called a self-conjugate bundle.
The isomorphism T may also be thought of as an anti-linear isomorphism V →
V . As such we may form T 2. If T 2 = id we may call (V, T ) a real bundle. In
fact the subspace W ⊂ V consisting of all v ∈ V with Tv = v has the structure
of a real vector bundle and V may be identi�ed with W ⊗R C, complexi�cation
of W . If T 2 = − id then we may call (V, T ) a quaternion bundle. In fact, we
can de�ne a quaternion vector space structure on each Vx by putting j(v) = Tv
(the quaternions are generated over R by i, j with ij = −ji, i2 = j2 = −1).

Now if V has a hermitian metric h then this gives an isomorphism V →
V ∗ and hence turns a self-conjugate bundle into a self-dual one. We leave
it as an exercise to the reader to examine in detail the symmetric1 and skew-
symmetric cases and to show that, up to homotopy, the notions of self-conjugate,
orthogonal, symplectic, are essentially equivalent to self-dual, real, quaternion.
Thus we may pick which ever alternative is more convenient at any particular
stage. For example, the result of the preceding sections extend immediately to
real and quaternion vector bundles although the extension of (1.4.5) for example
to orthogonal or symplectic bundles is not so immediate. On the other hand the
properties of tensor products are more conveniently dealt with in the framework
of bilinear forms. Thus the tensor product of (V, T ) and (W,S) is (V ⊗W,T⊗S)
and the symmetry properties of T⊗S follow at once from those of T and S. Note
in particular that the tensor product of two symplectic bundles is orthogonal.

A self-conjugate bundle is a special case of a much more general notion. Let
F,G be two continuous functors on vector spaces. Then by an F → G bundle we
will mean a pair (V, T ) where V is a vector bundle and T ∈ ISO(F (V ), G(V )).
Obviously a self-conjugate bundle arises by taking F = id, G = ∗.
Another example of some importance is to take F and G to be multiplication
by a �xed integer m , i. e.,

F (V ) = G(V ) = V ⊗ V ⊗ · · · ⊗ V (m times).

Thus an m → m bundle (or more brie�y an m-bundle) is a pair (V, T ) where
T ∈ Aut(mV ). The m-bundle (V, T ) is trivial if there exists S ∈ Aut(V ) so
that T = mS.

In general for F → G bundles the analogue of (1.4.5) does not hold, i. e.,
homotopy does not imply isomorphism. Thus the good notion of equivalence
must incorporate homotopy. For example, two m-bundles (V0, T0) and (V1, T1)

1The point is that GL(n,R) and (n,C) have the same maximal compact subgroup (n,R).
Similar remarks apply in the skew case.
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will be called equivalent if there is an m-bundle (W,S) on X × I so that

(V1, Ti) ∼= (W,S) | X × i, i = 0, 1.

Remark 1.5.1. An m-bundle over K should be thought of as a �mod m vector
bundle� over S(X).

1.6 G-bundles over G-spaces

Suppose that G is a topological group. Then by a G-space we mean a topological
space X together with a given continuous action of G on X, i. e., G acts on X
and the map G×X → X is continuous. A G-map between G-spaces is a map
commuting with the action of G. A G-space E is a G-vector bundle over the
G-space X if

(i) E is a vector bundle over X,

(ii) the projection E → X is a G-map,

(iii) for each g ∈ G the map Ex → Eg(x) is a vector space homomorphism.

If G is the group of one element then of course every space is a G-space and
every vector bundle is a G-vector bundle. At the other extreme if X is a point
then X is a G-space for all G and a G-vector bundle over X is just a (�nite-
dimensional) representation space of G. Thus G-vector bundles form a natural
generalisation including both ordinary vector bundles and G-modules. Much
of the theory of vector bundles over compact spaces generalises to G-vector
bundles provided G is also compact. This however, presupposes the basic facts
about representations of compact groups. For the present, therefore we restrict
ourselves to �nite groups where no questions of analysis are involved.

There are two extreme kinds of G-space:

(i) X is a free G-space if g ̸= 1⇒ g(x) ̸= x,

(ii) X is a trivial G-space if g(x) = x for all x ∈ X, g ∈ G.

We shall examine the structure of G-vector bundles in these two extreme cases.
Suppose then that X is a free G-space and let X/G be the orbit space.

Then π : X → X/G is a �nite covering map. Let E be a G-vector bundle ewer
X. Then E is necessarily a free G-space. The orbit space E/G has a natural
vector bundle structure over X/G: in fact E/G → X/G is locally isomorphic
to E → X and hence the local triviality of E implies that of E/G. Conversely,
suppose V is a vector bundle over X/G. Then π∗V is a G-vector bundle over
X; in fact, π∗V ⊂ X×V and G acts on X×V by g(x, v) = (g(x), v). It is clear
that E → E/G and V → π∗V are inverse functors. Thus we have

Proposition 1.6.1. If X is G-free, G-vector bundles over X correspond bijec-
tively to vector bundles over X/G by E → E/G.
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Before discussing trivial G-spaces let us recall the basic feet about repre-
sentations of �nite groups, namely that there exists a �nite set V1, · · · , Vk of
irreducible representations of G so that any representation V of G is isomorphic
to a unique direct

∑k
i=1 niVi (Maschke's theorem).

We shall give a brief treatment of Maschke's theorem as follows.
Let U, V be G-modules over a �eld k and α be a mapping from U to V . We
shall write α : U →k V, α : U →G V to indicate that α is k-linear or a G-
homomorphism respectively. Th|e space of all k-linear mappings from U to V is
denoted by Homk(U, V ) and the subspace ofG-homomorphisms by HomG(U, V ).

In the next lemma we shall (exceptionally) write mappings between right G-
modules on the right, so that for α : U →k V the condition for aG-homomorphism
is that

(ux)α = (uα)x for all u ∈ U, x ∈ G.

Lemma 1.6.2 (Averaging lemma). Let G be a �nite group and k a �eld of
characteristic 0 or prime to |G|. Given any two G-modules U, V and α : U →k

V , the mapping
α′ : u 7→ |G|−1

∑
x

((ux−1)α)x (1.6.3)

is a G-homomorphism from U to V . Moreover,

(i) if α is a G-homomorphism, then α∗ = α,

(ii) if α : U →k V, β : V →G W , then (αβ)∗ = α∗β,

(iii) if α : U →G V, β : V →k W , then (αβ)∗ = αβ∗.

Proof. Let us �x a ∈ G and write y = xa, x = ya−1. Then as one of x, y runs
over G, so does the other. Now for α : U →k V we have

|G|.ua∗a =
∑
x

ux−1αxa =
∑
y

uay−1αy = |G|.uaα∗. (1.6.4)

This shows α∗ to be a G-homomorphism. If α is a G-homomorphism, each term
in the sum in 1.6.4 is uαa = uaα, so α∗ = α in this case and (i) follows. Now
let β : V →k V ; then

|G|.u(αβ)∗ =
∑
x

ux−1αβx =
∑
x

ux−1αxβ = |G|.uα∗β.

Hence (ii follows; (iii) is proved similarly.

We note that if neither α nor β is a G-homomorphism, there is nothing we
can say. We can now prove the module form of Maschke's theorem, which states
that every module extension splits, or equivalently, that the group algebra kG
is semisimple.

Theorem 1.6.5 (Maschke's theorem). Let G be a �nite group and k a �eld of
characteristic 0 or prime to |G|. Then kG is semisimple.
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Proof. We shall show that every (�nite-dimensional) G-module is semisimple,
or equivalently, that every short exact sequence of G-modules

0→ V ′ α−→ V
β−→ V ′′ → 0. (1.6.6)

splits. Such a sequence certainly splits as a sequence of k-spaces, for this just
means that V ′ as k-subspace of V has a vector space complement. Thus we
have a k-linear splitting map γ : V → V ′. We have αγ = 1V ; therefore 1 = 1∗ =
(αγ)∗ = αγ∗, and so γ∗ is the desired G-homomorphism splitting the sequence
1.6.6.

Now for any two G-modules (i. e., representation spaces) V,W we can de�ne
the vector space HomG(V,W ) of G-homomorphisms. Then we have

HomG(Vi, Vj)

{
= 0 i ̸= j
∼= C i = j.

Hence for any V it follows that the natural map∑
Vi ⊗Homg(Vi, V )→ V

is a G-isomorphism. In this form we can extend the result to G-bundles over a
trivial G-space. In fact, if E is any G-bundle over the trivial G-space X we can
de�ne the homomorphism Av ∈ EndE by

Av(e) =
1

|G|
∑
g∈G

g(e) e ∈ E

where |G| denotes the order of G (This depends on the Averaging lemma 1.6.2
which states that, X being G-trivial, each g ∈ G de�nes an endomorphism of
E). It is immediate that Av is a projection operator for E and so its image,
the invariant subspace of E, is a vector bundle. We denote this by EG and
call it the invariant sub-bundle of E. Thus if E,F are two G-bundles then
HomG(E,F ) = (Hom(E,F ))G is again a vector bundle. In particular taking E
to be the trivial bundle Vi = X × Vi with its natural G-action we can consider
the natural bundle map

k∑
i=1

Vi ⊗HomG(Vi, F )→ F.

We have already observed that for a G-module F this is a G-isomorphism. In
other words for any G-bundle F over X this is a G-isomorphism for all ∈ X.
Hence it is an isomorphism of G-bundles. Thus every G-bundle F is isomorphic
to a G-bundle of the form

∑
Vi ⊗ Ei where Ei is a vector bundle with trivial
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G-action. Moreover the Ei are unique up to isomorphism. In fact we have

HomG(Vi, F ) ∼=
k∑
i=1

HomG(Vi,Vj ⊗ Ej)

∼=
k∑
i=1

HomG(Vi,Vj)⊗ Ej

∼= Ej .

Thus we have established

Proposition 1.6.7. Let X be a trivial G-space, V1, . . . , Vk a complete set of
irreducible G-modules, Vi = X × Vi the corresponding G-bundles. Then every
G-bundle F over X is isomorphic to a direct sum

∑k
i=1 Vi ⊗ Ei where the Ei

are vector bundles with trivial G-action. Moreover the Ei are unique up to
isomorphism and are given by Ei = HomG(Vi, F ).

We return now to the case of a general (compact) G-space X and we shall
show how to extend the results of 1.4 to G-bundles. Observe �rst that, if E is
a G-bundle, G acts naturally on Γ(E) by

(gs)(x) = g(s(g−1(x))) s ∈ Γ(E).

A section s is invariant if gs = g for all g ∈ G. The set of all invariant sections
forms a subspace Γ(E)G of Γ(E). The averaging operator

Av =
1

|G|
∑

g

de�nes as usual a homomorphism Γ(E)→ Γ(E)G which is the identity on Γ(E)g.

Lemma 1.6.8. Let X be a compact G-space Y ⊂ X a closed sub G-space (i.e.,
invariant under the action of G) and let E be a G-bundle over X. Then any
invariant section s : Y → E | Y extends to an invariant section over X .

Proof. By 1.4.3 we can extend s to some section t of E over X. Then Av(t) is
an invariant section of E over X, while over Y we have

Av(t) = Av(s) = s

since s is invariant. Thus Av(t) is the required extension.

If E,F are two G-bundles then Hom(E,F ) is also a G-bundle and we have

Γ(Hom(E,F ))G ∼= HOMG(E,F ).

Hence the G-analogues of 1.4.4 and 1.4.5 follow at once from 1.6.8. Thus we
have
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Lemma 1.6.9. Let Y be a compact G-space, X be a G-space, ft : Y → X(0 ≤
t ≤ 1) be a G-homotopy and E be a G-vector bundle over X. Then f∗0E and
f∗1E are isomorphic G-bundles.

A G-homotopy means of course a G-map F : Y × I → X where I is the unit
interval with trivial G-action. A G-space is G-contractible if it is G-homotopy
equivalent to a point. In particular, the cone over a G-space is always G-
contractible. By a trivial G-bundle we shall mean a G-bundle isomorphic to a
product X × V where V is a G-module. With these de�nitions 1.4.6 - 1.4.15
extend without change to G-bundles. We have only to observe that if h is a
metric for E then Av(h) is an invariant metric .

To extend 1.4.17 we observe that if V ⊂ Γ(E) is ample then
∑
g∈G gV ⊂

Γ(E) is ample and invariant. This leads at once to the appropriate extension of
1.4.19.

In extending 1.4.20 we have to consider Grassmannians of G-subspaces of
m

∑k
i=1 Vi for m → ∞, where as before V1, · · · , Vk denote a complete set of

irreducible G-modules. We leave the formulation to the reader.
Finally,consider the module interpretation of vector bundles. Write A =

C(X). Then if X is a G-space with G acting on A as a group of algebra
automorphisms. If E is a G-vector bundle over X then Γ(E) is a projective
A-module and G acts on Γ(E), the relation between the A− and G− actions
being

g(as) = g(a)g(s) a ∈ A, g ∈ G, s ∈ Γ(E).

We can look at this another way if we introduce the �twisted group algebra�
B of G over A, namely elements of B are linear combinations

∑
g∈G agg with

a ∈ A and the product is de�ned by

(ag)(a′g′) = (ag(a′))gg′.

In fact, Γ(E) is then just a B-module. We leave it as an exercise to the reader to
show that the category of G-vector bundles over X is equivalent to the category
of B-modules which are �nitely generated and projective over A.
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Chapter 2

K-Theory

2.1 De�nitions

If X is any space, the set Vect (X) is de�ned by the structure of an abelian
semigroup, where the additive structure is de�ned by direct sum. If A is any
abelian semigroup, we can associate to A an abelian group K(A) with the
following property: there is a semigroup homomorphism α : A → K(A) such
that if G is any group, γ : A → G any semigroup homomorphism, there is a
unique homomorphism χ : K(A)→ G such that γ = χα. If such a K(A) exists,
it must be unique.

The group K(A) is de�ned in the usual fashion. Let F (A) be the free
abelian group generated by the elements of A, let E(A) be the subgroup of
F (A) generated by those elements of the form a+ a′ − (a⊕ a′), where ⊕ is the
addition in A, a, a′ ∈ A. Then K(A) = F (A)/E(A) has the universal property
described above, with α : A→ K(A) being the obvious map.

A slightly di�erent construction of K(A) which is sometimes convenient is
the following. Let ∆: A → A × A be the diagonal homomorphism of semi-
groups, and let K(A) denote the set of cosets of ∆(A) in A×A. It is a quotient
semi-group, but the interchange of factors in A×A induces an inverse in K(A)
so that K(A) is a group. We then de�ne αA : A→ K(A) to be the composition
of a 7→ (a, 0) with the natural projection A × A → K(A) (we assume A has a
zero for simplicity). The pair (K(A), αA) is a functor of A so that if γ : A→ B
is a semi-group homomorphism we have a commutative diagram

A
αA //

γ

��

K(A)

K(γ)

��
B

αB

// K(B)

If B is a group αB is an isomorphism. That shows K(A) has the required
universal property.

23
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If A is also a semi-ring (that is, A possesses a multiplication which is dis-
tributive over the addition of A) then K(A) is clearly a ring.

If X is a space, we write K(X) for the ring K(Vect(X)). No confusion
should result from this notation. If E ∈ Vect(X), we shall write [E] for the
image of E in K(X). Eventually, to avoid excessive notation, we may simply
write E instead of [E] when there is no danger of confusion.

Using our second construction of K it follows that, if X is a space, every
element of K(X) is of the form [E]− [F ], where E,F are bundles over X. Let
G be a bundle such that F ∈ G is trivial. We write n for the trivial bundle
of dimension n. Let F ⊕ G = n. Then [E] − [F ] = [E] + [G] − ([F ] + [G]) =
[E ⊕G]− [n]. Thus, every element of K(X) is of the form [H]− [n].

Suppose that E,F are bundles such that [E] = [F ], then again from our
second construction of K it follows that there is a bundle G such that E ⊕G ∼=
F⊕G. Let G′ be a bundle such that G⊕G′ ∼= n. Then E⊕G⊕G′ ∼= F⊕G⊕G′,
so E ⊕ n ∼= F ⊕ n. If two bundles become equivalent when a suitable trivial
bundle is added to each of them, the bundles are said to be stably equivalent.
Thus, [E] = [F ] if and only if E and F are stably equivalent.

Suppose f : X → Y is a continuous map. Then f∗ : Vect(Y ) → Vect(X)
induces a ring homomorphism f∗ : K(Y )→ K(X). By 1.4.5 this homomorphism
depends only on the homotopy class of f .

2.2 The periodicity theorem

The fundamental theorem for K-theory is the periodicity theorem. In its sim-
plest form, it states that for any X, there is an isomorphism between K(X) ⊗
K(S2) and K(X × S2). This is a special case of a more general theorem which
we shall prove.

If E is a vector bundle over a space X, and if E0 = E \ X, where X is
considered to lie in E as the zero section, the non-zero complex numbers act
on E0 as a group of �bre preserving automorphisms. Let P (E) be the orbit
space obtained from E0 by the action of the complex number. P (E) is called
the projective bundle associated to E. If p : P (E) → X is the projection map,
p−1(x) is a complex projective space for all x ∈ X. If V is a vector space, and
W is a vector space of dimension one, V and V ⊗W are isomorphic, but not
naturally isomorphic. For any non-zero element ω ∈ W the map ν 7→ ν ⊗ ω
de�nes an isomorphism between V and V ⊗W , and thus de�nes an isomorphism
(ω) : P (V ) → P (V ⊗W ). However, if ω′ is any other non-zero element of W ,
ω′ = λω for some non-zero complex number λ. Thus P (ω) = (ω′), so the
isomorphism between P (V ) and P (V ⊗W ) is natural. Thus, if E is any vector
bundle, and L is a line bundle, there is a natural isomorphism P (E) ∼= P (R⊗L).

If E is a vector bundle over X then each point a ∈ P (E)X = P (EX) repre-
sents a one-dimensional subspace H∗

X ⊂ EX . The union of all these de�nes a
subspace H∗ ⊂ p∗E, where p : P (E)→ X is the projection. It is easy to check
that H∗ is a sub-bundle of p∗E. In fact, the problem being local we may assume
E is a product and then we are reduced to a special case of the Grassmannian
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already discussed in �1.4. We have denoted our line-bundle by H∗ because we
want its dual H (the choice of convention here is dictated by algebro-geometric
considerations which we do not discuss here).

We can now state the periodicity theorem.

Theorem 2.2.1. Let L be a line bundle over X. Then, as a K(X)-algebra,
K(P (L ⊗ 1)) is generated by [H], and is subject to the single relation ([H] −
[l])([L][H]− [1]) = 0.

Before we proceed to the proof of this theorem, we would like to point out
two corollaries. Notice that P (1⊗ 1) = X × S2.

Corollary 2.2.2. K(S2) is generated by [H] as a K(point) module, and [H] is
subject to the only single relation ([H]− [1])2 = 0.

Corollary 2.2.3. IÂ¿ X is any space, and if µ : K(X)⊗K(S2)→ K(X×S2)
is de�ned by µ(a ⊗ b) = (π∗

1a)(π
∗
2b), where π1, π2 are the projections onto the

two factors, then µ is an isomorphism of rings.

The proof of the theorem will be broken down into a series of lemmas.
To begin, we notice that for any x ∈ X, there is a natural embedding

LX → P (L ⊕ 1) given by the map y 7→ (y, 1). This map extends to the one
point compacti�cation of LX , and gives us a homeomorphism of the one point
compacti�cation of LX onto P (L⊕ 1)X . If we map X → P (L⊕ 1) by sending x
to the image of the �point at in�nity� of the one point compacti�cation of L, we
obtain a section of P (L⊕1) which we call the �section at in�nity�. Similarly, the
zero section of L gives us a section of P (L ⊕ 1), which we call the zero section
of P (L⊗ 1).

We choose a metric on L , and we let S ⊂ L be the unit circle bundle. We
write 0 for the part of L consisting of vectors of length ≤ 1, and P∞ for that
part of P (L⊕1) consisting of the section at in�nity, together with all the vectors
of length ≥ 1. We denote the projections S → X,P 0 \X,P∞ \X by π, π0, and
π∞ respectively.

Since π0 and π∞
0 are homotopy equivalences, every bundle on P 0 is of the

form π∗
0(E

0) and every bundle on P∞ is of the form π∗
∞(E0), where E0 and

E∞ are bundles on X. Thus, any bundleE on P (L⊕ 1) is isomorphic to one of
the form (π∗

0(E
0), f, π∗

∞(E∞)), where f ∈ ISO(π∞(E0), π∗(E∞)) is a clutching
function. Moreover, if we insist that the isomorphism

E → (π∗
0E

0, f, π∗
∞E

∞)

coincide with the obvious ones over the zero and in�nite sections, it follows that
the homotopy class of f is uniquely determined by the isomorphism class of E.
This again uses the fact that the 0-section is a deformation retract of P 0 and the
∞-section a deformation retract of P∞. We shall simplify our notation slightly
by writing (E0, f, E∞) for (π∗

0(E
0), f, π∗

∞(E∞)).
Our proof will now be devoted to showing that the bundles E0 and E∞ and

the clutching function f can be taken to have a particularly simple form. In



26 CHAPTER 2. K-THEORY

the special case that L is trivial, S is just X × S, the projection S → S1 is a
complex-valued function on S which we denote by z (here S1 is identi�ed with
the complex numbers of unit modulus). This allows us to consider functions on
S which are �nite Laurent series in z whose coe�cients are functions on X:

n∑
k=−n

ak(x)z
k

These �nite Laurent series can be used to approximate functions on S in a
uniform manner.

If L is not trivial, we have an analogue to �nite Laurent series. Here z
becomes a section in a bundle rather than a function. Since π∗(L) is a subset
of S × L, the diagonal map S → S × S ⊂ S × L gives us a section of π∗(L).
We denote this section by z. Taking tensor products we obtain, for k ≥ 0,
a section z − k of (π∗(L))k, and a section z−k of (π∗(L∗))k. We write L−k

for (L∗)k. Then, for any k, k′, Lk ⊗ L′k ∼= Lk+k
′
. Suppose that ak ∈ (L−k).

Thenπ∗(ak)⊗ zk ∈ Γ(π∗(1)), and thus π∗(ak)⊗ zk is a function on S. We write
akz

k for this function. By a �nite Laurent series, we shall understand a sum of
functions on S of the form

n∑
k=−n

akz
k

where ak ∈ Γ(L−k) for all k.
More generally, if E0, E∞ are two vector bundles onX, and ak ∈ ΓHom(Lk⊗

E0, E∞), then if we write akzk for ak ⊗ zk, we see that any �nite sum of the
form

f =

n∑
k=−n

akz
k

is an element of Γ(π∗(E0), π∗(E∞)). If f ∈ ISO(π∗(E0), π∗(E∞)), we call f a
Laurent clutching function for (E0, E∞).

The function z is a clutching function for (1, L). Further, (1, z, L) is just the
bundle H∗ which we de�ned earlier. To see this, we �rst recall that H∗ was
de�ned as a sub-bundle of π∗(L⊕ 1). For each y ∈ P (L⊕ 1)X , H

∗
y is a subspace

of (L⊕ 1)X , and
H∗

∞ = LX ⊕ 0, H∗
0 = 0⊕ 1X .

Thus, the composition

H∗ → π∗(L⊕ 1)→ π∗(1)

induced by the projection L⊕ 1→ 1 de�nes an isomorphism:

f0 : H
∗ | P 0 → π∗

0(1).

Likewise, the composition

H∗ → π∗(L⊕ 1)→ π∗(L)



2.2. THE PERIODICITY THEOREM 27

induced by the projection L⊕ 1→ L de�nes an isomorphism:

f∞ : H∞ | P∞ → π∞
0 (L).

Hence f = f∞f
−1
0 : π∗(1) → π∗(L) is a clutching function for H∗. Clearly, if

y ∈ S, f(y) is the isomorphism whose graph is H∗
y . Since H

∗
y is the subspace of

LX ⊕ 1X spanned by y ⊕ 1(y ∈ SX ⊂ LX , 1 ∈ C), we see that f is exactly our
section z. Thus

H∗ ∼= (1, z, L).

Therefore, for any integer k,

Hk ∼= (1, z−k, L−k).

The next step in our classi�cation of the bundles over P is to show that every
clutching function can be taken to be a Laurent clutching function. Suppose
that f ∈ ΓHom(π∗E0, π∗E∞) is any section. We de�ne its Fourier coe�cients

ak ∈ ΓHom(Lk ⊗ E0, E∞)

by

ak(x) =
1

2πi

�
Sx

fxz
−k−1
x dzx.

Here fX , zX denote the restrictions of f, z to SZ , and dzX is therefore a di�er-
ential on SX with coe�cients in LX . Let Sn be the partial sum

Sn =

n∑
k=−n

akz
k

and de�ne the Cesaro means

fn =
1

n

n−1∑
0

Sk.

Then the proof of Fejer's theorem on the (C, 1) summability of Fourier series
extends immediately to the present more general case and gives

Lemma 2.2.4. Let f be any clutching function for (E0, E∞), and let fn be
the sequence of Cesaro means of the Fourier series of f . Then fn converges
uniformly to f . Thus, for all large n, fn is a clutching function for (E0, E∞),
and (E0, f, E∞) ∼= (E0, fn, E

∞).

Proof. Since ISO(E0, E∞ is an open subset of the vector space HOM(E0, E∞),
there exists an ϵ > 0 such that g ∈ ISO(E0, E∞) whenever |f − g| < ϵ, where ||
denotes the usual sup. norm with respect to �xed metrics in E0, E∞.

Since the fn converge uniformly to f we have |f − fn| < ϵ for large n. Thus,
for 0 ≤ t ≤ 1, |tf + (l− t)fn| ∈ ISO(E0, E∞). Thus, f and fn are homotopic in
ISO(E0, E∞), so (E0, f, E∞) ∼= (E0, fn, E

∞).
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Next, consider a polynomial clutching function; that is, one of the form

p =

n∑
k=0

akz
k.

Consider the homomorphism

Ln(p) : π∗(

n∑
k=0

)Lk ⊗ E0)→ π∗(E∞ ⊕
n∑
k=1

Lk ⊗ E0)

given by the matrix 
a0 a1 a2 . . . an−1 an
−z 1

−z 1
. . .

. . .
−z 1


It is clear that Ln(p) is linear in z. Now, de�ne the sequence pr(z) inductively
by

p0 = p, zpr+1(z) = pr(z)− pr(0).

Then we have the following matrix identity:

Ln(p) =


1 P1 P2 . . . Pn

1
1

1



P

1
1

1




1
−z 1

−z 1
. . .

−z 1


or, more brie�y

Ln(p) = (1 +N1)(p⊕ 1)(1 +N2)

where N1 and N2 are nilpotent. If N is nilpotent, 1 + tN is nonsingular for
0 ≤ t ≤ 1, so we obtain

Proposition 2.2.5. Ln(p) and p⊕ 1 de�ne isomorphic bundles on P , i.e.,

(E0, p, E∞)⊕ (

n∑
k=1

Lk ⊗ E0, 1,

n∑
k=1

Lk ⊗ E0)

∼= (

n∑
k=0

Lk ⊗ E0,Ln(p), E∞ ⊕
n∑
k=1

Lk ⊗ E0)

Remark 2.2.6. The de�nition of Ln(p) is, of course, modelled on the way one
passes from an ordinary di�erential equation of order n to a system of �rst order
equations.
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For brevity, we write Ln(E0, p, E∞) for the bundle

(

n∑
k=0

Lk ⊗ E,Ln(p), E∞ ⊕
n∑
k=1

Lk ⊗ E0).

Lemma 2.2.7. Let p be a polynomial clutching function of degree ≤ n for
(E0, E∞). Then

(i) Ln+1(E0, p, E∞) ∼= Ln(E0, p, E∞)⊕ (Ln+1 ⊗ E0, 1, Ln+1 ⊗ E0)

(ii) Ln+1(L−1 ⊗ E0, zp, E∞) ∼= Ln(E0, p, E∞)⊕ (L−1 ⊗ E0, z, E0)

Proof. We have

Ln+1(p) =

[
Ln(p) 0

0 . . . −z 1

]
.

Multiplying the z on the bottom row by t gives us a homotopy between Ln+1(p)
and Ln(p)⊕ 1. This establishes the �rst part.

Similarly,

Ln+1(zp) =


0 a0 a1 . . . an
−z 1

−z 1
−z

−z 1

 .
We multiply the 1 on the second row by t and obtain a homotopy between
Ln+1(p) and Ln(p)⊕ (−z). Since −z is the composition of z with the map −1,
and since −1 extends E0, (L−1 ⊗E0,−z, E0) ∼= (L−1 ⊗E0, z, E0). The second
part is therefore proved.

We shall now establish a simple algebraic formula inK(p). We write [E0, p, E∞]
for [(E0, p, E∞)].

Proposition 2.2.8. For any polynomial clutching function p for E0, E∞, we
have the identity

([E0, p, E∞]− [E0, 1, E0])([L][H]− [1]) = 0.

Proof. From the second part of the last lemma, together with the last proposi-
tion, we see that

(L−1 ⊗ E0, zp, E∞)⊕ (

n∑
k=0

Lk ⊗ E0, 1,

n∑
k=0

Lk ⊗ E0)

∼= (E0, p, E∞)⊕ (

n∑
k=1

Lk ⊗ E0, 1,

n∑
k=1

Lk ⊗ E0)

⊕ (L−1 ⊗ E0, z, E0).
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Thus in K(P )

[L−1 ⊗ E0, zp, E∞]⊕ [E0, 1, E0] = [E0, p, E∞]⊕ [L−1 ⊗ E0, z, E0].

Since [1, z, L] = [H−1],

[L−1][H−1][E0, p, E∞]⊕ [E0, 1, E0] = [E0, p, E∞]⊕ [L−1][H−1][E0, 1, E0]

In particular, if we put E0 = 1, p = z, E∞ = L, we obtain the formula

([H]− 1)([L][H]− [1]) = 0

which is part of our main theorem.

We now turn our attention to linear clutching functions. First, suppose that
T is an endomorphism of a �nite dimensional vector space E, and let S be a
circle in the complex plane which does not pass through any eigenvalue of T .
Then

Q =
1

2πi

�
S

(z − T )−1dz

is a projection operator in E which commutes with T . The decomposition
E = E+ ⊕ E−, E+ = QE,E− = (1 − Q)E is therefore invariant under T , so
that T can be written as T = T+ ⊕ T−. Then T+ has all its eigenvalues inside
S, while − has all its eigenvalues outside S. This is, of course, just the spectral
decomposition of T corresponding to the two components of the complement of
S.

We shall now extend these results to vector bundles, but �rst we make a
remark on notation. So far z and hence p(z) have been sections over S. However,
they extend in a natural way to sections over the whole L. It will also be
convenient to include the ∞-section of P in certain statements. Thus, if we
assert that p(z)az+ b is an isomorphism outside S, we shall take this to include
the statement that a is an isomorphism.

Proposition 2.2.9. Let p be a linear clutching function for (E0, E∞), and
de�ne endomorphisms Q0, Q∞ of (E0, E∞) by putting

Q0
x =

1

2πi

�
Sx

p−1
x dpx Q∞

x =
1

2πi

�
Sx

dpxp
−1
x

Then Q0 and Q∞ are projection operators, and

pQ0 = Q∞p

Write Ei+ = QiEi, Ei− = (1−Qi)Ei, i = 0,∞, so that Ei = Ei+ ⊕ Ei−. Then p
is compatible with these decompositions, so that = p+⊕ p−. Moreover, p+ is an
isomorphism outside S, and p−is an isomorphism inside S.
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Proof. It su�ces to verify these statements at each point x ∈ X. In other words,
we may assume that X is a point, L = C, and z is just a complex number. Since
p(z) is an isomorphism for |z| = 1, we can �nd a real number α(> 1) such that
p(α) : E0toE∞ is an isomorphism. For simplicity of computation, we identify E0

with E∞ by this isomorphism. Next, we consider the conformal transformation

w =
1− αz
z − α

which preserves the unit circle and its inside. Substituting for z, we �nd (since
we have taken p(α) = 1)

p(z) =
w − T
w + α

where T ∈ End(E0). Hence

Q0 =
1

2πi

�
|z|=1

p−1dp

=
1

2πi

�
|w|=1

(−(w + α)−1dw + (w − T )−1dw)

=
1

2πi

�
|w|=1

(w − T )−1dw since |α| > 1.

Similarly,

Q∞ =
1

2πi

�
|w|=1

(dw)(w − T )−1 = Q0,

so our assertions follow from the corresponding statements concerning a linear
transformation T .

Corollary 2.2.10. Let p be as in 2.2.9, and write

p+ = a+z + b+, p− = a−z + b−.

Then, if p(t) = p+(t)⊕ p−(t), where

p+(t) = a+z + tb+, p−(t) = ta−z + b−, 0 ≤ t ≤ 1,

we obtain a homotopy of linear clutching functions connecting p with a+z ⊕ b.
Thus

(E0, p, E∞) ∼= (E0
+, z, L⊗ E0

+)⊕ (E0
−, 1, E

0
−).

Proof. The last part of the last lemma implies that p+(t) and p−(t) are isomor-
phisms on S for 0 ≤ t ≤ 1. Thus, p(t) is a clutching function for 0 ≤ t ≤ 1.
Thus,

(E0, p, E∞) ∼= (E0, p(1), E∞)

∼= (E0
+, a+z, E

∞
+ )⊕ (E0

−, b, E
∞
− ).
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Since a+ : L ⊗ E0
+ → E∞

+ , b− : E0
− → E∞

− are necessarily isomorphisms, we see
that

(E0
+, a+z, E

∞
+ ) ∼= (E0

+, z, L⊗ E0
+)

(E0
−, b, E

∞
− ) ∼= (E0

−, 1, E
0
−).

Again, consider a polynomial clutching function p of degree ≤ n. Then Lp(p)
is a linear clutching function for (V 0, V∞) where

V 0 =

∞∑
k=0

Lk ⊗ E0, V∞ = E∞ ⊕
n∑
k=1

Lk ⊗ E0.

Hence, it de�nes a decomposition

V 0 = V 0
+ ⊕ V 0

−

as above. To express the dependence of V 0
+ on p and n, we write

V 0
+ = Vn(E

0, p, E∞).

Note that this is a vector bundle on X. Let pt be a homotopy of polynomial
clutching functions of degree ≤ n. By constructing Vn over X × I, it follows
that

Vn(E
0, p0, E

∞) ∼== Vn(E
0, p1, E

∞).

Hence, from the homotopies used in proving the two parts of 2.2.7, we obtain

Vn+1(E
0, p, E∞) ∼= Vn(E

0, p, E∞),

Vn+1(L
−1 ⊗ E0, zp, E∞) ∼= Vn(E

0, p, E∞)⊗ (L−1 ⊗ E0)

or, equivalently

Vn+1(E
0, zp, L⊗ E∞) ∼= L⊗ Vn(E0, p, E∞)⊕ E0.

Combining this with the above corollary and 2.2.5, we obtain the following
formula in K(P ):

[E0, p, E∞] + {
n∑
k=1

[Lk ⊗ E0]}[1] = [Vn(E
0, p, E∞)][H−1]

+ {
n∑
k=0

[Lk ⊗ E0]− [Vn(E
0, p, E∞)]}[1]

and hence the formula

[E0, p, E∞] = [Vn(E
0, p, E∞)]([H−1]− [1]) + [E0][1].
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This shows that [V +
p ] ∈ K[X] completely determines [E0, p, E∞] ∈ K(P ). We

can now prove our theorem.
Let t be an indeterminate over the ring K(X). Then the map t 7→ H induces

a K(X)-algebra homomorphism (recall that ((H − 1)(LH − 1) = 0)

µ : K(X)[t]/((t− 1)([L]t− 1))→ K(P ).

To prove that µ is an isomorphism, we explicitly construct an inverse.
First, suppose that f is a clutching function for (E0, E∞). Let fn be the

sequence of Cesaro means of its Fourier series, and put pn = znfn. Then, if n
is su�ciently large, pn is a polynomial clutching function (of degree ≤ 2n) for
(E0, Ln ⊗ E∞). We de�ne

νn(f) ∈ K(X)[t]/((t− 1)([L]t− 1))

by the formula

νn(f) = [V2n(E
0, pn, L

n ⊗ E∞)](tn−1 − tn) + [E0]tn.

Now, for su�ciently large n, the linear segment joining pn+1 and zpn provides
a homotopy of polynomial clutching functions of degree ≤ 2(n+ 1). Hence, by
the formulae following 2.2.10

V2n+2(E
0, pn+1, L

n+1 ⊗ E∞) ∼= V2n+2(E
0, zpn, L

n+1 ⊗ E∞)

∼= V2n+1(E
0, zpn, L

n+1 ⊗ E∞)

∼= L⊗ V2n(E0, pn, L
n ⊗ E∞)⊕ E0.

Hence

νn+1(f) = {[L][V2n(E0, pn, L
n ⊗ E∞)]}+ [E0](tn − tn−1) + [E0]tn+1

= νn(f)

since (t − 1)([L]t − 1) = 0. Thus, νn(f) is independent of n if n is su�ciently
large, and thus depends only on f . We write it as ν(f). If g is su�ciently
close to f , and n is su�ciently large, the linear segment joining fn and gn
provides a homotopy of polynomial clutching functions of degree ≤ 2n, and
hence νf = νn(f) = νn(g) = ν(g). Thus, νf is a locally constant function of
f , and hence depends only on the homotopy class of f . However, if E is any
bundle on P , and f a clutching function de�ning E, we de�ne ν(E) = ν(f),
and ν(E) will be well de�ned and depend only on the isomorphism class of E.
Since ν(E) is clearly additive for + , it induces a group homomorphism

ν : K(P )→ K(X)[t]/((t− 1)([L]t− 1)).

From our de�nition, it is clear that this is a K(X)-module homomorphism.
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It remains to show that µ and ν are mutual inverses.
(µν is the identity:) With our notation as above,

µν(E) = µ{[V2n(E0, pn, L
n ⊗ E∞)](tn−1 − tn) + [E0]tn}

= [V2n(E
0, pn, L

n ⊗ E∞)]([H]n−1 + [H]n) + [E0][H]n

= [E0, pn, L
n ⊗ E∞][H]n

= [E0, fn, E
∞]

= [E0, f, E∞]

= E.

Since K(P ) is additively generated by elements of the form [E], this proves that
νν is the identity.
(νµ is the identity:) Since νµ is a homomorphism of K(X)-modules, it su�ces
to show that νµ(tn) = tn for all n ≥ 0. However,

νµ(tn) = ν(Hn)

= ν[1, z−n, L−n]

= [V2n(1, 1, 1)](t
n−1 − tn) + [1]tn

= tn, since V(1, 1, 1) = 0.

2.3 KG(X)

Suppose that G is a �nite group and that X is a G-space. Let VectG(X) denote
the set of isomorphism classes of G-vector bundles over X. This is an abelian
semigroup under ⊕. We form the associated abelian group and denote it by
KG(X). If G = 1 is the trivial group then KG(X) = K(X). If on the other
hand X is a point then KG(X) ∼= R(G) the character ring of G.

If E is a G-vector bundle over X then P (E) is a G-space. If E = L ⊕ 1
when L is a G-bundle then the zero and in�nite sections X → P (E) are both
G-sections. Also the bundle H over P (E) is a G- line bundle. If we now examine
the proof of the periodicity theorem which we have just given we see that we
could have assumed a G-action on everything. Thus we get the periodicity
theorem for KG :

Theorem 2.3.1. If X is a G-space, and if L is a G-line bundle over X, the
map t 7→ [H] induces an isomorphism of KG(X)- modules:

KG(X)[t]/(t[L]− 1)(t− 1)→ KG(P (L⊕ 1)).

2.4 Cohomology property of K

We next de�ne K(X,Y ) for a compact pair (X,Y ). We shall then be able to
establish, in a purely formal fashion, certain properties of K. Since the proofs



2.4. COHOMOLOGY PROPERTY OF K 35

are formal, the theorems are equally valid for any �cohomology theory� satisfying
certain axioms. We leave this formalisation to the reader.

Let C denote the category of compact spaces, C+ the category of compact
spaces with distinguished basepoint, and C2 the category of compact pairs. We
de�ne functors:

C2 → C+

C → C2

by sending a pair (X,Y ) to X/Y with basepoint y/Y (if Y ̸= ∅, the empty set,
X?Y is understood to be the disjoint union of X and a point.) We send a space
X to the pair (X,∅). The C → C+ is given by X 7→ X+, where X+ denotes
X/∅.

IfX is in C+, we de�ne K̃(X) to be the kernel of the map i∗ : K(X)→ K(x0)
i : x0 → X is the inclusion of the base-point. If c : X → x0 is the collapsing
map then c∗ induces a splitting K(X) ∼= K̃(X) ⊕ K(X0). This splitting is
clearly natural for maps in +. Thus K̃ is a functor on C+. Also, it is clear
that K(X) ∼= K̃(X+). We de�ne K(X < Y ) by K(X < Y ) ∼= K̃(X/Y ).
In particular K(X,∅) ∼= K(X). Since K̃ is a functor on C+ it follows that
K(X < Y ) is a contravariant functor of (X,Y ) in C2.

We now introduce the �smash product� operation in C+. If X,Y ∈ C+ we
put

X ∧ Y = X × Y/X ∗ Y

where X ∗Y = X×y0∪x0×Y, x0, y0 being the base-points of X,Y respectively.
For any three spaces X,Y, Z ∈ C+ we have a natural homeomorphism

X ∧ (Y ∧ Z) ≈ (X ∧ Y ) ∧ Z

and we shall identify these spaces by the homeomorphism.
Let I denote the unit interval [0, 1] and let ∂I = {0} ∪ {1} be its boundary.

We take I/∂I ∈ C+ as our standard model of the circle S1. Similarly if In

denotes the unit cube in Rn we take In/∂In as our model of the n-sphere Sn.
Then we have a natural homeomorphism

Sn ≈ S1 ∧ S1 ∧ · · · ∧ S1 (n factors).

For X ∈ C+ the space S1 ∧ X ∈ C+ is called the reduced suspension of X,
and often written as SX. The n-th iterated suspension SS · · ·SX (n times) is
naturally homeomorphic to Sn ∧X and is written brie�y as Sn ∧X.

De�nition 2.4.1. For n ≥ 0

K̃−n(X) = K̃(SnX) for X ∈ C+

K−n(X,Y ) = K̃−n(X,Y ) = K̃(Sn(X/Y )) for (X,Y ) ∈ C2

K−n(X) = K−n(X,∅) = K̃(Sn(X+)) for X ∈ C.
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It is clear that all these are contravariant functors on the appropriate cate-
gories.

Before proceeding further we de�ne the cone on X by

CX = (I ×X)/({0} ×X)

Thus C is a functor C : C)→ C+. We identify X with the subspace {1} ×X of
CX. The space CX/X = (I ×X)/(∂I ×X) is called the unreduced suspension
of X. Note that this is a functor X → C+ whereas the reduced suspension S is a
functor C+toC+. If X ∈ C+ with base-point x0 then we have a natural inclusion
map

I ≈ Cx0/x0 → CX/X

and the quotient space obtained by collapsing I in CX/X is just SX. Thus by
1.4.9 p : CX/X → SX induces an isomorphism K(SX) ∼= K(CX/X) and hence
also an isomorphism K̃(SX) ∼= (̃CX,X). Thus the use of the notation SX for
both the reduced and unreduced suspensions leads to no problems.

If (X,Y ) ∈ C2 we de�ne X ∪ CY to be the space obtained from X and CY
by identifying the sub spaces Y ⊂ X and {1} × CY . Taking the base-point of
CY as base-point of X ∪ CY we have

X ∪ CY ∈ C2.

We note that X is a subspace of X ∪CY and that there is a natural home-
omorphism

(X ∪ CY )/X ≈ CY/Y.

X Thus, if Y ∈ C2,

K(X ∪ CY,X) ∼= K(CY, Y )

∼= K̃(SY )

= K̃−1(Y ).

Now we begin with a simple lemma.

Lemma 2.4.2. For (X,Y ) ∈ C2 we have an exact sequence

K(X,Y )
j∗−→ K(X)

i∗−→ K(Y )

where i : Y → X and j : (X,∅)→ X,Y ) are the inclusions.

Proof. (im j∗ ⊂ ker i∗): The composition i∗j∗ is induced by the composition
ji : (Y,∅) → (X,Y ), and so factors through the zero group K(X,Y ). Thus
i∗j∗ = 0.
(im j∗ ⊃ ker i∗): Suppose now that ξ ∈ ker i∗. We may represent ξ in the form
[E] − [n] where E is a vector bundle over X. Since i∗ξ = 0 by assumption it
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follows that [E | Y ] = [n] in K(Y ). This implies that for some integer m we
have

(E ⊕m) | Y = n⊕m
i. e., we have a trivialisation α of (E⊕m) | Y . This de�nes a bundle (E⊕m)/α
on X/Y and so an element

η = [(E ⊕m)/α]− [n⊕m] ∈ K̃(X/Y ) = K(X,Y ).

Then
j∗(η) = [E ⊕m]− [n⊕m] = [E]− [n] = ξ.

Thus ker i∗ = im j∗ and the exactness is established.

Corollary 2.4.3. If (X,Y ) ∈ C2 and Y ∈ C+ (so that, taking the same base-
point of X, we have X ∈ C+ also), then the sequence

K(X,Y )→ K̃(X)→ K̃(Y )

is exact .

Proof. This is immediate from 2.4.2 and the natural isomorphisms

K(X) ∼= K̃(X)⊕K(y0)

K(Y ) ∼= K̃(Y )⊕K(y0).

We are now ready for our main proposition:

Proposition 2.4.4. For (X,Y ) ∈ C2 there is a natural exact sequence (in�nite
to the left)

→ K−2(Y )
δ−→ K−1(X,Y )

j∗−→ K−1(X)
i∗−→

K−1(Y )
δ−→ K0(X,Y )

j∗−→ K0(X)
i∗−→ K0(X).

Proof. First we observe that it is su�cient to show that, for (X,Y ) ∈ C2 and
y ∈ C+, we have an exact sequence of �ve terms

K̃−1(X)
i∗−→ K̃−1(Y )

δ−→ K̃0(X,Y )
j∗−→ K̃0(X)

i∗−→ K̃0(Y ) (2.4.5)

In fact, if this has been established, then we obtain an in�nite sequence continu-
ing 2.4.5 by replacing (X,Y ) with (SnX,SnY ) for n = 1, 2, . . . . Then replacing
(X,Y ) by (X+, Y +) where (X,Y ) is any pair in C2 we get the in�nite sequence
of the enunciation. Now 2.4.3 gives the exactness of the last three terms of
2.4.5. To get exactness at the remaining places we shall apply 2.4.3 in turn to
the pairs (X ∪ CY,X) and ((X ∪ CY ) ∪ CX,X ∪ CY ). First, taking the pair
(X ∪ CY,X) we get an exact sequence (where k,m are the natural inclusions)

K(X ∪ CY,X)
m∗

−−→ K̃(X ∪ CY )
k∗−→ K̃(X).
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Since CY is contractible 1.4.9 implies that

p∗ : K̃(X/Y )→ K̃(X ∪ CY )

is an isomorphism where

p : X ∪ CY → (X ∪ CY )/CY = X/Y

is the collapsing map. Also the composition k∗p∗ coincides with j∗. Let

θ : K(X ∪ CY,X)→ K−1(Y )

be the isomorphism introduced earlier. Then de�ning

δ : K−1(Y )→ K(X,Y )

by δ = m∗θ−1 we obtain the exact sequence

K̃−1 δ−→ K(X,Y )
j∗−→ K̃(X)

which is the middle part of 2.4.5.
Finally, we apply 2.4.3 to the pair

(X ∪ C1Y ∪ C2X,X ∪ C1Y )

where we have labelled the cones C1 and C2 in order to distinguish between
them, (see �gure 2.1). Then we obtain the following exact sequence

Figure 2.1:

K(X ∪ C1Y ∪ C2X,X ∪ C1Y )→ K̃(X ∪ C1Y ∪ C2X)→ K̃((X ∪ C1Y ).

It will be su�cient to show that this sequence is isomorphic to the sequence
obtained from the �rst three terms of 2.4.5. In view of the de�nition of δ it will
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be su�cient to show that the diagram

K(X ∪ C1Y ∪ C2X,X ∪ C1Y ) // K̃(X ∪ C1Y ∪ C2X)

K̃(C2X/X) K̃(C1Y/Y )

K−1(X)
i∗ // K−1(Y )

(2.4.6)

commutes up to sign. The di�culty lies, of course, in the fact that i∗ is induced
by the inclusion

C2Y → C2X

and that in the above diagram we have C1Y and not C2Y . To deal with this
situation we introduce the double cone on Y namely C1Y ∪C2Y . This �ts into

the commutative diagram of maps

X ∪ C1Y ∪ C2X +3

��

C1Y/Y +3 SY

C1Y ∪ C2Y

dl 4<

vv "*
C2X/X C2Y/Yoo +3 SY

(2.4.7)

where all double arrows ⇒ induce isomorphism in K. Using this diagram we
see that diagram 2.4.6 will commute up to sign provided the diagram induced
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by 2.4.7

K(C1Y/Y )

vv

K̃(SY )oo

K(C1Y ∪ C2Y )

K(C2Y/Y )

hh

K̃(SY )oo

commutes up to sign. This will follow at once from the following lemma which
is in any case of independent interest and will be needed later.

Lemma 2.4.8. Let, T : S1 → S1 be de�ned by T (t) = 1 − t, t ∈ I (we recall
that S1 = I/∂I) and let T ∧ 1: SY → SY be the map induced by T on S1 the
identity on Y (for Y ∈ C+). Then (T ∧ 1)∗y = −y for y ∈ K̃(SX).

This lemma in turn is an easy corollary of the following:

Lemma 2.4.9. For any map f : Y → GL(n,C) let Ef denote the corresponding
vector bundle over SY . Then f 7→ [Ef ]− [n] induces a group isomorphism

lim
n→∞

[Y,GL(n.C)] ∼= K̃(SY )

where the group structure on the left is induced from that of GL(n,C).

The fact that this is in fact a group homomorphism follows from the homo-
topy connecting the two maps GL(n,C)×GL(n,C)→ GL(2n,C) given by

A×B →
[
A 0
0 B

]
and

A×B →
[
AB 0
0 1

]
This homotopy is given explicitly by

ρt(A×B) =

[
A 0
0 1

] [
cos t sin t
− sin t cos t

] [
1 0
0 B

] [
cos t sin t
sin t cos t

]
where 0 ≤ t ≤ π/2.

From 2.4.4 we deduce at once:

Corollary 2.4.10. If Y is a retract of X, then for all n ≥ 0, the sequence
K−n(X,Y )→ K−n(X)→ K−n(Y ) is a split short exact sequence, and

K−n(X) ∼= K−n(X,Y )⊕K−n(Y ).
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Corollary 2.4.11. If (X,Y ) are two spaces with base-points, the projection
maps πX : X × Y → X,πY : X × Y → Y induce an isomorphism for all n ≥ 0

K̃−n(X × Y ) ∼= K̃−n(X ∧ Y )⊕ K̃−n(X)⊕ K̃−n(Y ).

Proof. X is a retract of X × Y , and Y is a retract of (X × Y )/Y . The result
follows by two applications of 2.4.10.

Since K̃0(X ∧ Y ) is the kernel of i∗X ⊕ i∗Y : K0(X × Y )→ K0(X)⊕K0(Y ),
the usual tensor product K0(X) ⊗ K0(Y ) → K0(X × Y ) induces a pairing
K̃0(X)⊗ K̃0(Y )→ K̃0(X ∧ Y ). Thus, we have a pairing

K̃−n(X)⊗ K̃−m(Y )→ K̃−n−m(X ∧ Y )

since Sn ∧ SmY = Sn ∧ Sm ∧X ∧ Y = Sn+m ∧X ∧ Y . Replacing X by X+, Y
by Y +, we have

K−n(X)⊗K−m(Y )→ K−n−m(X × Y ).

Using this pairing, we can restate the periodicity theorem as follows:

Theorem 2.4.12. For any space X and any n ≤ 0, the map K−2(point) ⊗
K−n(X)→ K−n−2(X) induces an isomorphism

β : K−n(X)→ K−n−2(X).

Proof. K−2(point) = K̃(S2 is the free abelian group generated by [H] − [1].
If (X,Y ) ∈ C2 the maps in the exact sequence 2.4.5 all commute with the
periodicity isomorphism β. This is immediate for i∗ and j∗ and is also true for
δ since this was also induced by a map of spaces. In other words β shifts the
whole sequence to the left by six terms. Hence if we de�ne Kn(X,Y ) for n > 0
inductively by K−n = K−n−2 we can extend 2.4.5 to an exact sequence in�nite
in both directions. Alternatively using the periodicity β we can de�ne an exact
sequence of six terms

K0(X,Y ) // K0(X) // K0(Y )

��
K1(Y )

OO

K1(X)oo K1(X,Y )oo

Except when otherwise stated we shall now always identify Kn and Kn−2. We
introduce

K∗(X) = K0(X)⊕K1(X).

Thus we de�ne K∗(X) to be K0(X) ⊕ K1(X). Then, for any pair (X,Y ) we
have an exact sequence

K0(X,Y ) // K0(X) // K0(Y )

��
K1(Y )

OO

K1(X)oo K1(X,Y )oo
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The form of the periodicity theorem given in 2.4.12 is a special case of a
more general �Thom isomorphism theorem�. If X is a compact space, and
E is a real vector bundle over X, the Thom complex X of E is the one point
compacti�cation of the total space of E. Alternatively, if E is a complex bundle,
XE = P (E ⊕ 1)/P (E). Thus, we see that K̃(XE) a module over K(X). The
Thom isomorphism theorem for complex line bundles can now be stated.

Theorem 2.4.13. If L is a complex line bundle, K̃(XL) is a free K(X)-module
on one generator µ(L), and image of µ(L) K(P (L⊕ 1)) is [H]− [L∗].

Proof. This is immediate from our main theorem determining K(P (L⊕1)) and
the exact sequence of the pair P (L⊕ 1), P (L) (note that P (L) = X).

We conclude this section by giving the following extension of 2.4.8 which will
be needed later.

Lemma 2.4.14. Let Tσ : SnX → SnX be the map induced by a permutation
σ of the n factors in Sn = S1 ∧ S1 ∧ · · · ∧ S1. Then (Tσ)

∗x = sgn(σ)x for
x ∈ K̃(SnX).

Proof. Considering Sn as the one-point compacti�cation of Rn we can make
GL(n,R) act on it and hence on K̃(SnX). This extends the permutation actions
Tσ. Since GL(n,R) has just two components characterized by sgn det it is
su�cient to check the formula T ∗x = −x for one T ∈ GL(n,R) with detT = −1.
But 2.4.8 gives this formula for

T =


−1

1
. . .

1

 .

2.5 Computations of K∗(X) for some X

From the periodicity theorem, we see that K̃(Sn) = 0 if n is odd, and K̃(Sn) = Z
if n is even. This allows us to prove the Brouwer �xed point theorem.

Theorem 2.5.1 (Brouwer �xed point theorem). Let Dn be the unit disc in
Euclidean n-space. If f : Dn → Dn is continuous, then for some x ∈ Dn, f(x) =
x.

Proof. Suppose f(x) ̸= x for all x ∈ Dn and de�ne g : Dn → Sn−1 by g(x) =
(1 − α(x))f(x) + α(x)x, where α(x) is the unique function such that α(x) ≥
0, |g(x)| = 1. If f(x) ̸= x for all x, clearly such a function α(x) exists. If
x ∈ Sn−1, α(x) = 1, and g(x) = x. Thus g is a retraction of Dn onto Sn−1.
However, we have K̃∗(Dn) = 0, and K̃∗(Sn−1) ̸= 0, a contradiction. Thus there
must exist a point x ∈ Dn such that f(x) = x.
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We will say that a space X is a cell complex if there is a �ltration by closed
sets X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn = X such that each Xk \Xk−1 is a disjoint
union of open k-cells, and X−1 = ∅.

Proposition 2.5.2. If X is a cell complex such that X2k = X2k+1 for all k,
then

1. K1(X) = 0

2. K0(X) is a free abelian group with generators in a one-one correspondence
with the cells of X.

Proof. We proceed by induction on n. SinceX2n/X2n−2 is a union of 2n-spheres
with a point in common, we have:

K1(X2n, X2n−2) = 0

K0(X2n, X2n−2) = Zk

where k is the number of 2n-cells in X. The result for X2n now follows from
the inductive hypothesis and the exact sequence of the pair (X2n, X2n−2).

As examples of spaces to which this proposition applies, we may take X to
be a complex Grassmann manifold, a �ag manifold, a complex quadric (a space
whose homogeneous de�ning equation is of the form

∑
z2i = 0). We shall return

to the Grassmann and �ag manifolds in more detail later.

Proposition 2.5.3. Let 1, · · · , Ln be line bundles over X, and let H be the
standard bundle over P (L1 ⊕ · · ·Ln). Then, the map t 7→ [H] induces an iso-
morphism of K(X)-modules

K(X)[t]/

n∏
i=1

(t− [L∗
i ])
∼= K(P (L1 ⊕ · · ·Ln)).

Proof. First we shall show that we may take Ln = 1. In fact for any vector
bundle E and line bundle L over X we have P (E⊗L) = P (E) and the standard
line bundles G,H over P (E ⊗ L∗), P (E) are related by G∗ = H∗ ⊗ L, i.e.,
G = H ⊗ L∗. Taking E = L1 ⊕ · · ·Ln and L = L∗

n we see that the propositions
for L1⊕· · ·Ln and for M1⊕· · ·Mn with Mi = Li⊗L∗

n are equivalent. We shall
suppose therefore that Ln = 1 and for brevity write

Pm = P (L1 ⊕ · · ·Ln) for 1 ≤ m ≤ n

so that we have inclusionsX = P1 ⊂ P2 ⊂ · · · ⊂ Pn. IfHm denotes the standard
line bundle over Pm then Hm | Pm−1

∼= Hm−1. Now we observe that we have a
commutative diagram

Pn−1
s //

πn−1

��

P (H∗
n−1 ⊕ 1)

q

��
P1

in
// Pn
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(πn−1 is the projection onto X = P1, in is the inclusion, s is the zero section)
which induces a homeomorphism

P (H∗
n−1)/s(Pn−1)→ Pn/P1.

Moreover q∗(Hn) ∼= G, the standard line bundle over P (H∗
n−1). NowK(P (H∗

n−1))
is a free K(Pn−1)-module on two generators [1] and [G], and [G] satis�es the
equation ([G] − [1])([G] − [Hn−1]) = 0. Since s∗[G] = [1] it follows that
K(P (H∗

n−1), s(Pn−1)) is the submodule freely generated by [G] − [1] and that,
on this submodule, multiplication by [G] and [Hn−1] coincide. Hence K(Pn, P1)
is a free K(Pn−1)-module generated by ([Hn] − [1]) and this module structure
is such that, for any x ∈ K(Pn, P1),

[Hn−1]x = [Hn]x.

Now assume the proposition established for n− 1, so that

K(Pn−1) ∼= K(X)[t]/

n−1∏
i=1

(L∗
i )

with t corresponding to [Hn−1]. Then it follows that t 7→ [Hn] induces an
isomorphism of the ideal (t− 1) in

K(X)[t]/(t− 1)

n−1∏
i=1

(t− [L∗
i ])

onto K(Pn, P1). Since

K(Pn) ∼= K(Pn, P1)⊕K(X)

and since Ln = 1 this gives the required result for K(Pn) establishing the
induction and completing the proof.

Corollary 2.5.4. K(P (Cn)) ∼= Z[t]/(t− 1)n under the map t 7→ [H].

Proof. Take X to be a point.

We could again have assumed that a �nite group acted on everything, and
we would have obtained

KG(X)[t]/

n∏
i=1

(t− [L∗
i ])
∼= KG(P (L1 ⊕ · · ·Ln)).

2.6 Multiplications in K∗(X, Y )

We �rst observe that the multiplication in K(X) can be de�ned �externally� as
follows. Let E,F be two bundles over X, and let E⊗̂F be π∗

1(E)⊗ π∗
2(F ) over

X ×X. If ∆: X → X ×X is the diagonal, then E ⊗ F = ∆∗(E⊗̂F ).
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If E is a bundle on X,F a bundle on Y , let E⊗̂F = π∗
X ⊗ π∗

Y (F ) on X × Y .
This de�nes a pairing

K(X)⊗K(Y )→ K(X × Y ).

If X,Y have base-points, K̃(X∧Y ) is the kernel of K̃(X×Y )→ K̃(X)⊕K̃(Y ).
Thus, we have K̃(X)⊕ K̃(Y )→ K̃(X ∧ Y ). That is,

K(X,A)⊗K(T,B)→ K(X × Y, (X ×B) ∪ (A× Y )).

We de�ne (X,A)× (Y,B) to be (X × Y, (X ×B) ∪ (A× Y )).
In the special case that X = Y , we have a diagonal map ∆: (X,A ∪ B) →

(X,A)×(X,B). This gives usK(X,A)⊗K(X,B)→ K(X,A∪B). In particular,
taking B = ∅, we see that K(X,A) is a K(X)-module. Further, it is easy to
see that

K(X,A)→ K(X)→ K(A)

is an exact sequence of K(X)-modules.
More generally, we can de�ne products

K−n(X,A)⊗K−m(Y,B)→ K−n−m((X,A)× (Y,B))

for m,n ≤ 0 as follows:

K−n(X,A) = K̃(Sn ∧ (X/A))

K−m(Y,B) = K̃(Sm ∧ (Y/B)).

Thus, we have

K−n(X,A)⊗K−m(Y,B)→ K̃(Sn ∧ (X/A) ∧ Sm ∧ (Y,B))

= K̃(Sn ∧ Sm ∧ (X/A) ∧ (Y,B))

= K−n−m((X,A)× (Y,B)).

Thus, if we de�ne xy ∈ K−n−m(X,A ∪B) for s ∈ K−n(X,A), y ∈ K−m(X,B)
to be ∆∗(x⊗ y), where ∆: (X,A ∪B)→ (X,A)× (X,B) is the diagonal, then
2.4.14 shows that xy = (−1)mnyx.

We de�ne K#(X,A) to be

∞∑
n=0

K−n(X,A).

Then K#(X) is a graded ring, and K#(X,A) is a graded K#-module. If
β ∈ K−2(point) is the generator, multiplication by β induces an isomorphism
K−n(X,A)→ K −n− 2(X,A) for all n. We de�neK∗(X,A) to beK#(X,A)/(1−
β). Then K∗(X) is a Z/2Z-graded ring, and K∗(X,A) is a Z/2Z-graded module
over K∗(X).
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For any pair (X,A), each of the maps in the exact triangle

K∗(X) // K∗(A)

yy
K∗(X,A)

ee

is a K∗(X)-module map. Only the coboundary δ causes any di�culty and so
we need to prove

Lemma 2.6.1. δ : K−1(Y )→ K0(X,Y ) is a K(X)-module homomorphism.

Proof. By de�nition δ is induced by the inclusion of pairs j : (X × {1} ∪ Y ×
I, Y × {0})→ (X × {1} ∪ Y × I, Y × {0} ∪X × {1}). (See Figure 2.2.) Hence

Figure 2.2:

δ = j∗ is a module homomorphism over the absolute group

K(X × {1} ∪ Y × I) ∼= K(X).

It remains only to observe that the K(X)-module structures of the two groups
involved are the standard ones. For K−1(Y ) this is immediate and for K(X,Y )
we have only to observe that the projection I → {1} induces the isomorphisms

K(X,Y )→ K(X × {1} ∪ Y × I, Y × {0})
K(X)→ K(X × {1} ∪ Y × I).

We shall now digress for some time to give an alternative and often illumi-
nating description of K(X,A) which has particular relevance for products.

If n ≥ 1, we de�ne Cn(X,A) to be a category as follows:
An object of Cn(X,A) is a collection En, En−1, · · · , E0 of bundles over X, to-
gether with maps αi : Ei | A→ Ei−1 | A such that

0→ En | A
αn−−→ En−1 | A

αn−1−−−→ · · · α1−→ E0 | A→ 0
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is exact.
The morphisms φ : E → F , where E = (Ei, αi), F = (Fi, βi), are collections of
maps φi : Ei → Fi such that βiφi = φi−1αi. In particular, C1(X,A) consists of
pairs of bundles E1, E0 over X and isomorphisms α : E1 | A ∼= R0 | A.

An elementary sequence in Cn(X,A) is a sequence of the form 0, . . . , 0, Ep, Ep−1, 0, . . . , 0
where Ep = Ep−1, α =, identity map. We de�ne E ∼ F for some set of elemen-
tary objects Q1, . . . Qn, P1, . . . , Pm,

E ⊕Q1 ⊕ · · · ⊕Qn ∼= F ⊕ P1 ⊕ · · · ⊕ Pm.

The set of such equivalence classes is denoted by Ln(X,A). It is clear that
Ln(X,A) is a semigroup for each n.

There is a natural inclusion Cn(X,A) ⊂ Cn+1(X,A) which induces a homo-
morphism Ln(X,A) → Ln+1(X,A). We denote by C∞(X,A) the union of all
the Cn(X,A), and by L∞(X,A) the direct limit of the Ln(X,A).

The main theorem of this section is the following:

Theorem 2.6.2. For all n ≥ 1, the maps Ln(X,A)→ Ln+1(X,A) are isomor-
phisms, and Ln(X,A) ∼= K(X,A).

We shall break up the proof of this theorem into a number of lemmas.
Consider �rst the special case A = ∅, n = 1. Then C1(X,∅) consists of all

pairs E1, E0 of bundles. We see that (E1, E0) ∼ (F1, F0) if and only if there are
bundles Q,P such that E1 ⊕ Q ∼= F1 ⊕ P,E0 ⊕ Q ∼= F0 ⊕ P . Then the map
L1(X,∅)→ K(X), (E1, E0) 7→ [E0]− [E1] is an isomorphism. In fact L1(X,∅)
coincides with one of our de�nitions of K(X).

De�nition 2.6.3. An Euler characteristic χn for Ln is a transformation of
functors

Xn : Ln(X,A)→ K(X,A)

such that whenever A = ∅, χ(En, En−1, . . . , E0) =
∑

(−1)i[Ei].

To begin we need a simple lemma.

Lemma 2.6.4. Let A ⊂ X, and let E,F be bundles over X. Let φ : E | A →
F | A,ψ : E → F be monomorphisms (resp. isomorphisms) and assume ψ | A is
homotopic to φ. Then φ extends to X as a monomorphism (resp. isomorphism).

Proof. Let Y = (A × [0, 1]) ∪ (X × [0]). Then, if E′, E′ are the inverse images
of E,F under the projection Y → X, we can de�ne Φ: E′ → F ′ which is a
monomorphism. (resp. isomorphism) such that Φ | (A×[1]) = φ,Φ | (X×[0]) =
ψ. We can extend Φ to (U × [0, 1])∪ (X × [0]) for some neighbourhood U of A.
Let f : X → [0, 1] be a continuous map such that f(A) = 1, f(X \ U) = 0. Let
φX = Φ(x,f(x)). Then this extends φ to X.

Lemma 2.6.5. If X is a point,

0→ L1(X,A)→ L1(X)→ L1(A)

is exact. Thus, if χ1 is an Euler characteristic for L1, χ1 : L1(X,A) → (K,A)
is an isomorphism when A is a point.
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Proof. (L1 is half exact) : If E1, E0 represents an element of L1(X) whose
image in L1(Z) is zero, E1 and E0 have the same dimension over A. Thus
there is an isomorphism φ : E1 | A → E0 | A. Thus we have exactness for
L1(X,A)→ L1(X)→ L1(A).
(L1 is left exact) : If (E1, E0, φ) has image zero in L1(X), there is a trivial P
and an isomorphism ψ/colonE1⊕P ∼= E0⊕P . ψ(φ⊕ 1)−1 is an automorphism
of E0 ⊕ P | A. Since A is a point any such automorphism must be homotopic
to the identity and hence by 2.6.4 it extends to αE0 ⊕ P ∼= E0 ⊕ P . Thus, we
have a commuting diagram:

(E1 ⊕ P ) | A
φ⊕1 //

ψ|A
��

(E0 ⊕ P ) | A

α|A
��

(E0 ⊕ P ) | A
i
// (E0 ⊕ P ) | A

Thus (E1, E0, φ) represents 0 in L1(x, a). Thus L1(X,A)→ L1(X) is an injec-
tion.

Lemma 2.6.6. L1(X/A,A/A) → L1(X,A) is an isomorphism for all (X,A).
ThusÂ� if χ1 is an Euler characteristic, χ1 : L1(X,A) → K(X,A) is an iso-
morphism for all (X,A).

Proof. (χ1 is injective) : Since the isomorphism L1(X/A,A/A) → K(X,A)
factors through L1(X,A), the map L1(X/A,A/A)→ L1(X,A) is injective.
(χ1 is onto) : Suppose that E1, E0 are bundles on X,α : E1 | A → E0 | A is
an isomorphism. Let P be a bundle on X such that there is an isomorphism
β : E1⊕O → F , where F is trivial. Then (E1, E0, α) is equivalent to (F,E0⊕P, γ
where γ = (α⊕1)β−1. Then, (F,E0⊕P, γ is the image of (F, (E0⊕P )/γ, γ/γ).
Thus, L1(X/A,A/A)→ L1(X,A) is onto.

Lemma 2.6.7. If χ1, χ
′
1 are two Euler characteristics for L1, χ1 = χ′

1.

Proof. χ′
1χ

−1
1 is a transformation of functors from K to itself which is the iden-

tity on each K(X). Since K(X,A) = K̃(X/A) is injected into K(X/A), it is
the identity on all K(X,A).

Lemma 2.6.8. There exists an Euler characteristic χ1 for L1.

Proof. Suppose (E1, E0, α) represents an element of L1(X,A). Let X0, X1 be
two copies of X, and let = X0∪AX1 be the space which results from identifying
corresponding points of A. Then [E1, α,X0] ∈ K(Y ). Let πi : Y → Xi be the
obvious retraction. Then K(Y ) = K(Y,Xi) ⊕ K(Xi). The map (X0, A) →
(Y,X1) induces an isomorphism K(Y,X1) → K(X0, A). Let χi(E1, E0, α) be
the image of the component of [E1, α, E0] which lies in K(Y,X1). If A = ∅,
then χ(E1, E0, α) = [E0] − [E1]. One can easily verify that this de�nition is
independent of the choices made.
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Corollary 2.6.9. The class of (E1, E0, α) in L1(X,A) depends only on the
homotopy class of α.

Proof. Let Y = X × [0, 1], B = A × [0, 1]. Let αt be a homotopy with α0 = α:
Then αt de�nes β : π∗(E1) | B ∼= π∗(E0 | B). Let ij : (X,A)→ (X× [j], A× [j]).
From the commuting diagram

L∞(X,A)

χ1

��

L∞(Y,B)

χ1

��

i∗1 //i∗0oo L∞(X,A)

��
K(X,A) K(Y,B)

i∗1

//
i∗0

oo K(X,A)

we see that (E1, E0, α0) = (E1, E0, α1), since every map is an isomorphism and
i∗0(i

∗
1)

−1 is the identity.

Lemma 2.6.10. The map Ln(X,A)→ Ln+1(X,A) is onto for n ≥ 1.

Proof. If (En+1, · · · , E0;αn+1, · · · , α1) represents an element of Ln+1(X,A)),
so does

(En+1, En ⊕Rn+1, En−1 ⊕ En+1, En−2, · · · , E0;αn+1, αn ⊕ 1, · · · , α1)

The two maps αn+1⊕0: En+1 → En⊕En+1 and 0⊕1: En+1 → En⊕En+1 are
(linearly) homotopic as monomorphisms. Now, 0⊕1 extends to X, and thus by
2.6.4 αn+1 ⊕ 0 extends to a monomorphism β : En+1 → En ⊕ En+1 on all X.
Thus we can write En ⊕ En+1 as β(En+1) ⊕ Q. Then we see that, if γ : Q →
En−1 ⊕ En+1 is the resulting map, (En+1, · · · , E0;αn+1, · · · , α1) is equivalent
to (0, Q,En−1 ⊕ En+1, · · · , E0; 0, γ, · · · , α1). Thus Ln(X,A) → Ln+1(X,A) is
onto.

Lemma 2.6.11. The map Ln(X,A) → Ln+1(X,A) is an isomorphism for all
n ≥ 1.

Proof. It su�ces to produce a map Ln+1(X,A) → L1(X,A) which is a left
inverse of the map L1(X,A)→ Ln+1(X,A).

Let (En, · · · , E0;αn, · · · , α1) represent an element of Ln+1(X,A). Choose
a Hermitian metric on each Ei. Let α′

i : Ei−1 | A → Ei | A be the Hermitian
adjoint of αi.

Put F0 =
∑
E2i, F1 =

∑
E2i+1, and de�ne β : F1 → F0 by β =

∑
α2i+1 +∑

α′
2i+1. Then (F1, F0, β) ∈ L1(X,A). This gives us a map Ln(X,A) →

L1(X,A). To see that it is well de�ned, we need only see that it does not
depend on the choice of metrics. But all choices of metric are homotopic to one
another, so that a change of metrics only changes the homotopy class of β. Thus
this map is well de�ned. It clearly is a left inverse to L1(X,A)→ Ln(X,A).

Corollary 2.6.12. For each n there exists exactly one Euler characteristic
χn : Ln(X,A)→ K(X,A), and it is always an isomorphism. Thus, there exists

χ : L∞(X,A)
∼=−→ K(X,A).
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We next want to construct pairings

Ln(X,A)⊗ Lm(X ′)→ Ln+m((X,Y )⊗ (X ′, Y ′)

compatible with the pairings

K(X,A)⊗K(X ′)→ K((X,Y )⊗ (X ′, Y ′).

To do this, we must consider chain complexes of vector bundles, i.e., sequences

0→ En
σn−−→ En−1

σn−1−−−→ · · · σ1−→ E0 → 0

where σiσi+1 = 0 for all i.

Lemma 2.6.13. Let E0, · · ·En be vector bundles on X, and let σi : Ei | Y →
Ei−1 | Y be such that

0→ En | Y
σn−−→ En−1 | Y

σn−1−−−→ · · · σ1−→ E0 | Y → 0

Then the σi can be extended to ρi : Ei → Ei−1 on X such that ρiρi+1 = 0 for
all i.

Proof. We shall show that there is some open neighbourhood U of Y in X and
an extension τi of σi to U for a11 i such that

0→ En | U
τn−→ En−1 | U

τn−1−−−→ · · · τ1−→ E0 | U → 0

is exact: the extension to the whole X is then achieved by replacing τi by ρτi
where ρ is a continuous function on X such that ρ = on Y and supp ρ ⊂ U .

Suppose that on some closed neighbourhood Ui of Y in X, we could extend
σ1, · · ·σi to τ1, · · · , τi such that,

0→ En | Ui
τi−→ En−1 | Ui

τn−1−−−→ · · · τ1−→ E0 | Ui → 0

is exact. Let Ki be the kernel of τi on Ui. Then σi+1 de�nes a section of
Hom(Ei+1,Ki) de�ned on Y . Thus, this section can be extended to a neighbour-
hood of Y in Ui, and thus σI+1 : Ei+1 → Ki can be extended to τi+1 : Ei+1 → Li
on this neighbourhood. As σ+1 is a surjection on Y , τi+1 will be a surjection
on some closed neighbourhood Ui+1 of Y in Ui. Thus, the lemma follows by
induction on i.

We introduce the set Dn(X,Y ) of complexes of length n on X which are
acyclic (i.e., exact) on Y . We say that two such complexes are homotopic if
they are isomorphic to the restrictions to X×{0} and to X×{1} of an element
in Dn(X × I, Y × I). There is a natural map

Φ: Dn(X,Y )→ Ln(X,Y )

given by restriction of homomorphisms.
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Lemma 2.6.14. Φ induces a bijection of homotopy classes.

Proof. The last lemma shows that Φ is surjective. To show that Φ is injective
we have to show that any complex over X × {0} ∪ X × {1} ∪ Y × I which is
acyclic over Y × I can be extended to a complex on the whole X × I. We carry
out this extension in three steps.
First we make the obvious extensions to X × [0, 1/4] and X × [3/4, 1].
Next we apply the preceding lemma to the pair X × [1/4, 3/4], Y × [1/4, 3/4] ∪
V ×{1/4}∪V ×{3/4} where V is a closed neighbourhood of Y in X over which
the given complexes are still acyclic. This gives a complex on X × [1/4, 3/4]
which agrees with that already de�ned at the two thickened ends along the strips
V × {1/4} and V × {3/4}. Thus if we now multiply everything by a function ρ
such that

ρ =

{
1 on X × {0} ∪X × {1} ∪ U × I
0 on (X \ V )× {1/4} ∪ (X \ V )× {3/4},

we obtain the desired extension (see �gure 2.3: the dotted line indicates the
support of ρ) . If E ∈ Dn(X,Y ), F ∈ Dm(X ′, Y ′) then E ⊗ F is a complex on

Figure 2.3:

X×X ′ which is acyclic on (X×Y ′)∪ (X ′×Y ). Thus we have a natural pairing

Dn(X,Y )⊗Dm(X ′, Y ′)→ Dn+m((X,Y )× (X ′, Y ′))

which is compatible with homotopies. Thus, by means of Φ, it induces a pairing

Ln(X,Y )⊗ Lm(X ′, Y ′)→ Ln+m((X,Y )× (X ′, Y ′)).

Lemma 2.6.15. For any classes x ∈ Ln(X,Y ), x′ ∈ Lm(X ′, Y ′),

χ(x× x′) = χ(x)χ(x′).

Proof. This clearly holds when Y = Y ′ = ∅. However, the pairing K(X,Y ) ⊗
K(X ′, Y ′)→ K((X,Y )×(X ′, Y ′)) which we de�ned earlier was the only natural
pairing compatible with the pairings de�ned for the case Y = Y ′ = ∅.
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With this lemma we now have a very convenient description of the rela-
tive product. As a simple application we shall give a new construction for the
generator of K̃(S2n).

Let V be a complex vector space and consider the exterior algebra ∧∗(V ).
We can regard this in a natural way as a complex of vector bundles over V .
Thus we put Ei = V × ∧i(V ), and de�ne

V × ∧i(V )→ V × ∧i+1(V )

by
(v, w) 7→ (v, v ∧ w).

If dimV = 1 the complex has just one map and this is an isomorphism for
v ̸= 0. Thus it de�nes an element ofK(B(V ), S(V )) ∼= K̃(S2) where B(V ), S(V )
denote the unit ball and unit sphere of V with respect to some metric. Moreover
this element is, from its de�nition, the canonical generator of K̃(S2) except for
a sign −1.

Since
∧∗(V ⊕W ) ∼= ∧∗(V )⊗ ∧∗(W )

it follows that for any V,∧∗(V ) de�nes a complex overV acyclic on V \ {0}, and
that this gives the canonical generator of K̃(B(V ), S(V )) = K̃(S2n) except for
a factor (−1)n (where n = dimV ).

More generally the same construction applies to a vector bundle V over
a space X. Let us introduce the Thom space XV de�ned as the one-point
compacti�cation of V or equivalently as B(V )/S(V ). Then K(B(V ), S(V )) ∼=
K̃(XV ) and the exterior algebra of V de�nes an element of K̃(XV ) which we
denote by λV . It has the two properties

(A) λV restricts to a generator of K̃(PV ) for each point P ∈ X.

(B) λV⊕W = λV ·λW , where this product is from K̃(XV )×K̃(XW ) to K̃(XV⊕W ).

A very similar discussion can be carried out for projective spaces. Thus if V is
a vector bundle over X let P = P (V ⊕1) and let H be the standard line-bundle
over P . By de�nition we have a monomorphism

H∗ → π∗(V ⊕ 1)

when π : P → X is the projection. Hence tensoring with H we get a section of
H ⊗π∗(V ⊕ 1). Projecting onto the �rst factor gives therefore a natural section

s ∈ Γ(H ⊗ π∗V ).

Consider the exterior algebra ∧∗(H⊗π∗V ). Each component is a vector bundle
over P and exterior multiplication by s gives us a complex of vector bundles
acyclic outside the subs pace where s = 0. But this is just the image of the
natural cross-section X → P . If we restrict to the complement of P (V )) in
P (V ⊕ 1) then H becomes isomorphic to 1 and we recover the element which
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de�nes λV (identifying P (V ⊕ 1) \ P (V ) with V in the usual way). This shows
that the image of λV under the homomorphism

K̃(XV ) = K(P (V ⊕ 1), p(V ))→ K(P (V ⊕ 1))

is the alternating sum ∑
(−1)i[H]i[λiV ].

We conclude this section by remarking that everything we have been saying
works equally well for G-spaces, G being a �nite group. We have only used the
basic facts about extensions of homomorphisms etc. which hold equally well for
G bundles. Thus elements of KG(X,Y ) maybe represented by G-complexes of
vector bundles over X acyclic over Y . In particular the exterior algebra of a
G-vector bundle V de�nes an element

λV ∈ K̃G(X
V )

as above.

2.7 The Thom isomorphism

If E =
∑
Li is a decomposable vector bundle over X (i.e., a sum of line-bundles)

then we have 2.5.3 determined the structure of K(P (E)) as a K(X)-algebra.
Now for any space X we have a canonical isomorphism

K∗(X) ∼= K(X × S1)

Also, if π : X × S1 → X is the projection, we have

P (E)× S1 = P (π∗E)

and so
K∗(P (E)) ∼= K(P (π∗E)).

Thus replacing X by X × S1 in 2.5.3 gives at once

Proposition 2.7.1. Let E =
∑
Li be a decomposable vector bundle over X.

Then K∗(P (E)), as a K∗(X)-algebra, is generated by [H] subject to the single
relation ∏

([Li][H]− 1) = 0.

Remark 2.7.2. As with 2.5.3 this extends at once to G-spaces giving K∗
G(P (E))

as a K∗
G(X)-algebra.

Now the Thorn space XE may be identi�ed with P (E ⊕ 1)/P (E), and at
the end of �2.6 we saw that the image of λE in K(P (E ⊕ 1)) is∑

(−1)i[H]i[λiE] =
∏

(1− [Li][H]).

Since this element generates (as an ideal) the kernel of

K∗(P (E ⊕ 1))→ K∗(P (E))

we deduce
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Proposition 2.7.3. Let E be a decomposable vector bundle over X. Then
K̃∗(XE) is a free K∗(X)-module on λE as generator.

Remark 2.7.4. This �Thorn isomorphism theorem� for the decomposable case
also holds as before for G-spaces. We now show how this fact can be put to use.

Corollary 2.7.5. Let X be a G-space such that K1
G(X) = 0 and let E be a

decomposable G-vector bundle. Then, if S(E) denotes the sphere bundle, we
have an exact sequence

0→ K1
G(S(E))→ K0

G
φ−→ K0

G(X)→ K0
G(S(E))→ 0

where φ is multiplication by

λ−1[E] =
∑

(−1)iλi[E].

Proof. This follows at once by applying 2.7.3 in the exact sequence of the pair
(B(E), S(E)).

In order to apply this corollary when X = point we need to verify

Lemma 2.7.6. K1
G(point) = 0.

Proof. It is su�cient to show that

KG(S
1)→ KG(point)

is an isomorphism. But, since G is acting trivially on S1, we have

KG(S
1) ∼= K(S1 ⊗R(G))
∼= K(point)⊗R(G)
∼= KG(point).

Thus we can take X = point in 2.7.5. Moreover if we take G abelian then
E is necessarily decomposable. Thus we obtain

Corollary 2.7.7. Let G be an abelian group, E a G-module. Then we have an
exact sequence

0→ K1
G(S(E))→ R(G)

φ−→ R(G)→ K0
G(S(E))→ 0

where φ is multiplication by

λ−1[E] =
∑

(−1)iλi[E].

Suppose in particular that G acts freely on S(E) (it is then necessarily
cyclic), so that

K∗
G(S(E)) ∼= K∗(S(E)/G).

Thus we deduce
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Corollary 2.7.8. Let G be a cyclic group, E a G-module with S(E)G-free.
Then we have an exact sequence

0→ K1(S(E)/G)→ R(G)
φ−→ R(G)→ K0(S(E)/G)→ 0

where φ is multiplication by λ−1[E].

Remark 2.7.9. A similar result will hold for other groups acting freely on spheres
once the Thom isomorphism for KG has been extended to bundles which are
not decomposable. However, this will not be done in these notes.

As a special case of 2.7.8 take G = Z/2Z, E = Cn with the (−1) action.
Then

S(E)/G = P2n−1(R)

is a real projective space of odd dimension, and we have

R(Z/2Z) = Z[ρ]/(ρ2 − 1)

λ−1[E] = (1− ρ)n.

Putting σ = ρ − 2 so that σ2 = −2σ and λ−1[E] = (−σ)n we see that
K̃0(P2n−1(R)) is cyclic of order 2n−1 while K1(P2n−1(R)) is in�nite cyclic. If
we compare the sequences for n and n+ 1 we get a commutative diagram

0 // K1(P2n+1) //

��

R(Z/2Z)
(−σ)n+1

//

−σ
��

R(Z/2Z)

1

��
0 // K1(P2n−1) // R(Z/2Z)

(σ)n
// R(Z/2Z)

But in R(Z/2Z) the kernel of (−σ)n (for n ≥ 1) is (2−σ) and so coincides with
the kernel of −σ. Hence the map

K1(P2n+1)→ K1(P2n−1)

is zero. From the exact sequences of the pairs (P2n+1, P2n), (P2n, P2n−1) we
deduce that

K1(P2n+1)→ K1(P2n)

is surjective, while
K1(P2n)→ K1(P2n−1)

is injective. Hence
K1(P2n) = 0.

The exact sequence of the pair (P2n+1, P2) then shows that

K0(P2n+1)→ K0(P2n)

is an isomorphism. Summarising we have established
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Proposition 2.7.10. The structure of K∗(Pn(R)) is as follows

K1(P2n+1) = Z
K1(P2n) = 0

K̃0(P2n+1) = K̃0(P2n) = Z/2nZ.

We leave it as an exercise to the reader to apply 2.7.8 to other spaces.
We propose now to proceed to the general Thom isomorphism theorem. It

should be emphasised at this point that the methods to be used do not extend
to G-bundles. Entirely di�erent methods are needed for G-bundles and we do
not discuss them here.

We start with the following general result

Theorem 2.7.11. Let π : B → X be a map of compact spaces, and let µ1, · · · , µn
be homogeneous elements of K∗(B). Let M∗ be the free (Z/2Z-) graded group
generated by µ1, · · · , µn. Suppose that every point x ∈ X has a neighbourhood
U such that for all V ⊂ U , the natural map

K∗(V )⊗M∗ → K∗(π−1(V ))

is an isomorphism. Then, for any Y ⊂ X, the map

K∗(X,Y )⊗M∗ → K∗(B, π−1(Y ))

is an isomorphism.

Proof. If U ⊂ X has the property that, for all V ⊂ U ,

K∗(V )⊗M∗ ∼= K∗(π−1(V )) (2.7.12)

we shall say that U is good. If U is good then, using exact sequences and the
fact that ⊗M∗ preserves exactness (M∗ being torsion free) we deduce

K∗(U, V )⊗M∗ ∼= K∗(π−1(U), π−1(V )) (2.7.13)

Here we use of course the compatibility of σ with products (Lemma 2.6.1).
What we have to show therefore is

X locally good ⇒ Xgood.

Since X is compact it will be enough to show that

U1, U2 good ⇒ U1 ∪ U2 good.

Now any V ⊂ U1 ∪ U2 is of the form V = V1 ∪ V2 with Vi/subsetUi (and so Vi
is also good). Since

V/V2 = V1/(V1 ∩ V2)
it follows that (2.7.13) holds for the pair (V, V2). Since (2.7.12) holds for V2 the
exact sequence of (V, V2) shows that (2.7.12) holds for V . Thus U1 ∪U2 is good
and the proof is complete.
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Corollary 2.7.14. Let π : E → X be a vector bundle, and let H be the usual line
bundle over P (E). Then K∗(P (E)) is a free K∗(X)-module on the generators
1, [H], [H]2, · · · , [H]n−1, where [H] satis�es the equation

∑
(−1)i[H]i[λiE] = 0.

Proof. Since E is locally trivial it is in particular locally decomposable1. Hence,
by (2.7.1), each point x ∈ X has a neighbourhood U such that for all V ⊂ U ,
K∗(P (E | V )) is a free K∗(V )-module on generators 1, [H], [H]2, · · · , [H]n−1.
Now apply (2.7.11). The equation for [H] has already been established at the
end of �2.6.

Corollary 2.7.15. If π : E → X is a vector bundle, and if F (E) is the �ag
bundle of E with projection map p : F (E) → X, then p∗ : K∗(X) → K∗(f(E))
is injective.

Proof. F (E) is the �ag bundle over P (E) of a bundle of dimension one less than
dim(E). We proceed inductively on dim(E) using (2.7.14).

Corollary 2.7.16 (The Splitting Principle). If E1, · · · , En are vector bundles
on X, then there exist a space F and a map π : F → X such that

1) π∗ : K∗(X)→ K∗(F ) is injective

2) Each π∗(Ei) is a sum of line bundles.

Proof. We take F to be the �ag bundle of ⊕Ei. The importance of the Splitting
Principle is clear. It enables us to reduce many problems to the decomposable
case.

Corollary 2.7.17 (The Thom Isomorphism Theorem). If π : E → X is a vector
bundle

Φ: K∗(X)→ K̃∗(XE)

de�ned by Φ(x) = λEx is an isomorphism.

Proof. This follows from (2.7.14) in the same way as (2.7.3) followed from
(2.7.1).

We leave the following propositions as exercises for the reader.

Proposition 2.7.18. If π : E → X is a vector bundle, L1, · · · , Ln the usual line
bundles over F (E), then the map de�ned by ti 7→ [Li] de�nes an isomorphism
of K∗(X) modules

K∗(X)[1, · · · tn]/I → K∗(F (E))

where I is the ideal generated by elements

σ1(t1, · · · , tn)− E, σ2(t1, · · · , tn)− λ2(E), · · · , σn(t1, · · · , tn)− λn(E)

σi being the i-th elementary symmetric function.
1Caveat: This is the argument which does not generalise to G-spaces.
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Proposition 2.7.19. Let π : E → X be an n-dimensional vector bundle and let
Gk(E) be the Grassmann bundle (of k-dimensional subspaces) of E. Let F be
the induced k-dimensional bundle over Gk(E), F ′ the quotient bundle p∗(E)/F .
Then the map de�ned by ti 7→ λi(F ), si 7→ λi(F ′) de�nes an isomorphism of
K∗-modules

K∗(X)[t1, · · · , tk, s1, · · · , sn−k]/I → K∗(Gk(E)),

where I is the ideal generated by the elements

(
∑
i+j=ℓ

tisj)− λℓ(E) for all ℓ.

(Hint: Compare Gk(E) with the �ag bundle of E).
In particular, we see that if Gn,k is the Grassmann manifold of k-dimensional

subspaces of an n-dimensional vector space, K∗(Gn,k) is torsion free. This also
follows from its cell decomposition. By induction we deduce K∗ is torsion free
for a product of Grassmannians.

Theorem 2.7.20. Let X be a space such that K∗(X) is torsion free, and let Y
be a (�nite) cell complex, Y ′ ⊂ Y a subcomplex. Then the map

K∗(X)⊗K∗(Y, Y ′)→ K∗(X × Y,X ′ × Y ′)

is an isomorphism.

Proof. The theorem holds for Y a ball, Y ′ its boundary as a consequence of
2.7.3. It thus holds for any (Y, Y ′) by induction on the number of cells in Y .

Corollary 2.7.21 (The Künneth Theorem). Let X be a space such that K∗(X)
is a �nitely generated abelian group, and let Y be a cell complex. Then there is
a natural exact sequence

0→
∑
i+j=k

Ki(X)⊗Kj(X)→ Kk(X × Y )→
∑
i+j=k

Tor(Ki(X),Kj(Y ))→ 0

where all su�xes are in Z/2Z.

Proof. Suppose we can �nd a space Z and a map F : X → X such that K∗(X)
is torsion free, and ff∗ : K∗(Z) → K∗(X) is surjective. Then from the exact
sequenceK∗(Z/X) is torsion free. From the last theorem,K∗(Z×Y ) = K∗(Z)⊗
K∗(Y ), K∗((Z/X)×Y ) = K∗(Z/X)⊗K∗(Y ). The result will then follow from
the exact sequence for the pair (Z × Y,X × Y ).

We now construct such a map g : SX → Z. Let a1, · · · , an generate K0(X),
and let b1, · · · , bm K−1(X) = K(SX). Then each ai determines a map αi : X →
Gri,si for suitable ri, si, and each bi a map βi : SX → Gui,vi . Let α = α1 ×
· · · × αn : X → Gr1,s1 × · · · × Grn,sn , and β = β1 × · · · × βm : SX → Gu1,v1 ×
· · · ×Gum,vm .
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Then

α∗ : K0(G′)→ K0(X) is subjective

β∗ : K0(G′′)→ K0(SX) is subjective.

Thus, if f : (Sα)× β : SX → (SG′)×G′′ = G

f∗ : K∗(G)→ K∗(SX) is surjective,

and K∗(G) is torsion free as required. This proves the formula for SX and
this is equivalent to the formula for X. We next compute the rings K∗(U(n)),
where U(n) is the unitary group on n variables. Now for any compact Lie
group G we can consider representations ρ : G→ GL(m,C) as de�ning elements
[ρ] ∈ K1(G): we simply regard ρ as a map and disregard its multiplicative
properties. Suppose now that α, β are two representations G→ GL(m,C which
agree on the closed subgroup H. Then we can de�ne a map

γ : G/H → GL(m,C)

by γ(gH) = α(g)β(g)−1. This is well-de�ned because of the multiplicative
properties of α, β. The map γ de�nes an element [γ] ∈ K1(G/H) whose image
in K1(G) is just [α]− [β]. As a particular case of this we take

G = U(n), H = U(n− 1), G/H = S2n−1.

For α, β we take the representations of G on the even and odd parts of the
exterior algebra ∧∗(Cn), and we identify these two parts by exterior multipli-
cation with the n-th basic vector en of C. Since U(n − 1) keeps en �xed, this
identi�cation is compatible with the action of U(n − 1). We are thus in the
situation being considered and so we obtain an element

[γ] ∈ K1(S2n−1).

If we pass to the isomorphic group K̃(S2n) we see from its de�nition that [γ] is
just the basic element

λCn ∈ K̃(S2n)

constructed earlier from the exterior algebra. Thus [γ] is a generator ofK1(S(2n−
1)), and its image in K1(U(n)) is

∑
(−1)i[λi], where the λi are the exterior

power representations. With this preliminary discussion we are now ready to
prove:

Theorem 2.7.22. K∗(U(n)) is the exterior algebra generated by [λ1], · · · [λn],
where λi is the i-th exterior power representation of U(n).

Proof. We proceed by induction on n. Consider the mapping

U(n)→ U(n)/U(n− 1) = S2n−1.
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Since the restriction of λi to U(n − 1) is µi ⊕ µi−1, where µi denotes the i-th
exterior power representation of U(n − 1), the inductive hypothesis together
with (2.7.11) imply that K∗(U(n)) is a free K∗(S2n−1)-module generated by
the monomials in [λ1], · · · [λn−1]. But K∗(S2n−1) is an exterior algebra on one
generator [γ] whose image in K∗(U(n))) is

n∑
i=0

(−1)i[λi]

as shown above. Hence K∗(U(n)) is the exterior algebra on [λ1], · · · , [λn] as
required.



Chapter 3

Operations

3.1 Exterior powers

By an operation F inK-theory, we shall mean a natural transformation FX : K(X)→
K(X). That is, for every space X, there is a (set) map FX : K(X) → K(X),
and if f : X → Y is any continuous map, F ∗

Xf
∗ = f∗FY .

Suppose that F and G are two operations which have the property that
F ([E] − n) = G([E] − n) whenever E is a sum of line bundles and n is an
integer. Then F (x) = G(x) for all x ∈ K(X), as we see immediately from the
splitting principle of the last chapter.

There are various ways in which one can de�ne operations using exterior
power operations. The �rst of these which we shall discuss is due to Grothendieck
.

If V is a vector bundle over a space X, we de�ne λt[V ] ∈ K(X)([t]) to be
the power series ∑

i=0

ti[λi(V )]

The isomorphism

λk(V ⊕W ) ∼=
∑
i+j=k

λi(V )⊗ λj(W )

gives us the formula
λt[V ⊕W ] = λt(X)λt(W )

for any two bundles V,W . For any W the power series λt[W ] is a unit in
K(X)[[t]], because it has constant leading term 1.

Thus we have a homomorphism

λt : Vect(X)→ 1 +K(X)[[t]]+

of the additive semi-group Vect(X)) into the multiplicative group of power series
over K(X) with constant term 1. By the universal property of K(X) this

61
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extends uniquely to a homomorphism

λt : 1 +K(X)[[t]]+.

Thus taking the coe�cient of ti we have operations

λi : K(X)→ K(X).

Explicitly therefore
λt([V ]− [W ]) = λt[V ]λt[W ]−1.

In a very similar way we can treat the symmetric powers W i(V ). Since

Sk(V ⊕W ) ∼=
∑
i+j=k

Si(V )⊗ Sj(W )

we obtain a homomorphism

St : K(X)→ 1 +K(X)[[t]]+

whose coe�cients de�ne the operations

Si : K(X)→ K(X).

Notice that if L is a line bundle,

λt(L) = 1 + tL

St(L) = 1 + tL+ t2L+ · · ·
= (1− tL)−1.

Thus
λt(L)St(L) = 1.

Thus, if V is a sum of line bundles, λt[V ]St[V ] = 1. Therefore, for any x ∈
K(X), λt(x)St(x) = 1, and so

λt([V ]− [W ]) = λt[V ]S−t[W ]

that is,
λk([V ]− [W ]) =

∑
i+j=k

(−1)jλi[V ]Sj [W ].

This gives us an explicit formula for the operations λi in terms of operations on
bundles.

Now recall that, for any bundle E,dimEx is a locally constant function of
x. Since X is assumed compact

dimE = sup
x∈X

dimEx
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is �nite. The exterior powers have the basic property that

λiE = 0 if i > dimE.

Let us call an element of K(X) positive (written x ≥ 0) if it is represented by
a genuine bundle, i.e., if it is in the image of Vect(X). Then

x ≥ 0⇒ λy ∈ K(X)[t].

For many problems it is not dimE which is important but another integer
de�ned as follows. First let us denote by rankR the bundle whose �bre at x is
Cd(x) where d(x) = dimEx : if X is connected then rankE is just the trivial
bundle of dimension equal to dimE. Then E → rankE induces an (idempotent)
ring endomorphism

rank: K(X)→ K(X)

which is frequently referred to as the augmentation. The kernel of this endo-
morphism is an ideal denoted by K1(X). For a connected space with base-point
we clearly have

K1(X) = K̃(X).

For any x ∈ K(X) we have

x− rankx ∈ K1(X).

Now de�ne dimK x, for any x ∈ K1(X), to be the least integer n for which

x− rankx+ n ≥ 0

since every element of K(X) can be represented in the form [V ] − n for some
bundle V it follows that dimK x is �nite for all x ∈ K(X). For a vector bundle
E we clearly have

dimK [E] ≤ dimE.

Notice that
dimk x = dimK x1

where x1 = x− rankx, so that dimK K is essentially a function on the quotient
K1(X) of K(X).

It is now convenient to introduce operations γi which have the same re-
lation to dimK as the λi have to the dimension of bundles. Again following
Grothendieck we de�ne

γt(x) = λt/(1−t)(x) ∈ K(X)[[t]]

so that γt(x+ y) = γt(x)γt(y). Thus for each i we have an operation

γi : K(X)→ K(X).

The γi are linear combinations of the λj for j ≤ i and vice-versa, in view of the
formula

λs(x) = γs/(1+s)(x)
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obtained by putting s = t/(1− t), t = s/(1 + s). Note that

γt(1) = (1− t)−1

and for a line-bundle L

γt([L]− 1) = 1 + t([L]− 1)

Proposition 3.1.1. Let x ∈ K1(X), then γt(x) is a polynomial of degree ≤
dimK x.

Proof. Let n = dimK x, so that x + n ≥ 0. Thus x + n = [E] for some vector
bundle E. Moreover dimE = n and so

λi(E) = 0 for i > n.

Thus λt(x+ n)is a polynomial of degree ≤ n. Now

γt(x) = γt(x+ n)γt(1)
−n

= γt/(1− t)(x+ n)(1− t)n

=

n∑
i=0

λi(x+ n)ti(1− t)n−i

and so is a polynomial of degree ≤ n as stated.

We now de�ne dimγ x to be the largest integer n such that γn(x−rankx) ̸= 0,
and we put

dimK X = sup
x∈K(X)

dimK x

dimγ X = sup
x∈K(X)

dimγ x.

By 3.1.1 we have

dimγ x ≤ dimK x, dimγ X ≤ dimK X.

We shall show that, under mild restrictions, dimK X is �nite. For this we
shall need some preliminary lemmas on symmetric functions.

Lemma 3.1.2. Let x1, · · · , xn be indeterminates. Then any homogeneous poly-
nomial in Z[x1, · · · , xn] of degree n(n − 1) lies in the ideal generated by the
symmetric functions of (x1, · · · , xn) of positive degree.

Proof. Let σi(x1, · · · , xn) be the i-th elementary symmetric function. Then the
equation

xn − σ1xn−1 + σ2c
n−2 − · · ·+ (−1)nσn = 0

has roots x = xi. Thus xni is in the ideal generated by σ1, · · ·σn. But any
monomial in x1, · · · , xn of degree > n(n − 1) is divisible by xni for some i and
so is also in this ideal.
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Lemma 3.1.3. Let x1, · · · , xn, y1, · · · , ym be indeterminates and let

ai = σi(x1, · · · , xn), bi = σi(y1, · · · , ym)

be the elementary symmetric functions. Let I be any ideal in Z[a, b], J its ex-
tension in Z[x, y]. Then

H ∩ Z[a, b] = I.

Proof. It is well-known that Z[x] is a free Z[a]-module, with basis the monomials

xr = xr11 x
r2
2 · · ·x

rn−1

n−1 0 ≤ ri ≤ n− i.

Hence Z[x, y] = Z[x]⊗Z[y] is a free module over Z[a, b] = Z[a]⊗Z[n] with basis
the monomials xrus. Then the ideal J ⊂ Z[x, y] consists of all elements F of
the form

f =
∑

fr,sx
rys with fr,s ∈ I.

Since the xryx are a free basis f belongs to Z[a, b] if and only if fr,s = 0 for
r, s ̸= (0, 0) in which case

f = f0,0 ∈ I.
Thus J ∩ Z[a, b] = I as stated.

Remark 3.1.4. This lemma is essentially an algebraic form of the splitting prin-
ciple since it asserts that we can embed Z[a, b]/I in Z[x, y]/J . It is of course
purely formal in character and it seems preferable to use this rather than the
topological splitting principle whenever we are dealing with formal algebraic
results. The topological splitting principle depends of course on the periodicity
theorem and should only be used when we are dealing with properties that lie
at that depth.

Lemma 3.1.5. Let K be a commutative ring (with 1) and suppose

a(t) = 1 + a1t+ a2t
2 + · · ·+ ant

n

b(t) = 1 + b1t+ b2t
2 + · · ·+ bmt

m

are elements of K[t] such that

a(t)b(t) = 1.

Then there exists an integer N = N(n,m) such that any monomial

ar11 a
r2
2 · · · arnn

of weight
∑
jrj > N vanishes.

Proof. Passing to the universal situation it is su�cient to prove that if a1, · · · , an, b1, · · · , bm
are indeterminates, then any monomial α in the ai of weight ≥ N lies in the
ideal I generated by the elements

ck =
∑
i+j=k

aibj k = 1, · · · ,mn (a0 = b0 = 1).
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By (3.1.3), introducing indeterminates x1, · · · , xn, y1, · · · , ym, it is su�cient to
prove that α belongs to the extended ideal J . But ck is just the k-th elementary
symmetric function of the (m+ n) variables x1, · · · , xn, y1, · · · , ym. The result
now follows by applying (3.1.2) with N = (m+ n)(m+ n− 1).

Remark 3.1.6. The value for N(n,m) obtained in the above proof is not best
possible. It can be shown by more detailed arguments that the best possible
value is mn.

We now apply these algebraic results:

Proposition 3.1.7. Let x ∈ K1(X). Then there exists an integer N , depending
on x, such that any monomial

γi1(x)γi2(x) · · · γik(x)

of weight
∑k
j=1 ij > N is equal to zero.

Proof. We apply (3.1.5) to the polynomials γt(x), γt(−x). Note therefore, that
N depends on dimγ x,dimγ(−x).

Since γ1(x) = x we deduce:

Corollary 3.1.8. Any x ∈ K1(X) is nilpotent.

If we de�ne the degree of each γi to be one, then for any monomial in the
γi we have

weight ≥ degree.

In view of (3.1.7), therefore, all monomials in γi(x) of su�ciently high degree
are zero if x ∈ K1(X). Thus we can apply a formal power series1 in the
γi to any x ∈ K(X). Let us denote by Op(K1,K) the set of all operations
K1 → K. This has a ring structure induced by the ring structure of K (addition
and multiplication of values). Then by what we have said we obtain a ring
homomorphism

φ : Z[[γ1, · · · , γn, · · · ]]→ Op(K1,K)

Theorem 3.1.9.

φ : Z[[γ1, · · · , γn, · · · ]]→ Op(K1,K)

is an isomorphism.

Proof. Let Yn,m be the product of n copies of Pm(C). Using the base point
P0(C) of Pm(C) the Yn,m form a direct system of spaces with inclusions

Yn,m → Yn′,m′ for n′ ≥ n,m′ ≥ m.
1As usual a formal power series means a sum f = /sumfn where fn is a homogeneous

polynomial of degree n (and so involves only a �nite number of the variables).
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Then K(Yn,m) is an inverse system of groups with

K(Yn,m) = Z[x1, · · · , xn]/(xm+1
1 , · · · , xm+1

n )

lim←−
m

K(Yn,m) = Z[[x1, · · · , xn]]

lim←−
m,n

K(Yn,m) = lim←−
n

Z[[x1, · · · , xn]]

Any operation will induce an operation on the inverse limits. Hence we can
de�ne a map

ψ : Op(K1,K)→ lim←−
n

Z[[x1, · · · , xn]]

by ψ(f) = lim←− f(x1 + x2 + · · ·+ xn). Since, in K(Yn,m) we have

γt(x1 + x2 + · · ·+ xn) =

n∏
i=1

(a+ xit)

it follows that
ψφ(γi) = lim←−

n

σi(x1 + x2 + · · ·+ xn)

where σi denotes the i-th elementary symmetric function. In particular, there-
fore ψφ is injective and so φ is injective. Moreover the image of ψφ is

Z[[σ1, · · · , σn]]

which is the same as
lim←−
n

Z[[x1, · · · , xn]]Sn

where []Sn denotes the subring of invariants under the action of symmetric group
Sn. But, for all f ∈ Op(K1,K),

ψ(f) = lim←− f(x1 + x2 + · · ·+ xn)

lies in this group. In other words

imψφ = imψ.

To complete the proof it remains now to show that psi is injective. Suppose
then that ψ(f) = 0. Since any line bundle over a space X is induced by a map
into some n(C) it follows that

f([E]− n) = 0

whenever E is a sum of n line bundles. By the splitting principle this implies
that

f(x) = 0 for all x ∈ K1.

i. e. , f is the zero operation, as required.
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Let us de�ne H0(X,Z) to be the ring of all continuous maps X → Z. Then
we have a direct sum decomposition of groups

K(X) = K1(X)⊕H0(X,Z)

determined by the rank homomorphism. It is easy to see that there are no
non-zero natural homomorphisms

H0(X,Z)→ K1(X)

and so Op(K) = Op(K,K) di�ers from Op(K1K) only by Op(H0(Z)) which is
the ring of all maps Z→ Z. Thus (3.1.9) gives essentially a complete description
of Op(K).

We turn now to a discussion of �niteness conditions on K(X). First we deal
with H0(X,Z).

Proposition 3.1.10. The following are equivalent

(A) H0(X,Z) is a Noertherian ring,

(B) H0(X,Z) is a �nite Z-module.

Proof. ((B) ⇒ (A)): Obvious.
((A) ⇒ (B)): Suppose H0(X,Z) is Noetherian. Assume if possible that we can
�nd a strictly decreasing in�nite chain of components (open and closed sets) of
X

X = X0 ⊃ X1 ⊃ · · · ⊃ XN ⊃ Xn+1 ⊃ · · · .

Then for each n we can �nd a continuous map fnm : X → Z such that

fn(Xn+1) = 0

fn(Xn \Xn+1) = 1.

Consider the ideal I ofH0(X,Z) consisting of maps f : X → Z such that f(Xn =
0 for some n. Since H0(X,Z) is Noetherian I is �nitely generated and hence
there exists N such that

f(Xn) = 0 for all f ∈ I.

But this is a contradiction because

fN ∈ I, fN (XN ) ̸= 0.

Thus X has only a �nite number of components, so that

X =

n∑
i=1

Xi

with Xi connected. Hence H0(X,Z) is isomorphic to Zn.
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Passing now to K(X) we have

Proposition 3.1.11. The following are equivalent

(A) K(X) is a Noertherian ring,

(B) K(X) is a �nite Z-module.

Proof. ((A) ⇒ (B)): Assume (A), then H0(X,Z) which is a factor ring of
K(X) is also Noetherian. Hence by (3.1.10), H0(X,Z) is a �nite Z-module.
Now K1(X) is an ideal of K(X) consisting of nilpotent elements (3.1.8). Since
K(X) is Noetherian it follows that K1(X) is a nilpotent ideal. For brevity put
I = K1(X). Then In = 0 for some n and the Im/Im+1,m = 0, 1, · · · , n − 1
are all �nite modules over K/I = H0(X,Z). Hence K(X) is a �nite H0(X,Z)-
module and so also a �nite Z-module.

Examples of spacesX for whichK(X) is a �nite Z-module are cell-complexes.
Let us now de�ne a �ltration of K(X) by the subgroups Kγ

n(X) generated
by all monomials

γi1(X1)γ
i2(X2) · · · γik(Xk)

with
∑k
j=1 ij ≥ n and xi ∈ K1(X). Since γ1(x) = x, we have Kγ

1 = K1. If
x ∈ Kγ

n(X) we say that x has γ-�ltration ≥ n and write Fγ(x) ≥ n.

Proposition 3.1.12. Assume K(X) is a �nite Z-module. Then for some n

Kγ
n(X) = 0.

Proof. Let x1, · · · , xs be generators of K1(X) and let Nj = N(xj) be the inte-
gers given by (3.1.7). Because of the formula

γt(a+ b) = γy(a)γt(b)

it will be su�cient to show that there exists N such that all monomials in the
γi(xj) of total weight > N are zero. But taking N =

∑s
j=1Nj we see that

any such monomial must, for some j, have weight > Nj in the γi(x). Hence by
(3.1.7) this monomial is zero.

Corollary 3.1.13. Assume K(X) is a �nite Z-module. Then dimγ X is �nite.

We call the reader's attention to certain further properties of the operations
γi.

Proposition 3.1.14. If V is a bundle of dimension n, λ−1[V ] = (−1)nγn([V ]−
n). Thus K̃∗(XV ) is a free K∗ module generated by γn([V ]− n).

Proposition 3.1.15. There exist polynomials Pi, Qij such that for all x, y

γi(xy) = P1(γ
1(x), γ1(y), γ2(x), γ2(y), · · · , γi(x), γi(y))

γi(γj(x)) = Qij(γ
1(x), · · · , γij(x)).

We leave these proofs to the reader, who may verify them easily by use of
the splitting principle.
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3.2 The Adams operations

We shall now separate out for special attention some operations with particularly
pleasing properties. These were introduced by J. F. Adams. We de�ne ψ0(x) =
rank(x). In the ring K(X)[[t]] we de�ne ψt(x) =

∑
i=0 t

iψi(x) by

ψt(x) = ψ0(x)− t d
dt

(log λ−t(x)).

Notice that since all of the coe�cients of this power series are integers, this
de�nition makes sense.

Proposition 3.2.1. For any x, y ∈ K(X)

1) ψk(x+ y) = ψk(x) + ψk(y) for all k.

2) If x is a line bundle, ψk(x) = xk.

3) Properties 1 and 2 uniquely determine the operations ψ.

Proof. ψt(x+ y) = ψt(x) + ψt(y), so that ψk(xy) = ψk(x) + ψk(y) for each k.
If x is a line bundle, λ−t(x) = 1− tx, so that

d

dt
(log(1− tx)) = −x

1− tx
= −x− tx2 − t2x3 − · · · .

Thus ψt(x) = 1 + tx+ t2]x2 + · · · .
The last part follows from the splitting principle.

Proposition 3.2.2. For any x, y ∈ K(X)

1. ψk(xy) = ψk(x)ψk(y) for all k.

2. ψk(ψℓ(x)) = ψkℓ(x) for all k, ℓ.

3. If p is rime, ψp(x) ≡ xp mod p.

4. If u ∈ K̃(S2n), ψk(u) = knu for all k.

Proof. The �rst two assertions follow immediately from the last proposition
and the splitting principle. Also, from the splitting principle, ψp(x) = xp +
pf(λ1(x), · · · , λp(x)), where f is some polynomial with integral coe�cients. Fi-
nally, if h is the generator of K̃(S2)ψk(h) = kh. Since S2n = S2 ∧ · · · ∧ S2,
and K̃(S2n) is generated by h⊗ h⊗ · · · ⊗ h, the last assertion follows from the
�rst.

We next give an application of the Adams operations ψk. Suppose that
f : S4n−1 → Ssn is any map. We de�ne the Hopf invariant H(f) as follows.
Let Xf be the mapping cone of f . Let i : S2n → Xf be the inclusion, and let
j : Xf → S4n collapse S2n. Let u be the generator of K̃(S4n). From the exact
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sequence we see that there is an element x ∈ K̃(Xf ) such that i∗(x) generates
K̃(S2n). K̃(Xf ) is the free abelian group generated by x and y = j∗(u). Since
(i∗(x))2 = 0, x2 = Hy for some H. This integer H we de�ne as the Hopf
invariant of f . Clearly, up to a minus sign, H(f) is well de�ned. The following
theorem was �rst established by J. F. Adams by cohomological methods called
�secondary operations�.

Theorem 3.2.3 (Hopf invariant one problem). If H(f) is odd, then n = 1, 2,
or 4.

Proof. Let ψ2(x) = 2nx + ay, ψ3(x) = 3nx + by. Since ψ2(x) ≡ x2 mod 2, a is
odd. ψk(y) = j∗(ψk(u)) = k2ny. Thus, we see that

ψ6(x) = ψ3(ψ2(x)) = 6nx+ (2nb+ 32na)y

ψ6(x) = ψ2(ψ3(x)) = 6nx+ (22nb+ 3na)y.

Thus 2nb+32bna = 22nb+3na, or 2n(2n−1)b = 3n(3n−1)a. Since a is odd, 2n

divides 3n− 1, which by elementary number theory can happen only if n = 1, 2,
or 4.

If n = 1, 2, or 4, the Hopf maps determined by considering S4n−1 as a
subspace of the non-zero vectors in 2-dimensional complex, quaternionic, or
Cayley space, and S2n as the complex, quaternionic, or Cayley projective line
all have Hopf invariant one. We leave the veri�cation to the reader.

Proposition 3.2.4. Let x ∈ K(X) be such that Fγ(x) ≥ n. Then for any k we
have

Fγ(ψ
k(x)− jnx) ≥ n+ 1.

Proof. If n = 0 we have

ψk(x) = ψk(rankx+ x1) = rankx+ ψkx1.

Here x1 and so ψkx1 are in K1(X). Thus

ψkx− x = ψkx1 − x1 ∈ K1(X) = Kγ
1 (X).

Consider now n > 0. Since ψk is a ring homomorphism it is su�cient to prove
that the composition ψk · γn − knγn (where ψk ∈ Op(X), γn ∈ Op(K1,K))) is
equal to a polynomial in the γi in which each term has weight ≥ n + 1. As in
(3.1.9) we have isomorphisms

Z[[γ1, · · · ]] ∼= Op(K1,K) ∼= lim←−
m

Z[x1, · · · , xm]Sm

in which γi corresponds to i-th elementary symmetric function σi of the xj .
Now

ψk(xi) = (1 + xi)
k − 1



72 CHAPTER 3. OPERATIONS

and so

ψk(σn(x1, · · · )) = σn((1 + xi)
k − 1, · · · )

= knσn(x) + f

where f is a polynomial in the σi of weight ≥ n+ 1. Since ψk · γn corresponds
to ψk(σn) by the above isomorphisms the proposition is established.

Iterating (3.2.4) we obtain:

Corollary 3.2.5. If Kγ
n+1(X) = 0,

[

n∏
m=0

(ψkm − (km)m)] = 0

for any sequence of non-negative integers k0, k1, · · · , kn.

By (3.1.12) we can apply 3.2.5 in particular whenever K(X) is a �nite Z-
module.

Notice that ψk acts as a linear transformation on the vector space K(X)⊗Q.
Taking k = km for all m in (3.2.5) we see that

n∏
m=0

(ψk − km) = 0 on K(X)⊗Q.

Thus the eigenvalues of each ψk are powers of k not exceeding km. Let Vk,i
denote the eigenspace of ψk corresponding to the eigenvalue ki (we may have
Vk,i = 0). Then if k > 1, we have an orthogonal decomposition of the identity
operator 1 of K(X)⊗Q:

1 =
∑

Πi, Πi =
∏
m ̸=i

(ψk − km)/(ki − km).

Thus K(X)⊗Q is the direct sum of the Vk,i. Now put in (3.2.5),

ki = ℓ, km = k for m ̸= i

and we see that
(ψℓ − ℓi)Vk,i = 0

and so Vk,i ⊂ Vℓ,i. Hence we deduce

Proposition 3.2.6. Assume K(X) has �nite γ-�ltration and let Vk,i denote
the eigenspace of ψk on K(X) ⊗ Q corresponding to the eigenvalue k. Then if
k, ℓ > 1 we have

Vk,i = Vℓ,i.
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Since the subspace Vk,i does not depend on k (for k > 1) we may denote
it by a symbol independent of k. We shall denote it by H2i(X;Q)) and call it
the 2ii-th Betti group of X. From (3.2.4) it follows that the eigenvalue k0 = 1
occurs only in H0(X,Z)⊗Q. Thus our notation is consistent in that

H0(X,Z)⊗Q = H0(X;Q).

We de�ne the odd Betti groups by

H2m+1(X;Q) = H2m+2(SX+;Q)

where X+ = X∪point and S denotes reduced suspension. If the spaces involved
are �nite-dimensional we put

Bk = dimQH
k(X;Q)

and the Euler characteristic E(X) is de�ned by

E(X) =
∑

(−1)kBk = dimQ(K
0(X)⊗Q)− dimQ(K

1(X)⊗Q).

Note that the Kunneth formula (when applicable) implies 5

E(X × Y ) = E(X)E(Y ).

The following proposition is merely a reformulation of (3.2.4) in terms of the
notation just introduced:

Proposition 3.2.7.

Kγ
n ⊗Q =

∑
m≥n

H2m(X;Q)

and so
{Kγ(X)

n /Kγ
n+1(X)} ∼= H2n(X;Q).

Since ψku = ku for the generator u of K̃(S2) it follows that

ψkβ(x) = kβψk(x)

whereβ : K(X) → K−2(X) is the periodicity isomorphism. Thus β induces an
isomorphism

H2m(X;Q) ∼= H2m+2(S2X+;Q).

From the way the odd Betti groups were de�ned it follows that, for all k

Hk(X;Q) ∼= Hk+1(SX+;Q). (3.2.8)

If we now take the exact K-sequence of the pair X,A, tensor with Q, de-
compose under ψk and use (3.2.8) we obtain:
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Proposition 3.2.9. If A ⊂ X, and if both K∗(X),K∗(A) are �nite Z-modules
the exact sequence

· · · → Ki−1(A)
δ−→ Ki(X,A)→ Ki(X)→ Ki(A)

δ−→ · · ·

induces an exact sequence

· · · → Hi−1(A;Q)
δ−→ Hi(X,A;Q)→ Hi(X;Q)→ Hi(A;Q)

δ−→ · · ·

We next give a second application of the operations ψk. Since Pn(C)/Pn−1(C)
is the sphere S2n, we have an inclusion of S2n into Pn+k(C)/Pn−1(C) for a11
k. We should like to know for which values of n and k, S2n is a retract of
Pn+k(C)/Pn−1(C). That is, we should like to know when can there exist a map
fcolonPn+k(C)/Pn−1(C)→ S2n which is the identity on S2n. We sha11 obtain
certain necessary conditions on n and k for such an f to exist.

Theorem 3.2.10. Assume a retraction

f : Pn+k(C)/Pn−1(C)→ Pn(C)/Pn−1(C) = S2n

exists. Then the coe�cients of xi for i ≤ k in ( log(1+x)x )n are all integers.

Proof. Let ξ be the usual line-bundle over Pn+k and let x = ξ−1. ThenK(Pn+k)
is a free abelian group on generators xs, 0 ≤ s ≤ +k, and we may identify
K(Pn+k(C), Pn−1(C) with the subgroup generated by xs with n ≤ s ≤ n + k.
In K(Pn+k)⊗Q put y = log(1 + x), so that ξ = ey. Then

ery = ξr = ψr(ey) = eψ
r(y),

so that ψr(y) = ry. Thus H2s(Pn+k(C)/Pn−1(C);Q), for n ≤ s ≤ n + k is a
one-dimensional space generated by ys. Now let u generate K̃(S2n), and let

f∗(u) =

n+k∑
i=n

aix
i.

Since f is a retract we have an = 1. Since ψku = knu, f∗(u) must be a multiple
of yn, so that

n+k∑
i=n

aix
i = λyn.

Restricting to S2n we see that λ = 1, and so

yn = (log(1 + x))n

has all coe�cients from xn to xn+k integral as required.

Remark 3.2.11. It has been shown by Adams and Grant-Walker (Proc. Camb.
PhilÂ· Soc. 61 (1965), 81-103) that (3.2.10) gives a su�cient condition for the
existence of a retraction.
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Suppose once more that we have a map f : S2m+2n−1 → S2m. Then we can
attach to f an invariant e(f) ∈ Q/Z in the following fashion.

Let X be the mapping cone of f, i = S2m → X the inclusion, j : X →
S2n+2m the map which collapses S2m. Let u generate K̃0(S2m+2n), v generate
K̃0(S2m)), and let x ∈ K̃0(X) be such that i∗(x) = v. Let y = j∗(u). Then for
any k,

ψk(x) = kmx+ aky.

As before, we know that ψkψℓ = ψℓψk, so that

kn(km − 1)aℓ = ℓn(ℓm − 1)ak.

Thus
e(f) =

ak
kn(km − 1)

∈ Q

is well de�ned once x is chosen. If x is changed by a multiple of y, e(f) is changed
by an integer, so that e(f) ∈ Q/Z is well de�ned. We leave to the reader the
elementary exercise that e :

∏
2n+2m−1(S

2m)→ Q/Z is a group homomorphism.
It turns out that this is a very powerful invariant.

3.3 The group J(X)

In this section we assume, for simplicity, that X is connected. One can intro-
duce a notion of equivalence between vector bundles, known as �bre homotopy
equivalence, which is of much interest in homotopy theory. Let E,E′ be two
bundles over a space X, and suppose that both E,E′ have been given Hermi-
tian metrics. Then E and E′ are said to be �bre homotopy equivalent if there
exist maps f : S(E) → S(E′), g : S(E′) → S(E), commuting with the projec-
tion onto X, and such that gf and fg are homotopic to the identity through
�bre-preserving maps. Clearly this is an equivalence relation de�ned on the set
of equivalence classes of vector bundles over X .

Fibre homotopy equivalence is additive; that is, if E,E′ are �bre homotopy
equivalent to F, F ′ respectively, then E ⊕ E′ is �bre-homotopy equivalent to
F⊕, F ′. This follows from the fact that S(E ⊕ E′) may be viewed as the �bre-
join of the two �bre spaces S(E), S(E′) : in general the �bre-join of π : Y →
X,π′ : Y ′ → X is de�ned as the space of triples y, t, y′ where t ∈ I, π(y) = π′(y′)
and we impose the equivalence relations

(y, 0, y′1) ∼ (y, 0, y′2)

(y2, 1, y
′) ∼ (y2, 0, y

′)

We say that two bundles E,E′ are stably �bre-homotopy equivalent if there
exist trivial bundles V, V ′ such that E ⊕ V is �bre-homotopy equivalent to
E′ ⊕ V ′. The set of all stable �bre-homotopy equivalence classes over x forms
a semi-group which we denote by J(X). Since every vector bundle E has a
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complementary bundle F so that E⊕F is trivial it follows that J(X) is a group
and hence the map

Vect(X)→ J(X)

extends to an epimorphism
K(X)→ J(X)

which we also denote by J .
If we have two bundles E,E′ and if π : S(E) → X,π′ : S(E′) → X are the

projection maps of the respective sphere bundles, the Thom complexes XE , XE′

are just the mapping cones of the maps π, π′ respectively. Thus, we see that if E
and E[′] are �bre homotopy equivalent, XE and XE′

have the same homotopy
type. However, if E is a trivial bundle of dimension n,XE = S2n(X+). Thus,
to show that J(X) ̸= 0, it su�ces to show that XE does not have the same
stable homotopy type as a suspension of X+.

We shall now show how to use the operations ψj of �3.2 to give necessary
conditions for J(E) = 0. By the Thom isomorphism (2.7.17) we know that
K̃(XE) is a free K(X)-module generated by λE . Hence, for any k, there is a
unique element ρ(E) ∈ K(X) such that

ψk(λE) = λEρ
k(E).

The multiplicative property of the fundamental class λE , established in �3.2,
together with the fact that ψk preserves products, shows that

ρk(E ⊕ E′) = ρk(E) · ρk(E′).

Also, taking E =!, and recalling that

ψk · β = kβ · ψk

where β is the periodicity isomorphism, we see that

ρk(1) = k.

Now let Qk = Z[1/k] be the sub ring of Q consisting of fractions with denomi-
nators a power of k. Then if we put

σk(E) = k−nρk(E) n = dimE

we obtain a homomorphism

σk : K(X)→ Gk

where Gk is the multiplicative group of units of K(X)⊗Qk. Suppose now E is
�bre-homotopically trivial, then there exists u ∈ K̃(XE) such that ψku = knu.
Putting u = λEa we �nd that

ψkλE · ψka = knλEa
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and so
σk(E) · ψk(a) = a.

Moreover, restricting to a point, we see that a has augmentation 1, so a and
ψk(a) are both elements of Gk. Hence v/e may write

σk =
a

ψk(a)
∈ Gk.

Since σk(E)) depends only on the stable class of R, we have established the
following

Proposition 3.3.1. Let Hk ⊂ Gk be the subgroup generated by all elements of
the form a/ψk(a) with a a unit of K(X). Then

σk : K(X)→ Gk

maps the kernel of J into Hk, and so induces a homomorphism

J(X)→ Gk/Hk

In order to apply (3.3.1) it is necessary to be able to compute σk or equiva-
lently ρk. Now

ρk ∈ OpK

is an operation. Its augmentation is known so it remains to determine its value
on combinations of line-bundles. Because of its multiplicative property, it is
only necessary to determine ρk(L) for a line-bundle L.

Lemma 3.3.2. For a line-bundle L, we have

ρk[L] =

k−1∑
j=0

[L]j

Proof. By (2.7.1) and (2.7.3) we have a description of K̃(XL) as the K(X)
sub-module of K(P (L ⊕ 1)) generated by n = 1 − [L][H]. The structure of
K(P (L⊕ 1)) is of course given by our main theorem (2.2.1). Hence

ψk(u) = 1− [Lk][Hk]

= (1− [L][H]){
k−1∑
j=0

[Lj ][Hj ]}

= u

k−1∑
j=0

[Lj ], since (1− [L][H])(1− [H]) = 0.

Thus

ψkλL = λL{
k−1∑
j=0

[Lj ]}
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proving that

ρk(L) =

k−1∑
j=0

[Lj ]

as required.

As an example we take X = P2n(R), real projective 2n-space. As shown
in (2.7.10) K̃(X) is cyclic of order 2n with generator x = [L] − 1, where L is
the standard line-bundle. The multiplicative structure follows from the relation
[L]2 = 1 (since L is associated to the group Z/2Z). Now take k = 3, then

ψ3(x) = [L3]− 1 = x,

and so the group H3 de�ned above is reduced to the identity. Using (3.3.2) we
�nd

σ3(mx) = ρ3(mx) = (ρ3(x))m = (ρ3[L])m · 3−m

= 3−m(1 + [L] + [L]2)m

= (1 + x/3)m

= 1 +

m∑
i=1

(−1)i−1 2
i−1

3i

(
m

i

)
x (since x2 = −2x)

= 1 +
1

2
(1− (1− 2

3
)m)x

= 1 + 3−m(
3m − 1

2
)x.

Thus if J(mx) = 0 we must have 3m− 1 divisible by 2n+1. This happens if and
only if 2n−1 divides m. Thus the kernel of

J : K̃(P2n(R))→ J(P2n(R))

is at most of order 2. This result can in fact be improved by use of real K-theory
and is the basis of the solution of the vector-�eld problem for spheres.

The problem considered in (3.2.10) is in fact a special case of the more general
problem we are considering now. In fact, the space Pn+k(C)/Pn−1(C) is easily
seen to be the Thom space of the bundle nH over Pk(C). The conclusion of
(3.2.10) may therefore be interpreted as a statement about the order of J [H] ∈
J(Pk(C)). The method of proof in (3.2.10) is essentially the same as that used
in this section. The point is that we are now considering not just a single space
but a whole class, namely Thom spaces, and describing a uniform method for
dealing with all spaces of this class.

For further details of J(X) on the preceding lines we refer the reader to the
series of papers `On the groups J(X)' by J. F. Adams (Topology 1964-).



Chapter 4

The space of Fredholm

operators

In this appendix we shall give a Hilbert space interpretation1 of K(X). This is
of interest in connection with the theory of the index for elliptic operators.

LetH denote a separable complex Hubert space, and letA(H) be the algebra
of all bounded operators on H. We give A the norm topology. It is well-known
that this makes A into a Banach algebra. In particular the group of unitsA∗ of A
forms an open set. We recall also that, by the closed graph theorem, any T ∈ A
which is an algebraic isomorphism H → H is also topological isomorphism, i.e.,
T−1 exists in G and so T ∈ A∗.

De�nition 4.0.1. An operator R ∈ A(H) is a Fredholm operator if kerT and
cokerT are �nite dimensional. The integer

dimkerT − dim cokerT

is called the index of T .

We �rst observe that, for a Fredholm operator T , the image T (H) is closed.
In fact, since T (H) is of �nite codimension in H we can �nd a �nite dimensional
algebraic complement P . Then T ⊕ j : H ⊕ P → H (where j : P → H is the
inclusion) is surjective, and so by the closed graph theorem the image of any
closed set is closed. In particular T (H) = T ⊕ j(H ⊕ 0) is closed.

Let F ⊂ A be the subspace of all Fredholm operators. If T, S are two
Fredholm operators we have

dimkerTS ≤ dimkerT + dimkerS

dim cokerTS ≤ dim cokerT + dim cokerS

and so TS is again a Fredholm operator. Thus F is a topological space with
an associative product F × F → F . Hence for any space X the set [X,F ] of

1These results have been obtained independently by K. Janich (Bonn dissertation 1964).

79
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homotopy classes of mappings X → F is a semi-group. Our main aim will be
to indicate the proof of the following:

Theorem 4.0.2. For any compact space we have a natural isomorphism

index[X,F ]→ K(X).

Remark 4.0.3. If XX is a point this means that the connected components of
F are determined by an integer: this is in fact the index which explains our use
of the word in the more general context of Theorem 4.0.2.

Theorem 4.0.2 asserts that F is a classifying or representing space for K-
theory. Another closely related classifying space may be obtained as follows.
Let K ⊂ A denote all the compact operators. This is a closed two-sided ideal
and the quotient B = A/K is therefore again a Banach algebra. Let B∗ be the
group of units of B. It is a topological group and so, for any X, [X,B∗] is a
group. Then our second theorem is:

Theorem 4.0.4. B∗ is a classifying space for K-theory, i.e., we have a natural
group-isomorphism

[Z,B∗] ∼= K(X).

We begin with the following lemma which is essentially the generalization to
in�nite dimensions of Proposition 1.3.4.

Lemma 4.0.5. Let T ∈ F and let V be a closed subspace of H of �nite codi-
mension such that V ∩ kerT = 0. Then there exists a neighbourhood U of T in
A such that, for all S ∈ U , we have

(i) V ∩ kerS = 0,

(ii) ∩S∈UH/S(V ) topologised as a quotient space of U ×H is a trivial vector
bundle over U .

Proof. Let W = T (V )⊥ (the orthogonal complement of T (V ) in H.) Since
T ∈ F and dimH/V is �nite it follows that dimW is �nite. Now de�ne, for
S ∈ A,

φS : V ⊕W → H

by φS(V ⊕W )S(V ) +W . Then S → φS gives a continuous linear map

φ : A → L(V ⊕W,H)

where L stands for the space of all continuous linear maps with the norm topol-
ogy. Now φT is an isomorphism and the isomorphisms in L form an open set
(like A∗ in A). Hence there exists a neighbourhood U of T in A so that φS is
an isomorphism for all S ∈ U . This clearly implies (i) and (ii).

Corollary 4.0.6. F is open in A.

Proof. Take V = (kerT )⊥ in (4.0.5).
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Proposition 4.0.7. Let T : X → F be a continuous map with X compact.
Then there exists V ⊂ H, closed and of �nite codimension so that

(i) V ∩ kerTx = 0 for all X ∈ X.

(ii) Moreover, for any such V we have ∪x∈XH/Tx(V ), topologised as a quotient
space of X ×H, is a vector bundle over X.

Proof. For each x ∈ X take Vx = (kerTx)
⊥ and let Ux be the inverse image

under T of the open set given by (4.0.5). Let Ki = Uxi be a �nite sub-cover of
this family of open sets. Then V = ∩iVxi

satis�es (i). To prove (ii) we apply
(4.0.5) to each Tx, and deduce that∪yH/Ty(V ) is locally trivial near x, and
hence is a vector bundle.

For brevity we shall denote the bundle ∪x∈XH/Tx(V ), occurring in (4.0.6),
by H/T (V ). Just as in the �nite-dimensional case we can split the map ℘ : X×
H → H/T (V ); more precisely we can �nd a continuous map

φ : H/T (X)→ X ×H

commuting with projection on X and such that

℘φ = id

One way to construct φ is to use the metric in H and map Ht(V ) onto the
orthogonal complement T (C)⊥ of T (V ). This is technically inconvenient since
we then have to verify that T (X)⊥ is a vector bundle. Instead we observe that,
by de�nition, ℘ splits locally and so we can choose splittings φi over Ui, where
Ui is a �nite open covering of X. Then φi − φj = θij is essentially a map
H/T (V ) | Ui ∩ Uj → Ui ∩ Uj × V . If ρi is a partition of unity subordinate to
the covering we put, in the usual way

θij =
∑

ρjθij

so that θij is de�ned over all i, and then φ = φi − θij is independent of i and
gives the required splitting.

We can now de�ne indexT for any map T : X → F (X being compact). We
choose V as in (4.0.7) and put

indexT = [H/V ]− [H/T (V )] ∈ K(X),

where H/V stands for the trivial bundle X × H/V . We must show that this
is independent of the choice of V . If W is another choice so is V ∩W , so it is
su�cient to assume W ⊂ V . But then we have the exact sequences of vector
bundles

0→ V/W → H/W → H/V → 0

0→ V/W → H/T (W )→ H/T (V )→ 0
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Hence
[H/V ]− [H/W ] = [V/W ] = [H/T (V )]− [H/T (W )]

as required.
It is clear that our de�nition of indexT is functorial . Thus if f : Y → X is

a continuous map then
indexTf = f∗ indexT.

This follows from the fact that a choice of the subspace V for T is also a choice
for Tf .

If T : X×I → F is a homotopy between T0 and T1, then indexT ∈ K(X×I)
restricts to indexTi ∈ K(X × {i}), i = 0, 1. Since we know that

K(X × I)→ K(X × {i}) ∼= K(X)

is an isomorphism, it follows that

indexT0 = indexT1.

Thus
index: [XF ]→ K(X)

is well-de�ned.
Next we must show that �Index� is a homomorphism. Let S : X → F , T : X →

F be two continuous maps. Let W ⊂ H be a choice for T . Replacing S by
the homotopic map πWD (πW denoting projection onto W ) we can assume
S(H) ⊂ W . Now let V ⊂ H be a choice for S then it is also a choice for TS
and we have an exact sequence of vector bundles over X

0→W/SV
T−→ H/TSV → H/TW → 0.

Hence

indexTS = [H/V ]− [H/TSV ]

= [H/V ]− [W/SV ]− [H/TW ]

= [H/V ]− [H/SV ] + [H/W ]

= indexS + indexT

as required.
Having now established that

index: [X.F ]→ K(X)

is a homomorphism the next step in the proof of Theorem (4.0.2) is

Proposition 4.0.8. We have an exact sequence of of semigroups

[X,A∗]→ [X,F ] index−−−→ K(X)→ 0
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Proof. Consider �rst a map T : X → F of index zero. This means that

[H/V ]− [H/TV ] = 0 in K(X).

Hence adding a trivial bundle P to both factors we have

H/V ⊕ P ∼= H/TV ⊕ P.

Equivalently replacing V by a closed subspace W with dimV/W = dimP ,

H/W ∼= H/TW.

If we now split X×H → H/W as explained earlier we obtain a continuous map

φ : X ×H/W → X ×H

commuting with projection on X, linear on the �bres. If

Φ: X → L(H/W,H)

is the map associated to φ, it follows from the construction of φ that

x 7→ Φx + Tx

gives a continuous map
X → A∗.

But if 0 ≤ t ≤ 1, T + tΦ provides a homotopy of maps X → F connecting T
with T +Φ. This proves exactness in the middle.

It remains to show that the index is surjective. Let E be a vector bundle over
X and let F be a complement so that E⊕F is isomorphic to the trivial bundle
X × V . Let πx ∈ EndV denote projection onto the subspace corresponding to
Ex. Let Tk ∈ F denote the standard operator of index k, de�ned relative to an
orthonormal basis {ei}(i = 1, 2, . . . ) by

Tk(ei) =

{
ei−k if i− k ≥ 1

0 otherwise.

Then de�ne a map
S : X → F(H ⊗ V ) ∼= F(H)

by Sx = TX ⊗ πx + T0 ⊗ (1 − πx). We have kerSX = 0 for all x, and (H ⊗
V )S(H ⊗ V ) ∼= E. Hence

indexS = −[E].

The constant map Tk : X → F given by Tk(x) = Tk has index k and so

indexTkS = k − [E].

Since every element of K(X) is of the form k− [E] this shows that the index is
surjective and completes the proof of the proposition.

Theorem (4.0.2) now follows from (4.0.8) and the following:
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Proposition 4.0.9.

[X,A∗] = 1.

This proposition is due to Kuiper and we shall not reproduce the proof here
(full details are in Kuiper's paper: Topology 3 (1964) 19-30). In fact, Kuiper
actually shows that A∗ is contractible.

We turn now to discuss the proof of (4.0.4). We recall �rst that

1 +K ⊂ F .

This is a standard result in the theory of compact operators: the proof is easy.

Proposition 4.0.10. Let π : A → B = A/A be the natural map. Then

F = π−1(B∗).

Proof. (F ⊃ π−1(B∗)): Let T ∈ F and let P,Q denote orthogonal projection
onto kerT, kerT ∗ respectively. Then T ∗T + P and TT ∗ + Q are both in A∗,
and so their images by π are in B∗. But P,Q ∈ K and so π(T ∗) · π(T ) ∈
B∗, π(T ) · π(T ∗) ∈ B∗. This implies that π(T ) ∈ B∗.
(F ⊂ π−1(B∗)): Let T ∈ π−1(B∗), i.e., there exists S ∈ A with ST ∈ 1+K ⊆ F
and TS ∈ 1 +K ⊆ F . Since dimkerT ≤ dimkerST

dim cokerT ≤ dim cokerTS

it follows that T ∈ F .

Theorem (4.0.4) will now follow from (4.0.2) and the following general lemma
(applied with L = A,M = B, U = B∗.)

Lemma 4.0.11. Let π : L → M be a continuous linear map of Banach spaces
with π(L) dense in M and let U be an open set in M . Then, for any compact
X

[X,π−1(U)]→ [X,U ]

is bijective.

Proof. First we shall show that if

π : L→M

satis�es the hypotheses of the lemma, then for any compact X, the induced
map

πX : LX →MX

also satis�es the same hypotheses. Since LX ,MX are Banach spaces the only
thing to prove is that πX(LX) is dense in MX . Thus, let f : X →M be given.
We have to construct g : X → L such that ∥πg(x) − f(x)∥ < ϵ for all x ∈ X.
Choose a1, · · · an in f(X) such that their ϵ

3 -neighbourhoods {Ui} cover f(X)
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and choose bi such that ∥π(bi − ai∥ < ϵ/3. Let ui(x) be a partition of unity of
X subordinate to the covering {f−1Ui} and de�ne g : X → L by

g(x) =
∑

ui(x)bi.

This is the required map.
Hence replacing π by πX and U by UX (which is open in MX) we see that

it is only necessary to prove the lemma when X is a point, i.e., to prove that

π−1(U)→ U

induces a bijection of path-components. Clearly this map of path-components
is surjective: if P ∈ U then there exists P ∈ π(L) ∩ U such that the segment
PQ is entirely in U . To see that it is injective let P0, P1 ∈ π−1(U) and suppose
f : I → U is a path with f(0) = π(P0), f(1) = π(P1). By what we proved at the
beginning there exists g : I → π−1(U) such that

∥πg(t)− f(t)∥ < ϵ for all t ∈ T.

If ϵ is su�ciently small the segments joining πg(i) to f(i), for i = 0, 1, will lie
entirely in U . This implies that the segment joining g(i) to Pi, for i = 0, 1, lies
in π−1(U). Thus P0 can be joined to P1 by a path in π−1(U) (see �gure 4.1)
and this completes the proof.

Figure 4.1:
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