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PREFACE

These notes represent the outgrowth of an offer by Princeton University to let
me teach a graduate level course in cobordism theory. Despite the fact that
cobordism notions appear in the earliest literature of algebraic topology, it has
only been since the work of Thom in 1954 that more than isolated results have
been available. Since that time the growth of this area has been phenomenal,
but has largely taken the form of individual research papers. To a certain
extent, the nature of cobordism as a classification tool has led to the study of
many individual applications rather than the development of a central theory.
In particular, there is no complete exposition of the fundamental results of
cobordism theory, and it is hoped that these notes may help to fill this gap.

Being intended for graduate and research level work, no attempt is made
here to use only elementary ideas. In particular, it is assumed that the reader
knows algebraic topology fairly thoroughly, with cobordism being treated here
as an application of topology. In many cases this is not the fashion in which
development took place, for ideas from cobordism have frequently led to new
methods in topology itself.

An attempt has been made to provide references to the sources of most of
the ideas used. Although the main ideas of these sources are followed closely, the
details have frequently been modified considerably. Thus the reader may find
it helpful to refer to the original papers to find other methods which are useful.
For example, the Adams spectral sequence gives a powerful computational tool
which has been used in determining some theories and which facilitates low
dimensional calculations, but is never used here. Many of the ideas which appear
are of the “well known to workers in the field - but totally unavailable” type and
a few ideas are my own.

The pattern of exposition follows my own prejudices, and may be roughly
described as follows. There are three central ideas in cobordism theory:

1) Definition of the cobordism groups,
2) Reduction to a homotopy problem, and
3) Establishing cobordism invariants.

This material is covered in the first three chapters. Beyond that point, one
must became involved with the peculiarities of the individual cobordism prob-
lem. This is begun in the fourth chapter with a survey of the literature, followed



ii

by detailed discussion of specific cobordism theories in the later chapters. Fi-
nally, two appendices covering advanced calculus and differential topology are
added, this material being central to the ‘reduction to a homotopy problem’ but
being of such a nature as to overly delay any attempt to get rapidly to the ideas
of cobordism.

I am indebted to many people for leading me to this work and developing
my ideas in this direction. Especially, I am indebted to Greg Brumfiel, Peter
Landweber, and Larry Smith for numerous suggestions in preparing these notes,
and to Mrs Barbara Duld for typing. I am indebted to Princeton University and
the National Science Foundation for financial support. Finally I am indebted
to my wife for putting up with the foul moods I developed during this work.
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Chapter 1

Introduction - Cobordism
Categories

In order to place the general notion of cobordism theory in mathematical per-
spective recall that differential topology is the study of the category of differen-
tiable manifolds and differentiate maps, primarily in relation to the category of
topological spaces and continuous maps. From a slightly less theoretical point
of view, it is the study of differentiable manifolds by topologists using any meth-
ods they can find. The guiding principle is that one does not study imposed
structures such as Riemannian metrics or connections and this distinguishes
differential topology from differential geometry.

As in any subject, the primary problem is classification of the objects within
isomorphism and determination of effective and computable invariants to dis-
tinguish the isomorphism classes. In the case of differentiable manifolds this
problem is not solvable, since for any finitely presented group S one can con-
struct a four dimensional manifold M (S) with fundamental group S in such
a way that M(S) and M(T') will be homeomorphic if and only if S and are
isomorphic, but one cannot solve the word problem to determine whether two
finitely presented groups are isomorphic (Markov [76]). In special cases one can
solve the problem, but cobordism theory works in another way - by introducing
an equivalence relation much weaker than isomorphism.

Briefly, two manifolds without boundary are called ‘cobordant’ if their dis-
joint union is the boundary of some manifold. It is worthwhile to note that
every manifold M with empty boundary is the boundary of M x [0, 0). To get
a non-trivial theory it is standard to restrict attention to compact manifolds.

The first description of this equivalence relation was by H. Poincaré: Analysis
Situs, Journal de I'Ecole Polytechnique, 1 (1895), 1-121 (section 5, Homologies).
His concept of homology is basically the same as the concept of cobordism used
today.

The next development of cobordism theory was by L. S. Pontrjagin: Char-
acteristic cycles on differentiate manifolds, Math. Sbor. (N.S.), 21 (63) (1947),

1



2 CHAPTER 1. INTRODUCTION - COBORDISM CATEGORIES

233-284 (Amer. Math. Soc. translations, series 1, no. 32). This paper shows
that the characteristic numbers of a closed manifold vanish if the manifold is a
boundary (providing the invariants for classification);

The cobordism classification of manifolds is reasonably elementary in di-
mensions 0,1, and 2, since manifolds are themselves classified in the dimensions.
Using geometric methods the cobordism classification problem in dimension 3
was solved by V. A. Rohlin: A 3-dimensional manifold is the boundary of a
4-dimensional manifold, Doklady Akad. Nauk. S.S.S.R., 81 (1951), 355.

The first application of cobordism was by L. S. Pontrjagin: Smooth manifolds
and their applications in homotopy theory, Trudy Mat. Inst, im Steklov no. 45,
Izdat. Akad. Nauk. S.S.S.R. Moscow, 1955 (Amer. Math. Soc. translations,
series 2, vol. 11, 1959). Pontrjagin attempted to study the stable homotopy
groups of spheres as the groups of cobordism classes of ‘framed’ manifolds. This
amounts to the equivalence of a homotopy problem and a cobordism problem.
The lack of knowledge of manifolds has prevented this from being of use in
solving the homotopy problem.

The major development of cobordism theory is the paper of R. Thorn:
Quelques propriétés globales des variétés differenttables, Comm. Math. Helv.
28 (1954), 17-86. This paper showed that the problem of cobordism is equiva-
lent to a homotopy problem. For many of the interesting manifold classification
questions the resulting homotopy problem turns out to be solvable. Thus, Thom
brought the Pontrjagin technique to the study of manifolds, largely reversing
the original idea.

For a brief sketch of oobordism theory there are three survey articles of
considerable interest. For an insight into the early development of the theory
(up through Thom’s work) see V. A. Rohlin: Intrinsic homology theories, Us-
pekhi Mat. Nauk., 14 (1959). 3-20 (Amer. Math. Soc. translations, series
2, 30 (1963), 255-271). A short article which covers many of the examples of
cobordism classification problems is J. Milnor: A survey of Cobordism theory,
Enseignement Mathematique,.8 (1962), 16-23. Contained in the survey of dif-
ferential topology by Di. P¢. Dj. Wall: Topology of smooth manifolds, Journal
London Math. Soc, 40 (1965), 1-20, is a discussion of representative cobordism
theories, with outlines of the methods by which these problems are solved.

1.1 Cobordism Categories

In order to formalise the notion of cobordism theory, it seems useful to set up a
‘general nonsense’ situation. As motivation, one may consider the properties of
differentiable manifolds.

Let 2 denote the category whose objects are compact differentiable mani-
folds with boundary (of class *°) and whose maps are the differentiable maps
(again C*°) which take boundary into boundary. This category has finite sums
given by the disjoint union and has an initial object given by the empty mani-
fold. For each object of Z one has its boundary, again an object of 2, and for
each map the restriction of it to the boundary.
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Further, the boundary of the boundary is always empty. This defines an
additive functor 9: ¥ — 2. For any manifold M, the boundary of M is a
subset whose inclusion is a differentiate map ¢(M): OM — M. This inclusion
gives a natural transformation i: @ — I of additive functors, I: 2 — 2 being
the identity functor. Finally, the Whitney imbedding theorem shows that each
differentiate manifold is isomorphic to a submanifold of countable dimensional
Euclidean space. Thus & has a small subcategory %, (suhmanifolds of R*)
such that each object of Z is isomorphic to an object of Z.

Abstracting these properties, one has:

Definition 1.1.1. A cobordism category (€,0,1) is a triple in which:
1) ¥ is a category having finite sums and an initial object;

2) 0: ¢ — ¥ is an additive functor such that for each object X of , 99() is an
initial object;

3) i: @ — I is a natural transformation of additive functors from 9 to the
identity functor I; and

4) There is a small subcategory %o of such that each object of € is isomorphic
to an object of %p.

As noted in motivating this definition, (2,0,i) is a cobordism category.
There are many more examples, and in fact the purpose of cobordism theory
is to study the interesting examples. The precise choice of this formulation is
based, somewhat vaguely, on the definition of ‘adjoint functors’.

The purpose of this definition is not to establish a general nonsense structure;
rather the definition will be used to follow the framework of previously developed
theory and to try to unify the ideas. To begin, one has in any cobordism category
the idea of a ‘cobordism relation’.

Definition 1.1.2. If (¥, 0,14) is a cobordism category, one says that the objects
X and of are cobordant if there exist objects U and V of such that the sum of
X and OU is isomorphic to the sum of Y and 0V. This will be written X =Y.

One has easily:
Proposition 1.1.3. a) = is an equivalence relation on the objects of €.
b) X =Y implies 0X ~ 9Y.
¢) For all X, 0X ~ & where & is an initial object.

d) If X=X',Y =Y and Z and Z' are sums of the pairs (X,Y) and (X', Y”)
respectively, then 7 = 7.

Proof. a) X 4+ 02 ~ X + 0g;
X4+0U~=Y 409V =Y +0V ~X+ 09U, and
X+90U ~Y +0V,Y 4+ 90W ~ +0 implies
X+O(U+W) ~ X+0U+0W ~ Y 4+OV+IW ~ Z4+0V+IT ~ Z+0(V+T).
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b) X +0U ~Y + 9V implies
0X ~0X + @~ 90X 4+ 90U ~ Y + 90V ~ 9Y + @ ~ 9Y.

c) 0X 4+ 09 ~ & + 0X since 0 is initial.

d) X+0U ~ X'+0U", Y +90V ~Y'4+9V' gives Z4+0(U+W) =~ Z'+0(U'+V")
O

Remark 1.1.4. In all of the above A + B denotes an object which is a sum for
A and B.

Remark 1.1.5. If one is unhappy with equivalence relations on a category, one
may reduce to considering = as an equivalence relation on the set of isomorphism
classes of objects of ¥. This is the reason for the assumption about existence

of (50-

Definition 1.1.6. An object X of ¥ is closed if 0X is an initial object. An
object X of € bounds if X = @ where @ is an initial object.

Proposition 1.1.7. a) X closed and Y = X implies Y closed,
b) X and X' closed implies their sum is closed.

¢) X bounds implies X is closed,

d) X andY bound implies their sum bounds,

e) X bounds and Y = X implies Y bounds.

Proof. a) follows directly from b) of Proposition 1.1.3,

b) 0X ~ @, 0X' ~ & implies (X + X') ~ @+ @ ~ @.

c¢) X = @ implies 0X ~ 00 ~ &.

d X=0, Y=g impliess X+Y =0+ 0~ 0.

)
)
)
e)

is immediate since = is an equivalence relation.
O

Proposition 1.1.8. The set of equivalence classes of closed objects of € (under
=) has an operation induced by the sum in €. This operation is associative,
commutative, and has a unit (the class of any object which bounds).

Proof. The existence of %, form a set. That the sum in ¥ follows immediately
from the propositions 1.1.3 and 1.1.7. Associativity and commutativity hold for
isomorphism classes of objects, hence also here. O

Definition 1.1.9. The cobordism semigroup of the cobordism category (%, 0, i)
is the set of equivalence classes of closed objects of ¥ with the operation induced
by the sum in %. This semigroup will be denoted by (%, 9,1).
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Remark 1.1.10. 1) Q(%, 0, 1) may also be described as the semigroup of isomor-
phism classes of closed objects of ¥ modulo the sub-semigroup of isomor-
phism classes of objects which bound.

2) The subgroup (%, 0,14) is quite easily identifiable with Thom’s cobordism
group 4 of unoriented cobordism classes of closed manifolds. In order
to clarify this slightly, in the usual expression for equivalence one has X
equivalent to Y if there is a V with 0V = X UY. Then X U090V ~ Y U
O(X xI) giving X =Y. The implication X UOU ~ Y U9V implies X UY =
0T is an easy geometric argument by looking at components and piercing
together manifolds with boundary by means of tubular neighbourhoods of
their boundary components.

Within the literature of cobordism there are a few standard constructions
performed. These may be generalised to the categorical situation as will now
be shown.

Construction I Let (¢,0i) be a cobordism category, 2 a category with
finite sums and an initial object, and F': ¥ — £  an additive functor. For any
object X of 27, form a category 2 /X whose objects are pairs (C, f) with C
an object of ¥ and f € Map(F(C),X) and whose maps are given by letting
Map((C, f),(C’, f')) be the set maps ¢ € Map(C, C’) such that the diagramme

Flc)— 9 Py
X
commutes.

If @ is an initial object of ¥ mad ¢: F(&) — X is the unique map, then
(2, @) is an initial object of €/X. If (D, g) and (D', ¢’) are objects of /X and
D+ D' is a sum for D and D" in ¢, then F(D + D’) is a sum for F(D) and
F(D')in 2. The maps g and ¢’ give a well defined map g+¢': F(D+D') — C,
and (D+ D', g+ ¢') is the sum of (D, g) and (D', ¢’) in ¥/X.

Let d(c, f) = (3C, f o F(i¢)) and 9(¢) = ¢ o icto define functor §: €/ X —
%/X. Define the natural transformation 7 : d— 1 by Zc,f =1i.:0C = C.

Then (¢/X,,1) is a cobordism category.

Remark 1.1.11. 1) This is the algebraic-geometric (Grothendieck style) notion
of the category of objects over a given object.

2) If one begins with the category (Z,0,i) and takes F: 2 — 2 to be the
forgetful functor to the category of topological spaces and continuous maps,
then Q(Z/X,0,14) is the unoriented bordism group 44 (X) as originally for-
mulated by M. F. Atiyah: Bordism and cobordism, Proc. Camb. Phil. Soc.

57 (1961), 200-208.
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Construction IT Let & be a small category, (%,0,i) cobordism category,
and let Fun(e7, %) be the category whose objects are functors ®: &/ — ¥ and
whose maps are the natural transformations.

If @ is an initial object of €, the constant functor @: & — ¢, A~ O is
an initial object of Fun(</,%). If F,G: & — € are functors, let H: o/ — € by
letting H (A) be a sum for F'(A) and G(A) and let (jr)a = jpay: F(A) — H(A)
and let (jo)a = ja(a): G(A) — H(A) be the maps exhibiting H(A) as the sum.
Then jr and jg are natural transformations which exhibit H as a sum for F
and G.

Let N

0: Fun(«,€¢) — Fun(«/,6), F—00oF, X\— I\

and let 7: @ — I the evaluation at any object A of 7 is ipay: O(F(A)) — F(A).
Then (Fun(</, ¥, 5,?) is a cobordism theory.

Remark 1.1.12. Many standard examples fit this construction. Suppose <7 is
the category with one object A whose maps are a finite group G = Map(A4, A).
A functor F': &/ — 2 is given by selecting a manifold X = F(A) and a homo-
morphism G — Map(X, X). Since G is finite , the induced map G x X — X
is a differentiable action of G on X. Thus Q(Fun(«/,%),d, 1) is the unoriented
cobordism group of (unrestricted) G-actions as defined by P. E. Conner and E.
E. Floyd: “Differentiable Periodic Maps”, Springer, Berlin, 1964 (section 21).

1.2 Relative Cobordism

In order to study the relationship between two cobordism categories it is conve-
nient to have available a ‘relative cobordism’ semigroup. In the geometric case
this is made possible by joining together two manifolds with the same boundary
to form a closed manifold. In the categorical situation, the idea is to replace a
pair of objects having the same boundary by a pair of closed objects. For this
one needs the idea of the Grothendieck group construction.

Recall that for any category with finite sums for which the isomorphism
classes of objects form a set, 2, one defined K (%), the Grothendieck group
of 27, to be the set of equivalence classes of pairs (X, X’) of objects of 2,
where (X, X') is equivalent to (Y,Y”) if there is an object A of 2" such that
X+Y +A~X' 4+Y+ A K(Z2) is an abelian group under the operation
induced by the sum inZ".

Let (%,0,i) and (¢”,0',i') be two cobordism categories, F': € — %' an
additive functor, and ¢: &’ ~ F'0 a natural equivalence of additive functors such
that the diagramme

o' F(A) i F(0A)

m A)

F(A)




1.2. RELATIVE COBORDISM 7

commutes. Let &2 be the category whose objects are triples (X,Y, f) with
X e%,Y € ¢, Y closed, and f: X — FY an isomorphism and with
Map((X,Y, F),(X',Y", f')) the set of (¢, psi) € Map(X, X’) x Map(Y,Y”) such
that

ox —L o ry

o n

X’ 7> FY’

commutes. Then & has finite sums and a small subcategory Z(X € 6;,Y €
%) such that each object of £ is isomorphic to an object of .

Let . be he collection of pairs ((X,Y, f), (X', Y’, f')) of objects of & for
which Y ~ Y. Let (x,2') ~ (y,y’) if there are objects u and v of & such that
r4+u~y+vand &' +u =~y +v. Then the set of equivalence classes .7/ ~
forms an abelian group under the operation induced by the sum.

One has a homomorphism : K(%¢,) — 7/ ~, where 6{,, is the subcategory
of closed objects of €’ by setting (X, X') into ((X, &, 5), (X', 2,5’)) where & is
an initial object of € and j, j' are the unique isomorphism of initial objects.

If one has a homomorphism

a: S| ~— K(€¢4)/(0.K(€¢") + F.K(¢a))

such that the composition with § is the quotient homomorphism of K (%),
then on can define a relative cobordism semigroup as follows:

For objects (X,Y, f) and (X', Y”, f') of &, one writes (X, Y, f) = (X', Y, )
if there exist objects U and v’ of € with Y + U ~ Y’ + U’ and for which

a((X + FU,Y +0U, f +tU), (X' + FU",)Y' +oU’, f' + tU")) = 0.

Using the fact that « is a homomorphism one easily sees that = is an equivalence

relation. The relative cobordism semigroup (F, ¢, «) is the set of equivalence

classes under = of elements of & with the sum induced by the sum in £2.
One has homomorphisms

0: Q(F,t,a) = Q(¢,0,4), (X.Y,f)—Y,
F.:Q(¥,0,i) - Q¢€',0,i"), Y~ FY, and
i: Qe 0,1) = QFta), X~ (X,9,7)
and the triangle

F.

Q(€,0,1) Qe’,d',1)

Q(F,t,a)

is easily seen to have period 2 (i.e, i = iF, = f. = 0).
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In order to clarify the relationship between the homomorphism « and the
joining of two manifolds along their common boundary, consider elements (XY f)
of & as a manifold with boundary together with additional structure on its
boundary. For ((X,Y,f),(X’,Y’, f) € . choose an isomorphism g: Y = Y’
and let a(x,2’) be the class of X Uy (—X’), where —X’ is X’ with its opposite
structure (e.g. orientation), and the boundaries of X and X’ are identified vis
k = (f)"'F(g)f. This class does not depend on the choice of g, for if ¢’ is
another isomorphism one may attach X’ x I to

(X U (—X")) x TU[£(X Uy (=X"))] x I

so that the difference of two representatives is cobordant to X Uy~ (—X"), where
kK" = f~'F(g~'g')f. Identifying X x 0 with X x 1 using k” in X x I gives a
cobordism of X U (—X’) and 90X x I with ends of Y x I with ends identified
using g~ '¢’. Thus a does not depend on the choice of g.

With this choice of «, suppose one has (X,Y, f) = (X', Y’, f/). One may
then find a cobordism of Y and Y”, say 9V =Y —Y” so that XU(-V)U(=X") is
cobordant to a closed manifold D with additional structure. Thus one may find
a cobordism of Y and Y/, U =V +D,0U =Y —Y’, so that XU (-U)U(—-X")
bounds. This is the usual geometric description for cobordism of manifolds with
boundary.

Remark 1.2.1. One may let € be the subcategory of €’ cousisting of initial
objects, with F' the inclusion. Then f is epic, uniquely determining «. The
relative cobordism semigroup in this case is then identifiable with the cobordism
semigroup of €.



Chapter 2

Manifolds with Structure -
the Pontrjagin-Thom theorem

2.1 (B, f) structures
2.2 Generalised Pontrjagin-Thom theorem

2.3 Tangential structures, sequences of maps, ring
structure, relative groups
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Chapter 3

Characteristic Classes and
Numbers

As mentioned in the introduction, the determination of invariants which dis-
tinguish manifolds in one of the principal aims of differential topology. In the
framework of cobordism theory, the use of characteristic classes provides invari-
ants called characteristic numbers which are cobordism invariants. In order to
set up the machinery for these invariants, the ideas of generalised cohomology
theory play a central role, and for this basic reference is G. W. Whitehead: Gen-
eralized cohomology theories, Trans. Amer. Math. Soc., 102 (1962), 227-283.

3.1 Spectra

Definition 3.1.1. A spectrum F is a sequence {E,|n € Z} of spaces with
base point together with a sequence of maps e,,: > E, — E,11, Y being the
suspension. If F = {F,,, f,} is another spectrum, a map h from E to F is a
sequence of maps hy,: E, — F,, with h,110e, = fr 0> hy.

Z En L> En+1

Zhnl lh,,,_,_l

ZFn?Fn+1

11



12 CHAPTER 3. CHARACTERISTIC CLASSES AND NUMBERS
3.2 Ring spectra

3.3 Thom class

3.4 Fundamental class

3.5 Characteristic class, characteristic number
3.6 Orientation and Thom isomorphism

3.7 Atiyah duality

3.8 Alexander and Spanier-Whitehead duality



Chapter 4

The Interesting Examples - A
Survey of the Literature

Since cobordism theory is classification tool, the interest really lies in the in-
vestigation of specific classification problems. Numerous examples have been
considered and hence a vast literature exists, with few really central theoretical
tools, largely due to the idiosyncrasies inherent in the examples. The purpose
of this chapter is to list many of these examples and indicate briefly what is
known and where to find it in the literature.

13
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4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

Example 1: Framed cobordism QF
Example 2: Unoriented cobordism 91,
Example 3: Complex cobordism QU
Example 4: Oriented cobordism (°°
Example 5: w; spherical cobordism W,
Example 6: Bordism . (B, f)[X, 4]
Example 7: Special unitary cobordism 5V
Example 8: ¢; spherical cobordism WY
Example 9: Spin cobordism P"
Example 10: Spin® cobordism princ
Example 11: Complex-Spin cobordism prmﬁs

Example 12: Symplectic cobordism (3P

Fifteen more examples and two pseudoex-
amples



Chapter 5

Cohomology of Classifying
Spaces

In order to study the interesting examples of cobordism theories it is essential
to have a detailed knowledge of the cohomology of the classifying space for the
classical Lie groups.

5.1 Vector bundles

Let K be one of the fields R (real numbers), C (complex numbers), or H (quater-
nions). Let k be the dimension of K as vector space over the reals.

15



16 CHAPTER 5. COHOMOLOGY OF CLASSIFYING SPACES
5.2 Definition of characteristic classes

5.3 Splitting lemma

5.4 Thom spaces

5.5 Ordinary cohomology of Grassmannians

5.6 Relationship between fields

5.7 Characteristic numbers of manifolds (projec-
tive spaces, Milnor hypersurfaces)

5.8 Cohomology of BO and BSO
5.9 Pontrjagin classes

5.10 Euler class



Chapter 6

Unoriented Cobordism

In many respects the most interesting cobordism theory is unoriented cobordism;
i.e. the cobordism problem associated to the category (&,d,1) of all compact
differentiable manifolds. It has additional interest in that its solution by Them
[127] illustrates all of the basic techniques for dealing with cobordism problems,
without encountering excessive technicality.
First note that (&, 9, 1) decomposes as a direct sum of semigroups 2, (&, 9, 1),

n being the dimension of the manifold. This semigroup is usually denoted 1,
with 91, denoting the direct sum. The first structure theorem is:

Proposition 6.0.1. 91, is an abelian group in which every element has order
2. N, is a graded commutative ring, multiplication being induced by the product
of manifolds, with unit, given by the cobordism class of a point.

Proof. For any closed M, M + M + 00 ~ @ + O(M x I) where I = [0,1] so
the class of M is its own inverse. If M, Ny and Ny are closed with N7 & N,
say N1+8U1 §N2+8UQ, then M x N1 +6(M X Ul) ~ M x N2+8(M X UQ)
so M x Ny 2 M X Ny. Since M x (N7 + N3) ~ M x Ny + M x Ny and
M x N ~ N x M this gives N, the structure of a graded commutative ring. If
pis apoint, M X p~px M ~ M, so the class of p is a unit. O

Theorem 6.0.2. The cobordism group N, is isomorphic to lim, o 74+ (TBO,., 00).
The ring structure in M. is induced by the maps TBO, A'TBOg;: TBO;, —
TBO, s obtained from the Whitney sum operation on vector bundles.

The next step is clearly to try to solve the homotopy problem. It is here
that the most ingenuity is required since the various cobordism theories differ
widely at this point. The guidance one obtains from Thom’s work is: Make use
of the cohomology theories for which the manifolds in question are Orientable.

6.1 The mod2 Steenrod algebra A,

For oriented cobordism one makes use of ordinary cohomology with Z /27 coef-
ficients; i.e. the cohomology for the spectrum K (Z/2Z). One needs a knowledge

17
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of the operations in this theory,which may be summarised:

6.2 Adem relations

6.3 Cartan formula

6.4 Structure theorem for 91
6.5 Wu classes vy, v(M)

6.6 Wu relations on characteristic numbers

This completes the analysis of the unoriented cobordism ring. Beginning the
pattern which will be followed throughout, one wishes to know the relationship
with other cobordism theories and the structure of the related bordism theory.

6.7 Relation to framed cobordism: the Hopf in-
variant

Recall that a framed manifold is a manifold together with an equivalence class
of trivialisations of the stable normal bundle. The cobordism corresponding is
(B, f) cobordism with B, a point and the cobordism group QfF are identified
with lim,_, 0 Tp4r(S™, 00). (Pontrjagin [101]).

6.8 Unoriented bordism: Steenrod representation

Let .7 denote the category of topological spaces and continuous maps and
F: 2 — 7 the forgetful functor assigning to each differentiable manifold its
underlying topological space. For any space X one may form the cobordism cat-
egory (2/X,0,1), obtained from Construction I. This gives rise to a cobordism
semigroup M. (X) which was first defined by Atiyah [13] and which is called the
bordism group of X.

Let (B, f) be the sequence of spaces and maps given by B, = X x BO,. and
fr+ By — BO, the projection on the second factor. A (B, f) structure on a
manifold is then a (BO, 1) structure together with a homotopy class of maps
into X. Since homotopic maps define the same class in 91, (X) one has induced
a homomorphism Q. (B, f) — M.(X) which is clearly an isomorphism.

It is clear from the free Ay module structure of H*((/A) A TBO;Z/27Z) that
all relations among these generalised Stiefel-Whitney numbers arise from teh
Wu relation.
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References: In addition to Atiyah’s paper [13], one may find a discussion of
unoriented bordism in Conner and Floyd [36]. The Steenrod representability is
due to Thom [127].
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Chapter 7

Complex Cobordism

Historically the next cobordism problem to be completely solved was the cobor-
dism of stably almost complex manifolds. This was defined and completely
determined by Milnor [81] and by Novlkov [93]. Specifically this is (B, f) cobor-
dism in which By, = Bg,y1 is the classifying space BU,. for complex r-plane
bundles. Since a complex vector bundle has a unique stable inverse, the objects
are then manifolds with a chosen complex vector bundle structure on the normal
or tangent bundle.

21
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7.1
7.2
7.3
7.4
7.5

7.6

7.7
7.8
7.9

7.10

7.11
7.12

CHAPTER 7. COMPLEX COBORDISM
The modp Steenrod algebra A4,
Structure of QU
Complex K-theory
Chern character

Calculation of K-theory characteristic num-
bers

Construction of almost complex manifolds with
certain characteristic numbers

QY is a polynomial.
Polynomial generators for QY

Relations among characteristic numbers [Stong-
Hattori theorem]

Relation to framed cobordism: the Adams
invariant ec

Relation to unoriented cobordism

Complex bordism



Chapter 8

o1-Restricted Cobordism

Let K be one of the fields R or C. If i is an n-dimensional K vector bundle, the
determinant bundle of y, det g, is the K line bundle A% (1) given by the n-fold
exterior power bundle over K of the bundle u.

8.1 det(u), p an n-plane bundle

8.2 P(K")-structure, K =R or C

8.3 WL.(K,r)

8.4 Semi-geometric methods: W.(K,2)

8.5 Relation between W,(K,2) and Q2“: Semi-
geometric methods

8.6 Relation to bordism groups

23
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Chapter 9

Oriented Cobordism

With the exception of the unoriented oobordism problem, the most interesting
manifold theoretic cohordism problem is the classification problem for “oriented”
manifolds, where “oriented” is taken in the classical sense.

There are many equivalent descriptions of an “orientation” of a manifold,
which may be given by:

a) A trivialisation of the determinant bundle of the tangent (or normal) bundle;

b) A reduction of the structural group of the tangent (or normal) bundle to the
special orthogonal group;

c) An integral cohomology orientation of the tangent (or normal) bundle in the
sense of Dold; or

d) A fundamental integral homology class giving an orientation in the sense of
Whitehead.

In addition to the desire to classify “oriented” manifolds because of the clas-
sical interest, definition (d) indicates a relation between “oriented” bordism and
integral cohomology and full exploration of this relationship is desirable for
geometric understanding of integral homology.

The analysis of “oriented” cobordism is a very complicated problem, the
major outline of its solution having been:

1) Reduction to a homotopy problem and rational structure by Them [127J;

2) Calculation of odd primary and mod torsion structure by Milnor [81], or
Averbuh [21], and Novikov [93];

3) Calculation of 2 primary structure by Wall [130]; and

4) Analysis of oriented bordism by Conner and Floyd [36].

25
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9.1
9.2
9.3
9.4
9.5
9.6
9.7

9.8

9.9

9.10
9.11
9.12
9.13
9.14
9.15

9.16
9.17
9.18
9.19

CHAPTER 9. ORIENTED COBORDISM

Structures of O°° ® Q

Torsion in Q°° is 2-primary.

QU — 039 / Torsion is onto.

050 / Torsion is a polynomial.
Polynomial generators for Q°° / Torsion
All torsion in Q° has order 2.

Pontrjagin and Stiefel-Whitney numbers de-
termine classes in O°°.

Image of QEO — I,

Integrality theorem for oriented manifolds
Hirzebruch L class L(¢)
Relations among Pontrjagin numbers
The A class
Oriented bordism
Relation to framed cobordism

The Pontrjagin numbers of an oriented man-
ifold with framed boundary

Relation to unoriented cobordism
Relation to complex cobordism
The index (or signature)

The Hirzebruch index (or signature) theo-
rem



Chapter 10

Special Unitary Cobordism

Having already built up the machinery to study special unitary cobordism, the
‘oriented’ analogue of complex cobordism, one may obtain much of the structure
in fairly easy fashion. The only new feature which arises is the use of KO-theory
characteristic numbers.

27
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10.1
10.2
10.3

10.4
10.5
10.6
10.7
10.8
10.9

10.10
10.11
10.12
10.13
10.14

CHAPTER 10. SPECIAL UNITARY COBORDISM

Structure of Q°V @ Q
Torsion in Q%Y is 2-primary.

Construction of SU-manifolds with certain
characteristic numbers

O3V ® Z[3] is a polynomial.

All torsion in QY has order 2.
Torsion in QY

KO-theory characteristic numbers
Chern numbers of SU-manifolds

SV is determined by integral cohomology
and KO characteristic numbers.

Product in W,(C,2)

Relation to framed cobordism
Relation to complex cobordism
Relation to unoriented cobordism

Relation to oriented cobordism



Chapter 11

Spin, Spinc, and Similar
Nonsense

Among the (B, f) cobordism theories, the most interesting examples arise from
the classical groups. The most difficult of these which have been successfully
analysed are the theories given by the groups Spin and SpinC. The group Spin
arose classically in the study of Lie groups, being the simply connected covering
group of the special orthogonal group.

29
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11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

11.9
11.10

11.11

11.12

11.13
11.14
11.15
11.16
11.17
11.18

CHAPTER 11. Spin, Spin®, AND SIMILAR NONSENSE
Clifford algebra Cliff(V)
Spin(k), Spin®(k)
Pin(k), Pin“(k)
H*(BSpin; Z/27.)
Connective covers of BO and BU
Filtration of KO*(X) and K*(X)
Isomorphic homologies
2-primary analysis of MSpin and MSpin®©

. . C
Ql;/ISpm Q}:/ISI)IH

Structure of and

KO-theory and mod2 cohomology charac-
teristic numbers determine QP

Ordinary (Q,Z/27) cohomology character-
Ql;/[SpinC.

istic numbers determine
Basis for O"" © Z/27
QU — prin(c / Torsion is onto.
Relation to framed cobordism
Relation to unoriented cobordism
Relation to oriented cobordism

Relation to complex cobordism

Relation to Spin and Spin®



Appendix A

Advanced Calculus

This appendix collects the results from standard advanced calculus which are
needed for geometric arguments in cobordism theory. These results are lifted
bodily from the following sources:

(1) Milnor, J.: Lectures on Characteristic Classes, mimeographed, Princeton
University, Princeton, N. J., 1957.

(2) Milnor, J.: Topology from the Differentiable Viewpoint, The University
Press of Virginia, Charlottesville, Va., 1965.

(3) Spivak, M.: Calculus on Manifolds, W. A. Benjamin, Inc., New York, New
York, 1965.

(4) Steenrod, N.: The Topology of Fibre Bundles, Princeton University Press,
Princeton, N. J. 1951.

(5) Sternberg, S.: Lectures on Differential Geometry, Prentice-Hall, New York,
1964.

A.1 Calculus

Definition A.1.1. A function f: R™ — R™ is differentiable at a € R™ if there
is a linear transformation \: R™ — R™ such that

oo @t b~ fla) = A(R)
h—0 ||

=0

Proposition A.1.2. If f: R" — R™ is differentiable at at a € R", there is a
unique linear transformation A: R™ — R™ for which the above holds.

31
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Proof. If j1: R™ — R™ is another such linear transformation, x € R™ and ¢t € R,
then

@) = p@)] . M) = p(t)

|z t—0 |tx]
o )~ J(at 1) 4 1) + Jat t) — fa) (1)
t—0 |tx‘
o et t) — f@) M@ (fak ta) — f0) i)
t—0 |tx| t—0 |tx|
=040
So A(z) = p(x) for all . O

Definition A.1.3. The linear transformation X satisfying the above condition
is denoted Df(a) and is called the derivative of f at a.

Lemma A.1.4. If T: R™ — R™ is a linear transformation, there is a number
M such that |T'(h)| < M|h| for all h € R™.

Proof. Let e}, ej be the usual bases of R and R™ respectively and define ¢;; € R

by T(;) = > tize3. If h = hse;, then

|T(h)| = /Z(Z hitij)? < Z\Z hitij|

< 323l Il < mnsuplts |- 1)
J i ?

Thus it suffices to take M = mnsup, ;|t;;|. O

Proposition A.1.5. If f: R® — R™ is differentiable at a € R", then f is
continuous at a.

Proof. Let & > 0. Since lim,_,,|f(x) — f(a) — Df(a)(z — a)|/|z — a| = 0, there
is a 01 > 0 such that |z — a| < §; implies

|f(2) = fa) = Df(a)(z — a)| < (¢/2)(Jx - al).

By the lemma, there is an M such that |D f(a)(h)| < M|h|. Let § = min(dy,e/2M,1).
Then |z — a| < § implies

|f(x) = fla)] <|f(x) — f(a) = Df(a)(z — a)| + |Df(a)(z — a)|
< (e/2)|z —a| + M|z — a
< (g/2) + M(e/2M)
g.

Hence f is continuous at a. O
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Theorem A.1.6. (Chain Rule) If f: R™ — R™ is differentiable at a € R™,
and g: R™ — RP is differentiable at f(a) = b € R™, then go f: R™ — RP s
differentiable at a, and

D(go f) =Dg(f(a))oDf(a).
Proof. Define

where A = Df(a), p = Dg(f(a)). Then

9(f(x)) = 9(b) — pw(z — a) = g(f(x)) — g(b) — pv(f(z) — f(a) — »(z))
= [9(f (@) = 9(b) — u(f(z) = b)] + p(p(x))
= ¥(f(@)) + ule(@)).

By the lemma, there is an M; such that |u(h)| < M;ilh|, so

—~

0 < tim Iy gy WD

z—a |a: — a| T—a |a: — a| -

Now let ¢ > 0 and choose an Ms such that |A(h)| < Ms|h|. Since lim,_|ty|/|ly—
bl = 0, there is a d; > 0 such that

[W(f ()] < (e/Ma)|f(x) — ]

if f(x)—b| < 6. Since differentiability implies continuity, there is a d; > 0 such
that |z — a|] < 3 implies |f(x) — b| < é;. Thus if |z — a| < J2

[Y(f ()] < (¢/M)|f(z) — bl
= (e/Ma)|p(z) + Az — a)|
< (e/My)lp(x)| + el(z — a)

and so

0 < lim (S @) < (e/M>) lim ()l +e=g¢,

r—a |l’ — a,| r—a |Qj — a|
and since this holds for all € > 0
1o 190 (@) = 90) = p(Mz — 0))

T—a |x — a|

=0.

O

Proposition A.1.7. 1) If f: R™ — R™ is a constant function, then DF(a) =
0.

2) If f: R™ = R™ is a linear transformation, then D f(a) = f.
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3) If f: R* = R™: x> (fX(x),..., f™(x)), then f is differentiable at a € R™ if
and only if each f* is differentiable at a and Df(a) = (Df(a),...,Df™(a)).

4) If f,g: R® — R™ are differentiable at a € R™, then f + g: R* — R™ is
differentiable at a € R"™ and

D(f +9)(a) = Df(a) + Dy(a).

5) If f,g: R — R are differentiable at a € R™, then f-g: R™ — R is differen-
tiable at a € R™ and

D(f-g)(a) = f(a) - Dg(a) + g(a) - Df(a).
Proof. 1) If f(x) =y for all z, then

o @ 0) = f@ =0 _ gy =0 _

h—0 || h—0 A 0

o @+ h) = F@ = W) 1f(@) + () — f(@) = £(0)

h—0 || h—0 ||
3) If each f? is differentiable and A = (Df!(a),..., Df™(a)), then
flath)=f(a)=A(h) = (f*(a+h)=f (a)=Df(a)(h), ..., f™(a+h)=f"(a)=Df™(a)(h))

U@t h) = @) =M =y et k) = ) = D(a)(h)
h—0 |h| - h—0 |h

=0.

=0.

Conversely, f* is the composition of f and the projection 7; which is linear,
so Df*(a) = D(m; o f)(a) = mDf(a).
4) Let s: R® x R™ — R™, (x,y) — x + vy, and let (f,g9): R® — R™ x R™,
a +— (f(a),g(a)). Then s is linear, so Ds = s and by 3), D(f,g) = (Df, Dg).
By the chain rule,

D(f + g)(a) = Ds(f(a), g(a)) o D(f, g)(a)
— s(Df(a), Dg(a)
— Df(a) + Dg(a).

5) Let p: R? — R, (z,y) — zy. By the chain rule, it suffices to show that
Dp(a,b)(x,y) = bz + ay. Letting A\(z,y) = bz + ay.

. Ipla+h,b+ k) —p(a,b) — A(h, k)| . |hk|
lim = lim .
(h,k)—0 [(h, k)| (hk)—0 |(h, k)|
Since |hk| < sup(|h|?,|k|?) < |h|* + |k|?, one has
hk h,k)|?
0< lim [k < lim [ BF _ lim |(h, k)| = 0.

= (k=0 |(h k)| T (k=0 [(RoE)| T (hk)—0
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Proposition A.1.8. If f: R — R is differentiable at a € R and has either a

relative minimum or a relative mazimum at a, then D f(a) = 0.

Proof. Let Df(a)(h) =th with t € R. If a is a relative maximum, then
flat )~ f(a) <0

so if th > 0,

0= lim |[flath) — fla) — thi > lim @ = |¢|.

h—0,th—0 |h ~ h=0 |h|

If @ is a relative minimum, then f(a + h) — f(a) > 0 so if th < 0,
[th]

0= iy Jlth - S@thl o
h—0,th—0 |h h—0 |h|

O

Theorem A.1.9 (Rolle). Let [a,b] C R and f: [a,b] — R a continuous function
with f(a) = f(b) = 0 and such that Df(c) exists for all a < ¢ < b. Then
Df(c) =0 for some c € (a,b).

Proof. If f is not identically zero in which case Df(c) = 0 for all ¢ € (a,b),
then f has a positive maximum or a negative minimum which must occur at
some ¢ € (a,b). Thus c is either a relative maximum or relative minimum and
so Df(c) =0 by the proposition. O

Theorem A.1.10 (Mean Value). Let [a,b] C R and f: [a,b] = R a continuous
function which is differentiable at all points ¢ € (a,b). Then there is a point
¢ € (a,b) such that

f(0) = f(a) = Df(c)(b - a)

Proof. Let F(x) = f(z)— f(a) = [(f(b) — f(a))/(b—a)](x — a). Then F satisfies
the conditions of Rolle’s theorem, so for some ¢ € (a,b)

0=DF(c) = Df(c) = [(f(b) — f(a))/(b—a)] -idr
where idg: R — R is the identity function. O
Definition A.1.11. If f: R" — R and a € R"”, then the limit

lim fla',...;a""Ya* + h,...,a") — f(a',... a")

h—0 h

is called the i-th partial derivative of f at a, denoted D, f(a), when it exists.

Theorem A.1.12. If f: R™ — R™ has the property that all the partial deriva-
tives D f'(x) exist in an open set containing a and are continuous at a, then
Df(a) exists.
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Proof. Tt suffices to show Df?(a) exists, so one may assume m = 1. Then

fla+h)—f(a) =

n

Z[f(al—|—h1,...,ai+hi,...ai+1,...,a”)—f(al—l—hl,...,ai_l—i—hi_l,...,ai,...

i=1

=> h'Dif(c;)
=1

for some point ¢; = (a' + ht,... a7t + b7l a® + ;A% @', . a™) where
0 < 6; < 1, by the mean value theorem. Hence

po @+ 0) = f(@ = S Dif(@)] | [SHDif (e = Dif (@)

h—0 |h| h—0 Al
. |1
< ) . D. .
= }ILIL% E |[D1f(cz sz(a)|

A
< }lbl_r% ZHDif(Ci —D; f(a)]
=0

by continuity of D;f at a. Thus Df(a)(h) = >_ D;f(a) - h'. O
Definition A.1.13. For f: R" — R, the function defined by
Dy, i.f =Diy(Diy.. . [)

is called an r-th order partial derivative of f. The function f is said to be of
class C if all partial derivatives (of all orders) exist.

Theorem A.1.14. If f: R" = R and D; ; f and D;;f exist and are continuous
in an open set containing a € R™, then

D; ;f(a) = Djif(a).

Proof. It suffices to consider the case n = 2. Let a = (¢,d) and let (h,k) € R?
be small enough so that both D; »f and D ; f are defined on

{(z,0)l|lz —cf < h,[ly —d| <k}

Let
() = f(z,d+ k) — f(z,d), ¥(y)=flc+hy) — fley).
Then

a=flc+hd+k)— flc,d+k)— flc+h,d)+ f(c,d) = p(c+ h) —p(c)
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There is a ¢’ € (¢,c+ h) with

a=g(c+h)=p(c)=Dp(d) -
= [le(c/ﬂ d+ k) - le(c/’d)]h
= Dng(C/,d/)hk'

for some d’ € (d,d + k).
There is a d” € (d,d + k) with

a=P(d+k)—p(d) = Dp(d") - k
= [DQf(C + h7 d”) - D2f(cv d”)]k
_ Dl’zf(c”,d”)hk

for some ¢’ € (¢,c+ h).
Thus every open set U containing a contains points p’, p”’ with

Di2f(p) = D21 f(p").
By continuity of the D; ; f this gives D172f(a) = Dg,lf(a,). O

Proposition A.1.15. If f: R™ = R is a C* function and xo € R", there exist

C*® functions g;: R*" - R, i =1,...,n, with g;(xg) = 9F (20) such that
ox;

f(x) = flwo) + Y (& = z0) - gi(x).
i=1
Proof. Define h,(t) = f(xo + t(z — zp)). Then h,(t) is a C* function of ¢ and

Y dh,
= f(z) — f(=o)-
By the chain rule,

dhy af B _ _
P j %j(fﬂo‘ﬂf($ xg)) - (x — z0);

SO

@) = 1(a0) + Yl = 20)y) | 5w+ ta o)

and one may let g;(z) = fol %(mo + t(x — x0))dt. Then

gi(xo) = of (zo)dt = (?f(xO)/o dt = ﬁ(:lco).

0 TLE] ij &nj
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Lemma A.1.16. Let A C R™ be a rectangle and f: A — R™ continuously
differentiable (i.e., each D;f'(z) ezists and is continuous on A). If there is a
number M such that |D;f'(z)| < M for all x in the interior of A, then

[f(x) = f(y)] < n*Mlz —y]
for all z,y € A.
Proof. One has

I
M=

fz(y) - f%m) [fi(yla---vyj>$j+1a"'7xn) - fi(yla--~7yj_1vxj7"'>$n)]

<.
Il
—_

ly! — 27| - D;f'(x;;) for some z;; € interior A

|

Jj=1
n
<Yy —al|-M
j=1
<nMly — x|
SO
n
|f (= Z z)| <n’Mlz —y|.

O

Theorem A.1.17 (Inverse Function). Let f: R™ — R"™ be continuously dif-
ferentiable in an open set containing a, with D f(a)non-singular. Then there
is an open set V containing a and an open set W containing f(a) such that
f: V. — W has a continuous inverse f~': V — W which is differentiable and

Df~Hy) = [Df(f~ )]~ for ally € W.
Proof. Let A = DF(a) and then
DA™ o f)(a) = D(AT)(f(a)) o Df(a) = A" o Df(a) =

If g is an inverse forA~! o f, then go A~! is an inverse for f, and hence one may
assume A = id. Hence if f(a + h) = f(a) one has

[f(a+h) = f(a) = AB)| _ |A]

=— =1
1 7]

but since
o (@ h) = f(a) = A(h)

h—0 || =0

this means that f(x) # f(a) if zis close to but not equal to a.
Thus there is an closed rectangle U containing a in its interior with

1. f(x) # f(a) if x € U\ {a}.
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Since f is continuously differentiable in an open set containing a, one may also
assume

2. Df(x) is non-singular for all z € U,
3. |Djfi(z) — Djf'(a)| < (1/2)n? for all 4, j and x € U.

Since (D; f%(a)) is the Kronecker delta d;;, the lemma applies to g(z) = f(z)—=x
giving that for 1,20 € U

|f(z1 — 21 — (f(22) — 22)| < (1/2)]71 — 22

SO

|z1 — @2| = [f(21) = fla2)| < |f(@1 — 21 = (f(22) — 22)| < (1/2)]21 — 22].
Hence
4. |zy — xo| < 2|f(21) — f(me)| if 21,20 € U.

Since f is continuous, f(0U) is compact and by 1. cannot contain f(a), so there
isad > 0such that |f(z)— f(a)| > dif z € OU. Let W = {y||ly— f(a)| < (d/2)}.
If y € W and x € OU then

5. |y = fla)l <y — f(x)] for
d<|f(x) = fla)] <ly = f@)+ |y = fla)| <y = fz)| + (d/2).

Now let y € W and let g: U — R by

n

g(x) =ly—f@)* =" = ['(2)*

i=1

Then g is continuous so has a minimum on U, but by 5. g(a) < g(x) for
x € JU, so the minimum of g must occur at an interior point of U, i.e., is a
relative minimum. Thus there is a point z € interior U with D;g(z) = 0 for all
j, or
n
2 (' = f(2) - D f'(2) = 0.

j=1

Since by 2. Df(z) is non-singular, this gives y* — f*(z) = 0 or y = f(2) for some
z € interior U. By 4. this z is unique.

Letting V = interior U N f~1(W), the function f: V — W has an inverse
f~1: W — V, and rewriting 4. as |f = (y1)—f 1 (y2)| < 2|y1—ye| for y1,y2 € W
proves continuity of f~!.

To show that f~! is differentiable, let 4 = Df(x) and y = f(z) and for
x1 € V, let us define ¢ by

f(@1) = f(2) + pler — 2) + (21 — 2)
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so that
]
1T ‘5(;1 — m|

=0.

Then
p (f(xn) = f(@) =21 — x4+ (ple — 2)

and since every y; € W is of the form f(x;) with some 27 € V, one has

SNy =)+ —y) — o e (T ) — £ ).

Since p 1 is linear, there is an M with
2 Ol 0 Bl e 1)) P 20 S 0 B e )
lyr — vl B ly1 =yl
_ oy leU T ) = )l 1T ) = £ W)
= ) = ()l ly1 =yl

lo(f = y1) — (W)l
= 2MEE ) — i)

by equation 4. As y; — y, continuity of f~! gives f~!(y1) — f~1(y), and by
definition of ¢, this term goes to zero. Thus yu~' is a linear transformation of
the form required to show f~! is differentiable at y. O

Theorem A.1.18 (Implicit Function). Let f: R™ x R™ — R™ be continuously
differentiable in an open set containing (a,b), with f(a,b) = 0. Let M be the
m x m matriz (D1 f(a)) 1 <i,5 <m. If M is non-singular, there is an open
set A C R™ containing a and an open set B C R™ containing b, such that for
each x € A there is a unique g(x) € B such that f(x,g(x)) = 0. The function g
is differentiable.

Proof. Let F: R" xR™ — R™ x R™ by F(z,y) = (z, f(x,y)). Then DF(a,b) is
non-singular. There are then open sets W C R™ xR™ containing F(a,b) = (a,0)
and V C R™ x R™ containing (a,b), which may be a taken to be of the form
A x B, such that F': V — W has a differentiable inverse h: W — V = A x B.
Clearly h(x,y) = (z, k(z,y)) since F has this form, where k is some differentiable
function. Let 7: R™ x R™ — R™: (z,y) — y be the projection. Then

[, k(z,y)) = foh(z,y) =mo Foh(z,y)
= ﬂ-(x’y) =Y
so f(x,k(z,0)) = 0 and one may let g(z) = k(z,0). O

Theorem A.1.19 (Rank Theorem). Let f: R™ — RP be continuously differ-
entiable in an open set containing a, where p < n. If f(a) = 0 and Df(a)
is an epimorphism, there is an open set A C R™ and a differentiable function
h: A — R"™ such that

foh(l‘l,...,$n) = (xn—p-i-lw"vxn)'
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Proof. Since Df(a) has rank p, there are integers 1 < 43 < - < i, < n
such that the matrix D;f’(a), 1 < j < p, i = 41,...,4, is non-singular. Let
g: R" — R™ permute the coordinates so that g(z!,...,2") = (..., 2%, ... 2%).

Then fog: R" = R"P x RP — RP has the matrix (D,,_,;(f o g)’ (g7 (a))
non-singular 1 < 7,5 < p. As above, there is an h: A — R", A C R™ an open
set with (fog)oh(al,...,2") = (x"~P+L ... 2"). This function g o h satisfies
the condition of the theorem. O

Lemma A.1.20. Let f: R™ — RP be continuously differentiable in an open set
containing a, where p > n. If D f(a) is monic, there is an open set U C R? and
a differentiable function h: U — RP with differentiable inverse such that

ho f(z1,...,2n) = (21,...,2p,0,...,0).
on some neighbourhood of a.

Proof. Since (gj: L) has rank n, one may, by reordering coordinates in RP, assume
J

(9)1<i j<n is non-singular. Let F: RP x RP~" — RP by

F(zi,...,2p) = f(z1,...,2n) +(0,...,0,Tpp1, ..., 2p).

Since F(z1,...,%n,0,...,0) = f(z1,...,2y,), F extends f. DF(a,0) has

() 0
* I

as matrix so is non-singular. Hence F' has an inverse h on a neighbourhood of
(a,0), so

hf(z1,...,xn) = hF(x1,...,2,,0,...,0)
= (21,...,2n,0,...,0).

A.2 Theorem of Sard and Its Consequences

Definition A.2.1. A rectangle in R" is a set of the form []_[a;,b;] with
a; < bi, a;,b; € R. The volume of the rectangle S = [, [a;,b;] is v(S) =
H?:1|bi —al.

Definition A.2.2. A subset A C R™ has (n-dimensional) measure zero if for
every € > 0 there is a countable collection B; of rectangle with A C UB; and

S u(B;) <.

Theorem A.2.3. A countable union of sets of measure zero is itself of measure
zero.
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Proof. If A = UA;, with each A; of measure zero, let ¢ > 0 and choose families
Bi’j of rectangles with A, C UJ‘Bi’j, ZU(Bi,j) < (8/2i). Then A C Ui’jBi’j and
i U(Biy) <3i(e/2') =e. [

Proposition A.2.4. Let U be an open cover of the interval [a,b] by inter-
vals of length at most €. Then there is a finite subcover Uy of U such that

Soreue Vo) <2(Jb—al +¢).

Proof. Let U be a finite cover by elements of i/ and let Uy be the minimal family
of Uy which cover. Order Uy by writing the elements of Uy as I; = (a;, b;) where
i < jif a; < aj. Then one has Uy j = 1,...,r and by minimality of the cover
a; < air1 < b; < biqq for each i and a; < a < ag, b,—1 < b < b,. The sum of
the overlaps is at most

(a—a1)+ (b1 —ag)+--+ (bi + aip1+ -+ (br—1 —ar) + (b —b) < 2e+|b—a
since

g <a<ay<b <az<by<ag<b3<--<ap_1<br_o<a,<b._1<b<b,,
and this gives the result. O

Theorem A.2.5 (Fubini). Let A C R™ be a compact set such that each set
AN(t xR 1Y) has (n—1)-dimensional measure zero. Then A has measure zero.

Proof. Since A C [a,b] x R"~! for some a,b € R. Let ¢ and choose g1 > 0 such
that 2|b—ale; < e. For each t € [a,b], AN (¢t x R"~!) has measure 0 so there is a
countable collection of rectangles B; ; C R"~! such that AN (¢t x R*~1) C U;t x
Bt(?i and ). v(By;) < €1, where Bgi is the interior of B; ;. Now A\ R x UiBgi
is a compact set containing no point of the plane ¢ x R*~! and hence there is a
(1/2) > 6; > 0 such that

AN(t—=6,t46) x RN C (=0, t+6,) x U B,

The sets (t — dt,t + &) cover [a,b] and by the proposition there is a finite

family ¢1,...,t.such that the intervals cover [a,b] and have total length at most
2(]b—a|+1). The countable family of all (¢; — &y, ,¢; + s, ) X U; By, ; then covers
A and has the sum of volumes at most 2(|b — a| + 1)e1 < e. O

Definition A.2.6. Let f: U — R? be a smooth (C*°) map,U open in R™. A
point z € U is a critical point if D f(x) is not epic; it is a regular point if D f(x)
is epic. The critical values of f are the images under f of critical points; those
points of RP which are not the image of critical points are called regular values.

Theorem A.2.7 (Sard). Let f: U — RP be a C* map, U open in R™, and let
C' be the set of critical points of f. Then f(C) C RP has measure zero.

Warning: The proof is rather involved.
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Proof. The statement makes sense for n > 0, p > 1, with R® being a single
point. The proof is by induction on n, being obvious for n = 0.

Let C; C C denote the set of z € U such that all partial derivatives of f of
order < i are zero at z. For example, Cy = {z € U|Df(z) = 0}.

Step 1: The image f(C'\ C1) has measure zero.

One may assume p > 2 for C =C1 if p= 1.

Let T € C\ C;. Since T ¢ C1, there is some partial derivative, say gﬁ,
which is non-zero at Z. Let h: U — R" by

Since D f(Z) is non-singular, h maps some neighbourhood V of = diffeomorphi-
cally onto an open set V'’ of R®. Then g = foh™': V/ — RP. The set of critical
points of g, C’, is precisely h(V N C), so g(C’) = f(V NC).

For each (t,z2,...,2") € V', g(t,2%,...,2") € t x RP~1 C RP or g takes
hyperplanes to hyperplanes. Let

gt xRNV =t x RPH

be the restriction of g. Since

dg° 1 0
=1, )
OxJ * (55)
a point of ¢ x RP~! is critical for ¢ if and only if it is critical for g. By induction,
the set of critical values of g* has measure zero in ¢t x RP~! and so g(C") intersects
each plane ¢ x RP~! in a set of measure zero, or f(V N () intersects each plane

t x RP~1 in a set of measure zero. _ _

Since C'\ C} is a countable union of sets of the form V N C where V is a
compact neighbourhood of Z, V C V. Fubini’s theorem shows that f(C'\ Cy) is
a countable union of sets of measure zero, so has measure zero.

Step 2: The image f(C; \ Ci+1) has measure zero, for i > 1.

For each € C;\ C;11 there is some (i + 1)-st derivative # which
s1 Sk+1
is non-zero. Thus
" fy

O0x,, -+ O,

w(zx)

vanishes at T but 6‘1“’ does not. Suppose s; = 1 for definiteness. Let
s1

h:U =Rz (w(x),2?,. .. 2,).

Then h carries a neighbourhood V' of T diffeomorphically onto an open set V.
Also h takes C; NV into 0 x R*~!. Consider

g=foh L.V S RP
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and let g be the restriction of g to (0 x R*~!) N V', By induction, the set of
critical values of g has measure zero in R?, but each point of h(C; NV) is a
critical point of g (since) all derivatives of order < ¢ vanish). Thus

gh(C;nV) = f(C;NV)

has measure zero. Since C; \ C;11 is covered by countably many such sets V', it
follows that f(C; \ Cit+1) has measure zero.

Step 3: The image f(Cy) has measure zero for k sufficiently large.
Let I™ C U be a cube of edge §. By Taylor’s theorem, the compactness of
I™ and the definition of C}, one has

f(z+h) = f(z)+ R(z,h)

where |R(xz,h)| < c|h|F+! for x € C,,NI", x +h € I"™, ¢ being a constant which
depends only on f and I"™.

Subdivide I"™ into r™ cubes of edge 6 /r, and let I; be a cube of the subdivision
which contains a point « € C%. Then any point of I1 is z + h with |h| < (§/7).
Since |f(z+h) — f(x)| < ¢|h| —k + 1, f(I; lies in a cube of edge a/r**! centred
at f(x), where a = 2¢(y/nd)¥*1 is constant. Thus f(Cx N I™) is contained in a
union of at most ™ cubes having total volume

V < r™(a/rFThP = aPpn—(ktp,
Ifk+1>n/p, then V— 0asr— oo, so f(CrNI™) has measure zero. O

Lemma A.2.8. Let D, D’ be two open rectangles in R™ with D C D’. Then
there is a real valued C* function g on R™ such that

a) 0<g(z) <1 forall x,
b) g(x) =1 for x € D, and
¢) g(x) =0 forx e R\ D’.

Proof. One may write D = [[(a;,b;), D' =[[(a},b}) with a} < a; < b; < V.
For any interval [c,d] C R, let

_Jexp(=1/(z —¢) + 1/(z — d)), x € [e,d],
Yea(@) = {0 x & le,d].

Then . q is C* and 9 q(x) > 0. Let

x d
Spc,d:/ ¢c,d(33)d$// ¢c7d(l‘)daj.

Then @.qi8 C,0 < peq(z) <1, peqa=0if 2 <c, p.q(x) =1if z > d.
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For a} < a; < b; < b}, let

Pala; r<b
hat a; b, (2) = 4 741
: ! 1 — Qpbi,b; T > b

Then ha,'i,ai,bi,b,’i (JL‘) is 0,0 < ha;,ai,bi,b; (:E) <1 ha;,ai,bi,b; (Jf) =lifze [aab]:
and ha! o, b, 0, (x) = 0if z & [a', ']
Let g(2) = [Tiz1 haf 00,000, (2)- N

Lemma A.2.9. Let U be an open set in R™ with U compact, and let V be an
open set containing U. Then there is a real valued C™ function g: R™ — [0, 1]

such that -
1 for zeU,
g(z) = n
0  for zeR"\V.
Proof. Since U is compact, there are a finite numbers of open rectangles Dy, ..., D;

with D; C V covering U. Let D! be an open rectangle containing D, and con-
tained in V. Let g; be given as in the previous lemma for the pair D;, D}. Then
define g by

l—g=1-g1)(1—g2) - (1—gs)
Then fis C*, 0 < g(z) <1 for all z. If € UD; then g;(z) = 1 for some j so
1 —g(z) =. Thus g(z) =1 for x € U C UD;. If x & D} then g;(x) = 0 for all i
so1—g(x)=1. Thus g(z) =0if z e R"\V C R"\ UD.. O

Lemma A.2.10. Let F: W — R, Z open in R™ be a continuous function of
class O in an open set U C W. Let U', V' be open sets with U cVv c

vV c W, U/, v being compact. Let § > 0. Then there is a continuous function
G: W = R with |G(z) — F(x)| < for all x € W, such that G is C* in UUU’

and F(z) =G(z) ifx € W\V’.

Proof. By the Weierstrass approximation theorem there is a polynomial H(x)
such that |H(z) — f(z)| < 6 for z € V. Let g: R - Rbe C®, 0 < g <1 with
g|U/ = 1, g|]R"\VI = 0. Let

G(z) = g(x) - H(z) + (1 — g(2)) F(x)
for all z € W. Then G(z) = H(z) on U’ and G(z) = F(x) on W\ V'. On v,
G(z) — F(@)| = lg(@)||H(z) — F(z)| <.
Also G(z) is C*° when F is, hence on U, so G is C*° on UUU". O

Proposition A.2.11. Let f: E — R* be a C*> function, W an open subset of
R™, C' a compact subset of W, V' a neighbourhood of C with V.C W, and € > 0.
Then there exists a differentiable g: E — R such that

1) glc has 0 € R¥as a regular value,
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2) g=fonW\V,
3) lgi(x) — fi(x)| <&, [(0gi/0x;)(x) — (Ofi/0x;)(x)| <e,
forallx e W,a<i<k,1<j<n.

Proof. Let A\: W — R be a C* with A|c = 1, A[p\v = 0 and 0 < A(z) <1 for
all z. If y is any regular value of f then

satisfied conditions 1) and 2) above. By Sard’s theorem, y may be chosen
arbitrarily close to 0, and so 3) may be satisfied by taking y small enough. O

Proposition A.2.12. Let C be a compact subset of W, W open in R™ and
g: W — RF a C™ function such that g|c has 0 as regular value. Then there is
an & > 0 such that if h: W — RF with

Oh; (z) 09i
8.’£j 8xj

|hi(z) — gi(w)| <e, | (z)] <e,

for all x € C,then h|c also has 0 as regular value.

Proof. {x € C|, is critical for g} is closed so compact and the set of critical
values of g is then closed. Thus there is an 1 > Osuch that |g;(z)| < 1 implies
xis regular for g. In particular Dg(z) is non-singular and there is an €9 > 0
such that |A;; — (0g;/0x;)(z)| < e2(z) implies (A;;) is non-singular. On the set
of z for which |g;(x)| < &1/ which is compact, there will be an e3 such that
e3 < eo(x) for all these . Let £ = min(ey/2,e3). If

Ghl (LL') _ 8gi
8xj 6$j

|hi(w) — gi(@)] <&, | (z)] <k,

then implies |g;(x)| < e < €15 so Dg(x) is non-singular and since

Oh;
637]‘

o 0g;
8wj

15— (@)

(@) <e,

Dh(x) is non-singular. Thus 0 is a regular value for h. O



Appendix B

Differentiable Manifolds

This appendix covers the basic notions of differentiable manifolds, tangent and
normal bundles and proves the transverse regularity theorem which will be basic
to the calculation of cobordism groups. In order to get this, one needs basic
structure theorems for manifolds such as tubular neighbourhoods and imbed-
dabillty and these are also proved. Basic references are:

(1) Kelley, J. L. : General Topology, D. Van Nostrand Co., Inc. Princeton, N.
J., 1955.

(2) Milnor, J.: Differential Topology, (mimeographed) Princeton University,
1958.

(3) Munkres, J. R. : Elementary Differential Topology, Princeton University
Press, Princeton, N. J.; 1966.

(4) Nomizu, K.: Lie Groups and Differential Geometry, Mathematical Society
of Japan, 1956.

B.1 General Definition

Definition B.1.1. H” C R" is the half space {(z1,...,z, € R")|z, > 0}.

Definition B.1.2 (Differentiable Manifold with Boundary). An n-dimensional
differentiable manifold with boundary is a pair (V,F) where V is a Hausdorff
space with a countable base and F is a family of real-valued continuous functions
on V satisfying:

1) Fis local: if f: V' — R and for all p € V there is an open set U, C V, and
a function g, € F such that f|y, = g|y,, then f € F.

2) F is differentiably complete: if fi,..., fy € F and F: R*¥ — R is C*, then
Fo(fi XX fr): V— R belongs to F.

47
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3) For each point p € V there are n functions fi,..., f, € F such that
fixxf:V-oR?

is a homeomorphism of an open neighbourhood U of p onto an open set of
H". Further, every function f € F agrees on U with a function of the form
Fo(fy x---x fp) where F: R" —» R is C*

The functions f € F are called the differentiable functions on V. A chart at
p € V is a pair (U, h), where U is an open neighbourhood of p and h: V — R"
is a function f1 x --- x f,, = h with f; € F mapping U homeomorphically onto
an open subset of H" as in 3).

B.2 Paracompactness and Partitions of Unity

Proposition B.2.1. V is paracompact.

Proof. Since H" is locally compact, so is V, and there is a base Uy, Us, ... for V
with U; compact for each i. There is a sequence A;, As, ... of compact sets with
union V and A; C interior A;;;: let A; = U, and if A, is defined, there is a least
integer k = k(i) such that A; CU; U---UUy. Thenlet 4,11 =U; U---UUy.
Let O be any open cover of V. Cover the compact set 4,11\ interior A; by
a finite number of open sets Vi,...V, where V; is contained in an element of O
and in the open set interiorA; 2 \ A;—1. LetP; denote the family (V,...,V,),
and P = PyUPyU---. Then P refines O, covers V and since any compact
set Clis contained in some A;, C' can intersect only finitely many elements of P.
Thus for p € V', any compact neighbourhood of p meets only a finite number of
elements of P. O

Corollary B.2.2. V is normal.

Proof. a) First, we proveV is regular. If « € V, B C V, B closed and a ¢ B,
choose for each b € B open sets Uy, V;, with a € Uy, b € V, and U, NV, = &. Let
Upy=U,N(V\B). Thena € Uy, b € V}, and U, NV}, = & and U, C V' \ B. Then
{V'\a\ B, Uy, Vs }pep is an open covering of V, so has a locally finite refinement
{Cq}tacr- Let J={acIlConNB# &}, W =UsesCy. Then W is open and
contains B. Let N be a neighbourhood of a meeting only a finite number of
the sets Cy. There is a finite set Jy C J such that o« € J, NN C, # & implies
a € Jy. For each a € Jy, C, N B # &, so there is a b = b(a) € B with C, C V},.
Then T'isopen,a € T and TNW = @.

b) Now, we prove V is normal. Let A,V C V be closed, ANB = @. For each
a € A there are open sets U, V! with a € U, BC V] and U, NV = @. Let
U, =U,N(V\B),V,=V/N(X\ A). Then {V\ A\ B,Uq, v, }aca is an open
cover of V so has a locally finite refinement {C, }. Let J = {a|C,NA # @}. For
each b € B, there is a neighbourhood N, of b meeting only a finite number of the
sets C,, a € J. Each such C,, is contained in some set U, and the intersection
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of N, with the corresponding sets V, is a neighbourhood T} of b not meeting
any C, witha € J. Then BCT, ACW and TNW = . Let T = UpecpTh,
W =UqejCq- Then BCT, ACWand TNW = @. O

Lemma B.2.3 (“Shrinking”). Let U bean open cover of V. Then there is a
refinement V of U such that for each © € V there is a set Y € U with X C U.

Proof. Let Uy be a locally finite refinement of U. Consider the set A of all
functions F' whose domain is a subfamily of U, and for each U in the domain
of F, F(U) is an open set with closure contained in U, and such that

[(WFU)|U € domain F}|U[U{W € Up|W ¢ domain F}] =V.

A is non-empty by normality of V. Partially order A by F' < G if G extends
to F. If F, is a linearly ordered family, let F' be defined on U{domain F,} by
F{U) = F,(U) if U € domain F,,. Let z € V and suppose x ¢ W for any
W ¢ domain F. Thus if x € U, U € Uy, then U € domain F. Since there are
only a finite number of sets U € Uy with x € U,and each such U € domain F,
for some o, there is a 8 such that x € U, U € Uy implies U € domain Fj. Thus
x € U{Fp(U)|U € domain Fg} sox € U{F(U)|U € domain F}. Then A has a
maximal element F' and by normality of V', F' must be defined on all Uy. Thus
V ={F(U)|U € Up} suffices. O

Proposition B.2.4 (Partition of Unity). Let U be any open cover of V.. Then
there is a differentiable partition of unity on V' subordinate toU, i.e., a collection
® C F such that

1) ¢ € ® implies p: V — [0, 1].

2) The collection V = {U,|¢ € ®} is a locally finite refinement of U where
Uy, ={x € V|p(z) > 0}.

) Foreachz €V, 3 4 p(x)=1.

Proof. Let U; be the collection of open sets U such that there is a chart (U, h)
and such that U C U’ for some U’ € U. By the lemma, there is a locally finite
refinement Us of U; such that for each Us € Uy there is a Uy € U; with Uy C Uy,
and there is a refinement U3 of Uy such that for each Us € Us there is a Us € Us
with Us C Us. In particular, there is a cover of V by sets Us such that Us € Us,
Us C Uy, Uy € Uy, Uy C Uy, Uy € Uy and the family of such sets U; is a
locally finite refinement of U. Let (Uy,h) be a chart and let ¢y, : h(U3 — R
be C*, being 1 on h(Us) and 0 outside h(Us), with 0 < ¢y, < 1. Let ¢y, be
Yy, oh on Uy and 0 on V' \ Us. Then being locally in F, ¢}, € F. Finally let
v, () = ¢y, (7)) D3 P, (¢) and @ the collection of ¢y O

Corollary B.2.5. Let U and W be open subsets of V with U C W. There is
an f e F with f(V) C[0,1] such that flz = 1,fly\w = 0.

Proof. {W,V \ U} is an open cover of V so there is a differentiable partition of
unity ® subordinate to this cover. If ¢ €p hi and p(z) # 0 for some z € U,
then U, C W. Let f be the sum of those ¢ € ® which are non-zero on U. [
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B.3 Boundary, Interior and Submanifold

The set of points of V' may be divided into two classes as follows. For each point
p € V, let (U,h) be a chart at p. Then either h(p) € R*~! x 0 C R™ or h(p)
belongs to the interior of H™. If (U’, 1) is another chart at p and ' ¢ R~ x 0,
then

hohW ™t W (UNU) = WUNU') CR"

is a C'*° function with a C'°° inverse, and by the inverse function theorem,
hoh'~'maps onto an open neighbourhood of h(p) in R™. Thus h(p) ¢ R"~! x 0.
Hence this property is independent of the choice of (U, k).

Definition B.3.1. The set of points p € V for which there is a chart (U, h) with
h(p)R"~! x 0 is called the boundary of V, and denoted V. The complement
of 9V, V' \ 9V, is the interior of V.

Proposition B.3.2. If (V, F) is an n-dimensional differentiable manifold with
boundary and F|gy denotes the set of restrictions to OV of functions in F, then

(0V, Flav) is an (n—1)-dimensional differentiable manifold (without boundary:
i.e., 0(OV) =).

Proof. Clearly OV is Hausdorff and has a countable base, and properties 2) and
3) are clear. Suppose f: 9V — R is any function, and for each p € 9V there is
an open set U, C 0V and g, € Floy such that f|y, = g,|u,. There is then a
function f;, € F and an open neighbourhood U, of pin V' with U, N9V = U,
and gplov = gp- Then {V \ 9V,U,} is an open cover of V and there is a
partition of unity ® subordinate to this cover. For each ¢ € ® such that
Uy, = {z € V|p(x) > 0} meets JV, there is a set U, with U, C U,. Let
p, be one such. Then define f': V' — R by f'(z) = >4 ¢(x)g,(r) where
P = {p € ®|U, NIV # @}. fislocally a finite sum of elements of F, so
belongs to F. If z € OV and ¢(z) # 0 then z € U, so g, = f(z). Hence

f'(@) = f(z) - 2op(x) = f(z). Thus f = f'lav of f € Flov. O

Definition B.3.3. If (V,F(V)) and (W,F(W)) are differentiable manifolds
with boundary, a function f: V — W is called differentiable map if for all
geFW),gofeF(V). fisa diffeomorphism if f has a differentiable inverse.

Proposition B.3.4. If f: (V,F(V)) — (V,F(V)) is a differentiable map and
F(OV) C OW) then flov: (OV,FVl]gy) — (OW,FWlow) is a differentiable
map. The inclusion map i: (OV, FV]gy) — (V, F) is differentiable.

Proposition B.3.5. If (V, F(V)) is a n-dimensional manifolds with boundary,
Uis an open subset of V and F|y denotes the set of restrictions to U of func-
tions in F, then (U, F|y) is an n-dimensional manifold with boundary, and the
inclusion map is differentiable.
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B.4 Vector Bundles and Tangent Bundles

We discuss another definition of differentiable manifolds which is convenient for
the discussion of tangent bundles.

Remark B.4.1. Let X be a set and suppose there is a countable collection A =
{(Xa,ha)} where X, C X and U, X, = X and h,, is a bijection of X, with an n-
dimensional manifold with boundary V, such that for each pair o, 8 ho(XoNX3)
is an open subset of V,, and

hﬁ o h;lt ha(Xa n Xg) — hg(Xa n Xﬁ)

is differentiable. Then X may be given a topology and a differentiable structure
such that X, will be open and each function h,, is a diffeomorphism. X is then
an n-dimensional manifold with boundary, and is uniquely determined within
diffeomorphism.

For example, let (V,F) and (W,G) be n-dimensional and m-dimensional
manifolds with boundary (OW being empty). Let (U, h;) and (T}, g;) be count-
able families of charts for V' and W. Then the collection {(U; x T}, h; x g;)}
defines a differentiable structure on V' x W, giving the product manifold of di-
mension n + m. Then 9(V x V) is diffeomorphic to OV x W (recall that oW
has been supposed to be empty, so we don’t have to worry about OV x dW.).

Definition B.4.2. If (V, F) id a differentiable manifold with boundary, a subset
A C V is called a submanifold of V if for each point a € A there is a chart (U, h)
at a with h(U N A) = h(U) N (0 x R*). The collection F|4 of restrictions to A
of functions of F is the family of differentiable functions on A.

Note: A = ANJV, is then a submanifold of OV

Definition B.4.3. A (real) vector bundle £ = (E, B, 7,4+, ) is a 5-tuple where

1. E and B are topological spaces, called the total space and the base space
of &,

2. m: F — B is a continuous map, called the projection,

3. +: E+ E={(e,¢') € E x E|me = me'} and
: R x E — FE are continuous maps such that m o +(e,e’) = me = we’,
7o (r,e) = me and the restriction to each fibre 7=1(b) for b € B make
71(b) into a real vector space.

Definition B.4.4. A bundle map f: £ — &' is a pair fg, fp of continuous maps
fe: E—= E', fg: E— FE’ suchthat 7’0o fg = fpom and fgo+ = +'o(f+ fr),
feo-=-0fg where fg+ fg/ is the restriction to E+ E of fg+ X fg/. fis an
isomorphism if there is a bundle map g: ¢’ — £ which is inverse to f.

For example one has the product bundle (B x R", B, 7, +,-) where 7 is the
projection of the product space.
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Definition B.4.5. The bundle £ = (E, B, 7, +,) is locally trivial if for each
point b € B there is an open set U in B containing b and a bundle isomorphism
hulély = (U xR™, U, 7, +,-) where £y is the bundle (7= *(U), U, 7| r=1 (1), + )
with induced operations with the induced map of base spaces being the identity
map of U.

Definition B.4.6. A differentiable vector bundle is a vector bundle £ for which
the total space and base space are differentiable manifolds with boundary, the
projection is a differentiable map and such that for each point b € B, the open
set U and map hy may be chosen to give a diffeomorphism of total, spaces.

Note: + and - are forced to be differentiable by the local triviality.

Definition B.4.7. Let (V,F) be an n-dimensional manifold with boundary,
and v € V. A tangent vector X at v is a function X : F — R such that:

1) If f,g € F and there is an open neighbourhood U of v with f|y = g|v, then
X(f) =X(9),

2) For f,g€ F,a,b e R, X(af +bg) =aX(f)+bX(g),
3) For f,ge F, X(f-g9) = X(f)g(v) + f(v) - X(g).

The set of tangent vectors at v forms a vector space induced from the additive
structure in R, called the tangent space to V at v and denoted 7.

Denote by 7(V') the union over all v € V of the sets 7, and let 7: 7(V) = V
be the function which sends each subset 7, into the point v.

Proposition B.4.8. Let v € V and let (U, h) be a chart at v, with h = f; x
<o+ X fn. Then

Ao U) = U xR, X = (n(X), (X(f)))
is a bijection. If (U', 1) is another char at v, then
Avodp—1: (UNU) xR - (UNU") xR
is given by Ay o A\pr—1(u, ) = (u, D(h o M=) (1 (u))()).

Proof. First note that if X € 7, then X annihilates constant functions. To see
this, one has X(¢) =X (1) =cX(1-1) =c{1X(1)+ X(1) -1} = 2¢X(1). Thus
¢X (1) = 2¢X(1) must be zero, so X(¢) = 0. Then let f € F be any function.
There is a C*° function F': R®™ — R with f = F' o h and one may write

_OF

F(z) = F(h(v)) + Z(x = h(v))igi(x),  gi(h(v)) (h(v))

with g; being C*°. Thus
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SO

X(f) = X(f(v) + Z{X(fi = fi(v)) - (9i 0 h(v) + (fi = fi(v)) X (gi 0 h)}

= S X 5 ()

Thus Ay is one-to-one, and letting

Xo(f) = Zai(;lz(h(v))7 a €R?

one has Ay onto. Thus Ay is a bijection.
Then Ay o Ayt = (u, A\t (u, @)(f;))) and

gt a)(5) = Yo o, WD )

j=1

= [D(ho K'=H) (I (v))()]:-
O

Proposition B.4.9. 7 = (7(V),V, 7, +,-) may be given the structure of a dif-
ferentiable fibre bundle so that if (U, h) is a chartin'V, Ay is a local trivialisation
of T and (7Y (U), (h x id) o A\yy) is a chart of 7(V). The boundary of 7(V) is
T (V).

Proposition B.4.10. If ¢: (V,F(V)) — (W, F(W)) is a differentiable map,
veV and X € 1, let p.(X) be defined by

ex(X)(f) = X(fop), feFW).

Then @.: 7(V) — 7(W) is a differentiable map covering ¢ and (¢x, @) is a
differentiable bundle map.

B.5 Immersions and Imbeddings

Definition B.5.1. Let M (p,n) denote the set of p x n matrices with differen-
tiable manifold structure given by identification with RP™. Let M (p,n; k) denote
the subset consisting of matrices of rank k.

Lemma B.5.2. M(p,n; k) is a differentiable manifold of dimension k(p+n—k),
k < min(p, n).

Proof. Let Ey € M(p,n;k) and by reordering coordinate write

|40 By
g={g o)
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where Ag is non-singular and k& X k. There is an € > 0 such that if all entries of
A — Ap are less than ¢, then A is non-singular. Let U C M(p,n) consist of all

o o)

with entries of A — Ag less than . Then E € M(p,n;k) if and only if D =
CA~'B. To see this, note that

A B 1 [ o0][A B
XA+C XB+D| |X I, |C D
has the same rank as E. If X = —CA™!, this is

A B
0 —CA'B+D

so if D = CA™!B this has rank k, while if any element of ~CA~'B + D is
non-zero the rank is greater than k.
Let W be the open set in R", m = k(p+n—k) = pn— (p— k)(n — k),
consisting of matrices
A B
o 1)

with all entries of A — Ag less than €. Then

AB%A B
Cc 0 C CA™'B

maps W homeomorphically onto the neighbourhood U N M (p, n; k) of Ey. O

Definition B.5.3. A differentiable map ¢: (V, F(V)) — (W, F(W)) is an im-
mersion if o, is a monomorphism on each fibre of 7(V). It is an imbedding if it
is also a homeomorphism into.

Proposition B.5.4. Let U be an open subset in R™ and f: U — R? a differen-
tiable map with p > 2n. Given € > 0, there is a p X n matriz A with all entries
less than e such that g(x) — f(z) + Ax is an immersion.

Proof. For any p x n matrix A, Dg = Df + A and one wants to choose A so
that Dg has rank n at all points of U, or equivalently, A = @Q — Df where Q
has rank n.

Define Fy.: M(p,n;k) x U = M(p,n) by (Q,z) — @ — Df(x). Then F}, is
differentiable and domain F}, has dimension k(p+n—k)+n < pn = dim M (n, p).
[Taking partials one has p+mn — 2k so the dimension is a monotone function of k
and for k < n this is at most (n—1)(p+n—(n—1))+n = 2n—p)+pn—i < pn|.
Thus for any chart (W, h) of M (p,n;k) x U, Fy, o h~! has no regular values. By
Sard’s theorem, Fy(W) = Fj, o h=1(h(W)) has measure zero but image F}, is a
countable union of such sets so has measure zero. Hence there is an A arbitrarily
near zero which is not in Ug.,imageF). This A suffices. O
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Remark B.5.5. If U were an open subset of H" the same argument suffices since
f is the restriction of a differentiable map from R™ into RP.

Theorem B.5.6 (Whitney Immersion). Given a differentiable map
[+ (VF(V)) =R, p>2n
and a continuous positive function d on V, there is an immersion
g: V,F(V)) = R?

such that |g(v) — f(v)| < 6(v). If f. is monic on T, for allv € N, N a closed
subset of V, then one may let g|n = f|n-

Proof. Since f.|;, is monic for all v € N, it is monic for all V' € U where U
is an open neighbourhood of N. One may then find a refinement of the open
cover {V \ N,U} by a locally finite countable family of sets V; such that each
set V; is compact and such that each V; is the underlying set of a chart (V;, h;).
[There is a countable base consisting of sets W with W compact and (W, h) a
chart. The proof that V' is paracompact sows that one may find a countable
locally finite refinement]. Index the set V; so that the V; contained in U have
i < 0, while the remainder have ¢ > 0, with ¢ € Z. Applying the proof of the
“shrinking lemma” (B.2.3) twice constructs open sets W; c W, c U; c U; C V;
with {W;} being a cover of V.

Let fo = f ans suppose fz_1: V — RP is defined such that (fr—1).|r, is
monic for allv € Np_; = Uj<ij. For any p xn matrix A let Fx: hy(Vy) — RP
be given by

Fa(z) = fr-10hy ' (2) + p(x) - A(z)
where ¢ is a C* function from R" — I = [0, 1] with

)1 on hk(Wk),
710 o R™ \ Uy,

First, one wants DF(z) to have rank n on K = hi(Ny_1 NUy). [U}, has a
finite cover by open sets each meeting only finitely many W; so Ny_1 N Uy is
compact] and

D(Fa)(x) = D(fr—1)hy, ' (2)) + A(z) - Dp(z) + ¢(x) - A

with D(fx_1)h;,'(z)) having rank n on K. This is a continuous function

fromK x M(p,n) to M(p,n) sending K x 0 onto M (p,n;n), so if A is suffi-

ciently small one has K x A mapped into M(p,n;n). Assume A is small.
Next, choose A mall enough so that |A(z)| < £,/2" where

ey =inf{d(z)|z € Ur} Va € hy(Vy).

Finally, as above A may be chosen arbitrarily small so that fi_1h; ' (z)+A(x)
has rank n on hy (Uy).
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Let A satisfy all these requirements.
Then define fi: V — RP by
Faly) = fe1(y) + o)A (y))  if y e Vi,
fe-1(y) if yeV\Us.

These agree on the overlap Vj, \ Uy so fi is differentiable. By the first condi-
tion on A, DF4 has rank n on Ni_1, and by the third it has rank n on Wy,
hence f.|., is injective for each v € Nj. By the second condition, fj is a §/2*
approximation to fg_1.

Since the cover V; is locally finite, the fi agree on any given compact set if k

is sufficiently large, so g(x) = limg_,o fx(x) exists and g is differentiable, g.|,,
is monic for all v € V', and ¢ is a d-approximation to f. O

Lemma B.5.7. Let (V, F) be a differentiable manifold with boundary and
F:V—>RP

an immersion. Then for each point a € V there is an open set U containing a
such that f|y is an imbedding.

Proof. Let (W,h) be a chart at a. Then foh™': h(W) — RP extends to a
differentiable map k: R® — R? with Dk(h(a)) monic. Thus there is an open
set T C RP containing k(h(a)) and a differentiable map g: T — R? with differ-
entiable inverse such that gk(z) = (x,0) on a neighbourhood S of h(a). Then

hlnf(y) = h™'nfhh™  (f(y)) = h 'mgk(h(y)) = K 'n(h(y),0) = h'h(y) =y

for all y in a neighbourhood of a, h=1(S) = U, where 7 projects RP onto the
first n coordinates. O

Lemma B.5.8. Ifp > 2n any immersion f: (V,F) — R? may be §-approximated
by a 1 —1 immersion g. If f is 1 —1 on a neighbourhood U of the closed set N,
one may choose g|n = f|n.

Proof. Choose a covering of V' by sets {U,} such that f|y, is an imbedding
for each a, refining the cover {U,V \ N}. Construct a countable locally finite
refinement by sets V;, of the cover {U, }, indexed so that the V; C U have i < 0.
Applying the “shrinking lemma” (B.2.3) twice constructs open sets

WiCWiCUiCUiCVi

and let ¢;: V' — R be a function of F such that 0 < ¢; < 1, ¢;(W;) = 1,
Let fo = f and suppose the immersions fr_1: V' — RP is defined. Then fj
is defined by

fe() = fe—1(2) + on(x)bx
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where b, € RP is yet to be chosen. As above, for small by, fi will be an
immersion, so let by be this small. by may also be made small enough so that
fr is a §/2% approximation to fj_1.

Finally, let N be the open subset of V' x V consisting of pairs (x,2’) with
vr(x) # pr(z’), and let 0: N — RP by

o(z,2') = =[fr—1(2) = fa—1(2")]/[pr(2) — @1 (a")]
N is the union of the manifolds
(VA\OV)x (VNIV)NN, IV x (V\IV)NN, (V\OV) x (OV)NN, (V) x (0V)NN,

on each of which ¢ is differentiable and since each of these have dimension at
most 2n < p, 0(IN) has measure zero. Thus by may be chosen arbitrarily small
and not in this image.

Then fi(z) = fr(2') if and only if pi(z) = ¢x(2) and fy—1(z) = fr-1(2")
for k£ > 0.

Let g(x) = limg_oo fr(z). If g(x) = g(xo) and & # ¢ it follows that
fi1(z) = fr—1(xo) and pr(x) = @i(xo) for all & > 0. Thus f(z) = f(xo) so
z and z cannot belong to the same set V;, and since @i (x) = @r(zp) for all
k > 0 neither can belong to a set W,; with ¢ > 0. Thus x and x¢ must lie in U,
contradicting the fact that fis1—1on U. O

Definition B.5.9. Let f: (V,F) — RP. The limit set L(f) of f is the set of
y € RP such that y = lim f(z;) for some sequence {z1,xa,...} in V which has
no limit in V.

If V is compact, then L(f) is void. For instance, if V' = R and f is the
identity, then L(f) is void; but if f is a one-one mapping onto the open interval
0 <t<1,then L(f) contains ¢ = 0 and t = 1.

The mapping f is proper if L(f)N f(V) = @. If, for instance, f maps R into
a figure 6 in R?, then L(f) contains a point in f(V'), and f is not proper. It is
easy to see that a one-one mapping f is proper if and only if the inverse f~!
is continuous in f(V), or, if and only if f~! carries compact sets into compact
sets.

Proposition B.5.10. f(V) is a closed subset of RP if and only if L(f) C F(V).

Proof. Let y € f(V). Then there is a sequence of points {y;} € f(V) with
limy; = y. Let x; € V with f(z;) = y;. If the sequence {z;} has a limit point
x € V, then f(z) = y by continuity of f. If the sequence {z;} has no limit point
in V, theny € L(f) soy € f(V). Thusy € f(V), so f(V) is closed. O

Proposition B.5.11. f is a topological imbedding if and only if f is 1 —1 and
L(f)yn f(V) is empty.

Proof. Let T C V be closed and y € f(T) N f(V). Then there is a sequence
{y;} C f(T) with limy; = y. Let x; = f~!(y;) € T. If the sequence {x;} has no
limit point then y € L(f), but L(f) N f(V) = @. Thus there is a limit point x
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of the sequence {z;}, and since T is closed, = € T. By continuity of f, f(x) is
a limit point of the sequence {y;}, and since y is the limit of the sequence of y,
and RP is Hausdorff, y = f(z). Hence f=1: f(V) — V is continuous, or f is a
topological imbedding. O

Lemma B.5.12. There is a differentiable map f: (V,F) — R with L(f) = @.

Proof. Let V; be a countable, locally finite cover of V' by sets V; with compact
closure. Apply the “shrinking lemma” (B.2.3) twice constructs open sets

WZ‘CWiCUiCUiCV;‘

with {W;} a cover of V, and let ¢; € F with that 0 < ¢; < 1, p;(W;) = 1,
»i(V'\ U;) = 0. This sum is finite for each x since V; is locally finite. If {z;} is
a sequence in V having no limit point, then only finitely many z; can lie in any
compact subset of V. Given any integer m, there is an integer N(m) such that
i > N(m) implies z; € W1 U ---UW,,. Thus if i > N(m), thereis a j > m
with #; € W, so f(z;) >> m. Hence the sequence {f(z;)} can have no limit
point. O

Corollary B.5.13 (Whitney Imbedding Theorem). Every n-dimensional dif-
ferentiable manifold with boundary can be imbedded in R?"+! as a closed subset.

Proof. Let f: (V,F) — R C R**! be a differentiable map with L(f) = @
constructed as above. Let 6(z) = 1 for all x € V and let g be a 1 — 1 immersion
of (V,F) in R?"*! with |f(x) — f(z)| < 0(x) for all z € V. Let {z;} be
any sequence in V' having no limit point. Given any integer m there is an
integer P(m) = N(m + 1) such that if ¢ > P(m), then |g(x;)| > m [Note that
lg(x;)| > |f(zi)]—1 > m+1—1.] Thus the sequence {g(x;)} cannot have a limit
point. Hence L(g) # @ and g is a topological imbedding as a closed subset. [

B.6 Normal Bundles and Tubular Neighbourhoods

Definition B.6.1. Let V;, V5 be differentiable manifolds, F': V; — V5 an im-
mersion. The normal bundle of f, vy is defined as follows. Let 71 and 75 denote
the tangent bundles of Vi and V5. Then f,: 71 — 72 induces a monomorphism
into the bundle f'm over Vi, where f'm is the pull-back. The quotient bundle
of f'm by 7 is a differentiable vector bundle over V; which is vy.

Now let (V, F) be a differentiable manifold and let g: V' — R? be an imbed-
ding. Since the tangent bundle of RP? is trivial, i.e., the total space is RP x RP
one may use the usual inner product in RP to give an inner product in each fibre
of 7(RP) and hence in ¢'(7(RP)). The orthogonal complement of the image of
each fibre of 7(V') in each fibre of ¢g'(7(RP)) is a subspace mapped isomorphically
to the fibre of v,. The orthogonal complements fit together to form the total
space of a differentiable vector bundle 7(V)* over V isomorphic to v,, via the
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quotient map v = S o (O['T(V)L)71 mapping E(v,) diffeomorphically onto the
submanifold of R? x R? = E(7(R?)) given by

{(x,y) € Rp X ]R;D|x = g(’U), yJ—g*(TU)a vE V}
Let e: R? x RP — RP : (z,y) — (x + ).

Theorem B.6.2. If (V,F) is an n-dimensional differentiable manifold with
OV = @ and g: V — RP is an imbedding, then the differentiable function
eovy: E(vy) = RP maps an open neighbourhood of the zero section of v, diffeo-
morphically onto an open neighbourhood of g(V') in RP.

Proof. First we show that e oy is differentiable and has rank p at all points of
the zero section.

To see this, let (U, h) be a chart on V such that v, is trivial over U. One
then has a local trivialisation k: h(U) x E(v,) with (#='(U),k™!) a chart of
E(vg). Then the function

d=eoyok: h(U)xRPF™" - RP

is given by §(x,a) = go h=1(x) + Y ayi(z) where for each z € h(U), {y:(z)}
form a base for the orthogonal complement to D(g o h™1)(z)[R"] = g.(Th(a))-
Then

Dé(z,a){y, B} = D(go b ") (x)(y) + Y _ Biwi(x) + > _ i Dyi()(y)

where {y, 8} € R” x RP~" = RP. For a = 0, this gives

Dé(x,0){y, B} = D(go h™")(x)(y) + > _ Bivi(x)

which spans R? as {y, 8} runs through R? because of the choice of y;.

Hence e o 7 has rank p in some neighbourhood of the zero section of E(v,),
so that it is a local diffeomorphism at points of the zero section: i.e., it maps an
open neighbourhood of each point z in the zero section diffeomorphically onto
an open neighbourhood of e o y(z) in R?. O

To complete the proof it suffices to show:

Lemma B.6.3. Let X and Y be Hausdorff space with countable bases and X
locally compact. If f: X = Y is a local homeomorphism and the restriction of f

to a closed subset A is a homeomorphism, then f is a homeomorphism on some
neighbourhood V' of A.

Proof. The proof breaks up into three steps.

1) If A is compact, the lemma is true. If not, then every neighbourhood N of
A contains a pair {z,y} of points for which f(z) = f(y). One may then find
a countable family {N;} of compact neighbourhoods of A with N;; € N
and NN; = A. For each i, let x;,y, € NP with f(z;) = f(y;). Since Ny
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is compact, the sequence {z;} and {y;} have limit points = and y. Since
V'\ Nij1 contains only a finite number of points z; and y;, one must have
x,y € NN; = A. But f(z) = lim f(z;) = lim f(y;) = f(y) contradicting the
fact that f|4 is a homeomorphism.

2) Let Ay be a compact subset of A. Then there is a neighbourhood Uy of Ag
such that U is compact and f is a homeomorphism on Uy U A. To see this,
let V be a neighbourhood of Ag with Vj compact and f|70 1 —1, which is
possible by 1). If no neighbourhood of Ag in Vj satisfies the requirements
for Uy, there is a sequence of points {x,,} C X \ A converging to s € Ay with

{f(zn)} C f(A).

3) Express A as the union of ascending sequence of compact sets A1 C As C

Suppose V; is a neighbourhood of A; with V; compact and f is a

homeomorphism on V; U A. Then V; U A; is a compact subset of V,; U A

on which f is a homeomorphism and by 2 there is a neighbourhood V;;1

of V; U A; with V1 compact and f a homeomorphism on V,;,; U A. Let

V = UV;. The sets {V;} are an ascending sequence of open sets so if z,y € V

with f(xz) = f(y) then there is an ¢ with z,y € V;, but fl]y, is1—1on V

soxz =y. Thus fis 1 — 1 on V and being a local homeomorphism, f|y is a
homeomorphism.

O

Lemma B.6.4. Let (V,F) be a manifold with boundary. Then there is a dif-
ferentiable function g: V' — [0,00) such that g(OV) = 0 and g.|,, is non-zero
for each v € V.

Proof. Let (V;, h;) be a countable locally finite cover of V' by charts and apply
the shrinking lemma twice to get

WiCWiCUiCUiCV;.
Let ¢; € F with 0 < ¢; <1, o;(W;) =1, 0;(V \ U;) = 0. Let K be the set of i
such that W;NOV # @. For each i € K, h;: V; — H" is of the form fi x---x f¢
and V;NOV = hy '(R™1x0) = (£1)71(0). Let g(x) = >,c g @i(x)- fi(x). Then
g€ Fand g;: V — [0,00) with g(dV) = 0.

Let v € OV. There is then an ¢ € K with v € W;. Let A: [0,00) — R™ by
A(t) = h(v) + (0,...,0,t). Then there is an € > 0 with A([0,¢)) C h(V;). Then
h='oX: [0,e) — V is a differentiable map and to show g.|,, # 0 it suffices to
prove that 4(goh~'o)) #0at t = 0.

For the i € K used to define \, we have p;0h~to)(t) = 1 for all t € A=1(W;)
and fioh ™t o \(t) =t for all t € [0,£). Thus £ (p;oh™ o)) =1

For any ' # 1, i € K with v € V, one has
d

D oo 11 oh™ 00) = (puoh™ od)- T (fioh™ 0N+ i oh~ o (puoh™ o).
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Now @i o h™ 1o A(0) >0, fi oh™ o A(0) =0 and for t >0 f o h™ o A(£) >0
in a neighbourhood of ¢ = 0, and hence % (f% o h™' o A) > 0.
Adding these up,on has %£(goh™' o)) > 1. O

Theorem B.6.5 (Tubular Neighbourhood). Let (V, F) be a differentiable man-
ifold with boundary. There is an open neighbourhood U of OV in V such that
(U, Fly) is diffeomorphic to OV x [0,1).

Proof. Let g: V — R? be an imbedding. Theng|sy : 9V — R? is an imbedding
so there is an pen neighbourhood N of 9V in RP diffeomorphic to a neighbour-
hood of the zero section in E(vg,, ), with a: N = E(vg,, ) the diffeomorphism
into. Then moaog: g !(N) — OV is a differentiable retraction of the open
neighbourhood g~ (IN) of dV onto OV. Let g: V — [0,00) be as given previ-
ously. Then 7 = (mroaog) x g: g *(N) — dV x [0,00) is a differentiable map.
For any v € 9V, the kernel of g.|,, contains the image of 7(9V),, hence by
dimension this is precisely the kernel. (7 o a o g), maps the image of 7(9V),
isomorphically. Thus r,|., is monic for all w in some open neighbourhood W
of OV ,and so is a local diffeomorphism of W with an open neighbourhood of
OV x 0 in 9V x [0,00), and is a homeomorphism of OV. Thus there is an
open neighbourhood @ of 9V in V diffeomorphic to an open neighbourhood
of OV in OV x [0,00). By means of a countable locally finite cover of OV by
charts, with compact closure, one may take a neighbourhood ofdV of the form
{(z,y) € OV x [0,00)|y < B(x)} for some 5 € F(IV) with 8 > 0, within this
neighbourhood. Sending (z,y) — (z,y/8(2))) maps this diffeomorphically onto
AV x [0,1). O

Theorem B.6.6. Let (V,F) and (W, G) be differentiable manifolds with bound-
ary such that V' is a submanifold of W with inclusion i: V — E and suppose
there is a neighbourhood U of OW in W and a diffeomorphism

f+ (U, UNV)— (W x [0,1),0V x [0,1)).
Then there is an open neighbourhood of the zero section in v;.

Proof. Let a =m0 f: U = OW, 8 =m0 f: U — [0,1). There is a function
p € FW) with 0 < pu <1, u(871([0,3/4))) = 1, u(W \ U) = 0 and a function
ve F(W)with0 <v<1,v(871([0,5/8))) =0, v(W\ B71([0,3/4)) = 1 and so
o=u-B+v: W — [0,00) is in F(W) and |y = B|y where U’ = 371([0,1/2).

Let ¢: [0,1/2] — [0,1] be the C* function with ¢[0,1/4] =0, ¢[3/8,1/2] =
1 given by ¢1/4.3/5. Let ¢: E — W be f~'o(id xu)o f on U’ where u(s) = ¢(s)-s
and the identity on W\ f~1([0,3/8)).

Let g: W — RP be any imbedding and define h = (goq) x o: W — HPFL,
h is easily seen to be an imbedding and ho f~1: OW x [0,1/2) — HPT! agree
with glaw X id.

The inner product on R? gives inner products on 7(W),, and 7(V'), so that
one may identify v; with

{(z,y) € RPHL « RP+1|J¢ =hi(v), y€hT(W)iw), yLlhaiT(V),}.
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The evaluation map esends this subset into RPT!, and by the agreement of
ho f=1 with glaw x id on OW x [0,1/2) will send {(z,y)|z = h(v'),u' € U’}
into HP*! (since y can have no component orthogonal to RP x 0) and hence
sends a neighbourhood of A(i(V)) x 0 into RP*!. Since W is imbedded nicely
by h, there is a retraction of a neighbourhood of W into W (as in the tubular
neighbourhood theorem for closed manifolds in Euclidean space). The composite
map of a neighbourhood of the zero section in E(v;) into W is of maximal rank
at the zero section, and checking along the tubular neighbourhood of OV shows
that this is a diffeomorphism of smaller neighbourhoods. O

Note: Such a nice tubular neighbourhood U seems to always exist if one has
sufficient regularity at the intersection of V' and OW. In particular,
our definition of submanifold appears sufficiently restrictive to give this.
No simple proof seems possible, and hoping that we won’t need this
existence, we will avoid the argument.

B.7 Transversality

Definition B.7.1. Let f: M™ — N" be a differentiable map (between differ-
entiable manifolds), N’* a closed submanifold of N. fis said to be transverse
reqular toN'* at x € M™ if

1) f(z) € N'*, or

2) f(z) € N'* and the composite

£ .
T(M)z = 7(N) @) = T(N) (@) /ix7(N') )
is epic, where ¢: N’ < N is the inclusion.

f is said to be transverse regular on N'* if f is transverse regular at reach point
of M.

Proposition B.7.2. The set of points x € M at which f is transverse regular
to N' is open.

Proof. f~1(N')is closed so the set of points of type 1 is open. Suppose z is of the
second type and choose a chart at f(z), (U, h), with R(UNN’) = h(U)N(0xR¥).
Let (V,k) be a chart at = with V C f~1(U). With coordinates u; in h(U), v;
in k(V), one has ho fok~': k(V) — h(U) and the transversality condition at
x is the assertion that

(aui)izl,...,nfk
(9’Uj j=1,....m

has rank n — k at k(z). This matrix has rank n — & in a neighbourhood of k(z),
so f is transverse regular on a neighbourhood of x. O
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Proposition B.7.3. If f: M™ — N™ is transverse reqular to N'* and the
restriction of f to OM is also transverse regular to N'* then f~Y(N') is a
submanifold of M of dimension m — (n — k). Further, the normal bundle of
F~YN') in M is induced from the normal bundle to N’ in N.

Proof. Let f be transverse regular at x € f~'(N’) and choose charts (U, h)
and (V, k) as above. By reordering coordinates in V', one may assume (0u;/0v;)
i,7 =1,...,n—kis non-singular at k(x). Hence by the inverse function theorem
the functions (u1,...,Un—k, Vn—k+1,---,Vm) give a chart at k(x) in k(V) and
hence a chart at x, (V' k') such that

(V'O fH (N) =K (V)N (0 x R (=R,

If £ € M\ OM this is a chart of the required type. If © € partial M, then the
condition on f|sps implies that in the reordering the function v,, is not replaced
by any u;, and hence that k¥'(V’) C H™. Thus, the chart (V' k') is as required.
The normal bundle condition is clear since the induced map is epic on fibres. [

Theorem B.7.4. Let f: M — N be a differentiable map; let N’ be a closed dif-
ferentiable submanifold of N'. Let A be a closed subset of M such that the trans-
verse regularity condition for f on N' is satisfied at all points of AN f~1(N').
There exists a differentiable map g: M — N such that

1) gis homotopic to f,

2) g is transverse regular on N',

3) gla = fla.

Proof. There is a neighbourhood U of A in M such that f satisfies the transverse
regularity condition on U. Cover N by N \ N’ = Y} and coordinate systems
(Y, k;) for i > 0 with coordinate functions (vi,...,v,) such that N’ NY; is
mapped precisely to the set for which v; = -+ = v, = 0. The sets f~1(Y;)
cover M, as do the sets U and M\ A. Let (V}, h;) a refinement of both coverings
which is countable and locally finite, indexed so that 7 < 0 if V; C U and the
others have j > 0. Apply the shrinking lemma twice to get

WjCWjCUjCUjCVj.

and let ¢; € F, 0 < ¢; <1, ¢;(W;) =1, ¢;(M\U;) = 0. For each j choose
i(j) > 0 with f(V;) C Y.

Let fo = f and suppose fr_1 has been defined, satisfies transverse regularity
on Up<xW; with fr_1(U;) C Yy for each j. In particular, letting i = i(k),
Jr—1(Ux) C Yij)-

Consider the function 7k; fr_1 oh,:1 h (U — R"™~* where 7 projects on the
first n — k coordinates. By the approximation of regular values theorem, there
are arbitrarily small vectors y € R"™* such that 7k;fr—1 0 h; " — (px o hy 'y
has the origin as regular value. We then define fi by

o) k7 Mk fe—1(2) — on()(y,0)} for x in a neighbourhood of Uy,
€Tr) =
¥ fro1 if z € M\ Uy,
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where y € R"F is yet to be chosen.

First one needs y small enough that k; fr_1(z) — ¢r(x)(y,0) lies in k;(Y;) for
all z € Uj. If Y; is a neighbourhood meeting ON then (y, 0) is “parallel” to N
and one is not translated out of k;(Y;) across ON. Hence for small y this holds
and thus ki_l may be applied. Next y is chosen to give a §/2 approximation

to fr—1. Also y is chosen small enough that fx(U;) C Yj(;) for each j. This is
possible since only a finite number of sets U; meets Uj. Under these conditions
fr will be transverse regular on N’ at each point of f, ' (N') N W.

Now fr_1 is transverse regular on N’ at each point of the compact set
UrpN (Uj<ij) and since small changes preserve regularity, for sufficiently small
y, fr will also be transverse regular on this set, hence on Uj<ij.

After all these limitations, we have such a y and hence an f;. Let g(z) =
lim fi(x). A homotopy from fr_; to f is given by contracting y and a limit of

these homotopies defines a homotopy from f to g.
O



