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Chapter 1

Abelian categories

The objective of this chapter is the following:

� We will de�ne the kernel and cokernel of a morphism in a category that
has a zero object.

� We will de�ne monic and epi morphisms in an arbitrary category.

� We will give an axiomatic de�nition of an abelian category and we will
show that the category of right R-modules is the prototype for an abelian
category.

� We will show that the category of complexes of right R-modules is also an
abelian category.

In this chapter we assume the following conventions:

� Let R be a ring, not necessarily commutative.

� Let ModR denote the category of right R-modules.

� Let CompR denote the category of complexes of right R-modules.

� Let C be an arbitrary category.

1.1 The Category ModR

Let M
f−→ N be a morphism in ModR.

De�nition 1.1.1. Recall that the kernel of f is

ker f = {m ∈ M : f(m) = 0} ⊆ M

De�nition 1.1.2. The cokernel of f is

coker f = N/ im f

1
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1.2 The Category CompR

Recall that in the category CompR, the morphisms are chain maps.

De�nition 1.2.1. Given complexes (C•, d•), (C
′
•, d

′
•), a chain map

f = f• : (C•, d•) → (C ′
•, d

′
•)

is a sequence of maps fn : Cn → C ′
n for all n ∈ Z making the following dia-

gramme commute:

· · · // Cn+1

dn+1 //

fn+1

��

Cn
dn //

fn

��

Cn−1
//

fn−1

��

· · ·

· · · // C ′
n+1

d′
n+1

// C ′
n

d′
n

// C ′
n−1

// · · ·

De�nition 1.2.2. A chain complex B• is called a sub-complex of a chain com-
plex C• if each Bn is a sub-module of C•, and the di�erential on B• is the
restriction of the di�erential on C•, that is when the inclusions in : B• → Cn

constitute a chain map B• → C•.

Example 1.2.3. Take any complex:

(C•, d•) = · · · → Cn+1
dn+1−−−→ Cn

dn−→ Cn−1 → · · ·

The zero complex in CompR is

(0•, 0) = · · · → {0}n+1
0−→ {0}n

0−→ {0}n−1 → · · ·

Consider the diagramme:

(0•, 0) = · · · // {0}n+1
0 //

� _

��

{0}n
0 //

� _

��

{0}n−1
//

� _

��

· · ·

(C•, d•) = · · · // Cn+1
dn+1

// Cn
dn

// Cn−1
// · · ·

It is clear that this diagramme commutes. Therefore (0•, 0) is a subcomplex of
(C•, d•), i.e. the zero complex is a sub-complex of any complex.

De�nition 1.2.4. In the case of De�nition 1.2.2, we assemble the quotient
modules Cn

Bn
into a complex

· · · → Cn+1

Bn+1

d′
n+1−−−→ Cn

Bn

d′
n−→ Cn−1

Bn−1
→ · · ·

denoted C
B and called the quotient complex.
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Remark 1.2.5. We must show that the induced di�erential

d′n : cn +Bn 7→ dncn +Bn−1

is well-de�ned.
Let cn + Bn = bn + Bn, i.e. bn − cn ∈ Bn. Then, since by de�nition the
di�erential on B• is the restriction of the di�erential on C•, applying dn gives

bn − cn ∈ Bn

⇒ dn(bn − cn) ∈ Bn−1

⇒ dn(bn)− d(cn) ∈ Bb−1

⇒ dn(bn) +Bn−1 = dn(cn) +Bn−1

⇒ d′n(bn) = d′n(cn)

so d′ is well-de�ned, as required.

Remark 1.2.6. Let f• : (C•, d•) → (C ′
•, d

′
•) be a chain map.

De�ne

ker f = · · · → ker fn+1
δn+1−−−→ ker fn

δn−→ ker fn−1 → · · ·

where δn = dn |ker fn . Consider the diagramme:

ker f = · · · // ker fn+1

δn+1 //
� _

��

ker fn
δn //

� _

��

ker fn−1
//

� _

��

· · ·

(C•, d•) = · · · // Cn+1

dn+1 //

fn+1

��

Cn
dn //

fn

��

Cn−1
//

fn−1

��

· · ·

(C ′
•, d

′
•) = · · · // C ′

n+1
d′
n+1

// C ′
n

d′
n

// C ′
n−1

// · · ·

I claim that the maps in the top row send kernels into kernels as shown. We
prove that δn+1(ker fn+1) ⊆ ker fn. By applying the same argument in any
degree, we get the result.

� Let cn+1 ∈ ker fn+1 be arbitrary, i.e. fn+1(cn+1) = 0.

� Then since d′n+1 is an R-map, we have

d′n+1 ◦ fn+1(cn+1) = d′n+11(fn+1(cn+1)) = dn+1(0) = 0.

� Since f is a chain map, all squares in the lower two rows commute, imply-
ing that

fn(dn+1(cn+1)) = fn ◦ dn+1(cn+1) = 0.

� Therefore δn+1(cn+1) = dn+1(cn+1) ∈ ker fn, as required.
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� Now that we know that our top row is well-de�ned, it is clear from con-
struction that the whole diagramme commutes.

� Since the top two rows commute, we have that ker f is a subcomplex of
(C•, d•) as claimed.

Remark 1.2.7. De�ne

im f = · · · → im fn+1
∆n+1−−−→ im fn

∆n−−→ im fn−1 → · · ·

where ∆n = dn′ |im fn . Consider the diagramme:

(C•, d•) = · · · // Cn+1

dn+1 //

fn+1

��

Cn
dn //

fn

��

Cn−1
//

fn−1

��

· · ·

im f = · · · // im fn+1

∆n+1 //
� _

��

im fn
∆n //

� _

��

im fn−1
//

� _

��

· · ·

(C ′
•, d

′
•) = · · · // C ′

n+1
d′
n+1

// C ′
n

d′
n

// C ′
n−1

// · · ·

I claim that the maps in the middle row send images into images as shown.
We prove that ∆n+1(im fn+1) ⊆ im fn. By applying the same argument in any
degree, we get the result.

� Let cn+1 ∈ Cn+1 be arbitrary, so that fn+1(cn+1) ∈ im fn+1 is arbitrary.

� Then since f is a chain map, all squares (ignoring the middle row) com-
mute, implying that

d′n+1(fn+1(cn+1)) = d′n+11◦fn+1(cn+1) = fn◦dn+1(cn+1) = fn(dn+1(cn+1) ∈ im fn.

� Therefore ∆n+1(fn+1(cn+1)) = d′n+1(fn+1(cn+1)) ∈ im fn, as required.

� Now that we know that our middle row is well-de�ned, it is clear from
construction that the whole diagramme commutes.

� Since the bottom two rows commute, we have that im f is a subcomplex
of (C ′

•, d
′
•) as claimed.

Thus we have:

� The First Isomorphism Theorem holds.

C•/kerf ∼= im f.

� The cokernels {coker(fn)} similarly assemble to form a quotient complex
of (C ′

•, d
′
•), denoted coker(f).
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1.3 Initial, Terminal and Zero Objects

De�nition 1.3.1. An initial object is an object X such that for every object

Y , there is a unique morphism X
i−→ Y .

� In Set, the empty set is initial.

� In Grp, {1} is initial.

� In ModR, {0} is initial.

� In CompR, the zero complex is initial.

De�nition 1.3.2. A �nal object (or terminal object) is an object such that for

any object X, there is a unique morphism X
t−→ Y .

Example 1.3.3. � In Set, a set containing one element is terminal. So ter-
minal objects (should they exist) need not be unique.

� In Grp, {1} is a terminal object.

� In ModR, {0} is a terminal object.

� In CompR, the zero complex is terminal.

Remark 1.3.4. � If Y is terminal, then the only morphism Y
t−→ Y is the

identity.

� Any two terminal objects of C are isomorphic in C.

De�nition 1.3.5. A zero (or null) object of C is an object which is both initial
and terminal.

� In Set, there is no zero object.

� In Grp, f1g is a zero object.

� In ModR, {0} is a zero object.

� In CompR, the zero complex is a zero object.

� In Ring (with unity), there is no zero object.

Thus every additive category has a zero object.

Remark 1.3.6. If C has a zero object Z, then for any objects X,Y of C, there is
a unique composition

X
t−→ Z

i−→ Y.

This is the zero map (or zero morphism) from X to Y .
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1.4 Products and coproducts

De�nition 1.4.1. Let {Ai : i ∈ I} be a family of objects of C. A product is an
ordered pair

(C, {pi : C → Ai})

consisting of an object C =
∏

i∈I Ai and a family {pi : C → Xi} of projection
morphisms, satisfying the following condition. For every object X equipped
with morphisms fi : X → Ai, there exists a unique morphism θ : X

∏
iinI

Ai

making the following diagramme commute for each i:

Ai

∏
i∈I Ai

pi

;;

X

fi

__

θ
oo

Example 1.4.2. In ModR, the product of a family of R-modules, {Ai : i ∈ I} is
the direct product.

De�nition 1.4.3. Let {Ai : i ∈ I} be a family of objects of C. A coproduct is
an ordered pair

(C, {αi : Ai → C})

consisting of an object C =
∐

i∈I Ai and a family {αi : AitoC} of injection
morphisms, satisfying the following condition.

For every object X equipped with morphisms fi : Ai → X, there exists a
unique morphism θ :

∐
i∈I Ai → X making the following diagramme commute

for each i :
Ai

αi

{{

fi

��∐
i∈I Ai

θ
// X

Example 1.4.4. In ModR, the coproduct of a family of R-modules, {Ai : i ∈ I}
is the direct sum.

1.5 Pre-Additive and Additive Categories

De�nition 1.5.1. De�ne an Ab-category, or pre-additive category to be a cat-
egory C in which each Hom set is an additive abelian group and for which
composition is bilinear with respect to this addition:

For morphisms f, f ′ : A → B and g, g′ : B → C,

(g + g′) ◦ (f + f ′) = g ◦ f + g ◦ f ′ + g′ ◦ f + g′ ◦ f ′

Lemma 1.5.2. The category Grp is not pre-additive.
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Proof. For a contradiction, suppose that Grp is pre-additive. Then, by de�ni-
tion, for any group G, the Hom set Hom(G,G) is an additive abelian group.

Let G
f−→G and G

g−→ G be any elements of Hom(G,G). Then Hom(G,G) is an
abelian group with the operation (f+g)(x) = f(x)+g(x). We are not assuming
that G is abelian, so we re-write the RHS using multiplicative notation:

(f + g)(x) = f(x)g(x)

Since Hom(G,G) is a group with the above operation, it is closed with respect
to the operation. In other words, the map x 7→ f(x)g(x) is an honest element
of Hom(G,G), i.e. it is a group homomorphism from G to G.

Now let G = ⟨a, b⟩ be the free group on two generators. By the universal
property of a free group, the following de�nitions yield group homomorphisms
from G to G.

f : ⟨a, b⟩ → ⟨a, b⟩
a 7→ a2

b 7→ b

g : ⟨a, b⟩ → ⟨a, b⟩
a 7→ a

b 7→ b2

Let x = ab. Then since x 7→ f(x)g(x) is a group homomorphism, we have

f(ab)g(ab) = [f(a)g(a)][f(b)g(b)]

⇒ [a2b][ab2] = [a2a][bb2

⇒ a2bab2 = a3b3

This is a contradiction, since both expressions are reduced but they are clearly
not equal.

De�nition 1.5.3. An additive category is an Ab-category C with a zero object,
and a product A×B for each pair of objects A,B from C.

Example 1.5.4. ModR is an additive category.

1.6 Monics and Epis

De�nition 1.6.1. A morphism A
i−→ B in an additive category C is monic, if,

whenever A′ g−→ A is a morphism satisfying i ◦ g = 0, then g = 0.

Remark 1.6.2. Monics can be cancelled from the left.

Example 1.6.3. In Set,Grp and ModR, monics are just injective maps.

De�nition 1.6.4. A morphism CxrightarroweD in an additive category C is

epi, if, whenever D
h−→ D′ is a morphism satisfying h ◦ e = 0, then h = 0.
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Remark 1.6.5. Epis can be cancelled from the right.

Example 1.6.6. In Set,Grp and ModR, epis are just surjective maps.

1.7 Kernels and Cokernels

Categorical De�nition of Kernel

De�nition 1.7.1. Let C have a zero object, so that for any objects X,Y of C,
there exists a zero map X

0−→ Y . Let f : A → B be a morphism in C. Then
k : S → A is a kernel of f : A → B if

� f ◦ k = 0

� Every h : C → A with f ◦h = 0 factors uniquely through k (as h = k ◦h′).

S

0

''
k ��

A
f // B

C

∃!h′

OO

h

??

0

77

Remark 1.7.2. � Kernels are not guaranteed to exist in general.

� If the kernel exists, then it is unique since it is de�ned by a universal
property.

� In Grp, the usual de�nition of kernel, with the inclusion map into A,
satis�es this universal property. So kernels always exist in Grp.

� In Ring, there is no zero object, so the kernel does not exist.

� In the category of pointed topological spaces, if (X,x0)
f−→ (Y, y0) is a

continuous pointed map, then the preimage of the distinguished point

y0 of Y , K, is a subspace of X. The inclusion map of K
k−→ X is the

categorical kernel of f .

Proposition 1.7.3. In ModR, the usual de�nition of kernel, with the inclusion
map into A, satis�es this universal property. So kernels always exist in ModR.

Proof. Let A
f−→ B be an arbitrary morphism in ModR. De�ne

S = {a ∈ A : f(a) = 0}

and let S
k−→ A be the inclusion map. Then it is clear that f ◦ k = 0.
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To verify the second property, start with the diagramme

S

0

''
k ��

A
f // B

C

∃!h′?

OO

0

77
h

??

De�ne

h′ : C → S

c 7→ h(c)

This does de�ne an honest map into S, since f(h(c)) = f ◦ h(c) = 0, so that
h(c) ∈ S.

Proof that h = k ◦ h′: Let c ∈ C be arbitrary. Then k ◦ h′ = k ◦ h(c) = h(c),
since k is just the inclusion.

Proof that h′ is unique: Suppose that h′′ also has the above properties. Then
h = k ◦ h′ = h′′. Therefore

h(c) = k ◦ h′(c) = h′′(c) ⇒ 0 = k(h′(c)− h′′(c))

and thus, since k is injective, we have h′(c) = h′′(c) as required.

Categorical De�nition of Cokernel

De�nition 1.7.4. Let C have a zero object, so that for any objects X,Y of C,
there exists a zero map X

0−→ Y . Let f : A → B be a morphism in C. Then
u : B → E is a cokernel of f : A → B if

� u ◦ f = 0

� Every h : B → C with h◦f = 0 factors uniquely through u (as h = h′ ◦u).

E

∃!h′

��

B

u

``

h

��

A

0

gg

0
ww

foo

C

Remark 1.7.5. � Cokernel is the dual notion to kernel.

� Cokernels are not guaranteed to exist in general.
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� If the cokernel exists, then it is unique since it is de�ned by a universal
property.

� In Grp, the cokernel of a group homomorphism G
f−→ H is the quotient of

H by the normal closure of the image of f .

� In Ab, the category of abelian groups, since every subgroup is normal, the
cokernel is just H modulo the image of f .

� In Ring, there is no zero object, so the cokernel does not exist.

Proposition 1.7.6. In ModR, the usual de�nition of coker f = B/ im f , with
the natural map onto B/ im f , satis�es this universal property. So cokernels
always exist in ModR.

Proof. Let A
f−→ B be an arbitrary morphism in ModR. De�ne

E = B/ im f

and let B
u−→ B/ im f be the natural map. Then it is clear that u ◦ f = 0.

To verify the second property, start with the diagramme

E

∃!h′

��

B

u

``

h

��

A

0

gg

0
ww

foo

C

De�ne

h′ : E → C

b+ im f 7→ h(b)

We need to verify that h′ is well-de�ned. Let b+im f = b′+im f , i.e. b−b′ ∈ im f .
Write b− b′ = f(a), for some a ∈ A. Then applying h gives

h(b− b′) = h(f(a))

h(b)− h(b′) = h ◦ f(a)
= 0

⇒ h(b) = h(b′)

⇒ h′(b+ im f) = h′(b′ + im f)

so h′ is well-de�ned as claimed. Then h′ is an R-map since h is.
Proof that h = h′ ◦ u: Let b ∈ B be arbitrary. Then h′ ◦ u(b) = h′(u(b)) =

h′(b+ im f) = h(b).
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Proof that h′ is unique: Suppose that h′′ also has the above properties. Let
b ∈ B be arbitrary, so that b+ im f ∈ E is arbitrary. Then

h′′(b+ im f) = h′′(u(b))

= h(b)

= h′(u(b))

= h′(b+ im f)

ModR Monic Equivalences

Lemma 1.7.7. In the additive category C = ModR, the notions of kernel,
monics and monomorphisms are the same.

Proof. Proof that kernel → monic: Suppose that S
k−→ A is a kernel, i.e. there

is a morphism A
f−→ B with k as its kernel.

S

k ��

0

''
A

f
// B

In ModR we may take

S = {a ∈ A : f(a) = 0} ⊆ A

and k to be the inclusion map. Let A′ g−→ A satisfy k ◦ g = 0. Let a′ ∈ A′

be arbitrary. Note that, since S
k−→ A is a kernel, g(a′) ∈ S: see 1.7.3. Then

f(g(a′)) = f ◦ g(a′) = 0 ⇒ g(a′) ∈ ker k. But since k is the inclusion hence is
injective, this says that g(a′) = 0, i.e. g = 0 as required.

Proof that monic ⇒ monomorphism: Let A
f−→ B be monic. Then we have

ker f
k=include−−−−−−→ A

f−→ B and f ◦ k = 0. Since f is monic, this implies that k = 0.
Therefore ker f = {0}, i.e. f is a monomorphism as required.

Proof that monomorphism ⇒ kernel: Let A
f−→ B be a monomorphism, i.e.

ker f = {0}. Consider the diagram

A

0

**f ��
B

π=natural // B/ im f

C

∃!h′?

OO

h

??

0

44
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De�ne

h′ : C → A

c 7→ a ∈ A such that f(a) = h(c)

I claim that we can always �nd such an a ∈ A uniquely. We have h(c) ∈ B
and π(h(c)) = π ◦ h(c) = 0, which says that h(c) ∈ im f . So there always exists
a ∈ A such that f(a) = h(c). Since f is a monomorphism, this a is unique, so
the above function is well-de�ned.

I claim that h′ is an R-map. Let c, c′ ∈ C and r ∈ R be arbitrary. Then

h′(c) = a ∈ A such that f(a) = h(c)

h′(c′) = a′ ∈ A such that f(a′) = h(c′)

h′(c+ c′) = a∗ ∈ A such that f(a∗) = h(c+ c′)

Then
h(c+ c′) = h(c) + h(c′) = f(a) + f(a′) = f(a+ a′)

and since f is a monomorphism, f(a∗) = h(c + c′ = f(a + a′) implies that
a∗ = a+ a′, and thus h′(c+ c′) = a∗ = a+ a′ = h′(a) + h′(a′). Keep the above
notation. Then

h′(cr) = a∗ ∈ A such that f(a∗) = h(cr) = h(c)r

Then we have f(ar) = f(a)r = h(c)r = h(cr) = f(a∗). Since f is a monomor-
phism, this implies that ar = a∗, and thus h′(cr) = a∗ = ar = h′(c)r. So h′ is
an R-map as claimed.

The diagram commutes by the de�nition of h′.
Proof that h′ is unique: Suppose that there exists an h′′ with the above

properties. Let c ∈ C be arbitrary. Then

f(h′′(c)− h′(c)) = f(h′′(c))− f(h′(c))

= f ◦ h′′(c)− f ◦ h′(c)

= h(c)− h(c)

= 0

and since f is injective, this implies that

h′′(c)− h′(c) = 0 ⇒ h′′(c) = h′(c).

So f is a kernel as required.

Lemma 1.7.8. In the additive category C = ModR, the notions of cokernel,
epis and epimorphisms are the same.

Proof. Proof that cokernel ⇒ epi: Suppose that B
u−→ E is a cokernel, i.e. there

is a morphism A
f−→ B with u as its cokernel. In ModR we may take

E = B/ im f
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and u to be the natural map. Let E
h−→ F satisfy h ◦ u = 0. Let b + im f ∈

B/ im f be arbitrary. Then u(b) = b + im f . Applying h to both sides gives
h ◦ u(b) = h(b+ im f) ⇒ 0 = h(b+ im f). Thus h = 0 as required.

Proof that epi ⇒ epimorphism: Let A
f−→ B be epi. Then we have A

f−→
B

u−→ B/ im f and u ◦ f = 0. Since f is epi, this implies that u = 0. Therefore
im f = B, i.e. f is an epimorphism as required.

Proof that epimorphism → cokernel: Let A
f−→ B be an epimorphism, i.e. it

is surjective. Consider the diagram

B

∃!h′

��

A

f

__

h

��

ker f

0

jj

0

tt

k=includeoo

C

De�ne

h′ : B → C

b 7→ h(a) where b = f(a)

We can always �nd such an a ∈ A since f is surjective. I claim that the above
de�nition does not depend on the choice of a. Suppose that f(a) = b = f(a′).
Then 0 = f(a − a′) ⇒ (a − a′) ∈ ker f . Thus h ◦ k(a − a′) = 0 ⇒ h ◦ k(a) =
h ◦ k(a′) ⇒ h(a) = h(a′), since k is the inclusion map. Thus the above function
is well-de�ned.

Note that h′ is anR-map, since h is. The diagram commutes by the de�nition
of h′.

Proof that h′ is unique: Suppose we have an h′′ satisfying the above proper-
ties. Let b ∈ B be arbitrary. Since f is surjective, there exists an element a ∈ A
with b = f(a). Then

h′′(b) = h′′(f(a))

= h′′ ◦ f(a)
= h(a)

= h′ ◦ f(a)
= h′(f(a))

= h′(b)

So f is a cokernel as required.

1.8 Abelian Categories

De�nition 1.8.1. An abelian category C is an additive category satisfying the
following conditions.
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(AB1) Every morphism in C has a kernel and a cokernel.

(AB2) Every monic morphism in C is the kernel of its cokernel.

(AB3) Every epi morphism in C is the cokernel of its kernel.

Remark 1.8.2. � ModR is the prototype for an abelian category. We showed
that (AB1) holds immediately after de�ning kernels and cokernels. We
proved (AB2) in Lemma 1.7.7 and (AB3) in Lemma 1.7.8.

� Taking R = Z, we see that Ab, the category of abelian groups, is also an
abelian category.

� Since Grp is not pre-additive by Lemma 1.5.2, it cannot be additive and
therefore cannot be abelian.

CompR Has Kernels and Cokernels

Lemma 1.8.3. Suppose that C = CompR and C•
f−→ D• is a chain map in C.

Then

(1) The complex ker f is a kernel of f .

(2) The complex coker f is a cokernel of f .

Proof. (1): Consider the diagram:

· · · // 0 //

��

0 //

��

0 //

��

· · · = 0•

· · · // ker fi+1
//

� _

��

ker fi //
� _

��

ker fi−1
//

� _

��

· · · = ker f

· · · // Ci+1

ci+1 //

fi+1

��

Ci
ci //

fi

��

Ci−1

ci−1 //

fi−1

��

· · · = C•

· · · // Di+1
di+1

// Di
di

// Di−1
di−1

// · · · = D•

and the diagram:

ker f

0

**
k=inclusion

''
C•

f // D•

E•

∃!h′?

OO

0

44
h

77
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De�ne h′ : E• → ker f by

h′
i : Ei → ker fi

xi 7→ hi(xi)

This is a well-de�ned map into ker fi, since fi(hi(xi)) = fi ◦ hi(xi) = 0, so
hi(xi) ∈ ker fi. Then h′

i is an R-map since hi is.
I claim that h′ is a chain map. Consider the diagram:

Ei
ei //

h′
i

��

Ei−1

h′
i−1

��
ker fi

δi

// ker fi−1

Let xi ∈ Ei be arbitrary. Recall that since h is a chain map, the following
square commutes:

Ei
ei //

hi

��

Ei−1

hi−1

��
Ci ci

// Ci−1

Then we have

h′
i−1 ◦ ei(xi) = h′

i−1(ei(xi)) = ci ◦ hi(xi) = δi ◦ hi(xi) = δi ◦ h′
i(xi)

So h′ is a chain map as claimed. It is clear from the de�nition that h′ makes
the diagram commute.

Proof that h′ is unique: Suppose that we have an h′′ satisfying the above
properties. Let xi ∈ Ei be arbitrary. Then

h′′
i (xi) = ki ◦ h′′

i (xi)

= hi(xi)

= ki ◦ h′
i(xi)

= h′
i(xi)

Therefore h′′ = h′.
(2): Consider the diagram:

· · · // Ci+1

ci+1 //

fi+1

��

Ci
ci //

fi

��

Ci−1

ci−1 //

fi−1

��

· · · = C•

· · · // Di+1
di+1

//

natural

��

Di
di

//

natural

��

Di−1
di−1

//

natural

��

· · · = D•

· · · // coker fi+1
//

��

coker fi //

��

coker fi−1
//

��

· · · = coker f

· · · // 0 // 0 // 0 // · · · = 0•
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and the diagram:

coker f

∃!h′?

��

D•

u=natral

gg

h

ww

C•
foo

0

jj

0

tt
E•

De�ne h′ : coker f → E• by

h′
i : coker fi → Ei

xi + im fi 7→ hi(xi)

This is a well-de�ned map. Let di + im fi = d′i + im fi, so that di − d′i ∈ im fi.
Write di − d′i = fici for some ci/inCi. Applying hi to both sides gives

di − d′i = f(ci)

hi(di − d′i) = h(fi(ci))

= hi − fi(ci)

hi(di)− h(d′i) = 0

hi(di) = hi(d
′
i)

⇒ h′
i(di + im fi) = h′

i(d
′
i + im fi)

So the map is well-de�ned as claimed. Then h′
i is an R-map since hi is.

I claim that h′ is a chain map. Consider the diagram:

coker fi
d′
i //

h′
i

��

coker fi−1

h′
i−1

��
Ei ei

// Ei−1

Let xi ∈ Di be arbitrary, so that xi + im fi ∈ coker fi is arbitrary. Recall that
since h is a chain map, the following square commutes:

Di
di //

hi

��

Di−1

hi−1

��
Ei ei

// Ei−1

Then we have

ei ◦ h′
i(xi + im fi) = ei ◦ hi(xi) = hi−1 ◦ di(xi) = h′

i−1 ◦ di(xi + im fi)
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So h′ is a chain map as claimed. It is clear from the de�nition that h′ makes
the diagram commute.

Proof that h′ is unique: Suppose that we have an h′′ satisfying the above
properties. Let xi ∈ Di be arbitrary, so that xi + im fi ∈ coker fi is arbitrary.
Then

h′′
i (xi + im fi) = h′′

i ◦ u(xi)

= hi(xi)

= h′
i ◦ ui(xi)

= h′
i(xi + im fi)

Therefore h′′ = h′.

CompR is Abelian

Theorem 1.8.4. CompR is an abelian category.

Proof. (AB1): This was Lemma 1.8.3 above.

(AB2): If B•
f−→ C• is a chain map, I claim that f is monic ⇔ each Bi

fi−→ Ci

is monic.
(Rightarrow) We have the composition

ker f //

0 ""

B•

f

��
C•

so if f is monic, then ker f → B• is the zero map. This works for all i.
(⇐) Trivial.

Thus if f is monic, then it is isomorphic to the kernel of B• → B•/C•.

(AB3): Similarly, I claim that f is epi ⇔ each Bi
fi−→ Ci is an epi. (⇒) We have

the composition

B•
f //

0 $$

C•

��
C•/ im f

if f is epi, then C• → C•/ im f is the zero map. This works for all i.
(⇐) Trivial.

That is, f is isomorphic to the cokernel of ker f → B•.
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