Nullstellensatz

1 An easy proof of Nullstellensatz by Munshi

We present the treatment of Nullstellensatz by Munshi. Unfortunately, his origi-
nal proof involves nightmarish notations. We follow Richard Swan’s streamlined
exposition.

Definition 1.1. An integral domain R is called a G-domain if some localisation
R, = R[a™1] is a field.

Remark 1.2. This is equivalent to the property that the intersection of all non-
zero prime ideals is non-zero.

Lemma 1.3. A polynomial ring R[X] is never a G-domain.

Proof. We can assume that R is an integral domain. Suppose that R[X]; is a
field. Then obviously deg f > 0 so 1 + f is non-zero. Write (1 + f)~! = g/f™.
Cross multiplying shows that 1 + f divides f™ but f = —1 mod (1 + f) which
leads to the absurd conclusion that 1+ f is a unit. O

We write U(R) (or R* for the group of units of a ring R.
Lemma 1.4. Let A C B be an integral extension. Then ANU(B) = U(A).

Proof. Let a € ANU(B). Write ab = 1 with b € B and find an equation
b +c1b" - = O withall ¢; € A. Multiplying by a™ 1 givesb = —c;—coa—- - -
sobe A O

Corollary 1.5. Let R be a subring of a field K and assume K is integral over
R. Then R is also a field.

Theorem 1.6. Let R be an integral domain and m be a mazimal ideal of
R[X1,...,Xyn). If RNm = 0, then there exists a non-zero element a € R
such that R, is a field and K = R[X4,...,X,]/m is a finite extension of R,.

Corollary 1.7. Let R be an integral domain and m be a maximal ideal of
R[X1,...,X,). If R is not a G-domain, then RNm # 0.

Proof. (of Theorem 1.6) The case n = 0 is trivial. We use induction on n and
so can assume that Corollary 1.7 holds for n — 1 variables. Using Lemma 1.3
it follows that if n > 1 then m N R[X;] # O for all . Choose f; = ai X" + ---
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in mN R[X;] and let a = [Ja;. The image z; of X; in K satisfies the monic
equation a;lfi = 0 over R,. Since the z;’s generate K over R, we see that K
is integral over R,. By Corollary 1.5, R, is a field, and K is finite over it since
it is integral and finitely generated over R,. 0

Theorem 1.8 (Nullstellensatz). Let k be a field, let A be a finitely generated
k-algebra, and let m € Specm(A). Then A/m is finite over k.

Proof. Since A is a factor ring of a polynomial ring B = k[Xq,...,X,], it
is enough to prove the theorem for B, but this is a special case of Theorem
1.6. O

For completeness we include some standard consequences.
If m € Specm(k[Xq,...,X,]), we can embed k[Xi,...,X,]/m in the alge-
braic closure k of k by Theorem 1.8. The X,’s map to elements a;’s of k so
(a1,...,a,) = Z(m), the zero of m, in the sense that f(ai,...,a,) =0 for all f
in m. Moreover, m = {f € k[X1,...,Xn]|f(a1,...,a,) = 0}. In particular if &k
is algebraically closed, then m = (X7 — a1,..., X, — ayp).

Definition 1.9. A commutative ring R is called a Jacobson ring if every prime
ideal is an intersection of maximal ideals.

Remark 1.10. A Jacobson ring is the same thing as a Hilbert ring.

Theorem 1.11. Let A be a finitely generated algebra over a field. Then A is a
Jacobson ring.

Proof. Let p be a prime ideal of A and let a € A\ p. We must find a maximal
ideal q of A such that p C q and a ¢ q. Let m be a maximal ideal of Aa
containing p, and let g be the contraction of m in A. Then A/q C A,/m. Since
An/m is finite over k so is A/q. Therefore A/q is a field, showing that q is
maximal. It clearly has the required properties. O

Corollary 1.12. Corollary 1.8. The radical of an ideal a in a finitely generated
k-algebra A is equal to the intersection of the mazximal ideals containing it:
rad(a) = Nwoam. In particular, if A is reduced, then Nm C Specm(A)m = 0.

Theorem 1.13 (Strong Nullstellensatz). If A is a polynomial ring over a field
k and f € A is 0 at all zeros of a in the algebraic closure k of k, then some
power f™ lies in a.



