Abelian Categories

Collin Roberts






Contents

1 Abelian categories
1.1 The Category Modg . .
1.2 The Category Compp .

1.3 Initial, Terminal and Zero Objects . . . . .. . ... .. .. ...

1.4 Products and coproducts

1.5 Pre-Additive and Additive Categories . . . . ... .. ... ...

1.6 Monics and Epis . . . .
1.7 Kernels and Cokernels .
1.8 Abelian Categories . . .



ii

CONTENTS



Chapter 1

Abelian categories

The objective of this chapter is the following:

o We will define the kernel and cokernel of a morphism in a category that
has a zero object.

o We will define monic and epi morphisms in an arbitrary category.

e We will give an axiomatic definition of an abelian category and we will
show that the category of right R-modules is the prototype for an abelian
category.

o We will show that the category of complexes of right R-modules is also an
abelian category.

In this chapter we assume the following conventions:
e Let R be a ring, not necessarily commutative.
e Let Modg denote the category of right R-modules.
o Let Compp denote the category of complexes of right R-modules.

e Let C be an arbitrary category.

1.1 The Category Modp

Let M L5 N be a morphism in Modg.
Definition 1.1.1. Recall that the kernel of f is

kerf={meM: f(m)=0}C M
Definition 1.1.2. The cokernel of f is

coker f = N/im f

1
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1.2 The Category Compp

Recall that in the category Comppg, the morphisms are chain maps.

Definition 1.2.1. Given complexes (C,,d,), (CL,d,), a chain map
f=fo: (Co,da) — (Cy,dy)

is a sequence of maps f,: C,, — C/ for all n € Z making the following dia-
gramme commute:

On-i—l Cn Cn—l
fn+1l fnl lfﬂ_l
i ' /

1 -1
", Tt e "

Definition 1.2.2. A chain complex B, is called a sub-complex of a chain com-
plex C, if each B, is a sub-module of C,, and the differential on B, is the
restriction of the differential on C,, that is when the inclusions i, : By — C),
constitute a chain map B, — Cl,.

Example 1.2.3. Take any complex:

(Carda) = -+ = Copy 255 € 25 Oy =5 e
The zero complex in Compp, is

(00,0) =+ = {0}us1 % {0} % {0}y = -
Consider the diagramme:

(0,0) = - -+ ——> {0} 11 ——> {0}, — = {0}, 4 —>---

(C.,d.) = —>0Up41 Cn Cnfl
dnt1 dn

Tt is clear that this diagramme commutes. Therefore (0,,0) is a subcomplex of
(Ce,ds), i.e. the zero complex is a sub-complex of any complex.

Definition 1.2.4. In the case of Definition 1.2.2, we assemble the quotient
modules % into a complex

Bn+1 Bn anl

denoted % and called the quotient complex.
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Remark 1.2.5. We must show that the induced differential
d): cp+ B — dpcy + Bp_1

is well-defined.
Let ¢, + B, = b, + By, i.e. b, — ¢, € B,. Then, since by definition the
differential on B, is the restriction of the differential on C,, applying d,, gives

b, — ¢, € B,
= dy(by, — ¢n) € Bp1
= dy(by) — d(cn) € By—1
= dp(bp) + Br—1 = dn(cn) + Bn-1
= d;(bn) = d;z(cn)

so d’ is well-defined, as required.

Remark 1.2.6. Let fo: (Co,ds) — (C},d,) be a chain map.
Define

s o
ker f = -« — ker fny1 —— ker f,, = ker f,_1 — - -

where 6,, = dj, |ker f,,- Consider the diagramme:

on .
Ker f = - — > ker fup1 > ker fr, —"> ker f_q ——> - - -
dn+41 dn
(Coyda) = --- Crit c, Chy
fn+1i fnl J/fnl
roary L. ’ ’ ’
(Cudo) - n+1 d;L+1 Cn d;‘L Cn—l

I claim that the maps in the top row send kernels into kernels as shown. We
prove that 0,.1(ker f,+1) C ker f,,. By applying the same argument in any
degree, we get the result.

e Let ¢,u1 € ker f,11 be arbitrary, ie. fr11(cha1) =0.

e Then since d;, is an R-map, we have
i1 0 frt1(Cns1) = dpgry (frri(ent1)) = dny1(0) = 0.
e Since f is a chain map, all squares in the lower two rows commute, imply-
ing that
fu(dnt1(cni1)) = frodnti(cni1) = 0.

e Therefore §,11(cnt1) = dnt1(cny1) € ker f, as required.
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e Now that we know that our top row is well-defined, it is clear from con-
struction that the whole diagramme commutes.

e Since the top two rows commute, we have that ker f is a subcomplex of
(C.,ds) as claimed.

Remark 1.2.7. Define
. . Apt1 . A, .
imf=---—imf,4; —— imf, —>imf,_ 1 —---

where A,, = dy |im f,. Consider the diagramme:

dp dn
(Cord) =+ —=Coy 2, Cos
fn+1l fni \Lfnl
) . Apt1 Ap .
lmf:"'Hlmfn-‘rl 1m((n ann—lH
() =+ m Ol O ——m O
n41 n

I claim that the maps in the middle row send images into images as shown.
We prove that A, 1(im f,+1) C im f,,. By applying the same argument in any
degree, we get the result.

e Let ¢,,11 € Cryq be arbitrary, so that f,41(cne1) € im fr41 is arbitrary.

e Then since f is a chain map, all squares (ignoring the middle row) com-
mute, implying that

d;LH(an(an)) = d%+110fn+1(0n+1) = fnodnt1(cnt1) = fn(dnt1(cnt1) € im fp.

o Therefore Ay 41(frnt1(cns1)) = dpy 1 (frori(cng1)) € im f,, as required.

e Now that we know that our middle row is well-defined, it is clear from
construction that the whole diagramme commutes.

e Since the bottom two rows commute, we have that im f is a subcomplex
of (C},d,) as claimed.

Thus we have:

e The First Isomorphism Theorem holds.

Co/kerf = im f.

e The cokernels {coker(f,)} similarly assemble to form a quotient complex
of (C,,d,), denoted coker(f).
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1.3 Initial, Terminal and Zero Objects

Definition 1.3.1. An initial object is an object X such that for every object
Y, there is a unique morphism X = Y.

e In Set, the empty set is initial.

e In Grp, {1} is initial.

e In Modg, {0} is initial.

o In Compp, the zero complex is initial.

Definition 1.3.2. A final object (or terminal object) is an object such that for
any object X, there is a unique morphism X Ly.

Ezample 1.3.3. e In Set, a set containing one element is terminal. So ter-
minal objects (should they exist) need not be unique.

e In Grp, {1} is a terminal object.
e In Modg, {0} is a terminal object.

e In Compp, the zero complex is terminal.

Remark 1.3.4. e If Y is terminal, then the only morphism Y LY is the
identity.

e Any two terminal objects of C are isomorphic in C.

Definition 1.3.5. A zero (or null) object of C is an object which is both initial
and terminal.

In Set, there is no zero object.

In Grp, flg is a zero object.

In Modg, {0} is a zero object.
e In Compp, the zero complex is a zero object.

¢ In Ring (with unity), there is no zero object.

Thus every additive category has a zero object.

Remark 1.3.6. If C has a zero object Z, then for any objects X,Y of C, there is
a unique composition

xhz4hy

This is the zero map (or zero morphism) from X to Y.
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1.4 Products and coproducts

Definition 1.4.1. Let {A;: i € I} be a family of objects of C. A product is an
ordered pair
(Ci{pi: C — A;})

consisting of an object C' = [],.; A; and a family {p;: C — X;} of projection
morphisms, satisfying the following condition. For every object X equipped
with morphisms f;: X — A;, there exists a unique morphism 6: XHimI A;
making the following diagramme commute for each i:

A;
>N
Hiel Ai = 9 X

Ezample 1.4.2. In Modg, the product of a family of R-modules, {A;: i € I} is
the direct product.

Definition 1.4.3. Let {A;: i € I} be a family of objects of C. A coproduct is
an ordered pair
(C, {Olil Al — C})

consisting of an object C' = [[,.; A; and a family {a;: A;toC} of injection
morphisms, satisfying the following condition.

For every object X equipped with morphisms f;: A; — X, there exists a
unique morphism 6: [[,.; A; — X making the following diagramme commute

iel
for each i :
A;
"
Hiel Ai 0 > X

Ezample 1.4.4. In Modg, the coproduct of a family of R-modules, {A;: i € I}
is the direct sum.

1.5 Pre-Additive and Additive Categories

Definition 1.5.1. Define an Ab-category, or pre-additive category to be a cat-
egory C in which each Hom set is an additive abelian group and for which
composition is bilinear with respect to this addition:

For morphisms f, f': A— B and g,¢': B — C,

(g+g)o(f+[f)=gof+gof +gof+gof

Lemma 1.5.2. The category Grp is not pre-additive.
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Proof. For a contradiction, suppose that Grp is pre-additive. Then, by defini-
tion, for any group G, the Hom set Hom(G, @) is an additive abelian group.

Let G 5G and G % G be any elements of Hom(G, G). Then Hom(G, G) is an
abelian group with the operation (f+g)(z) = f(x)+g(r). We are not assuming
that G is abelian, so we re-write the RHS using multiplicative notation:

(f +9)(@) = f(x)g(x)

Since Hom(G, G) is a group with the above operation, it is closed with respect
to the operation. In other words, the map = — f(x)g(z) is an honest element
of Hom(G, G), i.e. it is a group homomorphism from G to G.

Now let G = (a,b) be the free group on two generators. By the universal
property of a free group, the following definitions yield group homomorphisms
from G to G.

f:{a,b) = {(a,b)
a— a?
b—b

g: {(a,b) = (a,b)
a—a
b b?

Let x = ab. Then since x — f(x)g(z) is a group homomorphism, we have
f(ab)g(ab) = [f(a)g(a)][f(b)g(D)]
= [a®b][ab?] = [a*a][bb?
= a?bab® = a®b?

This is a contradiction, since both expressions are reduced but they are clearly
not, equal. O

Definition 1.5.3. An additive category is an Ab-category C with a zero object,
and a product A x B for each pair of objects A, B from C.

Example 1.5.4. Modpg, is an additive category.

1.6 Monics and Epis

Definition 1.6.1. A morphism A % B in an additive category C is monic, if,
whenever A’ 2 A is a morphism satisfying i o g = 0, then g = 0.

Remark 1.6.2. Monics can be cancelled from the left.
Ezample 1.6.3. In Set, Grp and Mod g, monics are just injective maps.

Definition 1.6.4. A morphism CxrightarroweD in an additive category C' is
epi, if, whenever D M Dlisa morphism satisfying h o e = 0, then h = 0.
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Remark 1.6.5. Epis can be cancelled from the right.

Ezample 1.6.6. In Set, Grp and Modg, epis are just surjective maps.

1.7 Kernels and Cokernels

Categorical Definition of Kernel

Definition 1.7.1. Let C have a zero object, so that for any objects X, Y of C,

there exists a zero map X %Y. Let f+ A — B be a morphism in C. Then
k: S — Ais a kernel of f: A — B if

e fok=0

e Every h: C — A with foh = 0 factors uniquely through k (as h = koh').

N,

El A——=DB

e

C

S
A

Remark 1.7.2. e Kernels are not guaranteed to exist in general.

e If the kernel exists, then it is unique since it is defined by a universal
property.

e In Grp, the usual definition of kernel, with the inclusion map into A,
satisfies this universal property. So kernels always exist in Grp.

¢ In Ring, there is no zero object, so the kernel does not exist.

e In the category of pointed topological spaces, if (X, x¢) ER (Y,yo) is a
continuous pointed map, then the preimage of the distinguished point

yo of Y, K, is a subspace of X. The inclusion map of K % X is the
categorical kernel of f.

Proposition 1.7.3. In Modg, the usual definition of kernel, with the inclusion
map into A, satisfies this universal property. So kernels always exist in Modg.

Proof. Let A 7, Bbean arbitrary morphism in Modg. Define
S={a€A: f(a) =0}

and let S % A be the inclusion map. Then it is clear that f ok = 0.
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To verify the second property, start with the diagramme

S

A 0

k
JIR? A——=DB

h
0
C
Define

h:.C—S
¢ h(c)

This does define an honest map into S, since f(h(c)) = f o h(c) = 0, so that
hic) € S.

Proof that h = ko h': Let ¢ € C be arbitrary. Then ko h' = ko h(c) = h(c),
since k is just the inclusion.

Proof that h' is unique: Suppose that h” also has the above properties. Then
h =koh' =h". Therefore

h(c) =koh'(c) =h"(c) = 0=k(h (c)—h'(c))

and thus, since k is injective, we have h'(c) = h”(c¢) as required. O

Categorical Definition of Cokernel

Definition 1.7.4. Let C have a zero object, so that for any objects X, Y of C,

there exists a zero map X %Y. Let f+ A — B be a morphism in C. Then
u: B — E is a cokernel of f: A — B if

e yof=0

e Every h: B — C with ho f = 0 factors uniquely through u (as h = b/ o).

\
C
Remark 1.7.5. e Cokernel is the dual notion to kernel.

e Cokernels are not guaranteed to exist in general.
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e If the cokernel exists, then it is unique since it is defined by a universal
property.

e In Grp, the cokernel of a group homomorphism G s H is the quotient of
H by the normal closure of the image of f.

e In Ab, the category of abelian groups, since every subgroup is normal, the
cokernel is just H modulo the image of f.

¢ In Ring, there is no zero object, so the cokernel does not exist.

Proposition 1.7.6. In Modg, the usual definition of coker f = B/im f, with
the natural map onto B/im f, satisfies this universal property. So cokernels
always exist in Modg.

Proof. Let A 7, B bean arbitrary morphism in Modg. Define
E=B/imf

and let B < B/im f be the natural map. Then it is clear that uo f = 0.
To verify the second property, start with the diagramme

Define

W:E—=C
b+im f +— h(b)

We need to verify that b’ is well-defined. Let b+im f = &’'+im f,i.e. b—b' € im f.
Write b — o' = f(a), for some a € A. Then applying h gives

h(b—1') = h(f(a))
h(b) —h(t') =ho f(a)
=0
= h(b) = h(b')
= I/(b+im f) = I'(V + im f)
so I’ is well-defined as claimed. Then A’ is an R-map since h is.

Proof that h = b/ ou: Let b € B be arbitrary. Then A’ o u(b) = h/(u(b)) =
h'(b+im f) = h(b).
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Proof that I/ is unique: Suppose that h” also has the above properties. Let
b € B be arbitrary, so that b+ im f € FE is arbitrary. Then

h'(b+im f) = 2" (u(b))
= h(b)

=1 (u(b))
= h'(b+im f)

Modg Monic Equivalences

Lemma 1.7.7. In the additive category C = Modpg, the notions of kernel,
monics and monomorphisms are the same.

Proof. Proof that kernel — monic: Suppose that S 5 Aisa kernel, i.e. there
is a morphism A 1, B with k as its kernel.

D

A——DB
f
In Modgr we may take
S={acA:fla)=0}CA

and k to be the inclusion map. Let A’ % A satisfy kog = 0. Let o/ € A’
be arbitrary. Note that, since S 5 Aisa kernel, g(a’) € S: see 1.7.3. Then
f(g(a)) = fog(a’) =0= g(a’) € kerk. But since k is the inclusion hence is
injective, this says that g(a’) =0, i.e. ¢ =0 as required.

Proof that mom'c = monomorphism: Let A 7, B be monic. Then we have
k=include

ker f ———— A 1, B and fok=0. Since f is monic, this implies that & = 0.
Therefore ker f = {0}, i.e. fisa monomorphlsm as required.

Proof that monomorphism = kernel: Let A L Bbea monomorphism, i.e.
ker f = {0}. Consider the diagram

A
A
0
x\
T p =l R f
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Define

h':C— A
¢ — a € A such that f(a) = h(c)

I claim that we can always find such an a € A uniquely. We have h(c) € B
and w(h(c)) = mo h(c) =0, which says that h(c) € im f. So there always exists
a € A such that f(a) = h(c). Since f is a monomorphism, this a is unique, so
the above function is well-defined.

I claim that A’ is an R-map. Let ¢,¢’ € C and r € R be arbitrary. Then

R (¢) = a € A such that f(a) = h(c)
h'(c') = a’ € A such that f(a') = h(c)
h'(c+ ) =a" € Asuch that f(a*) = h(c+ )

Then

h(c+c') = h(c) + h(c') = f(a) + f(a) = fa +a')
and since f is a monomorphism, f(a*) = ( +c
a*=a+d,and thus W(c+c)=a*=a+d =1
notation. Then

¢ = f(a+ a') implies that
(a) + h'(a"). Keep the above

h'(cr) = a* € A such that f(a*) = h(cr) = h(c)r

Then we have f(ar) = f(a)r = h(c)r = h(cr) = f(a*). Since f is a monomor-
phism, this implies that ar = a*, and thus A'(¢r) = a* = ar = h/(¢)r. So b is
an R-map as claimed.

The diagram commutes by the definition of h’.

Proof that h' is unique: Suppose that there exists an h” with the above
properties. Let ¢ € C be arbitrary. Then

F(R"(e) = W'(c)) = f(R"(c)) = f(h'(c))
— fol'(c) = fol(c)
= h(c) — h(c)
=0
and since f is injective, this implies that
R’ (c) —h'(c) =0= h"(c) = h'(c).
So f is a kernel as required. O

Lemma 1.7.8. In the additive category C = Modpg, the notions of cokernel,
epis and epimorphisms are the same.

Proof. Proof that cokernel = epi: Suppose that B — F is a cokernel, i.e. there

is a morphism A I, B with u as its cokernel. In Modgr we may take

E=B/imf
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and u to be the natural map. Let F LNy satisfy hou = 0. Let b+ 1im f €
B/im f be arbitrary. Then u(b) = b+ im f. Applying h to both sides gives
howu(b) =h(b+im f) = 0= h(b+im f). Thus h = 0 as required.

Proof that epi = epimorphism: Let A 7, B be epi. Then we have A EN
B % B/im f and uwo f = 0. Since f is epi, this implies that v = 0. Therefore
im f = B, i.e. f is an epimorphism as required.

Proof that epimorphism — cokernel: Let A 7, B be an epimorphism, i.e. it
is surjective. Consider the diagram

B

0
f
k=include

3w A<~———Kkerf

s

h':B—C
b— h(a) where b = f(a)

v
C
Define

We can always find such an a € A since f is surjective. I claim that the above
definition does not depend on the choice of a. Suppose that f(a) =b = f(a').
Then 0 = f(a —a') = (a —a') € ker f. Thus hok(a—a') =0= hok(a) =
hok(a") = h(a) = h(a’), since k is the inclusion map. Thus the above function
is well-defined.

Note that k' is an R-map, since h is. The diagram commutes by the definition
of h'.

Proof that h' is unique: Suppose we have an h" satisfying the above proper-
ties. Let b € B be arbitrary. Since f is surjective, there exists an element a € A
with b = f(a). Then

Wb = W (f(a)
— "o f(a)
= ha)
= ' o f(a)
= 1 (f(a))
= ' (b)

So f is a cokernel as required. O

1.8 Abelian Categories

Definition 1.8.1. An abelian category C is an additive category satisfying the
following conditions.
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(AB1) Every morphism in C has a kernel and a cokernel.
(AB2) Every monic morphism in C is the kernel of its cokernel.
(AB3) Every epi morphism in C is the cokernel of its kernel.

Remark 1.8.2. e Modp, is the prototype for an abelian category. We showed
that (AB1) holds immediately after defining kernels and cokernels. We
proved (AB2) in Lemma 1.7.7 and (AB3) in Lemma 1.7.8.

e Taking R = Z, we see that Ab, the category of abelian groups, is also an
abelian category.

e Since Grp is not pre-additive by Lemma 1.5.2, it cannot be additive and

therefore cannot be abelian.

Comp, Has Kernels and Cokernels

Lemma 1.8.3. Suppose that C = Compp and C, ER D, is a chain map in C.
Then

(1) The complex ker f is a kernel of f.
(2) The complez coker f is a cokernel of f.

Proof. (1): Consider the diagram:

0 0 0 == Oo
—ker fi11 ker/\fi ker f_ 1 ——=---=ker f
Oi+1 o CL “ Ot—l Ci713 . = Co
fit1 fi fi—1
Diy1 — D; > Dioy ——>---=D,
i+1 03 1—1
and the diagram:
ker f
A 0
k:indMA
317 Co——=D,

P

E.
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Define h': E, — ker f by
h;: BE; — ker f;
This is a well-defined map into ker f;, since f;(h;(x;)) = fi o hi(x;) = 0, so
hi(z;) € ker f;. Then h} is an R-map since h; is.
I claim that A’ is a chain map. Consider the diagram:

€;
E,——FE_,

ker f; — ker f;_1

Let z; € E; be arbitrary. Recall that since h is a chain map, the following
square commutes:

€q
B ——F; 4

}hl ihil

C; e Ci1
Then we have
hi_ioei(x;) = hi_i(ei(z;)) = c; o hi(x;) = & o hi(x;) = & o h)(x;)
So h' is a chain map as claimed. It is clear from the definition that h’ makes
the diagram commute.

Proof that h' is unique: Suppose that we have an h” satisfying the above
properties. Let x; € F; be arbitrary. Then

hi (i) = ki o hyf ()

= hi(zi)
= hj(z;)
Therefore h” = h/'.
(2): Consider the diagram:
Cit SaE Ci - Ci1 — =C,
Jig1 fi fi-1
b= P =
natural natural natural
-« — coker f;;1 — coker f; —— coker f;_1 — - - = coker f

0 0 0 <o =0,
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and the diagram:

Define h': coker f — Eo by

hi: coker f; — E;

z; +1im f; — hi(z;)
This is a well-defined map. Let d; 4+ im f; = d; + im f;, so that d; — d} € im f;.
Write d; — d; = fic; for some ¢;/inC;. Applying h; to both sides gives
di —d;; = f(c;)
hi(di — d;) = h(fi(c:))
= h; — fi(ci)
hi(di) — h(d;) =0
hi(d;) = hi(d;)
So the map is well-defined as claimed. Then A/ is an R-map since h; is.
I claim that A’ is a chain map. Consider the diagram:

a
coker f; — coker f;_1
h;i lh;l
E; e Ei
Let x; € D; be arbitrary, so that x; 4+ im f; € coker f; is arbitrary. Recall that

since h is a chain map, the following square commutes:

d;
D; ——D;

hi ih

Ei ——= Ei

Then we have

e; o h;(ﬂ?z +im fz) =e; 0 hl(l‘z) =hj_10 dl(l‘l) = h;—l o Cll(l‘Z +im fz)
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So R’ is a chain map as claimed. It is clear from the definition that h’ makes
the diagram commute.

Proof that h' is unique: Suppose that we have an h” satisfying the above
properties. Let z; € D; be arbitrary, so that x; + im f; € coker f; is arbitrary.
Then

R (z; +im f;) = b} o u(z;)
= I o u;(w;)

= h}(x; +1im f;)

Therefore A" = h/'. O

Compy, is Abelian

Theorem 1.8.4. Compyp, is an abelian category.

Proof. (AB1): This was Lemma 1.8.3 above.

(AB2): If B, ER C, is a chain map, I claim that f is monic < each B; ELN C;
is monic.
(Rightarrow) We have the composition

ker f —— B,

RN

Ce

so if f is monic, then ker f — B, is the zero map. This works for all 7.
(«=) Trivial.

Thus if f is monic, then it is isomorphic to the kernel of By — Be/C.
(AB3): Similarly, I claim that f is epi < each B; EiN C; is an epi. (=) We have
the composition

!

B.%O.

N

Co/im f

if f is epi, then Cy — C,/im f is the zero map. This works for all i.
(<) Trivial.
That is, f is isomorphic to the cokernel of ker f — B,. O
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