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A classical problem (posed by Jean-Pierre Serre) was to determine whether
there were any nontrivial algebraic vector bundles over affine space An

k for k an
algebraically closed field. In other words, it was to determine whether a finitely
generated projective module over the ring k[x1, . . . , xn] is necessarily free. The
topological analog, whether (topological) vector bundles on Cn are trivial is easy
because Cn is contractible. The algebraic case is harder.

The problem was solved affirmatively by Quillen and Suslin. In this writing,
we would like to describe an elementary proof, due to Vaserstein, of the Quillen-
Suslin theorem.

Stable freeness

An initial step, already taken by Serre, was to show that any finitely generated
projective module over a polynomial ring k[x1, . . . , xn] (for k a field) is stably
free. Recall that a finitely generated module is said to be stably free if it becomes
free after adding a finitely generated free module.

Remark 1. Given a projective module P , there is always a free module F such
that B⊕F is free. To see this, first choose projective module Q such that P ⊕Q
is free, and then take F = Q ⊕ P ⊕Q ⊕ · · · . It is easy to see that P ⊕ F ∼= F
and that F is free (if one appropriately groups the terms); this is the Eilenberg
swindle. So, the finiteness conditions are really necessary here.

By the Serre-Swan theorem, one should think of projective modules as vector
bundles, and, in particular, if X is a compact Hausdorff space, we can actually
identify (via an equivalence of categories) vector bundles on X with finitely
generated projective modules over the ring of continuous functions C(X). Then,
it follows that:

Proposition 2. A stably free module over C(X) is the same thing as a stably
trivial vector bundle on X: that is, a vector bundle that becomes trivial after
adding a trivial vector bundle.

This observation allows one to get a simple example of a stably free module
which is not free. The tangent bundle to Sn is stably trivial (in fact, its one-
dimensional normal bundle is trivial), but it is not trivial unless n = 1, 3, 7
(which is in fact a consequence of the Hopf invariant one theorem).

The first part of the proof of the Quillen-Suslin theorem is accomplished by:
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Theorem 3. Let R be a noetherian ring such that every finitely generated pro-
jective module over R is stably free. Then the same property holds true for
R[x].

By induction, we see:

Corollary 4. Every finitely generated projective module over k[x1, . . . , xn], for
any field k, is necessarily stably free.

This result is actually a special case of a theorem of Grothendieck. Given a
ring R, we can form the group K0(R), which is defined to be the Grothendieck
group of the category of finitely generated projective R-modules. Two projective
modules P, P ′ map to the same element of K0(R) if and only if there is a finite
free module F such that P ⊕F ∼= P ′⊕F . Consequently, K0(R) = Z if and only
if every projective R-module is stably free. The next result of Grothendieck is
thus a generalisation of the previous theorem:

Theorem 5. For a ring R, extension of scalars R → R[x] induces an isomor-
phism K0(R) → K0(R[x]).

The same is actually true of the higher K-groups, by a theorem of Quillen.
We will not describe the proof here.

Unimodular vectors

The main step is to go from “stably free” to free. Equivalently, we have to show
that if we let A = k[x1, . . . , xn], then any split injection

Ar → As

has a free cokernel. Let us start with the case r = 1; this will turn out to
be sufficient. We are interested in a condition such that any split injection
i : A → As will have a free cokernel, which is to say that i is isomorphic to the
canonical imbedding e1 : A → As sending an element x ∈ A to (x, 0, 0, . . . , 0).

We can reformulate the problem in a possibly more intuitive way. To give a
split injection i : A → As is the same as giving a vector v ∈ As whose compo-
nents generate the unit ideal in A. To say that the injection A → As induced is
isomorphic to the standard inclusion e1 is to say that there is an isomorphism
of As taking v to the vector e1 = (1, 0, . . . , 0). Alternatively, it is to say that
the element v ∈ As can be completed to a basis for As.

Definition 6. Let A be any ring. A vector v ∈ As is unimodular if its com-
ponents generate the unit ideal in A. For two unimodular vectors v, w, we
write

v ∼ w

if there is a matrix M ∈ GLS(A) such that Mv = w. This is clearly an
equivalence relation.
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So, the problem we are faced with now is to show that, for the rings of
the form A = k[x1, . . . , xn], any two unimodular vectors are equivalent. Al-
ternatively, we have to check when one is equivalent to the standard one e1 =
(1, 0, . . . , 0). Stated another way, we have to check whether there is an auto-
morphism of As carrying v onto (1, 0, . . . , 0). If we can show this, then it will
follow that any split injection A ↪→ As has a free cokernel.

Here is an easy first step:

Proposition 7. Over a PID R, any two unimodular vectors are equivalent.

Proof. In fact, unimodular vectors v ∈ Rm correspond to imbeddings R → Rm

which are split injections. But if we have a split injection in this way, the
cokernel is free (as we are over a PID), and consequently there is a basis for Rm

one of whose elements is v. This implies that v is conjugate to e1.

In a similar manner, if we use the fact that a finitely generated projective
module over a local ring is free, then we obtain:

Corollary 8. Over a local ring R, any two unimodular vectors are equivalent.

Polynomial rings over a local ring

The proof of the Quillen-Suslin theorem is essentially to induct on the number
of variables. To do this, we will need an auxiliary result which states that, under
mild hypotheses, a unimodular vector in a polynomial ring is equivalent to a
unimodular vector in the base ring. This will be proved locally – one prime at
a time. So, we start with:

Theorem 9 (Horrocks). Let A = R[x] for R, (m) a local ring. Then any uni-
modular vector in As one of whose elements has leading coefficient one is equiv-
alent to e1.

Proof. Let v(x) = (v1(x), . . . , vs(x)) be a unimodular vector. Suppose without
loss of generality that the leading coefficient of v1(x) is one, so that v1(x) =
xd + a1x

d−1 + . . . . If d = 0, then v1 is a unit and there is nothing to prove. We
proceed by induction on d.

Then, by making elementary row operations (which do not change the equiv-
alence class of v(x)), we can assume that v2(x), · · · , vs(x) all have degree ≤ d−1.
Consider the coefficients of these elements. At least one of them must be a unit.
In fact, if we reduce modm, then not all the vi, i ≥ 2 can go to zero or the vi(x)
would not generate the unit ideal modm. So let us assume that v2(x) contains
a unit among its coefficients.

The claim is now that we can make elementary row operations so as to find
another unimodular vector, in the same equivalence class, one of whose elements
is monic of degree ≤ d− 1. If we can show this, then induction on d will easily
complete the proof.
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Lemma 10. If we have two polynomials a(x), b(x) ∈ R[x], with deg a = d and
a monic, and b of degree ≤ d − 1 containing at least one coefficient which is a
unit, there is a polynomial a(x)e(x) + b(x)f(x) ∈ (a(x), b(x)) of degree ≤ d− 1
whose leading coefficient is one.

Proof. This is easy to see with a bit of explicit manipulation.

This means that there are e(x), f(x), such that e(x)v1(x) + f(x)v2(x) has
degree ≤ d − 1 and leading coefficient a unit. If we keep this fact in mind,
we can, using row and column operations, modify the vector v(x) such that it
contains a monic element of degree ≤ d− 1. We just add appropriate multiples
of v1, v2 to v3 to make the leading coefficient a unit. This works if s ≥ 3. If
s = 1 or s = 2, the lemma can be checked directly.

Consider the ring R[x], and let v(x) ∈ R[x]s be a unimodular vector. We
want a condition to conclude that v(x) ∼ v(0), where v(0) ∈ Rs ⊂ R[x]s is the
vector obtained by pointwise substitution. This will be the inductive argument
we need for the Quillen-Suslin theorem. We already have a good criterion for
when this is true in the case R local.

Corollary 11. If R is local and v(x) ∈ R[x]s is a unimodular vector one of
whose elements is monic, then v(x) ∼ v(0).

Proof. v(0) is a unimodular vector in R, hence equivalent to e1. We have also
seen that v(x) is equivalent to e1.

The goal of the next step is to generalize this to the case where R is not
assumed local.

Localisation

Lemma 12. Let R be a domain. We start by observing that if v(x) ∼ v(0) in
R[x]s, then v(x+ y) ∼ v(x) over R[x, y].

Proof. By hypothesis there is a matrix M(x) ∈ GLS(R[x]) such that

M(x)v(x) = v(0),

which means that
M(x+ y)v(x+ y) = v(0).

We just have to then observe that

M(x)−1M(x+ y)v(x+ y) = v(x),

so we can take M(x)−1M(x+ y) ∈ GLS(R[x, y]) as the relevant matrix taking
v(x+ y) into v(x).

The next lemma will be the required step to reduce to the case of R local.
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Lemma 13. Suppose v(x) ∼ v(0) over the localisation RS [x]. Then there exists
a c ∈ S such that v(x) ∼ v(x+ cy) over R[x, y].

Proof. As before, we can choose a matrixM(x) ∈ GLS(RS [x]) such thatM(x)v(x) =
v(0), and then the matrix N(x, y) : = M(x)−1M(x+ y) has the property that

N(x, y)v(x+ y) = v(x).

It follows that if we substitute cy for y, then we have

N(x, cy)v(x+ cy) = v(x).

The claim is that we can choose c ∈ S such that N(x, cy) actually has R-
coefficients. In fact, this is because N(x, 0) = I, which implies that N(x, y) =
I + yW for some matrix W with values in RS [x, y]. If we replace y with cy for
c an element of S, then we can clear the denominators in W and arrange it so
that N(x, cy) ∈ R[x, y].

Here, now, is the promised result which will be the crucial inductive step:

Corollary 14. Suppose R is any ring, and v(x) ∈ R[x]s is a unimodular vector
one of whose leading coefficients is one. Then v(x) ∼ v(0).

Proof. Let us consider the set I of q ∈ R such that v(x+ qy) ∼ v(x) in R[x, y].
If we can show that 1 ∈ I, then we will be done, because after applying the
morphism x 7→ 0, R[x, y] → R[y], we will get that v(y) ∼ v(0) in R[y].

We start by observing that I is an ideal. Suppose v(x + qy) ∼ v(x) and
v(x+ q′y) ∼ v(x). Then, substituting x 7→ x+ q′y in the first leads to

v(x+ q′y + qy) ∼ v(x+ q′y) ∈ R[x, y]

and since v(x + q′y) ∼ v(x), we get easily by transitivity that q + q′ ∈ I.
Similarly, we have to observe that if q ∈ I and r ∈ R, then v(x + qry) ∼ v(x).
But this is true because one can substitute y 7→ ry.

Since I is an ideal, to show that 1 ∈ I we just need to show that I is
contained in no maximal ideal. Let m ⊂ R be a maximal ideal. We then note
that, by what we have already done for local rings, we have that

v(x) ∼ v(0) in Rm[x].

By the lemma, this means that there is a q ∈ R \m such that v(x+ qy) ∼ v(0);
this means that q ∈ I. So I cannot be contained in m. Since this applies to any
maximal ideal m, it follows that I must be the unit ideal.

The Quillen-Suslin theorem

With all these preliminaries, it will be relatively straightforward to establish the
main result; the first step is to show that unimodular vectors over a polynomial
ring are all equivalent.
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Theorem 15. Let R = k[x1, . . . , xn] be a polynomial ring over a PID k, and
let v ∈ Rn be a unimodular vector. Then v ∼ e1.

Proof. We prove this by induction on n. When n = 0, it is immediate.
Suppose n ≥ 1. Then we can treat R as k[x1, . . . , xn−1, X] where we replace

xn by X to make it stand out. We can think of v = v(X) as a vector of
polynomials in X with coefficients in the smaller ring k[x1, . . . , xn−1].

If v(X) has a term with leading coefficient one, then the previous results
enable us to conclude that v(X) ∼ v(0), and as v(0) lies in k[x1, . . . , xn−1] we
can use induction to work downwards. The claim is that, possibly after a change
of variables x1, . . . , xn, we can always arrange it so that the leading coefficient
in X = xn is one. The relevant change of variables leaves X = xn constant and

xi 7→ xi −XMi

, M ≫ 0 (1 ≤ i < n).

If M is chosen very large, one makes by this substitution the leading term of
each of the elements of v a unit. So, without loss of generality we can assume
that this is already the case. Thus, we can apply the inductive hypothesis on n
to complete the proof.

Theorem 16 (Quillen-Suslin). Let k be a PID. Then any finitely generated
projective module over k[x1, . . . , xn] is free.

Proof. We have to show that a stably free module over R = k[x1, . . . , xn] is free.
That is, if P is such a finitely generated module such that P ⊕Rm ≃ Rm′

, then
P is free. By induction on m, one reduces to the case m = 1. In this case we
have an exact sequence

0 → R → Rm′
→ P → 0

and we have to conclude that the cokerP is free.
But the injection R → Rm′

corresponds to a unimodular vector, and we have
seen that this is isomorphic to the standard embedding e1 : R → Rm′

, whose
cokernel is obviously free. Thus P is free.
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