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Preface

This is an authour’s trial to compile an accessible account of algebraic topology
in the spirit of John F. Adams as suggested in his “Algebraic Topology: a
Student’s Guide”.

Thus the purpose is to provide a sufficient background, from the modern
viewpoint, to read Milnor’s “Differential Topology” and “Lectures on Character-
istic Classes” published some sixty years ago.

These notes should hopefully cover at least the following topics:

1. Spaces and maps

2. Homotopy sets

CW complexes

Cofibration

Fibration

Vector bundles and fibre bundles

Axiomatic treatment of homology /cohomology

Spectral sequences and their applications

© ® N o o s w

Eilenberg-Mac Lane spaces and Postnikov systems
10. Homotopy groups of spheres

11. Spectra
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Chapter 1

Homotopy Theory 1

1.1 Motivation

This section gives a motivation for studying algebraic topology. First, let us
recall some notions from general topology.

Definition 1.1.1. A topological space X is said to be disconnected if it is the
union of two disjoint non-empty open sets. Otherwise, X is said to be connected.

A path-connected space is a stronger notion of connectedness, requiring the
structure of a path.

Definition 1.1.2. A path from a point x to a point y in a topological space X
is a continuous function f from the unit interval 7 = [0,1] to X with f(0) = «
and f(1) = y. A path-component of X is an equivalence class of X under the
equivalence relation which makes x equivalent to y if there is a path from x to
Y.

The space X is said to be path-connected (or pathwise connected) if there is
exactly one path-component, i.e. if there is a path joining any two points in X.

Next, notions important in algebraic topology.

Definition 1.1.3. Let X be a topological space and let x € X. We say that
X is locally connected at x if for every open set V containing x there exists
a connected, open set U with x € U C V. The space X is said to be locally
connected if it is locally connected at x for all z € X.

Remark 1.1.4. Note that local connectedness and connectedness are not related
to one another; a space may possess one or both of these properties, or neither.
Example 1.1.5. Q with the usual metric topology is neither connected nor locally

connected: no point in Q has any connected neighbourhood.

Lemma 1.1.6. If X is locally connected, then its connected components are
open.
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Proof. This is almost immediate; if U is a connected open the of X, then U is
inside the connected component of x. O

Definition 1.1.7. Let X be a topological space and let x € X. We say that
X is locally path connected at x if for every neighbourhood U of = there exists
a path connected neighbourhood V of z such that x € V C U. X is said to
be locally path connected (on all of X ) if X is locally path connected at every
r e X.

If X is locally path-connected, then its path components are open.

Lemma 1.1.8. If X is locally path connected, then the components of X coin-
cide with the path components of X - that is,

~conn=—"path -

Proof. Since paths themselves are connected, clearly if two points belong to
the same path component they belong to the same connected component. Now
suppose X is locally path connected, let C be a connected component of X.
Then C' is a union of path components:

C = UierF;

But since X is locally path-connected, each P; is open. That means C has
been written as a disjoint union of open sets, and so C is not connected, a
contradiction. O

Corollary 1.1.9. If X is locally-path connected, then it is connected if and only
if it is path connected.

Now we begin the algebraic topology portion of the course. As you will see,
it has a pretty different flavour from what has come up to this point, and the
main reason for that is the emphasis on homotopy: when one continuous map
can be deformed into another, we regard them as equivalent, and that gets us
into a much more tenable situation when it comes to classifying spaces.

Henceforth, we denote the closed interval I € R by I. Here is what you
might regard as the fundamental definition of the whole field:

Definition 1.1.10 (Homotopy). Let X and Y be spaces and let f,g: X =Y
be continuous functions. Then a homotopy from f to g is a continuous function

H: XxI—=Y

such that
Hl|xxgoy =f, Hlxxqy =9

If there exists a homotopy from f to g, we say f and g are homotopic.
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Remark 1.1.11. We think of H as like a “movie” of continuous maps that starts
at f and ends at g.

I (X=Y) toheX=Y)=YY h=fh=g

We will be back with the mapping spaces like (X — Y) = YX later.

Example 1.1.12. Suppose X is a space and f,g: X — R" are continuous func-
tions. Then if we define H: X x I — R" by

H(z,t) = (1 =) f(x) + tg(x)

then H is a homotopy from f to g. So any pair of maps into R™ are homotopic.

Ezample 1.1.13. Let * denote the one-point space; then for any space Y, a map
* — Y is just given by a point y € Y. We denote this map by i,. Moreover,
a homotopy from i,,: * = Y to 4,, : * = Y is just a path from yo to y;. We
conclude that two maps * — Y are homotopic if and only if they pick out points
in the same path component.

Theorem 1.1.14. Let X and Y be topological spaces. If f,g: X — Y are
homotopic, we write f ~ g. Then ~ is an equivalence relation on Map(X,Y).

Proof. There are three conditions to verify:

e f~ f.Letpx: XxI— X denote the projection (x,t) — x. The constant
homotopy

fopx: X xI =Y, (fopx)(zt)=f(z)

is a homotopy from f to itself.

e If H is a homotopy from f to g, then
H:XxI—Y, H'(xt)=H(z1-1t)
is a homotopy from g to f.

e Also, we can compose homotopies, just like we can compose paths. If Hy
is a homotopy from f to g and H;j is a homotopy from ¢ to h, then we
can define

Hy: X xI—=Y

by
Ho(2t) t<1/2,

Hou(e,1) = {H1(2t ) t>1)2

Then Hy; is a homotopy from f to h. (You just have to prove that Hy; is
continuous; this is similar to the proof that the composition of two paths
is continuous. If you're interested, it follows from the pasting lemma on
p. 108 of Munkres, copied below for your convenience.)

O
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Lemma 1.1.15. Let X be a topological space and X = AU B, where A and B
are closed in X. Let f: A —Y and g: B — Y be continuous. If f(x) = g(x)
for every x € ANB, then f and g can be combined to give a continuous function
h: X =Y, defined by setting

2) = f(x) if x€A, and
W) {g(m) if x€B.

Proof. Let C be a closed subset of Y. Now
h=HC) = fTHC) Uy (O),

by elementary set theory. Since f is continuous, f~1(C) is closed in A and,
therefore, closed in X. Similarly, g=!(C) is closed in B and therefore closed in
X. Their union A~1(C) is thus closed in X. O

Now let us get back to homotopy. An equivalence class for the equivalence
relation ~ is called a homotopy class. The set of homotopy classes of maps from
X to Y is denoted [X,Y].

Lemma 1.1.16. Homotopy respects composition of functions. Suppose fo, f1: X —
Y and go,g91: Y — Z are maps such that fo ~ f1 and go ~ g1. Then
goo for~glo fi.

Proof. Let H be a homotopy from fy to f; and let J be a homotopy from gq to
g1- We have to use H and J to build a homotopy from gy o fy to g1 o f1. Let’s
define

K: XxI—Z

by
K(z,t) = J(H(z,1),1).

Then
K(z,0) = J(H(z,0),0) = J(fo(x),0) = go(fo(x)),

and similarly
K(:Ca 1) = J(H(I7 1)v 1) = J(fl(x)v 1) = gl(fl(x))a
so K is the desired homotopy. O

Here is the thing somewhat surprising at first: although homotopy is a notion
of equivalence for functions, it also gives rise to a new notion of equivalence for
spaces.

Definition 1.1.17. Let f: X — Y be a map. Then a homotopy inverse for f
is a map g: Y — X such that

gof~idx, fog~idy.
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That is, g is a homotopy inverse of f if there are continuous maps F': X xI — X
and G: Y x I — Y such that F|x,( = go f, Flxxq} =idx and Glyx{o} =
fog, Glyxqy = idy respectively. This is a natural weakening of the definition
of a topological inverse (= homeomorphism).

Clearly g is a homotopy inverse to f if and only if f is a homotopy inverse
to g. If f has a homotopy inverse, we say f is a homotopy equivalence. If there
exists a homotopy equivalence from X to Y, we say X and Y are homotopy
equivalent.

The goal of algebraic topology is arguably to classify spaces up to homotopy
equivalence.

Ezample 1.1.18. Let p: R™ — % be the unique map. Then any map from * to
R™, say ig, is a homotopy inverse to p. Indeed, clearly poig = id,, and igop is
homotopic to idg~ since, as we just saw in Example 1.1.12; any two maps into
R™ are homotopic. (For an explicit homotopy, we can use H(x,t) = tx.)

Definition 1.1.19. If p: X — % is a homotopy equivalence, we say X is con-
tractible - hopefully the previous example should make it clear why this is the
terminology, since the homotopy from idg~ to the constant map at 0 was like a
“contraction” of R™.

Lemma 1.1.20. Every contractible space is path connected.

Proof. Let X be a contractible space and let H be a homotopy from idx to the
constant map at some point p € X. Then for any z € X, the map H,: [ — X,
H,(t) = H(z,t) is a path from x to p. Since every point has a path to p, X is
path connected. O

So at least some spaces are not contractible, hence homotopy theory is not
completely vacuous. How about connected spaces which are not contractible?
We’ll have to wait a little while to be able to prove that. But here’s another
interesting example of a pair of homotopy equivalent spaces:

Lemma 1.1.21. R"\ {0} is homotopy equivalent to S"~!.

Proof. Let i: S"~! — (R™ \ {0}) be the inclusion of the sphere, and define
p: (R"\{0}) = 8"~! by

(That’s why we had to take out 0 - we wouldn’t have known what to do with
it in this formula.) Then we claim that ¢ and p are homotopy inverses. Indeed,
clearly

poi=idgn-1,

and if define H: (R"\ {0}) x I — (R™\ {0}) by

o) = (14 (- 1)) v

then H is a homotopy from idg~ to i o p. O
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We are almost ready to define the underlying set of the fundamental group.
Of course, the group structure is the really important thing, and we will have
to briefly go over some group theory before we can define that. We need to
introduce one more piece of homotopy-theoretic terminology before we can do
that:

Definition 1.1.22. Suppose X is a space and Z C X is a subspace. Then
if f,g: X — Y are a pair of maps, a homotopy from f to g relative to Z is a
homotopy H from f to g such that if z € Z, then H(z,t) is independent of ¢.
In other words, points of Z stay where they are. In particular, if f and g are
homotopic relative to Z (we say f ~z g), then

flz =9lz.

Remark 1.1.23. If H is a homotopy from f to g, then H is a homotopy relative
to Z if and only if H factors through the quotient space

Q=XxD/{(zt)=(t)|tt el,ze Z}

(by which we mean there is some H': Q@ — Y such that H = H' 0 q.)

XxI 2oy

[°7

Q

Definition 1.1.24. Let X be a space and A C X a subspace, i: A — X the
inclusion map..

e Aisa retract of X if there exists a continuous map (a retraction) r: X — A
such that r(a) = a for all a € A, that is, ri = id4.

e A is a deformation retract of X if the identity map of X is homotopic rel
A to a retraction r: X — A of X onto A. A deformation retraction is
such a homotopy X x I — X rel A between the identity on X and the
retraction. Since ri = id4 and ir ~ id 4 rel A, we see in particular that A
and X are homotopy equivalent spaces.

Note that a retraction of X onto A is a left inverse to the inclusion of A into
X. A retraction can also be defined as an idempotent map, a map such that
r™ =r for all n > 1.

The subspace A is a deformation retract of X if one of the following equiv-
alent conditions hold

e there exists a map, the deformation retraction, R: X x I — X such that
R(z,0) =z and R(z,1) € A for all x € X while R(a,t) = a for all a € A,
tel,

e there exists a map r: X — A such that ri = idy and ir ~ idx rel A
(where i is the inclusion map).



1.1. MOTIVATION 7

Proposition 1.1.25. Let X be a space and A C X a subspace. Then the
following holds.

1. A is a retract of X & Any map on A extends to X

2. A is a deformation retract of X < Any map on A extends uniquely up to
homotopy relative to A to X

Proof. First assertion:

= : Let r: X — A be a retraction of X onto A. If f: A — Y is a map defined
on A then fr: X — Y is an extension of f to X.

< : The identity map of A extends to a map r: X — A defined on X.

Second assertion:

= : Let r: X — A be aretraction of X onto A such that ri = id4 and ir ~ idx
rel A. Let f: A — Y be a map defined on A. Since A is a retract of X, f
extends to X. Suppose that fy, f1: X — Y are two extensions of f. Then
fo = fooidx =~ foir rel A and fi = f1 oidx =~ frir rel A. As foi = f11, this
says that fo ~ f1 rel A.

< : The identity map of A extends to a map r: X — A defined on X and
ir ~ idx rel A as both ¢r and idx are extensions of the inclusion of A into
X. O

The following diagrammes epitomises the difference between a retract and a
deformation retract.

Retract: Deformation retract:
T rizida 4 T ri=ida ff
X X X

wr~idx rel A

We already noted that if A is a deformation retract of X, then the inclusion
of A into X is a homotopy equivalence. The converse does not hold in general.
If the inclusion map is a homotopy equivalence, there exists a map r: X — A
such that i ~ id4 and ir ~ idx but r may not fix the points of A and, even
if it does, the points in A may not be fixed under the homotopy from ri to the
identity of A. Surprisingly enough, however, the converse does hold if the pair
(X, A) has a sufficiently nice property (see §1.4.)

Ezample 1.1.26. S? is a retract of S? V S! and a deformation retract of S? Vv I.

Any retract A of a Hausdorff space X is closed for A = {x € X|r(z) = «} is
the equaliser of two continuous maps.

If A is a deformation retract of X, then the inclusion map i: A — X is a
homotopy equivalence. Conversely, if the inclusion map is a homotopy equiva-
lence, there exists a map r: X — A such that ri ~ id4 and ir ~ idx. This is
not quite the same as saying that A is a deformation retract of X since r may
not fix the points of A and, even if it does, the points in A may not be fixed



8 CHAPTER 1. HOMOTOPY THEORY I

under the homotopy from i to the identity of A. However, surprisingly enough,
the converse does hold if the pair (X, A) is sufficiently well behaved, namely, a
cofibration (Proposition ?7?).

Definition 1.1.27. Let X be a topological space and let zy € X be a point.
Then the fundamental group of X based at xq, denoted 71 (X, xg), is the set

{p: I — X|p(0) = p(1) = z0}/{homotopy relative to I = {0,1}}

Remark 1.1.28. As we know from our study of quotient spaces, a map from [
which sends 0 and 1 to the same point is the same as a map from S', so we
could also formulate the definition in those terms. However, it will be useful to
us to think of these elements as maps from the interval.

1.2 Construction of Spaces

Mapping cylinder and mapping cone

We introduce constructions called mapping cylinder and mapping cone which
are extensively used in algebraic topology.

Definition 1.2.1. The mapping cylinder M of a continuous function f between
topological spaces X and Y is the quotient

My = (I x X)[]Y)/ ~

where the [] denotes the disjoint union, and ~ is the equivalence relation gen-
erated by

(0,z) ~ f(xr) foreach ze€ X.

That is, the mapping cylinder M/ is obtained by gluing one end of X x I to Y’
via the map f. Notice that the “top” of the cylinder {1} x X X is homeomorphic
to X, while the “bottom” is the space f(X) C Y. Sometimes we write M f for
My, and to use the notation Ly or Uy for the mapping cylinder construction.
That is, one writes

Mf=IxX)UsY
with the subscripted cup symbol denoting the equivalence.

Note that the mapping cylinder deformation retracts onto its subspace Y.
(Set r(z,t) = f(z) forx € X, t €I, and r(y) =y foryeY.)

The mapping cylinder may be viewed as a way to replace an arbitrary map
by an equivalent cofibration (see §77?), in the following sense: Given a map
f: X — Y, the mapping cylinder is a space M¢, together with a cofibration
f: X — M/ and a surjective homotopy equivalence My — Y (indeed, Y is a
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Figure 1.1: A mapping cylinder

deformation retract of My, such that the composition X — My — Y equals f.

Thus the space Y gets replaced with a homotopy equivalent space M, and the
map f with a lifted map f. Equivalently, the diagram

f: X—=Y
gets replaced with a diagram
[ X = My

together with a homotopy equivalence between them.

The construction serves to replace any map of topological spaces by a ho-
motopy equivalent cofibration. Note that pointwise, a cofibration is a closed
inclusion.

The construction of a mapping cylinder My of a continuous map f: X — Y
is an example of the coarse type of gluing and pasting constructions we are
allowed to do once we go beyond manifolds. In this section we will introduce
more such constructions, and introduce a class of spaces which is very convenient
for algebraic topology.

Definition 1.2.2. Given a map f: X — Y, the mapping cone Cy is defined to
be the quotient space of the mapping cylinder (X x I)U; Y with respect to the
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equivalence relation Vz,z’ € X, (z,0) ~ (2/,0), (z,1) ~ f(z). Here I denotes
the unit interval [0, 1] with its standard topology. Note that some authors (like
J. Peter May) use the opposite convention, switching 0 and 1.

‘\\ o
A0S

Figure 1.2: A mapping cone

Visually, one takes the cone on X (the cylinder X x I with one end (the 0
end) identified to a point), and glues the other end onto Y via the map f (the
identification of the 1 end).

There is a sequence of maps (called “Puppe sequence”)

S
XLy 5o 8x 28y 5 Cy, — SSX -

where the map Cy — SX is collapse of Y C Cy.

Proposition 1.2.3. Any map factors as an inclusion map followed by a homo-
topy equivalence.

Proof. For any map f: X — Y there is a commutative diagramme using the
mapping cylinder
My

z—(z,1)
/Zi(rvt)Hf(m)
X——Y
f
where the slanted map is an inclusion map and the vertical map is a homotopy
equivalence (the target is deformation retract of the mapping cylinder). O

Ezample 1.2.4. (Wedge sum and smash product of pointed spaces) Let (X, zg)
and (Y, o) be pointed spaces. The wedge sum and the smash product of X and
Y are

XVY =X x{ylUf{ag} xY CXxY, XAY =(XxY)/(XVY)

The reduced suspension of the pointed space (X, x) is the smash product
YN X=XAS'=XAI/OI) = (X xI)/(X x 9T Uzq x I)

of X and a pointed circle (S*,1) = (1/01,01/91I).
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Ezample 1.2.5. (The mapping cylinder for the degree n map on the circle) Let
n > 0 and let f: S' — S! be the map f(z) = 2" where we think of the circle
as the complex numbers of modulus 1. Let C,, = (t|t") be the cyclic group of
order En. The mapping cylinder My of f is quotient space of \/, I) x I by the
equivalence relation ~ that identifies (s,z,0) ~ (st,z,1) for all s € Cy,, x € I.

Ezample 1.2.6. (Adjunction spaces) Let X and Y be two disjoint topological
spaces and f: A — Y a continuous map defined on a closed subspace A of X.
Define X Uy Y to be the quotient of X ITI'Y (disjoint union) by the smallest
equivalence relation such that a € A and f(a) € Y are equivalent for all points
a € A. (To picture this, tie an elastic band from each point a of A to its image
f(a) in Y and let go!) The equivalence classes, [y] = f~!(y) U{y} for y € Y
and [z] = {z} for z € X \ A, are represented by points in Y or in X \ A. Let
p: XII'Y — X Uy Y be the quotient map; px the restriction of p to X and py
the restriction of p to Y.
The adjunction space X Uy Y fits into a commutative diagramme

)]: J»

4>XUfY

called a push-out diagramme because of this universal property: If X — Z and
Y — Z are continuous maps that agree on A then there is a unique continuous
map X Uy Y — Z such that the diagram

;E A

4>XUfY

Z

commutes. (This is just the universal property for quotient spaces in this par-
ticular situation.)

Here are the main properties of adjunction spaces.
Lemma 1.2.7. Let p: XIIY — X Ur Y be the quotient map.

(1) The quotient map p embeds Y into a closed subspace of X Uy Y. (We
therefore identify Y with its image py (Y') in the adjunction space.)

(2) The quotient map p embeds X \ A into the open subspace (X Uy Y)\Y of
the adjunction space.

(8) If X and Y are normal, also the adjunction space X Uy Y is normal.
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(4) The projection map p: XI1Y — X sup; Y is closed if and only if f is closed.

Proof. (1): The map py =p|ly: Y — X U; Y is closed for closed sets B CY C
X 1Y have closed saturations f~*(B) II B. Since py is also injective it is an
embedding.

(2) The map px|x\a: X \ A — (X U;Y) is open because the saturation of any
(open) subset U of X\ Ais UU@ C X UY itself. Since px|x\ 4 is also injective
it is an embedding.

(3): Points are closed in the quotient space X Uy Y because the equivalence
classes are closed in X UY. Let C' and D be two disjoint closed subspaces of
X UyY. We will show that there is a continuous map X Uy Y — [0, 1] with value
0 on C' and value 1 on D. Since Y is normal, there exists a Urysohn function
g:Y — [0,1] such that g(Y capC) = {0} and g(Y N D) = {1}. Since X is
normal, by the Tietze extension theorem, there is a continuous map X — [0, 1]
which is 0 on p;(l (C),1lon p;{l (D), and is go f on A. By the universal property
for adjunction spaces (2), there is a map X Uy Y — [0, 1] that is 0 on C and 1
on D. This shows that C' and D can be separated by a continuous function and
that X Uy Y is normal.

(4): Closed subsets of Y always have closed saturations as we saw in item (1).
If £ is closed then also the saturation, BU f~'f(ANB)U f(ANB) C XUY, of
a closed subset B C X is closed. (Since closed quotient maps (surjective closed
maps) preserve normality, this gives an easy proof of (3) under the additional
assumption that f: A — Y be a closed map.) O

1.3 CW Complexes

CW complexes: construction

A CW compler, is a topological space constructed from disks (called cells), step
by step increasing in dimension. The basic procedure in the construction is
called “attaching an n-cell”. An n-cell is the interior €™ of a closed disk D" of
dimension n. How to attach it to a space X? Simply glue D™ to X with a
continuous map ¢: S*! — X, forming:

XuD"/{x ~¢(z):xe€dD"}.

The result is a topological space (with the quotient topology), but as a set, is
the disjoint union X U e”.

The attaching process can be expressed more formally (pedantically?) as
follows:
Let X be a space and ¢: I1S?~! — X a map from a disjoint union of spheres
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into X. The adjunction space (= the mapping cone on ¢)
_ ¢
1 X

|

[Toz ?XU¢HDZ

is called the n-cellular extension of X with attaching map ¢ and characteristic
map ¢.

Building a cell complex X A CW-complex is a space X with a sequence of
subspaces (called skeleta)

g=X'cX'cXx'c...cXx"lcX"=X=uUXx"
constructed in the following way:
e Start with a discrete set X°, whose points we view as 0-cells.

e Inductively form the n-skeleton X" from X"~! by attaching a set of n-
cells {e"} to X"~ 1. L.e, X" is (homeomorphic to) an n-cellular extension
of X™ ! for n > 1.

e Fither set X = X" for some n < oo, or set X = U, X", where in the
infinite case we use the weak topology. l.e, the topology on X is coherent
with the filtration in the sense that

A is closed (open) in X <& AN X" is closed (open) in X™ for all n

for any subset A of X.

The second item of the definition means that for every n > 0 there are attaching
maps o : S""1 — X" ! and characteristic maps ®,: D* — X" such that

e The n-skeleton
xm=x""tuy oz

is the n-cellular extension of the (n — 1)-skeleton by the attaching maps.

e The complement in the n-skeleton of the (n — 1)-skeleton,
X\ xm = [ en A2 [ intDn

is the disjoint union of its connected components e = @, (int D"), the
open n-cells of X. An open n-cell is open in X™ but maybe not in X.
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e A CW-complex is the disjoint union

X = G Xn = G(X”\X"‘l) = ]Oj[]_[eg
n=-—1 n=0 n=0 o

of its open cells. This is a disjoint union of sets (but usually not of topo-
logical spaces).

e The quotient of the n-skeleton by the (n — 1)-skeleton,

Xn/anl — \/(Dn/Snfl) _ \/Sn

(0%
is a wedge sum (or bouquet) of n-spheres.

X' is a topological space since it is a l-cellular extension of the topological
space X°. In fact, all the skeleta X™ are topological spaces and X* is a closed
subspace of X7 for i < j. The purpose of the third item of the definition is
to equip the union of all the skeleta with the largest topology making all the
inclusions continuous.

A CW-complex X is finite-dimensional if X = X" for some n Caveat: CW-
decompositions are not unique; there are generally many CW-decompositions
of a given space X. We will see S? has two distinct CW-decompositions.

Ezample 1.3.1. The 1-skeleton of a cell complex is a graph, and may have loops.

Ezample 1.3.2. (Compact surfaces as CW-complexes)

M, = My#M, N3 = Ni#N1#N,

M, — int(D?)

(o)W — TN

M, — int(D?)

Figure 1.3: Surfaces as CW-complexes

The closed orientable surface M, = (S* x S1)# - -+ #(S! x S?) of genus g > 1
is a CW-complex
Mg = \/ S¢11i V Sy, Ul[as,b:] D?

1<i<g
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a2

as)\ \ay az)|

ay

Figure 1.4: Two representations of the Klein bottle N,

with a single O-cell, 2¢g 1-cells, and a single 2-cell (see the left side of Figure 1.3).

One sees immediately from this representation that to puncture such a sur-
face at a single point would render it homotopy equivalent to a “wedge” of 2g
circles, i.e. the disjoint union of 2¢ circles where 2¢g points, one from each circle,
are identified.

The closed nonorientable surface N, = RP?# --- #RP? of genus h > 1 is a
CW-complex

Ny= \/ Si, UpaD?
1<i<h

with a single 0O-cell, g 1-cells, and a single 2-cell. (See Fiure 1.4 for g = 2.)

Ezample 1.3.3. (Spheres as CW-complexes: 1) The n-sphere S” may be ex-
pressed as a cell complex with a single 0-cell and a single n-cell. So S* = e%Lie™.

Ezample 1.3.4. (Spheres as CW-complexes: 2) There is another way of decom-
posing n-sphere into a CW-complex: we can think S” an be obtained from S*~!
by attaching two n-cells (the Northern and Southern hemispheres) as follows:

Points on the n-sphere S* C R"*! = R™ x R have coordinates of the form (x,u).
Let D} be the images of the embeddings D" — S": z — (z,++/1 — |z|?). Then

Sn == Sn_l U ID)T_:_ U DT_L == Sn_l UidHid (Dn H]D)n)
is obtained from S™"~! by attaching two n-cells. Thus S" is a finite CW-complex

with two cells in each dimension 0 through n.
The infinite sphere S is an infinite dimensional CW-complex

SOCSlc---cS”‘lcS"c-ucSOO:US”
n=0
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with two cells in each dimension. A subspace A of S is closed if and only if
ANS" is closed in S™ for all n.

Ezample 1.3.5. (Projective spaces as CW-complexes) The projective spaces are
RP™ = S(R**1)/S(R), CP" = S(C"*!) = S(C), and HP™ = S(H"!) = S(H).
In each case there are maps

> (z,4/1—|z|?)
= S

D" = D(R") (R"!) = §"H B RP"
D2 — D x»—)(r,:_>/1 —|=|2) S((C”'H) _ gt Pn opn
s (20T ]?) .
D = ") % SEPHY) = st B gpn

We note that each map D(F") — S(F"*!) - FP" is

e surjective,

e restricts to the projection p,_1: S(F") — FP"~! on the boundary S(F")
of the disc D(F™),

e injective on the interior D(F™) \ S(F™) of the disc,

where F = R, C,H. To prove the first item observe that any point in projec-
tive space is represented by a point on the sphere with last coordinate > O.
This means that RP" consists of RP"~! together with the n-disc D(R™) with
identifications on the boundary. In other words

RP" =RP" 'y, _, D", CP"=CP" 'y,  ,D**, HP"=HP" 'y, ,D*.

Consequently, RP" is a finite CW-complex with one cell in every dimension
between 0 and n, CP™ is a finite CW-complex with one cell in every even
dimension between 0 and 2n, HP" is a finite CW-complex with one cell in every
dimension divisible by 4 between 0 and 4n,

In particular, RP? = %, CP° = %, HP® = %, and RP! = S', CP! = S?, HP'! =
S*. The Hopf maps are the projection maps

SO st L RPL =S S'»sP P cPl=8?, §P ST P HP =S4
(1.3.6)
obtained when n = 1.

Definition 1.3.7. Let A be any topological space. A relative CW-complezx on
A is a space X with an ascending filtration of subspaces (called skeleta)

A=X""CX"C X'subset--- C X" CcX"C--Cc X=X
such that
e XY is the union of A and a discrete set of points,
e X" is (homeomorphic to) an n-cellular extension of X"~! for n > 1,

e the topology on X is coherent with the filtration in the sense that B is
closed (open) in X < BN X" is closed (open) in X™ for all n for any
subset B of X.
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Topological properties of CW-complexes.

We shall see that CW-complexes have convenient topological properties.

Proposition 1.3.8. Any CW-complez is a Hausdorff, even normal, topological
space.

Proof. See Lemma 1.2.7. O

Lemma 1.3.9. The closure of the open n-cell et = @, (int D") is e = &, (D™).

Proof. The image ®,(D™) of the compact space D™) is compact and therefore
closed in the Hausdorff space X. Thus e C ®,(D™). On the other hand, we
have

D,(D") = P, (D" \ S~ 1) C P, (D" \ SP—1) =€l
simply because @, is continuous. O

Proposition 1.3.10. Any compact subspace of a CW-complex X is contained
in a skeleton.

Proof. Let X be a CW-complex and C' a compact subspace of X. Choose a
point ¢, in C'N(X™\ X"~ 1) for all n where this intersection is nonempty. Let
T = {t,} be the subspace of these points. For all n, T'N X™ is finite and hence
closed in X since points are closed in X (Proposition 1.3.8). Thus T is closed
since X has the coherent topology. In fact, any subspace of T is closed by
the same argument. In other words, T' has the discrete topology. As a closed
subspace of the compact space C, T'is compact. Thus T is compact and discrete.
Then T is finite. O

Subcomplexes.

We define what we mean by a subcomplez.

Definition 1.3.11. A subcomplex of a CW-complex is a closed subspace that
is a union of open cells.

If A is subcomplex then the closure of any open cell in A is still in A since
A is closed.
If A is a subcomplex of the CW-complex X then

e Ais a CW-complex with n-skeleton A™ = AN X",

e (X, A) is a relative CW-complex,

¢ (X, A) has the homotopy extension property (see Section 1.4),

e X/Ais a CW-complex and the quotient map X — X/A is cellular.
Example 1.3.12. The n-skeleton of X is always a subcomplex of X.

Consider X = S' v §? as a CW-complex with one O-cell, one 1-cell, and one
2-cell attached at a point different from the 0-cell. Then closed subspace S! is
subcomplex of X. The closed subspace S? is not a subcomplex since it is not
the union of open cells.
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Products of CW-complexes.

We shall now discuss the product of two CW-complexes. A slight complication
will arise because product topologies and infinite union (= colimit) topologies
do not in general commute.

Definition 1.3.13. Let (X, A) and (Y, B) be two CW pairs — a CW pair is
(CW complex, its subcomplex). The product of two pairs is defined as

(X,A)x (V,B)= (X xY,AxYUX x B)
where (X xY)\(AxYUX xB)=(X\A4) x(Y\B).
For example, if 1™ is the unit cube in R™ then clearly
(I",0I™) = (I',0I") x (I’,017)

whenever i, j > 0 and i + j = n. Since (D",S"~1) and (I, dI™) are homeomor-
phic pairs, we have just seen that

(D", 8" = (D', §"71) x (D7, §77)

where i,7 > 0 and ¢ + 7 = n and the equality sign means that the two sides
are homeomorphic. We make this observation because by convention we build
CW-complexes from discs rather than cubes.

Let X = AU, DY, Y = B Uy DY, be an i-cellular and a j-cellular extension
with characteristic maps ®: (D¢, S"71) — (X, A), ¥: (D’,S~1) — (Y, B) and
open cells ¢! = X \ A and f/ =Y \ B. The product X x Y is an (i + j)-cellular
extension (see below Definition 1.3.14)

X XY =(AXYUX X B)U@xw),,,_, (D' xD)
with one open cell
XxY\(AxYUXxB)=(X\A) x(Y\B)=¢"x fJ

which is the product of the open cells in X and Y.
The characteristic map of X x Y is the product

d x U: (D, S x (D7, 871 — (X, A) x (Y, B)
of the characteristic maps and the attaching map

(® X U)|gits1: D' x 9T USTEx D) 5 X x BUAXY

is the restriction of ® x ¥ to the sphere ST7—1 =D x I~ USI—1 x DI,

Definition 1.3.14. Let X and Y be CW-complexes with characteristic maps
D, (DY, S — (X4 X1 and @5: (D7, S971) — (Y7, Y1), The product
CW-complex has n-skeleton

(X xow Y)" = U Xt xYd
i+j=n
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The characteristic maps for the n-cells are products of characteristic maps
B, x g (DF, ST x (D7, S97) — (X4 X7H) x (Y3, v
C ((X xow Y)", (X xow Y)" )

for all 7,7 > 0 and 7 + j = n. The attaching maps for the n-cells are the
restrictions

D x STTPUSTEx D = (X x YT UXTExY) (X x YY)t

of the characteristic maps. (X Xcw Y) has the topology coherent with the
skeleta.

}/5
(X xow V)" — (X xow Y)*
})4
})3
y2 -
yz_yl! i
yrd-—--oome - To--oi
[P
A
Yo Cb
P
18

Figure 1.5: Skeleta in product CW complex

There is a commutative diagram

, . incl I [J(®¢, x % %)
(X xew V)" 111 [ (D}, x D)) ————" (X xcw Y)"

it+j=n 7

|

(X xew Y)"'u, ] (D x DY)

it+j=n

The horizontal map is closed and the slanted map, produced by the universal
property, is a homeomorphism (because it is a closed continuous bijection).
This shows that (X xcw Y)" is an n-cellular extension of (X xcw Y )"~ !. Thus
X Xow Y is a CW-complex. The open n-cells of the product CW-complex,

(X xew Y)" V(X xew V)"l = T (X \ X7 x (Y7 \ Y9

i+j=n

I (H@ZX];M): I eaxrs

itj=n \ « i+j=n,a,B
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are the products of the open cells e!, in X with the open cells fg, in Y for all
1,7 > 0 with i + 5 = n.

The topology on X Xcw Y, defined to be the topology coherent with the
ascending skeletal filtration, is finer than the product topology. We cite, but
will not prove, the following;:

Theorem 1.3.15. There is a bijective continuous map X Xcw Y — X x Y.
This map is a homeomorphism if X and Y have countably many cells.

A proof can be found in the appendix of Hatcher “Algebraic Topology”.
In all cases relevant for us, X xcw Y and X x Y are homeomorphic.

1.4 The Homotopy Extension Property

The Homotopy Extension Property will be very important to algebraic topology.

Definition 1.4.1. Let X be a space with a subspace A C X. The pair (X, A)
has the Homotopy Eztension Property (HEP for short) if any partial homotopy
AxI — Y of amap X — Y into any space Y can be extended to a (full)
homotopy of the map. That is, if it is always possible to complete the diagramme

Xx{O}UAxI—;Y

XxI
for any space Y and any partial homotopy of a map X — Y.

The pair (X, @) always has the HEP. A nondegenerate base point is a point
xo € X such that (X, {zo}) has the HEP.

Proposition 1.4.2. Let X be a space and A C X be a subspace. The following
three conditions are equivalent

(1) (X, A) has the HEP.
(2) The partial cylinder X x {0} U A x I is a retract of the cylinder X x I.

(8) The partial cylinder X x {0} UA x I is a deformation retract of the cylinder
X x 1.

Proof. If (X, A) has the HEP then the identity map of the partial cylinder
X x {0} U A x I extends to a retraction of the cylinder X x I onto the partial
cylinder. Conversely, if the inclusion of the partial cylinder into the cylinder
has a left inverse r then it is very easy

Xx{0}UAxI L~y
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to find an extension of any partial homotopy h. This shows that (1) < (2).

It is clear that (3 = (2).

To prove that (2 = (3) let r: X x I — X x {0} U A x I be a retraction. Define
a homotopy H: X x I xI — X x I by

H(z,t,s) = (mr(z, st), (1 — s)t + mar(x, t))

where X <% X x I ™% X x I are the projections. Then H(z,t,0) = (x,t),
H(z,1) = r(z,t), H(z,0,8) = (x,0), and H(a,t,s) = (a,t) for all a € A. Thus
H is a deformation retraction of the cylinder X x I onto the partial cylinder
X x{0}UAXxI. O

What is the HEP good for?
The next theorem explains what the HEP can do for you.

Theorem 1.4.3. Suppose that (X, A) has the HEP.
(1) If the inclusion map has a homotopy left inverse then A is a retract of X.

(2) If the inclusion map is a homotopy equivalence then A is a deformation
retract of X.

(8) If A is contractible then the quotient map X — X/A is a homotopy equiva-
lence.

(4) The homotopy type of the adjunction space Y U, X only depends on the
homotopy class of the attaching map ¢: A —'Y for any space Y and any
map p: A —Y.

Proof. (1): Assume that r: X — A is a map such that ri ~ id4. We must
change r on A so that it actually fixes points of A. There is a map X x {0} U
A x I — A which on X x {0} is 7 and on A x I is a homotopy from ri to the
identity of A. Using the HEP we may complete the commutative diagramme

rUri~id 4

X x{0JUAXxI A

XxI

and get a homotopy h: X x I — A. The end-value of this homotopy is a map
hi: X — A such that hyi =id4 (a retract).

(2): Let i: A — X be the inclusion map. The assumption is that there exists a
map 7: X — A such that ri ~ id4 and ir ~ idx. By point (1) we can assume
that i =idy4, i. e, that A is a retract of X. Let G: X x I — X be a homotopy
with start value Gy = idx and end value G; = ir. For a € A, G(a,0) = a and
G(a,1) = a but we have no control of G(a,t) when 0 < t < 1. We want to modify
G into a deformation retraction, that is a homotopy from idx to ir relative to
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A. Since (X, A) has the HEP so does (X, A) x (I,0I) = (X xI,AxITUX x9I)
(Proposition 1.4.12, (3)). Let H: X xIxI — X xI be an extension (a homotopy
of homotopies) of the map X x I x {0} UA x I x TUX x 9I x I given by

H(z,t,0) = G(x,1),

H(a,t,s) = G(a,t(1 —s)) for a€ A,
H(z,0,8) =,

H(x,1,s) = G(ir(xz),1 —s).

Note that H is well-defined since the first line, H(z,1,0) = G(x,1) = ir(z), and
the fourth line, H(z,1,0) = G(ir(x),1) = irir(x) = ir(x), yield the same result.
The end value of H: (x,t) — H(x,t,1), is a homotopy rel A of H(z,0,1) = x
to H(z,1,1) = G(ir(x),0) = ir(z). This is a homotopy rel A since H(a,t,1) =
G(a,0) = a for all a € A.

(3): We need to show that there is a homotopy inverse to the projection map
¢: X — X/A and this is more or less the same thing as a homotopy X x I — X
from the identity to a map that collapses A inside A. Note that we can get such
a homotopy precisely because of the HEP! (In fact, this could be used as the
motivation for HEP.) Let C: AxI — A C X be a contraction of A, a homotopy
of the identity map to a constant map. Use the HEP to extend the contraction
of A and the identity on X

X x {0}UAx 2 X

XxT

to a homotopy h: X x I — X such that hg is the identity map of X, h; sends A
to A for all ¢ € I, and hy sends A to a point of A. By the universal property of
quotient maps, the homotopy h induces a homotopy h and the map hq induces
a map hj such that the following diagramme commutes.

X x {0}UAx [0
XxI—I X ho =idx, hi(A) ==
qudIl lq
(X/A) x I X/A ho =idx/a, () =x*

Note that the product map ¢ x idx: X x I — (X/A) x I is quotient since [ is
locally compact Hausdorff.) Since h; takes A to a point, it factors through the
quotient space X/A. The lower square considered only at time ¢ = 1 can be
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enlarged to a commutative diagramme

h1

X X hiqg = hy ~ hy = idx
l 71/1 l
q q
X/A—— X/A ghi =Ty ~ ho = idx/a
1

with a diagonal map El - and this is the homotopy inverse to ¢ that we are
looking for!

(4): Let po: A — Y and p1: A — Y be two attaching maps. Suppose that
p: AxI — Y is a homotopy from ¢ to ¢1. We want to show that Y U,, X and
Y U,, X are homotopy equivalent. The point is that both Y U,, X and Y U,, X
are deformation retracts of Y U, (X x I). We get the deformation retractions
of YU, (X x I)onto Y Uy, X or Y U,, X from the deformation retractions of
Proposition 1.4.2 (3) of X x I onto A x TUX x {0} or A x TUX x {1}. The
idea behind the proof is indicated in Figure 1.6. We intend to show that the

X x {1}
VoA I

Figure 1.6: A deformation retraction YU, (X xI)xI — Uy, (X xI) of YU, (X xTI)
onto Y Uy, (X x I)

inclusions
YUp X = YUy (X X{0UAXT) C YU,H(X XI) D YUy, (X x{0}UAXI) =Y U, X

are homotopy equivalences. (The equality signs are there because all points of
A x I have been identified to points in Y.) The left inclusion is a homotopy
equivalence because the subspace is a deformation retract of the big space. The
deformation retraction i of YU, (X x I) onto Y U, X is induced by the universal
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property of adjunction spaces as in the diagramme

AxT ! Y

N
k /
f)(id[

AXIX] ——->Y x1I

incl indj l

XXIXxI—=YU, (X xI)xI

N
X xI Y U, (X x1I)

from a deformation retraction h: X xI'xI — X xT of X x I onto X x{0}UAXT
(Proposition 1.4.2 (3)). Here, the outer square is the push-out diagram for
Y U, (X x I) and the inner square is just this diagramme crossed with the unit
interval. The homotopy h: X x I x I — X x I starts as the identity map, is
constant on the subspace X x {0} UA x I C X x I, and ends as a retraction of
X x I onto this subspace. The induced homotopy

h:Y Uy, (X xI)xI—=Y Uy, (X xI)
starts as the identity map, is constant on the subspace
YU, (X x{0jUAXI)=Y U, X,

and ends as a retraction onto this subspace. We conclude that YU, X deforma-
tion retracts onto its subspace Y U,, X. Similarly, YU, X deformation retracts
onto its subspace Y U, X. Thus YU,, X and Y U,, X are homotopy equivalent
spaces. (Note that we proved this by construction a zig-zag

Y Ugy X 5 Y Uy (X X I) < Y Uy, X

of homotopy equivalences, not by constructing a direct homotopy equivalence
between the two spaces.) O

Are there any pairs of spaces that have the HEP?

Our work on HEP pairs would be futile if there weren’t any pairs that enjoying
this property. But we shall next see that pairs with the HEP are ubiquitous: It
is difficult, but not impossible, to find a pair that does not have the HEP.

Corollary 1.4.4. The pair (D", S"~ ') has the HEP for all n > 1. In fact,
(CX,X) has the HEP for all spaces X .

Proof. For instance, for n = 1, D! x I C R x I C R? (deformation) retracts onto
D! x {0} US® x I by radial projection from (0,2) as indicated in Picture 1.7: In
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Figure 1.7:

fact, D" x I C R"™ x I C R™™! (deformation) retracts onto D" x {0} C S"~! x I
by a radial projection from (0,...,0,2).

More generally, for any space X, the pair (CX, X) has the HEP because
CX x {0} UX x Iis a retract of CX x I. Picture 1.8 indicates a retraction
R:IxI— {0}UI x {0}, sending all of {1} x I to the point (1,0). The map

Figure 1.8:

idxy xR: X x I x I — X x {0} x TUX x I x {0} factors through

idx xR

XxIxI X x {0} x TUX x I x {0}

| |

(X x I)/(X x {1}) x T =X x {0} x TU (X x I)/(X x {1}) x {0}

to give the required retraction CX x I — X x I UCX x {0}. O

We introduce a terminology to explain the example involving mapping cylin-
der below:

Definition 1.4.5. Given spaces and maps
g f
YA X (1.4.6)

a pushout of 1.4.6 consists of a space P and maps u: X - Pandv:Y — P
such that uf = vg. In addition, we require the following universal property. If
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Z is any space and if r: X — Z and s: Y — Z are maps such that rf = sg,
then there is a unique map t: P — Z such that tu = r and tv = s,

A—f>X
|
Y—>P_

v

We call either P or the triple (P, u,v), the pushout of 1.4.6. The square diagram
above is then called a pushout square.

We show that any two pushouts of 1.4.6 are homeomorphic. Suppose that
(P,u,v) and (P’,u’,v") are both pushouts of 1.4.6. Since P is a pushout, there
is amap t: P — P’ such that tu = v’ and tv = v’. Since P’ is a pushout, there
is a map t': P’ — P such that tv’ = v and t'v' = v. Therefore t'tu = u and
t'tv = v. By the uniqueness of pushout maps, ¢t = idp. Similarly ¢’ = idp:,
and so t is a homeomorphism with inverse t’.

We now show the existence of pushouts.

Proposition 1.4.7. Given 1.4.6, there exists a pushout (P, u,v).

Proof. Consider X V'Y, regarded as a subspace of X x Y, and introduce the
equivalence relation on X VY defined by (f(a),*) ~ (x,g(a)), for every a € A.
Set P=XVY/~ and let ¢: X VY — P be the quotient map. Define v and
v by u = ¢iy and v = iy, where i;: X - X VY and is: Y — X VY are the
two injections. Clearly uf = vg. Now we show that (P,u,v) is a pushout of
1.4.6. If r: XtoZ and s: Y — Z are maps with rf = sg, then there is a map
{r,s}: X VY — Z and

{r:s}(f(a),;x) = rf(a) = sg(a) = {r,s}(x, g(a)).

Thus {r, s} induces t: P — Z such that tu = r and tv = s.

X .
/ i\*\A
A xvy-L =p Lt 27z

2
y ? - .
Y

To prove uniqueness of ¢, let m: P — Z be a map such that mu = r and mv = s.
Then
mqip = mu =r = tu = tqiy,

and similarly, mgqis = tqis. Therefore, mq = tq, and so m = t. O
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Ezample 1.4.8 (Neil Strickland and Charles Rezk). Suppose we have a map
f: X — Y and we form the mapping cylinder M. Then the pair (M, X U
Y') satisfies the homotopy extension property. Equivalently we could find a
retraction of My x I to My x {0} U(XUY) x I.
Solution by Neil Strickland

Let us assume the convention where My is (X x I) UY with (z,0) attached to
f(z). Now My x I = (X x I*)U(Y x I) with (z,0,t) attached to (f(z),t). We
want to retract this onto the space

Q= (M x{0}) U ((X x {1}) UY) xI).

Note that X x {0} x I gets identified with part of ¥ x I and so is contained in
Q. Thus Q = (X x U)U (Y x I), where

U = ({0,1} x I) U (I x {0}),

and again (z,0,t) is attached to (f(z),t). Now let r be a retraction from I x I
onto U, say by radial projection from the point (1/2,1). We can then fit 1 x
r: X x I? = X x U together with the identity map on Y x I to get the required
retraction of My x I onto Q.

Solution by Charles Rezk

It may be useful to note that you can obtain results like this from a combi-
nation of some “easier” facts:

e The pair (I,{0,1}) has the HEP.

e If (L, K) has the HEP where K and L are locally compact Hausdorf, and
if Z is any space, then (Z x L, Z x K) has the HEP.

e If (U, A) has the HEP, and g: A — B is any map, then (V, B) has the
HEP, where V is the pushout of U along g.

Apply the second one with (L, K) = (1,{0,1}) and note that M can be ob-
tained from X [[Y by gluing it to a copy of X x I along X x {0,1}.

Proposition 1.4.9. If (X, A) has the HEP and X is Hausdorff, then A is a
closed subspace of X.

Proof. X x {0} C A xIis a closed subspace of X x I since it is a retract. Now
look at X at level % inside the cylinder X x I. O

See Ronald Brown, ‘Topology and Groupoids” for more (either necessary or
sufficient) conditions for an inclusion to have the HEP.

Ezample 1.4.10 (A closed subspace that does not have the HEP.). (I, A) where
A={0}U{i|n=1,2,...} does not have the HEP since I x {0} U A x I is not
a retract of I x I.

Indeed, assume that r: I x I — A x I is a retraction. For each n € N, the

map ¢ — r(t x 1), 25 <t < 1, is a path in A from 5 x 1 to & x 1 and its
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image under the retraction, ¢ — r(t x 1), %H <t<
the same two points.
Such a path must pass through all points of

%, is a path in A connecting

1 1
— 0} cIx{0
(03 x {0} C T x {0}
because the projection er([n%_l, < {1 > [n%_l, 1] by connectedness. Thus

there is a point ¢, € (n%_l,%) such that r(t, x 1) € (ﬁ_l,%) x {0}. This
contradicts continuity of r for ¢,, x 1 converges to 0 x 1 and r(¢; x 1) converges
to 0 x 0# (0 x 1).

A similar (but simpler) argument shows that there is no retraction A x I —

A x {0} U{0} x I so that 0 is a “degenerate”’ base point of A.
Ezample 1.4.11. Let Y be the quasi-circle, a closed subspace of R? consisting of

A the segment [—1,1] in the y axis,
B the arc connecting these two pieces,
C' the portion of the graph of y = sin(1/z),

thus Y = AU BUC (see Fiure 1.9.) Induce a map f: W — S! by collapsing

Figure 1.9: A quasi-circle

the interval A = [—~1,1]. Then f does not lift to the covering space R — S!,
even though 1 (W) = 0. (since 71(S*) = Z and 71(C) is trivial) even though A
is contractible.

Indeed, we have a quotient map ¢: ¥ — Y/A by collapsing A to a point,
which we denote by a. Then we have a map g: Y/A — S' by leaving a and
B fixed, and projecting down the graph of sin(1/z) to the z-axis. By doing a
rotation if necessary, we can assume that g(a) = 1 (we are thinking of S! as the
unit circle in C). Then the map f is the composition f = g o q.

_ Let p: R — S! be the usual covering map ¢ — e”, and suppose there is a lift
Y >R
R

7.7 l
. : p

y — =8t
f
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For € > 0, define

U ={yeY :dist(y,A) > e}
Ve={yeY :dist(y,A) < ¢}

That is, U, is an open subset of Y covering almost all of Y, except for avoiding a
e-neighbourhood of A, and V is an e-neighbourhood of A. Note that U, U V5 =
Y. (They do overlap!) Then f(U.) covers almost all of S', and f(V,/2) is a
small neighbourhood of 1.

pf(U) = f(U) = {x € S" : dist(z,1) > ¢}
pf(Vae) = f(Vae) = {z € S' - dist(z, 1) < 2¢}

This says that f(U.) is an interval of length just a bit smaller than 2¢ that

avoids f(a) = 27k, and f(V.) is a small interval containing f(a) = 27k. Since
U, and V5, overlap, the images overlap. Thus the union

FY) = F(U) U F(Var)

is a single open interval of length greater than 27. So there exist o, 5 € f(Y)

such that |a — 8| = 27. Since f(U.) and f(Va.) are both intervals of length less
than 27, @ and § can’t be in the same one. WLOG assume « € f(U) \ f(Vac)
and B8 € f(Vae) \ f(Ue). Then there exist y, € Ue \ Va. and yg € Vi \ U with

f(Ya) = @ and f(ys) = 8. Then

loo — B] = 21 = p(a) = p(B) = pf(ya) = pf(Ys) = f(Ya) = f(yp)

By construction of U, y, € U, implies that y, is not in A. Since f is injective
except for values in A, this implies that y, = yg, which contradicts the fact that

Yo and yg lie in disjoint neighbourhoods of Y. Therefore, no lift fexists.
Proposition 1.4.12. Suppose (X, A) has the HEP.

(1) (transitivity) If Xo C X1 C Xz and both pairs (X2,X1) and (X1, Xo)
have the HEP, then (Xs,Xq) has the HEP. More generally, if X = UX},
has the coherent topology with respect to its subspaces Xg C X7 C --- C

Xi—1 C Xy C --- where each pair of consecutive subspaces has the HEP,
then (X, Xo) has the HEP.

(2) Y x(X,A) = (Y x X,Y x A) has the HEP for all spaces Y.
(3) (X,A) x (I,dI) = (X x I, X x dI U A x I) has the HEP.

(4) (Ysup, X,Y U, A) has the HEP for all spaces Y and all maps w: B =Y
defined on a closed subspace B of A. In particular, (Y U, X,Y) has the
HEP for any attaching map p: A —Y. (See Figure 7.)

(5) The n-cellular extension (Y Uy, [[D",Y) of any space Y has the HEP for
any attaching map p: S"~' =Y.



30 CHAPTER 1. HOMOTOPY THEORY I

X

Figure 1.10: The pair (Y U, X,Y U, A

Proof. (1): In the first case, there are retractions

T‘22X2XI—)X1XIUX2X{O} and
r1: X1 x TU X x {0} = Xg x TUX5 x {0}.

Then 179 is a retraction of X5 x I onto Xy x UX3 x {0}.

V4

Xo X, Xs

X3 x [ retracts onto Xp x I U X5 x {0}

ro: Xox I — Xy xITUX5 X {U}

ri: X1 xITUX9 x {D}*u\"oXIU.\"-gX{O}
ror;: Xox I — XogxITUXg x {U}

Figure 1.11: Retraction of X5 x I onto X x I U X5 x {0}

In the general case, there are retractions
re: X x TUX x {0} = Xj_1 x TUX x {0}.
There is a well-defined retraction
rirg T X X I — Xogx TUX x {0}
that on X, x TU X x {0} is

Tk—1 T2

Xpx TUX x {0} ™ X 1 x TUX x {0} == ... 2
X; x TUX x {0} ™ Xo x TUX x {0}



1.4. THE HOMOTOPY EXTENSION PROPERTY 31

This retraction X x I — Xy x I U X x {0} is continuous because the product
topology on X x I is coherent with the filtration X} x I, k = 0,1,.... (The
reader may want to verify this claim!)

(2): We use Proposition 1.4.2. Let r: X x I — X x I be a retraction onto
X x {0} U A x I. Then the product map idy xr is a retraction of (Y x X) x I
onto (Y x X){0}U (Y x A) x I.

(8): See Dugunji,“Topology” Chapter 7 §5 (p. 330).

(4): We use Proposition 1.4.2 again. Let r: X x I — X x I be a retraction
onto X x {0} U A x I. The universal property of quotient maps provides a
factorisation, idy w7 IIr of idy 7 [[r

idyXI Ir

YIHX)x ] —" ~ (YIIX)x I

qudIi \quidl

YU, X)X I ———— (YU, X) x I

idyX[ 1ir

that is a retraction of ¥ U, X) x I onto Y U, X x {0}Y U, UAX. To prove
continuity, note that the left vertical map is a quotient map since [ is locally
compact Hausdorff. This shows that (Y U, X,Y U, UA) has the HEP. If the
attaching map ¢ is defined on all of A, we have that (Y U, X,Y U, UA) =
(Y Uy, X,Y) so this pair has the HEP.

(YU,D™)xI retracts onto
Y xITu(Y U, D") x {0}

Figure 1.12: Retraction of (Y UD™) x I onto Y x T U (Y UD") x {0}

(5): This is a special case of (4) since (][D",[[S™!) has the HEP (Corollary
1.4.4). O

Corollary 1.4.13. Any relative CW-complex (X, A) (Definition 1.3.7) has the
HEP. In particular, any CW-pair (X, A) has the HEP.
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Proof. There is a filtration of X
A=X'cXcX'c--.cuytcux"c.-cX

where X™, n > 0, is obtained from A U X"~ ! by attaching n-cells. Since
a cellular extension has the HEP, transitivity (Proposition 1.4.12 (1)) implies
that also (X, A) has the HEP. O

Ezample 1.4.14. (S* is contractible.) Choose * = 1 as the base-point of R D
S° ¢ S!. Let ]D)’_fr1 denote the upper half of St = D"y ]D)TLl. Since the
base point {*} is a deformation retract of the disc D"*! there is a homotopy

n n+1

R":§" X | ——, ——
{n—&—l’n—i—?

} — SnHt
from the inclusion map of S™ into S”*! to the constant map S® — * and this
homotopy is relative to the base point {*}. Since (S, S°) has the HEP, the

Figure 1.13: Inclusion S" to S**+!

partial homotopy R%: S x [0,1/2] — S! extends to a homotopy S! x [0,1/2] —
S!, relative to the base point, from the identity map of S! to some map fi: :
S'toS' that sends S° to .

Since (S?,S') has the HEP, the homotopy

St x [1/2,2/3] = S*  (a,t) = RY(f1(x),1),

which is constant on S° x [1/2,2/3], combined with the already constructed
homotopy S! x [0,1/2] — S! and the identity on S? x {0}, extends to a homotopy
S? x [0,2/3] — S?, constant on S' x [1/2,2/3], from the identity map of S? to
some map fo: S? — S? that sends S' to *.

Continue like this and get a homotopy S x [0,1] — S°°, from the identity
to the constant map relative to the base point.

Figure 1.14 shows the beginning of a homotopy S x I — S rel x between
the identity map and the constant map. It is continuous because the area
where it is constant (indicated by the dotted lines) gets larger and larger as we
approach S x {1}.
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3/4 :
¥ RY(fa(z),1)
2/3 5 :
“ RU(fi2),t)
1/2 d
RO(z,1) HEP HEP
® 50 51 52

Figure 1.14: S*° is contractible.

In the above example we actually proved the following:

Proposition 1.4.15. Let X be a CW-complex with skeleta X,, n > 0, and
base point x € Xo. If all the inclusions X" — X" are homotopic rel * to the
constant map *, then the identity map of X is homotopic rel x to the constant
map * and X is contractible.

Exercise 1.4.16. The Dunce hat is the quotient of the of the 2-simplex by the
identifications indicated in Fig 1.15. Then the Dunce hat is contractible, in fact,
homotopy equivalent to D?. Let f: S' — S' be a map from S! to itself. The
cone Cy = My/S' x {1} for f is obtained by pinching the top of the mapping
cylinder to a point. As M; is the cylinder S x [0, 1] with the bottom pasted to
S* by the map f, C; is D? with OD? pasted to S' by the map f. So the dunce
hat is just Cy with f: S* — S! defined as

. 2mi(3t) 0<t<2/3
FE) = oo, s ey
e2mi(2=3) /3 <t < 1.

which is homotopic to the identity by a linear homotopy (note that we make
the choice of f for an easy definition of the homotopy)

" it 7 e27ri(3t(1—s)+st, 0 g t S 2/3
(6 ’S) - 6271-1;[(2—31&)(1—3)+st]7 2/3 <t<1.

So the dunce hat is homotopic to Ciq ~ D? which is contractible.

Example 1.4.17. The unreduced suspension SX and the reduced suspension
> X = 8X/{xo} x I are homotopy equivalent for all CW-complexes X based
at a 0-cell {zo}.
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Figure 1.15: Dunce Hat

Ezample 1.4.18. Homotopic maps have homotopy equivalent mapping cones.
Let f: X — Y be any map. Consider the mapping cone Cy =Y Uy CX of
f. Since the pair (CX, X) has the HEP (1.4.4) we know that

e (C;,Y) has the HEP (Proposition 1.4.12.(4))

e The homotopy type of C; only depends on the homotopy class of f (The-
orem 1.4.3.(4))

We claim that the squaring map
2: 8" - S 22?2 where S'=2€C:|z|=1

is not homotopic to the constant map 0: S! — S!. In fact, Cy = S'U,D? = RP?
and Cy = S' Uy D? = S' V' S? are not homotopy equivalent.

The complex projective plane CP? = §* U, D* is obtained by attaching a
4-cell to the 2-sphere along the Hopf map S* — S? (Example 1.3.5). If the
attaching map were nullhomotopic then CP? would be homotopy equivalent to
S?uU.D*=S?v st

There are methods with which we can show that RP? and S!' v S? are not
homotopy equivalent, and that CP? and S? Vv S* are not homotopy equivalent,
either. Thus the squaring map 2: S' — S' and the Hopf map S? — S? are not
nullhomotopic.

Ezample 1.4.19. The homotopy type of the quotient space X/A:
If (X, A) has the HEP so does the pair (X UCA, C'A) obtained by attaching X
to CA (Proposition 1.4.12(4)). Since the cone CA on A is contractible,

XUCA— XUCA/CA=X/A
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is a homotopy equivalence (Theorem 1.4.3 (3)) between the cone on the inclusion
of A into X and the quotient space X/A. Suppose in addition that the inclusion
map A < X is homotopic to the constant map 0: A — X, i.e, A is contractible
in X. Then there are homotopy equivalences

X/A~XUCA=XU;CA=C;~Cy=XVSA

as the inclusion map and the constant map have homotopy equivalent mapping
cones by Example 1.4.18. For instance, S?/S? ~ S" v §**! for all i < 0 < n.
(The inclusion S* — S™, 0 < i < n, is nullhomotopic since it factors through the
contractible space S™ \ x = R™.) Hatcher Algebraic Topology has an illustration
of §2/S° ~ §2 U CSY ~ §? v St. as in Figure 1.16.

AN
AN

Figure 1.16: S?/SY ~ §? v St

Example 1.4.20. HEP for mapping cylinders:

Let f: X — Y be a map. We apply Proposition 1.4.12 in connection with the

mapping cylinder M; =Y Uy (X x I) and obtain the following:
(I,1) has the HEP "*Z® (X x I X x 0I) has the HEP =™ (

has the HEP,

My, X UY)

(1,{0}) has the HEP "' (X x I, X x {0}) has the HEP 2@ (a1}, v)
has the HEP.

The fact that (M, X UY") has the HEP implies that also (M, X) has the HEP
(simply take a constant homotopy on Y'). See Example 1.4.21 below for another
application.

Example 1.4.21. HEP for subspaces with mapping cylinder neighbourhoods:
For another application of Proposition 1.4.12, suppose that the subspace A C
X has a mapping cylinder neighbourhood. This means that A has a closed
neighbourhood N containing a subspace B (thought of as the boundary of N)
such that N\ B is an open neighbourhood of A and (N.AU B) is homeomorphic
to (My, AU B) for some map f: B — A. Then (X, A) has the HEP.

To see this, let h: X x {0} UA x I — Y be a partial homotopy of a map
X — Y. Extend it to a partial homotopy on X x {0} U (AU B) x I by using
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the constant homotopy on B x I. Since (N, AU B) has the HEP, we can extend
further to a partial homotopy defined on X x {0} U N x I. Finally, extend to
X x I by using a constant homotopy on X \ (N \ B) x I. In this way we get

extension

h Ly

Xx{O}ﬁUAxI
X x{0}U(AUB) x I

')

X x{0}UN x I

X x1

The final map is continuous since it restricts to continuous maps on the closed
subspaces X \ (N \ B) x I and N x I with union X x I.

1.5 Compact-Open Topology

The compact-open topology is a natural topology on mapping spaces of con-
tinuous functions, important because of its role in exhibiting locally compact
topological spaces to be exponentiable, as demonstrated below, culminating in
Theorem 1.5.6.

Let X be a locally compact Hausdorff space, and Y any Hausdorff space.
By YX we mean the set of continuous functions X — Y.

Definition 1.5.1. The compact-open topology on Y X is the topology generated
by the sets M(K,U) = {f € YX|f(K) C U}, where K C X is compact and
U CY is open.

Recall that “generated” here means that these sets form a subbasis for the
open sets. In what follows, unless otherwise noted, Y X will always be given the
compact-open topology.

Lemma 1.5.2. Let K be a collection of compact subsets of X containing a
neighbourhood base at each point of X. Let B be a subbasis for the open sets
of Y. Then the sets M(K,U), for K € K and U € B, form a subbasis for the

compact-open topology.

Proof. Note that M(K,U) N M(K,V) = M(K,U NV), which implies that it
suffices to consider the case in which B is a basis. We need to show that the
indicated sets form a neighbourhood basis at each point f € YX. Thus it suffices
to show that if K’ C X is compact and U C Y is open, and f € M (K,U), then
there exist K1,..., K, € Kand Uy,...,U, € Bsuch that f(z) € UM (K;,U;) C
M(K,U).
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For each z € K, there is an open set U, € B with f(z) € U, C U, and there
exists a K, € K which is a neighbourhood of z such that f(K,) C U,. Thus
feM(K,Uy,).

By the compactness of K there exist points zy, ..., x, such that K C K,, U
-++UK,, . Then f e "\M(K,,,U,,) C M(K,U). O

Proposition 1.5.3. For X locally compact Hausdorff, the “evaluation map”
e: YX x X =Y, defined by e(f,x) = f(x), is continuous.

Proof. If f and x are given, let U be an open neighbourhood of f(x). Since f
is continuous, there is a compact neighbourhood K of x such that f(K) C U.
Thus f € M(K,U) and M (K,U) x K is taken into U by the evaluation e. Since
M(K,U) x K is a neighbourhood of (f,z) in YX x X, we are done. O

Theorem 1.5.4. Let X be locally compact Hausdorff and Y and T arbitrary
Hausdorff spaces. Given a function f: X xT — Y, define, for each t € T, the
function fi: X =Y by fy(x) = f(x,t). Then f is continuous < both of the
following conditions hold:

(a) each f; is continuous; and
(b) the function T — Y taking t to f; is continuous.

Proof. The implication < follows from the fact that f is the composition of the
map X x T — YX x X taking (z,t) to (f;, z) with the evaluation Y x X — Y.

For the implication =, (a) follows from the fact that f; is the composition
X — X xT =Y of the inclusion z — (z,t) with f. To (b), let ¢t € T be given
and let f, € M(K,U). It suffices to show that there exists a neighbourhood W
of t in T such that ' € W = f; € M(K,U). (That is, it suffices to prove the
conditions for continuity for a subbasis only.)

For x € K, there are open neighbourhoods V, C X of x and W, C T of
t such that f(V, x W,) C U. By compactness, K C V,, U---UV, =V
say. Put W =Wx, N---NW,, . Then f(K x W) C f'V x W) C U, so that
t'sinW = f; € M(K,U) as claimed. O

Remark 1.5.5. This theorem implies that a homotopy X xI — Y, with X locally
compact, is the same thing as a path I — Y in Y.

An often used consequence of Theorem 1.5.4 is that in order to show a
function T — Y X to be continuous, it suffices to show that the associated
function X x T'— Y is continuous.

Theorem 1.5.6. (The Exponential Law) Let X and T be locally compact Haus-
dorff spaces and let Y be an arbitrary Hausdorff space. Then there is the home-
omorphism

taking f to f*, where f*(t)(z) = f(z,t) = fi(z).
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Proof. Theorem 1.5.4 says that the assignment f — f* is a bijection. We must
show it and its inverse to be continuous. Let U C Y be open, and K C X,
K’ C T compact. Then

fEMKxK \U)e (te Kz e K= fi(x)= f(z,t) € U)
s (teK = fie M(K,U))
& ffe M(K',M(K,U)).

Now the K x K’ give a neighbourhood basis for X x T'. Therefore the M (K x
K',U) form a subbasis for the topology of Y X*T,

Also, the M (K, U) give a subbasis for Y and therefore the M (K', M (K, U))
give a subbasis for the topology of (Y X)7.

Since these subbases correspond to one another under the exponential cor-
respondence, the theorem is proved. O

Proposition 1.5.7. If X is locally compact Hausdorff andY and W are Haus-
dorff then there is the homeomorphism

YE x wX S (v x )X
given by (f,g) — fxg = (f x g) o diag.

Proof. This is clearly a bijection. If K, K’ € X are compact, and U C Y and
V € W are open then we have
(f.9) € M(K,U) x M(K",V) &
(zeK= f(z)eU) and (zeK' =g)eV)s
(re K= (fxg)(z) eUxW) and (zre K — (fxg)(z) €Y xV) &
(fxg) € M(K,UxW)NM(K')Y xV).
Thus (f,g) — fxg is open.

Also, (f,9) € M(K,U) x M(K,V) < (fxg) € M(K,U x V), which implies
that the function in question is continuous. O

Proposition 1.5.8. If X and T are locally compact Hausdorff spaces and Y is
an arbitrary Hausdorff space then there is the homeomorphism

YT 2oy X oy ™
taking f to (f oidx, f oidy).
Proof. This is an easy exercise left to the reader. O

Theorem 1.5.9. For X locally compact and both X and Y Hausdorff, X is a
covariant functor of Y and a contravariant functor of X.
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Proof. A map ¢: Y — Z induces ¢*: YX — ZX by ¢X(f) = ¢o f. We
must show that ¢~ is continuous. By Theorem 1.5.4 it suffices to show that
YXx X — Z, taking (f, ) to ¢(f(z)), is continuous. But this is the composition
¢ o e of ¢ with the evaluation, which is continuous.

Next, for ¢p: X — T, both spaces locally compact, we must show that
Y¥: YT — YX, taking ¢ to f o), is continuous. It suffices, by Theorem
1.5.4, to show that YT x X — Y, taking (f,z) to f(x(z)) is continuous. But
this is just the composition e o (id xv), which is continuous. O

Corollary 1.5.10. For A C X both locally compact and X, Y Hausdorff, the
restriction YX — Y4 is continuous.

Theorem 1.5.11. For X, Y locally compact, and X, Y, Z Hausdorff, the
function
Z¥ xYX —» 7%

taking (f,g) to f og, is continuous.

Proof. Tt suffices, by Theorem 1.5.4, to show that the function Z¥ x Y X x X —
Z, taking (f,g,2) to (f o g)(x), is continuous. But this is the composition
eo (id xe). O

All of these things, and the ones following, have versions in the pointed
category, the verification of which is trivial.

We finish this section by showing that, for Y metric, the compact-open
topology is identical to a more familiar concept.

Lemma 1.5.12. Let Y be a metric space, let C be a compact subset of Y, and
let U D C be open. Then there is an epsilon > 0 such that B.(C) C U.

Proof. Cover C by a finite number of balls of the form B.(z;)(z;) such that
Bae(x;)(x;) € U. Put € = min(e(x;)). Suppose € B.(C). Then there is a
¢ € C with dist(z,c¢) < e and an 4 such that dist(c,z;) < e(x;). Thus z €
BQE(xi)(xi) cU. [

Theorem 1.5.13. If X is compact Hausdorff and Y is metric then the compact-
open topology is induced by the uniform metric on Y, i.e., the metric given by

dist(f, g) = sup{dist(f(z), g(z))|z € X}.

Proof. For f € YX it suffices to show that a basic neighbourhood of fin each
of these topologies contains a neighbourhood of f in the other topology.
Let € > 0 be given. Let

N = B.(f) = {g € Y¥|dist(f(2),g(x)) < e forall ze X}.

Given z, there is a compact neighbourhood N, of x such that p € N, — f(p) €
Bejo(f(x)). Cover X by N U---UN,,. We claim that

V= M(N117Be/2(f(m1))) n---nN M(Na:kae/2(f(xk))) CN.
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To see this, let g € V, ie., x € N, = g(x) € Bo(f(ci)). But f(z) €
Be/2(f(x;)) and so it follows that g € V' = dist(f(x), g(x)) < € for all . That
is, V.C N.

Conversely, suppose that f € M(K{,U;N---NM(K,,U,), ie, f(K;) CU;
fori =1,...,r. By Lemma 1.5.12, there is an € > 0 such that B.(f(K;)) C U;
forall i =1,...,r. If x € K, then B.(f(x)) C B.(F(K;)) C U;. Therefore, if
g € B.(f) and = € K; then g(z) € B.(f(x)) C U;. Thus g € M(K;,U; for all i
and so Be(f) C NM(K;,U;). O

Corollary 1.5.14. If X is locally compact Hausdorff and Y is metric then the
compact-open topology on YX is the topology of uniform convergence on compact
sets. That is, a net f, € YX converges to f € YX in the compact-open topology
& folk converges uniformly to f|x for each compact set K C X.

Proof. For = recall from Corollary 1.5.10 that YX — YX is continuous. Thus
falz — flx in the compact-open topology. But Y% has the topology of the
uniform metric and so f,|x converges to f|x uniformly.

For <, suppose that f,|x converges uniformly to f|x for each compact
K C X. Let f € M(K,U). Then there exists an € > 0 such that B.(f(K)) C U.
There is an « such that § > a = dist(fg(z), f(z)) < € for all x € K. That is,
fa(z) € BJ(f(K)) C U. Thus f > a = fg € M(X,U). This implies that f,
converges to f in the compact-open topology. O
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2.1 Compactly generated spaces

We briefly describe the category of spaces in which algebraic topologists cus-
tomarily work. The ordinary category of spaces allows pathology that obstructs
a clean development of the foundations. The homotopy and homology groups
of spaces are supported on compact subspaces, and it turns out that if one as-
sumes a separation property that is a little weaker than the Hausdorff property,
then one can refine the point-set topology of spaces to eliminate such pathology
without changing these invariants. We shall leave the proofs to the reader, but
the wise reader will simply take our word for it, at least on a first reading: we
do not want to overemphasise this material, the importance of which can only
become apparent in retrospect.

The definition of compactly generated spaces

We shall understand compact spaces to be both compact and Hausdorff, follow-
ing Bourbaki. A space X is said to be weak Hausdorff if g(K) is closed in X
for every map g: K — X from a compact space K into X. When this holds,
the image g(K) is Hausdorff and is therefore a compact subspace of X. This
separation property lies between T (points are closed) and Hausdorff, but it is
not much weaker than the latter.

A subspace A of X is said to be compactly closed if g=*(A) is closed in
K for any map ¢g: K — X from a compact space K into X. When X is weak
Hausdorff, this holds if and only if the intersection of A with each compact subset
of X is closed. A space X is a k-space if every compactly closed subspace is
closed.

A space X is compactly generated if it is a weak Hausdorff k-space. For
example, any locally compact space and any weak Hausdorff space that satisfies
the first axiom of countability (every point has a countable neighbourhood basis)
is compactly generated. We have expressed the definition in a form that should
make the following statement clear.

41
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Lemma 2.1.1. If X is a compactly generated space and Y is any space, then a
function f: X — Y is continuous if and only if its restriction to each compact
subspace K of X is continuous.

We can make a space X into a k-space by giving it a new topology in which
a space is closed if and only if it is compactly closed in the original topology.
We call the resulting space kX. Clearly the identity function kX — X is
continuous. If X is weak Hausdorff, then so is kX, hence kX is compactly
generated. Moreover, X and kX then have exactly the same compact subsets.

Write X x.Y for the product of X and Y with its usual topology and write
X XY =k(X x.Y). If X and Y are weak Hausdorff, then X x Y = kX x kY.
If X is locally compact and Y is compactly generated, then X x Y = X x_.Y.

By definition, a space X is Hausdorff if the diagonal subspace AX = {(z,z)}
is closed in X x. X. The weak Hausdorff property admits a similar characteri-
sation.

Lemma 2.1.2. If X is a k-space, then X is weak Hausdorff if and only if AX
1s closed in X x X.

The category of compactly generated spaces

One major source of point-set level pathology can be passage to quotient spaces.
Use of compactly generated topologies alleviates this.

Proposition 2.1.3. If X is compactly generated and m: X — Y is a quotient
map, then Y is compactly generated if and only if (7 x m)1(AY) is closed in
X x X.

The interpretation is that a quotient space of a compactly generated space
by a “closed equivalence relation” is compactly generated. We are particularly
interested in the following consequence.

Proposition 2.1.4. If X and Y are compactly generated spaces, A is a closed
subspace of X, and f: A —Y is any continuous map, then the pushout Y Uy X
18 compactly generated.

Another source of pathology is passage to colimits over sequences of maps
X; = X;41. When the given maps are inclusions, the colimit is the union of
the sets X; with the “topology of the union;” a set is closed if and only if its
intersection with each X; is closed.

Proposition 2.1.5. If {X; is a sequence of compactly generated spaces and
inclusions X; — X;11 with closed images, then the colimit ligrlXi is compactly
generated.

We now adopt a more categorical point of view. We redefine % to be the
category of compactly generated spaces and continuous maps, and we redefine
7 to be its subcategory of based spaces and based maps.
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Let w% be the category of weak Hausdorff spaces. We have the functor
k: w% — %, and we have the forgetful functor j: % — w% , which embeds
7 as a full subcategory of w% . Clearly

U (X, kYY) ~w% (jX,Y)

for X € % and Y € w% since the identity map kY — Y is continuous and con-
tinuity of maps defined on compactly generated spaces is compactly determined.
Thus k is right adjoint to j.

We can construct colimits and limits of spaces by performing these construc-
tions on sets: they inherit topologies that give them the universal properties of
colimits and limits in the classical category of spaces. Limits of weak Hausdorff
spaces are weak Hausdorff, but limits of k-spaces need not be k-spaces. We con-
struct limits of compactly generated spaces by applying the functor k to their
limits as spaces. It is a categorical fact that functors which are right adjoints
preserve limits (“RAPL” as coined by Awoedy), so this does give categorical
limits in %/. This is how we defined X x Y, for example.

Point-set level colimits of weak Hausdorff spaces need not be weak Hausdorff.
However, if a point-set level colimit of compactly generated spaces is weak Haus-
dorff, then it is a k-space and therefore compactly generated. We shall only be
interested in colimits in those cases where this holds. The propositions above
give examples. In such cases, these constructions give categorical colimits in % .

From here on, we agree that all given spaces are to be compactly generated,
and we agree to redefine any construction on spaces by applying the functor k
to it. For example, for spaces X and Y in %, we understand the function space
Map(X,Y) = Y to mean the set of continuous maps from X to Y with the
k-ification of the standard compact-open topology; the latter topology has as
basis the finite intersections of the subsets of the form {f|f(K) C U} for some
compact subset K of X and open subset U of Y. This leads to the following
adjointness homeomorphism, which holds without restriction when we work in
the category of compactly generated spaces.

Proposition 2.1.6. For spaces X, Y, and Z in %, the canonical bijection
s a homeomorphism.

Observe in particular that a homotopy X x I — Y can equally well be
viewed as a map X — Y. These adjoint, or “dual,” points of view will play an
important role in the next two chapters.

2.2 Cofibrations

In this section, we elaborate the fundamental tools and definitions of our study
of cofibrations.
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Exact sequences that feature in the study of homotopy, homology, and co-
homology groups all can be derived homotopically from the theory of cofibre
and fibre sequences that we present in this and the following two chapters. Ab-
stractions of these ideas are at the heart of modern axiomatic treatments of
homotopical algebra and of the foundations of algebraic K-theory.

The theories of cofiber and fibre sequences illustrate an important, but in-
formal, duality theory, known as Eckmann-Hilton duality. It is based on the
adjunction between Cartesian products and function spaces. Our standing hy-
pothesis that all spaces in sight are compactly generated allows the theory to
be developed without further restrictions on the given spaces. We discuss “cofi-
brations” here and the “dual” notion of “fibrations” in the next chapter.

The definition of cofibrations

Definition 2.2.1. A map i: A — X is a cofibration if it satisfies the homotopy
extension property (HEP), i.e, given a map f: X — Y and a homotopy h: A x
I — Y whose restriction to A x {0} is f o4, there exists an extension H of h to
X x 1.

This situation is expressed schematically as follows:

A— ™ AT

i Y ixid

X x1I

where g is the standard inclusion : ig(u) = (u, 0).

We may write this property in another equivalent (somewhat intricate, as it
uses the notion of mapping space) way. i: A — X is a cofibration if there exists
a lifting H in the following diagram

h
oyt

4
H -
o lpo
: Y

_

!

K2

=

where po(3) = 5(0).
Remark 2.2.2. We do not require H to be unique, and it is usually not the case.

Definition 2.2.3. If (X, A) is a pair of topological spaces such that the inclusion
map A C X is a cofibration, then (X, a) is called a cofibred pair or Bosruk pair
or is said to posses the absolute homotopy extension property (AHEP).
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A necessary condition for (X, A) to be a cofibred pair is the existence of a
retraction r: X x I — (X x 0) U (A x I).

A i AxI (2.2.4)

It is known that this condition is also sufficient.

Theorem 2.2.5. For an inclusion A C X the following are equivalent:
(1) The inclusion map A — X is a cofibration.

(2) (X x0)U (A XI) is a retract of X x I.

Proof. (1) = (2): Consider the diagram of 2.2.4. The filled-in map r is the
desired retraction.

(2) = (1): Composing the retraction of (2) with a map AxJUX x0 — Y gives
the homotopy extension property for all Y, which, as mentioned, is equivalent
to (1). O

Corollary 2.2.6. If A is a subcomplex of a CW-complex X, then the inclusion
A — X is a cofibration.

Proof. This follows from Corollary 1.4.13 which says any CW-pair (X, A) has
the HEP. O

The main technical result for proving that particular inclusions are cofibra-
tions is the following. Note that conditions (1) and (2) always hold if X is
metric.

Theorem 2.2.7. Assume that A C X is closed and that there exists a neigh-
bourhood U of A and a map ¢: X — I, such that:

(1) A=¢71(0);

(2) $(X\U) ={1}; and

(8) U deforms to A through X with A fived. That is, there is a map H: UxI —
X such that H(a,t) = a for alla € A, H(u,0) = u, and H(u,1) € A for all
uel.

Then the inclusion A — X is a cofibration. The converse also holds.
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Proof. We can assume that ¢ = 1 on a neighbourhood of X \ U, by replacing ¢
with min(2¢, 1). It suffices to show that there exists a map

O:UxIT—>Xx{0JUAXIT

such that ®(z,0) = (z,0) for € U and ®(a,t) = (a,t) for a € A and all ¢,
since then the map r(x,t) = ®(x,t(1 — ¢(z))) for z € U and r(z,t) = (z,0) for
x ¢ U gives the desired retraction X x I - A x I UX x {0}.

We define ® by

D(u,t) = H(u,t/¢(u)) x {0} for é(u) > t,
VU Hw ) x {t—g(w)} for d(u) <t.

We need only show that ® is continuous at those points (u,0) such that
¢(u) =0, i.e., at points (a,0) for a € A.

Note that H(a,t) = a for all t € I. Thus, for W a neighbourhood of a, there
is a neighbourhood V' C W of a such that H(V x I) C W. Therefore, t < € and
u € V imply that ®(u,t) € W x [0, €], and hence that ® is continuous.

We will now prove the converse.

Let 7: X x I - Ax IUX x {0} be a retraction, let s(z) = r(z,1) and
put U = s71(A x (0,1]). Let px, pr be the projections of X x I to its factors.
Then put H = px or: U x I — X. This satisfies (3). For (1) and (2), put
o(x) = maxyer|t — prr(z,t)| which makes sense since I is compact. That this
satisfies (1) and (2) is clear and it remains to show that ¢ is continuous. Let
f(z,t) = |t —prr(x,t)| and fi(z) = f(x,t), all of which are continuous. Then

¢~ (=00, b)) = {z|f(2,t) bV t} = Mherfi ' ((—00,0])

is an intersection of closed sets and so is closed. Similarly

¢~ ([a,00)) = {z|f(x,t) > a for some t} = px (f~([a, 0)))

is closed since px is a projection. Since the complements of the intervals of the
form [a,00) and (—oo0,b] give a subbase for the topology of R, the contention
follows. -

Let us recall the definition:

Definition 2.2.8. Let X be a topological space; a subspace A C X is a strong
deformation retract of X if there exists a homotopy H: X x I — X such that
H(z,0)=2z, z€X
H(z,1)e A, z€X

H(a,t) =a, (a,t)€ AxI.
The homotopy H is a strong deformation retraction of X onto A. The map

r=H(—,1): X — Ais a retraction and A is a retract of X. Thus, a retract A
of X with retraction r: X — A is a strong deformation retraction of X if

X5HaAadhx
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is homotopic rel .A to idx.

A0 H(z,0)| a=ida Ax T H(z,0)|a=ida Ax1

iXidO\L ixid;l iixidl

X X0=— X xX[———> X x1
H(z,0)=idx H(z,1)=r(z)

It was remarked in Theorem 2.2.5 that if (X, A) is a cofibred pair, then
(X x0)U (A xI)is aretract of X x I. In fact, we have the following stronger
result.

Lemma 2.2.9. If (X, A) is a cofibred pair, then (X x 0) U (A x I) is a strong
deformation retract of X x I.

Proof. Let i: X x {0} U A x I C X x I be the inclusion map, and let
r X xI—-Xx{0JUAxI
be a retraction. A homotopy
D:ir~idxxrrel X x {0} UA X T
is given by
D(z,t,s) = (pxr(x, (1 —s)t), (1 — s)prr(z,t) + st).
O

Some authours suppose that i: A — X is an inclusion with closed image.
That A can be regarded as closed is guaranteed by Proposition 1.4.9. And the
following theorem shows that i: A — X can be treated as an inclusion.

Theorem 2.2.10. If j: A — X is a cofibration, then j is an imbedding, i.e, is
a homeomorphism A =~ j(A).

Proof. Let j: A — X be a cofibration and consider the mapping cylinder Z =
(X x0)Uj (A x I), that is, the quotient space of the topological sum (X x 0) U
(A x I) obtained by identifying (a,0) € A x I with (j(a),0) € X x 0 for each
a € A. Denote by ¢ the quotient map (X x 0) U (A x I) — Z. There is a
continuous map i: Z — Z x I defined by

iq)x xo = idxx,0,
iqlaxr = J xidy.

Definemaps f: X - Zand F: AxI — Z by

f(x) = q(x,O), F(avt) = Q(avt)'
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Because j is a cofibration there exists amap F': X xI — Z such that F'(j(a),t) =
q(a,t) and F(z,0) = g(z,0) for alla € A, ¢t € I and x € X. Then Fi|xxoidxxo
and Filaxr = j xidy so Fi =idg. i is, therefore, a continuous monomorphism
of Z onto i(Z) = (X x 0) U (j(A) x I). Also, q|ax1 is a homeomorphism of
A x 1 onto ¢(A x 1), and consequently ig|ax1 is a homeomorphism of A x 1
onto ig(A x 1) = j(A) x 1.

A o AxT
(X x0)UAXxI) ~
F
J iq Fxidr
Z=(Xx0)U; (Ax1I)
/ \
X X x1I

Mapping cylinders and cofibrations

Definition 2.2.11. The mapping cylinder of f: X — Y is defined to be the
pushout of the maps f: X — Y and ig: X — X x I, and we note it My, so
My =Y Us (X x I).

X Y

Y

X x1I >Mf:YUf(XXI)

Replacing maps by cofibrations

Remark 2.2.12. The inclusion i: X < My clearly satisfies Theorem 2.2.7 and
hence is a cofibration. Also, the retraction r: My — Y is a homotopy equiva-
lence with homotopy inverse being the inclusion Y < M. The diagram

Xv M;

commutes. This shows that any map f is a cofibration, up to a homotopy
equivalence of spaces.
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Also recall the definition of the “mapping cone” of f: X — F' as the quotient
space
Cf = Mf/X X {1} ~ Mf uUCcXx.

In the case of an inclusion i: A — X, we have C; = X UCA. There is the map
C; s X /A,

defined as the quotient map XUCA — (XUCA)/C A composed with the inverse
of the homeomorphism X/A — (X UCA)/CA. It is natural to ask whether A
is a homotopy equivalence. This is not always the case, but the following gives
a sufficient condition for it to be so. (cf Theorem 1.4.3 and Example 1.4.19).

Theorem 2.2.13. If A C X is closed and the inclusion i: A — X is a cofi-
bration then h: C; — X/A is a homotopy equivalence. In fact, it is a homotopy
equivalence of pairs

(X/A? *) = (Oia OA) = (Ci7v)7
where v is the vertex of the cone.

Proof. The mapping cone C; = X U CA consists of three different types of
points, the vertex v = {A x {1}}, the rest of the cone {(a,?)|0 <<< 1} where
(a,0) =a € A C X, and points in X itself, which we identify with X x {0} to
simplify definitions of maps.

Define f: A x UX x {0} — C;, as the collapsing map and extend f to
f: X x I — C; by the definition of cofibration. Then f(a,1) = v, f(a,t) = (a,t)
andf(z,0) = z.

Put f, = flxxq- Since f1(A) = {v}, there is the factorisation f; = g o j,
where j: X — X/A is the quotient map and g: X/A — C;. (g is continuous by
definition of the quotient topology.)

We claim that ¢ is a homotopy equivalence and a homotopy inverse to h.

First we will prove that hg ~ idx,4. There is the homotopy hf,: X — X/A.
For all ¢, this takes A into the point {A}. Thus it factors to give the homotopy

hg =~ {hf,} ~{hfo} = {j} =idx/a.

Next we will show that gh ~ id¢,. For this, consider W = (X x I)/(A x {1})

and the maps illustrated in Figure 2.1. The map f is induced by f. The map
k is the “top face” map. We see that

Fol=id,

mok=1id (which we don’t need),
kom~id,

Fok=g (definition of g),
mol=h.

Hence goh = f o(kom)ol~f ol =id, as claimed. O
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I -—
-— —* {4} X/A
P N

w

Figure 2.1: A homotopy equivalence and homotopy inverse.

Remark 2.2.14. Theorem 2.2.13 does not hold if X x0U A x I is not a retract of
X x I: for example, we repeat Example 1.4.10. Let A = {0}U{l/nln=1,2,...},
and X = [0,1]. Here C; is not homotopy equivalent to X/A, which is a one-
point union of an infinite sequence of circles with radii going to zero. (C; has
homeomorphs of circles joined along edges, but the circles do not tend to a point
and so any prospective homotopy equivalence X/A — C; would be discontinuous
at the image of {0} in X/A.)

Let us recall the notion of the pointed category and some notational items.
The pointed category has, as objects, spaces with a base point *, and, as maps,
those maps of spaces preserving the base point. There is also the category of
pairs of pointed spaces. There is also the notion of homotopies in this category,
those homotopies which preserve the base point.

If f: X = Y is a pointed map then the reduced mapping cylinder of f is the
quotient space My of (X x I) UY modulo the relations identifying (z,0) with
f(z) and identifying the set {*} x I to the base point of M.

The reduced mapping cone is the quotient of the reduced mapping cylinder
My gotten by identifying the image of X x {1} to a point, the base point.

The one-point union of pointed spaces X and Y is the quotient X VY of the
disjoint union X UY obtained by identifying the two base points.

The wedge, or smash, product is the pointed space X AY = (X xY)/(X VY.

The circle St is defined as I/9I with base point {9I}.

The reduced suspension of a pointed space X is SX = X A S!. It can also
be considered as the quotient space (X x I)/(X x oI U {x} x I).

As remarked before, S™ A S™ is the one-point compactification of R™ x R™
and hence is homeomorphic to S**™. Thus we can, and will in this chapter,
redefine S inductively by letting S**! = SS. Also note that

S(SX) = (SX)AS' = (X ASY)AS = X AS?,  etc..

The preceding results of this section can all be rephrased in terms of the pointed



2.2. COFIBRATIONS 51

category. Extending the proofs is elementary, mostly a matter of seeing that the
unreduced versions become the reduced versions by taking the quotient of spaces
by sets involving the base point. For example, Theorem 2.2.13 would say that
if A is a closed, pointed, subspace of the pointed space X and if the inclusion
i: A — X is a cofibration (same definition since the base point is automatically
taken care of) then X/A ~ C;, where the latter is now the reduced mapping
cone, and the homotopies involved must preserve the base points.

Definition 2.2.15. A base point z¢o € X is said to be nondegenerate if the
inclusion {zp} < X is a cofibration. A pointed Hausdorff space X with nonde-
generate base point is said to be well-pointed.

Any pointed manifold or CW-complex is clearly well-pointed. A pointed
space that is not well-pointed is {0} U {1/n|n > 1} with 0 as base point. The
reduced suspensions of this also fail to be well-pointed.

If A— X is a cofibration then X /A, with base point {A}, is well-pointed as
follows easily from Theorem 2.2.7.

If a whisker is appended at the base point of any pointed space X, then
changing the base point to the other end of the whisker provides a well-pointed
space. (This is, of course, just the mapping cylinder of the inclusion of the base
point into X.)

Theorem 2.2.16. If X is well-pointed then so are the reduced cone CX and
the reduced suspension SX. Moreover, the collapsing map XX — SX, of the
unreduced suspension to the reduced suspension, is a homotopy equivalence.

Proof. Denote the base point of X by x. Consider a homeomorphism
he (Ix I, Tx{0yUdl xI) = (Ix1,Ix{0})
which clearly exists. Then the induced homeomorphism
idy xh: X x I xI 5 X xIxI
carries

X xIx{0bUX x9dI xI to X xIx{0}, hence
A=XxIx{0bUX XTI xTU{x}xITxI to XxIx{0}U{x}xTIxI.

Therefore,
(X xIxTLA)=~Ix (X xI,X x{0}uU{*}x1)

as pairs. Since X x {0} U{x} x I is a retract of X x I by the definition of “"well-
pointed,” it follows that A is a retract of X xIxI. This implies that the inclusion
X x0IU{*} xI — X xIis a cofibration. Therefore, SX = X xI/(X x0IUxx1I)
is well-pointed. A similar argument using a homeomorphism

(IxI,Ix{0}u{l}x1I)Z (Ix1I,0x{0})
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shows that the inclusion X x {1} U {x} x I < X x [ is a cofibration and so
CX =X x I/(X x {1} U{x}x) is well-pointed.

The fact that X x 0I U {*} x I < X x I is a cofibration implies that the
induced inclusion

IT~{x} xI—XxI/(Xx{0},X x{1})

is a cofibration by an easy application of Theorem 2.2.7. By Theorem 2.2.13,
YX ~¥XUCI ~XX/I =5X via the collapsing map. O

We often construct new spaces and new maps from the given spaces and
maps, and one way of such a construction is to take the pushout of two maps.
The following proposition states that the class of cofibrations is closed under
taking pushouts. Thus we may take pushout of two maps without any restric-
tion.

Proposition 2.2.17. Let

—_

J

X
P
be a pushout square. If g is a cofibration then so is i. In this case, j induces a
homeomorphism j': Y/g(A) — P/i(X) of cofibres.

Proof. Consider the diagram

f

A——X

R

g 2

Y ———P——7
J ho

where g; is a homotopy with gy = hgi. Then gof = hojg and, because g is a
cofibration, there is a homotopy k;: Y — Z such that k;g = ¢;f and kg = hqj.
Then g; and k; induce a map l;: P — Z such that l;i = g; and [;j = k;. Then
l; is a homotopy since the map L: P x I — Z obtained from I; is continuous.
Furthermore, lgi = go = hot and lyj = kg = hoj. By the uniqueness property of
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the pushout, Iy = hg, and so 7 is a cofibration.

gxid g i\g;
j h
M LpH)=l(p
(b,y)=k:(y)
P

Y x1 x I

Jxid

For the second assertion of the proposition, note that j induces j': Y/g(A) —
P/i(X). We regard the pushout P as defined in the proof of Proposition 1.4.7.
Then P/iX is obtained from X VY from the following relations:

(z,%) ~ *, for every x € X

{(f(a), %) ~ (x,9(a)), forevery ac A

Thus Y/g(A) ~ P/i(X), and the homeomorphism is j defined by j'(y) = (x,y)

foryeY.
X
P

P/i(X)

A
g
Y4J>
.
Y/g(A

A criterion for a map to be a cofibration

We want a criterion that allows us to recognise cofibrations when we see them.
We shall often consider pairs (X, A) consisting of a space X and a subspace A.
Cofibration pairs will be those pairs that “behave homologically” just like the
associated quotient spaces X/A.

Definition 2.2.18. A pair (X, A) is an NDR-pair (= neighbourhood deforma-
tion retract pair) if there is a map u: X — I such that v=1(0) = A and a
homotopy h: X x I — X such that hg = id, h(a,t) =afora € Aand t € I, and
h(z,1)BA if u(z) < 1; (X, A) is a DR-pair if u(x) < 1 for all z € X, in which
case A is a deformation retract of X.
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Lemma 2.2.19. If (h,u) and (j,v) represent (X, A) and (Y, B) as NDR-pairs,
then (k,w) represents the “product pair” (X xY, X x BUAXY') as an NDR-pair,
where w(x,y) = min(u(z),v(y)) and

(h(z, 1), 5y, tu(z)/v(y))) i o(y) = u(z)
(h(z, to(y)/u(@)),5(y,1)) i ulz) = v(y).

If (X, A) or (Y, B) is a DR-pair, then sois (X x Y, X x BUAXY).

k‘(.l?, y7t) = {

AVARAY

Proof. If v(y) = 0 and v(y) > u(z), then u(z) = 0 and both y € B and = € A;
therefore we can and must understand k(z,y,t) to be (z,y). It is easy to check
from this and the symmetric observation that k is a well defined continuous
homotopy as desired. O

Theorem 2.2.20. Let A be a closed subspace of X. Then the following are
equivalent:

(i) (X,A) is an NDR-pair.

(i) (X x I,X x {0} UA xI) is a DR-pair.
(111) X x {0} U A x I is a retract of X x I.
(iv) The inclusion i: A — X is a cofibration.

Proof. The lemma gives that (i) implies (ii), (ii) trivially implies (iii), and we
have already seen that (iii) and (iv) are equivalent. Assume given a retraction
r: X XTI > Xx{0fJUAXI. Let m: X xI — X and ma: X x I — I be the
projections and define u: X — I by

u(x) = sup{t — mor(z,t)|t € I'}

and h: X x I — X by
h(z,t) = mr(x,t).

Then (h,u) represents (X, A) as an NDR-pair. Here u~1(0) = A since u(z) =0
implies that r(x,t) € A x I for t > 0 and thus also for ¢t = 0 since A x I is closed
in X x 1. O

Cofibre homotopy equivalence

It is often important to work in the category of spaces under a given space
A, and we shall later need a basic result about homotopy equivalences in this
category. We shall also need a generalisation concerning homotopy equivalences
of pairs. The reader is warned that the results of this section, although easy
enough to understand, have fairly lengthy and unilluminating proofs.
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A space under A is a map i: A — X. A map of spaces under A is a

commutative diagram
N

f

X Y

A homotopy between maps under A is a homotopy that at each time ¢ is a map
under A. We then write h: f ~ f'rel A and have h(i(a),t) = j(a) for all a € A
and t € I. There results a notion of a homotopy equivalence under A. Such an
equivalence is called a cofibre homotopy equivalence. The name is suggested by
the following result, whose proof illustrates a more substantial use of the HEP
than we have seen before.

Proposition 2.2.21. Let i: A — X and j: A — Y be cofibrations and let
f: X =Y be a map such that f oi = j. Suppose that f is a homotopy equiva-
lence. Then f is a cofibre homotopy equivalence.

Proof. Tt suffices to find a map g: Y — X under A and a homotopy g o f' ~
idrel A. Indeed, g will then be a homotopy equivalence, and we can repeat the
argument to obtain f’: X — Y such that f'og ~ idrel A; it will follow formally
that f’ ~ frel A. By hypothesis, there is a map ¢"’: Y — X that is a homotopy
inverse to f. Since g” o f’ ~id, g” o 7 ~i. Since j satisfies the HEP, it follows
directly that ¢” is homotopic to a map ¢’ such that ¢’ o j = ¢. It suffices to
prove that ¢’o f: X — X has a left homotopy inverse e: X — X under A, since
g = eo g will then satisfy g o f ~ idrel A. Replacing our original map f with
g’ o f, we see that it suffices to obtain a left homotopy inverse under A to a map
f: X — X such that foi=17and f ~id. Choose a homotopy h: f ~ id. Since
hooi = foi=1iand h; =id, we can apply the HEP to ho (i xid): AxI — X
and the identity map of X to obtain a homotopy k: id ~ k; = e such that
ko(ixid) = ho(ixid). Certainly eoi = i. Now apply the HEP to the following
diagramme:

AxT— " A TIxI

e

ixid X ixid x id

-
/ e L

X xTI X xIxI

0

Here J is the homotopy e o f ~ id specified by

) E(f(z),1—-2s) if s<1/2
J(x’s)_{h(m,Qs—l) it s> 1/2.
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The homotopy between homotopies K is specified by

k(i(a),1 —2s(1 —1t) it s<1/2

B )
K(a’s’t)_{h(i(a),l2(18)(1t) it s>1/2.

Traversal of L around the three faces of I x I other than that specified by J
gives a homotopy

€0 f = JO = LO’O ~ LO,l >~ L171 ~ LI,O = Jl = idrel A.
O

The proposition applies to the following previously encountered situation.

Ezample 2.2.22. Let i: A — X be a cofibration. We then have the commutative

diagramme

M, ———X,

where j(a) = (a,1). The obvious homotopy inverse ¢: X — M, has ¢(x) = (z,0)
and is thus very far from being a map under A. The proposition ensures that ¢
is homotopic to a map under A that is homotopy inverse to r under A.

The following generalisation asserts that, for inclusions that are cofibrations,
a pair of homotopy equivalences is a homotopy equivalence of pairs. It is often
used implicitly in setting up homology and cohomology theories on pairs of
spaces.

Proposition 2.2.23. Assume given a commutative diagram
A
|
X

in which i and j are cofibrations and d and f are homotopy equivalences. Then
(f,d): (X, A) — (Y, B) is a homotopy equivalence of pairs.

d
E—

Sy

-~
<.

~

—_—

!

Proof. The statement means that there are homotopy inverses e of d and g of f
such that goj = ioe together with homotopies H: go f ~id and K: fog ~id
that extend homotopies h: eod ~id and k: d o e ~ id. Choose any homotopy
inverse e to d, together with homotopies h: eod ~ id and ¢: do e ~ id. By
HEP for j, there is a homotopy inverse g’ for f such that ¢’ o j = i o e. Then,
by HEP for i, there is a homotopy m of ¢’ o f such that mo (i x id) = io h. Let
¢ =my. Then ¢poi =i and ¢ is a cofibre homotopy equivalence by the previous
result. Let ¢: X — X be a homotopy inverse under ¢ and let n: ¥ o ¢ ~ id be
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a homotopy under 7. Define g = 1) o ¢’. Clearly go j = i o e. Using that the
pairs (I x I,1 x {0}) and (I x I,I x {0} UJI x I) are homeomorphic, we can
construct a homotopy between homotopies A by applying HEP to the diagram

(AXIX0)UAxIIx])— = s AxIxI

7

ixid ixid

TN

(X X Ix0)U(X x0X x]) ———= X xIxI

Here
) Y(m(x,2s)) if s<1/2
(@ ,0) = {n(m,Qs -1) it s>1/2,
Y(@,0,t) = (go f)(z) = (Yog o f)(a),
v(z,1,t) = x,
while

r( - i(h(a,2s/(1+1))) if 2s<1+t
T Yi(a) if 2s>1+t

Define H(x,s) = A(x,s,1). Then H: go f ~ id and H o (i x id) = i o h.
Application of this argument with d and f replaced by e and ¢ gives a left
homotopy inverse f’ to g and a homotopy L: f' o g ~ id such that f'oi=jod
and Lo (jxid) = jo/. Adding homotopies by concentrating them on successive
fractions of the unit interval and letting the negative of a homotopy be obtained
by reversal of direction, define

k= (—£)(de x id) + dh(e x id) + £

and
K =(-L)(fgxid)+ f'H(g xid) + L

Then K: fog~idand Ko (j xid) =jok. O

2.3 Fibrations

We “dualise” the definitions and theory of the previous section to the study of
fibrations, which are “up to homotopy” generalisations of covering spaces.
The definition of fibrations

Definition 2.3.1. A surjective map p: F — B is a fibration if it satisfies the
covering homotopy property (CHP for short), i.e., given a map f: Y — E and
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a homotopy h: Y x I — B, there exists a lifting of h to E, whose restriction to
Y x {0} is f.
f

Y ——F

o

YXIT>B

Remark 2.3.2. As we have seen for cofibrations there is an equivalent definition
of a fibration in which we can better see the dualisation.

EI

N

B<~— B!
Po

where po(8) = 5(0).
Remark 2.3.3. Again we do not require the uniqueness of such a lifting.

The class of fibrations is closed under the base extensions, i.e,
Proposition 2.3.4. Pullbacks of fibrations are fibrations.

Proof. Let p: Y — B be a fibration, f: X — B be a map and p': f*Y =
Y x;y X — X be the pullback by f.

W x {0} Y —=Y
| 2w ]
Wox I - X B

Since p is a fibration, the prospective map marked (1) exists, maintaining com-
mutativity. Then the map marked (2) exists by the universal property of pull-
backs. O

Definition 2.3.5. Let p: E — B be amap. Its mapping path space (or mapping
cocylinder or mapping path fibration) is a pullback of p and evaly: B! — B. We
note it N, = E x, Bf = {(e, 8)|3(0) = p(e)}.

N,=Ex,B' —=F

b

Bl — B

evalg
i evaly

B
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The mapping path space is the dual of mapping cylinder and we will see
that it plays the parallel role for the fibrations.

Definition 2.3.6. Let p: E — B be a map and let IV, be its mapping path
space. A map s: N, — E! such that s(e, 8)(0) = e and po s(e, ) = 3 is called
path lifting function.

We have seen that for a map i: A — X to be a cofibration it suffices to
admit a homotopy extension for its mapping cylinder. It turns out that for
amap p: F — B to be fibration it suffices to have a homotopy lifting for its
mapping path space, or equivalently we have

Proposition 2.3.7. A map p: E — B is a fibration if and only if it admits a
path lifting function.

Proof. Replace Y by N, in the test diagram of the equivalent definition of
fibrations; necessity is then clear. So suppose that we have a path lifting function
s: N, — El and maps f: Y — F and h: Y — B!. There is an induced map
g:Y — N,, since N, is a pullback. The composite s o g gives the required
homotopy lifting. O

As an application of this proposition, we have the following example

Ezample 2.3.8. If p: E — B is a covering, then p is a fibration with a unique
path lifting function.

Example 2.3.9. The evaluation map p,: B! — B given by p,(3) = B(s) is a
fibration.

The relation between fibrations and cofibrations is stated in the following
proposition

Proposition 2.3.10. Ifi: A — X is a cofibration and B is a space then the
induced map p = B*: BX — B4 is a fibration.

Proof. 1t is an easy task to show that we have the following homeomorphisms

BMi — BXX{O}UAXI ~ B xp (BA)I — Np

O

We have seen that every map can be factored as cofibration followed by a
homotopy equivalence. We can “dualise” this property and get the following
proposition, which will be of great use later.

Proposition 2.3.11. Any map can be factored as a homotopy equivalence fol-
lowed by a fibration.

Proof. O
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2.4 Homotopy Exact Sequences

In this section, we elaborate the fundamental tools and definitions of our study
of exact homotopy sequences.

2.5 Homotopy Groups
2.6 Homotopy Property of CW Complexes

2.7 The Homotopy Excision And Suspension The-
orems



