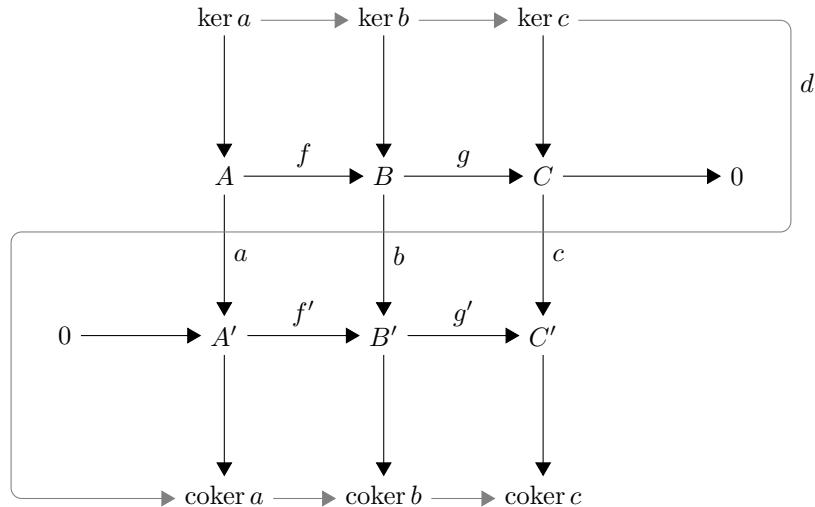


A “visual” proof of Snake Lemma

In Charles A. Weibel’s book, “An Introduction to Homological Algebra” (Cambridge U. Press, 1994), there appears the following: “We will not print the proof (of the Snake Lemma) in these notes, because it is best done visually. In fact, a clear proof is given by Jill Clayburgh at the beginning of the movie *It’s My Turn*.”

Following the suggestion by Weibel, we transcribe Jill Clayburgh’s proof of the “Snake Lemma” as in <https://youtu.be/etbcKWEKnvg>.



KateGunzinger: Let me just show you how to *construct* the map d , which is the fun of the lemma anyhow, okay? So you assume you have an element in the kernel of c , that is, an element in C , such that c takes you to 0 in C' . You pull it back to B , via map g , which is surjective...

Cooperman: Hold it, hold it, hold it. That’s – that’s not unique.

KateGunzinger: Yes, it is unique, Mr. Cooperman. Up to an element of the image of f , all right? So we’ve pulled it back to a fixed B here. Then you take β of B , which takes you to 0 in C' , by the commutativity of the diagramme. It’s therefore in the kernel of the map g' , hence is in the image of the map f' , by the exactness of the lower sequence...

Cooperman: No.

KateGunzinger: ...so we can pull it back...

Cooperman: No.

KateGunzinger: ...to an element in A' ...

Cooperman: It's not well defined!

KateGunzinger: ...which it turns out is *well* defined *modulo* the image of a . And thus defines the element in the co-kernel of a ...

—draws arrow on diagram—

and that's the “snake”! And on Monday, we'll address ourselves to

—Cooperman raises hand—

KateGunzinger: the cohomology of groups... and Mr. Cooperman's next objections.