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Preface

This is an authour's trial to compile an accessible account of algebraic topology
in the spirit of John F. Adams as suggested in his �Algebraic Topology: a
Student's Guide�.

Thus the purpose is to provide a su�cient background, from the modern
viewpoint, to read Milnor's �Di�erential Topology� and �Lectures on Character-
istic Classes� published some sixty years ago.

These notes should hopefully cover at least the following topics:

1. Spaces and maps

2. Homotopy sets

3. CW complexes

4. Co�bration

5. Fibration

6. Vector bundles and �bre bundles

7. Axiomatic treatment of homology/cohomology

8. Spectral sequences and their applications

9. Eilenberg-Mac Lane spaces and Postnikov systems

10. Homotopy groups of spheres

11. Spectra
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Chapter 1

Homotopy Theory I

1.1 Motivation

This section gives a motivation for studying algebraic topology. First, let us
recall some notions from general topology.

De�nition 1.1.1. A topological space X is said to be disconnected if it is the
union of two disjoint non-empty open sets. Otherwise, X is said to be connected.

A path-connected space is a stronger notion of connectedness, requiring the
structure of a path.

De�nition 1.1.2. A path from a point x to a point y in a topological space X
is a continuous function f from the unit interval I = [0, 1] to X with f(0) = x
and f(1) = y. A path-component of X is an equivalence class of X under the
equivalence relation which makes x equivalent to y if there is a path from x to
y.

The space X is said to be path-connected (or pathwise connected) if there is
exactly one path-component, i.e. if there is a path joining any two points in X.

Next, notions important in algebraic topology.

De�nition 1.1.3. Let X be a topological space and let x ∈ X. We say that
X is locally connected at x if for every open set V containing x there exists
a connected, open set U with x ∈ U ⊆ V . The space X is said to be locally
connected if it is locally connected at x for all x ∈ X.

Remark 1.1.4. Note that local connectedness and connectedness are not related
to one another; a space may possess one or both of these properties, or neither.

Example 1.1.5. Q with the usual metric topology is neither connected nor locally
connected: no point in Q has any connected neighbourhood.

Lemma 1.1.6. If X is locally connected, then its connected components are
open.

1



2 CHAPTER 1. HOMOTOPY THEORY I

Proof. This is almost immediate; if U is a connected open the of X, then U is
inside the connected component of x.

De�nition 1.1.7. Let X be a topological space and let x ∈ X. We say that
X is locally path connected at x if for every neighbourhood U of x there exists
a path connected neighbourhood V of x such that x ∈ V ⊆ U . X is said to
be locally path connected (on all of X) if X is locally path connected at every
x ∈ X.

If X is locally path-connected, then its path components are open.

Lemma 1.1.8. If X is locally path connected, then the components of X coin-
cide with the path components of X - that is,

∼conn=∼path .

Proof. Since paths themselves are connected, clearly if two points belong to
the same path component they belong to the same connected component. Now
suppose X is locally path connected, let C be a connected component of X.
Then C is a union of path components:

C = ∪i∈IPi

But since X is locally path-connected, each Pi is open. That means C has
been written as a disjoint union of open sets, and so C is not connected, a
contradiction.

Corollary 1.1.9. If X is locally-path connected, then it is connected if and only
if it is path connected.

Now we begin the algebraic topology portion of the course. As you will see,
it has a pretty di�erent �avour from what has come up to this point, and the
main reason for that is the emphasis on homotopy : when one continuous map
can be deformed into another, we regard them as equivalent, and that gets us
into a much more tenable situation when it comes to classifying spaces.

Henceforth, we denote the closed interval I ∈ R by I. Here is what you
might regard as the fundamental de�nition of the whole �eld:

De�nition 1.1.10 (Homotopy). Let X and Y be spaces and let f, g : X → Y
be continuous functions. Then a homotopy from f to g is a continuous function

H : X × I → Y

such that

H|X×{0} = f, H|X×{1} = g.

If there exists a homotopy from f to g, we say f and g are homotopic.
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Remark 1.1.11. We think of H as like a �movie� of continuous maps that starts
at f and ends at g.

I → (X → Y ) t 7→ ht ∈ (X → Y ) = Y X , h0 = f, h1 = g

We will be back with the mapping spaces like (X → Y ) = Y X later.

Example 1.1.12. Suppose X is a space and f, g : X → Rn are continuous func-
tions. Then if we de�ne H : X × I → Rn by

H(x, t) = (1− t)f(x) + tg(x)

then H is a homotopy from f to g. So any pair of maps into Rn are homotopic.

Example 1.1.13. Let ∗ denote the one-point space; then for any space Y , a map
∗ → Y is just given by a point y ∈ Y . We denote this map by iy. Moreover,
a homotopy from iy0 : ∗ → Y to iy1 : ∗ → Y is just a path from y0 to y1. We
conclude that two maps ∗ → Y are homotopic if and only if they pick out points
in the same path component.

Theorem 1.1.14. Let X and Y be topological spaces. If f, g : X → Y are
homotopic, we write f ∼ g. Then ∼ is an equivalence relation on Map(X,Y ).

Proof. There are three conditions to verify:

� f ∼ f . Let pX : X×I → X denote the projection (x, t) 7→ x. The constant
homotopy

f ◦ pX : X × I → Y, (f ◦ pX)(x, t) = f(x)

is a homotopy from f to itself.

� If H is a homotopy from f to g, then

H ′ : X × I → Y, H ′(x, t) = H(x, 1− t)

is a homotopy from g to f .

� Also, we can compose homotopies, just like we can compose paths. If H0

is a homotopy from f to g and H1 is a homotopy from g to h, then we
can de�ne

H01 : X × I → Y

by

H01(x, t) =

{
H0(2t) t ≤ 1/2,

H1(2t− 1) t ≥ 1/2.

Then H01 is a homotopy from f to h. (You just have to prove that H01 is
continuous; this is similar to the proof that the composition of two paths
is continuous. If you're interested, it follows from the pasting lemma on
p. 108 of Munkres, copied below for your convenience.)
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Lemma 1.1.15. Let X be a topological space and X = A∪B, where A and B
are closed in X. Let f : A → Y and g : B → Y be continuous. If f(x) = g(x)
for every x ∈ A∩B, then f and g can be combined to give a continuous function
h : X → Y , de�ned by setting

h(x) =

{
f(x) if x ∈ A, and

g(x) if x ∈ B.

Proof. Let C be a closed subset of Y . Now

h−1(C) = f−1(C) ∪ g−1(C),

by elementary set theory. Since f is continuous, f−1(C) is closed in A and,
therefore, closed in X. Similarly, g−1(C) is closed in B and therefore closed in
X. Their union h−1(C) is thus closed in X.

Now let us get back to homotopy. An equivalence class for the equivalence
relation ∼ is called a homotopy class. The set of homotopy classes of maps from
X to Y is denoted [X,Y ].

Lemma 1.1.16. Homotopy respects composition of functions. Suppose f0, f1 : X →
Y and g0, g1 : Y → Z are maps such that f0 ∼ f1 and g0 ∼ g1. Then

g0 ◦ f0 ∼ g1 ◦ f1.

Proof. Let H be a homotopy from f0 to f1 and let J be a homotopy from g0 to
g1. We have to use H and J to build a homotopy from g0 ◦ f0 to g1 ◦ f1. Let's
de�ne

K : X × I → Z

by
K(x, t) = J(H(x, t), t).

Then
K(x, 0) = J(H(x, 0), 0) = J(f0(x), 0) = g0(f0(x)),

and similarly

K(x, 1) = J(H(x, 1), 1) = J(f1(x), 1) = g1(f1(x)),

so K is the desired homotopy.

Here is the thing somewhat surprising at �rst: although homotopy is a notion
of equivalence for functions, it also gives rise to a new notion of equivalence for
spaces.

De�nition 1.1.17. Let f : X → Y be a map. Then a homotopy inverse for f
is a map g : Y → X such that

g ◦ f ∼ idX , f ◦ g ∼ idY .



1.1. MOTIVATION 5

That is, g is a homotopy inverse of f if there are continuous maps F : X×I → X
and G : Y × I → Y such that F |X×{0} = g ◦ f , F |X×{1} = idX and G|Y×{0} =
f ◦ g, G|Y×{1} = idY respectively. This is a natural weakening of the de�nition
of a topological inverse (= homeomorphism).

Clearly g is a homotopy inverse to f if and only if f is a homotopy inverse
to g. If f has a homotopy inverse, we say f is a homotopy equivalence. If there
exists a homotopy equivalence from X to Y , we say X and Y are homotopy
equivalent.

The goal of algebraic topology is arguably to classify spaces up to homotopy
equivalence.

Example 1.1.18. Let p : Rn → ∗ be the unique map. Then any map from ∗ to
Rn, say i0, is a homotopy inverse to p. Indeed, clearly p ◦ i0 = id∗, and i0 ◦ p is
homotopic to idRn since, as we just saw in Example 1.1.12, any two maps into
Rn are homotopic. (For an explicit homotopy, we can use H(x, t) = tx.)

De�nition 1.1.19. If p : X → ∗ is a homotopy equivalence, we say X is con-
tractible - hopefully the previous example should make it clear why this is the
terminology, since the homotopy from idRn to the constant map at 0 was like a
�contraction� of Rn.

Lemma 1.1.20. Every contractible space is path connected.

Proof. Let X be a contractible space and let H be a homotopy from idX to the
constant map at some point p ∈ X. Then for any x ∈ X, the map Hx : I → X,
Hx(t) = H(x, t) is a path from x to p. Since every point has a path to p, X is
path connected.

So at least some spaces are not contractible, hence homotopy theory is not
completely vacuous. How about connected spaces which are not contractible?
We'll have to wait a little while to be able to prove that. But here's another
interesting example of a pair of homotopy equivalent spaces:

Lemma 1.1.21. Rn \ {0} is homotopy equivalent to Sn−1.

Proof. Let i : Sn−1 → (Rn \ {0}) be the inclusion of the sphere, and de�ne
p : (Rn \ {0})→ Sn−1 by

p(v) =
v

|v|
.

(That's why we had to take out 0 - we wouldn't have known what to do with
it in this formula.) Then we claim that i and p are homotopy inverses. Indeed,
clearly

p ◦ i = idSn−1 ,

and if de�ne H : (Rn \ {0})× I → (Rn \ {0}) by

H(v, t) =

(
1 +

(
1

|v|
− 1

)
t

)
v,

then H is a homotopy from idRn to i ◦ p.
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We are almost ready to de�ne the underlying set of the fundamental group.
Of course, the group structure is the really important thing, and we will have
to brie�y go over some group theory before we can de�ne that. We need to
introduce one more piece of homotopy-theoretic terminology before we can do
that:

De�nition 1.1.22. Suppose X is a space and Z ⊆ X is a subspace. Then
if f, g : X → Y are a pair of maps, a homotopy from f to g relative to Z is a
homotopy H from f to g such that if z ∈ Z, then H(z, t) is independent of t.
In other words, points of Z stay where they are. In particular, if f and g are
homotopic relative to Z (we say f ∼Z g), then

f |Z = g|Z .

Remark 1.1.23. If H is a homotopy from f to g, then H is a homotopy relative
to Z if and only if H factors through the quotient space

Q = (X × I)/{(z, t) = (z, t′)|t, t′ ∈ I, z ∈ Z}

(by which we mean there is some H ′ : Q→ Y such that H = H ′ ◦ q.)

X × I H //

q

��

Y

Q

H′

<<

De�nition 1.1.24. Let X be a space and A ⊂ X a subspace, i : A → X the
inclusion map..

� A is a retract ofX if there exists a continuous map (a retraction) r : X → A
such that r(a) = a for all a ∈ A, that is, ri = idA.

� A is a deformation retract of X if the identity map of X is homotopic rel
A to a retraction r : X → A of X onto A. A deformation retraction is
such a homotopy X × I → X rel A between the identity on X and the
retraction. Since ri = idA and ir ≃ idA rel A, we see in particular that A
and X are homotopy equivalent spaces.

Note that a retraction of X onto A is a left inverse to the inclusion of A into
X. A retraction can also be de�ned as an idempotent map, a map such that
rn = r for all n ≥ 1.

The subspace A is a deformation retract of X if one of the following equiv-
alent conditions hold

� there exists a map, the deformation retraction, R : X × I → X such that
R(x, 0) = x and R(x, 1) ∈ A for all x ∈ X while R(a, t) = a for all a ∈ A,
t ∈ I,

� there exists a map r : X → A such that ri = idA and ir ∼ idX rel A
(where i is the inclusion map).
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Proposition 1.1.25. Let X be a space and A ⊂ X a subspace. Then the
following holds.

1. A is a retract of X ⇔ Any map on A extends to X

2. A is a deformation retract of X ⇔ Any map on A extends uniquely up to
homotopy relative to A to X

Proof. First assertion:
⇒ : Let r : X → A be a retraction of X onto A. If f : A→ Y is a map de�ned
on A then fr : X → Y is an extension of f to X.
⇐ : The identity map of A extends to a map r : X → A de�ned on X.
Second assertion:
⇒ : Let r : X → A be a retraction of X onto A such that ri = idA and ir ≃ idX
rel A. Let f : A → Y be a map de�ned on A. Since A is a retract of X, f
extends to X. Suppose that f0, f1 : X → Y are two extensions of f . Then
f0 = f0 ◦ idX ≃ f0ir rel A and f1 = f1 ◦ idX ≃ f1ir rel A. As f0i = f1i, this
says that f0 ≃ f1 rel A.
⇐ : The identity map of A extends to a map r : X → A de�ned on X and
ir ≃ idX rel A as both ir and idX are extensions of the inclusion of A into
X.

The following diagrammes epitomises the di�erence between a retract and a
deformation retract.

Retract: Deformation retract:

A
ri=idA //� _

i

��

A

X

r

>> A
ri=idA //� _

i

��

A� _

i

��
X
ir≃idX rel A

r

>>

X

We already noted that if A is a deformation retract of X, then the inclusion
of A into X is a homotopy equivalence. The converse does not hold in general.
If the inclusion map is a homotopy equivalence, there exists a map r : X → A
such that ri ≃ idA and ir ≃ idX but r may not �x the points of A and, even
if it does, the points in A may not be �xed under the homotopy from ri to the
identity of A. Surprisingly enough, however, the converse does hold if the pair
(X,A) has a su�ciently nice property (see �1.4.)

Example 1.1.26. S2 is a retract of S2 ∨ S1 and a deformation retract of S2 ∨ I.
Any retract A of a Hausdor� space X is closed for A = {x ∈ X|r(x) = x} is

the equaliser of two continuous maps.
If A is a deformation retract of X, then the inclusion map i : A ↪→ X is a

homotopy equivalence. Conversely, if the inclusion map is a homotopy equiva-
lence, there exists a map r : X → A such that ri ∼ idA and ir ∼ idX . This is
not quite the same as saying that A is a deformation retract of X since r may
not �x the points of A and, even if it does, the points in A may not be �xed



8 CHAPTER 1. HOMOTOPY THEORY I

under the homotopy from ri to the identity of A. However, surprisingly enough,
the converse does hold if the pair (X,A) is su�ciently well behaved, namely, a
co�bration (Proposition ??).

De�nition 1.1.27. Let X be a topological space and let x0 ∈ X be a point.
Then the fundamental group of X based at x0, denoted π1(X,x0), is the set

{p : I → X|p(0) = p(1) = x0}/{homotopy relative to ∂I = {0, 1}}

Remark 1.1.28. As we know from our study of quotient spaces, a map from I
which sends 0 and 1 to the same point is the same as a map from S1, so we
could also formulate the de�nition in those terms. However, it will be useful to
us to think of these elements as maps from the interval.

1.2 Construction of Spaces

Mapping cylinder and mapping cone

We introduce constructions called mapping cylinder and mapping cone which
are extensively used in algebraic topology.

De�nition 1.2.1. The mapping cylinderMf of a continuous function f between
topological spaces X and Y is the quotient

Mf := ((I ×X)
∐

Y )/ ∼

where the
∐

denotes the disjoint union, and ∼ is the equivalence relation gen-
erated by

(0, x) ∼ f(x) for each x ∈ X.

That is, the mapping cylinder Mf is obtained by gluing one end of X × I to Y
via the map f . Notice that the �top� of the cylinder {1}×X X is homeomorphic
to X, while the �bottom� is the space f(X) ⊂ Y . Sometimes we write Mf for
Mf , and to use the notation ⊔f or ∪f for the mapping cylinder construction.
That is, one writes

Mf = (I ×X) ∪f Y

with the subscripted cup symbol denoting the equivalence.

Note that the mapping cylinder deformation retracts onto its subspace Y .
(Set r(x, t) = f(x) for x ∈ X, t ∈ I, and r(y) = y for y ∈ Y .)

The mapping cylinder may be viewed as a way to replace an arbitrary map
by an equivalent co�bration (see �??), in the following sense: Given a map
f : X → Y , the mapping cylinder is a space Mf , together with a co�bration

f̃ : X → Mf and a surjective homotopy equivalence Mf → Y (indeed, Y is a
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Figure 1.1: A mapping cylinder

deformation retract of Mf , such that the composition X →Mf → Y equals f .

X
f //

f̃   

Y

Mf

>>

Thus the space Y gets replaced with a homotopy equivalent space Mf , and the

map f with a lifted map f̃ . Equivalently, the diagram

f : X → Y

gets replaced with a diagram

f̃ : X →Mf

together with a homotopy equivalence between them.
The construction serves to replace any map of topological spaces by a ho-

motopy equivalent co�bration. Note that pointwise, a co�bration is a closed
inclusion.

The construction of a mapping cylinder Mf of a continuous map f : X → Y
is an example of the coarse type of gluing and pasting constructions we are
allowed to do once we go beyond manifolds. In this section we will introduce
more such constructions, and introduce a class of spaces which is very convenient
for algebraic topology.

De�nition 1.2.2. Given a map f : X → Y , the mapping cone Cf is de�ned to
be the quotient space of the mapping cylinder (X × I)⊔f Y with respect to the
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equivalence relation ∀x, x′ ∈ X, (x, 0) ∼ (x′, 0), (x, 1) ∼ f(x). Here I denotes
the unit interval [0, 1] with its standard topology. Note that some authors (like
J. Peter May) use the opposite convention, switching 0 and 1.

Figure 1.2: A mapping cone

Visually, one takes the cone on X (the cylinder X × I with one end (the 0
end) identi�ed to a point), and glues the other end onto Y via the map f (the
identi�cation of the 1 end).

There is a sequence of maps (called �Puppe sequence�)

X
f−→ Y → Cf → SX

Sf−−→ SY → CSf
→ SSX → · · ·

where the map Cf → SX is collapse of Y ⊂ Cf .

Proposition 1.2.3. Any map factors as an inclusion map followed by a homo-
topy equivalence.

Proof. For any map f : X → Y there is a commutative diagramme using the
mapping cylinder

Mf

≃ (x,t) 7→f(x)

��
X

f
//

. �

x7→(x,1)
>>

Y

where the slanted map is an inclusion map and the vertical map is a homotopy
equivalence (the target is deformation retract of the mapping cylinder).

Example 1.2.4. (Wedge sum and smash product of pointed spaces) Let (X,x0)
and (Y, y0) be pointed spaces. The wedge sum and the smash product of X and
Y are

X ∨ Y = X × {y0} ∪ {x0} × Y ⊂ X × Y, X ∧ Y = (X × Y )/(X ∨ Y )

The reduced suspension of the pointed space (X,x0) is the smash product∑
X = X ∧ S1 = X ∧ (I/∂I) = (X × I)/(X × ∂I ∪ x0 × I)

of X and a pointed circle (S1, 1) = (I/∂I, ∂I/∂I).
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Example 1.2.5. (The mapping cylinder for the degree n map on the circle) Let
n > 0 and let f : S1 → S1 be the map f(z) = zn where we think of the circle
as the complex numbers of modulus 1. Let Cn = ⟨t|tn⟩ be the cyclic group of
order En. The mapping cylinder Mf of f is quotient space of

∨
Cn
I)× I by the

equivalence relation ∼ that identi�es (s, x, 0) ∼ (st, x, 1) for all s ∈ Cn, x ∈ I.
Example 1.2.6. (Adjunction spaces) Let X and Y be two disjoint topological
spaces and f : A → Y a continuous map de�ned on a closed subspace A of X.
De�ne X ∪f Y to be the quotient of X ⨿ Y (disjoint union) by the smallest
equivalence relation such that a ∈ A and f(a) ∈ Y are equivalent for all points
a ∈ A. (To picture this, tie an elastic band from each point a of A to its image
f(a) in Y and let go!) The equivalence classes, [y] = f−1(y) ∪ {y} for y ∈ Y
and [x] = {x} for x ∈ X \ A, are represented by points in Y or in X \ A. Let
p : X ⨿ Y → X ∪f Y be the quotient map; pX the restriction of p to X and pY
the restriction of p to Y .

The adjunction space X ∪f Y �ts into a commutative diagramme

A
f //� _

i

��

Y

pY

��
X

pX
// X ∪f Y

called a push-out diagramme because of this universal property: If X → Z and
Y → Z are continuous maps that agree on A then there is a unique continuous
map X ∪f Y → Z such that the diagram

A
f //� _

i

��

Y

pY

��

��

X
pX
//

,,

X ∪f Y

Z

commutes. (This is just the universal property for quotient spaces in this par-
ticular situation.)

Here are the main properties of adjunction spaces.

Lemma 1.2.7. Let p : X ⨿ Y → X ∪f Y be the quotient map.

(1) The quotient map p embeds Y into a closed subspace of X ∪f Y . (We
therefore identify Y with its image pY (Y ) in the adjunction space.)

(2) The quotient map p embeds X \ A into the open subspace (X ∪f Y ) \ Y of
the adjunction space.

(3) If X and Y are normal, also the adjunction space X ∪f Y is normal.
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(4) The projection map p : X⨿Y → X supf Y is closed if and only if f is closed.

Proof. (1): The map pY = p|Y : Y → X ∪f Y is closed for closed sets B ⊂ Y ⊂
X ⨿ Y have closed saturations f−1(B) ⨿ B. Since pY is also injective it is an
embedding.
(2) The map pX |X\A : X \A→ (X ∪f Y ) is open because the saturation of any
(open) subset U of X \A is U ∪∅ ⊂ X ∪Y itself. Since pX |X\A is also injective
it is an embedding.
(3): Points are closed in the quotient space X ∪f Y because the equivalence
classes are closed in X ∪ Y . Let C and D be two disjoint closed subspaces of
X∪f Y . We will show that there is a continuous map X∪f Y → [0, 1] with value
0 on C and value 1 on D. Since Y is normal, there exists a Urysohn function
g : Y → [0, 1] such that g(Y capC) = {0} and g(Y ∩ D) = {1}. Since X is
normal, by the Tietze extension theorem, there is a continuous map X → [0, 1]
which is 0 on p−1

X (C), 1 on p−1
X (D), and is g ◦f on A. By the universal property

for adjunction spaces (2), there is a map X ∪f Y → [0, 1] that is 0 on C and 1
on D. This shows that C and D can be separated by a continuous function and
that X ∪f Y is normal.
(4): Closed subsets of Y always have closed saturations as we saw in item (1).
If f is closed then also the saturation, B ∪ f−1f(A∩B)∪ f(A∩B) ⊂ X ∪Y , of
a closed subset B ⊂ X is closed. (Since closed quotient maps (surjective closed
maps) preserve normality, this gives an easy proof of (3) under the additional
assumption that f : A→ Y be a closed map.)

1.3 CW Complexes

CW complexes: construction

A CW complex, is a topological space constructed from disks (called cells), step
by step increasing in dimension. The basic procedure in the construction is
called �attaching an n-cell�. An n-cell is the interior en of a closed disk Dn of
dimension n. How to attach it to a space X? Simply glue Dn to X with a
continuous map φ : Sn−1 → X, forming:

X ⊔Dn/{x ∼ φ(x) : x ∈ ∂Dn}.

The result is a topological space (with the quotient topology), but as a set, is
the disjoint union X ⊔ en.

The attaching process can be expressed more formally (pedantically?) as
follows:
Let X be a space and ϕ : ⨿ Sn−1

α → X a map from a disjoint union of spheres
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into X. The adjunction space (= the mapping cone on ϕ)

∐
Sn−1
α

ϕ //
� _

��

X� _

��∐
Dnα

ϕ

// X ∪ϕ
∐

Dnα

is called the n-cellular extension of X with attaching map ϕ and characteristic
map ϕ.

Building a cell complex X A CW-complex is a space X with a sequence of
subspaces (called skeleta)

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn = X = ∪Xn

constructed in the following way:

� Start with a discrete set X0, whose points we view as 0-cells.

� Inductively form the n-skeleton Xn from Xn−1 by attaching a set of n-
cells {en} to Xn−1. I.e, Xn is (homeomorphic to) an n-cellular extension
of Xn−1 for n ≥ 1.

� Either set X = Xn for some n < ∞, or set X = ∪nXn, where in the
in�nite case we use the weak topology. I.e, the topology on X is coherent
with the �ltration in the sense that

A is closed (open) in X ⇔ A ∩Xn is closed (open) in Xn for all n

for any subset A of X.

The second item of the de�nition means that for every n ≥ 0 there are attaching
maps φα : Sn−1 → Xn−1 and characteristic maps Φα : Dn → Xn such that

� The n-skeleton

Xn = Xn−1 ∪∐
αφα

∐
α

Dnα

is the n-cellular extension of the (n− 1)-skeleton by the attaching maps.

� The complement in the n-skeleton of the (n− 1)-skeleton,

Xn \Xn−1 =
∐
α

enα

∐
Φα←−−−

∐
α

intDn

is the disjoint union of its connected components enα = Φα(intDn), the
open n-cells of X. An open n-cell is open in Xn but maybe not in X.
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� A CW-complex is the disjoint union

X =

∞⋃
n=−1

Xn =

∞⋃
n=0

(Xn \Xn−1) =

∞∐
n=0

∐
α

enα

of its open cells. This is a disjoint union of sets (but usually not of topo-
logical spaces).

� The quotient of the n-skeleton by the (n− 1)-skeleton,

Xn/Xn−1 =
∨
α

(Dn/Sn−1) =
∨
α

Sn

is a wedge sum (or bouquet) of n-spheres.

X1 is a topological space since it is a 1-cellular extension of the topological
space X0. In fact, all the skeleta Xn are topological spaces and Xi is a closed
subspace of Xj for i ≤ j. The purpose of the third item of the de�nition is
to equip the union of all the skeleta with the largest topology making all the
inclusions continuous.

A CW-complex X is �nite-dimensional if X = Xn for some n Caveat : CW-
decompositions are not unique; there are generally many CW-decompositions
of a given space X. We will see S2 has two distinct CW-decompositions.

Example 1.3.1. The 1-skeleton of a cell complex is a graph, and may have loops.

Example 1.3.2. (Compact surfaces as CW-complexes)

Figure 1.3: Surfaces as CW-complexes

The closed orientable surface Mg = (S1×S1)# · · ·#(S1×S1) of genus g ≥ 1
is a CW-complex

Mg =
∨

1≤i≤g

S1ai ∨ Sbi ∪∏[ai,bi] D
2
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Figure 1.4: Two representations of the Klein bottle N2

with a single 0-cell, 2g 1-cells, and a single 2-cell (see the left side of Figure 1.3).
One sees immediately from this representation that to puncture such a sur-

face at a single point would render it homotopy equivalent to a �wedge� of 2g
circles, i.e. the disjoint union of 2g circles where 2g points, one from each circle,
are identi�ed.

The closed nonorientable surface Ng = RP 2# · · ·#RP 2 of genus h ≥ 1 is a
CW-complex

Ng =
∨

1≤i≤h

S1ai ∪∏ a2i
D2

with a single 0-cell, g 1-cells, and a single 2-cell. (See Fiure 1.4 for g = 2.)

Example 1.3.3. (Spheres as CW-complexes: 1) The n-sphere Sn may be ex-
pressed as a cell complex with a single 0-cell and a single n-cell. So Sn = e0⊔en.
Example 1.3.4. (Spheres as CW-complexes: 2) There is another way of decom-
posing n-sphere into a CW-complex: we can think Sn an be obtained from Sn−1

by attaching two n-cells (the Northern and Southern hemispheres) as follows:
Points on the n-sphere Sn ⊂ Rn+1 = Rn×R have coordinates of the form (x, u).
Let Dn± be the images of the embeddings Dn → Sn: x 7→ (x,±

√
1− |x|2). Then

Sn = Sn−1 ∪ Dn+ ∪ Dn− = Sn−1 ∪id∐
id (Dn

∐
Dn)

is obtained from Sn−1 by attaching two n-cells. Thus Sn is a �nite CW-complex
with two cells in each dimension 0 through n.

The in�nite sphere S∞ is an in�nite dimensional CW-complex

S0 ⊂ S1 ⊂ · · · ⊂ Sn−1 ⊂ Sn ⊂ · · · ⊂ S∞ =

∞⋃
n=0

Sn
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with two cells in each dimension. A subspace A of S∞ is closed if and only if
A ∩ Sn is closed in Sn for all n.

Example 1.3.5. (Projective spaces as CW-complexes) The projective spaces are
RPn = S(Rn+1)/S(R), CPn = S(Cn+1) = S(C), and HPn = S(Hn+1) = S(H).
In each case there are maps

Dn = D(Rn)
x7→(x,

√
1−|x|2)

↪→ S(Rn+1) = Sn+1
pn
↠ RPn

D2n = D(Cn)
x 7→(x,

√
1−|x|2)

↪→ S(Cn+1) = S2n+1
pn
↠ CPn

D4n = D(Hn)
x 7→(x,

√
1−|x|2)

↪→ S(Hn+1) = S4n+3
pn
↠ HPn

We note that each map D(Fn) ↪→ S(Fn+1) ↠ FPn is

� surjective,

� restricts to the projection pn−1 : S(Fn)→ FPn−1 on the boundary S(Fn)
of the disc D(Fn),

� injective on the interior D(Fn) \ S(Fn) of the disc,
where F = R,C,H. To prove the �rst item observe that any point in projec-
tive space is represented by a point on the sphere with last coordinate ≥ 0.
This means that RPn consists of RPn−1 together with the n-disc D(Rn) with
identi�cations on the boundary. In other words

RPn = RPn−1∪pn−1
Dn, CPn = CPn−1∪pn−1

D2n, HPn = HPn−1∪pn−1
D4n.

Consequently, RPn is a �nite CW-complex with one cell in every dimension
between 0 and n, CPn is a �nite CW-complex with one cell in every even
dimension between 0 and 2n, HPn is a �nite CW-complex with one cell in every
dimension divisible by 4 between 0 and 4n,

In particular, RP 0 = ∗,CP 0 = ∗,HP 0 = ∗, and RP 1 = S1,CP 1 = S2,HP 1 =
S4. The Hopf maps are the projection maps

S0 → S1 p1−→ RP 1 = S1, S1 → S3 p1−→ CP 1 = S2, S3 → S7 p1−→ HP 1 = S4,
(1.3.6)

obtained when n = 1.

De�nition 1.3.7. Let A be any topological space. A relative CW-complex on
A is a space X with an ascending �ltration of subspaces (called skeleta)

A = X−1 ⊂ X0 ⊂ X1subset · · · ⊂ Xn−1 ⊂ Xn ⊂ · · · ⊂ X =
⋃
Xn

such that

� X0 is the union of A and a discrete set of points,

� Xn is (homeomorphic to) an n-cellular extension of Xn−1 for n ≥ 1,

� the topology on X is coherent with the �ltration in the sense that B is
closed (open) in X ⇔ B ∩ Xn is closed (open) in Xn for all n for any
subset B of X.
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Topological properties of CW-complexes.

We shall see that CW-complexes have convenient topological properties.

Proposition 1.3.8. Any CW-complex is a Hausdor�, even normal, topological
space.

Proof. See Lemma 1.2.7.

Lemma 1.3.9. The closure of the open n-cell enα = Φα(intDn) is enα = Φα(Dn).

Proof. The image Φα(Dn) of the compact space Dn) is compact and therefore
closed in the Hausdor� space X. Thus enα ⊂ Φα(Dn). On the other hand, we
have

Φα(Dn) = Φα(Dn \ Sn−1) ⊂ Φα(Dn \ Sn−1) = enα

simply because Φα is continuous.

Proposition 1.3.10. Any compact subspace of a CW-complex X is contained
in a skeleton.

Proof. Let X be a CW-complex and C a compact subspace of X. Choose a
point tn in C ∩ (Xn \Xn−1) for all n where this intersection is nonempty. Let
T = {tn} be the subspace of these points. For all n, T ∩Xn is �nite and hence
closed in X since points are closed in X (Proposition 1.3.8). Thus T is closed
since X has the coherent topology. In fact, any subspace of T is closed by
the same argument. In other words, T has the discrete topology. As a closed
subspace of the compact space C, T is compact. Thus T is compact and discrete.
Then T is �nite.

Subcomplexes.

We de�ne what we mean by a subcomplex.

De�nition 1.3.11. A subcomplex of a CW-complex is a closed subspace that
is a union of open cells.

If A is subcomplex then the closure of any open cell in A is still in A since
A is closed.

If A is a subcomplex of the CW-complex X then

� A is a CW-complex with n-skeleton An = A ∩Xn,

� (X,A) is a relative CW-complex,

� (X,A) has the homotopy extension property (see Section 1.4),

� X/A is a CW-complex and the quotient map X → X/A is cellular.

Example 1.3.12. The n-skeleton of X is always a subcomplex of X.

Consider X = S1 ∨ S2 as a CW-complex with one 0-cell, one 1-cell, and one
2-cell attached at a point di�erent from the 0-cell. Then closed subspace S1 is
subcomplex of X. The closed subspace S2 is not a subcomplex since it is not
the union of open cells.
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Products of CW-complexes.

We shall now discuss the product of two CW-complexes. A slight complication
will arise because product topologies and in�nite union (= colimit) topologies
do not in general commute.

De�nition 1.3.13. Let (X,A) and (Y,B) be two CW pairs � a CW pair is
(CW complex, its subcomplex). The product of two pairs is de�ned as

(X,A)× (Y,B) = (X × Y,A× Y ∪X ×B)

where (X × Y ) \ (A× Y ∪X ×B) = (X \A)× (Y \B).

For example, if In is the unit cube in Rn then clearly

(In, ∂In) = (Ii, ∂Ii)× (Ij , ∂Ij)

whenever i, j ≥ 0 and i+ j = n. Since (Dn,Sn−1) and (In, ∂In) are homeomor-
phic pairs, we have just seen that

(Dn,Sn−1) = (Di,Si−1)× (Dj ,Sj−1)

where i, j ≥ 0 and i + j = n and the equality sign means that the two sides
are homeomorphic. We make this observation because by convention we build
CW-complexes from discs rather than cubes.

Let X = A ∪φ Di, Y = B ∪ψ Dj , be an i-cellular and a j-cellular extension
with characteristic maps Φ: (Di,Si−1) → (X,A), Ψ: (Dj ,Sj−1) → (Y,B) and
open cells ei = X \A and f j = Y \B. The product X × Y is an (i+ j)-cellular
extension (see below De�nition 1.3.14)

X × Y = (A× Y ∪X ×B) ∪(Φ×Ψ)|Si+j−1
(Di × Dj)

with one open cell

X × Y \ (A× Y ∪X ×B) = (X \A)× (Y \B) = ei × f j

which is the product of the open cells in X and Y .
The characteristic map of X × Y is the product

Φ×Ψ: (Di,Si−1)× (Dj ,Sj−1)→ (X,A)× (Y,B)

of the characteristic maps and the attaching map

(Φ×Ψ)|Si+j−1 : Di × Sj−1 ∪ Si−1 × Dj → X ×B ∪A× Y

is the restriction of Φ×Ψ to the sphere Si+j−1 = Di × Sj−1 ∪ Si−1 × Dj .

De�nition 1.3.14. Let X and Y be CW-complexes with characteristic maps
Φα : (Di,Si−1) → (Xi, Xi−1) and Φβ : (Dj ,Sj−1) → (Y j , Y i−1). The product
CW-complex has n-skeleton

(X ×CW Y )n =
⋃

i+j=n

Xi × Y j
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The characteristic maps for the n-cells are products of characteristic maps

Φα × Φβ : (Di,Si−1)× (Dj ,Sj−1)→ (Xi, Xi−1)× (Y j , Y i−1)

⊂ ((X ×CW Y )n, (X ×CW Y )n−1)

for all i, j ≥ 0 and i + j = n. The attaching maps for the n-cells are the
restrictions

Di × Sj−1 ∪ Si−1 × Dj → (Xi × Y j−1 ∪Xi−1 × Y ) ⊂ (X × Y )n−1

of the characteristic maps. (X ×CW Y ) has the topology coherent with the
skeleta.

Figure 1.5: Skeleta in product CW complex

There is a commutative diagram

(X ×CW Y )n−1 ⨿
∐

i+j=n

(Di
α ×D

j
β)

��

incl⨿
∐

(Φi
α×Φj

β×)
// (X ×CW Y )n

(X ×CW Y )n−1 ∪ρ
∐

i+j=n

(Di
α ×D

j
β)

44

The horizontal map is closed and the slanted map, produced by the universal
property, is a homeomorphism (because it is a closed continuous bijection).
This shows that (X×CW Y )n is an n-cellular extension of (X×CW Y )n−1. Thus
X ×CW Y is a CW-complex. The open n-cells of the product CW-complex,

(X ×CW Y )n \ (X ×CW Y )n−1 =
∐

i+j=n

(Xi \Xi−1)× (Y j \ Y j−1)

=
∐

i+j=n

(∐
α

eiα ×
∐
α

eiα

)
=

∐
i+j=n,α,β

eiα × f
j
β
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are the products of the open cells eiα in X with the open cells f jβ in Y for all
i, j ≥ 0 with i+ j = n.

The topology on X ×CW Y , de�ned to be the topology coherent with the
ascending skeletal �ltration, is �ner than the product topology. We cite, but
will not prove, the following:

Theorem 1.3.15. There is a bijective continuous map X ×CW Y → X × Y .
This map is a homeomorphism if X and Y have countably many cells.

A proof can be found in the appendix of Hatcher �Algebraic Topology�.
In all cases relevant for us, X ×CW Y and X × Y are homeomorphic.

1.4 The Homotopy Extension Property

The Homotopy Extension Property will be very important to algebraic topology.

De�nition 1.4.1. Let X be a space with a subspace A ⊂ X. The pair (X,A)
has the Homotopy Extension Property (HEP for short) if any partial homotopy
A × I → Y of a map X → Y into any space Y can be extended to a (full)
homotopy of the map. That is, if it is always possible to complete the diagramme

X × {0} ∪A× I //
� _

��

Y

X × I

88

for any space Y and any partial homotopy of a map X → Y .

The pair (X,∅) always has the HEP. A nondegenerate base point is a point
x0 ∈ X such that (X, {x0}) has the HEP.

Proposition 1.4.2. Let X be a space and A ⊂ X be a subspace. The following
three conditions are equivalent

(1) (X,A) has the HEP.

(2) The partial cylinder X × {0} ∪A× I is a retract of the cylinder X × I.

(3) The partial cylinder X×{0}∪A×I is a deformation retract of the cylinder
X × I.

Proof. If (X,A) has the HEP then the identity map of the partial cylinder
X × {0} ∪ A× I extends to a retraction of the cylinder X × I onto the partial
cylinder. Conversely, if the inclusion of the partial cylinder into the cylinder
has a left inverse r then it is very easy

X × {0} ∪A× I h //
� _

��

Y

X × I

r

OO

hr

88
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to �nd an extension of any partial homotopy h. This shows that (1) ⇔ (2).
It is clear that (3 ⇒ (2).
To prove that (2 ⇒ (3) let r : X × I → X × {0} ∪A× I be a retraction. De�ne
a homotopy H : X × I × I → X × I by

H(x, t, s) = (π1r(x, st), (1− s)t+ π2r(x, t))

where X
π1←− X × I π2−→ X × I are the projections. Then H(x, t, 0) = (x, t),

H(x, 1) = r(x, t), H(x, 0, s) = (x, 0), and H(a, t, s) = (a, t) for all a ∈ A. Thus
H is a deformation retraction of the cylinder X × I onto the partial cylinder
X × {0} ∪A× I.

What is the HEP good for?

The next theorem explains what the HEP can do for you.

Theorem 1.4.3. Suppose that (X,A) has the HEP.

(1) If the inclusion map has a homotopy left inverse then A is a retract of X.

(2) If the inclusion map is a homotopy equivalence then A is a deformation
retract of X.

(3) If A is contractible then the quotient map X → X/A is a homotopy equiva-
lence.

(4) The homotopy type of the adjunction space Y ∪φ X only depends on the
homotopy class of the attaching map φ : A → Y for any space Y and any
map φ : A→ Y .

Proof. (1): Assume that r : X → A is a map such that ri ≃ idA. We must
change r on A so that it actually �xes points of A. There is a map X × {0} ∪
A × I → A which on X × {0} is r and on A × I is a homotopy from ri to the
identity of A. Using the HEP we may complete the commutative diagramme

X × {0} ∪A× I r∪ri≃idA //
� _

��

A

X × I
h

55

and get a homotopy h : X × I → A. The end-value of this homotopy is a map
h1 : X → A such that h1i = idA (a retract).
(2): Let i : A→ X be the inclusion map. The assumption is that there exists a
map r : X → A such that ri ≃ idA and ir ≃ idX . By point (1) we can assume
that ri = idA, i. e, that A is a retract of X. Let G : X × I → X be a homotopy
with start value G0 = idX and end value G1 = ir. For a ∈ A, G(a, 0) = a and
G(a, 1) = a but we have no control ofG(a, t) when 0 < t < 1. We want to modify
G into a deformation retraction, that is a homotopy from idX to ir relative to
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A. Since (X,A) has the HEP so does (X,A)× (I, ∂I) = (X× I, A× I ∪X×∂I)
(Proposition 1.4.12, (3)). LetH : X×I×I → X×I be an extension (a homotopy
of homotopies) of the map X × I × {0} ∪A× I × I ∪X × ∂I × I given by

H(x, t, 0) = G(x, t),

H(a, t, s) = G(a, t(1− s)) for a ∈ A,
H(x, 0, s) = x,

H(x, 1, s) = G(ir(x), 1− s).

Note that H is well-de�ned since the �rst line, H(x, 1, 0) = G(x, 1) = ir(x), and
the fourth line, H(x, 1, 0) = G(ir(x), 1) = irir(x) = ir(x), yield the same result.
The end value of H : (x, t) 7→ H(x, t, 1), is a homotopy rel A of H(x, 0, 1) = x
to H(x, 1, 1) = G(ir(x), 0) = ir(x). This is a homotopy rel A since H(a, t, 1) =
G(a, 0) = a for all a ∈ A.
(3): We need to show that there is a homotopy inverse to the projection map
q : X → X/A and this is more or less the same thing as a homotopy X× I → X
from the identity to a map that collapses A inside A. Note that we can get such
a homotopy precisely because of the HEP! (In fact, this could be used as the
motivation for HEP.) Let C : A×I → A ⊂ X be a contraction of A, a homotopy
of the identity map to a constant map. Use the HEP to extend the contraction
of A and the identity on X

X × {0} ∪A× I idX ∪C//
� _

��

X

X × I
h

88

to a homotopy h : X× I → X such that h0 is the identity map of X, ht sends A
to A for all t ∈ I, and h1 sends A to a point of A. By the universal property of
quotient maps, the homotopy h induces a homotopy h and the map h1 induces
a map h̃1 such that the following diagramme commutes.

X × {0} ∪A× I C∪idX //
� _

��

X

X × I h //

q×idI

��

X

q

��

h0 = idX , h1(A) = ∗

(X/A)× I
h

// X/A h0 = idX/A, h1(∗) = ∗

Note that the product map q × idX : X × I → (X/A)× I is quotient since I is
locally compact Hausdor�.) Since h1 takes A to a point, it factors through the
quotient space X/A. The lower square considered only at time t = 1 can be
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enlarged to a commutative diagramme

X
h1 //

q

��

X

q

��

h̃1q = h1 ≃ h0 = idX

X/A
h1

//

h̃1

==

X/A qh̃1 = h1 ≃ h0 = idX/A

with a diagonal map h̃1 - and this is the homotopy inverse to q that we are
looking for!
(4): Let φ0 : A → Y and φ1 : A → Y be two attaching maps. Suppose that
φ : A×I → Y is a homotopy from φ0 to φ1. We want to show that Y ∪φ0

X and
Y ∪φ1

X are homotopy equivalent. The point is that both Y ∪φ0
X and Y ∪φ1

X
are deformation retracts of Y ∪φ (X × I). We get the deformation retractions
of Y ∪φ (X × I) onto Y ∪φ0 X or Y ∪φ1 X from the deformation retractions of
Proposition 1.4.2 (3) of X × I onto A× I ∪X × {0} or A× I ∪X × {1}. The
idea behind the proof is indicated in Figure 1.6. We intend to show that the

Figure 1.6: A deformation retraction Y ∪φ(X×I)×I → ∪φ(X×I) of Y ∪φ(X×I)
onto Y ∪φ (X × I)

inclusions

Y ∪φ0X = Y ∪φ0(X×{0}∪A×I) ⊂ Y ∪φ(X×I) ⊃ Y ∪φ0(X×{0}∪A×I) = Y ∪φ1X

are homotopy equivalences. (The equality signs are there because all points of
A × I have been identi�ed to points in Y .) The left inclusion is a homotopy
equivalence because the subspace is a deformation retract of the big space. The
deformation retraction h of Y ∪φ(X×I) onto Y ∪φ0

X is induced by the universal
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property of adjunction spaces as in the diagramme

A× I
f //

� _

incl

��

Y

��

A× I × I
f×idI //

� _

incl

��

π1×π2

ff

Y × I
π1

55

��
X × I × I //

h

yy

Y ∪φ (X × I)× I
h

((
X × I // Y ∪φ (X × I)

from a deformation retraction h : X×I×I → X×I of X×I onto X×{0}∪A×I
(Proposition 1.4.2 (3)). Here, the outer square is the push-out diagram for
Y ∪φ (X × I) and the inner square is just this diagramme crossed with the unit
interval. The homotopy h : X × I × I → X × I starts as the identity map, is
constant on the subspace X × {0} ∪A× I ⊂ X × I, and ends as a retraction of
X × I onto this subspace. The induced homotopy

h : Y ∪φ (X × I)× I → Y ∪φ (X × I)

starts as the identity map, is constant on the subspace

Y ∪φ (X × {0} ∪A× I) = Y ∪φ X,

and ends as a retraction onto this subspace. We conclude that Y ∪φX deforma-
tion retracts onto its subspace Y ∪φ1 X. Similarly, Y ∪φX deformation retracts
onto its subspace Y ∪φ1

X. Thus Y ∪φ0
X and Y ∪φ1

X are homotopy equivalent
spaces. (Note that we proved this by construction a zig-zag

Y ∪φ0 X → Y ∪φ (X × I)← Y ∪φ1 X

of homotopy equivalences, not by constructing a direct homotopy equivalence
between the two spaces.)

Are there any pairs of spaces that have the HEP?

Our work on HEP pairs would be futile if there weren't any pairs that enjoying
this property. But we shall next see that pairs with the HEP are ubiquitous: It
is di�cult, but not impossible, to �nd a pair that does not have the HEP.

Corollary 1.4.4. The pair (Dn,Sn−1) has the HEP for all n ≥ 1. In fact,
(CX,X) has the HEP for all spaces X.

Proof. For instance, for n = 1, D1×I ⊂ R×I ⊂ R2 (deformation) retracts onto
D1×{0}∪S0× I by radial projection from (0, 2) as indicated in Picture 1.7: In
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Figure 1.7:

fact, Dn× I ⊂ Rn× I ⊂ Rn+1 (deformation) retracts onto Dn×{0} ⊂ Sn−1× I
by a radial projection from (0, . . . , 0, 2).

More generally, for any space X, the pair (CX,X) has the HEP because
CX × {0} ∪ X × I is a retract of CX × I. Picture 1.8 indicates a retraction
R : I × I → {0} ∪ I × {0}, sending all of {1} × I to the point (1, 0). The map

Figure 1.8:

idX ×R : X × I × I → X × {0} × I ∪X × I × {0} factors through

X × I × I idX ×R //

��

X × {0} × I ∪X × I × {0}

��
(X × I)/(X × {1})× I // X × {0} × I ∪ (X × I)/(X × {1})× {0}

to give the required retraction CX × I → X × I ∪ CX × {0}.

We introduce a terminology to explain the example involving mapping cylin-
der below:

De�nition 1.4.5. Given spaces and maps

Y
g←− A f−→ X (1.4.6)

a pushout of 1.4.6 consists of a space P and maps u : X → P and v : Y → P
such that uf = vg. In addition, we require the following universal property. If
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Z is any space and if r : X → Z and s : Y → Z are maps such that rf = sg,
then there is a unique map t : P → Z such that tu = r and tv = s,

A
f //

g

��

X

r

��

u

��
Y

v
//

s //

P

t

  
Z.

We call either P or the triple (P, u, v), the pushout of 1.4.6. The square diagram
above is then called a pushout square.

We show that any two pushouts of 1.4.6 are homeomorphic. Suppose that
(P, u, v) and (P ′, u′, v′) are both pushouts of 1.4.6. Since P is a pushout, there
is a map t : P → P ′ such that tu = u′ and tv = v′. Since P ′ is a pushout, there
is a map t′ : P ′ → P such that t′u′ = u and t′v′ = v. Therefore t′tu = u and
t′tv = v. By the uniqueness of pushout maps, t′t = idP . Similarly tt′ = idP ′ ,
and so t is a homeomorphism with inverse t′.

We now show the existence of pushouts.

Proposition 1.4.7. Given 1.4.6, there exists a pushout (P, u, v).

Proof. Consider X ∨ Y , regarded as a subspace of X × Y , and introduce the
equivalence relation on X ∨ Y de�ned by (f(a), ∗) ∼ (∗, g(a)), for every a ∈ A.
Set P = X ∨ Y/ ∼ and let q : X ∨ Y → P be the quotient map. De�ne u and
v by u = qi1 and v = qi2, where i1 : X → X ∨ Y and i2 : Y → X ∨ Y are the
two injections. Clearly uf = vg. Now we show that (P, u, v) is a pushout of
1.4.6. If r : XtoZ and s : Y → Z are maps with rf = sg, then there is a map
{r, s} : X ∨ Y → Z and

{r, s}(f(a), ∗) = rf(a) = sg(a) = {r, s}(∗, g(a)).

Thus {r, s} induces t : P → Z such that tu = r and tv = s.

X
u

''

r

%%
i1��

A

f
77

g ''

X ∨ Y
q //

{r,s}

DDP
t // Z

Y
v

77

s

99
i2

OO

To prove uniqueness of t, letm : P → Z be a map such thatmu = r andmv = s.
Then

mqi1 = mu = r = tu = tqi1,

and similarly, mqi2 = tqi2. Therefore, mq = tq, and so m = t.
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Example 1.4.8 (Neil Strickland and Charles Rezk). Suppose we have a map
f : X → Y and we form the mapping cylinder Mf . Then the pair (Mf , X ∪
Y ) satis�es the homotopy extension property. Equivalently we could �nd a
retraction of Mf × I to Mf × {0} ∪ (X ∪ Y )× I.

Solution by Neil Strickland
Let us assume the convention where Mf is (X × I) ∪ Y with (x, 0) attached to
f(x). Now Mf × I = (X × I2)∪ (Y × I) with (x, 0, t) attached to (f(x), t). We
want to retract this onto the space

Q = (Mf × {0}) ∪ (((X × {1}) ∪ Y )× I).

Note that X × {0} × I gets identi�ed with part of Y × I and so is contained in
Q. Thus Q = (X × U) ∪ (Y × I), where

U = ({0, 1} × I) ∪ (I × {0}),

and again (x, 0, t) is attached to (f(x), t). Now let r be a retraction from I × I
onto U , say by radial projection from the point (1/2, 1). We can then �t 1 ×
r : X× I2 → X×U together with the identity map on Y × I to get the required
retraction of Mf × I onto Q.

Solution by Charles Rezk

It may be useful to note that you can obtain results like this from a combi-
nation of some �easier� facts:

� The pair (I, {0, 1}) has the HEP.

� If (L,K) has the HEP where K and L are locally compact Hausdorf, and
if Z is any space, then (Z × L,Z ×K) has the HEP.

� If (U,A) has the HEP, and g : A → B is any map, then (V,B) has the
HEP, where V is the pushout of U along g.

Apply the second one with (L,K) = (I, {0, 1}) and note that Mf can be ob-
tained from X

∐
Y by gluing it to a copy of X × I along X × {0, 1}.

Proposition 1.4.9. If (X,A) has the HEP and X is Hausdor�, then A is a
closed subspace of X.

Proof. X ×{0} ⊂ A× I is a closed subspace of X × I since it is a retract. Now
look at X at level 1

2 inside the cylinder X × I.

See Ronald Brown, `Topology and Groupoids� for more (either necessary or
su�cient) conditions for an inclusion to have the HEP.

Example 1.4.10 (A closed subspace that does not have the HEP.). (I, A) where
A = {0} ∪ { 1n |n = 1, 2, . . . } does not have the HEP since I × {0} ∪A× I is not
a retract of I × I.

Indeed, assume that r : I × I → A× I is a retraction. For each n ∈ N+, the
map t 7→ r(t × 1), 1

n+1 ≤ t ≤ 1
n , is a path in A from 1

n+1 × 1 to 1
n × 1 and its
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image under the retraction, t 7→ r(t×1), 1
n+1 ≤ t ≤

1
n , is a path in A connecting

the same two points.

Such a path must pass through all points of

(
1

n+ 1
,
1

n
)× {0} ⊂ I × {0}

because the projection π1r([
1

n+1 ,
1
n ] × {1}) ⊃ [ 1

n+1 ,
1
n ] by connectedness. Thus

there is a point tn ∈ ( 1
n+1 ,

1
n ) such that r(tn × 1) ∈ ( 1

n+1 ,
1
n ) × {0}. This

contradicts continuity of r for tn × 1 converges to 0× 1 and r(t1 × 1) converges
to 0× 0 ̸= r(0× 1).

A similar (but simpler) argument shows that there is no retraction A× I →
A× {0} ∪ {0} × I so that 0 is a �degenerate� base point of A.

Example 1.4.11. Let Y be the quasi-circle, a closed subspace of R2 consisting of

A the segment [−1, 1] in the y axis,

B the arc connecting these two pieces,

C the portion of the graph of y = sin(1/x),

thus Y = A ∪ B ∪ C (see Fiure 1.9.) Induce a map f : W → S1 by collapsing

Figure 1.9: A quasi-circle

the interval A = [−1, 1]. Then f does not lift to the covering space R → S1,
even though π1(W ) = 0. (since π1(S1) = Z and π1(C) is trivial) even though A
is contractible.

Indeed, we have a quotient map q : Y → Y/A by collapsing A to a point,
which we denote by a. Then we have a map g : Y/A → S1 by leaving a and
B �xed, and projecting down the graph of sin(1/x) to the x-axis. By doing a
rotation if necessary, we can assume that g(a) = 1 (we are thinking of S1 as the
unit circle in C). Then the map f is the composition f = g ◦ q.

Let p : R→ S1 be the usual covering map t 7→ eit, and suppose there is a lift
f̃ : Y → R.

R

p

��
Y

f
//

f̃

>>

S1
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For ϵ > 0, de�ne

Uϵ = {y ∈ Y : dist(y,A) > ϵ}
Vϵ = {y ∈ Y : dist(y,A) < ϵ}

That is, Uϵ is an open subset of Y covering almost all of Y , except for avoiding a
ϵ-neighbourhood of A, and V is an ϵ-neighbourhood of A. Note that Uϵ ∪V2ϵ =
Y . (They do overlap!) Then f(Uϵ) covers almost all of S1, and f(Vϵ/2) is a
small neighbourhood of 1.

pf̃(Uϵ) = f(Uϵ) = {x ∈ S1 : dist(x, 1) > ϵ}

pf̃(V2ϵ) = f(V2ϵ) = {x ∈ S1 : dist(x, 1) < 2ϵ}

This says that f̃(Uϵ) is an interval of length just a bit smaller than 2ϵ that

avoids f(a) = 2πk, and f̃(Vϵ) is a small interval containing f(a) = 2πk. Since
Uϵ and V2ϵ overlap, the images overlap. Thus the union

f̃(Y ) = f̃(Uϵ) ∪ f̃(V2ϵ)

is a single open interval of length greater than 2π. So there exist α, β ∈ f̃(Y )

such that |α− β| = 2π. Since f̃(Uϵ) and f̃(V2ϵ) are both intervals of length less

than 2π, α and β can't be in the same one. WLOG assume α ∈ f̃(Uϵ) \ f̃(V2ϵ)
and β ∈ f̃(V2ϵ) \ f̃(Uϵ). Then there exist yα ∈ Uϵ \ V2ϵ and yβ ∈ V2ϵ \ Uϵ with
f̃(yα) = α and f̃(yβ) = β. Then

|α− β| = 2π ⇒ p(α) = p(β)⇒ pf̃(yα) = pf̃(yβ)⇒ f(yα) = f(yβ)

By construction of Uϵ, yα ∈ Uϵ implies that yα is not in A. Since f is injective
except for values in A, this implies that yα = yβ , which contradicts the fact that

yα and yβ lie in disjoint neighbourhoods of Y . Therefore, no lift f̃ exists.

Proposition 1.4.12. Suppose (X,A) has the HEP.

(1) (transitivity) If X0 ⊂ X1 ⊂ X2 and both pairs (X2, X1) and (X1, X0)
have the HEP, then (X2, X0) has the HEP. More generally, if X = ∪Xk

has the coherent topology with respect to its subspaces X0 ⊂ X1 ⊂ · · · ⊂
Xk−1 ⊂ Xk ⊂ · · · where each pair of consecutive subspaces has the HEP,
then (X,X0) has the HEP.

(2) Y × (X,A) = (Y ×X,Y ×A) has the HEP for all spaces Y .

(3) (X,A)× (I, ∂I) = (X × I,X × ∂I ∪A× I) has the HEP.

(4) (Y supφX,Y ∪φ A) has the HEP for all spaces Y and all maps ϖ : B → Y
de�ned on a closed subspace B of A. In particular, (Y ∪φ X,Y ) has the
HEP for any attaching map φ : A→ Y . (See Figure 7.)

(5) The n-cellular extension (Y ∪φ
∐

Dn, Y ) of any space Y has the HEP for
any attaching map φ : Sn−1 → Y .
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Figure 1.10: The pair (Y ∪φ X,Y ∪φ A

Proof. (1): In the �rst case, there are retractions

r2 : X2 × I → X1 × I ∪X2 × {0} and

r1 : X1 × I ∪X2 × {0} → X0 × I ∪X2 × {0}.

Then r1r2 is a retraction of X2 × I onto X0 × ∪X2 × {0}.

Figure 1.11: Retraction of X2 × I onto X0 × I ∪X2 × {0}

In the general case, there are retractions

rk : Xk × I ∪X × {0} → Xk−1 × I ∪X × {0}.

There is a well-de�ned retraction

r1r2 · · · rk · · · : X × I → X0 × I ∪X × {0}

that on Xk × I ∪X × {0} is

Xk × I ∪X × {0}
rk−→ Xk−1 × I ∪X × {0}

rk−1−−−→ · · · r2−→

X1 × I ∪X × {0}
r1−→ X0 × I ∪X × {0}
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This retraction X × I → X0 × I ∪X × {0} is continuous because the product
topology on X × I is coherent with the �ltration Xk × I, k = 0, 1, . . . . (The
reader may want to verify this claim!)

(2): We use Proposition 1.4.2. Let r : X × I → X × I be a retraction onto
X × {0} ∪A× I. Then the product map idY ×r is a retraction of (Y ×X)× I
onto (Y ×X){0} ∪ (Y ×A)× I.

(3): See Dugunji,�Topology� Chapter 7 �5 (p. 330).
(4): We use Proposition 1.4.2 again. Let r : X × I → X × I be a retraction

onto X × {0} ∪ A × I. The universal property of quotient maps provides a
factorisation, idY×I ⨿r of idY×I

∐
r

(Y ⨿X)× I
idY ×I ⨿r //

q×idI

��

(Y ⨿X)× I

q×idI

��
(Y ∪φ X)× I

idY ×I ⨿r
// (Y ∪φ X)× I

that is a retraction of Y ∪φ X) × I onto Y ∪φ X × {0}Y ∪φ ∪A×. To prove
continuity, note that the left vertical map is a quotient map since I is locally
compact Hausdor�. This shows that (Y ∪φ X,Y ∪φ ∪A) has the HEP. If the
attaching map φ is de�ned on all of A, we have that (Y ∪φ X,Y ∪φ ∪A) =
(Y ∪φ X,Y ) so this pair has the HEP.

Figure 1.12: Retraction of (Y ∪ Dn)× I onto Y × I ∪ (Y ∪ Dn)× {0}

(5): This is a special case of (4) since (
∐

Dn,
∐

Sn−1) has the HEP (Corollary
1.4.4).

Corollary 1.4.13. Any relative CW-complex (X,A) (De�nition 1.3.7) has the
HEP. In particular, any CW-pair (X,A) has the HEP.
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Proof. There is a �ltration of X

A = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ ∪n−1
X ⊂ ∪Xn ⊂ · · · ⊂ X

where Xn, n ≥ 0, is obtained from A ∪ Xn−1 by attaching n-cells. Since
a cellular extension has the HEP, transitivity (Proposition 1.4.12 (1)) implies
that also (X,A) has the HEP.

Example 1.4.14. (S∞ is contractible.) Choose ∗ = 1 as the base-point of R ⊃
S0 ⊂ S1. Let Dn+1

+ denote the upper half of Sn+1 = Dn+1
− ∪ Dn+1

+ . Since the
base point {∗} is a deformation retract of the disc Dn+1 there is a homotopy

Rn : Sn ×
[

n

n+ 1
,
n+ 1

n+ 2

]
→ Sn+1

from the inclusion map of Sn into Sn+1 to the constant map Sn → ∗ and this
homotopy is relative to the base point {∗}. Since (S1, S0) has the HEP, the

Figure 1.13: Inclusion Sn to Sn+1

partial homotopy R0 : S0× [0, 1/2]→ S1 extends to a homotopy S1× [0, 1/2]→
S1, relative to the base point, from the identity map of S1 to some map f1 : :
S1toS1 that sends S0 to ∗.

Since (S2,S1) has the HEP, the homotopy

S1 × [1/2, 2/3]→ S2 (x, t) 7→ R1(f1(x), t),

which is constant on S0 × [1/2, 2/3], combined with the already constructed
homotopy S1×[0, 1/2]→ S1 and the identity on S2×{0}, extends to a homotopy
S2 × [0, 2/3] → S2, constant on S1 × [1/2, 2/3], from the identity map of S2 to
some map f2 : S2 → S2 that sends S1 to ∗.

Continue like this and get a homotopy S∞ × [0, 1]→ S∞, from the identity
to the constant map relative to the base point.

Figure 1.14 shows the beginning of a homotopy S∞× I → S∞ rel ∗ between
the identity map and the constant map. It is continuous because the area
where it is constant (indicated by the dotted lines) gets larger and larger as we
approach S∞ × {1}.
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Figure 1.14: S∞ is contractible.

In the above example we actually proved the following:

Proposition 1.4.15. Let X be a CW-complex with skeleta Xn, n ≥ 0, and
base point ∗ ∈ X0. If all the inclusions Xn ↪→ Xn+1 are homotopic rel ∗ to the
constant map ∗, then the identity map of X is homotopic rel ∗ to the constant
map ∗ and X is contractible.

Exercise 1.4.16. The Dunce hat is the quotient of the of the 2-simplex by the
identi�cations indicated in Fig 1.15. Then the Dunce hat is contractible, in fact,
homotopy equivalent to D2. Let f : S1 → S1 be a map from S1 to itself. The
cone Cf = Mf/S1 × {1} for f is obtained by pinching the top of the mapping
cylinder to a point. As Mf is the cylinder S1× [0, 1] with the bottom pasted to
S1 by the map f , Cf is D2 with ∂D2 pasted to S1 by the map f . So the dunce
hat is just Cf with f : S1 → S1 de�ned as

f(e2πit) =

{
e2πi(3t), 0 ≤ t ≤ 2/3

e2πi(2−3t), 2/3 ≤ t ≤ 1.

which is homotopic to the identity by a linear homotopy (note that we make
the choice of f for an easy de�nition of the homotopy)

H(e2πit, s) =

{
e2πi(3t(1−s)+st, 0 ≤ t ≤ 2/3

e2πi[(2−3t)(1−s)+st], 2/3 ≤ t ≤ 1.

So the dunce hat is homotopic to Cid ≃ D2 which is contractible.

Example 1.4.17. The unreduced suspension SX and the reduced suspension∑
X = SX/{x0} × I are homotopy equivalent for all CW-complexes X based

at a 0-cell {x0}.
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Figure 1.15: Dunce Hat

Example 1.4.18. Homotopic maps have homotopy equivalent mapping cones.
Let f : X → Y be any map. Consider the mapping cone Cf = Y ∪f CX of

f . Since the pair (CX,X) has the HEP (1.4.4) we know that

� (Cf , Y ) has the HEP (Proposition 1.4.12.(4))

� The homotopy type of Cf only depends on the homotopy class of f (The-
orem 1.4.3.(4))

We claim that the squaring map

2: S1 → S1, z 7→ z2 where S1 = z ∈ C : |z| = 1

is not homotopic to the constant map 0: S1 → S1. In fact, C2 = S1∪2D2 = RP 2

and C0 = S1 ∪0 D2 = S1 ∨ S2 are not homotopy equivalent.
The complex projective plane CP 2 = S2 ∪φ D4 is obtained by attaching a

4-cell to the 2-sphere along the Hopf map S3 → S2 (Example 1.3.5). If the
attaching map were nullhomotopic then CP 2 would be homotopy equivalent to
S2 ∪∗ D4 = S2 ∨ S4.

There are methods with which we can show that RP 2 and S1 ∨ S2 are not
homotopy equivalent, and that CP 2 and S2 ∨ S4 are not homotopy equivalent,
either. Thus the squaring map 2: S1 → S1 and the Hopf map S3 → S2 are not
nullhomotopic.

Example 1.4.19. The homotopy type of the quotient space X/A:
If (X,A) has the HEP so does the pair (X ∪CA,CA) obtained by attaching X
to CA (Proposition 1.4.12(4)). Since the cone CA on A is contractible,

X ∪ CA→ X ∪ CA/CA = X/A
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is a homotopy equivalence (Theorem 1.4.3 (3)) between the cone on the inclusion
of A into X and the quotient space X/A. Suppose in addition that the inclusion
map A ↪→ X is homotopic to the constant map 0: A→ X, i.e, A is contractible
in X. Then there are homotopy equivalences

X/A ≃ X ∪ CA = X ∪i CA = Ci ≃ C0 = X ∨ SA

as the inclusion map and the constant map have homotopy equivalent mapping
cones by Example 1.4.18. For instance, Sn/Si ≃ Sn ∨ Si+1 for all i ≤ 0 < n.
(The inclusion Si → Sn, 0 < i < n, is nullhomotopic since it factors through the
contractible space Sn \ ∗ = Rn.) Hatcher Algebraic Topology has an illustration
of S2/S0 ≃ S2 ∪ CS0 ≃ S2 ∨ S1. as in Figure 1.16.

Figure 1.16: S2/S0 ≃ S2 ∨ S1

Example 1.4.20. HEP for mapping cylinders:
Let f : X → Y be a map. We apply Proposition 1.4.12 in connection with the
mapping cylinder Mf = Y ∪f (X × I) and obtain the following:

(I, ∂I) has the HEP
1.4.12(2)⇒ (X× I,X×∂I) has the HEP 1.4.12(4)⇒ (Mf , X ∪Y )

has the HEP,

(I, {0}) has the HEP 1.4.12(2)⇒ (X × I,X × {0}) has the HEP 1.4.12(4)⇒ (Mf , Y )
has the HEP.

The fact that (Mf , X ∪Y ) has the HEP implies that also (Mf , X) has the HEP
(simply take a constant homotopy on Y ). See Example 1.4.21 below for another
application.

Example 1.4.21. HEP for subspaces with mapping cylinder neighbourhoods:
For another application of Proposition 1.4.12, suppose that the subspace A ⊆
X has a mapping cylinder neighbourhood. This means that A has a closed
neighbourhood N containing a subspace B (thought of as the boundary of N)
such that N \B is an open neighbourhood of A and (N.A∪B) is homeomorphic
to (Mf , A ∪B) for some map f : B → A. Then (X,A) has the HEP.

To see this, let h : X × {0} ∪ A × I → Y be a partial homotopy of a map
X → Y . Extend it to a partial homotopy on X × {0} ∪ (A ∪ B) × I by using
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the constant homotopy on B× I. Since (N,A∪B) has the HEP, we can extend
further to a partial homotopy de�ned on X × {0} ∪ N × I. Finally, extend to
X × I by using a constant homotopy on X \ (N \ B) × I. In this way we get
extension

X × {0} ∪A× I h //
� _

��

Y

X × {0} ∪ (A ∪B)× I

77

� _

��
X × {0} ∪N × I

EE

� _

��
X × I

JJ

The �nal map is continuous since it restricts to continuous maps on the closed
subspaces X \ (N \B)× I and N × I with union X × I.

1.5 Compact-Open Topology

The compact-open topology is a natural topology on mapping spaces of con-
tinuous functions, important because of its role in exhibiting locally compact
topological spaces to be exponentiable, as demonstrated below, culminating in
Theorem 1.5.6.

Let X be a locally compact Hausdor� space, and Y any Hausdor� space.
By Y X we mean the set of continuous functions X → Y .

De�nition 1.5.1. The compact-open topology on Y X is the topology generated
by the sets M(K,U) = {f ∈ Y X |f(K) ⊂ U}, where K ⊂ X is compact and
U ⊂ Y is open.

Recall that �generated� here means that these sets form a subbasis for the
open sets. In what follows, unless otherwise noted, Y X will always be given the
compact-open topology.

Lemma 1.5.2. Let K be a collection of compact subsets of X containing a
neighbourhood base at each point of X. Let B be a subbasis for the open sets
of Y . Then the sets M(K,U), for K ∈ K and U ∈ B, form a subbasis for the
compact-open topology.

Proof. Note that M(K,U) ∩M(K,V ) = M(K,U ∩ V ), which implies that it
su�ces to consider the case in which B is a basis. We need to show that the
indicated sets form a neighbourhood basis at each point f ∈ Y X . Thus it su�ces
to show that if K ⊂ X is compact and U ⊂ Y is open, and f ∈M(K,U), then
there exist K1, . . . ,Kn ∈ K and U1, . . . , Un ∈ B such that f(x) ∈ ∪M(Ki, Ui) ⊂
M(K,U).
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For each x ∈ K, there is an open set Ux ∈ B with f(x) ∈ Ux ⊂ U , and there
exists a Kx ∈ K which is a neighbourhood of x such that f(Kx) ⊂ Ux. Thus
f ∈M(Kx, Ux).

By the compactness of K there exist points xl, . . . , xn such that K ⊂ Kx1
∪

· · · ∪Kxn
. Then f ∈ ∩M(Kxi

, Uxi
) ⊂M(K,U).

Proposition 1.5.3. For X locally compact Hausdor�, the �evaluation map�
e : Y X ×X → Y , de�ned by e(f, x) = f(x), is continuous.

Proof. If f and x are given, let U be an open neighbourhood of f(x). Since f
is continuous, there is a compact neighbourhood K of x such that f(K) ⊂ U .
Thus f ∈M(K,U) andM(K,U)×K is taken into U by the evaluation e. Since
M(K,U)×K is a neighbourhood of (f, x) in Y X ×X, we are done.

Theorem 1.5.4. Let X be locally compact Hausdor� and Y and T arbitrary
Hausdor� spaces. Given a function f : X × T → Y , de�ne, for each t ∈ T , the
function ft : X → Y by fy(x) = f(x, t). Then f is continuous ⇔ both of the
following conditions hold:

(a) each ft is continuous; and

(b) the function T → Y X taking t to ft is continuous.

Proof. The implication⇐ follows from the fact that f is the composition of the
map X × T → Y X ×X taking (x, t) to (ft, x) with the evaluation Y ×X → Y .

For the implication ⇒, (a) follows from the fact that ft is the composition
X → X × T → Y of the inclusion x 7→ (x, t) with f . To (b), let t ∈ T be given
and let ft ∈M(K,U). It su�ces to show that there exists a neighbourhood W
of t in T such that ′ ∈ W ⇒ ft ∈ M(K,U). (That is, it su�ces to prove the
conditions for continuity for a subbasis only.)

For x ∈ K, there are open neighbourhoods Vx ⊂ X of x and Wx ⊂ T of
t such that f(Vx × Wx) ⊂ U . By compactness, K ⊂ Vx1

∪ · · · ∪ Vxn
= V

say. Put W = WX1
∩ · · · ∩Wxn

. Then f(K ×W ) ⊂ f ′V ×W ) ⊂ U , so that
t′ sinW ⇒ ft ∈M(K,U) as claimed.

Remark 1.5.5. This theorem implies that a homotopy X×I → Y , with X locally
compact, is the same thing as a path I → Y X in Y X .

An often used consequence of Theorem 1.5.4 is that in order to show a
function T → Y X to be continuous, it su�ces to show that the associated
function X × T → Y is continuous.

Theorem 1.5.6. (The Exponential Law) Let X and T be locally compact Haus-
dor� spaces and let Y be an arbitrary Hausdor� space. Then there is the home-
omorphism

Y X×T ≈−→ (Y X)T

taking f to f∗, where f∗(t)(x) = f(x, t) = ft(x).
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Proof. Theorem 1.5.4 says that the assignment f 7→ f∗ is a bijection. We must
show it and its inverse to be continuous. Let U ⊂ Y be open, and K ⊂ X,
K ′ ⊂ T compact. Then

f ∈M(K ×K ′, U)⇔ (t ∈ K ′, x ∈ K ⇒ ft(x) = f(x, t) ∈ U)

⇔ (t ∈ K ′ ⇒ ft ∈M(K,U))

⇔ f∗ ∈M(K ′,M(K,U)).

Now the K ×K ′ give a neighbourhood basis for X × T . Therefore the M(K ×
K ′, U) form a subbasis for the topology of Y X×T .

Also, theM(K,U) give a subbasis for Y X and therefore theM(K ′,M(K,U))
give a subbasis for the topology of (Y X)T .

Since these subbases correspond to one another under the exponential cor-
respondence, the theorem is proved.

Proposition 1.5.7. If X is locally compact Hausdor� and Y and W are Haus-
dor� then there is the homeomorphism

Y X ×WX ≈−→ (Y ×W )X

given by (f, g) 7→ f×g = (f × g) ◦ diag.

Proof. This is clearly a bijection. If K,K ′ ⊂ X are compact, and U ⊂ Y and
V ⊂W are open then we have

(f, g) ∈M(K,U)×M(K ′, V )⇔
(x ∈ K ⇒ f(x) ∈ U) and (x ∈ K ′ ⇒ g(x) ∈ V )⇔
(x ∈ K ⇒ (f×g)(x) ∈ U ×W ) and (x ∈ K ′ → (f×g)(x) ∈ Y × V )⇔
(f×g) ∈M(K,U ×W ) ∩M(K ′, Y × V ).

Thus (f, g) 7→ f×g is open.
Also, (f, g) ∈M(K,U)×M(K,V )⇔ (f×g) ∈M(K,U × V ), which implies

that the function in question is continuous.

Proposition 1.5.8. If X and T are locally compact Hausdor� spaces and Y is
an arbitrary Hausdor� space then there is the homeomorphism

Y X+T ≈−→ Y X × Y T

taking f to (f ◦ idX , f ◦ idY ).

Proof. This is an easy exercise left to the reader.

Theorem 1.5.9. For X locally compact and both X and Y Hausdor�, X is a
covariant functor of Y and a contravariant functor of X.
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Proof. A map ϕ : Y → Z induces ϕX : Y X → ZX , by ϕX(f) = ϕ ◦ f . We
must show that ϕX is continuous. By Theorem 1.5.4 it su�ces to show that
Y X×X → Z, taking (f, x) to ϕ(f(x)), is continuous. But this is the composition
ϕ ◦ e of ϕ with the evaluation, which is continuous.

Next, for ψ : X → T , both spaces locally compact, we must show that
Y ψ : Y T → Y X , taking ψ to f ◦ ψ, is continuous. It su�ces, by Theorem
1.5.4, to show that Y T ×X → Y , taking (f, x) to f(ψ(x)) is continuous. But
this is just the composition e ◦ (id×ψ), which is continuous.

Corollary 1.5.10. For A ⊂ X both locally compact and X, Y Hausdor�, the
restriction Y X → Y A is continuous.

Theorem 1.5.11. For X, Y locally compact, and X, Y , Z Hausdor�, the
function

ZY × Y X → ZX

taking (f, g) to f ◦ g, is continuous.

Proof. It su�ces, by Theorem 1.5.4, to show that the function ZY ×Y X ×X →
Z, taking (f, g, x) to (f ◦ g)(x), is continuous. But this is the composition
e ◦ (id×e).

All of these things, and the ones following, have versions in the pointed
category, the veri�cation of which is trivial.

We �nish this section by showing that, for Y metric, the compact-open
topology is identical to a more familiar concept.

Lemma 1.5.12. Let Y be a metric space, let C be a compact subset of Y , and
let U ⊃ C be open. Then there is an epsilon > 0 such that Bϵ(C) ⊂ U .

Proof. Cover C by a �nite number of balls of the form Bϵ(xi)(xi) such that
B2ϵ(xi)(xi) ⊂ U . Put ϵ = min(ϵ(xi)). Suppose x ∈ Bϵ(C). Then there is a
c ∈ C with dist(x, c) < ϵ and an i such that dist(c, xi) < ϵ(xi). Thus x ∈
B2ϵ(xi)(xi) ⊂ U .

Theorem 1.5.13. If X is compact Hausdor� and Y is metric then the compact-
open topology is induced by the uniform metric on Y X , i.e., the metric given by
dist(f, g) = sup{dist(f(x), g(x))|x ∈ X}.

Proof. For f ∈ Y X , it su�ces to show that a basic neighbourhood of �n each
of these topologies contains a neighbourhood of f in the other topology.

Let ϵ > 0 be given. Let

N = Bϵ(f) = {g ∈ Y X |dist(f(x), g(x)) < ϵ for all x ∈ X}.

Given x, there is a compact neighbourhood Nx of x such that p ∈ Nx → f(p) ∈
Bϵ/2(f(x)). Cover X by Nx1

∪ · · · ∪Nxk
. We claim that

V =M(Nx1
, Bϵ/2(f(x1))) ∩ · · · ∩M(Nxk

, Bϵ/2(f(xk))) ⊂ N.
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To see this, let g ∈ V , i.e., x ∈ Nxi ⇒ g(x) ∈ Bϵ/2(f(ci)). But f(x) ∈
Bϵ/2(f(xi)) and so it follows that g ∈ V ⇒ dist(f(x), g(x)) < ϵ for all x. That
is, V ⊂ N .

Conversely, suppose that f ∈ M(K1, U1 ∩ · · · ∩M(Kr, Ur), i.e, f(Ki) ⊂ Ui
for i = 1, . . . , r. By Lemma 1.5.12, there is an ϵ > 0 such that Bϵ(f(Ki)) ⊂ Ui
for all i = 1, . . . , r. If x ∈ Ki then Bϵ(f(x)) ⊂ Bϵ(F (Ki)) ⊂ Ui. Therefore, if
g ∈ Bϵ(f) and x ∈ Ki then g(x) ∈ Bϵ(f(x)) ⊂ Ui. Thus g ∈ M(Ki, Ui for all i
and so Bϵ(f) ⊂ ∩M(Ki, Ui).

Corollary 1.5.14. If X is locally compact Hausdor� and Y is metric then the
compact-open topology on Y X is the topology of uniform convergence on compact
sets. That is, a net fα ∈ Y X converges to f ∈ Y X in the compact-open topology
⇔ fα|K converges uniformly to f |K for each compact set K ⊂ X.

Proof. For ⇒ recall from Corollary 1.5.10 that Y X → Y K is continuous. Thus
fα|L → f |K in the compact-open topology. But Y K has the topology of the
uniform metric and so fα|K converges to f |K uniformly.

For ⇐, suppose that fα|K converges uniformly to f |K for each compact
K ⊂ X. Let f ∈M(K,U). Then there exists an ϵ > 0 such that Bϵ(f(K)) ⊂ U .
There is an α such that β > α ⇒ dist(fβ(x), f(x)) < ϵ for all x ∈ K. That is,
fβ(x) ∈ Bϵ(f(K)) ⊂ U . Thus β > α ⇒ fβ ∈ M(X,U). This implies that fα
converges to f in the compact-open topology.



Chapter 2

Homotopy Theory II

2.1 Compactly generated spaces

We brie�y describe the category of spaces in which algebraic topologists cus-
tomarily work. The ordinary category of spaces allows pathology that obstructs
a clean development of the foundations. The homotopy and homology groups
of spaces are supported on compact subspaces, and it turns out that if one as-
sumes a separation property that is a little weaker than the Hausdor� property,
then one can re�ne the point-set topology of spaces to eliminate such pathology
without changing these invariants. We shall leave the proofs to the reader, but
the wise reader will simply take our word for it, at least on a �rst reading: we
do not want to overemphasise this material, the importance of which can only
become apparent in retrospect.

The de�nition of compactly generated spaces

We shall understand compact spaces to be both compact and Hausdor�, follow-
ing Bourbaki. A space X is said to be weak Hausdor� if g(K) is closed in X
for every map g : K → X from a compact space K into X. When this holds,
the image g(K) is Hausdor� and is therefore a compact subspace of X. This
separation property lies between T1 (points are closed) and Hausdor�, but it is
not much weaker than the latter.

A subspace A of X is said to be compactly closed if g−1(A) is closed in
K for any map g : K → X from a compact space K into X. When X is weak
Hausdor�, this holds if and only if the intersection of A with each compact subset
of X is closed. A space X is a k-space if every compactly closed subspace is
closed.

A space X is compactly generated if it is a weak Hausdor� k-space. For
example, any locally compact space and any weak Hausdor� space that satis�es
the �rst axiom of countability (every point has a countable neighbourhood basis)
is compactly generated. We have expressed the de�nition in a form that should
make the following statement clear.

41
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Lemma 2.1.1. If X is a compactly generated space and Y is any space, then a
function f : X → Y is continuous if and only if its restriction to each compact
subspace K of X is continuous.

We can make a space X into a k-space by giving it a new topology in which
a space is closed if and only if it is compactly closed in the original topology.
We call the resulting space kX. Clearly the identity function kX → X is
continuous. If X is weak Hausdor�, then so is kX, hence kX is compactly
generated. Moreover, X and kX then have exactly the same compact subsets.

Write X ×c Y for the product of X and Y with its usual topology and write
X × Y = k(X ×c Y ). If X and Y are weak Hausdor�, then X × Y = kX × kY .
If X is locally compact and Y is compactly generated, then X × Y = X ×c Y .

By de�nition, a space X is Hausdor� if the diagonal subspace ∆X = {(x, x)}
is closed in X ×c X. The weak Hausdor� property admits a similar characteri-
sation.

Lemma 2.1.2. If X is a k-space, then X is weak Hausdor� if and only if ∆X
is closed in X ×X.

The category of compactly generated spaces

One major source of point-set level pathology can be passage to quotient spaces.
Use of compactly generated topologies alleviates this.

Proposition 2.1.3. If X is compactly generated and π : X → Y is a quotient
map, then Y is compactly generated if and only if (π × π)1(∆Y ) is closed in
X ×X.

The interpretation is that a quotient space of a compactly generated space
by a �closed equivalence relation� is compactly generated. We are particularly
interested in the following consequence.

Proposition 2.1.4. If X and Y are compactly generated spaces, A is a closed
subspace of X, and f : A→ Y is any continuous map, then the pushout Y ∪f X
is compactly generated.

Another source of pathology is passage to colimits over sequences of maps
Xi → Xi+1. When the given maps are inclusions, the colimit is the union of
the sets Xi with the �topology of the union;� a set is closed if and only if its
intersection with each Xi is closed.

Proposition 2.1.5. If {Xi is a sequence of compactly generated spaces and
inclusions Xi → Xi+1 with closed images, then the colimit lim−→Xi is compactly
generated.

We now adopt a more categorical point of view. We rede�ne U to be the
category of compactly generated spaces and continuous maps, and we rede�ne
T to be its subcategory of based spaces and based maps.
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Let wU be the category of weak Hausdor� spaces. We have the functor
k : wU → U , and we have the forgetful functor j : U → wU , which embeds
U as a full subcategory of wU . Clearly

U (X, kY ) ≃ wU (jX, Y )

for X ∈ U and Y ∈ wU since the identity map kY → Y is continuous and con-
tinuity of maps de�ned on compactly generated spaces is compactly determined.
Thus k is right adjoint to j.

We can construct colimits and limits of spaces by performing these construc-
tions on sets: they inherit topologies that give them the universal properties of
colimits and limits in the classical category of spaces. Limits of weak Hausdor�
spaces are weak Hausdor�, but limits of k-spaces need not be k-spaces. We con-
struct limits of compactly generated spaces by applying the functor k to their
limits as spaces. It is a categorical fact that functors which are right adjoints
preserve limits (�RAPL� as coined by Awoedy), so this does give categorical
limits in U . This is how we de�ned X × Y , for example.

Point-set level colimits of weak Hausdor� spaces need not be weak Hausdor�.
However, if a point-set level colimit of compactly generated spaces is weak Haus-
dor�, then it is a k-space and therefore compactly generated. We shall only be
interested in colimits in those cases where this holds. The propositions above
give examples. In such cases, these constructions give categorical colimits in U .

From here on, we agree that all given spaces are to be compactly generated,
and we agree to rede�ne any construction on spaces by applying the functor k
to it. For example, for spaces X and Y in U , we understand the function space
Map(X,Y ) = Y X to mean the set of continuous maps from X to Y with the
k-i�cation of the standard compact-open topology; the latter topology has as
basis the �nite intersections of the subsets of the form {f |f(K) ⊂ U} for some
compact subset K of X and open subset U of Y . This leads to the following
adjointness homeomorphism, which holds without restriction when we work in
the category of compactly generated spaces.

Proposition 2.1.6. For spaces X, Y , and Z in U , the canonical bijection

Z(X×Y ) ≃ (ZY )X

is a homeomorphism.

Observe in particular that a homotopy X × I → Y can equally well be
viewed as a map X → Y I . These adjoint, or �dual,� points of view will play an
important role in the next two chapters.

2.2 Co�brations

In this section, we elaborate the fundamental tools and de�nitions of our study
of co�brations.
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Exact sequences that feature in the study of homotopy, homology, and co-
homology groups all can be derived homotopically from the theory of co�bre
and �bre sequences that we present in this and the following two chapters. Ab-
stractions of these ideas are at the heart of modern axiomatic treatments of
homotopical algebra and of the foundations of algebraic K-theory.

The theories of co�ber and �bre sequences illustrate an important, but in-
formal, duality theory, known as Eckmann-Hilton duality. It is based on the
adjunction between Cartesian products and function spaces. Our standing hy-
pothesis that all spaces in sight are compactly generated allows the theory to
be developed without further restrictions on the given spaces. We discuss �co�-
brations� here and the �dual� notion of ��brations� in the next chapter.

The de�nition of co�brations

De�nition 2.2.1. A map i : A→ X is a co�bration if it satis�es the homotopy
extension property (HEP), i.e, given a map f : X → Y and a homotopy h : A×
I → Y whose restriction to A× {0} is f ◦ i, there exists an extension H of h to
X × I.

This situation is expressed schematically as follows:

A
i0 //

i

��

A× I
h

||
i×id

��

Y

X
i0

//

f

>>

X × I

H

bb

where i0 is the standard inclusion : i0(u) = (u, 0).
We may write this property in another equivalent (somewhat intricate, as it

uses the notion of mapping space) way. i : A→ X is a co�bration if there exists
a lifting H in the following diagram

A
h //

i

��

Y I

p0

��
X

H

>>

f
// Y

where p0(β) = β(0).

Remark 2.2.2. We do not require H to be unique, and it is usually not the case.

De�nition 2.2.3. If (X,A) is a pair of topological spaces such that the inclusion
map A ⊂ X is a co�bration, then (X, a) is called a co�bred pair or Bosruk pair
or is said to posses the absolute homotopy extension property (AHEP).
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A necessary condition for (X,A) to be a co�bred pair is the existence of a
retraction r : X × I → (X × 0) ∪ (A× I).

A
i0 //� _

��

A× I
h

ww

� _

��

(X × 0) ∪ (A× I)

X
i0

//

f
77

X × I

r
gg

(2.2.4)

It is known that this condition is also su�cient.

Theorem 2.2.5. For an inclusion A ⊂ X the following are equivalent:

(1) The inclusion map A ↪→ X is a co�bration.

(2) (X × 0) ∪ (A× I) is a retract of X × I.

Proof. (1) ⇒ (2): Consider the diagram of 2.2.4. The �lled-in map r is the
desired retraction.

(2)⇒ (1): Composing the retraction of (2) with a mapA×I∪X×0→ Y gives
the homotopy extension property for all Y , which, as mentioned, is equivalent
to (1).

Corollary 2.2.6. If A is a subcomplex of a CW-complex X, then the inclusion
A ↪→ X is a co�bration.

Proof. This follows from Corollary 1.4.13 which says any CW-pair (X,A) has
the HEP.

The main technical result for proving that particular inclusions are co�bra-
tions is the following. Note that conditions (1) and (2) always hold if X is
metric.

Theorem 2.2.7. Assume that A ⊂ X is closed and that there exists a neigh-
bourhood U of A and a map ϕ : X → I, such that:

(1) A = ϕ−1(0);

(2) ϕ(X \ U) = {1}; and

(3) U deforms to A through X with A �xed. That is, there is a map H : U×I →
X such that H(a, t) = a for all a ∈ A, H(u, 0) = u, and H(u, 1) ∈ A for all
u ∈ U .

Then the inclusion A ↪→ X is a co�bration. The converse also holds.
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Proof. We can assume that ϕ = 1 on a neighbourhood of X \ U , by replacing ϕ
with min(2ϕ, 1). It su�ces to show that there exists a map

Φ: U × I → X × {0} ∪A× I

such that Φ(x, 0) = (x, 0) for x ∈ U and Φ(a, t) = (a, t) for a ∈ A and all t,
since then the map r(x, t) = Φ(x, t(1− ϕ(x))) for x ∈ U and r(x, t) = (x, 0) for
x ̸∈ U gives the desired retraction X × I → A× I ∪X × {0}.

We de�ne Φ by

Φ(u, t) =

{
H(u, t/ϕ(u))× {0} for ϕ(u) > t,

H(u, 1)× {t− ϕ(u)} for ϕ(u) ≤ t.

We need only show that Φ is continuous at those points (u, 0) such that
ϕ(u) = 0, i.e., at points (a, 0) for a ∈ A.

Note that H(a, t) = a for all t ∈ I. Thus, for W a neighbourhood of a, there
is a neighbourhood V ⊂W of a such that H(V × I) ⊂W . Therefore, t < ϵ and
u ∈ V imply that Φ(u, t) ∈W × [0, ϵ], and hence that Φ is continuous.

We will now prove the converse.
Let r : X × I → A × I ∪ X × {0} be a retraction, let s(x) = r(x, 1) and

put U = s−1(A× (0, 1]). Let pX , pI be the projections of X × I to its factors.
Then put H = pX ◦ r : U × I → X. This satis�es (3). For (1) and (2), put
ϕ(x) = maxt∈I |t − pIr(x, t)| which makes sense since I is compact. That this
satis�es (1) and (2) is clear and it remains to show that ϕ is continuous. Let
f(x, t) = |t− pIr(x, t)| and ft(x) = f(x, t), all of which are continuous. Then

ϕ−1((−∞, b]) = {x|f(x, t) ≤ b ∀ t} = ∩t∈If−1
t ((−∞, b])

is an intersection of closed sets and so is closed. Similarly

ϕ−1([a,∞)) = {x|f(x, t) ≥ a for some t} = pX(f−1([a,∞)))

is closed since pX is a projection. Since the complements of the intervals of the
form [a,∞) and (−∞, b] give a subbase for the topology of R, the contention
follows.

Let us recall the de�nition:

De�nition 2.2.8. Let X be a topological space; a subspace A ⊂ X is a strong
deformation retract of X if there exists a homotopy H : X × I → X such that

H(x, 0) = x, x ∈ X
H(x, 1) ∈ A, x ∈ X
H(a, t) = a, (a, t) ∈ A× I.

The homotopy H is a strong deformation retraction of X onto A. The map
r = H(−, 1) : X → A is a retraction and A is a retract of X. Thus, a retract A
of X with retraction r : X → A is a strong deformation retraction of X if

X
r−→ A

i
↪→ X
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is homotopic rel .A to idX .

A× 0

i×id0

��

A× I
H(x,0)|A=idAoo H(x,0)|A=idA //

i×idI

��

A× 1

i×id1

��
X × 0 X × I

H(x,0)=idX

oo
H(x,1)=r(x)

// X × 1

It was remarked in Theorem 2.2.5 that if (X,A) is a co�bred pair, then
(X × 0) ∪ (A× I) is a retract of X × I. In fact, we have the following stronger
result.

Lemma 2.2.9. If (X,A) is a co�bred pair, then (X × 0) ∪ (A× I) is a strong
deformation retract of X × I.

Proof. Let i : X × {0} ∪A× I ⊂ X × I be the inclusion map, and let

r : X × I → X × {0} ∪A× I

be a retraction. A homotopy

D : ir ≃ idX×I relX × {0} ∪A× I

is given by

D(x, t, s) = (pXr(x, (1− s)t), (1− s)pIr(x, t) + st).

Some authours suppose that i : A → X is an inclusion with closed image.
That A can be regarded as closed is guaranteed by Proposition 1.4.9. And the
following theorem shows that i : A→ X can be treated as an inclusion.

Theorem 2.2.10. If j : A→ X is a co�bration, then j is an imbedding, i.e, is
a homeomorphism A ≈ j(A).

Proof. Let j : A → X be a co�bration and consider the mapping cylinder Z =
(X × 0)∪j (A× I), that is, the quotient space of the topological sum (X × 0)∪
(A × I) obtained by identifying (a, 0) ∈ A × I with (j(a), 0) ∈ X × 0 for each
a ∈ A. Denote by q the quotient map (X × 0) ∪ (A × I) → Z. There is a
continuous map i : Z → Z × I de�ned by

iq|X×0 = idX×,0,

iq|A×I = j × idI .

De�ne maps f : X → Z and F : A× I → Z by

f(x) = q(x, 0), F (a, t) = q(a, t).
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Because j is a co�bration there exists a map F : X×I → Z such that F (j(a), t) =
q(a, t) and F (x, 0) = q(x, 0) for all a ∈ A, t ∈ I and x ∈ X. Then Fi|X×0 idX×0

and Fi|A×I = j × idI so Fi = idZ . i is, therefore, a continuous monomorphism
of Z onto i(Z) = (X × 0) ∪ (j(A) × I). Also, q|A×1 is a homeomorphism of
A × 1 onto q(A × 1), and consequently iq|A×1 is a homeomorphism of A× 1
onto iq(A× 1) = j(A)× 1.

A
i0 //

j

��

A× I

j×idI

��

hH

vv

F

||

(X × 0) ∪ (A× I)

q

��
Z = (X × 0) ∪j (A× I)

i

((
X

i0
//

2�

88

f
66

X × I
F

hh

Mapping cylinders and co�brations

De�nition 2.2.11. The mapping cylinder of f : X → Y is de�ned to be the
pushout of the maps f : X → Y and i0 : X ↪→ X × I, and we note it Mf , so
Mf ≡ Y ∪f (X × I).

X
f //� _

i0

��

Y

��
X × I // Mf = Y ∪f (X × I)

Replacing maps by co�brations

Remark 2.2.12. The inclusion i : X ↪→ Mf clearly satis�es Theorem 2.2.7 and
hence is a co�bration. Also, the retraction r : Mf → Y is a homotopy equiva-
lence with homotopy inverse being the inclusion Y ↪→Mf . The diagram

X
i //

f ��

Mf

r

≃
~~

Y

commutes. This shows that any map f is a co�bration, up to a homotopy
equivalence of spaces.
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Also recall the de�nition of the �mapping cone� of f : X → F as the quotient
space

Cf =Mf/X × {1} ≈Mf ∪ CX.

In the case of an inclusion i : A ↪→ X, we have Ci = X ∪CA. There is the map

Ci
h−→ X/A,

de�ned as the quotient map X∪CA→ (X∪CA)/CA composed with the inverse
of the homeomorphism X/A → (X ∪ CA)/CA. It is natural to ask whether h
is a homotopy equivalence. This is not always the case, but the following gives
a su�cient condition for it to be so. (cf Theorem 1.4.3 and Example 1.4.19).

Theorem 2.2.13. If A ⊂ X is closed and the inclusion i : A ↪→ X is a co�-
bration then h : Ci → X/A is a homotopy equivalence. In fact, it is a homotopy
equivalence of pairs

(X/A, ∗) ≃ (Ci, CA) ≃ (Ci, v),

where v is the vertex of the cone.

Proof. The mapping cone Ci = X ∪ CA consists of three di�erent types of
points, the vertex v = {A × {1}}, the rest of the cone {(a, t)|0 <≤≤ 1} where
(a, 0) = a ∈ A ⊂ X, and points in X itself, which we identify with X × {0} to
simplify de�nitions of maps.

De�ne f : A × ∪X × {0} → Ci, as the collapsing map and extend f to
f : X×I → Ci by the de�nition of co�bration. Then f(a, 1) = v, f(a, t) = (a, t)
andf(x, 0) = x.

Put f t = f |X×{t}. Since f1(A) = {v}, there is the factorisation f1 = g ◦ j,
where j : X → X/A is the quotient map and g : X/A→ Ci. (g is continuous by
de�nition of the quotient topology.)

We claim that g is a homotopy equivalence and a homotopy inverse to h.
First we will prove that hg ≃ idX/A. There is the homotopy hf t : X → X/A.

For all t, this takes A into the point {A}. Thus it factors to give the homotopy

hg ≃ {hf1} ≃ {hf0} = {j} = idX/A .

Next we will show that gh ≃ idCi . For this, consider W = (X × I)/(A × {1})
and the maps illustrated in Figure 2.1. The map f

′
is induced by f . The map

k is the �top face� map. We see that

f
′ ◦ l = id,

π ◦ k = id (which we don't need),

k ◦ π ≃ id,

f
′ ◦ k = g (de�nition of g),

π ◦ l = h.

Hence g ◦ h = f
′ ◦ (k ◦ π) ◦ l ≃ f ′ ◦ l = id, as claimed.
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Figure 2.1: A homotopy equivalence and homotopy inverse.

Remark 2.2.14. Theorem 2.2.13 does not hold if X×0∪A×I is not a retract of
X×I: for example, we repeat Example 1.4.10. Let A = {0}∪{l/n|n = 1, 2, . . . },
and X = [0, 1]. Here Ci is not homotopy equivalent to X/A, which is a one-
point union of an in�nite sequence of circles with radii going to zero. (Ci has
homeomorphs of circles joined along edges, but the circles do not tend to a point
and so any prospective homotopy equivalenceX/A→ Ci would be discontinuous
at the image of {0} in X/A.)

Let us recall the notion of the pointed category and some notational items.
The pointed category has, as objects, spaces with a base point ∗, and, as maps,
those maps of spaces preserving the base point. There is also the category of
pairs of pointed spaces. There is also the notion of homotopies in this category,
those homotopies which preserve the base point.

If f : X → Y is a pointed map then the reduced mapping cylinder of f is the
quotient space Mf of (X × I) ∪ Y modulo the relations identifying (x, 0) with
f(x) and identifying the set {∗} × I to the base point of Mf .

The reduced mapping cone is the quotient of the reduced mapping cylinder
Mf gotten by identifying the image of X × {1} to a point, the base point.

The one-point union of pointed spaces X and Y is the quotient X ∨Y of the
disjoint union X ∪ Y obtained by identifying the two base points.

The wedge, or smash, product is the pointed space X∧Y = (X×Y )/(X∨Y .
The circle S1 is de�ned as I/∂I with base point {∂I}.
The reduced suspension of a pointed space X is SX = X ∧ S1. It can also

be considered as the quotient space (X × I)/(X × ∂I ∪ {∗} × I).
As remarked before, Sn ∧ Sm is the one-point compacti�cation of Rn × Rm

and hence is homeomorphic to Sn+m. Thus we can, and will in this chapter,
rede�ne S inductively by letting Sn+1 = SS. Also note that

S(SX) = (SX) ∧ S1 = (X ∧ S1) ∧ S1 = X ∧ S2, etc..

The preceding results of this section can all be rephrased in terms of the pointed
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category. Extending the proofs is elementary, mostly a matter of seeing that the
unreduced versions become the reduced versions by taking the quotient of spaces
by sets involving the base point. For example, Theorem 2.2.13 would say that
if A is a closed, pointed, subspace of the pointed space X and if the inclusion
i : A→ X is a co�bration (same de�nition since the base point is automatically
taken care of) then X/A ≃ Ci, where the latter is now the reduced mapping
cone, and the homotopies involved must preserve the base points.

De�nition 2.2.15. A base point x0 ∈ X is said to be nondegenerate if the
inclusion {x0} ↪→ X is a co�bration. A pointed Hausdor� space X with nonde-
generate base point is said to be well-pointed.

Any pointed manifold or CW-complex is clearly well-pointed. A pointed
space that is not well-pointed is {0} ∪ {1/n|n ≥ 1} with 0 as base point. The
reduced suspensions of this also fail to be well-pointed.

If A ↪→ X is a co�bration then X/A, with base point {A}, is well-pointed as
follows easily from Theorem 2.2.7.

If a whisker is appended at the base point of any pointed space X, then
changing the base point to the other end of the whisker provides a well-pointed
space. (This is, of course, just the mapping cylinder of the inclusion of the base
point into X.)

Theorem 2.2.16. If X is well-pointed then so are the reduced cone CX and
the reduced suspension SX. Moreover, the collapsing map ΣX → SX, of the
unreduced suspension to the reduced suspension, is a homotopy equivalence.

Proof. Denote the base point of X by ∗. Consider a homeomorphism

h : (I × I, I × {0} ∪ ∂I × I) ≈−→ (I × I, I × {0})

which clearly exists. Then the induced homeomorphism

idX ×h : X × I × I
≈−→ X × I × I

carries

X × I × {0} ∪X × ∂I × I to X × I × {0}, hence

A = X × I × {0} ∪X × ∂I × I ∪ {∗} × I × I to X × I × {0} ∪ {∗} × I × I.

Therefore,
(X × I × I, A) ≈ I × (X × I,X × {0} ∪ {∗} × I)

as pairs. Since X×{0}∪{∗}×I is a retract of X×I by the de�nition of �"well-
pointed,� it follows that A is a retract ofX×I×I. This implies that the inclusion
X×∂I∪{∗}×I ↪→ X×I is a co�bration. Therefore, SX = X×I/(X×∂I∪∗×I)
is well-pointed. A similar argument using a homeomorphism

(I × I, I × {0} ∪ {1} × I) ≈−→ (I × I,O × {0})
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shows that the inclusion X × {1} ∪ {∗} × I ↪→ X × I is a co�bration and so
CX = X × I/(X × {1} ∪ {∗}×) is well-pointed.

The fact that X × ∂I ∪ {∗} × I ↪→ X × I is a co�bration implies that the
induced inclusion

I ≈ {∗} × I ↪→ X × I/(X × {0}, X × {1})

is a co�bration by an easy application of Theorem 2.2.7. By Theorem 2.2.13,
ΣX ≃ ΣX ∪ CI ≃ ΣX/I = SX via the collapsing map.

We often construct new spaces and new maps from the given spaces and
maps, and one way of such a construction is to take the pushout of two maps.
The following proposition states that the class of co�brations is closed under
taking pushouts. Thus we may take pushout of two maps without any restric-
tion.

Proposition 2.2.17. Let

A
f //

g

��

X

i

��
Y

j
// P

be a pushout square. If g is a co�bration then so is i. In this case, j induces a
homeomorphism j′ : Y/g(A)→ P/i(X) of co�bres.

Proof. Consider the diagram

A
f //

g

��

X
gt

  
i

��
Y

j
// P

h0

// Z

where gt is a homotopy with g0 = h0i. Then g0f = h0jg and, because g is a
co�bration, there is a homotopy kt : Y → Z such that ktg = gtf and k0 = h0j.
Then gt and kt induce a map lt : P → Z such that lti = gt and ltj = kt. Then
lt is a homotopy since the map L : P × I → Z obtained from lt is continuous.
Furthermore, l0i = g0 = h0i and l0j = k0 = h0j. By the uniqueness property of
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the pushout, l0 = h0, and so i is a co�bration.

A× I
f×id //

g×id

��

X × I

G(x,t)=gt(x)

��

tt

A
f //

g

��

^^

X

??

i

��

gt

��
Y

j
//

��

P
h0

//

��

Z

Y × I
j×id

//
K(b,y)=kt(y)

88

P × I

L(p,t)=lt(p)

OO

For the second assertion of the proposition, note that j induces j′ : Y/g(A) →
P/i(X). We regard the pushout P as de�ned in the proof of Proposition 1.4.7.
Then P/iX is obtained from X ∨ Y from the following relations:{

(f(a), ∗) ∼ (∗, g(a)), for every a ∈ A
(x, ∗) ∼ ∗, for every x ∈ X

Thus Y/g(A) ≃ P/i(X), and the homeomorphism is j′ de�ned by j′⟨y⟩ = ⟨∗, y⟩
for y ∈ Y .

A
f //

g

��

X

i

��
Y

j
//

��

P

��
Y/g(A)

j′
// P/i(X)

A criterion for a map to be a co�bration

We want a criterion that allows us to recognise co�brations when we see them.
We shall often consider pairs (X,A) consisting of a space X and a subspace A.
Co�bration pairs will be those pairs that �behave homologically� just like the
associated quotient spaces X/A.

De�nition 2.2.18. A pair (X,A) is an NDR-pair (= neighbourhood deforma-
tion retract pair) if there is a map u : X → I such that u−1(0) = A and a
homotopy h : X×I → X such that h0 = id, h(a, t) = a for a ∈ A and t ∈ I, and
h(x, 1)ßA if u(x) < 1; (X,A) is a DR-pair if u(x) < 1 for all x ∈ X, in which
case A is a deformation retract of X.
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Lemma 2.2.19. If (h, u) and (j, v) represent (X,A) and (Y,B) as NDR-pairs,
then (k,w) represents the �product pair� (X×Y,X×B∪A×Y ) as an NDR-pair,
where w(x, y) = min(u(x), v(y)) and

k(x, y, t) =

{
(h(x, t), j(y, tu(x)/v(y))) if v(y) ≥ u(x)
(h(x, tv(y)/u(x)), j(y, t)) if u(x) ≥ v(y).

If (X,A) or (Y,B) is a DR-pair, then so is (X × Y,X ×B ∪A× Y ).

Proof. If v(y) = 0 and v(y) ≥ u(x), then u(x) = 0 and both y ∈ B and x ∈ A;
therefore we can and must understand k(x, y, t) to be (x, y). It is easy to check
from this and the symmetric observation that k is a well de�ned continuous
homotopy as desired.

Theorem 2.2.20. Let A be a closed subspace of X. Then the following are
equivalent:

(i) (X,A) is an NDR-pair.

(ii) (X × I,X × {0} ∪A× I) is a DR-pair.

(iii) X × {0} ∪A× I is a retract of X × I.

(iv) The inclusion i : A→ X is a co�bration.

Proof. The lemma gives that (i) implies (ii), (ii) trivially implies (iii), and we
have already seen that (iii) and (iv) are equivalent. Assume given a retraction
r : X × I → X × {0} ∪ A × I. Let π1 : X × I → X and π2 : X × I → I be the
projections and de�ne u : X → I by

u(x) = sup{t− π2r(x, t)|t ∈ I}

and h : X × I → X by

h(x, t) = π1r(x, t).

Then (h, u) represents (X,A) as an NDR-pair. Here u−1(0) = A since u(x) = 0
implies that r(x, t) ∈ A× I for t > 0 and thus also for t = 0 since A× I is closed
in X × I.

Co�bre homotopy equivalence

It is often important to work in the category of spaces under a given space
A, and we shall later need a basic result about homotopy equivalences in this
category. We shall also need a generalisation concerning homotopy equivalences
of pairs. The reader is warned that the results of this section, although easy
enough to understand, have fairly lengthy and unilluminating proofs.
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A space under A is a map i : A → X. A map of spaces under A is a
commutative diagram

A

i

~~

j

��
X

f
// Y

A homotopy between maps under A is a homotopy that at each time t is a map
under A. We then write h : f ≃ f ′ relA and have h(i(a), t) = j(a) for all a ∈ A
and t ∈ I. There results a notion of a homotopy equivalence under A. Such an
equivalence is called a co�bre homotopy equivalence. The name is suggested by
the following result, whose proof illustrates a more substantial use of the HEP
than we have seen before.

Proposition 2.2.21. Let i : A → X and j : A → Y be co�brations and let
f : X → Y be a map such that f ◦ i = j. Suppose that f is a homotopy equiva-
lence. Then f is a co�bre homotopy equivalence.

Proof. It su�ces to �nd a map g : Y → X under A and a homotopy g ◦ f ′ ≃
id relA. Indeed, g will then be a homotopy equivalence, and we can repeat the
argument to obtain f ′ : X → Y such that f ′ ◦g ≃ id relA; it will follow formally
that f ′ ≃ f relA. By hypothesis, there is a map g′′ : Y → X that is a homotopy
inverse to f . Since g′′ ◦ f ′ ≃ id, g′′ ◦ j ≃ i. Since j satis�es the HEP, it follows
directly that g′′ is homotopic to a map g′ such that g′ ◦ j = i. It su�ces to
prove that g′ ◦f : X → X has a left homotopy inverse e : X → X under A, since
g = e ◦ g′ will then satisfy g ◦ f ≃ id relA. Replacing our original map f with
g′ ◦f , we see that it su�ces to obtain a left homotopy inverse under A to a map
f : X → X such that f ◦ i = i and f ≃ id. Choose a homotopy h : f ≃ id. Since
h0 ◦ i = f ◦ i = i and h1 = id, we can apply the HEP to h ◦ (i× id) : A× I → X
and the identity map of X to obtain a homotopy k : id ≃ k1 ≡ e such that
k◦(i× id) = h◦(i× id). Certainly e◦ i = i. Now apply the HEP to the following
diagramme:

A× I i0 //

i×id

��

A× I × I

i×id× id

��

K

zz
X

X × I
i0

//

J

;;

X × I × I

L

dd

Here J is the homotopy e ◦ f ≃ id speci�ed by

J(x, s) =

{
k(f(x), 1− 2s) if s ≤ 1/2

h(x, 2s− 1) if s ≥ 1/2.
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The homotopy between homotopies K is speci�ed by

K(a, s, t) =

{
k(i(a), 1− 2s(1− t)) if s ≤ 1/2

h(i(a), 1− 2(1− s)(1− t) if s ≥ 1/2.

Traversal of L around the three faces of I × I other than that speci�ed by J
gives a homotopy

e ◦ f = J0 = L0,0 ≃ L0,1 ≃ L1,1 ≃ L1,0 = J1 = id relA.

The proposition applies to the following previously encountered situation.

Example 2.2.22. Let i : A→ X be a co�bration. We then have the commutative
diagramme

A

i

  

j

~~
Mi r

// X,

where j(a) = (a, 1). The obvious homotopy inverse ι : X →Mi has ι(x) = (x, 0)
and is thus very far from being a map under A. The proposition ensures that ι
is homotopic to a map under A that is homotopy inverse to r under A.

The following generalisation asserts that, for inclusions that are co�brations,
a pair of homotopy equivalences is a homotopy equivalence of pairs. It is often
used implicitly in setting up homology and cohomology theories on pairs of
spaces.

Proposition 2.2.23. Assume given a commutative diagram

A
d //

i

��

B

j

��
X

f
// Y

in which i and j are co�brations and d and f are homotopy equivalences. Then
(f, d) : (X,A)→ (Y,B) is a homotopy equivalence of pairs.

Proof. The statement means that there are homotopy inverses e of d and g of f
such that g ◦ j = i ◦ e together with homotopies H : g ◦ f ≃ id and K : f ◦ g ≃ id
that extend homotopies h : e ◦ d ≃ id and k : d ◦ e ≃ id. Choose any homotopy
inverse e to d, together with homotopies h : e ◦ d ≃ id and ℓ : d ◦ e ≃ id. By
HEP for j, there is a homotopy inverse g′ for f such that g′ ◦ j = i ◦ e. Then,
by HEP for i, there is a homotopy m of g′ ◦ f such that m ◦ (i× id) = i ◦ h. Let
ϕ = m1. Then ϕ◦ i = i and ϕ is a co�bre homotopy equivalence by the previous
result. Let ψ : X → X be a homotopy inverse under i and let n : ψ ◦ ϕ ≃ id be
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a homotopy under i. De�ne g = ψ ◦ g′. Clearly g ◦ j = i ◦ e. Using that the
pairs (I × I, I × {0}) and (I × I, I × {0} ∪ ∂I × I) are homeomorphic, we can
construct a homotopy between homotopies Λ by applying HEP to the diagram

(A× I × 0) ∪ (A× ∂I × I) ⊂ //

i×id

��

A× I × I

i×id

��

Γ

zz
X

(X × I × 0) ∪ (X × ∂X × I) ⊂
//

γ

55

X × I × I.

Λ

dd

Here

γ(x, s, 0) =

{
ψ(m(x, 2s)) if s ≤ 1/2

n(x, 2s− 1) if s ≥ 1/2,

γ(x, 0, t) = (g ◦ f)(x) = (ψ ◦ g′ ◦ f)(x),
γ(x, 1, t) = x,

while

Γ(a, s, t) =

{
i(h(a, 2s/(1 + t))) if 2s ≤ 1 + t

i(a) if 2s ≥ 1 + t

De�ne H(x, s) = Λ(x, s, 1). Then H : g ◦ f ≃ id and H ◦ (i × id) = i ◦ h.
Application of this argument with d and f replaced by e and g gives a left
homotopy inverse f ′ to g and a homotopy L : f ′ ◦ g ≃ id such that f ′ ◦ i = j ◦ d
and L◦ (j× id) = j ◦ ℓ. Adding homotopies by concentrating them on successive
fractions of the unit interval and letting the negative of a homotopy be obtained
by reversal of direction, de�ne

k = (−ℓ)(de× id) + dh(e× id) + ℓ

and
K = (−L)(fg × id) + f ′H(g × id) + L.

Then K : f ◦ g ≃ id and K ◦ (j × id) = j ◦ k.

2.3 Fibrations

We �dualise� the de�nitions and theory of the previous section to the study of
�brations, which are �up to homotopy� generalisations of covering spaces.

The de�nition of �brations

De�nition 2.3.1. A surjective map p : E → B is a �bration if it satis�es the
covering homotopy property (CHP for short), i.e., given a map f : Y → E and
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a homotopy h : Y × I → B, there exists a lifting of h to E, whose restriction to
Y × {0} is f .

Y
f //� _

��

E

p

��
Y × I

h
//

H

<<

B

Remark 2.3.2. As we have seen for co�brations there is an equivalent de�nition
of a �bration in which we can better see the dualisation.

E

p

��

EI
p0oo

pI

��

Y

f

__

h   

H

>>

B BI
p0

oo

where p0(β) = β(0).

Remark 2.3.3. Again we do not require the uniqueness of such a lifting.

The class of �brations is closed under the base extensions, i.e,

Proposition 2.3.4. Pullbacks of �brations are �brations.

Proof. Let p : Y → B be a �bration, f : X → B be a map and p′ : f∗Y =
Y ×f X → X be the pullback by f .

W × {0} //
� _

��

f∗Y //

��

Y

p

��
W × I //

(2)
::

(1)

55

X // B

Since p is a �bration, the prospective map marked (1) exists, maintaining com-
mutativity. Then the map marked (2) exists by the universal property of pull-
backs.

De�nition 2.3.5. Let p : E → B be a map. Itsmapping path space (ormapping
cocylinder or mapping path �bration) is a pullback of p and eval0 : B

I → B. We
note it Np ≡ E ×p BI = {(e, β)|β(0) = p(e)}.

Np = E ×p BI //

��

E

p

��
BI

eval0

//

eval1
��

B

B
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The mapping path space is the dual of mapping cylinder and we will see
that it plays the parallel role for the �brations.

De�nition 2.3.6. Let p : E → B be a map and let Np be its mapping path
space. A map s : Np → EI such that s(e, β)(0) = e and p ◦ s(e, β) = β is called
path lifting function.

We have seen that for a map i : A → X to be a co�bration it su�ces to
admit a homotopy extension for its mapping cylinder. It turns out that for
a map p : E → B to be �bration it su�ces to have a homotopy lifting for its
mapping path space, or equivalently we have

Proposition 2.3.7. A map p : E → B is a �bration if and only if it admits a
path lifting function.

Proof. Replace Y by Np in the test diagram of the equivalent de�nition of
�brations; necessity is then clear. So suppose that we have a path lifting function
s : Np → EI and maps f : Y → E and h : Y → BI . There is an induced map
g : Y → Np, since Np is a pullback. The composite s ◦ g gives the required
homotopy lifting.

As an application of this proposition, we have the following example

Example 2.3.8. If p : E → B is a covering, then p is a �bration with a unique
path lifting function.

Example 2.3.9. The evaluation map ps : B
I → B given by ps(β) = β(s) is a

�bration.

The relation between �brations and co�brations is stated in the following
proposition

Proposition 2.3.10. If i : A → X is a co�bration and B is a space then the
induced map p = Bi : BX → BA is a �bration.

Proof. It is an easy task to show that we have the following homeomorphisms

BMi = BX×{0}∪A×I ≃ B ×p (BA)I = Np

We have seen that every map can be factored as co�bration followed by a
homotopy equivalence. We can �dualise� this property and get the following
proposition, which will be of great use later.

Proposition 2.3.11. Any map can be factored as a homotopy equivalence fol-
lowed by a �bration.

Proof.
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2.4 Homotopy Exact Sequences

In this section, we elaborate the fundamental tools and de�nitions of our study
of exact homotopy sequences.

2.5 Homotopy Groups

2.6 Homotopy Property of CW Complexes

2.7 The Homotopy Excision And Suspension The-

orems


