
Notes on Cobordism Theory

Robert E. Stong



2



PREFACE

These notes represent the outgrowth of an o�er by Princeton University to let
me teach a graduate level course in cobordism theory. Despite the fact that
cobordism notions appear in the earliest literature of algebraic topology, it has
only been since the work of Thom in 1954 that more than isolated results have
been available. Since that time the growth of this area has been phenomenal,
but has largely taken the form of individual research papers. To a certain
extent, the nature of cobordism as a classi�cation tool has led to the study of
many individual applications rather than the development of a central theory.
In particular, there is no complete exposition of the fundamental results of
cobordism theory, and it is hoped that these notes may help to �ll this gap.

Being intended for graduate and research level work, no attempt is made
here to use only elementary ideas. In particular, it is assumed that the reader
knows algebraic topology fairly thoroughly, with cobordism being treated here
as an application of topology. In many cases this is not the fashion in which
development took place, for ideas from cobordism have frequently led to new
methods in topology itself.

An attempt has been made to provide references to the sources of most of
the ideas used. Although the main ideas of these sources are followed closely, the
details have frequently been modi�ed considerably. Thus the reader may �nd
it helpful to refer to the original papers to �nd other methods which are useful.
For example, the Adams spectral sequence gives a powerful computational tool
which has been used in determining some theories and which facilitates low
dimensional calculations, but is never used here. Many of the ideas which appear
are of the �well known to workers in the �eld - but totally unavailable� type and
a few ideas are my own.

The pattern of exposition follows my own prejudices, and may be roughly
described as follows. There are three central ideas in cobordism theory:

1) De�nition of the cobordism groups,

2) Reduction to a homotopy problem, and

3) Establishing cobordism invariants.

This material is covered in the �rst three chapters. Beyond that point, one
must became involved with the peculiarities of the individual cobordism prob-
lem. This is begun in the fourth chapter with a survey of the literature, followed
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by detailed discussion of speci�c cobordism theories in the later chapters. Fi-
nally, two appendices covering advanced calculus and di�erential topology are
added, this material being central to the `reduction to a homotopy problem' but
being of such a nature as to overly delay any attempt to get rapidly to the ideas
of cobordism.

I am indebted to many people for leading me to this work and developing
my ideas in this direction. Especially, I am indebted to Greg Brum�el, Peter
Landweber, and Larry Smith for numerous suggestions in preparing these notes,
and to Mrs Barbara Duld for typing. I am indebted to Princeton University and
the National Science Foundation for �nancial support. Finally I am indebted
to my wife for putting up with the foul moods I developed during this work.
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9.12 The Â class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.13 Oriented bordism . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.14 Relation to framed cobordism . . . . . . . . . . . . . . . . . . . . 26
9.15 The Pontrjagin numbers of an oriented manifold with framed

boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.16 Relation to unoriented cobordism . . . . . . . . . . . . . . . . . . 26
9.17 Relation to complex cobordism . . . . . . . . . . . . . . . . . . . 26
9.18 The index (or signature) . . . . . . . . . . . . . . . . . . . . . . . 26
9.19 The Hirzebruch index (or signature) theorem . . . . . . . . . . . 26

10 Special Unitary Cobordism 27

10.1 Structure of ΩSU
∗ ⊗Q . . . . . . . . . . . . . . . . . . . . . . . . . 28

10.2 Torsion in ΩSU
∗ is 2-primary. . . . . . . . . . . . . . . . . . . . . . 28

10.3 Construction of SU-manifolds with certain characteristic numbers 28
10.4 ΩSU

∗ ⊗ Z[ 12 ] is a polynomial. . . . . . . . . . . . . . . . . . . . . . 28
10.5 All torsion in ΩSU

∗ has order 2. . . . . . . . . . . . . . . . . . . . 28
10.6 Torsion in ΩSU

∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
10.7 KO-theory characteristic numbers . . . . . . . . . . . . . . . . . . 28
10.8 Chern numbers of SU-manifolds . . . . . . . . . . . . . . . . . . . 28
10.9 ΩSU

∗ is determined by integral cohomology and KO characteristic
numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

10.10Product in W∗(C, 2) . . . . . . . . . . . . . . . . . . . . . . . . . 28
10.11Relation to framed cobordism . . . . . . . . . . . . . . . . . . . . 28
10.12Relation to complex cobordism . . . . . . . . . . . . . . . . . . . 28
10.13Relation to unoriented cobordism . . . . . . . . . . . . . . . . . . 28
10.14Relation to oriented cobordism . . . . . . . . . . . . . . . . . . . 28

11 Spin, SpinC, and Similar Nonsense 29

11.1 Cli�ord algebra Cliff(V ) . . . . . . . . . . . . . . . . . . . . . . . 30
11.2 Spin(k), SpinC(k) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
11.3 Pin(k), PinC(k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
11.4 H∗(BSpin;Z/2Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
11.5 Connective covers of BO and BU . . . . . . . . . . . . . . . . . . 30
11.6 Filtration of KO∗(X) and K∗(X) . . . . . . . . . . . . . . . . . . 30



vi CONTENTS

11.7 Isomorphic homologies . . . . . . . . . . . . . . . . . . . . . . . . 30
11.8 2-primary analysis of MSpin and MSpinC . . . . . . . . . . . . . 30

11.9 Structure of ΩMSpin
∗ and ΩMSpinC

∗ . . . . . . . . . . . . . . . . . . 30
11.10KO-theory and mod2 cohomology characteristic numbers deter-

mine ΩMSpin
∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

11.11Ordinary (Q,Z/2Z) cohomology characteristic numbers deter-

mine ΩMSpinC

∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
11.12Basis for ΩSpin

∗ ⊗ Z/2Z . . . . . . . . . . . . . . . . . . . . . . . . 30

11.13ΩU
∗ → ΩSpinC

∗ / Torsion is onto. . . . . . . . . . . . . . . . . . . . . 30
11.14Relation to framed cobordism . . . . . . . . . . . . . . . . . . . . 30
11.15Relation to unoriented cobordism . . . . . . . . . . . . . . . . . . 30
11.16Relation to oriented cobordism . . . . . . . . . . . . . . . . . . . 30
11.17Relation to complex cobordism . . . . . . . . . . . . . . . . . . . 30
11.18Relation to Spin and SpinC . . . . . . . . . . . . . . . . . . . . . 30

A Advanced Calculus 31

A.1 Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.2 Theorem of Sard and Its Consequences . . . . . . . . . . . . . . . 41

B Di�erentiable Manifolds 47

B.1 General De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.2 Paracompactness and Partitions of Unity . . . . . . . . . . . . . 48
B.3 Boundary, Interior and Submanifold . . . . . . . . . . . . . . . . 50
B.4 Vector Bundles and Tangent Bundles . . . . . . . . . . . . . . . . 51
B.5 Immersions and Imbeddings . . . . . . . . . . . . . . . . . . . . . 53
B.6 Normal Bundles and Tubular Neighbourhoods . . . . . . . . . . . 58
B.7 Transversality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



Chapter 1

Introduction - Cobordism

Categories

In order to place the general notion of cobordism theory in mathematical per-
spective recall that di�erential topology is the study of the category of di�eren-
tiable manifolds and di�erentiate maps, primarily in relation to the category of
topological spaces and continuous maps. From a slightly less theoretical point
of view, it is the study of di�erentiable manifolds by topologists using any meth-
ods they can �nd. The guiding principle is that one does not study imposed
structures such as Riemannian metrics or connections and this distinguishes
di�erential topology from di�erential geometry.

As in any subject, the primary problem is classi�cation of the objects within
isomorphism and determination of e�ective and computable invariants to dis-
tinguish the isomorphism classes. In the case of di�erentiable manifolds this
problem is not solvable, since for any �nitely presented group S one can con-
struct a four dimensional manifold M(S) with fundamental group S in such
a way that M(S) and M(T ) will be homeomorphic if and only if S and are
isomorphic, but one cannot solve the word problem to determine whether two
�nitely presented groups are isomorphic (Markov [76]). In special cases one can
solve the problem, but cobordism theory works in another way - by introducing
an equivalence relation much weaker than isomorphism.

Brie�y, two manifolds without boundary are called `cobordant' if their dis-
joint union is the boundary of some manifold. It is worthwhile to note that
every manifold M with empty boundary is the boundary of M × [0,∞). To get
a non-trivial theory it is standard to restrict attention to compact manifolds.

The �rst description of this equivalence relation was by H. Poincaré: Analysis
Situs, Journal de l'École Polytechnique, 1 (l895), 1-121 (section 5, Homologies).
His concept of homology is basically the same as the concept of cobordism used
today.

The next development of cobordism theory was by L. S. Pontrjagin: Char-
acteristic cycles on di�erentiate manifolds, Math. Sbor. (N.S.), 21 (63) (1947),
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2 CHAPTER 1. INTRODUCTION - COBORDISM CATEGORIES

233-284 (Amer. Math. Soc. translations, series 1, no. 32). This paper shows
that the characteristic numbers of a closed manifold vanish if the manifold is a
boundary (providing the invariants for classi�cation);

The cobordism classi�cation of manifolds is reasonably elementary in di-
mensions 0,1, and 2, since manifolds are themselves classi�ed in the dimensions.
Using geometric methods the cobordism classi�cation problem in dimension 3
was solved by V. A. Rohlin: A 3-dimensional manifold is the boundary of a
4-dimensional manifold, Doklady Akad. Nauk. S.S.S.R., 81 (1951), 355.

The �rst application of cobordism was by L. S. Pontrjagin: Smooth manifolds
and their applications in homotopy theory, Trudy Mat. Inst, im Steklov no. 45,
Izdat. Akad. Nauk. S.S.S.R. Moscow, 1955 (Amer. Math. Soc. translations,
series 2, vol. 11, 1959). Pontrjagin attempted to study the stable homotopy
groups of spheres as the groups of cobordism classes of `framed' manifolds. This
amounts to the equivalence of a homotopy problem and a cobordism problem.
The lack of knowledge of manifolds has prevented this from being of use in
solving the homotopy problem.

The major development of cobordism theory is the paper of R. Thorn:
Quelques propriétés globales des variétés di�erenttables, Comm. Math. Helv.
28 (1954), 17-86. This paper showed that the problem of cobordism is equiva-
lent to a homotopy problem. For many of the interesting manifold classi�cation
questions the resulting homotopy problem turns out to be solvable. Thus, Thom
brought the Pontrjagin technique to the study of manifolds, largely reversing
the original idea.

For a brief sketch of oobordism theory there are three survey articles of
considerable interest. For an insight into the early development of the theory
(up through Thom's work) see V. A. Rohlin: Intrinsic homology theories, Us-
pekhi Mat. Nauk., l4 (1959). 3-20 (Amer. Math. Soc. translations, series
2, 30 (1963), 255-271). A short article which covers many of the examples of
cobordism classi�cation problems is J. Milnor: A survey of Cobordism theory,
Enseignement Mathematique,.8 (1962), 16-23. Contained in the survey of dif-
ferential topology by Ð½. Ð¢. Ð½. Wall: Topology of smooth manifolds, Journal
London Math. Soc, 40 (1965), 1-20, is a discussion of representative cobordism
theories, with outlines of the methods by which these problems are solved.

1.1 Cobordism Categories

In order to formalise the notion of cobordism theory, it seems useful to set up a
`general nonsense' situation. As motivation, one may consider the properties of
di�erentiable manifolds.

Let D denote the category whose objects are compact di�erentiable mani-
folds with boundary (of class ∞) and whose maps are the di�erentiable maps
(again C∞) which take boundary into boundary. This category has �nite sums
given by the disjoint union and has an initial object given by the empty mani-
fold. For each object of D one has its boundary, again an object of D , and for
each map the restriction of it to the boundary.
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Further, the boundary of the boundary is always empty. This de�nes an
additive functor ∂ : D → D . For any manifold M , the boundary of M is a
subset whose inclusion is a di�erentiate map i(M) : ∂M → M . This inclusion
gives a natural transformation i : ∂ → I of additive functors, I : D → D being
the identity functor. Finally, the Whitney imbedding theorem shows that each
di�erentiate manifold is isomorphic to a submanifold of countable dimensional
Euclidean space. Thus D has a small subcategory D0 (suhmanifolds of R∞)
such that each object of D is isomorphic to an object of D0.

Abstracting these properties, one has:

De�nition 1.1.1. A cobordism category (C , ∂, i) is a triple in which:

1) C is a category having �nite sums and an initial object;

2) ∂ : C → C is an additive functor such that for each object X of , ∂∂() is an
initial object;

3) i : ∂ → I is a natural transformation of additive functors from ∂ to the
identity functor I; and

4) There is a small subcategory C0 of such that each object of C is isomorphic
to an object of C0.

As noted in motivating this de�nition, (D , ∂, i) is a cobordism category.
There are many more examples, and in fact the purpose of cobordism theory
is to study the interesting examples. The precise choice of this formulation is
based, somewhat vaguely, on the de�nition of `adjoint functors'.

The purpose of this de�nition is not to establish a general nonsense structure;
rather the de�nition will be used to follow the framework of previously developed
theory and to try to unify the ideas. To begin, one has in any cobordism category
the idea of a `cobordism relation'.

De�nition 1.1.2. If (C , ∂, i) is a cobordism category, one says that the objects
X and of are cobordant if there exist objects U and V of such that the sum of
X and ∂U is isomorphic to the sum of Y and ∂V . This will be written X ≡ Y .

One has easily:

Proposition 1.1.3. a) ≡ is an equivalence relation on the objects of C .

b) X ≡ Y implies ∂X ≃ ∂Y .

c) For all X, ∂X ≃ ∅ where ∅ is an initial object.

d) If X ≡ X ′, Y ≡ Y ′ and Z and Z ′ are sums of the pairs (X,Y ) and (X ′, Y ′)
respectively, then Z ≡ Z ′.

Proof. a) X + ∂∅ ≃ X + ∂∅;
X + ∂U ≃ Y + ∂V → Y + ∂V ≃ X + ∂U ; and
X + ∂U ≃ Y + ∂V , Y + ∂W ≃ +∂ implies
X+∂(U+W ) ≃ X+∂U+∂W ≃ Y +∂V +∂W ≃ Z+∂V +∂T ≃ Z+∂(V +T ).
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b) X + ∂U ≃ Y + ∂V implies
∂X ≃ ∂X +∅ ≃ ∂X + ∂∂U ≃ ∂Y + ∂∂V ≃ ∂Y +∅ ≃ ∂Y .

c) ∂X + ∂∅ ≃ ∅+ ∂X since ∂∅ is initial.

d) X+∂U ≃ X ′+∂U ′, Y +∂V ≃ Y ′+∂V ′ gives Z+∂(U+W ) ≃ Z ′+∂(U ′+V ′)

Remark 1.1.4. In all of the above A + B denotes an object which is a sum for
A and B.

Remark 1.1.5. If one is unhappy with equivalence relations on a category, one
may reduce to considering≡ as an equivalence relation on the set of isomorphism
classes of objects of C . This is the reason for the assumption about existence
of C0.

De�nition 1.1.6. An object X of C is closed if ∂X is an initial object. An
object X of C bounds if X ≡ ∅ where ∅ is an initial object.

Proposition 1.1.7. a) X closed and Y ≡ X implies Y closed,

b) X and X ′ closed implies their sum is closed.

c) X bounds implies X is closed,

d) X and Y bound implies their sum bounds,

e) X bounds and Y ≡ X implies Y bounds.

Proof. a) follows directly from b) of Proposition 1.1.3,

b) ∂X ≃ ∅, ∂X ′ ≃ ∅ implies ∂(X +X ′) ≃ ∅+∅ ≃ ∅.

c) X ≡ ∅ implies ∂X ≃ ∂∅ ≃ ∅.

d) X ≡ ∅, Y ≡ ∅ implies X + Y ≡ ∅+∅ ≃ ∅.

e) is immediate since ≡ is an equivalence relation.

Proposition 1.1.8. The set of equivalence classes of closed objects of C (under
≡) has an operation induced by the sum in C . This operation is associative,
commutative, and has a unit (the class of any object which bounds).

Proof. The existence of C0 form a set. That the sum in C follows immediately
from the propositions 1.1.3 and 1.1.7. Associativity and commutativity hold for
isomorphism classes of objects, hence also here.

De�nition 1.1.9. The cobordism semigroup of the cobordism category (C , ∂, i)
is the set of equivalence classes of closed objects of C with the operation induced
by the sum in C . This semigroup will be denoted by Ω(C , ∂, i).
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Remark 1.1.10. 1) Ω(C , ∂, i) may also be described as the semigroup of isomor-
phism classes of closed objects of C modulo the sub-semigroup of isomor-
phism classes of objects which bound.

2) The subgroup Ω(D , ∂, i) is quite easily identi�able with Thom's cobordism
group N∗ of unoriented cobordism classes of closed manifolds. In order
to clarify this slightly, in the usual expression for equivalence one has X
equivalent to Y if there is a V with ∂V = X ∪ Y . Then X ∪ ∂V ≃ Y ∪
∂(X× I) giving X ≡ Y . The implication X ∪∂U ≃ Y ∪∂V implies X ∪Y =
∂T is an easy geometric argument by looking at components and piercing
together manifolds with boundary by means of tubular neighbourhoods of
their boundary components.

Within the literature of cobordism there are a few standard constructions
performed. These may be generalised to the categorical situation as will now
be shown.

Construction I Let (C , ∂i) be a cobordism category, X a category with
�nite sums and an initial object, and F : C → X an additive functor. For any
object X of X , form a category X /X whose objects are pairs (C, f) with C
an object of C and f ∈ Map(F (C), X) and whose maps are given by letting
Map((C, f), (C ′, f ′)) be the set maps ϕ ∈ Map(C,C ′) such that the diagramme

F (C)
F (ϕ) //

f ""

F (C ′)

f ′
||

X

commutes.
If ∅ is an initial object of C mad ϕ : F (∅) → X is the unique map, then

(∅, ϕ) is an initial object of C /X. If (D, g) and (D′, g′) are objects of C /X and
D + D′ is a sum for D and D′ in C , then F (D + D′) is a sum for F (D) and
F (D′) in X . The maps g and g′ give a well de�ned map g+g′ : F (D+D′) → C,
and (D +D′, g + g′) is the sum of (D, g) and (D′, g′) in C /X.

Let ∂̃(c, f) = (∂C, f ◦ F (iC)) and ∂̃(ϕ) = ϕ ◦ iCto de�ne functor ∂̃ : C /X →
C /X. De�ne the natural transformation ĩ : ∂̃ → I by ĩC,f = ic : ∂C → C.

Then (C /X, ∂̃, ĩ) is a cobordism category.

Remark 1.1.11. 1) This is the algebraic-geometric (Grothendieck style) notion
of the category of objects over a given object.

2) If one begins with the category (D , ∂, i) and takes F : D → X to be the
forgetful functor to the category of topological spaces and continuous maps,
then Ω(D/X, ∂̃, ĩ) is the unoriented bordism group N∗(X) as originally for-
mulated by M. F. Atiyah: Bordism and cobordism, Proc. Camb. Phil. Soc.
57 (1961), 200-208.
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Construction II Let A be a small category, (C , ∂, i) cobordism category,
and let Fun(A ,C ) be the category whose objects are functors Φ: A → C and
whose maps are the natural transformations.

If ∅ is an initial object of C , the constant functor ∅ : A → C , A 7→ ∅ is
an initial object of Fun(A ,C ). If F,G : A → C are functors, let H : A → C by
lettingH(A) be a sum for F (A) andG(A) and let (jF )A = jF (A) : F (A) → H(A)
and let (jG)A = jG(A) : G(A) → H(A) be the maps exhibiting H(A) as the sum.
Then jF and jG are natural transformations which exhibit H as a sum for F
and G.

Let
∂̃ : Fun(A ,C ) → Fun(A ,C ), F → ∂ ◦ F, λ→ ∂(λ)

and let ĩ : ∂̃ → I the evaluation at any object A of A is iF (A) : ∂(F (A)) → F (A).

Then (Fun(A ,C , ∂̃, ĩ) is a cobordism theory.

Remark 1.1.12. Many standard examples �t this construction. Suppose A is
the category with one object A whose maps are a �nite group G = Map(A,A).
A functor F : A → D is given by selecting a manifold X = F (A) and a homo-
morphism G → Map(X,X). Since G is �nite , the induced map G × X → X

is a di�erentiable action of G on X. Thus Ω(Fun(A ,C ), ∂̃, ĩ) is the unoriented
cobordism group of (unrestricted) G-actions as de�ned by P. E. Conner and E.
E. Floyd: �Di�erentiable Periodic Maps�, Springer, Berlin, 1964 (section 21).

1.2 Relative Cobordism

In order to study the relationship between two cobordism categories it is conve-
nient to have available a `relative cobordism' semigroup. In the geometric case
this is made possible by joining together two manifolds with the same boundary
to form a closed manifold. In the categorical situation, the idea is to replace a
pair of objects having the same boundary by a pair of closed objects. For this
one needs the idea of the Grothendieck group construction.

Recall that for any category with �nite sums for which the isomorphism
classes of objects form a set, X , one de�ned K(X ), the Grothendieck group
of X , to be the set of equivalence classes of pairs (X,X ′) of objects of X ,
where (X,X ′) is equivalent to (Y, Y ′) if there is an object A of X such that
X + Y ′ + A ≃ X ′ + Y + A. K(X ) is an abelian group under the operation
induced by the sum inX .

Let (C , ∂, i) and (C ′, ∂′, i′) be two cobordism categories, F : C → C ′ an
additive functor, and t : ∂′ ≃ F∂ a natural equivalence of additive functors such
that the diagramme

∂′F (A)
t(A) //

i′F (A) $$

F (∂A)

F (iA){{
F (A)
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commutes. Let P be the category whose objects are triples (X,Y, f) with
X ∈ C ′, Y ∈ C , Y closed, and f : ∂′X → FY an isomorphism and with
Map((X,Y, F ), (X ′, Y ′, f ′)) the set of (ϕ, psi) ∈ Map(X,X ′)×Map(Y, Y ′) such
that

∂′X
f //

∂′ϕ
��

FY

Fψ
��

∂′X ′
f ′
// FY ′

commutes. Then P has �nite sums and a small subcategory P0(X ∈ C ′
0, Y ∈

C0) such that each object of P is isomorphic to an object of P0.
Let S be he collection of pairs ((X,Y, f), (X ′, Y ′, f ′)) of objects of P for

which Y ≃ Y ′. Let (x, x′) ∼ (y, y′) if there are objects u and v of P such that
x + u ≃ y + v and x′ + u ≃ y′ + v. Then the set of equivalence classes S / ∼
forms an abelian group under the operation induced by the sum.

One has a homomorphism β : K(C ′
Cl) → S / ∼, where C ′

Cl is the subcategory
of closed objects of C ′ by setting (X,X ′) into ((X,∅, j), (X ′,∅, j′)) where ∅ is
an initial object of C and j, j′ are the unique isomorphism of initial objects.

If one has a homomorphism

α : S / ∼→ K(C ′
Cl)/(∂

′
∗K(C ′) + F∗K(CCl))

such that the composition with β is the quotient homomorphism of K(C ′
Cl),

then on can de�ne a relative cobordism semigroup as follows:
For objects (X,Y, f) and (X ′, Y ′, f ′) of P, one writes (X,Y, f) ≡ (X ′, Y ′, f ′)

if there exist objects U and u′ of C with Y + ∂U ≃ Y ′ + ∂U ′ and for which

α((X + FU, Y + ∂U, f + tU), (X ′ + FU ′, Y ′ + ∂U ′, f ′ + tU ′)) = 0.

Using the fact that α is a homomorphism one easily sees that ≡ is an equivalence
relation. The relative cobordism semigroup Ω(F, t, α) is the set of equivalence
classes under ≡ of elements of P with the sum induced by the sum in P.

One has homomorphisms

∂ : Ω(F, t, α) → Ω(C ′, ∂, i), (X,Y, f) 7→ Y,

F∗ : Ω(C , ∂, i) → Ω(C ′, ∂′, i′), Y 7→ FY, and

i : Ω(C ′, ∂′, i′) → Ω(Ft, α), X 7→ (X,∅, j)

and the triangle

Ω(C , ∂, i)
F∗ // Ω(C ′, ∂′, i′)

ixx
Ω(F, t, α)

∂

ff

is easily seen to have period 2 (i.e, ∂i = iF∗ = f∗ = 0).
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In order to clarify the relationship between the homomorphism α and the
joining of two manifolds along their common boundary, consider elements (X,Y, f)
of P as a manifold with boundary together with additional structure on its
boundary. For ((X,Y, f), (X ′, Y ′, f ′) ∈ S choose an isomorphism g : Y

≃−→ Y ′

and let α(x, x′) be the class of X ∪k (−X ′), where −X ′ is X ′ with its opposite
structure (e.g. orientation), and the boundaries of X and X ′ are identi�ed vis
k = (f ′)−1F (g)f . This class does not depend on the choice of g, for if g′ is
another isomorphism one may attach X ′ × I to

(X ∪k (−X ′))× I ∪ [±(X ∪k′ (−X ′))]× I

so that the di�erence of two representatives is cobordant to X∪k′′ (−X ′), where
k′′ = f−1F (g−1g′)f . Identifying ∂X × 0 with ∂X × 1 using k′′ in X × I gives a
cobordism of X ∪k′′ (−X ′) and ∂X × I with ends of Y × I with ends identi�ed
using g−1g′. Thus α does not depend on the choice of g.

With this choice of α, suppose one has (X,Y, f) ≡ (X ′, Y ′, f ′). One may
then �nd a cobordism of Y and Y ′, say ∂V = Y −Y ′ so that X∪(−V )∪(−X ′) is
cobordant to a closed manifold D with additional structure. Thus one may �nd
a cobordism of Y and Y ′, U = V +D, ∂U = Y −Y ′, so that X ∪ (−U)∪ (−X ′)
bounds. This is the usual geometric description for cobordism of manifolds with
boundary.

Remark 1.2.1. One may let C be the subcategory of C ′ consisting of initial
objects, with F the inclusion. Then β is epic, uniquely determining α. The
relative cobordism semigroup in this case is then identi�able with the cobordism
semigroup of C ′.



Chapter 2

Manifolds with Structure -

the Pontrjagin-Thom theorem

2.1 (B, f) structures

2.2 Generalised Pontrjagin-Thom theorem

2.3 Tangential structures, sequences of maps, ring
structure, relative groups

9
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Chapter 3

Characteristic Classes and

Numbers

As mentioned in the introduction, the determination of invariants which dis-
tinguish manifolds in one of the principal aims of di�erential topology. In the
framework of cobordism theory, the use of characteristic classes provides invari-
ants called characteristic numbers which are cobordism invariants. In order to
set up the machinery for these invariants, the ideas of generalised cohomology
theory play a central role, and for this basic reference is G. W. Whitehead: Gen-
eralized cohomology theories, Trans. Amer. Math. Soc., 102 (1962), 227-283.

3.1 Spectra

De�nition 3.1.1. A spectrum E is a sequence {En|n ∈ Z} of spaces with
base point together with a sequence of maps en :

∑
En → En+1,

∑
being the

suspension. If F˜ = {Fn, fn} is another spectrum, a map h from E˜ to F˜ is a
sequence of maps hn : En → Fn with hn+1 ◦ en = fn ◦

∑
hn.

∑
En

en //

∑
hn

��

En+1

hn+1

��∑
Fn

fn

// Fn+1

11
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3.2 Ring spectra

3.3 Thom class

3.4 Fundamental class

3.5 Characteristic class, characteristic number

3.6 Orientation and Thom isomorphism

3.7 Atiyah duality

3.8 Alexander and Spanier-Whitehead duality



Chapter 4

The Interesting Examples - A

Survey of the Literature

Since cobordism theory is classi�cation tool, the interest really lies in the in-
vestigation of speci�c classi�cation problems. Numerous examples have been
considered and hence a vast literature exists, with few really central theoretical
tools, largely due to the idiosyncrasies inherent in the examples. The purpose
of this chapter is to list many of these examples and indicate brie�y what is
known and where to �nd it in the literature.

13



14CHAPTER 4. THE INTERESTING EXAMPLES - A SURVEYOF THE LITERATURE

4.1 Example 1: Framed cobordism Ωfr
∗

4.2 Example 2: Unoriented cobordism N∗

4.3 Example 3: Complex cobordism ΩU
∗

4.4 Example 4: Oriented cobordism ΩSO
∗

4.5 Example 5: w1 spherical cobordism W∗

4.6 Example 6: Bordism Ω∗(B, f)[X,A]

4.7 Example 7: Special unitary cobordism ΩSU
∗

4.8 Example 8: c1 spherical cobordism WU
∗

4.9 Example 9: Spin cobordism ΩSpin
∗

4.10 Example 10: SpinC cobordism ΩSpinC

∗

4.11 Example 11: Complex-Spin cobordism ΩSpinC−S

∗

4.12 Example 12: Symplectic cobordism ΩSp
∗

4.13 Fifteen more examples and two pseudoex-
amples



Chapter 5

Cohomology of Classifying

Spaces

In order to study the interesting examples of cobordism theories it is essential
to have a detailed knowledge of the cohomology of the classifying space for the
classical Lie groups.

5.1 Vector bundles

LetK be one of the �elds R (real numbers), C (complex numbers), or H (quater-
nions). Let k be the dimension of K as vector space over the reals.

15



16 CHAPTER 5. COHOMOLOGY OF CLASSIFYING SPACES

5.2 De�nition of characteristic classes

5.3 Splitting lemma

5.4 Thom spaces

5.5 Ordinary cohomology of Grassmannians

5.6 Relationship between �elds

5.7 Characteristic numbers of manifolds (projec-
tive spaces, Milnor hypersurfaces)

5.8 Cohomology of BO and BSO

5.9 Pontrjagin classes

5.10 Euler class



Chapter 6

Unoriented Cobordism

In many respects the most interesting cobordism theory is unoriented cobordism;
i.e. the cobordism problem associated to the category (O, ∂, i) of all compact
di�erentiable manifolds. It has additional interest in that its solution by Them
[127] illustrates all of the basic techniques for dealing with cobordism problems,
without encountering excessive technicality.

First note that Ω(O, ∂, i) decomposes as a direct sum of semigroups Ωn(O, ∂, i),
n being the dimension of the manifold. This semigroup is usually denoted Nn

with N∗ denoting the direct sum. The �rst structure theorem is:

Proposition 6.0.1. Nn is an abelian group in which every element has order
2. N∗ is a graded commutative ring, multiplication being induced by the product
of manifolds, with unit, given by the cobordism class of a point.

Proof. For any closed M , M +M + ∂∅ ≃ ∅ + ∂(M × I) where I = [0, 1] so
the class of M is its own inverse. If M , N1 and N2 are closed with N1

∼= N2,
say N1 + ∂U1 ≃ N2 + ∂U2, then M ×N1 + ∂(M ×U1) ≃M ×N2 + ∂(M ×U2)
so M × N1

∼= M × N2. Since M × (N1 + N2) ≃ M × N1 + M × N2 and
M ×N ≃ N ×M this gives N∗ the structure of a graded commutative ring. If
p is a point, M × p ≃ p×M ≃M , so the class of p is a unit.

Theorem 6.0.2. The cobordism group Nn is isomorphic to limr→∞ πn+r(TBOr,∞).
The ring structure in N∗ is induced by the maps TBOr ∧TBOs : TBOs →
TBOr+s obtained from the Whitney sum operation on vector bundles.

The next step is clearly to try to solve the homotopy problem. It is here
that the most ingenuity is required since the various cobordism theories di�er
widely at this point. The guidance one obtains from Thom's work is: Make use
of the cohomology theories for which the manifolds in question are Orientable.

6.1 The mod2 Steenrod algebra A2

For oriented cobordism one makes use of ordinary cohomology with Z/2Z coef-
�cients; i.e. the cohomology for the spectrum K˜ (Z/2Z). One needs a knowledge

17
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of the operations in this theory,which may be summarised:

6.2 Adem relations

6.3 Cartan formula

6.4 Structure theorem for N2

6.5 Wu classes vk, v(M)

6.6 Wu relations on characteristic numbers

This completes the analysis of the unoriented cobordism ring. Beginning the
pattern which will be followed throughout, one wishes to know the relationship
with other cobordism theories and the structure of the related bordism theory.

6.7 Relation to framed cobordism: the Hopf in-
variant

Recall that a framed manifold is a manifold together with an equivalence class
of trivialisations of the stable normal bundle. The cobordism corresponding is
(B, f) cobordism with Br a point and the cobordism group Ωfr

n are identi�ed
with limr→∞ πn+r(Sr,∞). (Pontrjagin [101]).

6.8 Unoriented bordism: Steenrod representation

Let T denote the category of topological spaces and continuous maps and
F : D → T the forgetful functor assigning to each di�erentiable manifold its
underlying topological space. For any space X one may form the cobordism cat-
egory (D/X, ∂̃, ĩ), obtained from Construction I. This gives rise to a cobordism
semigroup N∗(X) which was �rst de�ned by Atiyah [13] and which is called the
bordism group of X.

Let (B, f) be the sequence of spaces and maps given by Br = X ×BOr and
fr : Br → BOr the projection on the second factor. A (B, f) structure on a
manifold is then a (BO, 1) structure together with a homotopy class of maps
into X. Since homotopic maps de�ne the same class in N∗(X) one has induced
a homomorphism Ω∗(B, f) → N∗(X) which is clearly an isomorphism.

It is clear from the free A2 module structure of H̃∗((/A)∧TBO
˜

;Z/2Z) that
all relations among these generalised Stiefel-Whitney numbers arise from teh
Wu relation.
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References: In addition to Atiyah's paper [13], one may �nd a discussion of
unoriented bordism in Conner and Floyd [36]. The Steenrod representability is
due to Thom [127].
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Chapter 7

Complex Cobordism

Historically the next cobordism problem to be completely solved was the cobor-
dism of stably almost complex manifolds. This was de�ned and completely
determined by Milnor [81] and by Novlkov [93]. Speci�cally this is (B, f) cobor-
dism in which B2r = B2r+1 is the classifying space BUr for complex r-plane
bundles. Since a complex vector bundle has a unique stable inverse, the objects
are then manifolds with a chosen complex vector bundle structure on the normal
or tangent bundle.

21



22 CHAPTER 7. COMPLEX COBORDISM

7.1 The modp Steenrod algebra Ap

7.2 Structure of ΩU
∗

7.3 Complex K-theory

7.4 Chern character

7.5 Calculation of K-theory characteristic num-
bers

7.6 Construction of almost complex manifolds with
certain characteristic numbers

7.7 ΩU
∗ is a polynomial.

7.8 Polynomial generators for ΩU
∗

7.9 Relations among characteristic numbers [Stong-
Hattori theorem]

7.10 Relation to framed cobordism: the Adams
invariant eC

7.11 Relation to unoriented cobordism

7.12 Complex bordism



Chapter 8

σ1-Restricted Cobordism

Let K be one of the �elds R or C. If µ is an n-dimensional K vector bundle, the
determinant bundle of µ, detµ, is the K line bundle ∧nK(µ) given by the n-fold
exterior power bundle over K of the bundle µ.

8.1 det(µ), µ an n-plane bundle

8.2 P (Kr)-structure, K = R or C

8.3 W∗(K, r)

8.4 Semi-geometric methods: W∗(K, 2)

8.5 Relation between W∗(K, 2) and ΩSG
∗ : Semi-

geometric methods

8.6 Relation to bordism groups

23
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Chapter 9

Oriented Cobordism

With the exception of the unoriented oobordism problem, the most interesting
manifold theoretic cohordism problem is the classi�cation problem for �oriented�
manifolds, where �oriented� is taken in the classical sense.

There are many equivalent descriptions of an �orientation� of a manifold,
which may be given by:

a) A trivialisation of the determinant bundle of the tangent (or normal) bundle;

b) A reduction of the structural group of the tangent (or normal) bundle to the
special orthogonal group;

c) An integral cohomology orientation of the tangent (or normal) bundle in the
sense of Dold; or

d) A fundamental integral homology class giving an orientation in the sense of
Whitehead.

In addition to the desire to classify �oriented� manifolds because of the clas-
sical interest, de�nition (d) indicates a relation between �oriented� bordism and
integral cohomology and full exploration of this relationship is desirable for
geometric understanding of integral homology.

The analysis of �oriented� cobordism is a very complicated problem, the
major outline of its solution having been:

1) Reduction to a homotopy problem and rational structure by Them [127J;

2) Calculation of odd primary and mod torsion structure by Milnor [81], or
Averbuh [21], and Novikov [93];

3) Calculation of 2 primary structure by Wall [130]; and

4) Analysis of oriented bordism by Conner and Floyd [36].
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9.1 Structures of ΩSO
∗ ⊗Q

9.2 Torsion in ΩSO
∗ is 2-primary.

9.3 ΩU
∗ → ΩSO

∗ / Torsion is onto.

9.4 ΩSO
∗ / Torsion is a polynomial.

9.5 Polynomial generators for ΩSO
∗ / Torsion

9.6 All torsion in ΩSO
∗ has order 2.

9.7 Pontrjagin and Stiefel-Whitney numbers de-
termine classes in ΩSO

∗ .

9.8 Image of ΩSO
∗ → N∗

9.9 Integrality theorem for oriented manifolds

9.10 Hirzebruch L class L(ξ)

9.11 Relations among Pontrjagin numbers

9.12 The Â class

9.13 Oriented bordism

9.14 Relation to framed cobordism

9.15 The Pontrjagin numbers of an oriented man-
ifold with framed boundary

9.16 Relation to unoriented cobordism

9.17 Relation to complex cobordism

9.18 The index (or signature)

9.19 The Hirzebruch index (or signature) theo-
rem



Chapter 10

Special Unitary Cobordism

Having already built up the machinery to study special unitary cobordism, the
`oriented' analogue of complex cobordism, one may obtain much of the structure
in fairly easy fashion. The only new feature which arises is the use of KO-theory
characteristic numbers.

27



28 CHAPTER 10. SPECIAL UNITARY COBORDISM

10.1 Structure of ΩSU
∗ ⊗Q

10.2 Torsion in ΩSU
∗ is 2-primary.

10.3 Construction of SU-manifolds with certain
characteristic numbers

10.4 ΩSU
∗ ⊗ Z[12 ] is a polynomial.

10.5 All torsion in ΩSU
∗ has order 2.

10.6 Torsion in ΩSU
∗

10.7 KO-theory characteristic numbers

10.8 Chern numbers of SU-manifolds

10.9 ΩSU
∗ is determined by integral cohomology

and KO characteristic numbers.

10.10 Product in W∗(C, 2)

10.11 Relation to framed cobordism

10.12 Relation to complex cobordism

10.13 Relation to unoriented cobordism

10.14 Relation to oriented cobordism



Chapter 11

Spin, SpinC, and Similar

Nonsense

Among the (B, f) cobordism theories, the most interesting examples arise from
the classical groups. The most di�cult of these which have been successfully
analysed are the theories given by the groups Spin and SpinC. The group Spin
arose classically in the study of Lie groups, being the simply connected covering
group of the special orthogonal group.
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30 CHAPTER 11. Spin, SpinC, AND SIMILAR NONSENSE

11.1 Cli�ord algebra Cliff(V )

11.2 Spin(k), SpinC(k)

11.3 Pin(k), PinC(k)

11.4 H∗(BSpin;Z/2Z)

11.5 Connective covers of BO and BU

11.6 Filtration of KO∗(X) and K∗(X)

11.7 Isomorphic homologies

11.8 2-primary analysis of MSpin and MSpinC

11.9 Structure of ΩMSpin
∗ and ΩMSpinC

∗

11.10 KO-theory and mod2 cohomology charac-
teristic numbers determine ΩMSpin

∗ .

11.11 Ordinary (Q,Z/2Z) cohomology character-

istic numbers determine ΩMSpinC

∗ .

11.12 Basis for ΩSpin
∗ ⊗ Z/2Z

11.13 ΩU
∗ → ΩSpinC

∗ / Torsion is onto.

11.14 Relation to framed cobordism

11.15 Relation to unoriented cobordism

11.16 Relation to oriented cobordism

11.17 Relation to complex cobordism

11.18 Relation to Spin and SpinC



Appendix A

Advanced Calculus

This appendix collects the results from standard advanced calculus which are
needed for geometric arguments in cobordism theory. These results are lifted
bodily from the following sources:

(1) Milnor, J.: Lectures on Characteristic Classes, mimeographed, Princeton
University, Princeton, N. J., 1957.

(2) Milnor, J.: Topology from the Di�erentiable Viewpoint, The University
Press of Virginia, Charlottesville, Va., 1965.

(3) Spivak, M.: Calculus on Manifolds, W. A. Benjamin, Inc., New York, New
York, 1965.

(4) Steenrod, N.: The Topology of Fibre Bundles, Princeton University Press,
Princeton, N. J. 1951.

(5) Sternberg, S.: Lectures on Di�erential Geometry, Prentice-Hall, New York,
1964.

A.1 Calculus

De�nition A.1.1. A function f : Rn → Rm is di�erentiable at a ∈ Rn if there
is a linear transformation λ : Rn → Rm such that

lim
h→0

|f(a+ h)− f(a)− λ(h)|
|h|

= 0

Proposition A.1.2. If f : Rn → Rm is di�erentiable at at a ∈ Rn, there is a
unique linear transformation λ : Rn → Rm for which the above holds.
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Proof. If µ : Rn → Rm is another such linear transformation, x ∈ Rn and t ∈ R,
then

|λ(x)− µ(x)|
|x|

= lim
t→0

|λ(tx)− µ(tx)|
|tx|

= lim
t→0

|λ(tx)− f(a+ tx) + f(a) + f(a+ tx)− f(a)− µ(tx)|
|tx|

= lim
t→0

|f(a+ tx)− f(a)− λ(tx)|
|tx|

+ lim
t→0

|f(a+ tx)− f(a)− µ(tx)|
|tx|

= 0 + 0

So λ(x) = µ(x) for all x.

De�nition A.1.3. The linear transformation λ satisfying the above condition
is denoted Df(a) and is called the derivative of f at a.

Lemma A.1.4. If T : Rn → Rm is a linear transformation, there is a number
M such that |T (h)| ≤M |h| for all h ∈ Rn.

Proof. Let e1i , e
2
j be the usual bases of Rn and Rm respectively and de�ne tij ∈ R

by T (1i ) =
∑
tije

2
j . If h =

∑
hie

1
i , then

|T (h)| =
√∑

j

(
∑

hitij)2 ≤
∑
j

|
∑
i

hitij |

≤
∑
j

∑
i

|tij | · |hi| ≤ mn sup
i,j

|ti,| · |h|.

Thus it su�ces to take M = mn supi,j |tij |.

Proposition A.1.5. If f : Rn → Rm is di�erentiable at a ∈ Rn, then f is
continuous at a.

Proof. Let ε > 0. Since limx→a|f(x)− f(a)−Df(a)(x− a)|/|x− a| = 0, there
is a δ1 > 0 such that |x− a| < δ1 implies

|f(x)− f(a)−Df(a)(x− a)| < (ε/2)(|x− a|).

By the lemma, there is anM such that |Df(a)(h)| ≤M |h|. Let δ = min(δ1, ε/2M, 1).
Then |x− a| < δ implies

|f(x)− f(a)| ≤ |f(x)− f(a)−Df(a)(x− a)|+ |Df(a)(x− a)|
< (ε/2)|x− a|+M |x− a|
≤ (ε/2) +M(ε/2M)

= ε.

Hence f is continuous at a.
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Theorem A.1.6. (Chain Rule) If f : Rn → Rm is di�erentiable at a ∈ Rn,
and g : Rm → Rp is di�erentiable at f(a) = b ∈ Rm, then g ◦ f : Rn → Rp is
di�erentiable at a, and

D(g ◦ f) = Dg(f(a)) ◦Df(a).

Proof. De�ne

φ(x) = f(x)− f(a)− λ(x− a),

ψ(y) = g(y)− g(b)− µ(y − b).

where λ = Df(a), µ = Dg(f(a)). Then

g(f(x))− g(b)− µν(x− a) = g(f(x))− g(b)− µν(f(x)− f(a)− φ(x))

= [g(f(x))− g(b)− µ(f(x)− b)] + µ(φ(x))

= ψ(f(x)) + µ(φ(x)).

By the lemma, there is an M1 such that |µ(h)| ≤M1|h|, so

0 ≤ lim
x→a

|µ(φ(x))|
|x− a|

≤M1 lim
x→a

|(φ(x))|
|x− a|

= 0.

Now let ε > 0 and choose anM2 such that |λ(h)| ≤M2|h|. Since limy→b|ψy|/|y−
b| = 0, there is a δ1 > 0 such that

|ψ(f(x))| < (ε/M2)|f(x)− b|

if f(x)− b| < δ1. Since di�erentiability implies continuity, there is a δ2 > 0 such
that |x− a| < δ2 implies |f(x)− b| < δ1. Thus if |x− a| < δ2|

|ψ(f(x))| < (ε/M2)|f(x)− b|
= (ε/M2)|φ(x) + λ(x− a)|
≤ (ε/M2)|φ(x)|+ ε|(x− a)|

and so

0 ≤ lim
x→a

|ψ(f(x))|
|x− a|

≤ (ε/M2) lim
x→a

|φ(x)|
|x− a|

+ ε = ε,

and since this holds for all ε > 0

lim
x→a

|g(f(x))− g(b)− µ(λ(x− a))|
|x− a|

= 0.

Proposition A.1.7. 1) If f : Rn → Rm is a constant function, then DF (a) =
0.

2) If f : Rn → Rm is a linear transformation, then Df(a) = f .
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3) If f : Rn → Rm : x 7→ (f1(x), . . . , fm(x)), then f is di�erentiable at a ∈ Rn if
and only if each f i is di�erentiable at a and Df(a) = (Df1(a), . . . , Dfm(a)).

4) If f, g : Rn → Rm are di�erentiable at a ∈ Rn, then f + g : Rn → Rm is
di�erentiable at a ∈ Rn and

D(f + g)(a) = Df(a) +Dg(a).

5) If f, g : Rn → R are di�erentiable at a ∈ Rn, then f · g : Rn → R is di�eren-
tiable at a ∈ Rn and

D(f · g)(a) = f(a) ·Dg(a) + g(a) ·Df(a).

Proof. 1) If f(x) = y for all x, then

lim
h→0

|f(a+ h)− f(a)− 0|
|h|

= lim
h→0

|y − y − 0|
|h|

= 0.

2)

lim
h→0

|f(a+ h)− f(a)− f(h)|
|h|

= lim
h→0

|f(a) + f(h)− f(a)− f(h)|
|h|

= 0.

3) If each f i is di�erentiable and λ = (Df1(a), . . . , Dfm(a)), then

f(a+h)−f(a)−λ(h) = (f1(a+h)−f1(a)−Df1(a)(h), . . . , fm(a+h)−fm(a)−Dfm(a)(h))

so

lim
h→0

|f(a+ h)− f(a)− λ(h)|
|h|

≤
∑

lim
h→0

|f i(a+ h)− f i(a)−Df i(a)(h)|
|h|

= 0.

Conversely, f i is the composition of f and the projection πi which is linear,
so Df i(a) = D(πi ◦ f)(a) = πiDf(a).
4) Let s : Rn × Rm → Rm, (x, y) 7→ x + y, and let (f, g) : Rn → Rm × Rm,
a 7→ (f(a), g(a)). Then s is linear, so Ds = s and by 3), D(f, g) = (Df,Dg).
By the chain rule,

D(f + g)(a) = Ds(f(a), g(a)) ◦D(f, g)(a)

= s(Df(a), Dg(a))

= Df(a) +Dg(a).

5) Let p : R2 → R, (x, y) 7→ xy. By the chain rule, it su�ces to show that
Dp(a, b)(x, y) = bx+ ay. Letting λ(x, y) = bx+ ay.

lim
(h,k)→0

|p(a+ h, b+ k)− p(a, b)− λ(h, k)|
|(h, k)|

= lim
(h,k)→0

|hk|
|(h, k)|

.

Since |hk| ≤ sup(|h|2, |k|2) ≤ |h|2 + |k|2, one has

0 ≤ lim
(h,k)→0

|hk|
|(h, k)|

≤ lim
(h,k)→0

|(h, k)|2

|(h, k)|
= lim

(h,k)→0
|(h, k)| = 0.
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Proposition A.1.8. If f : R → R is di�erentiable at a ∈ R and has either a
relative minimum or a relative maximum at a, then Df(a) = 0.

Proof. Let Df(a)(h) = th with t ∈ R. If a is a relative maximum, then

f(a+ h)− f(a) ≤ 0

so if th > 0,

0 = lim
h→0,th→0

|f(a+ h)− f(a)− th|
|h|

≥ lim
h→0

|th|
|h|

= |t|.

If a is a relative minimum, then f(a+ h)− f(a) ≥ 0 so if th < 0,

0 = lim
h→0,th→0

|f(a+ h)− f(a)− th|
|h|

≥ lim
h→0

|th|
|h|

= |t|.

Theorem A.1.9 (Rolle). Let [a, b] ⊂ R and f : [a, b] → R a continuous function
with f(a) = f(b) = 0 and such that Df(c) exists for all a < c < b. Then
Df(c) = 0 for some c ∈ (a, b).

Proof. If f is not identically zero in which case Df(c) = 0 for all c ∈ (a, b),
then f has a positive maximum or a negative minimum which must occur at
some c ∈ (a, b). Thus c is either a relative maximum or relative minimum and
so Df(c) = 0 by the proposition.

Theorem A.1.10 (Mean Value). Let [a, b] ⊂ R and f : [a, b] → R a continuous
function which is di�erentiable at all points c ∈ (a, b). Then there is a point
c ∈ (a, b) such that

f(b)− f(a) = Df(c)(b− a)

Proof. Let F (x) = f(x)− f(a)− [(f(b)− f(a))/(b−a)](x−a). Then F satis�es
the conditions of Rolle's theorem, so for some c ∈ (a, b)

0 = DF (c) = Df(c)− [(f(b)− f(a))/(b− a)] · idR

where idR : R → R is the identity function.

De�nition A.1.11. If f : Rn → R and a ∈ Rn, then the limit

lim
h→0

f(a1, . . . , ai−1, ai + h, . . . , an)− f(a1, . . . , an)

h

is called the i-th partial derivative of f at a, denoted Dif(a), when it exists.

Theorem A.1.12. If f : Rn → Rm has the property that all the partial deriva-
tives Djf

i(x) exist in an open set containing a and are continuous at a, then
Df(a) exists.
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Proof. It su�ces to show Df i(a) exists, so one may assume m = 1. Then

f(a+ h)− f(a) =
n∑
i=1

[f(a1 + h1, . . . , ai + hi, . . . ai+1, . . . , an)− f(a1 + h1, . . . , ai−1 + hi−1, . . . , ai, . . . , an]

=

n∑
i=1

hiDif(ci)

for some point ci = (a1 + h1, . . . , ai−1 + hi−1, ai + θih
i, ai+1, . . . , an) where

0 < θi < 1, by the mean value theorem. Hence

lim
h→0

|f(a+ h)− f(a)−
∑
hi ·Dif(a)|

|h|
= lim
h→0

|
∑
hi[Dif(ci −Dif(a)|

|h|

≤ lim
h→0

∑
|[Dif(ci −Dif(a)| ·

|hi|
|h|

≤ lim
h→0

∑
|[Dif(ci −Dif(a)|

= 0

by continuity of Dif at a. Thus Df(a)(h) =
∑
Dif(a) · hi.

De�nition A.1.13. For f : Rn → R, the function de�ned by

Di1,...,irf = Di1(Di2,...,irf)

is called an r-th order partial derivative of f . The function f is said to be of
class C∞ if all partial derivatives (of all orders) exist.

Theorem A.1.14. If f : Rn → R and Di,jf and Dj,if exist and are continuous
in an open set containing a ∈ Rn, then

Di,jf(a) = Dj,if(a).

Proof. It su�ces to consider the case n = 2. Let a = (c, d) and let (h, k) ∈ R2

be small enough so that both D1,2f and D2,1f are de�ned on

{(x, c)||x− c| ≤ h, ||y − d| ≤ k}.

Let
φ(x) = f(x, d+ k)− f(x, d), ψ(y) = f(c+ h, y)− f(c, y).

Then

α = f(c+ h, d+ k)− f(c, d+ k)− f(c+ h, d) + f(c, d) = φ(c+ h)− φ(c)

= ψ(d+ k)− ψ(d).
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There is a c′ ∈ (c, c+ h) with

α = φ(c+ h)− φ(c) = Dφ(c′) · h
= [D1f(c

′, d+ k)−D1f(c
′, d)]h

= D2,1f(c
′, d′)hk

for some d′ ∈ (d, d+ k).
There is a d′′ ∈ (d, d+ k) with

α = ψ(d+ k)− ψ(d) = Dψ(d′′) · k
= [D2f(c+ h, d′′)−D2f(c, d

′′)]k

= D1,2f(c
′′, d′′)hk

for some c′′ ∈ (c, c+ h).
Thus every open set U containing a contains points p′, p′′ with

D1,2f(p
′) = D2,1f(p

′′).

By continuity of the Di,jf this gives D1,2f(a) = D2,1f(a).

Proposition A.1.15. If f : Rn → R is a C∞ function and x0 ∈ Rn, there exist
C∞ functions gi : Rn → R, i = 1, . . . , n, with gi(x0) =

∂f
∂xi

(x0) such that

f(x) = f(x0) +

n∑
i=1

(x− x0) · gi(x).

Proof. De�ne hx(t) = f(x0 + t(x− x0)). Then hx(t) is a C∞ function of t and

� 1

0

dhx
dt

· dt = fx(1)− hx(0)

= f(x)− f(x0).

By the chain rule,

dhx
dt

=
∑
j

∂f

∂xj
(x0 + t(x− x0)) · (x− x0)j

so

f(x) = f(x0) +

n∑
j

(x− x0)j)

� 1

0

∂f

∂xj
(x0 + t(x− x0))dt

and one may let gi(x) =
� 1

0
∂f
∂xj

(x0 + t(x− x0))dt. Then

gi(x0) =

� 1

0

∂f

∂xj
(x0)dt =

∂f

∂xj
(x0)

� 1

0

dt =
∂f

∂xj
(x0).
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Lemma A.1.16. Let A ⊂ Rn be a rectangle and f : A → Rn continuously
di�erentiable (i.e., each Djf

i(x) exists and is continuous on A). If there is a
number M such that |Djf

i(x)| ≤M for all x in the interior of A, then

|f(x)− f(y)| ≤ n2M |x− y|

for all x, y ∈ A.

Proof. One has

f i(y)− f i(x) =

n∑
j=1

[f i(y1, . . . , yj , xj+1, . . . , xn)− f i(y1, . . . , yj−1, xj , . . . , xn)]

=

n∑
j=1

|yj − xj | ·Djf
i(xij) for some zij ∈ interior A

≤
n∑
j=1

|yj − xj | ·M

≤ nM |y − x|

so

|f(x)− f(y)| ≤
n∑
i=1

|f i(y)− f i(x)| ≤ n2M |x− y|.

Theorem A.1.17 (Inverse Function). Let f : Rn → Rn be continuously dif-
ferentiable in an open set containing a, with Df(a)non-singular. Then there
is an open set V containing a and an open set W containing f(a) such that
f : V → W has a continuous inverse f−1 : V → W which is di�erentiable and
Df−1(y) = [Df(f−1(y))]−1 for all y ∈W .

Proof. Let λ = DF (a) and then

D(λ−1 ◦ f)(a) = D(λ−1)(f(a)) ◦Df(a) = λ−1 ◦Df(a) = id .

If g is an inverse forλ−1 ◦ f , then g ◦λ−1 is an inverse for f , and hence one may
assume λ = id. Hence if f(a+ h) = f(a) one has

|f(a+ h)− f(a)− λ(h)|
|h|

=
|h|
|h|

= 1

but since

lim
h→0

|f(a+ h)− f(a)− λ(h)|
|h|

= 0

this means that f(x) ̸= f(a) if xis close to but not equal to a.
Thus there is an closed rectangle U containing a in its interior with

1. f(x) ̸= f(a) if x ∈ U \ {a}.
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Since f is continuously di�erentiable in an open set containing a, one may also
assume

2. Df(x) is non-singular for all x ∈ U ,

3. |Djf
i(x)−Djf

i(a)| < (1/2)n2 for all i, j and x ∈ U .

Since (Djf
i(a)) is the Kronecker delta δij , the lemma applies to g(x) = f(x)−x

giving that for x1, x2 ∈ U

|f(x1 − x1 − (f(x2)− x2)| ≤ (1/2)|x1 − x2|

so

|x1 − x2| − |f(x1)− f(x2)| ≤ |f(x1 − x1 − (f(x2)− x2)| ≤ (1/2)|x1 − x2|.

Hence

4. |x1 − x2| ≤ 2|f(x1)− f(x2)| if x1, x2 ∈ U .

Since f is continuous, f(∂U) is compact and by 1. cannot contain f(a), so there
is a d > 0 such that |f(x)−f(a)| ≥ d if x ∈ ∂U . LetW = {y||y−f(a)| < (d/2)}.
If y ∈W and x ∈ ∂U then

5. |y − f(a)| < |y − f(x)| for

d ≤ |f(x)− f(a)| ≤ |y − f(x)|+ |y − f(a)| < |y − f(x)|+ (d/2).

Now let y ∈W and let g : U → R by

g(x) = |y − f(x)|2 =

n∑
i=1

(yi − f i(x))2.

Then g is continuous so has a minimum on U , but by 5. g(a) < g(x) for
x ∈ ∂U , so the minimum of g must occur at an interior point of U , i.e., is a
relative minimum. Thus there is a point z ∈ interior U with Djg(z) = 0 for all
j, or

2

n∑
j=1

(yi − f i(z)) ·Djf
i(z) = 0.

Since by 2. Df(z) is non-singular, this gives yi−f i(z) = 0 or y = f(z) for some
z ∈ interior U . By 4. this z is unique.

Letting V = interior U ∩ f−1(W ), the function f : V → W has an inverse
f−1 : W → V , and rewriting 4. as |f−1(y1)−f−1(y2)| ≤ 2|y1−y2| for y1, y2 ∈W
proves continuity of f−1.

To show that f−1 is di�erentiable, let µ = Df(x) and y = f(x) and for
x1 ∈ V , let us de�ne φ by

f(x1) = f(x) + µ(x1 − x) + φ(x1 − x)
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so that

lim
x1→x

|φ(x1 − x)|
|x1 − x|

= 0.

Then
µ−1(f(x1)− f(x)) = x1 − x+ µ−1(φ(x1 − x))

and since every y1 ∈W is of the form f(x1) with some x1 ∈ V , one has

f−1(y1) = f−1(y) + µ−1(y1 − y)− µ−1(φ(f−1(y1)− f−1(y))).

Since µ−1 is linear, there is an M with

|µ−1(φ(f−1(y1)− f−1(y)))|
|y1 − y|

≤M
|φ(f−1(y1)− f−1(y))|

|y1 − y|

=M
|φ(f−1(y1)− f−1(y))|
|f−1(y1)− f−1(y)|

· |f
−1(y1)− f−1(y)|

|y1 − y|

≤ 2M
|φ(f−1(y1)− f−1(y))|
|f−1(y1)− f−1(y)|

by equation 4. As y1 → y, continuity of f−1 gives f−1(y1) → f−1(y), and by
de�nition of φ, this term goes to zero. Thus µ−1 is a linear transformation of
the form required to show f−1 is di�erentiable at y.

Theorem A.1.18 (Implicit Function). Let f : Rn×Rm → Rm be continuously
di�erentiable in an open set containing (a, b), with f(a, b) = 0. Let M be the
m×m matrix (Dn+jf

i(a)) 1 ≤ i, j ≤ m. If M is non-singular, there is an open
set A ⊂ Rn containing a and an open set B ⊂ Rm containing b, such that for
each x ∈ A there is a unique g(x) ∈ B such that f(x, g(x)) = 0. The function g
is di�erentiable.

Proof. Let F : Rn×Rm → Rn×Rm by F (x, y) = (x, f(x, y)). Then DF (a, b) is
non-singular. There are then open setsW ⊂ Rn×Rm containing F (a, b) = (a, 0)
and V ⊂ Rn × Rm containing (a, b), which may be a taken to be of the form
A× B, such that F : V → W has a di�erentiable inverse h : W → V = A× B.
Clearly h(x, y) = (x, k(x, y)) since F has this form, where k is some di�erentiable
function. Let π : Rn × Rm → Rm: (x, y) 7→ y be the projection. Then

f(x, k(x, y)) = f ◦ h(x, y) = π ◦ F ◦ h(x, y)
= π(x, y) = y

so f(x, k(x, 0)) = 0 and one may let g(x) = k(x, 0).

Theorem A.1.19 (Rank Theorem). Let f : Rn → Rp be continuously di�er-
entiable in an open set containing a, where p ≤ n. If f(a) = 0 and Df(a)
is an epimorphism, there is an open set A ⊂ Rn and a di�erentiable function
h : A→ Rn such that

f ◦ h(x1, . . . , xn) = (xn−p+1, . . . , xn).
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Proof. Since Df(a) has rank p, there are integers 1 ≤ i1 ≤ · · · ≤ ip ≤ n
such that the matrix Dif

j(a), 1 ≤ j ≤ p, i = i1, . . . , ip is non-singular. Let
g : Rn → Rn permute the coordinates so that g(x1, . . . , xn) = (. . . , xi1 , . . . xip).
Then f ◦ g : Rn = Rn−p × Rp → Rp has the matrix (Dn−p+j(f ◦ g)j(g−1(a))
non-singular 1 ≤ i, j ≤ p. As above, there is an h : A → Rn, A ⊂ Rn an open
set with (f ◦ g) ◦ h(x1, . . . , xn) = (xn−p+1, . . . , xn). This function g ◦ h satis�es
the condition of the theorem.

Lemma A.1.20. Let f : Rn → Rp be continuously di�erentiable in an open set
containing a, where p ≥ n. If Df(a) is monic, there is an open set U ⊂ Rp and
a di�erentiable function h : U → Rp with di�erentiable inverse such that

h ◦ f(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).

on some neighbourhood of a.

Proof. Since ( ∂fi∂xj
) has rank n, one may, by reordering coordinates in Rp, assume

( ∂fi∂xj
)1≤i,j≤n is non-singular. Let F : Rp × Rp−n → Rp by

F (x1, . . . , xp) = f(x1, . . . , xn) + (0, . . . , 0, xn+1, . . . , xp).

Since F (x1, . . . , xn, 0, . . . , 0) = f(x1, . . . , xn), F extends f . DF (a, 0) has[
( ∂fi∂xj

) 0

∗ I

]

as matrix so is non-singular. Hence F has an inverse h on a neighbourhood of
(a, 0), so

hf(x1, . . . , xn) = hF (x1, . . . , xn, 0, . . . , 0)

= (x1, . . . , xn, 0, . . . , 0).

A.2 Theorem of Sard and Its Consequences

De�nition A.2.1. A rectangle in Rn is a set of the form
∏n
i=1[ai, bi] with

ai ≤ bi, ai, bi ∈ R. The volume of the rectangle S =
∏n
i=1[ai, bi] is v(S) =∏n

i=1|bi − ai|.

De�nition A.2.2. A subset A ⊂ Rn has (n-dimensional) measure zero if for
every ε > 0 there is a countable collection Bi of rectangle with A ⊂ ∪Bi and∑
v(Bi) < ε.

Theorem A.2.3. A countable union of sets of measure zero is itself of measure
zero.
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Proof. If A = ∪Ai, with each Ai of measure zero, let ε > 0 and choose families
Bi,j of rectangles with Ai ⊂ ∪jBi,j ,

∑
v(Bi,j) < (ε/2i). Then A ⊂ ∪i,jBi,j and∑

i,j v(Bi,j) <
∑
i(ε/2

i) = ε.

Proposition A.2.4. Let U be an open cover of the interval [a, b] by inter-
vals of length at most ε. Then there is a �nite subcover U0 of U such that∑
Iα∈U0

v(Iα) ≤ 2(|b− a|+ ε).

Proof. Let U1 be a �nite cover by elements of U and let U0 be the minimal family
of U1 which cover. Order U0 by writing the elements of U0 as Ij = (aj , bj) where
i < j if ai < aj . Then one has U0 j = 1, . . . , r and by minimality of the cover
ai < ai+1 < bi < bi+1 for each i and a1 < a < a2, br−1 < b < br. The sum of
the overlaps is at most

(a− a1) + (b1 − a2) + · · ·+ (bi+ ai+1 + · · ·+ (br−1 − ar) + (br − b) ≤ 2ε+ |b− a|

since

a1 < a < a2 < b1 < a3 < b2 < a4 < b3 < · · · < ar−1 < br−2 < ar < br−1 < b < br,

and this gives the result.

Theorem A.2.5 (Fubini). Let A ⊂ Rn be a compact set such that each set
A∩ (t×Rn−1) has (n−1)-dimensional measure zero. Then A has measure zero.

Proof. Since A ⊂ [a, b]× Rn−1 for some a, b ∈ R. Let ε and choose ε1 > 0 such
that 2|b−a|ε1 < ε. For each t ∈ [a, b], A∩ (t×Rn−1) has measure 0 so there is a
countable collection of rectangles Bt,i ⊂ Rn−1 such that A∩ (t×Rn−1) ⊂ ∪it×
BOt,i and

∑
i v(Bt,i) < ε1, where BOt,i is the interior of Bt,i. Now A \ R× ∪iBOt,i

is a compact set containing no point of the plane t×Rn−1 and hence there is a
(1/2) > δt > 0 such that

A ∩ (t− δt, t+ δt)× Rn−1 ⊂ (t− δt, t+ δt)× ∪iBOt,i.

The sets (t − δt, t + δt) cover [a, b] and by the proposition there is a �nite
family t1, . . . , trsuch that the intervals cover [a, b] and have total length at most
2(|b−a|+1). The countable family of all (ti− δti , ti+ δti)×∪iBti,j then covers
A and has the sum of volumes at most 2(|b− a|+ 1)ε1 < ε.

De�nition A.2.6. Let f : U → Rp be a smooth (C∞) map,U open in Rn. A
point x ∈ U is a critical point if Df(x) is not epic; it is a regular point if Df(x)
is epic. The critical values of f are the images under f of critical points; those
points of Rp which are not the image of critical points are called regular values.

Theorem A.2.7 (Sard). Let f : U → Rp be a C∞ map, U open in Rn, and let
C be the set of critical points of f . Then f(C) ⊂ Rp has measure zero.

Warning : The proof is rather involved.
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Proof. The statement makes sense for n ≥ 0, p ≥ 1, with R0 being a single
point. The proof is by induction on n, being obvious for n = 0.

Let Ci ⊂ C denote the set of x ∈ U such that all partial derivatives of f of
order ≤ i are zero at x. For example, C1 = {x ∈ U |Df(x) = 0}.

Step 1: The image f(C \ C1) has measure zero.
One may assume p ≥ 2 for C = C1 if p = 1.
Let x ∈ C \ C1. Since x ̸∈ C1, there is some partial derivative, say ∂f1

∂x1 ,
which is non-zero at x. Let h : U → Rn by

h(x) = (f1(x), x2, . . . , xn).

Since Df(x) is non-singular, h maps some neighbourhood V of x di�eomorphi-
cally onto an open set V ′ of Rn. Then g = f ◦h−1 : V ′ → Rp. The set of critical
points of g, C ′, is precisely h(V ∩ C), so g(C ′) = f(V ∩ C).

For each (t, x2, . . . , xn) ∈ V ′, g(t, x2, . . . , xn) ∈ t × Rp−1 ⊂ Rp or g takes
hyperplanes to hyperplanes. Let

gt : (t× Rp−1) ∩ V ′ → t× Rp−1

be the restriction of g. Since

(
∂gi

∂xj
) =

[
1 0

∗ ( ∂g
t

∂xj )

]
a point of t×Rp−1 is critical for gt if and only if it is critical for g. By induction,
the set of critical values of gt has measure zero in t×Rp−1 and so g(C ′) intersects
each plane t×Rp−1 in a set of measure zero, or f(V ∩C) intersects each plane
t× Rp−1 in a set of measure zero.

Since C \ C1 is a countable union of sets of the form Ṽ ∩ C where Ṽ is a
compact neighbourhood of x, Ṽ ⊂ V . Fubini's theorem shows that f(C \C1) is
a countable union of sets of measure zero, so has measure zero.

Step 2: The image f(Ci \ Ci+1) has measure zero, for i ≥ 1.

For each ∈ Ci \ Ci+1 there is some (i + 1)-st derivative ∂i+1fr
∂xs1

···∂xsk+1
which

is non-zero. Thus

w(x) =
∂kfr

∂xs2 · · · ∂xsk+1

vanishes at x but ∂w
∂xs1

does not. Suppose s1 = 1 for de�niteness. Let

h : U → Rn, x 7→ (w(x), x2, . . . , xn).

Then h carries a neighbourhood V of x di�eomorphically onto an open set V ′.
Also h takes Ci ∩ V into 0× Rn−1. Consider

g = f ◦ h−1 : V ′ → Rp
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and let g be the restriction of g to (0 × Rn−1) ∩ V ′. By induction, the set of
critical values of g has measure zero in Rp, but each point of h(Ci ∩ V ) is a
critical point of g (since) all derivatives of order ≤ i vanish). Thus

gh(Ci ∩ V ) = f(Ci ∩ V )

has measure zero. Since Ci \Ci+1 is covered by countably many such sets V , it
follows that f(Ci \ Ci+1) has measure zero.

Step 3: The image f(Ck) has measure zero for k su�ciently large.
Let In ⊂ U be a cube of edge δ. By Taylor's theorem, the compactness of

In and the de�nition of Ck, one has

f(x+ h) = f(x) +R(x, h)

where |R(x, h)| ≤ c|h|k+1 for x ∈ Ck ∩ In, x+ h ∈ In, c being a constant which
depends only on f and In.

Subdivide In into rn cubes of edge δ/r, and let I1 be a cube of the subdivision
which contains a point x ∈ Ck. Then any point of I1 is x+ h with |h| ≤ (δ/r).
Since |f(x+h)−f(x)| ≤ c|h|−k + 1, f(I1 lies in a cube of edge a/rk+1 centred
at f(x), where a = 2c(

√
nδ)k+1 is constant. Thus f(Ck ∩ In) is contained in a

union of at most rn cubes having total volume

V ≤ rn(a/rk+1)p = aprn−(k+1)p.

If k + 1 > n/p, then V → 0 as r → ∞, so f(Ck ∩ In) has measure zero.

Lemma A.2.8. Let D, D′ be two open rectangles in Rn with D ⊂ D′. Then
there is a real valued C∞function g on Rn such that

a) 0 ≤ g(x) ≤ 1 for all x,

b) g(x) = 1 for x ∈ D, and

c) g(x) = 0 for x ∈ Rn \D′.

Proof. One may write D =
∏
(ai, bi), D′ =

∏
(a′i, b

′
i) with a

′
i < ai < bi < b′i.

For any interval [c, d] ⊂ R, let

ψc,d(x) =

{
exp(−1/(x− c) + 1/(x− d)), x ∈ [c, d],

0 x ̸∈ [c, d].

Then ψc,d is C∞ and ψc,d(x) ≥ 0. Let

φc,d =

� x

c

ψc,d(x)dx/

� d

c

ψc,d(x)dx.

Then φc,d is C∞, 0 ≤ φc,d(x) ≤ 1, φc,d = 0 if x ≤ c, φc,d(x) = 1 if x ≥ d.



A.2. THEOREM OF SARD AND ITS CONSEQUENCES 45

For a′i < ai < bi < b′i, let

ha′i,ai,bi,b′i(x) =

{
φa′i,ai x ≤ b

1− φbi,b′i x > b.

Then ha′i,ai,bi,b′i(x) is C
∞, 0 ≤ ha′i,ai,bi,b′i(x) ≤ 1, ha′i,ai,bi,b′i(x) = 1 if x ∈ [a, b],

and ha′i,ai,bi,b′i(x) = 0 if x ̸∈ [a′, b′].
Let g(x) =

∏n
i=1 ha′i,ai,bi,b′i(xi).

Lemma A.2.9. Let U be an open set in Rn with U compact, and let V be an
open set containing U . Then there is a real valued C∞ function g : Rn → [0, 1]
such that

g(x) =

{
1 for x ∈ U,

0 for x ∈ Rn \ V.

Proof. Since U is compact, there are a �nite numbers of open rectanglesD1, . . . , Ds

with Di ⊂ V covering U . Let D′
i be an open rectangle containing Di and con-

tained in V . Let gi be given as in the previous lemma for the pair Di, D′
i. Then

de�ne g by
1− g = (1− g1)(1− g2) · · · (1− gs).

Then f is C∞, 0 ≤ g(x) ≤ 1 for all x. If x ∈ ∪Di then gj(x) = 1 for some j so
1− g(x) =. Thus g(x) = 1 for x ∈ U ⊂ ∪Di. If x ̸∈ D′

i then gi(x) = 0 for all i
so 1− g(x) = 1. Thus g(x) = 0 if x ∈ Rn \ V ⊂ Rn \ ∪D′

i.

Lemma A.2.10. Let F : W → R, Z open in Rn be a continuous function of

class C∞ in an open set U ⊂ W . Let U ′, V ′ be open sets with U
′ ⊂ V ′ ⊂

V
′ ⊂W , U

′
, V

′
being compact. Let δ > 0. Then there is a continuous function

G : W → R with |G(x)−F (x)| < δ for all x ∈W , such that G is C∞ in U ∪U ′

and F (x) = G(x) if x ∈W \ V ′
.

Proof. By the Weierstrass approximation theorem there is a polynomial H(x)

such that |H(x)− f(x)| < δ for x ∈ V
′
. Let g : Rn → R be C∞, 0 ≤ g ≤ 1 with

g|U ′ = 1, g|Rn\V ′ = 0. Let

G(x) = g(x) ·H(x) + (1− g(x))F (x)

for all x ∈W . Then G(x) = H(x) on U ′ and G(x) = F (x) on W \ V ′. On V
′
,

|G(x)− F (x)| = |g(x)||H(x)− F (x)| < δ.

Also G(x) is C∞ when F is, hence on U , so G is C∞ on U ∪ U ′.

Proposition A.2.11. Let f : E → Rk be a C∞ function, W an open subset of
Rn, C a compact subset of W , V a neighbourhood of C with V ⊂W , and ε > 0.
Then there exists a di�erentiable g : E → Rk such that

1) g|C has 0 ∈ Rkas a regular value,
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2) g = f on W \ V ,

3) |gi(x)− fi(x)| < ε, |(∂gi/∂xj)(x)− (∂fi/∂xj)(x)| < ε,

for allx ∈W , a ≤ i ≤ k, 1 ≤ j ≤ n.

Proof. Let λ : W → R be a C∞ with λ|C = 1, λ|W\V = 0 and 0 ≤ λ(x) ≤ 1 for
all x. If y is any regular value of f then

g(x) = f(x)− λ(x)y

satis�ed conditions 1) and 2) above. By Sard's theorem, y may be chosen
arbitrarily close to 0, and so 3) may be satis�ed by taking y small enough.

Proposition A.2.12. Let C be a compact subset of W , W open in Rn and
g : W → Rk a C∞ function such that g|C has 0 as regular value. Then there is
an ε > 0 such that if h : W → Rk with

|hi(x)− gi(x)| < ε, | ∂hi
∂xj

(x)− ∂gi
∂xj

(x)| < ε,

for all x ∈ C,then h|C also has 0 as regular value.

Proof. {x ∈ C|x is critical for g} is closed so compact and the set of critical
values of g is then closed. Thus there is an ε1 > 0such that |gi(x)| < ε1 implies
xis regular for g. In particular Dg(x) is non-singular and there is an ε2 > 0
such that |Aij − (∂gi/∂xj)(x)| < ε2(x) implies (Aij) is non-singular. On the set
of x for which |gi(x)| ≤ ε1/2 which is compact, there will be an ε3 such that
ε3 ≤ ε2(x) for all these x. Let ε = min(ε1/2, ε3). If

|hi(x)− gi(x)| < ε, | ∂hi
∂xj

(x)− ∂gi
∂xj

(x)| < ε,

then implies |gi(x)| < ε ≤ ε1/2 so Dg(x) is non-singular and since

| ∂hi
∂xj

(x)− ∂gi
∂xj

(x)| < ε,

Dh(x) is non-singular. Thus 0 is a regular value for h.



Appendix B

Di�erentiable Manifolds

This appendix covers the basic notions of di�erentiable manifolds, tangent and
normal bundles and proves the transverse regularity theorem which will be basic
to the calculation of cobordism groups. In order to get this, one needs basic
structure theorems for manifolds such as tubular neighbourhoods and imbed-
dabillty and these are also proved. Basic references are:

(1) Kelley, J. L. : General Topology, D. Van Nostrand Co., Inc. Princeton, N.
J., 1955.

(2) Milnor, J.: Di�erential Topology, (mimeographed) Princeton University,
1958.

(3) Munkres, J. R. : Elementary Di�erential Topology, Princeton University
Press, Princeton, N. J., 1966.

(4) Nomizu, K.: Lie Groups and Di�erential Geometry, Mathematical Society
of Japan, 1956.

B.1 General De�nition

De�nition B.1.1. Hn ⊂ Rn is the half space {(x1, . . . , xn ∈ Rn)|xn ≥ 0}.

De�nition B.1.2 (Di�erentiable Manifold with Boundary). An n-dimensional
di�erentiable manifold with boundary is a pair (V,F) where V is a Hausdor�
space with a countable base and F is a family of real-valued continuous functions
on V satisfying:

1) F is local: if f : V → R and for all p ∈ V there is an open set Up ⊂ V , and
a function gp ∈ F such that f |Up

= g|Up
, then f ∈ F .

2) F is di�erentiably complete: if f1, . . . , fk ∈ F and F : Rk → R is C∞, then
F ◦ (f1 × · · · × fk) : V → R belongs to F .

47
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3) For each point p ∈ V there are n functions f1, . . . , fn ∈ F such that

f1 × · · · × fn : V → Rn

is a homeomorphism of an open neighbourhood U of p onto an open set of
Hn. Further, every function f ∈ F agrees on U with a function of the form
F ◦ (f1 × · · · × fn) where F : Rn → R is C∞

The functions f ∈ F are called the di�erentiable functions on V . A chart at
p ∈ V is a pair (U, h), where U is an open neighbourhood of p and h : V → Rn
is a function f1 × · · · × fn = h with fi ∈ F mapping U homeomorphically onto
an open subset of Hn as in 3).

B.2 Paracompactness and Partitions of Unity

Proposition B.2.1. V is paracompact.

Proof. Since Hn is locally compact, so is V , and there is a base U1, U2, . . . for V
with U i compact for each i. There is a sequence A1, A2, . . . of compact sets with
union V and Ai ⊂ interior Ai+1: let A1 = U1 and if Ai is de�ned, there is a least
integer k = k(i) such that Ai ⊂ U1 ∪ · · · ∪ Uk. Then let Ai+1 = U1 ∪ · · · ∪ Uk.

Let O be any open cover of V . Cover the compact set Ai+1 \ interior Ai by
a �nite number of open sets V1, . . . Vr where Vj is contained in an element of O
and in the open set interiorAi+2 \ Ai−1. LetPi denote the family (V1, . . . , Vr),
and P = P0 ∪ P1 ∪ · · · . Then P re�nes O, covers V and since any compact
set Cis contained in some Ai, C can intersect only �nitely many elements of P.
Thus for p ∈ V , any compact neighbourhood of p meets only a �nite number of
elements of P.

Corollary B.2.2. V is normal.

Proof. a) First, we proveV is regular. If a ∈ V , B ⊂ V , B closed and a ̸∈ B,
choose for each b ∈ B open sets U ′

b, Vb with a ∈ U ′
b, b ∈ Vb and U ′

b∩Vb = ∅. Let
Ub = U ′

b ∩ (V \B). Then a ∈ Ub, b ∈ Vb and Ub ∩Vb = ∅ and Ub ⊂ V \B. Then
{V \a\B,Ub, Vb}b∈B is an open covering of V , so has a locally �nite re�nement
{Cα}α∈I . Let J = {α ∈ I|Cα ∩ B ̸= ∅}, W = ∪α∈JCα. Then W is open and
contains B. Let N be a neighbourhood of a meeting only a �nite number of
the sets Cα. There is a �nite set J0 ⊂ J such that α ∈ J , N ∩ Cα ̸= ∅ implies
α ∈ J0. For each α ∈ J0, Cα ∩B ̸= ∅, so there is a b = b(α) ∈ B with Cα ⊂ Vb.
Then T is open, a ∈ T and T ∩W = ∅.

b) Now, we prove V is normal. Let A, V ⊂ V be closed, A∩B = ∅. For each
a ∈ A there are open sets U ′

a, V
′
a with a ∈ U ′

a, B ⊂ V ′
a and U ′

a ∩ V ′
a = ∅. Let

Ua = U ′
a ∩ (V \B), Va = V ′

a ∩ (X \A). Then {V \A \B,Ua, va}a∈A is an open
cover of V so has a locally �nite re�nement {Cα}. Let J = {α|Cα∩A ̸= ∅}. For
each b ∈ B, there is a neighbourhood Nb of b meeting only a �nite number of the
sets Cα, α ∈ J . Each such Cα is contained in some set Ua and the intersection
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of Nb with the corresponding sets Va is a neighbourhood Tb of b not meeting
any Cα with α ∈ J . Then B ⊂ T , A ⊂ W and T ∩W = ∅. Let T = ∪b∈BTb,
W = ∪α∈JCα. Then B ⊂ T , A ⊂W and T ∩W = ∅.

Lemma B.2.3 (�Shrinking�). Let U bean open cover of V . Then there is a
re�nement V of U such that for each x ∈ V there is a set Y ∈ U with X ⊂ U .

Proof. Let U0 be a locally �nite re�nement of U . Consider the set A of all
functions F whose domain is a subfamily of U0, and for each U in the domain
of F , F (U) is an open set with closure contained in U , and such that

[∪{F (U)|U ∈ domain F}] ∪ [∪{W ∈ U0|W ̸∈ domain F}] = V.

A is non-empty by normality of V . Partially order A by F ≤ G if G extends
to F . If Fα is a linearly ordered family, let F be de�ned on ∪{domain Fα} by
F (U) = Fα(U) if U ∈ domain Fα. Let x ∈ V and suppose x ̸∈ W for any
W ̸∈ domain F . Thus if x ∈ U , U ∈ U0, then U ∈ domain F . Since there are
only a �nite number of sets U ∈ U0 with x ∈ U ,and each such U ∈ domain Fα
for some α, there is a β such that x ∈ U , U ∈ U0 implies U ∈ domain Fβ . Thus
x ∈ ∪{Fβ(U)|U ∈ domain Fβ} so x ∈ ∪{F (U)|U ∈ domain F}. Then A has a
maximal element F and by normality of V , F must be de�ned on all U0. Thus
V = {F (U)|U ∈ U0} su�ces.

Proposition B.2.4 (Partition of Unity). Let U be any open cover of V . Then
there is a di�erentiable partition of unity on V subordinate to U , i.e., a collection
Φ ⊂ F such that

1) φ ∈ Φ implies φ : V → [0, 1].

2) The collection V = {Uφ|φ ∈ Φ} is a locally �nite re�nement of U where
Uφ = {x ∈ V |φ(x) > 0}.

3) For each x ∈ V ,
∑
φ∈Φ φ(x) = 1.

Proof. Let U1 be the collection of open sets U such that there is a chart (U, h)
and such that U ⊂ U ′ for some U ′ ∈ U . By the lemma, there is a locally �nite
re�nement U2 of U1 such that for each U2 ∈ U2 there is a U1 ∈ U1 with U2 ⊂ U1,
and there is a re�nement U3 of U2 such that for each U3 ∈ U3 there is a U2 ∈ U2

with U3 ⊂ U2. In particular, there is a cover of V by sets U3 such that U3 ∈ U3,
U3 ⊂ U2, U2 ∈ U2, U2 ⊂ U1, U1 ∈ U1 and the family of such sets U1 is a
locally �nite re�nement of U . Let (U1, h) be a chart and let ψU3 : h(U1 → R
be C∞, being 1 on h(U3) and 0 outside h(U2), with 0 ≤ ψU3

≤ 1. Let φ′
U3
be

ψU3 ◦ h on U1 and 0 on V \ U2. Then being locally in F , φ′
U3

∈ F . Finally let
φU3(x) = φ′

U3
(x)/

∑
U3 φ

′
U3
(x) and Φ the collection of φU .

Corollary B.2.5. Let U and W be open subsets of V with U ⊂ W . There is
an f ∈ F with f(V ) ⊂ [0, 1] such that f |U = 1,f |V \W = 0.

Proof. {W,V \ U} is an open cover of V so there is a di�erentiable partition of
unity Φ subordinate to this cover. If φ ∈P hi and φ(x) ̸= 0 for some x ∈ U ,
then Uφ ⊂W . Let f be the sum of those φ ∈ Φ which are non-zero on U .
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B.3 Boundary, Interior and Submanifold

The set of points of V may be divided into two classes as follows. For each point
p ∈ V , let (U, h) be a chart at p. Then either h(p) ∈ Rn−1 × 0 ⊂ Rn or h(p)
belongs to the interior of Hn. If (U ′, h′) is another chart at p and h′ ̸∈ Rn−1×0,
then

h ◦ h′−1 : h′(U ∩ U ′) → h(U ∩ U ′) ⊂ Rn

is a C∞ function with a C∞ inverse, and by the inverse function theorem,
h◦h′−1maps onto an open neighbourhood of h(p) in Rn. Thus h(p) ̸∈ Rn−1×0.
Hence this property is independent of the choice of (U, h).

De�nition B.3.1. The set of points p ∈ V for which there is a chart (U, h) with
h(p)Rn−1 × 0 is called the boundary of V , and denoted ∂V . The complement
of ∂V , V \ ∂V , is the interior of V .

Proposition B.3.2. If (V,F) is an n-dimensional di�erentiable manifold with
boundary and F|∂V denotes the set of restrictions to ∂V of functions in F , then
(∂V,F|∂V ) is an (n−1)-dimensional di�erentiable manifold (without boundary:
i.e., ∂(∂V ) = ∅).

Proof. Clearly ∂V is Hausdor� and has a countable base, and properties 2) and
3) are clear. Suppose f : ∂V → R is any function, and for each p ∈ ∂V there is
an open set Up ⊂ ∂V and gp ∈ F|∂V such that f |Up

= gp|Up
. There is then a

function f ′p ∈ F and an open neighbourhood U ′
p of pin V with U ′

p ∩ ∂V = Up
and g′p|∂V = gp. Then {V \ ∂V, U ′

p} is an open cover of V and there is a
partition of unity Φ subordinate to this cover. For each φ ∈ Φ such that
Uφ = {x ∈ V |φ(x) > 0} meets ∂V , there is a set U ′

p with Uφ ⊂ U ′
p. Let

pφ be one such. Then de�ne f ′ : V → R by f ′(x) =
∑

Φ′ φ(x)g′p(x) where
Φ′ = {φ ∈ Φ|Uφ ∩ ∂V ̸= ∅}. f ′ is locally a �nite sum of elements of F , so
belongs to F . If x ∈ ∂V and φ(x) ̸= 0 then x ∈ U ′

pφ so g′pφ = f(x). Hence
f ′(x) = f(x) ·

∑
φ(x) = f(x). Thus f = f ′|∂V of f ∈ F|∂V .

De�nition B.3.3. If (V,F(V )) and (W,F(W )) are di�erentiable manifolds
with boundary, a function f : V → W is called di�erentiable map if for all
g ∈ F(W ), g ◦ f ∈ F(V ). f is a di�eomorphism if f has a di�erentiable inverse.

Proposition B.3.4. If f : (V,F(V )) → (V,F(V )) is a di�erentiable map and
F (∂V ) ⊂ ∂W ) then f |∂V : (∂V,FV |∂V ) → (∂W,FW |∂W ) is a di�erentiable
map. The inclusion map i : (∂V,FV |∂V ) ↪→ (V,F) is di�erentiable.

Proposition B.3.5. If (V,F(V )) is a n-dimensional manifolds with boundary,
U is an open subset of V and F|U denotes the set of restrictions to U of func-
tions in F , then (U,F|U ) is an n-dimensional manifold with boundary, and the
inclusion map is di�erentiable.
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B.4 Vector Bundles and Tangent Bundles

We discuss another de�nition of di�erentiable manifolds which is convenient for
the discussion of tangent bundles.

Remark B.4.1. Let X be a set and suppose there is a countable collection A =
{(Xα, hα)} whereXα ⊂ X and ∪αXα = X and hα is a bijection ofXα with an n-
dimensional manifold with boundary Vα such that for each pair α, β hα(Xα∩Xβ)
is an open subset of Vα and

hβ ◦ h−1
α : hα(Xα ∩Xβ) → hβ(Xα ∩Xβ)

is di�erentiable. Then X may be given a topology and a di�erentiable structure
such that Xα will be open and each function hα is a di�eomorphism. X is then
an n-dimensional manifold with boundary, and is uniquely determined within
di�eomorphism.

For example, let (V,F) and (W,G) be n-dimensional and m-dimensional
manifolds with boundary (∂W being empty). Let (Ui, hi) and (Ti, gi) be count-
able families of charts for V and W . Then the collection {(Ui × Tj , hi × gj)}
de�nes a di�erentiable structure on V ×W , giving the product manifold of di-
mension n +m. Then ∂(V × V ) is di�eomorphic to ∂V ×W (recall that ∂W
has been supposed to be empty, so we don't have to worry about ∂V × ∂W .).

De�nition B.4.2. If (V,F) id a di�erentiable manifold with boundary, a subset
A ⊂ V is called a submanifold of V if for each point a ∈ A there is a chart (U, h)
at a with h(U ∩ A) = h(U) ∩ (0× Rk). The collection F|A of restrictions to A
of functions of F is the family of di�erentiable functions on A.

Note: ∂A = A ∩ ∂V , is then a submanifold of ∂V .

De�nition B.4.3. A (real) vector bundle ξ = (E,B, π,+, ·) is a 5-tuple where

1. E and B are topological spaces, called the total space and the base space
of ξ,

2. π : E → B is a continuous map, called the projection,

3. +: E + E = {(e, e′) ∈ E × E|πe = πe′} and
· : R × E → E are continuous maps such that π ◦ +(e, e′) = πe = πe′,
π ◦ (r, e) = πe and the restriction to each �bre π−1(b) for b ∈ B make
π−1(b) into a real vector space.

De�nition B.4.4. A bundle map f : ξ → ξ′ is a pair fE , fB of continuous maps
fE : E → E′, fE : E → E′ such that π′◦fE = fB ◦π and fE ◦+ = +′◦(fE+fE′),
fE ◦ · = · ◦ fE′ where fE + fE′ is the restriction to E +E of fE +×fE′ . f is an
isomorphism if there is a bundle map g : ξ′ → ξ which is inverse to f .

For example one has the product bundle (B × Rn, B, π,+, ·) where π is the
projection of the product space.
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De�nition B.4.5. The bundle ξ = (E,B, π,+, ·) is locally trivial if for each
point b ∈ B there is an open set U in B containing b and a bundle isomorphism
hU |ξ|U → (U ×Rn, U, π,+, ·) where ξ|U is the bundle (π−1(U), U, π|π−1(U),+, ·)
with induced operations with the induced map of base spaces being the identity
map of U .

De�nition B.4.6. A di�erentiable vector bundle is a vector bundle ξ for which
the total space and base space are di�erentiable manifolds with boundary, the
projection is a di�erentiable map and such that for each point b ∈ B, the open
set U and map hU may be chosen to give a di�eomorphism of total, spaces.

Note: + and · are forced to be di�erentiable by the local triviality.

De�nition B.4.7. Let (V,F) be an n-dimensional manifold with boundary,
and v ∈ V . A tangent vector X at v is a function X : F → R such that:

1) If f, g ∈ F and there is an open neighbourhood U of v with f |U = g|U , then
X(f) = X(g),

2) For f, g ∈ F , a, b ∈ R, X(af + bg) = aX(f) + bX(g),

3) For f, g ∈ F , X(f · g) = X(f) · g(v) + f(v) ·X(g).

The set of tangent vectors at v forms a vector space induced from the additive
structure in R, called the tangent space to V at v and denoted τv.

Denote by τ(V ) the union over all v ∈ V of the sets τv and let π : τ(V ) → V
be the function which sends each subset τv into the point v.

Proposition B.4.8. Let v ∈ V and let (U, h) be a chart at v, with h = f1 ×
· · · × fn. Then

λU : π−1(U) → U × Rn, X 7→ (π(X), (X(fi)))

is a bijection. If (U ′, h′) is another char at v, then

λU ◦ λU ′−1 : (U ∩ U ′)× Rn → (U ∩ U ′)× Rn

is given by λU ◦ λU ′−1(u, α) = (u,D(h ◦ h′−1)(h′(u))(α)).

Proof. First note that if X ∈ τv then X annihilates constant functions. To see
this, one has X(c) = cX(1) = cX(1 · 1) = c{1X(1) +X(1) · 1} = 2cX(1). Thus
cX(1) = 2cX(1) must be zero, so X(c) = 0. Then let f ∈ F be any function.
There is a C∞ function F : Rn → R with f = F ◦ h and one may write

F (x) = F (h(v)) +

n∑
i=1

(x− h(v))igi(x), gi(h(v)) =
∂F

∂xi
(h(v))

with gi being C∞. Thus

f = f(v) +

n∑
i=1

(fi − fi(v)) · (gi ◦ h)
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so

X(f) = X(f(v)) +

n∑
i=1

{X(fi − fi(v)) · (gi ◦ h(v) + (fi − fi(v))X(gi ◦ h)}

=

n∑
i=1

X(fi) ·
∂F

∂xj
(h(v)).

Thus λU is one-to-one, and letting

Xα(f) =
∑

αi
∂F

∂xj
(h(v)), α ∈ Rn

one has λU onto. Thus λU is a bijection.
Then λU ◦ λ−1

U ′ = (u, (λ−1
U ′ (u, α)(fi))) and

λ−1
U ′ (u, α)(fi) =

n∑
j=1

αj
∂(πi ◦ h ◦ h′−1)

∂xj
(h′(v))

= [D(h ◦ h′−1)(h′(v))(α)]i.

Proposition B.4.9. τ = (τ(V ), V, π,+, ·) may be given the structure of a dif-
ferentiable �bre bundle so that if (U, h) is a chart in V , λU is a local trivialisation
of τ and (π−1(U), (h × id) ◦ λU ) is a chart of τ(V ). The boundary of τ(V ) is
π−1(∂V ).

Proposition B.4.10. If φ : (V,F(V )) → (W,F(W )) is a di�erentiable map,
v ∈ V and X ∈ τv, let φ∗(X) be de�ned by

φ∗(X)(f) = X(f ◦ φ), f ∈ F(W ).

Then φ∗ : τ(V ) → τ(W ) is a di�erentiable map covering φ and (φ∗, φ) is a
di�erentiable bundle map.

B.5 Immersions and Imbeddings

De�nition B.5.1. Let M(p, n) denote the set of p× n matrices with di�eren-
tiable manifold structure given by identi�cation with Rpn. LetM(p, n; k) denote
the subset consisting of matrices of rank k.

Lemma B.5.2. M(p, n; k) is a di�erentiable manifold of dimension k(p+n−k),
k ≤ min(p, n).

Proof. Let E0 ∈M(p, n; k) and by reordering coordinate write

E0 =

[
A0 B0

C0 D0

]
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where A0 is non-singular and k× k. There is an ε > 0 such that if all entries of
A−A0 are less than ε, then A is non-singular. Let U ⊂M(p, n) consist of all[

A B
C D

]
with entries of A − A0 less than ε. Then E ∈ M(p, n; k) if and only if D =
CA−1B. To see this, note that[

A B
XA+ C XB +D

]
=

[
Ik 0
X Ip−k

] [
A B
C D

]
has the same rank as E. If X = −CA−1, this is[

A B
0 −CA−1B +D

]
so if D = CA−1B this has rank k, while if any element of −CA−1B + D is
non-zero the rank is greater than k.

Let W be the open set in Rn, m = k(p + n − k) = pn − (p − k)(n − k),
consisting of matrices [

A B
C 0

]
with all entries of A−A0 less than ε. Then[

A B
C 0

]
→

[
A B
C CA−1B

]
maps W homeomorphically onto the neighbourhood U ∩M(p, n; k) of E0.

De�nition B.5.3. A di�erentiable map φ : (V,F(V )) → (W,F(W )) is an im-
mersion if φ∗ is a monomorphism on each �bre of τ(V ). It is an imbedding if it
is also a homeomorphism into.

Proposition B.5.4. Let U be an open subset in Rn and f : U → Rp a di�eren-
tiable map with p ≥ 2n. Given ε > 0, there is a p× n matrix A with all entries
less than ε such that g(x)− f(x) +Ax is an immersion.

Proof. For any p × n matrix A, Dg = Df + A and one wants to choose A so
that Dg has rank n at all points of U , or equivalently, A = Q − Df where Q
has rank n.

De�ne Fk : M(p, n; k) × U → M(p, n) by (Q, x) 7→ Q −Df(x). Then Fk is
di�erentiable and domain Fk has dimension k(p+n−k)+n < pn = dimM(n, p).
[Taking partials one has p+n−2k so the dimension is a monotone function of k
and for k < n this is at most (n−1)(p+n−(n−1))+n = (2n−p)+pn−i < pn].
Thus for any chart (W,h) of M(p, n; k)×U , Fk ◦h−1 has no regular values. By
Sard's theorem, Fk(W ) = Fk ◦ h−1(h(W )) has measure zero but image Fk is a
countable union of such sets so has measure zero. Hence there is an A arbitrarily
near zero which is not in ∪k<nimageFk. This A su�ces.
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Remark B.5.5. If U were an open subset of Hn the same argument su�ces since
f is the restriction of a di�erentiable map from Rn into Rp.

Theorem B.5.6 (Whitney Immersion). Given a di�erentiable map

f : (V,F(V )) → Rp, p ≥ 2n

and a continuous positive function δ on V , there is an immersion

g : (V,F(V )) → Rp

such that |g(v) − f(v)| < δ(v). If f∗ is monic on τv for all v ∈ N , N a closed
subset of V , then one may let g|N = f |N .

Proof. Since f∗|τv is monic for all v ∈ N , it is monic for all V ∈ U where U
is an open neighbourhood of N . One may then �nd a re�nement of the open
cover {V \ N,U} by a locally �nite countable family of sets Vi such that each
set V i is compact and such that each Vi is the underlying set of a chart (Vi, hi).
[There is a countable base consisting of sets W with W compact and (W,h) a
chart. The proof that V is paracompact sows that one may �nd a countable
locally �nite re�nement]. Index the set Vi so that the Vi contained in U have
i ≤ 0, while the remainder have i > 0, with i ∈ Z. Applying the proof of the
�shrinking lemma� (B.2.3) twice constructs open sets Wi ⊂W i ⊂ Ui ⊂ U i ⊂ Vi
with {Wi} being a cover of V .

Let f0 = f ans suppose fk−1 : V → Rp is de�ned such that (fk−1)∗|τv is
monic for all v ∈ Nk−1 = ∪j<kW j . For any p×n matrix A let FA : hk(Vk) → Rp
be given by

FA(x) = fk−1 ◦ h−1
k (x) + φ(x) ·A(x)

where φ is a C∞ function from Rn → I = [0, 1] with

φ =

{
1 on hk(W k),

0 on Rn \ Uk.

First, one wants DFA(x) to have rank n on K = hk(Nk−1 ∩ Uk). [Uk has a
�nite cover by open sets each meeting only �nitely many W j so Nk−1 ∩ Uk is
compact] and

D(FA)(x) = D(fk−1)h
−1
k (x)) +A(x) ·Dφ(x) + φ(x) ·A

with D(fk−1)h
−1
k (x)) having rank n on K. This is a continuous function

fromK × M(p, n) to M(p, n) sending K × 0 onto M(p, n;n), so if A is su�-
ciently small one has K ×A mapped into M(p, n;n). Assume A is small.

Next, choose A mall enough so that |A(x)| < εµ/2
k where

εµ = inf{δ(x)|x ∈ Uk} ∀x ∈ hk(Vk).

Finally, as aboveAmay be chosen arbitrarily small so that fk−1h
−1
k (x)+A(x)

has rank n on hk(Uk).



56 APPENDIX B. DIFFERENTIABLE MANIFOLDS

Let A satisfy all these requirements.
Then de�ne fk : V → Rp by

fk(y) =

{
fk−1(y) + φ(hk(y))A(hk(y)) if y ∈ Vk,

fk−1(y) if y ∈ V \ Uk.

These agree on the overlap Vk \ Uk so fk is di�erentiable. By the �rst condi-
tion on A, DFA has rank n on Nk−1, and by the third it has rank n on W k,
hence f∗|τv is injective for each v ∈ Nk. By the second condition, fk is a δ/2k

approximation to fk−1.
Since the cover Vi is locally �nite, the fk agree on any given compact set if k

is su�ciently large, so g(x) = limk→∞ fk(x) exists and g is di�erentiable, g∗|τv
is monic for all v ∈ V , and g is a δ-approximation to f .

Lemma B.5.7. Let (V,F) be a di�erentiable manifold with boundary and

F : V → Rp

an immersion. Then for each point a ∈ V there is an open set U containing a
such that f |U is an imbedding.

Proof. Let (W,h) be a chart at a. Then f ◦ h−1 : h(W ) → Rp extends to a
di�erentiable map k : Rn → Rp with Dk(h(a)) monic. Thus there is an open
set T ⊂ Rp containing k(h(a)) and a di�erentiable map g : T → Rp with di�er-
entiable inverse such that gk(x) = (x, 0) on a neighbourhood S of h(a). Then

h−1πf(y) = h−1πfhh−1(f(y)) = h−1πgk(h(y)) = h−1π(h(y), 0) = h−1h(y) = y

for all y in a neighbourhood of a, h−1(S) = U , where π projects Rp onto the
�rst n coordinates.

Lemma B.5.8. If p > 2n any immersion f : (V,F) → Rp may be δ-approximated
by a 1− 1 immersion g. If f is 1− 1 on a neighbourhood U of the closed set N ,
one may choose g|N = f |n.

Proof. Choose a covering of V by sets {Uα} such that f |Uα
is an imbedding

for each α, re�ning the cover {U, V \ N}. Construct a countable locally �nite
re�nement by sets Vi, of the cover {Uα}, indexed so that the Vi ⊂ U have i ≤ 0.
Applying the �shrinking lemma� (B.2.3) twice constructs open sets

Wi ⊂W i ⊂ Ui ⊂ U i ⊂ Vi

and let φi : V → R be a function of F such that 0 ≤ φi ≤ 1, φi(Wi) = 1,
φi(V \ Ui) = 0.

Let f0 = f and suppose the immersions fk−1 : V → Rp is de�ned. Then fk
is de�ned by

fk(x) = fk−1(x) + φk(x)bk
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where bk ∈ Rp is yet to be chosen. As above, for small bk, fk will be an
immersion, so let bk be this small. bk may also be made small enough so that
fk is a δ/2k approximation to fk−1.

Finally, let N be the open subset of V × V consisting of pairs (x, x′) with
φk(x) ̸= φk(x

′), and let σ : N → Rp by

σ(x, x′) = −[fk−1(x)− fk−1(x
′)]/[φk(x)− φk(x

′)]

N is the union of the manifolds

(V \∂V )×(V \∂V )∩N, ∂V ×(V \∂V )∩N, (V \∂V )×(∂V )∩N, (∂V )×(∂V )∩N,

on each of which σ is di�erentiable and since each of these have dimension at
most 2n < p, σ(N) has measure zero. Thus bk may be chosen arbitrarily small
and not in this image.

Then fk(x) = fk(x
′) if and only if φk(x) = φk(x

′) and fk−1(x) = fk−1(x
′)

for k > 0.
Let g(x) = limk→∞ fk(x). If g(x) = g(x0) and x ̸= x0 it follows that

fk−1(x) = fk−1(x0) and φk(x) = φk(x0) for all k > 0. Thus f(x) = f(x0) so
x and x0 cannot belong to the same set Vi, and since φk(x) = φk(x0) for all
k > 0 neither can belong to a set Wi with i > 0. Thus x and x0 must lie in U ,
contradicting the fact that f is 1− 1 on U .

De�nition B.5.9. Let f : (V,F) → Rp. The limit set L(f) of f is the set of
y ∈ Rp such that y = lim f(xi) for some sequence {x1, x2, . . . } in V which has
no limit in V .

If V is compact, then L(f) is void. For instance, if V = R and f is the
identity, then L(f) is void; but if f is a one-one mapping onto the open interval
0 < t < 1, then L(f) contains t = 0 and t = 1.

The mapping f is proper if L(f)∩f(V ) = ∅. If, for instance, f maps R into
a �gure 6 in R2, then L(f) contains a point in f(V ), and f is not proper. It is
easy to see that a one-one mapping f is proper if and only if the inverse f−1

is continuous in f(V ), or, if and only if f−1 carries compact sets into compact
sets.

Proposition B.5.10. f(V ) is a closed subset of Rp if and only if L(f) ⊂ F (V ).

Proof. Let y ∈ f(V ). Then there is a sequence of points {yi} ∈ f(V ) with
lim yi = y. Let xi ∈ V with f(xi) = yi. If the sequence {xi} has a limit point
x ∈ V , then f(x) = y by continuity of f . If the sequence {xi} has no limit point
in V , then y ∈ L(f) so y ∈ f(V ). Thus y ∈ f(V ), so f(V ) is closed.

Proposition B.5.11. f is a topological imbedding if and only if f is 1− 1 and
L(f) ∩ f(V ) is empty.

Proof. Let T ⊂ V be closed and y ∈ f(T ) ∩ f(V ). Then there is a sequence
{yi} ⊂ f(T ) with lim yi = y. Let xi = f−1(yi) ∈ T . If the sequence {xi} has no
limit point then y ∈ L(f), but L(f) ∩ f(V ) = ∅. Thus there is a limit point x
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of the sequence {xi}, and since T is closed, x ∈ T . By continuity of f , f(x) is
a limit point of the sequence {yi}, and since y is the limit of the sequence of y,
and Rp is Hausdor�, y = f(x). Hence f−1 : f(V ) → V is continuous, or f is a
topological imbedding.

Lemma B.5.12. There is a di�erentiable map f : (V,F) → R with L(f) = ∅.

Proof. Let Vi be a countable, locally �nite cover of V by sets Vi with compact
closure. Apply the �shrinking lemma� (B.2.3) twice constructs open sets

Wi ⊂W i ⊂ Ui ⊂ U i ⊂ Vi

with {Wi} a cover of V , and let φi ∈ F with that 0 ≤ φi ≤ 1, φi(W i) = 1,
φi(V \ Ui) = 0. This sum is �nite for each x since Vi is locally �nite. If {xi} is
a sequence in V having no limit point, then only �nitely many xi can lie in any
compact subset of V . Given any integer m, there is an integer N(m) such that
i ≥ N(m) implies xi ̸∈ W 1 ∪ · · · ∪Wm. Thus if i ≥ N(m), there is a j > m
with xi ∈ W j , so f(xi) ≥> m. Hence the sequence {f(xi)} can have no limit
point.

Corollary B.5.13 (Whitney Imbedding Theorem). Every n-dimensional dif-
ferentiable manifold with boundary can be imbedded in R2n+1 as a closed subset.

Proof. Let f : (V,F) → R ⊂ R2n+1 be a di�erentiable map with L(f) = ∅
constructed as above. Let δ(x) = 1 for all x ∈ V and let g be a 1− 1 immersion
of (V,F) in R2n+1 with |f(x) − f(x)| < δ(x) for all x ∈ V . Let {xi} be
any sequence in V having no limit point. Given any integer m there is an
integer P (m) = N(m + 1) such that if i ≥ P (m), then |g(xi)| > m [Note that
|g(xi)| ≥ |f(xi)|−1 > m+1−1.] Thus the sequence {g(xi)} cannot have a limit
point. Hence L(g) ̸= ∅ and g is a topological imbedding as a closed subset.

B.6 Normal Bundles and Tubular Neighbourhoods

De�nition B.6.1. Let V1, V2 be di�erentiable manifolds, F : V1 → V2 an im-
mersion. The normal bundle of f , νf is de�ned as follows. Let τ1 and τ2 denote
the tangent bundles of V1 and V2. Then f∗ : τ1 → τ2 induces a monomorphism
into the bundle f !τ2 over V1, where f !τ2 is the pull-back. The quotient bundle
of f !τ2 by τ1 is a di�erentiable vector bundle over V1 which is νf .

Now let (V,F) be a di�erentiable manifold and let g : V → Rp be an imbed-
ding. Since the tangent bundle of Rp is trivial, i.e., the total space is Rp × Rp
one may use the usual inner product in Rp to give an inner product in each �bre
of τ(Rp) and hence in g!(τ(Rp)). The orthogonal complement of the image of
each �bre of τ(V ) in each �bre of g!(τ(Rp)) is a subspace mapped isomorphically
to the �bre of νg. The orthogonal complements �t together to form the total
space of a di�erentiable vector bundle τ(V )⊥ over V isomorphic to νg, via the
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quotient map γ = β ◦ (α|τ(V )⊥)
−1 mapping E(νg) di�eomorphically onto the

submanifold of Rp × Rp = E(τ(Rp)) given by

{(x, y) ∈ Rp × Rp|x = g(v), y⊥g∗(τv), v ∈ V }

Let e : Rp × Rp → Rp : (x, y) 7→ (x+ y).

Theorem B.6.2. If (V,F) is an n-dimensional di�erentiable manifold with
∂V = ∅ and g : V → Rp is an imbedding, then the di�erentiable function
e ◦ γ : E(νg) → Rp maps an open neighbourhood of the zero section of νg di�eo-
morphically onto an open neighbourhood of g(V ) in Rp.

Proof. First we show that e ◦ γ is di�erentiable and has rank p at all points of
the zero section.

To see this, let (U, h) be a chart on V such that νg is trivial over U . One
then has a local trivialisation k : h(U) × E(νg) with (π−1(U), k−1) a chart of
E(νg). Then the function

δ = e ◦ γ ◦ k : h(U)× Rp−n → Rp

is given by δ(x, α) = g ◦ h−1(x) +
∑
αiyi(x) where for each x ∈ h(U), {yi(x)}

form a base for the orthogonal complement to D(g ◦ h−1)(x)[Rn] = g∗(τh(x)).
Then

Dδ(x, α){y, β} = D(g ◦ h−1)(x)(y) +
∑

βiyi(x) +
∑

αiDyi(x)(y)

where {y, β} ∈ Rn × Rp−n = Rp. For α = 0, this gives

Dδ(x, 0){y, β} = D(g ◦ h−1)(x)(y) +
∑

βiyi(x)

which spans Rp as {y, β} runs through Rp because of the choice of yi.
Hence e ◦ γ has rank p in some neighbourhood of the zero section of E(νg),

so that it is a local di�eomorphism at points of the zero section: i.e., it maps an
open neighbourhood of each point x in the zero section di�eomorphically onto
an open neighbourhood of e ◦ γ(x) in Rp.

To complete the proof it su�ces to show:

Lemma B.6.3. Let X and Y be Hausdor� space with countable bases and X
locally compact. If f : X → Y is a local homeomorphism and the restriction of f
to a closed subset A is a homeomorphism, then f is a homeomorphism on some
neighbourhood V of A.

Proof. The proof breaks up into three steps.

1) If A is compact, the lemma is true. If not, then every neighbourhood N of
A contains a pair {x, y} of points for which f(x) = f(y). One may then �nd
a countable family {Ni} of compact neighbourhoods of A with Ni+1 ⊂ NO

i

and ∩Ni = A. For each i, let xi, yi ∈ NO
i with f(xi) = f(yi). Since N1
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is compact, the sequence {xi} and {yi} have limit points x and y. Since
V \ Ni+1 contains only a �nite number of points xj and yj , one must have
x, y ∈ ∩Ni = A. But f(x) = lim f(xi) = lim f(yi) = f(y) contradicting the
fact that f |A is a homeomorphism.

2) Let A0 be a compact subset ofA. Then there is a neighbourhood U0 of A0

such that U0 is compact and f is a homeomorphism on U0 ∪A. To see this,
let V0 be a neighbourhood of A0 with V 0 compact and f |V 0

1− 1, which is
possible by 1). If no neighbourhood of A0 in V0 satis�es the requirements
for U0, there is a sequence of points {xn} ⊂ X \A converging to s ∈ A0 with
{f(xn)} ⊂ f(A).

3) Express A as the union of ascending sequence of compact sets A1 ⊂ A2 ⊂
. . . . Suppose Vi is a neighbourhood of Ai with V i compact and f is a
homeomorphism on V i ∪ A. Then V i ∪ Ai is a compact subset of V i ∪ A
on which f is a homeomorphism and by 2 there is a neighbourhood Vi+1

of V i ∪ Ai with V i+1 compact and f a homeomorphism on V i+1 ∪ A. Let
V = ∪Vi. The sets {Vi} are an ascending sequence of open sets so if x, y ∈ V
with f(x) = f(y) then there is an i with x, y ∈ Vi, but f |Vi

is 1 − 1 on V
so x = y. Thus f is 1− 1 on V and being a local homeomorphism, f |V is a
homeomorphism.

Lemma B.6.4. Let (V,F) be a manifold with boundary. Then there is a dif-
ferentiable function g : V → [0,∞) such that g(∂V ) = 0 and g∗|τv is non-zero
for each v ∈ ∂V .

Proof. Let (Vi, hi) be a countable locally �nite cover of V by charts and apply
the shrinking lemma twice to get

Wi ⊂W i ⊂ Ui ⊂ U i ⊂ Vi.

Let φi ∈ F with 0 ≤ φi ≤ 1, φi(W i) = 1, φi(V \ Ui) = 0. Let K be the set of i
such thatWi∩∂V ̸= ∅. For each i ∈ K, hi : Vi → Hn is of the form f i1×· · ·×f in
and Vi∩∂V = h−1

i (Rn−1×0) = (f in)
−1(0). Let g(x) =

∑
i∈K φi(x)·f in(x). Then

g ∈ F and gi : V → [0,∞) with g(∂V ) = 0.
Let v ∈ ∂V . There is then an i ∈ K with v ∈ Wi. Let λ : [0,∞) → Rn by

λ(t) = h(v) + (0, . . . , 0, t). Then there is an ε > 0 with λ([0, ε)) ⊂ h(Vi). Then
h−1 ◦ λ : [0, ε) → V is a di�erentiable map and to show g∗|τv ̸= 0 it su�ces to
prove that d

dt (g ◦ h
−1 ◦ λ) ̸= 0 at t = 0.

For the i ∈ K used to de�ne λ, we have φi◦h−1◦λ(t) = 1 for all t ∈ λ−1(Wi)
and f in ◦ h−1 ◦ λ(t) = t for all t ∈ [0, ε). Thus d

dt (φi ◦ h
−1 ◦ λ) = 1.

For any i′ ̸= i, i′ ∈ K with v ∈ Vi, one has

d

dt
(φi′ ·f i

′

n ◦h−1◦λ) = (φi′◦h−1◦λ)· d
dt

(f i
′

n ◦h−1◦λ)+f i
′

n ◦h−1◦λ· d
dt

(φi′◦h−1◦λ).
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Now φi′ ◦ h−1 ◦ λ(0) ≥ 0, f i
′

n ◦ h−1 ◦ λ(0) = 0 and for t > 0 f i
′

n ◦ h−1 ◦ λ(t) > 0
in a neighbourhood of t = 0, and hence d

dt (f
i′

n ◦ h−1 ◦ λ) ≥ 0.
Adding these up,on has d

dt (g ◦ h
−1 ◦ λ) ≥ 1.

Theorem B.6.5 (Tubular Neighbourhood). Let (V,F) be a di�erentiable man-
ifold with boundary. There is an open neighbourhood U of ∂V in V such that
(U,F|U ) is di�eomorphic to ∂V × [0, 1).

Proof. Let g : V → Rp be an imbedding. Theng|∂V : ∂V → Rp is an imbedding
so there is an pen neighbourhood N of ∂V in Rp di�eomorphic to a neighbour-
hood of the zero section in E(νg|∂V

), with α : N → E(νg|∂V
) the di�eomorphism

into. Then π ◦ α ◦ g : g−1(N) → ∂V is a di�erentiable retraction of the open
neighbourhood g−1(N) of ∂V onto ∂V . Let g : V → [0,∞) be as given previ-
ously. Then r = (π ◦ α ◦ g)× g : g−1(N) → ∂V × [0,∞) is a di�erentiable map.
For any v ∈ ∂V , the kernel of g∗|τv contains the image of τ(∂V )v, hence by
dimension this is precisely the kernel. (π ◦ α ◦ g)∗ maps the image of τ(∂V )v
isomorphically. Thus r∗|τw is monic for all w in some open neighbourhood W
of ∂V ,and so is a local di�eomorphism of W with an open neighbourhood of
∂V × 0 in ∂V × [0,∞), and is a homeomorphism of ∂V . Thus there is an
open neighbourhood Q of ∂V in V di�eomorphic to an open neighbourhood
of ∂V in ∂V × [0,∞). By means of a countable locally �nite cover of ∂V by
charts, with compact closure, one may take a neighbourhood of∂V of the form
{(x, y) ∈ ∂V × [0,∞)|y < β(x)} for some β ∈ F(∂V ) with β > 0, within this
neighbourhood. Sending (x, y) 7→ (x, y/β(x))) maps this di�eomorphically onto
∂V × [0, 1).

Theorem B.6.6. Let (V,F) and (W,G) be di�erentiable manifolds with bound-
ary such that V is a submanifold of W with inclusion i : V ↪→ E and suppose
there is a neighbourhood U of ∂W in W and a di�eomorphism

f : (U,U ∩ V ) → (∂W × [0, 1), ∂V × [0, 1)).

Then there is an open neighbourhood of the zero section in νi.

Proof. Let α = π1 ◦ f : U → ∂W , β = π2 ◦ f : U → [0, 1). There is a function
µ ∈ F(W ) with 0 ≤ µ ≤ 1, µ(β−1([0, 3/4))) = 1, µ(W \ U) = 0 and a function
ν ∈ F(W ) with 0 ≤ ν ≤ 1, ν(β−1([0, 5/8))) = 0, ν(W \β−1([0, 3/4)) = 1 and so
σ = µ ·β+ν : W → [0,∞) is in F(W ) and σ|U ′ = β|U ′ where U ′ = β−1([0, 1/2).

Let φ : [0, 1/2] → [0, 1] be the C∞ function with φ[0, 1/4] = 0, φ[3/8, 1/2] =
1 given by φ1/4,3/8. Let q : E →W be f−1◦(id×u)◦f on U ′ where u(s) = φ(s)·s
and the identity on W \ f−1([0, 3/8)).

Let g : W → Rp be any imbedding and de�ne h = (g ◦ q) × σ : W → Hp+1.
h is easily seen to be an imbedding and h ◦ f−1 : ∂W × [0, 1/2) → Hp+1 agree
with g|∂W × id.

The inner product on Rp gives inner products on τ(W )w and τ(V )v so that
one may identify νi with

{(x, y) ∈ Rp+1 × Rp+1|x = hi(v), y ∈ h∗τ(W )i(v), y⊥h∗i∗τ(V )v}.
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The evaluation map esends this subset into Rp+1, and by the agreement of
h ◦ f−1 with g|∂W × id on ∂W × [0, 1/2) will send {(x, y)|x = h(u′), u′ ∈ U ′}
into Hp+1 (since y can have no component orthogonal to Rp × 0) and hence
sends a neighbourhood of h(i(V )) × 0 into Rp+1. Since W is imbedded nicely
by h, there is a retraction of a neighbourhood of W into W (as in the tubular
neighbourhood theorem for closed manifolds in Euclidean space). The composite
map of a neighbourhood of the zero section in E(νi) into W is of maximal rank
at the zero section, and checking along the tubular neighbourhood of ∂V shows
that this is a di�eomorphism of smaller neighbourhoods.

Note: Such a nice tubular neighbourhood U seems to always exist if one has
su�cient regularity at the intersection of V and ∂W . In particular,
our de�nition of submanifold appears su�ciently restrictive to give this.
No simple proof seems possible, and hoping that we won't need this
existence, we will avoid the argument.

B.7 Transversality

De�nition B.7.1. Let f : Mm → Nn be a di�erentiable map (between di�er-
entiable manifolds), N ′k a closed submanifold of N . f is said to be transverse
regular toN ′k at x ∈Mm if

1) f(x) ̸∈ N ′k, or

2) f(x) ∈ N ′k and the composite

τ(M)x
f∗−→ τ(N)f(x) → τ(N)f(x)/i∗τ(N

′)f(x)

is epic, where i : N ′ ↪→ N is the inclusion.

f is said to be transverse regular on N ′k if f is transverse regular at reach point
of M .

Proposition B.7.2. The set of points x ∈ M at which f is transverse regular
to N ′ is open.

Proof. f−1(N ′) is closed so the set of points of type 1 is open. Suppose x is of the
second type and choose a chart at f(x), (U, h), with h(U∩N ′) = h(U)∩(0×Rk).
Let (V, k) be a chart at x with V ⊂ f−1(U). With coordinates ui in h(U), vj
in k(V ), one has h ◦ f ◦ k−1 : k(V ) → h(U) and the transversality condition at
x is the assertion that

(
∂ui
∂vj

)i=1,...,n−k
j=1,...,m

has rank n− k at k(x). This matrix has rank n− k in a neighbourhood of k(x),
so f is transverse regular on a neighbourhood of x.
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Proposition B.7.3. If f : Mn → Nn is transverse regular to N ′k and the
restriction of f to ∂M is also transverse regular to N ′k then f−1(N ′) is a
submanifold of M of dimension m − (n − k). Further, the normal bundle of
f−1(N ′) in M is induced from the normal bundle to N ′ in N .

Proof. Let f be transverse regular at x ∈ f−1(N ′) and choose charts (U, h)
and (V, k) as above. By reordering coordinates in V , one may assume (∂ui/∂vj)
i, j = 1, . . . , n−k is non-singular at k(x). Hence by the inverse function theorem
the functions (u1, . . . , un−k, vn−k+1, . . . , vm) give a chart at k(x) in k(V ) and
hence a chart at x, (V ′, k′) such that

k′(V ′ ∩ f−1(N ′)) = k′(V ′) ∩ (0× Rm−(n−k)).

If x ∈ M \ ∂M this is a chart of the required type. If x ∈ partialM , then the
condition on f |∂M implies that in the reordering the function vm is not replaced
by any ui, and hence that k′(V ′) ⊂ Hm. Thus, the chart (V ′, k′) is as required.
The normal bundle condition is clear since the induced map is epic on �bres.

Theorem B.7.4. Let f : M → N be a di�erentiable map; let N ′ be a closed dif-
ferentiable submanifold of N ′. Let A be a closed subset ofM such that the trans-
verse regularity condition for f on N ′ is satis�ed at all points of A ∩ f−1(N ′).
There exists a di�erentiable map g : M → N such that

1) gis homotopic to f ,

2) g is transverse regular on N ′,

3) g|A = f |A.
Proof. There is a neighbourhood U of A inM such that f satis�es the transverse
regularity condition on U . Cover N by N \ N ′ = Y0 and coordinate systems
(Yi, ki) for i > 0 with coordinate functions (v1, . . . , vn) such that N ′ ∩ Yi is
mapped precisely to the set for which v1 = · · · = vn−k = 0. The sets f−1(Yi)
coverM , as do the sets U andM \A. Let (Vj , hj) a re�nement of both coverings
which is countable and locally �nite, indexed so that j ≤ 0 if Vj ⊂ U and the
others have j > 0. Apply the shrinking lemma twice to get

Wj ⊂W j ⊂ Uj ⊂ U j ⊂ Vj .

and let φj ∈ F , 0 ≤ φj ≤ 1, φj(W j) = 1, φj(M \ Uj) = 0. For each j choose
i(j) ≥ 0 with f(Vj) ⊂ Yi(j).

Let f0 = f and suppose fk−1 has been de�ned, satis�es transverse regularity
on ∪h<kW j with fk−1(U j) ⊂ Yi(j) for each j. In particular, letting i = i(k),
fk−1(Uk) ⊂ Yi(j).

Consider the function πkifk−1◦h−1
k : hk(Uk → Rn−k where π projects on the

�rst n− k coordinates. By the approximation of regular values theorem, there
are arbitrarily small vectors y ∈ Rn−k such that πkifk−1 ◦ h−1

k − (φk ◦ h−1
k )y

has the origin as regular value. We then de�ne fk by

fk(x) =

{
k−1
i {kifk−1(x)− φk(x)(y, 0)} for x in a neighbourhood of Uk,

fk−1 if x ∈M \ Uk,
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where y ∈ Rn−k is yet to be chosen.
First one needs y small enough that kifk−1(x)−φk(x)(y, 0) lies in ki(Yi) for

all x ∈ Uk. If Yi is a neighbourhood meeting ∂N then (y, 0) is �parallel� to ∂N
and one is not translated out of ki(Yi) across ∂N . Hence for small y this holds
and thus k−1

i may be applied. Next y is chosen to give a δ/2k approximation
to fk−1. Also y is chosen small enough that fK(U j) ⊂ Yi(j) for each j. This is
possible since only a �nite number of sets U j meets Uk. Under these conditions
fk will be transverse regular on N ′ at each point of f−1

k (N ′) ∩W k.
Now fk−1 is transverse regular on N ′ at each point of the compact set

Uk∩(∪j<kW j) and since small changes preserve regularity, for su�ciently small
y, fk will also be transverse regular on this set, hence on ∪j<kW j .

After all these limitations, we have such a y and hence an fk. Let g(x) =
lim fk(x). A homotopy from fk−1 to fk is given by contracting y and a limit of
these homotopies de�nes a homotopy from f to g.


