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Introduction

This is my study note on “K-theory” by M. F. Atiyah. I tried to fill in the details
while preserving the original treatment.

Caveat: the numbering of theorems, propositions etc. are altered due to the
restriction of I TEX.

The original introduction

These notes are based on the course of lectures I gave at Harvard I the fall of
1964. They constitute a self-contained account of vector bundles and K-theory
assuming only the rudiments of point-set topology and linear algebra. One of
the features of the treatment is that no use is made of ordinary homology or
cohomology theory. In fact rational cohomology is defined in terms of K-theory.

The theory is taken as far as the solution of the Hopf invariant problem
and a start is made on the J-homomorphism. In addition to the lecture notes
proper two papers of mine published since 1964 have been reproduced at the
end. The first, dealing with operations, is a natural supplement to the material
in Chapter IIL. It provides an alternative approach to operations which is less
slick but more fundamental than the Grothendieck method of Chapter IIT and
it relates operations and filtration. Actually the lectures deal with compact
spaces not cell-complexes and so the skeleton-filtration does not figure in the
notes. The second paper provides a new approach to real K-theory and so fills
an obvious gap in the lecture notes.

iii
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Chapter 1

Vector Bundles

1.1 Basic definitions

We shall develop the theory of complex vector bundles only, though much of the
elementary theory is the same for real and symplectic bundles. Therefore, by
vector space, we shall always understand complex vector space unless otherwise
specified.

Let X be a topological space. A family of vector spaces over X is a topo-
logical space F, together with:

(i) a continuous map p: F — X
(ii) a finite dimensional vector space structure on each
E,=p () forz € X,
compatible with the topology on F, induced from FE.

The map p is called the projection map, the space F is called the total space of
the family, the space X is called the base space of the family, and if x € X, F
is called the fibre over z.

A section of a family p: E — X is a continuous map s: X — F such that
ps(z) = x for all x € X.

A homomorphism from one family p: £ — X to another family ¢: FF — X
is a continuous map ¢: F — F such that:

(i) gp=0p

(ii) for each z € X, p: E, — F, is a linear map of vector spaces.

We say that ¢ is an isomorphism if ¢ is bijective and ¢! is continuous. If there

exists an isomorphism between E and F', we say that they are isomorphic.
Ezample 1.1.1. Let V be a vector space, and let £ =X xV, p: E — X be the
projection onto the first factor. E is called the product family with fibre V. If
F is any family which is isomorphic to some product family, F' is said to be a
trivial family.
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If Y is a subspace of X , and if F is a family of vector spaces over X
with projection p, p: p~1(Y) — Y is clearly a family over Y. We call it the
restriction of E to Y, and denote it by F | Y. More generally, if Y is any
space, and f: Y — X is a continuous map, then we define the induced family
f*(p): f*(F) =Y as follows:

f*(F) is the subspace of Y x E consisting of all points (y, €) such that f(y) =
p(e), together with the obvious projection maps and vector space structures
on the fibres. If g: Z — Y, then there is a natural isomorphism g¢* f*(E) =
(f9)*(F) given by sending each point of the form (z, €) into the point (z, g(z), €),
where z € Z,e € E. If f: Y — X is an inclusion map, clearly there is an
isomorphism E | Y & f*(E) given by sending each e € F into the corresponding
(p(e), ).

A family E of vector spaces over X is said to be locally trivial if every x € X
possesses a neighbourhood U such that E | U is trivial. A locally trivial family
will also be called a vector bundle. A trivial family will be called a trivial bundle.
If f: Y — X, and if F is a vector bundle over X, it is easy to see that f*(E) is
a vector bundle over Y. We shall call f*(E) the induced bundle in this case.

Ezample 1.1.2. Let V be a vector space, and let X be its associated projective
space. We define £ C X x V to be the set of all (z,v) such that z € X,v € V,
and v lies in the line determining z. We leave it to the reader to show that E
is actually a vector bundle.

Notice that if E is a vector bundle over X, then dim(E,) is a locally constant
function on X, and hence is a constant on each connected component of X. If
dim(E,) is a constant on the whole X, then F is said to have a dimension,
and the dimension of E is the common number dim(FE) for all z. (Caution:
the dimension of F so defined is usually different from the dimension of E as a
topological space. )

Since a vector bundle is locally trivial, any section of a vector bundle is
locally described by a vector valued function on the base space (See the remark
below.)

Remark 1.1.3. Let p: E — B be a (real, for example) vector bundle. It is
locally trivial, that is, if you take a small open set U C B, then you can find
an isomorphism ¢: p~1(U) = U x R", compatible with p (meaning that p(£) =
(p(€), something)).

Now a section s: B — FE of p is a map such that pos = idp. So if you restrict
to the small open set U, then s(b) € p~(b) C p~}(U), therefore p(s(b)) =
(p(s(b)), something) = (b, something). Call the “something” o(b) (it depends on
b), then you get a map o: U — R™ (determined by s). This is what is meant
by “locally a section is given by a vector valued function on the base space”: the
vector valued function is o.

If F is a vector bundle, we denote by I'(E)) the set of all sections of E. Since
the set of functions on a space with values in a fixed vector space is itself a
vector space, we see that ['(F) is a vector space in a natural way.

Suppose that V, W are vector spaces, and that £ = X x V,F = X x W
are the corresponding product bundles. Then any homomorphism ¢: E — F
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determines a map ®: X — Hom(V, W) by the formula p(z,v) = (x, ®(x)v).
Moreover, if we give Hom(V, W) its usual topology, then ® is continuous; con-
versely, any such continuous map ®: X — Hom(V, W) determines a homomor-
phism ¢: E — F. (This is most easily seen by taking bases {e;} and {f;} for V'
and W respectively. Then each ®(x) is represented by a matrix ®(x); j, where

D(z)e; = Z‘I’(I)i,jfj~

The continuity of either ¢ or @ is equivalent to the continuity of the functions
(I)i,j-)

Let Iso(V, W) C Hom(V, W) be the subspace of all isomorphisms between V
and W. Clearly, Iso(V, W) is an open set in Hom(V, W). Further, the inverse
map T +— T~ gives us a continuous map Iso(V, W) — Iso(W, V). Suppose that
p: E — F is such that ¢, : E, — F, is an isomorphism for all x € X. This
is equivalent to the statement that ®(X) C Iso(V,W). The map z — ®(x)?
defines ¥: X — Iso(W, V'), which is continuous. Thus the corresponding map
¥: F — FE is continuous. Thus ¢: F — F' is an isomorphism if and only if
it is bijective or, equivalently, ¢ is an isomorphism if and only if each ¢, is
an isomorphism. Further, since Iso(V, W) is open in Hom(V, W), we see that
for any homomorphism ¢, the set of those points x € X for which ¢, is an
isomorphism form an open subset of X. All these assertions are local in nature,
and therefore are valid for vector bundles as well as for trivial families.

Remark 1.1.4. The finite dimensionality of V' is basic to the previous argument.
If one wants to consider infinite dimensional vector bundles, then one must
distinguish between the different operator topologies on Hom(V, W).

1.2 Operations on vector bundles

Natural operations on vector spaces, such as direct sum and tensor product, can
be extended to vector bundles. The only troublesome question is how one should
topologise the resulting spaces. We shall give a general method for extending
operations from vector spaces to vector bundles which will handle all of these
problems uniformly.

Let T be a functor which carries finite dimensional vector spaces into finite
dimensional vector spaces. For simplicity, we assume that 7T is a covariant
functor of one variable. Thus, to every vector space V', we have an associated
vector space T'(V'). We shall say that T is a continuous functor if for all V' and
W, the map T: Hom(V, W) — Hom(T'(V'), T(W)) is continuous.

If E is a vector bundle, we define the set T(E) to be the union

Ua:GXT(Ew)a

and, if ¢: F — F, we define T(p): T'(F) — T(F') by the maps T'(¢.): T(E,) —
T(F,). What we must show is that T(FE) has a natural topology, and that, in
this topology, T'() is continuous.



4 CHAPTER 1. VECTOR BUNDLES

We begin by defining T(E) in the case that E is a product bundle. If
E =X xV, we define T(F) to be X x T(V) in the product topology. Suppose
that FF = X x W, and that ¢: E — F is a homomorphism. Let ®: X —
Hom(V, W) be the corresponding map. Since, by hypothesis, T: Hom(V, W) —
Hom(T'(V), T(W)) is continuous, T®: X — Hom(T'(V),T(W)) is continuous.
Thus T'(¢): X xT(V) — X x T (W) is also continuous. If ¢ is an isomorphism,
then T'p will be an isomorphism since it is continuous and an isomorphism on
each fibre.

Now suppose that FE is trivial, but has no preferred product structure.
Choose an isomorphism «: F — X x V, and topologise T(E) by requiring
T(a): T(E) —» X x T(V) to be a homeomorphism. If §: E — X x W is any
other isomorphism, by letting ¢ = Ba~! above, we see that T'(a) and T(f3)
induce the same topology on T(E), since T(¢) = T(8)T(a)! is a homeomor-
phism. Thus, the topology on E does not depend on the choice of o. Further,
if Y C X, it is clear that the topology on T(E) | Y is the same as that on
T(E |Y). Finally, if ¢: E — F is a homomorphism of trivial bundles, we see
that T'(¢): T(E) — T'(F) is continuous, and therefore is a homomorphism.

Now suppose that E is any vector bundle. Then if U C X is such that F | U
is trivial, we topologise T(F | U) as above. We topologise T'(E) by taking for
the open sets, those subsets V' C T(E) such that V N (T(E) | U) is open in
T(E | U) for all open U C X for which E | U is trivial. The reader can now
easily verify that if Y C X, the topology on T'(F | Y) is the same as that on
T(E)|Y , and that, if ¢: E — F is any homomorphism, T'(¢): T(E) — T(F)
is also a homomorphism.

If f: Y — X is a continuous map and FE is a vector bundle over X then, for
any continuous functor 7', we have a natural isomorphism

F*T(E) 2 Tf*(E).

The case when T has several variables both covariant and contravariant, pro-
ceeds similarly. Therefore we can define for vector bundles F, F' corresponding
bundles:

(i) E@® F, their direct sum

(i) E® F, their tensor product
(iii) Hom(E, F)

(iv) E*, the dual bundle of F
(v) A

We also obtain natural isomorphisms

{(E), where ! is the i'" exterior power.

(i) EFEFaFE
(i) FEQRFXF®E
(iii) FE(FoF")=(EQF)o (E® F")
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(iv) Hom(E,F) 2 E*® F
(v) MW(E@F) = @iy jmr(N(E) @ N (F)).

Finally, notice that sections of Hom(F, F') correspond in a 1 — 1 fashion
with homomorphisms ¢: E — F. We therefore define HOM(E, F') to be the
vector space of all homomorphisms from F to F, and make the identification
HOM(E, F) = I'(Hom(E, F)).

1.3 Sub-bundles and quotient bundles

Let E be a vector bundle. A sub-bundle of F is a subset of E which is a bundle
in the induced structure.

A homomorphism ¢: F — FE is called a monomorphism (respectively epi-
morphism) if each ¢,: F, — E, is a monomorphism (respectively epimor-
phism). Notice that ¢: F — FE is a monomorphism if and only if o*: E* — F*
is an epimorphism. If F' is a sub-bundle of F, and if p: F' — F is the inclusion
map, then ¢ is a monomorphism.

Lemma 1.3.1. If p: F — E is, a monomorphism, then o(F) is a sub-bundle
of E, and p: F — @(F) is an isomorphism.

Proof. ¢: F — ¢(F) is a bijection, so if ¢(F) is a subbundle, ¢ is an isomor-
phism. Thus we need only show that ¢(F') is a sub-bundle.

The problem is local, so it suffices to consider the case when F and F' are
product bundles. Let £ = X x V and let x € X; choose W, C V to be a
subspace complementary to ¢(F,). G = X x W, is a sub-bundle of E. Define
0: F®& G — E by 0(a®b) = ¢(a)+i(b), where i: G — E is the inclusion. By
construction, @, is an isomorphism. Thus, there exists an open neighbourhood
U of x such that # | U is an isomorphism. F is a sub-bundle of F & G, so
O(F) = ¢(F) is a sub-bundle of (F & G) = E on U. O

Notice that in our argument, we have shown more than we have stated.
We have shown that if ¢: ' — FE, then the set of points for which ¢, is a
monomorphism form an open set. Also, we have shown that, locally, a sub-
bundle is a direct summand. This second fact allows us to define quotient
bundles.

Definition 1.3.2. If F is a sub-bundle of E, the quotient bundle E/F is the
union of all the vector spaces F, /F, given the quotient topology.

Since F is locally a direct summand in F, we see that E/F is locally trivial,
and thus is a bundle. This justifies the terminology.

1f ¢: F — E is an arbitrary homomorphism, the function dim(ker ¢, ) need
not be constant, or even locally constant.

Definition 1.3.3. ¢: F — E is said to be a strict homomorphism if dim(ker ¢,,)
is locally constant.
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Proposition 1.3.4. If p: F — FE is strict, then:
(i) ker(p) = Uy ker(py) is a sub-bundle of F'
(11) im(p) = Uy im(p,) is a sub-bundle of E
(11i) coker(y) = Uy coker(p,) is a bundle in the quotient structure.

Proof. Notice that (ii) implies (iii). We first prove (ii). The problem is local,
so we can assume F = X x V for some V. Given x € X, we choose W, C
V' complementary to ker(p,) in V. Put G = X x W,; then ¢ induces, by
composition with the inclusion, a homomorphism, ¢»: G — E, such that 1, is
a monomorphism. Thus 1 is a monomorphism in some neighbourhood U of x.
Therefore, 1(G) | U is a sub-bundle of E | U. However, ¥(G) C ¢(F) , and
since dim(p(Fy)) is constant for all y, and

dim((Go) = dim(y(Gy)) = dim(p(Fy)) = dim(p(Fy))

for all y e U,¢¥(G) | U = ¢(F) | U. Thus ¢(F') is a sub-bundle of E.

Finally, we must prove (i). Clearly, ¢*: E* — F* is strict. Since F* —
coker(¢*) is an epimorphism, (coker(¢*))* — F* is a monomorphism. However,
for each z we have a natural commutative diagram

ker(¢z) F,

e

coker(pr)* —— F*

in which the vertical arrows are isomorphisms. Thus ker(yp) 2 (coker(¢*))* and
so, by Lemma 1.3.1, is a sub-bundle of F'. O

Again, we have proved something more than we have stated. Our argument
shows that for any z € X, dim ¢, (F;) < dimy(F,) for all y € U, U some
neighbourhood of x. Thus, rank(p,) is an upper semi-continuous function of
x.

Definition 1.3.5. A projection operator P: E — E is a homomorphism such
that P2 = P.

Notice that rank(P,) + rank(1 — P,) = dim E,, so that, since both rank(P,)
and rank(l — P,) are upper semicontinuous functions of x , they are locally
constant. Thus both P and 1 — P are strict homomorphisms. Since ker(P) =
(1 - P)E, E is the direct sum of the two sub-bundles PE and (1 — P)E. Thus
any projection operator P: E — FE determines a direct sum decomposition
E=(PE)® (1-P)E).

We now consider metrics on vector bundles. We define a functor Herm which
assigns to each vector space V' the vector space Herm (V') of all Hermitian forms
on V. By the techniques of Section 1.2, this allows us to define a vector bundle
Herm(F) for every bundle E.
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Definition 1.3.6. A metric on a bundle E is any section h: X — Herm(E)
such that h(x) is positive definite for all z € X. A bundle with a specified
metric is called a Hermitian bundle.

Suppose that F is a bundle, F'is a sub-bundle of F, and that h is a Hermitian
metric on F. Then for each x € X we consider the orthogonal projection
P,: E, — F, defined by the metric. This defines a map P: E — F which we
shall now check is continuous. The problem being local, we may assume F is
trivial, so that we have sections fi,---, f, of F giving a basis in each fibre.
Then for v € F, we have

Py(v) = Z he (v, fi(2)) fi(2).

Since h is continuous this implies that P is continuous. Thus P is a projection
operator on E. If F;- is the subspace of E, which is orthogonal to F, under
h, we see that F* = U, F; is the kernel of P, and thus is a sub-bundle of E,
and that £ = F @ F. Thus, a metric provides any sub-bundle with a definite
complementary sub-bundle.

Remark 1.3.7. So far, most of our arguments have been of a very general na-
ture, and we could have replaced “continuous” with “algebraic”, “differentiable”,
“analytic’, etc. without any trouble. In the next section, our arguments become
less general.

1.4 Vector bundles on compact spaces

In order to proceed further, we must make some restriction on the sort of base
spaces which we consider. We shall assume from now on that our base spaces
are compact Hausdorff. We leave it to the reader to notice which results hold
for more general base spaces.

Recall that if f: X — V is a continuous vector-valued function, the support
of f (written supp.f) is the closure of f=1(V \ {0}).

We need the following results from point set topology. We state them in
vector forms which are clearly equivalent to the usual forms

Theorem 1.4.1 (Tietze Extension). Let X be a normal space, Y C X a closed
subspace, V' a real vector space, and f: Y — V a continuous map. Then there
exists a continuous map g: X — V such that g | Y = f.

Theorem 1.4.2 (Existence of Partitions of Unity). Let X be a compact Haus-
dorff space, {U; a finite open covering. Then there exist continuous maps
fi: X — R such that:

1. fi(z) >0 VexelX,
2. supp(fi) C Ui,
3. Zlfz(l‘):l Vo € X.
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Such a collection {f;} is called a partition of unity.
We first give a bundle form of the Tietze extension theorem.

Lemma 1.4.3. Let X be compact Hausdorff, Y C X be a closed subspace, and
E be a bundle over X. Then any section s: Y — E | Y can be extended to X.

Proof. Let s € T'(E | Y). Since, locally, s is a vector-valued function, we can
apply the Tietze extension theorem to show that for each x € X, there exists
an open set U containing x and ¢t € I'(E | U) such that t |UNY =s|UNY.
Since X is compact, we can find a finite sub-cover {U, } by such open sets. Let
to € I(E | Uy) be the corresponding sections and let {p,} be a partition of
unity with supp(ps) C U,. We define S, € T'(E) by

Pa(@)ta(z) U € U,,
Sa = .
0 otherwise.
Then > S, is a section of E and its restriction to Y is clearly s. 0

Lemma 1.4.4. LetY be a closed subspace of a compact Hausdorff space X, and
let E, F be two vector bundles over X. If f: E|Y — F|Y is an isomorphism,
then there exists an open set U containingY and an extension f: E |U — F |U
which is an isomorphism.

Proof. f is a section of Hom(E | Y, F | Y), and thus, extends to a section
of Hom(E,F). Let U be the set of those points for which this map is an
isomorphism. Then U is open and contains Y. O

Lemma 1.4.5. Let Y be a compact Hausdorff space, f;: Y — X (0 <t <1)
be a homotopy and E be a vector bundle over X. Then

fSE= ffE.

Proof. Let I denote the unit interval and let f: Y x I — X be the homotopy:
f(y,t) = ft(y). Let m: Y x I — Y denote the standard projection. Now apply
Lemma 1.4.4 to the bundles f*E, 7* ffE and the subspace Y x {t} of Y x I, on
which there is an obvious isomorphism s. By the compactness of Y we deduce
that f*E and n* f;'E are isomorphic in some strip ¥ x d¢ where 6t denotes a
neighbourhood of {t} in I. Hence the isomorphism class of ffFE is a locally
constant function of ¢. Since I is connected this implies it is constant, whence

JGE = f{E.
]

We shall use Vect(X) to denote the set of isomorphism classes of vector
bundles on X, and Vect,, (X) to denote the subset of Vect(X) given by bundles
of dimension n. Vect(X) is an abelian semi-group under the operation @. In
Vect(X) we have one naturally distinguished element - the class of the trivial
bundle of dimension n.
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Lemma 1.4.6. 1. If f: X — Y is a homotopy equivalence, then f*: Vect(Y) —
Vect(X) is bijective.

2. If X is contractible, every bundle over X is trivial and Vect(X) is iso-
morphic to the non-negative integers.

Lemma 1.4.7. If E is a bundle over X x I, and m: X x I — X x {0} is the
projection, E is isomorphic to 7*(E | X x {0}).

Both these lemmas are immediate consequences of Lemma 1.4.5.
Suppose now Y is closed in X , F is a vector bundle over X and a: F |
Y — Y x V is an isomorphism. We refer to a as a trivialisation of E over Y.
Let 7: Y x V — V denote the projection and define an equivalence relation on
E|Y by
e~e & male) =na(e).

We extend this by the identity on E | (X\Y') and we let E/a denote the quotient
space of I given by this equivalence relation. It has a natural structure of a
family of vector spaces over X/Y. We assert that E/« is in fact a vector bundle.
To see this we have only to verify at the base point Y/Y of X/Y. Now by Lemma
1.4.4 we can extend « to an isomorphism a: E | U — U x V for some open set
U containing Y. Then & induces an isomorphism

(E|U)/a=(U/Y)xV

which establishes the local triviality of E/a.

Suppose ag, a1 are homotopic trivialisations of E over Y. This means that
we have a trivialisation 8 of E'x I over Y x I C X x I inducing ag and «; at the
two end points of I. Let f: (X |Y)x I — (X xI)/(Y x I) be the natural map.
Then f*(E x I/f) is a bundle on (X/V') x I whose restriction to (X/Y) x {i}
is E/a;(i = 0,1). Hence by Lemma 1.4.5

E/Olo = E/a1 .
To summarise we have established

Lemma 1.4.8. A trivialisation « of a bundle E over Y C X defines a bundle
E/a over X/Y. The isomorphism class of E /o depends only on the homotopy
class of a.

Using this we shall now prove

Lemma 1.4.9. Let Y C X be a closed contractible subspace. Then f: X —
X/Y induces a bijection f*: Vect(X/Y) — Vect(X).

Proof. Let E be a bundle on X. Then by Lemma 1.4.6 E | Y is trivial. Thus
trivialisations a: E | Y — Y x V exist. Moreover, two such trivialisations differ
by an automorphism of Y x V' | i.e.,, by a map ¥ — GL(V). But GL(V) =
GL(n,C) is connected and V is contractible. Thus « is unique up to homotopy
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and so the isomorphism class of F | « is uniquely determined by that of E.
Thus we have constructed a map

Vect(X) — Vect(X/Y)

and this is clearly a two-sided inverse for f*. Hence f* is bijective as asserted.
O

Vector bundles are frequently constructed by a glueing or clutching construc-
tion which we shall now describe. Let

X=XiUXs, A=XiNX,,

all the spaces being compact. Assume that F; is a vector bundle over X; and
that ¢: By | A — E5 | A is an isomorphism. Then we define the vector bundle
E,U, E; on X as follows. As a topological space E; U, Fs is the quotient of the
disjoint sum FE; + Es by the equivalence relation which identifies e; € E; | A
with p(e1) € Ey | A. Identifying X with the corresponding quotient of X; + X»
we obtain a natural projection p: Ey U, Fy — X, and p~1(z) has a natural
vector space structure. It remains to show that £y U, Fs is locally trivial. Since

(B1U, Egy | (X \A)=E1 | (X1 \A)+ By | (X2\ A)

the local triviality at points « ¢ A follows from that of Ey and E,. Therefore,
let a € A and let V; be a closed neighbourhood of a in X; over which F; is
trivial, so that we have an isomorphism

91:E1 |‘/'1—>V1><(Cn
Restricting to A we get an isomorphism
08 By | (VinA) — (VinA) xC".

Let
03 By | (VinA) — (VinA) xC"

be the isomorphism corresponding to 65! under . By Lemma 1.4.4 this can be
extended to an isomorphism

922E2|‘/2—)Vv2><(cn.

where V5 is a neighbourhood of a in X5. The pair 6,605 then defines in an
obvious way an isomorphism

01 Uipegi (E1 U¢E2) | (‘/1UV2)—>(V1UV2) x C™.

establishing the local triviality of Fy U, E». Elementary properties of this con-
struction are. the following:
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1. If E is a bundle over X and E; = E | X;, then the identity defines an
isomorphism I4: E; | A — E5 | A, and

E\ U, By~ E.
2. If 8;: E; — E] are isomorphisms on X; and ¢'8; = fa2¢, then
Ey Uy, Ey = By Uy, Es.
3. If (Ey, ) and (E}, ¢') are two “clutching data” on the X;, then
(E1 Uy Es) © (Ey Uy Ey) = (Ey @ By) Upapr (B2 © Ey),
(El Uy E2> ® (Ei Ugr Eé) = (El ® Ei) Uoger (E2 ® Eé),
(E1 Uy Eg)* = Eik U(cp*)—l E;
Moreover, we also have

Lemma 1.4.10. The isomorphism class of E1 U, E> depends only on the ho-
motopy class of the isomorphism ¢: F1 | A — E5 | A.

Proof. A homotopy of isomorphisms F; | A — F5 | A means an isomorphism
O: (n"E1 |A) x I — (n"Ey | A) x 1,
where [ is the unit interval and 7: X x I — X is the projection. Let
fi: X > Xx1I
be defined by f;(z) = x {t} and denote by
pr: By |A— Ey | A
the isomorphism induced from ® by f;. Then
Ei Uy, By = f(m"Ey Up m° E3).
Since fy and f; are homotopic, it follows from Lemma 1.4.5 that
Ey Uy, By = By Uy, B
as required. O

Remark 1.4.11. The “collapsing” and “clutching” constructions for bundles (on
X/Y and X; U X5 respectively) are both special cases of a general process of
forming bundles over quotient spaces. We leave it as an exercise to the reader
to give a precise general formulation.

We shall denote by [X,Y] the set of homotopy classes of maps X — Y.

~

Lemma 1.4.12. For any X, there is a natural isomorphism Vect, (S(X) =
[X,GL(n,C)] where S(X) denotes the suspension of X.
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Proof. Write S(X) as CT(X)UC™(X), where CT(X) = ([0,1/2] x X)/{0} x X
, C7(X) = ([1/2,1] x X)/{1} x X. Then C*(X) N _(X) = X. If £ is any
n-dimensional bundle over S(X), E | C*(X) and E | C~(X) are trivial since

CT(X) and C~(X) are contractible. Let a*: E | C*(X) — C*(X) x V be
such isomorphisms. Then (o™ | X)(a™ | X)™': X x V — X x V is a bundle
map, and thus defines a map « of X into GL(n, C) = Iso(V). Since both C*(X)
and C~(X) are contractible, the homotopy classes of both a™ and o~ are well
defined, and thus the homotopy class of « is well defined. Thus we have a
natural map 6: Vect,(S(X)) — [X,GL(n,C]. The clutching construction on
the other hand defines by Lemma 1.4.10 a map

¢: [X,GL(n,C)] — Vect,, (S(X)).
It is clear that § and ¢ are inverses of each other and so are bijections. O

We have just seen that Vect,, (S(X)) has a homotopy theoretic interpretation.
We now give a similar interpretation to Vect,, (X). First we must establish some
simple facts about quotient bundles.

Lemma 1.4.13. Let E be any bundle over X. Then there exists a (Hermitian)
metric on E.

Proof. A metric on a vector space V defines a metric on the product bundle
X x V. Hence metrics exist on trivial bundles. Let {U,} be a finite open
covering of X such that E | U, is trivial and let h, be a metric for E | U,. Let
{P, be a partition of unity with supp p, C U, and define

() = Paha(z) for z € U,,
0 otherwise.

Then k, is a section of Herm(E) and is positive semi-definite. But for any
x € X there exists o such that p,(z) > 0 (since ) po = 1) and so z € U,.
Hence, for this «, kq () is positive definite. Hence ) kq(s) is positive definite
for all x € X and so k = )_ k,, is a metric for E. O

Definition 1.4.14. A sequence of vector bundle homomorphisms
- EF—>F—. ..

is said to be ezact if for each = € X the sequence of vectorA- space morphisms
- E, - F,— -

is exact.

Corollary 1.4.15. Let
0-E S EZSE 50

be an exact sequence of bundles over X. Then there exists an isomorphism
E~FE o FE".



1.4. VECTOR BUNDLES ON COMPACT SPACES 13

Proof. Give E a metric. Then E = E' @ (E')*. However, (E')t = E". O

Definition 1.4.16. A subspace V C I'(E) is said to be ample if
p: X xV =3 FE
is a surjection, where p(z, s) = s(z).

Lemma 1.4.17. If E is any bundle over a compact Hausdorff space X, then
I'(E) contains a finite dimensional ample subspace.

Proof. Let {U} be a finite open covering of X such that F | U, is trivial for
each «, and let {p, be a partition of unity with supp p, C U,. Since E | U, is
trivial we can find a finite dimensional ample subspace V,, C T'(E | U,). Now
define
O: Vo — D(E)
by
e e

0 otherwise

The 6, define a homomorphism

0: [ Ve = T(E)

and the image of 6 is a finite dimensional Subspace of I'(E); in fact, for each
x € X there exists «a with po(z) > 0 and so the map

0o (Vo) = E,
is surjective. O

Corollary 1.4.18. If E is any bundle, there exists an epimorphism ¢: X X
C™ — FE for some integer m.

Corollary 1.4.19. If F is any bundle, there exists a bundle F such that E® F
is trivial.

We are now in a position to prove the existence of a homotopy theoretic
definition for Vect, (X). We first introduce Grassmann manifolds. If V' is any
vector space, and n any integer, the set G, (V') is the set of all subspaces of
V of codimension n. If V is given some Hermitian metric, each subspace of V'
determines a projection operator. This defines a map G,,(V) — End(V') , where
End(V) is the set of endomorphisms of V. We give G, (V) the topology induced
by this map.

Suppose that F is a bundle over a space X, V is a vector space, and ¢: X X
V — E is an epimorphism. If we map X into G, (V) by assigning to z the
subspace ker(y, ), this map is continuous for any metric on V' (here n = dim(E)).
We call the map X — G,,(V') the map induced by .
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Let V be a vector space, and let F' C G, (V) xV be the sub-bundle consisting
of all points (g, v) such that v € g. Then, if E = (G,,(V) x V)/F is the quotient
bundle, F is called the classifying bundle over G, (V).

Notice that if £’ is a bundle over X, and ¢: X xV — E’ is an epimorphism,
then if f: X — G, (V) is the map induced by ¢, we have E' = f*(FE), where E
is the classifying bundle.

Suppose that h is a metric on V. We denote by G,,(V3) the set G,,(V) with
the topology induced by h. If A’ is another metric on V, then the epimorphism
Gn(Vi) x V — E (where F is the classifying bundle) induces the identity map
Gn(Vi) = G (Vi) Thus the identity map is continuous. Thus, the topology on
G, (V) does not depend on the metric.

Now consider the natural projections

cm™ —cmt
given by (21, ,2m) — (21, , Zm—1). These induce continuous maps
tm—1: Gn(C™) = G, (C™71).
If E(,, denotes the classifying bundle over G,,(C™) it is immediate that
tin—1(Em) = Egn_).
Theorem 1.4.20. The map

H_H)l[X, G, (C™)] = Vect,, (X)

m

induced by f — fx(Ey)) for f: X — Gn(C™), is an isomorphism for all
compact Hausdorff spaces X .

Proof. We shall construct an inverse map. If ' is a bundle over X, there exists
(by 1.4.18) an epimorphism ¢: X x C"™ — E. Let f: X — G, (C™) be the map
induced by ¢. If we can show that the homotopy class of f (in G, (V™)) for
m’ sufficiently large does not depend on the choice of ¢, then we construct our
inverse map Vect,, (X) — lim [X, G, (V™)] by sending F to the homotopy class
of f.

Suppose that ¢;: X x C™ — F are two epimorphisms (¢ = 0,1). Let
gi: X — G, (C™) be the map induced by ¢;. Define ¢;: X x C™ x C™ — E
by ¥(x,v,v1) = (1 — t)po(x,vo) + t@i(x,v1). This is an epimorphism. Let
fi: X = G, (C™ & C™1) be the map induced by ;. If we identify C™ ¢ C™
with C™0 x C™ by

(Zlv"' 7Zmo)@(u17"' 7um1)’_> (Zly"' y Amogy "t 7u17"'um1)

then we have
fo=Jogo, f1=Tjig

where j;: G, (C™) — G,,(C™0*t™1) ig the natural inclusion and

T: G, (CT0T™) 5 G, (C™ot™)
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is the map induced by a permutation of coordinates in C™° ™1 and so is ho-
motopic to the identity. Hence jig; is homotopic to f; and hence to jogog as
required. O

Remark 1.4.21. Tt is possible to interpret vector bundles as modules in the
following way. Let C'(X) denote the ring of continuous complex-valued functions
on X. If E is a vector bundle over X then I'(E) is a C'(X) - module under point-
wise multiplication, i. e. ,

fs(x) = f(x)s(z) felC(X),sel(E).

Moreover a homomorphism ¢: E — F determines a C(X) -module homomor-
phism

I'y: T(C) = T'(F).
Thus I is a functor from the category ¥ of vector bundles over X to the category

A of C(X) -modules. If E is trivial of dimension n. then I'(E) is free of rank
n. If F' is also trivial then

I': HOM(E, F') — Home (x)(I'(E),T'(F))
is bijective. In fact, choosing isomorphisms F = X x V, '~ X x W we have

HOM(E, F) = Homc(V, W)~ = C(X) ® Homc(V, W)
= Home(x) (I'(E), T'(F)).

Thus I" induces an equivalence between the category .7 of trivial vector bundles
to the category % of free C'(X)-modules of finite rank. Let Proj(.7) denote the
sub-category of ¥ whose objects are images of projection operators in .7, and
let Proj(.-#) C .# be defined similarly. Then it follows at once that I'" induces
an equivalence of categories

Proj(.7) — Proj(%).

But, by (1.4.19), Proj(7) = ¥. By definition Proj(.%#) is the category of
finitely-generated projective C(X)-modules. Thus we have established the fol-
lowing:

Proposition 1.4.22. T induces an equivalence between the category of vector bun-
dles over X and the category of finitely generated projective modules over C(X).

1.5 Additional structures

In linear algebra one frequently considers vector spaces with some additional
structure, and we can do the same for vector bundles. For example we have
already discussed hermitian metrics. The next most obvious example is to
consider non-degenerate bilinear forms. Thus if V is a vector bundle a non-
degenerate bilinear form on V means an element 7' of HOM(V ® V, 1) which
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induces a non-degenerate element of Hom(V @ V1) for all z € X. Equivalently
T may be regarded as an element of ISO(V, V*). The vector bundle V' together
with this isomorphism 7' will be called a self-dual bundle.

If T is symmetric, i. e., if T, is symmetric for all s € X, we shall call (V,T)
an orthogonal bundle. If T is skew-symmetric, i, e, if T, is skew-symmetric for
all x € X, we shall call (V,T) a symplectic bundle.

Alternatively we may consider pairs (V,T) with T € ISO(V,V) where V
denotes the complex conjugate bundle of V (obtained by applying the “complex
conjugate functor” to V). Such a (V,T) may be called a self-conjugate bundle.
The isomorphism 7" may also be thought of as an anti-linear isomorphism V' —
V. As such we may form T2. If T? = id we may call (V,T) a real bundle. In
fact the subspace W C V consisting of all v € V' with T'v = v has the structure
of a real vector bundle and V may be identified with W ®g C, complexification
of W. If T? = —id then we may call (V,T) a quaternion bundle. In fact, we
can define a quaternion vector space structure on each V,, by putting j(v) = Tw
(the quaternions are generated over R by i,j with ij = —ji, 2 = j2 = —1).

Now if V has a hermitian metric h then this gives an isomorphism V —
V* and hence turns a self-conjugate bundle into a self-dual one. We leave
it as an exercise to the reader to examine in detail the symmetric! and skew-
symmetric cases and to show that, up to homotopy, the notions of self-conjugate,
orthogonal, symplectic, are essentially equivalent to self-dual, real, quaternion.
Thus we may pick which ever alternative is more convenient at any particular
stage. For example, the result of the preceding sections extend immediately to
real and quaternion vector bundles although the extension of (1.4.5) for example
to orthogonal or symplectic bundles is not so immediate. On the other hand the
properties of tensor products are more conveniently dealt with in the framework
of bilinear forms. Thus the tensor product of (V,T) and (W, S)is (VRW,T®5)
and the symmetry properties of T'®.S follow at once from those of T"and S. Note
in particular that the tensor product of two symplectic bundles is orthogonal.

A self-conjugate bundle is a special case of a much more general notion. Let
F, G be two continuous functors on vector spaces. Then by an F — G bundle we
will mean a pair (V,T) where V is a vector bundle and T' € ISO(F(V), G(V)).
Obviously a self-conjugate bundle arises by taking F' = id, G = *.

Another example of some importance is to take F' and G to be multiplication
by a fixed integer m , i. e.,

FV)=G(V)=VV®---@V (m times).

Thus an m — m bundle (or more briefly an m-bundle) is a pair (V,T) where
T € Aut(mV). The m-bundle (V,T) is trivial if there exists S € Aut(V) so
that T'=mS.

In general for F — G bundles the analogue of (1.4.5) does not hold, i. e.,
homotopy does not imply isomorphism. Thus the good notion of equivalence
must incorporate homotopy. For example, two m-bundles (Vp,Tp) and (V1,T7)

IThe point is that GL(n,R) and (n,C) have the same maximal compact subgroup (n,R).
Similar remarks apply in the skew case.
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will be called equivalent if there is an m-bundle (W, S) on X x I so that

Remark 1.5.1. An m-bundle over K should be thought of as a “mod m vector
bundle” over S(X).

1.6 G-bundles over GG-spaces

Suppose that G is a topological group. Then by a G-space we mean a topological
space X together with a given continuous action of G on X, i. e., G acts on X
and the map G x X — X is continuous. A G-map between G-spaces is a map
commuting with the action of G. A G-space E is a G-vector bundle over the
G-space X if

(i) E is a vector bundle over X,
(ii) the projection £ — X is a G-map,
(iii) for each g € G the map E, — Ey(,) is a vector space homomorphism.

If G is the group of one element then of course every space is a G-space and
every vector bundle is a G-vector bundle. At the other extreme if X is a point
then X is a G-space for all G and a G-vector bundle over X is just a (finite-
dimensional) representation space of G. Thus G-vector bundles form a natural
generalisation including both ordinary vector bundles and G-modules. Much
of the theory of vector bundles over compact spaces generalises to G-vector
bundles provided G is also compact. This however, presupposes the basic facts
about representations of compact groups. For the present, therefore we restrict
ourselves to finite groups where no questions of analysis are involved.

There are two extreme kinds of G-space:

(i) X is a free G-space if g # 1 = g(z) # z,
(if) X is a trivial G-space if g(z) =z for all z € X, g € G.

We shall examine the structure of G-vector bundles in these two extreme cases.

Suppose then that X is a free G-space and let X/G be the orbit space.
Then 7: X — X/G is a finite covering map. Let E be a G-vector bundle ewer
X. Then E is necessarily a free G-space. The orbit space E/G has a natural
vector bundle structure over X/G: in fact E/G — X/G is locally isomorphic
to E — X and hence the local triviality of F implies that of E/G. Conversely,
suppose V is a vector bundle over X/G. Then 7n*V is a G-vector bundle over
X in fact, 7*V C X x V and G acts on X x V by g(z,v) = (g(z),v). It is clear
that £ — E/G and V — 7*V are inverse functors. Thus we have

Proposition 1.6.1. If X is G-free, G-vector bundles over X correspond bijec-
tively to vector bundles over X/G by E — E/G.
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Before discussing trivial G-spaces let us recall the basic feet about repre-
sentations of finite groups, namely that there exists a finite set Vp,---, Vi of
irreducible representations of G so that any representation V' of G is isomorphic
to a unique direct Y2F_ n;V; (Maschke’s theorem).

We shall give a brief treatment of Maschke’s theorem as follows.

Let U,V be G-modules over a field k£ and a be a mapping from U to V. We
shall write a: U —, V,a: U —¢ V to indicate that « is k-linear or a G-
homomorphism respectively. Th|e space of all k-linear mappings from U to V is
denoted by Homy (U, V') and the subspace of G-homomorphisms by Homg (U, V).

In the next lemma we shall (exceptionally) write mappings between right G-
modules on the right, so that for a.: U — V the condition for a G-homomorphism
is that

(uz)a = (ua)x for all uw € U,z € G.

Lemma 1.6.2 (Averaging lemma). Let G be a finite group and k a field of
characteristic 0 or prime to |G|. Given any two G-modules U,V and a: U —
V', the mapping

o us |G Z((ux_l)a)x (1.6.3)

x

is a G-homomorphism from U to V. Moreover,

(i) if « is a G-homomorphism, then o* = «,

(ii) if a: U =, V,8: V =g W, then (af)* = a*f,
(iii) if a: U =g V,8: V =, W, then (af)* = af*.

Proof. Let us fix a € G and write y = za,z = ya~!. Then as one of z,y runs
over (G, so does the other. Now for ao: U —, V' we have

|G|.ua*a = Zux_laxa = Zuay_lay = |Gl.uaa”™. (1.6.4)
@ y

This shows a* to be a G-homomorphism. If « is a G-homomorphism, each term
in the sum in 1.6.4 is uaa = uaw, so &* = « in this case and (i) follows. Now
let :V — V; then

|G|.u(aB)* = Zux_laﬁx = Zux_laxﬁ = |G|.ua”p.

Hence (ii follows; (iii) is proved similarly. O

We note that if neither a nor g is a G-homomorphism, there is nothing we
can say. We can now prove the module form of Maschke’s theorem, which states
that every module extension splits, or equivalently, that the group algebra kG
is semisimple.

Theorem 1.6.5 (Maschke’s theorem). Let G be a finite group and k a field of
characteristic 0 or prime to |G|. Then kG is semisimple.
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Proof. We shall show that every (finite-dimensional) G-module is semisimple,
or equivalently, that every short exact sequence of G-modules

[e3%

VR VNG VRGNS VN (1.6.6)

splits. Such a sequence certainly splits as a sequence of k-spaces, for this just
means that V' as k-subspace of V has a vector space complement. Thus we
have a k-linear splitting map v: V — V’/. We have ay = 1y; therefore 1 = 1* =
(ay)* = ay*, and so v* is the desired G-homomorphism splitting the sequence
1.6.6. [

Now for any two G-modules (i. e., representation spaces) V, W we can define
the vector space Homg(V, W) of G-homomorphisms. Then we have

=0 i)

Homg (Vi, V) {g C i=j

Hence for any V it follows that the natural map
> Vi@ Homy(Vi, V) = V

is a G-isomorphism. In this form we can extend the result to G-bundles over a
trivial G-space. In fact, if £ is any G-bundle over the trivial G-space X we can
define the homomorphism Av € End E by

:faZg(e) eck

geqG

Av(e)

where |G| denotes the order of G (This depends on the Averaging lemma 1.6.2
which states that, X being G-trivial, each g € G defines an endomorphism of
E). Tt is immediate that Av is a projection operator for E' and so its image,
the invariant subspace of E, is a vector bundle. We denote this by E¢ and
call it the invariant sub-bundle of E. Thus if E, F are two G-bundles then
Homg (FE, F) = (Hom(FE, F))¢ is again a vector bundle. In particular taking E
to be the trivial bundle V; = X x V; with its natural G-action we can consider
the natural bundle map

k
> Vi @ Homg(V;, F) — F.

=1

We have already observed that for a G-module F' this is a G-isomorphism. In
other words for any G-bundle F' over X this is a G-isomorphism for all € X.
Hence it is an isomorphism of G-bundles. Thus every G-bundle F' is isomorphic
to a G-bundle of the form > V; ® E; where F; is a vector bundle with trivial
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G-action. Moreover the E; are unique up to isomorphism. In fact we have

k
Homg(V;, F) = ) Homg(Vy,V; @ Ej)
1=1
k
= Z Homg (V;, Vj) ® Ej
=1

= [;.
Thus we have established

Proposition 1.6.7. Let X be a trivial G-space, V1,...,Vi a complete set of
irreducible G-modules, V; = X x V; the correspondin% G-bundles. Then every
G-bundle F over X is isomorphic to a direct sum ), V; ® E; where the E;
are vector bundles with trivial G-action. Moreover the E; are unique up to
isomorphism and are given by E; = Homg(V;, F).

We return now to the case of a general (compact) G-space X and we shall
show how to extend the results of 1.4 to G-bundles. Observe first that, if F is
a G-bundle, G acts naturally on T'(E) by

(gs)(z) = g(s(g~(x))) sel(E).

A section s is invariant if gs = g for all g € G. The set of all invariant sections
forms a subspace I'(E)¢ of I'(E). The averaging operator

1
AVZ@ZQ

defines as usual a homomorphism I'(E) — T'(E) which is the identity on I'(E)9.

Lemma 1.6.8. Let X be a compact G-space Y C X a closed sub G-space (i.e.,
invariant under the action of G) and let E be a G-bundle over X. Then any
invariant section s: Y — E | Y extends to an invariant section over X .

Proof. By 1.4.3 we can extend s to some section ¢ of F over X. Then Av(t) is
an invariant section of E over X, while over Y we have

Av(t) = Av(s) = s
since s is invariant. Thus Av(¢) is the required extension. O
If E, F are two G-bundles then Hom(E, F') is also a G-bundle and we have
I'(Hom(E, F))¢ = HOMq(E, F).

Hence the G-analogues of 1.4.4 and 1.4.5 follow at once from 1.6.8. Thus we
have
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Lemma 1.6.9. Let Y be a compact G-space, X be a G-space, f;: Y — X(0 <
t < 1) be a G-homotopy and E be a G-vector bundle over X. Then fiE and
fiE are isomorphic G-bundles.

A G-homotopy means of course a G-map F': Y x I — X where I is the unit
interval with trivial G-action. A G-space is G-contractible if it is G-homotopy
equivalent to a point. In particular, the cone over a (G-space is always G-
contractible. By a trivial G-bundle we shall mean a G-bundle isomorphic to a
product X x V where V' is a G-module. With these definitions 1.4.6 - 1.4.15
extend without change to G-bundles. We have only to observe that if h is a
metric for F then Av(h) is an invariant metric .

To extend 1.4.17 we observe that if V' C I'(E) is ample then > _, gV C
['(E) is ample and invariant. This leads at once to the appropriate extension of
1.4.19.

In extending 1.4.20 we have to consider Grassmannians of G-subspaces of
mzle V; for m — oo, where as before Vi,---,V, denote a complete set of
irreducible G-modules. We leave the formulation to the reader.

Finally,consider the module interpretation of vector bundles. Write A =
C(X). Then if X is a G-space with G acting on A as a group of algebra
automorphisms. If E is a G-vector bundle over X then I'(F) is a projective
A-module and G acts on T'(F), the relation between the A— and G— actions
being

glas) =g(a)g(s) a€A,geG,sel(E).
We can look at this another way if we introduce the “twisted group algebra”

B of G over A, namely elements of B are linear combinations } _; ayg with
a € A and the product is defined by

(ag)(d’g’) = (ag(a’))gg’.

In fact, I'(E) is then just a B-module. We leave it as an exercise to the reader to
show that the category of G-vector bundles over X is equivalent to the category
of B-modules which are finitely generated and projective over A.
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Chapter 2

K-Theory

2.1 Definitions

If X is any space, the set Vect (X) is defined by the structure of an abelian
semigroup, where the additive structure is defined by direct sum. If A is any
abelian semigroup, we can associate to A an abelian group K(A) with the
following property: there is a semigroup homomorphism a: A — K(A) such
that if G is any group, v: A — G any semigroup homomorphism, there is a
unique homomorphism x: K(A) — G such that v = ya. If such a K(A) exists,
it must be unique.

The group K(A) is defined in the usual fashion. Let F(A) be the free
abelian group generated by the elements of A, let E(A) be the subgroup of
F(A) generated by those elements of the form a + a’ — (a & a’), where & is the
addition in A, a,a’ € A. Then K(A) = F(A)/E(A) has the universal property
described above, with a: A — K(A) being the obvious map.

A slightly different construction of K(A) which is sometimes convenient is
the following. Let A: A — A x A be the diagonal homomorphism of semi-
groups, and let K (A) denote the set of cosets of A(A) in A x A. It is a quotient
semi-group, but the interchange of factors in A x A induces an inverse in K (A)
so that K(A) is a group. We then define a4: A — K(A) to be the composition
of a — (a,0) with the natural projection A x A — K(A) (we assume A has a
zero for simplicity). The pair (K(A),a4) is a functor of A so that if v: A — B
is a semi-group homomorphism we have a commutative diagram

—*1 K(4)

A
WL lK(v)
B

——> K(B)

ap

If B is a group ap is an isomorphism. That shows K(A) has the required
universal property.

23
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If A is also a semi-ring (that is, A possesses a multiplication which is dis-
tributive over the addition of A) then K(A) is clearly a ring.

If X is a space, we write K(X) for the ring K(Vect(X)). No confusion
should result from this notation. If £ € Vect(X), we shall write [E] for the
image of F in K(X). Eventually, to avoid excessive notation, we may simply
write E instead of [E] when there is no danger of confusion.

Using our second construction of K it follows that, if X is a space, every
element of K(X) is of the form [E] — [F], where E, F' are bundles over X. Let
G be a bundle such that F' € G is trivial. We write n for the trivial bundle
of dimension n. Let F & G = n. Then [E] — [F] = [E] + [G] — ([F] + [G]) =
[E ® G] — [n]. Thus, every element of K(X) is of the form [H] — [n].

Suppose that E, F are bundles such that [E] = [F], then again from our
second construction of K it follows that there is a bundle G such that £ ¢ G =
F®G. Let G be a bundle such that GH G’ =2 n. Then E&GHGE = FHGEHE,
so FE@®n =~ F®n. If two bundles become equivalent when a suitable trivial
bundle is added to each of them, the bundles are said to be stably equivalent.
Thus, [E] = [F] if and only if E and F are stably equivalent.

Suppose f: X — Y is a continuous map. Then f*: Vect(Y) — Vect(X)
induces a ring homomorphism f*: K(Y) — K(X). By 1.4.5 this homomorphism
depends only on the homotopy class of f.

2.2 The periodicity theorem

The fundamental theorem for K-theory is the periodicity theorem. In its sim-
plest form, it states that for any X, there is an isomorphism between K(X) ®
K(S?) and K(X x S?). This is a special case of a more general theorem which
we shall prove.

If E is a vector bundle over a space X, and if Ey = F \ X, where X is
considered to lie in E as the zero section, the non-zero complex numbers act
on Ey as a group of fibre preserving automorphisms. Let P(E) be the orbit
space obtained from FEj by the action of the complex number. P(FE) is called
the projective bundle associated to E. If p: P(E) — X is the projection map,
p~1(z) is a complex projective space for all x € X. If V is a vector space, and
W is a vector space of dimension one, V and V' ® W are isomorphic, but not
naturally isomorphic. For any non-zero element w € W the map v — v Q w
defines an isomorphism between V and V ® W, and thus defines an isomorphism
(w): P(V) — P(V ® W). However, if w’ is any other non-zero element of W,
w' = Aw for some non-zero complex number X\. Thus P(w) = (w’), so the
isomorphism between P(V') and P(V ® W) is natural. Thus, if F is any vector
bundle, and L is a line bundle, there is a natural isomorphism P(E) = P(R®L).

It E is a vector bundle over X then each point a € P(E)x = P(Ex) repre-
sents a one-dimensional subspace Hy C Ex. The union of all these defines a
subspace H* C p*FE, where p: P(F) — X is the projection. It is easy to check
that H* is a sub-bundle of p*E. In fact, the problem being local we may assume
F is a product and then we are reduced to a special case of the Grassmannian
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already discussed in §1.4. We have denoted our line-bundle by H* because we
want its dual H (the choice of convention here is dictated by algebro-geometric
considerations which we do not discuss here).

We can now state the periodicity theorem.

Theorem 2.2.1. Let L be a line bundle over X. Then, as a K(X)-algebra,
K(P(L ®1)) is generated by [H], and is subject to the single relation ([H| —

D([L][H] = [1]) = 0.

Before we proceed to the proof of this theorem, we would like to point out
two corollaries. Notice that P(1®1) = X x S2.

Corollary 2.2.2. K(S?) is generated by [H| as a K (point) module, and [H] is
subject to the only single relation ([H] — [1])? = 0.

Corollary 2.2.3. TA£ X is any space, and if u: K(X)® K(5?) — K(X x S?)
is defined by p(a ® b) = (wa)(n3b), where m,mo are the projections onto the
two factors, then p is an isomorphism of rings.

The proof of the theorem will be broken down into a series of lemmas.

To begin, we notice that for any x € X, there is a natural embedding
Lx — P(L® 1) given by the map y — (y,1). This map extends to the one
point compactification of Lx, and gives us a homeomorphism of the one point
compactification of Lx onto P(L&®1)x. If we map X — P(L&®1) by sending x
to the image of the “point at infinity” of the one point compactification of L, we
obtain a section of P(L®1) which we call the “section at infinity”. Similarly, the
zero section of L gives us a section of P(L @ 1), which we call the zero section
of P(L®1).

We choose a metric on L , and we let S C L be the unit circle bundle. We
write © for the part of L consisting of vectors of length < 1, and P> for that
part of P(L@®1) consisting of the section at infinity, together with all the vectors
of length > 1. We denote the projections S — X, P°\ X, P>\ X by 7,7, and
Too Tespectively.

Since 7 and 75° are homotopy equivalences, every bundle on PV is of the
form 7 (E°) and every bundle on P> is of the form 77 (E°), where E° and
E*° are bundles on X. Thus, any bundleE on P(L @ 1) is isomorphic to one of
the form (73 (EY), f, 7% (E>)), where f € ISO(7°(E°), 7*(E>)) is a clutching
function. Moreover, if we insist that the isomorphism

E — (mgE°, f,m E%)

coincide with the obvious ones over the zero and infinite sections, it follows that
the homotopy class of f is uniquely determined by the isomorphism class of E.
This again uses the fact that the O-section is a deformation retract of P° and the
oo-section a deformation retract of P>°. We shall simplify our notation slightly
by writing (E°, f, E*) for (7} (E°), f, 7% (E>)).

Our proof will now be devoted to showing that the bundles E° and E> and
the clutching function f can be taken to have a particularly simple form. In
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the special case that L is trivial, S is just X x S, the projection S — S' is a
complex-valued function on S which we denote by z (here S is identified with
the complex numbers of unit modulus). This allows us to consider functions on
S which are finite Laurent series in z whose coefficients are functions on X:

n

Z ap(z)2*

k=—n

These finite Laurent series can be used to approximate functions on S in a
uniform manner.

If L is not trivial, we have an analogue to finite Laurent series. Here z
becomes a section in a bundle rather than a function. Since 7*(L) is a subset
of S x L, the diagonal map S — S x S C S x L gives us a section of 7*(L).
We denote this section by z. Taking tensor products we obtain, for k > 0,
a section z — k of (7*(L))¥, and a section 2=% of (7*(L*))k. We write L=*
for (L*)*. Then, for any k, k', L* ® L'* =~ LK¥*¥  Suppose that aj € (L~F).
Thenr*(ay) ® zF € T'(7*(1)), and thus 7*(a;) ® 2* is a function on S. We write
ayz* for this function. By a finite Laurent series, we shall understand a sum of
functions on S of the form .

Z akzk

k=—n

where aj, € T'(L™*) for all k.
More generally, if E°, E> are two vector bundles on X, and a; € I' Hom(LF®
E°, E>), then if we write ayz* for ap ® 2¥, we see that any finite sum of the

form .
f= Z apz®

k=—n

is an element of I'(7*(E?), 7*(E>)). If f € ISO(7*(E®), 7*(E>)), we call f a
Laurent clutching function for (EY, E>).

The function z is a clutching function for (1, L). Further, (1, z, L) is just the
bundle H* which we defined earlier. To see this, we first recall that H* was
defined as a sub-bundle of 7*(L @ 1). For each y € P(L®1)x, Hy; is a subspace
of (Ld1l)x , and

H =Lx®0, Hj=01x.

Thus, the composition
H w7 (Lel) —7"(1)
induced by the projection L & 1 — 1 defines an isomorphism:
fo: H* | P° — 73 (1).
Likewise, the composition

H* = (La1) = (L)
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induced by the projection L & 1 — L defines an isomorphism:
foo: H® | P — mg°(L).

Hence f = foofy': (1) — 7*(L) is a clutching function for H*. Clearly, if
y € S, f(y) is the isomorphism whose graph is Hy. Since Hy; is the subspace of
Lx & 1x spanned by y® 1(y € Sx C Lx,1 € C), we see that f is exactly our
section z. Thus

H*=(1,z,L).

Therefore, for any integer k,
HY = (1,27 L7F).

The next step in our classification of the bundles over P is to show that every
clutching function can be taken to be a Laurent clutching function. Suppose
that f € I Hom(7*E°, 7* E*°) is any section. We define its Fourier coefficients

ar, € T Hom(L* @ E°, E*)

by
_ 1 —k—1
ag(z) = 57 /Sz fozy "N dzy.

Here fx,zx denote the restrictions of f,z to Sz, and dzx is therefore a differ-
ential on Sx with coefficients in Lx. Let S,, be the partial sum

n
S, = g apz”

k=—n

and define the Cesaro means
1 n—1
n=— Sk.
fo=— ; K

Then the proof of Fejer’s theorem on the (C,1) summability of Fourier series
extends immediately to the present more general case and gives

Lemma 2.2.4. Let f be any clutching function for (E°, E*®), and let f, be
the sequence of Cesaro means of the Fourier series of f. Then f, converges
uniformly to f. Thus, for all large n, f,, is a clutching function for (E°, E>),
and (E°, f, E*®) = (EY, f,, E®).

Proof. Since ISO(E?, E* is an open subset of the vector space HOM(E?, E>),
there exists an € > 0 such that g € ISO(E?, E*) whenever |f — g| < ¢, where ||
denotes the usual sup. norm with respect to fixed metrics in E°, E>°,

Since the f,, converge uniformly to f we have |f — f,,| < e for large n. Thus,
for 0 <t <1,[tf+ (I —t)fn| € ISO(EY, E*®). Thus, f and f,, are homotopic in
ISO(E°, E®), so (E°, f, E®) = (E°, f,, E). O



28 CHAPTER 2. K-THEORY

Next, consider a polynomial clutching function; that is, one of the form

p= Z apz”.
k=0
Consider the homomorphism
(O )Lk ® E%) — = EOO@ZL’“@)EO)
k=0 k=1

given by the matrix

—z 1

It is clear that £™(p) is linear in z. Now, define the sequence p,(z) inductively
by
po=p, zpr+1(2) = pr(2) = pr(0).

Then we have the following matrix identity:

1 P P ... P, P 1

L"(p) = 1 1 -z 1

or, more briefly
L"(p) = (1+Ni)(p @ 1)(1+ Na)

where N; and N> are nilpotent. If N is nilpotent, 1 4 ¢/NV is nonsingular for
0 <t <1, so we obtain

Proposition 2.2.5. L"(p) and p @ 1 define isomorphic bundles on P, i.e.,
(E°, p, E®) @ ZL’“@EO,LZL’“ ® E°)

=~ (Z L* @ E°, L"(p), E* & ZLk ® E%)
k=0 k=1
Remark 2.2.6. The definition of £™(p) is, of course, modelled on the way one

passes from an ordinary differential equation of order n to a system of first order
equations.
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For brevity, we write £*(E°, p, E*) for the bundle

n n
O ke B LMp) . Exe) LFoE°).
k=0 k=1

Lemma 2.2.7. Let p be a polynomial clutching function of degree < n for
(E°, E*). Then

(Z) £n+1(E07pa Eoo) = En(E(),p7 Eoo) D (Ln+1 Y EO7 17Ln+1 Y EO)
(”) £n+1(L71 ® Eovzpv EOO) = 'Cn(anpv EOO) D (Lil ® anszO)

Proof. We have

L"(p) 0
n+1 _
L (r) = 0 ...o—z 17

Multiplying the z on the bottom row by ¢ gives us a homotopy between £"(p)
and L£"(p) @ 1. This establishes the first part.
Similarly,
0 a a1 ... an
-z 1
L (zp) = -z 1
—z
—z 1

We multiply the 1 on the second row by ¢ and obtain a homotopy between
L7+ (p) and L"(p) ® (—=2). Since —z is the composition of 2 with the map —1,
and since —1 extends E°, (L7!'® E?, —z, E%) = (L7! ® E°, 2, EV). The second
part is therefore proved. O

We shall now establish a simple algebraic formula in K (p). We write [E°, p, E*°]
for [(E°,p, E*)].

Proposition 2.2.8. For any polynomial clutching function p for E°, E>®, we
have the identity

([B%,p, E%] — [E°, 1, E°))([L][H] — [1]) = 0.

Proof. From the second part of the last lemma, together with the last proposi-
tion, we see that

(L'@E% 2p, EX) 0 () LF@ E°1,) LF® E)
k=0 =0

>~ (E%p, EX) o (Y LF @ E°, 1Y LF @ E)
k=1 k=1

® (L' ®E° 2 EY).
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Thus in K(P)
[L7'® E% 2p, E*) @ [E°,1,E°) = [E°,p, E*] @ [L™' ® E°, 2, E°].
Since [1,2, L] = [H™1],
[LYHES, p, BX] @ [E°,1, E°] = [E®,p, E¥] © [L™][H "] [E, 1, E]
In particular, if we put E° = 1,p = 2, E® = L, we obtain the formula
(1H) — D)(L)H] - 1) = 0
which is part of our main theorem. O

We now turn our attention to linear clutching functions. First, suppose that
T is an endomorphism of a finite dimensional vector space F, and let S be a
circle in the complex plane which does not pass through any eigenvalue of T

Then
1

_ -1
_27Ti/s(z T) dz

is a projection operator in F which commutes with 7. The decomposition
E=FE,.®oFE_E; = QFE ,E_ = (1 —Q)F is therefore invariant under T, so
that T" can be written as T'= T, & T_. Then T has all its eigenvalues inside
S, while _ has all its eigenvalues outside S. This is, of course, just the spectral
decomposition of T' corresponding to the two components of the complement of
S.

We shall now extend these results to vector bundles, but first we make a
remark on notation. So far z and hence p(z) have been sections over S. However,
they extend in a natural way to sections over the whole L. It will also be
convenient to include the oo-section of P in certain statements. Thus, if we
assert that p(z)az + b is an isomorphism outside S, we shall take this to include
the statement that a is an isomorphism.

Q

Proposition 2.2.9. Let p be a linear clutching function for (EY, E*), and
define endomorphisms QV, Q> of (E°, E>) by putting

1 _ 1 _
QSE:%/S ledpz Q;o:% o dpzpzl

Then Q° and Q> are projection operators, and
pQ° = Q%p
Write Ei. = Q'E*, E* = (1 — Q")E",i = 0,00, so that E' = E{ ® E*. Then p

is compatible with these decompositions, so that = py ©p_. Moreover, py is an
isomorphism outside S, and p_is an isomorphism inside S.
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Proof. 1t suffices to verify these statements at each point € X. In other words,
we may assume that X is a point, L = C, and z is just a complex number. Since
p(z) is an isomorphism for |z| = 1, we can find a real number «(> 1) such that
p(a): E°toE™ is an isomorphism. For simplicity of computation, we identify E°
with E°° by this isomorphism. Next, we consider the conformal transformation

1—az
w =

Z—«

which preserves the unit circle and its inside. Substituting for z, we find (since
we have taken p(a) = 1)

(2) = w—=T
P\ = w+ «
where T' € End(E"). Hence
1 _
0 _ T P ldp
T J)z|=1
1 ~1 ~1
=— - d -T) d
i ], (et 0= T) )
1 . _
= — (w—T) "dw since |a] > 1.
271 |w|=1
Similarly,
o = L/ (dw)(w —T)"* = Q°
21 |w|=1 ’

so our assertions follow from the corresponding statements concerning a linear
transformation T'. O

Corollary 2.2.10. Let p be as in 2.2.9, and write
p+=arz+by, p_=a_z+b_.
Then, if p(t) = p4(t) ® p_(t), where
pir(t) =ayz+tby, p_(t)=ta_z+b_, 0<t<1,

we obtain a homotopy of linear clutching functions connecting p with a1z @ b.
Thus
(E°,p, EX) = (EY, 2, L@ EY) @ (B2, 1, E2).

Proof. The last part of the last lemma implies that p, (¢) and p_(¢) are isomor-
phisms on S for 0 < ¢ < 1. Thus, p(¢) is a clutching function for 0 < ¢ < 1.
Thus,
(E%p, B®) = (E°, p(1), B)
~ (EV,a42, EY) @ (E°, b, EX).
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Since ay: L ® ES)r — ES°,b_: E° — E> are necessarily isomorphisms, we see
that

(E?o-’a—FZ»E-T-O) = (E—?-’ZvL ® E-?-)
(E°,b, E>) = (E°,1,E°).
O

Again, consider a polynomial clutching function p of degree < n. Then £P(p)
is a linear clutching function for (V°,V°°) where

Vo :i[,k@@Eo, Ve :E“@Xn:Lk@)EO.
k=0 k=1
Hence, it defines a decomposition
Vi=vlg VPO
as above. To express the dependence of Vfr) on p and n, we write
VY =V, (E% p, E™).

Note that this is a vector bundle on X. Let p; be a homotopy of polynomial
clutching functions of degree < m. By constructing V,, over X x I, it follows
that

Vi (E°, po, E*) == V,,(E°, p1, E™).

Hence, from the homotopies used in proving the two parts of 2.2.7, we obtain
Vi1 (E® p, E*) =V, (E°, p, E®),
Vi1 (L7 @ B 2p, E®) 2 V,(E°,p, E®) ® (L' ® E°)
or, equivalently
Vi1 (E, 2zp, L ® E®) = L ® V,(E°, p, E®) & E°.

Combining this with the above corollary and 2.2.5, we obtain the following
formula in K(P):

(B, p, BT+ {Y_[L* @ E'T}{1] = [V (E®, p, EX)][H ']
k=1

+{DIL" @ B = [Va(E®, p, EX)}[1]
k=0

and hence the formula

[B%,p, E] = [V (E®, p, E¥)|([H™] = [1]) + [E°][1].
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This shows that [V,'] € K[X] completely determines [E°,p, E*] € K(P). We
can now prove our theorem.

Let ¢ be an indeterminate over the ring K (X). Then the map ¢ — H induces
a K (X)-algebra homomorphism (recall that ((H — 1)(LH — 1) = 0)

w K(X)[0)/((t— D)(L)t - 1)) — K(P).

To prove that p is an isomorphism, we explicitly construct an inverse.

First, suppose that f is a clutching function for (E°, E*). Let f, be the
sequence of Cesaro means of its Fourier series, and put p,, = 2" f,. Then, if n
is sufficiently large, p,, is a polynomial clutching function (of degree < 2n) for
(E°, L™ ® E*°). We define

vn(f) € K(X)[t]/((t = 1)([L]t — 1))
by the formula
vn(f) = [Ven(E®, pn, L™ @ EX)| (1"~ — ") + [E°]t".

Now, for sufficiently large n, the linear segment joining p,,+1 and zp, provides
a homotopy of polynomial clutching functions of degree < 2(n + 1). Hence, by
the formulae following 2.2.10

Vont2(E%, pps1, L' @ E™) & Voo (E%, 2pp, L' @ E>)
= Vont1(E°, 2py, L' @ E*)
> L@ Van(E®, pn, L" @ E*) @ E°.

Hence

V1 (f) = {[L][Van(E®, pr, L™ ® EX)]} + [B?)(" — ") + [EO)t"H
vn(f)

since (t — 1)([L]t — 1) = 0. Thus, v,(f) is independent of n if n is sufficiently
large, and thus depends only on f. We write it as v(f). If g is sufficiently
close to f, and n is sufficiently large, the linear segment joining f, and g,
provides a homotopy of polynomial clutching functions of degree < 2n, and
hence vf = v, (f) = vn(g) = v(g). Thus, vf is a locally constant function of
f, and hence depends only on the homotopy class of f. However, if F is any
bundle on P, and f a clutching function defining F, we define v(E) = v(f),
and v(F) will be well defined and depend only on the isomorphism class of E.
Since v(E) is clearly additive for + , it induces a group homomorphism

v: K(P) = K(X)[t]/((t = D)([L]t - 1)).

From our definition, it is clear that this is a K (X )-module homomorphism.
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It remains to show that p and v are mutual inverses.
(uv is the identity:) With our notation as above,

v (B) = p{[Van(E®, pn, L™ @ EX)| (1"~ — ") + [E°)t"}

= [Vau(E®, pn, L" @ EX)[([H]" ™" + [H]") + [E°][H]"

= [E% p,, L™ @ E®|[H]"

= [EO, In, EOO]

= [E°, f, B>]

=FE.
Since K (P) is additively generated by elements of the form [E], this proves that
vv is the identity.

(vp is the identity:) Since vu is a homomorphism of K (X )-modules, it suffices
to show that vu(t™) = ™ for all n > 0. However,

vp(t") = v(H")

=v[l,z7", L7"]
[VQn(lv 1, 1)](tn_1 - tn) + [1]tn
=t", since V(1,1,1) =0.

2.3 Ke(X)

Suppose that G is a finite group and that X is a G-space. Let Vectg(X) denote
the set of isomorphism classes of G-vector bundles over X. This is an abelian
semigroup under @. We form the associated abelian group and denote it by
Kg(X). If G =1 is the trivial group then K (X) = K(X). If on the other
hand X is a point then Kg(X) = R(G) the character ring of G.

If E is a G-vector bundle over X then P(E) is a G-space. If E = L &1
when L is a G-bundle then the zero and infinite sections X — P(E) are both
G-sections. Also the bundle H over P(E) is a G- line bundle. If we now examine
the proof of the periodicity theorem which we have just given we see that we
could have assumed a G-action on everything. Thus we get the periodicity
theorem for Kq :

Theorem 2.3.1. If X is a G-space, and if L is a G-line bundle over X, the
map t — [H] induces an isomorphism of Ko (X)- modules:

Ka(X)[t]/(t[L] = 1)t =1) = Ka(P(L ® 1)),

2.4 Cohomology property of K

We next define K(X,Y) for a compact pair (X,Y). We shall then be able to
establish, in a purely formal fashion, certain properties of K. Since the proofs
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are formal, the theorems are equally valid for any “cohomology theory” satisfying
certain axioms. We leave this formalisation to the reader.

Let C denote the category of compact spaces, C* the category of compact
spaces with distinguished basepoint, and C? the category of compact pairs. We
define functors:

c? - ct
C — C?

by sending a pair (X,Y) to X/Y with basepoint y/Y (if Y # &, the empty set,
X?Y is understood to be the disjoint union of X and a point.) We send a space
X to the pair (X,@). The C — C* is given by X — X T, where X+ denotes
X/@.

If X isin C*, we define K (X) to be the kernel of the map i*: K(X) — K (z0)
i: wg — X is the inclusion of the base-point. If c: X — ¢ is the collapsing
map then ¢* induces a splitting K(X) = K(X) ® K(Xy). This splitting is

clearly natural for maps in *. Thus K is a functor on C*. Also, it is clear
that K(X) = K(XT'). We define K(X <Y) by K(X <Y) & K(X/Y).
In particular K(X,®) = K(X). Since K is a functor on C* it follows that
K(X <Y) is a contravariant functor of (X,Y) in C.
We now introduce the “smash product” operation in Ct. If X,Y € Ct we
put
XAY =X xY/X*Y

where X Y = X X yoUxg XY, xg, yo being the base-points of X, Y respectively.
For any three spaces X,Y, Z € CT we have a natural homeomorphism

XANYANZD)=(XAY)NZ

and we shall identify these spaces by the homeomorphism.

Let I denote the unit interval [0, 1] and let 91 = {0} U {1} be its boundary.
We take I/0I € C* as our standard model of the circle S*. Similarly if I™
denotes the unit cube in R™ we take I™/JI™ as our model of the n-sphere S™.
Then we have a natural homeomorphism

S~ S'ASYA---ASY (n factors).

For X € C* the space S* A X € C7T is called the reduced suspension of X,
and often written as SX. The n-th iterated suspension SS---SX (n times) is
naturally homeomorphic to S™ A X and is written briefly as S™ A X.

Definition 2.4.1. For n >0

K "(X) = K(5"X) for X e C*
K™X,Y)=K "(X,Y)=K(S"(X/Y)) for (X,Y) e C?
K"(X) =K "™X,2)=K(S"(X™")) for X € C.
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It is clear that all these are contravariant functors on the appropriate cate-
gories.
Before proceeding further we define the cone on X by

CX = (I x X)/({0} x X)

Thus C'is a functor C: C) — CT. We identify X with the subspace {1} x X of
CX. The space CX/X = (I x X)/(0I x X) is called the unreduced suspension
of X. Note that this is a functor X — C* whereas the reduced suspension S is a
functor CttoCt. If X € CT with base-point x, then we have a natural inclusion
map

I~ Cxo/zg— CX/X

and the quotient space obtained by collapsing I in CX/X is just SX. Thus by
1.4.9 p: CX/X — SX induces an isomorphism K (SX) = K(CX/X) and hence

also an isomorphism K(SX) = (CX, X). Thus the use of the notation SX for
both the reduced and unreduced suspensions leads to no problems.

If (X,Y) € C? we define X UCY to be the space obtained from X and CY
by identifying the sub spaces Y C X and {1} x CY. Taking the base-point of
CY as base-point of X UCY we have

XUCy e C?.

We note that X is a subspace of X UCY and that there is a natural home-
omorphism
(XUuCY)/ X =CY/Y.

X Thus, if Y € C?,
K(XuClY,X)=K(CY,Y)
~ K(SY)
=K (V).
Now we begin with a simple lemma.

Lemma 2.4.2. For (X,Y) € C? we have an ezact sequence

KX, Y) 5 k(x) S R(Y)
where i: Y — X and j: (X,2) = X,Y) are the inclusions.

Proof. (imj* C ker:*): The composition i*j* is induced by the composition
ji: (Y,2) — (X,Y), and so factors through the zero group K(X,Y). Thus
i*j* =0.

(im j* D keri*): Suppose now that £ € keri*. We may represent ¢ in the form
[E] — [n] where E is a vector bundle over X. Since i*¢ = 0 by assumption it
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follows that [F | Y] = [n] in K(Y). This implies that for some integer m we
have
(E®om)|Y=ndm

i. e., we have a trivialisation o of (E@m) | Y. This defines a bundle (F&m)/a
on X/Y and so an element

n=[E®m)/a] - n@&m| e K(X/Y)=K(X,Y).
Then
J*(n) =[E@m] —[nom]=[E] - [n] = ¢
Thus ker:* = im j* and the exactness is established. O

Corollary 2.4.3. If (X,Y) € C? and Y € C* (so that, taking the same base-
point of X, we have X € C* also), then the sequence

K(X,Y) = K(X) = K(Y)
18 exact .

Proof. This is immediate from 2.4.2 and the natural isomorphisms

K(X) = K(X) @ K(y)

K(Y) = K(Y) @ K(y)-

We are now ready for our main proposition:

Proposition 2.4.4. For (X,Y) € C? there is a natural ezact sequence (infinite
to the left)

-

S K S KNXY) D k(X)) D
K1) S KOX,Y) L KO(X) 5 KO(X).

Proof. First we observe that it is sufficient to show that, for (X,Y) € C? and
y € CT, we have an exact sequence of five terms

EX) S EY(y) S ROX,y) L5 KO(x) 5 RO(y) (2.4.5)

In fact, if this has been established, then we obtain an infinite sequence continu-
ing 2.4.5 by replacing (X,Y) with (S™"X,S"Y) for n = 1,2,.... Then replacing
(X,Y) by (X*T,YT) where (X,Y) is any pair in C* we get the infinite sequence
of the enunciation. Now 2.4.3 gives the exactness of the last three terms of
2.4.5. To get exactness at the remaining places we shall apply 2.4.3 in turn to
the pairs (X UCY, X) and (X UCY)UCX,X UCY). First, taking the pair
(X UCY, X) we get an exact sequence (where k, m are the natural inclusions)

K(XUCY,X) ™ K(xucy) 5 K(x).
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Since CY is contractible 1.4.9 implies that

P K(X/Y) = K(XUCY)
is an isomorphism where

p: XUCY - (XUCY)/CY =X/Y

is the collapsing map. Also the composition k*p* coincides with j*. Let

0: K(XUCY,X)— K XY)
be the isomorphism introduced earlier. Then defining

§: KHY) = K(X,Y)

by § = m*0~! we obtain the exact sequence

*

K '3 K(X,Y) L K(X)

which is the middle part of 2.4.5.
Finally, we apply 2.4.3 to the pair

(X UCiYUCyX, XU 01Y)

where we have labelled the cones C; and C in order to distinguish between
them, (see figure 2.1). Then we obtain the following exact sequence

X

Y

Figure 2.1:

K(XUCYUC,X,XUCY) = K(XUCYUC,X) — K((XUCY).

It will be sufficient to show that this sequence is isomorphic to the sequence
obtained from the first three terms of 2.4.5. In view of the definition of § it will
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be sufficient to show that the diagram

K(XUCY UC,X, X UCY) —= K(XUCY UCyX) (2.4.6)
K(CyX/X) K(C1Y]Y)
KH(Y)

commutes up to sign. The difficulty lies, of course, in the fact that ¢* is induced
by the inclusion

CQY — OQX

and that in the above diagram we have C1Y and not CoY. To deal with this
situation we introduce the double cone on Y namely C1Y U CyY . This fits into

JAN
N

the commutative diagram of maps

XUCYUCX C1Y)Y == SY (2.4.7)
C1Y UCyY
2 X/ X CyY)Y == SY

where all double arrows = induce isomorphism in K. Using this diagram we
see that diagram 2.4.6 will commute up to sign provided the diagram induced
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by 2.4.7
K(C1Y]Y)<— K(SY)

/

K(C1Y UCLY)
K(CLY)Y) <——— K(SY)

commutes up to sign. This will follow at once from the following lemma which
is in any case of independent interest and will be needed later. O

Lemma 2.4.8. Let, T: St — S! be defined by T(t) = 1 —t,t € I (we recall
that S = 1/0I) and let T A1: SY — SY be the map induced by T on S' the
identity on' Y (for Y € Ct). Then (T A1)*y = —y for y € K(SX).

This lemma in turn is an easy corollary of the following:

Lemma 2.4.9. For any map f: Y — GL(n,C) let Ef denote the corresponding
vector bundle over SY . Then f — [Ef| — [n] induces a group isomorphism

lim [V, GL(n.C)] = K(SY)

n— oo
where the group structure on the left is induced from that of GL(n,C).

The fact that this is in fact a group homomorphism follows from the homo-
topy connecting the two maps GL(n,C) x GL(n,C) — GL(2n,C) given by

A 0
A><B—>{O B}
and
AB 0
AXB%[O 1]

This homotopy is given explicitly by
A 0| | cost sint| |1 O] |cost sint
pi(Ax B) = [0 1} [ sint cos t} {O B} {sint cos t}

where 0 <t < /2.
From 2.4.4 we deduce at once:

Corollary 2.4.10. If Y is a retract of X, then for all n > 0, the sequence
K"™X,)Y)— K ™(X)— K ™Y) is a split short exact sequence, and

K "X)2K "X, Y)®e K "(Y).
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Corollary 2.4.11. If (X,Y) are two spaces with base-points, the projection
maps tx: X XY = X, my: X XY =Y induce an isomorphism for all n > 0

K "XxY)2K ™"(XAY)® K "(X)e K "(Y).
Proof. X is a retract of X x Y, and Y is a retract of (X x Y)/Y. The result
follows by two applications of 2.4.10. O
Since K°(X AY) is the kernel of i% @ i%: KO(X xY) = K°(X) & KO(Y),

the usual tensor product K°(X) ® K°(Y) — K°(X x Y) induces a pairing
K°(X)® K°(Y) - K°(X AY). Thus, we have a pairing

K "X)9K ™Y)= K ""™XAY)
since S" AS™Y = SPASTAXAY = ST A X AY. Replacing X by X1,V
by Yt, we have

K "(X)® K-™Y) = K ""™X xY).
Using this pairing, we can restate the periodicity theorem as follows:

Theorem 2.4.12. For any space X and any n < 0, the map K ~%(point) ®
K™(X) — K " %(X) induces an isomorphism

B: K™"(X) — K "%(X).

Proof. K~2(point) = K(S? is the free abelian group generated by [H] — [1].
If (X,Y) € C? the maps in the exact sequence 2.4.5 all commute with the
periodicity isomorphism S. This is immediate for * and j* and is also true for
¢ since this was also induced by a map of spaces. In other words S shifts the
whole sequence to the left by six terms. Hence if we define K™ (X,Y) for n > 0
inductively by K~ = K "2 we can extend 2.4.5 to an exact sequence infinite
in both directions. Alternatively using the periodicity 5 we can define an exact
sequence of six terms

K°(X,Y) —— K°%(X) —— K°(Y)

T l

K'(Y) KYX)<— KY(X,Y)

Except when otherwise stated we shall now always identify K™ and K"~2. We
introduce

K*(X)=KX)o K'(X).
Thus we define K*(X) to be K°(X) @ K'(X). Then, for any pair (X,Y) we
have an exact sequence

K°(X,Y) —— K%(X) ——= K°(Y)

! |

K'Y(Y)<~—K'(X)<=— K'X,Y)
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O

The form of the periodicity theorem given in 2.4.12 is a special case of a
more general “Thom isomorphism theorem”. If X is a compact space, and
F is a real vector bundle over X, the Thom complex X of E is the one point
compactification of the total space of E. Alternatively, if £ is a complex bundle,
XE = P(E®1)/P(E). Thus, we see that K(X) a module over K(X). The
Thom isomorphism theorem for complex line bundles can now be stated.

Theorem 2.4.13. If L is a complex line bundle, K(XL) is a free K(X)-module
on one generator u(L), and image of p(L) K(P(L ® 1)) is [H] — [L*].

Proof. This is immediate from our main theorem determining K(P(L®1)) and
the exact sequence of the pair P(L @ 1), P(L) (note that P(L) = X). O

We conclude this section by giving the following extension of 2.4.8 which will
be needed later.

Lemma 2.4.14. Let T,: S"X — S™X be the map induced by a permutation
o of the n factors in S™ = S ASYA - ASL. Then (T,)*x = sgn(o)x for
ze K(S"X).

Proof. Considering S™ as the one-point compactification of R” we can make
GL(n,R) act on it and hence on K (S™X). This extends the permutation actions
T,. Since GL(n,R) has just two components characterized by sgndet it is
sufficient to check the formula T*z = —z for one T' € GL(n, R) with det T = —1.
But 2.4.8 gives this formula for

—1

2.5 Computations of K*(X) for some X

From the periodicity theorem, we see that K (5™) = 0if nis odd, and K (S™) = Z
if n is even. This allows us to prove the Brouwer fixed point theorem.

Theorem 2.5.1 (Brouwer fixed point theorem). Let D™ be the unit disc in
Fuclidean n-space. If f: D™ — D™ is continuous, then for some x € D", f(x) =
x.

Proof. Suppose f(x) # z for all z € D™ and define g: D™ — S"~! by g(x)
(1 = a(z))f(x) + a(x)z, where a(z) is the unique function such that a(z)
0,lg(z)] = 1. If f(x) # « for all x, clearly such a function a(z) exists.

r € S" 1t alr) =1, and g(z) = 2. Thus g is a retraction of D" onto S"~
However, we have K*(D") = 0, and K*(S™~1) # 0, a contradiction. Thus there
must exist a point € D™ such that f(z) = . O

(z

H.'_—'.1|V Il
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We will say that a space X is a cell complez if there is a filtration by closed
sets X 1 C Xo C X; C -+~ C X,, = X such that each X \ X;_; is a disjoint
union of open k-cells, and X_| = @.

Proposition 2.5.2. If X is a cell complex such that Xo = Xogy1 for all k,
then

1. K{(X)=0

2. K°(X) is a free abelian group with generators in a one-one correspondence
with the cells of X.

Proof. We proceed by induction on n. Since Xo,, /Xa,_2 is a union of 2n-spheres
with a point in common, we have:

K'Y (Xon, Xop—2) =0
K°(Xopn, Xon_2) = Z*

where k is the number of 2n-cells in X. The result for X5,, now follows from
the inductive hypothesis and the exact sequence of the pair (Xa,, Xo,-2). O

As examples of spaces to which this proposition applies, we may take X to
be a complex Grassmann manifold, a flag manifold, a complex quadric (a space
whose homogeneous defining equation is of the form Y 2? = 0). We shall return
to the Grassmann and flag manifolds in more detail later.

Proposition 2.5.3. Let 1,---,L, be line bundles over X, and let H be the
standard bundle over P(Ly @ ---Ly,,). Then, the map t — [H| induces an iso-
morphism of K(X)-modules
KX/ ] - L) = K(P(L1 & -+~ Ln)).
i=1

Proof. First we shall show that we may take L, = 1. In fact for any vector
bundle E and line bundle L over X we have P(E® L) = P(FE) and the standard
line bundles G,H over P(E ® L*),P(E) are related by G* = H*® L, i.e.,
G =H®L* Taking E=L;®---L, and L = L} we see that the propositions
for Li®--- L, and for M; ®--- M,, with M; = L; ® L}, are equivalent. We shall
suppose therefore that L,, = 1 and for brevity write

P,=PLi® L, forl1<m<n

so that we have inclusions X = P, C P, C --- C P,. If H,, denotes the standard
line bundle over P, then H,, | P,,—1 = H,,—1. Now we observe that we have a
commutative diagram

P, —S£PH_ 1)

Pl N >Pn
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(mp—1 is the projection onto X = Py,i, is the inclusion, s is the zero section)
which induces a homeomorphism

P(Hy_1)/s(Pn—1) = Pn/P1.

Moreover ¢*(H,,) = G, the standard line bundle over P(H_;). Now K (P(H}_;))
is a free K(P,_1)-module on two generators [1] and [G], and [G] satisfies the
equation ([G] — [1])([G] — [Hn-1]) = 0. Since s*[G] = [1] it follows that
K(P(H}_y),s(Py—1)) is the submodule freely generated by [G] — [1] and that,
on this submodule, multiplication by [G] and [H,,—1] coincide. Hence K (P, P;)
is a free K(P,,—1)-module generated by ([H,] — [1]) and this module structure

is such that, for any « € K(P,, Py),
[Hp-1]z = [Hy]z.

Now assume the proposition established for n — 1, so that

n—1

K(X)[t}/H(L;")

1%

K(P,_1)

with ¢ corresponding to [H,_1]. Then it follows that ¢ — [H,] induces an
isomorphism of the ideal (¢ — 1) in

onto K(P,,P;). Since
K(P,) 2 K(P,,P)® K(X)

and since L, = 1 this gives the required result for K(P,) establishing the
induction and completing the proof. O

Corollary 2.5.4. K(P(C")) 2 Z[t]/(t — 1)™ under the map t — [H].
Proof. Take X to be a point. O

We could again have assumed that a finite group acted on everything, and
we would have obtained

n

Ka(X)[1/ Tt~ [L]) = Ka(P(Ly @ -~ L,)).
=1

2.6 Multiplications in K*(X,Y)

We first observe that the multiplication in K (X) can be defined “externally” as
follows. Let E, F be two bundles over X, and let EQF be 7% (FE) @ mj(F) over
X x X. If A: X = X x X is the diagonal, then E® F = A*(EQF).
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If £ is a bundle on X, F a bundle on Y, let EQF = 7% @ 75 (F) on X x Y.
This defines a pairing

K(X)® K(Y) = K(X xY).

If X, Y have base-points, K (X AY) is the kernel of K(X xY) — K(X)® K(Y).
Thus, we have K(X)® K(Y) - K(X AY). That is,

K(X,A)® K(T,B) = K(X xY,(X x BYU(A xY)).

We define (X, A) x (Y,B) tobe (X xY,(X x B)U (A xY)).

In the special case that X =Y, we have a diagonal map A: (X, AUB) —
(X, A)x (X, B). This givesus K(X, A)®K (X, B) - K(X, AUB). In particular,
taking B = &, we see that K(X, A) is a K(X)-module. Further, it is easy to
see that

K(X,A) - K(X) = K(A)

is an exact sequence of K (X )-modules.
More generally, we can define products

K "X, A K"™Y,B) > K ""™((X,A) x (Y,B))

for m,n < 0 as follows:

K~"(X,A) = K(5" A (X/A))
K~™(,B) = K(S™ A (Y/B)).

Thus, we have

K "(X,A) @ K~"™(Y,B) = K(5" A (X/A) A S™ A (Y, B))
= K(S" AS™ A (X/A) A (Y, B))
= K""™((X, A) x (Y, B)).

Thus, if we define zy € K~""™(X,AUB) for s € K "(X,A),y e K-™(X,B)
to be A*(z ® y), where A: (X, AU B) — (X, A) x (X, B) is the diagonal, then
2.4.14 shows that zy = (—1)™"yuz.

We define K#(X, A) to be

i K~"(X, A).
n=0

Then K#(X) is a graded ring, and K#(X,A) is a graded K#-module. If
B € K—2(point) is the generator, multiplication by 3 induces an isomorphism
K(X,A) = K —n — 2(X, A) for all n. We define K*(X, A) to be K# (X, A)/(1—
B). Then K*(X) is a Z/2Z-graded ring, and K*(X, A) is a Z/2Z-graded module
over K*(X).
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For any pair (X, A), each of the maps in the exact triangle

K*(X) K*(A)

~_

K*(X, A)

is a K*(X)-module map. Only the coboundary § causes any difficulty and so
we need to prove

Lemma 2.6.1. §: K 1(Y) = K°(X,Y) is a K(X)-module homomorphism.

Proof. By definition 6 is induced by the inclusion of pairs j: (X x {1} UY x
LY x{0}) - (X x {1} UY x LY x {0} UX x {1}). (See Figure 2.2.) Hence

1
x Y | ——
Figure 2.2:

6 = j* is a module homomorphism over the absolute group
K(X x{1}UY xI) =2 K(X).

It remains only to observe that the K (X)-module structures of the two groups
involved are the standard ones. For K~1(Y) this is immediate and for K(X,Y)
we have only to observe that the projection I — {1} induces the isomorphisms

K(X,Y) > K(X x {1}UY x I,Y x {0})
K(X) = K(X x {1}UY x I).

O

We shall now digress for some time to give an alternative and often illumi-
nating description of K (X, A) which has particular relevance for products.

If n > 1, we define C,,(X, A) to be a category as follows:
An object of C,, (X, A) is a collection E,,, E,,_1,- - , Ey of bundles over X, to-
gether with maps «;: E; | A — E;_1 | A such that

0By |[ASS E,  |AZS B |A=0
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is exact.

The morphisms ¢: E — F, where E = (E;, o;), F = (F}, 8;), are collections of
maps ¢;: E; — F; such that 3;p; = ¢;_10;. In particular, C'(X, A) consists of
pairs of bundles E1, Ey over X and isomorphisms «: Fy | A= Ry | A.

An elementary sequence in C,, (X, A) is a sequence of the form 0, ...,0, E,, E,_1,0, ...

where E, = E,_1,a =, identity map. We define E ~ F for some set of elemen-
tary objects Q1,...Qn, P1,..., Pn,

EFEQ1® - Q. ZEFOPL® - ® Py,

The set of such equivalence classes is denoted by £,(X, A). It is clear that
L,(X, A) is a semigroup for each n.

There is a natural inclusion C, (X, A) C C,41(X, A) which induces a homo-
morphism £, (X, A) = L,4+1(X, A). We denote by Coo (X, A) the union of all
the C, (X, A), and by L (X, A) the direct limit of the £, (X, A).

The main theorem of this section is the following:

Theorem 2.6.2. For alln > 1, the maps L£,,(X, A) = L,+1(X, A) are isomor-
phisms, and L,(X,A) 2 K(X, A).

We shall break up the proof of this theorem into a number of lemmas.

Consider first the special case A = @,n = 1. Then C;(X, @) consists of all
pairs E1, Fy of bundles. We see that (E1, Eg) ~ (F1, Fp) if and only if there are
bundles @, P such that F1 ®Q = F1 ® P,Ey ® Q = Fy ® P. Then the map
L1(X,2) = K(X),(E1, Ey) — [Eo] — [E1] is an isomorphism. In fact £1(X, @)
coincides with one of our definitions of K(X).

Definition 2.6.3. An FEuler characteristic x, for £, is a transformation of

functors
Xn: Ln(X,A) —» K(X,A)

such that whenever A = @, x(En, En_1,...,Eo) = Y. (=1)[E;].
To begin we need a simple lemma.

Lemma 2.6.4. Let A C X, and let E,F be bundles over X. Let p: E | A —
F| A: E— F be monomorphisms (resp. isomorphisms) and assume ¢ | A is
homotopic to p. Then ¢ extends to X as a monomorphism (resp. isomorphism).

Proof. Let Y = (A x [0,1]) U (X x [0]). Then, if E’, E’ are the inverse images
of E,F under the projection Y — X, we can define ®: £/ — F’ which is a
monomorphism. (resp. isomorphism) such that ® | (Ax[1]) =, ® | (X x[0]) =
1. We can extend ® to (U x [0,1]) U (X x [0]) for some neighbourhood U of A.
Let f: X — [0,1] be a continuous map such that f(A) =1, f(X \U) = 0. Let
©x = (4, f(x))- Then this extends ¢ to X. O

Lemma 2.6.5. If X is a point,
0— L1(X,4) = L1(X) = L1(A)

is exact. Thus, if x1 is an Euler characteristic for L1, x1: L1(X,A) — (K, A)
is an isomorphism when A is a point.

,0
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Proof. (L is half exact) : If Eq, Ey represents an element of £q(X) whose
image in £4(Z) is zero, E; and Ej have the same dimension over A. Thus
there is an isomorphism ¢: Fy | A — Ey | A. Thus we have exactness for
(L, is left exact) : If (Eq, Ey, ¢) has image zero in £1(X), there is a trivial P
and an isomorphism 1 /colonEy ® P = Ey @ P. (@ 1)1 is an automorphism
of Ey @ P | A. Since A is a point any such automorphism must be homotopic
to the identity and hence by 2.6.4 it extends to aFy @& P = Ey & P. Thus, we
have a commuting diagram:

(B o P)| A (ByaP)| A

Ml lam

(Bo® P) | A—> (Ey @ P) | A

Thus (E1, Eo, @) represents 0 in £q(z,a). Thus £1(X, A) — £,(X) is an injec-
tion. O

Lemma 2.6.6. £1(X/A,A/A) — L1(X, A) is an isomorphism for all (X, A).
ThusA» if x1 is an Euler characteristic, x1: L1(X,A) — K(X, A) is an iso-
morphism for all (X, A).

Proof. (x1 is injective) : Since the isomorphism £;(X/A, A/A) — K(X,A)
factors through £4(X, A), the map £4(X/A, AJA) — £1(X, A) is injective.

(x1 is onto) : Suppose that Fi, Ey are bundles on X,a: F1 | A — Eg | Ais
an isomorphism. Let P be a bundle on X such that there is an isomorphism
B: E1®0 — F, where F is trivial. Then (E1, Ey, «) is equivalent to (F, Eg® P,y
where v = (a®1)3~L. Then, (F, Ey& P, is the image of (F, (Eq® P)/v,v/7).
Thus, £1(X/A, AJA) — L£41(X, A) is onto. O

Lemma 2.6.7. If x1, X} are two Euler characteristics for L£1,x1 = X}-

Proof. X’lel is a transformation of functors from K to itself which is the iden-
tity on each K(X). Since K(X,A) = K(X/A) is injected into K(X/A), it is
the identity on all K (X, A). O

Lemma 2.6.8. There exists an Euler characteristic x1 for Ly.

Proof. Suppose (F1, Ey,a) represents an element of £4(X, A). Let Xy, X; be
two copies of X, and let = XU, X7 be the space which results from identifying
corresponding points of A. Then [Fy,a, Xo] € K(Y). Let m;: Y — X, be the
obvious retraction. Then K(Y) = K(Y, X;) ® K(X;). The map (Xo,A4) —
(Y, X;) induces an isomorphism K(Y, X;) — K(Xo,A). Let x;(E1, Eo, ) be
the image of the component of [E}, «, Ey] which lies in K(Y, X;). If A = &,
then x(E1, Eop,a) = [Ep] — [E1]- One can easily verify that this definition is
independent of the choices made. O
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Corollary 2.6.9. The class of (F1,Ep,«) in L£1(X,A) depends only on the
homotopy class of a.

Proof. Let Y = X x [0,1], B = A x [0,1]. Let oz be a homotopy with ag = a
Then «; defines 5: 7*(Ey) | B= n*(Ey | B). Let i;: (X, A4) — (X x[j], Ax [j]).
From the commuting diagram

<

Loo(X,A) <2 £ (Y, B) —> £(X, A)

N

K(X,A)=——K(,B) —— K(X, A)
20 2
we see that (Ey, Eg, ag) = (E1, Fo, 1), since every map is an isomorphism and
is(i3) 71 is the identity. O
Lemma 2.6.10. The map L,(X,A) = L,11(X, A) is onto for n > 1.

Proof. If (Ep41,-++, Eo;apy1, -+ , 1) represents an element of £, 1(X, A)),
so does

(En+17En ® Rn+17En71 ® EnJrlaEana e 7E0§04n+1704n ® 17 e aal>

The two maps a1 ®0: Epp1 = E, S FEpand 00 1: By — E, @ Ep 1 are
(linearly) homotopic as monomorphisms. Now, 0® 1 extends to X, and thus by
2.6.4 a1 @ 0 extends to a monomorphism §: E,y1 — E, ® E,y1 on all X.
Thus we can write E,, @ E,,1+1 as S(Ep+1) ® Q. Then we see that, if v: Q —

E,_1 ® E,41 is the resulting map, (Ep41, -+, Fo; ant1, -+ , 1) is equivalent
to (0,Q,En—1® Eny1,--+,Ep; 0,7, ,a1). Thus £,(X,A) = L,11(X, A) is
onto. 0

Lemma 2.6.11. The map L,(X,A) = Ln1+1(X, A) is an isomorphism for all
n>1.

Proof. Tt suffices to produce a map L£,11(X,A) — L£1(X,A) which is a left
inverse of the map £1(X,A) = L,+1(X, A).

Let (E,, -, Eo;ap, -+ ,a1) represent an element of £,1(X,A). Choose
a Hermitian metric on each E;. Let of: E;_; | A — E; | A be the Hermitian
adjoint of ;.

Put Fy = ZEQi,Fl = ZEQiJrl, and define 3: F; — Fy by 8 = 20421‘4,1 +
Y ab . Then (Fy,Fy,B) € L1(X,A). This gives us a map L,(X,A4) —
L1(X,A). To see that it is well defined, we need only see that it does not
depend on the choice of metrics. But all choices of metric are homotopic to one
another, so that a change of metrics only changes the homotopy class of 5. Thus
this map is well defined. It clearly is a left inverse to £1(X, 4) — £,(X,4). O

Corollary 2.6.12. For each n there exists evactly one Euler characteristic
Xn: Ln(X,A) = K(X,A), and it is always an isomorphism. Thus, there exists

X Loo(X,A) S5 K(X, A).



50 CHAPTER 2. K-THEORY

We next want to construct pairings
L(X,A)@ Ly (X') = Lom((X,Y) @ (XY
compatible with the pairings
KX, AKX - K(X,)Y)® (X', Y.

To do this, we must consider chain complexes of vector bundles, i.e., sequences

On

0= E, 2 B, 1 25 . 25 By — 0

where 0;0;41 = 0 for all 4.

Lemma 2.6.13. Let Ey, - E, be vector bundles on X, and let 0;: E; | Y —
E;_1|Y be such that

05 E, |Y 2% E, 1 |Y 2 . 25 B | Y =0

Then the o; can be extended to p;: F; — E;_1 on X such that p;p;11 = 0 for
all i.

Proof. We shall show that there is some open neighbourhood U of Y in X and
an extension 7; of o; to U for all ¢ such that

05 E, | U Epy |US o I By [ U -0

is exact: the extension to the whole X is then achieved by replacing 7; by p7;
where p is a continuous function on X such that p = on Y and suppp C U.

Suppose that on some closed neighbourhood U; of Y in X, we could extend
01,---0; to 7, -+ ,7; such that,

0= By | Ui B By oy |U; 25 oo 25 By | U; — 0

is exact. Let K; be the kernel of 7; on U;. Then ;1 defines a section of
Hom(E; 1, K;) defined on Y. Thus, this section can be extended to a neighbour-
hood of Y in U;, and thus o;41: E;41 — K; can be extended to 7,41: E; 41 — L;
on this neighbourhood. As o, is a surjection on Y, 7,41 will be a surjection
on some closed neighbourhood U;;1 of Y in U;. Thus, the lemma follows by
induction on i. O

We introduce the set D, (X,Y") of complexes of length n on X which are
acyclic (i.e., exact) on Y. We say that two such complexes are homotopic if
they are isomorphic to the restrictions to X x {0} and to X x {1} of an element
in D, (X x I,Y x I). There is a natural map

®: D,y (X,Y) > Lo(X,Y)

given by restriction of homomorphisms.
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Lemma 2.6.14. ® induces a bijection of homotopy classes.

Proof. The last lemma shows that @ is surjective. To show that ® is injective
we have to show that any complex over X x {0} UX x {1} UY x I which is
acyclic over Y x I can be extended to a complex on the whole X x I. We carry
out this extension in three steps.

First we make the obvious extensions to X x [0,1/4] and X x [3/4,1].

Next we apply the preceding lemma to the pair X x [1/4,3/4],Y x [1/4,3/4] U
V x{1/4} UV x {3/4} where V is a closed neighbourhood of Y in X over which
the given complexes are still acyclic. This gives a complex on X x [1/4,3/4]
which agrees with that already defined at the two thickened ends along the strips
V x {1/4} and V x {3/4}. Thus if we now multiply everything by a function p
such that

0 on (X\V)x{1/4}U(X\V)x {3/4},

we obtain the desired extension (see figure 2.3: the dotted line indicates the
support of p) . If E € D, (X,Y),F € D,,,(X',Y’) then E® F is a complex on

{1 on X x {0}UX x {1}UU x I
p:

3/4

1/4

Figure 2.3:

X x X’ which is acyclic on (X xY’)U (X’ xY'). Thus we have a natural pairing
Du(X,Y) @Dy (X',Y') = Dren (X, Y) x (X', Y))
which is compatible with homotopies. Thus, by means of ®, it induces a pairing

L,(X,Y)®RLn( XY = Lim((X,Y) x (X',Y7)).

Lemma 2.6.15. For any classes x € L,(X,Y),2' € L,,(X",Y),

X(z x ') = x(z)x(a").

Proof. This clearly holds when Y =Y’ = @. However, the pairing K(X,Y) ®
K(X'Y') — K((X,Y)x(X',Y")) which we defined earlier was the only natural
pairing compatible with the pairings defined for the case Y =Y’ = @. O
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With this lemma we now have a very convenient description of the rela-
tive product. As a simple application we shall give a new construction for the
generator of K(S*").

Let V' be a complex vector space and consider the exterior algebra A*(V).
We can regard this in a natural way as a complex of vector bundles over V.
Thus we put E; =V x AY(V), and define

V x A(V) =V x ATV

by
(v,w) — (v,v Aw).

If dimV = 1 the complex has just one map and this is an isomorphism for
v # 0. Thus it defines an element of K (B(V), S(V)) = K(S?) where B(V), S(V)
denote the unit ball and unit sphere of V' with respect to some metric. Moreover
this element is, from its definition, the canonical generator of K (S?) except for
a sign —1.
Since
N VeW)ZA" (V) A (W)

it follows that for any V, A*(V') defines a complex overV acyclic on V' \ {0}, and
that this gives the canonical generator of K (B(V),S(V)) = K(S2") except for
a factor (—1)" (where n = dim V).

More generally the same construction applies to a vector bundle V' over
a space X. Let us introduce the Thom space X" defined as the one-point
compactification of V' or equivalently as B(V)/S(V). Then K(B(V),S(V)) =

K(XV) and the exterior algebra of V defines an element of K(X") which we
denote by Ay . It has the two properties

(A) Ay restricts to a generator of K(PV) for each point P € X.
(B) Avew = Av-Aw, where this product is from K (XV)x K (X") to K (XV®W).

A very similar discussion can be carried out for projective spaces. Thus if V' is
a vector bundle over X let P = P(V &1) and let H be the standard line-bundle
over P. By definition we have a monomorphism

H* -7 (Veal)

when 7: P — X is the projection. Hence tensoring with H we get a section of
H@n*(V @1). Projecting onto the first factor gives therefore a natural section

seD(H® V).

Consider the exterior algebra A*(H @ 7*V'). Each component is a vector bundle
over P and exterior multiplication by s gives us a complex of vector bundles
acyclic outside the subs pace where s = 0. But this is just the image of the
natural cross-section X — P. If we restrict to the complement of P(V)) in
P(V & 1) then H becomes isomorphic to 1 and we recover the element which
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defines Ay (identifying P(V @ 1) \ P(V) with V in the usual way). This shows
that the image of Ay, under the homomorphism

K(XV)=K(P(V®1),p(V)) = K(P(V ®1))
is the alternating sum
Y (LI HTNV].

We conclude this section by remarking that everything we have been saying
works equally well for G-spaces, G being a finite group. We have only used the
basic facts about extensions of homomorphisms etc. which hold equally well for
G bundles. Thus elements of K (X,Y) maybe represented by G-complexes of

vector bundles over X acyclic over Y. In particular the exterior algebra of a
G-vector bundle V' defines an element

Ay € Kg(XVY)

as above.

2.7 The Thom isomorphism

If E =5 L, is a decomposable vector bundle over X (i.e., a sum of line-bundles)
then we have 2.5.3 determined the structure of K(P(F)) as a K(X)-algebra.
Now for any space X we have a canonical isomorphism

K*(X)= K(X x 8%
Also, if 7: X x S' — X is the projection, we have
P(E) x S' = P(7*E)

and so
K*(P(E)) = K(P(r*E)).
Thus replacing X by X x S! in 2.5.3 gives at once

Proposition 2.7.1. Let E = Y L; be a decomposable vector bundle over X.
Then K*(P(E)), as a K*(X)-algebra, is generated by [H] subject to the single

relation
[Tz -1 =o.

Remark 2.7.2. As with 2.5.3 this extends at once to G-spaces giving K} (P(E))
as a K} (X)-algebra.

Now the Thorn space X¥ may be identified with P(E @ 1)/P(E), and at
the end of §2.6 we saw that the image of Ag in K(P(E @ 1)) is

> (CDHTINE] =T~ [L[H]).
Since this element generates (as an ideal) the kernel of
K*(P(E® 1)) —» K*(P(E))

we deduce
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Proposition 2.7.3. Let E be a decomposable vector bundle over X. Then
K*(X¥F) is a free K*(X)-module on \g as generator.

Remark 2.7.4. This “Thorn isomorphism theorem” for the decomposable case
also holds as before for G-spaces. We now show how this fact can be put to use.

Corollary 2.7.5. Let X be a G-space such that K;(X) = 0 and let E be a
decomposable G-vector bundle. Then, if S(E) denotes the sphere bundle, we
have an exact sequence

0— KL(S(E)) = K& % K&(X) = K&4(S(E)) =0
where ¢ is multiplication by
A[E] = (-1)'N[E].

Proof. This follows at once by applying 2.7.3 in the exact sequence of the pair
(B(E),S(E)). 0

In order to apply this corollary when X = point we need to verify
Lemma 2.7.6. K} (point) = 0.
Proof. 1t is sufficient to show that
Ka(S') — Ke(point)

is an isomorphism. But, since G is acting trivially on S', we have

Kq(8") = K(S' @ R(G))
>~ K(point) ® R(G)
=~ Kg(point).

O

Thus we can take X = point in 2.7.5. Moreover if we take G abelian then
F is necessarily decomposable. Thus we obtain

Corollary 2.7.7. Let G be an abelian group, E a G-module. Then we have an
exact sequence

0— KL(S(E)) = R(G) % R(G) — K2(S(E)) — 0

where ¢ is multiplication by

A[E] = (-1)'N[E].

Suppose in particular that G acts freely on S(F) (it is then necessarily
cyclic), so that
K&(S(E)) = K7 (S(E)/G).

Thus we deduce
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Corollary 2.7.8. Let G be a cyclic group, E a G-module with S(E)G-free.
Then we have an exact sequence

0— K'(S(E)/G) = R(G) & R(G) = K°(S(E)/G) =0
where @ is multiplication by A\_1[F)].

Remark 2.7.9. A similar result will hold for other groups acting freely on spheres
once the Thom isomorphism for K has been extended to bundles which are
not decomposable. However, this will not be done in these notes.

As a special case of 2.7.8 take G = Z/2Z,E = C" with the (—1) action.
Then
S(E)/G = Pap_1(R)

is a real projective space of odd dimension, and we have
R(Z/22) = Z[p] /(s> — 1)
A [E) = (1-p)™.

Putting ¢ = p — 2 so that 02 = —20 and A_1[E] = (—0)" we see that

K°(Py,—1(R)) is cyclic of order 2"~! while K!(P,_1(R)) is infinite cyclic. If
we compare the sequences for n and n + 1 we get a commutative diagram

(o)t

0 —— K'(Py,11) — R(Z/2Z) —— R(Z/2Z)

0 —— K'(P2p1) — R(Z/2Z) T R(Z/2Z)

But in R(Z/2Z) the kernel of (—o)™ (for n > 1) is (2— o) and so coincides with
the kernel of —o. Hence the map

K'(Pypi1) = K (Payy)

is zero. From the exact sequences of the pairs (Pont1, Pon), (Pan, Pon—1) we
deduce that
KY(Pypy1) = K'(Poy)

is surjective, while
K'(Py,) = K'(Pyy—1)

is injective. Hence
KY(Py,) = 0.

The exact sequence of the pair (Ps,+1, P2) then shows that
K°(Papi1) = K°(Pay)

is an isomorphism. Summarising we have established
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Proposition 2.7.10. The structure of K*(P,(R)) is as follows
KY(Pyuy1) =17
K'(P3,) =0
K°(Pypyi1) = K%(Pyy,) = Z)2"Z.
We leave it as an exercise to the reader to apply 2.7.8 to other spaces.
We propose now to proceed to the general Thom isomorphism theorem. It
should be emphasised at this point that the methods to be used do not extend
to G-bundles. Entirely different methods are needed for G-bundles and we do

not discuss them here.
We start with the following general result

Theorem 2.7.11. Let 7: B — X be a map of compact spaces, and let i1, -+, in,
be homogeneous elements of K*(B). Let M* be the free (Z/27Z-) graded group
generated by p1,- -+, lbn. Suppose that every point x € X has a neighbourhood
U such that for all V C U, the natural map

K* V)@ M* — K*(x~1(V))
is an isomorphism. Then, for any Y C X, the map
K*(X,Y)® M* — K*(B,7—*(Y))
is an isomorphism.
Proof. If U C X has the property that, for all V C U,
K*(V)o M* = K*(z~ (V) (2.7.12)

we shall say that U is good. If U is good then, using exact sequences and the
fact that @ M* preserves exactness (M™* being torsion free) we deduce

K*(U, V)@ M* = K*(z~ Y (U), 7=~ }(V)) (2.7.13)

Here we use of course the compatibility of o with products (Lemma 2.6.1).
What we have to show therefore is

X locally good = Xgood.
Since X is compact it will be enough to show that
Uy,Us good = U; U U, good.

Now any V' C Uy UUs is of the form V = V; UV, with V;/subsetU; (and so V;
is also good). Since
V/Va =Vi/(VinVz)

it follows that (2.7.13) holds for the pair (V, V3). Since (2.7.12) holds for V5 the
exact sequence of (V,V3) shows that (2.7.12) holds for V. Thus U; UUs is good
and the proof is complete. O
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Corollary 2.7.14. Let w: E — X be a vector bundle, and let H be the usual line
bundle over P(E). Then K*(P(E)) is a free K*(X)-module on the generators
1, [H], [H]?,--- ,[H"1, where [H] satisfies the equation > (—1)'[H]'[\'E] = 0.

Proof. Since E is locally trivial it is in particular locally decomposable'. Hence,
by (2.7.1), each point € X has a neighbourhood U such that for all V' C U,

K*(P(E | V)) is a free K*(V)-module on generators 1, [H], [H]?, - ,[H]""!.
Now apply (2.7.11). The equation for [H] has already been established at the
end of §2.6. O

Corollary 2.7.15. If 7: E — X is a vector bundle, and if F(E) is the flag
bundle of E with projection map p: F(E) — X, then p*: K*(X) — K*(f(F))
1§ 1njective.

Proof. F(FE) is the flag bundle over P(E) of a bundle of dimension one less than
dim(E). We proceed inductively on dim(F) using (2.7.14). O

Corollary 2.7.16 (The Splitting Principle). If Ey,--- , E, are vector bundles
on X, then there exist a space F' and a map 7w: F' — X such that

1) n*: K*(X) —» K*(F) is injective
2) Each 7*(E;) is a sum of line bundles.

Proof. We take F to be the flag bundle of @ F;. The importance of the Splitting
Principle is clear. It enables us to reduce many problems to the decomposable
case. O

Corollary 2.7.17 (The Thom Isomorphism Theorem). If 7: E — X is a vector
bundle _
d: K*(X) = K*(XF)

defined by ®(x) = Agx is an isomorphism.

Proof. This follows from (2.7.14) in the same way as (2.7.3) followed from
(2.7.1). O

We leave the following propositions as exercises for the reader.

Proposition 2.7.18. If 7: E — X is a vector bundle, L1, -- , L,, the usual line
bundles over F(E), then the map defined by t; — [Li| defines an isomorphism
of K*(X) modules

K5 (X)[1, - tal /I = K*(F(E))

where I is the ideal generated by elements
Ul(tla e 7tn) - E7U2(t17 e 7t7L) - )\Q(E)7 e ao-n(tla o 7tn) - An(E)

o' being the i-th elementary symmetric function.

LCaveat: This is the argument which does not generalise to G-spaces.
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Proposition 2.7.19. Let 7: E — X be an n-dimensional vector bundle and let
Gr(E) be the Grassmann bundle (of k-dimensional subspaces) of E. Let F be
the induced k-dimensional bundle over Gi(E), F' the quotient bundle p*(E)/F.
Then the map defined by t; — N(F),s; — N{(F') defines an isomorphism of
K*-modules

KX (X)[tr, - te,s1, 0 sn—i) /T = K*(GR(E)),

where I is the ideal generated by the elements

(Y tis;) = X(E) for all L.

i+j=L

(Hint: Compare G (E) with the flag bundle of E).

In particular, we see that if G, 1, is the Grassmann manifold of k-dimensional
subspaces of an n-dimensional vector space, K*(G,, ) is torsion free. This also
follows from its cell decomposition. By induction we deduce K* is torsion free
for a product of Grassmannians.

Theorem 2.7.20. Let X be a space such that K*(X) is torsion free, and let Y
be a (finite) cell complex, Y CY a subcomplex. Then the map

KX)o K*(Y,)Y') - K" (X xY, X' xY’)
is an isomorphism.

Proof. The theorem holds for Y a ball, Y’ its boundary as a consequence of
2.7.3. It thus holds for any (Y, Y”) by induction on the number of cellsin Y. O

Corollary 2.7.21 (The Kiinneth Theorem). Let X be a space such that K*(X)
is a finitely generated abelian group, and let Y be a cell complex. Then there is
a natural exact sequence

0= > K'(X)@K/(X) = KMX xY)—= Y Tor(K'(X),K'(Y)) =0
i+ji=k i+j=k

where all suffizes are in Z/27.

Proof. Suppose we can find a space Z and a map F': X — X such that K*(X)
is torsion free, and ff*: K*(Z) — K*(X) is surjective. Then from the exact
sequence K*(Z/X) is torsion free. From the last theorem, K*(ZxY) = K*(Z)®
K*Y), K*(Z/X)xY)=K*(Z/X)® K*(Y). The result will then follow from
the exact sequence for the pair (Z x Y, X x Y). O

We now construct such a map g: SX — Z. Let ay,--- ,a, generate K(X),
and let by, -+, b, K~1(X) = K(SX). Then each a; determines a map a;: X —
G, s; for suitable r;, s;, and each b; a map f5;: SX — Gy, ;. Let @ = oy X

Xt X > Grsy X XGrgoand B= 01 X X Bt SX = Gy oy X
-x G

Um,Um *
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Then

a*: K°(G') — K°(X) is subjective
B*: K°(G") — K°(SX) is subjective.

Thus, if f: (Sa) x : SX — (SG')x G"' =G
K" (G) - K*(SX) is surjective,

and K*(G) is torsion free as required. This proves the formula for SX and
this is equivalent to the formula for X. We next compute the rings K*(U(n)),
where U(n) is the unitary group on n variables. Now for any compact Lie
group G we can consider representations p: G — GL(m, C) as defining elements
[p] € KY(G): we simply regard p as a map and disregard its multiplicative
properties. Suppose now that «, 8 are two representations G — GL(m, C which
agree on the closed subgroup H. Then we can define a map

~v: G/H — GL(m,C)

by v(gH) = a(g)B(g)~!. This is well-defined because of the multiplicative
properties of a, 3. The map v defines an element [y] € K'(G/H) whose image
in KY(G) is just [a] — [8]. As a particular case of this we take

G=U(n), H=Un-1), G/H=S5""1

For o, we take the representations of G on the even and odd parts of the
exterior algebra A*(C"), and we identify these two parts by exterior multipli-
cation with the n-th basic vector e, of C. Since U(n — 1) keeps e,, fixed, this
identification is compatible with the action of U(n — 1). We are thus in the
situation being considered and so we obtain an element

[ e K (s* 7).

If we pass to the isomorphic group K (S2") we see from its definition that [+] is
just, the basic element B
Acr € K(SQn)

constructed earlier from the exterior algebra. Thus [y] is a generator of K'(S (2n—
1)), and its image in K'(U(n)) is >.(—1)/[\Y], where the A\* are the exterior
power representations. With this preliminary discussion we are now ready to
prove:

Theorem 2.7.22. K*(U(n)) is the exterior algebra generated by [\'],---[\"],
where ' is the i-th exterior power representation of U(n).

Proof. We proceed by induction on n. Consider the mapping

Un) = Un)/Unm—1) = 8* L
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Since the restriction of ' to U(n — 1) is p® @ p'~!, where p’ denotes the i-th
exterior power representation of U(n — 1), the inductive hypothesis together
with (2.7.11) imply that K*(U(n)) is a free K*(S?"~!)-module generated by
the monomials in [A!],---[A"71]. But K*(5?"71) is an exterior algebra on one
generator [y] whose image in K*(U(n))) is

n

> (']

=0

as shown above. Hence K*(U(n)) is the exterior algebra on [A!],---  [\"] as
required. O
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Operations

3.1 Exterior powers

By an operation F'in K-theory, we shall mean a natural transformation Fx : K(X) —
K(X). That is, for every space X, there is a (set) map Fx: K(X) — K(X),
and if f: X — Y is any continuous map, F% f* = f*Fy.

Suppose that F' and G are two operations which have the property that
F([E] — n) = G([E] — n) whenever F is a sum of line bundles and n is an
integer. Then F(z) = G(x) for all € K(X), as we see immediately from the
splitting principle of the last chapter.

There are various ways in which one can define operations using exterior
power operations. The first of these which we shall discuss is due to Grothendieck

If V is a vector bundle over a space X, we define A\[V] € K(X)([t]) to be
the power series
S NV
=0
The isomorphism

NVew) = > X(V)eMW)
i+j=k

gives us the formula
A [V @ W] = M(X)A\(W)

for any two bundles V,W. For any W the power series \[W] is a unit in
K (X)[[t]], because it has constant leading term 1.
Thus we have a homomorphism

Ae: Vect(X) — 1+ K (X)[[f]]*

of the additive semi-group Vect(X)) into the multiplicative group of power series
over K(X) with constant term 1. By the universal property of K(X) this

61
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extends uniquely to a homomorphism
At 1+ K(X)[[H)T.
Thus taking the coefficient of t* we have operations
N K(X) = K(X).

Explicitly therefore
(V] = [W]) = M [VIA W]

In a very similar way we can treat the symmetric powers W(V). Since

SfVaew) = Y S(V)eSI(W)
i+j=k

we obtain a homomorphism
Si: K(X) = 1+ KX+
whose coefficients define the operations
St K(X) — K(X).

Notice that if L is a line bundle,

M(L)=1+tL
S¢(L)y=1+tL+t*L+ -
=(1—tL)~"

Thus

A(L)Sy(L) =1
Thus, if V is a sum of line bundles, \;[V]S[V] = 1. Therefore, for any z €
K(X), M(x)Si(x) =1, and so

that is,
M(VI=W]) = Y (=1 N[V]S W],
it+j=k
This gives us an explicit formula for the operations A’ in terms of operations on
bundles.

Now recall that, for any bundle F,dim E, is a locally constant function of
x. Since X is assumed compact

dim F = sup dim F,
zeX
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is finite. The exterior powers have the basic property that
NE=0 if i>dimE.

Let us call an element of K(X) positive (written x > 0) if it is represented by
a genuine bundle, i.e., if it is in the image of Vect(X). Then

z>0= )\, € K(X)[t].

For many problems it is not dim E which is important but another integer
defined as follows. First let us denote by rank R the bundle whose fibre at x is
CU*) where d(x) = dim E, : if X is connected then rank E is just the trivial
bundle of dimension equal to dim E. Then E — rank F induces an (idempotent)
ring endomorphism

rank: K(X) — K(X)

which is frequently referred to as the augmentation. The kernel of this endo-
morphism is an ideal denoted by K7(X). For a connected space with base-point
we clearly have

For any « € K(X) we have
x —rankz € K(X).
Now define dimg z, for any « € K;(X), to be the least integer n for which
r—rankx +n >0

since every element of K (X) can be represented in the form [V] — n for some
bundle V' it follows that dimg « is finite for all z € K(X). For a vector bundle
FE we clearly have

dimg[E] < dim E.
Notice that

dimk Xr = dimK T

where 1 = x —rank z, so that dimg K is essentially a function on the quotient
Ki(X) of K(X).

It is now convenient to introduce operations 4* which have the same re-
lation to dimg as the A have to the dimension of bundles. Again following
Grothendieck we define

11(2) = Aey-n (x) € K(X)][¢]
so that v¢(x + y) = v («)7:(y). Thus for each i we have an operation
7 K(X) = K(X).

The ~* are linear combinations of the A/ for j < i and vice-versa, in view of the
formula

As(x) = Vs/(1+s) ($)
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obtained by putting s = ¢/(1 —t),t = s/(1 + s). Note that
(1) = (1—t)"
and for a line-bundle L
(L] = 1) =1+ ¢([L] - 1)

Proposition 3.1.1. Let z € K1(X), then v(x) is a polynomial of degree <
dimg x.

Proof. Let n = dimg z, so that © +n > 0. Thus « + n = [E] for some vector
bundle E. Moreover dim ' = n and so

N(E)=0 for i>n.
Thus A\ (x + n)is a polynomial of degree < n. Now
(@) = vtz +n)y (1) ™"
=vt/(1 —t)(x+n)(1—)"
= i N(x +n)t' (1 — )"
i=0

and so is a polynomial of degree < n as stated. U

We now define dim.,  to be the largest integer n such that 4" (z—rank z) # 0,
and we put

dimg X = sup dimgz
zeK(X)

dimy X = sup dim,z.
zeK(X)

By 3.1.1 we have
dimy z < dimg z, dim, X <dimg X.

We shall show that, under mild restrictions, dimg X is finite. For this we
shall need some preliminary lemmas on symmetric functions.

Lemma 3.1.2. Let xy,--- ,x, be indeterminates. Then any homogeneous poly-
nomial in Z[xy,--- ,x,] of degree n(n — 1) lies in the ideal generated by the
symmetric functions of (x1,--- ,x,) of positive degree.

Proof. Let o;(x1,- - ,x,) be the i-th elementary symmetric function. Then the
equation

2" — ozt opc” 2 = (=1)"0, =0
has roots = z;. Thus 27 is in the ideal generated by oy, --0,. But any
monomial in x1,--- ,x, of degree > n(n — 1) is divisible by z7 for some i and
so is also in this ideal. O
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Lemma 3.1.3. Let 1, - ,Zn, Y1, - ,Ym be indeterminates and let

G/i:Ui(xl,"' axn)a bi:Ui(y17"' 7ym)

be the elementary symmetric functions. Let I be any ideal in Zla,b],J its ex-
tension in Z[x,y]. Then
HNZla,bl=1.

Proof. Tt is well-known that Z[x] is a free Z[a]-module, with basis the monomials

r__ _ri.To Tn—1 . oz
T =x'wy” o x,; 05 <n—u

Hence Z[z,y] = Z[z] ® Z]y] is a free module over Z[a, b] = Z[a] ® Z[n] with basis
the monomials z"u®. Then the ideal J C Z[z,y] consists of all elements F' of
the form

F=Y frs2"y® with fo €l
Since the z"y” are a free basis f belongs to Z[a,b] if and only if f,.s = 0 for
r,s # (0,0) in which case
f=Jfoo€l

Thus J N Za,b] = I as stated. O
Remark 3.1.4. This lemma is essentially an algebraic form of the splitting prin-
ciple since it asserts that we can embed Z[a,b]/I in Z[z,y]/J. It is of course
purely formal in character and it seems preferable to use this rather than the
topological splitting principle whenever we are dealing with formal algebraic
results. The topological splitting principle depends of course on the periodicity

theorem and should only be used when we are dealing with properties that lie
at that depth.

Lemma 3.1.5. Let K be a commutative ring (with 1) and suppose
a(t) = 14 art + aot® + - + apt™
b(t) =1+ byt + bot® + -+ + by t™
are elements of K[t] such that
a(t)b(t) = 1.
Then there exists an integer N = N(n,m) such that any monomial
T r

a1 Gy -Gy

of weight >_ jr; > N vanishes.

Proof. Passing to the universal situation it is sufficient to prove that if ay,- - , a,, by, -+

are indeterminates, then any monomial « in the a; of weight > N lies in the
ideal I generated by the elements

Ck = Z agb; k=1,---,mn (ag=0by=1).
i+j=k

abm
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By (3.1.3), introducing indeterminates x1,--- , Ty, Y1, - , Ym, it is sufficient to
prove that « belongs to the extended ideal J. But ¢ is just the k-th elementary
symmetric function of the (m + n) variables a1, -+ ,n, Y1, * , Ym. The result
now follows by applying (3.1.2) with N = (m + n)(m +n — 1). O

Remark 3.1.6. The value for N(n,m) obtained in the above proof is not best
possible. It can be shown by more detailed arguments that the best possible
value is mn.

We now apply these algebraic results:

Proposition 3.1.7. Let x € K,(X). Then there exists an integer N, depending
on x, such that any monomial

P (@) (a) )
of weight Z?Zl i; > N is equal to zero.

Proof. We apply (3.1.5) to the polynomials ~;(x),~:(—x). Note therefore, that
N depends on dim,, z, dim., (—x). O

Since v!(z) = x we deduce:
Corollary 3.1.8. Any x € K(X) is nilpotent.

If we define the degree of each 4% to be one, then for any monomial in the
~' we have
weight > degree.

In view of (3.1.7), therefore, all monomials in v%(x) of sufficiently high degree
are zero if x € K;(X). Thus we can apply a formal power series' in the
7' to any € K(X). Let us denote by Op(K1, K) the set of all operations
K; — K. This has a ring structure induced by the ring structure of K (addition
and multiplication of values). Then by what we have said we obtain a ring
homomorphism

P Z[[’Ylv"' 7’7n7"']] - Op(Kvi)

Theorem 3.1.9.
28 Z[[’yl7 a’yna]] — OP(K17K)
is an isomorphism.

Proof. Let Y, ,, be the product of n copies of P, (C). Using the base point
Py(C) of P,,(C) the Y,, ,,, form a direct system of spaces with inclusions

Yom = Yo for n' >nm' >m.

LAs usual a formal power series means a sum f = /sumf, where f, is a homogeneous
polynomial of degree n (and so involves only a finite number of the variables).
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Then K(Y,, ) is an inverse system of groups with

K(Yim)
I&HK(YMM) = Z[[Ih e axn]]

1.&1 K(Yn,M) = @Z[[xla te anH

Z[xlv T 7xn]/(x71n+17 e mm—i—l)

rn

Any operation will induce an operation on the inverse limits. Hence we can
define a map

¥: Op(K1,K) — @Z[[wl,--- , )]

by ¥(f) = ]{iﬂlf(.i?l + 29+ -+ + ). Since, in K (Y, ,,,) we have

n

Yelwr +za+ -+ 2) = [J(a+ 23t)
i=1
it follows that _
vo(y') = Ll_ oi(x1 + a0+ -+ )

n

where o; denotes the i-th elementary symmetric function. In particular, there-
fore ¥ is injective and so ¢ is injective. Moreover the image of ¥ is

Z[[O-la T 7Un]]

which is the same as
Shn

1.LHIZ[[‘TM e 7xn]]

n

where [|» denotes the subring of invariants under the action of symmetric group
Sn. But, for all f € Op(K;, K),

Y(f) :l'glf(xl + a9+ 1)
lies in this group. In other words
imyp = ima.

To complete the proof it remains now to show that psi is injective. Suppose
then that ¢(f) = 0. Since any line bundle over a space X is induced by a map
into some ,,(C) it follows that

J(E] =) =0

whenever F is a sum of n line bundles. By the splitting principle this implies
that
f(z)=0 forall ze€ Kj.

i. e. , f is the zero operation, as required. O
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Let us define H°(X,Z) to be the ring of all continuous maps X — Z. Then
we have a direct sum decomposition of groups

K(X)=K|(X)® H(X,Z)

determined by the rank homomorphism. It is easy to see that there are no
non-zero natural homomorphisms

H°(X,7) = Ki(X)

and so Op(K) = Op(K, K) differs from Op(K;K) only by Op(H°(Z)) which is
the ring of all maps Z — Z. Thus (3.1.9) gives essentially a complete description
of Op(K).

We turn now to a discussion of finiteness conditions on K (X). First we deal
with HO(X,Z).

Proposition 3.1.10. The following are equivalent

(A) H°(X,Z) is a Noertherian ring,

(B) H°(X,Z) is a finite Z-module.
(B

Proof. ((B) = (A)): Obvious.
((A) = (B)): Suppose H°(X,Z) is Noetherian. Assume if possible that we can
find a strictly decreasing infinite chain of components (open and closed sets) of
X

X:XQDXlD"'DXN:)X7L+1:)"'.

Then for each n we can find a continuous map f.,,: X — Z such that

Jn(Xny1) =0
fn(Xn \ Xn+1) =1

Consider the ideal I of H(X,Z) consisting of maps f: X — Z such that f(X,, =
0 for some n. Since H°(X,Z) is Noetherian I is finitely generated and hence
there exists N such that

f(X,)=0 forall fel.
But this is a contradiction because

fNEI, fN(XN)#O

Thus X has only a finite number of components, so that

X = zn:Xi
i=1

with X; connected. Hence H°(X,Z) is isomorphic to Z". O
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Passing now to K(X) we have
Proposition 3.1.11. The following are equivalent
(A) K(X) is a Noertherian ring,
(B) K(X) is a finite Z-module.

Proof. ((A) = (B)): Assume (A), then HY(X,Z) which is a factor ring of
K(X) is also Noetherian. Hence by (3.1.10), H%(X,Z) is a finite Z-module.
Now K7(X) is an ideal of K (X) consisting of nilpotent elements (3.1.8). Since
K (X) is Noetherian it follows that K;(X) is a nilpotent ideal. For brevity put
I = K;(X). Then I"™ = 0 for some n and the I™/I™* ' m = 0,1,--- ,n —1
are all finite modules over K/I = H°(X,Z). Hence K(X) is a finite H°(X, Z)-
module and so also a finite Z-module. O

Examples of spaces X for which K (X) is a finite Z-module are cell-complexes.
Let us now define a filtration of K(X) by the subgroups K (X) generated
by all monomials
Y X)YE(X2) -y (X)
with Zkzl i; > n and z; € K1(X). Since y!(z) = x, we have K] = K. If
x € K (X) we say that = has y-filtration > n and write F,(x) > n.

Proposition 3.1.12. Assume K(X) is a finite Z-module. Then for some n
K)(X)=0.

n

Proof. Let x1,--- , x4 be generators of K;(X) and let N; = N(z;) be the inte-
gers given by (3.1.7). Because of the formula

Yi(a +b) =y, (a)ye(b)

it will be sufficient to show that there exists N such that all monomials in the
v'(x;) of total weight > N are zero. But taking N = }°°_| N; we see that
any such monomial must, for some j, have weight > N; in the v*(z). Hence by
(3.1.7) this monomial is zero. O

Corollary 3.1.13. Assume K(X) is a finite Z-module. Then dim. X is finite.

We call the reader’s attention to certain further properties of the operations
7.
Proposition 3.1.14. IfV is a bundle of dimension n, A\_1[V] = (=1)"y"([V]—
n). Thus K*(XV) is a free K* module generated by v"([V] — n).

Proposition 3.1.15. There exist polynomials P;, QQ;; such that for all x,y
7 (xy) = Pr(vH(@),7 (), 77 (@), (), v (2),7 ()
7 (7 () = Qi (v (2), -+ 77 (2)).

We leave these proofs to the reader, who may verify them easily by use of
the splitting principle.
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3.2 The Adams operations

We shall now separate out for special attention some operations with particularly
pleasing properties. These were introduced by J. F. Adams. We define ¢°(z) =
rank(z). In the ring K (X)[[t]] we define ¢ (z) = >_,_, t'*(x) by

Yula) = 00(a) — 15 (log A (a).

Notice that since all of the coefficients of this power series are integers, this
definition makes sense.

Proposition 3.2.1. For any x,y € K(X)

1) Y*(@ +y) = *(x) +¢*(y) for all k.

2) If x is a line bundle, V¥ (x) = z*.

3) Properties 1 and 2 uniquely determine the operations 1.

Proof. ¥u(z+y) = i(x) + Yu(y), 50 that ¢*(zy) = ¥*(x) + ¥*(y) for each k.
If z is a line bundle, A_;(xz) = 1 — tz, so that

—x
1—tx
= —x —tz® — 22 —

2 (log(1 1)) =

Thus (z) = 1+ ta + 22> + -
The last part follows from the splitting principle. O

Proposition 3.2.2. For any z,y € K(X)
1. PR (ay) = M (@)y"(y) for all k.
2. Y*((x)) = Y*(z) for all k, L.
3. If p is rime, ¥?(z) = 2P mod p.
4. Ifu e K(S2),¢*(u) = k"u for all k.

Proof. The first two assertions follow immediately from the last proposition
and the splitting principle. Also, from the splitting principle, ¥?(z) = P +
pf(A(x),--+, AP(x)), where f is some polynomial with integral coefficients. Fi-
nally, if h is the generator of K(S2)i*(h) = kh. Since §2" = S2 A ... A §2,
and I~((S2”) is generated by h® h ® - - - ® h, the last assertion follows from the
first. O

We next give an application of the Adams operations ¢*. Suppose that
f: 841 — S is any map. We define the Hopf invariant H(f) as follows.
Let Xy be the mapping cone of f. Let i: S — X be the inclusion, and let

j: Xp — 8% collapse S2". Let u be the generator of K (S%"). From the exact
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sequence we see that there is an element x € I?(Xf) such that i*(x) generates
K(S2m). IN((Xf) is the free abelian group generated by x and y = j*(u). Since
(i*(z))? = 0,2 = Hy for some H. This integer H we define as the Hopf
invariant of f. Clearly, up to a minus sign, H(f) is well defined. The following
theorem was first established by J. F. Adams by cohomological methods called
“secondary operations”.

Theorem 3.2.3 (Hopf invariant one problem). If H(f) is odd, then n = 1,2,
or 4.

Proof. Let ¢?(z) = 2"z + ay,¢>(x) = 3"z + by. Since ¥?(x) = 22 mod 2, a is
odd. ¥*(y) = j*(¢¥*(u)) = k®"y. Thus, we see that

Vo(2) = ¢ (¥*(2)) = 6"x + (2"b + 3*"a)y

90(x) = P (3(@)) = 62 + (22 + 3a)y.
Thus 2"b+ 3%""a = 22"b+ 3"a, or 2™ (2" — 1)b = 3"(3™ —1)a. Since a is odd, 2"

divides 3" — 1, which by elementary number theory can happen only if n = 1,2,
or 4. O

If n = 1,2, or 4, the Hopf maps determined by considering S*"~! as a
subspace of the non-zero vectors in 2-dimensional complex, quaternionic, or
Cayley space, and S?" as the complex, quaternionic, or Cayley projective line
all have Hopf invariant one. We leave the verification to the reader.

Proposition 3.2.4. Let x € K(X) be such that F,(x) > n. Then for any k we
have

F,(*(x) — j"x) > n+ 1.
Proof. If n = 0 we have
Yk (x) = pF(rank z + x1) = rank x 4+ * ;.
Here z; and so wkxl are in K1(X). Thus
PP — o =re — a2 € Ki(X) = KJ(X).

Consider now n > 0. Since 9* is a ring homomorphism it is sufficient to prove
that the composition ¥ - v — k"™ (where 1% € Op(X),7" € Op(K, K))) is
equal to a polynomial in the +* in which each term has weight > n + 1. As in
(3.1.9) we have isomorphisms
Z[[’Yla e ” = Op(K17 K) = y— Z[ajla te 7xm]sm
m

in which 4" corresponds to i-th elementary symmetric function o; of the z;.
Now

() = (1 +2)* =1
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and so

P (on(er,)) = on((L+ )" = 1,--)
=k"op(x)+ f

where f is a polynomial in the o; of weight > n + 1. Since 1)* - ¥ corresponds
to ¥*(o,,) by the above isomorphisms the proposition is established. O

Iterating (3.2.4) we obtain:

Corollary 3.2.5. If K (X) =0,

n

for any sequence of non-negative integers ko, k1, , kn.

By (3.1.12) we can apply 3.2.5 in particular whenever K(X) is a finite Z-
module.

Notice that 1* acts as a linear transformation on the vector space K (X)®Q.
Taking k = ky, for all m in (3.2.5) we see that

n

[[@r-%")=0 on K(X)2Q.

m=0

Thus the eigenvalues of each ¢* are powers of k not exceeding k™. Let Vi,
denote the eigenspace of ¢* corresponding to the eigenvalue &’ (we may have
Vii = 0). Then if k¥ > 1, we have an orthogonal decomposition of the identity
operator 1 of K(X) ® Q:

1=Y"1, T= []@" =)/ —km™).
Thus K(X) ® Q is the direct sum of the Vj ;. Now put in (3.2.5),
ki=40, kynp=k for m#i

and we see that
(" = YWii =0

and so V;,; C V4;. Hence we deduce
Proposition 3.2.6. Assume K(X) has finite vy-filtration and let Vi ; denote

the eigenspace of * on K(X) ® Q corresponding to the eigenvalue k. Then if
k,0 > 1 we have

Vii = Vei-
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Since the subspace Vj; does not depend on k (for k¥ > 1) we may denote
it by a symbol independent of k. We shall denote it by H*(X;Q)) and call it
the 2ii-th Betti group of X. From (3.2.4) it follows that the eigenvalue £ = 1
occurs only in H°(X,Z) ® Q. Thus our notation is consistent in that

HY(X,Z)2 Q= H°(X;Q).
We define the odd Betti groups by
H*"H(X;Q) = HP™F(SX Q)

where X+ = X Upoint and S denotes reduced suspension. If the spaces involved
are finite-dimensional we put

By, = dimg H*(X; Q)
and the Euler characteristic E(X) is defined by
E(X)=> (-1)*By = dimg(K°(X) ® Q) — dimg (K" (X) ® Q).
Note that the Kunneth formula (when applicable) implies 5
E(X xY) = E(X)E(Y).

The following proposition is merely a reformulation of (3.2.4) in terms of the
notation just introduced:

Proposition 3.2.7.
KleQ=)> H™X;Q

m>n

and so
{K X /KL (X)) = B (X;Q).

Since ¢*u = ku for the generator u of K(S2) it follows that
V() = kBy* (z)

wheref: K(X) — K~2(X) is the periodicity isomorphism. Thus 3 induces an
isomorphism
H2m(X; Q) o~ H2m+2(S2X+; Q)

From the way the odd Betti groups were defined it follows that, for all &
HY(X;Q) = HFY(SXT;Q). (3.2.8)

If we now take the exact K-sequence of the pair X, A, tensor with Q, de-
compose under 1* and use (3.2.8) we obtain:
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Proposition 3.2.9. If A C X, and if both K*(X), K*(A) are finite Z-modules
the exact sequence

S KTHA) S KX A) - KH(X) = KH(A) S

induces an exact sequence

o HTYAQ) D HY(X, A;Q) — HY(X;Q) — H(A4;,Q) -

We next give a second application of the operations ¢*. Since P, (C)/P,_1(C)
is the sphere S?", we have an inclusion of S*" into P, 1(C)/P,_1(C) for all
k. We should like to know for which values of n and k,S?" is a retract of
P,+1(C)/P,—1(C). That is, we should like to know when can there exist a map
feolonP,, 1 (C)/P,_1(C) — S?" which is the identity on S?". We shall obtain
certain necessary conditions on n and k for such an f to exist.

Theorem 3.2.10. Assume a retraction
f: Poyk(C)/Py—1(C) — P,(C)/P,—1(C) = S*"
exists. Then the coefficients of x* for i <k in (W)” are all integers.

Proof. Let £ be the usual line-bundle over P, 1 and let = {—1. Then K (P, 1)
is a free abelian group on generators z°,0 < s < +k, and we may identify
K(P,+x(C), P,—1(C) with the subgroup generated by z* with n < s < n + k.
In K(Py+x) ® Q put y =log(l + ), so that £ = e¥. Then

€Y =¢ =y (e¥) = ewr(y)’
so that ¢"(y) = ry. Thus H?*(P,1%(C)/P,_1(C);Q), forn < s <n+kisa
one-dimensional space generated by y°. Now let u generate K (S?"), and let

n+k

ff(uw) = Z a;z’.

Since f is a retract we have a,, = 1. Since ¢¥*u = k™u, f*(u) must be a multiple

of y”, so that
n+k

Z a;xt = Ay,
1=n

Restricting to S?" we see that A = 1, and so

y" = (log(1 + )"

n+k

has all coefficients from z™ to x integral as required. O

Remark 3.2.11. It has been shown by Adams and Grant-Walker (Proc. Camb.
PhilA- Soc. 61 (1965), 81-103) that (3.2.10) gives a sufficient condition for the
existence of a retraction.
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Suppose once more that we have a map f: §?m+27=1 5 §2m Then we can
attach to f an invariant e(f) € Q/Z in the following fashion.

Let X be the mapping cone of f,i = $?>™ — X the inclusion, j: X —
52n+2m the map which collapses S2™. Let u generate K9(S2™27) 4 generate
KO(52™)), and let = € K°(X) be such that i*(z) = v. Let y = j*(u). Then for
any k,

VR (x) = K™z + apy.

As before, we know that 1*¢ = %" so that
kn(km — 1)0,[ = Zn(fm — l)ak.

Thus
ag

e(f):m

€Q

is well defined once z is chosen. If z is changed by a multiple of y, e(f) is changed
by an integer, so that e(f) € Q/Z is well defined. We leave to the reader the
elementary exercise that e: [, o,,_1(5*™) = Q/Z is a group homomorphism.
It turns out that this is a very powerful invariant.

3.3 The group J(X)

In this section we assume, for simplicity, that X is connected. One can intro-
duce a notion of equivalence between vector bundles, known as fibre homotopy
equivalence, which is of much interest in homotopy theory. Let E,E’ be two
bundles over a space X, and suppose that both E, E’ have been given Hermi-
tian metrics. Then E and E’ are said to be fibre homotopy equivalent if there
exist maps f: S(E) — S(E’'), g: S(E') — S(FE), commuting with the projec-
tion onto X, and such that gf and fg are homotopic to the identity through
fibre-preserving maps. Clearly this is an equivalence relation defined on the set
of equivalence classes of vector bundles over X .

Fibre homotopy equivalence is additive; that is, if E, E’ are fibre homotopy
equivalent to F, F’ respectively, then F & E’ is fibre-homotopy equivalent to
F, F'. This follows from the fact that S(F @ E’) may be viewed as the fibre-
join of the two fibre spaces S(E),S(E’) : in general the fibre-join of 7: ¥ —
X, 7" Y' — X is defined as the space of triples y,t,y’ where t € I, 7(y) = 7'(v/)
and we impose the equivalence relations

(4,0,91) ~ (4,0,95)
(y27 1ay/) ~ (192,07?/)

We say that two bundles F, E’ are stably fibre-homotopy equivalent if there
exist trivial bundles V,V’ such that E & V is fibre-homotopy equivalent to
E’' @ V’'. The set of all stable fibre-homotopy equivalence classes over = forms
a semi-group which we denote by J(X). Since every vector bundle E has a
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complementary bundle F' so that E® F is trivial it follows that J(X) is a group
and hence the map
Vect(X) = J(X)

extends to an epimorphism
K(X)— J(X)

which we also denote by J.

If we have two bundles E, E’ and if 7: S(E) — X, 7’': S(E') — X are the
projection maps of the respective sphere bundles, the Thom complexes X ¥, X
are just the mapping cones of the maps 7, 7’ respectively. Thus, we see that if £
and E[I] are fibre homotopy equivalent, X¥ and X E' have the same homotopy
type. However, if E is a trivial bundle of dimension n, X¥ = §?*(X*). Thus,
to show that J(X) # 0, it suffices to show that X does not have the same
stable homotopy type as a suspension of X .

We shall now show how to use the operations 97 of §3.2 to give necessary
conditions for J(E) = 0. By the Thom isomorphism (2.7.17) we know that

K(X¥F) is a free K(X)-module generated by Ag. Hence, for any k, there is a
unique element p(E) € K(X) such that

U (Ap) = App"(E).

The multiplicative property of the fundamental class Ag, established in §3.2,
together with the fact that ¢* preserves products, shows that

P E @ E) = oH(E) - pH(E).
Also, taking F =!, and recalling that
WE B =kB -yt
where 3 is the periodicity isomorphism, we see that
pF(1) = k.

Now let Qx = Z[1/k] be the sub ring of Q consisting of fractions with denomi-
nators a power of k. Then if we put

o"(E)=k"pp(E) n=dimE
we obtain a homomorphism
o": K(X) — Gy

where Gy, is the multiplicative group of units of K(X) ® Q. Suppose now E is
fibre-homotopically trivial, then there exists u € K(X¥) such that ¢y u = k™u.
Putting v = Aga we find that

Vg - pFa = k" Apa
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and so
o"(E) - ¢*(a) = a.

Moreover, restricting to a point, we see that a has augmentation 1, so a and
y*(a) are both elements of G. Hence v/e may write

a
of = —— G

¥k (a)

Since o*(E)) depends only on the stable class of R, we have established the
following

Proposition 3.3.1. Let H; C Gy, be the subgroup generated by all elements of
the form a/vy*(a) with a a unit of K(X). Then

o": K(X) — Gy
maps the kernel of J into Hy, and so induces a homomorphism
J(X) — Gk/Hk

In order to apply (3.3.1) it is necessary to be able to compute o* or equiva-
lently p*. Now
o e OpK

is an operation. Its augmentation is known so it remains to determine its value
on combinations of line-bundles. Because of its multiplicative property, it is
only necessary to determine p*(L) for a line-bundle L.

Lemma 3.3.2. For a line-bundle L, we have

Proof. By (2.7.1) and (2.7.3) we have a description of K(XL) as the K(X)
sub-module of K(P(L @ 1)) generated by n = 1 — [L|[H]|. The structure of
K(P(L®1)) is of course given by our main theorem (2.2.1). Hence

v (w) =1~ [LY)[H"]
k—1
= (1 - [LIED{)_[L][H]}
=0
k:7 .
=u Y [L’], since (1—[L][H])(1-[H])=0.
0

j=

—

Thus -
WAL = A> (]}
j=0
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proving that
k—

pH(L) =) L]

Jj=0

Ju

as required. O

As an example we take X = P,,(R), real projective 2n-space. As shown
in (2.7.10) K(X) is cyclic of order 2™ with generator « = [L] — 1, where L is
the standard line-bundle. The multiplicative structure follows from the relation

[L]> =1 (since L is associated to the group Z/2Z). Now take k = 3, then
Vi (2) =[L°] -1 =u,

and so the group Hs defined above is reduced to the identity. Using (3.3.2) we
find

o®(ma) = p’(ma) = (p*(x))™ = (p°[L)™ -37"
]

=371+ [L] + [L])™

={14+z/3)™
i 271 m

=1+ (—1)“17 )z (since 2 = —2z)
2 ()

14 %(1 —a- g)m)x

_1 +3*m(3mT*1)z.

Thus if J(mx) = 0 we must have 3™ — 1 divisible by 2"+, This happens if and
only if 27! divides m. Thus the kernel of

J: I}(PQH(R)) — J(PZn(]R))

is at most of order 2. This result can in fact be improved by use of real K-theory
and is the basis of the solution of the vector-field problem for spheres.

The problem considered in (3.2.10) is in fact a special case of the more general
problem we are considering now. In fact, the space P, jc)/Pn—1(C) is easily
seen to be the Thom space of the bundle nH over P;(C). The conclusion of
(3.2.10) may therefore be interpreted as a statement about the order of J[H] €
J(P(C)). The method of proof in (3.2.10) is essentially the same as that used
in this section. The point is that we are now considering not just a single space
but a whole class, namely Thom spaces, and describing a uniform method for
dealing with all spaces of this class.

For further details of J(X) on the preceding lines we refer the reader to the
series of papers ‘On the groups J(X) by J. F. Adams (Topology 1964-).



Chapter 4

The space of Fredholm
operators

In this appendix we shall give a Hilbert space interpretation! of K (X). This is
of interest in connection with the theory of the index for elliptic operators.

Let H denote a separable complex Hubert space, and let A(H ) be the algebra
of all bounded operators on H. We give A the norm topology. It is well-known
that this makes A into a Banach algebra. In particular the group of units.A* of A
forms an open set. We recall also that, by the closed graph theorem, any T' € A
which is an algebraic isomorphism H — H is also topological isomorphism, i.e.,
T~ ! exists in G and so T € A*.

Definition 4.0.1. An operator R € A(H) is a Fredholm operator if ker T and
coker T" are finite dimensional. The integer

dim ker T' — dim coker T’

is called the index of T .

We first observe that, for a Fredholm operator T, the image T'(H) is closed.
In fact, since T'(H) is of finite codimension in H we can find a finite dimensional
algebraic complement P. Then T ® j: H ® P — H (where j: P — H is the
inclusion) is surjective, and so by the closed graph theorem the image of any
closed set is closed. In particular T(H) =T & j(H & 0) is closed.

Let F C A be the subspace of all Fredholm operators. If T,S are two
Fredholm operators we have

dimker T'S < dimker T + dim ker .S
dim coker T'S < dim coker T' + dim coker S

and so T'S is again a Fredholm operator. Thus F is a topological space with
an associative product F x F — F. Hence for any space X the set [X, F]| of

IThese results have been obtained independently by K. Janich (Bonn dissertation 1964).

79
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homotopy classes of mappings X — F is a semi-group. Our main aim will be
to indicate the proof of the following:

Theorem 4.0.2. For any compact space we have a natural isomorphism
index[X, F] — K(X).

Remark 4.0.3. If XX is a point this means that the connected components of
F are determined by an integer: this is in fact the index which explains our use
of the word in the more general context of Theorem 4.0.2.

Theorem 4.0.2 asserts that F is a classifying or representing space for K-
theory. Another closely related classifying space may be obtained as follows.
Let £ C A denote all the compact operators. This is a closed two-sided ideal
and the quotient B = A/K is therefore again a Banach algebra. Let B* be the
group of units of B. It is a topological group and so, for any X,[X,B*] is a
group. Then our second theorem is:

Theorem 4.0.4. B* is a classifying space for K-theory, i.e., we have a natural
group-isomorphism
[Z,B*] =2 K(X).

We begin with the following lemma which is essentially the generalization to
infinite dimensions of Proposition 1.3.4.

Lemma 4.0.5. Let T € F and let V be a closed subspace of H of finite codi-
mension such that V NkerT = 0. Then there exists a neighbourhood U of T in
A such that, for all S € U, we have

(i) VNkerS =0,

(i) NscvH/S(V) topologised as a quotient space of U x H is a trivial vector
bundle over U.

Proof. Let W = T(V)* (the orthogonal complement of T(V) in H.) Since
T € F and dim H/V is finite it follows that dim W is finite. Now define, for
SeA,

ps: VoW - H

by ps(V @& W)S(V)+ W. Then S — pg gives a continuous linear map
p: A= LV eW, H)

where L stands for the space of all continuous linear maps with the norm topol-
ogy. Now ¢ is an isomorphism and the isomorphisms in £ form an open set
(like A* in A). Hence there exists a neighbourhood U of T in A so that ¢g is
an isomorphism for all S € U. This clearly implies (i) and (ii). O

Corollary 4.0.6. F is open in A.

Proof. Take V = (ker T)* in (4.0.5). O
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Proposition 4.0.7. Let T: X — F be a continuous map with X compact.
Then there exists V C H, closed and of finite codimension so that

(i) VNkerT, =0 for all X € X.

(ii) Moreover, for any such V we have U,cx H/T,.(V'), topologised as a quotient
space of X x H, is a vector bundle over X.

Proof. For each z € X take V, = (kerT,)* and let U, be the inverse image
under T of the open set given by (4.0.5). Let K; = U,, be a finite sub-cover of
this family of open sets. Then V' = n;V,, satisfies (i). To prove (ii) we apply
(4.0.5) to each T, and deduce thatU,H/T,(V') is locally trivial near z, and
hence is a vector bundle. O

For brevity we shall denote the bundle U, x H/T,(V'), occurring in (4.0.6),
by H/T (V). Just as in the finite-dimensional case we can split the map : X x
H — H/T(V); more precisely we can find a continuous map

p: HT(X) - X xH
commuting with projection on X and such that
pp =id

One way to construct ¢ is to use the metric in H and map H;(V) onto the
orthogonal complement T(C)* of T(V). This is technically inconvenient since
we then have to verify that 7'(X)* is a vector bundle. Instead we observe that,
by definition, p splits locally and so we can choose splittings ; over U;, where
U; is a finite open covering of X. Then ¢; — ¢; = 0;; is essentially a map
H/T(V)|U;NU; - U;NU; x V. If p; is a partition of unity subordinate to
the covering we put, in the usual way

0ij =Y pibij

so that 6;; is defined over all ;, and then ¢ = ¢; — 6;; is independent of ¢ and
gives the required splitting.

We can now define index T for any map T: X — F (X being compact). We
choose V as in (4.0.7) and put

indexT = [H/V] — [H/T(V)] € K(X),

where H/V stands for the trivial bundle X x H/V. We must show that this
is independent of the choice of V. If W is another choice so is V N W, so it is
sufficient to assume W C V. But then we have the exact sequences of vector
bundles

0—>V/W—->H/W—H/V =0
0—-V/W—>H/T(W)— H/T(V)—0
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Hence
[H/V] - [H/W]=[V/W]=[H/T(V)| - [H/T(W)]

as required.
It is clear that our definition of index T is functorial . Thus if f: Y — X is
a continuous map then
indexTf = f*indexT.

This follows from the fact that a choice of the subspace V for T is also a choice
for T'f.

IfT: X xI — Fisahomotopy between T and 71, then indexT € K (X x 1)
restricts to indexT; € K (X x {i}),i =0,1. Since we know that

K(XxI)— KX x {i}) 2 K(X)
is an isomorphism, it follows that
index Ty = index T3 .

Thus
index: [XF] = K(X)

is well-defined.

Next we must show that “Index” is a homomorphism. Let S: X — F,T: X —
F be two continuous maps. Let W C H be a choice for T. Replacing S by
the homotopic map myw D (mw denoting projection onto W) we can assume
S(H) c W. Now let V.C H be a choice for S then it is also a choice for T'S
and we have an exact sequence of vector bundles over X

0— W/SV 5 H/TSV — H/TW — 0.
Hence

indexTS = [H/V] — [H/TSV]
— [H/V] - [W/SV] — [H/TW]
— (H/V] ~ [H/SV] + [H/W]
= index S + index T

as required.
Having now established that

index: [X.F] — K(X)
is a homomorphism the next step in the proof of Theorem (4.0.2) is

Proposition 4.0.8. We have an ezxact sequence of of semigroups

index

(X, A = [X,F] — K(X)—>0
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Proof. Consider first a map T: X — F of index zero. This means that
[H/V]—-[H/TV]=0 in K(X).

Hence adding a trivial bundle P to both factors we have
H/VePX2H/TV&®P.

Equivalently replacing V' by a closed subspace W with dim V/W = dim P,

H/W = H/TW.

If we now split X x H — H/W as explained earlier we obtain a continuous map
p: X xH/W =X xH

commuting with projection on X, linear on the fibres. If

O: X — L(H/W,H)

is the map associated to ¢, it follows from the construction of ¢ that

z— O, 4+ T,
gives a continuous map
X — A"
But if 0 <t < 1, T + t® provides a homotopy of maps X — F connecting T
with 7'+ ®. This proves exactness in the middle. O

It remains to show that the index is surjective. Let E be a vector bundle over
X and let F' be a complement so that £ @ F' is isomorphic to the trivial bundle
X x V. Let m, € EndV denote projection onto the subspace corresponding to
E,. Let Ty, € F denote the standard operator of index k, defined relative to an
orthonormal basis {e;}(i = 1,2,...) by

Ti(es) Ci_k fi—k>1
€;) =
b 0 otherwise.

Then define a map
S: X >FHV)XF(H)

by S; = Tx @ 7 + To ® (1 — m,). We have ker Sx = 0 for all z, and (H ®
V)S(H ® V)= E. Hence
index S = —[E].

The constant map Tj: X — F given by Ty (x) = T} has index k and so
indexTyS = k — [E].

Since every element of K (X) is of the form k — [E] this shows that the index is
surjective and completes the proof of the proposition.
Theorem (4.0.2) now follows from (4.0.8) and the following;:
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Proposition 4.0.9.
[X,A"] =1.

This proposition is due to Kuiper and we shall not reproduce the proof here
(full details are in Kuiper’s paper: Topology 3 (1964) 19-30). In fact, Kuiper
actually shows that A* is contractible.

We turn now to discuss the proof of (4.0.4). We recall first that

1+KCF.

This is a standard result in the theory of compact operators: the proof is easy.

Proposition 4.0.10. Let 7: A — B = A/ A be the natural map. Then
F =n"YB").

Proof. (F D n=Y(B*)): Let T € F and let P,Q denote orthogonal projection
onto ker T, ker T* respectively. Then T*T + P and TT* + ) are both in A*,
and so their images by 7 are in B*. But P,Q € K and so n(T™) - n(T) €
B*,n(T) - w(T*) € B*. This implies that #(T") € B*.
(F Ccm Y(B*)): Let T € n~Y(B*), i.e., there exists S € A with ST € 1+ K C F
and TS € 1+ K C F. Since dimker T' < dim ker ST

dim coker T' < dim coker T'S
it follows that T € F. O

Theorem (4.0.4) will now follow from (4.0.2) and the following general lemma
(applied with L = A, M = B,U = B*.)

Lemma 4.0.11. Let w: L — M be a continuous linear map of Banach spaces
with w(L) dense in M and let U be an open set in M. Then, for any compact
X

(X, 77 (U)] = [X,U]

1s bijective.
Proof. First we shall show that if

L —- M

satisfies the hypotheses of the lemma, then for any compact X, the induced
map
5 LY — M¥

also satisfies the same hypotheses. Since LX, M* are Banach spaces the only
thing to prove is that 7% (LX) is dense in MX. Thus, let f: X — M be given.
We have to construct g: X — L such that ||mg(z) — f(z)|| < € for all z € X.
Choose ay,---a, in f(X) such that their $-neighbourhoods {U;} cover f(X)
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and choose b; such that ||7(b; — a;|| < €¢/3. Let u;(x) be a partition of unity of
X subordinate to the covering {f~'U;} and define g: X — L by

g(@) = 3 uilw)bi.

This is the required map.
Hence replacing m by 7% and U by UX (which is open in M*X) we see that
it is only necessary to prove the lemma when X is a point, i.e., to prove that

Y U)=U

induces a bijection of path-components. Clearly this map of path-components
is surjective: if P € U then there exists P € w(L) N U such that the segment
PQ is entirely in U. To see that it is injective let Py, P, € 7~1(U) and suppose
f: I — U isapath with f(0) = 7(F), f(1) = m(Py). By what we proved at the
beginning there exists g: I — 7~ 1(U) such that

lrg(t) — f(t)|| <e forall teT.
If € is sufficiently small the segments joining wg(i) to f(¢), for ¢ = 0,1, will lie
entirely in U. This implies that the segment joining ¢(¢) to P;, for ¢ = 0,1, lies

in 771(U). Thus P can be joined to P; by a path in 7= 1(U) (see figure 4.1)
and this completes the proof. O

! " =Y

Figure 4.1:
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