
Nullstellensatz

1 An easy proof of Nullstellensatz by Munshi

We present the treatment of Nullstellensatz by Munshi. Unfortunately, his origi-
nal proof involves nightmarish notations. We follow Richard Swan's streamlined
exposition.

De�nition 1.1. An integral domain R is called a G-domain if some localisation
Ra = R[a−1] is a �eld.

Remark 1.2. This is equivalent to the property that the intersection of all non-
zero prime ideals is non-zero.

Lemma 1.3. A polynomial ring R[X] is never a G-domain.

Proof. We can assume that R is an integral domain. Suppose that R[X]f is a
�eld. Then obviously deg f > 0 so 1 + f is non-zero. Write (1 + f)−1 = g/fn.
Cross multiplying shows that 1 + f divides fn but f ≡ −1 mod (1 + f) which
leads to the absurd conclusion that 1 + f is a unit.

We write U(R) (or R× for the group of units of a ring R.

Lemma 1.4. Let A ⊂ B be an integral extension. Then A ∩ U(B) = U(A).

Proof. Let a ∈ A ∩ U(B). Write ab = 1 with b ∈ B and �nd an equation
bn+c1b

n−1+· · · = 0 with all ci ∈ A. Multiplying by an−1 gives b = −c1−c2a−· · ·
so b ∈ A.

Corollary 1.5. Let R be a subring of a �eld K and assume K is integral over

R. Then R is also a �eld.

Theorem 1.6. Let R be an integral domain and m be a maximal ideal of

R[X1, . . . , Xn]. If R ∩ m = 0, then there exists a non-zero element a ∈ R
such that Ra is a �eld and K = R[X1, . . . , Xn]/m is a �nite extension of Ra.

Corollary 1.7. Let R be an integral domain and m be a maximal ideal of

R[X1, . . . , Xn]. If R is not a G-domain, then R ∩m ̸= 0.

Proof. (of Theorem 1.6) The case n = 0 is trivial. We use induction on n and
so can assume that Corollary 1.7 holds for n − 1 variables. Using Lemma 1.3
it follows that if n ≥ 1 then m ∩ R[Xi] ̸= 0 for all i. Choose fi = aiXni

i + · · ·
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in m ∩ R[Xi] and let a =
∏

ai. The image xi of Xi in K satis�es the monic
equation a−1

i fi = 0 over Ra. Since the xi's generate K over Ra we see that K
is integral over Ra. By Corollary 1.5, Ra is a �eld, and K is �nite over it since
it is integral and �nitely generated over Ra.

Theorem 1.8 (Nullstellensatz). Let k be a �eld, let A be a �nitely generated

k-algebra, and let m ∈ Specm(A). Then A/m is �nite over k.

Proof. Since A is a factor ring of a polynomial ring B = k[X1, . . . , Xn], it
is enough to prove the theorem for B, but this is a special case of Theorem
1.6.

For completeness we include some standard consequences.
If m ∈ Specm(k[X1, . . . , Xn]), we can embed k[X1, . . . , Xn]/m in the alge-
braic closure k of k by Theorem 1.8. The Xi's map to elements ai's of k so
(a1, . . . , an) = Z(m), the zero of m, in the sense that f(a1, . . . , an) = 0 for all f
in m. Moreover, m = {f ∈ k[X1, . . . , Xn]|f(a1, . . . , an) = 0}. In particular if k
is algebraically closed, then m = (X1 − a1, . . . , Xn − an).

De�nition 1.9. A commutative ring R is called a Jacobson ring if every prime
ideal is an intersection of maximal ideals.

Remark 1.10. A Jacobson ring is the same thing as a Hilbert ring.

Theorem 1.11. Let A be a �nitely generated algebra over a �eld. Then A is a

Jacobson ring.

Proof. Let p be a prime ideal of A and let a ∈ A \ p. We must �nd a maximal
ideal q of A such that p ⊂ q and a ̸∈ q. Let m be a maximal ideal of Aa
containing pa and let q be the contraction of m in A. Then A/q ⊂ Aa/m. Since
Aa/m is �nite over k so is A/q. Therefore A/q is a �eld, showing that q is
maximal. It clearly has the required properties.

Corollary 1.12. Corollary 1.8. The radical of an ideal a in a �nitely generated

k-algebra A is equal to the intersection of the maximal ideals containing it:

rad(a) = ∩m⊃am. In particular, if A is reduced, then ∩m ⊂ Specm(A)m = 0.

Theorem 1.13 (Strong Nullstellensatz). If A is a polynomial ring over a �eld

k and f ∈ A is 0 at all zeros of a in the algebraic closure k of k, then some

power fn lies in a.


