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Preface

A word from the transcriber

This is an attempt to translate the monumental work of M. M. Postnikov �Lec-
tures on algebraic topology - Fundamentals of homotopy theory� into English.

Postnikov is renowned for many good textbooks on mathematics he has
written, and most of which have been translated into many languages including
English. Unfortunately, as long as the transcriber is aware, no attempt has
been made to translate this work into other languages. That is the reason of
the devil-may-care behaviour of the transcriber, who hopes his attempt is not
a complete waste of time.

The preface by the original authour

This book is a systematic textbook on homotopy theory in the unexpectedly
extensive part that can be constructed without involving homological methods.

As is well-known, teaching and studying algebraic topology is extremely
complicated by the fact that the theory of homology and cohomology, which oc-
cupies a central place in this science- this place (which, by the way, is also true
for the modern stage of its development - with an appropriate, more general un-
derstanding of homology and cohomology), is extremely cumbersome, requiring
for its accurate presentation of entire books. Before reaching at least the sim-
plest applications, the student must cross a vast desert of abstract constructions,
the role and meaning of which remain incomprehensible and unknown for him
for a long time and which he is forced to study only out of trust in the teacher.
The authours of textbooks on algebraic topology have shown a lot of care to
make this road easier for students, but they did not achieve signi�cant results.
Meanwhile, there is a very simple and elegant way of understanding homology
theory, which �ts into one or two lectures. Its idea is to de�ne groups of chains
of cellular spaces as relative homotopic groups of spans and on this basis to
build homology and cohomology groups. Of course, this requires a su�ciently
advanced homotopy theory, which therefore needs to be pre-stated. In general,
this path may be painfully di�cult: instead of crossing a �at, although boring,
the desert has to overcome the steep slopes and deep gorges of the mountainous
country. But this country is not lifeless, and upon entering it, beautiful views
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almost immediately open up before the traveller, prompting him to move on.
Of course, this path also has its drawbacks, the most important of which is the
creation of a false perspective in the student about the meaning of elementary
homotopy (= not using homology theory) methods and their underestimation
of the power and e�ectiveness of the methods of homology theory. Another
objection to this path is that without homology theory, the proofs of a number
of key theorems are signi�cantly complicated and made unnecessarily di�cult.
However, it should be borne in mind, that the inner nontriviality of the theory
can never be circumvented, and if you manage to pull out the beak, then the tail
gets bogged down. At the same time, subsequently studying homological proofs
of the same theorems and comparing them with elementary homotopy proofs
with full force makes it possible to emphasise the power of homology theory and
easily correct the false impression that was formed at the beginning. Thus, the
advantages of the proposed path signi�cantly outweigh the disadvantages.

The concrete construction of homology theory on the basis of homotopy
theory will be carried out in the next issues of these �Lectures�.

This book grew out of the summary of a special course that I have repeatedly
read to students and postgraduates of the Faculty of Mechanics and Mathemat-
ics of Moscow State University. Each lecture of the presentation in the book
turned out to be a recording of a real oral lecture, although signi�cantly revised.

Due to the acute shortage of time when reading a special course much more
often than in a mandatory course, one has to limit oneself to the idea of evidence,
leaving their detailed conduct to the listeners. Auxiliary statements from other
departments of mathematics need only be formulated with references to the
literature, and examples illustrating the general theory can only be described,
also providing their detailed analysis to listeners. When transferring an oral
lecture to paper, there is no need to preserve these features and, more moreover,
all the evidence should be produced in detail, once the boron of examples is
carried out to the end, and the �extraneous� lemmas are proved. This explains
the unexpected painful volume of some lectures in the book.

Material that was not presented for one reason or another at lectures, it
is taken out in additions. (Thus, the distribution of material by lectures and
supplements in the basics was dictated by the requests of the special course and
has only very little to do with its internal mathematical value and signi�cance.
Nevertheless, when reading the book for the �rst time, it is recommended to
skip the Appendices and return - contact them as needed.)

Lecture 0 has an introductory character and is devoted to the main expla-
nation is based on examples of the subject and method of algebraic topology.
In Appendix, the exponential law for mapping spaces is stated.

Lectures 1 and 2 are devoted to co�brations, �brations and related issues. In
Appendix to these lectures, Dold's theorems on �brations are presented. (Dual
theorems are not mentioned. Their formulation and proof are left to the reader.)

In Lecture 3, general construction methods are outlined homotopically in-
variant factors, the necessity of transition to pointed spaces is justi�ed, co-H-
spaces and H-spaces, products and loop spaces are introduced. In Appendix, it
is proved that any connected H-monoid is an H-group.
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Lecture 4 contains a general discussion of the category of pointed spaces and
its relationship with the category of spaces without base points. In connection
with the current issue, the fundamental group is introduced. In Appendix, the
mixing of topological spaces and homotopy classes is studied, the Lyusternik-
Schnirelman category invariant is introduced, and conditions ensuring the nilpo-
tency or abelicity of homotopy class groups are considered.

Lecture 5 presents the usual material about the absolute-homotopy groups,
and in addition, the exact sequences of Puppe are constructed.

Lecture 6 is devoted to covers in general and methods for computing fun-
damental groups in particular. In Appendix, after presenting the necessary
algebraic material, the Seifert-van Kampen theorem is proved.

In Lecture 7 , the concept of degree is introduced and calculated 𝜋𝑚 (S𝑛)
groups for 𝑚 ≤ 𝑛. The Appendix sets out standard geometric consequences
of the non-stretchability of the sphere (Borsuk's theorem on an unbounded
component, topological invariance of dimension, characterisation of sets that do
not dissect the sphere, the theorem of invariance of domain).

In Lecture 8, returning to the general theory of homotopy groups, we in-
troduce relative homotopy groups. In Appendix, the exactness of homotopy
sequences of triples and triads is proved.

In the following lecture 9, the following theory of quasi-�brations (called
weak �brations in the book). In Appendix, Dold's theorem on homotopy �bra-
tions is proved.

Lecture 10 is devoted to James' product sequence theorem. In Appendix,
well-known general theorems on homotopy properties of �ltrations are proved.

This concludes the �rst part of the course devoted to the general concepts of
homotopy theory and homotopy groups. Only this part of the course is included
in this book.

The following lectures (which make up a separate book �Homotopy Theory
of cellular Spaces�, planned to be published in 1985) mainly concentrate on
around the concept of cellular space.

In Lecture 11, the category of cellular spaces is introduced and studied.
The more troublesome properties of cellular spaces (local contractibility and
paracompactness) are taken out in Appendix.

In Lecture 12, on the basis of the usual smooth approximation technique, the
connectivity of pairs (𝑋, 𝑋𝑛) and the cell approximation theorem are proved. As
an application, Freudenthal's theorem with the usual consequences is proved.
In conclusion, the properties of antipodal maps are considered. In Appendix,
after the presentation of the basic concepts of the theory of simplicial spaces,
the approximation theorem is proved in the simplicial version.

In Lecture 13, the category of cellular spaces is compared with the category
of all spaces (the theorem that any topological space is weakly homotopically
equivalent to a cellular space). Whitehead's theorem on homotopy equivalences
is also proved here. Appendix to this lecture is devoted to the representability
theorems (Brown, Adams and Heller).

At this point, the general theory of cellular spaces is temporarily interrupted
and from the next lecture we turn to the theory of homotopy operations.
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In Lecture 14, general theorems on homotopy operations (arising from the
representability of homotopy groups) are presented, additive operations are
characterised, and Whitehead product is introduced.

Lecture 15 discusses generalised Whitehead product and proves its algebraic
properties (skew-commutativity, bilinearity, and Jacobi identity). In Appendix
to lecture 15 The Hilton-Milnor homotopy theorem is proved - in groups of
bouquets of add-ons.

Geometric properties of multiplication The properties of multiplication and
Whitehead multiplication are discussed in Lecture 16. The Hopf invariant and
its Whitehead generalisations are also introduced there. The Whitehead method
computes the Hopf invariant of the Hopf construction and, in particular, the
Hopf invariant of the Hopf map. In Addition, Hopf invariants generalised by
Hilton are introduced and studied. In particular, the left distributive law for
compositional multiplication is discussed.

In Lecture 17, returning for the last time to cellular spaces, we prove the the-
orem of Blakers and Massey on cutting for triads and, based on it, Freudenthal's
theorem for any connected spaces.

In lecture 18, the �di�cult part of the Freudenthal's theorem� is proved and
the groups 𝜋𝑛+1 (S𝑛) and 𝜋𝑛+2 (S𝑛) are calculated. In calculating the last group,
the key role is played by the fact that the element 𝜂𝑛 ◦ 𝜂𝑛+1 of group 𝜋𝑛+2 (S𝑛) is
nonzero. The �modern� proof of this fact is based on the theory of cohomology
operations. Since this path is not yet available to us, we are forced to present a
direct geometric proof proposed at the time by G. W. Whitehead.

The material of the �nal lecture 19 concentrates around the question of the
e�ect of cell gluing on homotopy groups of 𝜋𝑛. For 𝑛 = 1, we obtain a well-known
description of the generators and relations of the fundamental groups of cellular
spaces, which, in particular, allows us to prove the Seifert-van Kampen theorem
for these spaces in its classical formulation. At 𝑛 > 1 killing spaces are intro-
duced, Eilenberg-Mac Lane spaces are constructed and the group 𝜋𝑛 (𝑋𝑛, 𝑋𝑛−1)
is calculated (on this basis and will be built next semester homology theory).
In Appendix to this lecture, three-dimensional manifolds and their fundamental
groups are brie�y considered.

Although algebraic topology has developed mainly before the eyes of our
generation, there are already many dark places in its history. This puts the
authors of textbooks on topology in front of a number of intractable tasks, for
example, when compiling a bibliography, which ideally should be an annotated
student's guide to the labyrinth of journal literature. Without prior clari�cation
of all priorities, in�uences and borrowings, any such bibliography will contain
a lot of historical errors and will create an occasion for discussions, accusations
and insults. A simple enumeration of all known to the author of articles (or
only articles used by him), for educational purposes, is almost useless, for sure,
due to the inevitable randomness of their choice, that will give the same result.

Also a very di�cult question about the authorship of certain theorems; even
the concept of �the author of the theorem� has no clear explication (say, for
example, who is the author of the theorem that group [𝐾, 𝑋] of homotopy
classes of maps from a 𝑛-dimensional cellular space 𝐾 to a (𝑛 − 1)-connected
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space 𝑋 is isomorphic to the cohomology group 𝐻𝑛 (𝐾; 𝜋𝑛 (𝑋)): Hopf, who �rst
described the group [𝐾, 𝑋], but in other terms and only for the case when 𝑋 is
S𝑛, Whitney, who attracted cohomology, or Whitehead, who introduced cellular
spaces and casually remarked that Whitney's formulation is suitable for any
cellular spaces?).

Fuchs and Rokhlin in their famous textbook [10] cut the Gordian knot of
these problems in one fell swoop: they left theorems nameless, and in the bibli-
ography they limited to an un-commented list of books and articles containing
additional information to which there are references in the text.

In these �Lectures� another decision was made: a complete and commented
bibliography is given, not only books-with few exceptions-only in Russian the
language is considered the most accessible, and the traditional names of theo-
rems are interpreted as simple, easy-to-reference labels that are not necessarily
associated with authorship (which is why in indisputable cases is speci�cally
indicated).

M. M. Postnikov
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Lecture 0

In this introductory lecture, we will explain what algebraic topology is and how
it is applied to solving speci�c geometric problems.
Terminology used by Postnikov: moneomorphism = a homeomorphism onto its
image.

0.1 Extension and retraction tasks

Let 𝑋, 𝑌 be topological spaces, 𝐴 be a subspace of the space 𝑋, with 𝑓 : 𝐴→ 𝑌

and 𝑓 : 𝑋 → 𝑌 continuous maps. Recall that the map 𝑓 is called the restriction
of the map 𝑓 to 𝐴, and the map 𝑓 is the extension (or continuation) of the map

𝑓 from 𝐴 to 𝑋, if 𝑓 (𝑎) = 𝑓 (𝑎) for any point 𝑎 ∈ 𝐴. The restriction 𝑓 of the map
𝑓 to 𝐴 is indicated by the symbol 𝑓 |𝐴. Equality 𝑓 = 𝑓 |𝐴 is equivalent to the
equality of 𝑓 = 𝑓 ◦ 𝑖, where 𝑖 : 𝐴→ 𝑋 is an inclusion (restriction of the identity
map id : 𝑋 → 𝑋).

In the common problem, 𝑋, 𝐴, 𝑌 and 𝑓 are given and it is required to �nd
out if 𝑓 exists. This problem is represented by a diagramme

𝐴
𝑖 //

𝑓

��

𝑋

𝑓��
𝑌

(0.1)

where the dotted arrow denotes a map whose existence should be proved, and
the diagramme is assumed to be commutative (we will keep these conventions
throughout the course).

An interesting special case of the extension problem occurs when 𝑌 = 𝐴 and
𝑓 = id:

𝐴
𝑖 //

id

��

𝑋

𝑟
��

𝐴

(0.2)

The solution 𝑟 to this problem is called a retracting map (or simply retraction).
When it exists, the subspace 𝐴 is called a retract of the space 𝑋. As a rule,

1
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to indicate the retracting the letter 𝑟 is used for map. It is easy to see that a
retracting map is always an epimorphism (a surjective map having the property
that a subset in 𝐴 is open if and only if its complete preimage in 𝑋 is open).

For typographical reasons (to save paper) we will write diagramme (0.2) in
the form

𝐴id
%% 𝑖 //

𝑋.
𝑟

oo

Generalisation of the extension problem occurs when in diagramme (0.1)
𝐴 is considered an arbitrary space, and 𝑖 is an arbitrary map. In this case,
the map 𝑓 we will call the extension of the map 𝑓 with respect to the map 𝑖.
The solution is similar in a logical way to the generalised problem (0.2) we will
call the retraction of the map 𝑖, and the map 𝑖 : 𝐴 → 𝑋, for which there is
a retraction 𝑟 : 𝑋 → 𝐴, is a retractible map. However, this generalisation, in
essence, does not give anything new, since, as it is easy to see, any retractible
map 𝑖 : 𝐴→ 𝑋 is a moneomorphism (a homeomorphism to its own image) and
therefore can be considered as an embedding of 𝐴 in 𝑋.

The value of retractions for problem (0.1) is that

Proposition 0.3. a pair (𝑋, 𝐴) (𝑖 : 𝐴 → 𝑋) has the property that extension
exists for an arbitrary space 𝑌 and an arbitrary map 𝑓 : 𝐴 → 𝑌 if and only if
the subspace 𝐴 is a retract of the space 𝑋 (the map 𝑖 is retractible).

Proof. Indeed, if the retraction 𝑟 : 𝑋 → 𝐴 exists, then the map 𝑓 = 𝑓 ◦ 𝑟 will
obviously be, the extension of the map 𝑓 , and, conversely, if the map 𝑓 : 𝑋 → 𝑌

exists for any map 𝑓 : 𝐴 → 𝑌 for any space 𝑌 , then, in particular, it exists for
𝑌 = 𝐴, 𝑓 = id𝐴 and is in this case the desired retract 𝑟. □

0.2 Lifting and cross-section tasks

Known from general category theory the �trick of turning arrows� translates
problem (0.1) into a dual problem

𝐴 𝑋
𝑖oo

𝑌

𝑓

OO

𝑓

?? (0.4)

Traditionally, in this problem, it is customary to denote spaces, 𝑋, 𝐴, 𝑌 by 𝐸 ,
𝐵, 𝑋, the map 𝑖 by 𝑝, and to write the diagramme in an �inverted� form:

𝐸

𝑝

��
𝑋

𝑓
//

𝑓

??

𝐵

(0.5)
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The problem (0.5) is called the lifting problem, and the map 𝑓 is the lifting of

the map 𝑓 to 𝐸 . It is also said that the map 𝑓 covers the map 𝑓 .

Dual to problem (0.2)

𝐸

𝑝

��
𝐵

id
//

𝑠

??

𝐵

(0.6)

whose solution is called the cross section of the map 𝑝. As a rule, the letter 𝑠
is used to denote the section. The map 𝑝 is a retraction of any of its sections
(and, conversely, any retractible map is a section of its retraction). Therefore,
in particular, every map for which there is a section, is an epiomorphism, and
any section of it is a moneomorphism.

Proposition 0.7. For this map 𝑝 : 𝐸 → 𝐵 the problem of lifting (0.5) is soluble
if and only if for an arbitrary space 𝑋 and an arbitrary map 𝑓 : 𝑋 → 𝐵, the
map 𝑝 has a section 𝑠 : 𝐵→ 𝐸.

Proof. Indeed, if 𝑠 exists, then the map 𝐹 = 𝑠 ◦ 𝑓 covers the map 𝑓 , and,
conversely, if the map 𝐹 : 𝑋 → 𝐸 exists for any map 𝑓 : 𝑋 → 𝐵 and any space
𝑋, then, in particular, it exists for 𝑋 = 𝐵, 𝑓 = id𝐵, and is in this case the desired
section 𝑠. □

It is useful to keep in mind that tasks (0.5) and (0.6) (also as generalised
problems (0.1) and (0.2)) make sense in an arbitrary category.

0.3 The subject and method of algebraic topol-
ogy

Algebraic topology can be de�ned in the �rst approximation as the science
that deals with the solution of problem (0.1), (as well as problems (0.2), (0.5)
and (0.6) in the category 𝒯ℴ𝓅 of topological spaces and continuous maps.
Since problem (0.1) appears in mathematics almost everywhere (it su�ces to
note that any the existence theorem can be considered as a statement about
the solubility in the corresponding category of some problem (0.1)) and since
most mathematical objects are endowed with the structure of a topological
space, this explains why algebraic topology plays one of the key roles in modern
mathematics.

Very often there are speci�c tasks that do not have the form (0.1), but more
or less easily reduced to task (0.1). General methods and principles of this kind
of information are also usually included in algebraic topology.

Let on the category of 𝒯ℴ𝓅 (or on some its su�ciently broad subcategory)
is given a functor Π that takes values in some category 𝐴. By applying the
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functor Π to diagramme (0.1), we get the diagramme (0.8)

Π𝐴
Π𝑖 //

Π 𝑓

��

Π𝑋

𝜑||
Π𝑌

(0.8)

representing by writing the problem of �nding a morphism 𝜑 in category 𝐴 that
satis�es the relation Π 𝑓 = 𝜑 ◦ Π𝑖. Each solution of problem (0.1) gives us a

solution 𝜑 = Π 𝑓 of the problem (0.8), so

Proposition 0.9. the solubility of problem (0.8) is a necessary condition for
the solubility of problem (0.1).

Therefore, if problem (0.8) has no solution, then problem (0.1)) is all the
more insoluble.

We can say that the whole algebraic topology comes down to the application
of this simple consideration. Therefore, it is advisable to choose category 𝐴 and
functor Π only for each speci�c task. Of course, in order for the transition from
problem (0.1) to problem (0.8) to make practical sense, you need to choose
category 𝐴 consisting of simpler objects than topological spaces. In principle,
the simplest mathematical objects are considered in algebra. Therefore, one of
the �algebraic� (studied in algebra) categories is usually chosen as category 𝐴,
and thus the geometric problem (0.1) is replaced by the algebraic problem (0.8)
(which is usually called the derived algebraic problem).

For problem (0.5), the derived algebraic problem has, of course, the form

Π𝐸

Π𝑝

��
Π𝑋

Π 𝑓
//

𝜑

<<

Π𝐵

It goes without saying that for wide application the described method re-
quires a su�ciently large stock of functors Π. Therefore, the �rst technical
task of algebraic topology is the construction and study of such functors. Over
time, as more and more di�cult problems (0.1) and (0.5) entered science, it was
necessary to build more and more complex functors Π, and by now algebraic
topology certainly holds the record for the complexity of the speci�c algebraic
objects used.

Since the a�rmative solution of problem (0.8), generally speaking, says noth-
ing about the existence of a solution to problem (0.1), the method of algebraic
topology, in principle, can only give �negative� answers. It is not a disadvan-
tage, but rather an advantage, since it is the theorems about the non-existence
of solutions, as a rule, that are the most di�cult and interesting. However,
sometimes (not especially often) it is possible to prove that the solubility of a
derivative algebraic problem is not only necessary, but also su�cient for the
solubility of the original problem. Such results are also included in algebraic
topology.
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0.4 Example: the drum theorem and Brouwer's
�xed point theorem

Let us illustrate these general remarks with a simple but e�ective example.
Let 𝐸𝑛 be a ball |𝑥 | ≤ 1 in the space 𝑅𝑛, and S𝑛−1 be an (𝑛 − 1)-dimensional

sphere |𝑥 | = 1 bounding it. In due course we will show that on the category
of 𝒯ℴ𝓅 there exists such a functor Π taking values in the category of abelian
groups that Π𝐸𝑛 = 0 and ΠS𝑛−1 ≠ 0. Using this functor, it is immediately
shown that

Proposition 0.10. the sphere S𝑛−1 is not a retract of the ball 𝐸𝑛,

i.e. that the problem below has no solution.

id
  S𝑛−1

//
E𝑛oo

Indeed, the derived algebraic problem below

id
  ΠS𝑛−1

//
ΠE𝑛oo

with ΠE𝑛 = 0 and ΠS𝑛−1 ≠ 0 is obviously insoluble.
The fact that the circle S1 is not a retraction of the circle E2 is a theoretical

explanation of why a �lm can be stretched over the circle, i.e., a drum can be
made. Therefore, the proved theorem is sometimes called the drum theorem.

An easy consequence of the drum theorem is Brouwer's �xed point theorem,
which states that

Proposition 0.11. for any continuous map 𝑓 : 𝐸𝑛 → 𝐸𝑛 there is at least one
�xed point, i.e. such a point 𝑥 ∈ 𝐸𝑛, that 𝑓 (𝑥) = 𝑥.
Proof. Indeed, if 𝑓 (𝑥) ≠ 𝑥, then a straight line passing through the points 𝑥 and
𝑓 (𝑥) is de�ned. Let 𝑟 (𝑥) be the one of the two points of intersection of this line
with the sphere S𝑛−1 that is not separated from the point 𝑥 to the point 𝑓 (𝑥). If

Figure 1:

𝑓 (𝑥) ≠ 𝑥 for all points 𝑥 ∈ 𝐸𝑛, then this construction de�nes a continuous map
𝑟 : 𝐸𝑛 → S𝑛−1, which is obviously a retract map (𝑟 (𝑥) = 𝑥 if 𝑥 ∈ S𝑛−1). Since the
existence of such a map contradicts the drum theorem, the inequality 𝑓 (𝑥) ≠ 𝑥
for all points 𝑥 ∈ 𝐸𝑛 cannot be ful�lled. □

Brouwer's theorem (and its generalisations) are a source of innumerable the-
orems of the existence of solutions to a wide variety of equations in analysis
(since any equation can be written in the form 𝑓 (𝑥) − 𝑥).
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0.5 Example: complex projective plane and Hopf
map

Another interesting example will be obtained by considering the complex pro-
jective plane C𝑃2, the points of which are the classes [𝑧0 : 𝑧1 : 𝑧2] of proportional
triples (𝑧0, 𝑧1, 𝑧2) ∈ C3, complex numbers other than triples 0 = (0, 0, 0) (and
whose topology is the coset topology of the space C3 \ 0). The points of the
plane C𝑃2, for which 𝑧2 = 0, constitute an �improper line�, which is naturally
identi�ed with a complex projective line consisting of classes [𝑧0 : 𝑧1] of propor-
tional pairs (𝑧0, 𝑧1) ∈ C𝑃2 \ 0. Next semester we will construct a contravariant
functor 𝐻∗ from the category of𝒯ℴ𝓅 to the category of (Z/2Z) −𝒜𝓁ℊ∗, graded
algebras over the �eld of Z/2Z and calculate its value on the spaces C𝑃1 and
C𝑃𝑛. (Recall that an algebra 𝐴 is called a graded algebra if it is decomposed
into a direct sum of lineals 𝐴𝑛, and 𝐴𝑛𝐴𝑚 ⊂ 𝐴𝑛+𝑚 for any 𝑛 and 𝑚; the formula
deg 𝑎 = 𝑛 means that 𝑎 ∈ 𝐴𝑛.) Due to the contravariance of the functor 𝐻∗ after
applying it to diagramme (0.2) (when 𝑋 = C𝑃2 and 𝐴 = C𝑃1) the following
diagramme is obtained

𝐻∗ (C𝑃2)
𝐻∗ (𝑖) //

𝐻∗ (C𝑃1)oo 𝑖𝑑bb

It turns out that the algebra 𝐻∗ (C𝑃1) contains a single nontrivial element 𝑇1
(such that 𝑇2

1 = 0), and the algebra 𝐻∗ (C𝑃2) is generated as a linear space
by two linearly independent elements 𝑇2 and 𝑇2

2 (such that 𝑇3
2 = 0); in this

case, deg𝑇1 = deg𝑇2 = 2. In addition, since the homomorphisms 𝜑 and 𝐻∗ (𝑖),
being morphisms of the category (Z/2Z) − 𝒜𝓁ℊ∗, preserve the grading, thus
𝜑𝑇1 = 𝑎𝑇2 and 𝐻∗ (𝑖)𝑇2 = 𝑏𝑇1, where 𝑎, 𝑏 ∈ Z/2Z. But 𝐻∗ (𝑖)𝑇2 ◦ 𝜑 = id and
therefore 𝑎 = 𝑏 = 1. Therefore, 𝑇2

2 = (𝜑𝑇1)2 = 𝜑(𝑇2
1 ) = 0, which is impossible,

because 𝑇2
2 ≠ 0 in 𝐻∗ (𝑖) (C𝑃2). The resulting contradiction proves that C𝑃2 is

not retractable on C𝑃1.
Note that in this discussion we essentially used the multiplicative structure

of the algebra 𝐻∗ (𝑋).
Let E4 be a unit ball of space C2 consisting of points (𝑧0, 𝑧1) such that

|𝑧0 |2 + |𝑧1 |2 ≤ 1. The formula

ℎ : (𝑧0, 𝑧1) ↦→ [𝑧0 : 𝑧1 : 1 − |𝑧0 |2 − |𝑧1 |2]

de�nes - obviously, an epiomorphic - map ℎ : E4 → C𝑃2, so that the plane C𝑃2

turns out to be the coset space of the ball E4. On the inside |𝑧0 |2 + |𝑧1 |2 < 1 of
the ball E4 the map ℎ is a homeomorphism on C𝑃2 \ C1, and on its boundary
sphere S3 : |𝑧0 |2 + |𝑧1 |2 = 1 - is a continuous map (𝑧0, 𝑧1) ↦→ [𝑧0 : 𝑧1] to C𝑃1.
Since the complex projective line C𝑃1 is naturally identi�ed with the Riemann
sphere C+ (the point [𝑧0 : 𝑧1] corresponds to the complex number 𝑧 = 𝑧0/𝑧1 or -
when 𝑧1 = 0 is the symbol ∞) and, therefore, with the sphere S2, the last map
is called the Hopf map - we can consider the map S3 → S2. We will denote the
Hopf map by the symbol 𝒽.
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The group S1 of complex numbers of the form 𝑒𝑖 𝜃 acts on the sphere S3

according to the formula 𝑒𝑖 𝜃 (𝑧0, 𝑧1) = (𝑒𝑖 𝜃 𝑧0, 𝑒𝑖 𝜃 𝑧1), and the orbits of this action
are large circles of the sphere S3, representing the preimage of the points of the
sphere S2 when 𝒽 is selected (so this map induces a homeomorphism S3/S1 �
S2).

Thus, we can say that the complex projective plane C𝑃2 is obtained from a
ball E4 by contracting a certain family of large circle into points of its boundary
sphere S3 (just as the real projective space R𝑃𝑛 is obtained from the ball 𝐸𝑛 by
identifying pairs of antipodal points of its boundary sphere S𝑛−1).

Suppose that the Hopf map can be extended to E4. This assumption means
that there is a map 𝑔 : E4 → C1 satisfying the relation 𝑔 |S3 = 𝒽|S3 . But then the
formula 𝑟 = 𝑔 ◦𝒽−1 will exactly determine the continuous map 𝑟 : C𝑃2 → C𝑃1,
identity on C𝑃1, i.e. being retraction. Since such a map cannot exist, this proves
that the Hopf map 𝒽 : S3 → S2 does not extend to E4.

0.6 Reduction of the extension problem to the
retraction problem

The relationship between the non-retractibility of C𝑃2 onto C𝑃1 and the non-
extendibility of Hopf map is quite general.

In the situation of diagram (0.1), i.e. for a pair (𝑋, 𝐴) and a continuous map
𝑓 : 𝐴 → 𝑌 , we can consider the space 𝑋 ∪ 𝑓 𝑌 , which is the coset space of the
disjoint union 𝑋 ⊔ 𝑌 by the minimal equivalence relation in which 𝑎 ∼ 𝑓 (𝑎) for
any point 𝑎 ∈ 𝐴. This space is said to be obtained by gluing the space 𝑋 to the
space 𝑌 by map 𝑓 . This terminology �nds its justi�cation in the fact that the
restriction of the factorisation maps 𝑋⊔𝑌 → 𝑋∪ 𝑓 𝑌 on 𝑌 is, as can be easily seen,
a homeomorphism, so that it is possible, by applying this homeomorphism, to
consider the space 𝑌 as a subspace of the space 𝑋 ∪ 𝑓 𝑌 . Similarly, the subspace
𝑋 \ 𝐴 can also be considered a subspace of space 𝑋 ∪ 𝑓 𝑌 , and then equality will
take place

𝑋 ∪ 𝑓 𝑌 = (𝑋 \ 𝐴) ∪ 𝑌 .

The space 𝑋 ∪ 𝑓 𝑌 has the property (called the universal property) that for any
topological space 𝑍 and any commutative diagram of the form

𝐴
𝑖 //

𝑓

��

𝑋

𝑔

��
𝑌

𝑗
// 𝑍

where 𝑗 and 𝑔 are continuous maps, and 𝑖 is an embedding, the map 𝑔 : 𝑋∪ 𝑓 𝑌 →
𝑍, coinciding on 𝑋 \ 𝐴 with 𝑔, and on 𝑌 with 𝑗 , is continuous (and has the
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property that the following diagramme commutes.)

𝐴
𝑖 //

𝑓

��

""

𝑋

𝑔

��

||
𝑋 ∪ 𝑓 𝑌

𝑔

##
𝑌

𝑓
//

<<

𝑍

In particular, if the map 𝑗 is an embedding, and the map 𝑔 on 𝑋 \𝐴 is a bijective
map on 𝑋 \𝑌 , then the map 𝑔 will be a bijective continuous map and, therefore,
will be a homeomorphism, if the space 𝑋 ∪ 𝑓 𝑌 is compact, and the space 𝑍
is Hausdor�. Since the space 𝑋 ∪ 𝑓 𝑌 is obviously compact when the spaces 𝑋
and 𝑌 are compact, these conditions are met when 𝑋 = E4, 𝐴 = S3, 𝑌 = C𝑃1,
𝑍 = C𝑃2 and 𝑓 = 𝒽. Thus, we can assume that the complex projective plane
C𝑃2 is obtained as a result of gluing to the sphere S2 to the ball E4 by means
of the Hopf map:

C𝑃2 = E4 ∪𝒽 S2

If in diagramme (0.1) there is a map 𝑓 : 𝑋 → 𝑌 , then by the universal

property (applied to 𝑔 = 𝑓 ) there is a map 𝑔 : 𝑋 ∪ 𝑓 𝑌 → 𝑌 , identical on 𝑌 ,
i.e. being a retraction. Conversely, if there is a retraction 𝑟 : 𝑋 ∪ 𝑓 𝑌 → 𝑌 ,
then the composition with this retraction, restricted to 𝑋, factorisation maps
𝑋 ⊔ 𝑌 → 𝑋 ∪ 𝑓 𝑌 will be the map 𝑋 → 𝑌 , which is the extension of the map 𝑓 .
This proves the following proposition.

Proposition 0.12. In diagramme (0.1) the extension 𝑓 of the map 𝑓 : 𝐴→ 𝑌

exists if and only if the space 𝑋 ∪ 𝑓 𝑌 retracts to the space 𝑌 .

Thus, the general problem of extension (0.1) is reduced to its particular case
(0.2). This reduction is often useful.

0.7 Vector �elds on spheres

Let us now give an example of the problem of lifting (0.5) (or, more precisely,
its special case (0.6)).

A vector �eld on a sphere S𝑛 is a continuous map that maps to each point
𝑥 ∈ S𝑛 some vector 𝑣(𝑥) touching the sphere at this point. Since the vector 𝑣
touching the sphere S𝑛 at point 𝑥 is characterised by the condition (𝑥, 𝑣) = 0,
vector �elds on S𝑛 can be considered as continuous maps 𝑣 : S𝑛 → R𝑛+1 satisfying
the relation (𝑥, 𝑣(𝑥)) = 𝑂, 𝑥 ∈ S𝑛. We will be particularly interested in �elds
consisting of vectors of unit length, and such sets of them that at each point their
vectors are orthogonal. In other words, we will be interested in sets 𝑣1, . . . , 𝑣𝑛
of such selections 𝑣𝑖 : S

𝑛 → S𝑛, 𝑖 = 1, . . . , 𝑚 that at any point 𝑥 ∈ S𝑛 there are
equalities (𝑥, 𝑣𝑖 (𝑥)) = 0 and (𝑣𝑖 (𝑥), 𝑣 𝑗 (𝑥)) = 𝑂, 𝑖 = 1, . . . , 𝑚. We will call such
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sets 𝑚-frame �elds (or, in short, 𝑚-�elds) on the sphere S𝑛. Of course, it is
assumed here that 0 ≤ 𝑚 ≤ 𝑛.

If 𝑛 = 2𝑘 − 1, then we can treat the sphere S𝑛 as the unit sphere of the
complex space C𝑘 , and then the formula 𝑣(𝑥) = 𝑖𝑥, where 𝑖 =

√
−1, will obviously

de�ne some 1-�eld on S𝑛. For 𝑛 = 4𝑘 − 1 the sphere S𝑛 is the unit sphere of the
quaternion space H𝑘 and formulae 𝑣1 (𝑥) = 𝑖𝑥, 𝑣2 (𝑥) = 𝑗𝑥, 𝑣3 (𝑥) = 𝑘𝑥 de�ne some
3-�eld on S𝑛. Similarly, using the so-called Cli�ord algebras, the special cases
of which are the algebras C and H, on the sphere S𝑛 it is possible, as Radon and
Hurwitz showed, to construct a (2𝑎+8𝑏−1)-�eld where 𝑎 and 𝑏 are integers such
that 0 ≤ 𝑎 ≤ 3 and 2𝑎+4𝑏 is the highest power of two which divides the number
𝑛 + 1. The question arises whether this result is accurate or whether there are
such 𝑛 that an 𝑚-�eld can be constructed on the sphere S𝑛 for 𝑚 ≥ 2𝑎 + 8𝑏. For
example, for 𝑖 = 5, the Radon-Hurwitz method gives us only a 1-�eld on the S5

sphere. Is there a 2-�eld on this sphere?
To answer this question, we must reformulate it in the form of one of the tasks

(0.1) - (0.6). To this end, we will introduce into consideration the set 𝑉𝑛+1,𝑚+1
of all (𝑚 + 1)-frames of the space R𝑛+1, i.e. (𝑚 + 1)-member of orthonormal
families of vectors (𝑣1, . . . , 𝑣𝑚+1) of this space. Since (𝑚+1)-frames are naturally
identi�ed with (𝑚 + 1) × (𝑛 + 1)-matrices whose columns are orthonormal, the
set 𝑉𝑛+1,𝑚+1 turns out to be a subset of the topological space R(𝑚 + 1, 𝑛 + 1)
of all (𝑚 + 1) × (𝑛 + 1)-matrices, and therefore itself is a topological space (in
fact, even a smooth manifold). It is clear that by comparing for each point
(𝑣1, . . . , 𝑣𝑚+1) ∈ 𝑉𝑛+1,𝑚+1 with vectors 𝑣𝑚+1 ∈ S𝑛, we get a continuous map

𝑝 : 𝑉𝑛+1,𝑚+1 → S𝑛. (0.13)

Now if {𝑣1, . . . , 𝑣𝑚} is an arbitrary 𝑚-�eld on S𝑛, then the formula 𝑠(𝑥) =

(𝑣1 (𝑥), . . . , 𝑣𝑚 (𝑥), 𝑥), 𝑥 ∈ S𝑛, will determine the section 𝑠 : S𝑛 → 𝑉𝑛+1,𝑚+1 to
the map 𝑝 and, conversely, any cross section of this map will specify some 𝑚-
�eld. Thus, the question of the existence of a �eld of 𝑚-frames on the sphere
S𝑛 is reformulated in the form of a question about the existence of at least one
section for the map (0.13).

The corresponding derivative algebraic problem (obtained by using the func-
tor 𝐻∗) has the form

id
  𝐻∗ (S𝑛)

𝐻∗ (𝑝)//
𝐻∗ (𝑉𝑛+1,𝑚+1)𝜑

oo (0.14)

where, as it turns out, 𝐻∗ (S𝑛) is a graded algebra over Z/2Z with one generator 𝜎
of degree 𝑛, subordinate to the relation 𝜎2 = 0. As for the algebra 𝐻∗ (𝑉𝑛+1,𝑚+1),
then, as can be shown, in this algebra all elements of degree < 𝑛 are equal to zero
and there is the only non-zero element 𝛼 of degree 𝑛, which is the image of the
element 𝜎 mapped by 𝐻∗ (𝑝). Therefore, the map 𝜑 : 𝐻∗ (𝑉𝑛+1,𝑚+1) → 𝐻∗ (S𝑛),
which closes the diagram (0.14), should be determined by the formula

𝜑(𝜉) =
{
𝜎, if 𝜉 = 𝛼,

0, if 𝜉 ≠ 𝛼,
𝜉 ∈ 𝐻∗ (𝑉𝑛+1,𝑚+1)
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Since this map is obviously a homomorphism of algebras, we do not get any
contradiction. This means that for the problem under consideration, the functor
𝐻∗ was too weak to give a de�nite answer.

However, as we will show in the next semester, the 𝐻∗ functor actually
takes values in the category of graded Z/2Z-algebras, which are simultaneously
modules over some remarkable algebra called the Steenrod algebra. Therefore,
the map 𝜑 in the diagram (0.14) must be not only a homomorphism of algebras,
but also a homomorphism of modules, i.e. it must be permutable with actions
of elements of the Steenrod algebra. The Steenrod algebra is quite complicated,
but it is enough for us now to know that for any 𝑚 ≥ 1 it has an element denoted
by the symbol Sq𝑚, under the action of which the degrees of all elements of the
algebra 𝐻∗ (𝑋) increase by 𝑚. Since there are no nonzero elements of degree ≠ 𝑛
in the algebra 𝐻∗ (S𝑛), it follows that Sq𝑚 𝜎 = 0 for any 𝑚 ≥ 1. At the same time,
it turns out (a very non-trivial fact!) that if 𝑚 = 2𝑘 is the highest power of two
dividing the number 𝑛 + 1, then in the algebra 𝐻∗ (𝑉𝑛+1,𝑚+1) there is a relation
Sq𝑚 𝛼 ≠ 0. Therefore for 𝑚 = 2𝑘 , the above map 𝜑 cannot be a homomorphism
of modules (because then the equality Sq𝑚 𝛼 = Sq𝑚 𝜑(𝜎) = 𝜑(Sq𝑚 𝜎) = 𝜑(0) = 0
would take place.) This proves that the �eld of 2𝑘-frames on the sphere S𝑛 does
not exist. In particular, there is no 2-�eld on the sphere S5.

If, as above, we represent 𝑘 as 𝑎 + 4𝑏, where 0 ≤ 𝑎 ≤ 3, then the equality
2𝑘 = 2𝑎 + 8𝑏 will take place only when 𝑏 = 0. Therefore, for 𝑏 > 0, the proven
result (known, by the way, as the theorem of Steenrod and Whitehead) gives
only a partial answer to the above question. The full answer (asserting the
accuracy of the Radon-Hurwitz estimate) was obtained about twenty years ago

by Adams, who used a very powerful functor 𝐾𝑂 (which we will also study the
next year).

0.8 Homotopies, co�brations, and the e�ective-
ness of the algebraic topology method

We see that the solution of a particular problem by the method of algebraic
topology is naturally divided into two stages. At the �rst stage, this problem
is reformulated as one of the problems (0.1), (0.2), (0.5) and (0.6), and at the
second stage, the corresponding derived algebraic problem is studied. The main
di�culty here lies in choosing a suitable algebraic functor, which, on the one
hand, must be e�ciently computable (at least for the spaces involved in the
problem only) and, on the other hand, must take values in the category of
which structurally has su�ciently rich objects to give a de�nite answer.

The examples considered are characteristic of algebro-topological problems
also in the sense that these problems are, as a rule, nontrivial and interesting
already for the simplest (from the point of view of general topology) spaces-
spheres, balls, their `�nite unions' (so-called �polyhedra�) etc. Therefore, al-
though we formulated the main problems of algebraic topology without any
a priori conditions for the spaces appearing in them, but in practice we will
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not hesitate to impose on these spaces any general methodological restrictions
such as, say, the axioms of separability or certain conditions of local simplicity,
which for one reason or another will be convenient for us. Exemption from these
conditions will lie beyond the scope of our presentation.

However, even the simplest topological spaces have the cardinality of contin-
uum, and e�ciently computable algebraic objects are �nite or countable. This
means that when moving from task (0.1) to task (0.8), there is a colossal loss
of information. Only for this reason, strictly speaking, the method of algebraic
topology turns out to be applicable to speci�c geometric problems. But, the
question is, why is it not lost essential information, i.e. why does algebraic
topology successfully slip between the Scylla of non-computable informative-
ness and the Charybdis of computable uninformativeness?
(Transcriber's note: Scylla and Charybdis are sea monsters appearing in Greek
mythology. �Between Scylla and Charybdis� means �to choose the lesser of two
evils�.)
The answer to this question turns out to be very interesting.

De�nition 0.15. Let 𝑋 and 𝑌 be topological spaces. A homotopy from 𝑋 to 𝑌
is an arbitrary continuous map

𝐹 : 𝑋 × 𝐼 → 𝑌, (0.16)

where 𝐼 = [0, 1] is a unit segment.

Any homotopy (0.16) by the formula

𝑓𝑡 (𝑥) = 𝐹 (𝑥, 𝑡), 𝑥 ∈ 𝑋, 0 ≤ 𝑡 ≤ 1,

that is, according to the formula 𝑓𝑡 = 𝐹 ◦ 𝜎𝑡 , 0 ≤ 𝑡 ≤ 1, where 𝜎𝑡 : 𝑋 → 𝑋 × 𝐼 -
map 𝑥 ↦→ (𝑥, 𝑡), de�nes a family of continuous maps

𝑓𝑡 : 𝑋 → 𝑌, 0 ≤ 𝑡 ≤ 1. (0.17)

Such a family is also called a homotopy from 𝑋 to 𝑌 . Thus, a family of maps
𝑓𝑡 : 𝑋 → 𝑌 is a homotopy if and only if when the map 𝐹 : 𝑋 × 𝐼 → 𝑌 is de�ned
by the formula 𝐹 (𝑥, 𝑡) = 𝑓𝑡 (𝑥), 𝑥 ∈ 𝑋, 0 ≤ 𝑡 ≤ 1, continuously. In this case, it is
also said that the maps 𝑓𝑡 continuously depend on 𝑡.

Homotopy (0.16) and (0.17) is said to connect the map 𝑓0 : 𝑋 → 𝑌 with the
map 𝑓1 : 𝑋 → 𝑌 .

Maps 𝑓 , 𝑔 : 𝑋 → 𝑌 are called homotopic if there exists a homotopy 𝐹 :
𝑋 × 𝐼 → 𝑌 connecting the map 𝑓 with the map 𝑔 (i.e. such that 𝑓 = 𝑓0 and
𝑔 = 𝑓1). In this case, write 𝐹 : 𝑓 ∼ 𝑔 or just 𝑓 ∼ 𝑔.

Clearly, the homotopy of two maps means that one of them can be continu-
ously transformed into the other.

The question of homotopy of maps 𝑓 , 𝑔 : 𝑋 → 𝑌 is obviously equivalent to
the problem of extension the map ℎ : (𝑋 × 0) ∪ (𝑋 × 1) → 𝑌 to 𝑋 × 𝐼, given by
the formula

ℎ(𝑥, 𝑡) =
{
𝑓 (𝑥), if 𝑡 = 0,

𝑔(𝑥), if 𝑡 = 1.
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Thus, homotopy theory (which studies the homotopy relation of maps) is in-
cluded in algebraic topology.

It is easy to see that

Proposition 0.18. on the set of 𝒯ℴ𝓅(𝑋,𝑌 ) of all continuous maps 𝑋 → 𝑌 ,
the homotopy relation is an equivalence relation.

Proof. Indeed, �rst of all, 𝐹 : 𝑓 ∼ 𝑓 where 𝐹 (𝑥, 𝑡) = 𝑓 (𝑥) for any 𝑥 ∈ 𝑋 and
𝑡 ∈ 𝐼. Secondly, if 𝐹 : 𝑓 ∼ 𝑔 then 𝐺 : 𝑔 ∼ 𝑓 , where 𝐺 (𝑥, 𝑡) = 𝐹 (𝑥, 1 − 𝑡), 𝑥 ∈ 𝑋,
𝑡 ∈ 𝐼. Finally, if 𝐹 : 𝑓 ∼ 𝑔 and 𝐺 : 𝑔 ∼ ℎ, then 𝐻 : 𝑓 ∼ ℎ, where

𝐻 (𝑥, 𝑡) =
{
𝐹 (𝑥, 2𝑡), if 0 ≤ 𝑡 = 1/2,
𝐺 (𝑥, 2𝑡 − 1), if 1/2 ≤ 𝑡 ≤ 1.

□

Therefore, all continuous maps of 𝑋 → 𝑌 are divided into classes of homotopy
maps to each other. These classes are called homotopy classes of maps from 𝑋

to 𝑌 .
The set of all homotopy classes of maps from 𝑋 to 𝑌 is denoted by the symbol

[𝑋,𝑌 ], and the class containing this map 𝑓 : 𝑋 → 𝑌 is denoted by the symbol
[ 𝑓 ].

The transition to homotopy classes makes everything signi�cantly more ef-
�cient, since for �reasonable� spaces 𝑋 and 𝑌 the set [𝑋,𝑌 ] turns out to be, as
a rule, �nite, or countable.

De�nition 0.19. It is said that the map 𝑖 : 𝐴 → 𝑋 is a co�bration or that
it satis�es the homotopy extension axiom (axiom HE) if for any space 𝑌 , any

homotopy 𝑓𝑡 : 𝐴 → 𝑌 and any map 𝑓 : 𝑋 → 𝑌 satisfying the relation 𝑓 ◦ 𝑖= 𝑓0,
there exists a homotopy 𝑓 𝑡 : 𝑋 → 𝑌 such that 𝑓 0 = 𝑓 and 𝑓 𝑡 ◦ 𝑖 = 𝑓𝑡 for any
𝑡 ∈ 𝐼:

𝐴
𝑖 //

𝜎0

��

𝑝0

""

𝑋

𝜎0

��

𝑓

||
𝑌

𝐴 × 𝐼
𝑖×id

//

𝐹

<<

𝑋 × 𝐼

𝐹

bb

𝐹 (𝑎, 𝑡) = 𝑓𝑡 (𝑎), 𝐹 (𝑥, 𝑡) = 𝑓 𝑡 (𝑥). (0.20)

A pair (𝑋, 𝐴) consisting of a space 𝑋 and its subspace 𝐴 is called a co�bration
(or Borsuk pair) if the inclusion 𝑖 : 𝐴→ 𝑋 satis�es the axiom HE.

In particular, for any co�bration (𝑋, 𝐴), it follows that

Proposition 0.21. if the maps 𝑓 , 𝑔 : 𝐴→ 𝑌 are homotopic and 𝑓 is extensible
to 𝑋, then 𝑔 is also extensible to 𝑋.
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In other words, for the co�bration (𝑋, 𝐴), the map property 𝑓 : 𝐴 → 𝑌 is
extensible to 𝑋 depends only on its homotopy class [ 𝑓 ]. This means that in
problem (0.1) we can consider their homotopy classes instead of maps, which,
according to the above, leads us from the world of continuum powers to the
world of countable sets, for an adequate study of which there are no obvious
obstacles by means of algebra. This explains, why, for co�brations, the method
of algebraic topology makes it possible to e�ciently solve problem (0.1). In the
case when (𝑋, 𝐴) is not a co�bration, this method does not work. Fortunately,
all really occurring on in practice, problems (0.1) either have the property that
for them pairs (𝑋, 𝐴) are co�brations, or they are trivially reduced to such
problems.

It can be said that the natural object of studying algebraic topology is not
so much continuous maps as their homotopy classes. In this sense, algebraic
topology is almost completely absorbed by homotopy theory.

Thus, although it is generally impossible to put an equal sign between al-
gebraic topology and homotopy theory, they are in fact intertwined so closely
that they become indistinguishable from each other.

0.9 Homotopy category

It is easy to see that

Proposition 0.22. the homotopy relation is consistent with the composition of
maps, i.e. if 𝑓 dim 𝑔, where 𝑓 , 𝑔 : 𝑋 → 𝑌 , then 𝑓 ◦ 𝑘 ∼ 𝑔 ◦ 𝑘 and ℎ ◦ 𝑓 ∼ ℎ ◦ 𝑔
for any continuous maps 𝑘 : 𝑍 → 𝑋 and ℎ : 𝑌 → 𝑍.

Proof. Indeed, if the maps 𝑓 and 𝑔 are connected by the homotopy 𝑓𝑡 : 𝑋 → 𝑌 ,
then the map 𝑓 ◦ 𝑘 and 𝑔 ◦ 𝑘 will be connected by the homotopy 𝑓𝑡◦ : 𝑍 → 𝑌 ,
and the maps ℎ ◦ 𝑓 and ℎ ◦ 𝑔 are homotopy ℎ ◦ 𝑓𝑡 : 𝑋 → 𝑍. □

It follows that the formula

[𝑔] ◦ [ 𝑓 ] = [𝑔 ◦ 𝑓 ], 𝑓 : 𝑋 → 𝑌, 𝑔 : 𝑌 → 𝑍

well de�nes the composition of homotopy classes. It is clear that with respect to
this composition, the totality of all topological spaces and all homotopy classes
of their continuous maps forms a category. This category is called the homotopy
category and is denoted by the symbol [𝒯ℴ𝓅] (orℋℴ𝒯ℴ𝓅). It is the natural
domain of algebraic topology.

For any category 𝒜 and any of its objects 𝐴, 𝐵 the symbol 𝒜(𝐴, 𝐵) denotes
the set of all morphisms 𝐴→ 𝐵. In these notations

[𝑋,𝑌 ] = [𝓉ℴ𝓅] (𝑋,𝑌 )

for any topological spaces 𝑋 and 𝑌 .
The transition from the category𝒯ℴ𝓅 to the category [𝒯ℴ𝓅] can be easily

axiomatised.
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We will call category 𝒜 a category with homotopies, if for any of its objects
𝐴, 𝐵 in the set 𝒜(𝐴, 𝐵) some families of { 𝑓𝑡 , 𝑡 ∈ 𝐼} morphisms 𝑓𝑡 : 𝐴→ 𝐵, called
homotopies, are assigned, and the following axioms are satis�ed:

(1◦) Every family { 𝑓𝑡 : 𝐴→ 𝐵} for which 𝑓1 = 𝑓0 for all 𝑡 ∈ 𝐼, is a homotopy.

(2◦) For any homotopy { 𝑓𝑡 : 𝐴→ 𝐵} family { 𝑓1−𝑡 : 𝐴→ 𝐵} is a homotopy.

(3◦) For any homotopy { 𝑓𝑡 : 𝐴 → 𝐵} and {𝑔𝑡 : 𝐴 → 𝐵}, having the property
that 𝑓1 = 𝑔0, family {ℎ𝑡 : 𝐴→ 𝐵}, de�ned by the formula

ℎ𝑡 =

{
𝑓2𝑡 if 0 ≤ 𝑡 ≤ 1/2,
𝑔2𝑡−1 if1/2 ≤ 𝑡 ≤ 1,

is a homotopy.

(4◦) For any homotopy { 𝑓𝑡 : 𝐴 → 𝐵} and any morphisms 𝑘 : 𝐶 → 𝐴 and
ℎ : 𝐵 → 𝐶, the family { 𝑓𝑡 ◦ 𝑘 : 𝐶 → 𝐵} and {ℎ ◦ 𝑓𝑡 : 𝐴 → 𝐶} are
homotopies.

Homotopy classes are de�ned in such a category and a transition is possible
to the corresponding homotopy categories ℋℴ −𝒜 = [𝒜].

We will not systematically deal with this abstract nonsense1, but it will often
be useful for us to keep it in mind.

1This is not a swear word, but a term proposed by N. Steenrod to denote general-category
constructions



Appendix

0.A Basic concepts of general topology

Let us list the basic concepts of general topology that we assume to be known
(see, for example, [1] or [8]).

Topologies and topological spaces. Open and closed sets. Neighbourhood.
Bases and pre-bases. Local bases (fundamental neighbourhood systems). Ax-
ioms of countability (�rst and second; separability condition).

Continuous maps. Open maps. Monomorphisms, epiomorphisms and home-
omorphisms.

Subspaces. The coset space and the coset topology. Direct products and
direct sums (disjoint unions) of topological spaces.

Axioms of separability: Hausdor�, regular and normal spaces.

Coverings (open). The re�nement of the coverings. Compact, locally com-
pact and paracompact spaces.

We will need only the simplest properties of these concepts. In particular, we
will assume that the bijective continuous map of a compact space to a Hausdor�
space is a homeomorphism and that any Hausdor� locally compact space is
regular.

We will also assume it is known that

Proposition 0.23. for any normal space 𝑋 and any closed subspace 𝐴 of it,
every continuous map 𝐴→ R𝑛 can be extended to all 𝑋.

This statement is called the Tietze theorem (despite the fact that it was �rst
proved by Uryson).

A special case of the Tietze theorem (necessary, however, to prove) states
that for two closed disjoint subspaces 𝐴 and 𝐵 of a normal space 𝑋 there exists
a continuous function 𝜑 : 𝑋 → 𝐼, which is equal to zero on 𝐴 and one on 𝐵.
This special case is called Uryson's lemma, and any such function 𝜑 is called
Uryson function for 𝐴 and 𝐵.

We will recall other less well-known (or more special) general methodological
results when we need them.

The exception is the so-called exponential law, which it will be convenient
for us to state immediately.

15
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0.B Exponential law for sets of maps

Let 𝑋 and 𝐵 be arbitrary topological spaces. Although there are quite a few
ways to topologise the set of 𝒯ℴ𝓅(𝑋, 𝐵) of all continuous maps 𝑋 → 𝐵, but we
will use only the compact-open topology of this set (also called the topology of
compact convergence). In this topology a set is open if and only if it is a union
of �nite intersections of sets 𝒲(𝐾,𝑈), each of which is given by a compact set
of 𝐾 ⊂ 𝑋, an open set of 𝑈 ⊂ 𝐵 and consists of all maps 𝑓 : 𝑋 → 𝐵 for which
𝑓 (𝐾) ⊂ 𝑈. (In the terminology of the theory of topological spaces, the sets
𝒲(𝐾,𝑈) constitute the prebase of a compactly open topology.)

The set of𝒯ℴ𝓅(𝑋, 𝐵)) provided the compact-open topology, will be denoted
by the symbol 𝐵𝑋. This notation is justi�ed by the fact that in the case when
𝑋 is a discrete space consisting of 𝑛 points 𝑥1, . . . , 𝑥𝑛, the space 𝐵

𝑋 is naturally
homeomorphic to the space 𝐵 × · · · × 𝐵 = 𝐵𝑛 by homeomorphism 𝐵𝑋 → 𝐵𝑛 by
the correspondence

𝑓 ↦→ ( 𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑛)), 𝑓 ∈ 𝐵𝑋, ( 𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑛)) ∈ 𝐵𝑛.

(Another justi�cation for this designation is the exponential law (𝐵𝑋)𝑌 = 𝐵𝑋×𝑌

proved below.)
For any three spaces 𝑋, 𝑌 and 𝐵 and any continuous map 𝑓 : 𝑋 × 𝑌 → 𝐵,

the formula

[(𝜃 𝑓 ) (𝑦)]𝑥 = 𝑓 (𝑥, 𝑦), 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌,

de�nes some map

𝜃 𝑓 : 𝑌 → 𝐵𝑋

of the space 𝑌 to the space 𝐵𝑋, called the map associated with 𝑓 . It turns out
that

Proposition 0.24. in the compact-open topology, the map 𝜃 𝑓 is continuous.

Proof. Obviously, it is enough to show that for any compact set 𝐾 ⊂ 𝑋 and any
open set 𝑈 ⊂ 𝐵 the preimage (𝜃 𝑓 )−1𝒲(𝐾,𝑈) of𝒲(𝐾,𝑈) ⊂ 𝐵𝑋 is open in 𝑌 , i.e.
that each point 𝑦0 of it is its internal point. But since (𝜃 𝑓 ) (𝑦0) ∈𝒲(𝐾,𝑈), i.e.
[(𝜃 𝑓 ) (𝑦0)]𝐾 ⊂ 𝑈, then 𝑓 (𝑥, 𝑦0) ∈ 𝑈 for any point 𝑥 ∈ 𝐾, i.e. 𝐾 × 𝑦0 ⊂ 𝑓 −1 (𝑈).
On the other hand, the set 𝑓 −1 (𝑈) is open in 𝑋×𝑌 and therefore is by combining
sets of the form 𝐺 ×𝐻 (�rectangles�), where 𝐺 is open in 𝑋 and 𝐻 is open in 𝐾.
Due to the compactness of the set 𝐾 (and, therefore, so is the set 𝐾 × 𝑦0), there
is a �nite system

𝐺1 × 𝐻1 . . . , 𝐺𝑚 × 𝐻𝑚
of these rectangles, covering the set 𝐾 × 𝑦0. Then the open subset 𝐻 = 𝐻1 ∩
· · · ∩ 𝐻𝑚 of the space 𝑌 will contain a point 𝑦0 and each of its points 𝑦 will
have the property that 𝐾 × 𝑦 ⊂ 𝑓 −1 (𝑈), and hence (𝜃 𝑓 ) (𝑦) ∈𝒲(𝐾,𝑈). In other
words, 𝐻 will be the neighbourhood of the point 𝑦0 in 𝑌 contained in the set
(𝜃 𝑓 )−1𝒲(𝐾,𝑈), and, therefore, the point 𝑦0 will be the inner point of the last
set. □
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So the correspondence 𝜃 : 𝑓 → 𝜃 𝑓 is a map

𝜃 : 𝒯ℴ𝓅(𝑋 × 𝑌, 𝐵) → 𝒯ℴ𝓅(𝑌, 𝐵𝑋)

from the set 𝒯ℴ𝓅(𝑋 × 𝑌, 𝐵) to the set 𝒯ℴ𝓅(𝑌, 𝐵𝑋). This map is called the
association map.

Equality 𝜃 𝑓 = 𝜃𝑔, where 𝑓 , 𝑔 : 𝑋 × 𝑌 → 𝐵 means that

𝑓 (𝑥, 𝑦) = [(𝜃 𝑓 ) (𝑦)]𝑥 = [(𝜃𝑔) (𝑦)]𝑥 = 𝑔(𝑥, 𝑦)

for any points 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 , hence 𝑓 = 𝑔. Hence, the association map is injective.
To �nd out when the map 𝜃 is bijective, we will introduce the map

𝜔 : 𝑋 × 𝐵𝑋 → 𝐵,

de�ned by the formula

𝜔(𝑥, 𝑓 ) = 𝑓 (𝑥), 𝑥 ∈ 𝑋, 𝑓 : 𝑋 → 𝐵,

and called the evaluation map.
It turns out that

Proposition 0.25. the association map 𝜃 : 𝒯ℴ𝓅(𝑋 × 𝑌 ) → 𝒯ℴ𝓅(𝑌, 𝐵𝑋) is
bijective for any space 𝑌 , if and only if the evaluation map 𝜔 : 𝑋 × 𝐵𝑋 → 𝐵 is
continuous.

Proof. if the map 𝜔 is continuous, then for any map 𝑔 : 𝑌 → 𝐵𝑋, the map
𝑓 = 𝜔 ◦ (id×𝑔) : 𝑋 × 𝑌 → 𝐵 (i.e., the map (𝑥, 𝑦) ↦→ 𝜔(𝑥, 𝑔(𝑦)) = [𝑔(𝑦)]𝑥)
will be continuous, i.e. it will lie in 𝒯ℴ𝓅(𝑋 × 𝑌, 𝐵), and, obviously, will have
the property that 𝜃 𝑓 = 𝑔. Therefore, if the map 𝜔 is continuous, then the
map 𝜃 is surjective, and, therefore, bijective (for, as already noted above, this
map is always injective). Conversely, if the map 𝜃 is bijective for any 𝑌 and, in
particular, for 𝑌 = 𝐵𝑋, then the continuous map 𝜔

′
= 𝜃−1 (id) ∈ 𝒯ℴ𝓅(𝑋×𝐵𝑋, 𝐵)

will be for any point (𝑥, 𝑓 ) ∈ 𝑋 × 𝐵𝑋 satisfy the relationship

𝜔
′ (𝑥, 𝑓 ) = [𝜃 (𝜔′ ) 𝑓 ] (𝑥) = 𝑓 (𝑥) = 𝜔(𝑥, 𝑓 )

and, therefore, it will coincide with 𝜔. Therefore, the map 𝜔 is continuous. □

On the other hand, it is easily shown that

Proposition 0.26. if the space 𝑋 is locally compact and Hausdor�, then for
any space 𝐵 the evaluation map 𝜔 is continuous.

Proof. In fact, let (𝑥0, 𝑓0) ∈ 𝑋 × 𝐵𝑋, and let 𝑈 arbitrary neighbourhood of
the point 𝜔(𝑥0, 𝑓0) = 𝑓0 (𝑥0) in the space 𝐵. Since the map is 𝑓0 : 𝑋 → 𝐵 is
continuous, and the space 𝑋 is locally compact and Hausdor� (and therefore
regular), then in 𝑋 there exists such a neighbourhood 𝑉 of a point 𝑥0 with a
compact closure 𝑉 , with 𝑓0 (𝑉) ⊂ 𝑈. Therefore, an open set𝒲(𝑉,𝑈) containing
the point 𝑓0 is de�ned in 𝐵𝑋, and in 𝑋 × 𝐵𝑋 - an open set 𝑊 = 𝑉 ×𝒲(𝑉,𝑈)
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containing the point (𝑥0, 𝑓0). At the same time, for any point (𝑥, 𝑓 ) ∈ 𝑊 , the
inclusion holds

𝜔(𝑥, 𝑓 ) = 𝑓 (𝑥) ∈ 𝑓 (𝑉) ⊂ (𝑈),

showing that 𝜔(𝑊) ⊂ 𝑈. So, for each point (𝑥0, 𝑓0 ∈ ×𝐵𝑋 and any neighbour-
hood of 𝑈 of the point 𝜔(𝑥0, 𝑓0) ∈ 𝐵, there is a neighbourhood 𝑊 of the point
(𝑥0, 𝑓0) such that 𝜔(𝑊) ⊂ 𝑈. □

Thus,

Proposition 0.27. if the space 𝑋 is locally compact and Hausdor�, then for
any spaces 𝑌 and 𝐵 the association map

𝜃 : 𝒯ℴ𝓅(𝑋 × 𝑌, 𝐵) → 𝒯ℴ𝓅((𝑌, 𝐵𝑋)

is bijective.

This statement is called the exponential law for sets of maps. The rather
strong conditions imposed on the space 𝑋 (by the way, very close to the nec-
essary ones) are a particular manifestation of the general defectiveness of the
category 𝒯ℴ𝓅 in relation to the direct product. A general way to get rid of
such conditions (which we will encounter in other situations later) is to move to
a category whose objects are topological spaces, and morphisms are such maps
of 𝑓 : 𝑋 → 𝑌 topological spaces (called kaonic maps)2 that for any compact
space 𝐾 and any continuous map 𝜑 : 𝐾 → 𝑋 composite map 𝑓 ◦ 𝜑 : 𝐾 → 𝑌 is
continuous, or, which is essentially equivalent, to a category whose morphisms
are continuous maps, and objects are such topological spaces 𝑋 (called kaonic
spaces) that the set 𝐶 ⊂ 𝑋 is closed if and only if, for any compact space 𝐾 and
any continuous map 𝑓 : 𝐾 → 𝑋, its preimage 𝜑−1𝐶 is closed in 𝐾. However,
in this course we will not pursue the formal perfection of the theory and will
prefer to stay in the more familiar category of 𝒯ℴ𝓅.

0.C Exponential law for mapping spaces

In connection with the exponential law, the question also naturally arises about
its validity for mapping spaces, i.e., whether the associated map will be a home-
omorphism of space 𝐵𝑋×𝑌 of (or at least in 𝐵) space (𝐵𝑋)𝑌 . The answer is,
generally speaking, a�rmative only for Hausdor� spaces 𝑋 and 𝑌 . Although we
will need this fact only in a limited way, we will prove it here in full generality
for the sake of completeness,

First of all, we show that

Proposition 0.28. if the space 𝑌 is Hausdor�, then for any spaces 𝑋 and 𝐵
the association map

𝜃 : 𝐵𝑋×𝑌 → (𝐵𝑋)𝑌

is continuous.

2The kaon, a special case of meson particle, is made of one quark and one antiquark.
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Proof. Indeed, by de�nition, every open set in (𝐵𝑋)𝑌 is a union of �nite inter-
sections of sets of the form 𝒲(𝐿,𝑉), where 𝐿 is a compact subset in 𝑌 and 𝑉
is an open subset in 𝐵𝑋. Therefore, it is su�cient to show that for any sets of
the form𝒲(𝐿,𝑉), its preimage by the map 𝜃 is open in 𝐵𝑋×𝑌 . Let 𝑓 ∈𝒲(𝐿,𝑉)
and 𝑦 ∈ 𝐿. Since 𝑓 (𝑦) ∈ 𝑉 and since the set 𝑉 , in turn, is the union of �nite
intersections of sets of the form𝒲(𝐾𝑖 ,𝑈𝑖), where 𝐾𝑖 are compact sets in 𝑋, and
𝑈𝑖 are open sets in 𝐵, then in 𝑋 there are such compact sets 𝐾

𝑦

1 , . . . , 𝐾
𝑦
𝑛𝑦 , and

in 𝐵 there are such open sets 𝑈
𝑦

1 , . . . ,𝑈
𝑦
𝑛𝑦 that 𝑓 (𝑦) ∈ 𝑉𝑦 ⊂ 𝑉 , where

𝑉𝑦 =𝒲(𝐾 𝑦1 ,𝑈
𝑦

1 ) ∩ · · · ∩𝒲(𝐾
𝑛𝑦
𝑦 ,𝑈

𝑛𝑦
𝑦 ).

But then, since the map 𝑓 : 𝑌 → 𝐵𝑥 is continuous, in 𝑌 there will be such a
neighbourhood 𝐺𝑦 of the point 𝑦 that 𝑓 (𝐺𝑦) ⊂ 𝑉𝑦. At the same time, since the
space 𝐿, being Hausdor� (as a subspace of the Hausdor� space 𝑌) and compact,
regular, then in 𝐿 there exists such a neighbourhood 𝐻𝑦 of 𝑦 ∈ 𝐿, such that

𝐻𝑦 ⊂ 𝐺𝑦 ∩ 𝐿.
Let's now choose such a �nite system of points, 𝑦1, . . . , 𝑦𝑚 in 𝐿 such that

the neighbourhood of 𝐻𝑦1 , . . . , 𝐻𝑦𝑚 covers 𝐿 (such a system exists due to the
compactness of 𝐿). Since

𝑓 (𝐻𝑦𝑖 ) ⊂ 𝑓 (𝐺𝑦𝑖 ) ⊂ 𝑉𝑦𝑖 ⊂ 𝑉, 𝑖 = 1, . . . , 𝑚,

and
𝑉𝑦𝑖 =𝒲(𝐾 𝑖1,𝑈𝑖1) ∩ · · · ∩𝒲(𝐾 𝑖𝑛𝑖 ,𝑈

𝑖
𝑛𝑖
)

where for the sake of brevity we set

𝐾 𝑖𝑗 = 𝐾
𝑦𝑖
𝑗
, 𝑈𝑖𝑗 = 𝑈

𝑦𝑖
𝑗
, and𝑛𝑖 = 𝑛𝑦𝑖

for any 𝑖 = 1, . . . , 𝑚 and any 𝑗 = 1, . . . , 𝑛𝑖, thus we have

𝑓 ∈𝒲(𝐻𝑦𝑖 ,𝒲(𝐾 𝑖𝑗 ,𝑈𝑖𝑗 )), 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛

(sets 𝐻𝑦𝑖 , being closed subsets of a compact set 𝐿, are compact) and means
𝑓 ∈ 𝑊 , where

𝑊 = ∩𝑚𝑖=1 ∩
𝑛𝑖
𝑗=1 𝒲(𝐻𝑦𝑖 ,𝒲(𝐾

𝑖
𝑗 ,𝑈

𝑖
𝑗 ).

On the other hand, if 𝑔 ∈ 𝑊 , i.e. if

𝑔(𝐻𝑦𝑖 ) ⊂ ∩
𝑛𝑖
𝑗=1𝒲(𝐾

𝑖
𝑗 ,𝑈

𝑖
𝑗 ) = 𝑉𝑦𝑖 ⊂ 𝑉

for any 𝑖 = 1, . . . , 𝑚, then

𝑔(𝐿) = ∪𝑚𝑖=1𝑔(𝐻𝑦𝑖 ) ⊂ 𝑉

and therefore 𝑔 ∈ 𝒲(𝐿,𝑉). Thus 𝑊 ⊂ 𝒲(𝐿,𝑉). This proves that any point
𝑓 ∈𝒲(𝐿,𝑉) has a neighbourhood of the form 𝑊 in𝒲(𝐿,𝑉) and, therefore, the
set 𝒲(𝐿,𝑉) is a union of sets of the form 𝑊 , i.e., �nite intersections of sets of
the form 𝒲(𝐿,𝒲(𝐾,𝑈)), where 𝐾 is a compact set in 𝑋, and 𝑈 is an open set
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in 𝐵. Therefore, it is enough for us to prove that a complete preimage is open
in 𝐵𝑋×𝑌 when 𝜃 maps each set of the form𝒲(𝐿,𝒲(𝐾,𝑈)). But this is obvious,
because, as follows directly from the de�nition of the map 𝜃, this preimage is
the set 𝒲(𝐾 × 𝐿,𝑈). □

Thus, for Hausdor� 𝑌 (and any 𝑋 and 𝐵), the map 𝜃 is continuous (and, as
we know, injective) map of the space 𝐵𝑋×𝑌 into the space (𝐵𝑋)𝑌 . We show that

Proposition 0.29. if 𝑋 is also a Hausdor� space, then the map 𝜃 is an open
(and hence homeomorphic) map since im 𝜃 = 𝜃 (𝐵𝑋×𝑌 ).
Proof. It is clear that it su�ces to prove that for any compact set 𝑀 of 𝑋𝑡𝑖𝑚𝑒𝑠𝑌
and any open set 𝑈 of 𝐵 the set 𝜃𝒲(𝑀,𝑈) is open in im 𝜃, that is, that any
of its points 𝑔0 = 𝜃 𝑓0, where 𝑓0 ∈ 𝒲(𝑀,𝑈), is its inner point. Let 𝐾 and 𝐿 be
projections of the set 𝑀 in 𝑋 and 𝑌 , respectively. Since the map 𝑓0 : 𝑋 ×𝑌 → 𝐵

is continuous, and the spaces 𝐾 and 𝐿, being compact and Hausdor�, are regular
(even normal), then for any point 𝑧 = (𝑥, 𝑦) ∈ 𝑀, where 𝑥 ∈ 𝐾, 𝑦 ∈ 𝐿, there
are such neighbourhoods 𝑉𝑧 and 𝑊𝑧 of points 𝑥 and 𝑦 in the spaces 𝐾 and 𝐿,
respectively, that 𝑓0 (𝑉 𝑧 ×𝑊 𝑧) ⊂ 𝑈 and, therefore, (𝑔0, 𝑉 𝑧)𝑊 𝑧 ⊂ 𝑈, i.e.

𝑔0 ∈𝒲(𝑉 𝑧 ,𝒲(𝑊 𝑧 ,𝑈))
(since the sets 𝑉 𝑧 and 𝑊 𝑧, being closed subsets of compact spaces, are compact,
then the symbol 𝒲(𝑉 𝑧 ,𝒲(𝑊 𝑧 ,𝑈)) makes sense). On the other hand, since the
set 𝑀 is compact, there exists in it such a �nite system of points 𝑧1, . . . , 𝑧𝑛) that
the sets

𝑉𝑧1 ×𝑊𝑧1 , . . . 𝑉𝑧𝑛 ×𝑊𝑧𝑛

cover 𝑀. The set

𝑊 = (im 𝜃) ∩ [∩𝑛𝑖=1𝒲(𝑉 𝑧𝑖 ,𝒲(𝑊 𝑧𝑖 ,𝑈))]
is open in im 𝜃 and, according to what has just been said, contains the map 𝑔0.

Let 𝑔 = 𝜃 𝑓 be an arbitrary map from 𝑊 . Since 𝑔 ∈ 𝒲(𝑉 𝑧 ,𝒲(𝑊 𝑧 ,𝑈)) for
any 𝑖 = 1, . . . , 𝑛, it is that 𝑔𝑉 𝑧𝑖 )𝑊 𝑧𝑖 ⊂ 𝑈, i.e., 𝑓 (𝑉 𝑧𝑖 ×𝑊 𝑧𝑖 ) ⊂ 𝑈, and hence,

𝑓 (𝑀) ⊂ 𝑓

(
∪𝑛𝑖=1 (𝑉 𝑧𝑖 ×𝑊 𝑧𝑖 )

)
⊂ 𝑈,

i.e., 𝑓 ∈ 𝒲(𝑀,𝑈). This proves that 𝒲 ⊂ 𝜃𝒲(𝐾,𝑈), and, it means that the
point 𝑔0 is the inner point of the set im 𝜃. □

Combining the results obtained with the exponential law, we obtain that

Proposition 0.30. if

(a) the space 𝑋 is Hausdor� and locally compact,

(b) the space 𝑌 is Hausdor�,

then for any space 𝐵 the association map

𝜃 : 𝐵𝑋×𝑌 → (𝐵𝑋)𝑌

is a homeomorphism.

This statement is known as the exponential law for mapping spaces.



Lecture 1

1.1 Homotopies and paths

Recall that a path in the topological space 𝑋 is an arbitrary continuous map
𝑢 : 𝐼 → 𝑋. The point 𝑢(0) is called the starting point of the path, and the
point 𝑢(1) is its ending point. It is also said that the points 𝑢(0) and 𝑢(1) are
connected by 𝑢.

All paths of space 𝑋 make up the topological space 𝑋 𝐼 .

A topological space 𝑋 is called connected (or, more precisely, path connected)
if any two of its points can be connected by a path1. Each space is 𝑋 is a union
of maximal connected subsets called its components.

By denoting a topological space consisting of a single point with the symbol
pt, we can consider each path 𝐼 → 𝑋 as a map pt×𝐼 → 𝑋, i.e. as a homotopy
from pt to 𝑋. In accordance with this, the components of the space 𝑋 are
nothing more than homotopy classes of maps pt→ 𝑋.

On the other hand, it is clear that the exponential law (for sets of maps)
allows, on the contrary, any a homotopy can be interpreted as some path by
which a map associated with an arbitrary homotopy 𝐹 : 𝑋 × 𝐼 → 𝑌 is nothing
but a path 𝐼 → 𝑌𝑋 in the map space 𝑌𝑋.

Unfortunately, this elegant and visual interpretation of homotopy is quite
adequate only for locally compact and Hausdor� spaces 𝑋. For arbitrary spaces
𝑋, not every path in 𝑌𝑋 will be a homotopy from 𝑋 to 𝑌 . Therefore, in particular,
only for of locally compact and Hausdor� spaces 𝑋, the homotopy classes of
maps from 𝑋 to 𝑌 can be identi�ed with the components of the space 𝑌𝑋. In
general, each such component can consist of several homotopy classes.

A more satisfactory result will be obtained when we will apply the exponen-
tial law by rearranging 𝑋 and 𝐼 beforehand. Then the map associated with an
arbitrary homotopy 𝐹 : 𝑋 × 𝐼 → 𝑌 (which we will allow ourselves to denote with
the same letter 𝐹) will be given by the formula

(𝐹 (𝑥)) (𝑡) = 𝐹 (𝑥, 𝑡), 𝑥 ∈ 𝑋, 𝑡 ∈ 𝐼,

1Transcriber's note: This conventions is adopted by Fuchs-Rokhlin, as connected but not
path-connected spaces are pathological in view of algebraic topology.

21
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and will be a continuous map 𝑋 → 𝑌 𝐼 . Since the space 𝐼 (which here plays the
role of the space 𝑋 from the formulation of the exponential law) is obviously
locally compact and Hausdor�, we see, therefore, that

Proposition 1.1. for any spaces 𝑋 and 𝑌 , the homotopies 𝑋 × 𝐼 → 𝑌 from 𝑋

to 𝑌 are in natural bijective correspondence with continuous maps 𝑋 → 𝑌 𝐼 .

Therefore, we will also call the maps 𝑋 → 𝑌 𝐼 homotopies from 𝑋 to 𝑌 .

How with this interpretation homotopies are obtained are the maps 𝑓0 and
𝑓1 related to them? To answer this question, we note that for any spaces 𝑋 and
𝐵, any map 𝑓 : 𝑋 → 𝐵 and any point 𝑥0 ∈ 𝑋 formula

𝜔𝑥0 𝑓 = 𝑓 (𝑥0)

de�nes some map

𝜔𝑥0 : 𝐵
𝑋 → 𝐵

(slice by 𝑥0 of the 𝜔 evaluation map). Although the map 𝜔 is generally discon-
tinuous, the map 𝜔𝑥0 for any point 𝑥0 ∈ 𝑋 is continuous, since for each open set
𝑈 ⊂ 𝐵 is its preimage 𝜔−1𝑥0𝑈 when mapped by 𝜔𝑥0 is an open set𝒲({𝑥0},𝑈) (in
any topological space, all single-point subsets are compact).

In particular, the maps of the path space

𝜔0 : 𝐵
𝐼 → 𝐵, 𝜔1 : 𝐵

𝐼 → 𝐵

are continuous, which correspondingly maps each path to its starting and ending
points.

1.2 Co�brations

Now it is clear that (we replace 𝐵 with 𝑌)

Proposition 1.2. for each homotopy 𝐹 : 𝑋 → 𝑌 𝐼 compositions 𝜔0 ◦ 𝐹 : 𝑋 → 𝑌

and 𝜔1 ◦ 𝐹 : 𝑋 → 𝑌 are maps connected by this homotopy.

Therefore, for example, the axiom of homotopy extension can be written in
the form of a diagramme

𝐴
𝑖 //

𝐹
��

𝑋

𝑓

��

𝐹

��
𝑌 𝐼

𝜔0

// 𝑌

(1.3)

much more visual and convenient than Diagramme (0.20) of the Lecture 0.

Lemma 1.4. Each co�bration 𝑖 : 𝐴 → 𝑋 is an injective map, and if its image
𝑖(𝐴) is closed in 𝑋, then it is a moneomorphism.
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Proof. Let

𝐶𝐴 = 𝐴 × 𝐼/𝐴 × 0

The quotient is obtained from the product space of 𝐴 × 𝐼 by contracting the
subspace 𝐴×0 to a point. (The space 𝐶𝐴 is called a cone over 𝐴; we will return
to it in the next lecture.) Further, let 𝑎0 be the image of the subspace 𝐴×0 in 𝐶𝐴
(the vertex of the cone), and let 𝑗 : 𝐴→ 𝐶𝐴 be the moneomorphism induced by
the map 𝑎 ↦→ (𝑎, 1), 𝑎 ∈ 𝐴. We can consider the factorisation map 𝐴 × 𝐼 → 𝐶𝐴

as a homotopy from 𝐴 to 𝐶𝐴, connecting the constant map const𝐴 → 𝐶𝐴,
𝑎 ↦→ 𝑎0, with the map 𝑗 . Therefore, since const𝐴 = const𝑋 ◦𝑖, where const𝑋 is a
map 𝑋 → 𝐶𝐴, 𝑥 ↦→ 𝑎0, then, according to the axiom HEP, there exists a map
𝑔 : 𝑋 → 𝐶𝐴 such that 𝑔 ◦ 𝑖 = 𝑗 . But the map 𝑗 is injective. Therefore, the map
𝑖 is also injective. Also, 𝑖𝑃 = 𝑔−1 ( 𝑗𝑃) ∩ 𝑖𝐴 for any subset 𝑃 ⊂ 𝐴. Therefore, if
𝑖𝐴 is closed, then for any closed subset of 𝑃 ⊂ 𝐴, the set 𝑖𝑃 is closed (since by
applying the continuity of the map 𝑔 and the moneomorphism of the map 𝑗 ,
the set 𝑔−1 ( 𝑗𝑃) closed). Hence, in this case the map 𝑖 is a moneomorphism. □

The concept of a co�bration allows for a useful and very important dualisa-
tion.

1.3 Push-outs

According to the general Proposition 0.12 of the Lecture 0, the axiom of ho-
motopy extension can be formulated as a requirement for the existence of some
kind of retraction. The corresponding construction is quite elementary, but with
a view to dualising it later, we will present it now in general categorical terms,
which will allow us, in particular, to prove the Proposition 0.12 of the lecture 0
anew.

Let 𝒜 be an arbitrary category, and let 𝑖𝐴 : 𝐶 → 𝐴 and 𝑖𝐵 : 𝐶 → 𝐵 be two
morphisms of this category with the same domain of de�nition of 𝐶.

A straight cone over a pair of (𝑖𝐴, 𝑖𝐵) comprises each pair ( 𝑗𝐴, 𝑗𝐵) and mor-
phisms 𝑗𝐴 : 𝐴→ 𝐷, 𝑗𝐵 : 𝐵→ 𝐷 satisfying the relation 𝑗𝐴 ◦ 𝑖𝐴 = 𝑗𝐵 ◦ 𝑖𝐵 i.e. such
that the diagramme

𝐶
𝑖𝐴 //

𝑖𝐵

��

𝐴

𝑗𝐴

��
𝐵

𝑖𝐵

// 𝐷

(1.5)

commutes. A morphism of the cone ( 𝑗𝐴 : 𝐴 → 𝐷, 𝑗𝐵 : 𝐵 → 𝐷) into the cone
( 𝑗 ′
𝐴
: 𝐴→ 𝐷

′
, 𝑗
′
𝐵
: 𝐵→ 𝐷

′ ) comprises a morphism 𝜑 : 𝐷 → 𝐷
′
such that 𝑗𝐴 ◦𝜑 =
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𝑗
′

𝐴
and 𝑗𝐵 ◦ 𝜑 = 𝑗

′
𝐵
, i.e. that there is a commutative diagramme

𝐷

𝜑

��

𝐴

𝑗𝐴

>>

𝑗
′
𝐴 ��

𝐵

𝑗𝐵

``

𝑗
′
𝐵��

𝐷
′

It is clear that all straight cones (over a given pair (𝑖𝐴, 𝑖𝐵)) and all their mor-
phisms make up a category 𝒞ℴ𝓃−−−−→(𝑖𝐴, 𝑖𝐵).

An initial object of this category, i.e. such a cone ( 𝑗𝐴 : 𝐴→ 𝐷, 𝑗𝐵 : 𝐵 → 𝐷)
that for any other cone ( 𝑗 ′

𝐴
, 𝑗
′
𝐵
) over (𝑖𝐴, 𝑖𝐵) in the category 𝒞ℴ𝓃−−−−→(𝑖𝐴, 𝑖𝐵) there

is a single morphism ( 𝑗𝐴, 𝑗𝐵) → ( 𝑗
′

𝐴
, 𝑗
′
𝐵
), called an push-out (or amalgam) of

the diagramme 𝐴
𝐴←− 𝐶 𝐵−→ 𝐵 or, admitting a certain inaccuracy, a push-out of

objects 𝐴 and 𝐵 with an amalgamated object 𝐶. Sometimes the 𝐷 object itself
is called a push-out. Diagramme (1.5), in which 𝐷 is a push-out, is called a
universal (or Cartesian) square.

It is easy to see that

Proposition 1.6. in the category 𝒯ℴ𝓅 an amalgam exists for any diagramme

𝐴
𝐼𝐴←−− 𝐶 𝑖𝐵−−→ 𝐵.

Proof. The space 𝐷 will be the coset space of the disjoint union 𝐴 ⊔ 𝐵 by the
minimum equivalence relation in which 𝑎 ∼ 𝑏 if there exists such a 𝑐 ∈ 𝐶 that
𝑖𝐴(𝑐) = 𝑎 and 𝑖𝐵 (𝑐) = 𝑏, and the maps 𝑗𝐴 : 𝐴 → 𝐷 and 𝑗𝐵 : 𝐼𝑛 → 𝐷 are maps
induced by inclusions 𝐴→ 𝐴⊔𝐵 and 𝐵→ 𝐴⊔𝐵. Indeed, by construction 𝑗𝐴◦𝑖𝐴 =

𝑗𝐵 ◦ 𝑖𝐵 and for any cone ( 𝑗 ′
𝐴
, 𝑗
′
𝐵
∈ 𝒞ℴ𝓃−−−−→(𝑖𝐴, 𝑖𝐵), maps 𝑎 ↦→ 𝑗

′

𝐴
, 𝑏 ↦→ 𝐽

′
𝐵
induce

(obviously the only) map 𝜑 : 𝐷 → 𝐷
′
, for which 𝑗

′

𝐴
= 𝜑 ◦ 𝑗𝐴, 𝑗

′
𝐵
= 𝜑 ◦ 𝑗𝐵. □

In the case when 𝐶 = 𝐴 ∪ 𝐼𝑛, and the maps 𝑖𝑎 and 𝐼𝑏 are inclusions, the
push-out of 𝐷 is the union of 𝐴 ∪ 𝑖𝑛. This explains the origin of the term
�push-out�.

1.4 Push-outs and co-induced co�brations

For the diagramme 𝑋
𝑖←− 𝐴

𝑓
−→ 𝑌 , where 𝑖 is an embedding, the push-out will be

the space 𝑋 ∪ 𝑓 𝑌 constructed in Lecture 0. Assuming a certain liberty, we will

use the notation 𝑋 ∪ 𝑓 𝑌 for the pushu-out of the diagramme 𝑋
𝑖←− 𝐴

𝑓
−→ 𝑌 and in

the case of an arbitrary map 𝑖. The corresponding maps are 𝑋 → 𝑋 ∪ 𝑓𝑌 and
𝑌 → 𝑋 ∪ 𝑓 𝑌 (which are constraints of the factorisation map 𝑋 ⊔ 𝑌 → 𝑋 ∪ 𝑓 𝑌)
we will denote by the symbols 𝑓# and 𝑖 𝑓 . Together with the maps 𝑖 and 𝑓 , they
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make up a co-universal square

𝐴
𝑖 //

𝑓

��

𝑋

𝑓#

��
𝑌

𝑖 𝑓

// 𝑋 ∪ 𝑓 𝑌

(1.7)

The map 𝑖 𝑓 is said to be co-induced by the map 𝑖 via the map 𝑖 𝑓 . If the map
𝑖 is injective, then the map 𝑖 𝑓 will be a moneomorphism to a closed subspace.
In this case, having identi�ed the points 𝑦 and 𝑖 𝑓 (𝑦), we will consider 𝑌 to be
a closed subspace of the space 𝑋 ∪ 𝑓 𝑌 (which is consistent with the conventions
from Lecture 0 concerning the case when 𝑖 is an embedding).

Proposition 0.12 of Lecture 0, i.e. the statement that

Proposition 1.8. the extension of 𝑓 : 𝑋 → 𝑌 of the map 𝑓 : 𝐴→ 𝑌 with respect
to the map 𝑖 : 𝐴→ 𝑋 exists if and only if the co-induced map 𝑖 𝑓 : 𝑌 → 𝑋 ∪ 𝑓 𝑌 is
retractible,

remains true for any map 𝑖.

Proof. Indeed, if the map 𝑖 𝑓 is retractible and 𝑟 : 𝑋∪ 𝑓𝑌 → 𝑌 is the corresponding

retraction, then the composition is 𝑓 = 𝑟 ◦ 𝑓# will obviously satisfy the relation

𝑓 ◦ = 𝑓 . Conversely, if 𝑓 exists, then the pair (id : 𝑌 → 𝑌, 𝑓 : 𝑋 → 𝑌 ) will be a
straight cone over (𝑖, 𝑓 ), and therefore there will be a morphism 𝑟 : 𝑋 ∪ 𝑓 𝑌 → 𝑌

push-outs 𝑋 ∪ 𝑓 𝑌 into this cone. But then 𝑟 ◦ 𝑖 𝑓 = id, so that the morphism 𝑟

will be a retract of the map 𝑖 𝑓 . □

Thus, the problem of extension of the map 𝑓 is equivalent to the problem
of the existence of a retraction of the co-induced map 𝑖 𝑓 . However, this is
essentially a general categorical statement, it would be virtually useless for us
if, when moving from 𝑖 to 𝑖 𝑓 , we left the co�bration class. And in fact, everything
is �ne in this regard, i.e.

Proposition 1.9. the map 𝑖 𝑓 : 𝑌 → 𝑋∪𝐹𝑌 , co-induced by the co�bration 𝑖 : 𝐴→
𝑋, is also a co�bration.

Proof. Indeed, from any diagramme of the form

𝑌
𝑖 𝑓 //

𝐺
��

𝑋 ∪ 𝑓 𝑌

𝑔

��

𝐺

{{
𝑍 𝐼

𝜔0

// 𝑍

(1.10)

by composing its vertical arrows with the vertical arrows of Diagramme 1.7, we
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get the diagramme

𝐴
𝑖 //

𝐺◦ 𝑓
��

𝑋

𝑔◦𝑃𝑋
��

𝐹

~~
𝑍 𝐼

𝜔0

// 𝑍

for which the homotopy 𝐹 exists by condition. Obviously, 𝐹 with 𝐺 together
homotopically forms a cone (𝐹, 𝐺) over the pair (𝑖, 𝑓 ). Therefore, there is a
morphism 𝐺 : 𝑋 ∪ 𝑓 𝑌 → 𝑍 𝐼 from the cone ( 𝑓#, 𝑖 𝑓 ) into the cone (𝐹, 𝐺), which
will be the homotopy closing Diagramme (1.10). Thus, for any diagramme of

the form (1.10), there is a closing homotopy 𝐺 and, therefore, the map 𝑖 𝑓 is a
co�bration. □

This proof is clearly depicted by the diagramme

𝐴
𝑖 //

𝑓

��

��

𝑋

𝑓#

��

{{

𝐹

vv
𝑍

𝜔0

// 𝑍

𝑌
𝑖 𝑓

//
𝐺

??

𝑋 ∪ 𝑓 𝑌

𝑔

bb

𝐺

hh

(1.11)

consideration of which makes the proof quite obvious.

1.5 The mapping cylinder

De�nition 1.12. The cylinder Cyl(𝑖) of the continuous map 𝑖 : 𝐴 → 𝑋 is the
push-out (𝐴 × 𝐼) ∪𝑖 𝑋 of the diagramme

𝐴 × 𝐼 𝜎0←−− 𝐴 𝑖−→ 𝑋.

This push-out is obtained by gluing the space 𝐴 × 𝐼 to the space 𝑋 by the
map (𝑎, 0) ↦→ 𝑖(𝑎). There is a co-universal square for it

𝐴
𝑖 //

𝜎0

��

𝑋

(𝜎0 )𝑖
��

𝐴 × 𝐼
𝑖#

// Cyl(𝑖)

(1.13)

the map (𝜎0)𝑖 of which is a monomorphism (note that we "transposed" the
square (3), which, of course, does not interfere with anything). We will assume
that the space 𝑋 is embedded in the cylinder Cyl(𝑖) by means of the monomor-
phism (𝜎0)𝑖.
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For any point (𝑎, 𝑡) ∈ 𝐴 × 𝐼 we will denote the point 𝑖# (𝑎, 𝑡) ∈ Cyl(𝑖) by the
symbol [𝑎, 𝑡]. Thus, each point from Cyl(𝑖) either has the form [𝑎, 𝑡], 𝑎 ∈ 𝐴,
𝑡 ∈ 𝐼, or is a point 𝑥 from 𝑋. In this case, [𝑎, 0] = 𝑖(𝑎) for any point 𝑎 ∈ 𝐴.

Due to the universality, the formula

𝑗 [𝑎, 𝑡] = (𝑖𝑎, 𝑡), (𝑎, 𝑡) ∈ 𝐴 × 𝐼,
𝑗 (𝑥) = (𝑥, 0), 𝑥 ∈ 𝑋,

well determine the continuous map

𝑗 : Cyl(𝑖) → 𝑋 × 𝐼 .

In the most important special case, when 𝐴 ⊂ 𝑋 and 𝑖 is an embedding, the map
𝑗 , as it is easy to see, is an injective map to a subspace 𝐴 = (𝑋 × 0) ∪ (𝐴 × 𝐼) of
the product 𝑋 × 𝐼. Generally speaking, it is not a monomorphism. However,

Proposition 1.14. if 𝐴 is closed in 𝑋, then 𝑗 is a moneomorphism,

so in this case, considering 𝑗 an embedding, we can identify the cylinder
Cyl(𝑖) with the subspace 𝐴 of the space 𝑋 × 𝐼.

Proof. Indeed, by de�nition, the set 𝐶 ⊂ Cyl(𝑖) is closed if its preimage in 𝑋

and in 𝐴 × 𝐼 are closed. In the case when 𝐴 ⊂ 𝑋, this is equivalent to the fact
that the intersections of 𝑗𝐶 ∩ (𝑋 × 0) and 𝑗𝐶 ∩ (𝐴× 𝐼) are closed respectively in
𝑋 ×0 and 𝐴× 𝐼. But since 𝑋 ×0 is closed in 𝑋 × 𝐼, the intersection of 𝑗𝐶∩ (𝑋 ×0)
is closed in 𝑋 × 0 if and only if it is closed in 𝑋 × 𝐼. Similarly, if 𝐴 is closed in 𝑋,
then 𝐴 × 𝐼 is closed in 𝑋 × 𝐼, and, therefore, the intersection of 𝑗𝐶 ∩ (𝐴 × 𝐼) is
closed in 𝐴 × 𝐼 if and only if it is closed in 𝑋 × 𝐼. Therefore, if 𝐴 is closed, then
for any set closed in Cyl 𝑖, 𝐶 is a set with

𝑗𝐶 = ( 𝑗𝐶 ∩ (𝑋 × 0)) ∪ ( 𝑗𝐶 ∩ (𝐴 × 𝐼))

is closed in 𝑋 × 𝐼, and, therefore, in 𝐴 = (𝑋 × 0) ∪ (𝐴 × 𝐼). □

Pairs of (𝑋, 𝐴) with closed 𝐴 are called closed.

1.6 Characterisation of co�brations

Proposition 1.15. A map 𝑖 : 𝐴 → 𝑋 is a co�bration if and only if the map
𝑗 : Cyl(𝑖) → 𝑋 × 𝐼 is retractible.

Proof. Homotopy of 𝐹 : 𝐴 × 𝐼 → 𝑌 and extension of 𝑓 : 𝑋 → 𝑌 to 𝑋 of its initial
map 𝑓0 = 𝐹 ◦ 𝜎0 de�ne a map

𝐹 ⊔ 𝑓 : (𝐴 × 𝐼) ⊔ 𝑋 → 𝑌,

that takes the same values at points (𝑎, 0) and 𝑖(𝑎), 𝑎 ∈ 𝐴. Therefore, the
map 𝐹 ⊔ 𝑓 induces some map 𝑔 : Cyl(𝑡) → 𝑌 , which has the property that
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𝑔[𝑎, 𝑡] = 𝐹 (𝑎, 𝑡) and 𝑔(𝑥) = 𝑓 (𝑥) for any points [𝑎, 𝑡] and 𝑥 of Cyl(𝑖). Note that
the pair (𝐹, 𝑓 ) is a cone over (𝜎0, 𝑖) and 𝑔 is nothing but a morphism of the cone
(𝑖#, (𝜎0)𝑖) into the cone (𝐹, 𝑓 ) provided by the co-universality of the push-out
Cyl(𝑖). Therefore, if the retraction is 𝑟 : 𝑋 × 𝐼 → Cyl(𝑖) exists, then the map
𝐹 = 𝑔 ◦ 𝑟 : 𝑋 × 𝐼 → 𝑌 will be a homotopy with the initial map 𝑓 (for this map

satis�es the relation 𝐹 = 𝑔, and therefore 𝐹 (𝑥, 0) = (𝐹 ◦ 𝑗) (𝑥) = 𝑔(𝑥) = 𝑓 (𝑥) for
any point 𝑥 ∈ 𝑋), which is an extension (in relation to the map 𝑖) of the homotopy
𝐹 (for 𝐹 (𝑖𝑎, 𝑡) = (𝐹◦ 𝑗) [𝑎, 𝑡] = 𝑔[𝑎, 𝑡] = 𝐹 (𝑎, 𝑡) for any point (𝑎, 𝑡) ∈ 𝐴× 𝐼). Thus,
if the map 𝑗 is retractible, then the map 𝑖 is a co�baration.

Conversely, the map 𝑖# can be viewed as a homotopy from 𝐴 to Cyl(𝑖) with
the initial map, being a constraint (with respect to 𝑖) maps (𝜎0)𝑖; therefore,
if the map 𝑖 : 𝐴 → 𝑋 is a co�bration, then there is a map 𝑟 : 𝑋 × 𝐼 → Cyl(𝑖)
satisfying the relations 𝑟 (𝑥, 0) = 𝑥 and 𝑟 (𝑖𝑎, 𝑡) = [𝑎, 𝑡], i.e. being a retraction of
the map 𝑗 . □

Corollary 1.16. A closed pair (𝑋, 𝐴) is a co�bration if and only if the subspace
𝐴 = (𝑋 × 0) ∪ (𝐴 × 𝐼) is a retract of the space 𝑋 × 𝐼.

Ström showed that the assumption about the closeness of the sub-space 𝐴 in
this corollary is actually super�uous. However, in accordance with our general
set-up, we will ignore this statement, since it is only valid for non-Hausdor�
spaces 𝑋, thus

Proposition 1.17. if for a pair (𝑋, 𝐴) such that the space 𝑋 is Hausdor� and
the subspace 𝐴 = (𝑋 × 0) ∪ (𝐴 × 𝐼) is a retract of the space 𝑋 × 𝐼, the pair (𝑋, 𝐴)
is closed.

Proof. Indeed, the composition 𝑗 ◦ 𝑟 of the reacting map 𝑟 : 𝑋 × 𝐼 → 𝐴 and the
embeddings 𝑗 : 𝐴 → 𝑋 × 𝐼 is a continuous map 𝑋 × 𝐼 → 𝑋 × 𝐼, the sets of �xed
points of which is 𝐴. By applying the Hausdor� space 𝑋 × 𝐼, it follows that 𝐴 is
closed in 𝑋 × 𝐼. But then its preimage 𝐴 is also closed (in 𝑋) with a continuous
map 𝜎1 : 𝑥 ↦→ (𝑥, 1). □

Note, by the way, that

Proposition 1.18. For a closed co�bration (𝑋, 𝐴) the subspace 𝐴 is even func-
tionally separable, i.e. there exists a continuous function 𝜑 : 𝑋 → 𝐼, such that
𝜑(𝑎) = 0 if and only if 𝑎 ∈ 𝐴.

Proof. Indeed, let 𝑟 : 𝑋 × 𝐼 → 𝐴 be a retraction map and let 𝜌(𝑥, 𝑡) be the
projection of the point 𝑟 (𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑋 × 𝐼 onto 𝐼. Consider the function
𝜑 : 𝑋 → 𝐼 de�ned by the formula

𝜑(𝑥) = max
𝑡∈𝐼
(𝑡 − 𝜌(𝑥, 𝑡)), 𝑥 ∈ 𝑋.

By applying Lemma 1.19 proved below, the function 𝜑 is continuous on 𝑋. If
𝑎 ∈ 𝐴, then 𝜌(𝑎, 𝑡) = 𝑡 for any 𝑡 ∈ 𝐼 and therefore 𝜑(𝑎) = 0. Conversely, if
𝜑(𝑎) = 0, i.e. 𝜌(𝑎, 𝑡) ≥ 𝑡 for all 𝑡 ∈ 𝑇 , then, in particular, 𝜌(𝑎, 𝑡) > 0 for 𝑡 > 0
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and, therefore, 𝑟 (𝑎, 𝑡) ∈ 𝐴× 𝐼. Since the subspace 𝐴 (and therefore the subspace
𝐴 × 𝐼) is closed by condition, it follows that

(𝑎, 0) = 𝑟 (𝑎, 0) = lim
𝑡→0

𝑟 (𝑎, 𝑡) ∈ 𝐴 × 𝐼

and thus 𝑎 ∈ 𝐴. □

Lemma 1.19. For any compact space 𝐶, arbitrary topological space 𝑋 and any
continuous function 𝜓 : 𝑋×𝐶 → R the function 𝜑 : 𝑋 → R de�ned by the formula

𝜑(𝑥) = max
𝑐∈𝐶

𝜓(𝑥, 𝑐), 𝑥 ∈ 𝑋,

is continuous on 𝑋.

Proof. From the compactness of the space 𝐶 it follows, �rstly, that for any point
𝑥 ∈ 𝑋 the maximum is reached, i.e. there exists (generally speaking, not the
only one) a point 𝑐𝑥 ∈ 𝐶 such that 𝜑(𝑥) = 𝜓(𝑥, 𝑐𝑥). Secondly, the function 𝜓
is equally continuous at each point 𝑥 of the space 𝑋, i.e. for any 𝜀 > 0 and
any point 𝑥0 ∈ 𝑋, there is a neighbourhood 𝑈 ⊂ 𝑋 of the point 𝑥0, such that
|𝜓(𝑥, 𝑐) − 𝜓(𝑥0, 𝑐) |𝜀 for any points 𝑥 ∈ 𝑈 and 𝑐 ∈ 𝐶. Therefore, if 𝑋 ∈ 𝑈 and
𝜑(𝑥) ≥ 𝜑(𝑥0), then

|𝜑(𝑥) − 𝜑(𝑥0) | = 𝜑(𝑥) − 𝜑(𝑥0) ≤ 𝜓(𝑥, 𝑐𝑥) − 𝜓(𝑥, 𝑐𝑥0 ) = |𝜓(𝑥, 𝑐𝑥) − 𝜓(𝑥, 𝑐𝑥0 | < 𝜀

and if 𝜑(𝑥) ≤ 𝜑(𝑥0), then

|𝜑(𝑥) −𝜑(𝑥0) | = 𝜑(𝑥0) −𝜑(𝑥) ≤ 𝜓(𝑥0, 𝑐𝑥0 ) −𝜓(𝑥0, 𝑐𝑥0 ) = |𝜓(𝑥, 𝑐𝑥0 ) −𝜓(𝑥0, 𝑐𝑥0 | < 𝜀.

So |𝜑(𝑥) − 𝜑(𝑥0) | < 𝜀 for any point 𝑥 ∈ 𝑈, i.e. the function 𝜑 is continuous. □

1.7 The product of co�brations

The pair (𝑋, 𝐴) × (𝑌, 𝐵) := (𝑋 × 𝑌, 𝑋 × 𝐵 ∪ 𝐴 × 𝑌 ) is called the product of pairs
(𝑋, 𝐴) and (𝑌, 𝐵).

Proposition 1.20 (Theorem of Ström). The product

(𝑍, 𝐶) = (𝑋 × 𝑌, 𝑋 × 𝐵 ∪ 𝐴 × 𝑌 )

of closed co�brations (𝑋, 𝐴) and (𝑌, 𝐵) is a closed co�bration.

Proof. According to the corollary to Proposition 1.15, the subspace 𝐴 = 𝑋 × 0∪
𝐴× 𝐼 and 𝐵 = 𝑌 ×0∪𝐵× 𝐼 are retracts of the spaces 𝑋 × 𝐼 and 𝑌 × 𝐼, respectively.
Let 𝑟 : 𝑋 × 𝐼 → 𝐴 and 𝑠 : 𝑌 × 𝐼 → 𝐵 be the corresponding retractions, and let

𝑟 (𝑥, 𝑡) = (𝑟 (𝑥, 𝑡), 𝜌(𝑥, 𝑡)), (𝑥, 𝑡) ∈ 𝑋 × 𝐼,
𝑠(𝑥, 𝑡) = (𝑠(𝑦, 𝑡), 𝜎(𝑦, 𝑡)), (𝑦, 𝑡) ∈ 𝑌 × 𝐼,
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where 𝑟 (𝑥, 𝑡) ∈ 𝑋, 𝑠(𝑦, 𝑡) ∈ 𝑌 and 𝜌(𝑥, 𝑡), 𝜎(𝑦, 𝑡) ∈ 𝐼, with 𝜌(𝑥, 𝑡) = 0 if 𝑟 (𝑥, 𝑡) ∉ 𝐴
and 𝜎(𝑦, 𝑡) = 0 if 𝑠(𝑦, 𝑡) ∉ 𝐵. Now, we let

𝜑(𝑥) = max
𝑡∈𝐼
(𝑡 − 𝜌(𝑥, 𝑡)), 𝑥 ∈ 𝑋,

𝜓(𝑦) = max
𝑡∈𝐼
(𝑡 − 𝜎(𝑦, 𝑡)), 𝑦 ∈ 𝑌 .

And let

𝑃(𝑥, 𝑦, 𝑡) =
{
0, if 𝑡 ≤ min(𝜑(𝑥), 𝜓(𝑦)),
𝑡 −min(𝜑(𝑥), 𝜓(𝑦)), if 𝑡 ≥ min(𝜑(𝑥), 𝜓(𝑦)),

and
𝑅(𝑥, 𝑦, 𝑡) = (𝑟 (𝑥,min(𝑡, 𝜓(𝑦))), 𝑠(𝑦,min(𝑡, 𝜑(𝑥)))).

If 𝑅(𝑥, 𝑦, 𝑡) ∉ 𝐶 = 𝑋×𝐵∪𝐴×𝑌 , then 𝑠(𝑦,min(𝑡, 𝜑(𝑥))) ∉ 𝐵, 𝑟 (𝑦,min(𝑡, 𝜓(𝑦))) ∉ 𝐴,
so 𝜎(𝑦,min(𝑡, 𝜑(𝑥))) = 0, 𝜌(𝑥,min(𝑡, 𝜓(𝑦))) = 0. Hence min(𝑡, 𝜑(𝑥)) ≤ 𝜓(𝑦) and
min(𝑡, 𝜓(𝑦)) ≤ 𝜑(𝑥), i.e., 𝑡 ≤ min(𝜑(𝑥), 𝜓(𝑦)), and therefore 𝑃(𝑥, 𝑦, 𝑡) = 0. Hence
the formula

𝑅(𝑥, 𝑦, 𝑡) = (𝑅(𝑥, 𝑦, 𝑡), 𝑃(𝑥, 𝑦, 𝑡)), (𝑥, 𝑦, 𝑡) ∈ 𝑍 × 𝐼,
de�nes some map

𝑅 : 𝑍 × 𝐼 → 𝐶 = 𝑍 × 0 ∪ 𝐶 × 𝐼 .
At the same time, if (𝑥, 𝑦, 𝑡) ∈ 𝐶, i.e. either 𝑡 = 0, or 𝑦 ∈ 𝐵 (and, therefore,
𝜓(𝑦) = 0), or 𝑥 ∈ 𝐴 (and, therefore, 𝜓(𝑥) = 0), then 𝑃(𝑥, 𝑦, 𝑡) = 𝑡 and 𝑅(𝑥, 𝑦, 𝑡) =
(𝑟 (𝑥, 0), 𝑠(𝑦, 0)) = (𝑥, 𝑦), i.e. 𝑅(𝑥, 𝑦, 𝑡) = (𝑥, 𝑦, 𝑡). Therefore, the map 𝑅 is a
retraction, and therefore the pair (𝑍, 𝐶) is a co�bration. □

Corollary 1.21. For any closed co�bration (𝑋, 𝐴) and any 𝑛 > 0 the pair
𝑛︷                      ︸︸                      ︷

(𝑋, 𝐴) × · · · × (𝑋, 𝐴) is a co�bration.

Proof. Obvious induction. □

Corollary 1.22. For any closed co�bration (𝑋, 𝐴) and any topological space 𝑌
the pair (𝑋 × 𝑌, 𝐴 × 𝑌 ) is a closed co�bration.

Proof. This is a special case of Proposition 1.20, obtained when 𝐵 = ∅. However,
this corollary follows directly from the corollary of Proposition 1.15, since for
each retraction 𝑟 : 𝑋× 𝐼 → 𝐴 the map 𝑟×id : 𝑋× 𝐼×𝑌 → 𝐴×𝑌 will be a retraction
𝑋 × 𝐼 ×𝑌 = 𝑋 ×𝑌 × 𝐼 on the subspace 𝐴×𝑌 = (𝑋 ×𝑌 ×0) ∪ (𝐴×𝑌 × 𝐼) = �𝐴 × 𝑌 . □

It is clear that

Proposition 1.23. the composition of two co�brations is a co�bration, so in
particular if 𝑋 ⊃ 𝐴 ⊃ 𝐵 and pairs (𝑋, 𝐴) and (𝐴, 𝐵) are co�brations, then the
pair (𝑋, 𝐵) will also be a co�bration.

Applying this statement to the pairs (𝑋 × 𝑌, 𝑋 × 𝐵) and (𝑋 × 𝐵, 𝐴 × 𝐵) and
using Corollary 1.22, we will immediately get

Corollary 1.24. For any two closed co�brations (𝑋, 𝐴) and (𝑌, 𝐵), the pair
(𝑋 × 𝑌, 𝐴 × 𝐵) is also a closed co�bration.
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1.8 Fibrations

According to the general categorical principle of duality, for the concept of a
co�bration, there must be a dual concept resulting in �the reversal of all arrows�.

De�nition 1.25. A map 𝑝 : 𝐸 → 𝐵 is called a �bration (in the sense of Hure-

vicz) if for any space 𝑋, any homotopy 𝑓𝑡 : 𝑋 → 𝐵 and any map 𝑓 satisfying

the relation 𝑝 ◦ 𝑓 = 𝑓0, there is such a homotopy 𝑓 𝑡 : 𝑋 → 𝐸 that 𝑓 0 = 𝑓 and

𝑝 ◦ 𝑓 𝑡 = 𝑓𝑡 for any 𝑡 ∈ 𝐼.

𝑋 × 0
𝑓 0 //� _

��

𝐸

𝑝

��
𝑋 × 𝐼

𝑓
//

𝑓

<<

𝐵

Thus, the map 𝑝 : → 𝐵 is a �bration if, the initial map 𝑓0 : 𝑋 → 𝐵 of some
homotopy 𝑓𝑡 : 𝑋 → 𝐵 can be lifted to 𝐸 , it follows that on 𝐸 it is possible to lift
each map 𝑓𝑡 , and the lift 𝑓 𝑡 can be chosen so that they form a homotopy.

This requirement is called the axiom of covering homotopy (in short, the
axiom CH).

Clearly, the axiom of covering homotopy is represented by the diagramme

𝑋 × 0
𝑓 //

𝜎0

��

𝐸

𝑝

��
𝑋 × 𝐼

𝐹
//

𝐹

<<

𝐵

(1.26)

the dual of Diagramme (1.3).
In particular, we see that

Proposition 1.27. if the maps 𝑓 , 𝑔 : 𝑋 → 𝐵 are homotopic and 𝑓 can be lifted
to 𝐸, then 𝑔 can also be lifted to 𝐸, so that for �brations the property of map
𝑓 : 𝑋 → 𝐵 allowing a lift to 𝐸 depends only on its homotopy class [ 𝑓 ]

Thus, in the lifting problem (problem (0.5) of Lecture 0) we can also move
into the homotopy category.

This explains why in algebraic topology the lifting problem is considered
only for �brations. (However, as we will see in Lecture 3, this is not a serious
limitation.)

Lemma 1.28. If the map 𝑝 : → 𝐵 is a �bration, then for any path 𝑢 : 𝐼 → 𝐵

and any point 𝑒 ∈ 𝐸 such that 𝑝(𝑒) = 𝑢(0), there exists a path 𝑣 : 𝐼 → 𝐸 starting
at the point 𝑒 and the covering path 𝑢 (i.e. such that 𝑝 ◦ 𝑦 = 𝑢).

Proof. Let us de�ne a homotopy 𝑢𝑡 : 𝐼 → 𝐵 by the formula

𝑢𝑡 (𝑠) = 𝑢(𝑡𝑠), 𝑠, 𝑡 ∈ 𝐼 .
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Since 𝑢0 (𝑠) = 𝑢(0) = 𝑝(𝑒) for all 𝑠 ∈ 𝐼, then 𝑝 ◦ 0𝑒 = 𝑢0, where 0𝑒 : 𝑠 ↦→ 𝑒 � a
constant path at the point 𝑒. Therefore, there is a homotopy 𝑣𝑡 : 𝐼 → 𝐸 such
that 𝑝 ◦ 𝑣1 = 𝑢𝑡 for all 𝑡 ∈ 𝐼 (and 𝑣0 = 0𝑒). In particular, 𝑝 ◦ 𝑣1 = 𝑢1. Since
𝑣1 (0) = 𝑒 and 𝑢1 = 𝑢, this proves the lemma (with 𝑣 = 𝑣1). □

Corollary 1.29. For any �bration 𝑝 : 𝐸 → 𝐵 (with non-empty 𝐸), the set 𝑝(𝐸)
is the union of the components of the space 𝐵. In particular, if the space 𝐵 is
connected, then 𝑝 is an injective map.

Proof. Let 𝑏 ∈ 𝑝(𝐸), and let 𝑢 : 𝐼 → 𝐵 be an arbitrary path starting at 𝑏.
We need to prove that 𝑢(1) ∈ 𝑝(𝐸). Let 𝑝(𝑒) = 𝑏, and let 𝑣 : 𝐼 → 𝐵 be a
path covering the path 𝑢 and starting at 𝑒. Then 𝑝(𝑣(1)) = 𝑢(1) and hence
𝑢(1) ∈ 𝑝(𝐸). □

The last statement of this corollary is dual to the �rst statement of Lemma
1.4. The dualisation of the second statement of Lemma 1.4 (the question of
epimorphism of �brations) is of little interest, and we will not deal with it. One
can, for example, show that the �bration 𝐸 → 𝐵 will be an epimorphic map in
the case when the space 𝐵 is connected and locally connected, but discussing
whether this condition on 𝐵 can be considered dual to the condition of closure
of the subspace 𝑖𝐴 from Lemma 1.4 would lead us too far to the side. That some
conditions on 𝐵 are necessary is shown by an example of an identical map of a
set of rational numbers Q with the discrete topology to Q with the conventional
topology. While the map is not an epimorphism, as an easy check shows, it is a
�bration.

1.9 Pull-backs and induced �brations

Let 𝒜 be an arbitrary category, and let 𝑝𝐴 : 𝐴 → 𝐶 and 𝑝𝐵 : 𝐵 → 𝐶 are two
morphisms of this category with the same target domain. The cocone over the
pair (𝑝𝐴, 𝑝𝐵) is a pair (𝑞𝐴, 𝑞𝐵) of morphisms 𝑞𝐴 : 𝐷 → 𝐴 and 𝑞𝐵 : 𝐷 → 𝐵

satisfying the relation 𝑝𝐴 ◦ 𝑞𝐴 = 𝑝𝐵 ◦ 𝑞𝐵 i.e. such that the diagramme

𝐷
𝑞𝐴 //

𝑞𝐵

��

𝐴

𝑝𝐴

��
𝐵

𝑝𝐵
// 𝐶

(1.30)

commutes. The morphism of the cone (𝑞′
𝐴
: 𝐷

′ → 𝐴, 𝑞
′
𝐵
: 𝐷

′ → 𝐵) into the cone

(𝑞𝐴 : 𝐷 → 𝐴, 𝑞𝐵 : 𝐷 → 𝐵) is a morphism 𝜑 : 𝐷
′ → 𝐷 of category 𝒜, such that
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𝑞𝐴 ◦ 𝜑 = 𝑞
′

𝐴
and 𝑞𝐵 ◦ 𝜑 = 𝑞

′
𝐵
, i.e. such that there is a commutative diagramme

𝐷
′

𝜑

��

𝑞
′
𝐴

��

𝑞
′
𝐵

��
𝐴 𝐵

𝐷

𝑞𝐴

``

𝑞𝐵

>>

It is clear that all cocones (over a given pair (𝑝𝐴, 𝑝𝐵)) and all their morphisms
make up a category Cone←−−−−(𝑝𝐴, 𝑝𝐵). The terminal object of this category, i.e. such
a cone (𝑞𝐴 : 𝐷 → 𝐴, 𝑞𝐵 : 𝐷 → 𝐵) that for any other cone (𝑞′

𝐴
, 𝑞
′
𝐵
) over (𝑝𝐴, 𝑝𝐵)

in the category Cone←−−−−(𝑝𝐴, 𝑝𝐵) there is a single morphism (𝑞′
𝐴
, 𝑞
′
𝐵
) → (𝑝𝐴, 𝑝𝐵),

called the pull-back of the diagramme 𝐴
𝑝𝐴−−→ 𝐶

𝑝𝐵←−− 𝐵 or, admitting a certain
inaccuracy, pull-back objects 𝐴 and 𝐵 over object 𝐶. Sometimes a pull-back is
called the object 𝐷 itself. Diagramme (1.30), in which 𝐷 is an pull-back, is
called a universal (or co-Cartesian) square.

Since in any category a terminal object (when it exists) up to the canonical
isomorphism is de�ned in a unique way, the same is true for pull-back.

It is easy to see that

Proposition 1.31. in the category𝒯ℴ𝓅 the pull-back exists for any diagramme

𝐴
𝑝𝐴−−→ 𝐶

𝑝𝐵←−− 𝐵.

Proof. The space 𝐷 will be a subset of the direct product 𝐴 × 𝐵, consisting
of points (𝑎, 𝐵) ∈ 𝐴 × 𝐵 such that 𝑝𝐴(𝑎) = 𝑝𝐵 (𝑏), and the maps 𝑞𝐴 : 𝐷 → 𝐴

and 𝑞𝐵 : 𝐷 → 𝐵 are the constraints of the natural projections 𝐴 × 𝐵 → 𝐴 and
𝐴 × 𝐵 → 𝐵. Indeed, by the construction of 𝑝𝐴 ◦ 𝑞𝐴 = 𝑝𝐵 ◦ 𝑞𝐵 and for any cone
(𝑞′
𝐴
: 𝐷

′ → 𝐴, 𝑞
′
𝐵
: 𝐷

′
𝑡𝑜𝐵) formula 𝜑(𝑥) = (𝑞′

𝐴
(𝑥), 𝑞′

𝐵
(𝑥)), 𝑥 ∈ 𝐷 ′ , de�nes the

(obviously unique) map 𝜑 : 𝐷
′ → 𝐷, for which 𝑞

′

𝐴
= 𝑞𝐴 ◦ 𝜑 and 𝑞

′
𝐵
= 𝑞𝐵 ◦ 𝜑. □

In the case when 𝐴 ⊂ 𝐶 and 𝐵 ⊂ 𝐶, and the maps 𝑝𝐴 and 𝑝𝐵 are embeddings,
the pull-back 𝐷 is naturally identi�ed with the intersection of 𝐴 ∩ 𝐵 of the
subspaces 𝐴 and 𝐵.

With each lifting problem

𝐸

𝑝

��
𝑋

𝑓
//

??

𝐵

we will associate the pull-back diagramme

𝐸
𝑝
−→ 𝐵

𝑓
←− 𝑋.
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We will denote this pull-back with the symbol 𝐸 ∩ 𝑓 𝑋, and the projections
𝐸 ∩ 𝑓 𝑋 → 𝑋 and 𝐸 ∩ 𝑓 𝑋 → 𝐸 with the symbols 𝑝 𝑓 and 𝑓#. Thus, 𝐸 ∩ 𝑓 𝑋 is
a subspace of the direct product of 𝐸 × 𝑋 consisting of points (𝑒, 𝑥) for which
𝑝(𝑒) = 𝑓 (𝑥), and the maps 𝑝 𝑓 and 𝑓# act according to the formulae (𝑒, 𝑥) ↦→ 𝑥

and (𝑒, 𝑥) ↦→ 𝑒. Together with the maps 𝑓 and 𝑝 these maps make up a universal
square

𝐸 ∩ 𝑓 𝑋
𝑓# //

𝑝 𝑓

��

𝐸

𝑝

��
𝑋

𝑓
// 𝐵

The map 𝑝 𝑓 : 𝐸 ∩ 𝑓 𝑋 → 𝑋 is said to be induced by the map 𝑝 : 𝐸 → 𝐵 and the
map 𝑓 : 𝑋 → 𝐵.

Naturally, the map 𝑝 𝑓 has the properties dual to the properties of the co-
induced map 𝑖 𝑓 . Namely,

Proposition 1.32. the map 𝑓 : 𝑋 → 𝐸, covering the map 𝑓 : 𝑋 → 𝐵, exists if
and only if the induced map 𝑝 𝑓 : 𝐸 ∩ 𝑓 𝑋 → 𝑋 has a section.

Proof. Indeed, if there is a section 𝑠 : 𝑋 → 𝐸 ∩ 𝑓 𝑋 to the map 𝑝 𝑓 , then the

composition 𝑓 = 𝑓# ◦ 𝑠 will obviously satisfy the relation 𝑝 ◦ 𝑓 = 𝑓 . Conversely,
if the map 𝐹 exists, then the pair (id : 𝑋 → 𝑋, 𝑓 : 𝑋 → 𝐸) will be the cocone
over ( 𝑓 , 𝑝), and therefore there will be a morphism 𝑠 : 𝑋 → 𝐸 ∩ 𝑓 𝑋 of this cone
into the cone (𝑝 𝑓 , 𝑓#). In particular, there will be equality 𝑝 𝑓 ◦ 𝑠 = id, so that
the morphism 𝑠 will be section to the map 𝑝 𝑓 . □

Thus, the problem of lifting the map 𝑓 is equivalent to the problem of the
existence of the induced cross section 𝑝 𝑓 . At the same time, with regard to the
applicability of the method of algebraic topology, we lose nothing, because

Proposition 1.33. if the map 𝑝 : 𝐸 → 𝐵 is a �bration, then for any map
𝑓 : 𝑋 → 𝐵, the induced map 𝑝 𝑓 : 𝐸 ∩ 𝑓 𝑋 will also be a �bration.

Proof. For the proof, it is enough to consider the diagramme

𝐸 ∩ 𝑓 𝑍
𝑓# //

𝑝 𝑓

��

𝐸

𝑝

��

𝑍

dd ==

𝜎0

��
𝑍 × 𝐼

""

𝐺

yy

EE[[

𝑋
𝑓

// 𝐵

the dual diagramme of Diagramme (diag:01-5). □
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The map 𝑝 𝑓 and 𝑓# have certain properties of naturalness (functoriality).
For example, if 𝑓 = id, then the space 𝐸∩ 𝑓 𝑋 = 𝐸∩id𝐵 is naturally identi�ed with
𝐸 , and the maps 𝑓# and 𝑝 𝑓 are identi�ed with the maps id and 𝑝 respectively.
Similarly, for any map 𝑔 : 𝑌 → 𝑋 the space (𝐸 ∩ 𝑓 𝑋) ∩𝑔 𝑌 is naturally identi�ed
with the space 𝐸∩ 𝑓 ◦𝑔𝑌 , and the maps 𝑓#◦𝑔# and (𝑝 𝑓 )𝑔 with the maps ( 𝑓 ◦𝑔)#
and 𝑝 𝑓 ◦𝑔, respectively. Thus, modulo the above identi�cations

id# = id, 𝑝id = 𝑝,

( 𝑓 ◦ 𝑔)# = 𝑓# ◦ 𝑔#, 𝑝 𝑓 ◦𝑔 = (𝑝𝑔) 𝑓 .

A note on terminology. The construction of the space 𝐸 ∩ 𝑓 𝑋 can be con-
sidered as a generalisation of the construction of the direct product. Therefore,
in English the space (as well as the corresponding �bration 𝑝 𝑓 : 𝐸 ∩ 𝑓 𝑋 → 𝑋)
is called �bre product. Russian tracing paper �strati�ed product� is an indis-
putable solecism that does not adorn the Russian mathematical terminology.
The use of this term, which sometimes occurs in a general categorical situation,
is already completely meaningless and represents an obvious spoil of language.

It should also be cautioned against using the asymmetric term �induced map�
(induced morphism) outside the scope of the lifting problem and, similarly, the
term �co-induced morphism� outside the scope of the extension problem.

1.10 The mapping cocylinder and the axiom of
the covering path

We now dualise the notion of a mapping cylinder.

De�nition 1.34. Cocylinder Cocyl(𝑝) of the continuous map 𝑝 : 𝐸 → 𝐵 is the
pull-back 𝐵𝐼 ∩𝜔0

𝐸 of the diagramme

𝐵𝐼
𝜔0−−→ 𝐵

𝑝
←− 𝐸.

By de�nition, this pull-back is a subspace of the direct product of 𝐵𝐼 × 𝐸 ,
consisting of such pairs (𝑢, 𝑒), where 𝑢 : 𝐼 → 𝐵, and 𝑒 ∈ 𝐸 , that 𝑢(0) = 𝑝(𝑒). For
it there is a universal square

Cocyl(𝑝)
𝜔

#
0 //

𝑝𝜔0

��

𝐸

𝑝

��
𝐵𝐼

𝜔0

// 𝐵

(1.35)

where 𝑝𝜔0
(𝑢, 𝑒) = 𝑢 and 𝜔0# (𝑢, 𝑒) = 𝑒. In addition, the formula

𝑞(𝑣) = (𝑝 ◦ 𝑣, 𝑣(0)). 𝑣 ∈ 𝐸 𝐼 ,

de�nes, obviously, a continuous map

𝑞 : 𝐸 𝐼 → Cocyl(𝑝).
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Proposition 1.36. The map 𝑝 : 𝐸 → 𝐵 is a �baration if and only if to the map
𝑞 : 𝐸 𝐼 → Cocyl(𝑝) there is a section 𝑠 : Cocyl(𝑝) → 𝐸 𝐼 .

Before proving this Proposition we will state a few comments that have an
independent interest.

Setting Diagramme (1.26) without the dotted arrow is obviously equivalent
to setting a commutative diagramme

𝑋
𝑓 //

𝐹
��

𝐸

𝑝

��
𝐵𝐼

𝜔0

// 𝐵

(1.37)

in which the same letter 𝐹 is used to denote the map 𝑋 → 𝐵𝐼 , associated with
the homotopy 𝐹 : 𝑋 × 𝐼 → 𝐵. The commutativity of Diagramme (1.37) means

that the pair (𝐹, 𝑓 ) is an co-cone over the pair (𝜔0, 𝑝). The corresponding
morphism (𝐹, 𝑓 ) → (𝑝𝜔0

, 𝜔
#
0 ) is a map 𝜑 : : 𝑋 → Cocyl(𝑝), acting according

to the formula 𝑥 ↦→ ( 𝑓 𝑥, 𝐹𝑥).
On the other hand, having Diagramme (1.37), we can allocate a subspace in

the cylinder Cocyl( 𝑓 ) ⊂ 𝑋 × 𝐸 𝐼 the map 𝑓 consisting of such pairs (𝑥, 𝑣), 𝑥 ∈ 𝑋,
𝑣 : 𝐼 → 𝐸, 𝑓 (𝑥) = ∗𝑣(0), that 𝐹 (𝑥) = 𝑝 ◦ 𝑣.

We will denote this subspace by the symbol Cocyl(𝐹, 𝑓 ) and we will call
it the cocylinder of the pair (𝐹, 𝑓 ). We will denote its projection (𝑥, 𝑣) ↦→ 𝑥

onto the space 𝑋 by the symbol 𝑞𝑋. As the immediate checking whether a
commutative diagramme takes place

Cocyl(𝐹, 𝑓 ) //

𝑞𝑋

��

𝐸 𝑖

𝑞

��
𝑋

𝜑
// Cocyl(𝑝)

the upper horizontal arrow of which is a projection of (𝑥, 𝑣) ↦→ 𝑣.
At the same time, it is easy to see that

Proposition 1.38. for Diagramme (1.37) there is a covering homotopy 𝐹 : 𝑋 ×
𝐼 → 𝐸 if and only if the projection 𝑞𝑋 : Cocyl(𝐹, 𝑓 ) → 𝑋 has the section
𝑠𝑋 : 𝑋 → Cocyl(𝐹, 𝑓 ).

Proof. Indeed, the formula

𝑠𝑋 = (𝑥, 𝐹𝑥), 𝑥 ∈ 𝑋,

establishes a bijective correspondence between sections 𝑠𝑋 and homotopies 𝐹
interpreted as maps 𝑋 → 𝐸 𝐼 . □

Now Proposition 1.36 becomes almost obvious.
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Proof. (of Proposition 1.36) If a section 𝑠 : Cocyl(𝑝) → 𝐸 𝐼 exists, then for any
diagramme (1.37) the formula

𝑠𝑋 (𝑥) = (𝑥, (𝑠 ◦ 𝜑) (𝑥)), 𝑥 ∈ 𝑋,

de�nes some section of 𝑠𝑋 : 𝑋 → Cocyl(𝐹, 𝑓 ) for the map 𝑞𝑋. Therefore, for
Diagramme (1.37) there is a covering homotopy 𝐹 : 𝑋 × 𝐼 → 𝐸 . Consequently,
the map 𝑝 : 𝐸 → 𝐵 is a �bration.

Conversely, let the map 𝑝 : 𝐸 → 𝐵 is a �bration and, then, for any diagramme
(1.37), the corresponding map 𝑞𝑋 has a section 𝑠𝑋. In particular, this will be

the case for Diagramme (1.35) for 𝑋 = Cocyl(𝑝) and 𝐹 = 𝑝𝜔0
, 𝑓 = 𝜔#

0 . But it
is clear that the projection

Cocyl(𝑝𝜔0
, 𝜔

#
0 ) → 𝐸 𝐼 , ((𝑒, 𝑢), 𝑣) ↦→ 𝑣,

is a homeomorphism (for 𝑒 = 𝑣(0) and 𝑢 = 𝑝 ◦ 𝑣) and with this homeomorphism

to the sections Cocyl(𝑝) → Cocyl(𝑝𝜔0
, 𝜔

#
0 ), projections ((𝑒, 𝑢), 𝑣) ↦→ (𝑒, 𝑢)

correspond to sections Cocyl(𝑝) → 𝐸 𝐼 of the map 𝑞 : 𝑣 ↦→ (𝑣(0), 𝑝 ◦ 𝑣). □

The statement that the map 𝑠 is a cross section map of 𝑞, means that 𝑠(𝑒, 𝑢)
is a path in 𝐸 , covering this path 𝑢 in 𝐵 and starting at this point 𝑒 ∈ 𝐸 ,
projecting to the beginning of the path 𝑢. The fact of the existence of such a
path is the content of Lemma 1.19. What is new is the statement that, �rstly,
this choice can be made in a continuous (by 𝑢 and 𝑒) way, and secondly, that
the possibility of such a choice is not only necessary, but also su�cient for the
map 𝑝 to be a �bration.

The requirement for the existence of a section 𝑠 is usually called the axiom
of the covering path (in short, the axiom CP).

1.11 Fibrations of mapping spaces

For an arbitrary space 𝑌 , each continuous map the map 𝐼 : 𝐴 → 𝑋 determines,
by the formula

𝑖𝑌 : ( 𝑓 ) = 𝑓 ◦ 𝑖, 𝑓 : 𝑋 → 𝑌

a map
𝑖𝑌 : 𝒯ℴ𝓅(𝑋,𝑌 ) → 𝒯ℴ𝓅(𝐴,𝑌 ).

Since the map 𝑖 is continuous, then for any compact set 𝐾 ⊂ 𝐴 the set 𝑖𝐾 ⊂ 𝑋
is also compact. Therefore, in 𝒯ℴ𝓅(𝑋,𝑌 ) for any open the set 𝑈 ⊂ 𝑌 the set
𝒲(𝑖𝐾,𝑈) is de�ned, which is obviously a preimage of the set 𝒲(𝐾,𝑈) by the
map the 𝑖𝑌 . This proves that

Proposition 1.39. in the compact open topology the map 𝑖𝑌 is continuous, i.e.
it is a map 𝑖𝑌 : 𝑌

𝑋 → 𝑌 𝐴 of topological spaces.

Proof. If 𝑖 : 𝐴 → 𝑋 is an embedding, then 𝑖𝑌 𝑓 is nothing other than the re-
striction of the map 𝑓 : 𝑋 → 𝐴 to 𝐴. Therefore, in this case we will call 𝑖𝑌 a
restriction map. □
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Proposition 1.40. If the space 𝑋 is locally compact and Hausdor�, its sub-
space 𝐴 is closed and the pair (𝑋, 𝐴) is a co�bration, then for any space 𝑌 the
constraint map

𝑖𝑌 : 𝑌
𝑋 → 𝑌 𝐴

is a �bration.

Proof. It should be shown that for any diagramme of the form

𝑍
𝑓 //

𝜎0

��

𝑌𝑋

𝑖𝑌
��

𝑍 × 𝐼
𝐹
//

𝐹

<<

𝑌 𝐴

(1.41)

there is a closing map 𝐹. But since the space 𝑋 (and, of course, by applying
closure, the subspace 𝐴) is locally compact and Hausdor�, the exponential law
applies to the horizontal map of this diagramme, i.e. these maps are associated
with some maps 𝑔 : 𝑍 × 𝑋 → 𝑌 and 𝐺 : 𝑍 × 𝐴 → 𝑌 𝐼 (we allow ourselves to
rearrange multipliers in direct products in a convenient way for us), which are,
obviously, the diagramme

𝑍 × 𝐴 id ×𝑖 //

𝐺
��

𝑍 × 𝑋

𝑔

��
𝑌 𝐼

𝜔0

//

𝐺

::

𝑌

Since in the terms of the Proposition 1.40 thee pair (𝑍×𝑋, 𝑍×𝐴) is a co�bration
(see Corollary 1.22 of Proposition 1.20), for the last diagramme there is a closing

map 𝐺. The associated map is 𝑍 × 𝐼 → 𝑌𝑋 and will obviously be the map 𝐹

closing Diagramme (1.41). □

Example 1.42. For 𝑋 = 𝐼 and 𝐴 = {1}, the set 𝐴 = (𝐼 × 0) ∪ (1 × 𝐼), which is
the union of the lower and right sides of the square 𝑋 × 𝐼 = 𝐼 × 𝐼, is obviously a
retraction of this square (the retracting map is for example, a projection centred
at (0, 2); see �g. 1.11.1). Since in this case the space 𝑌 𝐴 is naturally identi�ed
with the space 𝑌 , and since the the constraint map 𝑖𝑌 passes in this case into
the map 𝜔1 : 𝑌

𝐼 → 𝑌 , we get, by applying Proposition 1.40, (denoting 𝑌 by 𝑋)
that for each space 𝑋

Proposition 1.43. the map

𝜔1 : 𝑋
𝐼 → 𝑋

is a �bration.

Note now that
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Figure 1.11.1:

Proposition 1.44. for any �bration 𝑝 : 𝐸 → 𝐵 and any subspace 𝐴 ⊂ 𝐵, the
map

𝑝𝐴 = 𝑝 |𝑝−1 (𝐴) : 𝑝−1 (𝐴) → 𝐴

is a �bration,

Proof. since this map is naturally identi�ed with the �bration 𝑝𝑖, by the induced
�bration 𝑝 by the embedding map 𝑖 : 𝐴→ 𝐵. □

To apply this general remark to the bundle 𝜔1, for any subspace 𝐴 ⊂ 𝑋,
we will introduce the subspace 𝑋 𝐼 (𝐴) of the space 𝑋 𝐼 , consisting of all paths
ending in 𝐴. This subspace exactly coincides with the preimage 𝜔−11 (𝐴) of the
subspace 𝐴 by the map 𝜔1. Denoting the map constraint 𝜔1 by 𝑋 𝐼 (𝐴) again
through 𝜔1, we get, therefore, that

Proposition 1.45. for any pair (𝑋, 𝐴) the map

𝜔1 : 𝑋
𝐼 (𝐴) → 𝐴

is a �bration.

The last statement is useful to generalise. To do this, returning again to the
situation to which Proposition 1.40 refers, suppose that we are given arbitrary
families {𝐴𝜇} and {𝑌𝜇} subspaces of spaces 𝐴 and 𝑌 with indices from the
same set 𝑀. Let [𝑌 𝐴]𝑚 is a subspace of the space 𝑌 𝐴 consisting of such maps
𝑓 : 𝐴 → 𝑌 that 𝑓 (𝐴𝜇) ⊂ 𝑌𝜇 for any 𝜇 ∈ 𝑀, [𝑌 𝐴]𝑀 is its preimage of the
restriction map 𝑖𝑌 (lying in the space 𝑌𝑋). Denoting the restriction of the map
𝑖𝑌 to [𝑌𝑋]𝑀 again by 𝑖𝑌 , we get that

Proposition 1.46. in the conditions of Proposition 1.40 for any families {𝐴𝜇}
and {𝑌𝜇} the map

𝑖𝑌 : [𝑌𝑋]𝑀 → [𝑌 𝐴]𝑀
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is a �bration.

Example 1.47. Let 𝑋 = 𝐼 and 𝐴 = {0, 1}. It is easy to see that in this case the
conditions of Proposition 1.40 are met (the proof that the pair (𝐼, {0, 1}) is a
co�bration, i.e. that the square 𝐼 × 𝐼 is retracted into its three sides 𝐼 × 0 ∪
{0, 1} × 𝐼 = 𝐼 × 0 ∪ 0 × 𝐼 ∪ 1 × 𝐼 is illustrated in Fig. 1.11.2). Assuming that

Figure 1.11.2:

the set of indices 𝑀 consists of only one element 𝜇, and assuming 𝐴𝜇 = {0},
𝑌𝜇 = {𝑦0} where 𝑦0 is some point of the space 𝑌 , we can obviously identify the
space [𝑌 𝐴]𝑀 with the component of the space 𝑌 containing the point 𝑦0, and
the space [𝑌𝑋]𝑀 with the subspace of all paths of the space 𝑌 starting at the
point 𝑦0. Replacing again 𝑌 by 𝑋 (and 𝑦0 by 𝑥0), and denoting with the symbol
𝑃(𝑋, 𝑥0) the set of all paths of the space 𝑋 starting at the point 𝑥0 ∈ 𝑋, we get,

Proposition 1.48. for any connected space 𝑋 and any of its points 𝑥0, the map

𝜔1 : 𝑃(𝑋, 𝑥0)− → 𝑋, 𝑢 ↦→ 𝑢(1),

is a �bration.

Proof. For each diagramme of the form

𝐶
𝑓 //

𝜔0

��

𝑃(𝑋, 𝑥0)
𝜔1

��
𝐶 × 𝐼

𝐹
//

𝐹

99

𝑋

the covering homotopy 𝐹 can be de�ned by the formula

𝐹 (𝑥, 𝑠) (𝑡) =
{
𝑓 (𝑥)

(
2𝑡
2−𝑠

)
, if 0 ≤ 𝑡 ≤ 2−𝑠

2 ,

𝑓 (𝑥, 𝑠 + 2𝑡 − 2) if 2−𝑠
2 ≤ 𝑡 ≤ 1.
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□

This �bration is called the Serre �bration of paths spaces.

In a more general way, we can consider the space 𝑃(𝑋, 𝐴) consisting of paths
beginning in 𝐴 ⊂ 𝑋, or its subspace 𝑃(𝑋, 𝐴, 𝐵), consisting of paths ending in
𝐵 ⊂ 𝑋. In both cases,

Proposition 1.49. the maps

𝜔1 : 𝑃(𝑋, 𝐴) → 𝑋, 𝜔1 : 𝑃(𝑋, 𝐴, 𝐵) → 𝐵

are �brations.

Note in conclusion that the conditions of Proposition 1.40 not only su�cient,
but also necessary. More precisely,

Proposition 1.50. if the space 𝑋 is locally compact and Hausdor�, the pair
(𝑋, 𝐴) is closed and for each space 𝑌 the restriction map 𝑌𝑋 → 𝑌 𝐴 is a �bration,
then the pair (𝑋, 𝐴) is a co�bration.

However, in practice, this fact does not have to be used, therefore we will
not prove it.





Appendix

1.A The axiom of weak extension of covering ho-
motopy

By de�nition, the map 𝑝 : 𝐸 → 𝐵 is a �bration if it satis�es the axiom of covering
homotopy, which is expressed by the diagramme

𝑋
𝑓 //

𝜎0

��

𝐸

𝑃

��
𝑋 × 𝐼

𝐹
//

𝐹

<<

𝐵

(1.51)

Now let 𝐴 ⊂ 𝑋, and let the covering homotopy 𝐹 already be built on 𝐴×𝐼 ⊂ 𝑋×𝐼.
Is it possible to extend it to a covering homotopy on all 𝑋 × 𝐼?

Together with this map 𝑓 : 𝑋 → 𝐸 (considered as a map 𝑋 × 0 → 𝐸), this

homotopy 𝐴× 𝐼 → 𝐸 constitutes some map 𝐴→ 𝐸 , where 𝐴 = (𝑋 × 0) ∪ (𝐴× 𝐼),
which we will still denote by 𝑓 and which closes the commutative diagramme

𝐴 = (𝑋 × 0) ∪ (𝐴 × 𝐼)
𝑓 //

𝜎̃0

��

𝐸

𝑃

��
𝑋 × 𝐼

𝐹
//

𝐹

77

𝐵

(1.52)

where 𝜎̃0 is the inclusion. Our question now boils down to the following question:
is there a continuous map 𝐹 : 𝑋 × 𝐼 → 𝐸 , indicated in this diagramme by the
dotted arrow?

Of course, here it is assumed that the map 𝑓 : 𝐴 → 𝐸 is continuous (a
su�cient condition for which is the closeness of the subspace 𝐴).

Surprisingly, the requirements to map 𝑝 : 𝐸 → 𝐵 be a �bration, the answer
to the question about the existence of a homotopy 𝐹 turned out to be a�rmative
for any 𝑓 and 𝐹 with not overly restrictive conditions on the pair (𝑋, 𝐴). For
example, as we will show in the next lecture, it is enough for a pair of (𝑋, 𝐴) be
a closed co�bration.

43
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Now we will consider su�cient conditions of a somewhat similar plan con-
necting the existence of a homotopy 𝐹 with the possibility of homotopy extension
𝐴 × 𝐼 → 𝐸 for at least some neighbourhood of the subspace 𝐴.

A subset 𝑈 of a space 𝑋 is called a functional neighbourhood (or rim) of a
subset 𝐴 if 𝐴 ⊂ 𝑈 and there exists such a continuous function 𝜑 : 𝑋 → 𝐼 that
𝜑 |𝐴 = 0, 𝜑|𝑋\𝑈 = 1. Every functional neighbourhood is a (not necessarily open)

neighbourhood of the closure 𝐴 of the set 𝐴, and if the space 𝑋 is normal, then
by applying Urysohn's lemma (see Lecture 0 Section 0.A) any neighbourhood

𝑈 of the set 𝐴 is a functional neighbourhood of the set 𝐴.
We emphasise that we do not require the functional neighbourhood to be

an open set. Therefore, any subset containing a functional neighbourhood 𝑈 of
the set 𝐴 will also be a functional neighbourhood of the set 𝐴.

Note that

Proposition 1.53. for any continuous function 𝜑 : 𝑋 → 𝐼 and each 𝑡0 ∈ 𝐼,
𝑡0 ≠ 0, the set 𝑉 = 𝜑−1 ( [0, 𝑡0]) ⊂ 𝑈 is a functional neighbourhood of the set
𝐴 = 𝜑−1 (0).

Proof. Indeed, the function

𝜓(𝑥) = min

(
1,
𝜑(𝑥)
𝑡0

)
, 𝑥 ∈ 𝑋,

is continuous and has the property that 𝜓 = 0 by 𝐴 and 𝜓 =1 outside of 𝑉 □

Since the functional neighbourhood 𝑉 is closed, it follows, in particular, that
any functional neighbourhood 𝑈 contains a closed functional neighbourhood.

If for the subspace 𝐴 from Diagramme (1.52) we are given some of its func-
tional neighbourhood 𝑈, then we can consider the diagramme

𝐴
′ 𝑓

′

//

𝜎̃
′
0

��

𝐸

𝑝

��
𝑈 × 𝐼

𝐹
′
//

𝐹
′ ==

𝐵

(1.54)

where 𝐴
′
= (𝑈 × 0) ∪ (𝐴 × 𝐼), 𝑓

′
= 𝑓 |

𝐴
′ , 𝜎̃

′
0 = 𝜎̃0 |𝐴′ , and 𝐹

′
= 𝐹 |𝑈×𝐼 . The map

𝐹
′
of this diagramme is nothing more than a covering homotopy, which is an

extension of the homotopy 𝐴 × 𝐼 → 𝐸 over 𝑈.

De�nition 1.55. We will say that the map 𝑝 : 𝐸 → 𝐵 satis�es the axiom
of weak covering homotopy extension (in short, the axiom WCHE), if a map 𝐹
exists for each diagramme (1.52), for which it is possible to �nd such a functional
area 𝑈 of the subspace 𝐴 that for the corresponding Diagramme (1.54) there is

a map 𝐹
′
.

It is clear that the functional neighbourhood 𝑈 we can always assume closed
here.
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Proposition 1.56. A map 𝑝 : 𝐸 → 𝐵 if satis�es the axiom of a weak extension
of the covering homotopy if and only if it satis�es the axiom of the covering
homotopy, i.e. it is a �bration.

Proof. Since with 𝐴 = ∅ the axiom WCHE passes into the axiom of CH (it is
enough to put 𝑈 = ∅), only the statement needs proof that any �bration satis�es
the axiom WCHE. In other words, we need to show that for Diagramme (1.52)
there exists a homotopy 𝐹 if the map 𝑝 : 𝐸 → 𝐵 is a �bration and there is such a
closed functional neighbourhood 𝑈 of the subspace 𝐴 that for the corresponding

Diagramme (1.54) there exists a homotopy 𝐹
′
.

Let 𝜑 : 𝑋 → 𝐼 be such a continuous function that 𝜑 = 0 on 𝐴 and 𝜑 = 1
outside 𝑈, and let

𝐺 (𝑥, 𝑡) = 𝐹 (𝑥,min(1, 1 − 𝜑(𝑥) + 𝑡)), (𝑥, 𝑡) ∈ 𝑋 × 𝐼

𝑔(𝑥) =
{
𝑓 (𝑥), if 𝜛(𝑥) = 1

𝐹
′
(𝑥, 1 − 𝜑(𝑥)), if 𝑥 ∈ 𝑈

(the map 𝑔 : 𝑋 → 𝐸 is well-de�ned; it is continuous since the sets 𝑈 and 𝜑−1 (1)
are closed). Automatic veri�cation shows that the diagramme

𝑋
𝑔 //

𝜎0

��

𝐸

𝑝

��
𝑋 × 𝐼

𝐺
//

𝐺

<<

𝐵

commutes. Since the map 𝑝 : 𝐸 → 𝐵 is by condition a �bration, there is a
closing homotopy 𝐺 : 𝑋 × 𝐼 → 𝐸 for this diagramme. Then the formula

𝐹 (𝑥, 𝑡) =
{
𝐹
′
(𝑥, 𝑡), if 𝑥 ∈ 𝑈, 0 ≤ 𝑡 ≤ 1 − 𝜑(𝑥),

𝐺 (𝑥, 𝑡 − 1 + 𝜑), if 1 + 𝜑(𝑥) ≤ 𝑡 ≤ 1,

will well determine the homotopy 𝐹 : 𝑋× →, that closes Diagramme (1.52). □

1.B Weak maps

Let 𝐴 ⊂ 𝑈 ⊂ 𝑋. A section 𝑠 : 𝐴 → 𝐸 to the map 𝑔 : 𝐸 → 𝑋 over 𝐴 is called
continued on 𝑈 if there exists a section 𝑠 : 𝑈 → 𝐸 map 𝑔 over 𝑈 such that
𝑠 |𝐴 = 𝑠.

By analogy with the axiom WCHE, we will say that the map 𝑔 : 𝐸 → 𝑋

satis�es the axiom of weak section extension (in short, the axiom WSE) if for
any subspace 𝐴 ⊂ 𝑋 each section 𝑠 : 𝐴 → 𝐸 of the map 𝑔 over 𝐴, continued on
some functional neighbourhood 𝑈 of the subspace 𝐴, is continued on all 𝑋.

Maps satisfying the axiom WSE, we will call weak maps for brevity.
Applying the axiom WSE to 𝐴 = ∅, we get, in particular, that
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Proposition 1.57. any weak map has a cross section.

By applying Proposition 1.36, it follows that

Proposition 1.58. if for the map 𝑝 : 𝐸 → 𝑇𝑜 the natural map

𝑔 : 𝐸 𝐼 → Cocyl(𝑝), 𝑣 ↦→ (𝑝 ◦ 𝑣, 𝑣(0))

is weak, then the map 𝑝 : 𝐸 →B is a �bration.

The converse is also true, i.e.

Proposition 1.59. for any �bration 𝑝 : 𝐸 → 𝐵, the map 𝑞 : 𝐸 𝐼 → Cocyl(𝑝) is
weak.

Proof. Indeed, for any subset of 𝐴 ⊂ Cocyl(𝑝) there is a commutative dia-
gramme

𝐴
𝜔∗0 |𝐴 //

𝜎0

��

𝐸

𝑝

��
𝐴 × 𝐼

𝐹
//

𝐹

<<

𝐵

the map 𝐹 which maps an arbitrary point ((𝑢, 𝑒), 𝑡) of the product 𝐴 × 𝐼 where
𝑡 ∈ 𝐼, 𝑢 ∈ 𝐵𝐼 , 𝑒 ∈ 𝐸 and 𝑢(0) = 0, to the point 𝑢(𝑡) ∈ 𝐵.

In this case, the plugging map 𝐹 : 𝐴 × 𝐼 → 𝐸 , considered by applying the
exponential law,as a map 𝐴 → 𝐸 𝐼 , will be nothing more than a section of the
map 𝑞 over 𝐴. Therefore the axiom WSE for the map 𝑞 is a consequence of the
axiom WCHE (See 1.55.) for the map 𝑝. □

This explains our interest in weak maps. The theory of these maps was
constructed by Dold. We will now present its new results.

1.C Two lemmas about weak maps

Lemma 1.60. For any weak map 𝑞 : 𝐸 → 𝑋 and any open set 𝑈 ⊂ 𝑋, the
complement of which is functionally distinguished, the map

𝑞𝑈 = 𝑞 |𝑞−1 (𝑈) : 𝑞−1 (𝑈) → 𝑈

is also weak.

Caveat : the proof is rather involved.

Proof. Let 𝐴 ⊂ 𝑈, and let 𝑠 be a section of the map 𝑞𝑈 over 𝐴 that, there exists
a continuous function 𝜑 : 𝑈 → 𝐼, an open set 𝑉 ⊂ 𝑈 and a section 𝑠 : 𝑉 → 𝐸

which maps 𝑞𝑈 over 𝑉 such that 𝜑 = 0 on 𝐴, 𝜑 = 1 outside 𝑈 and 𝑠 |𝐴 = 𝑠. We
need to prove that there exists a section 𝑠∗ of the map 𝑞𝑈 on all 𝑈 such that
𝑠∗ |𝐴 = 𝑠. At the same time, without loss of generality, we can obviously assume
that 𝐴 = 𝜑−1 (0) and 𝑉 = 𝑈 \ 𝜑−1 (1).
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By condition there is a continuous function 𝜔 : 𝑋 → 𝐼 such that 𝑈 = 𝑋 \
𝜔−1 (1). For any 𝑛 > 2 we put

𝑊𝑛 = 𝑈𝑛+1 ∩𝑉𝑛 where

𝑈𝑛 = 𝑋 \ 𝜔−1
( [
𝑛 − 1
𝑛

, 1

] )
, 𝑉𝑛 = 𝑈 \ 𝜑−1

( [
1

𝑛
, 1

] )
.

It is clear that 𝑈𝑛 ⊂ 𝑈𝑛+1, 𝑈𝑛 ⊂ 𝑈 and 𝑊𝑛 ⊂ 𝑈. Therefore, in particular, for
each 𝑛 ≥ 2, the section 𝑠 is de�ned on the 𝑊𝑛.

It turns out that for any 𝑛 ≥ 2 there exists a section 𝑠𝑛 : 𝑋 → 𝐸 of the map
𝑞 such that:

a) if 𝑥 ∈ 𝑈𝑛, then 𝑠𝑛+1 (𝑥) = 𝑠𝑛 (𝑥);

b) if 𝑥 ∈ 𝑊𝑛, then 𝑠𝑛 (𝑥) = 𝑠(𝑥).

Indeed; a direct check shows that the formulae

𝜓(𝑥) =
{
min(1,max(0, 1 − 6(1 − 𝜑(𝑥)) (1 − 𝜔(𝑥))), if 𝑥 ∈ 𝑈, i. e. 0 ≤ 𝜔(𝑥) ≤ 1,

1, if 𝑥 ∉ 𝑈, i. e. 𝜔(𝑥) = 1,

de�nes a continuous function 𝜓 : 𝑋 → 𝐼 such that 𝑋 \ 𝜓−1 (1) = 𝑈 \ 𝜑−1 (1) = 𝑉
and 𝑊2 ⊂ 𝜓−1 (0). Therefore, an open (not only in 𝑈, but also in 𝑋) set 𝑉 is, in
𝑋, a functional neighbourhood of the set 𝑊2. Therefore due to the weakness of
the map 𝑞, there is a section 𝑠2, coinciding on 𝑊2 with the section 𝑠. Thus, the
existence of the section 𝑠𝑛 for 𝑛 = 2 is fully proved (note that the condition a)
is meaningless for 𝑛 = 2).

Reasoning by induction, let us now assume that for some 𝑛 ≥ 2 the section
𝑠𝑛 satisfying the conditions a) and b) has already been constructed. It is easy
to see that there are numerical functions 𝛼𝑛, 𝛽𝑛 : 𝐼 → 𝐼 such that

𝑛 − 1
𝑛
≤𝛼𝑛 (𝑡) < 𝛽𝑛 < 1 for every 𝑡 ∈ 𝐼,

𝛽𝑛 (𝑡) ≤
𝑛

𝑛 + 1 , if 𝑡 ≥ 1

𝑛
,

𝛼𝑛 (𝑡) ≥
𝑛 + 1
𝑛 + 2 , if 𝑡 ≤ 1

𝑛 + 1 .

For example, you can put

𝛼𝑛 (𝑡) =


𝑛+1
𝑛+2 if 0 ≤ 𝑡 ≤ 1

𝑛+1 ,
𝑛+3−2(𝑛+1)𝑡

𝑛+2 if 1
𝑛+1 ≤ 𝑡 ≤

1
𝑛
,

𝑛−1
𝑛

if 1
𝑛
≤ 𝑡 ≤ 1,

𝛽𝑛 (𝑡) =


𝑛+2
𝑛+3 if 0 ≤ 𝑡 ≤ 1

𝑛+1 ,
𝑛2+5𝑛+2−2(𝑛+1)𝑡
(𝑛+1) (𝑛+3) if 1

𝑛+1 ≤ 𝑡 ≤
1
𝑛
,

𝑛
𝑛+1 if 1

𝑛
≤ 𝑡 ≤ 1,
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Let 𝑇𝑛 be a subset of the set 𝑈 consisting of points 𝑥 ∈ 𝑋 for which 𝜔(𝑥) <
𝛽𝑛 (𝜑(𝑥)). By condition, if 𝜑(𝑥) ≥ 1

𝑛
, then 𝛽𝑛 (𝜑(𝑥)) ≤ 𝑛

𝑛+1 , and therefore if, in
addition, 𝑥 ∈ 𝑇𝑛, then 𝜔(𝑥) < 𝑛

𝑛+1 , i.e. 𝑥 ∈ 𝑈𝑛+1. This proves that 𝑇𝑛 ⊂ 𝑈𝑛+1∪𝑉𝑛.
Since 𝑈𝑛 ∩𝑉𝑛 = 𝑊𝑛 and 𝑠𝑛 = 𝑠 on 𝑊𝑛, it follows that the formula

𝑡𝑛 (𝑥) =
{
𝑠𝑛 (𝑥), if 𝑥 ∈ 𝑈𝑛+1, i. e. 𝜔(𝑥) < 𝑛

𝑛+1 ,

𝑠(𝑥), if 𝑥 ∈ 𝑉𝑛, i. e. 𝜑(𝑥) < 1
𝑛

On the other hand, the formula

𝜑𝑛 (𝑥) =


0, if 𝜔(𝑥) ≤ 𝛼𝑛 (𝜑(𝑥)),
𝛼𝑛 (𝜑 (𝑥 ) )−𝜔 (𝑥 )

𝛼𝑛 (𝜑 (𝑥 ) )−𝛽𝑛 (𝜑 (𝑥 ) ) , if 𝛼𝑛 (𝜑(𝑥)) ≤ 𝜔(𝑥) ≤ 𝛽𝑛 (𝜑(𝑥)),
1, if 𝛽𝑛 (𝜑(𝑥)) ≤ 𝜔(𝑥) or 𝜔(𝑥) = 1 i. e. 𝑥 ∉ 𝑈

de�nes a continuous function 𝜑𝑛 : 𝑋 → 𝐼 such that 𝜑𝑛 = 1 outside 𝑇𝑛 and 𝜑𝑛 = 0
on the set 𝑋𝑛 of all points 𝑥 ∈ 𝑈 for which 𝜔(𝑥) < 𝛼𝑛 (𝜑(𝑥)). Therefore, 𝑇𝑛 is a
functional neighbourhood of the set 𝑋𝑛 in 𝑋, and since the section 𝑡𝑛 is de�ned
on 𝑇𝑛, then due to the weakness of the map 𝑞, there is a section 𝑠𝑛+1 : 𝑋 → 𝐸 ,
coinciding with the section 𝑡𝑛 on 𝑋𝑛.

If 𝑥 ∈ 𝑈𝑛, i.e. 𝜔(𝑥) < 𝑛−1
𝑛
, then 𝜔(𝑥) < 𝛼𝑛 (𝜑(𝑥)), and this means 𝑥 ∈ 𝑋𝑛

Moreover, if 𝑥 ∈ 𝑈𝑛+1, then 𝑠𝑛+1 (𝑥) = 𝑡𝑛 (𝑥) = 𝑠𝑛 (𝑥). Similarly, if 𝑥 ∈ 𝑊𝑛+1 and
thus 𝜑(𝑥) < 1

𝑛+1 , 𝜔(𝑥) <
𝑛+1
𝑛+2 , then 𝜔(𝑥) < 𝛼𝑛 (𝜑(𝑥)), i.e., 𝑥 ∈ 𝑋𝑛. And since in

addition, 𝑥 ∈ 𝑉𝑛, then 𝑠𝑛+1 (𝑥) = 𝑡𝑛 (𝑥) = 𝑠(𝑥).
Thus, the existence of sections of 𝑠𝑛 is proved for 𝑛 ≥ 2.
It is clear that

∪∞𝑛=2𝑈𝑛 = 𝑈.

Therefore, by applying condition a), the formula

𝑠∗ (𝑥) = 𝑠𝑛 (𝑥), if 𝑥 ∈ 𝑈𝑛,

well de�nes on 𝑈 a certain section 𝑠∗ : 𝑈 → 𝐸 of the map 𝑞 (or, equivalently,
the map 𝑞𝑈). In addition, since𝐴 ⊂ 𝑉𝑛 for any 𝑛 ≥ 2, for each point 𝑥 ∈ 𝐴, there
exists an 𝑛 such that 𝑥 ∈ 𝑈𝑛, and therefore

𝑠∗ (𝑥) = 𝑠𝑛 (𝑥) = 𝑠(𝑥) = 𝑠(𝑥), 𝑥 ∈ 𝐴.

Therefore 𝑠∗ |𝐴 = 𝑠. □

By applying Lemma 1.60, if the map 𝑞 : 𝐸 → 𝑋 is weak, then for any open
cover of {𝑈𝛼} of the space 𝑋 all the maps 𝑞𝛼 = 𝑞𝑈𝛼 : 𝑞

−1 (𝑈𝛼) → 𝑈𝛼 are also
weak. It turns out that under very weak general methodological conditions for
covering {𝑈𝛼}, the converse is also true, i.e. the map 𝑞 is weak if all the map
𝑞𝛼 are weak.

Let 𝑋 be an arbitrary topological space.
A family {𝜑𝛼} of continuous functions 𝜑𝛼 : 𝑋 → 𝐼 is called locally �nite if

for any point 𝑥 ∈ 𝑋 there exists a neighbourhood 𝑈 ⊂ 𝑋, in which only a �nite
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number of functions 𝜑𝛼 are nonzero. A locally �nite family of functions {𝜑𝛼} is
called a partition of unity if for any point 𝑥 ∈ 𝑋 the equality∑︁

𝛼

𝜑𝛼 (𝑥) = 1

holds (note that, due to the condition of local �niteness, this sum has a de�nite
meaning). A partition of the unity {𝜑𝛼} is called subordinate to the open cover
}𝑈𝛼} (with the same set of indices) if 𝜑𝛼 = 0 outside 𝑈𝛼 for any 𝛼. (Note that
there is another, more restrictive de�nition in the literature, which requires that
𝑈𝛼 contains not only the set, where 𝜑𝛼 ≠ 0, but also its closure.) An open cover
{𝑈𝛼} is called numerable, if there is a partition of the unity {𝜑𝛼} subordinate
to it.

Remark 1.61. It is easy to see that a Hausdor� space is paracompact if and
only if each of its open covers is enumerable. Therefore, the condition of the
enumerability of coverings is one of the variants of the paracompact condition.

It is obvious that for any continuous map 𝑓 : 𝑌 → 𝑋 and any open cover
{𝑈𝛼} of the space 𝑋, the set 𝑓 −1 (𝑈𝛼) constitute an open cover of the space 𝑌 .
At the same time,

Proposition 1.62. if the coverage is {𝑈𝛼} is numerable, then the coverage of
{ 𝑓 −1 (𝑈𝛼)} will also be numerable.

Proof. Indeed, it is clear that for the partitions of unity {𝜑𝛼} subordinate to
the covering of {𝑈𝑎𝑙𝑝ℎ𝑎}, functions 𝜑𝛼 ◦ 𝑓 : 𝑌 → 𝐼 will constitute a partitions of
unity subordinate to the covering { 𝑓 −1 (𝑈𝛼)}. □

We will call the covering { 𝑓 −1 (𝑈𝛼)} the covering preimage of {𝑈𝛼} for the
map 𝑓 .

Lemma 1.63. Let 𝑞 : 𝐸 → 𝑋 be a map. If there exists a numerable covering
{𝑈𝑎} for the space 𝑋 such that that all maps

𝑞𝛼 : 𝑞
−1 (𝑈𝛼) → 𝑈𝛼

are weak, then the map 𝑞 : 𝐸 → 𝑋 is also weak.

The proof is involved.

Proof. Let 𝐴 ⊂ 𝑋 and 𝑠0 : 𝐴 → 𝐸 be a section of the map 𝑞 over 𝐴 such that
there exists a continuous function 𝜑 : 𝑋 → 𝐼, an open set 𝑉 ⊂ 𝐴 and a section
𝑠0 : 𝑉 → 𝐸 for the map 𝑞 over 𝑉 , such that 𝜑 = 0 on 𝐴, 𝜑 = 1 outside 𝑉 and
𝑠0 |𝐴 = 𝑠0.

Consider an arbitrary partition of unity {𝜑𝛼, 𝛼 ∈ 𝐴}, subordinate to the
covering {𝑈𝑎}. Assuming that the symbol 0 is not contained in the set of
indices 𝐴, we put

𝜓0 = 1 − 𝜑, 𝜓𝛼 = 𝜑𝜓𝛼, 𝛼 ∈ 𝐴.



50 LECTURE 1.

It is clear that the family {𝜓𝛽}, where 𝛽 ∈ 𝐴∪{0} is a partition of unity. Due to
the local �niteness of the family {𝜓𝛽} for any subset of 𝐵 ⊂ 𝐴∪{0} a continuous
function

𝜓𝐵 : 𝑥 ↦→
∑︁
𝛽∈𝐵

𝜓𝛽 (𝑥), 𝑥 ∈ 𝑋

taking values in 𝐼 is de�ned. Let

𝑉𝐵 = 𝑋 \ 𝜓−1𝐵 (0).

Is it clear that 𝐴 ⊂ 𝑉𝐵 if 0 ∈ 𝐵, and 𝐴∩𝐵𝐵 = ∅ if 0 ∉ 𝐵. In addition, 𝐴 ⊂ 𝑉0 ⊂ 𝑉 .
Let's now consider the set 𝑆 of all .pairs of the type (𝐵, 𝑠), where 𝐵 is an

arbitrary subset of 𝐴 ∪ {0}, containing element 0, with 𝑠 is a section over 𝑉𝐵
such that 𝑠 |𝐴 = 𝑠0. Since ({0}, 𝑠0 |𝑉{0} ) ∈ 𝑆, the set 𝑆 is not empty.

We introduce a partial ordering to the set 𝑆, assuming that (𝐵, 𝑠) ≤ (𝐵′ , 𝑠′ ),
if 𝐵 ⊂ 𝐵

′
(and, therefore, 𝑉𝐵 ⊂ 𝑉𝐵′ ) and 𝑠

′ (𝑥) = 𝑠(𝑥) if 𝜑𝐵′ (𝑥) = 𝜑′
𝐵
(𝑥) (i.e.

𝜓𝐵 = 0 for any 𝛽 ∈ 𝐵′ \ 𝐵).
Let 𝐾 be an arbitrary chain in 𝑆. Putting,

Γ = ∪(𝐵,𝑠) ∈𝐾𝐵,

for any open set 𝑊 ⊂ 𝑉Γ, we denote by Γ𝐴 a subset of the set Γ consisting of
all indices 𝛽 ∈ Γ for which the function 𝜓𝐵 is nonzero at least at one point of
𝑊 . Let {𝑊} be the family of all open sets 𝑊 ∈ 𝑉Γ for which the set Γ𝑊 is �nite.
Due to the local �niteness of the partition of unity {𝜓𝐵}, the family {𝑊} covers
the set 𝑉Γ.

For each set 𝑊 ∈ {𝑊} we consider a subset/ 𝐾𝑊 of a chain 𝐾 consisting of
pairs (𝐵, 𝑠) such that Γ𝑊 ⊂ 𝐵. Due to the �niteness of the set Γ𝑊 , for any pair
(𝐵, 𝑠) ∈ 𝐾 there exists a pair (𝐵′ , 𝑠′ ) ∈ 𝐾𝑊 such that (𝐵, 𝑠) ≤ (𝐵′ , 𝑠′ ).

If (𝐵, 𝑠) ∈ 𝐾𝑊 , then 𝑊 ⊂ 𝑉𝐵, and if (𝐵, 𝑠), (𝐵′ , 𝑠′ ) ∈ 𝐾𝑊 , then 𝑠 = 𝑠
′
on 𝑊 .

Therefore , the formula

𝑡 (𝑥) = 𝑠(𝑥), 𝑥 ∈ 𝑉Γ,

where 𝑠 is an arbitrary section of the 𝑞 map for which there exists a set of indices
𝐵 ⊂ Γ and an open set 𝑊 ∈ {𝑊} containing a point 𝑥 that (𝐵, 𝑠) ∈ 𝐾𝑊 , well
de�nes on 𝑉𝛾 the section 𝑡 : 𝑉1 → 𝐸 to the maps 𝑞, which obviously has the
property that (Γ, 𝑡) ∈ 𝑆.

If (𝐵, 𝑠) ∈ 𝐾, then by the construction 𝐵 ∈ Γ. Let 𝑥 be a point of 𝑉𝐵 such
that 𝜓𝛾 = 0 for all 𝛾 ∈ Γ \ 𝐵. Choosing an arbitrary neighbourhood 𝑊 of
the point 𝑥 belonging to the family {𝑊}, consider in 𝐾𝑊 an arbitrary element
(𝐵′ , 𝑠′ ) ≤ (𝐵, 𝑠). Since 𝜓𝛾 (𝑥) = 0 at 𝛾 ∈ 𝐵′ \ 𝐵, then follows 𝑠(𝑥) = 𝑠′ (𝑥). But by
the construction 𝑠

′ (𝑥) = 𝑡 (𝑥). Therefore, 𝑠(𝑥) = 𝑡 (𝑥).
This proves that (𝐵, 𝑠) ≤ (Γ, 𝑡) for any element (𝐵, 𝑠) ∈ 𝐾, i.e. that the

element (Γ, 𝑡) is the upper bound of the chain 𝐾.

Thus, in the partially ordered set 𝑆, any chain has an upper bound. There-
fore, by applying Zorn's Lemma, the set 𝑆 has a maximum element (𝐵, 𝑠).
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Let 𝐵 ≠ 𝐴 ∪ {0}, and let 𝛼 ∈ 𝐴 \ 𝐵. The formula

𝜓(𝑥) = max

(
0,
𝜓𝛼 (𝑥) − 𝜓𝛽 (𝑥)

𝜓𝛼 (𝑥)

)
, 𝜓𝛼 (𝑥) ≠ 0,

de�nes on the set 𝑉𝛼 = 𝑋 \ 𝜓−1𝛼 (0) a continuous function 𝜓 : 𝑉𝛼𝑡𝑜𝐼, which obvi-
ously has the property 𝑉𝛼 \ 𝜓−1 (1) ⊂ 𝑉𝐵. In particular, we see that the section
𝑠 is de�ned on the set 𝑉𝛼 \ 𝜓−1 (1). Since this set is by de�nition a functional
neighbourhood of the set 𝜓−1 (0), we thus obtain that the section 𝑠 |𝜓−1 (0) of the
map 𝑞𝑉𝛼 : 𝑞

−1 (𝑉𝛼) → 𝑉𝛼 \ 𝜓−1 (1) satis�es the conditions of the axiom WSE.
But it is clear that 𝑉𝛼 ⊂ 𝑈𝛼, and therefore 𝑞𝑉𝛼 = 𝑞𝛼 |𝑞−1 (𝑉𝛼 ) . Since the map 𝑞𝛼
is weak by condition, therefore the map 𝑞𝑉𝛼 is also weak according to Lemma
1.60. Therefore, for the section 𝑠 |𝜓−1 (0) there is a section 𝑠

′
: 𝑉𝛼 → 𝐸 for the

map 𝑞𝑉𝛼 over 𝑉 such that 𝑎
′
= 𝑠 on 𝜓−1 (0).

Now let Γ = 𝐵 ∪ {𝛼}. Putting for any point 𝑥 ∈ 𝑉Γ = 𝑉𝐵 ∪𝑉𝛼

𝑡 (𝑥) =
{
𝑠(𝑥), if 𝜓𝛼 (𝑥) ≤ 𝜓𝛽 (𝑥),
𝑠
′ (𝑥), if 𝜓𝛼 (𝑥) ≥ 𝜓𝛽 (𝑥),

we will obviously get a cross section 𝑡 : 𝑉Γ → 𝐸 of the map 𝑞 over 𝑉Γ such
that (Γ, 𝑡) ∈ 𝑆 and (𝐵, 𝑠) < (Γ, 𝑡). Since this contradicts the maximality of
the element (𝐵, , 𝑠), it is thus proved that 𝐵 = 𝐴 ∪ {0} and, consequently, that
𝑉𝐵 = 𝑋.

Thus, the section 𝑠 is de�ned on all 𝑋 and coincides on 𝐴 with the section
𝑠0. Hence, the map 𝑞 is weak. □

1.D Lemma on coverings of space 𝑋 × 𝐼
To apply the results obtained to �brations, we need the following technical
lemma, which is useful in other matters as well.

Lemma 1.64. For each numerable covering {𝑈𝛼, 𝛼 ∈ 𝐴} of the space 𝑋 × 𝐼,
we can �nd a numerable covering {𝑉𝛽 , 𝛽 ∈ 𝐵} of the space 𝑋, which has the
property that for any 𝛽 ∈ 𝐵 there exists a positive number 𝜖𝛽 > 0 such that for
any segment 𝐽 ⊂ 𝐼 of length ≤ 𝜖𝛽 there is such a 𝛼 ∈ 𝐴 that 𝑉𝛽 × 𝐽 ⊂ 𝑈𝛼.

Let us prove the following classical lemma beforehand.

Lemma 1.65 (Lebesgue lemma). For an arbitrary cover 𝑈𝛼 of a compact metric
space 𝑋, there exists a positive number 𝜀 > 0 such that any subset of 𝐾 ⊂ 𝑋 of
a diameter smaller than 𝜀 is contained in some element of the coverage {𝑈𝛼}.

Proof. If such a number 𝜀 does not exist, then for any 𝑛 > 0 in 𝑋 there will
be a subset of 𝐾𝑛 of a diameter smaller than 1/𝑛 that is not contained in any
element of the coverage of {𝑈𝛼}. Let 𝑥𝑛 ∈ 𝐾𝑛. Since the space 𝑋 is compact
by condition, there exists a point 𝑥0 ∈ 𝑋, any neighbourhood of which contains
in�nitely many points 𝑥𝑛. Let 𝑥0 ∈ 𝑈𝛼0

, and let 𝑑 be the distance from 𝑥0 to
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𝑋 \𝑈𝛼0
. If 𝑛 > 2/𝑑 and 𝜌(𝑥0, 𝑥𝑛) < 𝑑/2, then for any point 𝑥 ∈ 𝐾𝑛 there is an

inequality

𝜌(𝑥0, 𝑥) ≤ 𝜌(𝑥0, 𝑥𝑛) + 𝜌(𝑥𝑛, 𝑥) ≤
𝑑

2
+ 1

𝑛
< 𝑑,

showing that, contrary to the assumption, 𝐾𝑛 ⊂ 𝑈𝛼0
. The resulting contradic-

tion proves the lemma. □

The upper bound of the numbers 𝜀 is called the Lebesgue number of the
covering {𝑈𝛼}.

Now we can prove Lemma 1.64.

Proof. (of Lemma 1.64) By condition, there is a partition of unity {𝜑𝛼}, subor-
dinate to the covering {𝑈𝛼}, i.e. such that 𝑋 \ 𝜑−1𝛼 (0) ⊂ 𝑈𝛼 for any 𝛼 ∈ 𝐴. In
order not to introduce new letters, we assume that 𝑋 \ 𝜑−1𝛼 (0) = 𝑈𝛼. It is clear
that this assumption does not limit generality.

Let 𝐵 be the set of all �nite sequences of elements of the set 𝐴. Thus, each
element of 𝛽 ∈ 𝐵 has the form (𝛼1, . . . , 𝛼𝑟 ), where 𝑟 ≤ 0. We will denote the
length of the sequence 𝛽 with the symbol |𝛽 |.

To each element 𝛽 = (𝛼1, . . . 𝑐, 𝛼𝑟 ) ∈ 𝐵 we will associate the continuous
function 𝜓𝛽 : 𝑋 → 𝐼 de�ned by the formula

𝜓𝛽 (𝑥) =
𝑟∏
𝑖=1

min
𝑡𝑖∈𝐼𝑖

𝜑𝛼𝑖 (𝑋, 𝑡𝑖), where 𝑖𝑖 =

[
𝑖 − 1
𝑟 + 1 ,

𝑖 + 1
𝑟 + 1

]
.

Let 𝑉𝛽 = 𝑋 \ 𝜓−1
𝛽
(0). It is clear that 𝑥 ∈ 𝛽 if and only if 𝜑𝛼 ≠ 0 on {𝑥} × 𝐼𝑖 for

each 𝑖 = 1, . . . , 𝑟. In particular, we see that 𝑉𝛽 × 𝐼𝑖 ⊂ 𝑈𝛼𝑖 , 𝑖 = 1, . . . , 𝑟.

Since any segment 𝐽 ⊂ 𝐼 of length less than 1
𝑖+1 is contained in one of the

segments 𝐼𝑖, 𝑖 = 1, . . . , 𝑟, it follows that for 𝜀𝛽 = 1
|𝛽 |+1 the family {𝑉𝛽} has the

property claimed by Lemma 1.64. Therefore, to prove Lemma 1.64, we only
need to show that the family {𝑉𝛽} is a numerable covering of the space 𝑋.

By de�nition of the product topology, each point (𝑥, 𝑡) ∈ 𝑋 × 𝐼 has a �rect-
angular� neighbourhood 𝑈𝑥,𝑡 × 𝑉𝑥,𝑡 contained in some element of the covering
{𝑈𝛼}. Here 𝑈𝑥,𝑡 is some neighbourhood in 𝑋 of the point 𝑥 ∈ 𝑋, and 𝑉𝑥,𝑡 is some
neighbourhood in 𝐼 of the point 𝑡 ∈ 𝐼. For any point 𝑥 ∈ 𝑋 all neighbourhoods
of the form 𝑉𝑥,𝑡 form an open covering of the segment 𝐼. Let 𝑟 be an integer
such that the length 2

𝑟+1 of the corresponding segments 𝐼𝑖, 𝑖 = 1, . . . , 𝑟, does
not exceed the Lebesgue number of this covering. Then every set of the form
{𝑥} × 𝐼𝑖, 𝑖 = 𝑙, . . . , 𝑟, will be contained in some neighbourhood 𝑈𝑥,𝑡 × 𝑉𝑥,𝑡 and
therefore in some element 𝑈

𝛼
(0
𝑖

of the covering {𝑈𝛼}. Therefore, 𝜑
𝛼
(0)
𝑖

≠ 0 on

{𝑥} × 𝐼𝑖, and this means 𝑥 ∈ 𝑉𝛽 (0) where 𝛽 (0) = (𝛼
(0)
1 , . . . , 𝛼

(0)
𝑟 ). This proves that

the family {𝑉𝛽 , 𝛽 ∈ 𝐵} is a covering of the space 𝑋.

In order not to introduce a new notation, we can assume that the neigh-
bourhood 𝑈𝑥,𝑡 × 𝑉𝑥,𝑡 also has the property that each of them intersects only
with a �nite number of elements of the covering {𝑈𝛼}). Then by choosing for



1.D. LEMMA ON COVERINGS OF SPACE 𝑋 × 𝐼 53

each point 𝑥 ∈ 𝑋 from the covering {𝑉𝑥,𝑡 } of the segment 𝐼 (which is a compact
space) a �nite subcovering {𝑉𝑥,𝑡1 , . . . , 𝑉𝑥,𝑡𝑛 } and putting

𝑈 = 𝑈𝑥,𝑡1 ∩ · · · ∩𝑈𝑥,𝑡𝑛 ,

we will get a neighbourhood 𝑈 of the point 𝑥 in the space 𝑋 such that 𝑈𝛼∩ (𝑈×
𝐼) ≠ ∅ only for a �nite number of indices 𝛼 ∈ 𝐴. Hence, in sequences 𝛽 ∈ 𝐵 for
which 𝑈 ∩ (𝑈 × 𝐼) ≠ ∅, only a �nite number of di�erent indices can participate
𝛼 ∈ 𝐴 and, therefore, for any 𝑟 > 0 such sequences with |𝛽 | < 𝑟 will be of only a
�nite number. Therefore , the formula

𝜆𝑟 (𝑥) =
∑︁
|𝛽 |<𝑟

𝜓𝛽 (𝑥), 𝑥 ∈ 𝑋,

will de�ne on 𝑋 some continuous non-negative function 𝜆𝑟 : 𝑋 → R (for 𝑟 = 1
we, by de�nition, consider 𝜆1 = 0). Let

𝜓𝛽 (𝑥) = max(0, 𝜓𝛽 (𝑥) − 𝑟𝜆𝑟 (𝑥)), where 𝑟 = |𝛽 |, 𝛽 ∈ 𝐵.

It is clear that 𝜓𝛽 (𝑥) = 0 i𝜓𝛽 (𝑥) = 0. Therefore, the sequences 𝛽 ∈ 𝐵 and |𝛽 | for
which 𝜓𝛽 (𝑥) ≠ 0 on 𝑈, are also of a �nite number.

Having now chosen the sequence for the point 𝑥 ∈ 𝑋 𝛽0 ∈ 𝐵 with 𝑥 ∈ 𝑉𝛽0 ,
of length |𝛽0 | = 𝑟0 which has the smallest possible value, consider an arbitrary
number 𝑟 > 𝑟0 for which 𝜓𝛽0 > 1

𝑟
. Then 𝑟𝜆𝑟 > 1, and therefore 𝑟𝜆𝑟 > 1

in some neighbourhood of the point 𝑥 (which we can consider coinciding with
the neighbourhood 𝑈 constructed above). Thus, for any 𝛽 with |𝛽 | = 𝑟 in the
neighbourhood of 𝑈, the equality 𝜓𝛽 = 0 holds. Therefore, |𝛽 | ≠ 0 on 𝑈 only for

a �nite number of sequences of 𝛽 ∈ 𝐵. Thus, it is proved that the family {𝜓𝛽}
is locally �nite, and therefore the formula

𝜓(𝑥) =
∑︁
𝛽∈𝐵

𝜓𝛽 (𝑥), 𝑥 ∈ 𝑋,

well de�nes on 𝑋 some continuous function 𝜓 : 𝑋 → R.
Since by the condition the length of 𝑟0 = |𝛽 | is the sequence of 𝛽0 for which

𝑥 ∈ 𝑉𝛽, i.e. 𝜓𝛽0 ≠ 0, has the smallest possible value, then 𝜓𝛽 = 0 for |𝛽 | < 𝑟0,
and, therefore, 𝜆𝑟0 = 0. Therefore, 𝜓𝛽0 (𝑥) = 𝜓𝛽0 (𝑥) ≠ 0 and, therefore, 𝜓(𝑥) ≠ 𝑂.

This proves that the functions 𝜓𝛽/𝜓 are de�ned everywhere on 𝑋. Since they
obviously constitute a partition of unity subordinate to the covering of {𝑉𝛽},
Lemma 1.64 is thereby completely proved. □

Corollary 1.66. For each numerable covering {𝑈𝛼, 𝛼 ∈ 𝐴} of the space 𝐵 there
can be found a numerable covering {𝑉𝛽 , 𝛽 ∈ 𝐵 of the space 𝐵𝐼 , which has the
property that for any 𝛽 ∈ 𝐵 there exists a positive number 𝜀𝛽 > 0 such that for
an arbitrary segment 𝐽 ⊂ 𝐼 of length ≤ 𝜀𝛽, there is an 𝛼 = 𝛼(𝛽, 𝐽) ∈ 𝐴 such that
𝑢(𝐽) ⊂ 𝑈𝛼 for each path 𝑢 ∈ 𝑉𝛽.
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Proof. It is enough to apply Lemma 1.64 to the numerable covering of the space
𝐵𝐼 × 𝐼, which is the preimage of the covering {𝑈𝛼} by the evaluation map

𝜔 : 𝐵𝐼 × 𝐼 → 𝑋, (𝑢, 𝑡) ↦→ 𝑢(𝑡).

□

Using the notation introduced in the Section 0.C of Appendix to Lecture 0
for basic sets of compactly open topology, we can write the properties of sets
𝑉𝑝 claimed in this consequence as a formula

𝑉𝛽 ⊂ ∩𝐽𝒲(𝐽,𝑈𝛼(𝛽,𝐽 ) ),

where the intersection is taken over all segments 𝐽 ⊂ 𝐼 of length ≤ 𝜀𝛽.
Now let 𝑛𝛽 be an integer such that 𝑛𝛽𝜀𝛽 > 1, and let 𝐼𝛽,𝑖, be a segment[

𝑖−1
𝑛𝛽
, 𝑖
𝑛𝛽

]
, where 𝑖 = 1, 2, . . . , 𝑛𝛽. Then 𝑉𝛽 ⊂ 𝑊𝛽, where

𝑊𝛽 = ∩𝑛𝛽
𝑖=1𝒲(𝐼𝛽,𝑖 ,𝑈𝛼𝑖 (𝛽) ), 𝛼𝑖 (𝛽) = 𝛼(𝛽, 𝐼𝛽,𝑖).

Sets 𝑊𝛽 are open in the space of 𝐵𝐼 and make up the numerable covering of
this space (the partition of the unity subordinate to the covering of {𝑉𝛽}, will
obviously be subordinate to the covering {𝑊𝛽}). Denoting them again by 𝑉𝛽,
we get

Corollary 1.67. For each numerable covering {𝑈𝛼, 𝛼 ∈ 𝐴} of the space 𝐵 there
can be found a numerable covering {𝑉𝛽 , 𝛽 ∈ 𝐵} of the space 𝐵𝐼 , having the the
property that for any index 𝛽 in 𝐵 there are indices 𝛼1 = 𝛼1 (𝛽), . . . , 𝛼𝑛𝛽 = 𝛼𝑛𝛽 (𝛽)
in 𝐴 such that 𝑢 ∈ 𝑉𝛽 if and only if 𝑢(𝐼𝛽,𝑖) ⊂ 𝑈𝛼𝛼𝑖 (𝛽) for each 𝑖 = 1, . . . , 𝑛𝛽.

Here it is convenient to introduce into consideration the parts of the paths
𝑛 ∈ 𝑉𝛽 on the segments 𝐼𝛽, i.e. the paths 𝑢𝑖, 𝑖 = 1, . . . , 𝑛𝛽, determined (taking
into account the necessary parameter transformation) by the formula

𝑢𝑖 (𝑡) = 𝑢
(
𝑡 + 𝑖 − 1

𝑛

)
, 0 ≤ 𝑡 ≤ 1.

Due to the inclusion of 𝑢(𝐼𝛽,𝑖) ⊂ 𝑈𝛼𝑖 (𝛽) , we can consider the path 𝑢𝑖 as a path in
𝑈𝛼𝑖 (𝛽) . Hence, by matching the paths 𝑢 ∈ 𝑉𝛽 with the sequence (𝑢1, . . . , 𝑢𝑛𝛽 ) of
paths 𝑢𝑖 we will get (as it is easy to see a homeomorphic) map of the set 𝑉𝛽 to a
subset of the product 𝑈 𝐼𝛼1(𝛽) × · · · ×𝑈

𝐼
𝛼𝑛𝛽 (𝛽)

consisting of sequences (𝑢1, . . . , 𝑢𝑛𝛽 ),
𝑢𝑖 ∈ 𝑈 𝐼𝛼𝑜 (𝛽 such that 𝑢𝑖 (0) = 𝑢𝑖1 (1) for any 𝑖 > 1. Henceforth, in order not

to introduce unnecessary notation, we will identify the paths 𝑢 ∈ 𝑉𝛽 with the
corresponding sequences (𝑢1, . . . , 𝑢𝑛𝛽 ).

1.E Dold's theorem

Let's now consider an arbitrary map 𝑝 : 𝐸 → 𝐵, its cocylinder Cocyl(𝑝) ⊂ 𝐸×𝐵𝐼
and the map 𝑞 : 𝐸 𝐼 → Cocyl(𝑝), 𝑢 ↦→ (𝑢(0), 𝑝 ◦ 𝑢). Still assuming a given
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numerable covering {𝑈𝛼, 𝛼 ∈ 𝐴} of the space 𝐵, we denote by 𝑊𝛽 the preimages
under the natural projection of 𝑝𝜔0

: Cocyl(𝑝) → 𝐵𝐼 , (𝑢, 𝑒) ↦→ 𝑢 provided
by Corollary 1.67 of the Lemma 1.64 for the sets of 𝑉𝛽. According to the
identi�cations described above, we can consider as points of each set 𝑊𝛽 sets of
the form (𝑒, 𝑢1, . . . , 𝑢𝑛𝛽 ), where 𝑢𝑖, 𝑖 = 1, . . . , 𝑛𝛽, are paths in 𝑈𝛼𝑖 , (𝛽) such that
𝑢𝑖 (0) = 𝑢𝑖−1 (1) for 𝑖 > 1, and 𝑒 is a point from 𝐸 (and in fact from 𝑝−1 (𝑈𝛼𝑖 , (𝛽) ),
such that 𝑢1 (0) = 𝑝(𝑒). Being a preimage of the numerable coverings under a
continuous map, the family {𝑊𝛽 , 𝛽 ∈ 𝐵} is a numerable covering of the space
Cocyl(𝑝).

For every 𝛽 ∈ 𝐵 we will introduce the map

𝑞𝐵 = 𝑞 |𝑞−1 (𝑊𝛽 ) : 𝑞−1 (𝑊𝛽) → 𝑊𝛽 .

Here is the way that 𝑣 ∈ 𝑞−1 (𝑊𝛽) ⊂ 𝐸 𝐼 is also convenient to split into parts, i.e.
each such path is identi�ed with the sequence (𝑣1, . . . , 𝑣𝑛) of paths

𝑣𝑖 (𝑡) = 𝑣
(
𝑡 + 𝑖 − 1
𝑛𝛽

)
, 0 ≤ 𝑡 ≤ 1.

Because, as it is easy to see that 𝑞−1 (𝑊𝛽) = 𝑝−1∗ (𝑉𝛽, where 𝑝∗ : 𝐸 𝐼 → 𝐵 map
𝑢 ↦→ 𝑝 ◦ 𝑢, the sequence (𝑣1, . . . 𝑐, 𝑣𝑛𝛽 ) paths in 𝐸 if and only if the path 𝑣 ∈
𝑞−1 (𝑊𝛽) satis�es 𝑣𝑖 (0) = 𝑣𝑖−1 (1) for 𝑖 > 1 and each path 𝑣𝑖, 𝑖 = 1, . . . , 𝑛𝛽, is a
path in 𝑝−1 (𝑈𝛼𝑖 (𝛽) ). The map of 𝑞 𝑓𝛽 will be determined by the formula

𝑞𝛽 (𝑣1, . . . , 𝑣𝑛𝛽 ) = (𝑣1 (0), 𝑝 ◦ 𝑣1, . . . , 𝑝 ◦ 𝑣𝑛𝛽 ).

Accordingly, each section of 𝑠 : 𝑊𝛽 → 𝑞−1 (𝑊𝛽) maps to 𝑞𝛽, we can identify
the sequence (𝑠1, . . . , 𝑠𝑛𝛽 ) with the continuous maps 𝑠𝑖 : 𝑊𝛽 → 𝐸 𝐼 , having the
following properties:

a) for any point (𝑒, 𝑢) ∈ 𝑊𝛽 the path 𝑣𝑖 = 𝑠𝑖 (𝑒, 𝑢) is a path in 𝑝−1 (𝑈𝛼𝑖 )𝛽) );

b) if 𝑢 = (𝑢1, . . . , 𝑢𝑛𝛽 ), then 𝑝 ◦ 𝑣𝑖 = 𝑢𝑖 for every 𝑖 = 1, . . . , 𝑛𝛽;

c) 𝑣1 (0) = 𝑒 and 𝑣𝑖 (0) = 𝑣𝑖−1 (1) for 𝑖 > 1.

However, the map 𝑠𝑖 are more convenient to interpret as the homotopy 𝑊𝛽 ×
𝐼 → 𝐸 , or, more precisely, by applying the condition a), as the homotopy
𝑊𝛽 × 𝐼 → 𝑝−1 (𝑈𝛼𝑖 ), where 𝛼𝑖 = 𝛼𝑖 (𝛽). In this case, the conditions b) and c) will
be equivalent to the commutativity of the diagramme

𝑊𝛽

𝑠𝑖−1◦𝜎𝑖 //

𝜎0

��

𝑝−1 (𝑈𝛼𝑖 )

𝑝𝑖

��
𝑊𝛽 × 𝐼 𝜑𝑖

//

𝑠𝑖

99

𝑈𝛼𝑖

𝑖 = 1, . . . , 𝑛𝛽 (1.68)

where the homotopy 𝜑𝑖 : 𝑊𝛽 × 𝐼 → 𝑈𝛼𝑖 is de�ned by the formula

𝜑𝑖 ((𝑒, 𝑢), 𝑡) = 𝑢𝑖 (𝑡), for 𝑢 = (𝑢1, . . . , 𝑢𝑛𝛽 ),
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and 𝑝𝑖 represents a map 𝑝𝛼𝑖 : 𝑝
−1 (𝑈𝛼𝑖 ) → 𝑈𝛼𝑖 , induced by the map 𝑝. (By the

map 𝑠𝑖−1 ◦ 𝜎𝑖 for 𝑖 = 1 here, of course, we mean the projection 𝜔∗0 : (𝑒, 𝑢) ↦→ 𝑒.)

Lemma 1.69. If all maps 𝑝𝑖, 𝑖 = 1, . . . , 𝑛𝛽 satisfy the axiom WCHE (See 1.55.),
then the map 𝑞𝛽 is weak.

Proof. Let 𝐴 ⊂ 𝑈 ⊂ 𝑊𝛽, and the set 𝑈 bes a functional neighbourhood of the
set 𝐴 (in 𝑊𝛽), and let 𝑠 : 𝑢 → 𝑞−1 (𝑊𝛽) be an arbitrary section of the map 𝑞𝛽
over 𝑈, i.e. there is a sequence of homotopies 𝑠𝑖 : 𝑈 × 𝐼 → 𝑝−1 (𝑈𝛼𝑖 ), for which
the following diagramme commutes

𝑈
𝑠𝑖−1◦𝜎𝑖 //

𝜎0

��

𝑝−1 (𝑈𝛼𝑖 )

𝑝𝑖

��
𝑈 × 𝐼

𝜑𝑖
//

𝑠𝑖

::

𝑈𝛼𝑖

We must prove that there exists a section 𝑠 of the map 𝑞𝛽 over the entire set 𝑊𝛽

coinciding on 𝐴 with the section 𝑠, i.e. that there exist homotopies 𝑠𝑖 : 𝑊𝛽 × 𝐼 →
𝑝−1 (𝑈𝛼𝑖 ), 𝑖 = 1, . . . , 𝑛𝛽, for which Diagramme (1.68) are commutative and which
on 𝐴 × 𝐼 coincide with homotopies 𝑠𝑖.

Let 𝜑 be a continuous function such that 𝜑 = 0 on 𝐴 and 𝜑 = 1 outside 𝑈,
and let

𝑈𝑖 = 𝜑
−1

( [
0, 1 − 𝑖

𝑛𝛽

] )
, 𝑖 = 1, . . . , 𝑛𝛽 .

Then
𝐴 ⊂ 𝑈𝑛𝛽 ⊂ · · · ⊂ 𝑈𝑖+1 ⊂ 𝑈𝑖 ⊂ · · · ⊂ 𝑢1 ⊂ 𝑈,

moreover, each set 𝑈𝑖 , 𝑖 < 𝑛𝛽, will be a functional neighbourhood of the set 𝑈𝑖+1,
and the set 𝑈 will be a functional neighbourhood of the set 𝑈𝑖.

We will construct a homotopy 𝑠𝑖, by induction on 𝑖, for which we additionally
require that for each 𝑖 = 1, . . . , 𝑛𝛽 the following equality takes place

𝑠𝑖 |𝑈𝑖×𝐼 = 𝑠𝑖 |𝑈𝑖×𝐼 ;

in other words, we will replace each Diagramme (1.68) with a diagramme

𝑈𝑖
𝜓𝑖 //

𝜎̃0

��

𝑝−1 (𝑈𝛼𝑖 )

𝑝𝑖

��
𝑊𝛽 × 𝐼 𝜑𝑖

//

𝑠𝑖

99

𝑈𝛼𝑖

𝑖 = 1, . . . , 𝑛𝛽 , (1.70)

where 𝑈𝑖 = (𝑊𝛽 × 0) ∪ (𝑈𝑖 × 𝐼), and 𝜓𝑖 the map de�ned by the formula

𝜓𝑖 ((𝑒, 𝑢), 𝑡) =
{
𝑠𝑖−1 ((𝑒, 𝑢), 𝑡), if 𝑡 = 0,

𝑠𝑖 ((𝑒, 𝑢), 𝑡), if (𝑒, 𝑢) ∈ 𝑈𝑖
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(for 𝑖 = 1, instead of 𝑠𝑖−1 ((𝑒, 𝑢), 𝑡), you should write 𝑒).

But Diagramme (1.70) has the form of Diagramme (1.52) with 𝑋 = 𝑊𝛽,

𝐴 = 𝑈𝑖, 𝑓 = 𝜓𝑖, 𝐹 = 𝜑𝑖, and 𝑝 = 𝑝𝑖. Since in the corresponding Diagramme

(1.54) (with 𝑈 = 𝑈𝑖−1 for 𝑖 > 1) the closing map 𝐹
′
obviously exists (it will be a

restriction on 𝑈𝑖−1 × 𝐼 of the homotopy 𝑠𝑖), then by applying the axiom WCHE
(See 1.55.), the homotopy 𝑠𝑖 in Diagramme (1.70) also exists. Thus, homotopies
𝑠, in a step by step fashion, are constructed for all 1 = 1, . . . , 𝑛𝛽. □

Now we can prove the main theorem of Dold.

Theorem 1.71. If for the map 𝑝 : 𝐸 → 𝐵 there exists a numerable covering
{𝑈𝛼} of the space 𝐵 such that each map

𝑝𝛼 = 𝑝 |𝑝−1 (𝑈𝛼 ) : 𝑝−1 (𝑈𝛼) → 𝑈𝛼

is a �bration, then the map 𝑝 : 𝐸 → 𝐵 will also be a �bration.

Proof. According to Proposition 1.56, the �bration 𝑝𝛼 satis�es the axiomWCHE,
and therefore, according to Lemma 1.69, all maps 𝑞𝛽 : 𝑞

−1 (𝑊𝛽) → 𝑊𝛽 are weak,
where, recall, 𝑊𝛽 is a subset of the space Cocyl(𝑝), which is the preimage of
the projection (𝑢, 𝑒) ↦→ 𝑢 of subsets of 𝑉𝛽 ⊂ 𝐵𝐼 from Corollary 1.67 of Lem-
mas 1.64. But, as already noted above, the family {𝑊𝛽} is a numerable cov-
ering of the space Cocyl(𝑝). Therefore, according to Lemma 1.63, the map
𝑞 : 𝐸 𝐼 → Cocyl(𝑝) is weak, and hence the map 𝑝 is a �bration. □

1.F Locally trivial �brations

Dold's theorem �nds an important application to the so-called locally trivial
�brations.

If in the diagramme below

𝑋
𝑓 //

𝜎0

��

𝐸

𝑝

��
𝑋 × 𝐼

𝐹
//

𝐹

<<

𝐵

the space 𝐸 is the product 𝐵 × 𝑌 of space 𝐵 by some space 𝑌 (and, therefore,

the map 𝑓 : 𝑋 → 𝐸 is given by the formula 𝑓 (𝑥) = ( 𝑓1 (𝑥), 𝑓2 (𝑥)) where 𝑓1 : 𝑋 →
𝐵, 𝑓2 : 𝑋 → 𝑌), and 𝑝 : 𝐸 → 𝐵 is a projection (𝑏, 𝑦) ↦→ 𝑏, 𝑏 ∈ 𝐵, 𝑦 ∈ 𝑌 ,
then the homotopy 𝐹 obviously exists (and is given by the formula 𝐹 (𝑥, 𝑡) =
(𝐹 (𝑥, 𝑡), 𝑓2 (𝑥))). Hence, for any spaces 𝐵 and 𝑌 , the projection 𝐵 × 𝑌 → 𝐵 is a
�bration.
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We will call two maps 𝑝 : 𝐸 → 𝐵 and 𝑝
′
: 𝐸

′ → 𝐵 are isomorphic if a

homeomorphism 𝐸
≈−→ exists such that the diagramme

𝐸
≈ //

𝑝
��

𝐸
′

𝑝
′

��
𝐵

is commutative. It is clear that a map isomorphic to a �bration will itself be
a �bration. Therefore, in particular, every map 𝑝 : 𝐸 → 𝐵 isomorphic to the
projection 𝐵 × 𝑋 → 𝐵 of the direct product will be a �bration. Such �brations
are called trivial �brations.

Accordingly, a map 𝑝 : 𝐸 → 𝐵 is called a locally trivial �bration if there exists
an open covering {𝑈𝛼} of the space 𝐵 such that all maps 𝑝𝛼 : 𝑝

1 (𝑈𝛼) → 𝑈𝛼 are
trivial �brations.

This terminology suggests its justi�cation in that, following directly from
Theorem 1.71, if a space is paracompact, then every locally trivial �bration is
actually a �bration.

Remark 1.72. Dold prefers a variant of the de�nition in which the covering {𝑈𝛼}
is assumed to be numerable. Then the assumption about the paracompactness
of the space 𝐵 becomes unnecessary.

Remark 1.73. It should be borne in mind that in mathematics the term ��bra-
tion� is used in many di�erent senses, sometimes almost uncorrelated with each
other. Therefore, strictly speaking, it is always necessary to clarify what the
meaning of this term is meant. In these lectures, a ��bration�, unless explicitly
stated to the contrary, will always be understood as a �bration in the sense of
De�nition 1.25 of Lecture 1 (i.e., in the sense of Hurevicz).

Remark 1.74. One of the most important classes of �brations are the so-called
bundles in the sense of Steenrod, also called bundles with a structural group or
skew products (in English �bre bundle). These include vector bundles known
from di�erential geometry and numerous bundles constructed with their help
(say, bundles into spheres). All bundles in the sense of Steenrod are, by de�-
nition, locally trivial and therefore (if their base in paracompact) are �brations
in the sense of Hurevicz.

All this gives us an inexhaustible supply of examples of concrete �bations.



Lecture 2

2.1 Homotopy equivalences

De�nition 2.1. A continuous map 𝑓 : 𝑋 → 𝑌 is called homotopy equivalence
if its homotopy class [ 𝑓 ] is an isomorphism of the homotopy category [Top].
This is equivalent to the fact that there is a continuous map 𝑔 : 𝑌 → 𝑋 (called
inverse homotopy equivalence) such that

𝑓 ◦ 𝑔 ∼ id𝑌 , and 𝑔 ◦ 𝑓 ∼ id𝑋 . (2.2)

Since [𝑔] is nothing but [ 𝑓 ]−1, and since in any category a morphism, an in-
verse isomorphism, is de�ned in a unique way, the inverse homotopy equivalence
up to homotopy is de�ned in a unique way.

Spaces that are isomorphic in the category [Top], i.e. connected by homo-
topy equivalence, are called homotopically equivalent. Homotopically equivalent
spaces are also said to have the same homotopy type.

Similarly, two continuous maps 𝑓 : 𝑋 → 𝑌 and 𝑓
′
: 𝑋

′ → 𝑌
′
are called

homotopically equivalent if they are isomorphic in the category of morphisms of
the category [Top], i.e. if there exist homotopy equivalences 𝜑 : 𝑋 → 𝑋

′
and

𝜓 : 𝑌 → 𝑌
′
such that the following diagramme

𝑋
𝑓 //

𝜑

��

𝑌

𝜓
��

𝑋
′

𝑓
′
// 𝑌
′

is homotopically commutative (commutative in the category [Top]), i.e. it has
the property that 𝜓 ◦ 𝑓 ∼ 𝑓 ′ ◦ 𝜑.

A remarkable fact justifying our interest in �brations and co�baraiotns from
a new and unexpected side is indicated in the following theorem.

Theorem 2.3. Any continuous map is homotopically equivalent to both a �bra-
tion and a co�bration.

Thus, in homotopy theory, without loss of generality, we can consider all
maps to be �brations or co�brations if desired!

59
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2.2 Reduction of an arbitrary map to a co�bra-
tion

The proof of Theorem 2.3 is based on the concepts of a cylinder and a mapping
cylinder introduced in Lecture 1. However, for purely technical reasons (and
to tell the truth, it's mostly by tradition) �reversed� cylinders and cocylinders
are convenient here, resulting in replacing 𝑡 with 1 − 𝑡. In addition, it will be
convenient for us here to denote the map for which the cylinder and cocylinder
are being constructed with the symbol 𝑓 : 𝑋 → 𝑌 , which will free up the letters
𝑖 and 𝑝 for other purposes.

Thus, the reversed cylinder of the map 𝑓 : 𝑋 → 𝑌 is called a push-out

(𝑋 × 𝐼) ∪ 𝑓 𝑌 of the diagramme 𝑋 × 𝐼 𝜎1←−− 𝑋
𝑓
−→ 𝑌 , obtained by gluing the direct

product of 𝑋 × 𝐼 to the space 𝑌 by the map (𝑥, 1) ↦→ 𝑓 (𝑥), that is, the coset
space of the disjunct union (𝑋 × 𝐼) ⊔ 𝑌 by the minimal equivalence relation in
which (𝑥, 1) ∼ 𝑓 (𝑥) for any point 𝑥 ∈ 𝑋. We will denote the reversed cylinder
with the same symbol Cyl( 𝑓 ) as the straight cylinder from Lecture 1.

For an inverted cylinder , a co-universal square (1.13) of Lecture 1 has (after
transposition) the form

𝑋
𝑓 //

𝜎1

��

𝑌

(𝜎1 ) 𝑓
��

𝑋 × 𝐼
𝑓#

// Cyl( 𝑓 ).

(2.4)

For any point (𝑥, 𝑡) ∈ 𝑋 × 𝐼, we will denote its image by the map 𝑓# by [𝑥, 𝑡].
It is clear that [𝑥1, 𝑡1] = [𝑥2, 𝑡2] if and only if either 𝑥1 = 𝑥2 and 𝑡1 = 𝑡2, or
𝑡1 = 𝑡2 = 1 and 𝑓 (𝑥1 = 𝑓 (𝑥2).

For the sake of simplicity, we denote the co-induced map 𝜎1 by the symbol
𝑗 . In addition, we will introduce into consideration the map 𝑖 = 𝑓# ◦ 𝜎0 :
𝑋 → Cyl( 𝑓 ), that is, the map 𝑥 ↦→ [𝑥, 0]. Obviously, both maps 𝑖 and 𝑗 are
moneomorphisms.

As a rule, the points are 𝑥 ∈ 𝑋 we will identify 𝑥 and 𝑦 with the points 𝑖𝑥 and
𝑗 𝑦, respectively, i.e. we will consider the maps 𝑖 and 𝑗 as attachments. Thus,
by applying this agreement, 𝑋 ⊂ Cyl( 𝑓 ) and 𝑌 ⊂ Cyl( 𝑓 ).

Each point of 𝑧 ∈ Cyl( 𝑓 ) either has the form [𝑥, 𝑡], 𝑥 ∈ 𝑋, 𝑡 ∈ 𝐼, or is some
point 𝑦 ∈ 𝑌 . In this case, [𝑥, 1] = 𝑓 (𝑥) for any point 𝑥 ∈ 𝑋.
Lemma 2.5. The map 𝑖 is a co�bration (and, consequently, the pair (Cyl( 𝑓 ), 𝑋)
is a co�bration).

Proof. The formula

𝑟 ( [𝑥, 𝑡], 𝜏) =
{
( [𝑥, 𝑡𝜏 + 𝑡 − 𝜏], 0), if𝑡𝜏 + 𝑡 − 𝜏 ≥ 0,

(𝑥,−𝑡𝜏 − 𝑡𝜏), if𝑡𝜏 + 𝑡 − 𝜏 ≤ 0,

where (𝑥, 𝑡] ∈ Cyl( 𝑓 ), and 𝜏 ∈ 𝐼 together with the formula

𝑟 (𝑦, 𝜏) = (𝑦, 0), 𝑦 ∈ 𝑌 ⊂ Cyl( 𝑓 ), 0 ≤ 𝜏 ≤ 1,
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well determines the corresponding map

𝑟 : Cyl( 𝑓 ) × 𝐼 → (Cyl( 𝑓 ) × 0) ∪ (𝑋 × 𝐼).

Since 𝑋 is obviously closed in Cyl( 𝑓 ), this proves Lemma 2.5 (see Proposition
1.15 of Lecture 1). □

De�ne the map

𝑟 : Cyl( 𝑓 ) → 𝑌 (2.6)

by the formulae

𝑟 (𝑥, 𝑡]) = [𝑥, 1], [𝑥, 𝑡] ∈ Cyl( 𝑓 ),
𝑟 (𝑦) = 𝑦, 𝑦 ∈ 𝑌 ⊂ Cyl( 𝑓 ).

Lemma 2.7. The map 𝑟 is a homotopy equivalence.

Proof. Let, as above, 𝑗 : 𝑌 → Cyl( 𝑓 ) an inclusion. It is clear that 𝑟 ◦ 𝑗 = id. On
the other hand, 𝐻 : 𝑗 ◦ 𝑟 ∼ id, where the homotopy

𝐻 : Cyl( 𝑓 ) × 𝐼 → Cyl( 𝑓 )

is de�ned by the formula

𝐻 ( [𝑥, 𝑡], 𝜏) = [𝑥, 𝜏𝑡 + 1 − 𝜏], [𝑥, 𝑡] ∈ Cyl( 𝑓 ),
𝐻 (𝑦, 𝜏) = 𝑦, 𝑦 ∈ 𝑌 ⊂ Cyl( 𝑓 ).

(2.8)

□

Corollary 2.9. Any continuous map 𝑓 : 𝑋 → 𝑌 is homotopically equivalent to
a co�bration 𝑖 : 𝑋 → Cyl( 𝑓 ).

Proof. It su�ces to note that 𝑓 (𝑥) = [𝑥, 1] = 𝑟 [𝑥, 0] = (𝑟 ◦ 𝑖) (𝑥) for any point
𝑥 ∈ 𝑋, i.e., the following diagramme is commutative.

𝑋
𝑓 //

𝑖

��

𝑌

Cyl( 𝑓 )
𝑟

<<

□

This corollary proves Theorem 2.3 with respect to co�brations.
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2.3 Deformation retract

The homotopy equivalence of 𝑟 has the property that 𝑟 ◦ 𝑗 = id and, therefore,
is a retraction. This type of retraction deserves a separate name.

Let 𝐴 ⊂ 𝑋 and 𝑖 : 𝐴→ 𝑋 is an inclusion.

De�nition 2.10. Amap 𝑓 : 𝑋 → 𝐴 is called deformation retraction if 𝑟◦𝑖 = id 𝐴
and 𝑖 ◦𝑟 ∼ id𝑋. A subspace 𝐴 for which there is a deformation retraction 𝑋 → 𝐴

is called a deformation retract of the space 𝑋. The homotopy 𝑋 × 𝐼 → 𝑋

connecting the maps 𝑖 ◦ 𝑟 and id𝑋 is called a retraction deformation.

A space 𝑋 is said to be deformable into the subspace 𝐴 if there exists a
homotopy 𝑓𝑡 : 𝑋 → 𝑋 such that 𝑓0 = id and 𝑓1 (𝑋) ⊂ 𝐴, i.e. if there exists a
map 𝜑 : 𝑋 → 𝐴 such that 𝑖 ◦ 𝜑 ∼ id𝑋. It is easy to see that

Proposition 2.11. a subspace 𝐴 is a deformation retract of the space 𝑋 if and
only if it is a retract of the space 𝑋 and the space 𝑋 is deformed into the subspace
𝐴.

Proof. Indeed, if 𝑟 : 𝑋 → 𝐴 is a retraction and 𝜑 : 𝑋 → 𝐴 is a map such that
𝑖 ◦ 𝜑 ∼ id, then 𝑖 ◦ 𝑟 ∼ 𝑖 ◦ 𝑟 ◦ 𝑖 ◦ 𝜑 = 𝑖 ◦ 𝜑 ∼ id, and, therefore, 𝑟 is a deformation
retraction. □

Every deformation retraction 𝑟 : 𝑋 → 𝐴 is, of course, a homotopy equiv-
alence. The inverse homotopy equivalence in this case will be the inclusion
𝑖 : 𝐴→ 𝑋. Conversely

Proposition 2.12. if the inclusion 𝑖 : 𝐴 → 𝑋 is a homotopy equivalence,
then in the case where the pair (𝑋, 𝐴) is a co�bration, the subspace 𝐴 will be a
deformation retraction of the space 𝑋.

Proof. Indeed, let 𝑗 : 𝑋 → 𝐴 be the homotopy equivalence inverse to the inclu-
sion 𝑖 : 𝐴 → 𝑋. By de�nition, the map 𝑗 |𝐴 = 𝑗 ◦ 𝑖 is homotopic to the identity
map id𝐴. Therefore , the map 𝑗 is homotopic to the map 𝑟 : 𝑋 → 𝐴, for which
𝑟 |𝐴 = id𝐴, i.e. being a retraction 𝑋 → 𝐴. Since 𝑖 ◦ 𝑟 ∼ 𝑖 ◦ 𝑗 ∼ id𝑋, this retraction
is a deformation retraction. □

Interestingly, an arbitrary homotopy equivalence is reduced to deformation
retractions and corresponding embeddings. Namely, it turns out that

Proposition 2.13. for any homotopy equivalence 𝑓 : 𝑋 → 𝑌 there exists a space
𝑍 containing both spaces 𝑋 and 𝑌 as deformation retracts, such that 𝑓 = 𝑟 ◦ 𝑖,
where 𝑖 : 𝑋 → 𝑍 is an inclusion, and 𝑟 : 𝑍 → 𝑌 is a deformation retraction.
Moreover, for this space 𝑍, we can take the (reversed) Cylinder Cyl( 𝑓 ) of the
map 𝑓 .

All this follows directly from the following proposition.

Proposition 2.14. A map 𝑓 : 𝑋 → 𝑌 is a homotopy equivalence if and only if
the space 𝑋 is a deformation retract of the cylinder Cyl( 𝑓 ).



2.3. DEFORMATION RETRACT 63

Proof. If 𝑋 is a deformation retract, then the inclusion 𝑖 : 𝑋 → Cyl( 𝑓 ) is a
homotopy equivalence. Thus, in decompositions 𝑓 = 𝑟 ◦ 𝑖, both maps 𝑖 and 𝑟 are
homotopy equivalences. Therefore, the map 𝑓 is a homotopy equivalence, too.

Conversely, let the map 𝑓 : 𝑋 → 𝑌 be a homotopy equivalence, and let 𝑔 :
𝑌 → 𝑋 be the inverse homotopy equivalence. We should construct a retraction
𝜌 : Cyl( 𝑓 ) → 𝑋 and a homotopy 𝐾 : Cyl( 𝑓 ) × 𝐼 → Cyl( 𝑓 ), connecting the
identical map id : Cyl( 𝑓 ) → Cyl( 𝑓 ) with the map 𝑖 ◦ 𝜌 : Cyl( 𝑓 ) → Cyl( 𝑓 ). We
will compose a homotopy 𝐾 from four consecutive homotopies. First we will
de�ne the homotopy 2.8 on the segment [0, 1/4]. This means that at 0 ≤ 𝜏 ≤
1/4, the homotopy 𝐾 will be determined by the formulae

𝐾 ( [𝑥, 𝑡], 𝜏) = [𝑥, 𝑡 + 4𝜏 − 4𝑡𝜏], [𝑥, 𝑡] ∈ Cyl( 𝑓 ),
𝐾 (𝑦, 𝜏) = 𝑦, 𝑦 ∈ 𝑌 ⊂ Cyl( 𝑓 ).

As a result, from the map id : Cyl( 𝑓 ) → Cyl( 𝑓 ) we get the map 𝑗 ◦𝑟 : Cyl( 𝑓 ) →
Cyl( 𝑓 ), which takes values in 𝑌 .

On the next segment [1/4, 1/2] we will take as a homotopy 𝐾 the composition
of the map 𝑗 ◦ 𝑟 and the homotopy 𝐺 : 𝑌 × 𝐼 → 𝑌 connecting the identical map
id : 𝑌 → 𝑌 with the map 𝑓 ◦ 𝑔 : 𝑌 → 𝑌 , i.e., more precisely, homotopy

𝑗 ◦ 𝐺 ◦ (𝑟 × id) : Cyl( 𝑓 ) × 𝐼 → Cyl( 𝑓 ),

connecting the map 𝑗 ◦ 𝑟 with the map 𝑗 ◦ 𝑓 ◦ 𝑔 ◦ 𝑟, and subjected to a linear
transformation of the parameters. Thus, the homotopy 𝐾 for 𝜏 ∈ [1/4, 1/2] will
be determined by the formulae

𝐾 ( [𝑥, 𝑡], 𝜏) = 𝑗𝐺 ( 𝑓 (𝑥), 4𝜏 − 1), [𝑥, 𝑡] ∈ Cyl( 𝑓 ),
𝐾 (𝑦, 𝜏) = 𝑗𝐺 (𝑦, 4𝜏 − 1), 𝑦 ∈ 𝑌 ⊂ Cyl( 𝑓 ).

The map 𝑗 ◦ 𝑓 ◦ 𝑔 ◦ 𝑟 translates the point [𝑥, 𝑡] ∈ Cyl( 𝑓 ) to the point
𝑓 (𝑔( 𝑓 (𝑥))) = [𝑔( 𝑓 (𝑥)), 1], and the point 𝑦 ∈ Cyl( 𝑓 ) to the point 𝑓 (𝑔(𝑦)) =
[𝑔(𝑦), 1]. Therefore, the formulae ( [𝑥, 𝑡], 𝜏) ↦→ [𝑔( 𝑓 (𝑥)), 1 − 𝜏] and (𝑦, 𝜏) ↦→
(𝑔(𝑦), 1 − 𝜏) will well determine the homotopy of this map to the map [𝑥, 𝑡] ↦→
𝑔( 𝑓 (𝑥)), 𝑦 ↦→ 𝑔(𝑦). We will take this homotopy for the homotopy 𝐾 on the
segment [1/2, 3/4]. Given the shift of the parameters, we get, therefore, that
the homotopy 𝐾 is determined for 𝜏 ∈ [1/2, 3/4] by the formulae

𝐾 ( [𝑥, 𝑡], 𝜏) = [𝑔( 𝑓 (𝑥)), 3 − 4𝜏], [𝑥, 𝑡] ∈ Cyl( 𝑓 ),
𝐾 (𝑦, 𝜏) = [𝑔(𝑦), 3 − 4𝜏] 𝑦 ∈ 𝑌 ⊂ Cyl( 𝑓 ).

With 𝜏 = 3/4, we actually get a map to 𝑋. Therefore, for the points [𝑥, 𝑡], the
homotopy 𝐹 : 𝑋 × 𝐼 → 𝑋 can be applied to it, connecting the map 𝑔 ◦ 𝑓 : 𝑋 → 𝑋

with the identity map id : 𝑋 → 𝑋. This homotopy we will take 𝐾 as a homotopy
on the segment [3/4, 1]. At the same time, in order to avoid a gap for 𝑡 = 1,
you need to multiply the parameter by 1− 𝑡. In addition, it is necessary to take
into account the shift of the parameter change area. Thus at 𝜏 ∈ [3/4, 1] we get



64 LECTURE 2.

for the homotopy 𝐾 of the formula

𝐾 ( [𝑥, 𝑡], 𝜏) = 𝑖𝐹 (𝑥, (1 − 𝑡) (4𝜏 − 3)), [𝑥, 𝑡] ∈ Cyl( 𝑓 ),
𝐾 (𝑦, 𝜏) = 𝑖𝑔(𝑦), 𝑦 ∈ 𝑌 ⊂ Cyl( 𝑓 ).

The resulting homotopy 𝐾 : Cyl( 𝑓 ) × 𝐼 → Cyl( 𝑓 ) connects the identical map
id : Cyl( 𝑓 ) → Cyl( 𝑓 ) with the map 𝑖 ◦ 𝑟ℎ𝑜 : Cyl( 𝑓 ) → Cyl( 𝑓 ), where 𝜌 is the
map Cyl( 𝑓 ) → 𝑋 de�ned by the formulae

𝜌[𝑥, 𝑡] = 𝐹 (𝑥, 1 − 𝑡), [𝑥, 𝑡] ∈ Cyl( 𝑓 ),
𝜌(𝑦) = 𝑔(𝑦), 𝑦 ∈ 𝑌 ⊂ Cyl( 𝑓 ).

(due to the relation 𝐹 (𝑥, 0) = 𝑔( 𝑓 (𝑥)), the map 𝜌 is well-de�ned).
To complete the proof of Proposition 2.14, it remains to note that since

𝜌[𝑥, 0] = 𝐹 (𝑥, 1) = 𝑥, we have 𝜌 ◦ 𝑖 = id. □

2.4 Contractible spaces and cones

A particularly interesting case is when the space 𝑌 consists of only one point.
We will denote such a space by the symbol pt, and the (unique) map 𝑋 → pt
by the symbol const𝑋 (or just const).

De�nition 2.15. A space 𝑋 is called contractible if the map const𝑋 is a homo-
topy equivalence.

Since the inverse homotopy equivalence 𝑔 : pt → 𝑋 is given by the point
𝑥0 = 𝑔(pt) of the space 𝑋, and const𝑋 ◦𝑔 = idpt and 𝑔 ◦ const𝑥0 = const𝑥0 , where
const𝑥0 : 𝑋 → 𝑋 is a constant map 𝑥 ↦→ 𝑥0, the space 𝑋 is contractible if there
exists such a point 𝑥0 ∈ 𝑋, such that const𝑥0 ∼ id𝑋. It is said that the space 𝑋
contracts to the point 𝑥0.

It is curious that the contractible space shrinks to any point of its own.
Indeed, if 𝑥0, 𝑥1 ∈ 𝑋 and const𝑥0 ∼ id, then const𝑥1 ∼ const𝑥0 ◦ const𝑥0 ∼ id.

The homotopy connecting the map id𝑋 with the map of const𝑥0 is called the
contraction of the space 𝑋.

Examples of a contractible spaces are the 𝑛-dimensional ball E𝑛 (and, in
particular, a segment 𝐼 = [0, 1]) and, in general, any convex set or at least
stellar set relative to some point of its own body.

The cylinder of the map const𝑋 is called a cone over the space 𝑋. Two cones
are possible: straight and reversed. The �rst one is obtained from the product
𝑋 × 𝐼 by contracting to the point of the subspace 𝑋 × 0, and the second by
contracting to the point of the subspace 𝑋 × 1. As a rule, we will consider an
inverted cone and denote it with the symbol 𝐶𝑋. Thus, by de�nition

𝐶𝑋 = (𝑋 × 𝐼)/(𝑋 × 1).

We will denote the image of the point (𝑥, 𝑡) ∈ 𝑋×𝐼 for the coset map 𝑋×𝐼 → 𝐶𝑋,
by the symbol [𝑥, 𝑡]𝐶 or simply [𝑥, 𝑡]. In particular, all symbols of the form [𝑥, 1]
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denote a single point of the cone 𝐶𝑋, depending on 𝑥. This point is denoted by
the symbol 𝑝0 and is called the vertex of the cone 𝐶𝑋.

The correspondence [𝑥, 𝑡] ↦→ [𝑥, 𝜏 + 𝑡 − 𝜏𝑡], 𝜏 ∈ 𝐼, de�nes a homotopy from
𝐶𝑋 to 𝐶𝑋 connecting an identical map with a constant map [𝑥, 𝑡] ↦→ 𝑝0. This
means that the cone 𝐶𝑋 shrinks to its vertex (and, therefore, to any point).

Each continuous map 𝑓 : 𝑋 → 𝑌 is determined by the formula

(𝐶 𝑓 ) [𝑥, 𝑡] = [ 𝑓 (𝑥), 𝑡], 𝑥 ∈ 𝑋, 𝑡 ∈ 𝐼,

so 𝐶 𝑓 : 𝐶𝑋 → 𝐶𝑌 is continuous, and it is clear that the correspondences 𝑋 ↦→
𝐶𝑋, 𝑓 ↦→ 𝐶 𝑓 constitute a functor from 𝒯ℴ𝓅 to 𝒯ℴ𝓅.

If 𝑡1, 𝑡2 ≠ 1, then [𝑥1, 𝑡1] = [𝑥2, 𝑡2] if and only if 𝑥1 = 𝑥2 and 𝑡1 = 𝑡2. In
particular, we see that the correspondence 𝑥 ↦→ [𝑥, 0] de�nes a moneomorphic
map 𝑋 → 𝐶𝑋. A subspace of the cone 𝐶𝑋 consisting of points of the form [𝑥, 0],
𝑥 ∈ 𝑋, is called the base of the cone. Usually, by means of the moneomorphism
𝑥 ↦→ [𝑥, 0], it is identi�ed with 𝑋. According to Lemma 2.5, the pair (𝐶𝑋, 𝑋) is
a co�bration, and according to proposition 2.14, the space 𝑋 is contractible if
and only if 𝑋 is a deformation retract of the cone 𝐶𝑋.

A map 𝑓 : 𝑋 → 𝑌 is called null-homotopic if it is homotopic to the constant
map const𝑦0 : 𝑋 → 𝑌 , 𝑥 ↦→ 𝑦0, where 𝑦0 ∈ 𝑌 , i.e. if there exists a homotopy
𝐹 : 𝑋 × 𝐼 → 𝑌 such that 𝐹 (𝑥, 0) = 𝑥 and 𝐹 (𝑥, 1) = 𝑦0 for any point 𝑥 ∈ 𝑋.
Since such homotopies are in natural bijective correspondence with the maps
𝑓 : 𝐶𝑋 → 𝑋 that coincide on 𝑋 with the map 𝑓 (the homotopy corresponding
to the map 𝑓 is by the composition of the factorisation map 𝑋 × 𝐼 → 𝐶𝑋 and
the map 𝑓 ), we obtain that the map 𝑓 : 𝑋 → 𝑌 can be extended to 𝐶𝑋 if and
only if is homotopic to zero :

𝑋
⊂ //

𝑓

��

𝐶𝑋

𝑓}}
𝑌

It is also obvious that the space 𝑌 is contractible if and only if for each space
𝑋 any map 𝑋 → 𝑌 is null-homotopic.

2.5 Relative homotopies and strong deformation
retracts

A deformation retraction (2.6) also has the following property that for the cor-
responding homotopy (2.8) there is an equality 𝐻 (𝑦, 𝑡) = 𝑦 for any point 𝑦 ∈ 𝑌
and any 𝑡 ∈ 𝐼

It is also worth introducing the appropriate general terminology here.

De�nition 2.16. A homotopy 𝑓𝑡 : 𝑋 → 𝑌 is called �xed (or connected on the
subspace 𝐴 ⊂ 𝑋, if 𝑓𝑡 (𝑎) = 𝑓0 (𝑎) for any point 𝑎 ∈ 𝐴 and any 𝑡 ∈ 𝐼. A homotopy
�xed on 𝐴 is also called a homotopy relative to 𝐴.
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Of course, a homotopy �xed on 𝐴 can only be associated with maps 𝑓 , 𝑔 :
𝑋 → 𝑌 that coincide on 𝐴, i.e. such that 𝑓 |𝐴 = 𝑔 |𝐴. Maps coinciding on 𝐴 are

called (connected) homotopy relative to 𝐴 (notation 𝑓 ∼ 𝑔 rel 𝐴 or 𝑓
𝐴∼ 𝑔) if they

are connected by a homotopy �xed on 𝐴. This relation is an equivalence relation
and the corresponding classes [ 𝑓 ] rel 𝐴 are called homotopy classes relative to
𝐴.

All maps 𝑋 → 𝑌 coinciding on 𝐴 constitute a subspace ⟨𝑌𝑋, 𝑓0⟩ of the space
𝑌𝑋, consisting of extensions to 𝑋 of some �xed map 𝑓0 : 𝐴 → 𝑌 . In this case,
homotopies with respect to 𝐴 can be considered as paths of this subspace. The
converse is generally true only if the space 𝑋 is Hausdor� and locally com-
pact, and then the classes [ 𝑓 ] rel 𝐴 are nothing but components of the subspace
⟨𝑌𝑋, 𝑓0⟩.

De�nition 2.17. A deformation retraction 𝑟 : 𝑋 → 𝐴 is called strict (or strong)
if 𝑖◦𝑟 ∼ id rel 𝐴. If such a retraction exists, then the subspace 𝐴 is called a strong
deformation retraction of space 𝑋. In this case, we will write 𝑋 u 𝐴.

Proposition 2.18. If the pair (𝑋, 𝐴) is a closed co�bration, then each defor-
mation retraction 𝑟 : 𝑋 → 𝐴 is a strong deformation retraction.

To prove this proposition, we need the following lemma.

Lemma 2.19. For any closed co�bration (𝑋, 𝐴), the pair (𝑋 × 𝐼, 𝑋𝐴), where
𝑋𝐴 = (𝑋 × 0) ∪ (𝐴 × 𝐼) ∪ (𝑋 × 1) is also a co�bration.

We will prove this lemma below, but for now we will use it is used to prove
Proposition 2.18.

Proof. (of Proposition 2.18.) Let 𝑖 : 𝐴 → 𝑋 be an inclusion and 𝐹 : 𝑋 × 𝐼 → 𝑋

be a free homotopy connecting the map 𝑖 ◦𝑟 : 𝑋 → 𝑋 with the identity map id𝑋.
Since, according to Lemma 2.19, the pair (𝑋 × 𝐼, 𝑋𝐴) is a co�bration, so there
exists a homotopy from 𝑋 × 𝐼 to 𝑋, the initial map of which is the homotopy 𝐹
and which for every 𝜏 ∈ 𝐼 is given by 𝑋𝐴 by the formula

𝐹𝜏 (𝑥, 𝑡) =


𝐹 ((𝑖 ◦ 𝑟)𝑥, 𝜏), if 𝑡 = 0,

𝐹 (𝑥, 𝑡 + (1 − 𝑡)𝜏), if 𝑥 ∈ 𝐴, 0 ≤ 𝑡 ≤ 1,

𝑥, if 𝑡 = 1.

The end map 𝐹1 of this homotopy will be the homotopy 𝑋 × 𝐼 → 𝑋 rel 𝐴 con-
necting id to 𝑖 ◦ 𝑟. □

Corollary 2.20. For a closed co�bration (𝑋, 𝐴), the subspace 𝐴 is a strong
deformation retract of the space 𝑋 if and only if the embedding 𝑖 : 𝐴 → 𝑋 is a
homotopy equivalence.

Corollary 2.21. A closed pair (𝑋, 𝐴) is a co�bration if and only if the space
𝐴 = (𝑋 × 0) ∪ (𝐴 × 𝐼) is a strong deformation retract of the space 𝑋 × 𝐼.
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Proof. If 𝑋 × 𝐼 u 𝐴, then the pair (𝑋, 𝐴) is a co�bration by applying the
corollary from Proposition 1.15 of Lecture 1. Conversely, since the product
𝑋 × 𝐼 is obviously deformed into the subspace 𝑋 × 𝑂 and, consequently, into
the subspace 𝐴, then in the case when there is a retraction 𝑟 : 𝑋 × 𝐼 → 𝐴 (i.e.,
by applying the same corollary of Proposition 1.15 of Lecture 1, when the pair
(𝑋, 𝐴) is a co�bration), this retraction will be a deformation retraction and,
therefore, by applying Proposition 2.18 (applied to the pair (𝑋 × 𝐼, 𝐴)) a strong
deformation retraction. (However, you can do without any references if you
notice that putting 𝑟 (𝑥, 𝑡) = (𝑟 (𝑥, 𝑡), 𝜌(𝑥, 𝑡)), where 𝑥 ∈ 𝑋, 𝑡 ∈ 𝐼 and 𝑟 (𝑥, 𝑡) ∈ 𝑋,
𝜌(𝑥, 𝑡) ∈ 𝐼, we can de�ne the deformation retraction 𝑔𝑡 : 𝑋 × 𝐼 → 𝑋 × 𝐼 by an
explicit formula

𝑔𝜏 (𝑥, 𝑡) = (𝑟 (𝑥, (1 − 𝜏)𝑡), (1 − 𝜏𝜌(𝑥, 𝑡) + 𝜏𝑡), 𝑥 ∈ 𝑋, 𝜏 ∈ 𝐼 .

Indeed, it is clear that 𝑔0𝑖 ◦ 𝑟, 𝑔1 = id and 𝑔𝜏 (𝑥, 𝑡) = (𝑥, 𝑡), if (𝑥, 𝑡) ∈ 𝐴). □

2.6 Homotopy invariance of the gluing operation

Let (𝑋, 𝐴) be a closed co�bration, 𝐹 : 𝐴 × 𝐼 → 𝑌 be an arbitrary homotopy and
𝑓 : 𝐴𝑡𝑜𝑌 , 𝑎 ↦→ 𝐹 (𝑎, 0) be the initial homotopy map of 𝐹. Since 𝐴 × 𝐼 ⊂ 𝑋 × 𝐼,
the space is (𝑋 × 𝐼) ∪𝐹 𝑌 . Let us compare it with the space 𝑋 ∪ 𝑓 𝑌 .

Consider for this purpose the space 𝐴 ∪𝐹 𝑌 .
Since 𝐴 × 𝐼 ⊂ 𝐴 ⊂ 𝑋 × 𝐼 and (𝑋 × 𝐼) u 𝐴, the space 𝐴 ∪𝐹 𝑌 is contained in

the space (𝑋 × 𝐼) ∪𝐹 𝑌 and is its strong deformation retract. On the other hand,
since (𝐴× 𝐼) ∩ 𝐴 = 𝐴×0 and 𝐹 (𝑎, 0) = 𝑓 (𝑎), 𝑎 ∈ 𝐴, the space 𝐴∪𝐹 𝑌 is naturally
identi�ed with the space 𝑋 ∪ 𝑓 𝑌 . This proves that

Proposition 2.22. the space 𝑋 ∪ 𝑓 𝑌 is homotopically equivalent to the space
(𝑋 × 𝐼) ∪𝐹 𝑌 .

A similar statement holds, of course, for the end map 𝑔 : 𝐴→ 𝑌 , 𝑎 ↦→ 𝐹 (𝑎, 1),
homotopy 𝐹. Hence,

Proposition 2.23. if a closed pair (𝑋, 𝐴) is a co�bration, then for any two
homotopy maps 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑋 → 𝑌 the spaces 𝑋 ∪ 𝑓 𝑌 and 𝑋 ∪𝑔 𝑌 are
homotopically equivalent.

In this sense, the operation of gluing spaces is homotopically invariant.
Note that in the process of proving, we actually constructed some homotopy

ℓ𝑡 : 𝑋 ⊔ 𝑌 → 𝑋 ∪ 𝑓 𝑌 , the initial map ℓ0 of which is the factorisation map
𝑞 : 𝑋 ⊔ 𝑌 → 𝑋 ∪ 𝑓 𝑌 and which has the property, that its restriction ℓ𝑡 |𝐴 to 𝐴,
considered as a homotopy from 𝐴 to 𝐵, is nothing more than a homotopy of
𝑎 ↦→ (𝑎, 𝑡) connecting the map 𝑓 with the map 𝑔. At he same time the map

𝜑 : 𝑋 ∪𝑔 𝑌 → 𝑋 ∪ 𝑓 𝑌 .

induced by the map ℓ1, (i.e. such that ℓ1 = 𝜑 ◦ 𝑞′ , where 𝑞′ is the factorisation
map 𝑋 ⊔ 𝑌 → 𝑋 ∪𝑔 𝑌 )), is a homotopy equivalence.

From this remark it easily follows that



68 LECTURE 2.

Proposition 2.24. for any closed co�bration (𝑋, 𝐴) and any map 𝑓 : 𝐴 → 𝑌

every homotopy equivalence of ℎ : 𝑌 → 𝑍 extends to some homotopy equivalence

ℎ : 𝑋 ∪ 𝑓 𝑌 → 𝑋 ∪ℎ◦ 𝑓 𝑍.

Indeed, it is clear that the map ℎ : 𝑋 ∪ 𝑓 𝑌 → 𝑋 ∪ℎ◦ 𝑓 𝑍 coinciding on 𝑌 with
map ℎ and identical on 𝑋 is uniquely de�ned and continuous. Therefore, it is
only necessary to prove that it is a homotopy equivalence.

For this purpose, let us consider the inverse homotopy equivalence 𝑔 : 𝑍 → 𝑌

and its extension
𝑔 : 𝑋 ∪ℎ◦ 𝑓 𝑍 → 𝑋 ∪𝑔◦ℎ◦ 𝑓 𝑌,

identical on 𝑋. Since 𝑔 ◦ ℎ◦ 𝑓 ∼ 𝑓 , then as has been proved, there is a homotopy
equivalence

𝜑 : 𝑋 ∪𝑔◦ℎ◦ 𝑓 𝑌 → 𝑋 ∪ 𝑓 𝑌 .
In the diagramme

𝑋 ⊔ 𝑌 id⊔ℎ //

𝑞

��

𝑋 ⊔ 𝑍
id⊔𝑔 //

𝑞
′

��

𝑋 ⊔ 𝑌
𝑞

&&
𝑞
′′

��

𝑋 ∪ 𝑓 𝑌

𝑋 ∪ 𝑓 𝑌
ℎ

// 𝑋 ∪ℎ◦ 𝑓 𝑍
𝑔

// 𝑋 ∪𝑔◦ℎ◦ 𝑓 𝑌
𝜑
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the vertical arrows of which are factorisation maps, both squares are commu-
tative by construction, and the right triangle is homotopy commutative by the
remark just made. Therefore

𝜑 ◦ 𝑔 ◦ ℎ ∼ 𝑞 ◦ (id⊔(𝑔 ◦ ℎ)).

But it's easy to see that the formula

𝑘𝑡 =

{
𝑞 ◦ (id⊔𝑠2𝑡 ), if 0 ≤ 𝑡 ≤ 1/2,
ℓ2𝑡−1 ◦ (id⊔(𝑔 ◦ ℎ)), if 1/2 ≤ 𝑡 ≤ 1,

where 𝑠𝑡 : 𝑌 → 𝑌 is the homotopy connecting the identity map of the space 𝑌
with the map 𝑔 ◦ ℎ, and ℓ𝑡 : 𝑋 ⊔ 𝑌 → 𝑋 ∪ 𝑓 𝑌 is the homotopy connecting the
map 𝑞 with map 𝜑 ◦ 𝑞′′, well de�nes homotopy 𝑘𝑡 : 𝑋 ⊔𝑌 → 𝑋 ∪ 𝑓 𝑌 , connecting
the 𝑞 map to the map

(𝜑 ◦ 𝑞′′ ) ◦ (id⊔(𝑔 ◦ ℎ)) = 𝜑 ◦ 𝑔 ◦ ℎ ◦ 𝑞

and compatible with the projection 𝑞, i.e. having the form 𝑘𝑡 = 𝑘 𝑡 ◦ 𝑞, where
𝑘𝑟 : 𝑋 ∪ 𝑓 𝑌 → 𝑋 ∪ 𝑓 𝑌 . At the same time,

𝑘0 = id and 𝑘1 = 𝜑 ◦ 𝑔 ◦ ℎ.
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Thus, 𝜑 ◦ 𝑔 ◦ ℎ ∼ id, where 𝜑 is a homotopy equivalence.
Applying the same reasoning ℎ ◦ 𝑓 and 𝑔 instead of 𝑓 and 𝑘, we get that

𝜓 ◦ ℎ ◦ 𝑔 ∼ id, where ℎ is some map, and 𝜓 is a homotopy equivalence.
But if 𝜑

′
is a homotopy equivalence inverse to the homotopy equivalence 𝜑,

then 𝑔 ◦ ℎ ∼ 𝜑′ , and, therefore, 𝑔 ◦ ℎ ◦ 𝜑 ∼ 𝜑′ ◦ 𝜑 ∼ id. Therefore

𝜓 ◦ ℎ ∼ 𝜓 ◦ ℎ ◦ 𝑔 ◦ ℎ ◦ 𝜑 ∼ ℎ ◦ 𝜑,

and therefore (ℎ ◦ 𝜑) ◦ 𝑔 ∼ id.
This proves that 𝑔 is a homotopy equivalence (with the inverse homotopy

equivalence ℎ ◦ 𝜑). Therefore, the homotopy equivalence will also be the map ℎ.

2.7 Neighbourhood deformation retracts and co�-
brations

Note that Lemma 2.19 has not yet been proved. Its proof is based on a single,
interesting for its own sake, proposition that gives a local characterisation of
closed co�rations.

De�nition 2.25. A subspace 𝐴 of a topological space 𝑋 is called a neighbour-
hood strong deformation retract (abbreviated NSDR) if it is a strong deformation
retract of some open set 𝑈 ⊃ 𝐴, i.e. if there exists a �xed homotopy 𝑔𝑡 : 𝑈 → 𝑈

on 𝐴 such that 𝑔0 (𝑥) = 𝑥 and 𝑔1 (𝑥) ∈ 𝐴 for any point 𝑥 ∈ 𝑈.
Similarly, a subspace of 𝐴 is called an weak NSDR if there exists a homotopy

𝑔𝑡 : 𝑈 → 𝑋 �xed on 𝐴 such that 𝑔0 (𝑥) = 𝑥 and 𝑔1 (𝑥) ∈ 𝐴 for each point 𝑥 ∈ 𝑈.
An NSDR (in the strong or weak sense) is called functionally distinguished

(abbreviated as FNSDR) if there exists a continuous function 𝑓 : 𝑋 → 𝐼 such
that 𝐴 = 𝜑−1 (0) and 𝑋 \𝑈 = 𝜑−1 (1).
Lemma 2.26. A subspace 𝐴 ⊂ 𝑋 is a FNSDR in the weak sense if and only if
there is a continuous function 𝜓 : 𝑋 → 𝐼 and a �xed homotopy 𝐺 : 𝑋 × 𝐼 → 𝑋

on 𝐴 such that 𝐴 = 𝜓−1 (0), 𝐺 (𝑥, 0) = 𝑥 and 𝐺 (𝑥, 𝑡) ∈ 𝐴 fort 𝜓(𝑥) < 𝑡.
Proof. If the function 𝜓 and the homotopy 𝐺 exist, then the homotopy con-
straint of 𝐺 on 𝑈 × 𝐼, where 𝑈 = 𝑋 \ 𝜑−1 (1), 𝜑 = 𝜓 will be a homotopy from 𝑈

to 𝑋 �xed on 𝐴 = 𝜑−1 (0), having the property that 𝑔0 (𝑥) = 𝑥 and 𝑔1 (𝑥) ∈ 𝐴 for
each point 𝑥 ∈ 𝑈.

Conversely, let there be a function 𝜑 : 𝑋 → 𝐼 such that 𝐴 = 𝜑−1 (0), and a
homotopy 𝑔𝑡 : 𝑈 → 𝑋 �xed on 𝐴, where 𝑈 = 𝑋 \ 𝜑−1 (1) such that 𝑔0 (𝑥) = 𝑥 and
𝑔1 (𝑥) ∈ 𝐴 for each point 𝑥 ∈ 𝑈. Then 𝐴 = 𝜓−1 (0), where 𝜓(𝑥) = min(2𝜑(𝑥), 1),
and the formula

𝐺 (𝑥, 𝑡) =
{
𝑥, if 𝜑(𝑥) ≥ 𝑡,
𝑔𝜏 (𝑥), if 𝜑(𝑥) < 𝑡,

where

𝜏 =

{
𝑡

𝜑 (𝑥 ) − 1, if 0 < 𝜑(𝑥) ≤ 2𝜑(𝑥),
1 if 𝑡 ≥ 2𝜑(𝑥),
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well de�nes a homotopy 𝐺 : 𝑋 × 𝐼 → 𝑋 such that 𝐺 (𝑥, 0) = 𝑥 and 𝐺 (𝑥, 𝑡) ∈ 𝐴 for
𝜓(𝑥) < 𝑡. □

Proposition 2.27 (local characterisation of closed co�brations). A closed pair
(𝑋, 𝐴) is a co�bration if and only if the subspace 𝐴 is a FNSDR in the weak
sense.

Proof. Let (𝑋, 𝐴) be a closed co�bration, and let 𝑓 : 𝑋 × 𝐼 → 𝐴 be an arbitrary
retraction, where, as always, 𝐴 = (𝑋 × 0) ∪ (𝐴 × 𝐼). Let, as above

𝑟 (𝑥, 𝑡) = (𝑟̃ (𝑥, 𝑡), 𝜌(𝑥, 𝑡), where 𝑟̃ (𝑥, 𝑡) ∈ 𝑋, 𝜌(𝑥, 𝑡) ∈ 𝐼 .

As shown in Proposition 1.18, for the function 𝜓(𝑥) = max𝑡∈𝐼 (𝑡− 𝜌(𝑥, 𝑡)) there is
an equality 𝜓−1 (0) = 𝐴. In addition, if 𝜓(𝑥) < 𝑡, then 𝜌(𝑥, 𝑡) > 0, and therefore
𝑓 (𝑥, 𝑡) ∈ 𝐴. Thus, the function 𝜓 and the homotopy 𝐺 = 𝑟 satisfy the conditions
of Lemma 2.26, and therefore 𝐴 is a FNSDR in the weak sense.

Conversely, if 𝐴 is a FNSDR in the weak sense, then, according to Lemma
2.26, there exists a continuous function 𝜓 : 𝑋 → 𝐼 such that 𝜓−1 (0) = 𝐴, and a
�xed homotopy 𝐺 : 𝑋 × 𝐼 → 𝑋 on 𝐴, such that 𝐺 (𝑥, 0) = 𝑥 and 𝐺 (𝑥, 𝑡) ∈ 𝐴 for
𝜑(𝑥) < 𝑡. Thus the formula

𝑟 (𝑥, 𝑡) =
{
(𝐺 (𝑥, 𝑡), 0)), if 𝑡 ≤ 𝜓(𝑥),
(𝐺 (𝑥, 𝑡), 𝑡 − 𝜓(𝑥)), if 𝑡 ≥ 𝜓(𝑥),

(𝑥, 𝑡) ∈ 𝑋 × 𝐼,

will determine the retraction 𝑓 : 𝑋×𝐼 → 𝐴, so the pair (𝑋, 𝐴) is a co�bration. □

Example 2.28. Let 𝑓 : 𝑋 → 𝑌 be an arbitrary map and Cyl( 𝑓 ) its reversed
cylinder. It is clear that the formulae

𝜑[𝑥, 𝜏] = 𝜏, 𝜑(1) 1, 𝑥 ∈ 𝑋, 𝜏 ∈ 𝐼, 𝑦 ∈ 𝑌,

de�ne a continuous function 𝜑 : Cyl( 𝑓 ) → 𝐼, for which 𝜑−1 (0) = 𝑋 and 𝜑−1 (1) =
𝑌 , and the formula

𝑔𝑡 ( [𝑥, 𝜏]) = [𝑥, (1 − 𝑡)𝜏], 𝑥 ∈ 𝑋, 𝑡 ∈ 𝐼,

de�nes the homotopy 𝑔𝑡 : 𝑈 → Cyl( 𝑓 ), 𝑈 = Cyl( 𝑓 ) \𝑌 , for which 𝑔0 [𝑥, 𝜏] = [𝑥, 𝜏]
and 𝑔1 [𝑥, 𝜏] = −[𝑥, 0] ∈ 𝑋. This shows that the subspace 𝑋 of the cylinder
Cyl( 𝑓 ) is a FNSDR in the weak sense and, therefore, the pair (Cyl( 𝑓 ), 𝑋) is a
co�bration. Thus we have proved Lemma 2.5 anew.

Now we can prove Lemma 2.19 as well.

Proof. (of Lemma 2.19) Since the pair (𝑋, 𝐴) is a closed co�bration, then, ac-
cording to proposition 2.27, there exists a continuous function 𝑓 𝜑 : 𝑋 → 𝐼 and a
homotopy 𝑔𝑡 : 𝑈 → 𝑋 rel 𝐴, such that 𝑈 = 𝑋 \ 𝜑−1 (1), 𝜑−1 (0) = 𝐴 and 𝑔0 (𝑥) = 𝑥,
𝑔1 = 𝐴 for any point 𝑥 ∈ 𝑈. But then, as a direct checking shows, the continuous
function 𝜓 : 𝑋 × 𝐼 → 𝐼 de�ned by the formula

𝜓(𝑥, 𝜏) = 2min(2𝜑(𝑥), 𝜏, 1 − 𝜏), (𝑥, 𝜏) ∈ 𝑋 × 𝐼,
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has the property that 𝜓−1 (0) = 𝑋𝐴, and the homotopy ℎ𝑡 : 𝑉 → 𝑋 × 𝐼, where
𝑉 = 𝑋 × 𝐼 \ 𝜓−1 (1) is a set of points (𝑥, 𝜏) ∈ 𝑋 × 𝐼, for which either 𝜏 ≠ 1

2 or
𝜑(𝑥) < 1

4 , de�ned (see Fig. 2.7.1) by the formula

Figure 2.7.1:

ℎ𝑡 (𝑥, 𝜏) =



(𝑥, 𝜏(1 − 𝑡)), if 2𝜏 ≤ 𝜑(𝑥),
(𝑔(𝑥, ( 2𝜏

𝜑 (𝑥 ) − 1)𝑡, 𝜏(1 − 𝑡)), if 𝜑(𝑥) ≤ 2𝜏 ≤ min(2𝜑(𝑥), 1),
(𝑔(𝑥, 𝑡), (𝜏 − 2𝜑(𝑥))𝑡 + 𝜏), if 𝜑(𝑥) ≤ 𝜏 ≤ min(2𝜑(𝑥), 1/2),
(𝑔(𝑥, 𝑡), 𝜏), if 2𝜑(𝑥) ≤≤ 1 − 2𝜑(𝑥),
(𝑔(𝑥, 𝑡), 𝜏 + (2𝜑(𝑥) + 𝜏 − 1)𝑡), if max(1 − 2𝜑(𝑥), 1/2) ≤ 2𝜏 ≤ 2 − 𝜑(𝑥),
(𝑔(𝑥, ( 2(1−𝜏 )

𝜑 (𝑥 ) − 1)𝑡), 𝜏 + 𝑡 − 𝜏𝑡), if max(2(1 − 𝜑(𝑥)), 1) ≤ 2𝜏 ≤ 2 − 𝜑(𝑥),
(𝑥, 𝜏 + 𝑡 − 𝜏𝑡), if 2 − 𝜑(𝑥) ≤ 2𝜏,

the properties that ℎ0 (𝑥, 𝜏) = (𝑥, 𝜏), ℎ1 (𝑥, 𝜏) ∈ 𝑋𝐴 for any point (𝑥, 𝜏) ∈ 𝑋 × 𝐼
and ℎ𝑡 (𝑥, 𝜏) = (𝑥, 𝜏), for any point (𝑥, 𝜏) ∈ 𝑋𝐴. Thus, 𝐸𝑋𝐴 is FNSDR in the
weak sense, and therefore the pair (𝑋 × 𝐼, 𝑋𝐴) is a co�bration. □

2.8 Strong deformation retracts and homotopy
equivalences

Let's now return to the map 𝑓 : 𝑋 → 𝑌 and its cylinder Cyl( 𝑓 ). Since, as
already noted, homotopy (1.10) is a homotopy relative to 𝑌 , we see that for any
map 𝑓 : 𝑋 → 𝑌 the space 𝑌 is a strong deformation retraction of the cylinder
Cyl( 𝑓 ).

As for the space 𝑋, then, according to proposition 2.14, in order for it to be a
strong deformation retraction of the cylinder Cyl( 𝑓 ), it is necessary in any case
that the map 𝑓 : 𝑋 → 𝑌 be a homotopy equivalence. Moreover, if we remember
that the deformation retraction constructed in the proof of proposition 2.14 is
obviously not a homotopy with respect to 𝑋, it turns out that this necessary
condition is also su�cient.
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Proposition 2.29. A map 𝑓 : 𝑋 → 𝑌 is a homotopy equivalence if and only if
the space 𝑋 is a strong deformation retract of the cylinder Cyl( 𝑓 ).

Proof. This proposition follows directly from Propositions 2.14, 2.18 and Lemma
2.5. □

Corollary 2.30. A space 𝑋 is contractible if and only if it is a strong defor-
mation retract of the cone 𝐶𝑋.

2.9 Two more axioms characterising �brations

The axiom on the covering extension and the axiom on the covering homotopy
extension

The concept of strict deformation retraction also allows us to give a new
characterisation of maps that are �brations.

We will say that the map 𝑝 : 𝐸 → 𝐵 satis�es the axiom of the covering
map extension (in short, the axiom CME) if for any pair (𝑋, 𝐴) in which the
subspace 𝐴 is functionally separable and is a strong deformation retract of the
space 𝑋, for each commutative diagramme of the form

𝐴
𝑔 //

𝑖

��

𝐸

𝑝

��
𝑋

𝑓
//

𝑓

??

𝐵

(2.31)

there exists a map 𝑓 where 𝑖 is the inclusion.
Since the subspace 𝑋 = 𝑋 × 0 of the product 𝑋 × 𝐼 is obviously functionally

separable and is its strong deformation retract,

Proposition 2.32. every map 𝑝 : 𝐸 → 𝐵 satisfying the axiom of the extension
of the covering map is a �bration.

The converse is also true, i.e.

Proposition 2.33. any �bration satis�es the axiom of the extension of the
covering map.

Proof. Indeed, let, in the diagramme (2.31), the map 𝑝 : 𝐸 → 𝐵 be a �bration,
and the subspace 𝐴 of the space 𝑋 be functionally separable and represent a
strong deformation retract of the space 𝑋. Let, further, 𝑟 : 𝑋 → 𝐴 be a strong
deformation retraction, 𝐻 : 𝑋× 𝐼 → 𝑋 be a homotopy �xing 𝐴, connecting maps
𝑖 ◦ 𝑟 : 𝑋 → 𝑋 with the identity map id : 𝑋 → 𝑋, and 𝜑 : 𝑋 → 𝐼 is a continuous
function such that 𝜑−1 (0) = 𝐴. Then it is clear that the formula

𝐻 (𝑥, 𝑡) =
{
𝐻 (𝑥, 𝑡/𝜑(𝑥)), if 𝑡 ≤ 𝜑(𝑥) and 𝑥 ∉ 𝐴,

𝑥, if 𝑡 ≥ 𝜑(𝑥) or 𝑥 ∈ 𝐴,
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well de�nes some continuous map 𝐻 : 𝑋 × 𝐼 → 𝑋, which is also a homotopy
�xed on 𝐴 connecting the map 𝑖 ◦ 𝑟 to the identity map id. At the same time,
if we similarly �excite� the map 𝜎0, i.e. consider the map 𝜎0 : 𝑋 → ×𝐼, de�ned
by the formula

𝜎0 (𝑥) = (𝑥, 𝜑(𝑥)), 𝑥 ∈ 𝑋,

then the equality 𝐻 ◦ 𝜎0 = id will take place (whereas 𝐻 ◦ 𝜎0 = 𝑖 ◦ 𝑟). However,
𝜎0 = 𝜎0 on 𝐴, i.e. 𝜎0 ◦ 𝑖 = 𝜎0 ◦ 𝑖.

Let us now consider the diagramme

𝐴
𝑖 //

𝑖

��

𝑋
𝑟 //

𝜎0

��

𝐴
𝑔 //

𝑖

��

𝐸

𝑝

��
𝑋

𝜎0

// 𝑋 × 𝐼
𝐻

// 𝑋
𝑓
// 𝐵

According to what has just been said, this diagramme is commutative.
By combining the corresponding maps, we can combine the central and right

squares of this diagramme into one (also commutative) diagramme

𝑋
𝑔◦𝑟 //

𝜎0

��

𝐸

𝑝

��
𝑋 × 𝐼

𝐺
//

𝐺

<<

𝐵

where 𝐺 = 𝑓 ◦ 𝐻. Since the map 𝑝 : 𝐸 → 𝐵 is by condition a �bration, there is
a covering homotopy 𝐺 : 𝑋 × 𝐼 → 𝐸 for this diagramme, and then it is directly
veri�ed that the map 𝑓 = 𝐺 ◦ 𝜎0 closes the diagram (2.31). □

The result obtained has an important corollary concerning the problem of
extending the covering homotopy:

𝐴
𝑓 //

𝜎̃0

��

𝐸

𝑝

��
𝑋 × 𝐼

𝐹
//

𝐹

==

𝐵

(2.34)

where 𝐴 ⊂ 𝑋 and 𝐴 = (𝑋 × 0) ∪ (𝐴 × 𝐼) (see diagram (1.52) from the Appendix
to Lecture 1).

We will say that the map 𝑝 : 𝐸 → 𝐵 satis�es the axiom of covering homotopy
extension (in short, the axiom HE) if for any diagram (2.34) in which (𝑋, 𝐴) is
a closed co�bration, there exists a covering homotopy 𝐹.

For 𝐴 = ∅, the axiom CHE turns into the axiom HE, so that

Proposition 2.35. any map satisfying the axiom of the covering homotopy
extension is a �bration.
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And conversely, it turns out that

Proposition 2.36. any �bration satis�es the axiom of the covering homotopy
extension.

Proof. Since �brations satisfy the axiom CME, to prove this statement, it is
su�cient to show that the axiom CME follows from the axiom CH, i.e. that for
any closed co�bration (𝑋, 𝐴) Diagramme (2.34) is a special case of Diagramme
(2.31), or, in other words, that the subspace 𝐴 of the space 𝑋 × 𝐼 is its strong
deformation retract and is functionally separable. The �rst property is provided
by by the above-proven Corollary 2.30 to Proposition 2.29, and for the proof of
the second it is su�cient to show that for a functional distinguished subspace
𝐴 ⊂ 𝑋, the subspace 𝐴 ⊂ 𝑋 × 𝐼 is also functionally allocated (for, as was proved
in Proposition 1.18 in Lecture 1, for any closed co�bration (𝑋, 𝐴), the subspace
𝐴 is functionally separable). But if 𝜑 : 𝑋 → 𝐼 is a continuous function such
that 𝐴 = 𝜑−1 (0), then the function 𝜓 : 𝑋 × 𝐼 → 𝐼 de�ned by the formula
𝜓(𝑥, 𝑡) = min(𝑡, 𝜑(𝑥)), (𝑥, 𝑡) ∈ 𝑋 × 𝐼, will have the property that 𝐴 = 𝜓−1 (0). □

Combining the result obtained with the other characterisations of �brations
proved above, we obtain

Theorem 2.37. For an arbitrary map 𝑝 : 𝐸 → 𝐵, the following axioms are
equivalent:

CH Covering homotopy.

CP Covering path.

WCHE Weak covering homotopy extension.

CHE Covering homotopy extension.

CME Covering map extension.

Thus, �brations can be characterised by each of these axioms.

Corollary 2.38. Let in the diagramme where 𝑝 is a �bration

𝐴
𝑓 //

𝜎̃0

��

𝐸

𝑝

��
𝑋 × 𝐼

𝐹
//

𝐹

==

𝐵

the homotopy 𝐹 be stationary on a closed subspace of 𝐴 ⊂ 𝑋. Then, if the pair
(𝑋, 𝐴) is a co�bration, then the homotopy 𝐹 can also be chosen to be �xed on
𝐴.

Proof. The condition of immobility of homotopy 𝐹 on 𝐴 sets this homotopy on
𝐴. Therefore, we can apply the axiom on the covering homotopy extension. □
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2.10 The preimage of the co�bration

An important proposition follows from this corollary, concerning the preimages
of co�brations.

Proposition 2.39. For any �bration 𝑝 : 𝐸 → 𝐵 and any closed subspace 𝐴 ⊂ 𝐵
having the property that the pair (𝐵, 𝐴) is a co�bration, the pair (𝐸, 𝑝−1𝐴) will
also be a co�bration.

Proof. According to proposition 2.27 and Lemma 2.26, there exists a continuous
function 𝜓 : 𝐵 → 𝐼 such that 𝜓−1 (0) = 𝐴, and a �xed homotopy 𝑔𝑡 : 𝐵 → 𝐵 on
𝐴, such that 𝑔0 = id𝐵 and 𝑔𝑡 (𝑥) ∈ 𝐴 for 𝑡 > 𝜓(𝑥). The homotopy 𝑝 ◦ 𝑔𝑡 : 𝐸 → 𝐵

is �xed on 𝑝−1𝐴, and its initial map 𝑝 ◦ 𝑔0 = 𝑝 is covered by the map id𝐸 .
Therefore, according to Corollary 2.20, there exists a �xed homotopy on 𝑝−1𝐴
and a homotopy ℎ𝑡 : 𝐸 → 𝐸 such that ℎ0 = id𝐸 and ℎ𝑡 ◦ 𝑝 = 𝑝 ◦ 𝑔𝑡 for any 𝑡 ∈ 𝐼.
Consider on 𝐸 the function 𝜓 = 𝜓 ◦ 𝑝 : 𝐸 → 𝐼 and the homotopy 𝑔𝑡 : 𝐸 → 𝐸

de�ned by the formula

𝑔𝑡 (𝑥) = ℎ𝜏 (𝑥), where 𝜏 = min(𝑡, 𝜓(𝑥)), 𝑥 ∈ 𝐸.

It is clear that 𝜓
−1 (0) = 𝑝−1𝐴, 𝑔0 (𝑥) = 𝑥, and 𝑔𝑡 (𝑥) ∈ 𝑝−1𝐴 for 𝑡 > 𝜓(𝑥).

Therefore, the pair (𝐸, 𝑝−1𝐴) is a co�bration. □

2.11 Reduction of an arbitrary map to a �bration

Let us now return to Theorem 2.3 (which, recall, we so far proved only for
co�brations).

The reversed cocylinder of the map 𝑓 : 𝑋 → 𝑌 is by de�nition the push-out

of the diagramme 𝑌 𝐼
𝜔1−−→ 𝑌

𝑓
←− 𝑋, i.e. a subset of the product of 𝑌 𝐼×𝑋 consisting

of points (𝑢, 𝑥), 𝑢 : 𝐼 → 𝑌 , 𝑥 ∈ 𝑋, such that 𝑢(1) = 𝑓 (𝑥). We will denote this
cylinder with the same symbol Cocyl( 𝑓 ).

In the notation of Lecture 1 a commutative diagramme takes place for an
inverted cocylinder

Cocyl( 𝑓 )
𝜔

#
1 //

𝑓𝜔1

��

𝑋

𝑓

��
𝑌 𝐼

𝜔1

// 𝑌

The map 𝜔#
1 : (𝑢, 𝑥) ↦→ 𝑥 we will denote by the symbol 𝑅 to simplify the

formulae. In addition, we will introduce into consideration the map 𝑝 = 𝜔0◦ 𝑓𝜔1
:

Cocyl( 𝑓 ) → 𝑌 , acting according to the formula (𝑢, 𝑥) ↦→ 𝑢(0).

Lemma 2.40. The map 𝑝 : Cocyl( 𝑓 ) → 𝑌 is a �bration.

Proof. Let Cocyl(𝑝) be the cocylinder (non-inverted) of the map 𝑝 and 𝑞 :
Cocyl( 𝑓 )𝐼 → Cocyl(𝑝) be the map 𝑤 ↦→ (𝑝 ◦ 𝑤, 𝑤(0)), 𝑤 : 𝐼 → Cocyl( 𝑓 ).
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According to Proposition 1.36 of Lecture 1, to prove Lemma 2.40, it is enough
for us to construct a map 𝑠 : Cocyl(𝑝) → Cocyl( 𝑓 )𝐼 , such that 𝑔 ◦ 𝑠 = id. The
exponential law allows us to consider the map 𝑠 as a map

Cocyl(𝑝) × 𝐼 → Cocyl( 𝑓 )𝐼 ,

i.e., (we use this law again) as a pair of maps

𝑎 : Cocyl(𝑝) × 𝐼 × 𝐼 → 𝑌, 𝑏 : Cocyl(𝑝) × 𝐼 → 𝑋,

connected for any points 𝑐 ∈ Cocyl(𝑝), 𝑡 ∈ 𝐼 by the relation

𝑎(𝑐, 𝑡, 1) = 𝑓 (𝑏(𝑐, 𝑡)).

In this interpretation, the identity 𝑔 ◦ 𝑠 = id is equivalent, as it is easy to see, to
the identities

𝑣(𝑡) = 𝑎(𝑐, 𝑡, 0), 𝑢(𝑥) = 𝑎(𝑐, 0, 𝜏), 𝑥 = 𝑏(𝑐, 0),

which should be the case for any numbers 𝑡, 𝜏 ∈ and any point

𝑐 = (𝑣, 𝑐) ∈ Cocyl(𝑝), where 𝑣 : 𝐼 → 𝑌, 𝑐 = (𝑢, 𝑥) ∈ Cocyl( 𝑓 ),

i.e. for any point 𝑥 ∈ 𝑋 to any paths 𝑣 : 𝐼 → 𝑌 and 𝑢 : 𝐼 → 𝑌 connected by the
relations

𝑢(0) = 𝑣(0) 𝑢(1) = 𝑓 (𝑥).

Assuming a natural liberty, we will denote (𝑣, 𝑢, 𝑥) by the former symbol 𝑐.
We will de�ne the map 𝑏 by the formula

𝑏(𝑥, 𝑡) = 𝑥, 𝑐 = (𝑣, 𝑢, 𝑥) ∈ Cocyl(𝑝) and 𝑡 ∈ 𝐼 .

Then the map 𝑎 will satisfy the relations

𝑣(𝑡) = 𝑎(𝑐, 𝑡, 0), 𝑢(𝜏) = 𝑎(𝑐, 0, 𝑡), 𝑎(𝑐, 𝑡, 1) = 𝑓 (𝑥)

for any points 𝑐 = (𝑣, 𝑢, 𝑥) ∈ Cocyl(𝑝) and (𝑡, 𝜏) ∈ 𝐼 × 𝐼. But it is clear that
these relations are satis�ed by the map 𝑎 : Cocyl(𝑝) × 𝐼 × 𝐼 → 𝑌 , de�ned by the
formula

𝑎(𝑐, 𝑡, 𝜏) = (𝑐̃ ◦ 𝜑) (𝑡, 𝜏), 𝑐 = (𝑣, 𝑢, 𝑥) ∈ Cocyl(𝑝), 𝑡, 𝜏 ∈ 𝐼,

where 𝜑, as above, is a retraction map 𝐼 × 𝐼 → (𝐼 × 0) ∪ (0 × 𝐼), for which
𝜑(1× 𝐼) = (1, 0), and 𝑐̃ is the map (𝐼 × 0) ∪ (0× 𝐼) → 𝑌 , de�ned by the formulae

𝑐̃(𝑡, 0) = 𝑣(𝑡), 𝑐̃(0, 𝜏) = 𝑢(𝜏), 𝑡, 𝜏 ∈ 𝐼 .

(Question: Why is the map 𝑎 continuous?)
Thus Lemma 2.40 is fully proved. □
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For each point 𝑦 ∈ 𝑌 with the symbol 0𝑦, we will denote a constant path at
the point 𝑦, given by the formula

0𝑦 (𝑡) = 𝑦 for any point 𝑡 ∈ 𝐼 .

In particular, for each point 𝑥 ∈ 𝑋 the symbol 0 𝑓 (𝑥 ) denotes a constant path at
the point 𝑓 (𝑥) ∈ 𝑌 . Because 0 𝑓 (𝑥 ) (1) = 𝑓 (𝑥), the pair 0 𝑓 (𝑥 ) , 𝑥) lies in Cocyl( 𝑓 ).
Denoting this pair with the symbol 𝑖(𝑥), we therefore get a (obviously continu-
ous) map

𝑖 : 𝑋 → Cocyl( 𝑓 ).

With the map 𝑟 : Cocyl( 𝑓 ) → 𝑋, (𝑢, 𝑥) ↦→ 𝑥, the map 𝑖 is related by the formula
𝑟 ◦ 𝑖 = id. Therefore, 𝑖 is a moneomorphism, and therefore, identifying each
point 𝑥 ∈ 𝑋 with a point 𝑖(𝑥), we will embed 𝑋 in Cocyl( 𝑓 ). In this case, the
subspace 𝑋 will be a retract of the space Cocyl( 𝑓 ) with a retraction map 𝑟.

Lemma 2.41. The retract 𝑋 is a strong deformation retract of the space Cocyl( 𝑓 ),
so that, in particular, the map 𝑖 is a homotopy equivalence.

Proof. The formula

𝐻 ((𝑢, 𝑥), 𝑡) = (𝑣𝑡 , 𝑥), (𝑢, 𝑥) ∈ Cocyl( 𝑓 ), 𝑡 ∈ 𝐼

where 𝑣𝑡 is the path 𝐼 → 𝑌 de�ned by the formula

𝑣𝑡 = 𝑢(1 − 𝑡 + 𝜏𝑡), 𝜏 ∈ 𝐼,

(obviously satisfying the condition 𝑣𝑡 (1) = 𝑓 (𝑥)), de�nes the homotopy

𝐻 : Cocyl( 𝑓 ) × 𝐼 → Cocyl( 𝑓 ),

�xed on 𝑋 and connecting the map 𝑖 ◦ 𝑟 : (𝑢, 𝑥) ↦→ (0 𝑓 (𝑥 ) , 𝑥) with the identity
id : (𝑢, 𝑥) ↦→ (𝑢, 𝑥). □

Corollary 2.42. Any continuous map 𝑓 : 𝑋 → 𝑌 is homotopically equivalent
to the �bration 𝑝 : Cocyl( 𝑓 ) → 𝑌 .

Proof. It su�ces to note that 𝑓 (𝑥) = 0 𝑓 (𝑥 ) (0) = 𝑝(0 𝑓 (𝑥), 𝑥) = (𝑝 ◦ 𝑖) (𝑥) for any
point 𝑥 ∈ 𝑋, i.e. that the diagramme

Cocyl( 𝑓 )
𝑝

��
𝑋

𝑓
//

𝑖

::

𝑌

commutes, i.e., 𝑓 = 𝑝 ◦ 𝑖. □

Thus, Theorem 2.3 is also proved with respect to �brations.





Appendix

Introduced in an ad hoc fashion at the end of the Appendix to Lecture 1 the
concept of map isomorphism 𝑝 : 𝐸 → 𝐵 and 𝑝

′
: 𝐸

′ → 𝐵 it can be included in the
general categorical framework, which leads to a signi�cant and very important
generalisation of all our considerations.

2.A Category 𝒯ℴ𝓅𝐵0

Let 𝒜 be an arbitrary category and 𝐵0 be some of its �xed object. An object
𝑋 of the category 𝐴, considered together with some morphism 𝜋𝑋 : 𝑋 → 𝐵0, is
called an object over 𝐵0. The morphism 𝜋𝑋 is called the projection of the object
𝑋.

With another - equivalent - point of view, objects over 𝐵0 are considered to
be the maps of 𝜋𝑋 themselves.

For any two objects 𝑋 and 𝑌 over 𝐵0, a morphism over 𝐵0 of an object 𝑋
into an object 𝑌 is an arbitrary morphism 𝑓 : 𝑋 → 𝑌 of the category 𝒜, for
which the diagramme

𝑋
𝑓 //

𝜋𝑋   

𝑌

𝜋𝑌~~
𝐵0

commutes. It is clear that all objects over 𝐵0 and all their morphisms over 𝐵0

constitute a category. We will denote this category by the symbol 𝒜𝐵0
.

In particular, for any topological space 𝐵0, the category 𝒯ℴ𝓇𝓊𝓈𝐵0
, whose

isomorphisms are the isomorphisms of maps introduced in the Appendix to
Lecture 1.

In the case when the space 𝐵0 consists of only one point (it is a terminal
object of the category 𝒯ℴ𝓅), the category 𝒯ℴ𝓅𝐵0

is naturally identi�ed with
the category 𝒯ℴ𝓅. Thus, 𝒯ℴ𝓅𝐵0

generalises 𝒯ℴ𝓅. This generalisation is
quite meaningful, since in an arbitrary category 𝒯ℴ𝓅𝐵0

, an equally advanced
homotopy theory is possible, as in the category 𝒯ℴ𝓅.

However, for obvious reasons, we won't develop in detail the theory of ho-
motopies in categories 𝒯ℴ𝓇𝐵0

, and we will limit ourselves to its very initial

79
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concepts and results. For us, this theory will have only an auxiliary value, as
one of the tools for a more in-depth study of the category 𝒯ℴ𝓅.

A note on terminology

For a topological space 𝑋 over 𝐵0, the preimage 𝜋−1
𝑋
(𝑏) of an arbitrary point

𝑏 ∈ 𝐵0 when projected 𝜋𝑋 : 𝑋 → 𝐵0 is usually called the �bre of this space over
the point 𝐵. For any two spaces 𝑋 and 𝑌 over 𝐵0, a continuous map 𝑓 : 𝑋 → 𝑌

if and only if is a map over 𝐵0 when for each point 𝐵 ∈ 𝑇𝑜 it translates the �bre
𝜋−1
𝑋
(𝑏) to the �bre 𝜋−1

𝑌
(𝑏). Therefore, the map over 𝐵0 are also called �brewise

maps.

2.B Homotopies, co�brations, and �brations of
the category 𝒯ℴ𝓅𝐵0

Homotopy in the category 𝒯ℴ𝓅𝐵0
are introduced completely naturally.

Let 𝑋 and 𝑌 be topological spaces over 𝐵0 (objects of the category𝒯ℴ𝓇𝓊𝓈𝐵0
).

Maps 𝑓 , 𝑔 : 𝑋 → 𝑌 over 𝐵0 (morphisms of the category 𝒯ℴ𝓅𝐵0
) are called ho-

motopy in 𝒯ℴ𝓅𝐵0
(or over 𝐵0), and also �brewise homotopy if there exists such

a homotopy 𝑓𝑡 : 𝑋 → 𝑌 that 𝑓0 = 𝑓 , 𝑓1 = 𝑔 and for any 𝑡 ∈ 𝐼, the map 𝑓𝑡 : 𝑋 → 𝑌

is a map over 𝐵0. The homotopy 𝑓𝑡 is said to be a homotopy over 𝐵0 between
𝑓 and 𝑔. The homotopy relation over 𝐵0 is denoted by the symbol 𝑓 ∼

𝐵0

𝑔.

It is clear that �brewise homotopies satisfy the general axioms (1◦) - (4◦)
from Lecture 0, therefore, in particular, the relation of homotopy over 𝐵0 is an
equivalence relation. The corresponding equivalence classes are called homotopy
classes over 𝐵0 (or �brewise homotopy classes). The class containing the map
𝑓 is denoted by the symbol [ 𝑓 ]𝐵0

.
Since the formula

[𝑔]𝐵0
◦ [ 𝑓 ]𝐵0

= [𝑔 ◦ 𝑓 ]𝐵0

well de�nes the composition of any homotopy classes over 𝐵0, then a category
arises [𝒯ℴ𝓅𝐵0

], whose objects are spaces over 𝐵0, and morphisms are homotopy
classes over 𝐵0.

Remark 2.43. The category [𝒯ℴ𝓅𝐵0
] should be distinguished from the category

[𝒯ℴ𝓅]𝐵0
. These categories are connected by an obvious functor

[𝒯ℴ𝓅𝐵0
] → [𝒯ℴ𝓅]𝐵0

, (2.44)

which is identical on objects, but, generally speaking, not injective and not
surjective on morphisms. See page 111 below.

A morphism 𝑓 : 𝑋 → 𝑌 in the category 𝒯ℴ𝓅𝐵0
is called a homotopy equiv-

alence over 𝐵0 (or a �brewise homotopy equivalence) if there exists a morphism
𝑔 : 𝑌 → 𝑋 such that 𝑔 ◦ 𝑓 ∼

𝐵0

id and 𝑓 ◦ 𝑔 ∼
𝐵0

id, i.e. if its homotopy class over

𝐵0 is an isomorphism of the category [𝒯ℴ𝓅𝐵0
].
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Each subspace 𝐴 of the space 𝑋 over 𝐵0 is automatically a space over 𝐵0

(with the projection 𝜋𝐴 = 𝜋𝑋 |𝐴), and the embedding 𝑖 : 𝐴 → 𝑋 is a map over
𝐵0. In the case when there is a map 𝑟 : 𝑋 → 𝐴 over 𝐵0, such that 𝑟 ◦ 𝑖 = id,
the subspace of 𝐴 is called a retraction over 𝐵0 (or a �brewise retraction) of the
space 𝑋 (and the map 𝑟 is a retraction over 𝐵0 or �brewise retraction). If, in
addition, 𝑖 ◦ 𝑟 ∼

𝐵0

id, then the retract 𝐴 is called a deformation retract over 𝐵0,

and if 𝑖◦ ∼
𝐵0

id rel 𝐴 (i.e. if the map 𝑖 ◦ 𝑟 and id are connected by homotopy over

𝐵0, �xed on 𝐴), then a strong deformation retract over 𝐵0.

For any space 𝑋 over 𝐵0 we will consider the product of 𝑋 × 𝐼 as the space
over 𝐵0 with the projection (𝑥, 𝑡) ↦→ 𝜋𝑋 (𝑥). Then homotopies over 𝐵0 will be
nothing more than maps over 𝐵0 of the form 𝑋 × 𝐼 → 𝑌 .

Maps 𝑋 → 𝑌 𝐼 corresponding exponentially to such homotopies will obviously
be characterised by the fact that they translate 𝑋 into the subspace 𝑌 𝐼

𝐵0
of the

space 𝑌 𝐼 consisting of paths 𝑢 : 𝐼 → 𝑌 such that 𝜋𝑌 ◦ 𝑢 = const. Putting
𝜋𝑌 ◦ 𝑢 = 0𝜋 (𝑢) , we get the projection 𝜋 : 𝑌 𝐼

𝐵0
→ 𝐵0, with respect to which these

maps will be maps over 𝐵0. Thus, homotopies over 𝐵0 can also be interpreted
as maps over 𝐵0 of the form 𝑋 → 𝑌 𝐼

𝐵0
.

A map of 𝑖 : 𝐴 → 𝑋 over 𝐵0 is called a co�bration over 𝐵0 if for each
diagramme of the form

𝐴
𝑖 //

𝐹

��

𝑋

𝑓

��

𝐹

��
𝑌 𝐼𝐵0 𝜔0

// 𝑌

all maps of which are maps over 𝐵0, there is a closing map 𝐹 over 𝐵0.

For any map 𝑓 : 𝑋 → 𝑌 over 𝐵0, its cylinder Cyl( 𝑓 ) is a space over 𝐵0

relative to the projection [𝑥, 𝑡] ↦→ 𝜋𝑋 (𝑥), 𝑦 ↦→ 𝜋𝑌 (𝑦), and, as it is easy to see,
Lemmas 2.5 and 2.7 of Lecture 2 will remain valid over 𝐵0, i.e.

Proposition 2.45. the map 𝑖 : 𝑋 → Cyl( 𝑓 ) will be a co�bration over 𝐵0, and
the map 𝑟 : Cyl( 𝑓 ) → 𝑌 is a homotopy equivalence over 𝐵0 (and even a strong
deformation retraction over 𝐵0).

The Proposition 2.14 of Lecture 2 will also remain valid, as well as Lemma
2.26 of lecture 2 (in which, of course, for the pair (𝑋, 𝐴) we need to require it
to be a co�bration over 𝐵0, i.e. that the embedding 𝑖 : 𝐴→ 𝑋 be a co�bration
over 𝐵0). Therefore, Proposition 2.39 of Lecture 2 will also remain in force. In
particular,

Proposition 2.46. for any homotopy equivalence 𝑓 : 𝑋 → 𝑌 over 𝐵0 the
subspace 𝑋 of the cylinder Cyl( 𝑓 ) will be its strong deformation retract over 𝐵0.

In a dual way, the map 𝑝 : 𝐸 → 𝐵 over 𝐵0 is called a �bration over 𝐵0 if for
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each diagramme of the form

𝑋
𝑓 //

𝜎0

��

𝐸

𝑝

��
𝑋 × 𝐼

𝐹
//

𝐹

<<

𝐵

or, equivalently, each diagramme of the form

𝑋
𝑓 //

𝐹

��

𝐹

!!

𝐸

𝑝

��

𝐸 𝐼𝐵0

𝜔0

>>

𝑝∗~~ ��
𝐵𝐼𝐵0 𝜔0

// 𝐵

for all maps over 𝐵0, there exists over 𝐵0, a closing map of 𝐹 (a covering
homotopy over 𝐵0).

The cocylinder over 𝐵0 of the map 𝑝 : 𝐸 → 𝐼𝑛 over 𝐵0 is called a subspace
Cocyl𝐵0

(𝑝) ⊂ Cocyl(𝑝), consisting of pairs (𝑢, 𝑒), 𝑢 : 𝐼 → 𝐵, 𝑒 ∈ 𝐸 , 𝑢(0) = 𝑝(𝑒),
such that 𝑢 ∈ 𝐵𝐼

𝐵0
, i.e. 𝜋𝐵 ◦ 𝑢 = const. It is a space over 𝐵0 with the projection

(𝑢, 𝑒) ↦→ 𝜋𝐵 (𝑝(𝑒)). It is clear that the map 𝑞 : 𝐸 𝐼 → Cocyl(𝑝), 𝑢 ↦→ (𝑝◦𝑢, 𝑢(0)),
will move 𝐸 𝐼

𝐵0
to Cocyl𝐵0

(𝑝) and therefore induces the map

𝐸 𝐼𝐵0
→ Cocyl𝐵0

(𝑝), 𝑢 ↦→ (𝑝 ◦ 𝑢, 𝑢(0)),

which we will also denote by 𝑞. Obviously, this map is a map over 𝐵0.
Having now re-examined the proof of Proposition 1.36 of Lecture 1, we will

immediately make sure that it is fully preserved for �brations over 𝐵0, so that

Proposition 2.47. the map 𝑝 : 𝐸 → 𝐵 over 𝐵0 will there be a �bration over
𝐵0, if and only if there is a section Cocyl𝐵0

(𝑝) → 𝐸 𝐼
𝐵0

to the map 𝑞 : 𝐸 𝐼
𝐵0
→

Cocyl𝐵0
(𝑝) (which is automatically being a map over 𝐵0).

The results of Lecture 2 concerning �brations are also transferred to the
category 𝒯ℴ𝓅𝐵0

.
Reversed cocylinder over 𝐵0 of the map 𝑓 : 𝑋 → 𝑌 over 𝐵0 is the subspace

of the the cocylinder Cocyl( 𝑓 ) consisting of pairs (𝑢, 𝑥), 𝑢 : 𝐼 → 𝑌 , 𝑥 ∈ 𝑋,
𝑢(1) = 𝑓 (𝑥), such that 𝑢 ∈ 𝑌 𝐼

𝐵0
. It is indicated by the symbol Cocyl𝐵0

( 𝑓 ) and is
a space over 𝐵0 with projection (𝑢, 𝑥) ↦→ 𝜋𝑋 ( 𝑓 (𝑥)), and the map

𝑝 : Cocyl𝐵0
(𝑎) → 𝑌, (𝑢, 𝑥) ↦→ 𝑢(0)

is a map over 𝐵0. Moreover, the map 𝑝 will be a �bration over 𝐵0. The proof
comprises a verbatim repetition of the proof of Lemma 2.40 of Lecture 2.
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Similarly, Lemma 2.41 of Lecture 2 is also preserved in the category𝒯ℴ𝓅𝐵0
,

i.e. for maps

𝑟 : Cocyl𝐵0
( 𝑓 ) → 𝑋, (𝑢, 𝑥) ↦→ 𝑥,

𝑖 : 𝑋 → Cocyl𝐵0
( 𝑓 ), 𝑥 ↦→ (0 𝑓 (𝑥 ) , 𝑥),

there are relations
𝑟 ◦ 𝑖 = id, 𝑖 ◦ 𝑟 ∼

𝐵0

id .

In particular, the map 𝑖 is a homotopy equivalence over 𝐵0.

2.C Homotopy �brations.

Application of these concepts and results to the category 𝒯ℴ𝓅 is based on the
obvious observation that we can consider any map 𝑝 : 𝐸 → 𝐵 as a map over 𝐵,
considering the spaces 𝐸 and 𝐵 as spaces over 𝐵 with projections 𝜋𝐸 = 𝑝 and
𝜋𝐵 = id:

𝐸
𝑝 //

𝑝
��

𝐵

id��
𝐵

Then the statement that the map 𝑠 : 𝐵 → 𝐸 is a cross section of the map 𝑝,
would be equivalent to saying that it is a map over 𝐵.

Similarly, in any diagramme of the form

𝑋
𝑓 //

𝜎0

��

𝐸

𝑝

��
𝑋 × 𝐼

𝐹
//

𝐹

<<

𝐵

(2.48)

we can consider the spaces 𝑋 and 𝑋 × 𝐼 as spaces over 𝐵 with projections
𝜋𝑋 = 𝑝 ◦ 𝑓 = 𝐹 ◦ 𝜎0 and 𝜋𝑋×𝐼 = 𝐹 accordingly. Then the maps 𝜎0 and 𝑓 will be
maps over 𝐵, so over the category 𝒯ℴ𝓅𝐵 the diagramme will take place

𝑋

𝑓

��

𝜎0

||
𝑋 × 𝐼

𝐹

// 𝐸

(2.49)

and, therefore, the condition that the map 𝑝 : 𝐸 → 𝐵 is a �bration will be
equivalent to the fact that for any diagramme (2.49) over 𝐵, i.e. for any space
𝑋 over 𝐵 for which on the product 𝑋 × 𝑙 is given a structure of the space over
𝐵 (i.e., the projection 𝜋𝑋×𝐼 : 𝑋 × 𝐼 → 𝐵 is given) such that the embedding

𝜎0 × 𝑋 → 𝑋 × 𝐼 is a map over 𝐵, and for any map 𝑓 : 𝑋 → 𝐸 it is necessary over
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𝐵, there is a map 𝐹 : 𝑋 × 𝐼 → 𝐸 over 𝐵, closing this diagramme, i.e. such that
𝐹 ◦ 𝜎0 = 𝑓 .

This reformulation is not completely meaningless, since it allows for imme-
diate generalisation.

De�nition 2.50. It is said that the map 𝑝 : 𝐸 → 𝐵 is a homotopy �bration
((or a �brarion in the sense of Dold), if for any diagramme of the form (2.49)
(consisting of maps over 𝐵) there exists a map 𝐹 : 𝑋 × 𝐼 → 𝐸 (over 𝐵) such that

𝐹 ◦ 𝜎0 ∼
𝐵
𝑓 , i.e., in other words, if for each diagram of the form (2.4) there is a

map 𝐹 : 𝑋 × 𝐼 → 𝐸 such that its upper triangle is homotopically commutative
over 𝐵 (whereas the lower triangle is still commutative).

In other words, the map 𝑝 : 𝐸 → 𝐵 is a homotopy �bration if, under the
conditions of the axiom HE (see De�nition 0.19), the covering homotopy begins
(generally speaking) not with a given map 𝑋 → 𝐸 , but with a map that is
homotopic to it over 𝐵.

Any �bration is, of course, a homotopy �bration, but as the simplest exam-
ples show the converse is not true: (right angle 𝐸 = 𝐼 × {0}∪ {0} × 𝐼 on the plane
R × R and its projection 𝑝 : (𝑥, 𝑦) ↦→ 𝑥 on the segment 𝐵 = 𝐼).

Now it will be convenient for us to shift the emphasis somewhat and consider
objects of the 𝒯ℴ𝓅𝐵 the map 𝑝 : 𝐸 → 𝐵 themselves.

Lemma 2.51. Any map 𝑝 : 𝐸 → 𝐵 that is homotopy equivalent over 𝐵 to a
homotopy �bration 𝑝

′
: 𝐸

′ → 𝐵, will also be a homotopy �bration.
In other words, the property of being homotopy is is invariant with respect

to �brewise homotopy equivalences.

Proof. By condition , there are maps 𝑓 : 𝐸 → 𝐸
′
, 𝑔 : 𝐸

′
𝑡𝑜𝐸 over 𝐵 such that

𝑓 ◦ 𝑔 ∼
𝐵
id and 𝑔 ◦ 𝑓 ∼

𝐵
id. They allow each diagramme of the form (2.4) to be

supplemented to a commutative diagramme

𝑋
𝑓 //

𝜎0

��

𝐸
𝑓 //

𝑝

��

𝐸
′ 𝑔 //

𝑝
′

��

𝐸

𝑝

ww
𝑋 × 𝐼

𝐹
// 𝐵

Since the map 𝑝
′
is a homotopy �bration, for a composite diagramme

𝑋
𝑓 ◦ 𝑓 ′ //

𝜎0

��

𝐸
′

𝑝
′

��
𝑋 × 𝐼

𝐹
//

𝐹
′ <<

𝐵

there is a closing map 𝐹
′
: 𝑋 × 𝐼 → 𝐸

′
, for which 𝑝

′ ◦𝐹 ′ = 𝐹 and 𝐹
′ ◦𝜎0 ∼

𝐵
𝑓 ◦ 𝑓 ′ .
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But then the map 𝐹 = 𝑔 ◦ 𝐹
′
: 𝑋 × 𝐼 → 𝐸 will satisfy the relations

𝑝 ◦ 𝐹 = 𝑝 ◦ 𝑔 ◦ 𝐹
′
= 𝑝

′ ◦ 𝐹
′
= 𝐹 and 𝐹 ◦ 𝜎0 ∼

𝐵
𝑔 ◦ 𝑓 ◦ 𝑓 ∼

𝐵
𝑓

that is, it will close Diagramme (2.49) in [𝒯ℴ𝓅𝐵]. □

Remark 2.52. The relation 𝑓 ◦ ∼
𝐵
id is not used in the proof of Lemma 2.51.

Remark 2.53. The homotopy �bration (𝐼 × {0} ∪ ({0} × 𝐼) → 𝐼 is �brewise
homotopically equivalent to the identity �bration 𝐼 → 𝐼. This shows that for
�brations, the analogue of Lemma 2.51 is incorrect.

The validity of Lemma 2.51 for homotopy �brations is for us the raison d'être
of this concept.

2.D Homotopy equivalences in comparison with
�brewise homotopy equivalences

Important circumstances concerning homotopy (and therefore ordinary) �bra-
tions are revealed in connection with questions about the surjectivity on the
morphisms of the functor (2.2) (for 𝐵0 = 𝐵).

For any two objects 𝑝
′
: 𝐸

′ → 𝐵 and 𝑝 : 𝐸 → 𝐵 in the category 𝒯ℴ𝓅ℬ,
the statement that this functor is surjective for morphisms from 𝑝

′
to 𝑝 means

that for any homotopy commutative diagramme of the form

𝐸
′ 𝑓 //

𝑝
′
��

𝐸

𝑝
��

𝐵

the map 𝑓 is homotopic to the map 𝑔 : 𝐸
′ → 𝐸 over 𝐵, i.e. the map for which

the diagramme

𝐸
′ 𝑔 //

𝑝
′
��

𝐸

𝑝
��

𝐵

is commutative. It turns out that

Proposition 2.54. this is obviously the case if the map 𝑝 : 𝐸 → 𝐵 is a �bration
(at least homotopy).

Proof. Indeed, in this case, in the diagramme

𝐸
′ 𝑓 //

𝜎0

��

𝐸

𝑝

��
𝐸 × 𝐼

𝐹
//

𝐹

==

𝐵
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where 𝐹 is the homotopy connecting the map 𝑝 ◦ 𝑓 and 𝑝
′
, there is a covering

homotopy 𝐹, for which 𝐹 ◦ 𝜎0 ∼
𝐵
𝑓 , and therefore the map 𝑔 = 𝐹 ◦ 𝜎1 will be

homotopic to the map 𝑓 (for 𝐹 ◦ 𝜎1
𝐹∼ 𝐹 ◦ 𝜎0) and will have the property that

𝑝 ◦ 𝑔 = 𝑝 ◦ 𝐹 ◦ 𝜎1 = 𝐹 ◦ 𝜎1 = 𝑝
′
. □

It follows, in particular, that

Proposition 2.55. if the homotopy �bration 𝑝 : 𝐸 → 𝐵 has a section in the
category [𝒯ℴ𝓅], then it will have a section in the category 𝒯ℴ𝓅, i.e., in other
words, if there is a map 𝑡 : 𝐵→ 𝐸, such that 𝑝 ◦ 𝑡 ∼ id, then there is also a map
𝑠 : 𝐵→ 𝐸 such that 𝑝 ◦ 𝑠 = id

Proof. It is enough to apply the proven statement to the case when 𝐸
′
= 𝐵,

𝑝
′
= id and 𝑓 = 𝑡. □

The following lemma expresses a much deeper fact.

Lemma 2.56. If the map 𝑝 : 𝐸 → 𝐵 is a homotopy �bration, then for any map
𝑓 : 𝐸 → 𝐸 over 𝐵, homotopic (in 𝒯ℴ𝓅) to the identity map 𝑖𝑑𝐸 , there exists
over 𝐵 a map 𝑔 : 𝐸 → 𝐸 such that 𝑓 ◦ 𝑔 ∼

𝐵
id.

Proof. By condition, there is a homotopy 𝐹 : 𝐸 × 𝐼 → 𝐸 that connects the map
𝑓 with the map id. Since 𝑝 ◦ 𝑓 = 𝑝, the homotopy 𝑝 ◦𝐹 : 𝐸 × 𝐼 → 𝐵 will connect
the map 𝑝 to itself. Therefore, the diagramme

𝐸
id //

𝜎0

��

𝐸

𝑝

��
𝐸 × 𝐼

𝑝◦𝐹
//

𝐹

<<

𝐵

is commutative, and, consequently, for it there will be a homotopy 𝐹 : 𝐸× 𝐼 → 𝐸

covering the homotopy 𝑝 ◦ 𝐹 and such that 𝐹 ◦ 𝜎0 ∼
𝐵
id. Since, in view of the

equality of 𝑝 ◦ 𝐹 ◦ 𝜎1 = 𝑝 ◦ 𝐹 ◦ 𝜎1 = 𝑝, the map 𝑔 = 𝐹 ◦ 𝜎1 : 𝐸 → 𝐸 is a map
over 𝐵, Lemma 2.56 will be proved if we show that the relation 𝑓 ◦ 𝑔 ∼

𝐵
id holds

for this map.
To this end, we will introduce into consideration the homotopy 𝐻 : 𝐸×𝐼 → 𝐸 ,

de�ned by the formula

𝐻 (𝑥, 𝑡) =


( 𝑓 ◦ 𝐹) (𝑥, 1 − 4𝑡), if 0 ≤ 𝑡 ≤ 1/4,
( 𝑓 ◦ 𝐺) (𝑥, 4𝑡 − 1), if 1/4 ≤ 𝑡 ≤ 1/2,
𝑓 (𝑥), if 1/2 ≤ 𝑡 ≤ 3/4,
𝐹 (𝑥, 4𝑡 − 3), if 3/4 ≤ 𝑡 ≤ 1,

where 𝐺 : 𝐸 × 𝐼 → 𝐸 is a homotopy over 𝐵 connecting the map 𝐹 ◦ 𝜎0 to the
map id𝐸 . The homotopy 𝐻 connects the map 𝑓 ◦ 𝑔 to the map id𝐸 , but is not
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homotopy over 𝐵, since

(𝑝 ◦ 𝐻) (𝑥, 𝑡) =


(𝑝 ◦ 𝐹) (𝑥, 1 − 4𝑡), if 0 ≤ 𝑡 ≤ 1/4,
𝑝(𝑥), if 1/4 ≤ 𝑡 ≤ 3/4,
(𝑝 ◦ 𝐹) (𝑥, 4𝑡 − 3), if 3/4 ≤ 𝑡 ≤ 1,

whereas for homotopy over 𝐵 equality (𝑝 ◦ 𝐻) (𝑥, 𝑡) = 𝑝(𝑥) must be the case for
all points (𝑥, 𝑡) ∈ 𝐸 × 𝐼.

To �x the case, we'll look at the map Φ : 𝐸 × 𝐼 × 𝐼 → 𝐵, de�ned by the
formula

Φ(𝑥, 𝑡, 𝜏) =


(𝑝 ◦ 𝐹) (𝑥, 1 − 4𝑡 (1 − 𝜏)), if 0 ≤ 𝑡 ≤ 𝛼(𝜏),
𝑝(𝑥), if 𝛼(𝜏) ≤ 𝑡 ≤ 𝛽(𝜏),
(𝑝 ◦ 𝐹) (𝑥, 1 − 4(1 − 𝑡) (1 − 𝜏), if 𝛽(𝜏) ≤ 𝑡 ≤ 1,

where 𝑥 ∈ 𝐸 , 0 ≤ 𝑡, 𝜏 ≤ 1, and

𝛼(𝜏) = min(1/2, 1/4(1 − 𝜏)), 𝛽(𝜏) = max(1/2, (3 − 4𝜏)/4(1 − 𝜏)).

A direct check shows that the map of Φ is continuous and that

Φ(𝑥, 𝑡, 0) = (𝑝 ◦ 𝐻), (𝑥, 𝑡), (𝑥, 𝜏) ∈ 𝐸 × 𝐼,

i.e. that there is a commutative diagramme

𝐸 × 𝐼 𝐻 //

𝜎0

��

𝐸

𝑝

��
𝐸 × 𝐼 × 𝐼

Φ
//

Φ

::

𝐵

Therefore, there is a map Φ : 𝐸 × 𝐼 × 𝐼 → 𝐸 covering the map Φ such that
𝐻 ∼

𝐵
Φ ◦ 𝜎0.

Because, as it is easy to see, for any point 𝑥 ∈ 𝐸 and any 𝑡, 𝜏 ∈ 𝐼 there are
equalities

Φ(𝑥, 0, 𝜏) = Φ(𝑥, 𝑡, 1) = Φ(𝑥, 1, 𝜏) = 𝑝(𝑥),
from the fact that Φ covers Φ, it follows that the correspondence

(𝑥, 𝑥) ↦→ Φ(𝑥, 𝑂, 𝜏), (𝑥, 𝑡) ↦→ Φ(𝑥, 𝑡, 1), (𝑥, 𝜏) ↦→ Φ(𝑥, 1, 𝜏)

de�ne homotopies over 𝐵,the composition of which connects the map

𝜑0 : 𝑥 ↦→ Φ(𝑥, 0, 0) = (Φ ◦ 𝜎0) (𝑥, 0)

with the map
𝜑1 : 𝑥 ↦→ Φ(𝑥, 1, 0) = (Φ ◦ 𝜎0) (𝑥, 1).

Thus 𝜑0 ∼
𝐵
𝜑1.
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On the other hand, if Ψ : 𝐸 × 𝐼 × 𝐼 → 𝐸 is a homotopy over 𝐵 connecting 𝐻
to Φ ◦ /𝑠𝑖𝑔𝑚𝑎0, then the homotopy (𝑥, 𝜏) ↦→ Ψ(𝑥, 0, 𝜏) will be a homotopy over
𝐵 connecting the map 𝑥 ↦→ 𝐻 (𝑥, 0) = ( 𝑓 ◦ 𝑔) (𝑥) with the map 𝑥 ↦→ Ψ(𝑥, 0, 1) =
Φ(𝑥, 0, 0) = 𝜑0 (𝑥), and the homotopy (𝑥, 𝜏) ↦→ Ψ(𝑥, 1, 𝜏) will be a homotopy
over 𝐵 connecting the map 𝑥 ↦→ 𝐻 (𝑥, 1) = 𝑥 with the map 𝑥 ↦→ Ψ(𝑥, 1, 1) =
Φ(𝑥, 1, 0) = 𝜑1 (𝑥).

Thus, 𝑓 ◦ 𝑔 ∼
𝐵
𝜑0 and id𝐸 ∼

𝐵
𝜑1.

Consequently,

𝑓 ◦ 𝑔 ∼
𝐵
𝜑0 ∼

𝐵
𝜑1 ∼

𝐵
id𝐸 ,

and Lemma 2.56 is proved. □

An immediate consequence of Lemma 2.56 is the following statement stating
that the �brewise �bration (at least homotopy) is a homotopy equivalence.

Proposition 2.57. For any homotopy �bration 𝑝
′
: 𝐸

′ → 𝐵 and 𝑝 : 𝐸 → 𝐵,
every map 𝑓 : 𝑅

′ → 𝐸 over 𝐵, which is a homotopy equivalence, will be a
homotopy equivalence over 𝐵.

Proof. By the condition, there is a continuous map 𝑓
′
: 𝐸 → 𝑅

′
such that

𝑓 ◦ 𝑓 ′ ∼ id and 𝑓
′ ◦ 𝑓 ∼ id. At the same time, we can assume (replacing, if

necessary, the map 𝑓 with a homotopic map) that 𝑓
′
is a map over 𝐵. Then the

map 𝑓 ◦ 𝑓 ′ : 𝐸 → 𝐸 will satisfy all the conditions of Lemma 2.56 and, therefore,
there will be a map 𝑓

′′
: 𝐸 → 𝐸 over 𝐵 such that ( 𝑓 ◦ 𝑓 ′ ) ◦ 𝑓 ′′ ∼

𝐵
id. Therefore,

putting 𝑔 = 𝑓
′ ◦ 𝑓 ′′ , we obtain a map 𝑔 : 𝐸 → 𝐸

′
over 𝐵 such that 𝑓 ◦ 𝑔 ∼

𝐵
id.

Since the map 𝑔 is also a homotopy equivalence, the same construction ap-
plies to it. Therefore, over 𝐵 there exists a map ℎ : 𝐸

′
𝐸 such that 𝑔 ◦ ℎ ∼

𝐵
id.

But then

ℎ ∼
𝐵
( 𝑓 ◦ 𝑔) ◦ ℎ = 𝑓 ◦ (𝑔 ◦ ℎ) ∼

𝐵
𝑓 ,

and therefore 𝑔 ◦ 𝑓 ∼
𝐵
id.

Thus, 𝑓 is a homotopy equivalence over 𝐵 with the inverse equivalence 𝑔. □

Corollary 2.58. Any homotopy �bration 𝑝
′
: 𝐸

′ → 𝐵 is homotopically equiva-
lent to an ordinary �brewise �bration.

Proof. According to the corollary of Lemma 2.41 of Lecture 2, the map 𝑝
′

decomposes into the composition 𝑝 ◦ 𝑖 with a homotopy equivalence 𝑖 : 𝐸
′ → 𝐸

and a �bration 𝑝 : 𝐸 → 𝐵, where 𝐸 is the cocylinder Cocyl(𝑝′ ) of the map
𝑝
′
. Since the equality 𝑝

′
= 𝑝 ◦ 𝑖 means that the homotopy equivalence 𝑖 is a

map over 𝐵 from the homotopy �bration 𝑝
′
𝐸
′ → 𝐵 to the �bration 𝑝 : 𝐸 → 𝐵

(considered as objects of the category 𝒯ℴ𝓅𝐵), Proposition 2.57 applies to it.
Hence, this homotopy equivalence will be a homotopy equivalence over 𝐵. □
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2.E Collapsing maps

Another important application of Proposition 2.57 relates to to the maps 𝑝 :
𝐸 → 𝐵, which are, as selected over 𝐵, a homotopy equivalences over 𝐵. For such
maps, the inverse equivalence 𝑖 : 𝐵 → 𝐸 , being a map on 𝐵, will automatically
be a section of the map 𝑝 and, therefore, a moneomorphism (homeomorphism
onto its image). By embedding 𝐵 by this moneomorphism into 𝐸 , we obtain
from 𝑝 a deformation retraction over 𝐵. In this sense,

Proposition 2.59. every map 𝑝 : 𝐸 → 𝐵, which is a homotopy equivalence
over 𝐵, will also be a deformation retraction over 𝐵.

Maps 𝑝 : 𝐸 → 𝐵 that are homotopy equivalences over 𝐵, we will call collaps-
ing maps. According to what has been said, they are deformation retractions
𝑝 : 𝐸 → 𝐵, such that with a homotopy connecting the maps id and 𝑖 ◦ 𝑝, each
point 𝑥 ∈ 𝐸 moves to the point 𝑝(𝑥) ∈ 𝐵 of the set 𝑝−1 (𝑝(𝑥)).
Remark 2.60. The concept of collapsing map is dual to the concept of strong
deformation retraction.

By de�nition, each map 𝑝 : 𝐸 → 𝐵 is a morphism of the category 𝒯ℴ𝓅𝐵 of
this map itself, considered as an object of the category 𝒯ℴ𝓅𝐵 of the object id :
𝐵 → 𝐵. Therefore, the collapsing map 𝑝 : 𝐸 → 𝐵 is homotopically equivalent
over 𝐵 to the �bration id. So, by applying Lemma 2.51, it is a homotopy
�bration. In addition, it will of course be a homotopy equivalence.

Conversely, let 𝑝 : 𝐸 → 𝐵 be a homotopy �bration, which is a homotopy
equivalence. Since this map is also a map over 𝐵 of homotopy �brations (of
itself of the �bration id), Proposition 2.57 applies to it, according to which it
will be a homotopy equivalence over 𝐵, i.e. a collapsing map.

Thus, it has been proven that

Proposition 2.61. the map 𝑝 : 𝐸 → 𝐵 is a collapsing if and only if it is a
homotopy �bration and simultaneously a homotopy equivalence.

Further, it is easy to see that

Proposition 2.62. any collapsing map 𝑝 : 𝐸 → 𝐵 is weak

(i.e., satis�es the axiom WCHE de�ned in Section 0.A in Appendix to Lec-
ture 1).

Proof. Indeed, if 𝑈 is a functional neighbourhood in 𝐵 of a subset of 𝐴 ⊂ 𝐵 and
𝑠 : 𝑈 → 𝐸 is an arbitrary section of the map 𝑝 over 𝑈, then (without loss of
generality that the neighbourhood of 𝑈 is closed) the formula

𝑠(𝑥) =
{
𝐹 (𝑠(𝑠), 𝜑(𝑥)), if 𝑥 ∈ 𝑈,
𝑖(𝑥) if 𝜑(𝑥) = 1,

where 𝑖 : 𝐵 → 𝐸 is the section of the map 𝑝, which is the inverse homotopy
equivalence over 𝐵, 𝐹 is the homotopy 𝐸 × 𝐼 → 𝐸 over 𝐵, connecting the map
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𝑖 ◦ 𝑝 with the map id, and 𝜑 is a function 𝐵→ 𝐼 such that 𝜑 = 0 on 𝐴 and 𝜑 = 1
outside 𝑈, well de�nes the section 𝑠 : 𝐵 → 𝐸 for the map 𝑝, coinciding on 𝐴

with the section 𝑠. □

2.F Dold's theorem on �brewise homotopy equiv-
alences

Now we can prove an important theorem of Dold, which asserts the local char-
acter of the notion of �brewise homotopy equivalence.

Let 𝑝
′
: 𝐸

′ → 𝐵 and 𝑝 : 𝐸 → 𝐵 are arbitrary maps (objects of the category
𝒯ℴ𝓅𝐵), and let 𝑓 : 𝐸

′ → 𝐸 be a map over 𝐵 from 𝑝
′
to 𝑝:

𝐸
′ 𝑓 //

𝑝
′
��

𝐸

𝑝
��

𝐵

Let, further, {𝑈𝛼, 𝛼 ∈ 𝐴} be the numerable covering of the space 𝐵, and let {𝑉 ′𝛼}
and {𝑉𝛼} be its preimages under the maps 𝑝

′
and 𝑝, respectively (which, as we

know, are numerable covers of spaces 𝐸
′
and 𝐸 , respectively).

Then for any 𝛼 ∈ 𝐴 the map 𝑓 will induce some map

𝑓𝛼 : 𝑉
′
𝛼 → 𝑉𝛼,

closing the commutative diagramme

𝑉
′
𝛼

𝑓𝛼 //

𝑝
′
𝛼   

𝑉𝛼

𝑝𝛼
~~

𝑈𝛼

𝑝
′
𝛼 = 𝑝

′ |𝑉 ′𝛼 , 𝑝𝛼 = 𝑝
′ |𝑉𝛼

that is, being a map over 𝑈𝛼.
If 𝑓 is a �brewise homotopy equivalence (over 𝐵), then 𝑓𝛼 will also obviously

be �brewise homotopy equivalences (over 𝑈𝛼): the inverse equivalences of 𝑔𝛼 :
𝑉𝛼 → 𝑉

′
𝛼 will be induced by the inverse equivalence of 𝑔 : 𝐸 → 𝐸

′
. It turns out,

that the converse statement is also true.

Theorem 2.63. If for any 𝛼 ∈ 𝐴 the map 𝑓𝛼 : 𝑉
′
𝛼 → 𝑉𝛼 is a �brewise homo-

topy equivalence, then the map 𝑓 : 𝐸
′ → 𝐸 will also be a �brewise homotopy

equivalence.

Proof. As noted at the beginning of this Appendix, the map 𝑓 over 𝐵 decom-
poses into a composition of the homotopy equivalence 𝑖 : 𝐸

′ → Cocyl𝐵 ( 𝑓 ) over
𝐵 and the �bration 𝑓 : Cocyl𝐵 ( 𝑓 ) → 𝐸 over 𝐵:

𝑓 : 𝐸
′ 𝑓
−→ Cocyl𝐵 ( 𝑓 )

𝑓
−→ 𝐸
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(we denote the �bration with the symbol 𝑓 , since the former symbol 𝑝 is cur-
rently used for another purpose). A similar decomposition

𝑓𝛼 : 𝑉
′
𝛼

𝑖𝛼−→ Cocyl𝑈𝛼 ( 𝑓𝛼)
𝑓 𝛼−−→ 𝑉𝛼

admits, of course, every map 𝑓𝛼. At the same time, the cocylinder Cocyl𝑈𝛼 ( 𝑓 )
is naturally identi�ed with the preimage of the set 𝑈𝛼 with the projection
Cocyl𝐵 ( 𝑓 ) → 𝐵, (𝑥, 𝑢) ↦→ 𝑝(𝑥), and the map 𝑓 𝛼 is the restriction of the map of

𝑓 on this preimage.
Since by the condition the maps 𝑓𝛼 are homotopy equivalences, so the maps

𝑓 𝛼 will also be homotopy equivalences and therefore, being �brations, they will
be collapsing, and hence weak maps. Since the covering {𝑉𝛼} is numerable and
𝑉
′
𝛼 = 𝑓 −1𝛼 (𝑉𝛼) for every 𝛼 ∈ 𝐴, hence, by applying Lemma 1.63 of the Appendix

to Lecture 1, it follows that the map 𝑓 is also weak and therefore has a section

𝑓
′
: 𝐸 → Cocyl𝐵 ( 𝑓 ), which is automatically a map over 𝐵. Therefore, the map

𝑔 = 𝑗 ◦ 𝑓 ′ , where 𝑗 is the homotopy equivalence of Cocyl𝐵 ( 𝑓 ) → 𝐸
′
, the inverse

of the equivalence 𝑖, will be a map over 𝐵, satisfying the relation

𝑓 ◦ 𝑔 = 𝑓 ◦ 𝑖 ◦ 𝑗 ◦ 𝑓
′
∼
𝐵
𝑓 ◦ 𝑓

′
= id .

In addition, the map 𝑔 will translate each set 𝑉𝛼 into a set 𝑉
′
𝛼 and, therefore,

will induce some map 𝑔𝛼 : 𝑉𝛼 → 𝑉
′
𝛼, which obviously satis�es the relation

𝑓𝛼 ◦ 𝑔𝛼 ∼
𝑈𝛼

id and therefore is a homotopy equivalence over 𝐵, the inverse of the

homotopy equivalence 𝑓𝛼 : 𝑉
′
𝛼 → 𝑉𝛼.

We see, therefore, that the map 𝑔 satis�es the same conditions as the map 𝑓

(with the permutation 𝐸 and 𝐸
′
). Therefore, according to what has already been

proven, there exists a map ℎ : 𝐸
′
𝐸 such that 𝑔◦ℎ ∼

𝐵
id. But then ℎ ∼

𝐵
𝑓 ◦𝑔◦ℎ ∼

𝐵
𝑓 ,

and hence 𝑔 ◦ 𝑓 ∼
𝐵
id.

So 𝑓 ◦ 𝑔 ∼
𝐵
id and 𝑔 ◦ 𝑓 ∼

𝐵
id, so 𝑓 is homotopy equivalence over 𝐵. □

2.G Induced homotopy �brations

From Lecture 1 we know that for any �bration 𝑝 : 𝐸 → 𝐵 and any continuous
map 𝑓 : 𝑋 → 𝑏 the induced map

𝑝 𝑓 : 𝐸 ( 𝑓 ) → 𝑋,

where to simplify formulae the pushout 𝐸 ∩ 𝑓 𝑋 being denoted by 𝐸 ( 𝑓 ), is also a
�bration. It is easy to see that this statement also holds for homotopy �brations,
i.e.

Proposition 2.64. for any homotopy �bration 𝑝 : 𝐸 → 𝐵, the map 𝑝 𝑓 :
𝐸 ( 𝑓 ) → 𝑋 is also a homotopy �bration.
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Proof. Indeed, with the reasoning as in Lecture 1, let's consider an arbitrary
diagramme of the form

𝐸 ( 𝑓 )
𝑓# //

𝑝 𝑓

��

𝐸

𝑝

��

𝑍

𝑔
cc ==

𝜎0

��
𝑍 × 𝐼

𝐺

ZZ

𝐻

EE

𝐺

zz ""
𝑋

𝑓
// 𝐵

Since 𝑝 : 𝐸 → 𝐵 is a homotopy �bration, there is a map 𝐻 : 𝑍 × 𝐼 → 𝐸 such
that 𝑝 ◦𝐻 = 𝑓 ◦𝐺 and 𝐻 ◦𝜎0 ∼ 𝑓# ◦𝑔 over 𝐵. The equality 𝑝 ◦𝐻 = 𝑓 ◦𝐺 means
that the pair (𝐻,𝐺) is an inverse cone over the pair (𝑝, 𝑓 ). Therefore, there is a
unique map 𝐺 : 𝑍 × 𝐼 → 𝐸 ( 𝑓 ), for which 𝑓# ◦𝐺 = 𝐻 and 𝑝 𝑓 ◦𝐺 = 𝐺. Similarly,
if ℎ𝑡 : 𝑍 → 𝐸 is a homotopy over 𝐵 connecting the maps 𝐻 ◦𝜎0 and 𝑓# ◦𝑔, then
for any 𝑡 ∈ 𝐼 there will be an equality 𝑝 ◦ ℎ𝑡 = 𝑓 ◦𝐺 ◦ 𝜎0, showing that the pair
(ℎ𝑡 , 𝐺 ◦ 𝜎0) is an inverse cone over the pair (𝑝, 𝑓 ). Therefore, there is a unique
map ℎ𝑡 : 𝑍 → 𝐸 ( 𝑓 ), for which 𝑓# ◦ ℎ𝑡 = ℎ𝑡 and 𝑝 𝑓 ◦ ℎ𝑡 = 𝐺 ◦ 𝜎0. The maps

ℎ𝑡 constitute a homotopy (why?) from 𝑍 to 𝐸 ( 𝑓 ). Since 𝑓# ◦ ℎ0 = 𝑝 𝑓 ◦ 𝐺 ◦ 𝜎0

and 𝑝 𝑓 ◦ ℎ0 = 𝐺 ◦ ℎ0 = 𝑝 𝑓 ◦ 𝐺 ◦ 𝜎0, then by applying uniqueness ℎ0 = 𝐺 ◦ 𝜎0.

Similarly, since 𝑓# ◦ ℎ1 = ℎ1 = 𝑓# ◦𝑔 and 𝑝 𝑓 ◦ ℎ1 = 𝐺 ◦𝜎0 = 𝑝 𝑓 ◦ ℎ0, then ℎ1 = 𝑔.

Finally, since 𝑝 𝑓 ℎ𝑡 = 𝐺 ◦ 𝜎0 = 𝑝 𝑓 ◦ ℎ0, the homotopy ℎ𝑡 is a homotopy over 𝑋.

So 𝑝 𝑓 ◦ 𝐺 = 𝐺 and 𝐺 ◦ 𝜎0 ∼ 𝑔 over 𝑋, as required. □

2.H Fibrations induced by homotopic maps

Now let's compare the �bration 𝑝 𝑓 : 𝐸 ( 𝑓 ) → 𝑋 with the �bration 𝑝𝑔 : 𝐸 (𝑔) →
𝑋, where 𝑔 is the map 𝑋 → 𝐵, homotopic to the map 𝑓 .

To this end, we will �rst consider an arbitrary homotopy �bration 𝑝 : 𝐸 →
𝐵0 × 𝐼 with a base of the form 𝐵0 × 𝐼. Let 𝐸0 = 𝑝−1 (𝐵0 ×0) and 𝑝0 : 𝐸0 → 𝐵0 be
the restriction of the map of 𝑝 to 𝐸0 (we identify 𝐵0 × 0 with 𝐵0). Let, further,
𝑖0 : 𝐸0 → 𝐸 be an inclusion.

We will consider 𝐸0 and 𝐸 to be spaces over 𝐵0 with projections 𝑝0 and
proj𝐵0

◦𝑝, respectively. Then 𝑖0 will obviously be a map over 𝐵0.

Lemma 2.65. The map 𝑖0 is a homotopy equivalence over 𝐵0.
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Proof. Consider a commutative diagramme

𝐸
id //

𝜎0

��

𝐸

𝑝

��
𝐸 × 𝐼

𝐹
//

𝐹

::

𝐵0 × 𝐼

the map 𝐹 of which is de�ned by the formula

𝐹 (𝑒, 𝑡) = (𝑏, 𝜏(1 − 𝑡)), if 𝑝(𝑒) = (𝑏, 𝜏), 𝑒 ∈ 𝐸, 𝑏 ∈ 𝐵, 𝜏, 𝑡 ∈ 𝐼 .

Since the map 𝑝 is by convention a homotopy �bration, there is a covering
(◦𝐹 = 𝐹) homotopy for this diagramme 𝐹 : 𝐸 × 𝐼 → 𝐸 , which has the property
that id ∼ 𝐹 ◦𝜎0 over 𝐵0× 𝐼, and therefore over 𝐵0. It is clear that the homotopy
of 𝐹 is a homotopy over 𝐵0, such that 𝐹 ◦𝜎0 ∼ 𝐹𝜎1 over 𝐵0. Hence, id ∼ 𝐹 ◦𝜎𝑖
over 𝐵0. But since 𝑝 ◦ 𝐹 ◦ 𝜎1 = 𝐹 ◦ 𝜎1 : 𝑒 ↦→ (𝑏, 0), if 𝑝(𝑒) = (𝑏, 𝜏), then
(𝐹 ◦ 𝜎1 (𝐸) ⊂ 𝐸0 and, therefore, 𝐹 ◦ 𝜎1 = 𝑖0 ◦ 𝑟 where 𝑟 : 𝐸 → 𝐸0𝐸 is some map
over 𝐵0.

Thus, we have constructed a map 𝑟 : 𝐸 → 𝐸0 such that 𝑖0 ◦ 𝑟 ∼ id over 𝐵0.
Therefore, to complete the proof of the lemma it remains only to show that
𝑟 ◦ 𝑖0 ∼ id over 𝐵0.

Since the homotopy connecting the maps id𝐵 and 𝐹 ◦𝜎0 is a homotopy over
𝐵0 × 𝐼, it induces some homotopy from 𝐸0 to 𝐸0 over 𝐵0, connecting the map
id𝐸0

with the map (𝐹 ◦𝜎0)0 : 𝐸0 → 𝐸0, induced by the map 𝐹𝜎0. On the other
hand, if 𝑒 ∈ 𝐸0, i.e. 𝑝(𝑒) = (𝐵, 0), then by construction 𝐹 (𝑒, 𝑡) = (𝑏, 0) and,
therefore, (𝑝 ◦ 𝐹) (𝑒, 𝑡) = (𝑏, 0), i.e. 𝐹 (𝑒, 𝑡) ∈ 𝐸0 for any 𝑡 ∈ 𝐼. Therefore , the
homotopy 𝐹 also induces some homotopy from 𝐸0 to 𝐸0 over 𝐵0, connecting the
map (𝐹 ◦ 𝜎0)0 with the map (𝐹 ◦ 𝜎1)0 : 𝐸0 → 𝐸0, induced by the map 𝐹 ◦ 𝜎1.
Hence, id ∼ (𝐹 ◦ 𝜎1)0 over 𝐵0.

But the fact that the map (𝐹 ◦ 𝜎1)0 is induced by the map 𝐹 ◦ 𝜎1 means
that there is a commutative diagramme

𝐸0
(𝐹◦𝜎1 )0//

𝑖

��

𝐸0

𝑖

��
𝐸

𝐹◦𝜎1

// 𝐸

Hence, 𝑖0 ◦ (𝐹 ◦ 𝜎1)0 = (𝐹 ◦ 𝜎1) ◦ 𝑖0 = 𝑖0 ◦ 𝑟 ◦ 𝑖0, and therefore (𝐹 ◦ 𝜎1)0 = 𝑟 ◦ 𝑖0.
So, 𝑟 ◦ 𝑖0 ∼ id over 𝐵0. □

Remark 2.66. It is clear that the same statement is true for embedding 𝑖1 :
𝐸1 → 𝐸 , where 𝐸1 = 𝑝−1 (𝐵0 × 1).

We apply Lemma 2.65 to the homotopy �bration 𝑝𝐹 : 𝐸 (𝐹) → 𝑋 × 𝐼 induced
by some homotopy 𝐹 : 𝑋 × 𝐼 → 𝐵 from the homotopy �bration 𝑝 : 𝐸 → 𝐵. If 𝐹
connects the map 𝑓 : 𝑋 → 𝐵 with the map 𝑔 : 𝑋 → 𝐵, then, as follows directly
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from the functorial property of the pushout, the �bration (𝑝𝐹)0 : 𝐸 (𝐹)0 →
𝑋 for the �bration 𝑝𝐹 coincides with the �bration 𝑝 𝑓 : 𝐸 ( 𝑓 ) → 𝑋 (so, in
particular, 𝐸 (𝐹)0 = 𝐸 ( 𝑓 )), and the �bration (𝑝𝐹)1 : 𝐸 (𝐹)1 → 𝑋 coincides
with the �bration 𝑝𝑔 : 𝐸 (𝑔) → 𝑋. Thus, according to Lemma 2.65, there are
homotopy equivalences over 𝑋

𝐸 ( 𝑓 ) 𝑖0−→ 𝐸 (𝐹) 𝑖1←− 𝐸 (𝑔)

Hence, the homotopy �brations 𝑝 𝑓 : 𝐸 (𝑔) → 𝑋 and 𝑝𝑔 : 𝐸 (𝑔) → 𝑋 are homo-
topically equivalent over 𝑋.

This proves the following Proposition.

Proposition 2.67. Homotopy �brations 𝑝 𝑓 : 𝐸 ( 𝑓 ) → 𝑋 and 𝑝𝑔 : 𝐸 (𝑔) → 𝑋

induced from the homotopy �bration 𝑝 : 𝐸 → 𝐵 by homotopy maps 𝑓 , 𝑔 : 𝑋 → 𝐵

are �brewise homotopy equivalent.

The �brewise homotopy equivalence connecting the �brations 𝑝 𝑓 and 𝑝𝑔 is
uniquely determined up to the �brewise homotopy by the homotopy 𝐹 connect-
ing the maps 𝑓 and 𝑔. We will denote it with the symbol 𝑝(𝐹).

By de�nition of the induced �bration for each map 𝑓 : 𝑋 → 𝐵 the map
𝑓# : 𝐸 ( 𝑓 ) → 𝐸 is de�ned for which the diagramme

𝐸 ( 𝑓 )
𝑓# //

𝑝 𝑓

��

𝐸

𝑝

��
𝑋

𝑓
// 𝐵

is commutative. At the same time, it is clear that for any homotopy 𝐹 : 𝑋 × 𝐼 →
𝐵 that connects the map 𝑓 with the map 𝑔, the constraints (𝐹#)0 = 𝐹# ◦ 𝑖0 and
(𝐹#)1 = 𝐹#) ◦ 𝑖1 of the map 𝐹# : 𝐸 (𝐹) → 𝐸 on the subspaces 𝐸 (𝐹)0) = 𝐸 ( 𝑓 )
and 𝐸 (𝐹1) = 𝐸 (𝑔), respectively, coincide with the maps 𝑓# and 𝑔#, so that the
diagramme

𝐸 (𝐹) 𝑖0 //

𝑓# ##

𝐸 ( 𝑓 )

𝐹#

��

𝐸 (𝑔)𝑖1oo

𝑔#{{
𝐸

is commutative. For the homotopy equivalence 𝑝(𝐹), it follows that

Proposition 2.68. the diagramme

𝐸 (𝐹) 𝑝 (𝐹 ) //

𝑓# !!

𝐸 (𝑔)

𝑔#}}
𝐸

is homotopy commutative.
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(The statement about homotopy commutativity is the best possible one,
since the map 𝑝(𝐹) is de�ned up to homotopy.)

Now let 𝑓 : 𝐵𝑖 → 𝐵 be a homotopy equivalence with inverse homotopy
equivalence 𝑔 : 𝐵→ 𝐵𝑖 and let 𝐺 : 𝐵 × 𝐼 → 𝐵 be a homotopy such that 𝐺 : id ∼
𝑓 ◦ 𝑔. Because, as we know (see lecture 1), id# = id and ( 𝑓 ◦ 𝑔)# = 𝑓# ◦ 𝑔#, for
composition 𝑓# ◦ 𝑔# of maps 𝑓# : 𝐸 ( 𝑓 ) → 𝐸 and 𝑔# : 𝐸 ( 𝑓 ◦ 𝑔) → 𝐸 ( 𝑓 ) there
is a homotopy commutative diagramme

𝐸
𝑝 (𝐺) //

id ��

𝐸 ( 𝑓 ◦ 𝑔)

𝑓#◦𝑔#{{
𝐸

meaning that in the diagramme

𝐸
𝑝 (𝐺) //

𝑝

##

𝐸 ( 𝑓 ◦ 𝑔)
𝑔# //

𝑟 𝑓 ◦𝑔

��

𝐸 ( 𝑓 )
𝑓# //

𝑝 𝑓

��

𝐸

𝑝

��
𝐵

𝑔
// 𝐵1

𝑓
// 𝐵

the composition of the arrows of the top line is homotopic to the identity map.
So 𝑓# ◦ 𝑔# ∼ 𝑝(𝐺), where 𝑝(𝐺) is a homotopy equivalence and the inverse to
the equivalence of 𝑝(𝐺), and therefore 𝑝(𝐺) ◦ 𝑓# ◦ 𝑔# ∼ 𝑝(𝐺) ◦ 𝑝(𝐺) ∼ id. This
proves that there are maps 𝜑 : 𝐸 ( 𝑓 ) → 𝐸 ( 𝑓 ◦ 𝑔) and 𝜓 : 𝐸 → 𝐸 ( 𝑓 ) (namely,
maps 𝜑 = 𝑝(𝐺) ◦ 𝑓# and 𝜓 = 𝑔# ◦ 𝑝(𝐺)) such that 𝜑 ◦ 𝑔# ∼ id and 𝑓# ◦ 𝜓 ∼ id.

Applying this statement to the �bration 𝑝 𝑓 : 𝐸 ( 𝑓 ) → 𝐵1 and to the map
𝑔 ◦ 𝑓 (also by the condition homotopy identity map), we, in particular, get,
that there is a map 𝜓1 : 𝐸 ( 𝑓 ) → 𝐸 ( 𝑓 ◦ 𝑔) such that 𝑔# ◦ 𝜓 ∼ id. But then
𝜓1 ∼ (𝜑 ◦ 𝑔#) ◦ 𝜓1 = 𝜑 ◦ (𝑔# ◦ 𝜓1) ∼ 𝜑 and, therefore, 𝑔# ◦ 𝑓 ∼ id. Thus, 𝑔# is a
homotopy equivalence with the inverse homotopy equivalence 𝜑.

Since 𝑓# ◦ 𝑔# ◦ 𝑝(𝐺) ∼ id, it follows that the map 𝑓# is also a homotopy
equivalence (with inverse homotopy equivalence 𝑓# ◦ 𝑝(𝐺)).

Thus we have proven

Corollary 2.69. If in the diagramme

𝐸 ( 𝑓 )
𝑓# //

𝑝 𝑓

��

𝐸

𝑝

��
𝐵1

𝑓
// 𝐵

the map 𝑓 is a homotopy equivalence, then the map 𝑓# will also be a homotopy
equivalence.

Another interesting case arises when the map 𝑓 is homotopic to the constant
map.
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Corollary 2.70. If the map 𝑓 : 𝑋 → 𝐵 is homotopic to the constant map
const : 𝑋 → 𝐵, 𝑥 ↦→ 𝑏0, then for any homotopy �bration 𝑝 : 𝐸 → 𝐵, the
induced �bration 𝑝 𝑓 : 𝐸 ( 𝑓 ) → 𝑋 is �brewise homotopically equivalent to the
trivial �bration with a �bre 𝐹 = 𝑝−1 (𝑏).

Proof. By de�nition, the space 𝐸 (const) consists of pairs (𝑥, 𝑒) ∈ 𝑋×𝐸 for which
𝑝(𝑒) = const(𝑥) = 𝑏0 and, therefore, is the product 𝑋 × 𝐹. The map 𝑝const :
𝐸 (const) → 𝑋, (𝑥, 𝑒) ↦→ 𝑥, will therefore be a projection of 𝑋 × 𝐹 → 𝑋. □

A space 𝐵 is called semilocally contractible if any of its points has a neigh-
bourhood 𝑈 such that the embedding 𝑈 → 𝐵 is homotopic to the constant map.
A �bration 𝑝 : 𝐸 → 𝐵 is called homotopically locally trivial if any point in the
space 𝐵 has a neighbourhood 𝑈 such that the �bration 𝑝𝑈 : 𝑝−1 (𝑈) → 𝑈 is
homotopically equivalent to the trivial �bration 𝑈 × 𝐹 → 𝑈 (where 𝐹, generally
speaking, depends on 𝑈).

Corollary 2.71. If the space 𝐵 is semilocally contractible, then any homotopy
�bration 𝑝 : 𝐸 → 𝐵 is homotopically locally trivial.

Induced �brations also have the property of functoriality with respect to
�brewise maps, i.e. for each continuous map 𝑓 : 𝑋 → 𝐵 any �brewise map
ℎ : 𝐸 → 𝐸

′
induces (by the formula ℎ 𝑓 (𝑥, 𝑒) = (𝑥, ℎ(𝑒))) some �brewise map

ℎ 𝑓 : 𝐸 ( 𝑓 ) → 𝐸
′ ( 𝑓 ), with ℎid = id, ℎ 𝑓 ◦𝑔 = ℎ 𝑓 ◦ ℎ𝑔 and, similarly, id 𝑓 = id,

(ℎ ◦ 𝑘) 𝑓 = ℎ 𝑓 ◦ 𝑘 𝑓 . In addition, for any homotopy 𝐹 : 𝑋 × 𝐼 → 𝐵 connecting the
map 𝑓 to the map 𝑔 with the constraint (ℎ𝐹)0 = ℎ𝐹 ◦ 𝑖0 and (ℎ𝐹)1 = ℎ𝐹 ◦ 𝑖1 the
maps ℎ𝐹 on the subspaces 𝐸 (𝐹)0 = 𝐸 ( 𝑓 ) and 𝐸 (𝐹)1 = 𝐸 (𝑔) correspond to the
maps ℎ 𝑓 and ℎ𝑔, respectively, so that the diagramme

𝐸 ( 𝑓 ) 𝑖0 //

ℎ 𝑓
��

𝐸𝐹

ℎ𝐹
��

𝐸 (𝑔)𝑖1oo

ℎ𝑔
��

𝐸
′ ( 𝑓 )

𝑖
′
0

// 𝐸
′

𝐸
′ (𝑔)

𝑖
′
1

oo

is commutative. Therefore

Proposition 2.72. the diagramme

𝐸 ( 𝑓 ) 𝑝 (𝐹 ) //

ℎ 𝑓
��

𝐸 (𝑔)

ℎ𝑔
��

𝐸
′ ( 𝑓 )

𝑝
′ ( 𝑓 )
// 𝐸
′ (𝑔)

is commutative.

In the special case when 𝑔 is a constant map const : 𝑋 → 𝐵, 𝑥 ↦→ 𝑏0, and,
therefore, the �brations 𝑝𝑔 : 𝐸 (𝑔) → 𝑋 and 𝑝𝑔 : 𝐸

′ (𝑔) → 𝑋 have accordingly



2.I. MAPS THAT ARE HOMOTOPY EQUIVALENCES ON FIBRES 97

the form 𝑋×𝐹 → 𝑋 and 𝑋×𝐹 ′ → 𝑋, the map ℎ𝑔 is given by the correspondence
(𝑥, 𝑦) ↦→ (𝑥, ℎ(𝑦)), 𝑦 ∈ 𝐹, and therefore will be a �brewise homotopy equivalence
if the homotopy equivalence is the map ℎ𝑏0 : 𝐹 → 𝐹

′
, induced by the map ℎ.

But then the �brewise homotopy equivalence will, of course, be the map ℎ 𝑓 .
We will formulate this result as a separate corollary.

Corollary 2.73. If the map 𝑓 : 𝑋 → 𝐵 is homotopic to the constant map
const : 𝑋 → 𝐵, 𝑥 ↦→ 𝑏0, then for any �brewise map ℎ : 𝐸 → 𝐸

′
with the

homotopy �bration 𝑝 : 𝐸 → 𝐵 and the homotopy �bration 𝑝
′
: 𝐸

′ → 𝐵, having
the property that the map ℎ𝑏0 : 𝑝−1 (𝑏0) → 𝑝

′−1 (𝑏0) is a homotopy equivalence,
and the map

ℎ 𝑓 : 𝐸 ( 𝑓 ) → 𝐸
′ ( 𝑓 )

of induced �brations will be a �brewise homotopy equivalence.

2.I Maps that are homotopy equivalences on �-
bres

A space 𝐵 is called enumerably semilocally contractible if there exists an enu-
merable covering {𝑈𝛼} such that any embedding 𝑈𝛼 → 𝐵 is homotopic to the
constant map.

It is said that the layered map ℎ : 𝐸 → 𝐸
′
of from homotopy �bration

𝑝 : 𝐸 → 𝐵 to a homotopy �bration 𝑝
′
: 𝐸

′ → 𝐵 is a �brewise homotopy equiv-
alence if for any point 𝑏 ∈ 𝐵 the map ℎ𝑏 : 𝑝−1 (𝑏) → 𝑝

′−1 (𝑏) is a homotopy
equivalence. It is clear that any �brewise homotopy equivalence will be a ho-
motopy equivalence on �bres. For a numerically semi-locally contractible space
𝐵, the converse is also true:

Proposition 2.74. If the space 𝐵 is enumerably semilocally contractible, then
any �brewise map ℎ : 𝐸 → 𝐸

′
form a homotopy �bration 𝑝 : 𝐸 → 𝐵 to a

homotopy �bration 𝑝
′
: 𝐸

′ → 𝐵, which is a homotopy equivalence on �bres, will
be a �brewise homotopy equivalence.

Proof. Let {𝑈𝛼} be a enumberable covering of the space 𝐵 such that for any 𝛼
the embedding 𝑈𝛼 → 𝐵 is homotopic to the constant map. Then according to
corollary 2.73 every map

ℎ𝑈𝛼 : 𝑝−1 (𝑈𝛼) → 𝑝
′−1 (𝑈𝛼)

will be a �brewise homotopy equivalence (recall that for any set 𝑈 ⊂ 𝐵 the
�bration 𝑈 = 𝑝 |𝑝−1 (𝑈) : 𝑝−1 (𝑈) → 𝑈 coincides with the �bration 𝑝𝑖 : 𝐸 (𝑖) → 𝑈,
induced by the embedding 𝑖 : 𝑈 → 𝐵). Therefore, according to Theorem 2.63,
the map ℎ : 𝐸 → 𝐸

′
will also be a �brewise homotopy equivalence. □

Remark 2.75. For any point 𝑏0 ∈ 𝐵 the space −1 (𝑏0) is a pushout of 𝐸 ( 𝑓 )
corresponding to the map 𝑓 : pt → 𝐵, translating the point pt to the point
𝑏0 ∈ 𝐵. On the other hand, each path 𝑈 : 𝐼 → 𝐵 of the space 𝐵 we can
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consider one as a homotopy connecting maps pt → 𝐵 corresponding to points
𝑏0 = 𝑢(0) and 𝑏1 = 𝑢(1). Therefore, for maps ℎ𝑏0 : 𝑝−1 (𝑏0) → 𝑝

′−1 (𝑏0) and
ℎ𝑏1 : 𝑝−1 (𝑏1) → 𝑝

′−1 (𝑏1) there is a homotopically commutative diagramme

𝑝−1 (𝑏0) //

ℎ𝑏0
��

𝑝−1 (𝑏1)

ℎ𝑏1
��

𝑝
′−1 (𝑏0) // 𝑝

′−1 (𝑏1)

the horizontal arrows of which are homotopy equivalences. Hence, the map ℎ1 is
a homotopy equivalence if and only if the the map ℎ0 is a homotopy equivalence.
Hence the map ℎ : 𝐸 → 𝐸

′
is a homotopy equivalence on �bres if and only if in

each connected component of the space 𝐵 there exists a point 𝑏 such that the
map ℎ0 : 𝑝−1 (𝑏) → 𝑝

′−1 (𝑏) represents a homotopy equivalence.



Lecture 3

3.1 Homotopy invariant functors

As explained in introductory Lecture 0, the main task of algebraic topology is
to construct and study various algebraic functors Π de�ned on the category of
𝒯ℴ𝓅, with the aim of their subsequent application to the processing of geo-
metric problems into derived algebraic problems. However, we don't need any
functors. Since we mean to consider only geometric problems whose formulation
is invariant with respect to the transition to homotopy maps (according to the
�power� arguments explained in Lecture 0, only such problems can count on an
e�ective solution by means of algebra), it is natural to limit ourselves to homo-
topy invariant functors Π, having the property that Π 𝑓 = Π𝑔 when 𝑓 ∼ 𝑔, i.e., in
other words, being a composition of the factorisation functor 𝒯ℴ𝓅→ [𝒯ℴ𝓅]
and some functor Π given on the homotopy category [𝒯ℴ𝓅]. (In general, it
would be more consistent to leave the category of 𝒯ℴ𝓅 and �nally move into
the category of [𝒯ℴ𝓅], but for purely psychological reasons we prefer stay in
the more familiar reality of the 𝒯ℴ𝓅 category.) Therefore, we will focus our
attention on methods for constructing only homotopy invariant functors.

3.2 The functor 𝜋0

The simplest example of a homotopy invariant functor is obtained by considering
for any topological space 𝑋 the set 𝜋0𝑋 of all its components. Since for each
continuous map 𝑓 : 𝑋 → 𝑌 component [ 𝑓 (𝑥)] of the space 𝑌 containing the point
𝑓 (𝑥) obviously depends only on the component [(𝑥)] the space 𝑋 containing the
point 𝑥, then the correspondence

𝜋0 𝑓 : [𝑥] ↦→ [ 𝑓 (𝑥)]

well de�nes some map of the set 𝜋0 𝑓 : 𝜋0𝑋 → 𝜋0𝑌 , and it is clear that thereby
we get the functor

𝜋0 : 𝒯ℴ𝓅→ℰ𝓃𝓈

from the category 𝒯ℴ𝓅 to the category of sets ℰ𝓃𝓈, which is obviously homo-
topy invariant.

99
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The corresponding functor [𝒯ℴ𝓅] → ℰ𝓃𝓈 is also denoted by the symbol
𝜋0.

As we already noted in Lecture 1, the components of the space 𝑋 are natu-
rally identi�ed with homotopy classes of maps pt→ 𝑋, where pt is a topological
space consisting of a single point. Therefore, 𝜋0𝑋 = [pt, 𝑋] and, accordingly,
𝜋0 [ 𝑓 ] is nothing more than the map 𝑓∗ : [pt, 𝑋] → [pt, 𝑌 ], de�ned by the
formula [𝑥] ↦→ [ 𝑓 ◦ 𝑥], where 𝑥 : pt→ 𝑋.

3.3 Representable functors

This interpretation of the functor 𝜋0 allows for a very far-reaching generalisation
to any categories of 𝒜. Namely, by arbitrarily selecting some object 𝐾 in the
category 𝒜, we can construct a functor 𝐾∗ from 𝒜 toℰ𝓃𝓈, matching any object
𝑋 from 𝒜 the set

𝐾∗ (𝑋) = 𝒜(𝐾, 𝑋)

for all morphisms of 𝐾 → 𝑋, and any morphism 𝑓 : 𝑋 → 𝑌 from 𝒜 to the map

𝐾∗ ( 𝑓 ) : 𝐾∗ (𝑋) → 𝐾∗ (𝑌 )

(also denoted by the symbol 𝑓𝐾 or 𝑓∗), de�ned by the formula

𝐾∗ ( 𝑓 ) (𝛼) = 𝑓 ◦ 𝛼, 𝛼 : 𝐾 → 𝐾.

Similarly, putting for any object 𝑋 of 𝒜

𝐾∗ (𝑋) = 𝒜(𝑋, 𝑘)

and by matching each morphism 𝑓 : 𝑋 → 𝑌 of 𝒜 with the map

𝐾∗ ( 𝑓 ) : 𝐾∗ (𝑌 ) → 𝐾∗ (𝑋)

(also denoted by the symbol 𝑓 ∗ or 𝑓 𝐾 ), de�ned by the formula

𝐾∗ ( 𝑓 ) (𝛽) = 𝛽 ◦ 𝑓 , for any morphism 𝛽 : 𝑌 → 𝐾,

we get a contravariant functor 𝐾∗ from 𝒜 to ℰ𝓃𝓈 (i.e., a functor from the
opposite category 𝒜op to ℰ𝓃𝓈).

The functors obtained by this construction are called representable. The
object 𝐾 is said to represent the functor 𝐾∗ (or the functor 𝐾∗).

As applied to the homotopy category, this general technique allows us to
construct two homotopy invariant functors for each topological space 𝐾

𝐾∗ : 𝒯ℴ𝓅→ℰ𝓃𝓈, 𝐾∗ : 𝒯ℴ𝓅op →ℰ𝓃𝓈

representable by this space (as functors on [𝒯ℴ𝓅]). By de�nition

𝐾∗ (𝑋) = [𝐾, 𝑋], 𝐾∗ (𝑋) = [𝑋, 𝐾] (3.1)
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for any topological space 𝑋 and

𝑓∗ (𝛼) = [ 𝑓 ◦ 𝛼], 𝛼 : 𝐾 → 𝑋,

𝑓 ∗ (𝛽) = [𝛽 ◦ 𝑓 ], 𝛽 : 𝑌 → 𝑋,
(3.2)

for any continuous map 𝑓 : 𝑋 → 𝑌 .

When 𝐾 = pt we get the functor 𝜋0.

In some cases, with a special choice of the space 𝐾 in the set [𝐾, 𝑋] or [𝑋, 𝐾],
it is possible to introduce an algebraic structure (groups, rings, etc.) so that a
functor is obtained in the corresponding algebraic category. Such functors are
also said to be represented by the space 𝐾.

It turns out that many homotopy invariant functions of algebraic topology
(including almost all contravariant functors) are representable. (This is partly
explained by Brown's representability theorem, which we will prove in the next
semester.) Therefore, at �rst it is reasonable to limit ourselves to studying only
representable functors de�ned by formulae (3.1) and (3.2).

3.4 Category of groups

There is an obvious case when the set 𝐾∗ (𝑋) = [𝑋, 𝐾] has a natural (with
respect to 𝑋) group structure: this is the case when 𝐾 is a topological group.
Indeed, for any topological group 𝐾 and any topological space 𝑋, the set of
𝒯ℴ𝓅(𝑋, 𝐾) of all continuous maps 𝑋 → 𝐾 is obviously a group with respect to
the multiplication operation ( 𝑓 , 𝑔) ↦→ 𝑓 𝑔, de�ned by the formula

( 𝑓 𝑔) (𝑥) = 𝑓 (𝑥)𝑔(𝑥), 𝑥 ∈ 𝑋, 𝑓 , 𝑔 : 𝑋 → 𝐾. (3.3)

The unit of this group is a constant map const : 𝑋 → 𝐾 which maps to the unit
𝑒 of the group 𝐾, and the element 𝑓 −1, the inverse of the element 𝑓 : 𝑋 → 𝐾, is
determined by the formula

𝑓 −1 (𝑥) = 𝑓 (𝑥)−1 (3.4)

(don't confuse 𝑓 −1 with the inverse map!). If { 𝑓𝑡 : 𝑓0 ∼ 𝑓1 and {𝑔𝑡 : 𝑔0 ∼ 𝑔1,
then { 𝑓𝑡𝑔𝑡 : 𝑓0𝑔0 ∼ 𝑓1𝑔1 and, therefore, the formula [ 𝑓 ] [𝑔] = [ 𝑓 𝑔] well de�nes
multiplication in the set [𝑋, 𝐾], with respect to which this set is a group. At the
same time, for any continuous map 𝜑 : 𝑋 → 𝑌 the map 𝜑∗ : [𝑌, 𝐾] → [𝑋, 𝐾],
[ 𝑓 ] ↦→ [𝜑 ◦ 𝑓 ], will obviously be a homomorphism.

This design is de�nitely too tight for our purposes (which is evident, for
example, from the fact that it gives too much - a group structure on the set
of 𝒯ℴ𝓅(𝑋, 𝐾), completely unnecessary for us), but it will serve as a starting
point for broader generalisations. To do this, it is necessary to comprehend the
concept of a group from the general standpoint of category theory.

Multiplication in a group 𝐾 is nothing more than some map

𝑚 : 𝐾 × 𝐾 → 𝐾, (𝑥, 𝑦) ↦→ 𝑥𝑦, (3.5)
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form the direct product 𝐾×𝐾 into 𝐾, and the operation 𝑥 ↦→ 𝑥−1 of the transition
to the inverse element is some map

𝜇 : 𝐾 → 𝐾.

At the same time, the fact that the element 𝑒 ∈ 𝐾 is a unit of the group 𝐾

means that for a constant map const𝑒 : 𝐾 → 𝐾, 𝑥 ↦→ 𝑒, which is convenient for
us to denote by the symbol 𝜀, composite maps

𝐾
id ×𝜀−−−−→ 𝐾 × 𝐾 𝑚−→ 𝐾, 𝑥 ↦→ (𝑥, 𝑒) ↦→ 𝑥𝑒,

𝐾
𝜀×id−−−−→ 𝐾 × 𝐾 𝑚−→ 𝐾, 𝑥 ↦→ (𝑒, 𝑥) ↦→ 𝑒𝑥,

represent identical maps, i.e. that the diagrammes

𝐾 × 𝐾
𝑚

##
𝐾

id
//

id ×𝜀
<<

𝐾

𝐾 × 𝐾
𝑚

##
𝐾

id
//

𝜀×id
<<

𝐾

(3.6)

are commutative. (Here the symbol is 𝛼 × 𝛽, where 𝛼 : 𝑋 → 𝐴 and 𝛽 : 𝑋 → 𝐵,
we denote the map 𝑋 → 𝐴× 𝐵, de�ned by the formula (𝛼× 𝛽) (𝑥) = (𝛼(𝑥), 𝛽(𝑥)).
In the case when 𝛼 : 𝑋 → 𝐴 and 𝛽 : 𝑦 → 𝐵, the same symbol will mean the
expression 𝑋 × 𝑌 → 𝐴 × 𝐵, de�ned by the formula (𝛼 × 𝛽) (𝑥, 𝑦) = (𝛼(𝑥), 𝛽(𝑦)).
Thus, when 𝑋 = 𝑌 there is ambiguity. However, with some care, it does not lead
to misunderstandings.)

Similarly, the associativity of multiplication (3.5) means the commutativity
of (𝑚 ◦ (id×𝑚) = 𝑚 ◦ (𝑚 × id)) in the diagramme

𝐾 × 𝐾 × 𝐾 id ×𝑚 //

𝑚×id
��

𝐾 × 𝐾
𝑚

��
𝐾 × 𝐾

𝑚
// 𝐾

(3.7)

and the identities 𝑥𝑥−1 = 𝑒, 𝑥−1𝑥 = 𝑒 are the commutativity of diagrammes

𝐾 × 𝐾
𝑚

##
𝐾

𝜀
//

id ×𝜇
<<

𝐾

𝐾 × 𝐾
𝑚

##
𝐾

𝜀
//

𝜇×id
<<

𝐾

(3.8)

Now let 𝒜 be an arbitrary category. Recall that the (direct) product of
objects 𝐴 and 𝐵 of the category 𝒜 is an object 𝐶, such that considered together
with two morphisms proj𝐴 : 𝐶 → 𝐴, proj𝐵 : 𝐶 → 𝐵, for any object 𝑋 ∈ 𝒜 and
any morphisms 𝛼 : 𝑋 → 𝐴, 𝛽 : 𝑋 → 𝐵 there is a single morphism 𝛾 : 𝑋 → 𝐶
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having the property that proj𝐴 ◦𝛾 = 𝛼 and proj𝐵 ◦𝛾 = 𝛽. The object 𝐶, if it
exists, is unique up to canonical isomorphism. It is denoted by the symbol 𝐴×𝐵,
and the morphism 𝛾 is denoted by the symbol 𝛼 × 𝛽.

𝐶 = 𝐴 × 𝐵
proj𝐴

zz

proj𝐵

$$
𝐴 𝐵

𝑋

𝛼

dd

𝛽

::𝛾 =𝛼×𝛽

OO

Similarly, the product of any (including empty!) families of objects of the
category 𝒜 is de�ned. In this case, the product of an empty family of objects
will be an object 0, which has the property that for any object 𝐴 ∈ 𝒜 there is
one and only one morphism 𝐴 → 0. Such an object is called a terminal object
of the category 𝒜. (We have already encountered this term in Lecture 1 in
connection with the concept of pullback.)

Category 𝒜 is called �nitely multiplicatively closed (fm-closed for short) if
for any �nite family of its objects, there exists their product. In particular, the
fm-closed category has a terminal object.

A morphism 𝐴 → 𝐵 in an fm-closed category is called constant if it is
passed through a terminal object, i.e. it is a composit morphism of the form
𝐴→ 0→ 𝐵.

Examples of fm-closed categories are the categoriesℰ𝓃𝓈, 𝒯ℴ𝓅, [𝒯ℴ𝓅] and
𝒢𝓇𝓅. In each of these categories, products are ordinary direct products of sets,
topological spaces or groups, and terminal objects are singleton sets, spaces or
groups. The constant morphisms of these categories are constant maps (for the
category of groups, trivial homomorphisms).

Now it is clear that the concept of a group can be transferred to an arbitrary
fm-closed category𝒜. Namely, an object 𝐾 of such a category is naturally called
a 𝒜 category of group (or 𝒜-group), if it is given morphisms 𝑚 : 𝐾 × 𝐾 → 𝐾,
𝜇 : 𝐾 → 𝐾, 𝜀 : 𝐾 → 𝐾, such that:

(a) the morphism 𝜀 is constant;

(b) diagrammes (3.6), (3.7) and (3.8) are commutative.

Groups of the ℰ𝓃𝓈 category of sets are ordinary abstract groups, groups
of the 𝒯ℴ𝓅 category are topological groups (and, say, groups of the 𝒟𝒾𝒻𝒻
category smooth manifolds are Lie groups).

Question: What are the groups of the 𝒢𝓇𝓅 category?
Answer : See Lemma 4.93 from the Appendix to Lecture 4.

It is obvious that other algebraic structures allow a similar �categorisation�.
For example, a monoid of the category 𝒜 (or an 𝒜-monoid), where 𝒜 is an
arbitrary fm-closed category, is an object 𝐾 of the category 𝒜, for which the
following morphism 𝑚 : 𝐾 × 𝐾 → 𝐾 and a constant morphism 𝜀 : 𝐾 → 𝐾 such
that Diagrammes (3.6), (3.7) are commutative are given.
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In the situations we are interested in, the associativity condition (commuta-
tivity of diagram (3.7) will, oddly enough, often be super�uous. Unfortunately,
there is still no generally accepted name for the corresponding algebraic struc-
ture (multiplication with one) We will call the set in which multiplication with
one is given unitoid.
(Transcrier's note: that is, a unitoid is a magma with an identity element. Thus,
an H-space is a homotopy unitoid.)
Accordingly for any fm-closed category 𝒜, its object 𝐾 will we call a unitoid
of the category 𝒜 (or a 𝒜-unitoid) for which a morphism 𝑚 : 𝐾 × 𝐾 → 𝐾 and
a constant morphism 𝜀 : 𝐾 → 𝐾 are given such that Diagrammes (3.6) are
commutative.

Formula (3.3) in categorical notation has the form

𝑓 𝑔 = 𝑚 ◦ ( 𝑓 × 𝑔), 𝑓 , 𝑔 : 𝑋 → 𝐾,

and formula (3.4) is the form

𝑓 −1 = 𝜇 ◦ 𝑓 , 𝑓 : 𝑋 → 𝐾.

These formulae do make sense for any 𝒜-group 𝐾 and any object 𝑋 ∈ 𝒜 and, as
is automatically checked, de�ne the structure of the group in the set 𝒜(𝑋, 𝐾) of
all morphisms 𝑋 → 𝐾. The unit of this group is a constant morphism 𝑋 → 𝐾,
which is a composition of an arbitrary morphism 𝛼 : 𝑋 → 𝐾 and the morphism
𝜀 : 𝐾 → 𝐾 (and obviously independent of the choice of morphism 𝛼).

A trivial check shows that for any morphism 𝑓 : 𝑋 → 𝑌 of the category 𝒜
the map 𝑓 ∗ : 𝛽 ↦→ 𝛽 ◦ 𝑓 from 𝒜(𝑌, 𝐾) to 𝒜(𝑋, 𝐾) is a homomorphism of groups
and that the correspondences of 𝑋 ↦→ 𝒜(𝑋, 𝐾), 𝑓 ↦→ 𝑓 ∗ de�ne a functor from
the category 𝒜 to the category of groups, i.e., in other words, that the structure
of the group in 𝒜(𝑋, 𝐾) is natural in 𝑋

Conversely, suppose that for some object 𝐾 of the category 𝒜 all the sets
𝒜(𝑋, 𝐾), 𝑋 ∈ 𝒜, are equipped with the natural structure of the group in 𝑋.
Then, in particular, the set 𝒜(𝐾 × 𝐾, 𝐾) of all morphisms 𝐾 × 𝐾 → 𝐾 will be
a group. By de�nition, this group contains two morphisms proj1 : 𝐾 × 𝐾 → 𝐾

and proj2 : 𝐾 × 𝐾 → 𝐾. The product of these morphisms (as elements of
the group 𝒜(𝐾 × 𝐾, 𝐾)) we denote by 𝑚. Similarly, the set 𝒜(𝐾, 𝐾) is also a
group. We will denote the unit of this group by 𝑒, and the element inverse to
the element id : 𝐾 → 𝐾 by 𝜇. The equality id ·𝜀 = 𝜀 · id = id in the group
𝒜(𝐾, 𝐾) is exactly equivalent to the commutativity of Diagrammes (3.6), and
the equality id ·𝜇 = 𝜇 · id = 𝜀 is equivalent to the commutativity of Diagrammes
(3.8). As for Diagramme (3.7), its commutativity is equivalent to the relation
proj1 ·(proj2 · proj3) = (proj1 · proj2) · proj3 for the elements proj1, proj2, proj3 :
𝐾 ×𝐾 ×𝐾 → 𝐾 of the group 𝒜(𝐾 ×𝐾 ×𝐾 → 𝐾, 𝐾). Moreover, from the fact that
the map 𝑓 ∗ for any morphism 𝑓 : 𝑋 → 𝑌 of the category 𝒜 is a homomorphism
from the group 𝒜(𝑌, 𝐾) to the group 𝒜(𝑋, 𝐾) and therefore translates the unit
of the �rst group into the unit of the second group, it immediately follows that
for any morphism 𝑓 : 𝐾 → 𝐾, the equality 𝜀 = 𝜀 ◦ 𝑓 holds. In particular, this
equality holds for every constant morphism 𝑓 : 𝐾 → 𝐾 (existing because the
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group 𝒜(0, 𝐾) is not empty), which is possible only if the morphism 𝜀 itself is
constant. Thus, the morphism 𝑚, 𝜇, and 𝜀 satisfy all the conditions for de�ning
a 𝒜-group, so that with respect to them the object 𝐾 is a group of the category
𝒜. Finally, as the obvious automatic check shows, the structure of the group
in each set 𝒜(𝑋, 𝐾), de�ned by the formulae (3.3) and (3.4), coincides with the
given one.

This proves that

Proposition 3.9. the sets 𝒜(𝑋, 𝐾) have a group structure natural in 𝑋 if and
only if the object 𝐾 is a group of category 𝒜.

It is clear that the same statement is true with respect to monoids and
unitoids.

3.5 H-groups, H-monoids and H-unitoids (H-spaces)

With respect to the category [𝒯ℴ𝓅], we obtain, in particular, that

Proposition 3.10. sets [𝑋, 𝐾] have a group, monoid, or unitoid structure nat-
ural in 𝑋, if and only if the topological space 𝐾 is a group, a monoid, or a
unitoid of the category [𝒯ℴ𝓅].

For groups of the category [𝒯ℴ𝓅] morphisms 𝑚, 𝜇 and 𝜀 are by de�nition
homotopy classes of continuous maps. However, in practice it turns out to
be convenient to consider some of their representatives instead of these classes
(choosing, of course, in the class 𝜀 a constant map const𝑒, where 𝑒 is some point).
Thus, we come to the concept of a topological space 𝐾, for which continuous
maps

𝑚 : 𝐾 × 𝐾 → 𝐾, 𝜇 : 𝐾 → 𝐾

and a point 𝑒 ∈ 𝐾 such that Diagrammes (3.6), (3.7) and (3.8) (with 𝜀 = const𝑒)
are homotopically commutative, are given. This kind of topological space we will
call an H-group the natural term �homotopy group�, unfortunately, is already
occupied).
(Transcriber's note: i.e., by the group [S𝑛, 𝑋].

Similarly, H-monoids and H-unitoids are de�ned. However, in topology it is
customary to call H-unitoids H-spaces. Despite the colourlessness of this term
(established only due to the lack of a good name in algebra for sets with a mul-
tiplication), we, in order not to break with tradition, will also use it.
(Transcriber'snote: J. P. Serre coined the term �magma� for a set with a mul-
tiplication.)

For any two elements 𝑥, 𝑦 of arbitrary H-space 𝐾, element 𝑚(𝑥, 𝑦) is usually
denoted by the symbol 𝑥𝑦 and is called the product of these elements. Similarly
(in the case when 𝐾 is an H-group), the element 𝜇(𝑥) is denoted by the symbol
𝑥−1 and is called the inverse element (or, more commonly, homotopy inverse)
to the element 𝑥. The element 𝑒 is called a homotopy unit.

According to the above general statement
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Proposition 3.11. for each H-space 𝐾 and any topological space 𝑋, the set
[𝑋, 𝐾] has a natural 𝑋 structure of a unitoid (the structure of a monoid if 𝐾 is
a H-monoid, and the structure of a group if 𝐾 is H-group).

In this case, the multiplication in [𝑋, 𝐾] is determined by the formula

[ 𝑓 ] [𝑔] = [ℎ], 𝑓 , 𝑔 : 𝑋 → 𝐾,

where ℎ is the map 𝑋 → 𝐾 de�ned by formula (3.3), i.e. formula

ℎ(𝑥) = 𝑓 (𝑥)𝑔(𝑥), 𝑥 ∈ 𝑋.

The unit of this multiplication is the homotopy class [const𝑒] of the constant
map const𝑒 : 𝑋 → 𝐾, and the operation [ 𝑓 ] ↦→ [ 𝑓 ]−1 de�ned (in the case where
𝐾 is H-group) by the formula [ 𝑓 ]−1 = [ 𝑓 −1], where 𝑓 −1 : 𝑥 ↦→ 𝑓 (𝑥)−1 for any
point 𝑥 ∈ 𝑋.

It is clear that by replacing the map 𝑚 (and in the case of H-groups and the
map 𝜇) by an arbitrary homotopy map to it, and the element 𝑒 is an arbitrary
element lying in the same connected component, from a given H-space (H-
monoid or H-group) we get again an H-space (H-monoid or H-group). This
H-space (H-monoid or H-group) is called equivalent to the original H-space (H-
monoid or H-group). In other words, two H-spaces (H-monoids or H-groups)
are equivalent if they de�ne the same unitoid (respectively, the same monoid or
the same group) of the category [𝒯ℴ𝓅].

From the point of view of general algebra, the morphisms of H-spaces (H-
monoids and H-groups) should be called continuous maps 𝑓 : 𝐾 → 𝐿 for which
the following diagrammes are commutative

𝐾 × 𝐾
𝑓 × 𝑓 //

𝑚

��

𝐿 × 𝐿
𝑚

��
𝐾

𝑓
// 𝐿

𝐾
𝑓 //

𝜀

��

𝐿

𝜀

��
𝐾

𝑓
// 𝐿

(3.12)

and also in the case of H-group,the diagramme

𝐾
𝑓 //

𝜇

��

𝐿

𝜇

��
𝐾

𝑓
// 𝐿

(3.13)

We will call this kind of maps algebraic morphisms.
However, since H-spaces are for us only representatives of the unitoids of the

category [𝒯ℴ𝓅], of much greater interest to us will be the maps 𝑓 : 𝐾 → 𝐿,
for which Diagrammes (3.12) and (3.13) are only homotopy commutative. We
will call such maps homotopy morphisms.
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Remark 3.14. In the case when 𝐾 and 𝐿 are H-groups, a continuous map 𝑓 :
𝐾 → 𝐿 will be their homotopy morphism only if the �rst diagram in (3.12) is
homotopically commutative (for 𝑓 ). Indeed, passing into the homotopy category
[𝒯ℴ𝓅], we can reformulate this statement as a statement that the map of
groups of the category [𝒯ℴ𝓅], preserving multiplication, translates one into
one and the inverse elements in the inverse. For groups of the categoryℰ𝓃𝓈, this
is a well-known statement with a trivial proof (since 𝑒2 = 𝑒, then 𝑓 (𝑒2) = 𝑓 (𝑒),
and therefore 𝑓 (𝑒) = 𝑓 (𝑒)2 𝑓 (𝑒)−1 = 𝑓 (𝑒) 𝑓 (𝑒)−1 = 𝐸 ; since 𝑥𝑥−1 = 𝑒, then
𝑓 (𝑥) 𝑓 (𝑥−1) = 𝑓 (𝑒) = 𝑒, and thanks to this 𝑓 (𝑥)−1 = 𝑓 (𝑥)−1 𝑓 (𝑥) 𝑓 (𝑥−1) = 𝑓 (𝑥−1)).
But, reformulating this proof in the language of diagrammes, we immediately
discover that it remains valid in an arbitrary category, and therefore in the
category [𝒯ℴ𝓅].

It is clear that all H-spaces (H-monoids or H-groups) and all their homotopy
(or only algebraic) morphisms make up a category. At the same time, according
to Remark 3.14, the category of H-groups and their homotopy morphisms will
be a complete subcategory of H-monoids or H-spaces,

Remark 3.15. The category of H-groups and their algebraic morphisms is not a
complete subcategory of the corresponding category of H-monoids or H-spaces.

Homotopy morphisms, which are homotopy equivalences, we will call homo-
topy isomorphisms.

Remark 3.16. Homotopy isomorphisms are not isomorphisms of any category.

Equivalences of H-spaces are their homotopy isomorphisms, which are iden-
tical maps.

If 𝑓 : 𝐾 → 𝐿 is a homotopy equivalence between an H-space 𝐾 with an
arbitrary space 𝐿, then you can obviously introduce in 𝐿 the structure of an H-
space to which the map 𝑓 will be a homotopy isomorphism. Up to equivalence,
this structure is unique.

At the same time, it is clear that an H-space homotopically isomorphic to a
H-monoid or H-group will itself be an H-monoid or, respectively, an H-group.

3.6 Category of cogroups

Let us now consider the dual situation.

Let again 𝒜 be an arbitrary category. An object 𝐶 of the category 𝒜,
considered together with two morphisms incl𝐴 : 𝐴→ 𝐶, incl𝐵 : 𝐵→ 𝐶, is called
the sum (or coproduct) of objects 𝐴 and 𝐵 if for any object 𝑋 ∈ 𝒜 and any
morphisms 𝛼 : 𝐴 → 𝑋, 𝛽 : 𝐵 → 𝑋 there is a single morphism 𝛾 : 𝐶 → 𝑋 that
has the property that 𝛾 ◦ incl𝐴 = 𝛼, 𝛾 ◦ incl𝐵 = 𝛽. The object 𝐶, if it exists, is
unique up to canonical isomorphism. It is denoted by the symbol 𝐴 ⊔ 𝐵, and
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the morphism 𝛾 is by the symbol 𝛼 ⊔ 𝛽.

𝐶 = 𝐴 ⊔ 𝐵

𝛾 =𝛼⊔𝛽

��

𝐴

incl𝐴

::

𝛼
$$

𝐵

incl𝐵

dd

𝛽
zz

𝑋

Similarly , the sum of any (including the empty one!) families of objects of
category 𝒜 is de�ned. In this case, the sum of the empty family of objects will
be the object 0𝒜, which has the property that for any object 𝐴 ∈ 𝒜 there is
one and only one morphism 0𝒜 → 𝐴. Such an object is called an initial object
of the category 𝒜.

A category 𝒜 is called �nitely additively closed (in short, fa-closed) if for
any �nite family of its objects there exists their sum. In particular, the fa-closed
category has an initial object.

A morphism 𝐴 → 𝐵 in an fa-closed category is called constant if it passes
through an initial object, i.e. it is a compound morphism of the form 𝐴 →
0𝒜 → 𝐵.

Examples of fa-closed categories are all the same categories ℰ𝓃𝓈, 𝒯ℴ𝓅,
[𝒯ℴ𝓅] and 𝒢𝓇𝓅. The sum of objects in the �rst three categories is their
disjunct union, and in the last one is their free product. The initial object of
the categories ℰ𝓃𝓈, 𝒯ℴ𝓅 and [𝒯ℴ𝓅] is an empty set of ∅ (empty space), and
the initial object of the category 𝒢𝓇𝓅 is a trivial group (which is also a terminal
object). The only constant morphisms The categories ℰ𝓃𝓈, 𝒯ℴ𝓅 and [𝒯ℴ𝓅]
are �maps� of the form ∅ → 𝑋, and in the category𝒢𝓇𝓅 the constant morphisms
coincide with the constant ones (i.e. they are trivial homomorphisms).

An object 𝐾 of an arbitrary fa-closed category 𝒜 is called a cogroup of the
category 𝒜 (in short, a 𝒜-cohroup), if morphisms 𝑚 : 𝐾 → 𝐾 ⊔ 𝐾, 𝜇 : 𝐾 → 𝐾,
𝜀 : 𝐾 → 𝐾 such that:

(a) the morphism 𝜀 is constant;

(b) there are commutative diagrams dual to Diagramems (3.6), (3.7) and (3.8)
accordingly.

𝐾 ⊔ 𝐾
id⊔𝜀

##
𝐾

id
//

𝑚

;;

𝐾

𝐾 ⊔ 𝐾
𝜀⊔id

##
𝐾

id
//

𝑚

;;

𝐾

(3.17)

𝐾
𝑚 //

𝑚

��

𝐾 ⊔ 𝐾

𝑚⊔id
��

𝐾 ⊔ 𝐾
id⊔𝑚

// 𝐾 ⊔ 𝐾 ⊔ 𝐾

(3.18)
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𝐾 ⊔ 𝐾
id⊔𝜇

##
𝐾

𝜀
//

𝑚

;;

𝐾

𝐾 ⊔ 𝐾
𝜇⊔id

##
𝐾

𝜀
//

𝑚

;;

𝐾

(3.19)

If only the morphisms 𝑚 and 𝜀 are given, and only Diagrammes (3.17) are
commutative, then the object 𝐾 is called a counitoid in the category 𝒜 (or
a 𝒜-counitoid). A category of counitoid for which Diagramme (3.18) is also
commutative is called a comonoid in the category 𝒜 (or 𝒜-comonoid).

For any 𝒜-cogroup 𝐾 and any object 𝑋 ∈ 𝒜, formula

𝑓 + 𝑔 = ( 𝑓 ⊔ 𝑔) ◦ 𝑚, 𝑓 , 𝑔 : 𝐾 → 𝑋 (3.20)

de�nes in the set 𝒜(𝐾, 𝑋) all morphisms 𝐾 → 𝑋 is an addition operation, the
zero of which is - as follows directly from the commutativity of Diagrammes
(3.17) - a constant map 𝐾 → 𝑋 of the form 𝛽 ◦ 𝜀, where 𝛽 is an arbitrary
morphism 𝐾 → 𝑋 (it is easy to see that the morphism 𝛽 ◦ 𝜀 does not depend on
the choice of morphism 𝛽). From the commutativity of diagram (3.18) follows
the associativity of addition (3.20), and from the commutativity of diagram
(3.19), that the element − 𝑓 = 𝑓 ◦ 𝜇 is the inverse to the element 𝑓 with respect
to addition (3.20). Thus, with respect to the operation (3.20) the set 𝒜(𝐾, 𝑋)
is a group, and, as it is easy to see, this group structure is natural with 𝑋.

Conversely, let for an object 𝐾 of the category𝒜 all the sets𝒜(𝐾, 𝑋), 𝑋 ∈ 𝒜,
are provided with a natural 𝑋-structure of the (additive) group. Then in the
group 𝒜(𝐾, 𝐾 ⊔ 𝐾) the element 𝑚 will be de�ned - the sum of the morphisms
incl1 and incl2, and in the group 𝒜(𝐾, 𝐾) - the zero element 𝜀 and the element
𝜇, inverse to the element id A more or less automatic check shows that for
these morphisms diagrams (3.17),(3.18) and (3.19) are commutative and that
operation (3.20) in the set𝒜(𝐾, 𝑋) coincides with the addition given in𝒜(𝐾, 𝑋).
In addition, it follows from the naturalness property that the morphism 𝜀 is
constant. Thus, in full duality to the situation for groups 𝒜(𝑋, 𝐾), we obtain
that

Proposition 3.21. sets 𝒜(𝐾, 𝑋) have a group structure natural in 𝑋 if and
only if the object 𝐾 is a subgroup of the category 𝒜.

It is clear that the same statement is true with respect to comonoids and
counitoids.

3.7 Category 𝒯ℴ𝓅•

For the case that interests us �rst of all categories 𝒯ℴ𝓅 and [𝒯ℴ𝓅] the results
obtained are of catastrophic character. Indeed, it is as a permanent map 𝐾 → 𝑋

in the category 𝒯ℴ𝓅 exists only when 𝐾 = ∅, then in the categories 𝒯ℴ𝓅 and
[𝒯ℴ𝓅] there are no nonempty groups, and therefore for any nonempty 𝐾 in
the sets 𝒯ℴ𝓅(𝐾, 𝑋) and [𝒯ℴ𝓅] (𝐾, 𝑋) = [𝐾, 𝑋] it is impossible to introduce a
group structure natural for 𝑋!
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To remedy the situation, you can o�er a few di�erent ways. The simplest-
and, apparently, the most important- is based on the following de�nition.

De�nition 3.22. A pointed space is a pair (𝑋, 𝑥0), consisting of a topological
space 𝑋 and some of its point 𝑥0 (called the base point of the pointed space).
Very often, the base point is only implied (= not explicitly speci�ed) and the
pointed space is simply denoted by 𝑋.

Often, the base point is also indicated by the symbol pt (or ∗), the same for
all spaces.

Pointed map 𝑓 : (𝑋, 𝑥0) → (𝑌, 𝑦0) from the pointed space (𝑋, 𝑥0) into the
pointed space (𝑌, 𝑦0) is a continuous map 𝑋 → 𝑌 such that 𝑓 (𝑥0) = 𝑦0.

It is clear that pointed spaces and their pointed maps constitute a category.
We will denote this category with the symbol𝒯ℴ𝓅•. It is related to the category
𝒯ℴ𝓅 by the functor ignoring base points

𝒯ℴ𝓅
• → 𝒯ℴ𝓅

that translates (𝑋, 𝑥0) into 𝑋.
In the 𝒯ℴ𝓅• there is a product of any family of objects: it will be their

product as topological spaces, in which a base point is marked, each coordinate
of which is a base point of the corresponding factor. In particular, for two
factors

(𝑋, 𝑥0) × (𝑌, 𝑦0) = (𝑋 × 𝑌, (𝑥0, 𝑦0)).

The terminal object of the category𝒯ℴ𝓅• is a singleton pointed space ({pt}, pt).
Thus, up to the based points this reasoning works and terminal objects of

the category 𝒯ℴ𝓅• are the same as in the category 𝒯ℴ𝓅.
The situation is di�erent with sums and initial objects (which is the raison

d'être of the category 𝒯ℴ𝓅•).

De�nition 3.23. A bouquet sum (or, in short, a bouquet) of a family of pointed
spaces 𝑋𝛼 is the coset space of their disjoint union resulting in the identi�cation
of the base points. For the base point of the bouquet, the image of the base
points of the components is taken.

The bouquet of spaces 𝑋𝛼 is indicated by the symbol ∨𝑋𝛼. To denote a
bouquet of a �nite family of pointed spaces, the following notation is also used

𝑋1 ∨ 𝑋2 ∨ · · · ∨ 𝑋𝑛.

The bouquet 𝑋1∨𝑋2∨· · ·∨𝑋𝑛 is naturally homeomorphic to the coordinate cross
of the product 𝑋1 × 𝑋2 ∨ · · · × 𝑋𝑛 consisting of points, all of whose coordinates,
except perhaps one, are base points. For example, for two terms

𝑋 ∨ 𝑌 = (𝑋 × 𝑦0) ∪ (𝑥0 × 𝑌 ).

We will also denote the point (𝑥, 𝑦0) of the bouquet 𝑋 ∨𝑌 by the symbol 𝑥𝐼
and the point (𝑥0, 𝑦) by the symbol 𝑦𝐼 𝐼 .
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Each family of pointed maps 𝑓𝛼 : 𝑋𝛼 → 𝑍 obviously de�nes a pointed map

𝑓 = ∨ 𝑓𝛼 : ∨𝑋𝛼 → 𝑍,

having the property that 𝑓 ◦ incl𝛼 = 𝑓𝛼 for any 𝛼, where

incl𝛼 : 𝑋𝛼 → ∨𝑋𝛼

are the canonical inclusions. Since the latter property obviously characterises
the map 𝑓 in the unique way, therefore,

Proposition 3.24. the bouquet sum is the sum in the category of 𝒯ℴ𝓅•.

For a �nite family of 𝑓1, . . . , 𝑓𝑛 of the maps ∨ 𝑓𝛼 the map ∨ 𝑓𝛼 is also denoted
by the symbol 𝑓1∨· · ·∨ 𝑓𝑛. In particular, for two maps 𝑓 : 𝑋 → 𝑍 and 𝑔 : 𝑌 → 𝑍

the map 𝑓 ∨ 𝑔 : 𝑋 ∨ 𝑌 → 𝑍 is de�ned, acting according to the formulae

( 𝑓 ∨ 𝑔) (𝑥𝐼 ) = 𝑓 (𝑥), ( 𝑓 ∨ 𝑔) (𝑦𝐼 𝐼 ) = 𝑔(𝑦), 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 .

Any family of maps 𝑓𝛼 : 𝑋𝛼 → 𝑌𝛼 naturally also de�nes the map ∨𝑋𝛼 →
∨𝑌𝛼, which we will denote with the same symbol ∨ 𝑓𝛼 (or, respectively, 𝑓1∨· · ·∨
𝑓𝛼).

Note that the map ∨ 𝑓 : ∨𝑋𝛼 → 𝑍 (map ∨ 𝑓𝛼 : ∨𝑋𝛼 → ∨𝑌𝛼) is a restriction
of the map

∏
𝑓 :

∏
𝑋 → 𝑍 (the map

∏
𝑓𝛼 :

∏
𝑋𝛼 →

∏
𝑌𝛼).

Initial objects of the category𝒯ℴ𝓅 coincide with terminal objects ({pt}, pt)
and, therefore, co-constant maps are constant.

Note that, as in the category of groups, in the category of𝒯ℴ𝓅• for any two
objects 𝑋, 𝑌 there is a single constant (aka co-constant) map const : 𝑋 → 𝑌 .

By analogy with the category 𝒯ℴ𝓅•, we can introduce the category ℰ𝓃𝓈•

of pointed sets, the objects of which are sets with a base point marked in them,
and morphisms are maps that translate base points into based ones. It is conve-
nient, however, to consider this category a complete subcategory of the category
𝒯ℴ𝓅

•, considering every set is like a topological space with a discrete topology.
In the language of algebra, a pointed set is nothing more than a set with a

single zero operation. Thus, the structure of the pointed set is the weakest of
all possible algebraic structures. Unfortunately, in many situations there is no
other structure on the sets we need, and we have to limit ourselves to what we
have.

For example, the 𝜋0 functor on the category𝒯ℴ𝓅•. Naturally, it is a functor
with values in ℰ𝓃𝓈• (the component containing the base point is marked), but
in general, no richer algebraic structure can be introduced into the sets of 𝜋0𝑋.

3.8 Category [𝒯ℴ𝓅•]
Having introduced the category 𝒯ℴ𝓅•, we must now construct the correspond-
ing homotopy category [𝒯ℴ𝓅•]. To do this, we need to de�ne the concept of
homotopy for pointed maps. We will do this in the most natural way, taking the
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pointed maps as homotopy (𝑋, 𝑥0) → (𝑌, 𝑦0) (or, in short, a pointed homotopy)
an arbitrary homotopy 𝑓𝑡 : 𝑋 → 𝑌 , having the property that for any 𝑡 ∈ 𝑇 the
map 𝑓𝑡 is a pointed map 𝑋 → 𝑌 , that is, it satis�es the relation 𝑓𝑡 (𝑥0) = 𝑦0. In
other words, pointed homotopies are exactly homotopies rel{𝑥0}.

In the interpretation of homotopies as maps 𝐹 : 𝑋 × 𝐼 → 𝑌 the condition
𝑓𝑡 (𝑥0) = 𝑦0 means that 𝐹 (𝑥0, 𝑡) = 𝑦0 for all 𝑡 ∈ 𝐼, i.e. that 𝐹 (𝑥0 × 𝐼) = 𝑦0. In this
regard, in the category of 𝒯ℴ𝓅• it is advisable to consider, instead of space
𝑋 × 𝐼, the space

𝑋 ¤×𝐼 = (𝑋 × 𝐼)/(𝑥0 × 𝐼),

resulting from the product of 𝑋 × 𝐼 by collapsing the segment 𝑥0 × 𝐼 to a point.
This space is naturally pointed - its base point is the image of the segment 𝑥0× 𝐼,
and the homotopy of the pointed maps are nothing more than the pointed map
𝑋 ¤×𝐼 → 𝑌 .

Sometimes(very rarely) we will have to consider ordinary homotopy pointed
maps that do not satisfy the condition 𝑓𝑡 (𝑥0) = 𝑦0. We will call such homotopies
free.

For homotopy classes of pointed maps [ 𝑓 ] rel{𝑥0}, we will use the more
expressive notation [ 𝑓 ]•, and the set of all homotopy classes of pointed maps
[ 𝑓 ]• : (𝑋, 𝑥0) → (𝑌, 𝑦0) we will denote either by the symbol [(𝑋, 𝑥0), (𝑌, 𝑦0)] or
by the symbol [𝑋,𝑌 ]•. We will sometimes denote the pointed homotopy relation
by the symbol ¤∼. Thus, the formulae 𝑓 ¤∼𝑔,, 𝑓 ∼ 𝑔 rel{𝑥0} and [ 𝑓 ]• = [𝑔]• mean
the same thing.

It is clear that the homotopy class of the composition of pointed maps de-
pends only on the homotopy classes of these maps, which makes it possible to
determine the composition of classes [ 𝑓 ]• with respect to which the totality of
all pointed spaces and all homotopy classes of their pointed maps is a category.
We will denote this category by the symbol [𝒯ℴ𝓅]• (or the symbol [𝒯ℴ𝓅•]).

For any pointed homotopy 𝑓𝑡 : 𝑋 → 𝑍 and 𝑔𝑡 : 𝑌 → 𝑍 the map 𝑓𝑡 × 𝑔𝑡
and the restriction 𝑓𝑡 ∨ 𝑔𝑡 are obviously homotopy. Therefore, the products
(sums) of pointed spaces in the category 𝒯ℴ𝓅• will be products (sums) in
the category [𝒯ℴ𝓅]•. The same is, of course, true with respect to initial
(= terminal) objects. As for the constant (= co-constant) morphisms of the
category [𝒯ℴ𝓅]•, they will be homotopy classes of constant maps. Therefore,
in the category [𝒯ℴ𝓅]•, as in the category 𝒯ℴ𝓅•, for any two objects 𝑋 and
𝑌 , there is one and only one constant (= co-constant) morphism 𝑋 → 𝑌 .

3.9 H-cogroups, H-comonoids, H-counitoids

Thus, we see that formal obstacles to the existence in the category of [𝒯ℴ𝓅]•
there are no cogroups, comonoids and counitoids. However, as in a similar situ-
ation for [𝒯ℴ𝓅]-groups, we prefer instead of homotopy classes 𝑚, 𝜇, 𝜀 consider
their arbitrary representatives. Thus we come to the following de�nitions.

The pointed space (𝐾, 𝑒) is called H-counitoid (or, more traditionally, a co-
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H-space) if a pointed map is given

𝑚 : 𝐾 → 𝐾 ∨ 𝐾.

that Diagrammes (3.17) (in which 𝐾⊔𝐾 is replaced by 𝐾∨𝐾 and 𝜀 is a constant
map const𝜀 : 𝐾 → 𝐾) are homotopy commutative (of course, pointed), i.e. if
the space 𝐾 is a [𝒯ℴ𝓅]• counitoid with respect to homotopy classes [𝑚]• and
[𝜀]•.

If, in addition, the diagramme (3.18) is homotopy commutative, then the
H-counitoid 𝐾 is called the H-comonoid, and if the map 𝜇 : 𝐾 → 𝐾 is given for
which the Diagrammes (3.19) are homotopy commutative, then the H-comonoid
is called a H-cogroup.

The map 𝑚 is called a co-multiplication, and the base point 𝜀 is called a
homotopy unit.

Morphisms of H-counitoids, H-comonoids and H-cogroups are determined
in an obvious way. As in the case of H-spaces, they can be algebraic or more
generally homotopic.

Two H-counitoids (two H-comonoids or two H-cogroups) are called equivalent
if, as pointed spaces, they coincide, and their multiplications (and in the case of
cogroups and the map 𝜇) are pointed homotopies, i.e. if they de�ne the same
counitoide (the same comonoid or the same cogroup) of the category [𝒯ℴ𝓅]•.

According to the general-category (theory), results obtained above

Proposition 3.25. for each H-cogroup (each H-comonoid or H-counitoide) K
and any pointed space 𝑋 the set [𝐾, 𝑋] has a group structure (monoid structure
or unitoid structure) that is natural in 𝑋.

Of course, in order for all this to make meaningful sense, we need to have a
fairly large stock of examples of speci�c H co-groups. We will now outline one
way of constructing them, although not the most general, but su�cient for our
purposes.

3.10 Suspensions

Let 𝑋 be an arbitrary (non-pointed) topological space.

De�nition 3.26. The suspension 𝑆𝑋 over the space 𝑋 is the coset space of the
product 𝑋 × 𝐼 with respect to equivalence, in which (𝑥1, 𝑡1) ∼ (𝑥2, 𝑡2) if and only
if either 𝑥1 = 𝑥2, 𝑡1 = 𝑡2, or 𝑡1 = 𝑡2 = 0, or𝑡0 = 𝑡1 = 1. Thus, the factorisation
map 𝑋 × 𝐼 → 𝑆𝑋 is a homeomorphism on the subspace 𝑋 × (0, 1) and maps each
of the subspaces 𝑋 × 0 and 𝑋 × 1 to one point respectively (its own for each
subspace - see Fig. 3.10.1). We will call the point 0 ∈ 𝑆𝑋, which is the image of
the subspace 𝑋 ×𝑂, the south pole of the suspension 𝑆𝑋, and the point 𝑝1 ∈ 𝑆𝑋,
which is the image of the subspace 𝑋 × 1 its north pole. We will call the images
of the segments 𝑋 × 𝐼 the meridians of the suspension, and the image of the
subspace 𝑋 × 1/2 its equator. The equator is naturally homeomorphic to the
space 𝑋, and we will usually identify it with this space.
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Figure 3.10.1:

We will denote the point of the suspension 𝑆𝑋 which is the image of the
point (𝑥, 𝑡) ∈ 𝑋 × 𝐼 by the symbol [𝑥, 𝑡]𝑆 or simply [𝑥, 𝑡].

Thus,
[𝑥, 0] = 𝑝0, [𝑥, 1] = 𝑝1 for any point 𝑥 ∈ 𝑋,

and for 0 < 𝑡1, 𝑡2 < 1, the equality [𝑥1, 𝑡1] = [𝑥2, 𝑡2] holds if and only if 𝑥1 = 𝑥2
and 𝑡1 = 𝑡2.

It is clear that the correspondence [𝑥, 𝑡]𝐶 → [𝑥, 𝑡]𝑆 induces homeomorphism
of the space 𝐶𝑋/𝑋 to the space 𝑆𝑋. Thus, we can assume that 𝑆𝑋 = 𝐶𝑋/𝑋.
(See Section 2.4.)

In the case when 𝑋 is a unit sphere S𝑛−1 of the space R𝑛, by setting up 𝑆S𝑛−1

by means of the homeomorphism

[𝑥, 𝑡] ↦→ (− cos 𝜋𝑡, sin 𝜋𝑖𝑥), 𝑥 ∈ S𝑛−1, 𝑡 ∈ 𝐼, (3.27)

it is naturally identi�ed with a single sphere S𝑛 in the space R𝑛+1 = R𝑛 × R. At
the same time, the poles, meridians and equator acquire the usual elementary
geometric meaning.

In particular, S1 = 𝑆S0.
Thus, although the sphere S0 is disconnected, its suspension S1 is connected.

In general, the setting of 𝑆𝑋 over any space 𝑋 is connected, since any point of
it is connected by a meridian segment with each pole.

For any continuous map 𝑓 : 𝑋 → 𝑌 , the correspondence

[𝑥, 𝑡] ↦→ [ 𝑓 (𝑥), 𝑡], 𝑥 ∈ 𝑋, 𝑡 ∈ 𝐼,

de�nes a continuous map 𝑆 𝑓 : 𝑆𝑋 → 𝑆𝑌 , and it is clear that the correspondences
𝑋 ↦→ 𝑆𝑋, 𝑓 ↦→ 𝑆 𝑓 make up some functor

𝑆 : 𝒯ℴ𝓅→ 𝒯ℴ𝓅.

We will call this functor the suspension functor.
When the equator 𝑋 is pulled into a point in the suspension 𝑆𝑋, a space

𝑆𝑋/𝑋 appears, homeomorphic, obviously, to the bouquet 𝑆𝑋 ∨ 𝑆𝑋 of two copies



3.11. REDUCED SUSPENSIONS 115

Figure 3.10.2:

of the suspension 𝑆𝑋, resulting in the identi�cation, say, of the south pole of one
instance with the north pole of the other (see Fig. 3.10.2). (A homeomorphism
𝑆𝑋/𝑋 → 𝑆𝑋 ∨ 𝑆𝑋 is induced, for example, by the map

𝑚 : 𝑆𝑋 → 𝑆𝑋 ∨ 𝑆𝑋,

de�ned by the formula

𝑚 [𝑥, 𝑡] =
{
[𝑥, 2𝑡] 𝐼 , if 0 < 𝑡 < 1/2,
[𝑥, 2𝑡 − 1] 𝐼 𝐼 , if 1/2 < 𝑡 < 1,

(3.28)

where 𝑥 ∈ 𝑋, 𝑡 ∈ 𝐼.)
The map (3.28) is, by de�nition, a kind of multiplication in the space 𝑆𝑋,

and, as we will show below, if we arbitrarily select a base point in 𝑆𝑋, then

Proposition 3.29. with respect to this multiplication, the suspension 𝑆𝑋 will
be an H-cogroup.

Thus we have obtained a large stock of various H-cogroups.

3.11 Reduced suspensions

However, a careful analysis of the presented construction reveals certain rough-
ness in it, due to the fact that although, due to the connectivity of the space 𝑆𝑋,
the choice of the base point in it has no real meaning, but for the functoriality
of the whole construction, this choice should be made in some �natural� way.
Unfortunately, we have two natural candidates for the role of the base point -
the north pole and the south pole,the choice between which introduces an un-
pleasant element of arbitrariness. (This, in particular, was re�ected in the fact
that although, according to the general theory, when constructing a bouquet
𝑆𝑋 ∨𝑆𝑋 we need for both copies of the space 𝑆𝑋 to remove the same base point,
but above, for symmetry, we chose the north pole 𝑝0 in one instance, and the
south pole 𝑝1 in the other.) Moreover, since we actually mean to work in the
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category of 𝒯ℴ𝓅•, we must also consider the initial space 𝑋 to be pointed, and
then in order for its identi�cation 𝑥 ↦→ [𝑥, 1/2] with the equator of the suspen-
sion 𝑆𝑋 to be an identi�cation in the category of 𝒯ℴ𝓅•, it is necessary for the
base point of the suspension 𝑆𝑋 to select the point [𝑥0, 1/2], where 𝑥0 is the
base point of the space 𝑋.

De�nition 3.30. The reduced suspension 𝑆•𝑋 over the pointed space 𝑋 is
the coset space of the product 𝑋 × 𝐼, resulting in the collapsing the subspace
𝑋pt = (𝑋 × 0) ∪ (𝑥0 × 𝐼) ∪ (𝑋 × 1) to a point:

𝑆•𝑋 = (𝑋 × 𝐼)/𝑋pt

(which is taken as the base point of the above suspension). In other words,

𝑆•𝑋 = 𝑆𝑋/𝑆𝑥0,

where 𝑆𝑥0 is the meridian passing through the point 𝑥0.

Instead of 𝑆•𝑋, we will also write 𝑆(𝑋, 𝑥0).
The points of the above suspension will be denoted by the former symbols

[𝑥, 𝑡] or, when necessary, [𝑥, 𝑡]𝑆. So now [𝑥1, 𝑡1] = [𝑥2, 𝑡2] if and only if either
𝑥1 = 𝑥2 and 𝑡1 = 𝑡2, or 𝑥1 = 𝑥2 = pt, or 𝑡1 = 0, 1, 𝑡2 = 0, 1 (and then [𝑥1, 𝑡1] =
[𝑥2, 𝑡2] = pt).

The correspondence 𝑥 ↦→ [𝑥, 1/2] will still imbed 𝑋 into 𝑆•𝑋, but now it will
already be a pointed map. Assuming that 𝑋 ⊂ 𝑆•𝑋, we will thereby identify the
point 𝑥0 with the base point of the suspension 𝑆•𝑋.

Similarly, the correspondence [𝑥, 𝑡] ↦→ [ 𝑓 (𝑥), 𝑡] for any pointed map 𝑓 : 𝑋 →
𝑌 will determine the pointed map 𝑆• 𝑓 : 𝑆•𝑋 → 𝑆•𝑌 , and the correspondences
𝑋 ↦→ 𝑆•𝑋, 𝑓 ↦→ 𝑆• 𝑓 will constitute some functor

𝑆• : 𝒯ℴ𝓅• → 𝒯ℴ𝓅
•.

We will call this the reduced suspension functor.
Finally, the same formula (3.28) will give us a multiplication 𝑚 : 𝑆•𝑋 →

𝑆•𝑋 ∨ 𝑆•𝑋, with respect to which the space 𝑆•𝑋 is also, as we will show below,
an H-cogroup (with 𝑥0 as the unit).

Thus, the transition to the above suspension removes all the di�culties noted
above and at the same time nothing, in fact, spoils. This, however, should not be
surprising, since, as we will prove in the next lecture, the spaces 𝑆𝑋 and 𝑆•𝑋 are
homotopically equivalent under very broad general methodological conditions.

Remark 3.31. Moreover, under slightly more restricted conditions, the spaces
𝑆𝑋 and 𝑆•𝑋 are even homeomorphic. We will not investigate this question in
full generality and will limit ourselves to proving that

Proposition 3.32. for any 𝑛 > 0 the reduced suspension 𝑆•S𝑛−1 over the (𝑛 − 1)-
dimensional sphere S𝑛−1 is homeomorphic to the 𝑛-dimensional sphere S𝑛 =

𝑆S𝑛−1.
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Proof. Indeed, by identifying the space R𝑛 with the product R × R𝑛−1, and the
space R𝑛+1 with the product R×R𝑛−1 ×R, the homeomorphism 𝑑 : 𝑆•S𝑛−1 → S𝑛
can be de�ned, for example, by the formula

𝑑 [(𝑥, x, 𝑡] =
{
(1 − 2𝑡 + 2𝑡𝑥, 2𝑡x, 2

√︁
𝑡 (1 − 2𝑡) (1 − 𝑥), if 0 ≤ 𝑡 ≤ 1/2,

(2𝑡 − 1 + 2(1 − 𝑡)𝑥, 2(1 − 𝑡)x, 2
√︁
(1 − 𝑡) (2𝑡 − 1) (1 − 𝑥), if 1/2 ≤ 𝑡 ≤ 1,

(3.33)
where 𝑥2 + |x|2 = 1, 𝑥 ∈ R, 𝓍 ∈ R𝑛−1 and 𝑡 ∈ 𝐼 (this homeomorphism maps
each meridian of the suspension to the circumference of the sphere S𝑛, carved
by the hyperplane of the space R𝑛+1 passing through the points (𝑥, x, 0) and
𝑠0 = (1, 0, 0) parallel to the axis 𝑥𝑛+1). □

3.12 Loop spaces

The conceptual advantage of the above suspension is also manifested in the fact
that it allows a dual construction.

Let (𝑋, 𝑥0) be an arbitrary pointed space.

De�nition 3.34. The path 𝑢 : 𝐼 → 𝑋 of the pointed space (𝑋, 𝑥0) is called a
loop if 𝑢(0) = 𝑢(1) = 𝑥0. The set of all loops of the space (𝑋, 𝑥0), being a subset
of the topological space 𝑋 𝐼 , is a topological space. We will denote it with the
symbol Ω(𝑋, 𝑥0) or simply Ω𝑋.

We will consider the space Ω𝑋 to be a pointed space, taking the constant
loop 0𝑥0 : 𝐼 → 𝑋, 𝑡 ↦→ 𝑥0 as its base point.

Each pointed map 𝑓 : 𝑋 → 𝑌 is de�ned by the formula

(Ω 𝑓 )𝑢 = 𝑓 ◦ 𝑢 (3.35)

de�nes the pointed map Ω 𝑓 : Ω𝑋 → Ω𝑌 , and it is clear that the correspondences
𝑋 ↦→ Ω𝑋, 𝑓 ↦→ Ω 𝑓 make up a functor

Ω : 𝒯ℴ𝓅• → 𝒯ℴ𝓅
•.

We will call this functor the loop functor.
We will introduce multiplication into Ω𝑋 by de�ning the product of 𝑢𝑣 of

two loops 𝑢, 𝑣 ∈ Ω𝑋 by the formula

(𝑢𝑣) (𝑡) =
{
𝑢(2𝑡) if 0 ≤ 𝑡 ≤ 1/2,
𝑣(2𝑡 − 1) if 1/2 ≤ 𝑡 ≤ 1.

(3.36)

It is clear that this de�nition is correct and the resulting map (𝑢, 𝑣) ↦→ 𝑢𝑣 from
the product Ω𝑋 ×Ω𝑋 to the space Ω𝑋 is continuous.

Below we show that

Proposition 3.37. with respect to this multiplication, the space Ω𝑋 is an H-
group.
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The (homotopy) unit of this H-group is the constant loop 0𝑥0 , and the map
𝑢 ↦→ 𝑢−1 is given by the formula 𝑢−1 (𝑡) = 𝑢(1 − 𝑡).

Note that Ω𝑋 = Ω𝑋0, where 𝑋0 is the component of the space 𝑋 containing
the base point. Therefore, considering the space Ω𝑋, we will, as a rule, consider
the space 𝑋 to be connected.

3.13 Adjoint functors 𝑆 and Ω

In general category theory, two functors 𝐹 : 𝒞 → 𝒟 and 𝐺 : 𝒟 → 𝒞 are
called adjoint (more precisely, the functor 𝐹 is called adjoint on the left with
the functor 𝐺, and the functor 𝐺 is called adjoint on the right with the functor
𝐹) if for any 𝑋 ∈ 𝒞, 𝑌 ∈ 𝒟 a natural (with respect to 𝑋 and 𝑌) bijective map
is given

𝜑 : 𝒟(𝐹𝑋, 𝑦) ≈−→ 𝒞(𝑋, 𝐺𝑌 )
(called adjoint isomorphism).

Example 3.38. When 𝒞 = ℰ𝓃𝓈, 𝒟 = 𝒢𝓇𝓅 the functor 𝒢𝓇𝓅 → ℰ𝓃𝓈 ignoring
the group structure is adjoint on the right with theℰ𝓃𝓈→ 𝒢𝓇𝓅 functor, which
maps an arbitrary set 𝑋 to a free group with the set 𝑋 as free generators.

Adjoint functors have a number of important properties, but they are of
interest to us now only in connection with the theory of groups and cogroups.

Let the functor 𝐹 have the property that for any object 𝑋 ∈ 𝒞, the object
𝐹𝑋 is a subgroup of the category 𝒟 and, therefore, for any object 𝑌 ∈ 𝒟 the
set 𝒟(𝐹𝑋,𝑌 ) is a cogroup. Then the set 𝒞(𝑋, 𝐺𝑌 ) will also be a group, and
the group structure on this set will be natural for 𝑋 (and, of course, for 𝑌 , but
we don't care about that at the moment). Therefore, the object 𝐺𝑌𝒞 will be
a category group 𝒞. Since this reasoning is completely reversible, it is proved
that

Proposition 3.39. the functor 𝐹 takes values in the category of 𝒟-cogroups if
and only if the functor 𝐺 takes values in the category of 𝒞-groups.

Let's return now to the category 𝒯ℴ𝓅•.

Proposition 3.40. The functor 𝑆• : 𝒯ℴ𝓅• → 𝒯ℴ𝓅
• is adjoint on the left

with the functor Ω : 𝒯ℴ𝓅• → 𝒯ℴ𝓅
•

Proof. By composing an arbitrary pointed map 𝑓 : 𝑆•𝑋 → 𝑋 with the factori-
sation map 𝑋𝑥𝐼 → 𝑆•𝑋 and moving to the associated map, we get the map
𝜑 𝑓 : 𝑋 → 𝑌 𝐼 , explicitly de�ned by the formula

(𝜑 𝑓 ) (𝑥) (𝑡) = 𝑓 ( [𝑥, 𝑡]), 𝑥 ∈ 𝑋, 𝑡 ∈ 𝐼

Since by the condition 𝑓 ( [𝑥, 0]) = 𝑓 ( [𝑥, 1]) = 𝑥0 map 𝜑 𝑓 is actually a map in
Ω𝑋, so that the correspondence 𝑓 ↦→ 𝜑 𝑓 gives us some (obviously natural with
respect to 𝑋 and 𝑌) map

𝜑 : 𝒯ℴ𝓅• (𝑆•𝑋,𝑌 ) → 𝒯ℴ𝓅
• (𝑋,Ω𝑌 ),

and a direct check shows that this map is bijective. □
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A functor 𝑇 : 𝒯ℴ𝓅• → 𝒯ℴ𝓅
• is called homotopy invariant if, for any

(pointed) homotopy 𝑓𝑡 : 𝑋 → 𝑌 , the maps 𝑇 ( 𝑓𝑡 ) : 𝑇𝑋 → 𝑇𝑌 constitute a
homotopy from 𝑇𝑋 to 𝑇𝑌 (automatically pointed). For such a functor, the
correspondence [ 𝑓 ]• ↦→ [𝑇 𝑓 ]• is well de�ned and together with the correspon-
dence 𝑋 ↦→ 𝑇𝑋 makes up the functor [𝒯ℴ𝓅•] → [𝒯ℴ𝓅•], which is called a
homotopisation of the functor 𝑇 and is usually denoted by the same symbol 𝑇 .

Examples of homotopy functors are, as can be easily seen, the functors 𝑆•

and Ω. We will also call their homotopisations a suspension functor and a loop
functor (from [𝒯ℴ𝓅•] → [𝒯ℴ𝓅•]).
Remark 3.41. For the homotopy class 𝛼 = [ 𝑓 ]• ∈ [𝑋,𝑌 ]• the homotopy class
𝑆•𝛼 = [𝑆• 𝑓 ]• is also denoted by the symbol 𝐸𝛼.

It is clear that the adjoint isomorphism for the homotopy functors 𝑆• and
Ω translates into homotopy. Therefore, the functors 𝑆• and Ω from [𝒯ℴ𝓅•] →
[𝒯ℴ𝓅•] are also paired (= adjoint).

Therefore, the statement that the above suspension 𝑆•𝑋 is an H-cogroup is
equivalent to the statement that the loop space is an H-group. So, only one of
them needs a proof.

3.14 Topological monoids of Moore loops

De�nition 3.42. The Moore loop of the pointed space (𝑋, 𝑥0) is a continuous
map

𝑢 : [0, 𝑎] → 𝑋

from the segment [0, 𝑎], where 𝑎 ≥ 0, into the space 𝑋, such that 𝑢(0) = 𝑢(𝑎) =
𝑥0.

The number 𝑎 is called the length of the Moore loop 𝑢.
Moore loops of length 1 are ordinary loops of space 𝑋 (i.e. loops in the sense

of De�nition 3.34).
Similarly, the Moore path of length 𝑎 ≥ 0 of the topological space 𝑋 is an

arbitrary map 𝑢 : [0, 𝑎] → 𝑋. The point 𝑢(0) is called the beginning of the path
𝑢, and the point 𝑢(𝑎) is its end.

For each Moore path 𝑢 : [0, 𝑎] → 𝑋 the formula 𝑢# (𝑡) = 𝑢(𝑎𝑡) de�nes an
ordinary path 𝑢# of the space 𝑋, and by matching the paths 𝑢 with a pair
(𝑢#, 𝑎), we get a map of the set of all Moore paths of the space 𝑋 into the
product 𝑋 𝐼 × 𝑅+, where 𝑅+ is the semiaxis of all non-negative real numbers.
It is clear that this map is injective. Considering it as an embedding, we will
introduce the topology of the subspace of the product 𝑋 𝐼 × 𝑅+ into the set of
Moore loops Ω𝑀𝑋. Obviously, the space Ω𝑋 will then be a subspace of the
space Ω𝑀𝑋, and the map 𝑢 ↦→ 𝑢# will be a retraction Ω𝑀𝑋 → Ω𝑋.

Moreover, it is easy to see that

Proposition 3.43. this retraction is a strong deformation retraction and, hence,
a homotopy equivalence.
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Proof. Appropriate corresponding deformation 𝑓𝜏 : Ω𝑀𝑋 → Ω𝑀𝑋, 0 ≤ 𝜏 ≤ 1,
can be obtained by matching each Moore loop 𝑢 : [0, 𝑎] → 𝑋 with the Moore
loop 𝑓𝜏𝑢 of length 𝑎 + 𝜏 − 𝜏𝑎, given by the formula

( 𝑓𝜏𝑢) (𝑡) =


𝑢(𝑡0), if 𝑎 ≤ 1 and 0 ≤ 𝑡 ≤ 𝑎,
𝑥0, if 𝑎 ≤ 1 and 𝑎 ≤ 𝑡 ≤ 𝑎 + 𝜏 − 𝜏𝑎,
𝑢( 𝑎𝑡

𝑎+𝜏−𝜏 ), if 𝑎 ≥ 1,

where 0 ≤ 𝑡 ≤ 𝑎 + 𝜏 − 𝑎𝜏. □

Let 𝑢 and 𝑣 be two Moore paths of lengths 𝑎 and 𝐵, respectively, having the
property that the end of 𝑢(𝑎) of the path 𝑢 coincides with the beginning of 𝑣(0)
of the path 𝑣. Then the formula

(𝑢𝑣) (𝑡) =
{
𝑢(𝑡), if 0 ≤ 𝑡 ≤ 𝑎,
𝑣(𝑡 − 𝑎), if 𝑎 ≤ 𝑡 ≤ 𝑎 + 𝑏,

de�nes the Moore path 𝑢𝑣 of length 𝑎 + 𝑏, called the product of paths 𝑢 and 𝑣.

In particular, the product 𝑢𝑣 is de�ned for any two Moore loops 𝑢, 𝑣 ∈ Ω𝑀𝑥,
and the corresponding map

Ω𝑀𝑋 ×Ω𝑀𝑋 → Ω𝑀𝑋, (𝑢, 𝑣) ↦→ 𝑢𝑣, (3.44)

as it is easy to see, is continuous. In addition, it is clear that it is associative
and the loop const : [0, 0] → 𝑋 (which we will also denote by the symbol 𝑒) is
its unit. This means that

Proposition 3.45. with respect to multiplication (3.44), the space Ω𝑀𝑋 is a
topological monoid.

On the other hand, the formula

𝑚𝜏 (𝑢, 𝑣) (𝑡) =
{
𝑢( 2(𝑎+𝑏)𝑡
(𝑎+𝑏)+(𝑎−𝑏)𝜏 𝑎), if 0 ≤≤ 𝑡 ≤ (𝑎+𝑏)+(𝑎−𝑏)𝜏2(𝑎+𝑏) ,

𝑣( 2(𝑎+𝑏)𝑡−(𝑎+𝑏)−(𝑎−𝑏)𝜏(𝑎+𝑏)+(𝑎−𝑏)𝜏 𝑏), if (𝑎+𝑏)+(𝑎−𝑏)𝜏
2(𝑎+𝑏) ≤ 𝑡 ≤ 1,

(where 𝑎 and 𝑏 are the lengths of the Moore paths 𝑢 and 𝑣) de�nes - as directly
veri�ed - the homotopy 𝑚𝜏 : Ω𝑀𝑋 × Ω𝑀𝑋 → Ω𝑋, connecting the map 𝑚0 :
(𝑢, 𝑣) ↦→ 𝑢#𝑣# with the map 𝑚1 : (𝑢, 𝑣) ↦→ (𝑢𝑣)#. Hence, the map 𝑢 ↦→ 𝑢# is a
homotopy morphism and, therefore, being a homotopy equivalence, a homotopy
isomorphism.

This proves that

Proposition 3.46. the space with multiplication Ω𝑋 is homotopically isomor-
phic to the topological monoid Ω𝑀𝑋.
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3.15 The loop space is an H-group.

Hence, the space 𝑄𝑋 is a H-monoid (and therefore the space 𝑆•𝑋 is an H-
comonoid).

Since 𝑒# = 0𝑥0 , the constant loop 0𝑥0 is the homotopy unit of the H-monoid
Ω𝑋 (and the base point of the reduced suspension 𝑆•𝑋 is its homotopy unit).

Remark 3.47. Of course, the latter statements are easily proved directly. Ho-
motopy from Ω𝑋 × Ω𝑋 × Ω𝑋 to Ω𝑋, the binding map (𝑢, 𝑣, 𝑤) ↦→ (𝑢𝑣)𝑤 and
(𝑢, 𝑣, 𝑤) ↦→ 𝑢(𝑣𝑤), can be de�ned by the formula

[ 𝑓𝜏 (𝑢, 𝑣, 𝑤)] (𝑡) =


𝑢( 𝑢𝑡1+𝜏 ), if 0 ≤ 𝑡 ≤ 1+𝜏

4 ,

𝑣(4𝑡 − 𝜏 − 1), if 1+𝜏
4 ≤ 𝑡 ≤

1+𝜏
4 ,

𝑤( 4𝑡−𝜏−12−𝜏 ), if 2+𝜏
4 ≤ 𝑡 ≤≤ 1,

where 𝑢, 𝑣, 𝑤 ∈ Ω𝑋, and the homotopies from Ω𝑋 to Ω𝑋 connecting the maps
𝑢 ↦→ 𝑢0𝑥0 and 𝑢 ↦→ 0𝑥0𝑢 with the identical map are formulae

[ 𝑓𝜏 (𝑢)] (𝑡) =
{
𝑢( 2𝑡

1+𝜏 ), if 0 ≤ 𝑡 ≤ 1+𝜏
2 ,

𝑥0, if 1+𝜏
2 ≤ 𝑡 ≤ 1,

[𝑔𝜏 (𝑢)] (𝑡) =
{
𝑥0, if 0 ≤ 𝑡 ≤ 1−𝜏

2 ,

𝑢( 2𝑡+𝜏−11+𝜏 ), if 1−𝜏
2 ≤ 𝑡 ≤ 1,

for 𝑢 ∈ Ω𝑋.
The corresponding homotopies for the space 𝑆•𝑋 have a similar (�adjoint�)

form.
Conventionally constructed homotopies are shown in Figures 3.15.1 and

3.15.2.

Figure 3.15.1:

Proposition 3.48. The space Ω𝑋 is an H-group (and the space 𝑆•𝑋 is therefore
an H-cogroup).
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Figure 3.15.2:

Proof. In light of all the above, we only need to prove that the maps 𝑢 ↦→ 𝑢𝑢−1

and 𝑢 ↦→ 𝑢−1𝑢 are homotopic to the constant map Ω𝑋 → Ω𝑋. To the map
𝑢 ↦→ 𝑢𝑢−1, the corresponding homotopy is de�ned by the formula

[ 𝑓𝜏 (𝑢)] (𝑡) =


𝑢(2𝑡), if 0 ≤ 𝑡 ≤ 1−𝜏

2 ,

𝑢(1 − 𝜏), if 1−𝜏
2 ≤ 𝑡 ≤

1+𝜏
2 , 𝑢 ∈ Ω𝑋,

𝑢(2 − 2𝑡), if 1+𝜏
2 ≤ 𝑡 ≤ 1,

(see Fig. 3.15.3), and to the map 𝑢 ↦→ 𝑢−1𝑢 is obtained from this homotopy by

Figure 3.15.3:

replacing 𝑢 with 𝑢−1 (and 𝑢−1 by 𝑢). □

It is clear that the H-group will also be a topological monoid of the Moore
loops Ω𝑀𝑋.
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3.A H-monoids that are H-groups

In algebra, we are used to the fact that the structure of a monoid is signi�cantly
weaker than the structure of a group, which is expressed in the existence of the
most diverse monoids that are not groups. It turns out that in the category
[𝒯ℴ𝓅] the situation is quite di�erent, and with very weak general methodolog-
ical assumptions, every connected H-monoid is an H-group. Here the connect-
edness condition aims to exclude monoids considered in algebra. However, the
same can be achieved under less restrictive conditions.

To formulate these conditions, we recall that for any H-monoid 𝐾 its com-
ponent the set 𝜋0𝐾 is naturally a monoid, and for H-group 𝐾 this monoid will
be a group. Thus, in order for the H-monoid 𝐾 to be a H-group, it is necessary
that the monoid 𝜋0𝐾 be a group. It turns out that with appropriate general
methodological constraints, the necessary condition is also su�cient. Exactly,
the following Proposition is true.

Proposition 3.49. Any numerable semi-locally contractible H-monoid 𝐾 for
which the monoid 𝜋0𝐾 is a group is an H-group.

Proof. This sentence states, therefore, that for H-monoid 𝐾 there is a continuous
map 𝜇𝐾 → 𝐾, 𝑥 ↦→ 𝑥−1, for which the diagrammes

𝐾 × 𝐾
𝑚

##
𝐾

𝜀
//

id ×𝜇
<<

𝐾

𝐾 × 𝐾
𝑚

##
𝐾

𝜀
//

𝜇×id
<<

𝐾

𝜀 = const𝑒, (3.50)

are homotopically commutative. At the same time, it is easy to see that the
map 𝜇 is characterised uniquely by these conditions (of course, up to homotopy).
Indeed, according to Remark 3.14 of Lecture 3, the identical map 𝐾 → 𝐾 should
translate one map 𝜇 into another. □

We assume the proof of Proposition 3.49 with a few general remarks.
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3.B Left and right shifts in H-monoids

For any �xed point 𝑎 ∈ 𝐾 we will introduce in consideration, the left shift 𝐿𝑎
by 𝑎 and the right shift 𝑅𝑎 by 𝑎, which are maps 𝐾 → 𝐾, de�ned respectively
by formulae

𝐿𝑎𝑥 = 𝑎𝑥, 𝑅𝑎𝑥 = 𝑥𝑎, 𝑥 ∈ 𝐾.

The fact that the point 𝑒 is a homotopy unit, means that the maps 𝐿𝑒 and 𝑅𝑒
are homotopy to the identical map id. In addition, it follows from the homotopy
associativity of multiplication in 𝐾 that for any two points 𝑎, 𝑏 ∈ 𝐾 the map
𝐿𝑎 ◦ 𝐿𝑏 and 𝑅𝑎 ◦ 𝑅𝑏 are homotopic to the map 𝐿𝑎𝑏 and 𝑅𝑏𝑎, respectively.

Each path 𝑢 : 𝐼 → 𝐾 connecting the point 𝑎 to the point 𝐵 determines by
the formula 𝑡 ↦→ 𝐿𝑢(𝑡 ) (by the formula 𝑡 ↦→ 𝑅𝑢(𝑡 )) the homotopy connecting the
map 𝐿𝑏 (map 𝑅𝑏) with the map 𝐿𝑏 (the map 𝑅𝑏). On the other hand, if for
the H-monoid 𝐾 the set 𝜋0𝐾 is a group, then for any element 𝑎 ∈ 𝐾 there exists
an element 𝑎

′ ∈ 𝐾 such that for each point 𝑥 ∈ 𝐾 points 𝑎
′ (𝑎ℎ)𝑥 and 𝑎(𝑎′𝑥)

(or, equivalently, the points (𝑎′𝑎)𝑥 and (𝑎𝑎′ )𝑥) lie in the same component as
the point 𝑥, i.e. they can be connected to this point in some way. In particular,
the points (𝑎′𝑎)𝑒 and (𝑎𝑎′ )𝑒, which means that the points 𝑎

′
𝑎 and 𝑎𝑎

′
lie in

the same component as the point 𝑒. Therefore, the maps 𝐿𝑎′ 𝑎 : 𝑥 ↦→ (𝑎′𝑎)𝑥 and
𝐿𝑎𝑎′ : 𝑥 ↦→ (𝑎𝑎

′ )𝑥 are homotopic to the map 𝐿𝑒, and hence to the identical map
id. Similarly, it is shown that the maps 𝑅𝑎′ 𝑎 and 𝑅𝑎𝑎′ are also homotopic to
the identical map id. Since 𝐿𝑎𝑎′ ∼ 𝐿𝑎 ◦ 𝐿𝑎′ , and 𝐿𝑎′ 𝑎 ∼ 𝐿𝑎′ ◦ 𝐿𝑎 (and similarly
𝑅𝑎𝑎′ ∼ 𝑅𝑎 ◦ 𝑅𝑎′ , and 𝑅𝑎′ 𝑎 ∼ 𝑅𝑎′ ◦ 𝑅𝑎), this proves the following lemma.

Lemma 3.51. If for a H-monoid 𝐾 the set 𝜋0𝐾 is a group, then for any element
𝑎 ∈ 𝐾 maps 𝐿𝑎 and 𝑅𝑎 are homotopy equivalences.

Conversely, let for an H-monoid 𝐾, say, the map 𝐿𝑎 be homotopy equiva-
lences. Then the map ℓ : 𝐾 × 𝐾 → 𝐾 × 𝐾, de�ned by the formula

ℓ(𝑎, 𝑥) = (𝑎, 𝑎𝑥), 𝑎, 𝑥 ∈ 𝐾,

and being, obviously, a map over 𝐾, with respect to the projection proj1 :
𝐾 × 𝐾 → 𝐾, (𝑎, 𝑥) ↦→ 𝑎, will be a homotopy equivalence on �bres. Therefore, if
the H-monoid 𝐾 is numerable and semi-locally contractible, then, according to
Proposition 2.74 of the Appendix 2.11 to Lecture 2, the map ℓ will be a �brewise
homotopy equivalence.

Let ℓ
′
: 𝐾 × 𝐾 → 𝐾 × 𝐾 be an inverse �brewise homotopy equivalence.

Since proj1 ◦ℓ = proj1 for any point (𝑎, 𝑥) ∈ 𝐾 × 𝐾 we will have the equality
ℓ
′ (𝑎, 𝑥) = (𝑎, 𝜆(𝑎, 𝑥)), where 𝜆 : 𝐾 × 𝐾 → 𝐾 is a map such that the maps

(𝑎, 𝑥) ↦→ 𝜆(𝑎, 𝑎𝑥) and (𝑎, 𝑥) ↦→ 𝑎𝜆(𝑎, 𝑥), (𝑎, 𝑥) ∈ 𝐾 × 𝐾,

from 𝐾 × 𝐾 to 𝐾 are homotopic projections of (𝑎, 𝑥) ↦→ 𝑥. Putting 𝑥 = 𝑒 and
𝜇ℓ (𝑎) = 𝜆(𝑎, 𝑒), we obtain, in particular, a map 𝜇ℓ : 𝐾 → 𝐾, for which the map
𝑎 ↦→ 𝑎𝜇ℓ (𝑎) is homotopic to the map const𝑒 : 𝐾 → 𝐾, 𝑎 ↦→ 𝑒, i.e. for which the
�rst diagramme of (3.50) is homotopy commutative.
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Similarly, it is proved that if the homotopy equivalences are the maps 𝑅𝑎, 𝑎 ∈
𝐾, then there exists a map 𝜇𝑟 : 𝐾 → 𝐾 for which the second diagramme of (3.50)
is homotopy commutative.

But if there are two maps 𝜇ℓ and 𝑗 𝜇𝑟 , then the map 𝜇𝑟 : 𝑥 ↦→ 𝜇𝑟 (𝑥) will
be homotopic to the map 𝑥 ↦→ 𝜇𝑟 (𝑥)𝑥𝜇ℓ (𝑥), and the map 𝜇ℓ : 𝑥 ↦→ 𝜇ℓ (𝑥) will
be homotopic to the map 𝑥 ↦→ 𝜇𝑟 (𝑥)𝑥𝜇ℓ (𝑥). Therefore, due to the homotopy
associativity of multiplication in the H-monoid 𝐾, the maps 𝜇𝑟 and 𝜇ℓ turn out
to be homotopic. Therefore, we can assume that 𝜇𝑟 = 𝜇ℓ .

Thus, the following lemma is proved.

Lemma 3.52. If for any element 𝑎 ∈ 𝐾 of a numerable semilocally contractible
H-monoid 𝐾, the maps 𝐿𝑎 and 𝑅𝑎 are homotopy equivalences, then the H-
monoid 𝐾 will be an H-group.

The proof of Proposition 3.49 is immediately obtained by comparing Lemmas
3.51 and 3.52.

Remark 3.53. By applying Lemma 3.51, the condition of Lemma 3.52 is not
only su�cient, but also necessary, i.e.

Proposition 3.54. a numerable semilocally contractible H-monoid 𝐾 is an H-
group if and only if for any element 𝑎 ∈ 𝐾 the maps 𝐿𝑎 and 𝑅𝑎 are homotopy
equivalences.





Lecture 4

The introduction to the consideration of pointed spaces forces us to raise the
question of the price that we have to pay for it, i.e. the question of how much
the constructions and results of previous lectures are modi�ed and complicated
when switching to pointed spaces.

Fortunately, it turns out that in most cases this transition is carried out
almost painlessly.

For example, since for any pointed spaces (𝑋, 𝑥0) and (𝑌, 𝑦0) the set of
𝒯ℴ𝓅

• ((𝑋, 𝑥0), (𝑌, 𝑦0)) lies in the 𝒯ℴ𝓅(𝑋,𝑌 ), it is automatically provided with
an induced topology. The resulting topological space is denoted by the sym-
bol (𝑌, 𝑦0) (𝑋, 𝑥0). It is naturally pointed: its base point is the constant map
const : 𝑋 → 𝑌 . When there is no possibility of misunderstandings, we will
denote the space (𝑌, 𝑦0) (𝑋, 𝑥0) with the former symbol 𝑌𝑋.

4.1 Exponential law for pointed maps

However, the situation with the exponential law for the category 𝒯ℴ𝓅• turns
out to be more complicated because the map 𝜃 𝑓 : 𝑌 → 𝐵𝑋 associated with the
pointed map 𝑓 : (𝑋 × 𝑌, (𝑥0, 𝑦0)) → (𝐵, 𝑏0), will not, generally speaking, be a
map to (𝐵, 𝑏0) (𝑋,𝑥0 ) (unless 𝑓 (𝑥0, 𝑦) = 𝑏0 for any point 𝑦 ∈ 𝑌 , i.e. 𝑓 (𝑥0×𝑌 ) = 𝑏0).
Moreover, even if the last requirement is met, the map 𝜃 𝑓 will not, generally
speaking, be a pointed map (𝑌, 𝑦0) ↦→ (𝐵, 𝑏0) (𝑋,𝑥0 ) (unless, 𝑓 (𝑥, 𝑦0) = 𝑏0 for any
point 𝑥 ∈ 𝑋, i.e. 𝑓 (𝑋 × 𝑦0) = 𝑏0). This shows that the role of the space 𝑋 ×𝑌 in
the exponential law for pointed maps should be played by the coset space

(𝑋, 𝑥0) ∧ (𝑌, 𝑦0) = (𝑋 × 𝑌 )/((𝑋 × 𝑦0) ∪ (𝑥0 × 𝑌 )),

resulting from the product of 𝑋 × 𝑌 by pulling the coordinate cross into one
point

(𝑋, 𝑥0) ∨ (𝑌, 𝑦0) = (𝑋 × 𝑦0) ∪ (𝑥0 × 𝑌 )

(which is considered to be the base point of this space).

De�nition 4.1. The space (𝑋, 𝑥0) ∧ (𝑌, 𝑦0) is called a smash (or a smash prod-
uct) of the pointed spaces (𝑋, 𝑥0) and (𝑌, 𝑦0).
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To denote a smash product, instead of the sign ∧, the sign ⊗ is also used
(Fuchs and Rokhlin [10].) Instead of (𝑋, 𝑥0) ∧ (𝑌, 𝑦0), they often write simply
𝑋 ∧ 𝑌 (or 𝑋 ⊗ 𝑌).

The image of the point (𝑥, 𝑦) ∈ 𝑋 × 𝑌 in the space 𝑋 ∧ 𝑌 is denoted by the
symbol 𝑥 ∧ 𝑦. In these notations, the base point of the space 𝑋 ∧𝑌 is the point
𝑥0 ∧ 𝑦0.

Similarly, the smash product 𝑋1∧· · ·∧𝑋𝑛 is de�ned for any number of pointed
spaces 𝑋1, . . . , 𝑋𝑛. They will be the coset space of the product 𝑋1 × · · · × 𝑋𝑛,
in which all points, at least one coordinate of which is the base point of the
corresponding multiplier, are identi�ed.

In order to avoid misunderstandings, we emphasise that this product is not
a product in the category 𝒯ℴ𝓅• in the sense of general category theory: it will
be, as we already know, a direct product

(𝑋, 𝑥0) × (𝑌, 𝑦0) = (𝑋 × 𝑌, (𝑥0, 𝑦0)).

It should also be borne in mind that, generally speaking, mixed multiplica-
tion does not have the associativity property, i.e. there are such pointed spaces
𝑋, 𝑌 and 𝑍 that the spaces (𝑋 ∧ 𝑌 ) ∧ 𝑍 and 𝑋 ∧ 𝑌 ∧ 𝑍 are not homeomorphic.
(An example is the spaces 𝑋 = Q, 𝑌 = Q and 𝑍 = Z, where Q is the set of
rational numbers in the usual topology.) We will consider the question of the
associativity of mixed multiplication in the Appendix 4.16 to this lecture.

At the same time, the mixed multiplication is obviously commutative, i.e.
for any pointed spaces 𝑋 and 𝑌 , the spaces 𝑋 ∧ 𝑌 and 𝑌 ∧ 𝑋 are naturally
homeomorphic.

Identifying the circle S1 with the space 𝐼/{0, 1}, resulting in the identi�cation
of the end points of the segment 𝐼, we immediately get that for any pointed space
(𝑋, 𝑥0) the smash S−1 ∧ 𝑋 is the same as the suspension 𝑆•𝑋.

Pointed maps 𝑓 : (𝑋 × 𝑌, (𝑥0, 𝑦0)) → (𝐵, 𝑏0) for which the associated map
𝜃 𝑓 is a map (𝑌, 𝑦0) → (𝐵, 𝑏0) (𝑋,𝑥0 ) , i.e. for which 𝑓 ((𝑋 × 𝑦0) ∪ 𝑥0 × 𝑌 )) = 𝑏0,
are found obviously, in natural bijective correspondence with pointed maps 𝑓 :
𝑋 ∧ 𝑌 → 𝐵 (matching is done by combining the maps 𝑓 with the factorisation
map 𝑋 × 𝑌 → 𝑋 ∧ 𝑌). This allows you to embed the set 𝒯ℴ𝓅• (𝑋 ∧ 𝑌, 𝐵) into
the set 𝒯ℴ𝓅• (𝑋 × 𝑌, 𝐵) ⊂ 𝒯ℴ𝓅(𝑋 × 𝑌, 𝐵) and thereby assume that the map 𝜃
is de�ned on 𝒯ℴ𝓅• (𝑋 ∧ 𝑌, 𝐵). Thus, the association map 𝜃 now turns out to
be the map

𝒯ℴ𝓅
• (𝑋 ∧ 𝑌, 𝐵) → 𝒯ℴ𝓅

• (𝑌, 𝐵𝑋) (4.2)

It is clear that it is still always (for any 𝑋,𝑌, 𝐵) injective, and bijective if and
only if the corresponding map 𝒯ℴ𝓅• (𝑋 ×𝑌, 𝐵) → 𝒯ℴ𝓅

• (𝑌, 𝐵𝑋) is bijective for
the category 𝒯ℴ𝓅. In particular,

Proposition 4.3. the map (4.2) is bijective if the space 𝑋 is locally compact
and Hausdor�.

If, in addition, the space 𝑌 is also Hausdor�, then considered as a map
𝐵𝑋∧𝑌 → (𝐵𝑋)𝑌 , it is a homeomorphism.
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This exponential law for pointed maps, unlike the usual exponential law,
is not directly applicable to pointed homotopies, which are maps of the form
𝑋×𝐼 → 𝑌 , and not 𝑋∧𝐼 → 𝑌 (note that the space 𝑋∧𝐼 does not even make sense,
since the segment 𝐼 is not pointed). Therefore, homotopy requires a separate
parallel discussion.

As it was said in Lecture 1, each (free) homotopy 𝑋 × 𝐼 → 𝑌 admits two
interpretations - as a path in the space 𝑌𝑋 or as a map 𝑋 → 𝑌 𝐼 into the path
space 𝑌 𝐼 . It is clear that the �rst interpretation also holds for pointed homo-
topies - each pointed homotopy 𝑋 ¤×𝐼 → 𝑌 is naturally identi�ed with some path
in the space (𝑌, 𝑦0) (𝑋,𝑥0 ) , but as for the non-pointed case, this interpretation
is adequate only under strong constraints on the space 𝑋 (for example, if this
space is Hausdor� and locally compact).

In order to transfer the second (formally more important) interpretation to
the case of pointed homotopies, for any pointed space (𝑌, 𝑦0), we will agree
once and for all to consider the path space 𝑌 𝐼 as a pointed space, taking the
constant path 0𝑦0 : 𝐼 → 𝑌 , 𝑡 ↦→ 𝑦0 as its base point, at the point 𝑦0. Then the
pointed homotopies 𝑋 ¤×𝐼 → 𝑌 will naturally be identi�ed with the pointed maps
(𝑋, 𝑥0) → (𝑌 𝐼 , 0𝑦0 ).

4.2 Fibrations and co�brations in the category
𝒯ℴ𝓅

•

In particular, since all maps 𝜔𝑡 : 𝑌
𝐼 → 𝑌 will now obviously be pointed, it follows

that the axiom of the homotopy extension property in the form of Diagramme
(1.3) of Lecture 1 will remain valid for pointed maps as well.

The concepts of co�brations and �brations are transferred to the case of the
category 𝒯ℴ𝓅• in an obvious way: it is only necessary to assume all the maps
pointed in the corresponding diagrammes. At the same time, as was just noted,
both variants of the de�nition of the �bration (one using the interpretation of
homotopies as maps of 𝑋 × 𝐼 → 𝑌 , and the other as maps of 𝑋 → 𝑌 𝐼) are still
equivalent to each other. Characterisation of �brations using the axiom of the
covering path also, of course, is literally transferred to the category 𝒯ℴ𝓅•.

Nevertheless, the transition to pointed maps is re�ected di�erently on the
co�brations and �brations. Since the extension of the pointed map is automat-
ically a pointed map, the pointed map 𝑖 : (𝐴, 𝑎0) → (𝑋, 𝑥0), being a co�bration
(as a map 𝑖 : 𝐴 → 𝑋 of the category 𝒯ℴ𝓅•), will be a co�bration in the cate-
gory𝒯ℴ𝓅•. In particular, taking an arbitrary co�bration (𝑋, 𝐴) of the category
𝒯ℴ𝓅 and arbitrarily selecting the base point in 𝐴, we get a co�bration of the
category 𝒯ℴ𝓅•.

On the contrary, from the fact that the map 𝑝 : 𝐸 → 𝐵 is a �bration of the
category 𝒯ℴ𝓅, it does not follow that the pointed map 𝑝 : (𝐸, 𝑒0) → (𝐵, 𝑏0)
will be a �bration of the category 𝒯ℴ𝓅•, since the pointed covering homotopy
𝐹 : 𝑋 × 𝐼 → 𝐸 for the homotopy 𝐹 : 𝑋 × 𝐼 → 𝐵, may not be pointed.

To at least partially correct the case, we will introduce the following de�ni-
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tion.

De�nition 4.4. A point 𝑥0 of a topological space 𝑋 is called nondegenerate if
it is closed in 𝑋 and the pair (𝑋, 𝑥0) is a co�bration, i.e. - which by applying
Proposition 2.27 of Lecture 2 is equivalent - if a one-point set {𝑥0} is a FNSDR
in a weak sense: (FNSDR = Functionally Distinguished Neighbourhood Strong
Deformation Retract. See De�nition 2.25). The pointed space (𝑋, 𝑥0) is called
well-pointed if its base point 𝑥0 is non-degenerate.

It follows directly from the Corollary 2.38 of Theorem 2.37 of Lecture 2 that
if the pointed map 𝑝 : (𝐸, 𝑒0) → (𝐵, 𝑏0) is a �bration in the category 𝒯ℴ𝓅,
then in the category 𝒯ℴ𝓅• the axiom of covering homotopy will hold for any
well-pointed space (𝑋, 𝑥0). Assuming freedom of speech, we can thus say that
with respect to well-pointed spaces, any �bration of the category 𝒯ℴ𝓅 is a
�bration of the category 𝒯ℴ𝓅•.

This is quite a lot, because, as we once did we will see that almost all the
pointed spaces that actually occur are well-pointed.

Remark 4.5. The pointed map, which is a (co)-�bration of the category 𝒯ℴ𝓅•,
a priori may not be a (co)-�bration of the category 𝒯ℴ𝓅. However, in practice,
such pathological situations do not occur.

4.3 The lemma about gluing a whisker

In connection with the notion of a well-pointed space, it is useful to keep in
mind the following simple lemma.

Lemma 4.6. Any topological space 𝑋 is homotopically equivalent to a topological
space 𝑋

′
having a non-degenerate point 𝑥0. In this case, we can assume that the

space 𝑋 is contained in the space 𝑋
′
as its strong deformation retract. Moreover,

the space 𝑋
′
can be chosen so that there exists a path connecting 𝑥

′
0 with any

pre-de�ned point 𝑥0 ∈ 𝑋.

Proof. Noting the point 1 in the segment 𝐼, and in the space 𝑋 this point 𝑥0, we
construct a bouquet 𝑋

′
= 𝑋 ∨ 𝐼. Each point of 𝑋

′
is either a point 𝑥 from 𝑋, or

the number 𝜏 ∈ 𝐼, with 𝑥0 = 1. It is clear that 𝑋 ⊂ 𝑋 ′ is a strong deformation
retract of the space 𝑋

′
(the corresponding homotopy 𝑓𝜏 : 𝑋

′ ⊂ 𝑋 ′ , �xed on 𝑋,
translates each point 𝜏 ∈ 𝐼 ⊂ 𝑋

′
to the point 𝑡 + (1 − 𝑡)𝜏 ∈ 𝐼). Let 𝑥

′
0 be the

point 0 ∈ 𝐼 ⊂ 𝑋
′
. Putting 𝜑(𝑥) = 1 and 𝜑(𝜏) = 𝜏, we get on 𝑋

′
a continuous

function 𝜑 : 𝑋
′ → 𝐼, for which 𝜑−1 (0) = {𝑥0} and 𝜑−1 (1) = 𝑋, and putting

𝑔𝜏 (𝜏) = (1 − 𝑡)𝜏, we get a homotopy 𝑔𝑡 : 𝑈 → 𝑋
′
, where 𝑈 = 𝑋

′ \ 𝑋 = [0, 1),
such that 𝑔0 (𝜏) = 𝜏 and 𝑔1 (𝜏) = 𝑥

′
0 for any 𝜏 ∈ 𝑈. Therefore, the point 𝑥

′
0 is

non-degenerate. □

It is said that the space 𝑋
′
is obtained from the space by gluing a whisker.

Thus, gluing a whisker, practically without changing the space 𝑋, turns it
into a space with a non-degenerate base point.
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4.4 Cylinders and co-cylinders in the category
𝒯ℴ𝓅

•

To bring pushouts and pullbacks into the category 𝒯ℴ𝓅•, it is enough to con-
struct for the corresponding diagrammes their pushouts and pullbacks in the
category 𝒯ℴ𝓅 and then naturally mark the points in them (in the pushout
diagramme 𝐴 ← 𝐶 → 𝐵, the base point will be the image of the base point
of the space 𝐶, and in the pullback diagramme 𝐴 → 𝐶 ← 𝐵 is the base point
of the direct product of 𝐴 × 𝐵). Thus, up to the base points of pushuout and
pullback in the category 𝒯ℴ𝓅• are the same as in the category 𝒯ℴ𝓅.

In particular, if you ignore the base points, then the cocylinder of pointed
map 𝑓 : 𝑋 → 𝑌 will be its cocylinder as an non-pointed map.

At the same time, the corresponding statement is incorrect for the cylinder,
since in its construction the space 𝑋 × 𝐼 is replaced by the space 𝑋 ¤×𝐼, which
means that the cylinder Cyl• ( 𝑓 ) of the pointed map 𝑓 : 𝑋 → 𝑌 is obtained from
its non-pointed mapping cylinder Cyl( 𝑓 ) by shrinking the segment 𝑥0 × 𝐼 to a
point:

Cyl• ( 𝑓 ) = Cyl( 𝑓 )/(𝑥0 × 𝐼).

In the literature, the cylinder Cyl• ( 𝑓 ) is usually called the reduced mapping
cylinder (and the cylinder Cyl( 𝑓 ), respectively, is called non-reduced).

Despite this modi�cation, the reduction of the extension problem to the
retraction problem carried out with the help of cylinders is completely preserved
for pointed maps. Of course, the reduction of the lifting problem to the cross-
section problem carried out with the help of cylinders is also preserved.

4.5 Contractible pointed spaces

A pointed space (𝑋, 𝑥0) is called contractible (notation 𝑋 u pt) if the constant
map const : 𝑋 → 𝑋, 𝑥 ↦→ 𝑥 is pointed homotopic to the identity map id : 𝑋 → 𝑋,
𝑥 ↦→ 𝑥, i.e. if the point 𝑥0 is a strong deformation retract of the spaces 𝑋.

It follows directly from Proposition 2.18 of Lecture 2 that a well-pointed
space (𝑋, 𝑥0) is contractible if and only if the non-pointed space 𝑋 is contractible.
The corresponding pointed homotopy 𝑋 ¤×𝑋 is called a contraction.

This means that the contractibility property is essentially indi�erent to
which category (𝒯ℴ𝓅 or 𝒯ℴ𝓅•) we are working.

4.6 Reduced cones

The reduced (reversed) cylinder of the map const is called the reduced cone over
the space 𝑋 and is denoted by the symbol 𝐶•𝑋. Thus, 𝐶•𝑋 = 𝐶𝑋/𝐶𝑥0.

We will denote the points of the cone 𝐶•𝑋 with the former symbols [𝑥, 𝑡], as
before identifying the points [𝑥, 1] and 𝑥, i.e. identifying the space 𝑋 with the
base the cone 𝐶•𝑋. In particular, according to this embedding, the base point
of the cone 𝐶𝑋 will be the point 𝑥0 ∈ 𝑋.
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It is clear that 𝑆•𝑋 = 𝐶•𝑋/𝑋.
Each pointed map 𝑓 : 𝑋 → 𝑌 de�nes by the formula

(𝐶• 𝑓 ) [𝑥, 𝑡] = [ 𝑓 (𝑥), 𝑡], 𝑥 ∈ 𝑋, 𝑡 ∈ 𝐼,

the pointed map 𝐶• 𝑓 : 𝐶•𝑋 → 𝐶•𝑌 , and it is clear that the correspondences
𝑋 → 𝐶•𝑋, 𝑓 ↦→ 𝐶• 𝑓 constitute a functor from 𝒯ℴ𝓅

• to 𝒯ℴ𝓅•.
The cone 𝐶•𝑋 is obviously contractible (as a pointed space), and

Proposition 4.7. the space 𝑋 is contractible if and only if it is a retract of the
cone 𝐶•𝑋.

Moreover, it turns out that - as for non - pointed spaces - the words �is a
retract� can be replaced here with the words �is a strong retract�.

Indeed, we can consider any retraction 𝑟 : 𝐶•𝑋 → 𝑋 as a retraction 𝐶𝑋 → 𝑋,
and it is easy to see that the deformation retract 𝐹, constructed from this
retraction in the way described in Lecture 2, will be stationary at 𝐶𝑥0 , subject
to obvious precautions, and therefore, will induce a deformation retraction of
the cone 𝐶•𝑋.

Explicitly, the deformation retraction 𝐹 can be speci�ed, for example, by
the formula

𝐹 ( [𝑥, 𝑡], 𝑠) =



[𝑟 [𝑟 [𝑥, 𝑡−2𝑠1−2𝑠 ],
2(1−3𝑠)
1−2𝑠 ], 0], if 2𝑠 ≤ 𝑡 ≤ 1, 1/4 ≤ 𝑠 ≤ 1/3,

[𝑟 [𝑥, 𝑡−2𝑠1−2𝑠 ],
2𝑠

1−2𝑠 ]], if 2𝑠 ≤ 𝑡 ≤ 1, 0 ≤ 𝑠 ≤ 1/4,
[𝑟 [𝑥, 2(1−𝑡−𝑠)1−2𝑠 ], 0], if 1/2 ≤ 𝑡 ≤ 2/3, 𝑡/2 ≤ 𝑠 ≤ 1 − 𝑡,
[𝑥, 2(𝑡−𝑠)1−2𝑠 ], if 0 ≤ 𝑡 ≤ 1/3, 𝑡/2 ≤ 𝑠 ≤ 𝑡,
[𝑟 [𝑥, 2(1−𝑠−𝑡1−2𝑡 ], 0], if 1/2 ≤ 𝑡 ≤ 2/3, 1 − 𝑡 ≤ 𝑠 ≤ 1/2,
[𝑥, 2(𝑠−𝑡 )1−2𝑡 ], if 1/2 ≤ 𝑡 ≤ 2/3, 1/2 ≤ 𝑠 ≤ 𝑡,
[𝑟 [𝑥, 9𝑡 + 2𝑠 − 2𝑠𝑡 − 8], 0] if 2/3 ≤ 𝑡 ≤ 1, 1/3 ≤ 𝑠 ≤ 1/2,
[𝑟 [𝑥, 10 − 9𝑡 + 2𝑠 − 2𝑠𝑡], 0] if 2/3 ≤ 𝑡 ≤ 1, 1/2 ≤ 𝑠 ≤ 2/3,
[𝑥, 𝑡+2𝑠−2)2𝑠−1 ], if 2 − 2𝑠 ≤ 𝑡 ≤ 1, 2/3 ≤ 𝑠 ≤ 1,

[𝑥, 0], if 0 ≤ 𝑡 ≤ 2/3, 𝑡 ≤ 𝑠 ≤ (2 − 𝑡)/2,

which determines this deformation on the square (𝑡, 𝑠) separately on each of its
ten parts, shown in Fig. 4.6.1.

The pointed map 𝑓 : 𝑋 → 𝑌 is called nul homotopic if it is pointed homotopic
to the constant map. Just as in the case of non-pointed spaces, the map 𝑓 :
𝑋 → 𝑌 is nul homotopic if and only if it can be extended to 𝐶•𝑋:

𝑋
⊂ //

𝑓

��

𝐶•𝑋

𝑓}}
𝑌

In addition, a pointed space 𝑌 is contractible if and only if, for every pointed
space 𝑋, any pointed map 𝑋 → 𝑌 is null homotopic.



4.7. SERRE FIBRATIONS 133

Figure 4.6.1:

4.7 Serre �brations

In contrast to the case of the category 𝒯ℴ𝓅, the concept of a cone in the
category 𝒯ℴ𝓅• can be detailed. The corresponding dual object is the space
𝑃𝑋 = 𝑃(𝑋, 𝑥0), already familiar to us from Lecture 1, of all paths of the space
𝑋 starting at the base point 𝑥0 (formally, it would be more convenient here to
either go to the straight cone or assume that 𝑃𝑋 consists of paths, ending at the
point x"; due to the fact that we take an inverted cone for 𝐶′𝑋, 1 − 𝑡 appears
in the formulas below instead of 𝑡).

We will consider 𝑃𝑋 to be a pointed space, taking the constant path 0𝑥0 :
𝑡 ↦→ 𝑥0 as its base point.

Like the cone 𝐶•𝑋, the space 𝑃𝑋 is contractible (the corresponding contrac-
tion is given by the correspondence 𝑢 ↦→ 𝑢𝜏 , 𝑢 ∈ 𝑃𝑋, 𝜏 ∈ 𝐼, where 𝑢𝜏 the path
is de�ned by the formula 𝑢𝜏 (𝑡) = 𝑢((1 − 𝜏)𝑡), 𝑡 ∈ 𝐼).

It is clear that any pointed map 𝑓 : 𝑋 → 𝑌 de�nes by the formula,

((𝑃 𝑓 )𝑢) (𝑡) = 𝑓 (𝑢(𝑡)), 𝑢 ∈ 𝑃𝑋, 𝑡 ∈ 𝐼,

the continuous pointed map 𝑃 𝑓 : 𝑃𝑋 → 𝑃𝑌 , and the correspondences 𝑋 ↦→ 𝑃𝑋,
𝑓 ↦→ 𝑃 𝑓 constitute a functor from 𝒯ℴ𝓅

• to 𝒯ℴ𝓅•.
It is easy to see that, like the functor 𝑆• and Ω, the functors 𝐶• and 𝑃 are

adjoint, i.e. for any pointed spaces 𝑋 and 𝑌 , there is a natural (with respect toy
𝑋 and 𝑌) bijective map

𝒯ℴ𝓅
• (𝐶•𝑋,𝑌 ) ≈−→ 𝒯ℴ𝓅

• (𝑋, 𝑃𝑌 )

(each map 𝑓 : 𝐶•𝑋 → 𝑌 corresponds to a map 𝑔 : 𝑋 → 𝑃𝑌 , de�ned by the
formula 𝑔(𝑥) (𝑡) = 𝑓 [𝑥, 1 − 𝑡], 𝑥 ∈ 𝑋, 𝑡 ∈ 𝐼). However, unlike the case of the
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𝑆• and Ω functors, the transition to the homotopy category [𝒯ℴ𝓅•] makes
little sense for the functors 𝐶• and 𝑃, since for any pointed spaces 𝑋 and 𝑌 sets
[𝐶•𝑋,𝑌 ]• and [𝑋, 𝑃𝑌 ]• are singleton sets due to the contractibility of the spaces
𝑋 and 𝑃𝑌 .

If the space 𝑋 is contractible, then each contraction 𝑋 × 𝐼 → 𝑋 interpreted
as a map 𝑋 → 𝑋 𝐼 , will be (after replacing 𝑡 with 1 − 𝑡) a map in 𝑃𝑋, which
has the property that its composition with the Serre �bration 𝜔1 : 𝑃𝑋 → 𝑋,
𝑢 ↦→ 𝑢(1) is an identical map of id𝑋, i.e. it will be a section of the �bration 𝜔1.
Conversely, it is clear that any section 𝑋 → 𝑃𝑋 of the �bration 𝜔1, considered
as a map in 𝑋 𝐼 , will be a pointed homotopy connecting the map const𝑋 to the
map id𝑋, i.e. after replacing 𝑡 with 1 − 𝑡 will be a contraction of the space 𝑋.
Thus,

Proposition 4.8. the space 𝑋 is contractible if and only if the Serre �bration
𝜔1 : 𝑃𝑋 → 𝑋 has the section 𝑠 : 𝑋 → 𝑃𝑋.

(It can be shown that this section also has the property that id ∼ 𝑠 ◦ 𝑝, and
the corresponding homotopy 𝑓𝑡 : 𝑃𝑋𝑃𝑋 can be chosen so that for any 𝑡 ∈ 𝐼
equality 𝑝 ◦ 𝑓𝑡 = 𝑝 takes place. In the terminology introduced in Appendix 2.11
to Lecture 2, this means that the space 𝑋 is contractible if and only if the Serre
�bration 𝜔1 : 𝑃𝑋𝑋 collapses. This re�nement is dual to the statement for cones
obtained by replacing retracts with strong deformation retracts, and is proved
in a dual way.)

Now it is clear that

Proposition 4.9. the pointed map 𝑓 : 𝑋 → 𝑌 is null homotopic if and only if
it can be lifted to 𝑃𝑌 :

𝑃𝑌

��
𝑋

𝑓
//

𝑓

>>

𝑌

Remark 4.10. (A note on terminology) G. W. Whitehead [19] warns against
using the term cocone for the space 𝑃𝑋. Although we do not see this term as a
special crime, but we will refrain from using it. (Perhaps the space 𝑃𝑋 should
be called �nus�?)
Transcriber's note: `nus� (Russian) = �nous� (Greek), meaning the God-given
capacity of each person to think (reason); the mind; mental capacity to exercise
re�ective thinking.

4.8 Pointed homotopy equivalences

A pointed map 𝑓 : 𝑋 → 𝑌 is called a pointed homotopy equivalence (or homotopy
equivalence of the category 𝒯ℴ𝓅•) if there is a pointed map 𝑔 : 𝑌 → 𝑋 (inverse
pointed homotopy equivalence) such that 𝑓 ◦ 𝑔 ∼ id and 𝑔 ◦ 𝑓 ∼ 𝑖𝑑.
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Of course, any pointed homotopy equivalence will also be an ordinary ho-
motopy equivalence (homotopy equivalence of the category 𝒯ℴ𝓅•). For well-
pointed spaces, the converse is also true:

Proposition 4.11. If the pointed spaces (𝑋, 𝑥0) and (𝑌, 𝑦0) are well-pointed,
then each pointed map 𝑓 : (𝑋, 𝑥0) → (𝑌, 𝑦0), which is a homotopy equivalence
of the category 𝒯ℴ𝓅, will also be a pointed homotopy equivalence.

Thus, the seemingly ambiguous term �pointed homotopy equivalence� is not
really such (at least for well-pointed spaces).

Remark 4.12. If the space is (𝑋 ′ , 𝑥′0) is obtained from the space (𝑋, 𝑥0) by
gluing a whisker, then in the case when the space (𝑋, 𝑥0) is well-pointed, the
deformation retraction 𝑋

′ → 𝑋 will, by applying Proposition 4.11, be a pointed
homotopy equivalence. Thus, as expected,

Proposition 4.13. gluing a whisker to a well-pointed space does not change its
pointed homotopy type.

(On the contrary, it is easy to see that if the space (𝑋, 𝑥0) is not well-pointed,
then the space (𝑋 ′ , 𝑥′0) cannot be pointed homotopy equivalent to it).

We will preface two lemmas to the proof of Proposition 4.11.

Lemma 4.14. If the pointed space (𝑋, 𝑥0) is well-pointed, then for any pointed
space (𝑌, 𝑦0) each map 𝑓 : 𝑋 → 𝑌 , for whose point 𝑓 (𝑥0) lies in the same
component of the space 𝑌 as the point 𝑦0, is homotopic to some pointed map
(𝑋, 𝑥0) → (𝑌, 𝑦0).

Proof. By condition, the point 𝑓 (𝑥0) can be connected in some way 𝑢 : 𝐼 →
𝑌 with the point 𝑦0 We can consider this path as a homotopy of the map
𝑓 |𝑥0 . Therefore, according to the axiom of homotopy extension (applicable by
condition to the pair (𝑋, 𝑥0)), there exists a homotopy 𝑓𝑡 : 𝑋 → 𝑌 such that
𝑓𝑡 (𝑥0) = 𝑢(𝑡) for any 𝑡 ∈ 𝑙. Since 𝑓1 (𝑥0) = 𝑢(1)𝑦0, the map 𝑓1 is a pointed map
(𝑋, 𝑥0) → (𝑌, 𝑦0), homotopic to the map 𝑓 . □

Lemma 4.15. If the pointed space (𝑋, 𝑥0) is well-pointed, then for any pointed
map 𝑓 : (𝑋, 𝑥0) → (𝑋, 𝑥0), freely homotopic to the identical map id, there exists
a pointed map 𝑓

′
: (𝑋, 𝑥0) → (𝑋, 𝑥0), such that 𝑓

′ ◦ 𝑓 ∼ id.

Proof. Let 𝐹 : 𝑋 × 𝐼 → 𝑋 be a free homotopy connecting the map 𝑓 to the
identical maps id. Since the pair (𝑋, 𝑥0) is a co�bration, there exists a homotopy
𝑓
′
𝑡 : 𝑋 → 𝑋 such that 𝑓

′
0 = id and 𝑓

′
𝑡 (𝑥0) = 𝐹 (𝑥0, 𝑡) for any 𝑡 ∈ 𝐼. Then the

formula

𝐺 (𝑥, 𝑡) =
{
𝑓
′
1−2𝑡 ( 𝑓 (𝑥)), if 0 ≤ 𝑡 ≤ 1/2,
𝐹 (𝑥, 2𝑡 − 1), if1/2 ≤ 𝑡 ≤ 1,

de�nes a homotopy 𝐺 : 𝑋 × 𝐼 → 𝑋, connecting the map 𝑓
′ ◦ 𝑓 , where 𝑓

′
= 𝑓

′
1,

with the map id. Since the pair is (𝑋 × 𝐼, 𝑥0× 𝐼) is also a co�bration, there exists
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a homotopy Φ : (𝑋 × 𝐼) × 𝐼 → 𝑋 with the initial map 𝐺 such that

Φ(𝑥0, 𝑡, 𝜏) =
{
𝐹 (𝑥0, 1 − 2𝑡 (1 − 𝜏)) if 0 ≤ 𝑡 ≤ 1/2,
𝐹 (𝑥0, 1 − 2(1 − 𝑡) (1 − 𝜏)), if1/2 ≤ 𝑡 ≤ 1,

Then the map

(𝑥, 𝜏) ↦→ Φ(𝑥, 0, 𝜏), (𝑥, 𝑡) ↦→ Φ(𝑥, 𝑡, 1), (𝑥, 𝜏) ↦→ Φ(𝑥, 1, 1 − 𝜏)

will be pointed homotopies sequentially connecting the map 𝑓
′ ◦ 𝑓 : 𝑥 ↦→

Φ(𝑥, 0, 0) with the map id : 𝑥 ↦→ Φ(𝑥, 1, 0). □

Remark 4.16. Lemma 4.15 and Proposition 2.18 of Lecture 2 are special cases
of a general statement dual to Lemma 2.56 from the Appendix 2.11 to Lecture
2.

Proof. (of Proposition 4.11) Let 𝑔 : 𝑌 → 𝑋 be the homotopy equivalence inverse
to the homotopy equivalence 𝑓 : 𝑋 → 𝑌 . Then the map 𝑔 ◦ 𝑓 : 𝑋 → 𝑋

is homotopic to the identical map 𝑖𝑑, which implies that the point 𝑔(𝑦0) =

(𝑔◦ 𝑓 ) (𝑥0) lies in the same component of the space 𝑋 as the point 𝑥0. Therefore,
according to Lemma 4.6, the map 𝑔 is homotopic to some pointed map (𝑌, 𝑦0) →
(𝑋, 𝑥0). Hence, without loss of generality, we can assume the map 𝑔 to be
pointed.

But then, homotopic to the identity map, the map 𝑔 ◦ 𝑓 : 𝑋 → 𝑋 is also
pointed, and therefore, according to Lemma 4.14, there exists a pointed map
ℎ = (𝑔 ◦ 𝑓 )′ : 𝑋 → 𝑋 such that ℎ ◦ (𝑔 ◦ 𝑓 ) ∼ id. This proves that there exists a
pointed map 𝑔 : 𝑌 → 𝑋 (namely, the map 𝑔 = ℎ ◦ 𝑔) such that 𝑔 ◦ 𝑓 ∼ id.

The map 𝑔 is of course also a homotopy equivalence (the inverse of the
homotopy equivalence of 𝑓 ). Therefore, for the same reasons, a pointed map

𝑓 : 𝑋 → 𝑌 exists for it in turn, such that 𝑓 ◦ 𝑔 ∼ id. But then 𝑓 ∼ 𝑓 ◦ 𝑔 ◦ 𝑓 ∼ 𝑓
and, therefore, 𝑓 ◦𝑔 ∼ id. Therefore, 𝑓 is a pointed homotopy equivalence (with
𝑔 as the inverse pointed homotopy equivalence). □

4.9 Maps ignoring base points

Proposition 4.11 suggests that the relation of pointed homotopy should coincide
with the relation of ordinary homotopy (at least for smooth pointed spaces), i.e.
that the map

[𝑋,𝑌 ] → [𝑋,𝑌 ], (4.17)

that occurs when the base points are ignored, is bijective. However, this as-
sumption is false and the situation here is actually more complicated.

Indeed, in order that the map 𝑓 : 𝑋 → 𝑌 be homotopic to the pointed
map (𝑋, 𝑥0) → (𝑌, 𝑦0) in any case, it is necessary that the map 𝜋0 𝑓 : 𝜋0𝑋 →
𝜋0𝑌 translates the component of the space 𝑋 containing the point 𝑥0 into the
component of the space 𝑌 containing the point 𝑦0. This means that the image
of the map (4.17) is obviously contained in the subset [𝑋,𝑌 ]0 of the set [𝑋,𝑌 ],
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consisting of homotopy classes of maps 𝑋 → 𝑌 satisfying the last condition.
Since for a disjoint subset 𝑌 [𝑋,𝑌 ]0, is necessarily a proper subset of the set
[𝑋,𝑌 ], we see, therefore, that even for the objectivity of the map (4.17) it is
necessary to assume the space 𝑌 connected. For a disconnected space 𝑌 , the
question of surjectivity can only stand in relation to the map

[𝑋,𝑌 ]• → [𝑋,𝑌 ]0, (4.18)

induced by the map (4.17) (and, note, with a connected 𝑌 coinciding with the
map (4.17)).

But the answer to this question is exactly given by Lemma 4.6. Thus,
according to this lemma, if the space 𝑋 is well-pointed, then for any pointed
space 𝑌 the map (4.18) is surjective.

In particular,

Proposition 4.19. if the pointed space 𝑋 is well-pointed, and the pointed space
𝑌 is connected, then the map (4.17) is surjective.

The question of the injectivity of the map (4.17) (or, equivalently, the map
(4.18)) requires some adjustments, because even for the �smoothest� spaces, the
map (4.17) may not be injective, and the study of the question of the structure
of the preimages of the elements of the set [𝑋,𝑌 ] with this map is a meaningful
geometric problem.

4.10 The fundamental group of pointed spaces

De�nition 4.20. Loops 𝑢, 𝑣 ∈ Ω𝑋 of a pointed space (𝑋, 𝑥0) are called homo-
topic if they are homotopic with respect to a two-element set {0, 1} ⊂ 𝐼. The
set [𝐼, 𝑋] rel{0, 1} of all classes of [𝑢] homotopy loops is denoted by the symbol
𝜋1 (𝑋, 𝑥0) (or simply 𝜋1𝑋). If the set 𝜋1 (𝑋, 𝑥0) consists of only one element, i.e.
if any two loops of the space 𝑋 are homotopic, then the pointed space 𝑋 is called
simply connected.

By applying the exponential homotopy law 𝐼 in 𝑋 rel{0, 1} are identi�ed with
the paths of the space Ω𝑋, and thus the set 𝜋1𝑋 is identi�ed with the sets 𝜋0Ω𝑋
of all components of this space:

𝜋1𝑋 = 𝜋0Ω𝑋.

But since 𝜋0𝐾 = [𝑝𝑡, 𝐾], then

Proposition 4.21. for each H-space (each H-monoid or each H-group) 𝐾 mul-
tiplication is transferred to its coset 𝜋0𝐾 and with respect to this multiplication,
the set 𝜋0𝐾 is a unitoid (respectively, a monoid or a group).

With respect to 𝐾 = Ω𝑋, we obtain, therefore, that
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Proposition 4.22. the formula

[𝑢] [𝑣] = [𝑢𝑣] (4.23)

well de�nes the multiplication with respect to which this set is a group.

The group 𝜋1𝑋 is called the fundamental group of the pointed space 𝑋.
The unit of this group is the homotopy class [0𝑥0 ] of the constant loop

0𝑥0 : 𝐼 → 𝑋, 𝑡 ↦→ 𝑥0, and the element 𝛼−1 inverse to the element 𝛼 = [𝑢] is the
homotopy class 𝛼−1 of the inverse loop 𝑢−1 : 𝑡 ↦→ 𝑢(1 − 𝑡).

Each pointed map 𝑓 : (𝑋, 𝑥0) → (𝑌, 𝑦0) determines, by the formula 𝑓∗ :
[𝑢] ↦→ [ 𝑓 ◦ 𝑢], the map 𝑓∗ : 𝜋1𝑋 → 𝜋1𝑌 , which is a homomorphism, and it is
clear that the correspondences 𝑋 ↦→ 𝜋1𝑋, 𝑓 ↦→ 𝑓∗ constitute a functor from the
category 𝒯ℴ𝓅• to the category 𝒢𝓇𝓅. In other words, multiplication (4.23) is
natural with respect to 𝑋.

Remark 4.24. Interestingly, as we will show in Lecture 6, multiplication (4.23),
as well as the inverse multiplication [𝑢] [𝑣] = [𝑣𝑢] are the only natural group
multiplications on 𝑋 that can be de�ned in the set 𝜋1𝑋.

4.11 The action of the group 𝜋1𝑌 on the set [𝑋,𝑌 ]•

Recall that the action of the group 𝑃𝑖 on an object 𝐴 of some category 𝒜 is
an arbitrary homomorphism 𝑅 : Π → Aut 𝐴, 𝜉 ↦→ 𝑅𝜉 , of this group into the
group of automorphisms Aut 𝐴 of the object 𝐴. If 𝐴 is a set (generally speaking,
equipped with an additional structure), then the image of the element 𝛼 ∈ 𝐴
with the automorphism 𝑅𝜉 , 𝜉 ∈ Π, is usually denoted by the symbol 𝜉𝛼. The
resulting map

Π × 𝐴→ 𝐴, (𝜉, 𝛼) ↦→ 𝜉𝛼,

is also called an action. In order for the map Π × 𝐴 → 𝐴 to be an action, it
is necessary and su�cient that for any elements 𝜉, 𝜂 ∈ Π, 𝛼 ∈ 𝐴 the following
diagramme commutes

Π × Π × 𝐴 //

��

Π × 𝐴

��
Π × 𝐴 // 𝐴

(𝜉, 𝜂, 𝛼) � //
_

��

(𝜉𝜂, 𝛼)_

��
(𝜉, 𝜂𝛼) � // 𝜉 (𝜂𝛼) = (𝜉𝜂)𝛼

and so that for any element 𝜉 ∈ Π the map 𝛼 ↦→ 𝜉𝛼, 𝛼 ∈ 𝐴, is a morphism of the
object 𝐴 on itself. With 𝒜 = ℰ𝓃𝓈, the last condition is automatically ful�lled,
and, for example, with 𝒜 = 𝒜𝒷𝒢𝓇𝓅, it means that for any elements 𝛼, 𝛽 ∈ 𝐴
the following equality must be met

𝜉 (𝛼 + 𝛽) = 𝜉𝛼 + 𝜉𝛽.

An example of an action is the action (𝜉, 𝛼) ↦→ 𝜉𝛼𝜉−1 of a group Π on itself by
means of internal automorphisms.



4.11. THE ACTION OF THE GROUP 𝜋1𝑌 ON THE SET [𝑋,𝑌 ]• 139

The orbit of the action of Π × 𝐴 → 𝐴 de�ned by the element 𝛼 ∈ 𝐴, is the
set Π𝛼 of all elements of the form 𝜉𝛼, 𝜉 ∈ Π. Orbits are the equivalence classes
with respect to the equivalence relation in which 𝛼 ∼ 𝛽 if 𝛽 = 𝜉𝛼 for some
𝜉 ∈ Π. The corresponding coset is denoted by the symbol 𝐴/Π. We emphasise
that, in general in other words, it does not inherit the structure of the object
𝐴. For example, if 𝐴 is a group, then 𝐴/Π will, generally speaking, be only a
pointed set (the base point of which is the orbit of unity, which, by the way, is
a singleton set).

We will apply these general de�nitions to the case when the group Π is
the fundamental group 𝜋1𝑌 , and the set 𝐴 is the set [𝑋,𝑌 ]• = [(𝑋, 𝑥0), (𝑌, 𝑦0)]
homotopy classes of maps of a well-pointed space (𝑋, 𝑥0) to the space (𝑌, 𝑦0).

Let 𝜉 = [𝑢] ∈ 𝜋1𝑌 and 𝛼 = [ 𝑓 ]• ∈ [𝑋,𝑌 ]• Since the space (𝑋, 𝑥0) is well-
pointed, there exists a homotopy 𝑓𝑡 : 𝑋 → 𝑌 such that 𝑓0 = 𝑓 and 𝑓𝑡 (𝑥0) = 𝑢(1−𝑡)
for any 𝑡 ∈ 𝐼 (see above proof of Lemma 4.6). Let [𝑣] = [𝑢] and [𝑔]• = [ 𝑓 ]•,
and let 𝑔𝑡 : 𝑋 → 𝑌 be a homotopy such that 𝑔0 = 𝑔 and 𝑔𝑡 (𝑥0) = 𝑣(1 − 𝑡) for
any 𝑡 ∈ 𝐼. This homotopy together with the homotopy 𝑓𝑡 and the homotopy
𝜔𝜏 : 𝐼 → 𝑌 rel{0, 1}, connecting 𝑢 and 𝑣, de�nes by the formula

ℎ𝑡 (𝑥, 𝜏) =


𝑓𝑡 (𝑥), if 𝜏 = 0,

𝜔𝜏 (1 − 𝜏), if 𝑥 = 𝑥0,

𝑔𝑡 (𝑥), if 𝜏 = 1,

some homotopy ℎ𝜏 : 𝑋pt → 𝑌 , where, according to the notation introduced in
Lecture 2, 𝑋pt = (𝑋 × 0) ∪ (𝑥0 × 𝐼) ∪ (𝑋 × 1). Since the map ℎ0 is a restriction on
the 𝑋pt homotopy rel{𝑥0} connecting the maps 𝑓 and 𝑔, and since, according to
Lemma 2.19 of Lecture 2, the pair (𝑋 × 𝐼, 𝑋pt) is a co�bration, the homotopy ℎ𝑡
extends to some homotopy ℎ𝑡 : 𝑋 × 𝐼 → 𝑌 . The end map ℎ1 of this homotopy
will be the homotopy rel{𝑥0} connecting the maps 𝑓1 and 𝑔1. This proves that
the class [ 𝑓1]• of the map 𝑓1 depends only on the classes 𝜉 = [𝑢] and 𝛼 = [ 𝑓 ]•,
and not on their representatives 𝑢 and 𝑓 . Therefore, denoting it by 𝜉𝛼, we will
well de�ne some map (𝜉, 𝛼) ↦→ 𝜉𝛼 from 𝜋1𝑌 × [𝑋,𝑌 ]• to [𝑋,𝑌 ]• as the automatic
check shows, by the action of the group 𝜋1𝑌 on the set [𝑋,𝑌 ]•.

We will call the constructed action the canonical action of the group 𝜋1𝑌 on
the set [𝑋,𝑌 ]•.
Proposition 4.25. Orbits of the canonical action

𝜋1𝑌 × [𝑋,𝑌 ]• → [𝑋,𝑌 ]•

exactly coincide with the preimages for the map (4.17) homotopy classes of
[𝑋,𝑌 ].
Proof. By de�nition, if 𝛼 = [ 𝑓 ]• and 𝜉𝛼 = [ 𝑓1]•, then 𝑓 ∼ 𝑓1. Conversely, if
𝑓 ∼ 𝑓1 and 𝑓𝑡 : 𝑋 → 𝑌 be a homotopy connecting 𝑓 to 𝑓1 then [ 𝑓1]• = [𝑢] [ 𝑓 ]•,
where 𝑢 : 𝐼 → 𝑌 be the loop 𝑡 ↦→ 𝑓1−𝑡 (𝑥0). □

Proposition 4.25 means that there is equality

[𝑋,𝑌 ]0 = [𝑋,𝑌 ]•/𝜋1𝑌, (4.26)
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where [𝑋,𝑌 ]•/𝜋1𝑌 is the coset of the set [𝑋,𝑌 ]• by the action of the group 𝜋1𝑌 .
In particular, we see that

Proposition 4.27. if the space 𝑌 is connected and simply connected, then
[𝑋,𝑌 ] = [𝑋,𝑌 ]•.
Remark 4.28. If 𝑋𝛼 and 𝑌𝛽 are components of the spaces 𝑋 and 𝑌 respectively,
then the set [𝑋,𝑌 ] is naturally represented as a disjoint union of sets [𝑋𝛼, 𝑌𝛽].
Similarly, if 𝑋𝛼0

and 𝑌𝛽0 are components of spaces 𝑋 and 𝑌 containing base
points, then the set [𝑋,𝑌 ]• is a disjoint union of the set [𝑋𝛼0

, 𝑌𝛽0 ]• and sets
[𝑋𝛼, 𝑌𝛽] for (𝛼, 𝛽) ≠ (𝛼0, 𝛽0). At the same time, on the last sets, the map (4.17)
is an identity map (in particular, the group 𝜋1𝑌 acts identically on them), so
only the following map is of interest

[𝑋𝛼0
, 𝑌𝛽0 ]• → [𝑋𝛼0

, 𝑌𝛽0 ] .

Since the group 𝜋1𝑌 is naturally identi�ed with the group 𝜋1𝑌𝛽0 , we see, there-
fore, that everything is judged to the case of connected spaces 𝑋 and 𝑌 . Namely,
being able to calculate the sets [𝑋,𝑌 ]• for connected pointed spaces 𝑋 and 𝑌 ,
we will know for the same spaces the sets [𝑋,𝑌 ], and therefore we will know
these sets (together with the sets [𝑋,𝑌 ]•) and for any spaces 𝑋 and 𝑌 . This
explains why, in homotopy theory, the restriction to connected spaces is usually
considered quite su�cient and does not, in fact, reduce generality. When, in
practice, there is a need to apply the results of homotopy theory to disconnected
spaces, they are easily modi�ed in the necessary way.

Similarly, although the main geometric interest is, of course, the theory of
homotopies in the category of𝒯ℴ𝓅 and the transition to the category of𝒯ℴ𝓅•

is caused only by a rigid algebraic necessity, in the light of all the above, we
can now focus all attention on the category of 𝒯ℴ𝓅•, keeping �in mind� the
possible ignoration of the base points.

Remark 4.29. For any pointed space 𝑋 and any well-pointed (i.e. having a
non-degenerate unit) H-cogroup 𝐾, the canonical action of the group 𝜋1𝑋 is an
action on the set of elements of the group [𝐾, 𝑋]•. It turns out that
Proposition 4.30. this action is consistent with the structure of the group on
[𝐾, 𝑋]•, i.e. for any element 𝜉 = [𝑢] of the group 𝜋1𝑋 the map 𝛼 → 𝜉𝛼,
𝛼 ∈ [𝐾, 𝑋]•, is an automorphism of the group [𝐾, 𝑋]•.
Proof. In fact, let 𝑓 : 𝐾 → 𝑋, 𝑔 : 𝐾 → 𝑋 be arbitrary pointed maps, and
𝛼 = [ 𝑓 ]• and 𝛽 = [𝑔]• be their homotopy classes. By de�nition 𝜉𝛼 = [ 𝑓1]• and
𝜉𝛽 = [𝑔1]• where 𝑓1 and 𝑔1 are terminal maps of homotopies 𝑓𝑡 , 𝑔𝑡 : 𝐾 → 𝑋

such that 𝑓0 = 𝑓 , 𝑔0 = 𝑔 and 𝑓𝑡 (𝑒) = 𝑔𝑡 (𝑒) = 𝑢(1 − 𝑡), where 𝑒 is the co-unit of
the H-cogroup 𝐾. But then the map

𝑓𝑡 + 𝑔𝑡 = 𝑚 ◦ ( 𝑓𝑡 ∨ 𝑔𝑡 ) : 𝐾 → 𝑋, 0 ≤ 𝑡 ≤ 1,

will obviously constitute a homotopy connecting the map 𝑓 +𝑔 = 𝑚◦ ( 𝑓 ∨𝑔) with
the map 𝑓1 + 𝑔1 = 𝑚 ◦ ( 𝑓1 ∨ 𝑔1) and satisfying the relation ( 𝑓𝑡 + 𝑔𝑡 ) (𝑒) = 𝑢(1− 𝑡).
Since, by de�nition, [ 𝑓 + 𝑔]• = 𝛼 + 𝛽 and [ 𝑓1 + 𝑔1]• = 𝜉𝛼 + 𝜉𝛽, this proves that
𝜉𝛼 + 𝜉𝛽 = 𝜉 (𝛼 + 𝛽). Consequently, the map 𝛼→ 𝜉𝛼 is an automorphism. □
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Remark 4.31. The construction of the canonical action of the group 𝜋1𝑌 on the
set [𝑋,𝑌 ]• admits a small generalisation, which is often useful.

Let two points 𝑦0 and 𝑦1 lying in the same connected component be selected
in the topological space 𝑌 . By specifying the point 𝑦0 as the base point, we get
the pointed space (𝑌, 𝑦0), and by specifying the point 𝑦1, we get the pointed
space (𝑌, 𝑦1). Accordingly, for any pointed space (𝑋, 𝑥0), two sets of pointed
homotopy classes will be de�ned

[(𝑋, 𝑥0), (𝑌, 𝑦0)] and [(𝑋, 𝑥0), (𝑌, 𝑦1)] .

Now let 𝑢 : 𝐼 → 𝑌 be an arbitrary path in 𝑌 connecting the point 𝑦0 with
the point 𝑦1. If the space (𝑋, 𝑥0) is well-pointed, then for any map 𝑓 : (𝑋, 𝑥0) →
(𝑌, 𝑦0) there exists a free homotopy 𝑓𝑡 : 𝑋 → 𝑌 such that 𝑓0 = 𝑓 and 𝑓𝑡 (𝑥0) =
𝑢(1 − 𝑡) (and, therefore, 𝑓1 (𝑥0) = 𝑦0, i.e, 𝑓1 : (𝑋, 𝑥0) → (𝑌, 𝑦0)). Arguments
that di�er only trivially from those used above now show that the class [ 𝑓1]• ∈
[(𝑋, 𝑥0), (𝑌, 𝑦0)] depends only on the class [ 𝑓 ]• ∈ [(𝑋, 𝑥0), (𝑌, 𝑦1)] (and on the
class [𝑢] rel{0, 1} of the path) and that the resulting map

[(𝑋, 𝑥0), (𝑌, 𝑦1)] → [(𝑋, 𝑥0), (𝑌, 𝑦0)] (4.32)

is a bijective map of the set [(𝑋, 𝑥0), (𝑌, 𝑦1)] on the set [(𝑋, 𝑥0), (𝑌, 𝑦0)].
Transferring to this case the values entered above, we will denote class [ 𝑓1]

with the symbol 𝜉𝛼, where 𝛼 = [ 𝑓 ] and 𝜉 = [𝑢] rel{0, 1}.
If the path 𝑢 connects the point 𝑦0 with the point 𝑦1 and the path 𝑣 connects

the point 𝑦1 with the point 𝑦2, then the formula (3.36) of Lecture 3 will well
determine their product 𝑢𝑣, which is the path connecting the point 𝑦0 with the
point 𝑦2, and it is clear that the class rel{0, 1} of the path 𝑢𝑣 depends only on
the classes 𝜉 and 𝜂 of the paths 𝑢 and 𝑣. This class is called the product of the
classes 𝜉 and 𝜂 and is denoted by the symbol 𝜉𝜂.

If now 𝛼 ∈ [(𝑋, 𝑥0), (𝑌, 𝑦0)], then as shown by an automatic check, equality
(𝜉𝜂)𝛼 = 𝜉 (𝜂𝛼) will take place.

In the case when (𝑋, 𝑥0) is an H-group (or at least H is a counitoid), the
same reasoning as above shows that

Proposition 4.33. the map (4.32) is an isomorphism of groups (of unitoids).

We emphasise that the map (4.32) depends on the path and (or, more pre-
cisely, on its class 𝜉 = [𝑢] rel{0, 1}) and replacing the path with another (non-
homotopic) path, it can be changed.

Remark 4.34. Recall that a groupoid is a category whose morphisms are all
isomorphisms. For any category 𝒜, an ensemble (or local system) of objects of
category 𝒜 over a groupoid Π is an arbitrary functor from Π to 𝒜. Thus, the
ensemble 𝑅 maps each object 𝑥 ∈ Π to some object 𝑅𝑥 ∈ 𝒜 and each morphism
𝜉 : 𝑥 → 𝑦 to a morphism 𝑅𝜉 : 𝑅𝑥 → 𝑅𝑦 (automatically being an isomorphism),
with 𝑅𝜉 𝜂 = 𝑅𝜉 ◦ 𝑅𝜂 and 𝑅id = id.

An example of a groupoid is the fundamental groupoid Π𝑌 of an arbitrary
topological space 𝑌 , whose objects are points of space 𝑌 , and whose morphisms
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are homotopy classes rel{0, 1} of paths 𝑢 : 𝐼 → 𝑌 . In this groupoid, the relation
𝜉 : 𝑦 → 𝑥 means that the paths of the class 𝜉 connect the point 𝑥 with the point
𝑦, and the composition of morphisms 𝜂 and 𝜉 is the product 𝜉𝜂 of the classes 𝜉
and 𝜂.

Ensembles over the groupoid Π𝑌 are called ensembles (local systems) over
the space 𝑌 .

In this terminology, the statements of Remark 4.31 mean that

Proposition 4.35. for any well-pointed space (𝑋, 𝑥0) and any topological space
𝑌 the sets 𝑅𝑦 = [(𝑋, 𝑥0), (𝑌, 𝑦)] together with the maps 𝑅𝜉 : 𝛼 ↦→ 𝜉𝛼 constitute
an ensemble of sets over the space 𝑌 , which is an ensemble of groups (unitoids)
when the space (𝑋, 𝑥0) is an H-cogroup (H-counitoid).

For any groupoid Π and any of its objects 𝑦0, the set Π(𝑦0, 𝑦0) of all
morphisms 𝜉 : 𝑦0 → 𝑦0 is a group, and for any ensemble 𝑅 of sets over Π,
this group acts on the set 𝑅𝑦0 . For the case Π = Π𝑌 the group Π(𝑦0, 𝑦0) is
nothing other than the fundamental group 𝜋1 (𝑌, 𝑦0) and its action on the set
𝑅𝑦0 = [(𝑋, 𝑥0), (𝑌, 𝑦0)] is a canonical action from Proposition 4.25.

4.12 Pointed H-spaces

The transition to the category 𝒯ℴ𝓅• requires, of course, a corresponding mod-
i�cation in the concepts of H-groups, H-monoids and H-unitoids. Now we must
consider every H-unitoid 𝐾 (and, in particular, every H-monoid and every H-
group) to be a pointed space with a base point and, accordingly, assume mul-
tiplication 𝑚 : 𝐾 × 𝐾 → 𝐾 as a pointed map (which is equivalent to equality
𝑒2 = 𝑒), and homotopies connecting maps 𝑥 ↦→ 𝑥𝑒 and 𝑥 ↦→ 𝑒𝑥 with identical
map, pointed homotopies. In addition, for H-monoids and H-groups, diagrams
)3.7) and (3.8) of Lecture 3 should now be commutative up to pointed homo-
topy. Then for any pointed space (𝑋, 𝑥0), the set [𝑋, 𝐾]• will be an unitoid
(respectively a monoid or a group) with unit [0𝑒]•.

According to Proposition 4.25, if the space (𝑋, 𝑥0) is well-pointed, then the
group 𝜋1𝐾 acts on the set [𝑋, 𝐾]•. It turns out that

Proposition 4.36. this action is trivial, i.e. 𝜉𝛼 = 𝛼 for any elements 𝛼 =

[ 𝑓 ]• ∈ [𝑋, 𝐾]• and 𝜉 = [𝑢] ∈ 𝜋1𝐾.

Proof. Indeed, since by the condition the map 𝑒 ↦→ 𝑥𝑒, 𝑥 ∈ 𝐾, is a pointed
homotopy to the constant map, the map 𝑓 is pointed homotopy to the map
𝑔 : 𝑥 ↦→ 𝑓 (𝑥)𝑒, and the loop 𝑢 is homotopic to the loop 𝑣 : 𝑡 → 𝑢(𝑡)𝑒 i.e.
𝛼 = [𝑔]• and 𝜉 = [𝑣]. On the other hand, the formula

𝑔𝑡 (𝑥) = 𝑓 (𝑥)𝑢(1 − 𝑡)

de�nes a homotopy 𝑔𝑡 : 𝑋 → 𝐾 for which 𝑔0 = 𝑔1 = 𝑔 and hence 𝑔𝑡 (𝑥0) = 𝑢(1− 𝑡).
Hence, 𝜉𝛼 = [𝑔1]• = [𝑔]• = 𝛼. □
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Since every H-unitoid (H-monoid or H-group) of the category 𝒯ℴ𝓅• is, of
course, an H-unitoid (respectively, an H-monoid or H-group) of the category
𝒯ℴ𝓅, the set of free homotopy classes [𝑋, 𝐾] of maps 𝑋 → 𝐾 will also be a
unitoid (respectively, a monoid or group), and the natural map [𝑋, 𝐾]• → [𝑋, 𝐾]
will be a homomorphism. Since, according to what has just been proved, this
map is bijective (if the space 𝑋 is well-pointed), we �nally get that

Proposition 4.37. for any well-pointed space 𝑋 and any pointed H-unitoid (any
H-monoid, any H-group) 𝐾 unitoids (respectively monoids and groups) [𝑋, 𝐾]•
and [𝑋, 𝐾] are naturally isomorphic.

4.13 H-spaces with real units

The statement that the point 𝑒 ∈ 𝐾 is a homotopy unit of the H-space 𝐾 means
that the constraint 𝑚 |𝐾∨𝐾 of multiplications 𝑚 : 𝐾 × 𝐿 → 𝐾 on the bouquet
𝐾∨𝐾 = (𝐾×𝑒)∪ (𝑒×𝐾) is homotopic to the collapsing map ∇ = id∨ id : 𝐾∨𝐾 →
𝐾, which translates the points 𝑥𝐼 = (𝑥, 𝑒) and 𝑥𝐼 𝐼 = (𝑒, 𝑥) of this bouquet to the
point 𝑥 ∈ 𝐾, and the statement that the point 𝑒 is a real (strict) unit, means
that 𝑚 |𝐾∨𝐾 = ∇. Therefore, if the point 𝑒 is non-degenerate and, therefore,
according to Proposition 1.36 of Lecture 1, the pair (𝐾 × 𝐾, 𝐾 ∨ 𝐾) = (𝐾, 𝑒)2
is a co�bration, then multiplication 𝑚 : 𝐾 × 𝐾 → 𝐾 with homotopy unit 𝑒 is
homotopic to multiplication 𝑚

′
: 𝐾 × 𝐾 → 𝐾 for which this unit is a real unit.

At the same time, if, with respect to the multiplication of 𝑚, the space 𝐾
was an H-monoid, i.e. if the map 𝑚 ◦ (𝑚 × id) and 𝑚 ◦ (id×𝑚) from 𝐾 ×𝐾 ×𝐾 to
𝐾 were homotopic, then the pointed maps 𝑚

′ ◦ (𝑚′ × id) and 𝑚′ ◦ (id×𝑚′ ) will
also be homotopic (freely). But due to the non-degeneracy of the base point of
the space 𝐾 ×𝐾 ×𝐾 (proved by a twofold application of Lemma 1.28 of Lecture
1), the statement about the coincidence of the sets [𝑋, 𝐾]• and [𝑋, 𝐾] applies
to this space. Therefore, pointed maps 𝑚

′ ◦ (𝑚′ × id) and 𝑚
′ ◦ (id×𝑚′ ) will

be homotopic and pointed. Thus, with respect to the multiplication of 𝑚
′
, the

space 𝐾 will be a pointed H-monoid.
Finally, if the H-space 𝐾 is an H-group, then, for similar reasons, the map

𝜇 will be homotopic to the pointed map 𝜇
′
: (𝐾, 𝑒) → (𝐾, 𝑒), and for this map,

diagrams (3.8) of Lecture 3, in which 𝑚 and 𝜇 are replaced by 𝑚
′
and 𝜇

′
, will

be pointed homotopy, i.e. the pointed H-monoid 𝐾 with multiplication 𝑚
′
' will

be a pintted H-group.
This proves that

Proposition 4.38. every H-space (H-monoid or H-group) whose homotopy unit
is non-degenerate is equivalent to a pointed H-space (H-monoid, H-group) with
a real unit.

Without the assumption of non-degeneracy of the unit, one can only assert
that the H-space 𝐾 is homotopically isomorphic to the pointed H-space 𝐾

′
with

a real unit. To prove it, it is enough to stick to the 𝐾
′
whiskers and apply the

previous statement.
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We see, therefore, that in the transition from the category of 𝒯ℴ𝓅 to the
category of 𝒯ℴ𝓅•, we lose nothing (and gain nothing) with respect to the 𝐾∗

functions, since the stock of H-spaces 𝐾 in both categories is practically the
same, and each of them gives the same algebraic objects to 𝐾∗ (𝑋).

4.14 Co�brations and relative homeomorphisms

In addition to the question of the relationship between the categories of pointed
and non-pointed spaces, we have one more small debt left from the previous
lecture � homotopy equivalence of the reduced and on the reduced suspensions.
Although the latter question is quite elementary in itself, we will take this
opportunity to present in connection with it some general results that have an
independent interest.

For any pair (𝑋, 𝐴), the space 𝑋/𝐴 is called the co�bre. For example, the
co�bre of the pair (𝑋 ×𝑌, 𝑋 ∨𝑌 ) is the smash product 𝑋 ∧𝑌 , and the co�bre of
the pair (𝐶𝑋, 𝑋) is the suspension 𝑆𝑋.

Note that the co�bre 𝑋/𝐴 of an arbitrary pair (𝑋, 𝐴) is naturally a pointed
space, the base point of which is the image of the subspace 𝐴 for the factorisation
map 𝑋 → 𝑋/𝐴.

A continuous map 𝜑 : 𝑋𝑡𝑜𝑌 is called a map (𝑋, 𝐴) → (𝑌, 𝐵) from a pair
(𝑋, 𝐴) to a pair (𝑌, 𝐵) if 𝜑(𝐴) ⊂ 𝐵. The composition of the mappings of the
pairs (𝑋, 𝐴) → (𝑌, 𝐵) and (𝑌, 𝐵) → (𝑍, 𝐶) is obviously a map of (𝑋, 𝐴) →
(𝑍, 𝐶). Therefore, pairs and their maps make up a category. We will denote
this category by the symbol 𝒯ℴ𝓅2.

It is clear that any map of pairs 𝜑 : (𝑋, 𝐴) → (𝑌, 𝐵) induces a pointed map
𝜑• : 𝑋/𝐴 → 𝑌/𝐵 of their co�bres with correspondences (𝑋, 𝐴) ↦→ 𝑋/𝐴, 𝜑 ↦→ 𝜑

′

constitute a functor from the category 𝒯ℴ𝓅2 to the category 𝒯ℴ𝓅•.

The map of pairs 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) is called a relative homeomorphism if
as the map 𝑋 → 𝑌 it is an epimorphism on 𝑓 (𝑋), It is easily veri�ed that

Proposition 4.39. the map 𝑋/𝐴 → 𝑌/𝐵 induced by the relative homeomor-
phism (𝑋, 𝐴) → (𝑌, 𝐵) is a homeomorphism.

For any pair (𝑋, 𝐴) and any surjective map 𝑔 : 𝐴→ 𝐵 factorisation map

𝑓 : (𝑋, 𝐴) → (𝑋 ∪𝑔 𝐵, 𝐵)

is obviously an surjective relative homeomorphism. It's easy to see that the
opposite is also true.

Lemma 4.40. For any surjective relative homeomorphism 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵)
the space 𝑌 is homeomorphic to the space 𝑋 ∪𝑔 𝐵, where 𝑔 = 𝑓 |𝐴.
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Proof. Consider the diagramme

𝑋 ⊔ 𝐵
𝑓⊔𝑖

##
𝜑

��

𝑌

𝑋 ∪𝑔 𝐵
𝑓̂

<<

where 𝑖 : 𝐵→ 𝑌 is an embedding, 𝜑 is a factorisation map, and 𝑓̂ is a map that
matches on 𝑋 \ 𝐴 = 𝜑(𝑋 \ 𝐴) with the map 𝑓 , and on 𝐵 with the map 𝑖. Since
this diagramme is obviously commutative, then, as the map 𝑓̂ is epimorphic,
it is continuous. In addition, it is obviously bijective, and for the inverse map
there is a relation 𝜑 = 𝑓̂ −1 ◦ ( 𝑓 ⊔ 𝑖). But the surjective relative homeomorphism
𝑓 is, by de�nition, an epimorphism, from which it immediately follows that the
map 𝑓 ⊔ 𝑖 is also epiomorphic. Hence, by applying the continuity of the map 𝜑,
the map 𝑓̂ −1 is continuous, and, therefore, the map 𝑓̂ is a homeomorphism. □

Relative homeomorphisms are mostly interesting to us because of their fol-
lowing property.

Lemma 4.41. If the pair (𝑋, 𝐴) is a co�bration, then for any relative homeo-
morphism 𝜑 : (𝑋, 𝐴) → (𝑌, 𝐵), the pair (𝑌, 𝐵) will also be a co�bration.

Proof. The statement that the pair (𝑌, 𝐵) is a co�bration means that for each
diagramme of the form (where 𝑗 is the inclusion)

𝐵
𝑗 //

𝐹
��

𝑌

𝑓

��

𝐹

��
𝑍 𝐼

𝜔•0

// 𝑍

(4.42)

there is a closing homotopy of 𝐹. But by superimposing this diagramme with
the following diagramme

𝐴
𝑖 //

𝜑

��

𝑋

𝜑

��
𝐵

𝑗
// 𝑌

we will get a similar diagramme (where 𝑖 is the inclusion)

𝐴
𝑖 //

𝐹◦𝜑
��

𝑋

𝑓 ◦𝜔
��

𝐺

~~
𝑍 𝐼

𝜔•0

// 𝑍
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for a pair (𝑋, 𝐴) for which the homotopy 𝐺 by the condition exists. Since the
map 𝜑 outside 𝐴 is injective, the formula

𝐹 (𝑔) =
{
𝐹 (𝑦), if 𝑦 ∈ 𝐵,
𝐺 (𝑥), if 𝑦 ∉ 𝐵 and 𝑦 = 𝜑(𝑥),

well de�nes some map 𝐹 : 𝑋 → 𝑍 𝐼 , satisfying the relation 𝐺 = 𝐹 ◦ 𝜛 and
therefore, by applying the epimorphic map 𝜑, continuous. To complete the
proof, it remains to note that the map 𝐹 obviously closes the diagram (4.42). □

Corollary 4.43. The co�bre 𝑋/𝐴 of an arbitrary co�bration (𝑋, 𝐴) is a well-
pointed space.

Corollary 4.44. For any well-pointed spaces 𝑋 and 𝑌 , the space

𝑋 ∧ 𝑌 = (𝑋 × 𝑌 )/𝑋 ∨ 𝑌, 𝑋 ∨ 𝑌 = (𝑋 × 𝑦0) ∪ (𝑥0 × 𝑌 ),

is also well-pointed.

Proof. According to the Proposition 1.20 Lecture 1, the pair (𝑋 × 𝑌, 𝑋 ∧ 𝑌 ) =
(𝑋, 𝑥0) × (𝑌, 𝑦0) is a co�bration. □

Corollary 4.45. For any well-pointed space 𝑋, the pair (𝐶𝑋, 𝑋) is a co�bration.

Proof. Identi�cation map (𝑋 × 𝐼, 𝑋pt) → (𝐶•𝑋, 𝑋) is a relative homeomorphism,
and the pair (𝑋 × 𝐼, 𝑋pt is a co�bration (see Lemma 2.19 of Lecture 1). □

4.15 Co�brations of contractible subspaces

Let us now prove the following important lemma.

Lemma 4.46. If for a co�bration (𝑋, 𝐴) the subspace 𝐴 is contractible, then
the coset expression

𝜉 : 𝑋 → 𝑋/𝐴

is a homotopy equivalence.

Proof. Let 𝑓𝑡 : 𝐴→ 𝐴 be a homotopy connecting the identity map id𝐴 : 𝐴→ 𝐴

with a constant map const𝑎0 : 𝐴 → 𝐴. Since the pair (𝑋, 𝐴) is a co�bration,

there exists a homotopy 𝑓 𝑡 : 𝑋 → 𝑋 such that 𝑓 0 = id𝑋 and 𝑓 𝑡 ◦ 𝑖 = 𝑖 ◦ 𝑓𝑡 for any
𝑖 ∈ 𝐼, where 𝑖 : 𝐴→ 𝑋 is an embedding. In particular, 𝑓 1 ◦ 𝑖 = 𝑖 ◦ const = const,
i.e. 𝑓 1 |𝐴 = const. Therefore, the map 𝑓 1 induces some map ℎ : 𝑋/𝐴 → 𝑋 for
which ℎ ◦ 𝜉 = 𝑓 1. Hence id ∼ ℎ ◦ 𝜉. Similarly, since 𝑓 𝑡 (𝑎) ∈ 𝐴 for any 𝑎 ∈ 𝐴
and any 𝑡 ∈ 𝐼, the homotopy 𝑓 𝑡 induces the homotopy 𝑔𝑡 : 𝑋/𝐴 → 𝑋/𝐴, for
which 𝑔1 = id and 𝑔1 = 𝜉 ◦ ℎ. Hence, id ∼ ℎ ◦ 𝜑, so 𝜉 and ℎ are mutually inverse
homotopy equivalences. □



4.16. CONCLUDING REMARKS ON SUSPENSIONS AND LOOP SPACES147

4.16 Concluding remarks on suspensions and loop
spaces

Let's apply the obtained general results to the suspension 𝑆𝑋 and its meridian
𝑆𝑥0 . If the space 𝑋 is well-pointed, and therefore, by applying Lemma 4.15,
the pair (𝑋 × 𝐼, 𝑋pt), where 𝑋pt = (𝑋 × 0) ∪ (𝑥0 × 𝐼) ∪ (𝑋 × 1), is a co�bration,
then, according to Lemma 4.41, the pair (𝑆𝑋, 𝑆𝑥0 ) with co�bre 𝑆•𝑋 = 𝑆𝑋/𝑆𝑥0
will also be a co�bration (the factorisation map (𝑋 × 𝐼, 𝑋pt) → (𝑆𝑋, 𝑆𝑥0 ) is a
relative homeomorphism). Hence, since the meridian 𝑆𝑥0 , being homeomorphic
to the segment 𝐼, is contractible,

Proposition 4.47. for any well-pointed space 𝑋, the factorisation map 𝑆𝑋 →
𝑆•𝑋 is a homotopy equivalence.

In addition, by applying Corollary 4.43 of Lemma 4.41 to the pair (𝑋×𝐼, 𝑋pt),
we get that

Proposition 4.48. if a space 𝑋 is well-pointed, then its reduced suspension 𝑆•𝑋
is also well-pointed.

A similar statement holds for the loop space, i.e.

Proposition 4.49. for any well-pointed space (𝑋, 𝑥0), the loop space (Ω𝑋, 0𝑥0 )
is also well-pointed.

Proof. Indeed, if 𝜑 : 𝑋 → 𝐼 is a continuous function such that 𝜑−1 (0) = {𝑥0},
then the formula

𝜑(𝑢) = max
𝜏
𝜑(𝑢(𝜏)), 0 ≤ 𝑡 ≤ 1,

will determine the continuous function 𝜑 : Ω𝑋 → 𝐼, for which 𝜑−1 (0) = {0𝑥0 }.
In this case, the set 𝑈 = Ω𝑋 \ 𝜑(1) is naturally identi�ed with the space Ω𝑈,
where 𝑈 = 𝑋 \ 𝜑−1 (1), and therefore for any homotopy 𝑔𝑡 : 𝑈 → 𝑋 rel{𝑥0} the
formula

𝑔̂𝑡 (𝑢) = 𝑔𝑡 ◦ 𝑢, 𝑢 ∈ 𝑈, 0 ≤ 𝑡 ≤ 1,

will be correct to de�ne some homotopy 𝑔̂𝑡 : 𝑈 → Ω𝑋. Also, if 𝑔0 (𝑥) = 𝑥 and
𝑔1 (𝑥) = 𝑥0 for any point 𝑥 ∈ 𝑈, then 𝑔̂0 (𝑢) = 𝑢 and 𝑔̂1 (𝑢) = 0𝑥0 for any path

𝑢 ∈ 𝑈. □

It is clear that this reasoning holds for the space of Moore loops Ω𝑀𝑋 as
well.





Appendix

In this Appendix we will consider two unrelated questions: the question of
the properties of composite multiplication and the question of the conditions
ensuring the nilpotency or abelicity of the group [𝑋, 𝐾]•.

4.A The lemma on the product of epiomorphisms

The key to the properties of composite multiplication is the following lemma,
which we will need in many other questions.

Lemma 4.50. If the space 𝑌 is Hausdor� and locally compact, then for any
epiomorphism 𝜉 : 𝑃→ 𝑋, the map

𝜉 × id : 𝑃 × 𝑌 → 𝑋 × 𝑌, (𝑝, 𝑦) ↦→ (𝜉 (𝑝), 𝑦),

is also an epimorphism.

Proof. Introducing into consideration the coset space 𝑋
𝜉

× 𝑌 of the space 𝑃 × 𝑌
with respect to the equivalence (𝑝1, 𝑦1) ∼ (𝑝2, 𝑦2) if and only if 𝜉 (𝑝1) = 𝜉 (𝑝2)
and 𝑦1 = 𝑦2, we will represent the map 𝜉×id as a composition of the factorisation

map 𝑘 : 𝑃 × 𝑌 → 𝑋
𝜉

× 𝑌 and some continuous bijective map 𝑖 : 𝑋
𝜉

× 𝑌 → 𝑋 × 𝑌 :

𝑃 × 𝑌 𝑘 //

𝜉×id ##

𝑋
𝜉

× 𝑌

𝑖

��
𝑋 × 𝑌

The map 𝜉 × id is an epimorphism if and only if the map 𝑖 is a homeomorphism.
With this in mind, we will consider the map 𝜃 (𝑘) : 𝑃 → (𝑋𝑥𝑌 )𝑌 associated

with the map 𝑘. By de�nition [𝜃 (𝑘)𝑝] (𝑦) = 𝑘 (𝑝, 𝑦) for any points 𝑝 ∈ 𝑃, 𝑦 ∈ 𝑌 ,
and, therefore, 𝜃 (𝑘)𝑝1 = 𝜃 (𝑘)𝑝2 if and only if 𝜉 (𝑝1) = 𝜉 (𝑝2). Therefore, in the
diagramme

𝑃
𝜃 (𝑘 ) //

𝜉

��

(𝑋
𝜉

× 𝑌 )𝑌

𝑋

𝜂

;;

149
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there is a closing map 𝜂 : 𝑋 → (𝑋
𝜉

× 𝑌 )𝑌 . It is continuous, since the map 𝜃 (𝑘) is
continuous, and the map 𝜉 is an epimorphism. Since the space 𝑌 is Hausdor�
and locally compact, and, therefore, the association map 𝜃 is bijective, then

there is a map 𝑗 : 𝑋 × 𝑌 → (𝑋
𝜉

× 𝑌 such that 𝜃 𝑗 = 𝜂, and since 𝜂 ◦ 𝜉 = 𝜃 (𝑘),
𝑗 ◦ (𝜉 × id) = 𝑘. Therefore (𝑖 ◦ 𝑗) ◦ (𝜉 × id) = 𝑖 ◦ 𝑘 = 𝜉 × id, and therefore 𝑖 ◦ 𝑗 = id,
the map 𝜉× id is subjective. Hence, the map 𝑖 is a homeomorphism (with inverse
homeomorphism 𝑗), and the map 𝜉 × id is an epiomorphism. □

Remark 4.51. We needed Hausdor�ness and local compactness of the space 𝑌
in Lemma 4.50 only in order to ensure the bijectivity of the map 𝜃. Therefore,

Proposition 4.52. if the exponential law is true for the spaces 𝑋 and 𝑌 , i.e. if
for the space 𝐵 the association map

𝜃 : 𝐵𝑋×𝑌 → (𝐵𝑌 )𝑋

is bijective, then for any epimorphism 𝜉 : 𝑃→ 𝑋 the map 𝜉 × id : 𝑃×𝑌 → 𝑋 ×𝑌
is also an epiomorphism.

Corollary 4.53. If the spaces 𝑋 and 𝑌 are Hausdor� and locally compact, then
for any epiomorphisms 𝜉 : 𝑃→ 𝑋 and 𝜂 : 𝑄 → 𝑌 the map

𝜉 × 𝜂 : 𝑃 ×𝑄 → 𝑋 × 𝑌, (𝑝, 𝑞) ↦→ (𝜉 (𝑝), 𝜂(𝑞)),

is also an epiomorphism.

Proof. Is it enough to notice that 𝜉 ×𝜂 = (𝜉 × id) ◦ (id×𝜂), and take into account
that the composition of two epiomorphisms is an epiomorphism. □

4.B The smash product of homotopy classes

It is clear that for any pointed spaces 𝐴, 𝐵, 𝑋, 𝑌 and any pointed maps 𝑓 : 𝐴→
𝑋, 𝑔 : 𝐵 → 𝑌 the formula 𝑎 ∧ 𝑏 ↦→ 𝑓 (𝑎) ∧ 𝑓 (𝑏), 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, well de�nes the
pointed map

𝑓 ∧ 𝑔 : 𝐴 ∧ 𝐵→ 𝑋 ∧ 𝑌,

moreover, the correspondences (𝑋,𝑌 ) ↦→ 𝑋∧, ( 𝑓 , 𝑔) ↦→ 𝑓 ∧ 𝑔 constitute a two-
argument functor from 𝒯ℴ𝓅

• to 𝒯ℴ𝓅•, covariant on both arguments.

Proposition 4.54. For any homotopy 𝑓𝑡 : 𝐴 → 𝑋 and 𝑔𝑡 : 𝐵 → 𝑌 the map
𝑓𝑡 ∧ 𝑔𝑡 : 𝐴 ∧ 𝐵→ 𝑋 ∧ 𝑌 also constitutes a homotopy.

Proof. You need to show that the map

𝐻 : (𝐴 ∧ 𝐵) × 𝐼 → 𝑋 ∧ 𝐼, (𝑎 ∧ 𝑏, 𝑡) ↦→ 𝑓𝑡 (𝑎) ∧ 𝑔𝑡 (𝑏),
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is continuous. But if 𝑗
′
: 𝐴 × 𝐵 → 𝐴 ∧ 𝐵 and 𝑗 : 𝑋 × 𝑌 → 𝑋 ∧ 𝑌 are canonical

factorisation maps, then there is a commutative diagramme

(𝐴 × 𝐵) × 𝐼 𝐻 //

𝑗
′×id
��

𝑋 × 𝑌

𝑗

��
(𝐴 ∧ 𝐵) × 𝐼

𝐻
// 𝑋 ∧ 𝑌

where the map 𝐻 is de�ned by the formula 𝐻 ((𝑎, 𝑏), 𝑡) = ( 𝑓𝑡 (𝑎), 𝑔𝑡 (𝑏)) and is
therefore continuous. Hence, the map 𝐻 ◦ ( 𝑗 × id) = 𝑗 ◦ 𝐻 is continuous, and
since, according to Lemma 4.50, the map 𝑗 × id is an epiomorphism, then the
map 𝐻 is continuous. □

It follows directly from Proposition 4.54 that for any homotopy classes

𝛼 = [ 𝑓 ]• ∈ [𝐴, 𝑋]•, 𝑓 : 𝐴→ 𝑋,

𝛽 = [𝑔]• ∈ [𝐵,𝑌 ]•, 𝑔 : 𝐵→ 𝑌,

the formula
𝛼 ∧ 𝛽 = [ 𝑓 ∧ 𝑔]•

well de�nes a homotopy class

𝛼 ∧ 𝛽 ∈ [𝐴 ∧ 𝐵, 𝑋 ∧ 𝑌 ]•,

which is called the smash product of the classes 𝛼 and 𝛽.
Obviously, the correspondences (𝑋,𝑌 ) ↦→ 𝑋 ∧ 𝑌 , (𝛼, 𝛽) ↦→ 𝛼 ∧ 𝛽 make up a

double functor from [x•] to [x•] (homotopisation of the functor ∧ from x• to
x•). In particular, this means that for any spaces 𝐴, 𝑋, 𝑋

′
, 𝐵, 𝑌 , 𝑌

′
and any

homotopy classes 𝛼 ∈ [𝐴, 𝑋]•, 𝛽 ∈ [𝐵,𝑌 ]•, 𝜉 ∈ [𝑋, 𝑋 ′ ]•, 𝜂 ∈ [𝑌,𝑌 ′ ]• there is
equality

(𝛼 ∧ 𝛽) ◦ (𝜉 ∧ 𝜂) = (𝛼 ◦ 𝜉) ∧ (𝛽 ◦ 𝜂).
It is clear that for any three pointed spaces 𝑋, 𝑌 and 𝑍 the correspondences

𝑥𝐼 ∧ 𝑧 ↦→ (𝑥 ∧ 𝑧)𝐼 , 𝑦𝐼 𝐼 ∧ 𝑍 ↦→ (𝑦 ∧ 𝑍)𝐼 𝐼

de�ne a canonical homomorphism

(𝑋 ∧ 𝑌 ) ∧ 𝑍 ↦→ (𝑋 ∧ 𝑍) ∨ (𝑌 ∧ 𝑍),

having the naturality, i.e. such that for any maps 𝑓 : 𝐴 → 𝑋, 𝑔 : 𝐵 → 𝑌 ,
ℎ : 𝐶 → 𝑍 there is a commutative diagramme

(𝐴 ∨ 𝐵) ∧ 𝐶 //

( 𝑓∨𝑔)∧ℎ
��

(𝐴 ∧ 𝐶) ∨ (𝐵 ∧ 𝐶)

( 𝑓∧ℎ)∨(𝑔∧ℎ)
��

(𝑋 ∨ 𝐵) ∧ 𝑍 // (𝑋 ∧ 𝑍) ∨ (𝑌 ∧ 𝑍)
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We will always identify the spaces (𝑋 ∨𝑌 ) ∧𝑍 and (𝑋 ∧𝑍) ∨ (𝑌 ∧𝑍) in the future
by means of this homeomorphism.

In particular, this allows us for any H cogroup 𝐾 with the multiplication
𝑚 : 𝐾 → 𝐾 ∨ 𝐾 and any pointed space 𝐶,treating 𝑚 ∧ id as a map 𝐾 ∧ 𝐶 →
(𝐾 ∧𝐶) ∨ (𝐾 ∧𝐶): and an automatic, albeit somewhat tedious, checking shows
that with respect to this map,

Proposition 4.55. the space 𝐾 ∧ 𝐶 is an H-cogroup.

Therefore, for any elements 𝛼, 𝛽 ∈ [𝐾, 𝑋]• and 𝛾 ∈ [𝐶, 𝑍]•, the element
𝛼 ∧ 𝛾 + 𝛽 ∧ 𝛾 ∈ [𝐾 ∧ 𝐶, 𝑋 ∧ 𝑍] will be de�ned, On the other hand, in the
group [𝐾, 𝑋]• the element 𝛼 + 𝛽 will be de�ned, and therefore in the group
[𝐾 ∧ 𝐶, 𝑋 ∧ 𝑍]• the element (𝛼 + 𝛽) ∧ 𝛾 will be de�ned. A direct calculation
using de�nitions shows that these elements are the same:

(𝛼 + 𝛽) ∧ 𝛾 = 𝛼 ∧ 𝛾 + 𝛽 ∧ 𝛾.

Similarly, it is proved that for any pointed space 𝐴 and any H-cogroup 𝐿 with
multiplication 𝑚, the space 𝐴 ∧ 𝐿 is an H-cogroup with multiplication id∧𝑚,
and for any elements 𝛼 ∈ [𝐴, 𝑋]•, and 𝛽, 𝛾 ∈ [𝐿,𝑌 ]• there is the equality

𝛼 ∧ (𝛽 + 𝛾) = 𝛼 ∧ 𝛽 + 𝛼 ∧ 𝛾.

In this sense,

Proposition 4.56. the smash product of homotopy classes is distributive with
respect to addition.

As already noted in Lecture 4, the operation of smash product of spaces is
commutative, i.e. the formula 𝑥 ∧ 𝑦 ↦→ 𝑦 ∧ 𝑥 de�nes a canonical homomorphism
𝑋∧𝑌 → 𝑌 ∧𝑋. Identifying by means of this homeomorphism of the spaces 𝑋∧𝑌
and 𝑌 ∧ 𝑋 (as well as by means of a similar homeomorphism 𝑎 ∧ 𝑏 ↦→ 𝑏 ∧ 𝑎 of
the space 𝐴 ∧ 𝐵 and 𝐵 ∧ 𝐴), for any elements 𝛼 ∈ [𝐴, 𝑋]•, 𝛽 ∈ [𝐵,𝑌 ]• we can
consider the homotopy class 𝛽 ∧ 𝛼 as an element of the set [𝐴 ∧ 𝐵, 𝑋 ∧ 𝑌 ]•. It
is clear that then this class coincides with the class 𝛼 ∧ 𝛽. In this sense,

Proposition 4.57. the smash product of homotopy classes is commutative.

Similarly, if for the spaces 𝑋, 𝑌 , 𝑍 the map

(𝑋 ∧ 𝑌 ) ∧ 𝑍 → 𝑋 ∧ (𝑌 ∧ 𝑍), (𝑥 ∧ 𝑦) ∧ 𝑧 ↦→ 𝑥 ∧ (𝑦 ∧ 𝑧), (4.58)

is a homeomorphism (or at least a homotopy equivalence) and if the spaces 𝐴,
𝐵, 𝐶 have the same property, then after the corresponding identi�cations for
any elements 𝛼 ∈ [𝐴, 𝑋]•, 𝛽 ∈ [𝐵,𝑌 ]′• and 𝛾 ∈ [𝐶, 𝑍]• there will be the equality
(𝛼 ∧ 𝛽) ∧ 𝛾 = 𝛼 ∧ (𝛽 ∧ 𝛾). In this sense,

Proposition 4.59. the smash products of homotopy classes are associative.
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4.C Associativity of the smash product of locally
compact Hausdor� spaces

For which spaces 𝑋, 𝑌 , 𝑍 is the map (4.58) a homeomorphism? To answer this
question, we �rst compare the space (𝑋 ∧ 𝑌 ) ∧ 𝑍 with the space 𝑋 ∧ (𝑌 ∧ 𝑍).

By de�nition, the space 𝑋 ∧𝑌 is the coset space (𝑋 ×𝑌 )/(𝑋 ∨𝑌 ) of the space
𝑋 ×𝑌 , the space (𝑋 ∧𝑌 ) ∧ 𝑍 is the coset space [(𝑋 ∧𝑌 ) × 𝑍]/[(𝑋 ∧𝑌 ) ∨ 𝑍] of the
space (𝑋∧𝑌 )×𝑍 and the space 𝑋∧𝑌∧𝑍 is the coset space (𝑋×𝑌 ×𝑍)/(𝑋∨𝑌∨𝑍)
of the space 𝑋 × 𝑌 × 𝑍. Let

𝑗 :𝑋 × 𝑌 → 𝑋 ∧ 𝑌,
𝑗
′
:𝑋 × 𝑌 × 𝑍 → 𝑋 ∧ 𝑌 ∧ 𝑍,

𝑗
′′
:(𝑋 ∧ 𝑌 ) × 𝑍 → (𝑋 ∧ 𝑌 ) ∧ 𝑍

be the corresponding factorisation maps, and let

𝜉 : 𝑋 ∧ 𝑌 ∧ 𝑍 → (𝑋 ∧ 𝑌 ) ∧ 𝑍

be the map 𝑥 ∧ 𝑦 ∧ 𝑧 ↦→ (𝑥 ∧ 𝑦) ∧ 𝑧 induced by the homeomorphism

𝜉 : 𝑋 × 𝑌 × 𝑍 → (𝑋 × 𝑌 ) × 𝑍, (𝑥, 𝑦, 𝑧) ↦→ ((𝑥, 𝑦), 𝑧).

Then there is a commutative diagramme

𝑋 × 𝑌 × 𝑍
𝜉 //

𝑗
′

��

(𝑋 × 𝑌 ) × 𝑍

𝑗×id
��

(𝑋 ∧ 𝑌 ) × 𝑍

𝑗
′′

��
𝑋 ∧ 𝑌 ∧ 𝑍

𝜉
// (𝑋 ∧ 𝑌 ) ∧ 𝑍

(4.60)

from which it follows that the map 𝜉 ◦ 𝑗 ′ is continuous. Since the map 𝑗
′
is an

epiomorphism,

Proposition 4.61. the map 𝜉 is continuous.

Our goal is to �nd conditions under which the map 𝜉 is a homeomorphism. It
is clear that this map is bijective. Therefore, it all comes down to the question of
the continuity of the inverse map 𝜉−1. Due to the commutativity of diagramme
(4.60) the map 𝜉−1 ◦ 𝑗 ′′ ◦ ( 𝑗 × id) is continuous (and even epiomorphic). Since
the map 𝑗

′′
is an epiomorphism, it follows that the map 𝜉−1 is continuous if and

only if the map 𝑗 × id is epiomorphic, for which, by applying Lemma 4.50, is
enough for the space 𝑍 which is Hausdor� and locally compact. Thus, we have
proved the following proposition.
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Proposition 4.62. If the space 𝑍 is locally compact and Hausdor�, then for
any spaces 𝑋 and 𝑌 the canonical map

𝑋 ∧ 𝑌 ∧ 𝑍 → (𝑋 ∧ 𝑌 ) ∧ 𝑍, 𝑥 ∧ 𝑦 ∧ 𝑧 ↦→ (𝑥 ∧ 𝑦) ∧ 𝑧,

is a homeomorphism.

It is clear that the analogue of Proposition 4.62 holds for the canonical map

𝑋 ∧ 𝑌 ∧ 𝑍 → 𝑋 ∧ (𝑌 ∧ 𝑍), 𝑥 ∧ 𝑦 ∧ 𝑧 ↦→ 𝑥 ∧ (𝑦 ∧ 𝑧),

i.e. this map is homeomorphic if the space 𝑋 is locally compact and Hausdor�.

Corollary 4.63. If the spaces 𝑋 and 𝑍 are locally compact and Hausdor�, then
for any space 𝑌 the canonical map

(𝑋 ∧ 𝑌 ) ∧ 𝑍 → 𝑋 ∧ (𝑌 ∧ 𝑍), (𝑥 ∧ 𝑦) ∧ 𝑧 ↦→ 𝑥 ∧ (𝑦 ∧ 𝑧),

is a homeomorphism.

Thus, for locally compact and Hausdor� spaces 𝑋 and 𝑍, all three spaces
(𝑋∧𝑌 )∧𝑍, 𝑋∧(𝑌∧𝑍) and 𝑋∧𝑌∧𝑍 are canonically homeomorphic and therefore
can be identi�ed with each other. In this sense,

Proposition 4.64. the smash product of spaces is associative.

Corollary 4.65. If the space 𝑌 is locally compact and Hausdor�, then for any
space 𝑋 the canonical maps

𝑆• (𝑋 ∧ 𝑌 ) → 𝑆•𝑋 ∧ 𝑌, [𝑥 ∧ 𝑦, 𝑡] ↦→ [𝑥, 𝑡] ∧ 𝑦,
𝑆•𝑋 ∧ 𝑌 → 𝑆• (𝑋 ∧ 𝑌 ), [𝑥, 𝑡] ∧ 𝑦 ↦→ [𝑥 ∧ 𝑦, 𝑡],

are mutually inverse homeomorphisms.

Similarly, if the space 𝑋 is locally compact and Hausdor�, then for any space
𝑌 , the canonical maps will be the inverse of each other homeomorphisms

𝑆• (𝑋 ∧ 𝑌 ) → 𝑋 ∧ 𝑆•𝑌, [𝑥 ∧ 𝑦, 𝑡] ↦→ 𝑥 ∧ [𝑦, 𝑡]
𝑋 ∧ 𝑆•𝑌 → 𝑆• (𝑋 ∧ 𝑌 ), 𝑥 ∧ [𝑦, 𝑡] ↦→ [𝑥 ∧ 𝑦, 𝑡] .

Proof. Su�ce it to recall that 𝑆•𝑋 = S1 ∧ 𝑋. □

Considering these homeomorphisms as identi�cations, we get that for any
homotopy classes 𝛼 ∈ [𝐿, 𝑋]•, 𝛽 ∈ [𝐵,𝑌 ]′•, 𝛾 ∈ [𝐶, 𝑍]• the identity

𝐸 (𝛼 ∧ 𝛽) = 𝐸𝛼 ∧ 𝛽 = 𝛼 ∧ 𝐸𝛽. (4.66)

(See Remark 3.41 of Lecture 3.)
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4.D Homotopy associativity of the smash prod-
uct of well-pointed spaces

Unfortunately, in homotopy theory we cannot limit ourselves to Proposition
4.62, since many spaces naturally arising in this theory (for example, path
spaces) are not locally compact. Therefore, we are forced to look for other
less restrictive conditions that ensure the associativity of the smash product (at
least up to homotopy equivalence).

Proposition 4.67. For any well-pointed spaces 𝑋, 𝑌 , 𝑍, the canonical bijective
map

𝜉 : 𝑋 ∧ 𝑌 ∧ 𝑍 → (𝑋 ∧ 𝑌 ) ∧ 𝑍, 𝑥 ∧ 𝑦 ∧ 𝑧 ↦→ (𝑥 ∧ 𝑦) ∧ 𝑧,

is a homotopy equivalence.

Proof. According to Corollary 4.44 of Lemma 4.41 Lecture 4 the space 𝑋 ∧ 𝑌
is well-pointed, i.e. (Lemma 2.26 and Proposition 2.27 of Lecture 2) there
exists a function 𝜑 : 𝑋 ∧ 𝑌 → 𝐼, such that 𝜑−1 (0) = 𝑥0 ∧ 𝑦0 and a homotopy
𝑔𝑡 : 𝑋 ∧𝑌 → 𝑋 ∧𝑌 , such that 𝑔0 = id and 𝑔𝑡 (𝑥 ∧ 𝑦) = 𝑥0 ∧ 𝑦0 for 𝑡 > 𝜑(𝑥 ∧ 𝑦). In
this case, the homotopy 𝑔𝑡 is induced by some homotopy with similar properties
𝑔𝑡 : 𝑋 × 𝑌 → 𝑋 × 𝑌 , i.e. for any 𝑡 ∈ 𝐼 there is a commutative diagramme

𝑋 × 𝑌
𝑔𝑡 //

𝑗

��

𝑋 × 𝑌
𝑗

��
𝑋 ∧ 𝑌

𝑔𝑡
// 𝑋 ∧ 𝑌

where, as above, 𝑗 : 𝑋 ×𝑌 → 𝑋 ∧𝑌 is the factorisation map (a similar statement
is true, of course, for the function 𝜑, but we won't need it).

It is easy to see that the formulae

ℎ𝑡 (𝑥 ∧ 𝑦 ∧ 𝑧) = 𝑗
′ (𝑔𝑡 (𝑥, 𝑦), 𝑦),

ℎ𝑡 ((𝑥 ∧ 𝑦) ∧ 𝑧) = 𝑔𝑡 (𝑥 ∧ 𝑦) ∧ 𝑧,

where 𝑗
′
: 𝑋 × 𝑌 × 𝑍 → 𝑋 ∧ 𝑌 ∧ 𝑍 is the factorisation map, well determine

homotopies

ℎ𝑡 : 𝑋 ∧ 𝑌 ∧ 𝑍 → 𝑋 ∧ 𝑌 ∧ 𝑍, ℎ𝑡 : (𝑋 ∧ 𝑌 ) ∧ 𝑍 → (𝑋 ∧ 𝑌 ) ∧ 𝑍,

for which the commutative diagramme

𝑋 ∧ 𝑌 ∧ 𝑍
𝜉 //

ℎ𝑡

��

(𝑋 ∧ 𝑌 ) ∧ 𝑍

ℎ𝑡

��
𝑋 ∧ 𝑌 ∧ 𝑍

𝜉
// (𝑋 ∧ 𝑌 ) ∧ 𝑍
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takes place and which have the property that ℎ0 = id, ℎ0 = id.
Let

𝜂 = 𝜉−1 ◦ ℎ1 : (𝑋 ∧ 𝑌 ) ∧ 𝑍 → 𝑋 ∧ 𝑌 ∧ 𝑍.

Assuming that the map 𝜂 is continuous and considering the relation 𝜂 = ℎ1◦𝜉−1,
we immediately get that

𝜉 ◦ 𝜂 = ℎ1 ∼ ℎ0 = id, 𝜂 ◦ 𝜉 = ℎ1 ∼ ℎ0 = id,

i.e. that 𝜉 and 𝜂 are mutually inverse homotopy equivalences.
Thus, to complete the proof of proposition 4.67, we only need to prove the

continuity of the map 𝜂.
To this end, we will consider a commutative diagramme

𝑋 ∧ 𝑌 ∧ 𝑍
𝑗
′′′
//

𝑗
′

��

(𝑋 ∧ 𝑌 ) ∧ 𝑍

𝑗∧id
��

𝑋 ∧ 𝑌 ∧ 𝑍
𝜉
// (𝑋 ∧ 𝑌 ) ∧ 𝑍

where 𝑗 , 𝑗
′
and 𝑗

′′′
are the factorisation maps, and its boundary on the closed

subspace 𝐴 = 𝜑−1 ∧ 𝑍 of the space (𝑋 ∧ 𝑌 ) ∧ 𝑍, i.e. the diagramme

𝐵
′ 𝑗

′′′ |
𝐵
′
//

𝑗
′ |
𝐵
′

��

𝐴
′

( 𝑗∧id) |
𝐴
′ )

��
𝐵

𝜉 |𝐵
// 𝐴

where 𝐴
′
= ( 𝑗 ∧ id)−1𝐴, 𝐵 = 𝜉−1𝐴, and 𝐵

′
= ( 𝑗 ′ )−1𝐵. The maps 𝑗

′ |𝐵′ and 𝑗
′′′ |𝐵′

of the last diagramme, being restrictions of epiomorphisms, are themselves epi-
omorphisms. As for the map (𝜉 ′ ∧ id) |𝐴′ , it will obviously be a homeomorphism.
Therefore, the closing map 𝜉 |𝐵 of this diagramme is an epiomorphism, and, be-
ing moreover a bijective continuous map, it is a homeomorphism. This proves
that the map 𝜉−1 on a closed set 𝐴 is continuous. Therefore, the map 𝜂 = ℎ1◦𝜉−1
is continuous on 𝐴.

Let, then, 𝑈 = (𝑋∧𝑌 ) \𝜑−1 (1) and 𝐵 = 𝑈∧𝑍 ⊂ (𝑋∧𝑌 ) ∧𝑍. By the condition
𝑔1 (𝑈) = 𝑥0 ∧ 𝑦0 and, therefore, by continuity, 𝑔1 (𝑈) = 𝑥0 ∧ 𝑦0 (the point 𝑥0 ∧ 𝑦0
being non-degenerate, closed). Therefore, ℎ1 (𝐵) = (𝑥0 ∧ 𝑦0) ∧ 𝑧0, and therefore
𝜂(𝐵) = 𝑥0 ∧ 𝑦0 ∧ 𝑧0, i.e. 𝜂 |𝐵 = const. Hence, the map 𝜂 is continuous also on 𝐵.
Since 𝐴 ∪ 𝐵 = (𝑋 ∧ 𝑌 ) ∧ 𝑍, the continuity of the map 𝜂 is fully proved, □

Corollary 4.68. For any well-pointed spaces 𝑋 and 𝑌 , the map

𝑆• (𝑋 ∧ 𝑌 ) → 𝑆•𝑋 ∧ 𝑌, [𝑥 ∧ 𝑦, 𝑡] ↦→ [𝑥, 𝑡] ∧ 𝑦,

is a homotopy equivalence.
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Proof. The map in question is a composition of the map

𝑆• (𝑋 ∧ 𝑌 ) → 𝑋 ∧ 𝑌 ∧ S1, [𝑥 ∧ 𝑦, 𝑡] ↦→ 𝑥 ∧ 𝑦 ∧ 𝑒2𝜋𝑖𝑡 ,

and, being by applying Proposition 4.62 (and identi�cations 𝑆• (𝑋 ∧ 𝑌 ) = S1 ∧
(𝑋 ∧ 𝑌 ) = (𝑋 ∧ 𝑌 ) ∧ S−1) a homeomorphism, and the map

𝑋 ∧ 𝑌 ∧ S1 ↦→ 𝑆•𝑋 ∧ 𝑌, 𝑥 ∧ 𝑦 ∧ 𝑒2𝜋𝑖𝑡 ↦→ [𝑥, 𝑡] ∧ 𝑦,

being by applying Proposition 4.67 (and identi�cations 𝑋 ∧𝑌 ∧ S1 = S1 ∧ 𝑋 ∧𝑌 ,
S1 ∧ 𝑋 = 𝑆•𝑋) a homotopy equivalence. □

Remark 4.69. We emphasise that the map [𝑥, 𝑡] ∧ 𝑦 ↦→ [𝑥 ∧ 𝑦, 𝑡], generally
speaking, is not a continuous map.

It is clear that the analogue of Proposition 4.67 is also valid for the space
𝑋∧(𝑌∧𝑍), i.e. (assuming that the spaces 𝑋, 𝑌 , 𝑍 are well-pointed) the canonical
map

𝑋 ∧ 𝑌 ∧ 𝑍 → 𝑋 ∧ (𝑌 ∧ 𝑍), 𝑥 ∧ 𝑦 ∧ 𝑧 ↦→ 𝑥 ∧ (𝑦 ∧ 𝑧),
is a homotopy equivalence. Hence,

Proposition 4.70. for well-pointed spaces 𝑋, 𝑌 and 𝑍, the spaces (𝑋 ∧𝑌 ) ∧ 𝑍
and 𝑋 ∧ (𝑌 ∧ 𝑍) are homotopically equivalent

(although there is no canonical homotopy equivalence between them, gener-
ally speaking).

Remark 4.71. It immediately follows from the results obtained that the as-
sociativity property of smash product of homotopy classes are valid for any
well-pointed spaces. The same is true for the identities of (4.66).

4.E The invariant cat 𝑋

Let us now proceed to the study of the algebraic structure of groups [𝑋, 𝐾]•.
Let 𝑋 be an arbitrary pointed space with a base point 𝑥0.

De�nition 4.72. We say that cat 𝑋 < 𝑛 if

𝑋 = 𝐴1 ∪ · · · ∪ 𝐴𝑛,

where 𝐴1, . . . , 𝐴𝑛 are sets such that for any 𝑘 = 1, . . . , 𝑛 there is a homotopy

𝑓
(𝑘 )
𝑡 : 𝑋 → 𝑋, having the property that 𝑓 𝑘0 = id and 𝑓

(𝑘 )
1 (𝐴𝑘) = 𝑥0.

If there is no 𝑛 for which cat 𝑋 < 𝑛, then we write cat 𝑋 = ∞. Otherwise, the
smallest 𝑛 for which cat 𝑋 < 𝑛 + 1 is denoted by cat 𝑋.

Remark 4.73. There are many di�erent variants of De�nition 4.72 in the liter-
ature. In the very �rst variant proposed by Lusternik and Schnirelman, it was
only required that for any 𝑘 = 1, . . . , 𝑛 the embedding 𝐴𝑘 → 𝑋 was homotopic
to the constant map. However, in �reasonable� situations, all these options are
equivalent. For example, for a connected space 𝑋, the de�nition of Lusternik
and Schnirelman will become De�nition 4.72 if it is additionally required that
all pairs (𝑋, 𝐴𝑘) are closed co�brations.
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Remark 4.74. In addition, from the time with Lusternik and Schnirelman to
the most recent time, the symbol cat 𝑋 denoted a number one more than ours.

It is clear that

Proposition 4.75. if cat 𝑋 < ∞, then the space 𝑋 is connected, and cat 𝑋 = 0
if and only if the space 𝑋 is contractible.

Let 𝑋𝑛
𝑘
be a subspace of the space 𝑋𝑛 = 𝑋 × · · · × 𝑋︸        ︷︷        ︸

𝑛

, consisting of points

with at least 𝑛 − 𝑘 coordinates equal to 𝑥0. For example, 𝑋𝑛0 = {(𝑥0, . . . , 𝑥0)},
𝑋𝑛1 = 𝑋 ∨ · · · ∨ 𝑋︸        ︷︷        ︸ and 𝑋𝑛𝑛 = 𝑋𝑛.

The subspace 𝑋𝑛𝑛−1 will be of particular importance for us. It is clear that

(𝑋𝑛, 𝑋𝑛𝑛−1) = (𝑋, 𝑥0)𝑛,

so in particular (see Corollary 1.21 of Proposition 1.20 Lecture 1),

Proposition 4.76. if the point 𝑥0 is nondegenerate, then the pair (𝑋𝑛, 𝑋𝑛𝑛−1)
is a co�bration.

It is also useful to keep in mind that

𝑋𝑛𝑛−1 = proj−11 (𝑥0) ∪ · · · ∪ proj−1𝑛 (𝑥0),

where, as always, proj𝑘 : 𝑋
𝑛 → 𝑋 is the projection on the 𝑘-th factor.

The map 𝑓 : 𝑋 → 𝑌 is said to be contractible to the subspace 𝐵 ⊂ 𝑌 if a
homotopy 𝑓𝑡 : 𝑋 → 𝑌 , exists such that 𝑓0 = 𝑓 and 𝑓1 (𝑋) ⊂ 𝐵.

Lemma 4.77. The inequality cat 𝑋 < 𝑛 holds if and only if the diagonal map

Δ
(𝑛)
𝑋

= Δ : 𝑋 → 𝑋𝑛, 𝑥 ↦→ (𝑥, . . . , 𝑥), (4.78)

is contractible on 𝑋𝑛𝑛−1.

Proof. Let cat 𝑋 < 𝑛, and let 𝑓 (𝑘 )𝑡 : 𝑋 → 𝑋, 𝑘 = 1, . . . , 𝑛, are homotopies such

that 𝑓 (𝑘 )0 = id and 𝑓
(𝑘 )
1 (𝐴𝑘) = 𝑥0, where 𝐴1 ∪ · · · ∪ 𝐴𝑛 = 𝑋. Then the formula

𝑓𝑡 (𝑥) = ( 𝑓 1)𝑡 (𝑥), . . . , 𝑓
(𝑛)
𝑡 (𝑥)), 𝑥 ∈ 𝑋,

will obviously de�ne a homotopy 𝑓𝑡 : 𝑋 → 𝑋, such that 𝑓0 = Δ and 𝑓1 (𝑋) ⊂ 𝑋𝑛𝑛−1.
Conversely, let there be a homotopy 𝑓𝑡 : 𝑋 → 𝑋𝑛 such that 𝑓0 = Δ and

𝑓1 (𝑋) ⊂ 𝑋𝑛𝑛−1. Then for the homotopy 𝑓
(𝑘 )
𝑡 = proj𝑘 ◦ 𝑓𝑡 : 𝑋 → 𝑋, 𝑘 =

1, . . . , 𝑛, the relations will take place 𝑓
(𝑘 )
0 = id and 𝑓

(𝑘 )
1 (𝐴𝑘) = 𝑥0, where 𝐴𝑘 =

( 𝑓 (𝑘 )1 )−1 (𝑥0). But since 𝑋𝑛𝑛−1 = proj−11 (𝑥0) ∪ · · · ∪ proj−1𝑛 (𝑥0), 𝑋 = 𝐴1 ∪ · · · ∪ 𝐴𝑛.
Therefore, cat 𝑋 < 𝑛. □

Corollary 4.79. The inequality cat 𝑋 < 2 holds if and only if the space 𝑋 is an
H-counitoid.
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Proof. By de�nition, a space 𝑋 is an H-counitoid if there exists a map 𝑚 : 𝑋 →
𝑋 ∨ 𝑋 ⊂ 𝑋 × 𝑋 such that both maps proj1 ◦𝑚, proj2 ◦𝑚 : 𝑋 → 𝑋 are homotopic
to the identity map. The corresponding homotopies obviously constitute a ho-
motopy from 𝑋 to 𝑋×𝑋 connecting the map 𝑚, considered as a map 𝑋 → 𝑋×𝑋,
with the diagonal map Δ : 𝑋 → 𝑋 × 𝑋. This shows that the map 𝑚 exists if and
only if the map Δ is contractible on 𝑋2

1 = 𝑋 ∨ 𝑋. □

In particular, cat 𝑆•𝑋 < 2 for any space 𝑋 (and cat 𝑆•𝑋 = 1, if cat 𝑋 > 0).
However, this also follows directly from the de�nition (since the space 𝑋 is the
union of two cones, and each cone is contractible).

In addition, we see that every H-counitoid is a connected space.
The calculation of cat 𝑋 (for cat 𝑋 ≥ 2) is, in general in short, quite a di�cult

task.

Corollary 4.80 (Bass' theorem). For any spaces 𝑋 and 𝑌 , there is an inequality

cat(𝑋 × 𝑌 ) ≤ cat 𝑋 + cat𝑌 .

Proof. If 𝑓𝑡 : 𝑋 → 𝑋𝑛 is a homotopy such that 𝑓0 = Δ
(𝑛)
𝑋

and 𝑓1 (𝑋) ⊂ 𝑋𝑛𝑛−1,

and 𝑔𝑡 : 𝑌 → 𝑌𝑚 is a homotopy such that 𝑓0 = Δ
(𝑚)
𝑌

and 𝑓1 (𝑌 ) ⊂ 𝑌𝑚𝑚−1, then the
formula

ℎ𝑡 (𝑥, 𝑦) = ( 𝑓𝑡 (𝑥),Δ𝑚𝑋 (𝑥), 𝑔𝑡 (𝑦),Δ𝑛𝑌 (𝑦)), 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 𝑡 ∈ 𝐼,

de�nes a homotopy from 𝑋 × 𝑌 to 𝑋𝑛 × 𝑋𝑚 × 𝑌𝑚 × 𝑌𝑛 = (𝑋 × 𝑌 )𝑛+𝑚 such that

ℎ0 = Δ
(𝑛+𝑚)
𝑋×𝑌 ,

ℎ1 (𝑋 × 𝑌 ) ⊂ 𝑋𝑛𝑛−1 × 𝑋𝑚 × 𝑌𝑚𝑚−1 × 𝑌𝑛 ⊂ (𝑋 × 𝑌 )𝑛+𝑚𝑛+𝑚−1

Therefore, if cat 𝑋 < 𝑛 and cat𝑌 < 𝑚, then cat(𝑋 × 𝑌 ) < 𝑛 + 𝑚. □

4.F The nilpotence of the group [𝑋, 𝐾]•

Recall that the commutator of elements 𝑥, 𝑦 of the group 𝐺 is the element

[𝑥, 𝑦] = 𝑥𝑦𝑥−1𝑦−1.

In a more general way, you can de�ne a commutator (more precisely, a right-
hand commutator) [𝑥1, . . . , 𝑥𝑛] of elements 𝑥1, . . . , 𝑥𝑛 of the group 𝐺 by the
inductive formula

[𝑥1, . . . , 𝑥𝑛] = [[𝑥1, . . . , 𝑥𝑛−1], 𝑥𝑛] .

For 𝑛 = 1, it is convenient to assume that [𝑥1] = 𝑥1 for any element 𝑥1 ∈ 𝐺.
If the commutator of any 𝑛 elements of the group 𝐺 is equal to 𝑒, then we

write nil𝐺 < 𝑛. A group 𝐺 is called nilpotent if there exists an 𝑛 such that
nil𝐺 < 𝑛. The smallest 𝑛 for which nil𝐺 < 𝑛 + 1 will be denoted by the symbol
nil𝐺. If the group 𝐺 is not nilpotent, then we write nil𝐺 = ∞.
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Remark 4.81. There are many equivalent de�nitions of the number nil𝐺. We
have chosen the most convenient one for us.

It is clear that nil𝐺 = 0 if and only if 𝐺 = {𝑒}, and nil𝐺 = 1 if and only if
the group 𝐺 is Abelian.

Instead of commutators, it is convenient to consider the corresponding com-
mutator maps

𝜑𝑛 : 𝐺
𝑛 → 𝐺,

de�ned by formulae

𝜑1 = id, 𝜑2 = 𝜑 : (𝑥, 𝑦) ↦→ 𝑥𝑦𝑥−1𝑦−1, (4.82)

𝜑𝑛 =𝜑 ◦ (id×𝜑𝑛−1), 𝑛 ≥ 2. (4.83)

It is clear that nil𝐺 < 𝑛 if and only if 𝜑𝑛 = const.
Obviously, [𝑒, 𝑥] = [𝑥, 𝑒] = 𝑥 for each element 𝑥 ∈ 𝐺, i.e. 𝜑2 |𝐺∨𝐺 = const. By

trivial induction it follows that 𝜑𝑛 |𝐺𝑛𝑛−1 = const for any 𝑛 ≥ 1.
All this, of course, is transferred to any H-groups 𝐾, and the commutator

maps 𝜑𝑛 : 𝐾𝑛 → 𝐾 are determined by the same formulas (4.82) (only the
formula for 𝜑 needs to be written with brackets due to the lack of associativity:
𝑓 : (𝑥, 𝑦) ↦→ ((𝑥𝑦)𝑥−1)𝑦−1). At the same time,

Proposition 4.84. if the unit of the H-group 𝐾 is non-degenerate, then

𝜑𝑛 |𝐾𝑛𝑛−1 ∼ const for any 𝑛 ≥ 1.

Proof. Indeed, for 𝑛 = 1 and for 𝑛 = 2, this is obvious (and true without assuming
the non-degeneracy of unity). Let's make an inductive transition from 𝑛 to 𝑛+1,
assuming for simpli�cation of formulae 𝜑𝑛 |𝐾𝑛𝑛−1 = 𝜑

′
𝑛.

Since (𝐾𝑛, /𝐾𝑛𝑛−1) = (𝐾, 𝑒)𝑛, and the pair (𝐾, 𝑒) is by convention a co�bra-

tion, then (𝐾𝑛, 𝐾𝑛𝑛−1) will also be a co�bration. Therefore, if 𝜑
′
𝑛 ∼ const, then

there is a homotopy 𝑓𝑡 : 𝐾
𝑛 → 𝐾, such that 𝑓0 = 𝜑𝑛 and 𝑓1 (𝐾𝑛𝑛−1) = 𝑒. There-

fore, the map 𝜑𝑛+1 = 𝜑 ◦ (id×𝜑𝑛) = 𝜑 ◦ (id× 𝑓0) will be homotopic to the map
𝜑◦ (id× 𝑓1), and, therefore, the map 𝜑

′
𝑛+1 is homotopic the map 𝜑◦ (id× 𝑓1) |𝐾𝑛+1𝑛

.
But since 𝐾𝑛+1𝑛 = (𝐾 × 𝐾𝑛𝑛−1) ∪ (𝑒 × 𝐾𝑛), then

(id× 𝑓1) (𝐾𝑛+1𝑛 ) ⊂ (𝐾 × 𝑒) ∪ (𝑒 × 𝐾) = 𝐾 ∨ 𝐾,

and therefore

𝜑 ◦ (id× 𝑓1) |𝐾𝑛+1𝑛
= (𝜑 |𝐾∨𝐾 ) ◦ ((id× 𝑓1) |𝐾𝑛+1𝑛

).

Hence, 𝜑
′
𝑛 ∼ const, for 𝜑𝐾∨𝐾 ∼ const. □

Proposition 4.85. For any connected H-group 𝐾 with a non-degenerate unit 𝑒
and any pointed space 𝑋, there is an inequality

nil[𝑋, 𝐿] ≤ cat 𝑋. (4.86)

In particular, if cat 𝑋 < ∞, then the group [𝑋, 𝐾] is nilpotent.
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Proof. For arbitrary maps 𝑔𝑘 : 𝑋 → 𝐾, 𝑘 = 1, . . . , 𝑛, the commutator of their
homotopy classes are set, obviously, by the map

𝑋
Δ−→ 𝑋𝑛

𝑔1×···×𝑔𝑛−−−−−−−−→ 𝐾𝑛
𝜑𝑛−−→ 𝐾. (4.87)

In view of the fact that the H-group 𝐾 is connected, according to the general
results of Lecture 4, we can consider the maps 𝑔𝑘 pointed without loss of gen-
erality. But then the map is 𝑔1 × · · · × 𝑔𝐾 will translate 𝑋𝑛𝑛−1 into 𝐾𝑛𝑛−1 and,
therefore, there will be a commutative diagramme of the form

𝑋𝑛
𝑔1×···×𝑔𝑛// 𝐾𝑛

𝑋𝑛𝑛−1 𝑔
//

𝑖𝑋

OO

𝐾𝑛𝑛−1

𝑖𝐾

OO

the vertical arrows of which are inclusions. Therefore, if cat 𝑋 < 𝑛, i.e. if the
map Δ is homotopic to a map of the form 𝑖𝑋 ◦ 𝑓 , where 𝑓 : 𝑋 → 𝑋𝑛𝑛−1 and then
the map (4.87) will be homotopic to the map

𝜑𝑛 ◦ (𝑔1 × · · · × 𝑔𝑛) ◦ 𝑖𝑋 ◦ 𝑓 = 𝜑𝑛 ◦ 𝑖𝐾 ◦ 𝑔 ◦ 𝑓 = 𝜑
′
𝑛 ◦ 𝑔 ◦ 𝑓

and, therefore (since 𝜑
′
𝑛 ∼ const), will be homotopic to the constant map, i.e.

its homotopy class, will be the unit of the group [𝑋, 𝐾]. Thus, if cat 𝑋 < 𝑛, then
nil[𝑋, 𝐾] < 𝑛, which is equivalent to inequality (4.86). □

Remark 4.88. The inequality (4.86) is meaningful only when cat 𝑋 < ∞. There-
fore, [𝑋, 𝐾] can be replaced in it by [𝑋, 𝐾]• and in this form it will also be true
for non-closed H-groups 𝐾.

Corollary 4.89. For any H-group 𝐾 and any H-counitoid 𝐿, the group [𝐿, 𝐾]•
is Abelian.

4.G The abelicity of the group [𝐿, 𝐾]•

The latter result can be generalised and simultaneously dualised.
Let 𝐿 be an arbitrary H-counitoid and 𝐾 be an arbitrary H-space (H-unitoid).

Then, in the set [𝐿, 𝐾]•, two structures of a unitoid will be de�ned - one arising
from the fact that 𝐿 is an H-counitoid, and the second - from the fact that 𝐾 is
an H-unitoid.

Proposition 4.90. For any H-counitoid 𝐿 and any H-unitoid 𝐾, these two
unitoide structures on the set [𝐿, 𝐾] coincide.

This unitoid is an abelian (commutative) monoid.

In particular, if 𝐾 is an 𝐻-cogroup or 𝐿 is an 𝐻-group, then [𝐿, 𝐾]• will be
an Abelian group.
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According to the general de�nitions of Lecture 3, the concept of a unitoid
makes sense over an arbitrary fm-closed category 𝒞. In particular, since the
category of unitoids is an fm-closed category (the product of 𝐺1×𝐺2 of unitoids
𝐺1 and 𝐺2 is their direct product as sets with a component-wise multiplication
operation: (𝛼1, 𝛼2) (𝛽1, 𝛽2) = (𝛼1𝛽1, 𝛼2𝛽2)), we can talk about the unitoids of
the unitoid category. By de�nition, a unitoid 𝐺 (the operation in which we
will now write additively and, accordingly, call its unit nul) is a unitoid of the
unitoid category if a homomorphism of unitoids is given

𝐺 × 𝐺 → 𝐺, (4.91)

i.e. a multiplication (𝛼, 𝛽) ↦→ 𝛼𝛽 such that

𝛼1𝛽1 + 𝛼2𝛽2 = (𝛼1 + 𝛼2) (𝛽1 + 𝛽2), (4.92)

for any elements 𝛼1, 𝛼2, 𝛽1, 𝛽2 ∈ 𝐺, and the element 0 ∈ 𝐺 is the same with
respect to this multiplication, i.e. 0𝛼 = 𝛼0 = 𝛼 for any element 𝛼 ∈ 𝐺.

Lemma 4.93. Every unitoid 𝐺 of the category of unitoids is an Abelian monoid.
For any elements 𝛼, 𝛽 ∈ 𝐺 has the equality

𝛼 + 𝛽 = 𝛼𝛽.

Proof. We have

𝛼 + 𝛽 = 𝛼0 + 0𝛽 = (𝛼 + 0) (0 + 𝛽) = 𝛼𝛽.

Similarly,

𝛼 + 𝛽 = 0𝛼 + 𝛽0 = (0 + 𝛽) (𝛼 + 0) = 𝛽𝛼.

Finally,

(𝛼𝛽)𝛾 = 𝛼𝛽 + 0𝛾 = (𝛼 + 0) + (𝛽 + 𝛾) = 𝛼(𝛽 + 𝛾) = 𝛼(𝛽𝛾).

□

Proof. (of 4.90) According to Lemma 4.93, it is su�cient to prove that the
unitoid 𝐺 = [𝐿, 𝐾]• (with the operation induced by multiplication 𝑚1 : 𝐿 →
𝐿 ∨ 𝐿) is a unitoid of the unitoid category (with operation (4.91) induced by
multiplication 𝑚 : 𝐾 × 𝐾 → 𝐾), i.e. that for any elements 𝛼1, 𝛽1, 𝛼2, 𝛽2 ∈ 𝐺 the
equality (4.92) holds (identities 0𝛼 = 𝛼0 = 𝛼 will take place by de�nition). But
for any two pointed maps 𝑓 , 𝑔 : 𝐿 → 𝐾, the map 𝑓 × 𝑔 : 𝐿 → 𝐾 × 𝐾 is de�ned
by the formula

( 𝑓 × 𝑔) (𝑥) = ( 𝑓 (𝑥), 𝑔(𝑥)), 𝑥 ∈ 𝐿,

and the map 𝑓 ∨ 𝑔 : 𝐿 ∨ 𝐿 → 𝐾 - by the formula

( 𝑓 ∨ 𝑔) (𝑧) =
{
𝑓 (𝑥), if 𝑧 = 𝑥𝐼 ,

𝑔(𝑥), if 𝑧 = 𝑥𝐼 𝐼 ,
𝑧 ∈ 𝐿 ∨ 𝐿,
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(we identify 𝐿 ∨ 𝐿 with (𝐿 × 𝑒) ∪ (𝑒 × 𝐿) and denote (𝑥, 𝑒) by 𝑥𝐼 and (𝑒, 𝑥)
by 𝑥𝐼 𝐼). Therefore, for any four pointed maps 𝑓1, 𝑔1, 𝑓2, 𝑔2 : 𝐿 → 𝐾, the map
ℎ = ( 𝑓1 × 𝑔2) ∨ ( 𝑓2 × 𝑔2) : 𝐿 ∨ 𝐿 → 𝐾 × 𝐾 is given by the formula

ℎ(𝑧) =
{
( 𝑓1 (𝑥), 𝑔1 (𝑥)), if 𝑧 = 𝑥𝐼 ,

( 𝑓2 (𝑥), 𝑔2 (𝑥)), if 𝑧 = 𝑥𝐼 𝐼 ,

and the map ℎ
′
= ( 𝑓1 ∨ 𝑓2) × (𝑔1 ∨ 𝑔2) by the formula

ℎ
′ (𝑧) = ( 𝑓1 ∨ 𝑓2) × (𝑔1 ∨ 𝑔2) (𝑧) =

{
( 𝑓1 (𝑥), 𝑔1 (𝑥)), if 𝑧 = 𝑥𝐼 ,

( 𝑓2 (𝑥), 𝑔2 (𝑥)), if 𝑧 = 𝑥𝐼 𝐼 ,

We see, therefore, that ℎ = ℎ
′
.

On the other hand, by de�nition

[ 𝑓 ]• + 𝑔• = [( 𝑓 ∨ 𝑔) ◦ 𝑚1]•,
[ 𝑓 ]• · 𝑔• = [𝑚 ◦ ( 𝑓 ∨ 𝑔)]•,

and therefore, if 𝛼1 = [ 𝑓1]•, 𝛽1 = [𝑔1]•, 𝛼2 = [ 𝑓2]•, 𝛽2 = [𝑔2]•, then

𝛼1𝛽1 + 𝛼2𝛽2 = [(𝑚 ◦ ℎ ◦ 𝑚1],
(𝛼1 + 𝛽1) (𝛼2𝛽2) = [(𝑚 ◦ ℎ

′ ◦ 𝑚1] .

Since ℎ = ℎ
′
, this proves that 𝛼1𝛽1 + 𝛼2𝛽2 = (𝛼1 + 𝛽1) (𝛼2𝛽2). □

Corollary 4.94. For any two pointed spaces 𝑋 and 𝑌 , the group [𝑆•𝑋,Ω𝑌 ]′• is
Abelian.

4.H Groups [𝑆𝑛𝑋,Ω𝑚𝑌 ]•

Since the functor 𝑆• acts from the category of 𝒯ℴ𝓅• to the same category
𝒯ℴ𝓅

•, it can be iterated inde�nitely. We will put

𝑆0𝑋 = 𝑋, 𝑆𝑛+1𝑋 = 𝑆• (𝑆𝑛𝑋) for 𝑛 ≥ 0,

(so 𝑆1𝑋 = 𝑆•𝑋).
Iterations of the loop functor are de�ned similarly

Ω0𝑋 = 𝑋, Ω𝑛+1𝑋 = Ω(Ω𝑛𝑋) for 𝑛 ≥ 0.

In this case, due to the adjointness of the functors 𝑆• and Ω, for any pointed
spaces 𝑋, 𝑌 and any numbers 𝑛 ≥ 0, 𝑚 ≥ 0, there are equalities

[𝑋,Ω𝑛+𝑚𝑌 ]• = [𝑆1𝑋,Ω𝑛+𝑚−1𝑌 ]• = · · ·
= [𝑆𝑛𝑋,Ω𝑚𝑌 ]• = · · · = [𝑆𝑛+𝑚𝑋,𝑌 ]•.

Corollary 4.95. For 𝑛 + 𝑚 ≥ 1, the set [𝑆𝑛𝑋,Ω𝑚𝑌 ]• has a group structure
natural in 𝑋 and 𝑌 . For 𝑛 + 𝑚 ≥ 2, this group is Abelian.





Lecture 5

5.1 Homotopy groups

The simplest concrete H-cogroup is certainly the suspension 𝑆•S𝑛−1 over the
unit (𝑛 − 1)-dimensional (𝑛 > 0) sphere S𝑛−1 (in which, say, a base point is
𝒔0 = (−1, 0, . . . , 0)). Since this suspension is homeomorphic to the 𝑛-dimensional
sphere S𝑛 (see Remark 3.31 of Lecture 3), we get, therefore, that

Proposition 5.1. for any pointed space (𝑋, 𝑥0) the set

[(S𝑛, 𝒔0), (𝑋, 𝑥0)] = [S𝑛, 𝑋]• (5.2)

is a group.

De�nition 5.3. The group (5.2) is denoted by the symbol 𝜋𝑛 (𝑋, 𝑥0) (or simply
𝜋𝑛𝑋) and is called the 𝑛-dimensional (or 𝑛-th) homotopy group of the space 𝑋.

Of course, the multiplication in S𝑛 depends on the choice of the homeomor-
phism 𝑆•S𝑛−1 → S𝑛. Therefore, in order to �x this multiplication (and hence
the structure of the group in 𝜋𝑛𝑋), it is necessary to �x this homeomorphism
once and for all (at least up to homotopy).

We will choose for the homeomorphism 𝑆•S𝑛−1 → S𝑛 the homeomorphism
𝑑 de�ned by formula (3.27) of Lecture 3. In the future we will always assume
that for 𝑛 > 0 the sphere S𝑛 is identi�ed with the suspension 𝑆•S𝑛−1 → S𝑛 by
means of this homeomorphism and in accordance with this point 𝑑 [𝒙, 𝑡] ∈ S𝑛,
𝒙 ∈ S𝑛−1, 𝑡 ∈ 𝐼, we will simply denote [𝒙, 𝑡].

Note that [𝒔0, 𝑡] = 𝒔0 for any 𝑡 ∈ 𝐼.
For 𝑛 = 0, we get not a group, but only a pointed set [S0, 𝑋]• (the base point

of which is the homotopy class of the constant map const : S0 → 𝑋.) It is clear
that [S0, 𝑋]• = [pt, 𝑋], i.e. that the set [S0, 𝑋]• is the set of 𝜋0𝑋 components of
the space 𝑋 introduced in Lecture 3 (which, by the way, explains the designation
𝜋0𝑋 for this set).

Although the set 𝜋0𝑋, generally speaking, is not a group, we will still allow
ourselves to speak without reservations about homotopy groups 𝜋𝑛𝑋 for all
𝑛 ≥ 0.
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The operation in the group 𝜋𝑛𝑋, 𝑛 ≥ 1, we will denote the + sign and call
it addition (with the possible exception of the group 𝜋1𝑋; see below). In this
regard, the fact that the group consists of only one element, we will write with
the formula 𝜋𝑛𝑋 = 0 (even if 𝑛 = 0 or 𝑛 = 1).

If elements 𝛼 and 𝛽 of the group 𝜋𝑛𝑋 are represented by the maps 𝑎 :
(S𝑛, 𝒔0) → (𝑋, 𝑥0) and 𝑏 : (S𝑛, 𝒔0) → (𝑋, 𝑥0), then their sum 𝛼 + 𝛽 will be
represented by the map 𝑐 = (𝑎 ∨ 𝑏) ◦ 𝑚 : (S𝑛, 𝒔0) → (𝑋, 𝑥0), where 𝑚 is the
co-multiplication S𝑛 → S𝑛 ∨ S𝑛, de�ned by the formula (3.28) of lecture 3 (for
𝑋 = S𝑛−1). Explicitly , the map with is given by the formula

𝑐[𝒙, 𝑡] =
{
𝑎[𝒙, 2𝑡], if 0 ≤ 𝑡 ≤ 1/2,
𝑏[𝒙, 2𝑡 − 1], if 1/2 ≤ 𝑡 ≤ 1,

(5.4)

where, in accordance with the above, [𝒙, 𝑡] denotes 𝑑 [𝒙, 𝑡], 𝑥 ∈ S𝑛−1, 𝑡 ∈ 𝐼.
According to the general theory of functors of the form [𝐾, 𝑋]• every pointed

map 𝑓 : 𝑋 → 𝑦 de�nes by the formula

𝑓∗ [𝑎]• = [ 𝑓 ◦ 𝑎], 𝑎 : (S𝑛, 𝒔0) → (𝑋, 𝑥0),

the homomorphism 𝑓∗ : 𝜋𝑛𝑋 → 𝜋𝑛𝑌 is also denoted by the symbol 𝜋𝑛 (or 𝑓𝑛), and
the correspondences 𝑋 ↦→ 𝜋𝑛𝑋, 𝑓 ↦→ 𝑓∗ represent a functor from the category of
𝓉ℴ𝓅

• to the category of groups 𝒢𝓇𝓅:

𝒯ℴ𝓅
• → 𝒢𝓇𝓅

(for 𝑛 = 0 - in the category of pointed sets ℰ𝓃𝓈•). We will call this functor the
functor of 𝑛-dimensional homotopy groups.

In particular, the embedding 𝑋0 → 𝑋 of the component 𝑋0 into the point
𝑥0 induces the homomorphism 𝜋𝑛𝑋0 → 𝜋𝑛𝑋. It is clear that when 𝑛 > 0 this
homomorphism is an isomorphism.

Thus, in the theory of homotopy groups, without loss of generality, we can
(for 𝑛 > 0) limit ourselves only to the connected spaces 𝑋.

5.2 An alternative de�nition of homotopy groups

Of course, when constructing the group 𝜋𝑛𝑋, the sphere S
𝑛 can be replaced by

any space that is homeomorphic to it (i.e., in generally accepted terminology,
any topological sphere 𝑆𝑛). It is only necessary to �x a certain homeomorphism
𝑆𝑛 → S𝑛 once and for all.

Remark 5.5. Naturally, it is su�cient to specify the homeomorphisms 𝑆𝑛 → S𝑛
only up to homotopy. In Lecture 121 we will show that there are only two
distinct homotopy classes of such homeomorphisms that can be identi�ed with
the orientations of the sphere 𝑆𝑛. Hence, if the pointed topological sphere S𝑛 is
oriented, then each pointed map 𝑆𝑛 → 𝑋 uniquely de�nes some element of the

1The transcriber guesses that Postnikov refers to Lecture 2 of �Cellular Homotopy�.
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group 𝜋𝑛𝑋. Therefore, the elements of the group 𝜋𝑛𝑋 can be de�ned - which
was done �fty years ago - as homotopy classes of pointed maps to the space 𝑋
of all possible oriented spheres of dimension 𝑛. However, this conceptually more
complex de�nition does not, as experience has shown, have any real advantages
and currently no one uses it.

Let E𝑛 be a unit 𝑛-dimensional ball consisting of 𝒙 ∈ R𝑛, for which |𝑥 | ≤ 1.
The boundary of this ball (for 𝑛 > 0) is an (𝑛 − 1) dimensional sphere S𝑛−1,
and the coset space E𝑛/S𝑛−1 is homeomorphic to the sphere S𝑛. Therefore, by
choosing a certain homeomorphism E𝑛/S𝑛−1 → S𝑛, we can consider the homo-
topy classes of maps E𝑛/S𝑛−1 → 𝑋 as elements of the group 𝜋𝑛𝑋. (As always,
it means that a point is based in the coset space E𝑛/S𝑛−1, which is the image
of the sphere S𝑛−1 with the canonical map of the identi�cation E𝑛 → E𝑛/S𝑛−1).
But, as it is easy to see, composing with the factorisation map E𝑛 → E𝑛/S𝑛−1
establishes a bijective correspondence between the pointed maps E𝑛/S𝑛−1 → 𝑋

and the maps (E𝑛, S𝑛−1) → (𝑋, 𝑥0). Since this correspondence obviously trans-
lates pointed homotopies into homotopies of pairs (i.e., in this case homotopies
with respect to S𝑛−1), we obtain, therefore, that the homotopy classes of maps
(E𝑛, S𝑛−1) → (𝑋, 𝑥0) can be considered as elements of the group 𝜋𝑛𝑋 = 𝜋𝑛 (𝑋, 𝑥0):

𝜋𝑛 (𝑋, 𝑥0) = [(E𝑛, S𝑛−1) → (𝑋, 𝑥0)] .

This identi�cation of homotopy classes of maps (E𝑛, S𝑛−1) → (𝑋, 𝑥0) with
elements of the group 𝜋𝑛𝑋 depends, of course, on the choice of the homeomor-
phism E𝑛/S𝑛−1 → S𝑛, or, equivalently, the relative homeomorphism

𝜒 (𝑛) : (E𝑛, S𝑛−1) → (S𝑛, 𝒔0), (5.6)

and at the map level is set by the correspondence 𝑎 ↦→ 𝑎 ◦ 𝜒 (𝑛) , where 𝑎 :
(S𝑛, 𝒔0) → (𝑋, 𝑥0). We will agree once and for all to take for homeomorphism
(5.6) a relative homeomorphism de�ned (by applying the identi�cation R𝑛+1) =
R × R𝑛) by the formula

𝜒 (𝑛) (𝒙) =
(
cos 𝜋 |𝒙 |, sin 𝜋 |𝒙 ||𝒙 |

)
, |𝒙 | ∈ E𝑛 ⊂ R𝑛.

Instead of a unit ball, one can, of course, take a unit cube 𝐼𝑛 homeomorphic
to it, consisting of points 𝑡 = (𝑡1, . . . , 𝑡𝑛) of the space R𝑛, for which 0 ≤ 𝑡𝑖 ≤ 1
for any 𝑖 = 𝑙, . . . , 𝑛. By denoting the boundary of this cube with the symbol ¤𝐼𝑛,
we obtain, in a way such that

Proposition 5.7. the elements of the group 𝜋𝑛𝑋 can be interpreted as homotopy
classes rel ¤𝐼𝑛 of maps of 𝑎 : (𝐼𝑛, ¤𝐼𝑛) → (𝑋, 𝑥0),

i.e. functions
𝑎 : (𝑡1, . . . , 𝑡𝑛) ↦→ 𝑎(𝑡1, . . . , 𝑡𝑛) ∈ 𝑋

variables 𝑡1, . . . , 𝑡𝑛 ∈ 𝐼 such that 𝑎(𝑡1, . . . , 𝑡𝑛) = 𝑥0 if at least one of the arguments
𝑡1, . . . , 𝑡𝑛 is zero or one.
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Here, of course, it is also necessary to �x a certain relative homeomorphism

𝜒 = 𝜒𝑛 : (𝐼𝑛, ¤𝐼𝑛) → (S𝑛, 𝒔0). (5.8)

For 𝑛 = 1, we de�ne this homeomorphism by the formula

𝜒1 (𝑡) =
{
(1 − 4𝑡, 2

√︁
2𝑡 (1 − 2𝑡)), if 0 ≤ 𝑡 ≤ 1/2,

(4𝑡 − 3,−2
√︁
2(1 − 𝑡) (2𝑡 − 1)), if 1/2 ≤ 𝑡 ≤ 1

(cf. with formula (3.33) of Lectures 3 for𝑥 = −1 and 𝒙 absent), and for 𝑛 > 1,
identifying the cube 𝐼𝑛 with the product 𝐼 × 𝐼𝑛 by the formula

𝜒𝑛 (𝑡, 𝒕) = [𝜒𝑛−1 (𝑡), 𝒕], 𝑡 ∈ 𝐼, 𝒕 ∈ 𝐼𝑛−1.

The addition operation (5.4) transferred using relative homeomorphism (5.8)
to the maps 𝑎 : (𝐼𝑛, ¤𝐼𝑛) → (𝑋, 𝑥0), will, as it is easy to see, be given by the
formula

(𝑎 + 𝑏) (𝑡, 𝒕) =
{
𝑎(2𝑡, 𝒕), if 0 ≤ 𝑡 ≤ 1/2,
𝑏(2𝑡 − 1, 𝒕), if 1/2 ≤ 𝑡 ≤ 1

(5.9)

(for 𝑛 = 1, there is no argument 𝒕). Thus, for 𝑛 ≥ 1 we come to an alternative
de�nition of the group𝜋𝑛𝑋, in which any recollection of the spheres is completely
eliminated. In this de�nition, the elements of the group 𝜋𝑛𝑋 are the homotopy
classes rel ¤𝐼𝑛 of maps 𝑎 : (𝐼𝑛, ¤𝐼𝑛) → (𝑋, 𝑥0), and addition is induced by the
operation of addition of maps given by the formula (5.9).

This de�nition of group 𝜋𝑛𝑋 is the most convenient in practice, and therefore
it is usually considered the main one. Of course, at the same time it is necessary
to re-check the axioms of the group for 𝜋𝑛𝑋.

In particular, for 𝑛 = 1, comparing the de�nitions, we get that

Proposition 5.10. the group 𝜋1𝑋 coincides with the fundamental group intro-
duced in Lecture 4

(which was not in vain indicated there by the symbol 𝜋1𝑋). The only dif-
ference is that in Lecture 4, the operation in the group 𝜋1𝑋 was called multi-
plication. Thus, for the group 𝜋1𝑋 we have two competing notation systems
- additive and multiplicative. We will consider them completely equal and in
each case we will use the one that is more convenient. (In some cases, we will
even allow ourselves to use both notations in the same formula!)

Remark 5.11. Similarly, the sum of any number of maps can be determined
(𝐼𝑛, ¤𝐼𝑛) → (𝑋, 𝑥0). For example, the sum 𝑎 + 𝑏 + 𝑐 of three maps 𝑎, 𝑏, 𝑐 :
(𝐼𝑛, ¤𝐼𝑛) → (𝑋, 𝑥0) is de�ned by the formula

(𝑎 + 𝑏 + 𝑐) (𝑡, 𝒕) =


𝑎(3𝑡, 𝒕), if 0 ≤ 𝑡 ≤ 1/3,
𝑏(3𝑡 − 1, 𝒕), if 1/3 ≤ 𝑡 ≤ 2/3,
𝑐(3𝑡 − 2, 𝒕), if 2/3 ≤ 𝑡 ≤ 1.

Of course, the map 𝑎 + 𝑏 + 𝑐 is di�erent from the map (𝑎 + 𝑏) + 𝑐 (and from the
map 𝑎 + (𝑏 + 𝑐)), and not homotopic with respect to ¤𝐼𝑛.
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For each map 𝑎 : (𝐼𝑛, ¤𝐼𝑛) → (𝑋, 𝑥0) we will use the symbol −𝑎 to denote the
map (𝐼𝑛, ¤𝐼𝑛) → (𝑋, 𝑥0) de�ned by the formula

(−𝑎) (𝑡, 𝒕) = 𝑎(1 − 𝑡, 𝒕), (𝑡, 𝒕) ∈ 𝐼 × 𝐼𝑛−1 = 𝐼𝑛+1.

It is clear that in the group 𝜋𝑛𝑋, the homotopy classes of maps 𝑎 and −𝑎
de�ne mutually opposite elements.

In appropriate situations, we will naturally reduce the entered designations.
For example, instead of 𝑎 + (−𝑏) + 𝑐, we will simply write 𝑎 − 𝑏 + 𝑐. (Note that
the map 𝑎 − 𝑏 + 𝑐 is thus determined by the formula

(𝑎 − 𝑏 + 𝑐) (𝑡, 𝒕) =


𝑎(3𝑡, 𝒕), if 0 ≤ 𝑡 ≤ 0,

𝑏(2 − 3𝑡, 𝒕), if 1/3 ≤ 𝑡 ≤ 2/3,
𝑐(3𝑡 − 2, 𝒕), if 2/3 ≤ 𝑡 ≤ 1,

where (𝑡, 𝒕) ∈ 𝐼 × 𝐼𝑛−1 = 𝐼𝑛.)

5.3 Inductive de�nition of homotopy groups

The last de�nition of the groups 𝜋𝑛𝑋 suggests considering the space Ω𝑛𝑋 of
all maps (𝐼𝑛, ¤𝐼𝑛) → (𝑋, 𝑥0) (equipped with the subspace topology of the space
𝑋 𝐼

𝑛

). Regarding the operation (5.9) this space is an H-space (even an H-group).
The homotopy unit (which is better now called null homotopy) of this space is
the constant map 𝐼𝑛 → 𝑋, 𝒕 ↦→ 𝑥0. For 𝑛 = 1, it coincides with the space Ω𝑋.

By applying the exponential law, homotopies with respect to ¤𝐼𝑛 are nothing
but paths of the space Ω𝑛𝑋. Consequently, we can identify the group 𝜋𝑛𝑋 with
the group

𝜋𝑛𝑋 = 𝜋0Ω
𝑛𝑋

(cf. with a similar formula for the group 𝜋1𝑋 in Lecture 4).
For 𝑛 > 1, each map 𝑎 : (𝑡, 𝒕) ↦→ 𝑎(𝑡, 𝒕) is identi�ed with the path 𝑡 ↦→ 𝑎# (𝑡)

of the space Ω𝑛−1𝑋, where 𝑎# (𝑡) is a point 𝒕 ↦→ 𝑎(𝑡, 𝒕) of this space. Thus, for
𝑛 > 1, the equality takes place

Ω𝑛𝑋 = Ω(Ω𝑛−1𝑋) (5.12)

(if we put Ω0𝑋 = 𝑋, then for 𝑛 = 1 the formula (5.12) will turn into the equation
Ω1𝑋 = Ω𝑋 already known to us).

Therefore
𝜋𝑛𝑋 = 𝜋0Ω

𝑛𝑋 = 𝜋0Ω(Ω𝑛−1𝑋) = 𝜋1Ω𝑛−1𝑋
and, in general, as the obvious induction shows,

𝜋𝑛𝑋 = 𝜋𝑘Ω
𝑛−𝑘𝑋 (5.13)

for any 𝑘 = 0, 1, . . . , 𝑛.
The formula (5.13) for 𝑘 = 1 can, as was originally done by Hurevicz, be

used as the basis for another, inductive, de�nition of the groups 𝜋𝑛𝑋. It has
the advantage that it does not require veri�cation of the axioms of the group
(provided that for the group 𝜋1𝑋 these axioms have already been veri�ed).
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Remark 5.14. A number of special names can be found in the literature for maps
(S𝑛, 𝒔0) → (𝑋, 𝑥0) and (𝐼𝑛, ¤𝐼𝑛) → (𝑋, 𝑥0); for example, Fuchs and Rokhlin (see
[10]) adhere to the ancient tradition of calling maps (S𝑛, 𝒔0) → (𝑋, 𝑥0) spheroids
of the space 𝑋. By analogy of the map (𝐼𝑛, ¤𝐼𝑛) → (𝑋, 𝑥0) could be called cuboids
of the space 𝑋, and bearing in mind the formula (5.12), 𝑛-dimensional (or 𝑛-fold)
loops of this space. We will not give preference to any of these terms.

5.4 The action of the group 𝜋1𝑋 on the groups
𝜋𝑛𝑋

According to Remark 4.29 of Lecture 4, for 𝑛 > 0, the group 𝜋1𝑋 acts on the
group 𝜋𝑛𝑋, i.e. a map is de�ned

𝜋1𝑋 × 𝜋𝑛𝑋 → 𝜋𝑛𝑋, (𝜉, 𝛼) ↦→ 𝜉𝛼, 𝜉 ∈ 𝜋1𝑋, 𝛼 ∈ 𝜋𝑛𝑋, (5.15)

such that:

a) for each element 𝜉 ∈ 𝜋1𝑋, the map 𝑅𝜉 : 𝛼 ↦→ 𝜉𝛼, 𝛼 ∈ 𝜋𝑛𝑋, is an automor-
phism of the group 𝜋𝑛𝑋, i.e. it is bijective and for any elements 𝛼, 𝛽 ∈ 𝜋𝑛𝑋
there is equality

𝜉 (𝛼 + 𝛽) = 𝜉𝛼 + 𝜉𝛽;

b) the map 𝑅 : 𝜉 → 𝑅𝜉 is a homomorphism from the group 𝜋1𝑋 into the group
Aut 𝜋1𝑋 of automorphisms of the group𝜋1𝑋, i.e.

(𝜉𝜂)𝛼 = 𝜉 (𝜂𝛼)

for any elements 𝜉, 𝜂 ∈ 𝜋1𝑋, 𝛼 ∈ 𝜋𝑛𝑋.

At the same time, comparing the de�nitions, we immediately �nd that the
maps 𝑎 : (𝐼𝑛, ¤𝐼𝑛) → (𝑋, 𝑥0) and 𝑏 : (𝐼𝑛, ¤𝐼𝑛) → (𝑋, 𝑥0) then and only then set the
elements 𝛼 and 𝜉𝛼 of the group 𝜋𝑛𝑋, when there is a map 𝐹 : 𝐼𝑛+1 → 𝑋 from
the cube 𝐼𝑛+1 = 𝐼𝑛 × 𝐼 into the space 𝑋 such that

𝐹 ( 𝒕, 0) = 𝑎( 𝒕), 𝐹 ( 𝒕, 1) = 𝑏( 𝒕) (5.16)

for any point 𝒕 ∈ 𝐼𝑛 and
𝐹 ( 𝒕, 𝑡) = 𝑢(1 − 𝑡) (5.17)

for any point 𝒕 ∈ ¤𝐼𝑛 and for any 𝑡 ∈ 𝐼, where 𝑢 : 𝐼 → 𝑋 is the loop de�ning
the element 𝜉 of the group 𝜋1𝑋. If desired, you can take this as a de�nition of
action (5.15), but then statements a) and b) will need proof (which, however, is
carried out quite automatically).

Sometimes, when it is necessary to emphasise the dependence of 𝑅 on 𝑛, we

will write 𝑅 (𝑛)
𝜉

instead of 𝑅𝜉 .
It is obvious that
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Proposition 5.18. for any pointed map 𝑓 : 𝑋 → 𝑌 and any elements 𝛼 ∈ 𝜋𝑛𝑋
and 𝜉 ∈ 𝜋1𝑋 there is an equality

𝑓∗ (𝜉𝛼) = 𝑓∗ (𝜉) 𝑓∗ (𝛼)

where, when applied to 𝜉𝛼 and 𝛼, the symbol 𝑓∗ means the homomorphism
𝜋𝑛 𝑓 : 𝜋𝑛𝑋 → 𝜋𝑛𝑌 , and when applied to 𝜉, the homomorphism 𝜋1 𝑓 : 𝜋1𝑋 → 𝜋1𝑌

(the functoriality property of the action 𝑅 : 𝜋1𝑋 → Aut 𝜋𝑛𝑋). In the technical
language of group theory with operators, this property means that

Proposition 5.19. the homomorphism 𝑓∗ := 𝜋𝑛 𝑓 : 𝜋𝑛𝑋 → 𝜋𝑛𝑌 is a 𝜋1𝑋-
homomorphism

with respect to the action of 𝜋1𝑋 → Aut 𝜋𝑛𝑌 induced by the homomorphism
𝑓∗ = 𝜋1 𝑓 : 𝜋1𝑋 → 𝜋1𝑌 (i.e. - in other terminology - is a 𝜋1 𝑓 -homomorphism).

For 𝑛 = 1, conditions (5.16) and (5.17) mean that with two possible move-
ments on the sides of the square 𝐼2 from the point (0, 0) to the point (1, 1)
in one case we run through the path 𝑎𝑢−1, and in the other -the path 𝑢−1𝑏.
Therefore, by composing the map 𝐹 with a piecewise linear map of the square

Figure 5.4.1:

𝐼2 onto itself, map the segments 0 × 𝐼 and 1 × 𝐼, respectively, to points (0, 0)
and (1, 1), and the segments 𝐼 × 0 and 𝐼 × 1 by breaking them in the middle,
into the polyline 0× 𝐼 ∪ 𝐼 × 1 and 𝐼 × 0∪ 1× 𝐼, respectively, we get a map of the
square 𝐼2 = 𝐼 × 𝐼 to the space 𝑋, which is a homotopy from 𝐼 to 𝑋 with respect
to 𝐼 = {0, 1}, connecting the path 𝑎𝑢−1 with the path 𝑢−1𝑏. This means that by
going to the multiplicative notation in the group 𝜋1𝑋 and denoting the element
𝜉𝛼, in order to distinguish it from the product, with the symbol 𝜉 (𝛼), we will
have equality 𝛼𝜉−1 = 𝜉−1 · 𝜉 (𝛼). Thus it is proved that

𝜉 (𝛼) = 𝜉𝛼𝜉−1 for any elements 𝛼, 𝜉 ∈ 𝜋1𝑋, (5.20)
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i.e.

Proposition 5.21. the automorphism 𝑅𝜉 𝐼 : 𝛼 ↦→ 𝜉 (𝛼) is an inner automor-
phism of the group 𝜋1𝑋 de�ned by the element 𝜉.

5.5 Abelian spaces

De�nition 5.22. A space 𝑋 is called homotopically simple in dimension 𝑛 if
the group 𝜋1𝑋 acts trivially on the group 𝜋𝑛𝑋, i.e. if 𝜉𝛼 = 𝛼 for any elements
𝜉 ∈ 𝜋1𝑋, 𝛼 ∈ 𝜋𝑛𝑋. A space that is homotopically simple in all dimensions is
called abelian.

As was noted in Lecture 4, the fundamental group of an arbitrary H-space
acts trivially on the group of homotopy classes of maps into this space from any
pointed space. In particular, this means that

Proposition 5.23. any H-space is abelian.

However, this fact is easily proved directly, since for every H-space 𝑋 with
a real unit (which, as we know from Lecture 4, does not limit generality in
essence) the formula

𝐹 ( 𝒕, 𝑡) = 𝑎( 𝒕)𝑢(1 − 𝑡), 𝒕 ∈ 𝐼𝑛, 𝑡 ∈ 𝐼,

de�nes for any elements 𝑎 ∈ Ω𝑛𝑋, 𝑢 ∈ Ω𝑋 a map 𝐹 : 𝐼𝑛+1 → 𝑋 satisfying
conditions (5.16) and (5.17) with 𝑏 = 𝑎.

Of course, the class of abelian spaces is wider than the class of H-spaces. For
example, it is clear that any simply connected space is abelian. In its place, we
will give examples of non-connected abelian spaces that are not H-spaces.

According to formula (5.20)

Proposition 5.24. a space 𝑋 is homotopically simple in dimension 1 if and
only if the group 𝜋1𝑋 is abelian.

In particular,

Proposition 5.25. for any abelian space (and, for example, for any H-space)
𝑋, the group 𝜋1𝑋 is abelian.

5.6 Abelicity of homotopy groups for 𝑛 ≥ 2

As for the groups 𝜋𝑛𝑋 for 𝑛 > 1, the following remarkable proposition holds.

Proposition 5.26. For 𝑛 > 1, the homotopy group 𝜋𝑛𝑋 of an arbitrary pointed
space 𝑋 is abelian.

Thus, for 𝑛 > 1, we can assume that the functor 𝜋𝑛 takes values in the
category of abelian groups 𝒜𝒷𝒢𝓇𝓅.

Since S𝑛 = 𝑆2S𝑛−2 for 𝑛 > 1, Proposition 5.26 is a special case of Corollary
4.65 of Proposition 4.62 of Appendix to Lecture 4. We will prove again here
this proposition (and we'll even give it two proofs).
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Proof. (The �rst proof) By applying the formula (5.13) (for 𝑘 = 2) is su�cient
to prove Proposition 5.26 for the group 𝜋2𝑋.

Let 𝑎 : (𝐼2, ¤𝐼2) → (𝑋, 𝑥0), 𝑏 : (𝐼2, ¤𝐼2) → (𝑋, 𝑥0), and let 𝑐 be the map
(𝐼2, ¤𝐼2) → (𝑋, 𝑥0), resulting from the map 𝑎 + 𝑏by �adding on the second coor-
dinate� of the permanent map. Schematically , the c map can be represented
by the drawing 5.6.1

Figure 5.6.1:

and algebraically it is given by formulae

𝑐(𝑡, 𝑠) =


𝑎(2𝑡, 2𝑠), if 0 ≤ 𝑡, 𝑠 ≤ 1/2,
𝑏(2𝑡 − 1, 2𝑠), if 0 ≤ 𝑠 ≤ 1/2 ≤ 𝑡 ≤ 1,

𝑥0, if 1/2 ≤ 𝑠 ≤ 1.

Let us produce a deformation (homotopy with respect to ¤𝐼2) over this map,
schematically represented by the Figure 5.6.2

Figure 5.6.2:

and algebraically given by formulae

𝑐𝜏 (𝑡, 𝑠) =


𝑎(2𝑡, 2𝑠), if 0 ≤ 𝑡, 𝑠 ≤ 1/2,
𝑏(2𝑡 − 1, 2𝑠 − 𝜏), if 1

2 ≤ 𝑡 ≤ 1, 𝜏2 ≤ 𝑠 ≤
1+𝜏
2 , 0 ≤ 𝜏 ≤ 1,

𝑥0, in other cases.

As a result, we will get a map schematically represented by the Figure 5.6.3
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Figure 5.6.3:

Having then done the �rst deform on this map �rst as in the Figure 5.6.4

Figure 5.6.4:

and then the deformation as in the Figure 5.6.5

Figure 5.6.5:

we will get the map as in the Figure 5.6.6

To complete the proof, it remains to note that the maps (5.6.1) and (5.6.6) are
homotopic with respect to ¤𝐼2, respectively, to the maps 𝑎 + 𝑏 and 𝑏 + 𝑎. □

Proof. (The second proof) According to the formula (5.13) (for 𝑘 = 1)

𝜋𝑛𝑋 = 𝜋1Ω
𝑛−1𝑋,
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Figure 5.6.6:

and the group 𝜋1Ω
𝑛−1𝑋, being the fundamental group of the H space Ω𝑛−1𝑋 =

Ω(Ω𝑛−2𝑋), is abelian. □

An abelian additive group in which the multiplicative group Π acts is called
a Π-module. Thus, we can say that

Proposition 5.27. for 𝑛 ≥ 2, the group 𝜋𝑛𝑋 is a 𝜋1𝑋 module.

5.7 Ensemble of homotopy groups

In the case when a given space 𝑋 is not pointed, we have to consider the groups
𝜋𝑛 (𝑋, 𝑥) for all points 𝑥 ∈ 𝑋 at the same time, without giving any of them any
advantage. At the same time, in according to Remark 4.28 of Lecture 4, any
path 𝑢 ∈ 𝑋 𝐼 will determine some isomorphism 𝑢# of the group 𝜋𝑛 (𝑋, 𝑢(1)) to
the group 𝜋𝑛 (𝑋, 𝑢(0)), depending only on the homotopy class 𝜉 = [𝑢] rel{0, 1}
of the path 𝑢. In the case when 𝑢(0) = 𝑢(1) = 𝑥0, i.e. when the path 𝑢 is a loop,

this is the automorphism already known to us 𝑅 (𝑛)
𝜉

: 𝛼 ↦→ 𝜉𝛼, 𝛼 ∈ 𝜋𝑛 (𝑋, 𝑥0). For
𝑢(0) ≠ 𝑢(1) it is constructed in exactly the same way (using maps 𝐹 satisfying

conditions (5.16) and (5.17), and we will keep the same notation 𝑅 (𝑛)
𝜉

for it (or

just 𝑅𝜉 ).

At the same time, according to Remark 4.29 of Lecture 4, the correspon-
dences 𝑥 ↦→ 𝜋𝑛 (𝑋, 𝑥), 𝜉 ↦→ 𝑅𝜉 will constitute an ensemble of groups over the
space 𝑋.

Assuming a certain liberty, we will denote this ensemble with the symbol
{𝜋𝑛 (𝑋, 𝑥)}.

De�nition 5.28. The ensemble {𝜋𝑛 (𝑋, 𝑥)} is called the ensemble of 𝑛-dimensional
homotopy groups of a topological space 𝑋.

For 𝑛 > 1, it is an ensemble of abelian groups.

Each morphism 𝜉 : 𝑦 → 𝑥 of an arbitrary groupoid Π de�nes by the formula

𝑅 𝜉 (𝜂) = 𝜉𝜂𝜉−1, 𝜂 ∈ Π(𝑦, 𝑦),
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some isomorphism 𝑅 𝜉 : Π(𝑦, 𝑦) → Π(𝑥, 𝑥) of the group 𝑁 (𝑦, 𝑦) and the mor-
phism 𝑦 → 𝑦 with the group Π(𝑥, 𝑥) and the morphism 𝑥 → 𝑥, and the corre-
spondences 𝑥 ↦→ Π(𝑥, 𝑥), 𝜉 : 𝜉 ↦→ 𝑅 𝜉 make up an ensemble of groups over Π. It
turns out that,

Proposition 5.29. in the case when the groupoid Π is the fundamental groupoid
Π𝑋 of the topological space 𝑋, this ensemble coincides with the ensemble {𝑝𝑖1 (𝑋, 𝑥)}
of fundamental groups, i.e. 𝑅 𝜉 = 𝑅

(1)
𝜉
.

Proof. Indeed, for 𝑦 = 𝑥(= 𝑥0), this is exactly the statement expressed by formula
(5.20), the proof of which is fully preserved for 𝑦 ≠ 𝑥. □

On the other hand, it is easy to see that

Proposition 5.30. for any ensemble sets (or groups) 𝑅 over a groupoid Π each
isomorphism 𝑅𝜉 : 𝑅𝑦 → 𝑅𝑥, 𝜉 : 𝑦 → 𝑥, is an 𝑅 𝜉 -isomorphism (with respect to
the natural actions of the groups Π(𝑦, 𝑦) and Π(𝑥, 𝑥) on the sets 𝑅𝑦 and 𝑅𝑥),
i.e. for any elements 𝛼 ∈ 𝑅𝑦 and 𝜂 ∈ Π(𝑦, 𝑦) there is an equality

𝑅𝜉 (𝜂𝛼) = 𝑅 𝜉 (𝜂)𝑅𝜉 (𝛼).

Proof. Indeed, since, by de�nition, 𝜂𝛼 = 𝑅𝜂𝛼, the latter equality is equivalent
to the formula

𝑅𝜉 ◦ 𝑅𝜂 = 𝑅
𝑅𝜉 (𝜂) ◦ 𝑅𝜉 .

On the other hand, 𝑅𝜉 ◦ 𝑅𝜂 = 𝑅𝜉 𝜂 , so

𝑅
𝑅𝜉 (𝜂) ◦ 𝑅𝜉 = 𝑅𝜉 𝜂 𝜉 −1 ◦ 𝑅𝜉 = 𝑅𝜉 𝜂 .

□

For the ensemble {𝜋𝑛 (𝑋, 𝑥)} from here (and from equality 𝑅 𝜉 = 𝑅
(1)
𝜉
) it

follows that for any points 𝑥0, 𝑥1 ∈ 𝑋, any elements 𝜂 ∈ 𝜋1 (𝑋, 𝑥1), 𝛼 ∈ 𝜋𝑛 (𝑋, 𝑥)
and any class 𝜉 of paths connecting the point 𝑥0 with the point 𝑥1, there is an
equality

𝑅
(𝑛)
𝜉
(𝜂𝛼) = 𝑅 (1)

𝜉
(𝜂)𝑅 (𝑛)

𝜉
(𝛼), (5.31)

i.e., that for every 𝑛 ≥ 1 the isomorphism 𝑅
(𝑛)
𝜉

: 𝜋𝑛 (𝑋, 𝑥1) → 𝜋𝑛 (𝑋, 𝑥0) is an

𝑅
(1)
𝜉
-isomorphism.
If the space 𝑋 is connected, then for any two points 𝑥0, 𝑥1 ∈ 𝑋 in the groupoid

Π𝑋 there exists at least one morphism 𝜉 : 𝑥1 → 𝑥0. Therefore, as follows directly
from formula (5.31), if, with some choice of the base point 𝑥0 ∈ 𝑋, the connected
space 𝑋 turned out to be homotopically simple in some dimension 𝑛 ≥ 1, then
it will be homotopically simple in dimension 𝑛 and with any other choice of this
point. A connected space 𝑋 having this property is naturally called homotopy
simple in dimension 𝑛 (and a space homotopy simple in all dimensions is an
abelian space).
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According to Proposition 4.25 of Lecture 4, for every connected space 𝑋
homotopically simple in dimension 𝑛 with any choice of the base point 𝑥0 ∈ 𝑋
ignoring base points, the map

𝜋𝑛 (𝑋, 𝑥0) → [S𝑛, 𝑋]

is bijective. By transferring the group structure from 𝜋𝑛 (𝑋, 𝑥0) to [S𝑛, 𝑋], we
thereby de�ne the set [S𝑛, 𝑋], 𝑛 ≥ 1, as a group (it is necessary to be abelian
even when 𝑛 = 1). This group is called the 𝑛-dimensional homotopy group of
the homotopically simple space 𝑋 and is denoted by the former symbol 𝜋𝑛𝑋.

We emphasize that, in contrast to the case of pointed spaces, the group 𝜋𝑛𝑋
is de�ned only for spaces 𝑋 connected and homotopically simple in dimension 𝑛
(for example, simply connected.) At the same time, on the subcategory of the
category of 𝒯ℴ𝓅 consisting of such spaces, the correspondence 𝜋𝑛 : 𝑋 ↦→ 𝜋𝑛𝑋

is obviously a functor.

5.8 Homotopy groups of abelian spaces

It is clear that for each ensemble 𝑅 and with a connected space 𝑋, all objects
𝑅𝑥 are isomorphic with each other. In particular, we see that

Proposition 5.32. if the space 𝑋 is connected, then for any 𝑛 ≥ 1 all groups
𝜋𝑛 (𝑋, 𝑥), 𝑥 ∈ 𝑋, are isomorphic with each other.

This means that for a connected non-pointed space 𝑋, we can also talk
about its homotopy group 𝜋𝑛𝑋, but only as an abstract group (given up to
isomorphism). Therefore, in particular, for connected spaces, the condition
𝜋𝑛𝑋 = 0 makes sense (meaning that for one, and therefore for any choice of the
base point 𝑥0, the equality 𝜋𝑛 (𝑋, 𝑥0) takes place).

5.9 Aspherical spaces

De�nition 5.33. A pointed (or non-pointed, but connected) space 𝑋 is called
aspherical in dimension 𝑛 if 𝜋𝑛𝑋 = 0. A space that is aspherical in all dimensions
≤ 𝑛 is called 𝑛-connected.

Thus, pointed spaces aspherical in dimension 0 (or, equivalently, 0-connected)
are nothing but connected spaces, and aspherical in dimension 1 are nothing
but simply connected spaces. 1-connected spaces are connected and simply
connected spaces.

It is clear that the space 𝑋 is 1-connected if and only if for any points
𝑥0, 𝑥?1 ∈ 𝑋 in the groupoid Π𝑋 there is a unique morphism 𝑥0 → 𝑥1.

An example of a space that is aspherical in all dimensions (i.e., ∞-connected)
is the single-point space pt. Therefore, any space that is homotopically equiva-
lent to the space pt, i.e. any contractible space, will also be an aspherical space
in all dimensions. The converse, generally speaking, is true only with some
additional assumptions of a general methodological nature.
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By de�nition, the map (S𝑛, 𝒔0) → (𝑋, 𝑥0) speci�es the zero element of the
group 𝜋𝑛𝑋 if it is pointed null homotopic (homotopic to the constant map). But
since the group 𝜋1𝑋 acts on the group 𝜋𝑛𝑋 by automorphisms, the 𝜋1𝑋-orbit of
zero consists only of zero. Therefore, by applying Proposition 4.25 of Lecture
4, the map (S𝑛, 𝒔0) → (𝑋, 𝑥0) will set the zero element of the group 𝜋𝑛𝑋 even
when it is freely null homotopic.

Since, for a connected space 𝑋, each map S𝑛 → 𝑋 is homotopic to some
pointed map (S𝑛, 𝒔0) → (𝑋, 𝑥0), it follows in particular that

Proposition 5.34. a connected space 𝑋 is aspherical in dimension 𝑛 if and only
if each map S𝑛 → 𝑋 from an arbitrary 𝑛-dimensional sphere S𝑛 to the space 𝑋
is null homotopic.

As we know (see Lecture 1), a null homotopic map 𝑋 → 𝑌 is equivalent to
its extension to the cone 𝐶𝑋. On the other hand, the correspondence [𝒙, 𝑡] ↦→
𝑡𝒙, 𝑡 ∈ 𝐼, 𝑥 ∈ S𝑛, de�nes, obviously �xed on Z𝑛, the homeomorphism of the
straight cone 𝐶S𝑛 with the unit ball E𝑛+1. Therefore, the space 𝑋 is aspherical
in dimension 𝑛 if and only if any map 𝑓 : S𝑛 → 𝑋 can be extended to E𝑛+1:

S𝑛
𝑡 //

𝑓

��

E𝑛+1

𝑓||
𝑋

We will constantly use this simple asphericity criterion in the future.

5.10 Homotopy sequence of �brations

Let 𝑝 : (𝐸, 𝑒0) → (𝐵, 𝑏0) be an arbitrary pointed �bration and 𝐹 = 𝑝−1 (𝑏0) - its
�bre. Due to the decomposition 𝐼𝑛+1 = 𝐼𝑛× 𝐼 each map 𝑎 : (𝐼𝑛+1, ¤𝐼𝑛+1) → (𝐵, 𝑏0)
we can consider the homotopy from 𝐼𝑛 to 𝐵, connecting the constant map const :
𝐼𝑛 → 𝐵, 𝒕 → 𝑏0, with itself and (for 𝑛 ≥ 1) �xed on ¤𝐼𝑛. Since the constant map
𝐼𝑛 → 𝐵 is covered by the constant map 𝐼𝑛 → 𝐸 , it therefore follows from the
axiom WCHE that there is a homotopy 𝜑 : 𝐼𝑛 × 𝐼 → 𝐸 covering the homotopy
𝑎 and (for 𝑛 ≥ 1) �xed on ¤𝐼𝑛. In particular, (𝑝 ◦ 𝜑) ( 𝒕, 1) = 𝑎( 𝒕, 1) = 𝑏0 for any
point 𝒕 ∈ 𝐼𝑛, i.e. 𝜑( 𝒕, 1) ∈ 𝐹. Therefore, putting 𝑏(𝑡) = 𝜑( 𝒕, 1), 𝑡 ∈ 𝐼, we get a
map 𝑏 : 𝐼𝑛 → 𝐹, translating (for 𝑛 ≥ 1) the boundary ¤𝐼𝑛 of the cube 𝐼𝑛 to the
point 𝑒0 ∈ 𝐹, i.e. a map (𝐼𝑛, ¤𝐼𝑛) → (𝐹, 𝑒0). Conventionally, the transition from
𝑎 to 𝑏 is shown in Fig. 5.10.1.

Now let 𝑎
′
be another map (𝐼𝑛+1, ¤𝐼𝑛+1) → (𝐵, 𝑏0), and let 𝑏

′
be a map

(𝐼𝑛+1, ¤𝐼𝑛+1) → (𝐹, 𝑒0) resulting from 𝑎
′
by the described construction (using the

covering homotopy 𝜑
′
). Then it is easy to see that

Proposition 5.35. if 𝑎 ∼ 𝑎′ rel ¤𝐼𝑛+1, then 𝑏 ∼ 𝑏′ rel ¤𝐼𝑛.

Proof. Indeed, by identifying the cube 𝐼𝑛+1 with the product 𝐼𝑛 × 𝐼 i.e. by
denoting its points with symbols ( 𝒕, 𝑡), where 𝒕 ∈ 𝐼, 𝑡 ∈ 𝐼, we can each homotopy
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Figure 5.10.1:

𝐻 : 𝐼𝑛+1× 𝐼 → 𝐵 relative to ¤𝐼𝑛+1, connecting the maps 𝑎 and 𝑎
′
, to be interpreted

as a homotopy 𝐼𝑛+1 × 𝐼 → 𝐵 and in another way, taking the argument 𝑡 as a
deformation parameter. Then the homotopy 𝐻 will bind the constant expression
𝐼𝑛+1 → 𝐵 with itself, it will be stationary on ¤𝐼𝑛+1 × 𝐼 ⊂ ¤𝐼𝑛+1, and on 𝐼𝑛 × 0 ⊂
¤𝐼𝑛+1 and 𝐼𝑛 × 1 ⊂ ¤𝐼𝑛+1 it will - after identifying 𝐼𝑛 × 0 and 𝐼𝑛 × 1 with 𝐼𝑛 -
coincide, respectively, with maps 𝑎 and 𝑎

′
interpreted as homotopies. Therefore,

according to the axiom WCHE, there is a homotopy 𝐻 from 𝐼𝑛× 𝐼 to 𝐸 , covering
the homotopy 𝐻 and on 𝐼𝑛 × 0 and 𝐼𝑛 × 1 coinciding, respectively, with the
homotopy 𝜑 and 𝜑

′
. The terminal map of this homotopy, considered as a map

in 𝐹 and will obviously be a homotopy from 𝐼𝑛 to 𝐹 relative to ¤𝐼𝑛, connecting
the map 𝑏 with the map 𝑏

′
. □

The proven statement means that although the correspondence 𝑎 ↦→ 𝑏 is
constructed with a certain arbitrariness, the homotopy class (rel ¤𝐼𝑛) 𝛽 ∈ 𝜋𝑛𝐹
of the map 𝑏 is uniquely determined by the homotopy class (rel ¤𝐼𝑛+1) 𝛼 ∈ 𝜋𝑛𝐵
of the map 𝑎, so we get some well-de�ned map 𝛼 ↦→ 𝛽 of the group 𝜋𝑛𝐵 to
the group 𝜋𝑛𝐹. It is entirely obvious (since the maps 𝑎 we add �at the �rst
coordinate�, and raise to 𝐸 �at the last coordinate�), that

Proposition 5.36. for 𝑛 ≥ 1 the map 𝛼 ↦→ 𝛽 is a homomorphism.

We will denote this homomorphism by the symbol 𝜕𝑛 or simply 𝜕.
Together with the homomorphisms 𝑖∗ : 𝜋𝑛𝐹 → 𝜋𝑛𝐸 and 𝑝∗ : 𝜋𝑛𝐸 → 𝜋𝑛𝐵 the

homomorphism 𝜕 : 𝜋𝑛+1𝐵 → 𝜋𝑛𝐹 allows you to write a left-right-free sequence
of abelian groups

· · ·
𝑝∗−−→ 𝜋𝑛+1𝐵

𝜕−→ 𝜋𝑛𝐹
𝑖∗−→ 𝜋𝑛𝐸

𝑝∗−−→ 𝜋𝑛𝐵
𝜕−→ · · · , (5.37)

ending with three, generally speaking, non-abelian groups and three pointed
sets:

· · · 𝜕−→ 𝜋1𝐹
𝑖∗−→ 𝜋1𝐸

𝑝∗−−→ 𝜋1𝐵
𝜕−→ 𝜋0𝐹

𝑖∗−→ 𝜋0𝐸
𝑝∗−−→ 𝜋0𝐵.

This sequence is called the homotopy sequence of the �bration 𝑝 : 𝐸 → 𝐵.
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Homomorphisms 𝜕 link together the �obvious� segments 𝜋𝑛𝐹 → 𝜋𝑛𝐸 → 𝜋𝑛𝐵

of the sequences (5.37). On this basis, they are called connecting homomor-
phisms.

Finite or in�nite sequence

· · · → 𝐴→ 𝐵→ 𝐶 → 𝐷 → · · · , (5.38)

of groups connected by homomorphisms (or, more generally, pointed sets) are
called exact in the term 𝐵 if the kernel of the �outgoing� homomorphism 𝐵→ 𝐶

(the preimage of the base point in the case when 𝐶 is only a pointed set) coin-
cides with the image the �incoming� homomorphism 𝐴 → 𝐵 (which, therefore,
must necessarily be an normal subgroup, i.e.- in the old terminology - a normal
divisor). A sequence is called exact if it is exact in every term (except for the
extreme terms when they exist).

Proposition 5.39. The homotopy sequence (5.37) of an arbitrary pointed �-
bration 𝑝 : 𝐸 → 𝐵 is an exact sequence.

Proof. Let's prove the exactness of the sequence (5.37) in all its members in
turn.

Exactness in the term 𝜋𝑛𝐸 . Since 𝑖 ◦ 𝑝 = const, then 𝑖∗ ◦ 𝑝∗ = 0 and hence
im 𝑖∗ ⊂ ker 𝑝∗.
Conversely, turning on 𝛼 ∈ ker 𝑝∗, means that to the map 𝑎 : (𝐼𝑛, ¤𝐼𝑛) → (𝐸, 𝑒0)
de�ning element 𝛼, there exists a homotopy 𝐺 : 𝐼𝑛 × 𝐼 → 𝐵 �xed on ¤𝐼𝑛 such
that

𝐺 (𝑡, 0) = (𝑝 ◦ 𝑎) ( 𝒕) and 𝐺 (𝑡, 1) = 𝑏0 for any point 𝑡 ∈ 𝐼 .
According to the axiom WCHE, this homotopy can be covered by a homotopy
𝐺 : 𝐼𝑛 × 𝐼 → 𝐸 , also �xed on ¤𝐼𝑛, such that 𝐺 ( 𝒕, 0) = 𝑎( 𝒕) for any point 𝒕 ∈ 𝐼𝑛.
The map

𝑏 : (𝐼𝑛, ¤𝐼𝑛) ↦→ (𝐸, 𝑒0), 𝒕 ↦→ 𝐺 ( 𝒕, 1),
gives the same element 𝛼 of the group 𝜋𝑛 𝑓 as the map 𝑎, but has the properties
that 𝑏( 𝒕) ∈ 𝐹 for any point 𝒕 ∈ 𝐼𝑛, and therefore considered as a map in 𝐹 gives
such an element 𝛽 of the group 𝜋𝑛𝐹 that 𝑖∗𝛽 = 𝛼. Hence, ker 𝑝∗ ⊂ im 𝑖∗.

Exactness in the term 𝜋𝑛𝐹. By de�nition, each element 𝛼 ∈ 𝑖𝑚𝜕 ⊂ 𝜋𝑛𝐹

is set by the map 𝑎 : (𝐼𝑛, ¤𝐼𝑛) ↦→ (𝐹, 𝑒0), for which there exists a homotopy
𝑎 : 𝐼𝑛 × 𝐼 → 𝐸 �xed on ¤𝐼𝑛, connecting the constant map 𝐼𝑛 → 𝐸 , 𝒕 ↦→ 𝑒0, with
the map 𝑎, considered as a map in 𝐸 (in this case 𝛼 = 𝜕𝛽, where 𝛽 ∈ 𝜋𝑛+1𝐵
is the homotopy class of the map 𝑏 = 𝑝 ◦ 𝑎 : (𝐼𝑛+1, ¤𝐼𝑛+1) → (𝐵, 𝑏0)). Hence,
𝑖∗𝛼 = 0, i.e. im 𝜕 ⊂ ker 𝑖∗.
Conversely, enabling 𝛼 ∈ ker 𝑖∗ ⊂ 𝜋𝑛𝐹 means that there exists a homotopy
𝑎 : 𝐼𝑛 × 𝐼 → 𝐸 �xed on /¤𝑖𝑛, such that 𝑎( 𝒕, 0) = 𝑒0, 𝒕 ∈ 𝐼𝑛, and a map 𝒕 ↦→ 𝑎( 𝒕, 1),
considered as a map in 𝐹, gives the element 𝛼. Then the map 𝑏 = 𝑝 ◦ 𝛼 will be
the map (𝐼𝑛+1, ¤𝐼𝑛+1) → (𝐵, 𝑏0), for the homotopy class 𝛽 ∈ 𝜋𝑛+1𝐵 of which the
equality 𝜕𝛽 = 𝛼 holds. Hence, ker 𝑖∗ ⊂ im 𝜕.

Exactness in the term 𝜋𝑛+1𝐵 By de�nition, the element 𝛼 ∈ im 𝑝∗ ⊂ 𝜋𝑛+1𝐵
is given by the map

𝑎 = 𝑝 ◦ 𝑎 : (𝐼𝑛+1, ¤𝐼𝑛+1) → (𝐵, 𝑏0), where 𝑎 : (𝐼𝑛+1, ¤𝐼𝑛+1) → (𝐸, 𝑒0).
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Therefore, the class 𝜕𝛼 ∈ 𝜋𝑛𝐹 will have a constant map 𝒕 ↦→ 𝑎( 𝒕, 1), 𝒕 ∈ 𝑙𝑛, and,
therefore, this class will be zero. Hence, im 𝑝∗ ⊂ ker 𝜕.
Conversely, the inclusion 𝛼 ∈ ker 𝜕 ⊂ 𝜋𝑛+1𝐵 means that for the map 𝑎 :
(𝐼𝑛+1, ¤𝐼𝑛+1) → (𝐵, 𝑏0) of class 𝛼, there is a covering map 𝑎 : 𝐼𝑛+1 → 𝐸 such
that 𝑎( 𝒕, 0) = 𝑒0, for any point 𝒕 ∈ 𝐼𝑛, and the map 𝑎1 : 𝒕 ↦→ 𝑎( 𝒕, 1), 𝒕 ∈ 𝐼𝑛,
considered as a map in 𝐹, is homotopic relative to ¤𝐼𝑛 to the constant map. Then
the map 𝑏 : 𝐼𝑛 × 𝐼 → 𝐸 , de�ned by the formula

𝑏( 𝒕, 𝑡) =
{
𝑎( 𝒕, 2𝑡), if 0 ≤ 𝑡 ≤ 1/2,
(𝑖 ◦ 𝐺) ( 𝒕, 2𝑡 − 1), if 1/2 ≤ 𝑡 ≤ 1,

where 𝐺 : 𝐼𝑛 × 𝐼 → 𝐹 is a homotopy �xed on ¤𝐼𝑛 connecting the map 𝑎1 with the
constant map 𝐼𝑛 → 𝐹, 𝒕 ↦→ 𝑒0, will obviously be the map (𝐼𝑛+1, ¤𝐼𝑛+1) → (𝐸, 𝑒0)
and, therefore, it will set some element 𝛽 of the group 𝜋𝑛+1𝐸 . By de�nition, the
image 𝑝∗𝛽 of this element with the homomorphism 𝑝∗ : 𝜋𝑛+1𝐸 → 𝜋𝑛+1𝐵 will be
given by by the map 𝑝 ◦ 𝑏. But it is clear that

(𝑝 ◦ 𝑏) ( 𝒕, 𝑡) =
{
𝑎( 𝒕, 2𝑡), if 0 ≤ 𝑡 ≤ 1/2,
𝑏0, if 1/2 ≤ 𝑡 ≤ 1,

that is, up to the transposition of the �rst and last coordinates - the map 𝑝 ◦ 𝑏
is the sum of (in the sense of formula (5.9)) the map 𝑎 and a constant map.

Therefore, the map 𝑝 ◦ 𝑏 will specify the same element 𝛼 of the group 𝜋𝑛+1𝐵 as
the map 𝑎. This means that 𝑝∗𝛽 = 𝛼. Hence, ker 𝜕 ⊂ im 𝑝∗. □

5.11 Algebraic properties of exact sequences

Let us explain the algebraic consequences of the exactness property of a homo-
topy sequence.

The statement that the homomorphism 𝐶 → 𝐷 from the exact sequence
(5.38) is a monomorphism (i.e. that there is equality ker(𝐶 → 𝐷) = 0), is equiv-
alent in view of the exactness of this sequence in the term 𝐶 to the statement
that the previous homomorphism 𝐵 → 𝐶 is null (i.e. that there is equality
im(𝐵 → 𝐶) = 0). Similarly, the statement that the homomorphism 𝐴 → 𝐵 is
an epimorphism (im(𝐴 → 𝐵) = 𝐵) is equivalent in view of the exactness of the
sequence (5.38) in the term 𝐵 to the equality ker(𝐵→ 𝐶) = 𝐵, i.e. the statement
that the following homomorphism 𝐵→ 𝐶 is null. Schematically:

•
𝑒𝑝𝑖
−−−→ • 𝑛𝑢𝑙𝑙−−−→ • 𝑚𝑜𝑛𝑜−−−−→ •

Thus,

Proposition 5.40. in the exact sequence of groups, each monomorphism is pre-
ceded by an epimorphism through an arrow, and, conversely, each epimorphism
is followed by a monomorphism through an arrow.
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Similarly,

Proposition 5.41. the equality to zero of any member of the exact sequence is
equivalent to the fact that the preceding (through the arrow) homomorphism is
an epimorphism, and the subsequent one is a monomorphism:

•
𝑒𝑝𝑖
−−−→ • → 0→ • 𝑚𝑜𝑛𝑜−−−−→ •

In particular, the statement that the homomorphism 𝐴→ 𝐵 is a monomor-
phism (epimorphism), is equivalent to the statement that the sequence 0 →
𝐴 → 𝐵 (the sequence 𝐴 → 𝐵 → 0) is exact. Therefore, the statement that the
homomorphism 𝐴→ 𝐵 is an isomorphism is equivalent to the statement about
the exactness of the sequence 0→ 𝐴→ 𝐵→ 0.

Sequences of the form deserve special attention

0→ 𝐴→ 𝐵→ 𝐶 → 0

called short sequences. The statement about the exactness of a short sequence
is equivalent to the statement that the group 𝐵 is an extension of the group 𝐴

by means of the group 𝐶.
Another interesting case arises when in sequence (5.38) every third group is

zero. For convenience of formulation, denote the sequence (5.38) by

· · · → 𝐶𝑛+1 → 𝐴𝑛 → 𝐵𝑛 → 𝐶𝑛 → 𝐴𝑛−1 → · · · , (5.42)

we can state that in the exact sequence (5.42) all homomorphisms 𝐴𝑛 → 𝐵𝑛 are
isomorphisms if and only if all groups 𝐶𝑛 are zero. More generally,

Proposition 5.43. in the sequence (5.42), the groups 𝐶𝑛 are equal to zero for
all 𝑛 ≤ 𝑟 (for all 𝑛 > 𝑟), if and only if the homomorphisms 𝐴𝑟 𝑡𝑜𝐵𝑟 for 𝑛 < 𝑟 (for
𝑛 > 𝑟) are isomorphisms, and the homomorphism 𝐴𝑟 → 𝐵𝑟 is an epimorphism
(monomorphism) thus, in the sequence (5.42), the groups 𝐶𝑛 are equal to zero
for all 𝑛 < 𝑟 (for all 𝑛 > 𝑟), if and only if the homomorphisms 𝐴𝑟 → 𝐵𝑟 for
𝑛 < 𝑟 (for 𝑛 > 𝑟) are isomorphisms if and only if the homomorphisms 𝐴𝑟 → 𝐵𝑟
are an epimorphisms (monomorphisms).

5.12 Homotopy groups of covering spaces

A surjective map 𝑝 : 𝑋 → 𝑋 is called a covering if the space 𝑋 is connected and
each point of the space 𝑋 (also obviously connected) has a neighbourhood 𝑈
such that the set 𝑝−1 (𝑈) is a disjoint union of open sets, each of which the map
𝑝 maps homeomorphically to 𝑈. The last condition obviously means that the
map 𝑃 |𝑈 : 𝑝−1 (𝑈) → 𝑈 induced by the map 𝑝 is isomorphic (as an object of the
category 𝒯ℴ𝓅𝑈) to the projection of the direct product 𝑈 × 𝐹 → 𝑈, where 𝐹
is some discrete space. Thus, covers are exactly locally trivial �brations 𝑋 → 𝑋

with discrete �bres (and a connected space 𝑋). Therefore, if the space 𝑋 is
paracompact, then any covering 𝑋 → 𝑋 is a �bration. (See Appendix 1.11 to
Lecture 1.)
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Remark 5.44. With the help of the properties of coverings proved in the next
lecture, it can be easily shown that the latter statement is true even without the
assumption of paracompact space 𝑋. However, due to our general attitudes, we
will ignore this circumstance.

In particular, we see that if the space 𝑋 is paracompact, then for any pointed
covering 𝑝 : (𝑋, 𝑥̃0) → (𝑋, 𝑥0) there is an exact homotopy sequence

· · · → 𝜋𝑛𝐹 → 𝜋𝑛𝑋
𝑝∗−−→ 𝜋𝑛𝑋 → 𝜋𝑛−1𝐹 → · · · → 𝜋1𝑋

𝜕−→ 𝜋0𝐹 → 0

(due to the connectivity 𝜋0𝑋 = 𝜋0𝑋 = 0). But since the �bre 𝐹 is discrete, then
𝜋𝑛𝐹 = 0 for 𝑛 > 0, from which it immediately follows that

Proposition 5.45. for 𝑛 > 1 the covering 𝑝 : 𝑋 → 𝑋 induces isomorphisms

𝑝∗ : 𝜋𝑛𝑋 → 𝜋𝑛𝑋

of homotopy groups.

Thus, when passing to the covering space 𝑋, the higher homotopy groups
𝜋𝑛𝑋, 𝑛 > 1, remain the same.

Example 5.46. The circle S1 is covered by a straight line R (if the points of the
circle are considered complex numbers 𝑧 with |𝑧 | = 1, then the covering R→ S1
can be given by the formula 𝑡 ↦→ 𝑒𝑖𝑡). Hence, 𝜋𝑛S

1 = 𝜋𝑛R for any 𝑛 > 1. But
since the line R is contractible, 𝜋𝑛R = 0 for all 𝑛 ≥ 0. This proves that

𝜋𝑛S
1 = 0 for any 𝑛 > 1. (5.47)

Example 5.48. Having mapped to each point of the unit sphere S𝑚, 𝑚 ≥ 1, the
space R𝑚+1 has a one-dimensional subspace passing through it (a point of the 𝑚-
dimensional projective space R𝑃𝑚) we will obviously get a covering S𝑚 → R𝑃𝑚.
Therefore,

𝜋𝑛S
𝑚 ≈ 𝜋𝑛R𝑃𝑚 for any 𝑛 > 1 and 𝑚 ≥ 1. (5.49)

The last example can be complexi�ed.

5.13 Hopf �brations

Let S2𝑚+1 be a unit sphere of 𝑚 + 1-dimensional complex space C𝑚+1 (given
by the equation |𝑧0 |2 + · · · + |𝑧𝑚 |2 = 1), and C𝑃𝑚 be a complex 𝑚-dimensional
projective space (the set of all one-dimensional subspaces of the space C𝑚+1 or,
equivalently, the set of all proportional classes (𝑧0 : 𝑧1 : · · · : 𝑧𝑚) of (𝑚+1)-tuples
(𝑧0, 𝑧1, . . . , 𝑧𝑚) ≠ (0, . . . , 0)). By matching each point (𝑧0, 𝑧1, . . . , 𝑧𝑚) ∈ S2𝑚+1
one-dimensional subspace passing through it, i.e. the class (𝑧0 : 𝑧1 : · · · : 𝑧𝑚),
we get some map

𝒽 : S2𝑚+1 → C𝑃𝑚, (𝑧0, 𝑧1, . . . , 𝑧𝑚) ↦→ (𝑧0 : 𝑧1 : · · · : 𝑧𝑚).
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Let 𝑈𝑖 be an open set in C𝑃𝑚 consisting of all points (𝑧0 : 𝑧1 : · · · : 𝑧𝑚) for
which 𝑧𝑖 ≠ 0, and let 𝒽−1𝑈𝑖 be its preimage in the sphere S𝑚+1 (consisting of
points (𝑧0, 𝑧1, . . . , 𝑧𝑚) ∈ S2𝑚+1, for which 𝑧𝑖 ≠ 0). Then it is easy to see that the
formula

(𝑧, (𝑧0 : 𝑧1 : · · · : 𝑧𝑚)) ↦→
|𝑧𝑖 |𝑧

𝑧𝑖
√︁
|𝑧0 |2 + · · · + |𝑧𝑚 |2

(𝑧0, 𝑧1, . . . , 𝑧𝑚),

𝑧 ∈ S1, (𝑧0 : 𝑧1 : · · · : 𝑧𝑚) ∈ 𝑈𝑖 ,

well de�nes the map S1 ×𝑈𝑖 → 𝒽
−1𝑈𝑖, which is a homeomorphism translating

the projection S1 × 𝑈𝑖 → 𝑈𝑖 into the map 𝒽−1𝑈𝑖 → 𝑈𝑖 induced by the map
𝒽, This proves that the map 𝒽 is a locally trivial �bration. It is called a Hopf
�bration (or map). Its �bre is the circle S1.

Since 𝜋𝑛S
1 = 0 for 𝑛 > 1, it follows directly from the exactness of the

homotopy sequence of the Hopf �brations that

Proposition 5.50. for any 𝑛 ≥ 3 the homomorphism

𝒽∗ : 𝜋𝑛S
2𝑚+1 → 𝜋𝑛C𝑃

𝑚, (5.51)

induced by the �bration 𝒽, is an isomorphism.

For 𝑚 = 1 the complex projective line C𝑃1 is homeomorphic to the sphere
S2 (Riemann sphere). Therefore in this case , the Hopf �bration has the form

𝒽 : S3 → S2

(and is given by the formula (𝑧1, 𝑧2) ↦→ 𝑧2
𝑧1
; see Lecture 0) and the isomorphism

(5.51) turns into an isomorphism

𝒽∗ : 𝜋𝑛S
3 → 𝜋𝑛S

2, 𝑛 ≥ 3, (5.52)

commonly called Hopf isomorphism.
In particular, we see that

Proposition 5.53. the group 𝜋3S
2 is isomorphic to the group 𝜋3S

3.

Note that the isomorphism (5.52) is given by the correspondence 𝑓 ↦→ 𝒽◦ 𝑓 ,
where 𝑓 : S𝑛 → S3, and 𝒽 : S3 → S2 is the Hopf map. For 𝑛 = 3, this means
that the element 𝜄3 = [id] of the group 𝜋3S

3 corresponds to the group 𝜋3S
2 of

the homotopy class 𝜂3 = [𝒽] of the Hopf map.

5.14 Functoriality of the homotopy sequence of
�brations

In addition to the property of accuracy, the homotopy sequence of the �bration
also has the property of functoriality with respect to the maps of the �bration
𝑝 : 𝐸 → 𝐵 to an arbitrary other �bration 𝑝1 : 𝐸1 → 𝐵1, i.e. maps 𝑓 : 𝐸 → 𝐸1
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such that for some (obviously uniquely de�ned) map 𝐵 → 𝐵1 (which we will
also denote by 𝑓 ) there is a commutative diagramme

𝐸
𝑓 //

𝑝

��

𝐸1

𝑝1

��
𝐵

𝑓
// 𝐵1

If the �brations 𝑝 and 𝑝1 are pointed, then the map 𝑓 : 𝐸 → 𝐸1 (and therefore
the map 𝑓 : 𝐵 → 𝐵1) is also assumed to be pointed. In this case, the map 𝑓

induces some map 𝐹 → 𝐹1 of �bres of �brations 𝑝 and 𝑝1 (which we will denote
with the same symbol 𝑓 ). Therefore, each map 𝑓 : 𝐸 → 𝐸1 of pointed �brations
generates a diagramme

· · · // 𝜋𝑛+1𝐵 //

��

𝜋𝑛𝐹 //

��

𝜋𝑛𝐸 //

��

𝜋𝑛𝐵 //

��

· · ·

· · · // 𝜋𝑛+1𝐵1
// 𝜋𝑛𝐹1 // 𝜋𝑛𝐸1

// 𝜋𝑛𝐵1
// · · ·

(5.54)

the horizontals of which are homotopy sequences of �brations 𝑝 and 𝑟1, and the
vertical arrows are induced by maps 𝑓 . The functorial property is that

Proposition 5.55. this diagramme is commutative, i.e. that its vertical arrows
constitute a homomorphism of the top row to the bottom.

Proof. For the proof, it is su�cient to note that after applying the map 𝑓 , all
constructions related to the homotopy sequence of the �bration 𝑝 : 𝐸 → 𝐵 pass
into the corresponding constructions for the homotopy sequence of the �bration
𝑝1 : 𝐸1 → 𝐵1. □

By introducing into consideration the category of pointed �brations and the
category of exact sequences, we can say that the correspondence between the
�bration and its homotopy sequence, is a functor from the �rst category to the
second.

5.15 Axiomatic description of homotopy groups

Note that the commutativity of all squares of diagram (5.54), except for squares
containing homomorphisms 𝜕, is a consequence of the fact that the correspon-
dence 𝜋𝑛 : 𝑋 → 𝜋𝑛𝑋 is a functor, and the commutativity of each square

𝜋𝑛+1𝐵
𝜕 //

𝑓∗
��

𝜋𝑛𝐹

𝑓∗
��

𝜋𝑛+1𝐵1
𝜕

// 𝜋𝑛𝐹1
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means that the homomorphism 𝜕 : 𝜋𝑛+1𝐵 → 𝜋𝑛𝐹 is a natural transformation
(morphism) of the functor 𝜋𝑛+1 ◦ 𝛽 in the functor 𝜋𝑛 ◦ 𝜑, where 𝛽 and 𝜑 are
functors from the category of pointed �brations to the category𝒯ℴ𝓅•, matching
each �brations 𝑝 : 𝐸 → 𝐵, respectively, its base 𝐵 and its �bre 𝐹.

Suppose now that for any 𝑛 ≥ 0 on the category 𝒯ℴ𝓅•, some homotopy
invariant functor 𝜋𝑎𝑛 is given, taking values for 𝑛 ≥ 2 in the category 𝒜𝒷𝒢𝓇𝓅,
for 𝑛 = 1 in the category 𝒢𝓇𝓅 and for 𝑛 = 0 in the category ℰ𝓃𝓈, and for
the category of pointed �brations, some natural transformation 𝜕 of the functor
𝜋𝑎𝑛 ◦ 𝛽 to the functor 𝜋𝑎𝑛 ◦ 𝜑. Then for any �bration 𝑝 : 𝐸 → 𝐵 we can write the
following

· · · → 𝜋𝑎𝑛+1𝐵
𝜕−→ 𝜋𝑎𝑛𝐹

𝑖∗−→ 𝜋𝑎𝑛𝐸
𝑝∗−−→ 𝜋𝑎𝑛𝐵→ · · · (5.56)

similar to sequence (5.37).
We will say that {𝜋𝑎𝑛 , 𝜕} is a system of axiomatically de�ned homotopy groups

if

1 (the exactness axiom) For any pointed �bration 𝑝 : 𝐸 → 𝐵, the sequence
(5.56) is exact.

2 (the dimension axiom) For a single-point space pt, for any 𝑖 ≥ 1, the equality
holds

𝜋𝑎𝑛 (pt) = 0.

3 (the initial condition) For any pointed space 𝑋, the set 𝜋𝑎0 𝑋 is in natural
(i.e., functorial) bijective correspondence with the pointed set 𝜋0𝑋 of the
components of the space 𝑋.

(We will discuss the reasons for calling the axiom 2 the axiom of dimension
in the next semester.)

By applying the homotopy invariance of the functors 𝜋𝑎𝑛 it follows from the
axiom of dimension that 𝜋𝑛𝑋 = 0 for 𝑛 ≥ 1 for any contractible space 𝑋. In
particular, 𝜋𝑎𝑛 (𝑃𝑋) = 0, where 𝑃𝑋, as always, is the space of paths in the space
𝑋 starting at the base point 𝑥0, Therefore, applying the exactness axiom to the
Serre �bration 𝑃𝑋 → 𝑋, we get that

Proposition 5.57. for any axiomatically given homotopy groups 𝜋𝑎𝑛 , there is
an isomorphism

𝜋𝑎𝑛𝑋 ≈ 𝜋𝑎𝑛−1Ω𝑋.

Cf. with the formula (5.13) for 𝑘 = 𝑛 − 1
Hence, by induction on 𝑛 (the initial step of which is provided by the initial

condition (3), it immediately follows that for any 𝑛 ≥ 0 there is a natural (with
respect to 𝑋) bijective map 𝜋𝑎𝑛𝑋 → 𝜋𝑛𝑋. At the same time, it follows directly
from Remark 4.24 of Lecture 4 that for 𝑛 = 1 this map is either an isomorphism
or an anti-isomorphism (a bijective map that changes the order of multipliers
to the opposite), from which it follows by the same induction that this map will
be an isomorphism for any 𝑛 ≥ 2 (since for 𝑛 ≥ 2 the group 𝜋𝑛𝑋 is abelian, then
every anti-isomorphism 𝜋𝑎𝑛𝑋 → 𝜋𝑛𝑋 is an isomorphism). Thus, we see that
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Proposition 5.58. the axioms 1, 2 and the initial condition 3 unambiguously
up to isomorphism (or for 𝑛 = 1 up to anti-isomorphism) characterise homotopy
groups 𝜋𝑛.

Used in the proof of this statement Remark 4.24 of lecture 4 we will prove
in the next lecture.





Appendix

The technique by which groups are de�ned in an arbitrary category can also be
applied to exact sequences. For the sake of certainty, we will limit ourselves to
the category [𝒯ℴ𝓅•], although almost everything is automatically transferred
- with obvious and self-evident changes - to arbitrary categories.

5.A Exact sequences of pointed spaces

De�nition 5.59. A sequence

· · · → 𝐴𝑛−1
𝑎𝑛−−→ 𝐴𝑛

𝑎𝑛+1−−−→ 𝐴𝑛+1 → · · · (5.60)

of pointed spaces and their maps are called exact in the term 𝐴𝑛 if, for any
pointed space 𝑋, the sequence of pointed sets

· · · → [𝑋, 𝐴𝑛−1]•
(𝑎𝑛 )𝑋−−−−−→ [𝑋, 𝐴𝑛]•

(𝑎𝑛+1 )𝑋−−−−−−→ [𝑋, 𝐴𝑛+1]• → · · · (5.61)

is exact in the term [𝑋, 𝐴𝑛]•. Sequence (5.60) is called exact if it is exact in
every term (except, of course, the extreme members, if there are any).

Example 5.62. The pointed map 𝑝 : (𝐸, 𝑒0) → (𝐵, 𝑏0) is called a quasi-�bration
if for any diagramme

𝑋
𝑔 //

𝜎0

��

𝐸

𝑝

��
𝑋 × 𝐼

𝐺
//

𝐺

<<

𝐵

𝐺 ◦ 𝜎1 = const, (5.63)

over the category 𝒯ℴ𝓅•, in which the terminal map 𝐺 ◦ 𝜎1 of the homotopy
𝐺 is a constant map, there is a covering homotopy 𝐺 : 𝑋 × 𝐼 → 𝐸 . (Recall
that 𝜎0 : 𝑥 ↦→ (𝑥, 0) and 𝜎1 : 𝑥 ↦→ (𝑥, 1).) Since the fact of the existence of a
homotopy 𝐺 means that 𝑝◦𝑔 ∼ const, and the fact of the existence of a homotopy
𝐺 means that 𝑔 ∼ 𝑖 ◦ 𝑓 , where 𝑖 is an embedding 𝐹 → 𝐸 , 𝐹 = 𝑝−1 (𝑏0), and 𝑓 is
the terminal map 𝐺 ◦𝜎1 of the homotopy 𝐺, considered as a map 𝑋 → 𝐹, then

189
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Proposition 5.64. the map 𝑝 : 𝐸 → 𝐵 is a quasi-�bration when and only when
the three-term sequence

𝐹
𝑖−→ 𝐸

𝑝
−→ 𝐵

is exact in the term 𝐸.

Note that any (pointed) �bration is, of course, a quasi-�bration.
The map of the sequence (5.60) into a similar sequence {𝐵𝑛} is a sequence

{ 𝑓𝑛} of pointed maps 𝑓𝑛 : 𝐴𝑛 → 𝐵𝑛, which is for any 𝑛 the diagramme

𝐴𝑛 //

𝑓𝑛

��

𝐴𝑛+1

𝑓𝑛+1
��

𝐵𝑛 // 𝐵𝑛+1

is commutative. A (family of) maps { 𝑓𝑛} is called homotopy equivalence if all
the maps 𝑓𝑛 are pointed homotopy equivalences. It is clear that

Proposition 5.65. a sequence of pointed spaces that is homotopically equivalent
to an exact sequence is also an exact sequence.

5.B Short exact sequences of H-groups

Of particular importance are the exact sequences of spaces ending with a one-
point space pt (or starting with such a space).

It is easy to see that

Proposition 5.66. the sequence

· · · → 𝐸
𝑝
−→ 𝐵→ pt (5.67)

is exact in term 𝐵 if and only if there exists a map 𝑠 : 𝐵 → 𝐸 that 𝑝 ◦ 𝑠 ∼ id
(the cross section of the map 𝑝 in the category [𝒯ℴ𝓅•]).
Proof. Indeed, the exactness of the sequence (5.67) in the term 𝐵 means that
for any space 𝑋, the map 𝑝𝑋 : [𝑋, 𝐸]• → [𝑋, 𝐵]•, [ 𝑓 ]• ↦→ [ 𝑓 ◦ 𝑝]•, 𝑓 : 𝑋 → 𝐸 ,
is surjective. In particular, it is surjective for 𝑋 = 𝐵, and, therefore, there is a
map 𝑠 : 𝐵→ 𝐸 such that 𝑝𝐵 [𝑠]• = [id]•, i.e. 𝑠 ◦ 𝑝 ∼ id.
Conversely, if such a map 𝑠 exists, then 𝑝𝑋 [𝑠 ◦ 𝑔]• = [𝑔]• for any map 𝑔 : 𝑋 →
𝐵. □

Remark 5.68. If the map 𝑝 : 𝐸 → 𝐵 is a (at least homotopy) �bration , then
this condition is equivalent to the existence of a map 𝑠 : 𝐵→ 𝐸 (sections of the
map 𝑝 in the category 𝒯ℴ𝓅•) that 𝑝 ◦ 𝑠 = id. See the Appendix 2.11 to Lecture
2, where, however, this fact is proved for non-pointed �brations.

By analogy with the case of groups, sequences of spaces having the form

pt→ 𝐹
𝑖−→ 𝐸

𝑝
−→ 𝐵→ pt, (5.69)

are called short sequences.
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Remark 5.70. Below we will show (see remark 5.97) that in the case when in
the sequence (5.69) the map 𝑝 is a �bration and the map 𝑖 is an embedding of
its �bre, this sequence is exact in the term 𝐵, i.e. (see remark 5.68) if and only
if there is a section 𝑠 for the �bration 𝑝.

In particular, we see that for any pointed spaces 𝐹 and 𝐵 there is a short
exact sequence

pt→ 𝐹
incl𝐹−−−−→ 𝐹 × 𝐵

proj𝐵−−−−→ 𝐵→ pt, (5.71)

where incl𝐹 : 𝑎 ↦→ (𝑎, 𝑏0) and proj𝐵 : (𝑎, 𝑏) ↦→ 𝑏, 𝑎 ∈ 𝐹, 𝑏 ∈ 𝐵. (Of course, the
exactness of this sequence is easily and directly proved.)

A short sequence (5.69), whose members 𝐹, 𝐸 , 𝐵 are H-groups, and the
maps 𝑖 and 𝑝 are morphisms (homotopy) of H-groups, we will call the sequence
of H-groups. For any exact sequence of H-groups and any pointed space 𝑋, the
sequence

1→ [𝑋, 𝐹] 𝑖𝑋−−→ [𝑋, 𝐸]
𝑝𝑋−−→ [𝑋, 𝐵] → 1 (5.72)

is the usual short exact sequence of groups.
A short exact sequence of groups

1→ 𝐹
𝑖−→ 𝐸

𝑝
−→ 𝐵→ 1 (5.73)

is called a splitting sequence if the homomorphism 𝑝 : 𝐸 → 𝐵 has (in the
category of groups) the section 𝑠 : 𝐵 → 𝐸 . This section is called a splitting ho-
momorphism, and the group 𝐸 is called a semidirect product of groups 𝐹 and 𝐵.
An example of a splitting sequence is a sequence whose splitting homomorphism
is the sequence

1→ 𝐹
incl𝐹−−−−→ 𝐹 × 𝐵

proj𝐵−−−−→ 𝐵→ 1,

the splitting homomorphism of which is the homomorphism incl𝐵 : 𝑏 ↦→ (1, 𝑏),
𝑏 ∈ 𝐵.
Proposition 5.74. For any splitting sequence of groups (5.73), the formula
𝜃 (𝑎, 𝑏) = 𝑖(𝑎) · 𝑠(𝐵), (𝑎, 𝑏)? ∈ 𝐹 × 𝐵, de�nes a bijective map 𝜃 : 𝐹 × 𝐵→ 𝐸.

Proof. Indeed, let 𝑡 and 𝑞 be maps 𝐸 → 𝐸 de�ned by the formulae 𝑡 (𝑥) =

(𝑠 ◦ 𝑝) (𝑥)−1 and 𝑞(𝑥) = 𝑥 · 𝑡 (𝑥), 𝑥 ∈ 𝐸 . Then

(𝑝 ◦ 𝑞) (𝑥) = 𝑝(𝑥) · (𝑝 ◦ 𝑡) (𝑥) = 𝑝(𝑥) · (𝑝 ◦ 𝑠 ◦ 𝑝) (𝑥)−1 = 𝑝(𝑥) · 𝑝(𝑥)−1 = 1,

and therefore, by applying exactness, there exists an element 𝑟 (𝑥) ∈ 𝐹 such that
𝑖(𝑟 (𝑥)) = 𝑞(𝑥). Consider the map 𝑟 × 𝑝 : 𝐸 → 𝐹 × 𝐵 de�ned by the formula
(𝑟 × 𝑝) (𝑥) = (𝑟 (𝑥), 𝑝(𝑥)), 𝑥 ∈ 𝐵. By de�nition

(𝜃 ◦ (𝑟 × 𝑝)) (𝑥) = 𝜃 (𝑟 (𝑥), 𝑝(𝑥)) = (𝑖 ◦ 𝑟) (𝑥) · (𝑠 ◦ 𝑝) (𝑥) = 𝑞(𝑥) · 𝑡 (𝑥)−1 = 𝑥

for any element 𝑥 ∈ 𝐸 . In addition, (𝑝 ◦𝜃) (𝑎, 𝑏) = (𝑝 ◦ 𝑖) (𝑎) · (𝑝 ◦ 𝑠) (𝑏) = 1 · 𝑏 = 𝑏,
and therefore

𝑖((𝑟 ◦ 𝜃) (𝑎, 𝑏)) = (𝑞 ◦ 𝜃) (𝑎, 𝑏) = 𝜃 (𝑎, 𝑏) · (𝑡 ◦ 𝜃) (𝑎, 𝑏) = 𝜃 (𝑎, 𝑏) · (𝑠 ◦ 𝑝 ◦ 𝜃) (𝑎, 𝑏)−1

= 𝑖(𝑎) · 𝑠(𝑏) · 𝑠(𝑏)−1 = 𝑖(𝑎)
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for any element (𝑎, 𝑏) ∈ 𝐹 × 𝐵. So (𝑟 ◦ 𝜃) (𝑎, 𝑏) = 𝑎 and hence ((𝑟 × 𝑝) ◦ 𝜃) (𝑎, 𝑏) =
(𝑎, 𝑏). Thus, 𝜃 and 𝑟 × 𝑝 are mutually inverse bijective maps. □

If the groups 𝐹, 𝐸 and 𝐵 are abelian, then the maps 𝜃 and 𝑟 × 𝑝 are ho-
momorphisms and, therefore, isomorphisms. Thus (we move on to the additive
notation and change the notation somewhat),

Proposition 5.75. in any splitting sequence of abelian groups

0 // 𝐴
𝑖 // 𝐶

𝑝 //
𝐵 //

𝑠
oo 0

the group 𝐶 is isomorphic to the direct sum 𝐴 ⊕ 𝐵 of groups 𝐴 and 𝐵.

The corresponding injections of 𝐴→ 𝐶 and 𝐵→ 𝐶 will be homomorphisms
of 𝑖 and 𝑠, and projections of 𝐶 → 𝐵 and 𝐶 → 𝐴 are homomorphisms 𝑝 and 𝑟
(and the last homomorphisms will be be determined from the relation 𝑖(𝑟 (𝑥)) =
𝑥 − 𝑠(𝑝(𝑥)), 𝑥 ∈ 𝐶).

Following Eilenberg and Steenrod [11], we call for abelian groups 𝐴1, . . . , 𝐴𝑛

injections of natural monomorphisms incl𝛼 : 𝐴𝛼 → ⊕𝛽𝐴𝛽, and

projections of natural epimorphisms proj𝛼 : ⊕𝛽𝐴𝛽 → 𝐴𝛼.

Recall that proj1 ◦ incl1 + · · · proj𝑛 ◦ incl 𝑛 = id.
Similarly, a short exact sequence of H-groups (5.69) is called splitting if an

H-group morphism 𝑠 : 𝐵→ 𝐸 exists such that 𝑝 ◦ 𝑠 ∼ id holds. In this case, each
sequence (5.69) will be a splitting sequence of groups with a splitting homomor-
phism 𝑠𝑋 : [𝑋, 𝐵] → [𝑋, 𝐸]. For any H-groups 𝐹 and 𝐵, the sequence (5.71) is
a splitting short exact sequence of the H-group (with respect to multiplication
in 𝐹 × 𝐵, de�ned in the usual coordinate way). Moreover,

Proposition 5.76. for any splitting short exact sequence of H-groups (5.69),
the space 𝐸 is homotopically equivalent to the product 𝐹 × 𝐵.

Proof. Indeed (we actually repeat the group-theoretic reasoning stated above),
if 𝑡 and 𝑞 are maps of 𝐸 → 𝐸 such that [𝑡]• = [𝑠 ◦ 𝑝]−1 and [𝑞]• = [id]• · [𝑡]• in
the group [𝐸, 𝐸]• then

𝑝𝐹 [𝑞]• = [𝑝 ◦ 𝑞]• = [𝑝]• · [𝑝 ◦ 𝑡]• = [𝑝]• · [𝑝 ◦ 𝑠 ◦ 𝑝]•−1

in the group [𝐸, 𝐵]•, and therefore there is a map 𝑟 : 𝐸 → 𝐹, such that 𝑖𝐸 [𝑟]• =
[𝑞]• i.e. [𝑖 ◦ 𝑟]• = [𝑞]•. Therefore, to the map 𝜃 : 𝐹 × 𝐵 → 𝐸 , given by the
formula 𝜃 = 𝑚 ◦ (𝑖 × 𝑠), where 𝑖 × 𝑠 : 𝐹 × 𝐵 → 𝐸 × 𝐸 , and 𝑚 : 𝐸 × 𝐸 → 𝐸 is
a multiplication in 𝐸 , i.e. being with respect to 𝑚 by the product of the maps
𝑖 ◦ proj𝐹 : 𝐹 × 𝐵 → 𝐸 and 𝑠 ◦ proj𝐵 : 𝐹 × 𝐵 → 𝐸 , in the group [𝐸, 𝐸]• equality
will take place

[𝜃 ◦ (𝑟 × 𝑝)]• = [𝑚 ◦ (𝑖 × 𝑠) ◦ (𝑟 × 𝑝)]• = [𝑚 ◦ ((𝑖 ◦ 𝑟) × (𝑠 ◦ 𝑝))]•

= [𝑖 ◦ 𝑟]• · [𝑠 ◦ 𝑝]• = [𝑞]• · [𝑡]−1 = [id]•.
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On the other hand, since the map 𝑝 is a homotopy morphism of H-groups, i.e.
𝑝 ◦ 𝑚 ∼ 𝑚′ ◦ (𝑝 × 𝑝), where 𝑚′ : 𝐵 × 𝐵 → 𝐵 is the multiplication in 𝐵, then in
the group [𝐹 × 𝐵, 𝐵]• we will have the equality

[𝑝 ◦ 𝜃]• = [𝑝 ◦ 𝑚 ◦ (𝑖 × 𝑠)]• = [𝑚′ ◦ ((𝑝 ◦ 𝑖) × (𝑝 ◦ 𝑠))]•

= [𝑝 ◦ 𝑖 ◦ proj𝐹]• · [𝑝 ◦ 𝑠 ◦ proj𝐵]• = [const]• · [proj𝐵]• = [proj𝐵]•,

and, therefore, in the group [𝐹 × 𝐵, 𝐸]• the equality

𝐼𝐹×𝐵 [𝑟 ◦ 𝜃]• = [𝑖 ◦ 𝑟 ◦ 𝜃]• = [𝑞 ◦ 𝜃]• = ( [id]• · [𝑡]•) ◦ [𝜃]•

= [𝜃]• · [𝑡 ◦ 𝜃]• = [𝜃]• · [𝑠 ◦ 𝑝 ◦ 𝜃]•−1

= [𝜃]• · [𝑎 ◦ proj𝐵]•−1 = [𝑖 ◦ proj𝐹]• = 𝐼𝐹×𝐵 [proj𝐹]•.

Since the homomorphism 𝑖𝐹×𝐵 is by condition a monomorphism, this proves
that [𝑟 ◦ 𝜃]• = [proj𝐹]• in the group [𝐹 × 𝐵, 𝐹]•. Hence,

[(𝑟 × 𝑝) ◦ 𝜃]• = [(𝑟 × 𝜃) × (𝑝 ◦ 𝜃)]• = [proj𝐹 × proj𝐵] = [id]

in the group [𝐹 × 𝐵, 𝐹 × 𝐵]•. So 𝜃 ◦ (𝑟 × 𝑝) ∼ id and (𝑟 × 𝑝) ◦ 𝜃 ∼ id, i.e. 𝜃 and
𝑟 × 𝑝 are mutually inverse homotopy equivalences. □

If the H-groups 𝐹, 𝐸 and 𝐵 are abelian (i.e., each exact sequence (5.72)
consists of abelian groups), then the homotopy equivalences 𝜃 and 𝑟 × 𝑝 will be,
as the automatic calculation shows, morphisms of H-groups, so that in this case
the H-group 𝐸 is homotopically isomorphic to the H-group 𝐹 × 𝐵.

5.C Short exact sequences of H-cogroups

All these results are immediately dualised.

De�nition 5.77. A sequence

· · · → 𝐴𝑛+1
𝑎𝑛−−→ 𝐴𝑛

𝑎𝑛−1−−−−→ 𝐴𝑛−1 → · · ·

of pointed spaces and their maps are called coexact in the term 𝐴𝑛 if, for any
pointed space 𝑋, the sequence of pointed sets

· · · → [𝐴𝑛+1, 𝑋]•
𝑎𝑋𝑛−−→ [𝐴𝑛, 𝑋]•

𝑎𝑋𝑛−1−−−−→ [𝐴𝑛−1, 𝑋]• → · · ·

is exact in the term [𝐴𝑛, 𝑋]•. A sequence is called coexact if it is coexact in
every term (except, of course, the extreme terms, if there are any).

It is clear that a sequence homotopically isomorphic to a(nother) coexact
sequence is coexact. An example of a coexact sequence is a three-term sequence

𝐴
𝑖−→ 𝑋

𝑗
−→ 𝑋/𝐴, (5.78)



194 LECTURE 5.

where 𝑖 : 𝐴 → 𝑋 is an arbitrary co�bration (considered as an embedding), and
𝑗 : 𝑋 → 𝑋/𝐴 is the factorisation map.

Sequence

pt→ 𝐴
𝑖−→ 𝑋 → · · ·

is co-exact in the term 𝐴 if and only if when there exists a map 𝑟 : 𝑋 → 𝐴 such
that 𝑟 ◦ 𝑖 ∼ id (in the case when the map 𝑖 is a co�bration, such that 𝑟 ◦ 𝑖 = id),
and a short sequence of the form

pt→ 𝐴
𝑖−→ 𝑋

𝑗
−→ 𝑋/𝐴→ pt,

where 𝑖 is a co�bration, and 𝑗 is a factorisation map if and only if it is coexact
in the term 𝐴, i.e. when 𝑋 u 𝐴.

A sequence consisting of H-cogroups and their (homotopy) morphisms is
called a sequence of H-cogroups. Short exact sequence of H-cogroups

pt→ 𝐴
𝑖−→ 𝑋

𝑗
−→ 𝐵→ pt,

is called co-splitting if there exists a morphism of H-cogroups 𝑟 : 𝑋 → 𝐴 such
that 𝑟 ◦ 𝑖 ∼ id. For any co-splitting short co-exact sequence of H-cogroups, the
space 𝑋 is homotopically equivalent to the bouquet 𝐴 ∨ 𝐵, and the homotopy
equivalence 𝑋 → 𝐴 ∨ 𝐵 will be a coproduct (with respect to the multiplication
in 𝑋) of the maps incl𝐴 ◦𝑟 and incl𝐵 ◦ 𝑗 , where incl𝐴 : 𝐴 → 𝐴 ∨ 𝐵 and incl𝐵 :
𝐵→ 𝐴 ∨ 𝐵 are canonical inclusions.

The proofs of all these statements are obtained by an obvious dualisation
of the proofs of the corresponding statements for exact sequences, and we will
leave them to the reader.

5.D Homotopy �bres of pointed maps

Let us now turn from these general � essentially purely category-theoretic �
considerations to more meaningful constructions.

Let 𝑝 : (𝐸, 𝑒0) → (𝐵, 𝑏0) be an arbitrary pointed map (it is convenient for
us to move away from the standard notation a little now), and let Cocyl(𝑝) be
its reversed cylinder. Recall (see Lecture 2) that the points of the the cylinder
Cocyl(𝑝) are pairs of (𝑢, 𝑒), where 𝑢 : 𝐼 → 𝐵 and 𝑒 ∈ 𝐸 , with 𝑢(1) = 𝑝(𝑒), and
that the formula 𝑞(𝑢, 𝑒) = 𝑢(0) de�nes some �bration 𝑞 : Cocyl(𝑝) → 𝐵.

De�nition 5.79. The �bre of the �bration 𝑞 : Cocyl(𝑝) → 𝐵 is called the
homotopy �bre of 𝑝 and is denoted by the symbol 𝐹 (𝑝).

It is clear that the correspondence 𝑝 ↦→ 𝐹 (𝑝) is a functor.
It is easy to see that

Proposition 5.80. if the map 𝑝 : 𝐸 → 𝐵 is a pointed homotopy �bration, then
its homotopy �bre 𝐹 (𝑝) is pointed homotopically equivalent to its ordinary �bre
𝐹 = 𝑝−1 (𝑏0).
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Proof. Indeed, it is clear that the inclusion 𝑖 : 𝐸 → Cocyl(𝑝), ↦→ (𝑒, 0𝑝 (𝑒) ),
translates the �bre 𝐹 into the �bre 𝐹 (𝑝) and therefore induces some map 𝑗 :
𝐹 → 𝐹 (𝑝). In the corresponding commutative diagramme

𝐹
⊂ //

𝑗

��

𝐸

𝑝

$$
𝑖

��

𝐵

𝐹 (𝑝) ⊂
// Cocyl(𝑝)

𝑞

::

(5.81)

the map 𝑖, being a homotopy equivalence and at the same time a map over
𝐵 (with respect to the projections 𝑝 and 𝑞), will, according to Proposition
2.57 of the Appendix to Lecture 2 (in its version for the category 𝒯ℴ𝓅•),
be a �bre homotopy equivalence and, therefore, the map 𝑗 will be homotopy
equivalence. □

Since diagram (5.81) is commutative and its vertical arrows are pointed ho-
motopy equivalences, the upper row of this diagram is homotopically isomorphic
to its lower exact row and, therefore, is an exact sequence. This proves that

Proposition 5.82. any homotopy �bration is a quasi-�bration.

A very unexpected result!
In the general case of an arbitrary pointed map 𝑝 : 𝐸 → 𝐵, we can consider

the map 𝑝1 : 𝐹 (𝑝) → 𝐸 , which is a restriction of the projection (𝑢, 𝑒) ↦→ 𝑒. This
map has the property that the diagramme

𝐸

𝑝

$$

��

𝐹 (𝑝)

𝑝1

99

⊂
%%

𝐵

Cocyl(𝑝)
𝑞

;;

the dotted line is homotopy commutative, which means that the upper line of
this diagramme is homotopically isomorphic to its lower exact line and therefore
is also an exact sequence. This proves that

Proposition 5.83. for any pointed map 𝑝 : 𝐸 → 𝐵 there is a three-term exact
sequence

𝐹 (𝑝)
𝑝1−−→ 𝐸

𝑝
−→ 𝐵. (5.84)

Iterating this construction and assuming 𝑝𝑛 = (𝑝𝑛−1)1, 𝑝0 = 𝑝, we get an
exact sequence in�nite to the left

· · · → 𝐹 (𝑝𝑛)
𝑝𝑛−−→ 𝐹 (𝑝𝑛−1) → · · · → 𝐹 (𝑝)

𝑝1−−→ 𝐸
𝑝
−→ 𝐵 (5.85)



196 LECTURE 5.

of pointed spaces, the terms 𝐹 (𝑝𝑛), 𝑛 ≥ 0, which are called iterated homotopy
�bres of the pointed map 𝑝.

Further, comparing the de�nitions, we immediately get, that the map 𝑝1 :
𝐹 (𝑝) → 𝐸 is induced by the Serre �bration 𝜔1 : 𝑃𝐵 → 𝐵 by the map 𝑝 (i.e.,
in the notation introduced in Lecture 1, is the map (𝜔1)𝑝). Hence, the map
𝑝1 : 𝐹 (𝑝) → 𝐸 is a �bration. Therefore, all maps 𝑝𝑛, 𝑛 ≥ 1, from the sequence
(5.85) will also be �brations.

5.E The Puppe exact sequence

Applying the functor Ω to the sequence (5.85), we get the sequence

· · · → Ω𝐹 (𝑝𝑛)
Ω𝑝𝑛−−−→ Ω𝐹 (𝑝𝑛−1) → · · · → Ω𝐹 (𝑝)

Ω𝑝1−−−→ Ω𝐸
Ω𝑝
−−→ Ω𝐵 (5.86)

On the other hand, it is easy to see that

Proposition 5.87. the space Ω𝐵 is homotopically equivalent to the space 𝐹 (𝑝1),
the space Ω𝐸 is homotopically equivalent to the space 𝐹 (𝑝2), the space Ω𝐹 (𝑝) =
Ω𝐹 (𝑝0) is homotopically equivalent to the space 𝐹 (𝑝3) and, in general, the space
Ω𝐹 (𝑝𝑛) is homotopically equivalent to the space 𝐹 (𝑝𝑛+2) (it is convenient to
conditionally assume that 𝐹 (𝑝−1) = 𝐸, 𝐹 (𝑝−2) = 𝐵).
Proof. Indeed, since the map 𝑝𝑛+𝑖, 𝑛 ≥ 0, is a �bration, its homotopy �bre
𝐹 (𝑝𝑛+𝑖) is homotopically equivalent to its ordinary �bre 𝐹𝑛+𝑖. But since the
points of the space 𝐹 (𝑝𝑛) are pairs (𝑣, 𝑒), where 𝑣 ∈ 𝑃𝐹 (𝑝𝑛−2), 𝑒 ∈ 𝐹 (𝑝𝑛−1)
and 𝑣(1) = 𝑝𝑛 (𝑒), and the map 𝑝𝑛+1 is a restricted projection (𝑣, 𝑒) ↦→ 𝑒, the
�bre 𝐹𝑛+1 consists of points of the form (𝑣, 𝑒0), where 𝑒 is the base point, and
𝑣 ∈ Ω𝐹 (𝑝𝑛−2), and therefore is homeomorphic to the space Ω𝐹 (𝑝𝑛−2). □

To write the homotopy equivalences 𝑗𝑛 : Ω𝐹 (𝑝𝑛−3) → 𝐹 (𝑝𝑛), 𝑛 ≥ 1, ex-
plicitly, we note that for 𝑛 ≥ 1 each point 𝑒 ∈ 𝐹 (𝑝𝑛−1) in turn has the form
(𝑢, 𝑏), where 𝑢 ∈ 𝑃𝐹 (𝑝𝑛−3), 𝑏 ∈ 𝐹 (𝑝𝑛−1) and 𝑢(1) = 𝑝𝑛−1 (𝑏), and 𝑝𝑛 (𝑒) = 𝑏.
Therefore, the points of the space 𝐹 (𝑝𝑛) can be considered as pairs (𝑣, 𝑢), where
𝑣 ∈ 𝑃𝐹 (𝑝𝑛−1), 𝑢 ∈ 𝑃𝐹 (𝑝𝑛−3), 𝑢(1) = 𝑝𝑛−1 (𝑣(1)), and then the map 𝑗𝑛 will be
determined by the formula 𝑗𝑛 (𝑢) = (0, 𝑢) (and the map 𝑝𝑛+1 - by the formula
𝑝𝑛+1 (𝑣, 𝑢) = (𝑢, 𝑣(1))).

It is natural to expect that the homotopy equivalences of 𝑗𝑛 will constitute
a homotopy isomorphism of sequence (5.86) to sequence (5.85) without the last
three terms, i.e. that the corresponding squares will be homotopy commutative.
However, this is not the case, and here we are faced with one of those rare
cases when seemingly completely natural constructions lead to noncommutative
diagrammes.

To achieve commutativity, each homotopy equivalence 𝑗𝑛 with an odd num-
ber 𝑛 must be combined with the homotopy equivalence Ω𝐹 (𝑝𝑛−3) → Ω𝐹 (𝑝𝑛−3),
𝑢 ↦→ 𝑢−1, where, as always, 𝑢−1 : 𝑡 ↦→ 𝑢(1− 𝑡), 𝑡 ∈ 𝐼. In accordance with this, we
will de�ne homotopy equivalences

𝑘𝑛 : Ω𝐹 (𝑝𝑛−3) → 𝐹 (𝑝𝑛), 𝑛 ≥ 1,
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by the formula

𝑘𝑛 (𝑢) =
{
(0, 𝑢−1), if 𝑛 odd,

(0, 𝑢), if 𝑛 even,
𝑢 ∈ Ω𝐹 (𝑝𝑛−3).

These homotopy equivalences already constitute a homotopic isomorphism, i.e.

Proposition 5.88. the diagramme (5.89) is homotopy commutative.

· · · // Ω𝐹 (𝑝𝑛−2)
Ω𝑝𝑛−2 //

𝑘𝑛+1
��

Ω𝐹 (𝑝𝑛−3) //

𝑘𝑛

��

· · ·

· · · // 𝐹 (𝑝𝑛+1) 𝑝𝑛+1
// 𝐹 (𝑝𝑛) // · · ·

· · · // Ω𝐹 (𝑝) Ω𝑝1 //

𝑘3

��

Ω𝐸
Ω𝑝 //

𝑘2

��

Ω𝐵

𝑘1

��
· · · // 𝐹 (𝑝3) 𝑝4

// 𝐹 (𝑝2) 𝑝3
// 𝐹 (𝑝1) 𝑝2

// 𝐹 (𝑝)
𝑝1
// 𝐸

𝑝
// 𝐵

(5.89)

Proof. Indeed, the map 𝑝𝑛+2 ◦ 𝑘𝑛+1 translates each loop 𝜔𝜀 , 0 to the point
(𝜔𝜀 , 0), where 𝜀 = (−1)𝑛+1, and the map 𝑘𝑛 ◦ Ω𝑝𝑛−1 - to the point (0, (𝑝𝑛−1 ◦
𝜔)−𝜀) = (0, 𝑝𝑛−1 ◦ 𝜔−𝜀). Therefore, the homotopy (𝜔, 𝜏) ↦→ (𝑣𝜔 , 𝑢𝜔,𝜏), (𝜔, 𝜏) ∈
Ω𝐹 (𝑝𝑛−2) × 𝐼, where the paths 𝑣𝜔,𝜏 , ∈ 𝑃𝐹 (𝑝𝑛−2), 𝑢𝜔,𝜏 ∈ 𝑃𝐹 (𝑝𝑛−3) are de�ned
by formulae

𝑣𝜔,𝜏 = 𝜔
𝜀 ((1 − 𝜏)𝑡), 𝑢𝜔,𝜏 = (𝑝𝑛−1 ◦ 𝜔𝜀) (1 − 𝜏𝑡)

(it is clear that these paths satisfy the relation 𝑢𝜔,𝜏 (1) = 𝑝𝑛−1 (𝑣𝜔,𝜏 (1)), connects
the �rst map with the second. □

Now applying the functor Ω to Diagramme (5.89), we obtain a homotopy
commutative diagramme whose vertical arrows are also homotopy equivalences.
Since the bottom line of this diagramme coincides with the top line of diagram
(5.89), they can be stitched into one three-line homotopy commutative diagram.

Iterating this construction, we get an in�nite to the left and up homotopy
commutative diagram, all vertical arrows of which are homotopy equivalences,
the bottom line is a sequence (5.85), and each next line is obtained from the
previous one by applying the functor Ω and shifting three terms to the left.

In Diagramme 5.90, the maps

𝑞1 = 𝑝2 ◦ 𝑘1,Ω𝑞1,Ω2𝑞1 . . . ,
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···
//Ω

3
𝐵

𝑘
1

��

Ω
2
𝑞
1##

···
//Ω

2
𝐹
(
𝑝
1 )

//

𝑘
4

��

Ω
2
𝐹
(
𝑝) Ω

2
𝑝
1
//

Ω
𝑘
3

��

Ω
2
𝐸

Ω
2
𝑝
//

Ω
𝑘
2

��

Ω
2
𝐵

Ω
𝑘
1

��

Ω
𝑞
1!!

···
//Ω
𝐹
(
𝑝
4 )

Ω
𝑝
5//

𝑘
7

��

Ω
𝐹
(
𝑝
3 )

Ω
𝑝
4//

𝑘
6

��

Ω
𝐹
(
𝑝
2 )

Ω
𝑝
3//

𝑘
5

��

Ω
𝐹
(
𝑝
1 )

Ω
𝑝
2//

𝑘
4

��

Ω
𝐹
(
𝑝)

Ω
𝑝
1
//

𝑘
3

��

Ω
𝐸)

Ω
𝑝
//

𝑘
2

��

Ω
𝐵

𝑞
1��

𝑘
1

��
···

//𝐹
(
𝑝
7 )

𝑝
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//𝐹
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6 )

𝑝
7
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(
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are attached to it, stitching the �terminal� three-term sequences of each line into
a single sequence

· · · → Ω𝑛+1𝐵
Ω𝑛𝑞1−−−−→ Ω𝑛𝐹 (𝑝)

Ω𝑛 𝑝1−−−−→ Ω𝑛𝐸
Ω𝑛 𝑝
−−−→ Ω𝑛𝐵→

· · · → Ω𝐵
𝑞1−−→ 𝐹 (𝑝)

𝑝1−−→ 𝐸
𝑝
−→ 𝐵

(5.91)

De�nition 5.92. The sequence (5.91) of pointed spaces is called the Puppe
sequence (or resolvent) of the map 𝑝 : 𝐸 → 𝐵.

This sequence Ω is periodic in the sense that under the in�uence of the Ω

functor, it shifts three terms to the left as a whole, and therefore each of its three
consecutive terms after applying this functor pass into the next three terms.

It is clear that the compositions of the vertical arrows of Diagramme 5.90
constitute a homotopy isomorphism of the Pupe sequence to the sequence (5.85)
of iterated homotopy �bres of the map 𝑝. Hence,

Proposition 5.93. the Puppe sequence is an exact sequence, i.e., for any
pointed space 𝑋, there is an exact sequence

· · · → [𝑋,Ω𝑛+1𝐵]• → [𝑋,Ω𝑛𝐹]• → [𝑋,Ω𝑛𝐸]• → [𝑋,Ω𝑛𝐵]• → · · · . (5.94)

At the same time, according to the results of the Appendix to Lecture 4, all
members of the sequence (5.94) are abelian groups (and the maps connecting
them are homomorphisms), except for the last six

· · · → [𝑋,Ω𝐹]• → [𝑋,Ω𝐸]• → [𝑋,Ω𝐵]• → [𝑋, 𝐹]• → [𝑋, 𝐸]• → [𝑋, 𝐵]•,

of which the �rst three are groups and the last three are pointed sets.
In the special case when the map 𝑝 : 𝐸 → 𝐵 is a �bration (at least ho-

motopy), the homotopy �brer 𝐹 (𝑝) in the Puppe sequence can be replaced by
an ordinary �bre 𝐹 of the �bration 𝑝 (while, of course, replacing the map 𝑝1
with the embedding 𝑖 : 𝐹 → 𝐸 , and the map 𝑞1 is the corresponding map
𝑞 : Ω𝐵→ 𝐹). The resulting sequence

· · · → Ω𝑛+1𝐵
Ω𝑛𝑞
−−−→ Ω𝑛𝐹

Ω𝑛𝑖−−−→ Ω𝑛𝐸
Ω𝑛 𝑝
−−−→ Ω𝑛𝐵→ · · · → Ω𝐵

𝑞
−→ 𝐹

𝑖−→ 𝐸
𝑝
−→ 𝐵

(5.95)
is called the Puppe sequence of the �bration 𝑝. It is, of course, also exact.

Remark 5.96. The map 𝑞 : Ω𝐵 → 𝐹 in the sequence (5.95) depends on the
choice of the section 𝑠 : Cocyl(𝑝) → 𝐸 𝐼 by the axiom CP and maps to the loop
𝑢 ∈ Ω𝐵 the end of the path 𝑠(𝑒0, 𝑢) starting at the point 𝑒0 ∈ 𝐹 and covering
this loop:

𝑞(𝑢) = 𝑠(𝑒0, 𝑢) (1), 𝑢 ∈ Ω𝐵.

Therefore, the statement about the exactness of the sequence (5.95) in the
term 𝐹 (which is the main stumbling block when trying to directly - not using
Proposition 2.57 from the Appendix to Lecture 2 - prove the exactness of this
sequence) boils down to the statement that the map 𝐸 𝐼 → 𝑅𝐼 de�ned by the
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formula 𝑣 ↦→ 𝑠(𝑣(0), 𝑝 ◦ 𝑣), 𝑣 ∈ 𝐸 𝐼 , can be related to the identity map by a
homotopy 𝑓𝑡 : 𝐸

𝐼 → 𝐸 𝐼 , such that for any path 𝑣 ∈ 𝐸 𝐼 the path 𝑝 ◦ 𝑓𝑡𝑣 ∈ 𝐵 does
not depend on 𝑡. It will be a very good exercise for the reader to try to prove
the last statement and deduce from it the exactness of the sequence (5.95) in
the term 𝐹.

Remark 5.97. If there is a cross section 𝑠 : 𝐵 → 𝐸 to the map 𝑝 : 𝐸 → 𝐵, then
the map Ω𝑠 : Ω𝐵→ Ω𝐸 will be a cross section of the map Ω𝑝 : Ω𝐸 → Ω𝐵, from
which it directly follows that for any space 𝑋 the homomorphism [𝑋,Ω𝐸]• →
[𝑋,Ω𝐵]• is an epimorphism. Therefore, the sequence (5.94) crumbles into a
short exact sequences

0→ [𝑋,Ω𝑛𝐹 (𝑝)]• → [𝑋,Ω𝑛𝐸]• → [𝑋,Ω𝐵]• → 0, 𝑛 ≥ 0,

and, therefore, the sequence (5.91) is a short exact sequences

pt→ Ω𝑛𝐹 (𝑝) → Ω𝑛𝐸 → Ω𝑛𝐵→ 0, 𝑛 ≥ 0.

In particular, we see that if in sequence (5.69) the map 𝑝 is a �bration having a
section (and the map 𝑖 is an embedding of its �bre), then this sequence is exact.
(See Remark 5.70 above.)

Using the adjointness between the functors Ω and 𝑆•, the sequence (5.94)
can also be rewritten in the following form:

· · · → [𝑆𝑛+1𝑋, 𝐵]• → [𝑆𝑛𝑋, 𝐹]• → [𝑆𝑛𝑋, 𝐸]• → [𝑆𝑛𝑋, 𝐵]• → · · · . (5.98)

A special case of the sequence (5.98) (obtained for 𝑋 = S0) is the homotopy
sequence of the �bration 𝑝 : 𝐸 → 𝐵.

Remark 5.99. An analogue of the sequence (5.98) (obtained by replacing 𝐹 with
𝐹 (𝑝)) holds, of course, for any map 𝑝 : 𝐸 → 𝐵; in particular, - for 𝐸 ⊂ 𝐵 - for
embedding 𝐸 → 𝐵. At the same time, it is easy to see that in the latter case,
the space 𝐹 (𝑝) is nothing more than the path space 𝑃(𝐵, pt, 𝐸) of the space 𝐵
starting at the base point and ending in the subspace 𝐸 .

5.F The extended Puppe sequence of a classify-
ing �bration

We will call the pointed �bration 𝑝 : 𝐸 → 𝐵 classi�ed if it is induced (by some
map 𝜑 : 𝐵 → 𝐵0, called a classifying map) �bration 𝑝0 : 𝐸0 → 𝐵0 with a
contractible space 𝐸0, i.e. if there exists a universal square

𝐸
𝜑#

//

𝑝

��

𝐸0

𝑝0

��
𝐵

𝜑
// 𝐵0

(5.100)
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in which the map 𝑝0 is a �bration, and the space 𝐸0 is contractible.
For classi�ed �brations 𝑝 : 𝐸 → 𝐵, a simple necessary and su�cient condi-

tion for the solubility of an arbitrary lifting problem can be speci�ed

𝐸

𝑝

��
𝑋

𝑓
//

𝑓

??

𝐵

(5.101)

Proposition 5.102. If the �bration 𝑝 : 𝐸 → 𝐵 in problem (5.101) is classi�ed

and if 𝜑 : 𝐵→ 𝐵0 is a classifying map, then the covering map 𝑓 : 𝑋 → 𝐸 exists
if and only if the map 𝜑 ◦ 𝑓 : 𝑋 → 𝐵0 is null homotopic.

Proof. Diagrammes (5.100) and (5.101) can be stitched into one diagramme

𝐸
𝜑∗ //

𝑝

��

𝐸0

𝑝0

��
𝑋

𝑓
//

𝑓

??

𝐵
𝜑
// 𝐵0

If the map 𝑓 exists, then 𝜑 ◦ 𝑓 = 𝑝0 ◦ 𝜑# ◦ 𝑓 . Since the space 𝐸0 is contractible,

𝜑# ◦ 𝑓 = id ◦𝜑# ◦ 𝑓 ∼ const ◦𝜑# ◦ 𝑓 = const

and therefore 𝑝0 ◦ 𝜑# ◦ 𝑓 ∼ const. Hence, 𝜑 ◦ 𝑓 ∼ const. (Note that we did not
use the universality of square (5.100) in this argument.)

Conversely, let 𝜑 ◦ 𝑓 ∼ const. Since the constant map is covered, then by
applying the axiom CP (applied to the �bration 𝑝0) there is a map 𝑔 : 𝑋 → 𝐸0

covering the map 𝜑 ◦ 𝑓 , i.e. such that the pair ( 𝑓 , 𝑔) is a cone over the pair
(𝜑, 𝑝0). Consequently, due to the universality of the square (5.100), there is a

morphism 𝑓 : 𝑋 → 𝐸 of this pair into the pair (𝑝, 𝜑#). This morphism will be
the map covering the map 𝑓 . □

Remark 5.103. In the last argument, we did not use the contractibility of the
space 𝐸0. Therefore, if the �bration 𝑝 : 𝐸 → 𝐵 is induced from some (other)
�bration 𝑝0 : 𝐸0 → 𝐵0 by a map 𝜑 : 𝐵 → 𝐵0, then for any diagram (5.101) in
which the map 𝑓 has the property that 𝜑 ◦ 𝑓 ∼ const, there is a covering map
𝑓 .

This simple su�cient condition for the solubility of the lifting problem is
surprisingly often useful.

The existence of the map 𝑓 is equivalent to the fact that the element [ 𝑓 ] of
the pointed set [𝑋, 𝐵]• belongs to the image im 𝑝∗ of the map 𝑝∗ : [𝑋, 𝐸]′• →
[𝑋, 𝐵]•, and the condition 𝜑 ◦ 𝑓 ∼ const is that this element belongs to the
kernel ker 𝜑∗ of the map 𝜑∗ : [𝑋, 𝐵]• → [𝑋, 𝐵0]•. Therefore, the statement of
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Proposition 5.102 is equivalent to the equality im 𝑝∗ = ker 𝜑∗, i.e., the statement
about the exactness of the sequence

[𝑋, 𝐸]•
𝑝∗−−→ [𝑋, 𝐵]•

𝜑∗−−→ [𝑋, 𝐵0]•,

or, in other words, about the exactness of the sequence

𝐸
𝑝
−→ 𝐵

𝜑
−→ 𝐵0.

Thus, we see that without loss of exactness, the Puppe sequence of the
classi�ed map 𝑝 : 𝐸 → 𝐵 can be extended on the right by one term. The
resulting exact sequence

· · · → Ω𝑛𝐹
Ω𝑛𝑖−−−→ Ω𝑛𝐸

Ω𝑛 𝑝
−−−→ Ω𝑛𝐵

Ω𝑛𝜑
−−−→ Ω𝑛−1𝐹 → · · ·

· · · → 𝐹
𝑖−→ 𝐸

𝑝
−→ 𝐵

𝜑0−−→ 𝐵0

(5.104)

is called the extended sequence of a Puppe classi�ed �bration.
It should be borne in mind that for the exactness of the sequence (5.104),

the classi�cation of the �bration 𝑝 is only su�cient, but not necessary. For
example, according to Remark 5.97, this sequence will remain exact if, in the
universal square (5.100), the conditions for the contractibility of the space 𝐸0

are replaced by a weaker condition such that the map 𝑝 ◦ 𝜑 : 𝐸 → 𝐵0 is null
homotopic.

5.G Mapping cones and Puppe exact sequences

Let us now consider the dual situation.
Let 𝑖 : 𝐴 → 𝑋 be an arbitrary pointed map, Cyl• (𝑖) be its reversed reduced

cylinder and 𝑗 : 𝐴→ Cyl• (𝑖) be the co�bration of 𝑎 ↦→ [𝑎, 0], 𝑎 ∈ 𝐴,

De�nition 5.105. The co�bre

𝐶• (𝑖) = Cyl• (𝑖)/ 𝑗 𝐴 (5.106)

of the co�brationi 𝑗 is called the (reduced) cone of the map 𝑖. It is obtained
from the cone 𝐶•𝐴 over the space 𝐴 by gluing the space 𝑋 to it by the map
[𝑎, 1] ↦→ 𝑖𝑎.

In particular, if 𝐴 ⊂ 𝑋 and 𝑖 is an inclusion, then

𝐶• (𝑖) = 𝐶𝐴 ∪ 𝑋

(see Fig. 5.G.1).
If, in addition, the pair (𝑋, 𝐴) is a co�bration, then

Proposition 5.107. the pointed cone 𝐶• (𝑖) is homotopically equivalent to the
co�bre 𝑋/𝐴 of the pair (𝑋, 𝐴)
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Figure 5.G.1:

Proof. since this co�bre is naturally homeomorphic to the co�bre 𝐶• (𝑖)/𝐶𝐴,
which, according to Lemma 4.46 of Lecture 4, is homotopically equivalent to
the space 𝐶• (𝑖) (the conditions of this lemma are ful�lled, since the cone 𝐶𝐴
is contractible, and the pair (𝐶• (𝑖), 𝐶𝐴) is relatively homeomorphic to the co�-
bration (𝑋, 𝐴) and therefore is also a co�bration). □

Replacing in the coexat sequence (10) with a co�bre 𝑋/𝐴 on the cone𝑊𝐶• (𝑖),
we get the sequence

𝐴
𝑖−→ 𝑋

𝑖1−→ 𝐶• (𝑖), (5.108)

where 𝑖1 is the natural inclusion (which is obviously a co�bration). The sequence
(5.108) is coexact, being homotopically isomorphic to the coexact sequence

𝐴→ Cyl• (𝑖) → 𝐶• (𝑖).

Putting 𝑖𝑛 = (𝑖𝑛−1)1, 𝑖0 = 𝑖, we therefore get an in�nite right-hand coexact
sequence

𝐴
𝑖−→ 𝑋

𝑖1−→ 𝐶• (𝑖1) → · · · → 𝐶• (𝑖𝑛−1)
𝑖𝑛+1−−−→ 𝐶• (𝑖𝑛) → · · · (5.109)

all maps of which are co�brations, except, maybe the �rst one. The members
of 𝐶• (𝑖𝑛) of this sequence are called iterated cones of the map 𝑖.

It is obvious that the cone 𝐶• (𝑖1) is homotopically equivalent to the sus-
pension 𝑆•𝐴 (which is the �bre 𝐶• (𝑖)/𝑋 = (𝐶𝐴 ∪ 𝑋)/𝑋 of the co�bration 𝑖1),
the cone 𝐶• (𝑖2) is homotopically equivalent to the suspension 𝑆•𝑋 (which is a
co�bre of the co�bration 𝑖2) and, in general, the cone 𝐶• (𝑖𝑛) is homotopically
equivalent to the suspension 𝑆•𝐶 (𝑖𝑛−3) over the cone 𝐶• (𝑖𝑛−3) (it is convenient
to assume that 𝐶• (𝑖−2) = 𝐴, 𝐶• (𝑖−1) = 𝑋).

By de�nition, each point of the cone 𝐶• (𝑖𝑛), 𝑛 ≥ 1, either has the form [𝑥, 𝑡],
where 𝑥 ∈ 𝐶• (𝑖𝑛−2), 𝑡 ∈ 𝐼, or a point from 𝐶• (𝑖𝑛−1), which has the form [𝑎, 𝑡],
where 𝑎 ∈ 𝐶• (𝑖𝑛−3), 𝑡 ∈ 𝐼. In other words, 𝐶• (𝑖𝑛) = 𝐶•𝐶• (𝑖𝑛−2) ∪ 𝐶•𝐶• (𝑖𝑛−3).

map 𝑖𝑛+2 of the cone

𝐶• (𝑖𝑛) = 𝐶•𝐶• (𝑖𝑛−2) ∪ 𝐶•𝐶• (𝑖𝑛−3)
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to the cone

𝐶• (𝑖𝑛+1) = 𝐶•𝐶• (𝑖𝑛−1) ∪ 𝐶•𝐶• (𝑖𝑛−2)

is on 𝐶•𝐶• (𝑖𝑛−2) an identical map, and on 𝐶•𝐶• (𝑖𝑛−3)

𝐶• (𝑖𝑛−1) = 𝐶•𝐶• (𝑖𝑛−3) ∪ 𝐶•𝐶• (𝑖𝑛−4)

is an embedding of the cone 𝐶•𝐶• (𝑖𝑛−1). Thus

𝑖𝑛+2 [𝑥, 𝑡] = [𝑥, 𝑡], 𝑥 ∈ 𝐶• (𝑖𝑛−2), 𝑡 ∈ 𝐼,
𝑖𝑛+2 [𝑎, 𝑡] = [[𝑎, 𝑡], 0], 𝑎 ∈ 𝐶• (𝑖𝑛−3), 𝑡 ∈ 𝐼,

Homotopy equivalence 𝑗𝑛 : 𝐶• (𝑖𝑛) → 𝑆•𝐶• (𝑖𝑛−3) for points [𝑥, 𝑡] ∈ 𝐶•𝐶• (𝑖𝑛−2)
translates to the base point pt, and the points [𝑎, 𝑡] ∈ 𝐶•𝐶• (𝑖𝑛−1) - to the
points of the suspension 𝑆•𝐶• (𝑖𝑛−3) denoted by the same symbol [𝑎, 𝑡]. We
de�ne the homotopy equivalence 𝑘𝑛 : 𝐶• (𝑖𝑛) → 𝑆•𝐶• (𝑖𝑛−3), assuming that the
points [𝑥, 𝑡] ∈ 𝐶•𝐶• (𝑖𝑛−2) still translate to the point pt, and on the points
[𝑎, 𝑡] ∈ 𝐶•𝐶• (𝑖𝑛−3), 𝑎 ∈ 𝐶• (𝑖𝑛−3), 𝑡 ∈ 𝐼, de�ned by the formula

𝑘𝑛 ( [𝑎, 𝑡]) =
{
[𝑎, 1 − 𝑡], if 𝑛 is odd,

[𝑎, 𝑡], if 𝑛 is even.

Then it is easy to see that

Proposition 5.110. the diagramme

𝐴
𝑖 // 𝑋

𝑖1 // 𝐶• (𝑖) 𝑖2 // 𝐶• (𝑖1)
𝑖3 //

𝑘1

��

𝐶• (𝑖2) //

𝑘2

��

· · ·

𝑆• (𝐴)
𝑆•𝑖

// 𝑆• (𝑋) // · · ·

· · · // 𝐶• (𝑖𝑛)
𝑖𝑛+2 //

𝑘𝑛

��

𝐶• (𝑖𝑛+1) //

𝑘𝑛+1
��

· · ·

· · · // 𝑆•𝐶• (𝑖𝑛−3)
𝑆•𝑖𝑛−1

// 𝑆•𝐶• (𝑖𝑛−2) // · · ·

is homotopically commutative.

Proof. Indeed, every point from 𝐶• (𝑖𝑛) of the form [𝑎, 𝑡], 𝑎 ∈ 𝐶• (𝑖𝑛−2), 𝑡 ∈ 𝐼,
the map 𝑆•𝑖𝑛−1 ◦ 𝑘𝑛 translates, depending on the parity of 𝑛, either to the point
[𝑖𝑛−1𝑎, 1− 𝑡], or to the point [𝑖𝑛−1𝑎, 𝑡], and the map 𝑘𝑛+1◦𝑖𝑛+2 - to the base point
pt. On the contrary, every point from 𝐶• (𝑖𝑛) of the form [𝑥, 𝑡], 𝑥 ∈ 𝐶• (𝑖𝑛−2),
𝑡 ∈ 𝐼, the map 𝑆•𝑖𝑛−1 ◦ 𝑘 translates to the point pt, and the map 𝑘𝑛+1 ◦ 𝑖𝑛+2 -
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either to the point [𝑖𝑛+2𝑥, 𝑡], or to the point [𝑖𝑛+2𝑥, 1 − 𝑡]. Thus, (for 𝑛 ≥ 4)

(𝑆• ◦ 𝑘𝑛) [𝑎, 𝑡] =
{
[𝑎, 1 − 𝑡] or [𝑎, 𝑡] if 𝑎 ∈ 𝐶•𝐶• (𝑖𝑛−5),
[[𝑎, 1 − 𝑡], 0] or [𝑎, 𝑡, 0] if 𝑎 ∈ 𝐶•𝐶• (𝑖𝑛−6),

(𝑘𝑛+1 ◦ 𝑖𝑛−2) [𝑎, 𝑡] = pt,

(𝑆•𝑖𝑛−1 ◦ 𝑘𝑛) [𝑥, 𝑡] = pt,

(𝑘𝑛+1 ◦ 𝑖𝑛+2) [𝑎, 𝑡] =
{
[𝑥, 𝑡] or [𝑥, 1 − 𝑡] if 𝑎 ∈ 𝐶•𝐶• (𝑖𝑛−4),
[[𝑥, 𝑡], 0] or [[𝑥, 1 − 𝑡], 0] if 𝑎 ∈ 𝐶•𝐶• (𝑖𝑛−5).

With 𝑛 ≤ 4, the formulae are only simpli�ed. For example, when 𝑛 = 1 the map
𝑆•𝑖0 ◦ 𝑘1 = 𝑆•𝑖 ◦ 𝑘1 and 𝑘2 ◦ 𝑘𝑖3 from 𝐶• (𝑖1) = 𝐶𝑋 ∪ 𝐶𝐴 (see Fig. 5.G.2). to

Figure 5.G.2:

𝐶• (𝑖−1) = 𝑆•𝑋 are given by formulae

(𝑆• ◦ 𝑘1) [𝑎, 𝑡] = [𝑖𝑎, 1 − 𝑡] [𝑎, 𝑡] ∈ 𝐶𝐴,
(𝑘2 ◦ 𝑖3) [𝑎, 𝑡] = pt [𝑎, 𝑡] ∈ 𝐶𝐴,
(𝑆•𝑖 ◦ 𝑘1) [𝑥, 𝑡] = pt [𝑥, 𝑡] ∈ 𝐶𝑋,
(𝑘2 ◦ 𝑖3) [𝑥, 𝑡] = [𝑥, 𝑡] [𝑥, 𝑡] ∈ 𝐶𝑋.

Putting

𝑔𝜏 [𝑎, 𝑡] = [𝑖𝑎, 1 − 𝜏 + 𝜏𝑡], [𝑎, 𝑡] ∈ 𝐶𝐴,
𝑔𝜏 [𝑥, 𝑡] = [𝑥, 𝜏𝑡], [𝑥, 𝑡] ∈ 𝐶𝑋,

we will obviously get a homotopy 𝑔𝜏 : 𝐶
• (𝑖1) → 𝑆•𝑋, connecting 𝑆𝑏𝑢𝑙𝑙𝑒𝑡 𝑖 ◦ 𝑘 with

the map 𝑘2 ◦ 𝑖3. For 𝑛 > 1, the homotopy 𝑔𝜏 is constructed, but essentially the
same way. □

It follows from this that, without violating the exactness, we can replace
in sequence (5.109) the part starting with the term 𝐶• (𝑖1) with the result of
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applying the 𝑆• functor to sequence (5.109). Iterating this construction, we get
an in�nite right 𝑆•-periodic co-exact sequence

𝐴
𝑖−→ 𝑋

𝑖1−→ 𝐶• (𝑖) 𝑘−→ 𝑆1𝐴→ · · · → 𝑆𝑛𝐴
𝑆𝑛𝑖−−−→ 𝑆𝑛𝑋

𝑆𝑛𝑖1−−−→ 𝑆𝑛𝐶• (𝑖) 𝑆
𝑛𝑘−−−→ 𝑆𝑛+1𝐴→ · · · ,

(5.111)
where 𝑘 = 𝑘1 ◦ 𝑖2. This sequence is called the Puppe coexact sequence (or co-
resolvent) of the map 𝑖 : 𝐴→ 𝑋.

In the case when the map 𝑖 is also a co�bration (an embedding corresponding
to the co�bration (𝑋, 𝐴)), the sequence (5.111) is homotopically isomorphic to
the coexact sequence

𝐴
𝑖−→ 𝑋 → 𝑗 𝑋/𝐴 𝑘−→ 𝑆1𝐴→ · · · → 𝑆𝑛𝐴

𝑆𝑛 𝑗
−−−→ 𝑆𝑛 (𝑋/𝐴) 𝑆

𝑛𝑘−−−→ · · · , (5.112)

where 𝑗 : 𝑋 → 𝑋/𝐴 is the factorisation map. The sequence (5.112) is called the
Puppe coexact sequence of the co�bration (𝑋, 𝐴) (or the co�bration 𝑖 : 𝐴→ 𝑋).

By de�nition, the sequence (5.112) is exact means that

Proposition 5.113. for any pointed space 𝑌 there is an exact sequence

· · · → [𝑆𝑛 (𝑋/𝐴), 𝑌 ]• → [𝑆𝑛𝑋,𝑌 ]• → [𝑆𝑛𝐴,𝑌 ]• → · · · , (5.114)

all members of which are abelian groups, except the last six:

· · · → [𝑆(𝑋/𝐴), 𝑌 ]• → [𝑆𝑋,𝑌 ]• → [𝑆𝐴,𝑌 ]• → [𝑋/𝐴,𝑌 ]• → [𝑋,𝑌 ]• → [𝐴,𝑌 ]•,

of which the �rst three are groups, and the last three are pointed sets.

If the co�bration (𝑋, 𝐴) is classi�ed, i.e. 𝑋 = 𝐴 ∪ 𝑋0, where the space 𝑋0

is contractible, and the pair (𝑋0, 𝐴0), 𝐴0 = 𝑋0 ∩ 𝐴, is a co�bration, then the
Puppe sequence of cco�bration can be extended by one term to the left while
preserving the exactness:

𝐴0
𝜑
−→ 𝐴

𝑖−→ 𝑋 → · · ·

where 𝜑 : 𝐴0 → 𝐴 is an embedding (the same will remain true if the condition
for the contractibility of the space 𝑋0 is replaced by a weaker condition such
that the embedding 𝑖 ◦ 𝜑0 : 𝐴0 → 𝑋 was null homotopic).

In the theory of functors dual to the functors of homotopic groups (we will
deal with these functors in the next semester), Puppe coexact sequences play
the same role as exact Puppe sequences (more precisely, their special cases are
homotopy sequences of �brations) in the theory of homotopy groups.



Lecture 6

In this lecture, using the identi�cation of coverings with �brations having dis-
crete �bres, we will state the basic properties of covering spaces and on this basis
we will obtain practical methods of calculation of fundamental groups. �Direct�
methods that are not related to covers will be described in the Appendix.

6.1 The lifting problem for coverings

A remarkable property of coverings (determining success their application in
concrete calculations) consists in the fact that it is possible for them (under very
broad general methodological assumptions) to specify a necessary and su�cient
condition for the solubility of an arbitrary lifting problem

𝑋

𝑝

��
𝑌

𝑓
//

𝑓̃

??

𝑋

(6.1)

We will consider this problem in the category of 𝒯ℴ𝓅•, i.e. assuming that
𝑝 and the given map 𝑓 are pointed maps and requiring that the desired map
𝑓̃ is also pointed. By applying this assumption, we can, following the general
method of algebraic topology described in Lecture 0, apply the functor 𝜋1 to
Diagramme (6.1). A necessary condition for the solubility of the corresponding
algebraic problem

𝜋1𝑋

𝑝∗

��
𝜋1𝑌

𝑓∗
//

𝜑

<<

𝜋1𝑋

is the inclusion of
im 𝑓∗ ⊂ im 𝑝∗, (6.2)

since if 𝜑 exists, then im 𝑓∗ = im(𝑝∗◦𝜑) = 𝑝∗ (im 𝜑) ⊂ im 𝑝∗. Therefore, inclusion
(6.2) is necessary for the solubility of problem (6.1).

207
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The question of the su�ciency of this condition is no longer subject to al-
gebraic methods and should be solved by direct geometric construction. At the
same time, of course, we can consider the pointed space 𝑌 connected without
loss of generality.

First of all, we note that

Proposition 6.3. for a connected space 𝑌 , the covering map 𝑓̃ , when it exists,
is unique.

Proof. Indeed, let 𝑓 be another covering map, and let 𝐵 be a subset of the space
𝑌 consisting of all points 𝑏 ∈ 𝑌 , for which 𝑓 (𝑏) = 𝑓̃ (𝑏). This subset contains
the base point and therefore is non empty. Let 𝑏 ∈ 𝑌 and 𝑥 = 𝑓 (𝑏). By the
condition, there exists a neighbourhood 𝑈 of the point 𝑥 such that the set 𝑝−1𝑈
is a disjoint union of open sets 𝑈𝛼, each of which 𝑝 maps homeomorphically onto
𝑈. If 𝑏 ∈ 𝐵, then let 𝑈 be one of these sets that contains the point 𝑓 (𝑏) = 𝑓̃ (𝑏).
Then the set 𝑓

−1 (𝑈)∩ 𝑓̃ −1 (𝑈) is open in 𝑌 , contains the point 𝑏 and is contained
in 𝐵. Therefore, the set 𝐵 is open in 𝑌 . If 𝑏 ∉ 𝐵 and, therefore, 𝑓 (𝑏) ≠ 𝑓̃ (𝑏), then
the points 𝑓 (𝑏) and 𝑓̃ (𝑏) belong to two di�erent sets 𝑈𝛼, say, 𝑈1 and 𝑈2. Then

the set 𝑓
−1 (𝑈1) ∩ 𝑓̃ −1 (𝑈2) is open in 𝑌 , contains the point 𝑏 and is contained

in 𝑌 \ 𝐵. Hence, the set 𝐵 is closed. Being a non-empty, open and closed subset
of a connected space 𝑌 , it coincides with all 𝑌 . Therefore 𝑓 = 𝑓̃ . □

It follows that

Proposition 6.4. the maps 𝑓̃ , 𝑔̃ : 𝑌 → 𝑋 are homotopic if the maps 𝑓 = 𝑝 ◦ 𝑓̃ ,
𝑔 = 𝑝 ◦ 𝑔̃ are homotopic.

Proof. Indeed, according to the axiom CP, the homotopy 𝐺 connecting the
maps 𝑓 and 𝑔 can be covered by the homotopy 𝐺 connecting the map 𝑓̃ with
some map, covering the map 𝑔 and therefore coinciding with the map 𝑔̃. □

At the same time, if the homotopy 𝐺 is stationary on some subspace 𝐵 ⊂ 𝑌 ,
then for any point 𝑏 ∈ 𝐵, the path 𝑡 ↦→ 𝐺 (𝑏, 𝑡) will lie in the �bre above the
point 𝑏 and therefore, due to the discreteness of this �bre, it will be a constant
map, i.e. the homotopy 𝐺 will also be �xed on 𝐵. Therefore, in particular, the
maps 𝑓̃ and 𝑔̃ will coincide on 𝐵. Thus,

Proposition 6.5. in order to prove that the maps 𝑓̃ , 𝑔̃ : 𝑌 → 𝑋 coinciding on
the subspace 𝐵 ⊂ 𝑌 , it is su�cient to prove that the maps 𝑝 ◦ 𝑓̃ , 𝑝 ◦ 𝑔̃ : 𝑌 → 𝑋

coincide on 𝐵 and are homotopic relative to 𝐵.

This way of proving a match on 𝐵 of maps 𝑌 → 𝑋 is often useful.
Recall now (see [9]) that the space 𝑌 is called locally (linearly) connected if

any component of each of its open sets is an open set (or, equivalently, each
neighbourhood of an arbitrary point contains a connected neighbourhood).

Lemma 6.6. For any connected and locally connected pointed space 𝑌 , the Serre
�bration

𝜔1 : 𝑃𝑌 → 𝑌, 𝑢 ↦→ 𝑢(1),
is an epiomorphism.
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Proof. Since the space 𝑌 is connected, the map 𝜔1 is surjective. Therefore, we
only need to prove that every set 𝑉 ⊂ 𝑌 whose complete preimage 𝜔−11 𝑉 is open
in 𝑃𝑌 is open in 𝑌 . But by the de�nition of topology in 𝑃𝑌 , the openness of
the set 𝜔−11 𝑉 means that it is a union of �nite intersections of sets of the form
𝒲(𝐾,𝑈) ∩ 𝑃𝑌 , where, recall, 𝐾 is a compact (=closed) subset of the segment 𝐼,
𝑈 is an open subset of the space 𝑌 , and𝒲(𝐾,𝑈) is the set of all paths 𝑢 : 𝐼 → 𝑌

having the property that 𝑢(𝐾) ⊂ 𝑈. Therefore, for any path 𝑢0 ∈ 𝜔−1𝑉 , there
are compact subsets 𝐾1, . . . , 𝐾𝑛 ⊂ 𝐼 and open subsets 𝑈1, . . . ,𝑈𝑛 ⊂ 𝑌 such that
𝑢0 ∈ 𝑊0 ⊂ 𝜔−1𝑉 where

𝑊0 =𝒲(𝐾1,𝑈1) ∩ · · · ∩𝒲(𝐾𝑛,𝑈𝑛) ∩ 𝑃𝑌.

At the same time, renumbering, if necessary, the sets 𝐾1, . . . , 𝐾𝑛 we can assume
that for some 𝑚 = 0, 1, . . . , 𝑛 (the case of 𝑛 = 0 and 𝑚 = 𝑛 are not excluded)

1 ∈ 𝐾1 ∩ · · · ∩ 𝐾𝑚 and 1 ∉ 𝐾𝑚+1 ∪ · · · ∪ 𝐾𝑛.

Then 𝜔1 (𝑢0) = 𝑢0 (1) ∈ 𝑈1∩ · · ·∩𝑈𝑚, and therefore in 𝑌 there exists a connected
neighbourhood 𝑉0 of the point 𝑦0 = 𝜔1 (𝑢0) such that 𝑉0 = 𝑈1 ∩ · · · ∩𝑈𝑚.

Since the neighbourhood 𝑉0 is open (and the set 𝐾 = 𝐾𝑚+1 ∪ · · · ∪ 𝐾𝑛 is
closed), there exists a point 𝑡0 < 1 of the segment 𝐼 such that 𝑢0 ( [𝑡0, 1]) ⊂ 𝑉0,
and since the neighbourhood 𝑉0 is connected, for any point 𝑦 ∈ 𝑉0, there exists
a path 𝑣 lying entirely in 𝑉0 and connecting the points 𝑢0 (𝑡0) and 𝑦 (see Fig.
6.1.1). Then the path 𝑢 = 𝑢

′
0𝑣, where 𝑢0

′
is the path 𝑡 ↦→ 𝑢0 (𝑡0𝑡), 𝑡 ∈ 𝐼,

Figure 6.1.1:

will have the property that 𝑢(𝐾𝑖) ⊂ 𝑈𝑖 for any 𝑖 = 1, . . . , 𝑛 (for 𝑖 > 𝑚 this
is obvious, because 𝑢(𝐾𝑖) = 𝑢0 (𝐾𝑖) >, and for 𝑖 ≤ 𝑚 follows from the fact
that 𝐾𝑖 = (𝐿𝑖 ∩ [0, 𝑡0]) ∪ (𝐾𝑖 ∩ [𝑡0, 1𝐽), and both 𝑢(𝐾𝑖 ∩ [0, 𝑡0] ⊂ 𝑢0 (𝐾𝑖) ⊂ 𝑈𝑖,
and 𝑢(𝐾𝑖 ∩ [𝑡0, 1] ⊂ 𝑣(𝑌 ) ⊂ 𝑊0 ⊂ 𝑈𝑖, i.e., will lie in 𝑊0 ⊂ 𝜔−11 𝑉 . Therefore,
𝑦 = 𝜔1 (𝑢) ∈ 𝑉 . This proves that 𝑉0 ⊂ 𝑉 , i.e. that the point 𝑦0 = 𝜔1 (𝑢) ∈ 𝑉 is
an internal point of the set 𝑉 . Since 𝑢0 is an arbitrary path from 𝜔−11 𝑉 and,
therefore, 𝑦0 is an arbitrary point from 𝑉 , Lemma 6.6 is thus fully proved. □

Now we have everything ready to prove the following main theorem.

Theorem 6.7. If the space 𝑌 is connected and locally connected, then the map
𝑓̃ in Diagramme (6.1) exists if and only if the inclusion (6.2) takes place.
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Proof. Since the necessity of this condition has already been proved above, we
only need to prove its su�ciency.

To this end, we note that since the space 𝑃𝑌 is contractible, the map 𝑓 ◦
𝜔1 : 𝑃𝑌 → 𝑋 is homotopic to the constant map (the corresponding homotopy
is obtained by combining with the map 𝑓 ◦ 𝜔1 of the deformation 𝑢 ↦→ 𝑢𝑡 ,
0 ≤ 𝑡 ≤ 1, the space 𝑃𝑌 , where 𝑢𝑡 : 𝜏 ↦→ 𝑢(𝑡𝜏), 0 ≤ 𝜏 ≤ 1), and therefore
there is a covering map for it 𝑔 : 𝑃𝑌 → 𝑋. For the same reasons (applied
to the Serre �bration 𝜔1 : 𝑃𝑋 → 𝑋) for the map 𝑔, there is also a covering
map 𝑔 : 𝑃𝑌 → 𝑃𝑋, explicitly given by the formula 𝑔(𝑢) : 𝑡 ↦→ 𝑔(𝑢𝑡 ), 𝑢 ∈ 𝑃𝑌 ,
0 ≤ 𝑡 ≤ 1 and therefore satisfying the relation 𝑝𝐼 ◦ 𝑔 = 𝑓𝐼 , where 𝑓𝐼 : 𝑃𝑌 → 𝑃𝑋

and 𝑝𝐼 : 𝑃𝑋 → 𝑃𝑋 are maps 𝑢 ↦→ 𝑓 ◦ 𝑢, 𝑢 ∈ 𝑃𝑌 and 𝑎 ↦→ 𝑝 ◦ 𝑎, 𝑎 ∈ 𝑃𝑋 (for
(𝑝𝐼 ◦ 𝑔) (𝑢) (𝑡) = 𝑝(𝑔(𝑢) (𝑡)) = 𝑝(𝑔(𝑢𝑡 )) = 𝑓 (𝜔1 (𝑢𝑡 )) = 𝑓 (𝑢(𝑡)) = 𝑓𝐼 (𝑡) for any path
𝑢 ∈ 𝑃𝑌). Thus, we have a commutative diagramme

𝑃𝑋
𝑃𝐼 // 𝑃𝑋

𝜔1

��
𝑃𝑌

𝑔 //

𝜔1

��

𝑓𝐼

OO
𝑔

==

𝑋

𝑝

��
𝑌

𝑓
//

==

𝑋

It turns out that

Proposition 6.8. the map 𝑔 preserves �bres of �brations 𝜔1 : 𝑃𝑌 → 𝑌 and
𝜔1 : 𝑃𝑋 → 𝑋, i.e. for any paths 𝑢, 𝑣 ∈ 𝑃𝑌 satisfying the relation 𝜔1𝑢 = 𝜔1𝑣,
i.e. the relation 𝑢(1) = 𝑣(1), the paths 𝑔𝑢, 𝑔𝑣 ∈ 𝑃𝑋, satisfy the relation 𝜔1 (𝑔𝑢) =
𝜔1 (𝑔𝑣), i.e. the relation (𝑔𝑢) (1) = (𝑔𝑣) (1).

Proof. Indeed, if 𝑢(1) = 𝑣(1), then the loop 𝑢𝑣−1 ∈ Ω𝑌 is de�ned, and hence
the loop 𝑓𝐼 (𝑢𝑣−1) ∈ Ω𝑋, whose homotopy class belongs to the subgroup im 𝑓∗
of the group 𝜋1𝑋, and therefore, by applying condition (6.2), to the subgroup
im 𝑝∗. This means that in the space 𝑋 there is a loop 𝑎 ∈ Ω𝑋, such that the
loop 𝑝𝐼𝑎 ∈ Ω𝑋 is homotopic rel{0, 1} to the loop 𝑓𝐼 (𝑢𝑣−1) = 𝑓𝐼𝑢 · ( 𝑓𝐼𝑣)−1 =

𝑝𝐼𝑔𝑢 · (𝑝𝐼𝑔𝑣)−1, and therefore the path 𝑢
′
= 𝑝𝐼𝑔𝑢 = 𝑝 ◦ 𝑔𝑢 is homotopic to the

path 𝑣
′
= 𝑝𝐼𝑎 · 𝑝𝐼𝑔𝑣 = 𝑝𝐼 (𝑎 · 𝑔𝑣) = 𝑝 ◦ (𝑎 · 𝑔𝑣). Hence, the paths 𝑔𝑢 and 𝑎 · 𝑔𝑣

coincide on {0, 1}. In particular, (𝑔𝑢) (1) = (𝑎 · 𝑔𝑣) (1) (𝑔𝑣) (1). □

It follows that the formula

𝑓̃ (𝑦) = (𝑔𝑢) (1), if 𝑦 = 𝑢(1), where 𝑦 ∈ 𝑌, 𝑢 ∈ 𝑃𝑌,

well de�nes the map 𝑓̃ : 𝑌 → 𝑋, for which 𝑓̃ ◦ 𝜔1 = 𝜔1 ◦ 𝑔 = 𝑔, and therefore
𝑝 ◦ 𝑓̃ ◦𝜔1 = 𝑓 ◦𝜔1. Since the map 𝜔1 is surjective, it follows that 𝑝 ◦ 𝑓̃ = 𝑓 , i.e.
that the map 𝑓̃ closes Diagramme (6.1).

Thus, Theorem 6.7 is fully proved. □
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Corollary 6.9. If the pointed space 𝑌 is connected, locally connected, and simply
connected, then for each pointed covering 𝑝 : 𝑋 → 𝑋, any potined map 𝑓 : 𝑌 →
−𝑋 is uniquely covered by some pointed map 𝑓̃ : 𝑌 → 𝑋.

6.2 Coverings and subgroups of the fundamental
group

The subgroup im 𝑝∗ appearing in Theorem 6.7, of the group 𝜋1𝑋 consists of
homotopy classes of those loops of the space 𝑋 that are covered by loops of the
space 𝑋. Since, according to the remarks made above, the homotopy of the loop
space 𝑋 is equivalent to the homotopy of their projections in 𝑋 and, therefore,
the homomorphism 𝑝∗ : 𝜋1𝑋 → 𝜋1𝑋 is a monomorphism (which, however, also
directly follows - due to the exactness of the homotopy sequence of the covering
𝑝 : 𝑋 → 𝑋 - from the discreteness of its �bre), it follows that

Proposition 6.10. the subgroup im 𝑝∗ of the group 𝜋1𝑋 is isomorphic to the
group 𝜋1𝑋.

The pointed covers of 𝑝 : (𝑋, 𝑥̃0) → (𝑋, 𝑥0) of a given pointed space 𝑋

constitute the category𝒞ℴ𝓋•𝑋 (which is a complete subcategory of the category
𝒯ℴ𝓅

•
𝑋
), whose morphisms are their maps over 𝑋, i.e. pointed maps 𝜑 : 𝑋1 →

𝑋2, such that the diagramme

𝑋1
𝜑 //

𝑝1
��

𝑋2

𝑝2
��

𝑋

is commutative.

Proposition 6.11. If the space 𝑋 is locally connected, then for covers 𝑝1 :
𝑋1 → 𝑋 and 𝑝2 : 𝑋2 → 𝑋 the morphism 𝜑 : 𝑋1 → 𝑋2 exists if and only if

im 𝑝1∗ ⊂ im 𝑝2∗.

Proof. The morphism 𝜑 is a lifting of the map 𝑝1 with respect to the map 𝑝2.
Therefore Proposition 6.11 is a special case of Theorem 6.7. (Note that the
space 𝑋1 is locally connected if and only if the space 𝑋 is locally connected.) □

By applying the Corollary 6.9 of Theorem 6.7, if the morphism 𝜑 there
then it is only one. Hence, and from proposition 6.11, the following corollary
immediately follows.

Corollary 6.12. The pointed covers 𝑝1 : 𝑋1 → 𝑋 and 𝑝2 : 𝑋2 → 𝑋 of a
connected and locally connected space 𝑋 are isomorphic if and only if when

im 𝑝1∗ = im 𝑝2∗.
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In the case where the morphism 𝜑 exists, we will write 𝑝1 ≥ 𝑝2. The relation
≥ is an order relation on classes of isomorphic covers, and for a locally connected
space 𝑋 the correspondence

𝑝 ↦→ im 𝑝∗

is an anti-isomorphic embedding of the set of all classes of isomorphic covers of
this space into the set of all subgroups of the group 𝜋1𝑋 ordered by inclusion.
In this sense, the subgroups im 𝑝∗ of the group 𝜋1𝑋 classify the coverings 𝑝 :
𝑋 → 𝑋.

It is clear that for any element 𝜉 ∈ 𝜋1𝑋 and any point 𝑥 ∈ 𝐹 the end 𝜉𝑥 of
a path starting at point 𝑥 and covering an arbitrary loop of class 𝜉−1 depends
only on 𝜉 and 𝑥 and that thereby we get some action of groups 𝜋1𝑋 on the �bre
𝐹 covering 𝑝 : 𝑋 → 𝑋. It is also clear that

Proposition 6.13. this action is transitive (the orbit of any point is the entire
�bre 𝐹) and that the isotropy subgroup of the point 𝑥̃0 ∈ 𝐹 is the subgroup im 𝑝∗

In particular, it follows that

Proposition 6.14. the correspondence 𝜉 ↦→ 𝜉𝑥̃0 de�nes a bijective map of the
coset

coker 𝑝∗ = 𝜋1𝑋/im 𝑝∗

over the �bre 𝐹.

The covering 𝑝 : 𝑋 → 𝑋 is called �nite-leaved if its �bres 𝐹 are �nite, and
in this case the cardinality of the �bres is called the number of covering sheets
𝑝 : 𝑋 → 𝑋.

From the existence of a bijective map coker 𝑝∗ → 𝐹 it follows directly that

Proposition 6.15. the cover 𝑝 : 𝑋 → 𝑋 is �nite if and only if the index
card(coker 𝑝∗) of the subgroup im 𝑝∗, in the group 𝜋1𝑋 is �nite, and in this case
the number of sheets of the cover 𝑝 : 𝑋 → 𝑋 is equal to this index.

The statement that the number of sheets of the cover 𝑝 : 𝑋 → 𝑋 is equal
to 1 is equivalent to the statement that this cover is bijective and hence home-
omorphic map 𝑋 → 𝑋. Calling the homeomorphisms 𝑋 → 𝑋 trivial covers, we
get, therefore, that

Proposition 6.16. the cover 𝑝 : 𝑋 → 𝑋 is trivial if and only if when im 𝑝∗ =
𝜋1𝑋, i.e. when the map 𝑝∗ : 𝜋1𝑋 → 𝜋1𝑋 is an isomorphism.

This seems to be the only case where a simple homotopy condition ensures
the map is homeomorphic.

6.3 Automorphisms of coverings

A homeomorphic (generally speaking, not preserving the base point!) map
𝜑 : 𝑋 → 𝑋 is called an automorphism (or transformation) of the covering of
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𝑝 : 𝑋 → 𝑋 if it is an isomorphism on itself as an object of the category 𝒞ℴ𝓋𝑋,
i.e. if the diagramme

𝑋1
𝜑 //

𝑝1
��

𝑋2

𝑝2
��

𝑋

is commutative. Each such automorphism can be considered as a lifting of
the map 𝑝, and therefore, by applying the uniqueness theorem of lifts, two
automorphisms coincide if they act identically on the base point 𝑥0 ∈ 𝑋 (recall
that the space 𝑋 is, by de�nition, connected). Hence,

Proposition 6.17. the formula 𝜑 ↦→ 𝜑(𝑥̃0) de�nes an injective map of the group
Aut 𝑋 = Aut(𝑝 : 𝑋 → 𝑋) of the automorphisms of the covering 𝑝 : 𝑋 → 𝑋 into
its �bre 𝐹 = 𝑝−1 (𝑥0).

However, it is more convenient to consider the map 𝜑 ↦→ 𝜑−1 (𝑋0), which is
a composition of the bijective map 𝜑 ↦→ 𝜑−1 and the map 𝜑 ↦→ 𝜑(𝑋0).

A cover 𝑝 : 𝑋 → 𝑋 is called transitive if this injective map is bijective, i.e.
if the group Aut 𝑋 acts transitively on the �bre 𝐹.

Composing the map 𝜑 ↦→ 𝜑−1 (𝑥0) with the bijective map 𝐹 → coker 𝑝∗, the
inverse of the map constructed above coker 𝑝∗ → 𝐹, we get some injective map

𝛼 : Aut 𝑋 → coker 𝑝∗.

To the automorphism 𝜑, this map maps a residue class by the subgroup im 𝑝∗,
an element of the group 𝜋1𝑋, de�ned by the loop of the space 𝑋, which is an
image when map 𝑝 of the path of the space 𝑋 connecting the point 𝑥0 with the
point 𝑓 (𝑥0).

It is clear that

Proposition 6.18. the cover 𝑝 : 𝑋 → 𝑋 is transitive if and only if when the
map 𝛼 is bijective.

Let 𝑁𝜋1𝑋 (im 𝑝∗) be the normaliser of the subgroup im 𝑝∗, i.e. the largest
subgroup of the group 𝜋1𝑋 in which the subgroup im 𝑝∗ is normal. Then the
coset group de�ned by

Weyl(𝑋) = 𝑁𝜋1𝑋 (im 𝑝∗)/im 𝑝∗,

is called the Weyl group of the covering 𝑝 : 𝑋 → 𝑋. As a set, it is a subset of
the set coker 𝑝∗.

Proposition 6.19. The map 𝛼 is a monomorphic map of the automorphism
group Aut 𝑋 to the Weyl group

𝛼 : Aut 𝑋 →Weyl(𝑋). (6.20)
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Proof. The statement that 𝛼 maps the group Aut 𝑋 to the group Weyl(𝑋) is
equivalent to the statement that for any automorphism 𝜑 ∈ Aut 𝑋 and any
path 𝑢̃ connecting in 𝑋 the point 𝑥0 with the point 𝜑(𝑥̃0), the homotopy class
[𝑝 ◦ 𝑢̃] of the loop 𝑢 = 𝑝 ◦ 𝑢̃ ∈ Ω𝑋 lies in the normaliser 𝑁𝜋1 (𝑋) (im 𝑝∗) of the
subgroup im 𝑝∗, i.e. that for any loop 𝑣̃ ∈ Ω(𝑋, 𝑥0) the loop 𝑢𝑣𝑢−1 ∈ Ω𝑋, where
𝑣 = 𝑝◦ 𝑣̃, also has the form 𝑝◦𝑤, where 𝑤 ∈ Ω(𝑋, 𝑥̃0). But 𝑢𝑣𝑢−1 = 𝑝◦𝑤1, where
𝑤1 = 𝑢̃𝑣̃𝑢̃−1 - a loop at the point 𝜑(𝑥̃0). Hence, 𝑢𝑣𝑢−1 = (𝑝◦𝜑)◦ (𝜑−1◦𝑤1) = 𝑝◦𝑤
where 𝑤 = 𝜑−1 ◦ 𝑤1 is a loop at the point 𝑥̃0, which is what is required.

Suppose now 𝜑, 𝜓 ∈ Aut 𝑋, and let 𝑢̃, 𝑣̃ be paths in 𝑋, connecting the point
𝑥̃0 with the points 𝜑(𝑥̃0) and 𝜓(𝑥̃0), respectively. Then let 𝑢̃𝑤, where 𝑤 = 𝜑 ◦ 𝑣̃,
connect the point 𝑥̃0 with the point (𝜑 ◦ 𝜓) (𝑥̃0) and there will be the following
equality

𝑝 ◦ 𝑢̃𝑤 = (𝑝 ◦ 𝑢̃) (𝑝 ◦ 𝑤) = (𝑝 ◦ 𝑢̃) (𝑝 ◦ 𝑣̃).
Therefore 𝛼(𝜑◦𝜓) = 𝛼(𝜑)𝛼(𝜓), i.e. the map 𝛼 is a homomorphism (and therefore
- by applying injectivity - a fortiori a monomorphism). □

A covering 𝑝 : 𝑋 → 𝑋 is called a regular covering (or Galois covering) if
the subgroup im 𝑝∗ is a normal subgroup of the group 𝜋1𝑋, i.e. if Weyl(𝑋) =
coker 𝑝∗.

Corollary 6.21. Any transitive covering of 𝑝 : 𝑋 → 𝑋 is regular.

Proof. For a transitive cover 𝛼(Aut 𝑋) = coker 𝑝∗, and, according to Proposition
6.19, 𝛼(Aut 𝑋) ⊂ Weyl 𝑋. At the same time Weyl 𝑋 ⊂ coker 𝑝∗. Therefore,
coker 𝑝∗ = Weyl(𝑋). □

Proposition 6.22. If the space 𝑋 is locally connected, then, conversely, any
regular cover is transitive.

Proof. It is enough, obviously, to show that if the space 𝑋 is locally connected,
then the monomorphism (6.20) is an isomorphism, i.e. that for any loop 𝑢 ∈
Ω𝑋 of the space 𝑋, the homotopy class [𝑢] which belongs to the normaliser
𝑁𝜋𝑋 (im 𝑝∗) as the subgroup im 𝑝∗ there is an automorphism 𝜑 ∈ Aut 𝑋 such
that the point 𝜑(𝑥̃0) is the end of the path 𝑢̃ : 𝐼 → 𝑋 covering the loop 𝑢 and
starting at the point 𝑥̃0. But since in the commutative diagramme

𝜋1 (𝑋, 𝑥̃1)
𝑢# //

𝑝∗

��

𝜋1 (𝑋, 𝑥̃0)

𝑝∗

��
𝜋1 (𝑋, 𝑥0)

𝑢#
// 𝜋1 (𝑋, 𝑥0)

where 𝑥̃1 = 𝑢̃1, the horizontal arrows are isomorphisms, then

𝑝∗𝜋1 (𝑋, 𝑥̃0) = (𝑝∗ ◦ 𝑢̃#)𝜋1 (𝑋, 𝑥̃1) = (𝑢# ◦ 𝑝∗)𝜋1 (𝑋, 𝑥̃1) = 𝑝∗𝜋1 (𝑋, 𝑥̃1),

and therefore, according to Corollary 6.12 of Proposition 6.11, there is an iso-
morphism 𝜑 of the covering (𝑋, 𝑋0) → (𝑋, 𝑥0) to the covering (𝑋, 𝑋1) → (𝑋, 𝑥0).
This isomorphism will be an automorphism 𝜑 ∈ Aut 𝑋, for which 𝜑(𝑥̃0) =

𝑢(1). □
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6.4 Completely discontinuous actions of groups

The action of the group 𝐺 on the topological space 𝑋 is called completely dis-
continuous if for each point 𝑥 ∈ 𝑋 there exists a neighbourhood 𝑈 of it such that
𝑔1𝑈 ∩ 𝑔2𝑈 = ∅ for any two distinct elements 𝑔1, 𝑔2 ∈ 𝐺, i.e., which is obviously
equivalent the statement if 𝑈 ∩ 𝑔𝑈 = ∅ for any element 𝑔 ≠ 𝑒 of the group 𝐺.
It is clear that

Proposition 6.23. all orbits of 𝐺𝑋 of a completely discontinuous action are
discrete and it is an action without �xed points (i.e. for 𝑔 ≠ 𝑒 each transforma-
tion 𝑥 ↦→ 𝑔𝑥 has no �xed points).

It is also clear that

Proposition 6.24. every �nite group acting without �xed points on a Hausdor�
space acts completely discontinuously.

Proposition 6.25. For any cover of 𝑝 : 𝑋 → 𝑋, the group Aut 𝑋 acts com-
pletely discontinuously on the space 𝑋. If the cover 𝑝 : 𝑋 → 𝑋 is transitive,
then the space 𝑋/Aut 𝑋 of orbits of this group is homeomorphic to the space 𝑋.

Conversely, for any connected space 𝑋 on which some group 𝐺 acts com-
pletely discontinuously, the natural map 𝑝 : 𝑋 → 𝑋/𝐺 is a transitive cover, the
group Aut 𝑋 whose automorphisms are naturally isomorphic to the group 𝐺.

In short, transitive covering spaces are exactly spaces in which a certain
group acts quite discontinuously.

Proof. Let 𝑥̃ ∈ 𝑋, and let 𝑈 be a neighbourhood of the point 𝑥 = 𝑝(𝑥̃) such
that the set 𝑝−1 (𝑈) is a disjoint union of open sets 𝑈𝑖, each of which covers 𝑝
homeomorphically maps on 𝑈. Let, in addition, 𝑈0 be one of the sets 𝑈𝑖 which
contains the point 𝑥̃. It is clear that an arbitrary automorphism 𝜑 ∈ Aut 𝑋
translates the neighbourhood 𝑈0 of the point 𝑥̃ into that of the sets 𝑈𝑖 which
contains the point 𝜑(𝑥̃). Therefore, if 𝜑 ≠ id, then 𝑈0 ∩ 𝜑𝑈0 = ∅. This proves
the �rst assertion of proposition 6.25.

Since the orbits of the group Aut 𝑋 lie in the layers of the covering 𝑝 : 𝑋 → 𝑋,

this covering induces a continuous map 𝑋/Aut 𝑋
𝑝
−→ 𝑋, which is, as it is not

di�cult to show, an epiomorphism. If the �bration 𝑝 is transitive, then the
map 𝑝 is obviously injective and, therefore, represents a homeomorphism. This
proves the second statement.

Now let 𝑋 be a connected space on which the group 𝐺 acts completely
discontinuously, and let 𝑝 : 𝑋 → 𝑋/𝐺 be a natural epiomorphism of 𝑥̃ ↦→ 𝐺𝑥̃.
Let 𝑥 ∈ 𝑋 = 𝑋/𝐺, 𝑥̃ ∈ 𝑝−1 (𝑥), and let 𝑈 = 𝑝(𝑈), where 𝑈 is a neighbourhood
of the point 𝑥̃, such that 𝑈 ∩ 𝑔𝑈 = ∅ for any element 𝑔 ≠ 𝑒 of the group 𝐺.
It is clear that 𝑝−1 (𝑈) is a disjoint union of all possible open sets of the form
𝑔𝑈, 𝑔 ∈ 𝐺, and on each of these sets the map 𝑝 is epiomorphic. In addition, if
𝑝(𝑔𝑥̃1) = 𝑝(𝑔𝑥̃2), i.e. if there exists an element ℎ ∈ 𝐺 such that 𝑔𝑈 ∩ ℎ𝑔𝑈 = ∅,
then 𝑔 = ℎ𝑔, i.e. ℎ = 𝑒, and therefore 𝑔𝑥̃1 = 𝑔𝑥̃2. Hence, the map 𝑝 on 𝑔𝑈 is
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injective and therefore, being an epimorphism, is a homeomorphism. Thus, the
map 𝑝 : 𝑋 → 𝑋 is a covering.

Finally, since 𝑝(𝑔𝑥̃) = 𝑝(𝑥̃) for any point 𝑥̃ ∈ 𝑋 and any element 𝑔 ∈ 𝐺,
then the group 𝐺 is contained in the group Aut 𝑋 (we identify the elements of
the group 𝐺 with the transformations they produce). Since the group 𝐺 acts
transitively on each �bre (which is - the reader should recall - an orbit), for any
automorphism 𝜑 ∈ Aut 𝑋 and any point 𝑥̃0 ∈ 𝑋 there is an element 𝑔 of a group
𝐺 such that 𝜑(𝑥̃0) = 𝑔𝑥0. Since the map 𝜑 ↦→ 𝜑(𝑥0), as we know, is injective, it
follows that 𝜑 = 𝑔. Hence, 𝐺 = Aut 𝑋. □

Corollary 6.26. If the space 𝑋 is the space of orbits 𝑋/𝐺 of some group 𝐺,
which is completely equivalent on a simply connected space 𝑋, then

𝜋1𝑋 ≈ 𝐺. (6.27)

Proof. Consider the transitive covering of 𝑝 : 𝑋 → 𝑋 = 𝑋/𝐺. By applying the
simple connectedness of the space 𝑋 for this cover, there is an equality im 𝑝∗ = 0,
i.e. the equality coker 𝑝∗ = 𝜋1𝑋. Therefore 𝐺 = Aut 𝑋 ≈ coker 𝑝∗ = 𝜋1𝑋. □

This corollary provides us with a powerful way to compute fundamental
groups.

Example 6.28. The formula

𝛼𝑥 = 𝑥 + 1, 𝑥 ∈ R,

where 𝛼 is the generator of an in�nite cyclic group 𝐹1 de�nes a completely
discontinuous action of this group on the space R. The corresponding orbits are
nothing more than adjacent classes of the additive group R by the subgroup Z
of integers (isomorphic to the group 𝐹1) and, therefore, the space of orbits R/𝐹1
by the coset group R/Z, i.e. the circle S1. Since the space R, being contractible,
is simply connected, it is proved that

𝜋1S
1 = 𝐹1, (6.29)

or, in additive notation, 𝜋1S
1 = Z.

It is easy to see that with the isomorphism (6.29) to the element 𝜄 = [𝑖𝑑]•,
id : (S1, 𝒔0) → (S1, 𝒔0) the group 𝜋1S

1 corresponds to the generator 𝛼 of the
group 𝐹1. This means that

Proposition 6.30. the element 𝜄1 is the generator of the in�nite cyclic group
𝜋1S

1,

i.e. - in additive notation - that any element of the group 𝜋1S
1 is uniquely

represented as 𝑛𝜄1 where 𝑛 ∈ Z.
Thus, each loop (S1, 𝒔0) → S1, 𝒔0) corresponds to some integer 𝑛 ∈ Z, de-

pending only on the homotopy class of this loop. Visually, it is nothing more
than the number of revolutions of this loop. This number can be analytically
expressed by a known integral and on this basis obtain a direct proof of equality
(6.29). (See Lecture 7 below.)
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Remark 6.31. It is important to keep in mind that

Proposition 6.32. the isomorphism (6.27) has the property of naturality,

i.e. for any groups 𝐺 and 𝐻 acting completely discontinuously on simply
connected spaces 𝑋 and 𝑌 , any homomorphism 𝜑 : 𝐺 → 𝐻 and any continuous
map 𝑓̃ : 𝑋 → 𝑌 having the property that 𝑓̃ (𝑔𝑥̃) = 𝜑(𝑔) 𝑓̃ (𝑥̃), 𝑥̃ ∈ 𝑋, 𝑔 ∈ 𝐺,
and therefore inducing a continuous map 𝑓 : 𝑋 → 𝑌 , 𝑋 = 𝑋/𝐺, 𝑌 = 𝑌/𝐻, a
commutative diagramme takes place

𝜋1𝑋
𝑓∗ //

≈
��

𝜋1𝑌

≈
��

𝐺
𝜑
// 𝐻

In other words, isomorphisms 𝐺 ≈ 𝜋1𝑋 and 𝐻 ≈ 𝜋1𝑌 transform the homomor-
phism 𝜑 into the homomorphism 𝑓∗.

This remark allows us to compute not only fundamental groups, but also
their homomorphisms induced by continuous maps.

Example 6.33. Let 𝑓 be the antipodal map of S1 → S1, given by the formula
𝑓 (𝒙) = −𝒙. It is easy to see that when identifying S1 = R/Z1, this map is
induced by the map 𝑓̃ : R→ R, acting according to the formula 𝑓̃ (𝑥) = 𝑥 + 1/2,
𝑥 ∈ R. Since 𝛼 𝑓̃ (𝑥) = 𝑓̃ (𝛼𝑥), where 𝛼 : 𝑥 ↦→ 𝑥 + 1, then the corresponding
homomorphism 𝜑 : 𝐹1 → 𝐹1 is an identity map. This proves that

Proposition 6.34. the antipodal map S1 → S1 induces the identical map id :
𝜋1S

1 → 𝜋1S
1 of the fundamental group of the circle S1.

This example will be useful to us in lecture 131.

6.5 The fundamental group of a bouquet of cir-
cles

As a more complex example of applying the Corollary 6.26 from Proposition
6.25, we calculate the fundamental group 𝜋1 (S1 ∨ S1) of the bouquet S1 ∨ S1 of
two circles (the �gure �eight�).

For each integer 𝑟 > 0, we note on the circumference of the plane R2 of the
radius 𝑟 with the centre (0, 0) the points that are the vertices of the regular
4 · 3𝑟−1-gon, so that among these points turned out to be the point (𝑟, 0). Let's
call these points vertices of rank 𝑟 > 0. We will consider the point (0, 0) to
be the vertex of the rank 0. We will connect the vertex (0, 0) with rectilinear
segments with all four vertices of rank 1 and each vertex of rank 𝑟 > 0 with the
three vertices of rank 𝑟 + 1 closest to it (see Fig. 6.5.1).

1The transcriber guesses Postnikov refers to Lecture 3 of �Cellular Homotopy�.



218 LECTURE 6.

Figure 6.5.1:

We will denote the union of all constructed segments by 𝑇 , and the inter-
section of 𝑇 with a circle of radius 𝑟 and the centre (0, 0) by 𝑇𝑟 . Obviously,
𝑇𝑟 is contracted to 𝑇𝑟−1, from which it follows directly by induction that 𝑇𝑟 is
contractible. Since any compact subset of the plane is contained in a circle of
su�ciently large radius, an arbitrary map S1 → 𝑇 is mapped into some space
𝑇𝑟 and therefore - due to the contractibility of this space, it is homotopic to the
constant map. This proves that

Proposition 6.35. the space 𝑇 is simply connected.

(In fact, the space 𝑇 is contractible; see Proposition 6.91 of the Appendix to
this lecture.)

The vertices of the space 𝑇 are conveniently described using the free group
𝐹2 with two generators 𝛼 and 𝛽. By de�nition, the elements of this group are
group words of the form

𝛼𝑎1 𝛽𝑏1 · · · 𝛼𝑎1 𝛽𝑏1

where is 𝑎1, 𝑏1, . . . , 𝑎𝑛, 𝑏𝑛 ∈ Z, and it is assumed that 𝑎2, . . . , 𝑎𝑛 and 𝑏1, . . . , 𝑏𝑛−1
are nonzero. The multiplication of these words consists in their attribution to
each other, followed, when required, by the reduction of �similar terms�. (Be-
cause of this reduction, checking the associativity of multiplication is somewhat
di�cult; see the Appendix to this lecture.) The unit of the group 𝐹2 is the
empty word ∅.

To the vertex (0, 0) we will match the empty word ∅, and to the four vertices
of rank 1 the words 𝛼, 𝛽, 𝛼−1, 𝛽−1 (in any order). Then the construction
continues by induction: if the vertices of the rank 𝑟 have already been matched
with the elements of the group 𝐹2, the three vertices of the rank 𝑟 + 1, closest to
the top of the rank 𝑟, which corresponds to the word 𝜎, we match (in any order)
those three of the four words 𝜎𝛼, 𝜎𝛽, 𝜎𝛼−1, 𝜎𝛽−1, in which the reduction of
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such terms is not feasible (for example, if the word 𝜎 ends with 𝛽 in a positive
degree, then we take the words 𝜎𝛼, 𝜎𝛼−1, 𝜎𝛽; see Fig. 6.5.1). It is obvious that
in this way a one-to-one correspondence is established between the vertices of the
space 𝑇 and the elements of the group 𝐹2, and the vertex to which the element
𝜎 ∈ 𝐹2 corresponds is connected by segments with the vertices corresponding
to the elements 𝜎𝛼, 𝜎𝛽, 𝜎𝛼−1 , 𝜎𝛽−1 and only with these vertices.

We also de�ne the action of the group 𝐹2 in 𝑇 , assuming that the element
𝜋 ∈ 𝐹2 translates the vertex corresponding to the element 𝜎 ∈ 𝐹2 into the vertex
corresponding to the element 𝜏𝜎, and linearly maps each segment connecting
two vertices is divided into a segment connecting their images. It is clear that
this is quite a discontinuous action. The fundamental domain of this action, i.e.
the set of representatives of its orbit, is the union of two segments connecting
the point (0, 0) with the vertices 𝛼 and 𝛽 corresponding to the words 𝛼 and 𝛽,
and the vertices themselves 𝛼 and 𝛽, are equivalent to the point (0, 0). This
means that the orbit space 𝑇/𝐹2 is a bouquet S1 ∨ S1 of two circles obtained by
identifying the points 𝛼 and 𝛽 with the point (0, 0).

Since the space 𝑇 , as we have seen, is simply connected, it is proved that

𝜋1 (S1 ∨ S1) = 𝐹2. (6.36)

It is easy to see at the same time that in the isomorphism (6.36) the elements 𝛼
and 𝛽 correspond to the elements 𝜄

′
and 𝜄

′′
of the group 𝜋1 (S1 ∨ S1), which are

homotopy classes of canonical embeddings

𝜄
′
: S1 → S1 ∨ S1, 𝑥 ↦→ 𝑥𝐼 , and 𝜄

′′
: S1 → S1 ∨ S1, 𝑥 ↦→ 𝑥𝐼 𝐼 .

Thus,

Proposition 6.37. the group 𝜋1 (S1 ∨ S1) is a free group with two generators 𝜄
′

and 𝜄
′′
.

Similarly, it can be proved that

Proposition 6.38. the fundamental group of a bouquet of 𝑛 circles is a free
group with 𝑛 generators,

but we prefer to prove this by another method in Appendix to this lecture.

6.6 Uniqueness of multiplication in the group 𝜋1𝑋

Based on the formula (6.36) (and on its analogue when 𝑛 = 3) it is possible,
in particular, to prove the statement made in Remark 4.12 of Lecture 4 (and
thus complete the proof of categoricity of axioms for homotopy groups from the
previous lecture).

Proposition 6.39. The multiplication ( [𝑢], [𝑣]) ↦→ [𝑢𝑣] and the inverse mul-
tiplication ( [𝑢], [𝑣]) ↦→ [𝑣𝑢] are the only natural 𝑋 multiplications in the set
𝜋1𝑋 = [S1, 𝑋]•.
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For any group 𝐺, each element 𝑠(𝛼, 𝛽) = 𝛼𝑎1 𝛽𝑏1 · · · 𝛼𝑎𝑛 𝛽𝑏𝑛 of the group 𝐹2
de�nes the map 𝑠 : 𝐺 × 𝐺 → 𝐺, translating the element (𝑔, ℎ) ∈ 𝐺 × 𝐺 and the
element 𝑠(𝑔, ℎ) = 𝑔𝑎1ℎ𝑏1 · · · 𝑔𝑎𝑛ℎ𝑏𝑛 of the group 𝐺. For example, for 𝐺 = 𝐹2,
the elements 𝑠(𝛼,∅) = 𝛼𝑎1+...+𝑎𝑛 and 𝑠(∅, 𝛽) = 𝛽𝑏1+...+𝑏𝑛 and for 𝐺 = 𝐹3, where
𝐹3 is a free group with three generators 𝛼, 𝛽, 𝛾, the elements 𝑠(𝑠(𝛼, 𝛽), 𝛾) and
𝑠(𝛼, 𝑠(𝛽, 𝛾)).

The key to Proposition 6.39 is the following combinatorial lemma:

Lemma 6.40. If the word 𝑠(𝛼, 𝛽) ∈ 𝐹2 satis�es the relations

𝑠(𝛼,∅) = 𝛼, 𝑠(∅, 𝛽) = 𝛽 (6.41)

and

𝑠(𝑠(𝛼, 𝛽), 𝛾) = 𝑠(𝛼, 𝑠(𝛽, 𝛾)), (6.42)

then either 𝑠(𝛼, 𝛽) = 𝛼𝛽 or 𝑠(𝛼, 𝛽) = 𝛽𝛼.

Proof. The condition 𝑠(𝛼,∅) = 𝛼 means that 𝑎1 + · · · + 𝑎𝑛 = 1, and the condition
(∅, 𝛽) = 𝛽 - that 𝑏1 + · · · + 𝑏𝑛 = 1. Therefore, 𝑛 ≥ 1, and if 𝑛 = 1, then 𝑎1 = 1,
𝐵1 = 1 (i.e. 𝑠(𝛼, 𝛽) = 𝛼𝛽), and if 𝑛 = 2 and 𝑎1 = 0, then 𝑎2 = 1, 𝑏1 = 1 (i.e.
𝑠(𝛼, 𝛽) = 𝛽𝛼). Therefore, it is enough for us to prove that the case of 𝑛 > 2 is
impossible, and for 𝑛 = 2, 𝑎1 = 0 and 𝑏2 = 0 are required.

Let �rst 𝑎1 > 0 and 𝑏𝑛 ≠ 0 (𝑛 ≥ 2). Then

𝑠(𝛼𝛽)𝑎1 = 𝛼𝑎1 𝛽𝑏1𝛼𝑎2 · · · 𝛼𝑎𝑛 𝛽𝑏𝑛 · · · 𝛼𝑎1 𝛽𝑏1𝛼𝑎2 · · · 𝛼𝑎𝑛 𝛽𝑏𝑛︸                                                           ︷︷                                                           ︸
𝑎1 times

,

whence it follows that the word 𝑠(𝑠(𝛼, 𝛽), 𝛾) has the form 𝛼𝑎1 𝛽𝑏1𝛼𝑎2 · · · . At the
same time, the word 𝑠(𝛼, 𝑠(𝛽, 𝛾)) for 𝑏1 > 0 has the form 𝛼𝑎1 𝛽𝑎1𝛾𝑏1 · · · and for
𝑏1 < 0 - the form 𝛼𝑎1𝛾−𝑏𝑛 𝛽−𝑎𝑛 · · · and therefore obviously di�erent from the
word 𝑠(𝑠(𝛼, 𝛽), 𝛾). Since this contradicts condition (6.42), the case 𝑎1 > 0 and
𝑏𝑛 ≠ 0 is therefore impossible.

If 𝑎1 > 0, but 𝑏𝑛 = 0, then in the word 𝑠(𝛼, 𝛽)𝑎1 it is necessary to bring similar
terms, i.e. for 𝑎𝑛 + 𝑎1 ≠ 0 replace 𝛼𝑎𝑛 𝛽𝑏𝑛𝛼𝑎1 by 𝛼𝑎𝑛+𝑎1 , and for 𝑎𝑛 + 𝑎1 = 0 and
𝑏𝑛−1+𝑏1 ≠ 0 replace 𝛽𝑏𝑛−1𝛼𝑎𝑛 𝛽𝑏𝑛𝛼𝑎1 𝛽𝑏1 with 𝛽𝑏𝑛−1+𝑏1 , etc. Since 𝑎1+ . . . 𝑏+𝑎𝑛 =
1 and 𝐵1 + · · · + 𝑏𝑛 = 1, a complete reduction cannot occur in this case, which
implies that the word 𝑠(𝑠(𝛼, 𝛽), 𝛾) will still have the form 𝛼𝑎1 𝛽𝑏1𝛼𝑎2 · · · (for
𝑛 = 2 - the form is 𝛼𝑎1 𝛽𝛼𝑎2 with 𝑎1 + 𝑎2 = 1), and therefore condition (6.42)
cannot be ful�lled again.

Now let 𝑎1 = −𝑎, where 𝑎 > 0. Then

𝑠(𝛼𝛽)𝑎1 = 𝛽−𝑏𝑛𝛼−𝑎𝑛 · · · 𝛽−𝑏2𝛼−𝑎1 · · · 𝛽−𝑏2𝛼−𝑎1 · · · 𝛽−𝑏𝑛𝛼−𝑎𝑛︸                                                               ︷︷                                                               ︸
𝑎 times

,

whence, when 𝑏𝑛 ≠ 0, it follows that the word 𝑠(𝑠(𝛼, 𝛽), 𝛾) has the form
𝛽𝑏𝑛𝛼−𝑎𝑛 · · · and therefore cannot match the word 𝑠(𝛼, 𝑠(𝛽, 𝛾)) = 𝛼𝑎1 · · · . If
𝑏𝑛 ≠ 0 , then - again due to the impossibility of a complete reduction - the
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word 𝑠(𝛼, 𝑠(𝛽, 𝛾)) will have the form 𝛼−𝑎𝑛 𝛽−𝑏𝑛−1𝛼𝑎𝑛−1 · · · (with 𝑛 = 2 - the form
𝛼−𝑎2 𝛽−1𝛼−𝑎1 with 𝑎1 + 𝑎2 = 1) and therefore again cannot coincide with the
word 𝑠(𝛼, 𝑠(𝛽, 𝛾)) (having fort 𝑎1 > 0 the form 𝛼𝑎1 𝛽𝑎1𝛾𝑏1 · · · , and with 𝑎1 < 0
- the form 𝛼𝑎1 𝛽𝑎𝑛 𝛽−𝑏𝑛−1 · · · ).

Finally, let 𝑎1 = 0. If 𝑛 = 2 (i.e. if 𝑠(𝛼, 𝛽) = 𝛽𝑏𝛼𝛽1−𝑏, then 𝑠(𝑠(𝛼, 𝛽), 𝛾) =
𝛾𝑏𝛽𝑏𝛼𝛽1−𝑏𝛾1−𝑏 at that time as 𝑠(𝛼, 𝑠(𝛽, 𝛾)) = (𝛾𝑏𝛽𝛾1−𝑏)𝑏𝛼(𝛾𝑏𝛽𝛾1−𝑏)1−𝑏, i.e.,
𝑠(𝛼, 𝑠(𝛽, 𝛾)) = 𝛾𝑏𝛽 · · · , if 𝑏 > 0, and 𝑠(𝛼, 𝑠(𝛽, 𝛾)) = 𝛾𝑏−1𝛽−1 · · · , if 𝑏 < 0.
Therefore, equality (6.42) is possible only when 𝑏 = 0 or 1, i.e. for 𝑠(𝛼, 𝛽) = 𝛼𝛽
or 𝛽𝛼.

If 𝑛 > 2, then

𝑠(𝑠(𝛼, 𝛽), 𝛾) =
{
𝛾𝑏1 𝛽𝑏1𝛼𝑎2 · · · , if 𝑎2 > 0,

𝛾𝑏1 𝛽−𝑏𝑛𝛼−𝑎𝑛 · · · , if 𝑎2 < 0,

𝑠(𝛼, 𝑠(𝛽), 𝛾) =
{
𝛾𝑏1 𝛽𝑎2𝛾𝑏2 · · · , if 𝑏1 > 0,

𝛾
𝑏
𝑛 𝛽−𝑎𝑛𝛾−𝑏𝑛−1 · · · , if 𝑏1 < 0,

and in all cases equality (6.42) is impossible. Thus Lemma 6.40 is fully proved.
□

Proof. (of Proposition 6.39) Let (𝛼, 𝛽) ↦→ 𝑎 ◦ 𝛽 be an arbitrary natural 𝑋 mul-
tiplication in 𝜋1𝑋. Then for 𝑋 = S1 ∨ S1 is the free group 𝜋1 (S1 ∨ S1) with the
generators 𝜄

′
and 𝜄

′′
, in particular, the word 𝑠(𝜄′ , 𝜄′′ ) = 𝜄′ ◦ 𝜄′′ will be de�ned. But

it is clear that for any space 𝑋 and any elements 𝛼, 𝛽 ∈ 𝜋1𝑋 there is a map
𝑓 : S1 ∨ S1 → 𝑋 such that 𝑓∗𝜄

′
= 𝛼 and 𝑓∗𝜄

′′ ) = 𝛽. Since 𝑓∗𝑠(𝜄
′
, 𝜄
′′
= 𝑠( 𝑓∗𝜄

′
, 𝑓∗𝜄

′′ )
and due to the naturality of 𝑓∗𝜄

′ ◦ 𝑓∗𝜄
′′
= 𝑓∗ (𝜄

′
, 𝜄
′′ ), then in the group 𝜋1𝑋 the

following equality holds
𝛼 ◦ 𝛽 = 𝑠(𝛼, 𝛽). (6.43)

Therefore, to prove Proposition 6.39, it is su�cient to prove that the word
𝑠(𝛼, 𝛽) satis�es the conditions (6.41) and (6.42) of Lemma 6.40 (and therefore
is equal to either 𝛼𝛽 or 𝛽𝛼).

With this in mind, we will �rst show that

Proposition 6.44. for any pointed space 𝑋, the unit of the group 𝜋1𝑋 with
respect to the multiplication of ◦ is the class 1 of the constant map S1 → 𝑋.

Indeed, for any pointed map 𝑓 : 𝑌 → 𝑋 the map 𝑓∗ : 𝜋1𝑌 → 𝜋1𝑋, being
by applying naturality a homomorphism with respect to the multiplication ◦,
translates the unit of this multiplication into one. But with 𝑌 = pt, the set of
𝜋1𝑌 is a singleton, and therefore the image of 𝑓∗ (1) being its only element 1
with the map 𝑓∗ :𝑝 𝑖1 (pt) → 𝜋1𝑋, induced by the map 𝑓 : pt → 𝑋, will be a
multiplication unit of ◦. This proves everything, since 𝑓∗ (1) = 1.

Hence, by applying formula (6.43), it immediately follows that 𝑠(𝛼, 1) = 𝛼

and 𝑠(1, 𝛽) = 𝛽 for any elements 𝛼, 𝛽 ∈ 𝜋1𝑋. For 𝑋 = S1 ∨ S1, this gives (6.41).
Finally, since the multiplication ◦ is associative, then for any elements 𝛼, 𝛽, 𝛾

there is an equality 𝑠(𝑠(𝛼, 𝛽), 𝛾) = 𝑠(𝛼, 𝑠(𝛽, 𝛾)), which for 𝑋 = S1 ∨ S1 ∨ S1 gives
(6.42). □
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6.7 Universal coverings

Let us now return to the coverings in order to round out their theory to a certain
extent.

The covering 𝑝0 : 𝑋0 → 𝑋 is called simply connected if the space 𝑋0 is simply
connected (and, therefore, im 𝑝0∗ = 0).

The space 𝑋 is called covered if there is a simply connected covering for it.
The automorphism group Aut 𝑋0 of a simply connected covering 𝑝0 : 𝑋0 → 𝑋

is naturally embedded in the fundamental group 𝜋1𝑋 and coincides with this
group:

Aut 𝑋0 = 𝜋1𝑋,

if the space 𝑋 is locally connected.
For any subgroup 𝐺 ⊂ Aut 𝑋0, the space 𝑋 = 𝑋0/𝐺 is de�ned, for which,

�rstly, 𝜋1𝑋 = 𝐺 and, secondly, the covering 𝑝0 : 𝑋0 → 𝑋 induces the map
𝑝 : 𝑋 → 𝑋, which is obviously a covering. This, in particular, proves that

Proposition 6.45. if a connected space 𝑋 is locally connected and covered, then
for any subgroup 𝐺 of the group 𝜋1𝑋 there is a (unique up to isomorphism)
covering 𝑝 : 𝑋 → 𝑋 such that im 𝑝∗ = 𝐺.

Thus, for every connected locally connected and covered space 𝑋, the corre-
spondence

𝑝 ↦→ im 𝑝∗

is an anti-isomorphism of a partially ordered set of classes of isomorphic covers
of the space 𝑋 to a partially ordered by inclusion set of all subgroups of the
group 𝜋1𝑋.

In this correspondence (sometimes called Galois correspondence), normal
subgroups correspond to regular (transitive) coverings, and the corresponding
coset groups will be isomorphic to the automorphism groups of these coverings.

A covering 𝑝0 : 𝑋0 → 𝑋 of a space 𝑋 is called universal if 𝑝0 ≥ 𝑝 for any
covering 𝑝 : 𝑋 → 𝑋 of a space 𝑋.

Since the map constructed above 𝑝0 : 𝑋0 → 𝑋0/𝐺 is obviously a map over
𝑋, we see that 𝑝0 ≥ 𝑝 for any covering 𝑝 : 𝑋 → 𝑋, i.e. that

Proposition 6.46. a simply connected covering of a locally connected covered
space 𝑋 is universal.

Remark 6.47. A non-closed locally connected space can have a universal covering
(of course, it is not connected).

In [9], a topological space 𝑋 is called simply connected if the identity id :
𝑋 → 𝑋 is its universal covering. Thus, this concept is di�erent from the one
introduced here, but coincides with it for locally connected spaces.

A topological space 𝑋 is called semilocally simply connected if there exists its
open covering {𝑈𝑎} having the property that every map S1 → 𝑋 whose image is
contained in one of the elements of this cover is homotopic to a constant map.

It is easy to see that
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Proposition 6.48. any covered space 𝑋 is semilocally simply connected.

Proof. Indeed, if 𝑝0 : 𝑋0 → 𝑋 is a simply connected covering and 𝑈 is an open
set in 𝑋; over which the �bration 𝑝0 is trivial, then any map S1 → 𝑈 lifts to
𝑋0, and since 𝑋0 is simply connected, then the lifted map, and therefore the
original map, is homotopic to the constant. □

At the same time, it can be shown (see, for example, [9], p. 180) that

Proposition 6.49. if a connected semi-locally simply connected space is locally
connected, then it is covered.

Since this fact has no direct relation to homotopy theory, we will not prove
it here.

6.8 Fundamental groups of topological groups and
their coset spaces

In [9] it was also proved that if the topological the group 𝐺, considered as a
topological space, is covered, and if 𝑝 : 𝐺 → 𝐺 is the corresponding simply
connected pointed covering, then in 𝐺 it is possible to introduce in the unique
way a group structure with respect to which the covering 𝑝 will be a homomor-
phism. The kernel ker 𝑝 of this homomorphism is (see [9], p. 202) a discrete
Abelian normal subgroup of the group 𝐺. Its action by left shifts on 𝐺 is quite
discontinuous and the corresponding coset space is nothing other than the coset
group 𝐺/ker 𝑝∗ homeomorphic to the group 𝐺. Therefore

ker 𝑝∗ = 𝜋1𝐺.

This equality, like equality (6.27), is one of the most important tools for cal-
culating fundamental groups. In [9] it is taken as the de�nition of the group
𝜋1𝐺.

For any Lie group 𝐺 and any of its closed subgroup 𝐻, the natural map

𝐺 → 𝐺/𝐻

is, as it is easy to see, a locally trivial �bration with 𝐻 a �bre. (Note that any
quotient of a Lie group is obviously paracompact.) Therefore, there is an exact
sequence for it

· · · → 𝜋2 (𝐺/𝐻) → 𝜋1𝐻 → 𝜋1𝐺 → 𝜋1 (𝐺/𝐻) → 𝜋0𝐻 → · · ·

whence it follows that if the subgroup 𝐻 is connected, then the group 𝜋1 (𝐺/𝐻)
is the quotient group of the group 𝜋1𝐺, and if the quotient space 𝐺/𝐻 is simply
connected, then the group 𝜋1𝐺 is the quotient group of the group 𝜋1𝐻 (see [9],
Propositions 8 and 9 of Lecture 12).





Appendix

6.A Limits of diagrammes over an arbitrary cat-
egory

A diagramme scheme is a set divided into two subsets and equipped with two
maps of the second subset into the �rst. The elements of the �rst subset are
called the vertices of the scheme, and the second - its arrows. The case of an
empty set of arrows is not excluded. By the condition, two vertices 𝑎 and 𝐵

correspond to each arrow 𝛼. It is said that the arrow 𝛼 is an arrow from 𝑎 to 𝑏
and write 𝛼 : 𝑎 → 𝑏.

A morphism of a diagramme scheme 𝒟 into a diagramme scheme 𝒟
′
is an

arbitrary map 𝒟→ 𝒟
′
that translates vertices into vertices, arrows into arrows

and such that if 𝑎 ↦→ 𝑎
′
, 𝑏 ↦→ 𝑏

′
, 𝛼 ↦→ 𝛼

′
and 𝛼 : 𝑎 → 𝑏, then 𝛼

′
: 𝑎
′ → 𝑏

′
.

𝒟

��

𝑎
𝛼 //

��

𝑏

��
𝒟
′

𝑎
′

𝛼
′
// 𝑏
′

It is clear that each category is a diagramme scheme (we ignore here the
di�erences between �small� and �large� categories). The morphism 𝒟 → 𝒜

of the diagramme scheme 𝒟 into the category 𝒜 (considered as a diagramme
scheme) is called a diagramme of the type 𝒟 over the category 𝒜.

This formal de�nition is an explication of the intuitive concept of a dia-
gramme, which has been quite enough for us so far.

If the diagram scheme 𝒟 does not contain arrows, then diagrams of the type
𝒟 are nothing more than a family of objects of the category 𝒜, whose indices
are the vertices of the scheme 𝒟.

A (straight) cone over the diagramme 𝑑 : 𝒟→ 𝒜 with vertex 𝒟 is a family
of morphisms 𝑗𝑎 : 𝑑 (𝑎) → 𝒟, 𝑎 ∈ 𝒟, and a category 𝒜, such that for any arrow
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𝛼 : 𝑎 → 𝑏 from 𝒟, the diagramme

𝑑 (𝑎) 𝑑 (𝛼) //

𝑗𝑎 !!

𝑑 (𝑏)

𝑗𝑏}}
𝒟

is commutative ( 𝑗𝑎 = 𝑗𝑏 ◦ 𝑑 (𝛼)). The morphism of the cone 𝑗𝑎 : 𝑑 (𝑎) → 𝒟 into
the cone 𝑗

′
𝑎 : 𝑑 (𝑎) → 𝒟

′
is a morphism 𝜑 : 𝒟→ 𝒟

′
of the category 𝒜 such that

for any vertex 𝑎 ∈ 𝒟 the diagramme

𝑑 (𝑎)
𝑗
′
𝑎

!!

𝑗𝑎

}}
𝒟

𝜑
// 𝒟

′

is commutative. All cones above the diagramme 𝑑 and their morphisms form,
obviously, a category. We will denote this category with the symbol Cone−−−−→(𝑑).

In the case when the scheme 𝒟 has the form · ← · → ·, diagrammes of the
type 𝒟 are pairs of morphisms 𝑖𝐴 : 𝐶 → 𝐴, 𝑖𝑏 : 𝐶 → 𝐵 in the category 𝒜, and
we get cones over pairs (𝑖𝐴, 𝑖𝐵) in the sense of Lecture 1.

In the case when the scheme 𝒟 has no arrows and, therefore, diagrammes
of the type 𝒟 are families of {𝐴𝑎, 𝑎 ∈ 𝒟} then objects of the category 𝒜, cones
over {𝐴𝑎, 𝑎 ∈ 𝒟} are families of morphisms 𝑗𝑎 : 𝐴𝑎 → 𝐷, and their morphisms
are ordinary morphisms of families.

De�nition 6.50. The limit of the diagramme 𝑑 : 𝒟 → 𝒜 is the vertex 𝐷 of
the initial object of the category Cone−−−−→(𝑑), i.e. a cone { 𝑗𝑎 : 𝑑 (𝑎) → 𝐷} such that

for any cone { 𝑗 ′𝑎 : 𝑑 (𝑎) → 𝐷
′ } ∈ Cone−−−−→(𝑑) there is a single morphism 𝜑 : 𝐷 → 𝐷

′

from { 𝑗𝑎} to { 𝑗
′
𝑎}. It is also said that the object 𝐷 is the limit objects 𝑑 (𝑎) with

respect to morphisms 𝑗𝑎.

𝑑 (𝑎)
𝑗
′
𝑎

!!

𝑗𝑎

}}
𝒟

𝜑
// 𝒟

′

It is clear that the limit of the diagramme (when it exists) is uniquely de�ned
up to canonical isomorphism.

The limit of the diagram 𝐴 ← 𝐶 → 𝐵 is its pushout, and the limit of the
family {𝐴𝑎} is the coproduct (direct sum) ⊔𝑎𝐴𝑎 of objects 𝐴𝑎.

Proposition 6.51. A limit exists for an arbitrary diagramme over each of the
categories ℰ𝓃𝓈, ℰ𝓃𝓈•, 𝒯ℴ𝓅 and 𝒯ℴ𝓅•.
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Proof. For diagrammes 𝑑 : 𝒟 → ℰ𝓃𝓈 over the category of sets ℰ𝓃𝓈, they will
be the coset of the disjoint union set ⊔𝑑 (𝑎) of sets 𝑑 (𝑎), 𝑎 ∈ 𝒟, by the smallest
equivalence relation in which the elements 𝑥 ∈ 𝑑 (𝑎) and 𝑦 ∈ 𝑑 (𝑏) are equivalent
if in 𝒟 there exists an arrow 𝛼 : 𝑎 → 𝑏such that 𝑦 = 𝑑 (𝛼)𝑥. The same coset
will be the limit of the diagramme 𝑑 : 𝒟→ ℰ𝓃𝓈

• over the category of pointed
sets ℰ𝓃𝓈• (due to the pointed nature of all maps 𝑑 (𝑎) based points of all sets
𝑑 (𝑎) turn out to be equivalent and their equivalence class is taken beyond the
based limit point). Equipped with a coset topology, the same coset set will be
the limit of the diagramme 𝑑 over the categories 𝒯ℴ𝓅 and 𝒯ℴ𝓅•. □

Remark 6.52. It should be borne in mind that for many diagrammes, although
there are limits, they are of no interest. An example is the diagramme 𝐴 →
𝐶 ← 𝐵, the limit of which, as it is easy to see, is the object 𝐶 (so in this case
the limit does not depend on the homomorphisms 𝐴 → 𝐶 and 𝐵 → 𝐶). For
such diagrammes, the dual notion of the inverse limit is meaningful, which we
will not need yet.

6.B The limits of diagrammes over the category
of groups

We will need the above general concepts for the case of the category of groups
𝒢𝓇𝓅. At the same time, in order not to stray far from the traditional notation,
for an arbitrary diagram 𝑑 : 𝒟→ 𝒢𝓇𝓅, we will denote the group 𝑑 (𝑎) with the
symbol 𝐺𝑎.

Proposition 6.53. For any diagramme 𝑑 : 𝒟→ 𝒢𝓇𝓅, lim−−→ 𝑑 exists.

Proof. Recall that a word over the set 𝑌 is an arbitrary expression of the form
𝑦1𝑦2 · · · 𝑦𝑘 where 𝑘 ≥ 0 and 𝑦1, 𝑦2, . . . , 𝑦𝑘 ∈ 𝑌 . The product of the words
𝑦1, 𝑦2, . . . , 𝑦𝑘 and 𝑦

′
1, 𝑦

′
2, . . . , 𝑦

′

ℓ
is called the word 𝑦1, 𝑦2, . . . , 𝑦𝑘𝑦

′
1, 𝑦

′
2, . . . , 𝑦

′

ℓ
.

With respect to the multiplication of words, the set 𝑀 (𝑌 ) of all words over
𝑌 is a monoid (associative unitoid). The unit of this monoid is the empty word
∅.

Proposition 6.54. The monoid 𝑀 (𝑌 ) is a free monoid generated by the set 𝑌 ,

i.e., for any monoid 𝑀 and any map 𝜑 : 𝑌 → 𝑀 there exists only one monoid
morphism 𝜑 : 𝑀 (𝑌 ) → 𝑀, extending the map 𝜑 (this morphism is given by the
formula 𝜑(𝑦1, 𝑦2, . . . , 𝑦𝑘) = 𝜑(𝑦1)𝜑(𝑦2) · · · 𝜑(𝑦𝑘)).

We will apply this construction to the construction of the limit lim−−→ 𝑑 for
diagrammes 𝑑 : 𝒟 → 𝒢𝓇𝓅, taking for 𝑌 the disjunct union of all groups 𝐺𝑎,
𝑎 ∈ 𝒟, and considering in 𝑀 (𝑌 ) the smallest congruence (equivalence relation
consistent with the multiplication) for which

(a) 𝑥 ∼ 𝑑 (𝑎)𝑥 for any element 𝑥 ∈ 𝐺𝑎 and any arrow 𝛼 : 𝑎 → 𝑏;

(b) 𝑥𝑦 ∼ 𝑧 for any elements 𝑥, 𝑦, 𝑧 ∈ 𝐺𝑎 for which 𝑥𝑦 = 𝑧 in the group 𝐺𝑎;
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(c) 𝑥 ∼ ∅ if the element is 𝑥 ∈ 𝐺𝑎 is a unit of the group.

Let 𝐺 (0) be the coset monoid of the monoid 𝑀 (𝑌 ) by this congruence. Since
for each word 𝜉 = 𝑦1 · · · 𝑦𝑘 ∈ 𝑀 (𝑌 ) the word 𝜉−1 = 𝑦−1

𝑘
. . . 𝑏𝑦−11 has, by applying

conditions (b) and (c), the property that 𝜉𝜉−1 ∼ ∅ and 𝜉−1𝜉 ∼ ∅, then the

monoid 𝐺 (0) is a group. Let 𝑗
(0)
𝑎 : 𝐺𝑎 → 𝐺 (0) be the composition of the

embedding 𝐺𝑎 → 𝑌 → 𝑀 (𝑌 ) and the factorisation map 𝑀 (𝑌 ) → 𝐺 (0) . By
applying conditions (b) and (c) each map 𝑗𝑎 is a homomorphism of groups,

and by applying condition (a), the family of homomorphisms 𝑗
(0)
𝑎 is a cone

over the diagramme 𝑑. In addition, for any cone { 𝑗𝑎 : 𝐺𝑎 → 𝐺} over 𝑑, the
homomorphism 𝜑 : 𝑀 (𝑌 ) → 𝐺, continuing the map ⊔ 𝑗𝑎 : 𝑌 → 𝐺, obviously
has the property that 𝜑(𝜉) = 𝜑(𝜂) for any equivalent words 𝜉, 𝜂 ∈ 𝑀 (𝑌 ), and
therefore induces a homomorphism 𝜑 : 𝐺 (0) → 𝐺, being a morphism of the

cone { 𝑗 (0)𝑎 } to the cone { 𝑗𝑎}. Since there is no other morphism { 𝑗 (0)𝑎 } → { 𝑗𝑎}
obviously can exist, this proves that the constructed group 𝐺 (0) is the limit of
diagramme 𝑑. □

To describe the group 𝐺 (0) more explicitly, we can use the method of gen-
erators and relations.

6.C Co-presentations of limits

Recall that a group 𝐹 with a subset of 𝑋 allocated in it is called a free group
over 𝑋 (and 𝑋 is the set of free generators of the group 𝐹) if for any group
𝐺 each map 𝑓 𝜑 : 𝑋 → 𝐺 extends in a unique way to some homomorphism
𝜑 : 𝐹 → 𝐺. It follows directly from this de�nition that free groups with sets of
equal-cardinality of free generators are isomorphic.

At the same time, it turns out that

Proposition 6.55. for any set 𝑋 there exists a free group 𝐹 (𝑋) over 𝑋.

The elements of this group are group words over 𝑋, i.e. expressions of the
form

𝑥
𝑎1
1 𝑥

𝑎2
2 · · · 𝑥

𝑎𝑘
𝑘
, (6.56)

where 𝑎1, 𝑎2, . . . , 𝑎𝑘 (the case of 𝑘 = 0 is not excluded) are nonzero integers,
and 𝑥1, 𝑥2, . . . , 𝑥𝑘 are elements of 𝑋 such that 𝑥𝑖 ≠ 𝑥𝑖+1 for 𝑖 = 1, 2, . . . , 𝑘 − 1.
In this case, a word of the form 𝑥+1 is identi�ed with the element 𝑥 ∈ 𝑋 (to
ensure the inclusion of 𝑋 ⊂ 𝐹 (𝑋)). The multiplication of words consists in their
attribution to each other, accompanied by the �reduction of similar terms�,
so that, in particular, the word (6.56) turns out to be a product of elements
𝑥1, 𝑥2, . . . , 𝑥𝑘 of degrees 𝑥𝑎11 , 𝑥

𝑎2
2 , . . . , 𝑥

𝑎𝑘
𝑘
. All axioms of the group, with the

exception of associativity, are checked without di�culty (by the unit of the
group 𝐹 (𝑋) is the empty word ∅, and the word inverse to the word (6.56) is
the word 𝑥−𝑎𝑘

𝑘
, . . . , 𝑥

−𝑎2
2 𝑥

−𝑎1
1 ). As for associativity, its direct proof is somewhat

di�cult, and we will postpone it for now.
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Proof. Having thus temporarily taken on faith that 𝐹 (𝑋) is a group, we can
already quite automatically check that this group is free. Indeed, if the homo-
morphism 𝜑 : 𝐹 (𝑋) → 𝐺 extending the map 𝜑 : 𝑋 → 𝐺 exists, then

𝜑(𝑥𝑎11 𝑥
𝑎2
2 · · · 𝑥

𝑎𝑘
𝑘
) = 𝜑(𝑥1)𝑎1𝜑(𝑥2)𝑎2 · · · 𝜑(𝑥𝑘)𝑎𝑘 = 𝜑(𝑥1)𝑎1𝜑(𝑥2)𝑎2 · · · 𝜑(𝑥𝑘)𝑎𝑘

for any word (6.56), and hence this homomorphism is de�ned in a unique way.
To prove its existence, it is necessary, as always in similar situations, to take
the resulting formula as a de�nition, i.e. for any word (6.56) put

𝜑(𝑥𝑎11 𝑥
𝑎2
2 · · · 𝑥

𝑎𝑘
𝑘
) = 𝜑(𝑥1)𝑎1𝜑(𝑥2)𝑎2 · · · 𝜑(𝑥𝑘)𝑎𝑘

It is obvious that in this way we get a homomorphism 𝜑𝐹 (𝑋) → 𝐺, extending
the map 𝜑 : 𝑋 → 𝐺. □

The assignment of an arbitrary group 𝐺 by the generators and determining
relations (called, according to the proposal of A. M. Vinogradov, the �copre-
sentation� of the group; however, recently Yu. I. Merzlyakov proposed a more
expressive term - the genetic code) consists in the assignment of some a set 𝑋,
whose elements are called generators, and some subset 𝑅 of a free group 𝐹 (𝑋),
whose elements are called de�ning relations. Let 𝐹𝑅 (𝑋) be the coset group of the
group 𝐹 (𝑋) by the smallest normal subgroup [𝑅]𝐹 of the group 𝐹 (𝑋) containing
the set 𝑅. They say that the pair ⟨𝑋; 𝑅⟩ > is a copresentation of the group 𝐺,
and write 𝐺 = ⟨𝑋; 𝑅⟩ if some isomorphism is given 𝜑 : 𝐹𝑅 (𝑋) ≈ 𝐺, or, equiva-
lently, some epimorphism 𝜑 : 𝐹 (𝑋) → 𝐺 with kernel [𝑅]𝐹 . This epimorphism
is uniquely determined by the elements 𝑥 = 𝜑(𝑥) of the group 𝐺. Admitting a
certain liberty, the elements 𝑥 are usually denoted simply by 𝑥 (this is generally
accepted, although not very successful, since it may well happen that for vari-
ous elements 𝑥1, 𝑥2 ∈ 𝑋 in the group 𝐺 will take place equality 𝑥1 = 𝑥2). Each
element of the group 𝐺 will then be represented (generally speaking, not in only
one way) as a product of the powers of the elements 𝑥 ∈ 𝑋. This explains the
use of the term �generators� in relation to these elements.

For clarity, the equality 𝐺 = ⟨𝑋; 𝑅⟩ is often written as 𝐺 = ⟨𝑋; 𝑟 = 1, 𝑟 ∈ 𝑅⟩
and just 𝐺 = ⟨𝑋; 𝑟1 = 1, . . . , 𝑟𝑚 = 1⟩ if 𝑅 = {𝑟1 = 1, . . . , 𝑟𝑚 = 1}. Moreover, if
some word 𝑟 ∈ 𝑅 has the form 𝑟 = 𝑎−1𝑏, where 𝑎, 𝑏 ∈ 𝐹 (𝑋), then 𝑎 = 𝑏 is also
written instead of 𝑟 = 1.

If now for some diagramme 𝑑 : 𝒟 → 𝒢𝓇𝓅 over the category 𝒢𝓇𝓅 the
following presentations are given

𝐺𝑎 = ⟨𝑋𝑎; 𝑅𝑎⟩, 𝑎 ∈ 𝒟,

of its groups 𝐺𝑎, then we can easily write a co-presentation of the limit 𝐺 = lim−−→ 𝑑

of this diagramme. For any arrow 𝛼 : 𝑎 → 𝑏 of the diagramme scheme𝒟 and any
generator 𝑥𝑎 ∈ 𝑋𝑎, we will represent the element 𝑑 (𝑎)𝑥𝑎 of the group 𝐺𝑏 (i.e.,
more precisely, the element 𝑑 (𝑎)𝑥𝑎) in the form of some (generally speaking,
not unique) group word 𝜉 (𝑥𝛼, 𝛼) from the generators of 𝑋𝑏. By entering for any
𝛼 ∈ 𝒟 the epimorphism 𝜓𝛼 : 𝐹 (𝑋𝑎) → 𝐺𝑎 with the kernel [𝑅𝑎]𝐹 , we can more
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formally de�ne the word 𝜉 (𝑥𝑎, 𝛼) as an element of the group 𝐹 (𝑋𝑏) satisfying
the relation

(𝑑 (𝛼) ◦ 𝜑𝑎)𝑥𝑎 = 𝜑𝑏 (𝜉 (𝑥𝑎, 𝛼)).

Let
𝑋 = ⊔𝑎∈𝒟𝑋𝑎

be the disjoint union of all sets 𝑋𝑎, 𝑎 ∈ 𝒟. Denoting for any arrow 𝛼 : 𝑎 → 𝑏

from 𝒟 with the symbol 𝑅𝑎 the set of all words over 𝑋 of the form 𝑥−1𝑎 𝜉 (𝑥𝑎, 𝛼),
𝑥𝑎 ∈ 𝑋𝑎, we will put

𝑅 = (∪𝑎∈𝒟𝑅𝑎) ∪ (∪𝛼∈𝒟𝑅𝛼).

Proposition 6.57. The pair ⟨𝑋; 𝑅⟩ is a co-presentation of the limit of dia-
gramme 𝑑:

lim−−→ 𝑑 = ⟨𝑋; 𝑅⟩.

Proof. We should construct an epimorphism 𝐹 (𝑋) → 𝐺 (0) ) from the free group
𝐹 (𝑋) to the group 𝐺 (0) = lim−−→ 𝑑, the kernel of which is the normal subgroup [𝑅]𝐹 .
We show that this epimorphism can be taken as an extension of 𝜑 the map 𝑋 →
𝐺 (0) , which is on each term 𝑋𝑎 a restriction of the map 𝑗𝑎 ◦ 𝜑𝑎 : 𝐹 (𝑋𝑎) → 𝐺 (0) .
It is clear that the homomorphism 𝜑 is an epimorphism and that 𝜑(𝑟) = 1 for
any word 𝑟 ∈ 𝑅, i.e. that [𝑅]𝐹 ⊂ ker 𝜑 (we consider all groups 𝐹 (𝑋𝑎) naturally
embedded in the group 𝐹 (𝑋); by applying this agreement 𝜑 |𝐹 (𝑋𝑎 = 𝑗𝑎 ◦ 𝜑𝑎 and
therefore 𝜑(𝑟𝑎) = 𝑗𝑎 (𝜑𝑎 (𝑟𝑎)) = 1 forR any word 𝑟𝑎 ∈ 𝑅𝑎 and

𝜑(𝑥−1𝑎 𝜉 (𝑥𝑎, 𝛼)) = ( 𝑗𝑎 ◦ 𝜑𝑎) (𝑥𝑎)−1 ( 𝑗𝑏 ◦ 𝜑𝑏) (𝜉 (𝑥𝑎, 𝛼))
= ( 𝑗𝑎 ◦ 𝜑𝑎) (𝑥𝑎)−1 ( 𝑗𝑏 ◦ 𝑑 (𝛼)𝜑𝑎) (𝑥𝑎)
= ( 𝑗𝑎 ◦ 𝜑𝑎) (𝑥𝑎)−1 ( 𝑗𝑎 ◦ 𝜑𝑎) (𝑥𝑎) = 1

for any word 𝑥−1𝑎 𝜉 (𝑥𝑎, 𝛼) ∈ 𝑅𝑎). Thus, only the reverse inclusion needs an
additional proof.

With this in mind, consider the canonical epimorphism 𝜓 : 𝐹 (𝑋) → 𝐹𝑅 (𝑋)
with kernel [𝑅]𝐹 . Since for any vertex 𝑎 ∈ 𝒟 there is an inclusion [𝑅𝑎]𝐹 ⊂
[𝑅]𝐹 ∩ 𝐹 (𝑋𝑎), then there is a homomorphism 𝜓𝑎 : 𝐺𝑎 → 𝐹𝑅 (𝑋), closing the
commutative diagramme

𝐹 (𝑋𝑎)
𝜓 |𝐹 (𝑥𝑎 )//

𝜑𝑎

��

𝐹𝑅 (𝑋)

𝐺𝑎

𝜓𝑎

::

Since for any element 𝑥𝑎 ∈ 𝑋𝑎 and any arrow 𝛼 : 𝑎 → 𝑏, the word 𝑥−1𝑎 𝜉 (𝑥𝑎, 𝛼)
lies in the kernel of the epimorphism 𝜓, then

(𝜓𝑏 ◦ 𝑑 (𝛼) (𝜑𝑎 (𝑥𝑎) = (𝜓𝑏 ◦ 𝜑𝑏) (𝜉 (𝑥𝑎, 𝛼)) = 𝜓(𝜉 (𝑥𝑎, 𝛼))
= 𝜓(𝑥𝑎) = 𝜓𝑎 (𝜑𝑎 (𝑥𝑎)),
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and, therefore, 𝜓𝑏 ◦ 𝑑 (𝑎) = 𝜓𝑎 (because the elements 𝜑𝑎 (𝑥𝑎) = 𝑥𝑎 generate
the group 𝐺𝑎). Thus, the map 𝜓𝑎 : 𝐺𝑎 → 𝐹𝑅 (𝑋) make up a cone over the
diagramme 𝑑, and therefore there is a homomorphism 𝜆 : 𝐺 (0) → 𝐹𝑅 (𝑋) such
that 𝜆 ◦ 𝑗𝑎 = 𝜓𝑎 for any 𝑎 ∈ 𝒟. But then

𝜆 ◦ 𝜑 |𝐹 (𝑋𝑎 = 𝜆 ◦ 𝑗𝑎 ◦ 𝜑𝑎 = 𝜓𝑎 ◦ 𝜑𝑎 = 𝜓 |𝐹 (𝑋𝑎 ,

and, therefore, 𝜆 ◦ 𝜑 = 𝜓. Therefore, ker 𝜑 ⊂ ker𝜓 ⊂ 𝑅𝐹 . □

Example 6.58. The coproduct ⊔𝑎𝐺𝑎 of a family of groups (the limit of the
diagram without arrows) is called the free product of these groups. According to
Proposition 6.57, the co-presentation of the free product is obtained by combining
the co-presentations of the multipliers: if 𝐺𝑎 = ⟨𝑋𝑎; 𝑅𝑎⟩, then

⊔𝑎𝐺𝑎 = ⟨⊔𝑎𝑋𝑎;⊔𝑎𝑅𝑎⟩.

Generally speaking, the co-presentation from Proposition 6.57 is not the
most economical and can often be simpli�ed.

Let 𝐺 = ⟨𝑋; 𝑅⟩, and let 𝑆 be an arbitrary subset of [𝑅]𝐹 . Then it is clear
that 𝐺 = ⟨𝑋; 𝑅 ∪ 𝑆⟩. Similarly, 𝐺 = ⟨𝑋 ∪ {𝑦}; 𝑅 ∪ {𝑦−1𝜉}⟩, where 𝑦 is an
arbitrary character not contained in 𝑋, and 𝜉 is an arbitrary word from 𝐹 (𝑋).
Transformations of the co-presentation ⟨𝑋; 𝑅⟩ into the co-presentations ⟨𝑋; 𝑅∪𝑆⟩
and ⟨𝑋 ∪ {𝑦}; 𝑅 ∪ {𝑦−1𝜉}⟩ (as well as inverse transformations) are called Tietze
transformations.

Remark 6.59. It can be shown (this statement is known as Tietze's theorem)
that two ��nite co-presentations set the same (= isomorphic) groups if and only
if when they can be translated into each other by Tietze transformations. How-
ever, this theorem does not indicate any way to �nd these transformations, and,
moreover, it can be shown that there can be no algorithm that allows this to
be done. In this respect, de�ning a group by generators and de�ning relations
is highly ine�ective.

Nevertheless, in many situations, the Tietze transformations make it possible
to signi�cantly simplify presentations.

Example 6.60. Let the scheme 𝒟 have the form · ← · → ·, that is, we are

dealing with a push-out of the 𝐺 diagramme 𝐴
𝑖𝐴←− 𝐶

𝑖𝐵−−→ 𝐵. Let, further,
de�ne 𝐴 = ⟨𝑋; 𝑅⟩, 𝐵 = ⟨𝑌 ;𝑄⟩ and 𝐶 = ⟨𝑍; 𝑃⟩. For any generator 𝑧 ∈ 𝑍, we
denote by 𝜉𝑧, and 𝜂𝑧 the group words over 𝑋 and 𝑌 , which are expressions
through the generating elements 𝑖𝐴(𝑧) ∈ 𝐴 and 𝑖𝐵 (𝑧) ∈ 𝐵. Then, according
to Proposition 6.57, the push-out 𝐺 will have a co-presentation of the form
⟨𝑋 ⊔𝑌 ⊔ 𝑍; 𝑅 ∪𝑄 ∪ 𝑃 ∪𝑈 ∪𝑉⟩, where 𝑈 is the set of all words of the form 𝑧1𝜉𝑧,
𝑧 ∈ 𝑍, and 𝑉 is the set of all words of the form 𝑧−1𝜂𝑧, 𝑧 ∈ 𝑍. But since the map 𝑖𝐴
is a homomorphism, an arbitrary word from 𝑃 after substitution instead of each
element 𝑧 ∈ 𝑍 of the corresponding word 𝜉𝑧 will be a consequence of the relations
from 𝑅 (i.e. it will belong to the normal subgroup [𝑅]𝐹). This means that all
the relations from 𝑃 are a consequence of the relations from 𝑅 and 𝑈 (as well
as, of course, the relations from 𝑆 and 𝑉), and therefore they can be painlessly
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removed from the presentation of the group 𝐺 (the �rst Tietze transformation).
Further, it is clear that any pair of relations of the form 𝑧−1𝜉𝑧 = 1 and 𝑧−1𝜂𝑧 = 1
is equivalent to the relations 𝑧−1𝜉𝑧 = 1 and 𝜉𝑧 = 𝜂𝑧. Therefore, by preserving
𝑈 (as well as 𝑅 and 𝑄), we can replace 𝑉 with a set of relations 𝑊 of the form
𝜉𝑧 = 𝜂𝑧. But after this replacement (and removing the relations from 𝑃), each
𝑧 ∈ 𝑍 will appear only in one relation 𝑧−1𝜉𝑧 = 1, and therefore, by throwing
out 𝑧 and this relation, we will not change the group 𝐺 (the second Tietze
transformation). This proves that

Proposition 6.61. for 𝐴 = ⟨𝑋; 𝑅⟩,𝐵 = ⟨𝑌 ;𝑄⟩ and 𝐶 = ⟨𝑍; 𝑃⟩ the push-out 𝐺
diagramme 𝐴← 𝐶 → 𝐵 has a co-presentation of the form

𝐺 = ⟨𝑋 ∪ 𝑌 ; 𝑅 ∪𝑄 ∪𝑊⟩,

where 𝑊 is the set of all relations of the form 𝜉𝑧 = 𝜂𝑧, 𝑧 ∈ 𝑍.

Example 6.62. If in the previous example the group 𝐶 is a unit group, i.e. if we
are talking about a diagramme 𝐴← 1→ 𝐵, then the push-out 𝐺 will obviously
be a free product of the groups 𝐴 and 𝐵. If the unit group is the group 𝐵, then
the push-out 𝐺 will have a presentation of the form

𝐺 = ⟨𝑋; 𝑅 ∪𝑊⟩,

where𝑊 is the set of all relations of the form 𝜉𝑧 = 1, and therefore will be a coset
group of the group 𝐴 = ⟨𝑋; 𝑅⟩ by a normal subgroup generated by all elements
𝜉𝑧 or, more precisely, elements 𝑖(𝑧), 𝑧 ∈ 𝑍, where 𝑖 = 𝑖𝐴. Since the last subgroup
is obviously nothing more than the smallest normal subgroup containing the
image im 𝑖 = 𝑖𝐶 of the homomorphism 𝑖, we get, therefore, that

Proposition 6.63. the push-out of the diagram 𝐴← 𝐶 → 1 is the coset group 𝐴
′

of the group 𝐴 by the smallest normal subgroup containing the subgroup 𝑖𝐶 (the
corresponding initial cone will be the natural epimorphism 𝐴→ 𝐴

′
).

Of course, this fact is easily established and directly from the de�nition of
push-out.

6.D The structure of the free product of groups

In Example 6.62, we managed to eliminate - at least from the formulation, if not
in essence - the generators and de�ning relations, which should be considered as
a certain achievement in the direction of the e�ciency of the description of the
limit. Interestingly, a similar (but, perhaps, much more di�cult) elimination
can be carried out in the situations of Examples 6.58 and 6.60.

For any diagramme 𝑑 : 𝒟 → 𝒢𝓇𝓅, the group 𝐺 (0) = lim−−→ 𝑑 is generated, of

course, by images of groups 𝐺𝑎 with homomorphisms 𝑗 (0)𝑎 : 𝐺𝑎 → 𝐺 (0) , i.e.
any element 𝑔 of the group 𝐺 (0) can be represented as a product 𝑔1𝑔2 · · · 𝑔𝑘
each multiplier of which belongs to one of the groups 𝐺𝑎 (or, more precisely,
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is the image of some element of the group 𝐺𝑎 with the homomorphism 𝑗
(0)
𝑎 ).

For 𝑔 ≠ 1, we can assume that this presentation is reduced, i.e. that none
of the factors 𝑔1, 𝑔2, . . . , 𝑔𝑘 is a unit of the corresponding group and any two
neighbouring factors belong to di�erent groups. Naturally, in the general case|
even the reduced presentation is not unique (at least due to the fact that the

homomorphisms 𝑗 (0)𝑎 are not, generally speaking, monomorphisms). However,
it turns out that in the situation of Example 6.58, i.e. in the case when 𝐺 (0) =
⊔𝑎𝐺𝑎, the reduced presentation of the elements of the group 𝐺0) , i.e. from an
equality

𝑔1 · · · 𝑔𝑘 = 𝑔
′
1 · · · 𝑔

′

ℓ

of only the two reduced products, it follows that 𝑘 = ℓ and 𝑔𝑖 = 𝑔
′
𝑖
for any

𝑖 = 1, . . . , 𝑘. In particular, this means that

Proposition 6.64. the natural homomorphisms 𝑗
(0)
𝑎 : 𝐺𝑎 → ⊔𝐺𝑎 of the groups

𝐺𝑎 in their free product ⊔𝐺𝑎 are monomorphisms, and therefore the groups 𝐺𝑎
can be considered subgroups of the group ⊔𝐺𝑎 (which, by the way, justi�es our
notation a posteriori).

The natural way to prove this statement (avoiding, by the way, the trouble

with presentations) is to consider for these groups 𝐺𝑎 the set 𝐺 of all reduced
words, i.e. words 𝑔1, · · · 𝑔𝑘 over a disjoint union of all groups 𝐺𝑎 in which
all elements 𝑔1, . . . , 𝑔𝑘 are not units of the corresponding groups and any two
neighbouring elements belong to di�erent groups, and prove that:

1) with respect to the natural multiplication operation, which consists in at-
tributing words to each other and then reducing the resulting word, the set
𝐺 is a group;

2) natural embeddings 𝑗𝑎 : 𝐺𝑎 → 𝐺𝑎 (matching the same element to each
element of 𝑔 ≠ 1 of the group 𝐺𝑎, but considered as a reduced word longer
than 1) constitute an initial cone (and, therefore, by applying the unity of

the initial cone, the group 𝐺 is isomorphic to the group 𝐺 (0)).

Proof. Point 2) of this program does not cause any di�culties: for any family
of homomorphisms 𝑗𝑎 : 𝐺𝑎 → 𝐺 the formula

𝜑(𝑔1 · · · 𝑔𝑘) = 𝑗𝑎1 (𝑔1) · · · 𝑗𝑎𝑘 (𝑔𝑘),

where 𝑎1, . . . , 𝑎𝑘 are indexes such that 𝑔1 ∈ 𝐺𝑎1 , . . . , 𝑔𝑘 ∈ 𝐺𝑎𝑘 , well de�nes a

homomorphism 𝜑 : 𝐺 → 𝐺 satisfying the relations 𝑗𝑎 = 𝜑 ◦ 𝑗𝑎 and no other

homomorphism 𝐺 → 𝐺 satisfying these relations obviously can exist.
However, point 1) encounters - again with regard to proving the associativ-

ity of multiplication - serious combinatorial di�culties. To get around these
di�culties, van der Waerden proposed the following arti�cial technique.

For each index 𝑎 ∈ 𝒟, we de�ne the action of the group 𝐺𝑎 on the set 𝐺,
assuming for any element 𝑔 ∈ 𝐺𝑎 and any reduced word 𝜉 = 𝑔1𝑔2 · · · 𝑔𝑘 ∈ 𝐺
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𝑔𝜉 =


𝑔1𝑔2 · · · 𝑔𝑘 , if 𝑔 = 1,

𝑔𝑔1𝑔2 · · · 𝑔𝑘 , if 𝑔 ≠ 1, and 𝑔1 ∉ 𝐺𝑎,

𝑔
′
1𝑔2 · · · 𝑔𝑘 , if 𝑔1 ∈ 𝐺𝑎 and 𝑔

′
= 𝑔𝑔1 ≠ 1,

𝑔2 · · · 𝑔𝑘 , if 𝑔1 ∈ 𝐺𝑎 and 𝑔𝑔1 = 1.

(6.65)

An automatic veri�cation shows that these formulas really de�ne the action
of the group 𝐺𝑎 on the set 𝐺, i.e. 1𝜉 = 𝜉 and (𝑔′𝑔)𝜉 = 𝑔

′ (𝑔𝜉) for any word
𝜉 ∈ 𝐺 and any elements 𝑔

′
, 𝑔 ∈ 𝐺𝑎. It is clear that this action is e�ective,

i.e. considered as a homomorphism of the group 𝐺𝑎 to the group Aut𝐺 of
all permutations (bijective maps to itself) of the set 𝐺, it is a monomorphism.

Therefore, we can consider the group 𝐺𝑎 as a subgroup of the group Aut𝐺.
Let 𝐺 be a subgroup of the group Aut𝐺 generated by all groups 𝐺𝑎. Each
element of the group 𝐺 other than one admits a reduced presentation of the
form 𝑔1 · · · 𝑔𝑘 , where 𝑔1 ∈ 𝐺𝑎1 , . . . 𝑔𝑘 ∈ 𝐺𝑎𝑘 , all elements 𝑔1, . . . , 𝑔𝑘 are di�erent
from one and no two neighbouring elements belong to the same group. We will
denote this element with the symbol 𝜉, where 𝜉 is the reduced word 𝑔1 · · · 𝑔𝑘 from
𝐺 (the di�erence between 𝜉 and 𝜉 is that 𝜉 is obtained by formally attributing
the elements 𝑔1, . . . 𝑐, 𝑔𝑘 to each other, and 𝜉 is a permutation consisting of
sequentially performing permutations 𝑔1, . . . , 𝑔𝑘). It is clear at the same time

that by the map 𝜉 → 𝜉 of the set 𝐺 to the group 𝐺, described in paragraph
1) a multiplication in 𝐺 translates into a multiplication in the group 𝐺 (i.e., is
a homomorphism). On the other hand, it follows directly from formulae (6.65)

that 𝜉 (∅) = 𝜉 for any word 𝜉 ∈ 𝐺 (where ∅ is an empty word from 𝐺). Therefore,
𝜉 = 𝜂 if and only if 𝜉 = 𝜂, i.e. the map 𝜉 → 𝜉 is bijective and therefore is an
isomorphism. Thus, the unitoid 𝐺 is isomorphic to the group 𝐺 and, therefore,
is itself a group. □

Thus, we have obtained a completely satisfactory description of the algebraic
structure of the free product ⊔𝐺𝑎.

In particular, we can now prove that the multiplication of words (6.56) is
associative, i.e. that the unitoid 𝐹 (𝑋) is a group. Indeed, if the set 𝑋 consists
of only one element, then this fact is obvious, and the group 𝐹 (𝑋) will in this
case be an in�nite cyclic group. Comparing the de�nitions now, we immediately
�nd that in the general case, the unitoid 𝐹 (𝑋) is nothing more than the unitoid
𝐺 for in�nite cyclic groups 𝐺𝑎 = 𝐹 ({𝑥𝑎}), where 𝑥𝑎 runs through it a set of 𝑋.
Hence, 𝐹 (𝑋) is a group.

In addition, we have obtained that

Proposition 6.66. any free group is a free product of in�nite cyclic groups.

Similar results can be obtained in the situation of Example 6.58 if we addi-
tionally assume that both homomorphisms 𝑖𝐴 and 𝑖𝐵 are monomorphisms, i.e. if
in fact we are dealing with two groups 𝐴 and 𝐵 in which isomorphic subgroups
of 𝐴

′
= im 𝑖𝐴, 𝐵

′
= im 𝑖𝐵 and an isomorphism is given 𝑖 = 𝑖𝐵 ◦ 𝑖−1𝐴 : 𝐴

′ → 𝐵
′
. In

this case, the push-out of the 𝐺 (0) diagramme 𝐴
𝑖𝐴←− 𝐶 𝑖𝐵−−→ 𝐵 is called the free

product of the groups 𝐴 and 𝐵 with the joined subgroup 𝐴
′
= 𝐵

′
.
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It turns out that for this free product, the homomorphisms 𝑗𝐴 : 𝐴 → 𝐺 (0)

and 𝑗𝐵 : 𝐵 → 𝐺 (0) are also monomorphisms, i.e. the groups 𝐴 and 𝐵 are
naturally embedded in the group 𝐺 (0) . Let 𝐴

′′ be a system of representatives
of the right coset classes of the group 𝐴 by the subgroup 𝐴

′
other than the

subgroup 𝐴
′
, i.e. such a subset in 𝐴 that any element of 𝑎 ∈ 𝐴 \ 𝐴′ is uniquely

presented as 𝑎
′
𝑎
′′
, where 𝑎

′ ∈ 𝐴′ , 𝑎′′ ∈ 𝐴′′, and let similarly 𝐵
′′
be a system

of representatives of the right coset classes of the group 𝐵 by the subgroup 𝐵
′

other than the subgroup 𝐵
′
. Then it turns out that

Proposition 6.67. any element of the group 𝐺 (0) is presented in the unique
way as a product of 𝑎

′
𝑐1 · · · 𝑐𝑘, where 𝑎

′ ∈ 𝐴′ , and 𝑐1, . . . , 𝑐𝑘 ∈ 𝐴
′′ ∪ 𝐵′′ , and if

𝑐𝑖 ∈ 𝐴
′′
, then 𝑐𝑖+1 ∈ 𝐵

′′
, and vice versa.

We need this fact only for a clearer presentation of the structure of concrete
examples, and therefore we will leave it without proof (which even after the
improvement of van der Waerden's software remains very painstaking).

6.E The Seifert-van Kampen theorem

Now let's return to topology.
Let 𝑋 be a connected topological space, {𝑋𝑎} be its covering consisting of

connected subspaces, and 𝒟 be a diagram scheme whose vertices are the indices
a of the cover {𝑋𝑎}, and the arrows are pairs (𝑎, 𝑏) such that 𝑋𝑎 ⊂ 𝑋𝑏 (meaning
that the pair (𝑎, 𝑏) is an arrow 𝑎 → 𝐵). Thus, the covering {𝑋𝑎} naturally turns
out to be a diagramme of the type 𝒟 over the category 𝒯ℴ𝓅.

If the space 𝑋 is pointed and all subspaces 𝑋𝑎 contain a base point, then
the covering {𝑋𝑎} will be a diagramme of type 𝒟 over the category 𝒯ℴ𝓅, and
the groups 𝐺𝑎 = 𝜋𝑖𝑋𝑎 and homomorphisms 𝐺𝑎 → 𝐺𝑏 induced by 𝑋𝑎 ⊂ 𝑋𝑏 with
attachments 𝑋𝑎 → 𝑋𝐵, will form a diagramme of groups of the type 𝒟. We will
denote this diagramme with the symbol {𝜋1𝑋𝑎}.

It is clear that the homomorphisms 𝑖𝑎 : 𝜋1𝑋𝑎 → 𝜋1𝑋 induced by the em-
beddings of 𝑋𝑎 → 𝑋 make up the cone {𝑖𝑎 : 𝜋1𝑋𝑎 → 𝜋1𝑋} over the diagramme
{𝜋1𝑋𝑎} with vertex 𝜋1𝑋.

A covering {𝑋𝑎} is called saturated if the intersection of any two of its ele-
ments is also a covering element. From any covering, you can move to a satu-
rated covering by adding all possible �nite intersections of its elements (but the
condition of connectivity of the covering elements may be violated).

Theorem 6.68. For any pointed connected space 𝑋 and any of its saturated
covering {𝑈𝑎} consisting of connected open sets 𝑈𝑎 containing the base point,
the fundamental group 𝜋1𝑋 of a space 𝑋 is the limit of groups 𝜋1𝑈𝑎,

𝜋1𝑋 = lim−−→{𝜋1𝑈𝑎},

with respect to homomorphisms 𝑖𝑎 : 𝜋1𝑈𝑎 → 𝜋1𝑋, induced by attachments 𝑈𝑎 →
𝑋.
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In a very special special case, this theorem was �rst proved by Seifert and
almost simultaneously by van Kampen. For a long time it was called the van
Kampen theorem, but now it is more often called the Seifert-van Kampen the-
orem. In fact, Crowell seems to have proved it for the �rst time.

We will break the proof of Theorem 6.68 into a series of lemmas.

Lemma 6.69. Under the conditions of Theorem 6.68, the group 𝜋1𝑋 is gener-
ated by images of groups 𝜋1𝑈𝑎 with homomorphisms 𝑖𝑎.

Proof. Let 𝛼 = [𝑢 :: (𝐼, ¤𝐼) → (𝑋, 𝑥0)] be an arbitrary element of the group 𝜋1𝑋.
Then if 1/𝑛 is less than the Lebesgue number (see Appendix 1.11 to Lecture 1)
of the preimage of the covering {𝑈𝑎} by the map 𝑢, then for any 𝑘 = 1, . . . , 𝑛
there exists an index 𝑎𝑘 ∈ 𝒟 that the segment 𝐼𝑘 = [(𝑘 − 1)/𝑛, 𝑘/𝑛] passes when
𝑢 is mapped to the open set 𝑈𝑎𝑘 , i.e. the path 𝑢𝑘 : 𝐼 → 𝑋 de�ned by the formula

𝑢𝑘 (𝑡) = 𝑢
(
𝑡 + 𝑘 − 1

𝑛

)
, 𝑖 ∈ 𝐼,

is actually a path in 𝑈𝑎𝑘 . This path connects the point 𝑥𝑘−1 = 𝑢

(
𝑘−1
𝑛

)
(being

at 𝑘 = 1 the base point 𝑥0) with the point 𝑥𝑘 = 𝑢

(
𝑘
𝑛

)
(at 𝑘 = 𝑛, also being the

base point 𝑥0). For 𝑘 < 𝑛, the point 𝑥𝑘 belongs to the set 𝑈𝑎𝑘 ∩ 𝑈𝑎𝑘+1 , which
is by condition an element of the covering {𝑈𝑎}, and therefore connected and
containing the point 𝑥0. Therefore, in 𝑈𝑎𝑘 ∩𝑈𝑎𝑘+1 there is a path 𝑤𝑘 connecting
the point 𝑥0 with the point 𝑥𝑘 . For 𝑘 = 0, we will assume that this path is a
constant path. For 𝑘 = 𝑛, we will also take a constant path for 𝑣𝑛. Then for
any 𝑘 = 1, . . . , 𝑚 in 𝑈𝑎𝑘 , the loop 𝑣𝑘 = 𝑤𝑘−1𝑢𝑘𝑤

−1
𝑘

will be de�ned and in 𝑋 the
product 𝑣1𝑣2 · · · 𝑣𝑛 of all these loops will be homotopic rel ¤𝐼 to the product of
𝑢1𝑢2 · · · 𝑢𝑛 of paths 𝑢𝑘 , i.e. it will be homotopic to the loop 𝑢. This proves that
the elements 𝛽𝑘 = [𝑣𝑘] of the groups 𝜋1𝑈𝑎𝑘 have the property that the element
𝛼 is the product of the elements 𝑖𝑎𝑘 (𝛽𝑘). Therefore, the group 𝜋1𝑋 is generated
by the subgroups 𝑖𝑎 (𝜋1𝑈𝑎). □

We will call a loop 𝑢 elementary if it is contained in one of the elements of
the cover {𝑈𝑎}, and a loop subordinate to the cover {𝑈𝑎} if it is a product of
elementary loops. In this terminology, Lemma 6.69 states that

Proposition 6.70. any loop of the space 𝑋 is homotopic to rel ¤𝐼 the loop sub-
ordinate to the covering {𝑈𝑎}.

Loops 𝑢 and 𝑣 subordinate to the covering {𝑈𝑎}, we will call elementary
homotopy if 𝑢 = 𝑢1𝑢

′
𝑢2 and 𝑣 = 𝑢1𝑣

′
𝑢2 where 𝑢1, 𝑢2 are loops subordinate to

the covering {𝑈𝑎}, and 𝑢
′
and 𝑣

′
are elementary loops, contained in the same

element 𝑈𝑎 of the coverings {𝑈𝑎} and homotopic rel ¤𝐼 in 𝑈𝑎.

Lemma 6.71. Loops 𝑢 and 𝑣 subordinate to the covering {𝑈𝑎} are homotopic
if and only if when they are subordinately homotopic rel ¤𝐼.
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Proof. It is clear that subordinate homotopic loops are homotopic. Conversely,
let the loops 𝑢 and 𝑣 subordinate to the covering {𝑈𝑎} be homotopic, and let
𝐹 : 𝐼 × 𝐼 → 𝑋 be the homotopy connecting them rel ¤𝐼.

For any 𝑁 > 0, consider the squares into which the square 𝐼 × 𝐼 is divided
by the lines 𝑠 = 𝑘/𝑁 and 𝑡 = ℓ/𝑁, where 𝑘, ℓ = 0, 1, . . . , 𝑁. Each such square is
given by two numbers 𝑘, ℓ = 1, . . . , 𝑁 and consists of all points (𝑠, 𝑡) ∈ 𝐼 × 𝐼 for
which

𝑘 − 1
𝑁
≤ 𝑠 ≤ 𝑘

𝑁
,

ℓ − 1
𝑁
≤ 𝑡 ≤ ℓ

𝑁
.

We will denote this square with the symbol 𝐼2
𝑘ℓ
.

The reasoning already known to us from the proof of Lemma 6.69, using the
Lebesgue number to the covering {𝐹−1𝑈𝑎}, shows that for a su�ciently large
𝑁, each of the sets 𝐹 (𝐼2

𝑘ℓ
) is contained at least in one element of the coverings

{𝑈𝑎}. Assuming that 𝑁 has this property, we denote for any 𝑘 and ℓ by 𝑎(𝑘, ℓ)
one of the indexes of 𝑎 for which 𝐹 (𝐼2

𝑘ℓ
) ⊂ 𝑈𝑎. Then the map 𝐹, bounded to

the upper side of the square 𝐼2
𝑘,ℓ

, will be some way in 𝑈𝑎 (𝑘,ℓ ) . We will denote
this path with the symbol 𝑢𝑘ℓ . Taking into account the transformation of the
parameter, it is determined by the formula

𝑢𝑘ℓ (𝑡) = 𝐹
(
𝑡 + 𝑘 − 1

𝑁
,
ℓ

𝑁

)
, 𝑡 ∈ 𝐼,

We will also introduce the path 𝑣𝑘ℓ : 𝐼 → 𝑈𝑎 (𝑘,ℓ ) , de�ned by the map 𝐹 on the
right side of the square 𝐼2

𝑘ℓ
:

𝑣𝑘ℓ (𝑡) = 𝐹
(
𝑘

𝑁
,
𝑡 + ℓ − 1
𝑁

)
, 𝑡 ∈ 𝐼,

Then on the lower side of the square 𝐼2
𝑘,ℓ

the map 𝐹 will de�ne the path 𝑢𝑘,ℓ−1
and on the left - the path 𝑣𝑘−1,ℓ . Therefore, on the entire square 𝐼2

𝑘,ℓ
, the map

𝐹 will de�ne the homotopy rel ¤𝐼 connecting the path 𝑢𝑘,ℓ−1𝑣𝑘ℓ with the path
𝑣𝑘−1,ℓ𝑢𝑘ℓ . Thus

𝑢𝑘,ℓ−1𝑣𝑘ℓ ∼ 𝑣𝑘−1,ℓ𝑢𝑘ℓ rel ¤𝐼 in 𝑈𝑎 (𝑘,ℓ )

Each point of the form (𝑖/𝑁, 𝑗/𝑁) is the vertex of four (or fewer) squares
𝐼2
𝑘,ℓ

. Let 𝑈𝑏 (𝑖, 𝑗 ) be the intersection of the corresponding sets 𝑈𝑎 (𝑘,ℓ ) . Thus, in
particular, 𝑈𝑎 (𝑖, 𝑗 ) ⊂ 𝑈𝑎 (𝑘,ℓ ) at (𝑖, 𝑗) = ((𝑘 − 1, ℓ), (𝑘, ℓ) and (𝑘, ℓ − 1).

Let 𝑘, ℓ = 1, . . . , 𝑁. Consider the set 𝑈𝑏 (𝑘,ℓ ) . This set is connected and
contains the points 𝑥0 and 𝑥𝑘ℓ = 𝐹 (𝑘/𝑁, ℓ/𝑁). Let 𝑤𝑘ℓ be an arbitrary path in
𝑈𝑏 (𝑘,ℓ ) connecting the points 𝑥0 and 𝑥𝑘ℓ (and being a constant path if 𝑥0 = 𝑥𝑘ℓ).
Then in 𝑈𝑎 (𝑘,ℓ ) loops will be de�ned

𝑢𝑘ℓ = 𝑤𝑘−1,ℓ𝑢𝑘ℓ𝑤
−1
𝑘ℓ and 𝑣𝑘ℓ = 𝑤𝑘,ℓ−1𝑣𝑘ℓ𝑤

−1
𝑘ℓ ,

and homotopies will take place for these loops

𝑢𝑘,ℓ−1𝑣𝑘ℓ ∼ 𝑣𝑘−1,ℓ𝑢𝑘ℓ rel ¤𝐼 in 𝑈𝑎 (𝑘,ℓ ) . (6.72)
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Let us now focus our attention on the polylines in the square 𝐼× 𝐼 connecting
its lower left vertex (0, 0) with its upper right vertex (1, 1) and consisting of the
sides of the squares 𝐼2

𝑘,ℓ
. For each such polyline, we will match a loop that is

the product of elementary loops 𝑢𝑘ℓ and 𝑣𝑘ℓ corresponding to the sides of this
polyline. Since we can move from any polyline to any other polyline a sequence
of elementary steps, at each of which two sides of one of the squares 𝐼2

𝑘ℓ
are

replaced by its other two sides, it follows directly from the formula (6.72) that

Proposition 6.73. the loops corresponding to any two polylines are subordi-
nately homotopic.

Therefore, in particular, the loops are subordinately homotopic

𝑢
′
= 𝑢10𝑢20 · · · 𝑢𝑁0𝑣𝑁1𝑣𝑁2 · · · 𝑣𝑁𝑁

and
𝑣
′
= 𝑣00𝑣01 · · · 𝑣0𝑁𝑢𝑁1𝑢𝑁2 · · · 𝑢𝑁𝑁

corresponding to polylines consisting of (subdivided) sides of the square 𝐼 × 𝐼.
But by construction, all loops 𝑣𝑁1𝑣𝑁2 · · · 𝑣𝑁𝑁 and 𝑣00𝑣01 · · · 𝑣0𝑁 𝑡 are constant
loops (at the point 𝑥0) and, therefore, the subordinated loops 𝑢

′
and 𝑣

′
are homo-

topic to the loops 𝑢
′′
= 𝑢10𝑢20 · · · 𝑢𝑁0 and 𝑣

′′
= 𝑢𝑁1𝑢𝑁2 · · · 𝑢𝑁𝑁 , corresponding

to the lower and upper sides of the square 𝐼 × 𝐼.
Let us now recall that, by the condition, the loop 𝑢 is, �rstly, the restriction

of the map 𝐹 on the lower side of the square 𝐼 × 𝐼, and secondly, it is subordi-
nated to the covering {𝑈𝑎}, i.e. is the product 𝑢1𝑢2 · · · 𝑢𝑛 of the element loops
𝑢1, 𝑢2 . . . , 𝑢𝑛. Since all of the above is true for any su�ciently large 𝑁, we can
additionally require that the number 𝑁 be divisible by 𝑛, i.e. have the form
𝑁 = 𝑛𝑀, and, consequently, that each loop 𝑢𝑖 , 𝑖 = 1, . . . , 𝑛, is the product of the
paths 𝑢𝑘0 with (𝑖 − 1)𝑀 ≤ 𝑘 ≤ 𝑖𝑀. At the same time, by the condition for any
𝑖 = 1, . . . , 𝑛, there is an index 𝑎𝑖 such that the loop is, and therefore every path
𝑢𝑘0 with (𝑖 − 1)𝑀 ≤ 𝑘 ≤ 𝑖𝑀, is contained in 𝑈𝑎𝑖 . It is clear that, without loss of
generality, we can assume (by increasing, if necessary, 𝑀) that 𝑈𝑎𝑖 contains not
only the path 𝑢𝑘0 (i.e., more precisely, the image when map 𝐹 to the lower side

of the square 𝐼 (2)
𝑘0

), but the image 𝐹 (𝐼 (2)
𝑘0

) of the total square 𝐼 (2)
𝑘0

. This means
that for (𝑖 − 𝑙)𝑀 ≤ 𝑘 ≤ 𝑖𝑀 we can assume that there is an equality 𝑎(𝑘, 0) = 𝑎𝑖
and, consequently, that each loop 𝑈𝑘0 = 𝑤𝑘−1,0𝑢𝑘0𝑤−1𝑘0 with (𝑖− 𝑙)𝑀 ≤ 𝑘 ≤ 𝑖𝑀 is

a loop in 𝑈𝑎𝑖 . Therefore, the product 𝑢
′
𝑖
of these loops will be in 𝑈𝑎 homotopic

to the product of the paths 𝑈𝑘0, i.e. it will be homotopic to the loop 𝑢𝑖. This
proves that the loop

𝑢
′′
= 𝑢10𝑢20 · · · 𝑢𝑁0 = 𝑢

′
1𝑢
′
2 · · · 𝑢

′
𝑛

is subordinately homotopic to the loop 𝑢 = 𝑢1𝑢2 · · · 𝑢𝑛.
Similarly, it is proved that (for possibly even larger 𝑁) the loop 𝑣

′′
is subor-

dinately homotopic to the loop 𝑣.
Thus, there are subordinate homotopies

𝑢 ∼ 𝑢′′ ∼ 𝑢′ ∼ 𝑣′ ∼ 𝑣′′ ∼ 𝑣,
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and, therefore, the loops 𝑢 and 𝑣 are subordinately homotopic. □

Now we have everything ready to prove Theorem 6.68.

Proof. (of Theorem 6.68) We need to show that for any cone { 𝑗𝑎 : 𝜋1𝑈𝑎 → 𝐺}
over the diagramme {𝜋1𝑈𝑎} there exists a morphism 𝜑 : 𝜋1𝑋 → 𝐺 of the cone
{𝑖𝑎 : 𝜋1𝑈𝑎 → 𝜋1𝑋} to the cone { 𝑗𝑎 : 𝜋1𝑈𝑎 → 𝐺} and that this morphism is
unique. But if such a morphism exists and if 𝛼 = 𝑖𝑎1 𝛽1 · 𝑖𝑎2 𝛽2 · · · · · 𝑖𝑎𝑛 𝛽𝑛 -
presentation of the element 𝛼 ∈ 𝜋1𝑋 as a product of elements of the form 𝑖𝑎𝛽,
𝑎 ∈ 𝒟, 𝛽 ∈ 𝜋1𝑈𝑎 (existing by Lemma 6.69), then

𝜑(𝛼) = 𝑗𝑎1 𝛽1 · 𝑗𝑎2 𝛽2 · · · · · 𝑗𝑎𝑛 𝛽𝑛. (6.74)

Hence, the morphism 𝜑 is unique. Therefore, everything will be proved if we
show that formula (6.74) well de�nes some map 𝜑 : 𝜋1𝑋 → 𝐺 (which will
automatically be a homomorphism of groups and a morphism of cones), i.e.
that equality

𝑖𝑎1 𝛽1 · 𝑖𝑎2 𝛽2 · · · · · 𝑖𝑎𝑛 𝛽𝑚 = 𝑖𝑏1𝛾1 · 𝑖𝑏2𝛾2 · · · · · 𝑖𝑏𝑛𝛾𝑚 (6.75)

follows the equality

𝑗𝑎1 𝛽1 · 𝑗𝑎2 𝛽2 · · · · · 𝑗𝑎𝑛 𝛽𝑚 = 𝑗𝑎1𝛾1 · 𝑗𝑎2𝛾2 · · · · · 𝑗𝑎𝑛𝛾𝑚. (6.76)

Let 𝑢1, 𝑢2, . . . , 𝑢𝑛 be arbitrary loops of classes 𝛽1, 𝛽2, . . . , 𝛽𝑛, and 𝑣1, 𝑣2, . . . , 𝑣𝑚
be arbitrary loops of classes 𝛾1, 𝛾2, . . . , 𝛾𝑚. Consider subordinate coverings {𝑈𝑎}
for loops 𝑢 = 𝑢1𝑢2 · · · 𝑢𝑛 and 𝑣 = 𝑣1𝑣2 · · · 𝑣𝑚. Equality (6.75) means that these
loops are homotopic. Therefore, according to Lemma 6.71, they are also sub-
ordinately homotopic. Thus, it is su�cient for us to prove Equality (6.76) only
in the case when the loops 𝑢 and 𝑣 are subordinately homotopic. Moreover,
for obvious inductive reasons, it is su�cient to prove this equality only for ele-
mentary homotopy loops 𝑢 and 𝑣, i.e., in other words, for the case when𝑛 = 𝑚

and 𝛽1 = 𝛾1, · · · 𝛽𝑛 = 𝛾𝑚. In turn, it is enough, obviously, to prove that if the
elementary loop 𝑢 : (𝐼, ¤𝐼) → (𝑋, 𝑥0) is contained in the elements 𝑈𝑎 and 𝑈𝑏 of
the covering {𝑈𝑎}, then for the elements [𝑢]𝑎 and [𝑢]𝑏 of the groups 𝜋1𝑈𝑎 and
𝜋1𝑈𝑏 de�ned by this loop, considered as a loop in 𝑈𝑎 and in 𝑈𝑏, respectively,
the equality takes place in the group 𝐺

𝑖𝑎 [𝑢]𝑎 = 𝑗𝑏 [𝑢]𝑏 . (6.77)

Let 𝑈𝑐 = 𝑈𝑎 ∩ 𝑈𝑏, and let [𝑢] be an element of the group 𝜋1𝑈𝑐 de�ned by
the loop and, considered as a loop in 𝑈𝑐. Then [𝑢] ↦→ [𝑢]𝑎 and [𝑢] ↦→ [𝑢]𝑏
with homomorphisms induced by the corresponding embeddings. Therefore,
by applying the de�ning property of the cone in the group 𝐺, the equality
𝑗𝑐 [𝑢] = 𝑗𝑎 [𝑢]𝑎 and 𝑗𝑐 [𝑢] = 𝑗𝑏 [𝑢]𝑏, and hence Equality (6.77).

Thus, Theorem 6.68 is fully proved, □
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6.F Consequences of the Seifert-van Kampen the-
orem

Using Theorem 6.68, the fundamental group of the bouquet of any well-pointed
spaces is easily calculated.

Proposition 6.78. The fundamental group 𝜋1 (𝑋 ∨ 𝑌 ) of the bouquet 𝑋 ∨ 𝑌 of
two connected well-pointed spaces 𝑋 and 𝑌 is the free product of the fundamental
groups of these spaces:

𝜋1 (𝑋 ∨ 𝑌 ) = 𝜋1𝑋 ⊔ 𝜋1𝑌 .
Proof. By the condition, the base point 𝑥0 has in the spaces 𝑋 and 𝑌 (now
automatically linked) neighbourhoods 𝑈 and 𝑉 such that 𝑈 u 𝑥0 and 𝑉 u 𝑥0.
Consider in the bouquet 𝑋 ∨ 𝑌 open sets

𝑈
′
= 𝑋 ∪𝑉, 𝑉

′
= 𝑈 ∪ 𝑌

and their intersection 𝑈
′ ∩ 𝑉 ′ = 𝑈 ∨ 𝑉 . According to Theorem 6.68, the group

𝜋1 (𝑋 ∨ 𝑌 ) is a push-out of the diagramme

𝜋1𝑈
′ ← 𝜋1 (𝑈

′ ∩𝑉 ′ ) → 𝜋1𝑉
′
.

But it is clear that 𝑈
′
u 𝑋, 𝑉

′
u 𝑌 and 𝑈

′ ∩𝑉 ′ u 𝑥0. Therefore, this push-out
is isomorphic to the free product 𝜋1𝑋 ⊔ 𝜋1𝑌 □

Of course, the analogue of proposition 6.53 also holds for a bouquet of any
number of well-pointed spaces, i.e.

𝜋1 (∨𝑎𝑋𝑎) = ⊔𝑎𝜋1𝑋𝑎
for any well-pointed spaces 𝑋𝑎.

Corollary 6.79. As a consequence, the fundamental group of the bouquet of
circles is a free group:

𝜋1 (∨𝑎S1𝑎) = 𝐹 (𝐴). (6.80)

Here 𝐹 (𝐴) is a free group, the set of free generators of which is the set of indices
of the number the circles of the bouquet ∨𝑎S1𝑎.
Remark 6.81. The reasoning used in the proof of Proposition 6.78 is of a very
general nature. It is applicable to any family of subspaces {𝑋𝑎} of the space
𝑋 (generally speaking, not even a covering) for which there exists a saturated
open covering {𝑈𝑎} of the space 𝑋 such that:

1) for any index 𝑎, there is an inclusion of 𝑋𝑎 ⊂ 𝑈𝑎 and the corresponding
embedding 𝑋𝑎 → 𝑈𝑎 induces a isomorphism 𝜋1𝑋𝑎 ≈ 𝜋1𝑈𝑎 (so it will be for
example, in the case when 𝑈𝑎 u 𝑋𝑎);,

2) for any pair of indices 𝑎 and 𝑏, the inclusion 𝑋𝑎 ⊂ 𝑋𝑏 takes place if and only
if 𝑈𝑎 ⊂ 𝑈𝑏 holds.

It is clear that

Proposition 6.82. for any such family

lim−−→{𝜋1𝑋𝑎} = 𝜋1𝑋.
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6.G Graphs

We will verify the Seifert-van Kampen theorem in Lecture 192, but for now
we will consider one simple but important class of topological spaces whose
fundamental groups can be easily calculated using the previous corollary.

De�nition 6.83. A Hausdor� space 𝑋 is called a graph if a nonempty discrete
subspace 𝑋0 is allocated in it (the points of which are called vertices of the
graph 𝑋) such that

1) the complement 𝑋 \ 𝑋0 is a disjoint union of open sets, each of which is
homeomorphic to the open interval (0, 1) (these sets - as well as their closures
- are called edges of the graph 𝑋);

2) for any edge 𝑒 ⊂ 𝑋 \ 𝑋0, there exists a continuous map 𝑢 : 𝐼 → 𝑋 (called the
characteristic path of this edge), the image of which is the closure 𝑒 of the
edge 𝑒 and which is on the inside of (0, 1) of the segment 𝐼 is homeomorphic
to the edge 𝑒;

3) any set 𝐶 ⊂ 𝑋 is closed (open) if and only if, for any edge 𝑒, the intersection
of 𝐶 ∩ 𝑒 is closed (open) in 𝑒.

A graph is called �nite if it has only a �nite number of vertices and edges.
For any �nite graph, condition 3) is automatically ful�lled.

Since the space 𝑋 is Hausdor� by condition, it follows from condition 2) that
the boundary ¤𝑒 = 𝑒 \ 𝑒 of each edge consists of one or two vertices, and in the
�rst case the set 𝑒 is homeomorphic to a circle, and in the second case to the
segment 𝐼.

If 𝑒 is homeomorphic to the segment 𝐼, then the edge 𝑒 is called a simple
edge, and the points from ¤𝑒 are called its vertices. Otherwise, the edge 𝑒 is
called loop-like edge. Such an edge, by de�nition, has only one vertex (however,
for the unity of formulations, it is often convenient to assume that a loop-like
edge has two, but coinciding vertices).

Every discrete space is a graph without edges. In a sense, the opposite
example of a graph is any bouquet of circles. This graph has only one vertex
and has no simple edges.

Remark 6.84. In graph theory (which, by the way, has undergone rapid devel-
opment in recent years due to a number of important applied studies), it is
customary to de�ne a graph more abstractly as a collection of two sets (vertices
and edges) connected by some map that maps an unordered pair of vertices (pos-
sibly coincident) to each edge. Graphs in our sense are then called geometric
realisations of this kind of �abstract� graphs. This point of view (usually called
�combinatorial�) is completely equivalent to ours (which can be called �topolog-
ical�), because, as it is easy to see, abstract graphs are isomorphic if and only if
(in an understandable way) their geometric realisations are homeomorphic by
means of homeomorphisms that translate vertices into vertices.

2The transcriber guesses that Postnikov refers to Lecture 9 of �Cellular Homotopy�.
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From the equivalence of the combinatorial and topological points of view, it
follows that each topological property of graphs is equivalent to some of their
combinatorial property, i.e. a property formulated only in terms of vertices and
edges.

For example, it is clear that a graph is a bouquet of circles (topological
property) if and only if when it has only one vertex (combinatorial property).

To obtain similar statements regarding the properties of connectivity and
simple connectedness, we need to introduce a combinatorial analogue of the
concept of path.

We will call an arbitrary symbol of the form 𝑒𝜀 an oriented edge of the graph
𝑋, where 𝑒 is some edge of the graph 𝑋, and 𝜀 = ±1. To each oriented edge 𝑒𝜀,
we will arbitrarily match one of the vertices of the edge 𝑒, requiring only - in
the case when the edge 𝑒 is simple - that the edge 𝑒𝜀 be matched by another
vertex of the edge 𝑒. The vertex mapped to the edge 𝑒𝜀, we will call it the
initial vertex, and the other vertex of the edge 𝑒 - in the case when the edge 𝑒 is
simple - the �nal vertex of the oriented edge 𝑒𝜀. For a loop-like oriented edge,
its only vertex will, by de�nition, be both the initial and the �nal one.

A graph whose edges are all oriented and whose initial and �nal vertices are
speci�ed for them is called oriented.

Remark 6.85. Formally, the concept of an oriented graph is identical to the
concept of a circuit diagramme.

A word of the form 𝑣
𝜀1
1 · · · 𝑣

𝜀𝑛
𝑛 consisting of oriented edges of a graph 𝑋 is

called a route in 𝑋 if for any 𝑖 = 𝑙, . . . , 𝑛 − 1 the �nal vertex of the edge 𝑣𝜀𝑖
𝑖

coincides with the initial vertex of the edge 𝑣𝜀𝑖+1
𝑖+1 . We also consider the empty

word ∅ (for which 𝑛 = 0) to be a route.
A route 𝑤 = 𝑣

𝜀1
1 · · · 𝑣

𝜀𝑛
𝑛 is said to connect the initial vertex 𝑥0 of the edge 𝑣

𝜀1
1

with the �nal vertex 𝑦𝑛 of the edge 𝑣𝜀𝑛𝑛 . When 𝑥0 = 𝑦𝑛, the route 𝑤 is called a
closed route with the pole 𝑥0. An empty route, by de�nition, is closed. Its pole
is considered to be an arbitrary vertex of graph 𝑋.

The concept of a route is the combinatorial equivalent of the topological
concept of a path. For routes, it is possible to construct a purely combinatorial
analogue of homotopy theory of path theory, and thus for any pointed graph 𝑋
- its �combinatorial� fundamental group, which turns out to be isomorphic to
its usual (�topological�) fundamental group 𝜋1𝑋. We will not do this (although
we strongly recommend that the reader independently conduct all the necessary
reasoning) and we will freely use topological and geometric considerations for
the study of combinatorial constructions.

For each edge e of the graph 𝑋, any two of its characteristic paths 𝐼 → 𝑋

di�er by some monotone map 𝐼 → 𝐼. Since any two monotone maps 𝐼 → 𝐼 of
the same character (i.e. both increasing or both decreasing), as it is easy to see,
are homotopic rel ¤𝐼, we see, therefore, that all characteristic paths 𝐼 → 𝑋 for
edge 𝑒 fall into two classes: paths of the same class (considered as paths in 𝑒) are
homotopic rel ¤𝐼, and maps of di�erent classes are not homotopic. These classes
are naturally identi�ed with oriented edges 𝑒±1, which thus gives a geometric
interpretation of the formally combinatorial concept of an oriented edge.
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We see, therefore, that each oriented edge, and therefore any route, we,
assuming an insigni�cant arbitrariness that disappears after the transition to
homotopy classes, can be considered as a path in 𝑋. (This is the reason why
routes are an adequate combinatorial analogue of paths. Of course, in order to
fully substantiate this thesis, it is necessary and, conversely, to interpret any
path in 𝑋 - with permissible arbitrariness - as a route, but formally we will
not need it, and therefore in connection with our common, with the installation
explained above, we will leave this to the reader.)

In particular, we see that

Proposition 6.86. any closed route with 𝑥0 as a pole well de�nes some element
of the group 𝜋1 (𝑋, 𝑥0).

A route in a graph 𝑋 is called simple if it contains neither matching edges
nor edges that di�er only in orientations.

We will call a graph 𝑋 connected if any two of its vertices can be connected
by a simple route. (The fact that this combinatorial notion of connectivity
coincides with the topological one will follow from our �nal results. Therefore,
we will not prove it here, although we strongly recommend the reader to prove
it now.)

A graph 𝐴 is called a subgraph of the graph 𝑋 if every edge (and every vertex)
of the graph 𝐴 is an edge (vertex) of the graph 𝑋. It is easy to see that any two
vertices of a connected graph are contained in a �nite connected subgraph.

6.H Trees

A connected graph 𝑇 is called a tree if for any two of its vertices the simple
route connecting them is unique, i.e., which is obviously equivalent if there are
no non-empty simple closed routes in it. It is clear that

Proposition 6.87. no tree contains loop-like edges and that any connected
subgraph of a tree is a tree.

A tree consisting of only one vertex and having no edges is called a trivial
tree.

A simple edge 𝑒 of a connected graph 𝑋 is called branch if one (and only
one) of its vertices is not the vertex of any other edge. Its other vertex 𝑦 is
said to have a branch 𝑒attached to the graph 𝑋

′
obtained from the graph 𝑋 by

removing the edge 𝑒 and the vertex 𝑥.
It is clear that

Proposition 6.88. for any graph 𝑋
′
and any of its vertices 𝑦 it is possible to

construct a graph 𝑋 resulting from the graph 𝑋
′
by attaching a branch e at the

vertex 𝑦. At the same time, if 𝑋
′
is a tree, then 𝑋 will also be a tree.

On the other hand, it is easy to see that

Proposition 6.89. any nontrivial �nite tree 𝑇 contains a branch.
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Proof. Indeed, by applying �niteness in 𝑇 , there is a simple route of maximum
length, and it is clear that the initial and �nal edges of this route are (by
applying maximality) branches. □

By obvious induction, it follows that

Proposition 6.90. any �nite tree is obtained from the trivial by sequentially
attaching branches.

Now we can prove the main theorem of the topological theory of trees.

Proposition 6.91. Every tree 𝑇 is contractible to any of its vertices 𝑥0 (and
therefore simply connected).

Proof. It is clear that if the graph 𝑋 is obtained from the graph 𝑋
′
by attaching

a branch, then 𝑋 u 𝑋
′
. Therefore, for a �nite tree 𝑇 , Proposition 6.91 is proved

by an obvious induction on the number of edges.
Let the tree 𝑇 be in�nite. For any vertex 𝑥 of a tree 𝑇 in 𝑇 , there exists a

�nite connected subgraph 𝑇𝑥 (and, therefore, a tree) containing vertices 𝑥0 and
𝑥, and in this subgraph, the path 𝑢𝑥 connecting the point 𝑥0 with the point 𝑥
(for example, we can assume that their path is obtained in the way described
above from a simple route connecting the vertices 𝑥0 and 𝑥 in 𝑇𝑥). Let 𝑒 be an
arbitrary edge of the tree 𝑇 . By choosing for 𝑒 the characteristic path 𝑢 : 𝐼 → 𝑇

(which, due to the simplicity of the edge 𝑒, is a homeomorphism) and putting
𝑥 = 𝑢(0), 𝑦 = 𝑢(1), we construct a path 𝑣 = 𝑢𝑥𝑢𝑢

−1
𝑦 . This path is given by the

formula

𝑣(𝑠) =


𝑢𝑥 (3𝑠), if 0 ≤ 𝑠 ≤ 1/3,
𝑢(3𝑠 − 1), if 1/3 ≤ 𝑠 ≤ 2/3,
𝑢𝑦 (3 − 3𝑠), if 2/3 ≤ 𝑠 ≤ 1,

and is a loop at the point 𝑥0, entirely contained in the �nite subgraph 𝑇𝑒 =

𝑇𝑥 ∪ 𝑇𝑦 ∪ 𝑒 of the tree 𝑇 . Since the subgraph 𝑇𝑒 is obviously a �nite tree and
therefore, according to what has already been proved, is simply connected, the
loop 𝑣 is homotopic to zero in 𝑇𝑒, and therefore in 𝑇 . This means that there
is homotopy 𝐺 : 𝐼 × 𝑙 → 𝑇 such that 𝐺 (0, 𝑡) = 𝐺 (1, 𝑡) = 𝐺 (𝑠, 1) = 𝑥0, and
𝐺 (𝑠, 0) = 𝑣(𝑠) for any 𝑡, 𝑠 ∈ 𝐼. But a simple elementary geometric construction
(which we will present to the reader) shows that there exists a continuous map
𝜑 : 𝐼 × 𝐼 → 𝐼 × 𝐼, which is a homeomorphism on the inside of the square 𝐼 × 𝐼
such that

𝜑(𝑠, 0) =


(0, 1 − 3𝑠), if 0 ≤ 𝑠 ≤ 1/3,
(3𝑠 − 1, 0), if 1/3 ≤ 𝑠 ≤ 2/3,
(1, 3𝑠 − 2), if 2/3 ≤ 𝑠 ≤ 1,

and
𝜑(0, 𝑡) = (0, 1), 𝜑(𝑠, 1) = (𝑠, 1), 𝜑(1, 𝑡) = (1, 1)

for any 𝑠, 𝑡 ∈ 𝐼. It is clear that the formula 𝐻 = 𝐺◦𝜑−−1 well de�nes a continuous
map 𝐻 : 𝐼 × 𝐼 → 𝐼 having the property that

𝐻 (0, 𝑡) = 𝑢𝑥 (1 − 𝑡), 𝐻 (1, 𝑡) = 𝑢𝑦 (1 − 𝑡), 𝑡 ∈ 𝐼,
𝐻 (𝑠, 0) = 𝑢𝑠 , 𝐻 (𝑠, 1) = 𝑥0, 𝑠 ∈ 𝐼 .

(6.92)



6.I. CALCULATION OF THE FUNDAMENTAL GROUP OF GRAPHS 245

Using the fact that the map 𝑢 is a homeomorphism, we will match any point
𝑧 ∈ 𝑒 and any number 𝑡 ∈ 𝐼 to the point 𝐹 (𝑧, 𝑡) = 𝐻 (𝑠, 𝑡) of the tree 𝑇 , where
𝑠 is a number from 𝐼 such that 𝑧 = 𝑢(𝑠). It is clear that the resulting map
𝐹 : 𝑒 × 𝐼 → 𝑇 is continuous.

On the other hand, it follows directly from formulae (6.92) that this con-
struction is consistent at each vertex x of the tree 𝑇 , i.e., that the point 𝐹 (𝑥, 𝑡)
does not depend on the choice of the edge 𝑒 whose vertex is 𝑥. This means that
we have well de�ned the map 𝐹 : 𝑇 × 𝐼 → 𝑇 , which has the property that on any
subset of the form 𝑒 × 𝐼 it is continuous. But then this map will, by applying
condition 3) of De�nition 6.83, be continuous and on the entire product 𝑇 × 𝐼,
i.e. it will be a homotopy.

To complete the proof, it remains to note that, as directly follows from
formulae (6.92), the homotopy 𝐹 connects the identity map 𝑇 → 𝑇 with the
constant map 𝑇 → 𝑇 . □

6.I Calculation of the fundamental group of graphs

Now let 𝑋 be an arbitrary connected graph. Consider the set 𝔗 of all possible
subtrees (subgraphs that are trees) of the graph 𝑋. It is clear that for any family
of trees linearly ordered by embedding 𝑇𝜆 ∈ 𝔗 their union ∪𝑇𝜆 is also a tree,
i.e., lies in 𝔗. This means that the (obviously non-empty) set 𝔗 satis�es the
conditions of Zorn's lemma and therefore contains a maximal element. This
proves that

Proposition 6.93. in any connected graph 𝑋 there exists a maximal subtree 𝑇 .

It is easy to see that

Proposition 6.94. a tree 𝑇 is maximal if and only when it contains all vertices
of the graph 𝑋.

Proof. (⇒): Indeed, if there are vertices in 𝑋 that do not belong to the tree 𝑇 ,
then in 𝑋 there is such a simple edge 𝑒 that one of its vertices lies in 𝑇 , and the
other does not. Then 𝑇 ∪ 𝑒 will be under a tree in 𝑋 containing a tree 𝑇 and
di�erent from 𝑇 , which is impossible due to the maximality of 𝑇 .
(⇐): Conversely, let the tree 𝑇 contain all vertices of the graph 𝑋. Then for any
vertex 𝑥 ∈ 𝑋0 in the tree 𝑇 there will be a single simple route 𝑤𝑥 connecting to
the vertex 𝑥 some �xed vertex 𝑥0. If the tree 𝑇 is not maximal, then in 𝑋 there
exists a simple edge 𝑒 such that the subgraph 𝑇

′
= 𝑇 ∪ 𝑒 is a tree. Let 𝑥 and

𝑦 be the vertices of the oriented edge 𝑒+1. Then the routes 𝑤𝑦 and 𝑤𝑥𝑒
+1 will

be two di�erent simple routes in 𝑇
′
connecting the vertex 𝑥0 with the vertex 𝑦,

which is impossible. Hence, the tree 𝑇 is maximal. □

Assuming the maximum tree 𝑇 ⊂ 𝑋 and the vertex 𝑥0 ∈ 𝑋0 �xed, we can
consider a closed route 𝑤𝑥𝑒

+1𝑤−1𝑦 for any edge 𝑒 ∈ 𝑋 \ 𝑇 , where 𝑥, 𝑦 are the

vertices of the oriented edge 𝑒+1, and 𝑤𝑥 and 𝑤𝑦, as above, are simple routes in
𝑇 connecting the vertex 𝑥0 with vertices 𝑥 and 𝑦, respectively. According to the
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above, this route uniquely de�nes some element of the fundamental group 𝜋1𝑋.
Assuming a certain liberty, we will designate this element with the symbol [𝑒].

Theorem 6.95. The fundamental group 𝜋1𝑋 of an arbitrary connected graph
𝑋 is a free group. Elements of the form [𝑒], 𝑒 ∈ 𝑋 \ 𝑇 , are (for any choice of
the maximum subtree 𝑇) its free generators.

Proof. Consider the coset space 𝑋 \ 𝑇 . It is clear that this coset space is a
bouquet of circles, each of which is obtained from some (simple or loop-like) edge
𝑒 ∈ 𝑋 \𝑇 , i.e., it has the form 𝜑𝑒 where 𝜑 is the factorisation map 𝑋 → 𝑋/𝑇 . In
this case, the image of the element [𝑒] ∈ 𝜋1𝑋, 𝑒 ∈ 𝑋 \𝑇 , with the homomorphism
𝜑∗ : 𝜋1𝑋 → 𝜋1 (𝑋/𝑇) induced by the map 𝜑, is obviously the generator of the
fundamental group 𝜋1 (𝜑𝑒) of the circle 𝜑𝑒 (in a standard way nested in the free
product 𝑝𝑖1 (𝑋/𝑇) of the group 𝜋1 (𝜑𝑒)). This means that the homomorphism
𝜑∗ is a homomorphism of the group 𝜋1𝑋 on a free group 𝜋1 (𝑋/𝑇), translating
the elements of [𝑒] into free generators of the group 𝜋1 (𝑋/𝑇).

On the other hand, it is easy to see that

Proposition 6.96. the pair (𝑋,𝑇) is a co�bration

(we leave this fact to the reader to prove; it is a trivial special case of Borsuk's
general theorem, which we will prove in Lecture 113; see Theorem 1 of Lecture
11). Therefore, by applying Lemma 4.46 of Lecture 4 and Proposition 6.91, the
map 𝜑 is a homotopy equivalence and, therefore, the homomorphism 𝜑∗ is an
isomorphism. Hence, the group 𝜋1𝑋 is free and the elements [𝑒], 𝑒 ∈ 𝑋 \ 𝑇 , are
its free generators. □

Remark 6.97. It is easy to see that every graph 𝑋 is covered, and that for any of
its covering 𝑋 → 𝑋, the space 𝑋 is also a graph (see in Lecture 194, proposition
7). Therefore, by applying Theorem 6.95, for any covering 𝑋 → 𝑋 of a graph
𝑋, the group 𝜋1𝑋 is free. Taking for 𝑋 a bouquet of circles, and for 𝑋 → 𝑋

a covering corresponding to an arbitrary subgroup 𝐺 of the group 𝜋1𝑋 (and
therefore having the property that 𝜋1𝑋 ≈ 𝐺), we immediately get from here
that

Proposition 6.98. any subgroup of a free group is free.

This is the famous Nielsen-Schreier theorem, the algebraic proof of which is
extremely di�cult.

3The transcriber guesses Postnikov refers to Lecture 1 of �Cellular Homotopy�
4The transcriber guesses Postnikov refers to Lecture 9 of �Cellular Homotopy�



Lecture 7

To apply homotopy groups to individual geometric problems, it is necessary to
be able to calculate these groups for speci�c spaces. However, in general, this
task turns out to be extremely di�cult, and so far, despite all the e�orts and
sophisticated techniques developed (which we will gradually become familiar
with), there is not a single space (except for trivial cases like the circle S1)
about which we could say that all its homotopy groups are known to us. This
applies even to such simple spaces as spheres S𝑛 for 𝑛 > 1.

In this lecture we will calculate the homotopy groups 𝜋𝑚S
𝑛 for 𝑚 ≤ 𝑛. This

requires some approximation methods, in principle alien to homotopy theory
(but the use of which, apparently, cannot be avoided; interestingly, after 𝑚 ≤ 𝑛
the groups 𝜋𝑚S

𝑛 are calculated, their calculation at 𝑚 > 𝑛 - as far as it can be
done - can already be produced by purely homotopy, or, better to say, by algebro-
topological means). The necessary approximations can be made by means of
either smooth or piecewise linear (= simplicial) maps. We will use smooth
approximations, because, �rstly, the basic concepts of the theory of smooth
manifolds are certainly known to the reader from the compulsory course, and
secondly, there are many excellent expositions of this theory in Russian; see,
for example, [14]. However, we will also present all the necessary information
from the theory of simplicial approximations in our place; see the Appendix to
Lecture 121.

In Lecture 12, we will recalculate the groups 𝜋𝑚S
𝑛, 𝑚 ≤ 𝑛, and based on

some more general considerations. However, the more geometric methods of
this lecture have their advantages and familiarity with them is by no means
useless.

7.1 Smooth maps and smooth homotopies

In this lecture, we will always understand by a manifold a smooth (of some pre-
scribed class 𝐶𝑟 , 𝑟 ≥ 2) compact Hausdor� (and therefore metrisable) manifold,
generally speaking, with boundary. Manifolds without boundary we will call
closed manifolds. The guiding example of a manifold without boundary will be

1The transcriber guesses Postnkov refers to Lecture 2 of �Cellular Homotopy�.
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a sphere S𝑛, and a manifold with boundary will be its product S𝑛 × 𝐼 with a
segment.

On an arbitrary manifold 𝑁, it is always possible to introduce a Rieman-
nian metric, moreover, as proved in the theory of Riemann spaces, for every
Riemannian metric 𝜌 on 𝑁 there exists a 𝜀0 > 0 (usually called Morse number
of a Riemannian manifold 𝑁), such that for any two points 𝑦0, 𝑦1 ∈ 𝑁 with
𝜌(𝑦0, 𝑦1) < 𝜀0 in 𝑁 there is a unique geodesic 𝑡 ↦→ 𝛾(𝑡; 𝑦0, 𝑦1) of length < 𝜀0,
connecting the point 0 with the point 𝑦1. For example, for the sphere S𝑛 (in its
natural metric), the Morse number is 𝜋.

Assuming that the geodesic 𝑡 ↦→ 𝛾(𝑡; 𝑦0, 𝑦1) is related to the parameter 𝑡,
proportional to the length of the arc and varying from 0 to 1, consider the map
(𝑦0, 𝑦1, 𝑡) → 𝛾(𝑡; 𝑦0, 𝑦1) into the manifold 𝑁 of the open subset {(𝑦0, 𝑦1, 𝑡) |𝜌(𝑦0, 𝑦1) <
𝜀0} of the manifold 𝑁×𝑁× 𝐼. It follows directly from the theorem on the smooth
dependence of solutions of di�erential equations on the initial data that this map
is smooth and, in particular, continuous. Therefore, for any topological space
𝑋 and any two maps 𝑓 , 𝑔 : 𝑋 → 𝑀 satisfying the condition 𝜌( 𝑓 (𝑥), 𝑔(𝑥)) < 𝜀0,
𝑥 ∈ 𝑋, the formula

𝐹 (𝑋, 𝑡) = 𝛾(𝑡; 𝑓 (𝑥), 𝑔(𝑥))

well de�nes the homotopy 𝐹 : 𝑋 × 𝐼 → 𝑁 connecting the map 𝑓 with the map
𝑔. Thus,

Proposition 7.1. maps to a manifold are homotopic if they are close enough.

Recall now that a continuous map 𝑔 : 𝑀 → 𝑁 of a manifold 𝑀 to a manifold
𝑁 is called a smooth map if in local coordinates it is written by smooth functions.
In the theory of smooth manifolds, it is proved that

Proposition 7.2. any continuous map 𝑓 : 𝑀 → 𝑁 can be arbitrarily approxi-
mated by smooth maps,

i.e. that for any 𝜀 > 0 there exists a smooth map 𝑔 : 𝑀 → 𝑁 such that
𝜌( 𝑓 (𝑥), 𝑔(𝑥)) < 𝜀 for any point 𝑥 ∈ 𝑀. (In each coordinate neighbourhood,
the functions de�ning the map 𝑓 are approximated - according to the classical
Weierstrass polynomial approximation theorem - by means of smooth functions,
and then these local approximations are stitched into a single map 𝑔.) In com-
bination with the previous result, this gives the following statement (we do not
call it a theorem, since it is actually given by us without proof).

Proposition 7.3 (Statement 1). Any continuous map 𝑓 : 𝑀 → 𝑁 of a smooth
manifold 𝑀 to a smooth manifold 𝑁 is homotopic to some smooth map 𝑔 : 𝑀 →
𝑁.

For manifolds with boundary, this statement admits correction.

Proposition 7.4 (Statement 1'). If a continuous map 𝑓 : 𝑀 → 𝑁 is smooth on
the boundary 𝜕𝑀 of a manifold 𝑀, then there exists a smooth map 𝑔 : 𝑀 → 𝑁

coinciding with 𝑓 on 𝜕𝑀 and homotopic 𝑓 with respect to 𝜕𝑀.
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The proof of the statement 7.4 is based on the so-called collar theorem, which
states that the boundary 𝜕𝑀 has a neighbourhood in 𝑀 di�eomorphic to the
product of 𝜕𝑀 with the half-open interval [0, 1). In addition, some re�nement of
the approximation theorem is required, which guarantees the coincidence of the
approximating and approximating function on the set, where the approximated
function is already smooth. However, we will need the statement 7.4 only for
the case of maps of the form 𝑀𝑁 (and in fact even S𝑛 × 𝐼 → 𝑁), when most of
these technical di�culties are absent (or trivially overcome).

For a closed manifold 𝑀, the boundary of the manifold 𝑀 × 𝐼 consists of
the manifolds 𝑀 × 0 and 𝑀 × 1, and the condition that the map 𝑀 × 𝐼 → 𝑁

is smooth on the boundary means that this map, considered as a homotopy of
𝑀 in 𝑁, connects smooth maps. Therefore, with respect to homotopies from
𝑀 to 𝑁, the statement 7.4 gives us that smooth maps of a closed manifold
𝑀 to an arbitrary manifold 𝑁 are homotopic if and only if they are smoothly
homotopic (i.e. connected by a homotopy from 𝑀 to 𝑁, which is a smooth map
of 𝑀 × 𝐼 → 𝑁).

Thus, in the study of homotopy classes of maps 𝑀 → 𝑁 (and, in particular,
groups 𝜋𝑚S

𝑛 = [S𝑚, S𝑛]) without loss of generality, we can limit ourselves only
to smooth maps and their smooth homotopies.

7.2 Sard's theorem

For closed manifolds 𝑀 and 𝑁, every smooth map 𝑓 : 𝑀 → 𝑁 at any point
𝑥 ∈ 𝑀 induces a linear map (𝑑𝑓 )𝑥 (called the di�erential of the map 𝑓 at point
𝑥) of the tangent space 𝑇𝑥𝑀 of the manifold 𝑀 at the point 𝑥 to the tangent
space 𝑇𝑦𝑁 of the manifold 𝑁 at the point 𝑦 = 𝑓 (𝑥). In local coordinates (or, more
precisely, in the corresponding bases of tangent spaces), the matrix of the linear
map (𝑑𝑓 )𝑥 is the Jacobi matrix 𝜕 𝑓 /𝜕𝑥 of the functions 𝑓 1, . . . , 𝑓 𝑛 that de�ne
the map 𝑓 in local coordinates; the elements of this matrix are the values at the
point (𝜉1 (𝑥), . . . , 𝜉𝑚 (𝑥)) of partial derivatives 𝜕 𝑓 𝑖/𝜕𝜉 𝑗 of functions 𝑓 1, . . . , 𝑓 𝑛 at
the local coordinates 𝜉1, . . . , 𝜉𝑚 on the manifold 𝑀 near the point 𝑥 (here, as
everywhere below, the symbol 𝑚 we denote the dimension of the manifold 𝑀,
and the symbol 𝑛 is the dimension of the manifold 𝑁).

A point 𝑥 is called the critical point of a smooth map 𝑓 : 𝑀 → 𝑁 if the
linear map (𝑑𝑓 )𝑥 is not adjective, i.e., if the rank of the Jacobi matrix 𝜕 𝑓 /𝜕𝑥 at
point 𝑥 is less than 𝑛. A point 𝑦 ∈ 𝑁 is called a regular value of the map 𝑓 if no
point 𝑥 ∈ 𝑓 −1 (𝑦) is a critical point.

The famous Sard's theorem (which, however, was already proved by Brown a
few years before Sard, and subsequently signi�cantly improved by Dubovitsky)
states that for any smooth map 𝑓 : 𝑀 → 𝑁, the set of all its regular values
is dense everywhere (recall that we consider the variety 𝑀 to be compact; for
a non-compact 𝑀 the statement of Sard's theorem is somewhat weakened). In
particular, according to this theorem,

Proposition 7.5. for any smooth map 𝑓 : 𝑀 → 𝑁 there are regular values.
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For 𝑚 < 𝑛, each point 𝑥 ∈ 𝑀 is a critical point, and therefore regular values
are exactly points that do not belong to the image 𝑓 (𝑀) of the manifold 𝑀.
Thus, we see that for 𝑚 < 𝑛, Sard's theorem boils down to the statement that

Proposition 7.6. a smooth map of a manifold to a manifold of greater dimen-
sion is necessarily not surjective (using somewhat fuzzy, but expressive termi-
nology, we can say that a smooth map does not increase dimension).

7.3 The group 𝜋𝑚S
𝑛 for 𝑚 < 𝑛

In particular, we see that for 𝑚 < 𝑛 for any smooth map 𝑓 : S𝑚 → S𝑛 there
exists a point 𝑦0 ∈ S𝑛 such that 𝑓 (S𝑚) ⊂ S𝑛 \ 𝑦0. This means that 𝑓 = 𝑖 ◦ 𝑓 ′ ,
where 𝑓

′
is the map S𝑚 → S𝑛\𝑦0, and 𝑖 is the inclusion S𝑛\𝑦0 → S𝑛. But the set

S𝑛\𝑦0 is homeomorphic (by, say, a stereographic projection) to the space R𝑛 and
therefore contractible. Hence, the map 𝑓

′
, and hence the map 𝑓 , is homotopic

to the constant map. Since any continuous map S𝑚 → S𝑛 is homotopic to a
smooth map, it is proved that for 𝑚 < 𝑛 the group 𝜋𝑚S

𝑛 consists only of zero:

𝜋𝑚S
𝑛 = 0, if 𝑚 < 𝑛. (7.7)

Assuming 𝑚 = 1, we get, thus, that

Proposition 7.8. for 𝑛 > 1 the sphere S𝑛 is simply connected.

7.4 The fundamental group of the space S𝑛/𝐺
By applying the general isomorphism (6.27) of Lecture 6, it follows that for
any group 𝐺 acting completely discontinuously on the sphere S𝑛, 𝑛 > 1, the
fundamental group of the space S𝑛/𝐺 is isomorphic to the group 𝐺:

𝜋1 (S𝑛/𝐺) = 𝐺. (7.9)

Example 7.10. A group of order 2 with 𝛼 as a generator acts completely discon-
tinuously on the sphere S𝑛 according to the formula 𝛼(𝑥) = −𝑥, and the corre-
sponding coset space S𝑛/𝐺 is an 𝑛-dimensional projective space R𝑃𝑛. Therefore,

𝜋1R𝑃
𝑛 = Z/2Z for 𝑛 > 1

(the space R𝑃1 is a circle, and therefore 𝜋1R𝑃
1 = Z.)

Example 7.11. A cyclic group of order ℎ with a generator 𝛼 can act quite discon-
tinuously (= without �xed points) on an odd-dimensional sphere S2𝑛+1 ⊂ C𝑛+1
in many ways. In particular, each set of integers mutually prime with ℎ numbers
𝑎0, 𝑎1, . . . 𝑐, 𝑎𝑛 (given up to terms that are multiples of ℎ) de�nes this kind of
action according to the formula

𝛼(𝑧0, 𝑧1, . . . , 𝑧𝑛) = (𝜁𝑎0 𝑧0, 𝜁𝑎1 , 𝑧1, . . . 𝜁𝑎𝑛 𝑧𝑛), (𝑧0, . . . , 𝑧𝑛) ∈ S2𝑛+1, (7.12)
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where 𝜁 is the primitive root of 1 of degree ℎ. (In fact, any completely dis-
continuous action of the group Z/ℎZ on the sphere S2𝑛+1 is equivalent to an
action of the form (7.12), but this fact lies beyond the scope of our presenta-
tion.) When replacing 𝜁 with another primitive root 𝜂 associated with 𝜁 by
the equality 𝜁 = 𝜂𝑎, where 𝑎 is mutually prime to ℎ, the numbers 𝑎0, 𝑎1, . . . , 𝑎𝑛
are replaced by the numbers 𝑎𝑎0, 𝑎𝑎1, . . . , 𝑎𝑎𝑛. With this in mind, we will call
the quotient space of the sphere S2𝑛+1 by the action (7.12) of the group Z/ℎZ a
lens space of type (𝑎0 : 𝑎1 : · · · : 𝑎𝑛 : ℎ) and we will denote it with the symbol
𝐿 (𝑎0 : 𝑎1 : · · · : 𝑎𝑛 : ℎ). According to the general formula (7.9)

𝜋1𝐿 (𝑎0 : 𝑎1 : · · · : 𝑎𝑛 : ℎ) = Z/ℎZ.

Remark 7.13. A lot of e�ort has been put into establishing the homeomorphism
and homotopy equivalence of lens spaces. However, the question of homotopy
equivalence is solved without much di�culty and, as it turns out, two lens spaces
𝐿 (𝑎0 : 𝑎1 : · · · : 𝑎𝑛 : ℎ) and 𝐿 (𝑏0 : 𝑏1 : · · · : 𝑏𝑛 : ℎ) are homotopically equivalent
if and only i when there exists a number 𝑐 such that

𝑏0𝑏1 · · · 𝑏𝑛 ≡ ±𝑐𝑛+1𝑎0𝑎1 · · · 𝑎𝑛 mod ℎ.

The only real di�culty is the question of the homeomorphism of lens spaces. It
was solved (and then only partially) only relatively recently on the basis of a
very deep and complex technique.

For three-dimensional (case 𝑛 = 1) lens spaces 𝐿 (𝑎0 : 𝑎1 : ℎ), the asymmetric
notation 𝐿 [𝑎, ℎ] is accepted, where 𝑎 is a number such that 𝑎1 ≡ 𝑎𝑎0 mod ℎ.
Two spaces 𝐿 [𝑎, ℎ] and 𝐿 [𝑏, ℎ] are homotopically equivalent if and only if there
exists a number 𝑐 such that 𝑏 ≡ ±𝑐2𝑎 mod ℎ, and are homeomorphic if and
only if 𝑐 ≡ 1 mod ℎ or 𝑐 ≡ 𝑏 mod ℎ (in the latter statement, only �only if� is
nontrivial).

7.5 The degree of smooth maps.

Recall that an atlas of a smooth manifold 𝑀 is called an oriented atlas if for any
two of its charts (with non-empty intersection) the Jacobian of the transition
from the local coordinates of one chart to the local coordinates of the other chart
is positive. A manifold having an oriented atlas is called orientable. Maximal
oriented atlases are called orientations of the orientable manifold 𝑀. A manifold
with a �xed orientation is called oriented. Charts of this orientation are called
positive charts. A connected orientable manifold has exactly two orientations,
which are called opposites. Each chart of a connected orientable manifold de�nes
some orientation of the manifold with respect to which this chart is positive.

If now 𝑀 and 𝑁 are two smooth oriented closed manifolds of the same
dimension 𝑛, then for any smooth map 𝑓 : 𝑀 → 𝑁 and any of its non-critical
points 𝑥 ∈ 𝑀 we can consider in 𝑀 and 𝑁 positive charts containing the points
𝑥 and 𝑦 = 𝑓 (𝑥) and the Jacobian of the functions de�ning the map 𝑓 in these
charts. It is clear that the sign of this Jacobian does not depend on the choice



252 LECTURE 7.

of chart, i.e. it is well determined by the point 𝑥 and the map 𝑓 (given the
orientations of the manifolds 𝑀 and 𝑁). We will call it the map index of the
map 𝑓 at the point 𝑥 and we will denote it with the symbol 𝜀 𝑓 (𝑥).

It follows directly from the elementary analytic inverse map theorem that a
smooth map 𝑓 : 𝑀 → 𝑁 of closed manifolds on some neighbourhood of each
non-critical point 𝑥 ∈ 𝑀 is a di�eomorphism of this neighbourhood to some
neighbourhood of the point 𝑦 = 𝑓 (𝑥). Therefore, for any regular value 𝑦 ∈ 𝑁,
its preimage 𝑓 −1 (𝑦) consists of a �nite number of (non-critical) points. (Note
that the compactness of the manifold 𝑀 is essentially used here.) We will put

deg𝑦 𝑓 =
∑︁

𝑥∈ 𝑓 −1 (𝑦)
𝜀 𝑓 (𝑥),

where the summation is extended to all points 𝑥 ∈ 𝑓 −1 (𝑦). Conventionally, the
number deg𝑦 𝑓 can be called the �algebraic number� of points from 𝑓 −1 (𝑦).

It is clear that every point 𝑥 ∈ 𝑓 −1 (𝑦) has a neighbourhood, all points of
which are also non-critical (this will be a neighbourhood in which the map 𝑓 is
a di�eomorphism), and 𝜀𝑥1 ( 𝑓 ) = 𝜀𝑥 ( 𝑓 ) for any point 𝑥1 of this neighbourhood.
Therefore,

Proposition 7.14. each regular value of 𝑦 ∈ 𝑁 the smooth map 𝑓 has a neigh-
bourhood consisting of regular values, and for any point 𝑦1 of this neighbourhood

deg𝑦1 𝑓 = deg𝑦 𝑓 . (7.15)

(In the language of analysis, this means that the function 𝑦 ↦→ deg𝑦 𝑓 is locally
constant.)

It turns out that

Proposition 7.16. if the manifold 𝑁 is connected, then equality (7.15) holds
for any regular values 𝑦, 𝑦1 ∈ 𝑁 of the map 𝑓 , i.e. in this case the number deg𝑦 𝑓
does not depend on the choice of the regular value 𝑦 (the function 𝑦 ↦→ deg𝑦 𝑓
is constant).

It would seem that this directly follows from the local constantness of the
function 𝑦 ↦→ deg𝑦 𝑓 , but in fact the situation here is much more subtle, because
the set of regular values of the map 𝑓 even with a connected 𝑁 is, generally
speaking, disconnected To better understand why the function 𝑦 ↦→ deg𝑦 𝑓
is constant, we will give this two proofs, one of which can be described as
�analytical� and the other as �geometric�.

Proof. (Analytical proof). This proof is based on the following facts, which
we will assume to be known,:

1. On any oriented compact smooth 𝑛-dimensional manifold 𝑁 there exists a
di�erential form 𝜔0 of degree 𝑛 for which the integral

𝜔0 [𝑁] =
∫
𝑁

𝜔0
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is nonzero.

If a Riemannian metric is introduced on 𝑁, then the shape of the volume
has this property. For a sphere S𝑛 assigned to ordinary spherical coordinates
with 𝜃1, 𝜃2, . . . , 𝜃𝑛, the shape of the volume is equal to

cos 𝜃2 cos
2 𝜃3 · · · cos𝑛−1 𝜃𝑛 (𝑑𝜃1 ∧ 𝑑𝜃2 ∧ · · · ∧ 𝑑𝜃𝑛).

2. If the manifold 𝑁 is connected, then, each di�erential form of the degree of
𝑛 by 𝑁 is expressed by the formula

𝜔 = 𝑟𝜔0 + 𝑑𝛼,

where 𝑟 ∈ R; and 𝛼 is some form of degree 𝑛 − 1.

3. For any open set 𝑈 ⊂ 𝑀, there exists a form 𝜔 of degree 𝑛 such that 𝜔 = 0
outside 𝑈 and 𝜔[𝑀] ≠ 0.

It follows that for any smooth map 𝑓 : 𝑀 → 𝑁 of closed manifolds and any
form 𝜔 on 𝑀 for which 𝜔[𝑀] ≠ 0, the number

𝑑 ( 𝑓 ) = 𝑓 ∗𝜔[𝑀]
𝜔[𝑁] (7.17)

does not depend on the choice of the form 𝜔 (assuming that the manifold 𝑁

is connected). Indeed, if 𝜔 = 𝑟𝜔0 + 𝑑𝛼, then by applying Stokes' theorem
𝜔[𝑁] = 𝑟 inf𝑁 𝜔0 = 𝑟𝜔0 [𝑀] and similarly ( 𝑓 ∗𝜔) [𝑀] = 𝑟 ( 𝑓 ∗𝜔0) [𝑀]. Thus

𝑓 ∗𝜔[𝑀]
𝜔[𝑁] =

𝑓 ∗𝜔0 [𝑀]
𝜔0 [𝑁]

On the other hand, if 𝑦 ∈ 𝑁 is a regular value of the smooth map 𝑓 : 𝑀 → 𝑁,
𝑥1, . . . , 𝑥𝑠 ∈ 𝑀 are all its preimages and 𝑉1, . . . , 𝑉𝑠 ⊂ 𝑀 are disjoint neighbour-
hoods (which we can assume to be coordinate) of points 𝑥1, . . . , 𝑥𝑠, each of which
the map 𝑓 di�eomorphically maps to the (coordinate) neighbourhood 𝑈 of the
point 𝑦 ∈ 𝑁, then for any form 𝜔, equal to zero outside 𝑈,

𝜔𝑁 =

∫
𝑁

𝜔 =

∫
𝑈

𝜔, ( 𝑓 ∗𝜔)𝑀 =

∫
𝑀

𝑓 ∗𝜔 =

∫
𝑉1

𝑓 ∗𝜔 + . . . +
∫
𝑉𝑠

𝑓 ∗𝜔,

and according to the classical rule of replacing variables in multiple integrals,
for any 𝑖 = 1, . . . , 𝑠, the equality takes place∫

𝑉𝑖

𝑓 ∗𝜔 = 𝜀𝑖

∫
𝑈

𝜔,

where 𝜀𝑖 is the sign of the Jacobian of the map 𝑓 at the point 𝑥𝑖 (or, equivalently,
in the neighbourhood of 𝑉𝑖). Thus

( 𝑓 ∗𝜔)𝑀 = 𝜀1𝜔[𝑁] + . . . + 𝜀𝑠𝜔[𝑁] = (𝜀1 + . . . + 𝜀𝑠) [𝑁]



254 LECTURE 7.

and then 𝑑 ( 𝑓 ) = 𝜀1 + . . . + 𝜀𝑠 = deg𝑦 𝑓 .
Since the number 𝑑 ( 𝑓 ) does not depend on the choice of the point 𝑦, there-

fore, the number deg𝑦 𝑓 also has this property.
Note that we not only proved the independence of the number deg𝑦 𝑓 from

the point 𝑦, but also found an explicit formula for it in the form of a ratio of
two integrals. □

Proof. (Geometric proof). In this proof, as above, we will assume that a
number of statements of the theory of smooth manifolds are known, most of
which are clearly obvious, but it is quite troublesome to prove them accurately.
Bearing in mind what follows, we will formulate them in a somewhat larger
volume than is directly necessary.

Let 𝑀 and 𝑁 be smooth manifolds (generally speaking, of di�erent dimen-
sions), 𝑃 be a submanifold of a manifold 𝑁 and 𝑓 : 𝑀 → 𝑁 be a smooth map. If
for any point 𝑥 ∈ 𝑓 −1𝑃 the space 𝑇 𝑓 (𝑥 )𝑁 is a smm (not necessarily direct) of its
subspaces (𝑑𝑓 )𝑥𝑇𝑥𝑀 and 𝑇 𝑓 (𝑥 )𝑃, then the map 𝑓 is called transversal to 𝑃 (or
𝑡-regular along 𝑃). If 𝑃 = {𝑦}, then this condition reduces to the requirement
that the point 𝑦 be a regular value of the map 𝑓 . If the submanifold 𝑃 has a
boundary 𝜕𝑃, then it is additionally required that 𝑓 be transversal to 𝜕𝑃, and
if, in addition, 𝑀 has a boundary (the case when the boundary has 𝑁 we do not
need), then it is required that the transversality condition (with respect to both
𝑃 and 𝜕𝑃) was also applied to the restriction of the map 𝑓 on this boundary.

Proposition 7.18 (Statement 2). If a smooth map 𝑓 : 𝑀 → 𝑁 is transversal to
𝑃, then the preimage 𝑓 −1𝑃 of the submanifold 𝑃 is a submanifold of the manifold
𝑀 of dimension dim𝑀 + dim 𝑃 − dim 𝑁, the boundary of which is a preimage of
the boundary of the manifold

In particular,

Proposition 7.19. the preimage 𝑓 −1 (𝑦) of any regular value 𝑦 ∈ 𝑁 is a sub-
manifold of the manifold 𝑀 of dimension dim𝑀 − dim 𝑁.

Of course, in accordance with the general de�nition of 𝑡-regularity, in the
case when the manifold 𝑀 has a boundary 𝜕𝑀, it is assumed here that 𝑦 is also
a regular value of the map 𝑓 |𝜕𝑀 .

In the latter case, we can additionally assert that the intersection of 𝑓 −1 (𝑦)∩
𝜕𝑀 of the manifold 𝑓 −1 (𝑦) with the boundary 𝜕𝑀 of the manifold 𝑀 is its
boundary 𝜕 𝑓 −1 (𝑦), and at no point 𝑥 ∈ 𝜕 𝑓 −1 (𝑦) is the manifold 𝑓 −1 (𝑦) tangent
to the manifold 𝜕𝑀 (i.e. 𝑇𝑥 ( 𝑓 −1 (𝑦)) ⊄ 𝑇𝑥 (𝜕𝑀)).

For any submanifold 𝑃 ⊂ 𝑁 and any smooth map 𝑓 : 𝑀 → 𝑁 transversal
to 𝑃, it is also possible to describe fairly accurately the behaviour of the map
𝑓 near each component 𝑄 of the submanifold −1𝑃. In general, we will not need
a description of this, and therefore we will limit ourselves to the three simplest
cases.

Case 1. (actually already analysed above). Let 𝑃 be a point 𝑦 ∈ 𝑁 (the regu-
lar value of the map 𝑓 ) and dim𝑀 = dim 𝑁 = 𝑛. Then the preimage
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𝑓 −1𝑃 = 𝑓 −1 (𝑦) consists of individual points and each point is 𝑥 ∈ 𝑓 (𝑦)
has a neighbourhood 𝑈, which 𝑓 di�eomorphically maps to some neigh-
bourhood 𝑉 of the point 𝑦. By reducing, if necessary, the neighbour-
hoods of 𝑈 and 𝑉 , we can assume that the neighbourhood of 𝑉 is di�eo-
morphic to the open ball E̊𝑛 of the Euclidean space R𝑛. By combining
this di�eomorphism with the di�eomorphism 𝑓 |𝑦, we get the di�eomor-
phism 𝑈 → E𝑛, for which a commutative diagramme takes place

𝑈
𝑓 //

��

𝑉

��
E̊𝑛

id
// E̊

Case 2. Let it continue as before 𝑃 = {𝑦} and dim𝑀 = 𝑛 + 1. Then 𝑓 −1𝑃
is a compact one-dimensional manifold, and therefore (of course, this
�because� needs justi�cation) each of its components is di�eomorphic
to either a circle or a segment (which is, as they say, a embedded arc).
In this case, components di�eomorphic to the segment (arc) can exist
only if the manifold 𝑀 has a boundary 𝜕𝑀. It turns out that every
di�eomorphic segment of the component 𝑄 the manifolds 𝑓 −1𝑃 have
(in 𝑀) a neighbourhood 𝑈, and the point 𝑦0 in 𝑁 has a neighbourhood
𝑉 such that:

(i) there is a commutative diagramme

𝑈
𝑓 //

��

𝑉

��
E̊𝑛 × 𝐼

proj
// E̊

where the vertical arrows are di�eomorphisms, and the lower hor-
izontal arrow is the projection proj : (𝒙, 𝑡) ↦→ 𝒙, 𝒙 ∈ E̊𝑛, 𝑡 ∈ 𝐼.

(ii) the di�eomorphism 𝑈 → E̊𝑛 × 𝐼 maps the arc 𝑄 to the segment
0× 𝐼, and the intersection of 𝑈∩𝜕𝑀 to the union (̊E𝑛×0)∪ (E̊𝑛×1)
(see 7.5.1).

Case 3. Let 𝑃 be a submanifold of a di�eomorphic segment (i.e. an embedded
arc), and dim = 𝑀 = dim 𝑁 = 𝑛. Then the submanifold 𝑓 −1𝑃 is again
one-dimensional and we will again consider its component 𝑄, di�eo-
morphic to the segment (which is an embedded arc). In this case, the
submanifolds 𝑄 and 𝑃 have such neighbourhoods 𝑈 and 𝑉 that
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Figure 7.5.1:

(i) there is a commutative diagramme

𝑈
𝑓 //

��

𝑉

��
E̊𝑛 × 𝐼𝜀

id ×𝜀
// E̊ × 𝐼𝜀

the vertical arrows of which are di�eomorphisms, and the lower
horizontal arrow is given by the correspondence

((𝑥), 𝑡) ↦→ 𝒙, 𝜑(𝑡)), 𝑥 ∈ E̊𝑛−1, 𝑡 ∈ 𝐼𝜀 ,

where 𝐼𝜀 = (−𝜀, 1 + 𝜀), 𝜀 > 0, and 𝜑 is a smooth function 𝐼𝜀 → 𝐼𝜀
such that 𝜑(0) = 0, and 𝜑

′ (0) ≠ 0, 𝜑
′ (1) ≠ 1;

(ii) the di�eomorphisms 𝑈 → E̊𝑛 × 𝐼𝜀 ↦→ E̊𝑛 × 𝐼𝜀 represent the arcs 𝑄
and 𝑃 on the segment 0 × 𝐼.

Note that from these conditions (and the requirement of transversality) it
follows, �rstly, that 𝜑(1) is equal to either 0 or 1, and secondly, that for 0 < 𝑡 <1
the number 𝜑(𝑡) is not equal to either 0 or 1.

In all three cases, it is customary to call the lower arrow of the constructed
diagrams normal form of the map 𝑓 . Thus, in case 1, the normal form is the
identical map id, in case 2, the projection proj, and in case 3, the map of the
form id×𝜑 (the map 𝜑 can also be further normalised, but we won't need it).

In the language of local coordinates, the existence of these normal forms
means that in the vicinity of 𝑈 and 𝑉 , one can choose such local coordinates
𝜉1, . . . , 𝜉𝑛 (and 𝜉𝑛+1 = 𝑡 in case 2) and 𝜂1, . . . 𝜂𝑛, that the map 𝑓 will be in these
coordinates is written by the formulae

𝜂1 = 𝜉1, . . . , 𝜂𝑛 = 𝜉𝑛 in cases 1 and 2,

𝜂1 = 𝜉1, . . . , 𝜂𝑛−1 = 𝜉𝑛−1, 𝜂𝑛 = 𝜑(𝜉𝑛) in case 3.

Sard's theorem can also be generalised to the case of arbitrary submanifolds
𝑃 ⊂ 𝑁.
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Let 𝑃 and 𝑃
′
be di�eomorphic submanifolds of a manifold 𝑁. This means

that there exists a smooth manifold 𝑃0 and smooth embeddings 𝑖 : 𝑃0 → 𝑁 and
𝑖
′
: 𝑃0 → 𝑁 such that 𝑖𝑃0 = 𝑃 and 𝑖

′
𝑃0 = 𝑃

′
. Assuming the embeddings 𝑖 and

𝑖
′
are �xed, we will call the submanifolds 𝑃 and 𝑃

′
𝜀-close (with respect to a

certain metric 𝜌 on 𝑁) if 𝜌(𝑖(𝑥), 𝑖′ (𝑥)) < 𝜀 for any point 𝑥 ∈ 𝑃0. The generalised
Sard theorem states that

Proposition 7.20. for any smooth map 𝑓 : 𝑀 → 𝑁 of smooth compact man-
ifolds, any submanifold 𝑃 ⊂ 𝑁, and any 𝜀 > 0, there exists a submanifold 𝑃

′

𝜀-close to 𝑃 such that the map 𝑓 is transversal to 𝑃
′
.

At the same time, if the submanifold 𝑃 has a boundary 𝜕𝑃 and the map 𝑓

is transversal to 𝜕𝑃, then you can additionally require that 𝜕𝑃
′
= 𝜕𝑃.

Now we can proceed directly to the proof of the independence of the number
deg𝑦 𝑓 from 𝑦.

Let 𝑀 and 𝑁 be closed smooth oriented manifolds of the same dimension 𝑛,
and let 𝑓 : 𝑀 → 𝑁 be a smooth map, and 𝑦0, 𝑦1 ∈ 𝑁 be its two regular values.
Let, moreover, the manifold 𝑁 be connected. Then (of course, for 𝑁 ≠ S𝑛 it
needs to be proved) the points 𝑦0, 𝑦1 can be connected by a embedded arc 𝑃,
and by applying the generalised Sard theorem, it can be assumed that the map
𝑓 is transversal to 𝑃. According to statement 7.18, the preimage 𝑓 −1𝑃 will be a
one-dimensional manifold with the boundary 𝜕 𝑓 −1𝑃, which is the preimage of
𝑓 −1 (𝑦0) ∪ 𝑓 −1 (𝑦1) of the ends of the arc 𝑃. In this case, each point 𝑥0 ∈ 𝜕 𝑓 −1𝑃
will be the end of some embedded arc 𝑄 - components of the manifold 𝑓 −1𝑃.
Let 𝑥1 ∈ 𝜕 𝑓 −1𝑃 be the other end of this arc.

According to the above, we can assume that in the manifolds 𝑀 and 𝑁 there
are positive maps (𝑈; 𝜉1, . . . , 𝜉𝑛) and (𝑉 ; 𝜂1, . . . , 𝜂𝑛) such that:

1) 𝑄 ⊂ 𝑈 and a point 𝑥 ∈ 𝑈 belongs to 𝑄 if and only if when

𝜉1 (𝑥) = 0, . . . , 𝜉𝑛−1 (𝑥) = 0, 0 ≤ 𝜉𝑛 (𝑥) ≤ 1;

2) 𝑃 ⊂ 𝑉 and a point 𝑦 ∈ 𝑉 belongs to 𝑃 if and only if when

𝜂1 (𝑥) = 0, . . . , 𝜂𝑛−1 (𝑦) = 0, 0 ≤ 𝜂𝑛 (𝑦) ≤ 1;

3) there is an inclusion 𝑓𝑈 ⊂ 𝑉 , and the map 𝑓 is given in local coordinates
𝜉1, . . . 𝑐, 𝜉𝑛 and 𝜂1, . . . 𝑐, 𝜂𝑛 by formulae

𝜂1 = 𝜉1, . . . , 𝜂𝑛−1 = 𝜉𝑛−1, 𝜂𝑛 = 𝜑(𝜉𝑛),

where 𝜑 is a smooth function such that 𝜑(0) = 0 and 𝜑
′ (0) > 0, 𝜑

′ (1) ≠ 0,
with 𝜑(1) is equal to either 0 or 1, and 0 < 𝜑(𝜉) < 1 for 0 < 𝜉 < 1.

At the same time, without loss of generality, we can assume that 𝜉𝑛 (𝑥0) = 0,
𝜉𝑛 (𝑥1) = 1 and similarly that 𝜂𝑛 (𝑦0) = 0, 𝜂𝑛 (𝑦1) = 1 (so 𝑥0 ∈ 𝑓 −1𝑦0, and
𝑥1 ∈ 𝑓 −1𝑦0 if 𝜑(1) = 0, and 𝑥1 ∈ 𝑓 −1𝑦1 if 𝜑(1) = 1).

The Jacobian of the map 𝑓 at point 𝑥0 is obviously 𝜑
′ (0), so the contri-

bution of point 𝑥0 to deg𝑦0 𝑓 is 𝜀𝑥0 = sgn 𝜑
′ (0). Similarly, the point 𝑥1 gives
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a contribution to deg𝑦0 𝑓 (for 𝜑(1) = 0) or to deg𝑦1 𝑓 ) (for 𝜑(1) = 1) equal

to 𝜀𝑥1 = sgn 𝜑
′ (1). On the other hand, it follows directly from the conditions

imposed on the 𝜑 function (see Fig. 7.5.2) that

sgn 𝜑
′ (1) =

{
sgn 𝜑

′ (0), if 𝜑(1) = 1,

− sgn 𝜑′ (0), if 𝜑(1) = 0.

Case Case

Figure 7.5.2:

Therefore, for 𝜑(1) = 1, the points 𝑥0 and 𝑥1 give equal contributions of the
numbers deg𝑦0 𝑓 and deg𝑦1 𝑓 , and for 𝜑(1) = 0 - mutually decreasing contribu-
tions to the number deg𝑦0 𝑓 .

Thus, calling the point 𝑥0 ∈ 𝑓 −1𝑦0 (the point 𝑥1 ∈ 𝑓 −1𝑦1) essential if 𝑥1 ∈
𝑓 −1𝑦1 (if 𝑥0 ∈ 𝑓 −1𝑦0), and inessntial if 𝑥1 ∈ 𝑓 −1𝑦0 (respectively 𝑥0 ∈ 𝑓 −1𝑦1),
we get that the inessential points are included in 𝑓 −1𝑦0 (and also, of course, in
𝑓 −1𝑦1) in pairs with di�erent signs (and therefore when counting degrees are
mutually annihilated), and each essential of 𝑓 −1𝑦0 corresponds to each other
uniquely in 𝑓 −1𝑦1, an essential point with the same sign. Therefore, deg𝑦0 𝑓 =
deg𝑦1 𝑓 . Cf.Fig 7.5.3. □

The points       and
are essential.

The points       and
are inessential.

Figure 7.5.3:
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Since deg𝑦 𝑓 does not depend on 𝑦, then by putting

deg 𝑓 = deg𝑦 𝑓 ,

where 𝑦 is an arbitrary regular value of the map 𝑓 , we well assign to each smooth
map 𝑓 : 𝑀 → 𝑁 some integer deg 𝑓 (coinciding, note, with the number 𝑑 ( 𝑓 )
de�ned by the integral formula (7.17)). This number is called the degree of the
map 𝑓 .

We emphasize that the manifolds 𝑀 and 𝑁 are assumed here to be smooth,
closed, oriented manifolds of the same dimension, and the manifold 𝑁 is also
assumed to be connected.

7.6 Homotopy invariance of degree

It turns out that

Proposition 7.21. if two smooth maps 𝑓 , 𝑔 : 𝑀 → 𝑁 are smoothly homotopic,
then their degrees coincide:

deg 𝑓 = deg 𝑔. (7.22)

Proof. This is especially easy to prove using formula (7.17), and for this it must
even be required that the homotopy 𝑓𝑡 : 𝑀 → 𝑁 connecting the map data
be smooth. Indeed, according to the analysis theorem on the dependence of
integrals on a parameter, the number

( 𝑓 ∗𝑡 𝜔) [𝑀] =
∫
𝑀

𝑓 ∗𝑡 𝜔

continuously depends on 𝑡. Therefore the number

deg 𝑓𝑡 =
( 𝑓 ∗𝑡 𝜔) [𝑀]
𝜔[𝑀]

also continuously depends on 𝑡. Therefore, being an integer, this number is
constant. □

With the �geometric� approach, it is advisable to prove a more general state-
ment, fee of extraneous details, the trivial consequence of which is the equality
(7.22). To do this, we will need some general results of the theory of smooth
manifolds related to orientations, which we will still accept without proof.

For any (𝑛 + 1)-dimensional manifold 𝑊 with boundary with its boundary
𝜕𝑊 is characterised by the fact that they have charts (𝑈; 𝜉0, 𝜉1, . . . 𝜉𝑛) for which
the di�eomorphism 𝑥 ↦→ (𝜉0 (𝑥), 𝜉1 (𝑥), . . . 𝜉𝑛 (𝑥)) is a map to the half-space 𝜉0 ≥ 0
of the space R𝑛+1. At the same time

(𝑈 ∩ 𝜕𝑊 ; 𝜉1 |𝑈∩𝜕𝑊 , . . . , 𝜉𝑛 |𝑈∩𝜕𝑊 ) (7.23)

will be a chart of the manifold 𝜕𝑊 .
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Proposition 7.24 (Statement 3). If a manifold 𝑊 is orientable, then its bound-
ary 𝜕𝑊 is also orientable. Any orientation of the manifold 𝑊 produces some
orientation of the manifold 𝜕𝑊.

Namely, if the chart (𝑈; 𝜉0, 𝜉1, . . . , 𝜉𝑛) set a given orientation of the manifold
𝑊 , then, by de�nition, map (7.23) will set the induced orientation of the man-
ifold 𝜕𝑊 . (Of course, this de�nition needs - not at all obvious - a correctness
check,)

In the case when 𝑊 = 𝑀 × 𝐼 and, therefore, 𝜕𝑊 = (𝑀 × 0) ∪ (𝑀 × 1), the
manifold 𝑊 is orientable if and only if 𝜕𝑊 , i.e., the manifold 𝑀 is orientable.
At the same time, for any map (𝑈; 𝜉1, . . . , 𝜉𝑛) of the manifold 𝑀 that sets its
orientation 𝑜, the chart (𝑈 × 𝐼; 𝜉∗0, 𝜉∗1, . . . , 𝜉∗𝑛), where

𝜉∗0 (𝑥, 𝑡) = 𝑡, 𝜉∗1 (𝑥, 𝑡) = 𝜉1 (𝑥), . . . 𝜉∗𝑛 (𝑥, 𝑡) = 𝜉𝑛 (𝑥), 𝑥 ∈ 𝑈, 𝑡 ∈ 𝐼,

will set the orientation 𝑜 × 𝐼 of the manifold 𝑀 × 𝐼, inducing the orientation 𝑜
on 𝑀 × 0, i.e., more precisely, passing into the orientation 𝑜 when identifying
(𝑥, 0) ↦→ 𝑥. On the contrary, on 𝑀 × 1, the orientation of 𝑜 × 𝐼 will induce the
opposite orientation of −𝑜, since the orientation of 𝑜 is obviously induced by
the orientation given by the chart (𝑈 × 𝐼; 1 − 𝜉∗0, 𝜉∗1, . . . , 𝜉∗𝑛) which is opposite to
the orientation of 𝑜 × 𝐼. Conditionally , this situation can be written with the
formula

𝜕 (𝑀 × 𝐼) = 𝑀 × 0 − 𝑀 × 1.

It follows, in particular, that for any smooth map ℎ : 𝜕 (𝑀 × 𝐼) → 𝑁, the
following formula holds

deg = deg 𝑓 − deg 𝑔,

where 𝑓 and 𝑔 are maps 𝑀 → 𝑁 de�ned by formulae

𝑓 (𝑥) = ℎ(𝑥, 0), 𝑔(𝑥) = ℎ(𝑥, 1), 𝑥 ∈ 𝑀.

On the other hand, the fact that the maps 𝑓 and 𝑔 are homotopic is equivalent
to the statement that the map ℎ is a restriction of some map 𝐹 : 𝑀 × 𝐼 → 𝑁

on 𝜕 (𝑀 × 𝐼). Therefore, the formula (7.22) is an immediate consequence of the
following general lemma.

Lemma 7.25. For any smooth map 𝐹 : 𝑊 → 𝑁 and oriented compact (𝑛 +
1)-dimensional manifold 𝑊 with boundary 𝜕𝑊 in oriented connected closed 𝑛-
dimensional manifold 𝑁 the degree of map ℎ = 𝐹 |𝜕𝑊 : 𝜕𝑊 → 𝑁 is zero:

deg(𝐹 |𝜕𝑊) = 0.

Proof. Let 𝑦 be the regular value of the map 𝐹 (and hence the map ℎ), and 𝑥0
is an arbitrary point of the prototype ℎ−1 (𝑦). In 𝐹−1 (𝑦), the point 𝑥0 is the
end point of some arc-component 𝑄. Let 𝑥1 be the other end of this arc (also
lying in ℎ−1 (𝑦)). Obviously, it is su�cient to prove that the signs 𝜀0, and 𝜀1
of the Jacobian of the map ℎ at points 𝑥0 and 𝑥1 are opposite, i.e. that the
contributions of these points to the power of deg ℎ are mutually reduced.
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But since this statement has a local character, when proving it, we can go
to arbitrary neighbourhoods of the arc 𝑄 and the point 𝑦. Having chosen the
local coordinates in these neighbourhoods accordingly, we can therefore assume
(see Case 2 above) that

𝑊 = E̊𝑛 × 𝐼, 𝑁 = E̊𝑛, 𝐹 = proj,

𝑥0 = (0, 0), 𝑥1 = (0, 1), 𝑦 = 0.

To complete the proof, it remains to note that in this situation the equality
𝜀1 = −𝜀0 is obvious, since on both components E̊𝑛 × 0 and E̊𝑛 × 1 are boundaries
𝜕 (E̊𝑛× 𝐼) and the map proj is identical, and the orientations of these components
are di�erent.

Thus, Lemma 7.25, and hence the formula (7.22), is fully proved. □

7.7 The degree of the homotopy class

Since, as already noted above, any continuous map 𝑀 → 𝑁 is homotopic to
a smooth map and two smooth maps are homotopic if and only if they are
smoothly homotopic, it follows from the equality (7.22) that for every homotopy
class 𝛼 ∈ [𝑀, 𝑁] the formula

deg 𝛼 = deg 𝑓 ,

where 𝑓 is an arbitrary smooth map of the class 𝛼, well de�nes some integer
deg 𝛼 - the degree of the class 𝛼.

Here 𝑀 and 𝑁 are smooth closed oriented manifolds of the same dimension
𝑛 ≥ 1, and the manifold 𝑁 is connected. Thus, we have de�ned some map

deg : [𝑀, 𝑁] → Z.

In particular, for 𝑀 = 𝑁 = S𝑛 (and, therefore, for [𝑀, 𝑁] = 𝜋𝑛S
𝑛) we get the

map

deg : 𝜋𝑛S
𝑛 → Z, (7.26)

which, as it is easy to see, is a homomorphism.

Theorem 7.27. The map (7.26) is an isomorphism.

It turns out that in Theorem 7.27, the speci�city of the sphere S𝑛 plays a
role only when this sphere acts as a manifold 𝑁. As for the manifold 𝑀, it is
enough to require only connectivity from it. In other words,

Proposition 7.28. for any smooth, closed connected 𝑛-dimensional manifold
𝑀, the map

deg : [𝑀, S𝑛] → Z (7.29)

is bijective.
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We will prove this statement.
The injectivity of the map (7.29), i.e. the fact that for any 𝑘 ∈ Z there

exists a map 𝑓 : 𝑀 → S𝑛 of degree 𝑘, is proved without any di�culty (and even
without the assumption that the manifold 𝑀 connected).

Proof. Indeed, choosing a system of |𝑘 | disjoint open balls in the manifold 𝑀,
we will set the map 𝑀 → S𝑛, requiring that the complement to these balls it
translates to the point 𝒔0 ∈ S𝑛, and each ball is di�eomorphically mapped to
a cell 𝑒𝑛 = S𝑛 \ 𝒔0, preserving orientation at 𝑘 > 0 and reversing orientation at
𝑘 < 0. It is clear that the degree of this map is 𝑘.

For 𝑀 = S𝑛, this fact can be proved even more simply by noting that, due
to the homeomorphism of the map (7.26), its image is a subgroup of the group
Z containing the degree 1 of the identical map, and therefore coincides with the
entire group Z. □

7.8 The injectivity of the map deg

Thus, we only need to prove the injectivity of the map (7.29), i.e. the fact that

Proposition 7.30. two maps 𝑓 , 𝑔 : 𝑀 → 𝑆𝑛 are homotopic if and only if the
degrees of these maps are equal:

deg 𝑓 = deg 𝑔.

This statement is the simplest example of so-called homotopy classi�cation
theorems that establish necessary and su�cient conditions for the homotopy of
maps in certain situations.

Due to the general connection between homotopy and extension problems
(see lecture 0) this theorem follows directly from the following extension theorem
(applied to the manifold 𝑊 = 𝑀 × 𝐼).

Proposition 7.31. A smooth map

𝑓 : 𝜕𝑊 → S𝑛

form the boundary 𝜕𝑊 of a smooth compact oriented (𝑛 + 1)-dimensional con-
nected manifold 𝑊 into the sphere S𝑛 can be extended to the entire manifold 𝑊
if and only if when its degree is zero:

deg 𝑓 = 0. (7.32)

Proof. The necessity of condition (7.32) is the content of Lemma 7.25. There-
fore, only its su�ciency needs a proof.

Condition (7.32) means that for some point 𝑦 ∈ S𝑛, its preimage 𝑓 −1𝑦 con-
sists of an even number of points, in one half of which the Jacobian of the
map 𝑓 is positive, and in the other half is negative. Let's construct a family of
disjoint nested arcs 𝑄𝑖 connecting in 𝑊 each point of the �rst type with some
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point of the second type, entirely - with the exception of the ends - lying in the
interior 𝑊 \ 𝜕𝑊 of the manifold 𝑊 , and at the ends not touching the boundary
𝜕𝑊 . Obviously, this can always be done (only when 𝑛 = 1, you should choose
pairs of connected points with some care). We will prove proposition 7.31 by
constructing a smooth map 𝐹 : 𝑊 → S𝑛 such that:

a) 𝐹 |𝜕𝑊 = ℎ;

b) the point 𝑦 is a regular value of the map 𝐹;

c) its preimage 𝐹−1𝑦 consists of arcs 𝑄𝑖.

We will build such a map in two stages.

Stage 1 Let 𝑄 be one of the arcs 𝑄𝑖 It is obvious that this arc has a neighbour-
hood 𝑈 (�tube along 𝑄�) such that there is a di�eomorphism

𝜑 : 𝑅𝑛 × 𝐼 → 𝑈,

translating the segment 0 × 𝐼 into the arc 𝑄 and map the boundary
R𝑛×0∪R𝑛×1 of the product R𝑛× 𝐼 into the intersection 𝑈∩𝜕𝑊 . At the
same time, the neighbourhoods of 𝑈 corresponding to all possible arcs
of 𝑄𝑖 can be considered disjoint. In addition, by reducing, if necessary,
the neighbourhood of 𝑈, we can assume that on the components 𝑉0 =

𝜑(R𝑛 × 0) and 𝑉1 = 𝜑(R𝑛 × 0) of the intersection 𝑈 ∩ 𝜕𝑊 the map ℎ is
a di�eomorphism to some neighbourhood 𝑉 of a point 𝑦.

In Stage 11, we will construct a map 𝐹 on each neighbourhood 𝑈 sep-
arately. It is clear that it is enough to build smooth map for this

Φ : R𝑛 × 𝐼 → R𝑛,

such that

a') Φ|R𝑛×0 = id and Φ|R𝑛×1 = 𝑘, where

𝑘 = (𝜑 |R𝑛×0)−1 ◦ (ℎ |𝑉1
)0 ◦ (ℎ|𝑉1

) ◦ (𝜑|R𝑛×1)

(we identify R𝑛 × 0 with R𝑛;

b') the point 0 ∈ R𝑛 is the regular value of the map Φ;

c') its preimage Φ−1 is the segment 0 × 𝐼. (Indeed, if such a map Φ is
constructed, then the map 𝐹 on 𝑈 can be set by the formula

𝐹 = (ℎ|𝑉0
) ◦ (𝜑|R𝑛×0) ◦Φ ◦ 𝜑−1.)

Let 𝑒𝑙𝑙 : R𝑛 → R𝑛 be the di�erential (at the point 0) of the di�eomor-
phism 𝑘 (considered as the di�eomorphism of 𝑒𝑙𝑙 : R𝑛 → R𝑛. It is clear
that if the neighbourhoods of 𝑈 and 𝑉 are chosen small enough, then
for any point 𝑥 ∈ R𝑛 \ 0 the point 0 will not belong to the segment with
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the ends ℓ(𝒙) and 𝑘 (𝒙). Therefore, the map Φ1 : R𝑛 × 𝐼 → R𝑛 de�ned
by the formula

Φ1 (𝒙, 𝑡) = (1 − 𝑡)ℓ(𝒙) + 𝑡𝑘 (𝒙), 𝒙 ∈ R𝑛, 𝑡 ∈ 𝐼,

will have the property that Φ−11 0 = 0 × 𝐼. In this case, the point 0
will obviously be the regular value of the map Φ1 and there will be
equalities

Φ1 |R𝑛×0 = ℓ, Φ1 |R𝑛×1 = 𝑘.

Thus, the homotopy Φ1 has all the properties 1a') - 1c'), with the
exception of the �rst of the properties 1a').

To correct the case, we will use the fact that, by the condition, the
Jacobians of the di�eomorphisms ℎ|𝑉0

and ℎ|𝑉1
have opposite signs.

Since the di�eomorphisms 𝜑|R𝑛×0 and 𝜑|R𝑛×1 have the same property,
then, consequently, the Jacobian of the di�eomorphism 𝑘 is positive, i.e.
the linear operator ℓ has a positive determinant, and, therefore, belongs
to the unit component of the general linear group GL(𝑛). Therefore, in
GL(𝑛) there is a smooth path 𝑡 ↦→ ℓ𝑡 connecting the identical operator
id = ℓ0 with the operator ℓ = ℓ1. We de�ne the (obviously smooth)
homotopy Φ0 : R𝑛 × 0→ R𝑛 by putting

Φ0 (𝒙, 𝑡) = (ℓ𝑡𝒙, 𝑡) for any point (𝒙, 𝑡) ∈ R𝑛 × 𝐼 .

Obviously, this homotopy also has the properties 1b') and 1c'), and the
property 1a') for it has the form

Φ01 |R𝑛×0 = id, Φ0 |R𝑛×1 = ℓ.

Now it is clear that the homotopy Φ obtained when we �rst produce
the homotopy Φ0 and then the homotopy Φ1 has (after appropriate
smoothing near the point 𝑡 = 1/2) all the required properties.

Stage 2 As a result of Stage 1 (performed for all arcs 𝑄𝑖, simultaneously), we
will get on some neighbourhood of the union ∪𝑖𝑄𝑖, all arcs 𝑄𝑖, (denote
this neighbourhood again with the symbol 𝑈) the map 𝐹, satisfying all
the conditions a) - c) (with the only caveat, that in condition a) the
boundary of 𝜕𝑊 should be replaced by the intersection of 𝑈 ∩ 𝜕𝑊).

Since every smooth manifold is - by applying local compactness and
Hausdor�ness - a regular space, the submanifold ∪𝑄𝑖 has in 𝑊 a neigh-
bourhood 𝑉 such that 𝑉 ⊂ 𝑈.
It is clear that at the intersection of the sets 𝑉 \ 𝑉 and 𝜕𝑊 \ 𝑉 (closed
in 𝑊 \𝑉), the maps 𝐹 and ℎ coincide. Therefore, the formula

𝐹 (𝑥) =
{
𝐹 (𝑥), if 𝑥 ∈ 𝑉 \𝑉,
ℎ(𝑥), if 𝑥 ∈ 𝜕𝑊 \𝑉,
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well de�nes a continuous map 𝐹 of the union (𝑉 ∪ 𝜕𝑊) \𝑉 of these sets
into the sphere S𝑛 that does not touch the point 𝒚, i.e. being a map in
S𝑛\ 𝒚. Since S𝑛\ 𝒚 ≈ R𝑛, we can therefore consider 𝐹 as a map in R𝑛 and
apply Tietze's theorem to it (see Appendix to Lecture 0). According to
this theorem, there is a continuous map 𝐹 : 𝑊 \ 𝑉 → S𝑛 \ 𝒚 coinciding
with (𝑉 ∪ 𝜕𝑊) \𝑉 with the map 𝐹, i.e. matching on 𝑉 \𝑉 with the map
𝐹, and on 𝜕𝑊 \ 𝑉 with the map ℎ. We will de�ne a continuous map
𝐹1 : 𝑊 → S𝑛, assuming that on 𝑉 it coincides with 𝐹, and on 𝑊 \ 𝑉 it
coincides with 𝐹.

This continuous map is smooth on 𝜕𝑊 and on 𝑀. Therefore (see �State-
ment 1� = Proposition 7.3 above) it can be smoothed without changing
it on 𝜕𝑊 (as well as to some neighbourhood of the submanifold ∪𝑄𝑖
contained in 𝑉). The resulting map will be a smooth extension of the
map ℎ from 𝜕𝑊 to all 𝑊 .

Thus Proposition 7.31 is fully proved. Together with this, Theorem 7.27 is fully
proved. □

Remark 7.33. Similarly (by introducing the so-called degree mod 2), it can be
proved that if a smooth closed connected 𝑛-dimensional manifold 𝑀 is unori-
entable, then the set [𝑀, S𝑛] consists of two elements. As for manifolds with
boundary, it is easily proved that any map 𝑀 → S𝑛 is null homotopic.

Remark 7.34. Consideration of the prototypes of regular values is also useful
when studying the maps of spheres of various dimensions. On this basis, L.
S. Pontryagin constructed his famous method for calculating homotopy groups
𝜋𝑚S

𝑛, identifying them with the so-called framed cobordism groups of manifolds.
Unfortunately, we do not have time to present this method (an interested reader
can refer to Pontryagin's book [7] or to a more accessible, beginner-friendly
presentation Milnor [5]),

Remark 7.35. The notion of degree can also be introduced for maps of man-
ifolds with boundary (to manifolds with boundary). We will not develop the
corresponding general theory here and only write a few special cases where an
ad hoc reduction to the case of maps of spheres is possible.

Case1 A continuos map

𝑓 : (E𝑛, S𝑛−1) → (S𝑛, 𝒔0) (7.36)

Using the standard relative homeomorphism

𝜒 : (E𝑛, S𝑛−1) → (S𝑛, 𝒔0) (7.37)

(see lecture 3) any such map we can represent as 𝑓 = 𝑓̂ ◦ 𝜒, where

𝑓̂ : (S𝑛, 𝒔0) → (S𝑛, 𝒔0). Assuming, by de�nition, that deg 𝑓 = deg 𝑓̂ , we
immediately get that maps (7.36) are homotopic if and only if when their
degrees coincide (relS𝑛−1).
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Case2 Continuous mapa

(𝐼𝑛, ¤𝐼𝑛) → (S𝑛, 𝒔0) and ( ¤𝐼𝑛+1, 0) → (S𝑛, 𝒔0).

This case is very similar to the previous one, only instead of homeomor-
phism (7.37), it is necessary to use relative homeomorphism

𝜒 : (𝐼𝑛, ¤𝐼𝑛) → (S𝑛, 𝒔0) (7.38)

or respectively pointed homeomorphism

𝜔 : ( ¤𝐼𝑛+1, 0) → (S𝑛, 𝒔0) (7.39)

We emphasise that here we are dealing with maps of spaces that are not
smooth manifolds (even with boundary).

Case3
𝜒 : (𝐼𝑛, ¤𝐼𝑛) → ( ¤𝐼𝑛+1, 0) (7.40)

A similar trick is also applicable here, but both homeomorphisms (7.38)
and (7.39) are necessary.

It is useful to keep in mind that in these constructions there is no need to assume
that maps (7.38) and (7.39) are homeomorphisms - it is enough that they are
maps of degree 1.

Of course, in each of the cases 1 - 3 it is possible to give a direct de�nition
of the degree. For example, if the map (7.40) is smooth on the preimage of
the interior of one of the faces of the cube 𝐼𝑛+1, then its degree is equal to the
�algebraic number� of preimages of an arbitrary regular value belonging to this
face.



Appendix

7.A The simplest consequences of the fact that
𝜋𝑛S

𝑛 ≠ 0

Surprisingly, the fact that the group 𝜋𝑛S
𝑛 (and the groups 𝜋𝑚S

𝑛 for 𝑚 < 𝑛

are zero) is nonzero has important geometric consequences. For example, since
𝜋𝑛E

𝑛+1 = 0, the functor 𝜋𝑛 has the properties that we required from the functor
Π in the proof of the drum theorem in Lecture 0. Thus, we are now (and only
now!) we can consider this theorem proven. At the same time, Brouwer's �xed
point theorem is also proved (see lecture 0).

Further, we can now prove that

Proposition 7.41. for 𝑚 ≠ 𝑛 the spheres S𝑚 and S𝑛 are not homotopically
equivalent.

Proof. Indeed, if, say, 𝑚 < 𝑛, then 𝜋𝑚S
𝑛 = 0, whereas 𝜋𝑚S

𝑚 ≠ 0. □

It follows that

Proposition 7.42. for 𝑚 ≠ 𝑛 spaces R𝑚 and R𝑛 are not homeomorphic.

Proof. Indeed, any homeomorphism of these spaces would de�ne a homeomor-
phism - and hence a homotopy equivalence - of their one-point compacti�cations
S𝑚 and S𝑛. □

7.B Degrees of maps into spheres

To get more in-depth results, we need a few simple remarks about maps to
spheres.

First of all, we note that

Proposition 7.43. if the space 𝑋 is normal in a closed pair (𝑋, 𝐴), then any
map 𝑓 : 𝐴→ S𝑛 can be extended to some neighbourhood 𝑈 of the set 𝐴.

Proof. Indeed, due to the embedding S𝑛 ⊂ R𝑛+1, the map 𝑓 can be considered
as the map 𝐴 → R𝑛+1. By Tietze's theorem, this map extends to some map

267
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𝑔 : 𝑋 → R𝑛+1. Let 𝑈 = 𝑋 \ 𝑔−1 (0). It is clear that 𝐴 ⊂ 𝑉 and the formula

𝑓 (𝑥) = 𝑔(𝑥)
|𝑔(𝑥) | , 𝑥 ∈ 𝑈,

de�nes a continuous map 𝑓 : 𝑈 → S𝑛 that coincides on 𝐴 with the map 𝑓 . □

It follows from this that

Proposition 7.44. if for a closed pair (𝑋, 𝐴) the space 𝑋 is normally stable (i.e.
it is itself normal and the product 𝑋 × 𝐼 is normal), then for each commutative
diagram of the form

𝐴
𝑖 //

𝜎0

��

𝑓

""

𝑋

𝜎0

��

𝑓

||
S𝑛

𝐴 × 𝐼
𝑖×id

//

𝐹

<<

𝑋 × 𝐼

𝐹

bb

(7.45)

there is a closing homotopy 𝐹 : 𝑋 × 𝐼 → S𝑛 (i.e., as they say, the pair (𝑋, 𝐴)
satis�es the axiom HE - cf. De�nition0.19 - with respect to maps to spheres).

Proof. Indeed, applying the previous proposition to the pair (𝑋 × 𝐼, 𝐴), where,
as always,𝐴 = (𝑋 ×0) ∪ (𝐴× 𝐼), and to the map 𝑓̃ : 𝐴→ S𝑛, given by the formula

𝑓̃ (𝑥, 𝑡) =
{
𝑓 (𝑥), if 𝑡 = 0,

𝐹 (𝑥, 𝑡), if 𝑥 ∈ 𝐴.

we will be able to extend this map to some the neighbourhood 𝑈 of the subspace
𝐴. It follows directly from the compactness of the segment 𝐼 that in the space 𝑋
there exists a neighbourhood 𝑉 of the subspace 𝐴 such that 𝑉×𝐼 ⊂ 𝑈. According
to Urysohn's lemma, there is a function 𝜑 : 𝑋 → 𝐼 equal to zero on 𝑋 \ 𝑉 and
one on 𝐴. Then (𝑥, 𝜑(𝑥)𝑡) ∈ 𝑈 for any point (𝑥, 𝑡) ∈ 𝑋 × 𝐼, and therefore the
formula

𝐹 (𝑥, 𝑡) = 𝑔(𝑥, 𝜑(𝑥)𝑡), 𝑥 ∈ 𝑋, 𝑡 ∈ 𝐼,
where 𝑔 : 𝑈 → S𝑛 is the extension to 𝑈 of the map 𝑓̃ , well de�nes the homotopy
𝐹 : 𝑋 × 𝐼 → S𝑛, obviously, closing the diagram (7.45). □

Maps 𝑋 → 𝑛 that are homotopic to zero are called also non-essential maps.
All other maps 𝑋 → 𝑛 are called essential maps.

In the case where 𝑋 is an 𝑛-dimensional manifold, essential maps are exactly
maps whose degree is nonzero.

Note that

Proposition 7.46. any essential map is surjective.

From the proposition proved above, it immediately follows that
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Proposition 7.47. if for a closed pair (𝑋, 𝐴) the space 𝑋 is normally stable,
then any non-essential map 𝑓 : 𝐴→ S𝑛 admits an extension 𝑓 : 𝑋 → S𝑛, which
is also a non-essential map.

7.C Borsuk's theorem on an unbounded compo-
nent

Now let 𝑋 be an arbitrary compact subset of the Euclidean space R𝑛+1. Then
for any point 𝒙0 ∈ R𝑛+1 \ 𝑋 the formula

𝑝𝒙0 : 𝒙 ↦→ 𝒙 − 𝒙0
|𝒙 − 𝒙0 |

, 𝒙 ∈ 𝑋,

de�nes some continuous map 𝑝𝒙0 : 𝑋 → S𝑛. If the points 𝒙0 and 𝒙1 lie in
the same component of the complement R𝑛+1 \ 𝑋, then the map 𝑝𝒖 (𝑡 ) where
𝒖 : 𝑡 ↦→ 𝒖(𝑡) is an arbitrary path connecting the points 𝒙0 and 𝒙1 in R𝑛+1 \ 𝑋
constitute, obviously, a homotopy connecting the maps 𝑝𝒙0 and 𝑝𝒙1 . Thus,

Proposition 7.48. the homotopy class of the map 𝑝𝒙0 depends only on the
component 𝐶 of the complement R𝑛+1 \ 𝑋 containing the point 𝒙0.

With respect to the component 𝐶, two cases are possible: either this compo-
nent is bounded, or it is not limited. Let's �rst have a component 𝐶 bounded.
Since the set 𝑋 is compact, it is contained in some closed ball 𝐸 . It is clear
that the component 𝐶, and therefore its closure 𝐶 are also contained in 𝐸 . By
subjecting the space R𝑛+1 to some parallel transfer and some homotopy, we can
ensure that the point 𝒙0 coincides with the point 0 (and therefore the map
𝑝 = 𝑝𝒙0 , is given by the formula 𝒙 ↦→ 𝒙/|𝑥 |), and the ball 𝐸 was a single ball
𝐸𝑛+1. With this in mind, assume that the map 𝑝 : 𝑋 → S𝑛, 𝒙 ↦→ 𝒙/|𝑥 |), is
non-essential. Then, according to the remark made above, it extends to some
(also non-essential) map 𝑝 : 𝑋 ∪ 𝐶 → S𝑛. It is clear that the formula

𝑟 (𝒙) =
{
𝑝(𝒙), if 𝒙 ∈ 𝑋 ∪ 𝐶,
𝒙/|𝒙 | if 𝒙 ∈ E𝑛+1 \ 𝐶,

well de�nes a continuous map 𝑟 : E𝑛+1 → S𝑛, identity on S𝑛, i.e. being a
retraction E𝑛+1 → S𝑛. Since such a retraction cannot exist, the assumption
about the non-essentiality of the map 𝑝 is false, i.e. this map is essential.

Now let the 𝐶 component be unlimited. Without loss of generality, we can
assume that the point 𝒙0 lies outside the ball 𝐸 and is therefore separated from
𝑋 by some hyperplane. Then the directions of the vectors 𝒙 − 𝒙0 for points
𝒙 ∈ 𝐸 , and hence for points 𝒙 ∈ 𝑋, are contained in some hemisphere of the
sphere S𝑛 and therefore obviously do not �ll this entire sphere. Therefore, the
𝑝 map is non-essential.

This proves the following

Proposition 7.49. The point 𝒙0 ∈ R𝑛+1 \ 𝑋 lies in an unbounded component of
the set R𝑛+1 \ 𝑋 if and only if when the map 𝑝𝒙0 : 𝑋 → S𝑛 is non-essential.
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This proposition is known as Borsuk's unbounded component theorem.
As applied to closed subsets of spheres, it follows from Borsuk's theorem

that

Proposition 7.50. if a closed subset 𝑋 of a sphere 𝑆𝑛+1 has the property that
each map 𝑋 → S𝑛 is non-essential, then it does not dissect the sphere (the
complement S𝑛+1 \ 𝑋 is connected).

Proof. Indeed, if the complement S𝑛+1 \ 𝑋 is disconnected and 𝒙0, 𝒙1 ∈ S𝑛+1 \ 𝑋
are points lying in its various components, then by identifying the punctured
sphere S𝑛+1 \ 𝒙1 with the space R𝑛+1, we we get that the point 𝒙0 will belong
to a bounded component. Therefore, there will be an essential map 𝑋 → S𝑛
(namely, the map 𝑝𝒙0). □

7.D Topological invariance of the dimension of
cubable sets

The converse statement is proved by a direct geometric construction that does
not use algebro-topological considerations and is based on one property of the
sphere S𝑛+1, which it is advisable to discuss in a general way beforehand.

This property is related to the problem of topological invariance of the el-
ementary geometric concept of dimension. To clearly formulate this problem,
it is necessary �rst of all to clearly describe the class of spaces for which the
�elementary geometric� dimension makes sense.

Let 𝑁 > 0 be a positive integer. Hyperplanes of the space R𝑛 with equations
of the form 𝑡𝑖 = 𝑘2

−𝑁 , where 𝑖 = 1, . . . , 𝑛, and 𝑘 ∈ Z, split this space into a union
of closed cubes with sides of length 2−𝑁 . These cubes, as well as all their faces
(of any dimension), we will call cubes of �neness 𝑁 in the spaces R𝑛. We will
call a subset of the space R𝑛 a cubable set if there exists 𝑁 > 0 such that this
subset is represented (obviously, in the unique way) as a union of some family
of 𝑁 �neness cubes containing together with each cube and all its faces. We
will call this family the cubilage of the �neness 𝑁 of the cubable set. It is clear
that the existence of a cubilage of �neness 𝑁 implies the existence of a cubilage
of any greater �neness. Thus, each cubable set has cubilages of arbitrarily large
�neness. Any cubable set is closed. It is compact (= bounded) if and only if
all its cubilages are �nite. According to Lebesgue's lemma (see Appendix to
Lecture 1) for any open cover of a compact cubable set there exists 𝑁 > 0 such
that each element of the cubilage of �neness 𝑁 of this set is contained in some
element of the cover.

We will call the dimension dim 𝑋 of the cubable set 𝑋 the largest dimension
of cubes of its arbitrary cubilage (it is clear that this dimension does not depend
on the choice of cubilage).

The problem we are interested in can now be formulated as follows:

Proposition 7.51. Do the dimensions of two homeomorphic cubable sets coin-
cide?
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The a�rmative answer to this question directly follows from the following
proposition.

Proposition 7.52. For a cubable set 𝑋, the inequality dim 𝑋 ≤ 𝑛 holds if and
only if, for each closed subset 𝐴 ⊂ 𝑋, any continuous map 𝑓 : 𝐴 → S𝑛 can be
extended to all 𝑋.

Proof. The su�ciency of this condition easily follows from the drum theorem.
Indeed, if dim 𝑋 > 𝑛, then in 𝑋 there is a closed subset 𝐵 homeomorphic to
(𝑛+1)-dimensional ball E𝑛+1 (for example, every (𝑛+1)-dimensional cube of any
cubilage of the space 𝑋). Let 𝑔 : 𝐵 → E𝑛+1 be an arbitrary homeomorphism,
𝐴 = 𝑔−1 (S𝑛) and 𝑓 = 𝑔 |𝐴. By the condition, the map 𝑓 : 𝐴 → S𝑛 can be
extended to some map 𝑓 : 𝑋 → S𝑛. But then the map ( 𝑓 |𝐵) ◦ 𝑔−1 will obviously
be a retraction of E𝑛+1 → S𝑛. Therefore dim 𝑋 ≤ 𝑛.

The necessity of the condition is proved by a direct construction. Since the
space 𝑋 is obviously normally stable, then, according to the above, the map 𝑓

can be extended to some neighbourhood 𝑈 of the set 𝐴. On the other hand,
considering a su�ciently small cubilage of the set 𝑋, we get that all cubes of
this cubilage intersecting 𝐴 are contained in 𝑈. The union of 𝐴0 of all these
cubes is a cubable set containing 𝐴, to which the map 𝑓 is extended. Therefore,
without loss of generality, we can assume from the very beginning that the set
𝐴 is a cubable set (and consists of cubes from some cubilage of the set 𝑋). In
this case, we will extend the map 𝑓 cube by cube to all cubes of 𝑋 that do not
belong to 𝐴. At each step of this extension, we will encounter a situation where
the map 𝑓 is given on the boundary of some cube of dimension 𝑚 ≤ 𝑛, and the
task will be to extend this map to the entire cube. But since the pair (cube,
its boundary) is homeomorphic to the pair (E𝑚, S𝑚−1) and since, as we already
know, 𝜋𝑚−1S𝑛 = 0 for 𝑚 ≤ 𝑛, this problem is always soluble. Therefore, moving
from cube to cube, as a result we will extend the map 𝑓 to all 𝑋. □

Remark 7.53. Proposition 7.52 suggests a way to de�ne the notion of dimension
dim 𝑋 for any topological space 𝑋. Namely, we can assume that dim 𝑋 ≤ 𝑛 if
for every closed subset 𝐴 ⊂ 𝑋 any continuous map 𝐴 → S𝑛 can be extended to
all 𝑋, and dim 𝑋 = 𝑛 if dim 𝑋 ≤ 𝑛, but it is not true that dim 𝑋 ≤ 𝑛 − 1. Then
Proposition 7.52 will state that for any cubable set 𝑋, the dimension in this
sense coincides with its elementary-geometric dimension.

If dim 𝑋 > 𝑛, then the map 𝑓 : 𝐴→ S𝑛 can, generally speaking, be extended
only to 𝑋𝑛 ∪ 𝐴0, where 𝑋

𝑛 is the union of all cubes of dimension ≤ 𝑛 of the
considered cubilage of the set 𝑋. On the other hand, if dim 𝑋 = 𝑛 + 1 and if in
each (𝑛 + 1)-dimensional cubes from 𝑋 \ 𝐴0 are selected by point, then the set
𝑋 \ 𝐾, where 𝐾 is the set of all selected points, will obviously be retracted to
𝑋𝑛 ∪ 𝐴0, and therefore the map 𝑓 can be extended from 𝑋𝑛 ∪ 𝐴0 to 𝑋 \ 𝐾.

This proves that for any continuous map 𝑓 : 𝐴 → S𝑛 to the sphere S𝑛 of a
closed subset 𝐴 of a cubable (𝑛 + 1)-dimensional set 𝑋 there exists a �nite set
𝐾 ⊂ 𝑋 \ 𝐴, such that 𝑓 is extended to 𝑋 \ 𝐾.
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7.E Sets that do not dissect the spheres

Let us now return to the sets that do not dissect the sphere.

Proposition 7.54. A closed set 𝑋 ⊂ S𝑛+1 does not dissect the sphere S𝑛+1 if
and only if when each map 𝑋 → S𝑛+1 is non-essential.

Proof. The su�ciency of this condition was proved above. Therefore, we only
need to prove its necessity.

Let the complement S𝑛+1 \ 𝑋 be connected, and let 𝑓 be an arbitrary con-
tinuous map 𝑋 → S𝑛. Since the sphere S𝑛+1 is homeomorphic to the cubable
set ¤𝐼𝑛+2, then according to what has just been proved, we can assume that the
map 𝑓 is extended to some map of the space S𝑛+1 \ 𝐾 to the sphere S𝑛, where
𝐾 is a �nite subset of the complement S𝑛+1 \ 𝐾. We will call the points from 𝐾

singular points of the map 𝑓 .
Assuming that the sphere S𝑛+1 is equipped with a Riemannian metric (for

example, the induced Euclidean metric of the enclosing space R𝑛+2), we call an
arbitrary open ball 𝑒 ⊂ S𝑛+1 \ 𝑋 the cell of S𝑛+1 \ 𝑋. It is clear that any point
𝒙0 ∈ S𝑛+1 \ 𝑋 is contained in some cell, the boundary ¤𝑒 = 𝑒 \ 𝑒 which does
not contain points from 𝐾 and, moreover, any two points 𝒙0, 𝒙1 ∈ S𝑛+1 \ 𝑋 it
is possible to connect a chain of such cells in which any two consecutive cells
intersect.

With this in mind, consider an arbitrary point 𝒙1 ∈ 𝐾 and a cell 𝑒 containing
a point 𝒙1 and such that its boundary ¤𝑒 does not intersect with the set 𝐾. Let
𝒙2 be an arbitrary point of 𝑒. Since the set 𝑒 \ 𝒙2 is obviously retractible to ¤𝑒,
the map 𝑓 can be extended to 𝑒 \ 𝒙2.

The resulting map has the same singular points outside 𝑒 as the map 𝑓 , and
inside 𝑒 there is only one singular point 𝒙2. We will say that the singular point
𝒙1 is shifted to position 𝒙2. (Note that in this case, all other singular points,
if any, contained in 𝑒, are also shifted in 𝒙2.) Since, as already noted, any two
points from S𝑛+1 \ 𝑋 can be connected by a chain of cells, any two neighbouring
cells of which intersect, it follows that all points from 𝐾 can be shifted to some
�xed point 𝒙0 ∈ S𝑛+1 \ 𝑋. In other words, without loss of generality, we can
assume that the map 𝑓 has only one singular point 𝒙0, i.e. that it is a map
S𝑛+1 \ 𝒙0 → S𝑛 and, therefore, is non-essential (because the punctured sphere
S𝑛+1 \ 𝒙0 is contractible). But then its restriction to 𝑋, i.e. the original map 𝑓 ,
is also non-essential. □

7.F The theorem of the invariance of domain

Corollary 7.55. If 𝐴 ⊂ 𝑋 ⊂ S𝑛+1 and the pair (𝑋, 𝐴) is homeomorphic to the
pair (E𝑛+1, S𝑛), then the set S𝑛+1 \ 𝐴 is divided into two components, which are
the sets S𝑛+1 \ 𝑋 and 𝑋 \ 𝐴. In particular, the set 𝑋 \ 𝐴 is open in the sphere
S𝑛+1.

Proof. Since any map E𝑛+1 → S𝑛 is non-essential, the set S𝑛+1 \ 𝑋 is connected.
The set 𝑋 \ 𝐴 is connected because it is homeomorphic to an open ball. This
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means that the set

S𝑛+1 \ 𝐴 = (S𝑛+1 \ 𝑋) ∪ (𝑋 \ 𝐴)

is either connected or consists of two components S𝑛+1 \ 𝑋 and 𝑋 \ 𝐴. But it
cannot be connected, because there are essential maps 𝐴 → S𝑛 (for example,
the homeomorphism 𝐴→ S𝑛). □

Corollary 7.56 (The theorem of the invariance of domain). If subsets 𝑈 and
𝑉 of the sphere S𝑛 are homeomorphic and 𝑈 is open in S𝑛, then 𝑉 is also open.

Proof. Let 𝑓 : 𝑈 → 𝑉 be a given homeomorphism, and let 𝒙 ∈ 𝑈 and 𝑂 be a
spherical neighbourhood of a point 𝒙 such that 𝑂 ⊂ 𝑈. Just as the pair (𝑂, ¤𝑂) is
homeomorphic to the pair (E𝑛+1, S𝑛), the pair ( 𝑓 𝑂, 𝑓 ¤𝑂) is also homeomorphic to
the pair (E𝑛+1, S𝑛). Therefore, according to Corollary 7.55, the set 𝑓 𝑂\ 𝑓 ¤𝑂 = 𝑓 𝑂

containing the point 𝑓 (𝒙) ∈ 𝑉 , is open. Since this set is contained in 𝑉 = 𝑓𝑈,
this proves that the point 𝑓 (𝒙) is an internal point of the set 𝑉 , and since any
point from 𝑉 can be represented as 𝑓 (𝒙), the set 𝑉 is open. □

7.G Topological invariance of the dimension of
manifolds

Recall that a topological space 𝑋 is called a topological n-dimensional manifold
if any of its points has a neighbourhood homeomorphic to the space R𝑛.

Corollary 7.57. If subsets 𝑈 and 𝑉 of topological 𝑛-dimensional manifolds 𝑋
and 𝑌 are homeomorphic and 𝑈 is open in 𝑋, then 𝑉 is open in 𝑌 .

Proof. Let 𝑓 : 𝑈 → 𝑉 be a given homeomorphism, and let 𝑥 ∈ 𝑈. There are
spaces homeomorphic to R𝑛, which means that the space S𝑛 \ 𝒔0 is a neigh-
bourhood 𝑃 and 𝑄 of points 𝑥 and 𝑦 = 𝑓 (𝑥) respectively in the manifolds 𝑋
and 𝑌 , such that 𝑃 ⊂ 𝑈 and 𝑓 𝑃 ⊂ 𝑄. Having chosen the homeomorphisms
𝜑 : 𝑃→ S𝑛 \ 𝒔0 and 𝜓 : 𝑄 → S𝑛 \ 𝒔0, consider the composition 𝜓 ◦ 𝑓 ◦ 𝜑−1, which
is a homeomorphism of an open set S𝑛 \ 𝒔0 on its subset (𝜓◦ 𝑓 ) (𝑃). According to
Corollary 7.56, the subset (𝜓 ◦ 𝑓 ) (𝑃) is open in S𝑛, and therefore in S𝑛 \ 𝒔0. So,
the set 𝑓 (𝑃) is open in 𝑄 = 𝜓−1 (S𝑛 \ 𝒔0), and therefore and in all the manifold
𝑌 . Thus, each point 𝑓 (𝑥) of the set 𝑉 = 𝑓𝑈 has an open neighbourhood 𝑓 𝑃 in
𝑌 , contained in 𝑉 . Hence the set 𝑉 is open. □

Remark 7.58. Without the assumption that 𝑋 and 𝑌 are manifolds, Corollary
7.57 is incorrect. To get the corresponding counterexample, it is enough to take
the abscissa axis as 𝑈, 𝑉 and 𝑋, and the union of the abscissa axis and the
ordinate axis as 𝑌 .

Corollary 7.59. Topological manifolds 𝑋 and 𝑌 of di�erent dimensions are not
homeomorphic.
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Proof. Let dim 𝑋 − dim𝑌 = 𝑛 > 0, and let, contrary to the statement, the
manifolds 𝑋 and 𝑌 are homomorphic. Then the manifold is 𝑌 × R𝑛 will have
the same dimension as the manifold 𝑋, and at the same time will contain a
non-open subset 𝑌 × 0, homeomorphic to the manifold 𝑋. Since 𝑋 is open in 𝑋,
this contradicts Corollary 7.57. □

Remark 7.60. Another, more instructive way of proving corollary 7.59 is that for
manifolds an analogue of Proposition 7.18 is proved. We will leave the detailed
conduct of the relevant arguments to the reader's initiative.



Lecture 8

8.1 Exact Π sequences

Let us now return to the general theory of homotopy groups.
A homotopy sequence of an arbitrary �bration belongs to the class of left-

in�nite exact sequences of the form

· · ·
𝑝𝑛+1−−−−→ 𝐵𝑛+1

𝜕𝑛−−→ 𝐹𝑛
𝑖𝑛−→ 𝐸𝑛

𝑝𝑛−−→ 𝐵𝑛 → · · · , (8.1)

all members of which, with the exception of the last six right-hand members,
are abelian groups, and which end on the right with three non-abelian (multi-
plicatively written) groups and three pointed sets:

· · · → 𝐹2
𝑖2−→ 𝐸2

𝑝2−−→ 𝐵2︸                ︷︷                ︸
abelian groups

𝜕1−−→ 𝐹1
𝑖1−→ 𝐸1

𝑝1−−→ 𝐵1︸                ︷︷                ︸
non-abelian groups

𝜕0−−→ 𝐹0
𝑖0−→ 𝐸0

𝑝0−−→ 𝐵0︸                ︷︷                ︸
pointed sets

,

moreover, for any 𝑛 ≥ 1, the multiplicatively written groups 𝐹1, 𝐸1, 𝐵1 act
respectively on the groups 𝐹𝑛, 𝐸𝑛, 𝐵𝑛 (for 𝑛 = 1 - by means of internal auto-
morphisms).

Following Fuchs and Rokhlin we will say that such a sequence (8.1) is a Π-
sequence if, in addition, the group 𝐸1 acts on the group 𝐹𝑛, and the group 𝐵1

acts on the set 𝐹0 (generally speaking, non-pointed maps), and:

a) the homomorphism 𝑝𝑛 for 𝑛 ≥ 2 is a 𝑝1-homomorphism;

b) the homomorphism 𝑖𝑛 for 𝑛 ≥ 1 is a 𝐸1-homomorphism;

c) the homomorphism 𝜕𝑛 for 𝑛 = 0 is a 𝐵1-homomorphism; (in relation to the
action of the group 𝐵1 in itself by means of left translations), and for 𝑛 ≥ 1
is an 𝐸1-homomorphism with respect to the action of the group 𝐸1 on the
group 𝐵𝑛+1, induced by the homomorphism 𝑝𝑛, given by the action of the
group 𝐵1;

d) the action of the group 𝐹1 on the group 𝐹𝑛 is induced by the homomorphism
𝑖1 by the given action of the group 𝐸1.

275
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For such a sequence, the exactness in the term 𝐹0 will be understood in a
stronger sense. Namely, we will require that the preimages of the elements of
the set 𝐸0 by the map 𝑖0 coincide with the orbits of the action of the group 𝐵1

in the set 𝐹0.

Proposition 8.2. The homotopy sequence

· · · → 𝜋𝑛+1𝐵
𝜕−→ 𝜋𝑛𝐹

𝑖∗−→ 𝜋𝑛𝐸
𝑝∗−−→ 𝜋𝑛𝐵→ · · ·

of an arbitrary pointed �bration 𝑝 : 𝐸 → 𝐵 is an exact Π-sequence.

Since for a homotopy sequence the condition a) is nothing more than a
property of the functoriality of the action 𝑅 : 𝜋1𝑋 → Aut 𝜋𝑛𝑋 in relation to the
map 𝑝 : 𝐸 → 𝐵, to prove proposition 8.2 we need to construct the action of the
group 𝜋1𝐸 on the group 𝜋𝑛𝐹 (and the group 𝜋1𝐵 on the set 𝜋0𝐹) and check the
conditions b), c) and d) (as well as the exactness in the term 𝜋0𝐹).

In the construction of this action (as well as, by the way, in the construction
of the action 𝑅 : 𝜋1𝑋 → Aut 𝜋𝑛𝑋), only the non-degeneracy of the point 𝒔0 is
used from the properties of the pair (S𝑛, 𝒔0). Therefore, instead of the group
𝜋𝑛𝐹, we consider the general case of a set of the form [𝑋, 𝐹]•, where 𝑋 is an
arbitrary well-pointed space, and construct the action of the group 𝜋1𝐸 on this
set, preserving the group structure when 𝑋 is an H-cogroup, and such that

1) induced by the embedding 𝑖 : 𝐹 → 𝐸 the map

[𝑋, 𝐹]• → [𝑋, 𝐸]•

is a 𝜋1𝐸-homomorphism (for 𝑋 = S𝑛 this will give us the property b);

2) induced by this action by the homomorphism 𝑖∗ : 𝜋1𝐹 → 𝜋1𝐸 the action of
the group 𝜋1𝐹 on the set [𝑋, 𝐹]• coincides with the canonical action from
Proposition 4.25 of Lecture 4 (for 𝑋 = S𝑛 this will give us the property d)).

To construct this action, we notice that any loop 𝑢 ∈ Ω𝐸 is determined by
the formula

𝐺 (𝑥, 𝑡) = (𝑝 ◦ 𝑢) (𝑡), 𝑥 ∈ 𝑋, 𝑡 ∈ 𝐼,
a homotopy 𝐺 : 𝑋 × 𝐼 → 𝐵 such that for each map 𝑓 : 𝑋 → 𝐹 there is a
commutative diagram

{̃𝑥0}
𝑔 //

𝜎̃0

��

𝐸

𝑝

��
𝑋 × 𝐼

𝐺
// 𝐵

where {̃𝑥0} = (𝑋 × 0) ∪ ({𝑥0} × 𝐼), and 𝑔 is the map given by the formula

𝑔(𝑥, 𝑡) =
{
(𝑖 ◦ 𝑓 ) (𝑥), if 𝑡 = 0,

𝑢(𝑡), if 𝑥 = 𝑥0,
(𝑥, 𝑡) ∈ {̃𝑥0}.
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The corresponding covering homotopy 𝐺 : 𝑋 × 𝐼 → 𝐸 (existing by the axiom

CHE) has the property that 𝐺 (𝑥, 1) ∈ 𝐹 for any point 𝑥 ∈ 𝑋 (and 𝐺 (𝑥0, 1) = 𝑒0).
Therefore, putting

𝑓̂ (𝑥) = 𝐺 (𝑥, 1), 𝑥 ∈ 𝑋,

we get some pointed map 𝑓̂ : 𝑋 → 𝐹, and it is obvious that if the formula
𝜉𝛼 = [ 𝑓̂ ]•, where 𝜉 = [𝑢]•, and 𝛼 = [ 𝑓 ]•, well de�nes the map (𝜉, 𝛼) ↦→ 𝜉𝛼,
then this map will be the action of the group 𝜋1𝐸 on the group [𝑋, 𝐹]•, having
properties 1) and 2).

Therefore, we only need to check the correctness of this construction, i.e.
show that

Proposition 8.3. if 𝑢 ∼ 𝑢1 rel{0, 1} and 𝑓 ∼ 𝑓1, then 𝑓̂ ∼ 𝑓̂1.

Proof. To this end, by introducing into consideration the corresponding homo-
topies 𝑢𝑡 : 𝐼 → 𝐸 rel{0, 1} and 𝑓𝜏 : (𝑋, 𝑥0) → (𝐸, 𝑒0), we will de�ne the map
ℎ : 𝑋pt → 𝐸 to the space 𝐸 from the subspace

𝑋pt = (𝑋 × 𝐼) × 0 ∪ ((𝑋 × 0) ∪ ({𝑥0} × 𝐼) ∪ (𝑋 × 1)) × 𝐼

of the space (𝑋 × 𝐼) × 𝐼 by putting

ℎ(𝑥, 𝜏, 𝑡) =


𝑓𝜏 (𝑥), if 𝑡 = 0,

𝐺 (𝑥, 𝑡), if 𝜏 = 0,

𝐺1 (𝑥, 𝑡), if 𝜏 = 1,

𝑢𝜏 (𝑡), if 𝑥 = 𝑥0,

where 𝐺1 is the homotopy of 𝐺, built on the map 𝑓1, and the path 𝑢1. It is
clear that the map ℎ covers over 𝑋pt the homotopy 𝐻 : 𝑋 × 𝐼 × 𝐼 → 𝐵 de�ned
by the formula

𝐻 (𝑥, 𝜏, 𝑡) = (𝑝 ◦ 𝑢𝜏) (𝑡), (𝑥, 𝜏, 𝑡) ∈ 𝑋 × 𝐼 × 𝐼 .

Hence, this map extends to the covering homotopy 𝐻 : 𝑋 × 𝐼 × 𝐼 → 𝐸 , and the
map

𝐻 ◦ 𝜎1 : (𝑥, 𝜏) ↦→ 𝐻 (𝑥, 𝜏, 1), (𝑥, 𝜏) ∈ 𝑋 × 𝐼,

will obviously be a pointed homotopy connecting the map 𝑓̂ the map 𝑔̂. □

Remark 8.4. It is clear that a similar construction holds for any paths in 𝐸 (and
not just loops). As a result, an ensemble arises on the space 𝐸 , whose group (or
pointed set) at the point 𝑒 ∈ 𝐸 is the group [(𝑋, 𝑥0), (𝐹𝑏, 𝑒)], where 𝐵 = 𝑝(𝑒),
and 𝐹𝑏 = 𝑝−1 (𝑏) is the �bre above the point 𝑏 of the �bration 𝑝 : 𝐸 → 𝐵 (which
now there is no need to assume pointed). In particular, we thereby obtain for
any �bration 𝑝 : 𝐸 → 𝐵 (and each 𝑛 ≥ 0) on the space 𝐸 an ensemble of
homotopy groups of �bres {𝜋𝑛 (𝐹𝑏, 𝑒)} (for 𝑛 = 0 being an ensemble of pointed
sets).
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Remark 8.5. When interpreting the elements of the group 𝜋𝑛𝐹 as homotopy
classes of maps (𝐼𝑛, ¤𝐼𝑛) → (𝐹, 𝑒0) the element 𝜉𝛼 ∈ 𝜋𝑛𝐹 is given by by map
𝐵 : (𝐼𝑛, ¤𝐼𝑛) → (𝐹, 𝑒0) related to the map 𝑎 : (𝐼𝑛, ¤𝐼𝑛) → (𝐹, 𝑒0), specifying the
element 𝛼 ∈ 𝜋𝑛𝐹, and a loop 𝑢 : (𝐼𝑛, ¤𝐼𝑛) → (𝐹, 𝑒0), specifying element 𝜉 ∈ 𝜋1𝐸 ,
by the map 𝐺 : 𝐼𝑛+1 → 𝐸 such that

(𝑝 ◦ 𝐺) (𝑡, 𝑡) = (𝑝 ◦ 𝑢) (𝑡) for any point ( 𝒕, 𝑡) ∈ 𝐼𝑛+1,
𝐺 ( 𝒕, 0) = 𝑎( 𝒕), 𝐺 ( 𝒕, 1) = 𝑏( 𝒕) for any point 𝒕 ∈ 𝐼𝑛.

A similar remark is true, of course, with respect to the action of morphisms
of the groupoid Π𝐸 on the groups 𝜋𝑛 (𝐹𝑏, 𝑒) of the ensemble of homotopy groups
of �bres of the �bration 𝑝 : 𝐸 → 𝐵.

Now we can proceed directly to the proof of Proposition 8.2.

Proof. (of Proposition 8.2) It remains for us to check the condition c) and con-
struct the action of the group 𝜋1𝐵 on the set 𝜋0𝐹 (and also prove the exactness
in the term 𝜋0𝐹).

First of all, we will check the condition c) for 𝑛 ≥ 1, i.e. we show that for
any elements 𝛼 ∈ 𝜋𝑛+1𝐵 and 𝜉 ∈ 𝜋1𝐸 there is the equality

𝜉 (𝜕𝑛𝛼) = 𝜕𝑛 (𝑝∗ (𝜉)𝛼).

Let the map 𝑎 : (𝐼𝑛+1, ¤𝐼𝑛+1) → (𝐵, 𝑏0) de�ne the element 𝛼 ∈ 𝜋𝑛𝐵, and the
loop 𝑢 : (𝐼, ¤𝐼) → (𝐸, 𝑒0) the element 𝜉. Let, further, 𝐻 be a map 𝐼𝑛+1 × 𝐼 → 𝐵

such that

𝐻 ( 𝒕, 0) = 𝑎( 𝒕) for any point 𝒕 ∈ 𝐼𝑛+1,
𝐻 ( 𝒕, 𝑡) = (𝑝 ◦ 𝑢) (𝑡) for 𝒕 ∈ ¤𝐼𝑛+1 and 𝑡 ∈ 𝐼,

(so the map 𝑏 : 𝒕 ↦→ 𝐻 ( 𝒕, 1) sets the element 𝑝∗ (𝜉)𝛼 ∈ 𝜋𝑛+1𝐵). By applying
the decomposition of 𝐼𝑛+1 = 𝐼𝑛 × 𝐼, 𝒕 = (𝒔, 𝑠), we can consider the map 𝐻 as a
homotopy 𝐼𝑛+1 × 𝐼 → 𝐵 with the parameter 𝑠. The initial map (𝒔, 𝑡) ↦→ 𝐻 (𝒔, 0, 𝑡)
of this homotopy is given by the formula (𝒔, 𝑡) ↦→ (𝑝 ◦ 𝑢) (𝑡) and, therefore, is
covered by the map (𝒔, 𝑡) ↦→ 𝑢𝑡. Also, if 𝒔 ∈ ¤𝐼𝑛 or 𝑠 = 0, and 𝑡 = 0 or 𝑡 = 1, then
the homotopy 𝐻 is covered by the constant map const𝑒0 . Therefore, according
to the axiom CHE, there is a homotopy

𝐻 : 𝐼𝑛+1 × 𝐼 → 𝐸, (𝒔, 𝑠, 𝑡) ↦→ 𝐻 (𝒔, 𝑠, 𝑡),

such that

𝐻 (𝒔, 𝑠, 𝑡) = 𝑒0, 𝒔 ∈ ¤𝐼𝑛 or 𝑠 = 0, and 𝑡 = 0 or 𝑡 = 1,

𝐻 (𝒔, 0, 𝑡) = 𝑢(𝑡) for any points 𝒔 ∈ 𝐼𝑛, 𝑡 ∈ 𝐼,
(𝑝 ◦ 𝐻) (𝒔, 𝑠, 𝑡) = 𝐻 ( 𝒕, 𝑡) for any points (𝒔, 𝑠, 𝑡) ∈ 𝐼𝑛 × 𝐼 × 𝐼, where 𝒕 = (𝒔, 𝑠).

Putting 𝑎(𝒔, 𝑠) = 𝐻 (𝒔, 𝑠, 0), we get a homotopy 𝑎 : 𝐼𝑛 × 𝐼 → 𝐸 , �xed on ¤𝐼𝑛, such
that 𝑎(𝒔, 0) = 𝑒0 and 𝑝 ◦ 𝑎 = 𝑎. Hence, the map 𝑐 : 𝒔 ↦→ 𝑎(𝒔, 1) = 𝐻 (𝒔, 1, 0),
considered as a map (𝐼𝑛, ¤𝐼𝑛) → (𝐸, 𝑒0), sets the element 𝜕𝑛𝛼 ∈ 𝜋𝑛𝐹.
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Similarly, putting 𝑏(𝒔, 𝑠) = 𝐻 (𝒔, 𝑠, 1), we get a homotopy 𝑏 : 𝐼𝑛× 𝐼 → 𝐸 �xed
on 𝐼𝑛, such that 𝑏(𝒔, 0) = 𝑒0 and 𝑝 ◦ 𝑏 = 𝑏.

On the other hand, the map 𝐺 : (𝒔, 𝑡) ↦→ 𝐻 (𝒔, 1, 𝑡) obviously satis�es the
relations

(𝑝 ◦ 𝐺) ( 𝒕, 0) = (𝑝 ◦ 𝑢) (𝑡) for any point (𝒔, 𝑡) ∈ 𝐼𝑛 × 𝐼 = 𝐼𝑛+1,
𝐺 (𝒔, 0) = 𝑐(𝒔), 𝐺 (𝒔, 1) = 𝑐1 (𝒔) for any point 𝑺 ∈ 𝐼𝑛.

Therefore, the map 𝑐1 : (𝐼𝑛, ¤𝐼𝑛) → (𝐹, 𝑒0) sets the element 𝜉 (𝜕𝑛𝛼).
Thus

𝜉 (𝜕𝑛𝛼) = 𝜕𝑛 (𝑝∗ (𝜉)𝛼)
Let us now construct the action of the group 𝜋1𝐵 on the set 𝜋0𝐹.
Let 𝜉 ∈ 𝑝𝑖1𝐵 and 𝛼 ∈ 𝜋0𝐹. By selecting for an arbitrary loop 𝑢 : (𝐼, ¤𝐼) →

(𝐵, 𝑏0) of the class 𝜉 the path covering this loop 𝑢 : 𝐼 → 𝐸 , starting at some point
𝑒𝛼 of the component 𝛼, consider the point 𝑢(1) ∈ 𝐹. An automatic veri�cation
shows that the component 𝜉𝛼 of this point depends only on 𝜉 and 𝛼 (the easiest
way to see this is if you notice that 𝜉𝛼 is nothing but the image of the element
𝜉 by the map 𝜕0 : 𝜋1 (𝐵, 𝑏0) → 𝜋0 (𝐹, 𝑒𝛼) and that the map (𝜉, 𝛼) ↦→ 𝜉𝛼 is an
action of the group 𝜋1𝐵 on the set 𝜋0𝐹. At the same time, it is clear that for
any elements of 𝜉, 𝜂 ∈ 𝜋1𝐵 there is equality

𝜕0 (𝜉𝜂) = 𝜉 (𝜕0𝜂),

meaning that condition c) is also met when 𝑛 = 0.
Thus, to complete the proof of Proposition 8.2, we only need to check the

exactness in the term 𝜋0𝐹, i.e., to show that for elements 𝛼, 𝛽 ∈ 𝜋0𝐹 the equality
𝑖∗𝛼 = 𝑖∗𝛽 holds if and only if there exists an element 𝜉 ∈ 𝜋1𝐵 such that 𝜉𝛼 = 𝛽.
But the equality 𝜉𝛼 = 𝛽 means that the loop de�ning the element 𝜉 is covered
by a path starting in the component 𝛼 and ending in the component 𝛽, and the
equality 𝑖∗𝛼 = 𝑖∗𝛽 means that the components 𝛼 and 𝛽 of the �bre 𝐹 lie in the
same component of the space 𝐸 , i.e. that in 𝐸 there is a path starting in the
component 𝛼 and ending in the component 𝛽. Since any such path is the cover
of some loop (namely, its projection into 𝐵), the equalities 𝜉𝛼 = 𝛽 and 𝑖∗𝛼 = 𝑖∗𝛽
are indeed equivalent.

Thus Proposition 8.2 is fully proved. □

Remark 8.6. Similarly, it is possible for any 𝑛 ≥ 1 to construct an action of the
group 𝜋1𝐵 on the set [S𝑛, 𝐹] of the free homotopy mapping classes S𝑛 → 𝐹.
Thus, in the case when the �bre 𝐹 is homotopically simple in dimension 𝑛 and,
therefore, the set [S𝑛, 𝐹] is a group 𝜋𝑛𝐹, we get the action of the group 𝜋1𝐵 on
the group 𝜋𝑛𝐹 (and for a non-pointed �bration 𝑝 : 𝐸 → 𝐵 the ensemble {𝜋𝑛𝐹𝑏}
of groups 𝜋𝑛𝐹𝑏 on the space 𝐵).

8.2 Category of pointed pairs Top•2
In Lecture 4, we already had the opportunity to introduce the category of pairs
𝒯ℴ𝓅2, the objects of which are pairs (𝑋, 𝐴) of topological spaces, and mor-
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phisms 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) are maps 𝑓 : 𝑋 → 𝑌 such that 𝑓 (𝐴) ⊂ 𝐵.
Similarly, for any 𝑛 ≥ 2 the category of 𝑛-ples 𝒯ℴ𝓅𝑛 is introduced, whose

objects have the form (𝑋, 𝐴1, . . . , 𝐴𝑛−1), where 𝑋 ⊃ 𝐴1 ⊃ · · · ⊃ 𝐴𝑛−1, but these
categories, unlike the category 𝒯ℴ𝓅, will play a purely o�cial role with us.

The category 𝒯ℴ𝓅• of pointed spaces is obviously a complete subcategory
of the category 𝒯ℴ𝓅2.

A pointed pair is a triple of the form (𝑋, 𝐴, 𝑥0), where 𝑥0 is a point of the
subspace of 𝐴 (called the pair marked with a point). The complete subcategory
of the category 𝒯ℴ𝓅2 generated by pointed pairs is denoted by the symbol
𝒯ℴ𝓅

•
2 , and its morphisms are called pointed maps of pointed pairs.

There are two obvious functors from the category 𝒯ℴ𝓅2, (or the category
𝒯ℴ𝓅

•
2) to the category 𝒯ℴ𝓅 (respectively to the category 𝒯ℴ𝓅•). The �rst

functor of each pair (𝑋, 𝐴) maps the space 𝑋 and each map 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵)
is its own, but considered simply as a map 𝑋 → 𝑌 , and the second functor to
the pair (𝑋, 𝐴) maps the space 𝐴, and to the map 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) is the
map 𝐴 → 𝐵 induced by it (which we will often denote with the same symbol
𝑓 ).

A homotopy 𝑓𝑡 : 𝑋 → 𝑌 is called a homotopy of maps of pairs (or a homotopy
in 𝒯ℴ𝓅2) if 𝑓𝑡 : (𝑋, 𝐴) → (𝑌, 𝐵) for any 𝑡 ∈ 𝐼. (Homotopy maps of pairs should
not be confused with the narrower concept of homotopy with respect to 𝐴.)
Similarly, pointed homotopy maps of pairs are de�ned.

It is clear that thus the category𝒯ℴ𝓅2, (category𝒯ℴ𝓅
•
2) it turns out to be a

category with homotopies in the sense introduced in Lecture 0. Therefore, all the
usual homotopy concepts make sense in it: homotopy equivalences, deformation
retractions, homotopy invariant functors, etc.

8.3 Relative homotopy groups

An example of a pointed pair is the pair (E𝑛, S𝑛−1, 𝒔0) consisting of an 𝑛-
dimensional (𝑛 ≥ 1) ball E𝑛, its boundary sphere S𝑛−1 and a point 𝒔0 ∈ S𝑛−1.

De�nition 8.7. For any pointed pair (𝑋, 𝐴, 𝑥0), the symbol 𝜋𝑛 (𝑋, 𝐴, 𝑥0) or
simply 𝜋𝑛 (𝑋, 𝐴) denotes the set

[(E𝑛, S𝑛−1, 𝒔0), (𝑋, 𝐴, 𝑥0)] = [(E𝑛, S𝑛−1), (𝑋, 𝐴)]•

of the homotopy classes of pointed maps (E𝑛, S𝑛−1, 𝒔0) → (𝑋, 𝐴, 𝑥0).

We will consider this set to be a pointed set, the base point of which is the
class of constant map const : E𝑛 → 𝑋, 𝑎 ↦→ 𝑥0 (obviously representing the map
(E𝑛, S𝑛−1, 𝒔0) → (𝑋, 𝐴, 𝑥0)).

Let us now introduce the triple (𝐼𝑛, ¤𝐼𝑛, 𝐼𝑛−1), 𝑛 ≥ 1, where:

𝐼𝑛 , as always, is a single 𝑛-dimensional cube consisting of points 𝒕 = (𝑡1] , . . . , 𝑡𝑛) ∈
R𝑛, for which 0 ≤ 𝑡𝑖 ≤ 1 for all 𝑖 = 1, . . . , 𝑛;

¤𝐼𝑛 is its boundary consisting of points 𝒕 ∈ 𝐼𝑛, for each of which there is an index
𝑖 = 1, . . . , 𝑛 such that either 𝑡𝑖 = 0, or 𝑡𝑖 = 1;
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𝐽𝑛−1 - complement in the boundary ¤𝐼𝑛 of the cube of its interior (𝑛 − 1)-
dimensional face 𝐼𝑛−1, de�ned by the equation 𝑡𝑛 = 0, i.e. the set of
all points 𝒕 ∈ 𝐼𝑛, for each of which there is an index 𝑖 = 1, . . . , 𝑛, such that
either 𝑖 < 𝑛 and 𝑡𝑖 = 0, or 𝑡𝑖 = 1. See Fig 8.3.1.

Figure 8.3.1:

It is clear that the space 𝐽𝑛−1 is contractible to the point 0. Since the
pairs (𝐼𝑛, ¤𝐼𝑛) and ( ¤𝐼𝑛, 𝐽𝑛−1) are obviously co�brations, then the corresponding
deformation continues to the homotopy of the triple (𝐼𝑛, ¤𝐼𝑛, 𝐽𝑛−1) into itself,
connecting the identical map of this triple with the map translating 𝐽𝑛−1 to the
point 0. This means that the subtriple (𝐼𝑛, ¤𝐼𝑛, 0) of the triple (𝐼𝑛, ¤𝐼𝑛, 𝐽𝑛−1) is
its deformation retract and, therefore, is homotopically equivalent to it. Since
the triple (𝐼𝑛, ¤𝐼𝑛, 0) (being a pointed pair) is obviously homeomorphic to the
pointed pair (E𝑛, S𝑛−1, 𝒔0), then by selecting and �xing some homeomorphism
of these pairs, we can assume, that

𝜋𝑛 (𝑋, 𝐴, 𝑥0) = [(𝐼𝑛, ¤𝐼𝑛, 𝐽𝑛−1), (𝑋, 𝐴, 𝑥0)], (8.8)

i.e., that

𝜋𝑛 (𝑋, 𝐴, 𝑥0) = 𝜋0Ω𝑛 (𝑋, 𝐴, 𝑥0),

where

Ω𝑛 (𝑋, 𝐴, 𝑥0) = (𝑋, 𝐴, 𝑥0) (𝐼
𝑛 , ¤𝐼𝑛 ,𝐽𝑛−1 ) ⊂ 𝑋 𝐼𝑛 .

Now we can forget about the pair (E𝑛, S𝑛−1, 𝒔0) and use the formula (8.8) to
de�ne the set 𝜋𝑛 (𝑋, 𝐴, 𝑥0).

De�nition (8.8) has the advantage that for 𝑛 ≥ 2 for any two maps

𝑎, 𝑏 : (𝐼𝑛, ¤𝐼𝑛, 𝐽𝑛−1) → (𝑋, 𝐴, 𝑥0)

the formula (5.4) of Lecture 5 well determines the map

𝑎 + 𝑏 : (𝐼𝑛, ¤𝐼𝑛, 𝐽𝑛−1) → (𝑋, 𝐴, 𝑥0),
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moreover, as is directly veri�ed, the formula

[𝑎] + [𝑏] = [𝑎 + 𝑏]

de�nes in the set 𝜋𝑛 (𝑋, 𝐴, 𝑥0) the addition operation with respect to which it is
a group.

However, as in the case of groups 𝜋𝑛𝑋, these rather tedious checks can be
avoided by noting that, by applying the exponential law, the space Ω−𝑛(𝑋, 𝐴, 𝑥0)
for 𝑛 ≥ 2 is naturally homeomorphic to the loop space ΩΩ𝑛−1 (𝑋, 𝐴, 𝑥0) and,
therefore,

𝜋𝑛 (𝑋, 𝐴, 𝑥0) = 𝜋1Ω𝑛−1 (𝑋, 𝐴, 𝑥0).
Generally,

𝜋𝑛 (𝑋, 𝐴, 𝑥0) = 𝜋𝑘Ω𝑛−𝑘 (𝑋, 𝐴, 𝑥0) for any 𝑘 = 0, 1, . . . , 𝑛 − 1. (8.9)

The group 𝜋𝑛 (𝑋, 𝐴, 𝑥0) is called the 𝑛-dimensional homotopy group of the
pointed pair (𝑋, 𝐴, 𝑥0) (or the 𝑛- dimensional homotopy group of the space 𝑋

relative to the subspace 𝐴; however, the latter term is gradually falling out of
use now).

It is obvious that for 𝐴 = {𝑥0}

𝜋𝑛 (𝑋, {𝑥0}, 𝑥0) = 𝜋𝑛 (𝑋, 𝑥0).

In this sense, the �relative� homotopy group 𝜋𝑛 (𝑋, 𝐴, 𝑥0) is a generalisation of
the �absolute� group 𝜋𝑛 (𝑋, 𝑥0).

Formula (8.9) for 𝑘 = 2 shows that

Proposition 8.10. for 𝑛 ≥ 3 the group 𝜋𝑛 (𝑋, 𝐴, 𝑥0) is abelian.

The group 𝜋2 (𝑋, 𝐴, 𝑥0), generally speaking, is non-Abelian (however, unlike
the group 𝜋1 (𝑋, 𝑥0), to denote the operation in the group 𝜋2 (𝑋, 𝐴, 𝑥0 we will not
use the multiplicative notation), and the �group� 𝜋1 (𝑋, 𝐴, 𝑥0) is only a pointed
set.

For 𝑛 = 0, the group 𝜋0 (𝑋, 𝐴, 𝑥0) is not de�ned. However, for the unity
of formulations, we will sometimes express the fact that each component of
the space 𝑋 contains at least one component of the space 𝐴 by the formula
𝜋0 (𝑋, 𝐴, 𝑥0) = 0.

It is clear that the correspondence (𝑋, 𝐴, 𝑥0 ↦→ 𝜋𝑛 (𝑋, 𝐴, 𝑥0), 𝑛 ≥ 1, is a
homotopy invariant functor from the category 𝒯ℴ𝓅•2 to the category 𝒜𝒷𝒢𝓇𝓅
of abelian groups for 𝑛 ≥ 3, to the category 𝒢𝓇𝓅 of groups for 𝑛 = 2 and to the
category ℰ𝓃𝓈• of pointed sets for 𝑛 = 1.

Moreover, if 𝑋0 and 𝐴0 are components of the spaces 𝑋 and 𝐴 containing
the point 𝑥0, then the embedding (𝑋0, 𝐴0, 𝑥0) → (𝑋, 𝐴, 𝑥0) induces for 𝑛 ≥ 2 an
isomorphism of the group 𝜋𝑛 (𝑋0, 𝐴0, 𝑥0) on the group 𝜋𝑛 (𝑋, 𝐴, 𝑥0). Therefore,
without much loss of generality, we can assume a pair (𝑋, 𝐴) be connected, i.e.
consisting of a connected space 𝑋 and its connected subspace 𝐴.

According to Formula (8.9) for 𝑘 = 𝑛 − 1

𝜋𝑛 (𝑋, 𝐴, 𝑥0) = 𝜋𝑛−1Ω(𝑋, 𝐴),
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where Ω(𝑋, 𝐴) = Ω1 (𝑋, 𝐴, 𝑥0) is the space 𝑃(𝑋, 𝐴, 𝑥0) already familiar to us from
lecture 1 of all paths in 𝑋 starting in the subspace 𝐴 and ending at the point
𝑥0, i.e. the �bre 𝜔

−1 (𝑥0) of the �bration

𝜔1 : 𝑃(𝑋, 𝐴) → 𝑋, 𝑢 ↦→ 𝑢(1), (8.11)

where 𝑃(𝑋, 𝐴) is the space of all paths 𝑢 : 𝐼 → 𝑋 starting in the subspace 𝐴.
This space is nothing more than a co-cylinder of the embedding 𝑖 : 𝐴 → 𝑋,
and therefore, according to Lemma 2.41 of Lecture 2 (which, however, refers to
inverted cocylinders),

Proposition 8.12. the space 𝑃(𝑋, 𝐴) is homotopically equivalent to the sub-
space 𝐴.

(However, the mutually inverse homotopy equivalences 𝑃(𝑋, 𝐴) → 𝐴 and
𝐴→ 𝑃(𝑋, 𝐴) are easy to specify directly: they will be the map 𝜔0 : 𝑃(𝑋, 𝐴) →
𝐴, 𝑢 ↦→ 𝑢(0), and the map 𝜎 : 𝐴→ 𝑃(𝑋, 𝐴), 𝑎 ↦→ 0𝑎; it is clear that 𝜔0 ◦𝜎 = id,
and 𝜎 ◦ 𝜔0 ∼ id by the homotopy 𝑢 ↦→ 𝑢𝑡 , where 𝑢𝑡 (𝜏) = 𝑢(𝑡𝜏), 𝜏 ∈ 𝐼.) So,

Proposition 8.13. for any 𝑛 ≥ 0, the group 𝜋𝑛𝑃(𝑋, 𝐴) is isomorphic to the
group 𝜋𝑛𝐴.

Using this isomorphism (and equality (8.9) with 𝑘 = 𝑛 − 1), we obtain an
exact Π-sequence from the homotopy sequence of �bration (8.11)

· · · 𝑖∗−→ 𝜋𝑛+1𝑋
𝑗∗−→ 𝜋𝑛+1 (𝑋, 𝐴)

𝜕−→ 𝜋𝑛𝐴
𝑖∗−→ 𝜋𝑛𝑋 → · · · (8.14)

the right end of which has the form

· · · → 𝜋3 (𝑋, 𝐴)
𝜕−→ 𝜋2𝐴

𝑖∗−→ 𝜋2𝑋︸                            ︷︷                            ︸
abelian groups

𝑗∗−→ 𝜋2 (𝑋, 𝐴)
𝜕−→ 𝜋1𝐴

𝑖∗−→ 𝜋1𝑋︸                            ︷︷                            ︸
non-abelian groups

𝑗∗−→ 𝜋1 (𝑋, 𝐴)
𝜕−→ 𝜋0𝐴

𝑖∗−→ 𝜋0𝑋︸                            ︷︷                            ︸
pointed sets

,

and which is called the homotopy sequence of the pair (𝑋, 𝐴).
Remark 8.15. Like the homotopy sequence of a �bration, the homotopy sequence
of a pair is, by applying Remark 5.99 from Appendix to Lecture 5, a special
case of the Puppe sequence.

A direct comparison of the de�nitions shows that in the sequence (8.14):

the homomorphisms 𝑖∗ and 𝑗∗ are induced by embeddings 𝑖 : 𝐴 → 𝑋 and
𝑗 : (𝐴, 𝑥0) → (𝑋, 𝐴) (i.e., more precisely, the maps 𝑖 : (𝐴, 𝑥0) → (𝑋, 𝑥0)
and 𝑗 : (𝐴, 𝑥0, 𝑥0) → (𝑋, 𝐴, 𝑥0));

the homomorphism 𝜕 is induced by the map Ω𝑛 (𝑋, 𝐴) → Ω𝑛−1𝐼, which maps
each map (𝐼𝑛, ¤𝐼𝑛, 𝐽𝑛−1) → (𝑋, 𝐴, 𝑥0) to its restriction on the face of 𝐼𝑛−1 (in
interpretation elements of the group 𝜋𝑛 (𝑋, 𝐴) as pointed maps (E, S𝑛−1) →
(𝑋, 𝐴) the homomorphism 𝜕 is given by the restriction of these maps on
the sphere S𝑛−1);
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the action of the group 𝜋1𝐴 on the group 𝜋𝑛 (𝑋, 𝐴), 𝑛 ≥ 1, matches the element
𝛼 of the group 𝜋𝑛 (𝑋, 𝐴), set by the map (𝐼𝑛, ¤𝐼𝑛, 𝐽𝑛−1) → (𝑋, 𝐴, 𝑥0), and the
element 𝜉 of the group 𝜋1𝐴, set by the loop 𝑢 : (𝐼, ¤𝐼) → (𝐴, 𝑠0), an element
of the group 𝜋𝑛 (𝑋, 𝐴), de�ned by the map 𝑏 : (𝐼𝑛, ¤𝐼𝑛, 𝐽𝑛−1) → (𝑋, 𝐴, 𝑥0),
for which there is a homotopy 𝐺 : 𝐼𝑛 × 𝐼 → 𝑋 of the maps of pairs
(𝐼𝑛, ¤𝐼𝑛) → (𝑋, 𝐴), such that

𝐺 ( 𝒕, 𝑡) = 𝑢(1 − 𝑡), if 𝒕 ∈ 𝐽𝑛−1, 𝑡 ∈ 𝐼,
𝐺 ( 𝒕, 0) = 𝑎( 𝒕), 𝐺 ( 𝒕, 1) = 𝑏( 𝒕) for any 𝒕 ∈ 𝐼𝑛;

the action of the group 𝜋1𝑋 on the set 𝜋1 (𝑋, 𝐴) matches the element 𝛼 =

[𝑎] ∈ 𝜋1 (𝑋, 𝐴), where 𝑎 is the path (𝐼, 0) → (𝑋, 𝑥0) starting at 𝐴, and
the element 𝜉 = [𝑢] ∈ 𝜋1𝑋, where 𝑢 is the loop (𝐼, ¤𝐼) → (𝑋, 𝑥0), element
𝜉𝛼 ∈ 𝜋1 (𝑋, 𝐴), is set by 𝑎𝑢

′
, where 𝑢

′
: 𝑡 ↦→ 𝑢(1 − 𝑡).

(According to the general de�nition of Π-sequences, we also need the actions
of the group 𝜋1𝑋 on groups 𝜋𝑛𝑋 and the action of the group 𝜋2 (𝑋, 𝐴) on groups
𝜋𝑛 (𝑋, 𝐴); but it is clear that the �rst action is an ordinary action 𝑅 : 𝜋1𝑋 →
Aut 𝜋𝑛𝑋, and the second can not be separately considered, since for 𝑛 = 2 it is
an action by internal automorphisms, and for 𝑛 > 2 due to the condition d) it is
induced by a homomorphism 𝜕 : 𝜋2 (𝑋, 𝐴) → 𝜋1𝐴 from the action of the group
𝜋1𝐴. In this case, in the case of 𝑛 = 2, the condition d) is reduced to the formula

(𝜕𝛼)𝛽 = 𝛼 + 𝛽 − 𝛼 (8.16)

which should be the case for any elements 𝛼, 𝛽 ∈ 𝜋2 (𝑋, 𝐴).)
Thus, we obtain a direct construction of the sequence (8.14) that does not

rely on the �bration (8.11). Of course, with this approach, the exactness of
this sequence and the fact that it is a Π-sequence need independent veri�cation.
The reader is strongly recommended to do this check with all the details (special
attention should be paid to formula (8.16), the direct proof of which is somewhat
painstaking).

We emphasise that, thus,

Proposition 8.17. the group 𝜋𝑛 (𝑋, 𝐴) for 𝑛 ≥ 3 is a 𝜋1𝐴-module.

For the sake of unity of terminology, we will also call the group 𝜋2 (𝑋, 𝐴) a
𝜋1𝐴-module, although this group is non-Abelian. When we need to emphasise
the exceptional nature of this group, we will call it a crossed 𝜋1𝐴-module. (In
general, an additively written group 𝐺 in which a multiplicative group Π acts
is called a crossed Π-module if a homomorphism 𝜕 : 𝐺 → Π is given such that
for any elements 𝛼, 𝛽 ∈ 𝐺 the relation (8.16) holds.)

Of course, instead of the action of the group 𝜋1𝐴 on the group 𝜋𝑛 (𝑋, 𝐴), we
can consider the corresponding ensemble {𝜋𝑛 (𝑋, 𝐴, 𝑎), 𝑎 ∈ 𝐴} on 𝐴.

An obvious generalisation of the proof of Proposition 4.25 of Lecture 4 shows
that the maps 𝐼𝑛, ¤𝐼𝑛, 𝐽𝑛−1) → (𝑋, 𝐴, 𝑥0) (or maps (E𝑛, S𝑛−1, 𝒔0) → (𝑋, 𝐴, 𝑥0)) are
freely homotopic, i.e. homotopic as maps (𝐼𝑛, ¤𝐼𝑛) → (𝑋, 𝐴) (maps (E𝑛, S𝑛−1) →
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(𝑋, 𝐴)) if and only if when they belong to the same orbit of the action of the
group 𝜋1𝐴. In particular, since the action of the group 𝜋1𝐴 preserves the group
structure on 𝜋𝑛 (𝑋, 𝐴), 𝑛 ≥ 2, it follows that for 𝑛 ≥ 2 the map (E, S𝑛−1) → (𝑋, 𝐴)
sets the null element of the group 𝜋𝑛 ∗ (𝑋, 𝐴) if and only if when it is freely
homotopic to the constant map.

On the other hand, in order for the mapping (E𝑛, S𝑛−1) → (𝑋, 𝐴) to be freely
homotopic to a constant map, it is su�cient (and, of course, necessary) that it
be homotopic to a map 𝑓 : (E𝑛, S𝑛−1) → (𝑋, 𝐴), such that 𝑓 (E𝑛) ⊂ 𝐴, since any
such map is associated with a constant homotopy map 𝒙 ↦→ 𝑓 (𝑡𝒙), 𝒙 ∈ E𝑛, 𝑡 ∈ 𝐼,
which is (by applying the condition 𝑓 (E𝑛) ⊂ 𝐴) a homotopy in the category of
𝒯ℴ𝓅2.

Calling a map 𝑓 : (E𝑛, S𝑛−1) → (𝑋, 𝐴), for which 𝑓 (E𝑛) ⊂ 𝐴, a map con-
tracted into 𝐴, we get, therefore, that

Proposition 8.18. for 𝑛 ≥ 2 the map (E𝑛, S𝑛−1, 𝒔0) → (𝑋, 𝐴, 𝑥0) sets the null
element of the group 𝜋𝑛 (𝑋, 𝐴) if and only if when it is freely homotopic to the
map contracted into 𝐴.

It is clear that this conclusion is also valid for 𝑛 = 1.
Interestingly, the free homotopy here can be replaced by a homotopy relative

to S𝑛−1 , i.e.

Proposition 8.19. the map (E𝑛, S𝑛−1, 𝒔0) → (𝑋, 𝐴, 𝑥0) it is freely homotopic to
a contracted map if and only if when it is homotopic to a map relative to S𝑛−1.

Proof. Indeed, any homotopy 𝑓𝑡 : (E𝑛, S𝑛−1, 𝒔0) → (𝑋, 𝐴, 𝑥0), for which 𝑓0 = 𝑓

and 𝑓1 (E𝑛) ⊂ 𝐴, we can match a homotopy 𝑔𝑡 : E
𝑛 → 𝑋 �xed on S𝑛−1, for which

𝑔0 = 𝑓 and 𝑔1 (E𝑛) ⊂ 𝐴, putting

𝑔𝑡 (𝑥) = (𝐹 ◦ 𝜑) (𝑥, 𝑡), 𝑥 ∈ E?𝑛, 𝑡 ∈ 𝐼,

where 𝐹 : E𝑛 × 𝐼 → 𝑋 is a map (𝒙, 𝑡) ↦→ 𝑓𝑡 (𝒙), and 𝜑 is a map E𝑛 × 𝐼 → E𝑛 × 𝐼
such that 𝜑(𝒙, 𝑡) = (𝑥, 0) if 𝑡 = 0 or 𝑥 ∈ S𝑛−1, and 𝜑(𝒙, 1) ∈ (S𝑛−1 × 𝐼) ∪ (E𝑛 × 1)
for any point 𝒙 ∈ E𝑛. (For example, we can assume that

𝜑(𝒙, 𝑡) =
{
( 2
2−𝑡 𝒙, 𝑡), if 0 ≤ 𝑡 ≤ min(2(1 − |𝒙 |), 1),
( 𝒙
|𝒙 | ,

4(1−|𝒙 | )𝑡2
𝑡2+4(1−|𝒙 | )𝑡2 ), if 2(1 − |𝒙 |) ≤ 𝑡 ≤ 1,

for (𝒙, 𝑡) ∈ E𝑛 × 𝐼.) □

In particular, we see that

Proposition 8.20. the equality 𝜋𝑛 (𝑋, 𝐴) = 0 is equivalent to the fact that any
map (E𝑛, S𝑛−1, 𝒔0) → (𝑋, 𝐴, 𝑥0) is homotopic (freely or relative to S𝑛−1) to the
contracted map.

By analogy with the absolute case (see De�nition 5.33 of Lecture 5), we will
say that a pair (𝑋, 𝐴) is aspherical in dimension 𝑛 ≥ 0 if 𝜋𝑛 (𝑋, 𝐴, 𝑥0) = 0 for
any choice of point 𝑥0 ∈ 𝐴. In this case, we will write 𝜋𝑛 (𝑋, 𝐴) = 0.
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Asphericity in dimension 0 (equality 𝜋0 (𝑋, 𝐴) = 0) means that any compo-
nent of the space 𝑋 intersects with the subspace 𝐴. If 𝑋 is connected, then this
condition is always met.

Asphericity in dimension 𝑛 ≥ 1 (equality 𝜋𝑛 (𝑋, 𝐴) = 0) means that each map
(E𝑛, S𝑛−1) → (𝑋, 𝐴) is homotopic (free or relative to S𝑛−1) to the contracted
map.

In particular, for asphericity in dimension 1, it is necessary that any com-
ponent of space 𝑋 contains at most one component of subspace 𝐴. If 𝐴 is
connected, then this condition is met.

A pair of (𝑋, 𝐴) is called 𝑛-connected if it is aspherical in all dimensions
of ≤ 𝑛. In particular, if 𝑛 ≥ 1, then for the 𝑛-connectivity of the pair (𝑋, 𝐴),
it is necessary that each component of the space 𝑋 contains one and only one
component of the space 𝐴. If the pair (𝑋, 𝐴) is connected, then this condition
is automatically met.

If for a connected pair (𝑋, 𝐴) the action of the group 𝜋1 (𝐴, 𝑥0) on the group
𝜋𝑛 (𝑋, 𝐴, 𝑥0), 𝑛 ≥ 2, is trivial, then the pair (𝑋, 𝐴) is called homotopically simple
in dimension 𝑛. In this case, the group 𝜋𝑛 (𝑋, 𝐴) is de�ned, whose elements are
free homotopy classes of maps (𝐼𝑛, ¤𝐼𝑛 → (𝑋, 𝐴) (or (E𝑛, S𝑛−1) → (𝑋, 𝐴)), which
for any point 𝑥0 ∈ 𝐴 is naturally isomorphic to the group 𝜋𝑛 (𝑋, 𝐴, 𝑥0). In this
case,

Proposition 8.21. the group 𝜋1𝑋 naturally acts on the group 𝜋𝑛 (𝑋, 𝐴)
(moreover, for 𝐴 = {𝑥0}, this action is the standard action of the group 𝜋1𝑋

on the group 𝜋𝑛 (𝑋, 𝑥0) = 𝜋𝑛𝑋).

Proof. It is su�cient to apply Remark 8.6 to the �bration (8.11). □

Note that, as follows directly from the formula (8.16),

Proposition 8.22. if the pair (𝑋, 𝐴) is homotopically simple in dimension 2,
then the group 𝜋2 (𝑋, 𝐴) is Abelian. In particular, the group 𝜋2 (𝑋, 𝐴) is Abelian
if the space 𝐴 is simply connected.

It is also useful to keep in mind that if the space 𝐴 is connected and simply
connected, then the map 𝜋1𝑋 → 𝜋1 (𝑋, 𝐴) is bijective, and therefore multiplica-
tion in the group 𝜋1𝑋 is transferred to the set 𝜋1 (𝑋, 𝐴). Thus,
Proposition 8.23. if the space 𝐴 is connected and simply connected, then the
set 𝜋1(𝑋, 𝐴) is a group.

It also follows directly from the de�nitions that for any pointed map 𝑓 :
(𝑋, 𝐴) → (𝑌, 𝐵) and any 𝑛 ≥ 1 there is a commutative diagramme

𝜋𝑛 (𝑋, 𝐴)
𝜕 //

𝑓∗
��

𝜋𝑛−1𝐴

𝑓∗

��
𝜋𝑛 (𝑌, 𝐵)

𝜕

// 𝜋𝑛−1𝐵

In the language of category theory, this means that
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Proposition 8.24. the homomorphism 𝜕 : 𝜋𝑛 (𝑋, 𝐴) → 𝜋𝑛−1𝐴 is a natural
transformation (morphism) of the functor into a functor 𝜋𝑛 : 𝒯ℴ𝓅2 → 𝒜𝒷𝒢𝓇𝓅

𝜋𝑛−1 ◦ 𝛼 : 𝒯ℴ𝓅
𝛼−→ 𝒯ℴ𝓅

𝜋𝑛−1−−−−→ 𝒜𝒷𝒢𝓇𝓅,

where 𝛼 is the functor (𝑋, 𝐴) ↦→ 𝐴.

This remark allows us to formulate axioms for relative homotopy groups
similar to axioms [1]-[3] of Lecture 5 �5.15 for absolute groups (only, for example,
the axiom of exactness is now formulated for pairs) and, essentially the same,
inductive reasoning shows that up to isomorphism (and for non-Abelian groups
up to anti-isomorphism) these axioms uniquely characterize the groups of 𝜋𝑛.

8.4 The �ve lemma

In working with exact sequences of groups, the following simple lemma, known
as the �ve lemma, has unexpectedly wide applications.

Lemma 8.25. If in the commutative diagramme

𝐴1
𝛼1 //

𝜑1

��

𝐴2
𝛼2 //

𝜑2

��

𝐴3
𝛼3 //

𝜑3

��

𝐴4
𝛼4 //

𝜑4

��

𝐴5

𝜑5

��
𝐵1

𝛽1

// 𝐵2
𝛽2

// 𝐵3
𝛽3

// 𝐵4
𝛽4

// 𝐵5

(8.26)

with exact rows, the homomorphisms 𝜑1, 𝜑2, 𝜑4, 𝜑5 are isomorphisms, then the
homomorphism 𝜑3, is also an isomorphism.

Proof. Let 𝜑3 (𝑎3) = 0, where 𝑎3 ∈ 𝐴3. Then 𝛽3 (𝜑3) (𝑎3) = 0, and therefore
𝜑4 (𝛼3 (𝑎3)) = 0, i.e. 𝛼3 (𝑎3) = 0. Therefore, there exists an element 𝑎2 ∈ 𝐴2

such that 𝛼2 (𝑎2) = 𝑎3. But then 𝛽2 (𝜑2 (𝑎2)) = 𝜑3 (𝛼2 (𝑎2)) = 𝜑3 (𝑎3) = 0,
thus there is an element 𝑏1 ∈ 𝐵1 such that 𝛽1 (𝑏1) = 𝜑2 (𝑎2). Since 𝜑1 is
an isomorphism, there exists an element 𝑎1 ∈ 𝐴1 such that 𝑏1 = 𝜑1 (𝑎1).
Then 𝜑2 (𝛼1 (𝑎1)) = 𝛽1 (𝜑1 (𝑎1)) = 𝛽1 (𝑏1) = 𝜑2 (𝑎2) and 𝛼1 (𝑎1) = 𝑎2. Thus
𝑎3 = 𝛼2 (𝑎2) = 𝛼2 (𝛼1 (𝑎1)) = 0, hence 𝜑3 is a monomorphism.

Similarly, since 𝜑4 is an isomorphism, then for any element 𝑏4 ∈ 𝐵3 there
exists an element 𝑎4 ∈ 𝐴4 such that 𝛽3 (𝑏3) = 𝜑4 (𝑎4), and therefore 𝜑5 (𝛼4) (𝑎4) =
𝛽4 (𝜑4 (𝑎4)) = 𝛽4 (𝜑3 (𝑏3)) = 0. Therefore, 𝛼4 (𝑎4) = 0, which means that there
exists an element 𝑎3 ∈ 𝐴3 such that 𝛼3 (𝑎3) = 𝑎4. But then 𝛽3 (𝜑3 (𝑎3)) =

𝜑4 (𝛼3 (𝑎3)) = 𝜑4 (𝑎4) = 𝛽3 (𝑏3), and therefore there is an element 𝑏2 ∈ 𝐵2 such
that 𝛽2 (𝑏2) = 𝜑3 (𝑎3) − 𝑏3. Since 𝜑2 is an isomorphism, there exists an element
𝑎2 ∈ 𝑎2 such that 𝜑2 (𝑎2) = 𝑏3, and therefore 𝜑3 (𝛼2 (𝑎2)) = 𝛽2 (𝜑2 (𝑎2) = 𝛽2 (𝑏2)) =
𝜑3 (𝑎3) − 𝑏3, i.e. 𝑏3 = 𝜑3 (𝑎3 − 𝛼2 (𝑎3)), hence 𝜑3 is an epimorphism. □

The course of this proof is unambiguously dictated by the arrows of this
diagramme, and it is quite possible to carry it out in your mind, helping yourself
by moving your �nger along the diagramme. This method of proof is therefore
called the �diagramme chasing�.
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Remark 8.27. It follows from the proof of Lemma 8.25 that:

a) if 𝜑1 is an epimorphism, and 𝜑2 and 𝜑4 are monomorphisms, then 𝜑3is a
monomorphism;

b) if 𝜑 is a monomorphism, and 𝜑2 and 𝜑4 are epimorphisms, then 𝜑3is an
epimorphism.

This remark is sometimes useful.
To show how Lemma 8.25 works, we compare the homotopy sequence of the

pointed �bration 𝑝 : 𝐸 → 𝐵 with the homotopy sequence of the pair (𝐸, 𝐹),
where 𝐹 = 𝑝−1 (𝑏0) is the �bre of this �bration:

· · · // 𝜋𝑛𝐹 //

id

��

𝜋𝑛𝐸 //

id

��

𝜋𝑛 (𝐸, 𝐹) //

𝑝∗

��

𝜋𝑛−1𝐹 //

id

��

𝜋𝑛−1𝐸 //

id

��

· · ·

· · · // 𝜋𝑛𝐹 // 𝜋𝑛𝐸 // 𝜋𝑛𝐵 // 𝜋𝑛−1𝐹 // 𝜋𝑛−1𝐸 // · · ·
(8.28)

An automatic veri�cation shows that this diagramme is commutative. There-
fore, according to the Five Lemma,

Proposition 8.29. the map

𝑝∗ : 𝜋𝑛 (𝐸, 𝐹) → 𝜋𝑛𝐵 (8.30)

for any 𝑛 ≥ 2 is an isomorphism.

Of course, this statement is easily proved directly using the axiom CHE (do
it!), but applying the Five Lemma reduces the proof to triviality.

On the other hand, if the isomorphism (8.30) is independently established,
then the statements about the exactness of homotopy sequences of �brations
and pairs turn out to be direct consequences of each other, so that the proof
of the exactness of homotopy sequences of �bration from the previous lecture
can, if desired, be replaced by a proof of the exactness of homotopy sequences
of pairs (see above).

Remark 8.31. Although Lemma 8.25 is usually applied to diagrammes of type
(8.26) consisting of abelian groups (or modules), but, as its proof shows, in which
abelicity is not used, this lemma is also valid for sequences of non-Abelian groups
(we actually used this when deriving the isomorphism (8.30) for 𝑛 = 2).

For the same reasons, Lemma 8.25 remains valid if in Diagramme (8.26 the
last two groups of each row are only pointed sets. Moreover, it is easy to see that
Lemma 8.25 is preserved if the pointed sets are even the last three groups in
each row, the groups 𝐴2 and 𝐵2 act on the sets 𝐴3 and 𝐵3, and the exactness in
terms 𝐴3 and 𝐵3 is understood in the enhanced sense indicated above (i.e., the
preimages of points in the maps 𝛼3 and 𝛽3 are orbits; in addition, it is assumed,
of course, that the map 𝜑3 is a 𝜑2-map.

This remark is relevant for the case when the lines of diagram Diagramme
(8.26) are the end segments of exact Π-sequences. In particular, it follows from
it that
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Proposition 8.32. the map (8.30) is an isomorphism (a bijection for 𝑛 = 1).

Remark 8.33. For 𝑛 = 0, one can only assert that 𝜋0 (𝐸, 𝐹) = 0 if and only if
𝜋0𝐵 = 0.





Appendix

8.A Homotopy sequence of a triple

The isomorphism (8.30) proved in Lecture 8 can be substantially generalised.

Proposition 8.34. For any �bration 𝑝 : 𝐸 → 𝐵 and any subspace 𝐴 ⊂ 𝐵, the
homomorphism

𝑝∗ : 𝜋𝑛 (𝐸, 𝐹𝐴) → 𝜋𝑛 (𝐵, 𝐴), 𝑛 ≥ 1, where 𝐹𝐴 = 𝑝−1𝐴, (8.35)

induced by the map 𝑝 : (𝐸, 𝐹𝐴) → (𝐵, 𝐴), is an isomorphism.

When 𝐴 = {𝑏0} the isomorphism (8.35) turns into the isomorphism (8.30) of
Lecture 8.

Proposition 8.34 can be proved in many di�erent ways. For example, it is
easily proved (do it!) by a direct geometric constructions using the axiom CHE.
But we will prefer another more instructive way.

Let (𝑋, 𝐴, 𝐵, 𝑥0) be an arbitrary pointed triple. By de�nition, 𝑋 is a topo-
logical space, 𝐴 is its subspace, 𝐵 is a subspace of space 𝐴, and 𝑥0 is a point of
space 𝐵:

𝑥0 ∈ 𝐵 ⊂ 𝐴 ⊂ 𝑋.
Let, further, 𝑖 : (𝐴, 𝐵) → (𝑋, 𝐵) and 𝑗 : (𝑋, 𝐵) → (𝑋, 𝐴) be inclusions and

𝑖∗ : 𝜋𝑛 (𝐴, 𝐵) → 𝜋𝑛 (𝑋, 𝐵) and 𝑗∗ : 𝜋𝑛 (𝑋, 𝐵) → 𝜋𝑛 (𝑋, 𝐴)

be corresponding homomorphisms of homotopy groups. Finally, let

𝜕 : 𝜋𝑛 (𝑋, 𝐴) → 𝜋𝑛−1 (𝐴, 𝐵)

is the composition of the connecting homomorphism 𝜋𝑛 (𝑋, 𝐴) → 𝜋𝑛−1𝐴 from the
homotopy sequence of the pair (𝑋, 𝐴) and the homomorphism of the embedding
𝑣𝜋𝑛−1𝐴→ 𝜋𝑛−1 (𝐴, 𝐵) from the homotopy sequence of the pair (𝐴, 𝐵).

De�nition 8.36. The sequence

· · · → 𝜋𝑛 (𝐴, 𝐵)
𝑖∗−→ 𝜋𝑛 (𝑋, 𝐵)

𝑗∗−→ 𝜋𝑛 (𝑋, 𝐴)
𝜕−→ 𝜋𝑛−1 (𝐴, 𝐵) → · · · (8.37)

is called the homotopy sequence of the triple (𝑋, 𝐴, 𝐵).

291
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Proposition 8.38. The homotopy sequence of a triple is exact.

The sequence (8.37) to the left is in�nite, and its right end has the form

· · · → 𝜋2 (𝐴, 𝐵) → 𝜋2 (𝑋, 𝐵) → 𝜋2 (𝑋, 𝐴)︸                                         ︷︷                                         ︸
non-abelian groups

→ 𝜋1 (𝐴, 𝐵) → 𝜋1 (𝑋, 𝐵) → 𝜋1 (𝑋, 𝐴).︸                                          ︷︷                                          ︸
pointed sets

It is possible to easily determine in this sequence the actions of the groups 𝜋2,
in relation to which it will be a Π-sequence. However, we will not need these
actions.

Proof. (of Proposition 8.38) Let

𝑖1 : 𝐴→ 𝑋, 𝑖2 : 𝐵→ 𝐴, 𝑖3 : 𝐵→ 𝑋,

𝑗1 : (𝑋, 𝑥0) → (𝑋, 𝐴), 𝑗2 : (𝐴, 𝑥0) → (𝐴, 𝐵), 𝑗3 : (𝑋, 𝑥0) → (𝑋, 𝐵)

be inclusions, and

𝜕1 : 𝜋𝑛+1 (𝑋, 𝐴) → 𝜋𝑛𝐴, 𝜕2 : 𝜋𝑛+1 (𝐴, 𝐵) → 𝜋𝑛𝐵, 𝜕3 : 𝜋𝑛+1 (𝑋, 𝐵) → 𝜋𝑛𝐵

be connecting homomorphisms of homotopy sequences of pairs (𝑋, 𝐴), (𝐴, 𝐵)
and (𝑋, 𝐵). Consider the diagramme1

· · · // 𝜋𝑛+1 (𝑋, 𝐴)
𝜕 +3

𝜕1

!!

𝜋𝑛 (𝐴, 𝐵)
𝜕2 //

𝑖∗

�'

𝜋𝑛−1𝐵
𝑖3∗ //

𝑖2∗

!!

𝜋𝑛−1𝑋 //

𝑗3∗

  

· · ·

· · ·

𝑗∗
:B

𝜕3   

𝜋𝑛𝐴

𝑗2∗
>>

𝑖2∗   

𝜋𝑛 (𝑋, 𝐵)

𝜕3

;;

𝑗∗ �'

𝜋𝑛−1𝐴

𝑖1∗
;;

𝑗2∗ ##

· · ·

· · · // 𝜋𝑛𝐵
𝑖3∗

//
𝑖2∗

==

𝜋𝑛𝑋
𝑗1∗

//
𝜕1

;;

𝜋𝑛 (𝑋, 𝐴)
𝜕

+3

𝑖2∗
==

𝜋𝑛−1 (𝐴, 𝐵) //
𝑖∗

:B

· · ·

An automatic veri�cation shows that this diagramme is commutative. It con-
sists of four symmetrically arranged sequences, three of which, being homotopy
sequences of pairs, are exact, and the fourth, highlighted in the diagramme
with thickened arrows, is the sequence (8.37). At the same time, since the map
𝑗 ◦ 𝑖 : (𝐴, 𝐵) → (𝑋, 𝐵) can be decomposed into the composition of inclusion
(𝐴, 𝐵) → (𝐴, 𝐴) → (𝑋, 𝐴), and 𝜋𝑛 (𝐴, 𝐴) = 0, then 𝑗∗ ◦ 𝑖∗ = 0, i.e. im 𝑖∗ ⊂ ker 𝑗∗.
It turns out that proposition 8.38 follows from here by a purely algebraic dia-
gramme chasing.

Indeed, since 𝑖1∗ = 0, then 𝑖∗ ◦ 𝜕 = 𝑖∗ ◦ 𝑗2∗ ◦ 𝜕1 = 𝑗3∗ ◦ 𝑖1∗ ◦ 𝜕1 = 0, and similarly
𝜕 ◦ 𝑗∗ = 𝑗2∗ ◦ 𝜕1 ◦ 𝑖∗ = 𝑗2∗ ◦ 𝑖2∗ ◦ 𝜕3 = 0. Thus, im 𝜕 ⊂ ker 𝑖 and im 𝑗∗ ⊂ ker 𝜕.

Conversely if 𝛾 ∈ 𝜋𝑛 (𝐴, 𝐵) and 𝛾 ∈ ker 𝑖∗, i.e. 𝑖 ◦ 𝛾 = 0, then 𝜕2 = 0, and
therefore 𝛾 = 𝑗2∗𝛼, where 𝛼 ∈ 𝜋𝑛𝐴. In this case, 𝑗3∗ ◦ 𝑖1∗𝛼 = 𝑖∗ ◦ 𝑗2∗𝛼 = 𝑖∗𝛾 = 0
and means 𝑖1∗𝛼 = 𝑖3∗𝛽, where 𝛽 ∈ 𝜋𝑛𝐵. Therefore, 𝑖1∗ (𝛼− 𝑖2∗𝛽) = 𝑖1∗∗𝛼− 𝑖3∗𝛽 = 0,

1Transcriber's note: this is called Wall's �braid� diagramme.
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and therefore 𝛼 − 𝑖2∗𝛽 = 𝜕1𝛾
′
, where 𝛾

′ ∈ 𝜋𝑛+1 (𝑋, 𝐴). But then 𝜕1𝛾
′
= 𝑗2∗𝜕1𝛾

′
=

𝑗2∗ (𝛼 − 𝑖2∗𝛽) = 𝑗2𝛼 = 𝛾, i. e� 𝛾 ∈ im 𝜕. Thus, ker 𝑖∗ ⊂ im 𝜕.

Similarly, if 𝛾 ∈ 𝜋𝑛 (𝑋, 𝐴) and 𝛾 ∈ ker 𝜕, i.e. 𝜕𝛾 = 0, then 𝑗2∗ ◦ 𝜕1𝛾 = 0,
and therefore 𝜕1𝛾 = 𝑖2∗𝛽, where 𝛽 ∈ 𝜋𝑛−1𝐵. In this case, 𝑖3∗𝛽 = 𝑖1∗ ◦ 𝑖2∗𝛽 =

𝑖1∗◦𝜕1𝛾 = 0 and, therefore, 𝛽 = 𝜕3𝛽
′
, where 𝛽

′ ∈ 𝜋𝑛 (𝑋, 𝐵). Therefore 𝜕1 (𝛾− 𝑗∗𝛽 =

𝜕1𝛾 − 𝑖2∗ ◦ 𝜕2𝛽
′
= 0 and, therefore, 𝛾 − 𝑗∗𝛽

′
= 𝑗1∗𝛼, where 𝛼 ∈ 𝜋𝑛𝑋. But then

𝑗∗ ( 𝑗3∗𝛼 + 𝛽
′ ) = 𝑗1∗𝛼 + 𝑗∗𝛽

′
= 𝛾 i. e, 𝛾 ∈ im 𝑗∗. Thus ker 𝜕 ⊂ im 𝑗∗.

Finally, we have already seen that im 𝑖∗ ⊂ ker 𝑗∗. Conversely, if 𝛽 ∈ 𝜋𝑛 (𝑋.𝐵)
and 𝛽 ∈ ker 𝑗∗ i.e. 𝑗∗𝛽 = 0, then 𝑖2∗ ◦ 𝜕2𝛽 = 0, and therefore 𝜕3𝛽 = 𝜕2𝛾, where
𝛾 ∈ 𝜋𝑛 (𝐴, 𝐵). In this case 𝜕3 (𝛽−𝑖∗𝛾) = 𝜕3𝛽−𝜕2𝛾 = 0 and, therefore, 𝛽−𝑖∗𝛾 = 𝑗3∗𝛼,
where 𝛼 ∈ 𝜋𝑛𝑋. Therefore 𝑗1∗𝛼 = 𝑗∗◦ 𝑗3∗𝛼 = 𝑗∗𝛽− 𝑗∗◦𝑖∗𝛾 = 0 and hence 𝛼 = 𝑖1∗𝛼

′
,

where 𝛼
′ ∈ 𝜋𝑛𝐴. But then 𝑖∗ ( 𝑗2∗𝛼

′ + 𝛾) = 𝑗3∗ ◦ 𝑖1∗𝛼
′ + 𝑖∗𝛾 = 𝑗3∗𝛼 + 𝑖∗𝛾 = 𝛽, i. e.

𝛽 ∈ im 𝑖∗ Thus, ker 𝑗∗ ⊂ im 𝑖∗. □

Remark 8.39. Sequence (8.37) can be constructed for any family of {𝐻𝑛, 𝜕}
functors 𝐻𝑛 : 𝒯ℴ𝓅•2 → 𝒜𝒷𝒢𝓇𝓅 and natural transformations 𝜕 : 𝐻𝑛 (𝑋, 𝐴) →
𝐻𝑛−1 (𝐴, 𝑥0). At the same time, as is directly evident from the above proof, this
sequence is exact if for any pair (𝑋, 𝐴) ∈ 𝒯ℴ𝓅2 the sequence

· · · → 𝐻𝑛+1 (𝑋, 𝐴)
𝜕−→ 𝐻𝑛 (𝐴, 𝑥0) → 𝐻𝑛 (𝑋, 𝑥0) → 𝐻𝑛 (𝑋, 𝐴) → · · ·

is also exact if 𝐻𝑛 (𝐴, 𝐴) = 0 for any space 𝐴 ∈ 𝒯ℴ𝓅•.

We will have occasion to use this remark next semester.

Proof. (of Proposition 8.34 Consider the diagramme

· · · // 𝜋𝑛 (𝐹𝐴, 𝐹) //

��

𝜋𝑛 (𝐸, 𝐹) //

��

𝜋𝑛 (𝐸, 𝐹𝐴) //

��

𝜋𝑛−1 (𝐹𝐴, 𝐹) //

��

𝜋𝑛−1 (𝐸, 𝐹) //

��

· · ·

· · · // 𝜋𝑛 (𝐴, 𝑏0) // 𝜋𝑛 (𝐵, 𝑏0) // 𝜋𝑛 (𝐵, 𝐴) // 𝜋𝑛−1 (𝐴, 𝑏0) // 𝜋𝑛−1 (𝐵, 𝑏0) // · · ·

the upper line of which is the homotopy sequence of the triple (𝐸, 𝐹𝐴, 𝐹), the
lower line is the homotopy sequence of the pair (𝐵, 𝐴), and the vertical homo-
morphisms are induced by the map 𝑝. This diagramme is obviously commuta-
tive and all its vertical homomorphisms, except for the central homomorphism
𝑝∗ : 𝜋𝑛 (𝐸, 𝐹𝐴) → 𝜋𝑛 (𝐵, 𝐴), being homomorphisms of the form (8.30) from Lec-
ture 8 (recall that the map 𝑝𝐴 : 𝐹𝐴→ 𝐴 is also a �bration), are isomorphisms.
Therefore, according to the Five Lemma, the central homomorphism is also an
isomorphism. □

Remark 8.40. Our way of proving Propositions 8.34 and 8.38 is not the easiest.
It would be much easier to reverse the sequence of reasoning by �rst proving
Proposition 8.34 purely geometrically and then by deducing Proposition 8.38
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from it using the diagramme

· · · // 𝜋𝑛 (𝑆, 𝑇) //

��

𝜋𝑛−1𝑇 //

��

𝜋𝑛−1𝑆 //

��

𝜋𝑛−1 (𝑆, 𝑇) //

��

· · ·

· · · // 𝜋𝑛 (𝐴, 𝐵) // 𝜋𝑛−1 (𝑋, 𝐵) // 𝜋𝑛−1 (𝑋, 𝐴) // 𝜋𝑛−1 (𝐴, 𝐵) // · · ·

where 𝑆 = Ω(𝑋, 𝐴) (respectively 𝑇 = Ω(𝑋, 𝐵)) is the space of paths in 𝑋 start-
ing in the subspace 𝐴 (in the subspace 𝐵) and ending at the base point 𝑥0.
The top line of this diagramme is the homotopy sequence of the pair Ω(𝑋, 𝐴),
(Ω(𝑋, 𝐵)), and its bottom line is the sequence (8.37). Its mmiddle vertical ho-
momorphisms are the isomorphisms inverse to the isomorphism (8.9) of Lecture
8 (for 𝑘 = 𝑛 − 1), and the lateral homomorphisms are induced by the �bration
𝜔0 : Ω(𝑋, 𝐴) → 𝐴 and, therefore, by applying proposition prop:08-A1, are also
isomorphisms (clearly, then 𝜔−10 𝐵 = Ω(𝑋, 𝐵)). An automatic veri�cation shows
that the diagramme in question is commutative. Therefore, the exactness of its
upper line implies the exactness of its lower line. However, this proof does not
allow us to make Remark 8.39.

8.B Homotopy groups of triads

It immediately follows from the exactness of the homotopy sequence of the triple
that

Proposition 8.41. for 𝜋𝑟 (𝐴, 𝐵) = 0 and 𝜋𝑟−1 (𝐴, 𝐵) = 0, the homomorphism
induced by inclusion

𝜋𝑟 (𝑋, 𝐵) → 𝜋𝑟 (𝑋, 𝐴) (8.42)

is an isomorphism.

Despite its simplicity, this criterion, as we will see in its place, is very useful
and allows us to obtain important and interesting geometric results. However,
it is insu�cient for problems in which, instead of a pair (𝑋, 𝐵), a pair of the
form (𝑋 ′ , 𝐵) is involved, where 𝑋 ′ ⊂ 𝑋. In order to obtain a generalisation of
this criterion necessary for such problems, we must generalise the homotopy
sequence of the triple accordingly.

We will call an 𝑛-ad a family (𝑋; 𝐴1, . . . , 𝐴𝑛−1), consisting of a topological
space 𝑋 and its arbitrary subspaces 𝐴1, . . . , 𝐴𝑛−1. A continuous map 𝑓 : 𝑋 → 𝑌 ,
for which 𝑓 (𝐴𝑖) ⊂ 𝐵𝑖 for any 𝑖 = 1, . . . , 𝑛 − 1 is called an 𝑛-ad morphism
𝑓 : (𝑋; 𝐴1, . . . 𝐴𝑛−1) → (𝑌 ; 𝐵1, . . . , 𝐵𝑛−1). All 𝑛-ads and their morphisms ob-
viously constitute a category with homotopies. We will denote this category by
the symbol 𝒯ℴ𝓅[𝑛] , and the corresponding homotopy category by the symbol
[𝒯ℴ𝓅[𝑛]].

The category of 𝑛-ples 𝒯ℴ𝓅𝑛 introduced in Lecture 8 is a complete subcat-
egory of the category 𝒯ℴ𝓅[𝑛] . For 𝑛 = 2, the equality 𝒯ℴ𝓅2 = 𝒯ℴ𝓅[2] takes
place, but already for 𝑛 = 3, the category 𝒯ℴ𝓅3 is a proper subcategory of the
category 𝒯ℴ𝓅[3] .
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If the space 𝑋 is pointed and the base point 𝑥0 lies in each space 𝐴1, . . . , 𝐴𝑛−1,
then the 𝑛-ad (𝑋; 𝐴1, . . . , 𝐴𝑛−1) is called a pointed 𝑛-ad. Pointed 𝑛-ads make
up the category 𝒯ℴ𝓅[𝑛] , which is a complete subcategory of the category
𝒯ℴ𝓅[𝑛+1] .

For us, the pointed triads (𝑋; 𝐴, 𝐵, 𝑥0) will be of particular interest, which,
as a rule, we will simply denote by (𝑋; 𝐴, 𝐵). Note that for such a triad, the
intersection 𝐶 = 𝐴 ∩ 𝐵 is not empty.

For each pointed triad (𝑋; 𝐴, 𝐵) and any 𝑟 ≥ 0, a homomorphism is de�ned

𝑗∗ : 𝜋𝑟 (𝐴,𝐶) → 𝜋𝑟 (𝑋, 𝐵), 𝐶 = 𝐴 ∩ 𝐵, (8.43)

induced by the inclusion 𝑗 : (𝐴,𝐶) → (𝑋, 𝐵). To obtain a criterion that this
homomorphism is an isomorphism, we introduce into consideration the groups

𝜋𝑟 (𝑋; 𝐴, 𝐵) = 𝜋𝑟−1 (Ω(𝑋, 𝐵),Ω(𝐴,𝐶)), 𝑟 ≥ 2.

De�nition 8.44. The group 𝜋𝑟 (𝑋; 𝐴, 𝐵) is called the 𝑟-dimensional homotopy
group of the triad (𝑋; 𝐴, 𝐵).

Of course, this �group� for 𝑟 = 2 is only a pointed set. For 𝑟 ≥ 4, the group
𝜋𝑟 (𝑋; 𝐴, 𝐵) is abelian.

By applying the exponential law, homotopy classes (in the category 𝒯ℴ𝓅[4]
of maps can be considered as elements of the group 𝜋𝑟 (𝑋; 𝐴, 𝐵)

(𝐼𝑟−1 × 𝐼; ¤𝐼𝑟−1 × 𝐼, 𝐼𝑟−1 × 1, {̃0}) → (𝑋; 𝐴, 𝐵, 𝑥0), (8.45)

where {̃0} = (𝐼𝑟−1 × 0) ∪ ({0} × 𝐼).
It is clear that the 4-ad (𝐼𝑟−1 × 𝐼; ¤𝐼𝑟−1 × 𝐼, 𝐼𝑟−1 × 1, {̃0}) is homotopically

equivalent (in the category 𝒯ℴ𝓅[4]) to the pointed triad (E𝑟 ;E𝑟−1+ ,E𝑟−1− , 𝒔0),
where E𝑟−1+ , E𝑟−1− are the hemispheres on which the boundary sphere S𝑟−1 of the
sphere E𝑟 is split by the hyperplane 𝑥𝑟 = 0. Therefore, we can consider elements
of the group 𝜋𝑟 (𝑋; 𝐴, 𝐵) also as homotopy classes (in the category 𝒯ℴ𝓅•[3]) of
maps

(E𝑟 ;E𝑟−1+ ,E𝑟−1− ) → (𝑋; 𝐴, 𝐵) (8.46)

of pointed triads.
Since the permutation of the hemispheres E𝑟−1+ and E𝑟−1− translates each map

(8.46) into a similar map for the triad (𝑋; 𝐵, 𝐴), it immediately follows, that for
any 𝑟 ≥ 1 there is an isomorphism

𝜋𝑟 (𝑋; 𝐴, 𝐵) ≈ 𝜋𝑟 (𝑋; 𝐵, 𝐴). (8.47)

Since

𝜋𝑟 (𝑋, 𝐵) = 𝜋𝑟−1𝑂𝑚𝑒𝑔𝑎(𝑋, 𝐵), 𝐼, 𝜋𝑟 (𝐴,𝐶) = 𝜋𝑟−1𝑂𝑚𝑒𝑔𝑎(𝐴,𝐶),

then the homotopy sequence of the pair (Ω(𝑋, 𝐵), Ω(𝐴,𝐶)) gives us the exact
sequence

· · · → 𝜋𝑟 (𝐴,𝐶)
𝑗∗−→ 𝜋𝑟 (𝑋, 𝐵)

𝑘∗−→ 𝜋𝑟 (𝑋; 𝐴, 𝐵)
𝜕−→ 𝜋𝑟 (𝐴,𝐶) → · · · (8.48)
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which is called the homotopy sequence of the triad (𝑋; 𝐴, 𝐵). The homomor-
phism 𝑗∗ of this sequence is the homomorphism (8.43) of interest to us, the
homomorphism 𝑘∗ is to each map (𝐼𝑟 , ¤𝐼𝑟 , 𝐽𝑟−1) → (𝑋, 𝐵, 𝑥0) this is the same
map, but considered as a map of the form (8.45), and the homomorphism 𝜕

maps each map (8.46) to its restriction on the hemisphere E𝑟−1+ . (To simplify
the formulation, we identify maps and their homotopy classes here; we will allow
ourselves this freedom of speech in the future.)

The sequence (8.48) is naturally a Π-sequence. We will provide a direct
description of the relevant actions to the reader's initiative.

Due to the exactness of the sequence (8.48), the homomorphism (8.43)
is an isomorphism if 𝜋𝑟+1 (𝑋; 𝐴, 𝐵) = 0 and 𝜋𝑟 (𝑋; 𝐴, 𝐵) = 0. Therefore, if
𝜋𝑟 (𝑋; 𝐴, 𝐵) = 0 for 𝑟 ≤ 𝑛 (the triad (𝑋; 𝐴, 𝐵) satisfying this condition is called
𝑛-connected), then the homomorphism (8.43) will be an isomorphism for 𝑟 < 𝑛
and an epimorphism for 𝑟 = 𝑛. (just as for a 𝑛-connected pair (𝐴, 𝐵), the ho-
momorphism (8.42) will be an isomorphism for 𝑟 < 𝑛 and is an epimorphism for
𝑟 = 𝑛).

8.C Invariance of homotopy groups under defor-
mation retractions

For 𝐴 ⊂ 𝐵, we can consider any map (8.46) as a map (E𝑟 , S𝑟−1) → (𝑋, 𝐴), and
thereby obtain some homomorphism

𝜋𝑟 (𝑋; 𝐴, 𝐵) → 𝜋𝑟 (𝑋, 𝐴), 𝐴 ⊃ 𝐵. (8.49)

An automatic veri�cation shows that together with the identity isomorphisms
𝜋𝑟 (𝑋, 𝐵) → 𝜋𝑟 (𝑋, 𝐵) and 𝜋𝑟 (𝐴,𝐶) → 𝜋𝑟 (𝐴, 𝐵) (note that 𝐶 = 𝐵 for 𝐴 ⊃ 𝐵) the
homomorphisms (8.49) constitute a homomorphism of the sequence (8.48) in
the sequence (8.37). Therefore, by applying the Five Lemma,

Proposition 8.50. all homomorphisms (8.49) are isomorphisms.

Thus, for 𝐴 ⊃ 𝐵, the group 𝜋𝑟 (𝑋; 𝐴, 𝐵) does not depend on 𝐵.
This fact can be proved in another way by noting that

Proposition 8.51. if the subspace 𝐴 of the space 𝑋 is contractible (𝐴 u pt),
then

𝜋𝑟 (𝑋, 𝐴) = 𝜋𝑟𝑋 (8.52)

for any 𝑟 ≥ 1.

Proof. Indeed, in the exact homotopy sequence of the pair (𝑋, 𝐴), all groups
𝜋𝑟 𝐴 are equal to zero, and therefore the homomorphisms 𝜋𝑟𝑋 → 𝜋𝑟 (𝑋, 𝐴) are
isomorphisms. □

This proves anew the isomorphism (8.49), because if for the triad (𝑋; 𝐴, 𝐵)
there is an inclusion 𝐴 ⊃ 𝐵 and, therefore, 𝐶 = 𝐵, then

𝜋𝑟 (𝑋; 𝐴, 𝐵) = 𝜋𝑟 (𝑋; 𝐵, 𝐴) = 𝜋𝑟−1 (Ω(𝑋, 𝐴),Ω(𝑋, 𝐵)) = 𝜋𝑟−1 (Ω(𝑋, 𝐴),Ω(𝐵, 𝐵))
= 𝜋𝑟Ω(𝑋, 𝐴) = 𝜋𝑟 (𝑋, 𝐴),
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since the space Ω(𝐵, 𝐵) = 𝑃𝐵, as we know, is contractible.
The isomorphism (8.52) can be easily generalised.

Proposition 8.53. If (𝑋, 𝐴) ⊂ (𝑋 ′ , 𝐴′ ), and the space 𝑋 is a deformation
retract of the space 𝑋

′
, and the space 𝐴 is a deformation retract of the space

𝐴
′
(i.e. 𝑋

′
u 𝑋 and 𝐴 u 𝐴

′
), then the inclusion (𝑋, 𝐴) → (𝑋 ′ , 𝐴′ ) induces

isomorphisms
𝜋𝑟 (𝑋, 𝐴) = 𝜋𝑟 (𝑋

′
, 𝐴

′ ), 𝑟 ≥ 1.

Proof. In the commutative diagramme

· · · // 𝜋𝑟 𝐴 //

��

𝜋𝑟𝑋 //

��

𝜋𝑟 (𝑋, 𝐴) //

��

𝜋𝑟−1𝐴 //

��

𝜋𝑟−1𝑋 //

��

· · ·

· · · // 𝜋𝑟 𝐴
′ // 𝜋𝑟𝑋

′ // 𝜋𝑟 (𝑋
′
, 𝐴

′ ) // 𝜋𝑟−1𝐴
′ // 𝜋𝑟−1𝑋

′ // · · ·

the vertical homomorphisms of which are induced by inclusions, and the hor-
izontal ones are homotopy sequences of pairs (𝑋, 𝐴) and (𝑋 ′ , 𝐴′ ), all vertical
homomorphisms, except the central homomorphism 𝜋𝑟 (𝑋, 𝐴) → 𝜋𝑟 (𝑋

′
, 𝐴

′ ), are
isomorphisms. Hence, according to the Five Lemma, this central homomor-
phism will also be an isomorphism. □

When 𝐴
′
= {𝑥0} we get the isomorphism (8.52).

It is clear that a similar statement (with almost the same proof) holds for
triads: if (𝑋; 𝐴, 𝐵) ⊂ (𝑋 ′ ; 𝐴′ , 𝐵′ ) and each space𝑋, 𝐴, 𝐵 and 𝐶 = 𝐴 ∩ 𝐵 is a
deformation retract of the space 𝑋

′
, 𝐴

′
, 𝐵

′
and 𝐶

′
= 𝐴

′ ∩ 𝐵′ , respectively, then

𝜋𝑟 (𝑋; 𝐴, 𝐵) = 𝜋𝑟 (𝑋
′
; 𝐴

′
, 𝐵
′ )

for any 𝑟 ≥ 1.

8.D Homotopy sequence of 4-ads

Is it possible, by analogy with homotopy groups of triads, to de�ne homotopy
groups of 𝑛-ad for 𝑛 ≥ 4? For example, it seems natural to de�ne the homotopy
groups 𝜋𝑟 (𝑋; 𝐴, 𝐵,𝑌 ) of an arbitrary pointed 4-ad (𝑋; 𝐴, 𝐵,𝑌 ) by the formula

𝜋𝑟 (𝑋, 𝐴, 𝐵,𝑌 ) = 𝜋𝑟−1 (Ω(𝑋,𝑌 );Ω(𝑋, 𝐸),Ω(𝐴, 𝐷))

(having meaning for any 𝑟 ≥ 2), where 𝐷 = 𝑌 ∩ 𝐴 and 𝐸 = 𝑌 ∩ 𝐵. For these
groups there is an exact sequence

· · · → 𝜋𝑟 (𝑋; 𝐴, 𝐸) → 𝜋𝑟 (𝑋; 𝐴,𝑌 ) → 𝜋𝑟 (𝑋; 𝐴, 𝐵,𝑌 ) → 𝜋𝑟−1 (𝑋; 𝐴, 𝐸) → · · · ,

being nothing more than the sequence (8.48) for the triad (Ω(𝑋,𝑌 );Ω(𝑋, 𝐸),Ω(𝐴, 𝐷))
(just as the sequence (8.48) itself was nothing more than a homotopy sequence
of the pair (Ω(𝑋, 𝐵),Ω(𝐴,𝐶))). However, by rearranging Ω(𝑋, 𝐸) and Ω(𝐴, 𝐷)
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(why does the group 𝜋𝑟 (𝑋; 𝐴, 𝐵,𝑌 ) not change), we similarly get the exact se-
quence

· · · → 𝜋𝑟 (𝐷;𝐷 ∩ 𝐸) → 𝜋𝑟 (𝑌, 𝐸) → 𝜋𝑟 (𝑋; 𝐴, 𝐵,𝑌 ) → 𝜋𝑟−1 (𝐷;𝐷 ∩ 𝐸) → · · · ,

from the comparison of which with the homotopy sequence of the triad (𝑌 ;𝐷, 𝐸),
it immediately follows by applying the Five Lemma that 𝜋𝑟 (𝑋; 𝐴, 𝐵,𝑌 ) ≈ 𝜋𝑟 (𝑌 ;𝐷, 𝐸).
Thus, the introduced groups are reduced to groups of triads.

Nevertheless, this attempt turned out to be useful to us, because we now see
that

Proposition 8.54. for any pointed 4-ad (𝑋; 𝐴, 𝐵,𝑌 ) there is an exact sequence

· · · → 𝜋𝑟 (𝑋; 𝐴, 𝐸)
𝑖∗−→ 𝜋𝑟 (𝑋; 𝐴,𝑌 )

𝜕−→ 𝜋𝑟−1 (𝑌 ;𝐷, 𝐸)
𝑗∗−→ 𝜋𝑟−1 (𝑋; 𝐴, 𝐸) → · · · ,

(8.55)
where 𝐷 = 𝑌 ∩ 𝐴, 𝐸 = 𝑌 ∩ 𝐵.

An automatic veri�cation shows that, as expected, the homomorphisms 𝑖∗
and 𝑗∗ of this sequence are induced by the inclusions

𝑖 : (𝑋; 𝐴, 𝐸) → (𝑋; 𝐴,𝑌 ) and 𝑗 : (𝑌 ;𝐷, 𝐸) → (𝑋; 𝐴, 𝐸).

As for the binding homomorphism 𝜕, it is a composition of the permu-
tation isomorphism 𝜋𝑟 (𝑋; 𝐴,𝑌 ) ≈ 𝜋𝑟 (𝑋;𝑌, 𝐴), the connecting homomorphism
𝜋𝑟 (𝑋;𝑌, 𝐴) → 𝜋𝑟−1 (𝑌, 𝐷) from the homotopy sequence of the triad (𝑋;𝑌, 𝐴),
the homomorphism 𝜋𝑟−1 (𝑌, 𝐷) →
𝑝𝑖𝑟 − 1(𝑌 ; 𝐸, 𝐷) from the homotopy sequence of the triad (𝑌 ; 𝐸, 𝐷) and the iso-
morphism of the permutation 𝜋𝑟−1 (𝐾; 𝐸, 𝐷) ≈ 𝜋𝑟−1 (𝑋;𝐷, 𝐸).

Note the special case of the sequence (8.55) that occurs when 𝑌 ⊃ 𝐵, i.e.
when 𝐸 = 𝐵:

· · · → 𝜋𝑟 (𝑋; 𝐴, 𝐵)
𝑖∗−→ 𝜋𝑟 (𝑋; 𝐴,𝑌 )

𝜕−→ 𝜋𝑟−1 (𝑌 ;𝐷, 𝐵)
𝑗∗−→ 𝜋𝑟−1 (𝑋; 𝐴, 𝐵) → · · · .

(8.56)
Of course, the failure of our attempt to construct meaningful (non-reducible

to homotopy groups of triad) homotopy groups 𝑛-ad for 𝑛 ≥ 4 does not mean
that such groups cannot be constructed. We will leave the clari�cation of this
question to the reader.



Lecture 9

The value of �brations in the theory of homotopy groups is determined mainly
by the presence of a homotopy sequence for them. Therefore, it is advisable to
study in general the maps for which this sequence can be written.

9.1 Weak �brations

De�nition 9.1. A map 𝑝 : 𝐸 → 𝐵 is called a weak �bration if for any point
𝑒0 ∈ 𝐸 and any 𝑛 > 0 it induces an isomorphism

𝑝∗ : 𝜋𝑛 (𝐸, 𝐹𝑏0 , 𝑒0)
≈−→ 𝜋𝑛 (𝐵, 𝑏0), 𝑏0 = 𝑝(𝑒0), 𝐹𝑏0 = 𝑝−1 (𝑏0),

and if each component of the space 𝐸 that passes into the component of space
𝐵 containing the point 𝑏0 intersects with 𝐹𝑏0 .

Replacing in the homotopy sequence of pairs (𝐸, 𝐹𝑏0 ) the group 𝜋𝑛 (𝐸, 𝐹𝑏0)
with the isomorphic group 𝜋𝑛𝐵, we get an exact sequence

· · · → 𝜋𝑛𝐹𝑏0
𝑖∗−→ 𝜋𝑛𝐸

𝑝∗−−→ 𝜋𝑛𝐵
𝜕−→ 𝜋𝑛−1𝐹𝑏0 → · · · , (9.2)

called the homotopy sequence of the weak �bration 𝑝 : 𝐸 → 𝐵 at the point
𝑒0. Therefore, for calculations with homotopy groups, weak �brations are no
worse than ordinary �brations (which we will now allow ourselves to call strong
�brations).

Remark 9.3. It should be borne in mind that in the literature on topology, the
term �weak �bration� is used in many di�erent senses. For example, Spanier
(see [12], p. 482) calls weak �brations �brations in the sense of Serre (maps
satisfying the axiom CH only with respect to cube). On the contrary, weak
�brations in the sense of De�nition 9.1 Dold and Thom (to whom the merit of
introducing this concept belongs) call quasi-�brations.

Of course, any �bration is a weak �bration. The converse, generally speak-
ing, is not true.

Example 9.4. Let 𝐸 be a subset of the plane consisting of two horizontal seg-
ments connected by a vertical segment, 𝐵 be a horizontal segment of double
length and 𝑝 : 𝐸 → 𝐵 is the projection (see Fig. 9.1.1).
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Figure 9.1.1:

It is directly veri�ed that this projection is a weak �bration. However, it
will not be a �bration (even in the sense of Serre), since the path 𝑖𝑑 : 𝐵→ 𝐵 in
𝐵 is not covered by any path in 𝐸 .

As we know, if the map 𝑝 : 𝐸 → 𝐵 is a �bration, then for any subspace 𝐴 ⊂ 𝐵
the induced map 𝑝𝐴 = 𝑝 |𝐴 : 𝐹𝐴→ 𝐴, where 𝐹𝐴 = 𝑝−1𝐴, is also a �ibration (this
fact, in particular, was signi�cantly used in the proof of proposition 8.34 from the
Appendix to the previous lecture). The analogous statement for weak �brations
is, in general, incorrect (and, therefore, the more general statement that a map
induced by a weak �bration is a weak �bration is incorrect).

Example 9.5. Let 𝐵 be a half-plane 𝑥 > 0 of the plane R2, and 𝐸 be the same
half�plane, but with a section 0 < 𝑥 < 𝑙, 𝑦 = 0, from which only its upper side is
left. Obviously, the natural projection 𝑝 : 𝐸 → 𝐵 is a weak �bration (because
all homotopy groups of spaces 𝐸 , 𝐵 and 𝐹𝑏0 , 𝐵0 ∈ 𝐵, in dimensions > 0 are equal
to zero). At the same time, the preimage 𝐹𝐴 of the circle 𝐴 : (𝑥 − 1)2 + 𝑦2 = 1/4
is a segment, and therefore the projection 𝑝𝐴 : 𝐹𝐴 → 𝐴 cannot be a �bration -
even a weak one (because 𝜋1 (𝐹𝐴) = 0, whereas 𝜋1𝐴 ≠ 0).

Following Dold and Thom, we will call a subspace 𝐴 ⊂ 𝐵 distinguished (with
respect to a given surjective map 𝑝 : 𝐸 → 𝐵) if the map 𝑝𝐴 : 𝐹𝐴→ 𝐵 is a weak
�bration.

Now it is easy to see by actually repeating verbatim the proof of Proposi-
tion 8.34 from the Appendix to the previous lecture that, when restricted to
distinguished sets, this proposition also holds for weak �brations i.e.

Proposition 9.6. for any weak �bration 𝑝 : 𝐸 → 𝐵 and any distinguished
subspace of 𝐴 ⊂ 𝐵 the homomorphism

𝑝∗ : 𝜋𝑛 (𝐸, 𝐹𝐴) → 𝜋𝑛 (𝐵, 𝐴), 𝑛 > 0,

induced by the map 𝑝 : (𝐸, 𝐹𝐴) → (𝐵, 𝐴), is an isomorphism (for any choice of
base points 𝑒0 ∈ 𝐹𝐴 and 𝑏0 = 𝑝(𝑒0)).

It is natural to expect that similar reservations are needed when generalising,
to weak �brations, Theorem 1.71 of Appendix to Lecture 1and, therefore, from
the existence for the space 𝐵 of a cover (even enumerable) consisting of open
distinguished sets, it does not follow yet, in general, hat the map 𝑝 : 𝐸 → 𝐵 is
a weak �bration (i.e. that the space 𝐵 is distinguished.)

Example 9.7. Let 𝐵 be the plane R2, and 𝐸 be the same plane, with a section
0 < 𝑥 < 1, 𝑦 = 0, from which only its upper side is left. According to what
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was said in Example 9.5, the half-lane 𝑥 > 0 is distinguished with respect to the
natural projection 𝑝 : 𝐸 → 𝐵. By symmetry, the half-plane 𝑥 < 1 is also marked,
which together with the half-plane 𝑥 > 0 is an open cover of the plane 𝐵. At
the same time, if the projection 𝑝 were a weak �bration, then due to the fact
that all the sets 𝑝−1 (𝑏0), 𝐵0 ∈ 𝐵, are points and therefore aspherical, it would
would be an isomorphism of 𝑝𝑖1𝐸 ≈ 𝜋1𝐵. But 𝜋1𝐵 = 0, and the group 𝜋1𝐸 is
nontrivial, since the loop bypassing the cut is not homotopic to zero (prove it!).
Therefore, the projection of 𝑝 : 𝐸 → 𝐵 cannot be a �bration - even a weak one.

At the same time, it turns out that

Proposition 9.8. if for a surjective map 𝑝 : 𝐸 → 𝐵 there is a covering of the
space 𝐵 consisting of distinguished open sets 𝑈𝛼 such that any of their �nite
intersections are also distinguished, then the map 𝑝 : 𝐸 → 𝐵 will be a weak
�bration.

Moreover, the following slightly more general theorem, due to Dold and
Thom, is valid.

Theorem 9.9. A surjective map 𝑝 : 𝐸 → 𝐵 will be a weak �bration if for the
space 𝐵 there exists a covering consisting of distinguished closed sets 𝑈𝛼 such
that every intersection 𝑈𝛼 ∩𝑈𝛽 is a combination of covering elements.

Note that the covering 𝑈𝛼 is not supposed to be enumerable.
For the proof of Theorem 9.9 we will assume four lemmas, the �rst of which

has an independent interest.

9.2 The additional lemma

Along with the standard constructions of the sum of elements of homotopy
groups described in Lectures 5 and 6, there are many other constructions for
this, which, although less elegant, are more convenient in certain situations.

Descriptions of these constructions are known by the common name of ad-
ditional lemmas. We will not dive deep into the swamp of these lemmas and
for now we will limit ourselves to only one of them, which is necessary to prove
Theorem 9.9.

This lemma uses the fact that for any pointed pair (𝑋, 𝐴, 𝑥0), we can con-
sider homotopy classes of maps (𝐼𝑛, ¤𝐼𝑛, 0) → (𝑋, 𝐴, 𝑥0) as elements of the group
𝜋𝑛 (𝑋, 𝐴, 𝑥0).

Let 𝐾𝑛 e a subcube of the cube 𝐼𝑛 consisting of points 𝒕 = (𝑡1, . . . , 𝑡𝑛) for
which

1/4 ≤ 𝑡1 ≤ 1/2, . . . , 1/4 ≤ 𝑡𝑛−1 ≤ 1/2, 0 ≤ 𝑡𝑛 ≤ 1/4

(see Fig. 9.2.1).
It is clear that pair (𝐼𝑛, ¤𝐼𝑛 ∪𝐾𝑛) is a co�bration, with ¤𝐼𝑛 ∪𝐾𝑛 u ¤𝐼𝑛). There-

fore, any map (𝐼𝑛, ¤𝐼𝑛, 0) → (𝑋, 𝐴, 𝑥0), is homotopic (in the category 𝒯ℴ𝓅•2)
to the map that translates the cube 𝐾𝑛 to 𝐴, and, therefore, to the map that
translates the cube 𝐾𝑛 to the point 𝑥0.
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Figure 9.2.1:

Let, further, ¤𝐾𝑛 be the boundary of the cube 𝐾𝑛, and 𝐿𝑛−1 be the union of
all its faces other than the face 𝐾𝑛−11 = 𝐾𝑛 ∩ ¤𝐼𝑛, given by the equation 𝑡𝑛 = 0.
Let, �nally, 𝜑𝑛 be the linear map

𝑡1 ↦→ 4𝑡1 − 1, . . . , 𝑡𝑛−1 ↦→ 𝑡𝑛−1 − 1, 𝑡𝑛 ↦→ 4𝑡𝑛

from the triple (𝐾𝑛, ¤𝐾𝑛, 𝐿𝑛−1) to the triple (𝐼𝑛, ¤𝐼𝑛, 𝐽𝑛−1).
The additional lemma we need may be now formulated as follows.

Lemma 9.10. Let the element 𝛼 ∈ 𝜋𝑛 (𝑋, 𝐴) is given by the map 𝑓 : (𝐼𝑛, ¤𝐼𝑛, 𝐽𝑛−1) →
(𝑋, 𝐴, 𝑥0), and the element 𝛽 ∈ 𝜋𝑛 (𝑋, 𝐴) is given by the map 𝑔 : (𝐼𝑛, ¤𝐼𝑛, 0) →
(𝑋, 𝐴, 𝑥0), such that 𝑔(𝐾) = 𝑥0. Then the map ℎ : (𝐼𝑛, ¤𝐼𝑛, 0) → (𝑋, 𝐴, 𝑥0), de�ned
(obviously, well) by the formula

ℎ( 𝒕) =
{
( 𝑓 ◦ 𝜑𝑛) ( 𝒕), if 𝒕 ∈ 𝐾𝑛,
𝑔( 𝒕), if 𝒕 ∉ 𝐾𝑛,

𝒕 ∈ 𝐼𝑛. (9.11)

will set the element 𝛼 + 𝛽 ∈ 𝜋𝑛 (𝑋, 𝐴).

Proof. It is clear that the pairs ( ¤𝐼𝑛, 𝐾𝑛−1∪ 𝑗𝑛−1) and (𝐼𝑛, 𝐾𝑛∪ ¤𝐼𝑛) are co�brations.
A standard reasoning therefore shows that there is a homotopy

𝑔𝑡 : (𝐼𝑛, ¤𝐼𝑛, 0) → (𝑋, 𝐴, 𝑥0)

such that
𝑔0 = 𝑔, 𝑔1 (𝐽𝑛−1) = 𝑥0, 𝑔1 (𝐾𝑛) = 𝑥0

for any 𝑡 ∈ 𝐼. Replacing the map 𝑔 in formula (9.11) with the map 𝑔𝑡 , we
obviously get a homotopy ℎ𝑡 : (𝐼𝑛, ¤𝐼𝑛, 0) → (𝑋, 𝐴, 𝑥0), connecting the map
ℎ = ℎ0 with the map ℎ1, constructed by the map 𝑔1. Therefore, without loss
of generality, we can assume in Lemma 9.10 that the map 𝑔 has the additional
property that 𝑔(𝐽𝑛−1) = 𝑥0, i.e., it is., like the map 𝑓 , a map of the standard form
(𝐼𝑛, ¤𝐼𝑛, 𝐽𝑛−1) → (𝑋, 𝐴, 𝑥0) (and, of course, still satis�es the condition 𝑔(𝐾𝑛) = 𝑥0,
which ensures the correctness of formula (9.11)). Moreover, for similar reasons,
we can even require that 𝑔( 𝒕) = 𝑥0 for 0 ≤ 𝑡1 ≤ 1/2, i.e. that the map 𝑔 be the
sum const+𝑔′ , a constant map const and a map 𝑔

′
: (𝐼𝑛, ¤𝐼𝑛, 𝐽𝑛−1) → (𝑋, 𝐴, 𝑥0)

de�ned by the formula

𝑔
′ ( 𝒕) = 𝑔

(
1 + 𝑡1
2

, 𝑡2, . . . , 𝑡𝑛

)
, 𝒕 = (𝑡1, 𝑡2, . . . , 𝑡𝑛) ∈ 𝐼𝑛.
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But then the map ℎ will obviously be the sum 𝑓
′ + 𝑔′ where 𝑓 ′ : (𝐼𝑛, ¤𝐼𝑛, 𝐽𝑛−1) →

(𝑋, 𝐴, 𝑥0) is de�ned by the formula

𝑓
′ ( 𝒕) =

{
( 𝑓 ◦ 𝜑𝑛) ( 𝑡12 , 𝑡2, . . . , 𝑡𝑛), if ( 𝑡12 , 𝑡2, . . . , 𝑡𝑛) ∈ 𝐾

𝑛,

𝑥0, if ( 𝑡12 , 𝑡2, . . . , 𝑡𝑛) ∉ 𝐾
𝑛,

and 𝑔
′
as above. Since 𝛽 = [𝑔]• = [const+𝑔′ ] = [𝑔′ ]•, it follows that to prove

Lemma 9.10 it is su�cient to prove that 𝛼 = [ 𝑓 ′ ]• i.e. that there is a homotopy
𝑓𝑡 : (𝐼𝑛, ¤𝐼𝑛, 𝐽𝑛−1) → (𝑋, 𝐴, 𝑥0), connecting the map 𝑓 to the map 𝑓

′
. Since such

a homotopy can be de�ned, for example, by formulae

𝑓
′ ( 𝒕) =

{
( 𝑓 ◦ 𝜑𝑛) ( 𝑡12 , 𝑡2, . . . , 𝑡𝑛), if ( 𝑡12 , 𝑡2, . . . , 𝑡𝑛) ∈ 𝐾

𝑛,

𝑥0, if ( 𝑡12 , 𝑡2, . . . , 𝑡𝑛) ∉ 𝐾
𝑛,

𝑓𝑡 ( 𝒕) =


𝑓 ( 𝑡+2𝑡1+11+𝑡 ,

𝑡+4𝑡2−1
1+3𝑡 , . . . , 𝑡+4𝑡𝑛−1−11+3𝑡 ,

4𝑡𝑛
1+3𝑡 ),

if 1−𝑡
2 ≤ 𝑡1 ≤ 1, 1−𝑡4 ≤ 𝑡2 ≤

1+𝑡
2 , . . . ,

1−𝑡
4 ≤ 𝑡𝑛−1 ≤

1+𝑡
2 , 0 ≤ 𝑡𝑛 ≤

1+3𝑡
4 ,

𝑥0, otherwise,

Lemma 9.10 is thus fully proved. □

We will say that the map ℎ is obtained from the map 𝑔 by pasting the map
𝑓 .

9.3 The main lemma

Now we can prove the fundamental lemma Dold and Thom, revealing the in-
ternal �homotopy� springs of the validity of the axiom CHE for cube maps.
This lemma speci�es the conditions on the mapping 𝑝 : 𝐸 → 𝐵 and the sub-
space 𝐴 ⊂ 𝐵, under which for any map 𝑔 : (𝐼𝑛+1, 𝐼𝑛) → (𝐵, 𝐴), any homo-
topy ℎ𝑡 : (𝐽𝑛, ¤𝐼𝑛) → (𝐵, 𝐴), having the property that ℎ0 = 𝑔 |𝐽𝑛 , and any
map ℎ1 : (𝐽𝑛, ¤𝐼𝑛) → (𝐸, 𝐹𝐴), 𝐹𝐴 = 𝑝−1𝐴, covering the map ℎ1 (i.e. such

that ℎ1 = 𝑝 ◦ ℎ1), there is a homotopy 𝑔𝑡 : (𝐼𝑛+1, 𝐼𝑛) → (𝐵, 𝐴) and a map
𝑔 : (𝐼𝑛+1, 𝐼𝑛) → (𝐸, 𝐹𝐴) such that

𝑔 |𝐽𝑛 = ℎ, 0 = 𝑔, 𝑔1 = 𝑝 ◦ 𝑔

and𝑔𝑡 |𝐽𝑛 = ℎ𝑡 for any 𝑡 ∈ 𝐼.

Lemma 9.12. If for each point 𝑒0 ∈ 𝐹𝐴 and an induced map 𝑝, the homomor-
phism

𝑝𝑛 : 𝜋𝑛 (𝐸, 𝐹𝐴, 𝑒0) → 𝜋𝑛 (𝐵, 𝑏0), 𝑏0 = 𝑝(𝑒0),

is a monomorphism, and the homomorphism

𝑝𝑛+1 : 𝜋𝑛+1 (𝐸, 𝐹𝐴, 𝑒0) → 𝜋𝑛+1 (𝐵, 𝑏0)

is an epimorphism, then for any 𝑔, ℎ𝑡 and ℎ1 there are 𝑔𝑡 and 𝑔.
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Before proving this lemma, we note that the pair (𝐽𝑛, ¤𝐼𝑛) is obviously home-
omorphic to the pair (𝐼𝑛, ¤𝐼𝑛). (Indeed, for any homeomorphism 𝜑 : (𝐼𝑛, ¤𝐼𝑛) →
(E𝑛, S𝑛−1) the formula

𝜓( 𝒕, 𝑡) =
{

1
2𝜑( 𝒕), if 𝑡 = 1,
2−𝑡
2 𝜑( 𝒕), if 𝒕 ∈ ¤𝐼𝑛,

will determine the homeomorphism of the pair (𝐽𝑛, ¤𝐼𝑛) = (( ¤𝐼𝑛×𝐼)∪(𝐼𝑛×1), ¤𝐼𝑛×0)
with the pair (𝐽𝑛, ¤𝐼𝑛). So the map 𝜓−1 ◦ 𝜑 will be a homeomorphism (𝐼𝑛, ¤𝐼𝑛) →
(E𝑛, S𝑛−1). Therefore, if we �x the homeomorphism (𝐼𝑛, ¤𝐼𝑛) → (𝐽𝑛, ¤𝐼𝑛), then for
any pair (𝑋, 𝐴) each pointed map 𝑓 : (𝐽𝑛, ¤𝐼𝑛) → (𝑋, 𝐴) will de�ne some element
of the group 𝜋𝑛 (𝑋, 𝐴). Moreover, homeomorphism (𝐼𝑛, ¤𝐼𝑛) → (𝐽𝑛, ¤𝐼𝑛) we can
consider (why?) a restriction of some homeomorphism (𝐼𝑛+1, 𝐽𝑛) → (𝐼𝑛+1, 𝐼𝑛),
from which it follows that each map 𝑔 : (𝐼𝑛+1, 𝐼𝑛) → (𝑋, 𝐴) we can consider as
a homotopy from 𝐼𝑛 to 𝑋, the initial map of which is the map 𝑔 |𝐽𝑛(considered
as a map (𝐼𝑛, ¤𝐼𝑛) → (𝑋, 𝐴)). Since, when identifying 𝐼𝑛+1 = 𝐼𝑛 × 𝐼, the subset
𝐽𝑛 of the cube 𝐼𝑛+1 is identi�ed with the subset ( ¤𝐼𝑛 × 𝐼) ∪ (𝐼𝑛 × 1) of the product
𝐼𝑛 × 𝐼, and by the condition 𝑔(𝐼𝑛) ⊂ 𝐴, this homotopy will be the homotopy of
the maps of pairs (𝐼𝑛, ¤𝐼𝑛) → (𝑋, 𝐴), and its end image will be a map drawn in
𝐴. Therefore, its initial map will set the zero element of the group 𝜋𝑛 (𝑋, 𝐴).
This proves that

Proposition 9.13. the map 𝑓 : (𝐽𝑛, ¤𝐼𝑛) → (𝑋, 𝐴) sets the null element of the
group 𝜋𝑛 (𝑋, 𝐴) if and only if when there is a map 𝑔 : (𝐼𝑛+1, 𝐼𝑛) → (𝑋, 𝐴) such
that 𝑓 = 𝑔 |𝐽𝑛

Proof. (of Lemma 9.12) Let 𝛼 be an element of the 𝜋𝑛 (𝐸, 𝐹𝐴), de�ned by the map

ℎ1 : (𝐽𝑛, ¤𝐼𝑛) → (𝐸, 𝐹𝐴) (or, more precisely, the map ℎ1 : (𝐽𝑛, ¤𝐼𝑛, 0) → (𝐸, 𝐹𝐴, 𝑒0),
where 𝑒0 = ℎ1 (0). Then the element 𝑝𝑛 (𝛼) ∈ 𝜋𝑛 (𝐵, 𝐴) will be set by the map
ℎ1 : (𝐽𝑛, ¤𝐼𝑛) → (𝐵, 𝐴), and therefore by the homotopy map ℎ0 : (𝐽𝑛, ¤𝐼𝑛) →
(𝐵, 𝐴). But by the condition ℎ0 = 𝑔 |𝐽𝑛 , where 𝑔 : (𝐼𝑛+1, 𝐼𝑛) → (𝐵, 𝐴), from
which, according to the remark just made, it follows that the map ℎ0 speci�es
the zero element of the group 𝜋𝑛 (𝑋, 𝐴). Thus, 𝑝𝑛 (𝛼) = 0, and therefore, due to
the assumed injectivity of the homomorphism 𝑝𝑛, equality 𝛼 = 0 takes place in
the group 𝜋𝑛 (𝐸, 𝐹𝐴).

Therefore, there is a map 𝑔
′
: (𝐼𝑛+1, 𝐼𝑛) → (𝐸, 𝐹𝐴) such that 𝑔

′ |𝐽𝑛 = ℎ1 It is
clear that the formula

𝐺 ( 𝒕, 𝑡𝑛+1, 𝑡𝑛+2) =


𝑔( 𝒕, 𝑡𝑛+2), if 𝑡𝑛+1 = 0,

ℎ𝑡𝑛+1 ( 𝒕, 𝑡𝑛+2), if 𝒕 ∈ ¤𝐼 or 𝑡𝑛+1 = 1,

(𝑝 ◦ 𝑔′ ) ( 𝒕, 𝑡𝑛+2), if 𝑡𝑛+1 = 1,

where 𝒕 ∈ 𝐼𝑛, and 𝑡𝑛+1, 𝑡𝑛+2 ∈ 𝐼 well de�nes some map 𝐺 : (𝐽𝑛+1, ¤𝐼𝑛+1) →
(𝐵, 𝐴). Let 𝛽 be the corresponding element of the group 𝜋𝑛+1 (𝐵, 𝐴). Since
the homomorphism 𝑝𝑛+1 is by condition an epimorphism, there is a map 𝑓 :
(𝐼𝑛+1, ¤𝐼𝑛, 𝐽𝑛+1) → (𝐸, 𝐹𝐴, 𝑒0), which has the property that the map 𝑝◦ 𝑓 speci�es
the element 𝛽 of the group 𝜋𝑛+1 (𝐵, 𝐴).
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Let 𝐾
𝑛+1

be the image of a subcube 𝐾𝑛+1 of the cube 𝐼𝑛+1 under the home-
omorphism 𝜒 : (𝐼𝑛+1, ¤𝐼𝑛+1) → (𝐽𝑛+1, ¤𝐼𝑛+1), by which we interpret the map 𝐺 as
the map (𝐼𝑛+1, ¤𝐼𝑛+1) → (𝐵, 𝐴). It is clear that by choosing the homeomorphism

𝜒 accordingly, we can assume without loss of generality that 𝐾
𝑛+1

is contained
in the face 𝑡𝑛+1 = 1 of the cube 𝐼𝑛+2, i.e. after identifying this face with the
cube 𝐼𝑛+1, in the cube 𝐼𝑛+1 (and does not intersect with 𝐽𝑛). In addition, it can

be assumed that the map 𝑔
′
translates 𝐾

𝑛+1
to the point 𝑒0. Then the map 𝐺,

considered as a map (𝐼𝑛+1, ¤𝐼𝑛+1) → (𝐵, 𝐴), will translate the cube 𝐾𝑛+1 to the
point 𝑒0, and therefore will allow pasting the map 𝑓 . The corresponding map 𝐻
will, according to Lemma 9.10, set the element −𝛽+ 𝛽 = 0 of the group 𝜋𝑛 (𝐵, 𝐴),
and therefore there will be a map 𝐻

′
: (𝐼𝑛+2, 𝐼𝑛+1) → (𝐵, 𝐴), coinciding on 𝐽𝑛+1

with the transformation 𝐻. By applying the identi�cation 𝐼𝑛+2 = 𝐼𝑛+1 × 𝐼 we
can consider this map as a homotopy 𝑔𝑡 : 𝐼

𝑛+1 → 𝐵. In this case, the relation
𝐻
′ |𝐽𝑛+1 = 𝐻 will be equivalent to the relations 𝑔0 = 𝑔, 𝑔𝑡 |𝐽𝑛 = ℎ𝑡 , 𝑡 ∈ 𝐼, and

𝑔1 = 𝑝 ◦ 𝑔, where 𝑔 is the map (𝐼𝑛+1, 𝐼𝑛) → (𝐸, 𝐹𝐴), coinciding outside 𝐾
𝑛+1

with the map 𝑔
′
, and on 𝐾

𝑛+1
with the map 𝑓 , considered by applying the

homeomorphism 𝐾
𝑛+1 → 𝐾𝑛+1

𝜑𝑛+1−−−−→ 𝐼𝑛+1 as a map 𝐾
𝑛+1 → 𝐸4.

To complete the proof, it remains to note that since 𝐾
𝑛+1

does not intersect
with 𝐽𝑛, the map 𝑔 coincides on 𝐽𝑛 with the map 𝑔, and therefore with the map
ℎ1. □

9.4 Covering homotopies for weak �brations

To deduce Theorem 9.9 from Lemma 9.12, we will need a general methodological
(or, better to say, elementary geometric) lemma concerning cubable sets (see
Appendix to Lecture 7).

To shorten the formulations, we will call the open covering {𝑈𝛼, 𝛼 ∈ 𝐴} of a
topological space 𝑋 an additively saturated covering, if for any indices 𝛼, 𝛽 ∈ 𝐴
the intersection 𝑈𝛼 ∩𝑈𝛽 is the union of the covering elements {𝑈𝛼}.

Lemma 9.14. Let 𝑄 be a compact cubable set, 𝑋 be a topological space, {𝑈𝛼, 𝛼 ∈
𝐴} be an additively saturated open covering of the space 𝑋, and 𝐹 : 𝑄 → 𝑋 be
a continuous map. There is a cubilage to the set 𝑄 and a map 𝜑 : 𝐾 → Λ such
that:

(i) for any cube 𝜎 ∈ 𝐾 there is an inclusion

𝐹 (𝜎) ⊂ 𝑈𝜑 (𝜎) ;

(ii) if the cube 𝜎 ∈ 𝐾 is a face of the cube 𝜏 ∈ 𝐾, then 𝑈𝜑 (𝜎) ⊂ 𝑈𝜑 (𝜏 ) .

(iii) In addition, given �nite family {𝐶𝛽 , 𝛽 ∈ 𝐵 ⊂ 𝐴} of closed sets 𝐶𝛽 ∈ 𝑄,
such that 𝐹 (𝐶𝛽) ∈ 𝑈𝛽 for any 𝛽 ∈ 𝐵, then the map 𝑓 can be selected so
that when 𝜎 ∩ 𝐶𝛽 ≠ ∅, the inclusion

𝑈𝜑 (𝜎) ⊂ 𝑈𝛽 , 𝜎 ∈ 𝐾, 𝛽 ∈ 𝐵.
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takes place.

Proof. Let's call the cubilage 𝐾 of a set 𝑄 satisfactory with dimension 𝑛 ≥ 0
if on the set 𝐾𝑛 of all its cubes of dimension greater than or equal to 𝑛 a map
𝜑 : 𝐾𝑛 → Λ is given such that the conditions (i), (ii) and (iii) are ful�lled for all
cubes 𝜎 ∈ 𝐾𝑛. The statement of the lemma means that there is a satisfactory
cubic with dimension 0. Since for 𝑛, greater than the dimension of the set 𝑄,
any cubilage of this set is obviously satisfactory from dimension 𝑛, to prove
the lemma, it is therefore necessary to prove that the existence of a cubilage
satisfying from dimension 𝑛 + 1 implies the existence of a cubilage satisfying
from dimension 𝑛.

With this in mind, consider an arbitrary cubilage 𝐾 of the set 𝑄, satisfactory
with dimension 𝑛 + 1. Let 𝜎 be an arbitrary 𝑛-dimensional cube of this cubicle,
and let 𝑥 ∈ 𝜎. Due to the conditions imposed on the covering{𝑈𝛼}, there
is an element 𝑈𝛼(𝑥 ) of this covering containing the point 𝑓 (𝑥) ∈ 𝑋 such that
𝑈𝛼(𝑥 ) ⊂ 𝑈𝜑 (𝜏 ) for any (𝑛 + 1)-dimensional cube 𝜏 ∈ 𝐾 having the cube 𝜎 as its
edge and 𝑈𝛼(𝑥 ) ⊂ 𝑈𝛽 for any index 𝛽 ∈ 𝐵 that has the property that 𝑥 ∈ 𝐶𝛽. By
applying the continuity of the map 𝐹 : 𝑄 → 𝑋 and the compactness of the sets
𝐶𝛽 the point 𝑥 ∈ 𝑄 has in 𝑄 a neighbourhood of 𝑉 (𝑥) such that 𝐹 (𝑉 (𝑥)) ⊂ 𝑈𝛼(𝑥 )
and 𝑉 (𝑥) ∩𝐶𝛽 = ∅ if 𝑥 ∉ 𝐶𝛽 The neighbourhoods 𝑉 (𝑥), 𝑥 ∈ 𝜎, make up the open
covering of the cube 𝜎, and therefore there is a small cubicle 𝐾𝜎 of this cube
such that each cubicle 𝐾𝜎 is contained in at least one neighbourhood of the form
𝑉 (𝑥). Since any smaller cubicle of a cube also has this property, by applying the
�niteness of cubilage 𝐾, we can assume that for all 𝑛-dimensional cubes 𝜎 ∈ 𝐾
cubes 𝐾𝜎 have the same �neness 𝑁.

Consider the cubilage 𝐾1 of the �neness 𝑁 of the set 𝑄 Any of its cube 𝜎1

of dimension greater than or equal to 𝑛 is contained in a single cube 𝜎 ∈ 𝐾 of
minimum dimension ≥ 𝑛. In the case when dim𝜎 ≥ 𝑛+1 (and therefore the index
𝜑(𝜎) is de�ned), we will put 𝜑1 (𝜎1) = 𝜑(𝜎). If dim𝜎 = 𝑛, then by construction
𝜎1 ∈ 𝐾𝜎, and therefore there is a point 𝑥 ∈ 𝜎, which has the property that
𝜎1 ⊂ 𝑉 (𝑥). Arbitrarily choosing such a point 𝑥, we will put 𝜑1 (𝜎1) = 𝛼(𝑥). A
direct check shows that the cubilage 𝐾1 with respect to the so-constructed map

𝜑1 : 𝐾 (𝑛)1 → Λ is a cubilage satisfactory from dimension 𝑛. □

Now we can consider the question of what remains of the axiom CH in the
case when the map 𝑝 : 𝐸 → 𝐵 satis�es the conditions of Theorem 9.9.

Lemma 9.15. Let's say for the map 𝑝 :→ 𝐵 there is an additively saturated
open covering {𝑈𝛼;𝛼 ∈ 𝐴} of the space 𝐵, consisting of the distinguished sets,
and and for a compact cubable set 𝑃 and a continuous map 𝐹 : 𝑃 × 𝐼 → 𝐵 for
a �nite family {𝐶𝛽 , 𝛽 ∈ 𝐵 ⊂ 𝐴} of closed sets 𝐶𝛽 ⊂ 𝑃 × 𝐼 such that 𝐹 (𝐶𝛽) ⊂ 𝑈𝛽
for each 𝛽 ∈ 𝐵 is given. Then for any commutative diagramme of the form

𝑃
𝑓 //

𝜎0

��

𝐸

𝑝

��
𝑃 × 𝐼

𝐹
// 𝐵
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there is a map 𝐹 : 𝑃× 𝐼 → 𝐸 such that 𝐹 ◦𝜎0 = 𝑓 and a homotopy 𝐺𝑡 : 𝑃× 𝐼 → 𝐵

such that 𝐺0 = 𝐹, 𝐺1 = 𝑝 ◦ 𝐹, 𝐺𝑡 ◦ 𝜎0 = 𝐹 ◦ 𝜎0, 𝐺𝑡 (𝐶𝛽) ⊂ 𝑈𝛽 for any 𝑡 ∈ 𝐼,
𝛽 ∈ 𝐵.

Proof. According to Lemma 9.14 (applied to the map 𝐹 and the curated set
𝑄 = 𝑃 × 𝐼), there is a cubilage 𝐾 of the set 𝑄 = 𝑃 × 𝐼 and a map 𝑓 : 𝐾 → 𝐴

having properties (i), (ii) and (iii). We will strengthen Lemma 9.15 by requiring
that for any cube 𝜎 ∈ 𝐾 and any 𝑡 ∈ 𝐼 there is an inclusion 𝐺𝑡 (𝜎) ⊂ 𝑈𝜑 (𝜎) . By
applying the property (iii), this will obviously ensure that we have the inclusion
𝐺𝑡 (𝐶𝛽) ⊂ 𝑈𝛽.

Each cube 𝜎 ∈ 𝐾 has the form 𝜏 × 𝜌, where 𝜏 belongs to some cubilage of
the set 𝑃, and 𝜌 belongs to some cubilage of the segment 𝐼, i.e. it is either
one of a �nite number of points of the form 𝑘2−𝑁 ,𝑘 = 0, 1, . . . , 2𝑁 ,or one of the
segments 𝐼𝑘 = [𝑘2−𝑁 , (𝑘 + 1)2−𝑁 ], 0 ≤ 𝑘 ≤ 2𝑁 − 1. Let's focus our attention on
cubes of the form 𝜏 × 𝐼𝑘 . We will arrange these cubes, assuming that 𝜏1 × 𝐼𝑘1 <
𝜏2 × 𝐼𝑘2 if 𝑘1 < 𝑘2, and for 𝑘1 = 𝑘2 if dim 𝜏1 < dim 𝜏2 (cubes with 𝑘1 = 𝑘2 and
dim 𝜏1 = dim 𝜏2 are ordered in an arbitrary way). We will build the map 𝐹 and
the homotopy 𝐺𝑡 separately on each cube of the form 𝜏 × 𝐼𝑘 , assuming that
they have already been built on the previous cubes. At each step (including the
initial one) of this construction, after identifying the cube 𝜏 × 𝐼𝑘 with the cube
𝐼𝑛 × 𝐼 = 𝐼𝑛 + 1, 𝑛 = dim 𝜏, we will deal with the situation of Lemma 9.12, where
the role of the space 𝐵 will be played by the set 𝑈 = 𝑈𝜑 (𝜏×𝐼𝑘 ) , the role of the
space 𝐸 is its preimage 𝐹𝑈 = 𝑝−1𝑈, the role of the map 𝑝 is the restriction 𝑝𝑈 of
the map 𝑝 given to us on this preimage and the role of the subspace 𝐴 is the set
𝑉 = 𝑈𝜑 (𝜎𝑘 ) , 𝜎𝑘 = 𝜏 × {𝑘2−𝑁 }. The conditions imposed in Lemma 9.12 and a of
the homomorphisms 𝑝𝑛 and 𝑃𝑛+1 will be ful�lled due to the distinguished sets 𝑈
and 𝑉 (note that if the set 𝑉 ⊂ 𝑈 ⊂ 𝐵 is distinguished with respect to the map
𝑝 : 𝐸 → 𝐵, then it will be distinguished in relation to the map 𝑝𝑈 : 𝐹𝑈 → 𝑈).
The condition that the map 𝐹 and the homotopy 𝐺𝑡 are constructed for the
previous cubes of the cubilage 𝐾 will give us the map 𝑔, ℎ𝑡 and 𝑘1 and the map
𝑔𝑡 and 𝑔 will allow you to extend 𝐹 and 𝐺𝑡 to the cube 𝜏 × 𝐼. Thus, the map
𝐹 and the homotopy 𝐺𝑡 will be constructed by induction on all cubes 𝜏 × 𝐼, i.e.
on the entire set 𝑄 = 𝑃 × 𝐼. □

9.5 Proof of the Dold-Thom theorem

Let us now turn directly to the proof of Theorem 9.9.

Proof. (of Theorem 9.9) It is enough to show that the map 𝑝 : 𝐸 → 𝐵, satisfying
the conditions of Theorem 9.9, has the property that for any point 𝑒0 ∈ 𝐸 and
any point containing 𝑏0 = 𝑝(𝑒0) of an element 𝑈𝛼0

of the covering {𝑈𝛼} induced
by the map 𝑝 : (𝐸, 𝐹𝑈𝛼0 , 𝑒0) → (𝐵,𝑈𝛼0

, 𝑏0), the homomorphism

𝑝∗ : 𝜋𝑛 (𝐸, 𝐹𝑈𝛼0 , 𝑒0) → 𝜋𝑛 (𝐵,𝑈𝛼0
, 𝑏0), 𝑛 > 0,
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is an isomorphism. Indeed, then in the commutative diagramme

· · · // 𝜋𝑛+1 (𝐸, 𝐹𝑈𝛼0 ) //

��

𝜋𝑛 (𝐹𝑈𝛼0 , 𝐹𝑏0 ) //

��

𝜋𝑛 (𝐸, 𝐹𝑏0 ) //

��

𝜋𝑛 (𝐸, 𝐹𝑈𝛼0 ) //

��

𝜋𝑛−1 (𝐸, 𝐹𝑈𝛼0 ) //

��

· · ·

· · · // 𝜋𝑛+1 (𝐵, 𝐹𝑏0 ) // 𝜋𝑛 (𝑈𝛼0
) // 𝜋𝑛 (𝐵) // 𝜋𝑛 (𝐵,𝑈𝛼0

) // 𝜋𝑛−1 (𝑈𝛼0
) // · · ·

the horizontal lines of which are homotopy sequences of the triple (𝐸, 𝐹𝑈𝛼0 , 𝐹0)
and of the pair (𝐵,𝑈𝛼0

) respectively, and vertical homomorphisms are induced
by the map 𝑝, all vertical homomorphisms, except the central one 𝜋𝑛 (𝐸, 𝐹𝑏0 ) →
𝜋𝑛𝐵, are isomorphisms. Therefore, by applying the Five Lemma, the last ho-
momorphisms will also be isomorphisms, i.e. the map 𝑝 : 𝐸 →B will be a weak
�bration.

𝑝∗ is a monomorphism. Let 𝜉 be an element of the group 𝜋𝑛 (𝐸, 𝐹𝑈𝛼0 , 𝑒0) such
that 𝑝∗𝜉 = 0. The condition 𝑝∗𝜉 = 0 means that to the map 𝑓 : (𝐼𝑛, ¤𝐼𝑛, 𝐽𝑛−1) →
(𝐸, 𝐹𝑈𝛼0 , 𝑒0), of the de�ning element 𝜉, there exists a homotopy 𝑓𝑡 : (𝐼𝑛, ¤𝐼𝑛) →
(𝐵,𝑈𝛼0

) such that 𝑓0 = 𝑝 ◦ 𝑓 , and 𝑓1 = const. Let's apply Lemma 9.15, taking

for 𝑃 the cube 𝐼𝑛 (and, therefore, for 𝑄 the cube 𝐼𝑛+1), for 𝑓 the map 𝑓 , and for
𝐹 the homotopy 𝑓𝑡 (interpreted as the map 𝐼𝑛 × 𝐼 → 𝐵). For the family {𝐶𝛼},
we will take the family consisting of a single set 𝐶𝛼0

= ( ¤𝐼𝑛 × 𝐼) × (𝐼𝑛 × 1) = 𝐽𝑛
(so 𝐵 = {𝛼0}). It is clear that all the conditions of Lemma 9.15 are ful�lled, and
therefore there is a map 𝐹 : 𝐼𝑛+1 → 𝐸 , such that 𝐹 ◦ 𝜎0 = 𝑓 , and a homotopy
𝐺𝑡 : 𝐼

𝑛+1 → 𝐵, such that 𝐺0 = 𝐹, 𝐺1 = 𝑝 ◦ 𝐹, 𝐺𝑡 ◦ 𝜎0 = 𝑓0 and 𝐺𝑡 (𝐽𝑛) ⊂ 𝑈𝛼0

for any 𝑡 ∈ 𝐼, where, as always, 𝜎0 : 𝐼𝑛 → 𝐼𝑛+1 is the inclusion 𝒕 → ( 𝒕, 0). Since
𝐺1 = 𝑝 ◦ 𝐹 and 𝐺1 (𝐽𝑛) ⊂ 𝑈𝛼0

, then the map 𝐹, interpreted as a homotopy
from 𝐼𝑛 to 𝐵, is actually a homotopy (free) from (𝐼𝑛, ¤𝐼𝑛) to (𝐸,𝑈𝛼0

), connecting
the map 𝑓 with the map pulled down to 𝑈𝛼0

). Since the existence of such a
homotopy implies, as we know (see Lecture 8), equality 𝜉 = 0, this proves that
the homomorphism 𝑝∗ is a monomorphism.

𝑝∗ is an epimorphism. The elements of the group 𝜋𝑛 (𝐵,𝑈𝛼0
) can be con-

sidered as homotopy classes of maps 𝐹 : (𝐼𝑛, ¤𝐼𝑛, 𝐼𝑛−1) → (𝐵,𝑈𝛼0
, 𝑏0), i.e. maps

𝐹 : 𝐼𝑛 → 𝐵 such that 𝐹 (𝐽𝑛−1) ⊂ 𝑈𝛼0
) and 𝐹 (𝐼𝑛−1) = 𝑏0. Each such map 𝐹,

together with the map 𝑓 = const𝑒0 : 𝐼𝑛−1 → 𝐸 , satis�es (for 𝑃 = 𝐼𝑛−1) the
conditions of Lemma 9.15 (with 𝐵 = {𝛼0} and 𝐶𝛼0

= 𝐽𝑛−1). Therefore, there is a
map 𝐹 : 𝐼𝑛 → 𝐸 such that 𝐹 ◦𝜎0 = const𝑒0 , (i.e. 𝐹 (𝐼𝑛−1) = 𝑒0), and a homotopy
𝐺𝑡 : 𝐼

𝑛 → 𝐵 such that 𝐺0 = 𝐹, 𝐺1 = 𝑝 ◦ 𝐹, 𝐺𝑡 ◦𝜎0 = const𝑒0 and 𝐺𝑡 (𝐽𝑛−1) ⊂ 𝑈𝛼
for any 𝑡 ∈ 𝐼. The conditions that the homotopy 𝐺𝑡 satis�es mean that this ho-
motopy is a homotopy of maps (𝐼𝑛, ¤𝐼𝑛, 𝐼𝑛−1) → (𝐵,𝑈𝛼0

, 𝑏0), connecting the map
𝐹to the map 𝑝 ◦𝐹. Therefore, �rstly, 𝑝 ◦𝐹 is a map (𝐼𝑛, ¤𝐼𝑛, 𝐼𝑛−1) → (𝐵,𝑈𝛼0

, 𝑏0)
and therefore sets some element of the group 𝜋𝑛 (𝐵,𝑈𝛼0), and secondly, that
element coincide with the element 𝜉 ∈ 𝜋𝑛 (𝐵,𝑈𝛼0

), set by the map 𝐹. Therefore,
the map 𝐹 will be a map (𝐼𝑛, ¤𝐼𝑛, 𝐼𝑛−1) → (𝐸, 𝐹𝑈𝛼0 , 𝑒0), and the element 𝜉 of the

group 𝜋𝑛 (𝐸, 𝐹𝑈𝛼0 ) will have the property that 𝑝∗ (𝜉) = 𝜉.
Thus, Theorem 9.9 is fully proved. □



9.6. JAMES' LEMMA 309

9.6 James' lemma

We will apply Theorem 9.9 to the proof of a useful lemma �rst established by
James. This lemma involves two pointed spaces 𝑋 and 𝑌 , a reduced cone 𝐶•𝑋
over the space 𝑋, a pointed map 𝑓 : 𝑋×𝑌 → 𝑌 and the space 𝐸 = (𝐶•𝑋×𝑌 )∪ 𝑓 𝑌 ,
obtained by gluing the space 𝐶•𝑋×𝑌 to the space 𝑌 by the map 𝑓 (since 𝑋 ⊂ 𝐶•,
then 𝑋 × 𝑌 ⊂ 𝐶•𝑋 × 𝑌). We will say that the space 𝐸 is obtained by applying
James' constructions to the map 𝑓 .

Let 𝑝 : 𝐸 → 𝑆•𝑋 be a map de�ned (obviously well) by formulae

𝑝( [𝑥, , 𝑡]]𝐶 , 𝑦) = [𝑥𝑥, 𝑡]𝑆 , 𝑝(𝑦) = 𝑥0, 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 𝑡 ∈ 𝐼 .

Proposition 9.16 (James' lemma). If the base point 𝑥0 ∈ 𝑋 has a contractible
rel 𝑥0 neighbourhood 𝑈0 and for any point 𝑥 ∈ 𝑋, the map 𝑦 ↦→ 𝑓 (𝑥, 𝑦), 𝑦 ∈ 𝑌 ,
from 𝑌 to 𝑌 is a homotopy equivalence, then the map 𝑝 is a weak �bration.

Let's �rst prove the following lemma.

Lemma 9.17. Under the conditions of Proposition 9.16, for the base 𝑋 of the
cone 𝐶•𝑋, there exists a neighbourhood 𝑈, of which it is a strong deformation
retraction.

Proof. Let 𝑈 be a subset (obviously open) of the cone 𝐶•𝑋, consisting of points
[𝑥, 𝑡] that either 𝑥 ∈ 𝑈0 or 𝑡 ∉ [1/3, 2/3]. Clearly the formula

𝑔𝜏 [𝑥, 𝑡] = [𝑥, 𝜌(𝑡, 𝜏)], [𝑥, 𝑡] ∈ 𝑈,

where

𝜌(𝑡, 𝜏) =


0, if 0 ≤ 𝑡 ≤ 𝜏

3 ,
3𝑡−𝜏
3−2𝜏 if 𝜏

3 ≤ 𝑡 ≤
3−𝜏
3 ,

1, if 3−𝜏
3 ≤ 𝑡 ≤ 1,

de�nes a homotopy �xed on 𝑋 that connects the identity map 𝑔0 = id : 𝑈 → 𝑈

with the map 𝑔1 : 𝑈 → 𝑈, which is a map to the union of 𝑋 ∪𝐶•𝑈0, where 𝐶
•𝑈0

is the cone contained in 𝐶•𝑋 over the neighbourhood 𝑈0. On the other hand,
since the neighbourhood 𝑈0 is contractible rel 𝑥0, it is a strong deformation
retract of the cone 𝐶•𝑈0, i.e. there is a homotopy ℎ𝜏 : 𝐶•𝑈0 → 𝐶•𝑈0 �xed
on 𝑈0 such that ℎ0 = id and ℎ1 (𝐶•𝑈0) = 𝑈0. De�ning this homotopy on 𝑋,
assuming that ℎ𝜏 = id on 𝑋, and putting

𝑓𝜏 =

{
𝑔2𝜏 , if 0 ≤ 𝜏 ≤ 1/2,
ℎ2𝜏−1 ◦ 𝑔1, if1/2 ≤ 𝜏 ≤ 1,

obviously, we will well de�ne a homotopy �xed on 𝑋 connecting the identity
map 𝑈 → 𝑈 with the map 𝑖 ◦ 𝑟, where 𝑖 : 𝑋 → 𝑈 is an inclusion, 𝑟 : 𝑈 → 𝑋

is some retraction (representing the map ℎ1 ◦ 𝑔1, considered as a map in 𝑋).
Therefore, 𝑈 u 𝑋. □
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Let 𝑉 be the image of the neighbourhood 𝑈 of the factorisation map 𝐶•𝑋 →
𝑆•𝑋. Since considered as a map (𝐶•𝑋, 𝑋) → (𝑆•𝑋, 𝑥0), this map is a relative
homeomorphism, the retraction 𝑟 : 𝑈 → 𝑋 de�nes a strong deformation retrac-
tion 𝑉 → 𝑥0. Thus,

Proposition 9.18. the neighbourhood 𝑉 is contractible rel 𝑥0.

Consider the set 𝐹𝑉 = 𝑝−1𝑉 .

Lemma 9.19. For any point 𝑣 ∈ 𝑉 the set 𝐹𝑣 = 𝑝
−1 (𝑣) is a deformation retract

of the set 𝐹𝑉 .

Proof. By applying the standard identi�cations 𝐹𝑉 = ((𝑈 \ 𝑋) × 𝑌 ) ∪ 𝑌 , and

𝑝(𝑢, 𝑦) = 𝑢𝑆 , 𝑝(𝑦) = 𝑥0,

for any point 𝑢 ∈ 𝑈 \ 𝑋 and 𝑦 ∈ 𝑌 , where 𝑢𝑆 is the image of the point 𝑢 in 𝑉 (i.e.
𝑢𝑆 = [𝑥, 𝑡]𝑠, if 𝑢 = [𝑥, 𝑡]𝐶), and 𝑥0 is the base point of the suspension 𝑆•𝑋. At
the same time, the homotopy 𝑓𝜏 : 𝑈 → 𝑈 constructed above obviously de�nes
a homotopy 𝐹𝑉 → 𝐹𝑉 �xed on 𝑌 , connecting the identity map with the map
𝑖 ◦ 𝑔, where 𝑖 : 𝑌 → 𝐹𝑉 is an inclusion, and 𝑓 is a retraction 𝐹𝑉 → 𝑌 , de�ned
(obviously well) by the formulae

𝑟 (𝑢, 𝑦) = 𝑓 (𝑟𝑢, 𝑦), 𝑟 (𝑦) = 𝑦, 𝑢 ∈ 𝑈 \ 𝑋, 𝑦 ∈ 𝑌 .

Since 𝐹𝑥0 = 𝑌 , this proves Lemma 9.19 for 𝑣 = 𝑥0.
Let 𝑣 ≠ 𝑥0. Then 𝐹𝑣 = 𝑢 × 𝑌 where is 𝑢 ∈ 𝑈 is (obviously, the only) point

such that 𝑢𝑆 = 𝑣. The restriction 𝑟𝑣 of the retraction 𝑟 to 𝐹𝑣 di�ers from the
homotopy equivalence 𝑦 ↦→ 𝑓 (𝑥, 𝑦) only by the homeomorphism (𝑢, 𝑦) ↦→ 𝑦,
where 𝑥 = 𝑟 (𝑢), and therefore is itself a homotopy equivalence. Let 𝑔 : 𝑌 → 𝐹𝑣
be the inverse of the homotopy equivalence, and 𝑗 : 𝐹𝑣 → 𝐹𝑉 be the inclusion.
Then (𝑔◦𝑟) ◦ 𝑗 = 𝑔◦𝑟𝑣 ∼ id, and 𝑗 ◦ (𝑔◦𝑟) ∼ 𝑖◦𝑟 ◦ 𝑗 ◦𝑔◦𝑟 = 𝑖◦𝑟𝑉 ◦𝑔◦𝑟 ∼ 𝑖◦𝑟 ∼ id,
and hence the map 𝑗 is a homotopy equivalence. Since the pair (𝐹𝑉 , 𝐹𝑣) is
obviously a closed co�bration, this is possible only if 𝐹𝑉 u 𝐹𝑣 (Corollary 2.30
of Proposition 2.29 of Lecture 2). □

Proof. (of Proposition 9.16) Let 𝑊 be the complement in 𝑆•𝑋 of the point 𝑥0
(or, equivalently, the complement in 𝐶•𝑋 of the space 𝑋). The set 𝑊 is open,
its preimage 𝑝−1𝑊 ⊂ 𝐸 is the product 𝑊 × 𝑌 , and the map 𝑝 on 𝐹𝑊 = 𝑝−1𝑊
is the projection 𝑊 × 𝑌 → 𝑌 . The intersection 𝑉 ∩ 𝑊 has similar properties,
of course. This means that the sets 𝑉 ∩𝑊 and 𝑊 are open and distinguished.
Therefore, by applying Theorem 9.9, to prove Proposition 9.16, it is su�cient
to prove that the set 𝑉 is distinguished, i.e. that for any point 𝑣 ∈ 𝑉 and any
𝑛 ≥ 0 the map 𝑝 induces an isomorphism 𝑝∗ of the group 𝜋𝑛 (𝐹𝑉 , 𝐹𝑣) and the
group 𝑝𝑛 (𝑉, 𝑣). But due to the contractibility of the neighbourhood 𝑉 and the
deformation retractibility of the set 𝐹𝑉 onto the �bre 𝐹𝑣 just proved (see Lemma
9.19), both these groups are null. Consequently, the map 𝑝∗ is automatically
an isomorphism. □

James found a remarkable application of Proposition 9.16 to the theory of
homotopy groups. We will deal with it in the next lecture.



Appendix

For �brations, Theorem 1.71 from the Appendix to Lecture 1 is valid, and for
weak �brations, theorem 9.9 of Lecture 9 is valid. The question is natural: does
a similar theorem hold for homotopy �brations?

We will show that the answer to this question is yes, moreover, that in this
respect homotopy �brations behave exactly the same as strong �brations.

Preliminarily, we will need to prove another characteristic property of ho-
motopy �brations.

9.A The axiom delayed covering homotopy

We will call a homotopy 𝐹 : 𝑋 × 𝐵 delayed if there is a number 𝑡0 > 0 such that
for 0 ≤ 𝑡 ≤ 𝑡0 for any point 𝑥 ∈ 𝑋 the equality 𝐹 (𝑥, 𝑡) = 𝐹 (𝑥, 0) is valid.

De�nition 9.20. It is said that the map 𝑝 : 𝐸 → 𝐵 satis�es the axiom delayed
covering homotopy (in short, the axiom CDH) if for any diagramme of the form

𝑋
𝑓 //

𝜎0

��

𝐸

𝑝

��
𝑋 × 𝐼

𝐹
//

𝐹

<<

𝐵

(9.21)

in which the homotopy 𝐹 is a delayed homotopy, there is a covering homotopy
𝐹.

The following somewhat unexpected proposition is valid, which illuminates
the concept of homotopy �bration in a new way.

Proposition 9.22. A map 𝑝 : 𝐸 → 𝐵 is a homotopy �bration if and only if
when it satis�es the axiom delayed covering homotopy.

Proof. In the place of Diagramme (9.21), the diagramme, in which the homotopy
𝐹 is replaced by the homotopy 𝐹

′
: 𝑋 × 𝐼 → 𝐵, de�ned by the formula

𝐹
′ (𝑥, 𝑡) = 𝐹 (𝑥, (1 − 𝑡0)𝑡 + 𝑡0), 𝑥 ∈ 𝑋, 0 ≤ 𝑡 ≤ 1.
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is also commutative. Therefore, in the case when the map 𝑝 : 𝐸 → 𝐵 is a homo-
topy �bration, for Diagramme (9.21) modi�ed accordingly, there is a covering

homotopy 𝐹
′
: 𝑋 × 𝐼 → 𝐸 , which has the property that 𝐹

′
◦ 𝜎0 ∼𝐵 𝑓 . Denoting

by 𝐺 : 𝑋 × 𝐼 → 𝐸 the homotopy over 𝐵 connecting the map 𝑓 with the map

𝐹
′
◦ 𝜎0, we put

𝐹 (𝑥, 𝑡) =

𝐺

(
𝑥, 𝑡
𝑡0

)
, if 0 ≤ 𝑡 ≤ 𝑡0,

𝐹
′ (
𝑥,
𝑡−𝑡0
1−𝑡0

)
, if 𝑡0 ≤ 𝑡 ≤ 1,

𝑥 ∈ 𝑋, 0 ≤ 𝑡 ≤ 1.

An automatic check shows that in this way we obtain a homotopy 𝐹 : 𝑋× 𝐼 → 𝐸 ,
which closes Diagramme (9.21). Thus, the homotopy �bration 𝑝 : 𝐸 → 𝐵

satis�es the axiom CDH.
Conversely, assuming that the map 𝑝 : 𝐸 → 𝐵 satis�es the axiom CDH,

consider an arbitrary Diagramme (9.21) (with, generally speaking, non-delayed
homotopy 𝐹). It is clear that the formula

𝐹∗ (𝑥, 𝑡) =
{
𝐹 (𝑥, 0), if 0 ≤ 𝑡 ≤ 1/2,
𝐹 (𝑥, 2𝑡 − 1), if 1/2 ≤ 𝑡 ≤ 1,

𝑥 ∈ 𝑋, 0 ≤ 𝑡 ≤ 1.

de�nes a delayed homotopy 𝐹∗ : 𝑋 × 𝐼 → 𝐵 (with 𝑡0 = 1/2), for which the
commutative diagram (9.21) also takes place (with 𝐹 replaced by 𝐹∗). Therefore,

for the homotopy 𝐹∗, there is a covering homotopy 𝐹
∗
: 𝑋 × 𝐼 → 𝐸 . By putting

𝐺 (𝑥, 𝑡) = 𝐹∗
(
𝑥,

1

2

)
,

𝐹 (𝑥, 𝑡) = 𝐹∗
(
𝑥,

1 + 𝑡
2

)
,

𝑥 ∈ 𝑋, 0 ≤ 𝑡 ≤ 1, (9.23)

obviously, we will get homotopies 𝐺 : 𝑋 × 𝐼 → 𝐸 and 𝐹 : 𝑋𝑥 × 𝐼 → 𝐸 such
that 𝐺 is a homotopy over 𝐵 connecting the map 𝑓 with the map 𝐹 ◦ 𝜎0, and
the homotopy 𝐹 covers the homotopy 𝐹. Therefore, the map 𝑝 : 𝐸 → 𝐵 is a
homotopy �bration. □

Let Cocyl(𝐹, 𝑓 ) be a subspace of the cocylinder Cocyl 𝑓 consisting of points
(𝑥, 𝑢𝑑), 𝑥 ∈ 𝑋, 𝑢 : 𝐼 → 𝐸 , such that

(𝑝 ◦ 𝑢) (𝑡) = 𝐹 (𝑥, 𝑡)

for any point (𝑥, 𝑡) ∈ 𝑋 × 𝐼 (and, of course, 𝑢(0) = 𝑓 (𝑥)).

Corollary 9.24. The map 𝑝 : 𝐸 → 𝐵 is a homotopy �bration if and only if
when, for any diagram (diag:09-A1) with delayed homotopy, the projection 𝐹

Cocyl(𝐹, 𝑓 ) → 𝑋

has a cross section.
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9.B The axiom hyper-weak covering homotopy
extension

Similarly, the axiom WCHE can be transferred to the case of homotopy �bra-
tions.

De�nition 9.25. Let for the diagramme

𝐴
𝑓 //

𝜎̃0

��

𝐸

𝑝

��
𝑋 × 𝐼

𝐹
//

𝐹

==

𝐵

(9.26)

where 𝐴 ⊂ 𝑋, 𝐴 = 𝑋 × 0 ∪ 𝐴 × 𝐼 and 𝜎0 is an inclusion, there exists a map

𝐹
′
: (�𝑈 × 𝐼)𝑡0 → 𝐸 , closing the diagramme

𝐴
𝑓 //

𝜎̃0

��

𝐸

𝑝

��
(�𝑈 × 𝐼)𝑡0

𝐹
′
//

𝐹
′

<<

𝐵

(9.27)

in which 𝑡0 > 𝑂, 𝑈 is some closed functional neighbourhood (cf. 2.25) of 𝐴 in

𝑋, (�𝑈 × 𝐼)𝑡0 = (𝑋 × [0, 𝑡0]) ∪ (𝑈 × 𝐼) and 𝐹
′
is the restriction of the map 𝐹 on

(�𝑈 × 𝐼)𝑡0 . Then, if there is a homotopy 𝐹 : 𝑋 × 𝐼 → 𝐸 , closing the diagram
(9.26), then it is said that the map 𝑝 : 𝐸 → 𝐵 satis�es the axiom hyper-weak
covering homotopy extension (in short, the axiom HWCHE).

Proposition 9.28. A map 𝑝 : 𝐸 → 𝐵 is a homotopy �bration if and only if
when it satis�es the axiom hyper-weak covering homotopy extension.

Proof. Let Diagramme (9.26) be given for a homotopy �bration 𝑝 : 𝐸 → 𝐵, for
which there exists Diagramme (9.27) with a closing map 𝐹

′
.

It is clear that without loss of generality, one can put 𝑡0 = 1/2. Let 𝜑 denote
the function 𝑋 → 𝐼 which has the property that 𝜑 = 1 on 𝐴 and 𝜑 = 0 outside
𝑈, and we consider - obviously, a commutative diagramme

𝑋 × [0, 1/2]
𝑔 //

𝜎0

��

𝐸

𝑝

��
𝑋 × [0, 1/2] × 𝐼

𝐺
//

𝐺

88

𝐵

(9.29)

where the maps 𝑔 and 𝐺 are de�ned by the formulae

𝑔(𝑥, 𝜏) = 𝐹
′
(𝑥,min(𝜏 + 𝜑(𝑥))),

𝐺 (𝑥, 𝜏, 𝑡) = 𝐹 (𝑥,min(𝑡 + 𝜏 − 𝑡𝜏 + 𝜑(𝑥)), 1), 0 ≤ 𝑡 ≤ 1,
𝑥 ∈ 𝑋, 0 ≤ 𝜏 ≤ 1/2
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(the formula for 𝑔 makes sense, since 𝜑(𝑥) = 0 for 𝑥 ∉ 𝑈). Since the map 𝑝 is

a homotopy �bration, there exists a map 𝐺 : (𝑋 × [0, 1/2]) × 𝑋 → 𝐸 such that
𝑝 ◦ 𝐺 = 𝐺 and 𝐺 ◦ 𝜎0 ∼𝐵 𝑔.

Let 𝐻 : 𝑋 × [0, 1/2] × 𝐸 be a homotopy over 𝐵 (i.e. such that the point

(𝑝 ◦𝐻) (𝑥, 𝑡, 𝜏) does not depend on 𝑡) connecting the map 𝑔 with the map 𝐺 ◦𝜎0.
Then the formula

𝐹 (𝑥, 𝑡)) =


𝐹
′
(𝑥, 𝑡), if 0 ≤ 𝑡 ≤ 𝜑(𝑥),

𝐻 (𝑥, 𝑡 − 𝜑(𝑥), 2(𝑡 − 𝜑(𝑥)), if 0 ≤ 𝑡 − 𝜑(𝑥) ≤ 1/2,
𝐺

(
𝑥, 12 , 2(𝑡 − 𝜑(𝑥) − 1

)
, if 1/2 ≤ 𝑡 − 𝜑(𝑥) ≤ 1,

will (see Fig. 9.B.1) determine the homotopy 𝐹 : 𝑋 × 𝐼 → 𝐸 , which closes
Diagramme (9.26).

Figure 9.B.1:

This proves that any homotopy bundle satis�es the axiom c.

Conversely, since any diagramme of the form (9.21) is a diagramme (9.26)
with 𝐴 = ∅ and since - assuming that the homotopy 𝐹 is delayed - for the
corresponding diagramme (9.27) (with 𝑈 = ∅), the map 𝐹

′
can be given by the

formula

𝐹
′
(𝑥, 𝑡) = 𝑓 (𝑥), 𝑥 ∈ 𝑋, 0 ≤ 𝑡 ≤ 𝑡0,

then any map 𝑝 : 𝐸 → 𝐵 satisfying the axiom HWCHE will satisfy the axiom
CDH and, therefore, will be a homotopy �bration. □

Remark 9.30. Note that in the last argument we used the axiom HWCHE only
when 𝐴 = ∅.
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9.C Dold's theorem for homotopy �brations

Now we are ready to prove for homotopy �brations an analogue of Theorem
1.71 from the Appendix to Lecture 1.

Theorem 9.31. If for the map 𝑝 : 𝐸 → 𝐵 there exists a enumerable covering
{𝑈𝛼, 𝛼 ∈ 𝐴} of the space 𝐵 such that each map

𝑝𝛼 = 𝑝 |𝑝−1 (𝑈𝛼 ) : 𝑝−1 (𝑈𝛼) → 𝑈𝛼

is a homotopy �bration, then the map 𝑝 : 𝐸 → 𝐵 will also be a homotopy
�bration.

Caveat: The proof is quite involved.

Proof. According to Corollary 9.24 of Proposition 9.28, we must prove that for
any diagram (9.21) with delayed homotopy 𝐹, the projection

𝑞 : Cocyl(𝐹, 𝑓 ) → 𝑋, (𝑥, 𝑢) ↦→ 𝑥,

has a cross section. To do this, it is enough to prove that for some numbered
cover {𝑊𝛽 of the space 𝑋, each map

𝑞𝛽 = 𝑞 |𝑞−1 (𝑊𝛽 ) : 𝑞−1 (𝑊𝛽) → 𝑊𝛽

is a weak map, because then, by applying Lemma 1.63 from the Appendix to
Lecture 1, the map 𝑞 will also be weak, and therefore there will be a section
for it. We prove this by taking {𝑊𝛽} the preimage for homotopy 𝐹, considered
as a map 𝑋 → 𝐵𝐼 from covering {𝑉𝛽; 𝛽 ∈ 𝐵} of the space 𝐵𝐼 , corresponding by
applying Corollary 1.67 of Lemma 1.64 from the Appendix to Lecture 1 to the
covering {𝑈𝛼} of the space 𝐵.

According to the identi�cation described in the Appendix to Lecture 1
for any point 𝑥 ∈ 𝑊𝛽 let 𝐹 (𝑥) ∈ 𝑉𝛽 ⊂ 𝐵𝐼 can be considered as a sequence
(𝑢𝑥1 , . . . , 𝑢𝑥𝑛𝛽 ) of paths 𝑢

𝑥
1 : 𝐼 → 𝑈𝛼1

, . . . , 𝑢𝑥𝑛𝛽 : 𝐼 → 𝑈𝑥𝑛𝛽 where 𝛼1, . . . , 𝛼𝑛𝛽 are

some indexes of 𝐴 (depending only on the index 𝛽 ∈ 𝐵), and 𝑢𝑥
𝑖
(0) = 𝑢𝑥

𝑖−1 (1) for
any 𝑖 > 1. Accordingly, any path 𝑣 : 𝐼 → 𝐸 for which 𝑝 ◦ 𝑣 = 𝐹 (𝑥) can be iden-
ti�ed with the sequence (𝑣1, . . . , 𝑣𝑛𝛽 ) of paths 𝑣1 : 𝐼 → 𝑝−1 (𝑈𝛼1

), . . . , 𝑣𝑛𝛽 : 𝐼 →
𝑝−1 (𝑈𝛼𝑛𝛽 ), such that 𝑝 ◦ 𝑣1 = 𝑢𝑥1 , . . . , 𝑝 ◦ 𝑣𝑛𝛽 = 𝑢𝑥𝑛𝛽 and 𝑣𝑖 (0) = 𝑣𝑖−1 (1) for 𝑖 > 1,

and, therefore, points from sequences of the form (𝑥, 𝑣1, . . . , 𝑣𝑛𝛽 ), where 𝑥 ∈ 𝑊𝛽

ad 𝑣1 (0) = 𝑓 (𝑥) (note that if 𝑥 ∈ 𝑊𝛽, then 𝑝 𝑓 (𝑥) = 𝐹 (𝑥, 0) = 𝑈𝑥1 (0) = 𝑈𝛼1
, which

means 𝑓 (𝑥) ∈ 𝑝1 (𝑈𝛼1
)). Therefore, each section 𝑠 : 𝑊𝛽 → Cocyl(𝐹, 𝑓 ) of the

map 𝑞 over the subspace 𝑊𝛽 will be given by 𝑛𝛽 continuous maps

𝑠𝑖 : 𝑊𝛽 → 𝑝−1 (𝑈𝛼𝑖 )𝐼 , 𝑖 = 1, . . . , 𝑛𝛽 ,

satisfying the relations for any point 𝑥 ∈ 𝑊𝛽

𝑠1 (𝑥) (0) = 𝑓 (𝑥),
𝑠𝑖 (𝑥) (0) = 𝑠𝑖−1 (𝑥)) (1) for 𝑖 > 1,

𝑝 ◦ 𝑠𝑖 (𝑥) = 𝑢𝑥𝑖 for any 𝑖 = 1, . . . , 𝑛𝛽 .

(9.32)
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However, it is convenient here to consider the maps 𝑠𝑖 as homotopies 𝑢𝛽 × 𝐼 →
𝑝−1 (𝑈𝛼𝑖 ) and, accordingly, the maps 𝐹𝑖 : 𝑥 ↦→ 𝑢𝑥

𝑖
as homotopies 𝑈𝛽 × 𝐼 →

𝑈𝛼𝑖 . Then the relations (9.32) will be equivalent to commutativity for each
𝑖 = 1, . . . , 𝑛𝛽 of the diagramme

𝑊𝛽

𝑠𝑖−1◦𝜎𝑖 //

𝜎0

��

𝑝−1 (𝑈𝛼𝑖 )

𝑝𝑖

��
𝑊𝛽 × 𝐼

𝐹𝑖

//

𝑠𝑖

99

𝑈𝛼𝑖

𝑝𝑖 = 𝑝𝛼𝑖 , (9.33)

in which, for 𝑡 = 1, the map 𝑠𝑖−1 ◦ 𝜎1 should be understood as the map 𝑓 .
If the section 𝑠 is set only on the subspace 𝐴 ⊂ 𝑊𝛽 then, of course, there will

be commutative diagrammes obtained from Diagrammes (9.33) by replacing𝑊𝛽

with 𝐴.
We see, therefore, that in order to prove the weakness of the map 𝑞𝛽, we

need to prove for an arbitrary subspace 𝐴 ⊂ 𝑊𝛽 that from the existence for some
of its functional neighbourhood 𝑈 (in 𝑊𝛽) of homotopies 𝑠𝑖 : 𝑈 × 𝐼 → 𝑝−1 (𝑈𝛼𝑖 ,
𝑖 = 1, . . . , 𝑛𝛽 such that commutative diagrammes

𝑈
𝑠𝑖−1◦𝜎𝑖 //

𝜎0

��

𝑝−1 (𝑈𝛼𝑖 )

𝑝𝑖

��
𝑈 × 𝐼

𝐹𝑖

//

𝑠𝑖

::

𝑈𝛼𝑖

(9.34)

take place take place where, for 𝑖 = 1, 𝑠𝑖−1 ◦ 𝜎1 means the map 𝑓 |𝑈 implies the
existence of homotopies 𝑠𝑖 : 𝑊𝛽 × 𝐼 → 𝑝−1 (𝑈𝛼𝑖 ), 𝑖 =, . . . , 𝑛𝛽, such that there are
commutative diagrammes (9.33) and

𝑠𝑖 |𝐴 = 𝑠𝑖 |𝐴 for any 𝑖 = 1, . . . , 𝑛𝛽 .

To this end, we denote by 𝜑 a function 𝑊𝛽 → 𝐼 having the property that
𝜑 = 0 on 𝐴 and 𝜑 = 1 outside 𝑈, and we will introduce into consideration the
set

𝑈𝑖 = 𝜑
−1

( [
0, 1 − 𝑖

𝑛𝛽

] )
, 𝑖 = 1, . . . , 𝑛𝛽 .

It is clear that

𝐴 ⊂ 𝑈𝑛𝛽 ⊂ · · · ⊂ 𝑈𝑖+1 ⊂ 𝑈𝑖 ⊂ · · · ⊂ 𝑈1 ⊂ 𝑈

and the set 𝑈𝑖 for any 𝑖 < 𝑛𝛽 is a functional neighbourhood of the set 𝑈𝑖+1, and
the set 𝑈 is a functional neighbourhood of the set and 𝑈1. We will construct
homotopies 𝑠𝑖 by induction on 𝑖, additionally requiring that for each 𝑖 = 1, . . . , 𝑛𝛽
the following equality holds

𝑠𝑖 |𝑈𝑖×𝐼 = 𝑠𝑖 |𝑈𝑖×𝑖
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that is, so that the commutative Diagramme 9.35 takes place

𝑈𝑖
𝑓 𝑖 //

𝜎̃0

��

𝑝−1 (𝑈𝛼𝑖 )

𝑝𝑖

��
𝑊𝛽 × 𝐼

𝐹𝑖

//

𝑠𝑖

99

𝑈𝛼𝑖

(9.35)

where 𝑈𝑖 = (𝑊𝛽 × 0) ∪ (𝑈𝑖 × 𝐼), 𝜎̃0 is an inclusion, and 𝑓 𝑖, are maps de�ned by
the formulae

𝑓 𝑖 (𝑥, 𝑡) =
{
𝑠𝑖−1 (𝑥, 1), if 𝑡 = 0,

𝑠𝑖 (𝑥, 𝑡) if 𝑥 ∈ 𝑈𝑖 ,

(for 𝑖 = 1 instead of 𝑠𝑖−1 (𝑥, 1) it is necessary, of course, to write 𝑓 (𝑥)).
If the map 𝑝𝑖 were �brations, then the homotopies 𝑠𝑖 would immediately

be built on the basis of the axiom WCHE (see similar arguments in Appendix
to Lecture 1), which, by the way, would give us a new proof of Theorem 1.71
from the Appendix to Lecture 1. However, in the current situation, we can only
use the axiom of the HWCHE, and therefore our design should be somewhat
thinner.

First of all, let us note that by doubling, if necessary, the number 𝑛𝛽, we
can assume that for each index 𝑖 > 1 and any point 𝑥 ∈ 𝑊𝛽 there is not only the
inclusion 𝑢𝑥

𝑖
⊂ 𝑈𝛼𝑖 , but also the inclusion 𝑢𝑥

𝑖
⊂ 𝑈𝛼𝑖−1 . In other words, without

loss of generality, we can also consider each homotopy 𝐹𝑖 to be a homotopy from
𝑊𝛽 to 𝑈𝛼𝑖−1 (and hence the maps 𝑠𝑖, 𝑠𝑖, and 𝑓 𝑖 from Diagrammes (9.34) and
(9.35) as maps in 𝑝−1 (𝑈𝛼𝑖−1 )).

With this in mind and assuming that for some 𝑖 > 1 the homotopy of 𝑠𝑖 − 1
has already been built, let's consider a commutative diagramme

𝑈𝑖
𝑔𝑖 //

𝜎̃0

��

𝑝−1 (𝑈𝛼𝑖 )

𝑝𝑖−1

��
( �𝑈𝑖−1 × 𝐼)1/2

𝐺
′
𝑖

//

𝐺
′
𝑖

88

𝑈𝛼𝑖

in which

𝑈𝑖 = (𝑊𝛽 × 0) ∪ (𝑈𝑖 × 𝐼), ( �𝑈𝑖−1 × 𝐼)1/2 = (𝑊𝛽 × [0, 1/2]) ∪ (𝑈𝑖 × 𝐼),

and 𝑔𝑖 is a map de�ned by the formula

𝑔𝑖 (𝑥, 𝑡) =
{
𝑓 𝑖 (𝑥, 2𝑡), if 0 ≤ 𝑡 ≤ 1/2,
𝑓 𝑖+1 (𝑥, 2𝑡 − 1) if 1/2 ≤ 𝑡 ≤ 1,

(𝑥, 𝑡) ∈ 𝑈𝑖
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and 𝐺
′
𝑖
is the restriction on ( �𝑈𝑖−1 × 𝐼)1/2 of the homotopy 𝐺𝑖 : 𝑊𝛽 × 𝐼 → 𝑈𝛼𝑖−1

speci�ed by the formula

𝐺𝑖 (𝑥, 𝑡) =
{
𝐹𝑖 (𝑥, 2𝑡), if 0 ≤ 𝑡 ≤ 1/2,
𝐹𝑖+1 (𝑥, 2𝑡 − 1) if 1/2 ≤ 𝑡 ≤ 1,

(𝑥, 𝑡) ∈ 𝑊𝛽 × 𝐼 .

It is directly veri�ed that the map 𝐺
′

𝑖 that closes this diagramme can be given
by the formula

𝐺
′

𝑖 (𝑥, 𝑡) =
{
𝑠𝑖 (𝑥, 2𝑡), if 0 ≤ 𝑡 ≤ 1/2,
𝑠𝑖+1 (𝑥, 2𝑡 − 1) if 𝑥 ∈ 𝑈𝑖 .

Therefore, according to the axiom of the HWCHE (for 𝑋 = 𝑊𝛽, 𝐴 = 𝑈𝑖, 𝑈 = 𝑈𝑖−1
and 𝑝 = 𝑝𝑖−1) for the diagramme

𝑈𝑖
𝑔𝑖 //

𝜎̃0

��

𝑝−1 (𝑈𝛼𝑖−1 )

𝑝𝑖−1

��
𝑊𝛽 × 𝐼

𝐺𝑖

//

𝐺𝑖

99

𝑈𝛼𝑖−1

there is a closing homotopy 𝐺𝑖 : 𝑊𝛽 × 𝐼 → 𝑝−1 (𝑈𝛼𝑖−1 ) and it is clear that the
homotopy

𝑠𝑖 (𝑥, 𝑡) = 𝐺𝑖
(
𝑥𝑖 ,
𝑡 + 1
2

)
, (𝑥, 𝑡) ∈ 𝑊𝛽 × 𝐼,

where the point 𝑠𝑖 (𝑥, 𝑡) is considered as a point of 𝑝−1 (𝑈𝛼𝑖 , closes Diagramme
(9.35).

Thus, to complete the proof of Theorem 9.31, it remains to justify only the
initial step of induction, i.e., to construct the map 𝑠1.

If for any 𝑡 ∈ 𝐼 there is an equality

𝑠1 (𝑥, 𝑡) = 𝑓 (𝑥) for 𝜑(𝑥) = 1, (9.36)

such that the map 𝑠1 can be given by the formula

𝑠1 (𝑥, 𝑡) =
{
𝑠1 (𝑥, 𝑡), if 𝑥 ∈ 𝑈,
𝑓 (𝑥), if 𝑥 ∉ 𝑈.

Therefore, Theorem 9.31 will be proved if we show that the ful�lment of condi-
tion (9.36) can always be achieved by appropriately transforming the homotopies
𝑠𝑖 (without, of course, changing them on 𝐴 × 𝐼). Since we will not use the sets
𝑈𝛼𝑖 in this transformation, it is advisable to move from the homotopy 𝑠𝑖 to the
complete homotopy 𝐹 : 𝑈 × 𝐼 → composed of them. The conditions imposed
above on homotopy 𝑠𝑖 (the commutative diagramme (9.34) for the homotopy 𝐹

mean that its initial map 𝐹 ◦ 𝜎0 is a restriction on 𝑈 of the map 𝑓 and that
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this homotopy covers over 𝑈 the homotopy 𝐹 : 𝑋 × 𝐼 → 𝐵. As for the condition
(9.36, for the homotopy 𝐹 it has the form

𝐹 (𝑥, 𝑡) = 𝑓 (𝑥) for 𝜑(𝑥) = 1 and 0 ≤ 𝑡 ≤ 1/𝑛𝛽 . (9.37)

Thus, from the homotopy 𝐹 : 𝑈 × 𝐼 → 𝐸 satisfying the relations 𝐹 ◦ 𝜎0 = 𝑓 |𝑈
and 𝑝 ◦ 𝐹 = 𝐹 |𝑈×𝐼 , we must, while maintaining these relations, proceed to a
homotopy satisfying, in addition, the condition (9.37).

We will de�ne a new homotopy by matching

(𝑥, 𝑡) ↦→ 𝐹 (𝑥, 𝛼(𝑥, 𝑡)), (𝑥, 𝑡) ∈ 𝑈 × 𝐼,
where 𝛼 is a continuous function 𝑈 × 𝐼 → 𝐼 such that:

a) 𝛼(𝑥, 0) = 0 for any point 𝑥 ∈ 𝑈 (this ensures the relation 𝐹 ◦ 𝜎0 = 𝑓 |𝑈 ;

b) if 𝑡0 > 0 is the number provided for the delay condition of the homotopy 𝐹
(i.e. such that 𝐹 (𝑥, 𝑡) = 𝐹 (𝑥, 0)0 for 0 ≤ 𝑡 ≤ 𝑡0; note that this is the �rst
time we use this condition), then the function 𝛼𝑥 : 𝑡 ↦→ 𝛼(𝑥, 𝑡) maps the
segment [0, 𝑡0] to itself, and on the segment [𝑡0, 1] is the identity map (this
requirement ensures that the relation 𝑝 ◦ 𝐹 = 𝐹 |𝑈×𝐼 is preserved);

c) 𝛼(𝑥, 𝑡) = 𝑡 for 𝜑(𝑥) = 0 and any 𝑡 (ensures the invariance on 𝐴);

d) 𝛼(𝑥, 𝑡) = 0 if 𝜑(𝑥) = 1 and 0 ≤ 𝑡 ≤ 1𝑛𝛽 (ensures the ful�lment of the condition
(9.37)).

Assuming for simplicity that 𝑡0 = 1/2, and assuming that 𝑛𝛽 > 2 (both

assumptions obviously do not lose generality), for 𝜑(𝑥) ≤ 𝑛𝛽−1
𝑛𝛽

we will take the

identity map 𝐼 → 𝐼 as the function 𝛼𝑥 , and for 𝜑(𝑥) ≥ 𝑛𝛽−1
𝑛𝛽

we will take a

function linear on each interval with ends at points 0, 1− 𝜑(𝑥), 1/𝑛𝛽, 1/2, 1 and
translating these points into points 0, 1− 𝜑(𝑥), 1− 𝜑(𝑥), 1/2, 1 (see Fig. 9.C.1).

Figure 9.C.1:

It is easy to see that all the conditions a) - d) will be ful�lled at the same
time.

Thus, Theorem 9.31 is fully proved. □





Lecture 10

10.1 Suspension homomorphism and suspension
sequence

The pointed map 𝑆• 𝑓 : 𝑆•𝐴→ 𝑆•𝑋, obtained by applying the functor 𝑆• to the
pointed map 𝑓 : 𝐴 → 𝑋, is also denoted by the symbol 𝐸 𝑓 , and its homotopy
class 𝑆• [ 𝑓 ]• = [𝑆• 𝑓 ] is denoted by the symbol 𝐸 [ 𝑓 ]• (cf. Remark 3.41 of Lecture
3). This notation is especially convenient for 𝐴 = S𝑛, when the homotopy classes
[ 𝑓 ]• are elements of the group 𝜋𝑛𝑋. In this case, by applying the identi�cation
𝑆•S𝑛 = S𝑛+1, we can consider the map 𝐸 𝑓 to be a map S𝑛+1 → 𝑆•𝑋 and,
therefore, the homotopy class 𝐸𝛼 is an element of the group 𝜋𝑛+1𝑆•𝑋. The
resulting map

𝐸 : 𝜋𝑛𝑋 → 𝜋𝑛+1𝑆
•𝑋, 𝛼 ↦→ 𝐸𝛼,

is called a suspension map of homotopy groups.

Remark 10.1. In the literature, the symbol 𝑆 or its variations (say, 𝑆∗ or Σ) is
also used to indicate the map 𝐸 .

In the interpretation of the elements of the group 𝜋𝑛𝑋 as map classes 𝑓 :
(𝐼𝑛, ¤𝐼𝑛) → (𝑋, 𝑥0) the map 𝐸 is given by the correspondence 𝑓 ↦→ 𝐸 𝑓 , where
𝐸 𝑓 is the map (𝐼𝑛+1, ¤𝐼𝑛+1) → (𝑆•𝑋, 𝑥0) de�ned by the formula

(𝐸 𝑓 ) (𝑡, 𝒕) = [ 𝑓 ( 𝒕), 𝑡], 𝑡 ∈ 𝐼, 𝒕 ∈ 𝐼𝑛,

(the cube 𝐼𝑛+1 is identi�ed here with the product 𝐼 × 𝐼𝑛).
An automatic check shows that the formula 𝑖(𝑥) = 𝑢𝑥 , where 𝑢𝑥 (𝑡) = [𝑥, 𝑡],

𝑡 ∈ 𝐼, 𝑥 ∈ 𝑋, de�nes a homeomorphic map (embedding) of the space 𝑋 into
the space Ω𝑆•𝑋 (which is nothing more than an adjoint to the identity map
𝑆•𝑋 → 𝑆•𝑋). The homomorphism 𝑖∗ : 𝜋𝑟𝑋 → 𝑖𝑟Ω𝑆

•𝑋 induced by this selection
is de�ned by the formula 𝑖∗ [ 𝑓 ]• = [𝑔]•, where the map 𝑔 : S𝑟 → Ω𝑆𝑏𝑢𝑙𝑙𝑒𝑡𝑋 maps
the point 𝑥 ∈ S𝑟 to the path 𝑡 ↦→ [ 𝑓 𝑥, 𝑡] of the space §•𝑋. On the other hand, as
we know, there is an isomorphism ℎ : 𝜋𝑟Ω𝑆

•𝑋 → 𝜋𝑟+1𝑆•𝑋, which corresponds
to the class [𝑔]• the class [𝑔]• of the map 𝑔 : S𝑟+1 = 𝑆•S𝑟 → 𝑆•𝑋, de�ned by the
formula 𝑔[𝑥, 𝑡] = 𝑔(𝑥) (𝑡). Therefore, the composite homomorphism ℎ ◦ 𝑖∗ : 𝜋𝑟 →

321
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𝜋𝑟+1𝑆•𝑋 maps to the class [ 𝑓 ]• the class [ 𝑓 ]• of the map 𝑓 : [𝑥, 𝑡] ↦→ [ 𝑓 𝑥, 𝑡], i.e.
the map 𝑆• 𝑓 . This proves that

𝐸 = ℎ ◦ 𝑖∗.

In particular, it follows that the suspension map 𝐸 is a homomorphism (which,
of course, is easily and directly veri�ed). In addition, by introducing an exact
homotopy sequence of the pair (Ω𝑆•𝑋, 𝑋) into consideration

· · · → 𝑝𝑖𝑟𝑋
𝑖∗−→ 𝜋𝑟Ω𝑆

•𝑋
𝑗∗−→ 𝜋𝑟 (Ω𝑆•𝑋, 𝑋)

𝜕−→ 𝜋𝑟−1𝑋 → · · ·

and replacing the group 𝜋𝑛Ω𝑆
•𝑋 in it with the isomorphic group 𝜋𝑛+1𝑆•𝑋, we

get the exact sequence

· · · → 𝑝𝑖𝑛𝑋
𝐸−→ 𝜋𝑛+1Ω𝑆

•𝑋
𝐻−→ 𝜋𝑛 (Ω𝑆•𝑋, 𝑋)

𝑃−→ 𝜋𝑛−1𝑋 → · · · (10.2)

where 𝐻 = 𝑗∗ ◦ ℎ−1 and 𝑃 = 𝜕. This sequence is called the suspension sequence
(or EHP-sequence1) of the space 𝑋 and serves as a powerful means of studying
the homomorphism 𝐸 .

Of course, for speci�c calculations, it is necessary to obtain su�ciently com-
plete information about the rather mysterious homomorphisms 𝐻 and 𝑃 and,
in particular, about the group 𝜋𝑟 (Ω𝑆•𝑋, 𝑋).

The �rst step in this direction is based on the transfer of the notion of a free
monoid known from algebra to the category 𝒯ℴ𝓅•.

10.2 A universal monoid of a pointed space

Let 𝑋 be an arbitrary pointed set. We will call each expression of the form

𝑥1𝑥2 · · · 𝑥𝑛, (10.3)

a word over 𝑋. We will call the word reduced if none of the points 𝑥1, . . . , 𝑥𝑛 is
the base point 𝑥0 of the space 𝑋. An empty word is a (given) word by de�nition.
We will denote the set of all the above words with the symbol 𝐽𝑋. It is obviously
a monoid with respect to the operation of juxtaposing words each other. The
unit of this monoid is the empty word ∅.

However, it is more convenient to de�ne the monoid 𝐽𝑋 somewhat in another
way, by noting that when all the base points included in an arbitrary word are
thrown out, an unambiguously de�ned reduced word is obtained.

𝑋∞ =

∞∐
𝑛=0

𝑋𝑛, 𝑋𝑛 =

𝑛︷        ︸︸        ︷
𝑋 × · · · × 𝑋

in which all words (10.3) with respect to the equivalence relation 𝑢 ∼ 𝑣, if after
throwing out the marked points from the words 𝑢 and 𝑣, the same reduced word
is obtained.

1This terminology is by G. Whitehead.
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(In the language of algebra, this means that 𝐽𝑋 is obtained from a free
monoid over 𝑋 by superimposing the relation 𝑥0 = 1.)

The identi�cation of the set 𝑋 with the set 𝑋1 obviously includes 𝑋 in 𝐽𝑋.
With respect to this embedding, the monoid 𝐽𝑋 has the universal property, i.e.
for any monoid 𝑀 and any pointed map 𝜑 : 𝑋 → 𝑀 (meaning that its unit is
based in 𝑀), there is a unique monoid homomorphism Φ : 𝐽𝑋 → 𝑀, coinciding
on 𝑋 with the map 𝜑:

𝐽𝑋

Φ

!!
𝑋

⊂

OO

𝜑
// 𝑀

(10.4)

In other terminology, this means that

Proposition 10.5. the monoid 𝐽𝑋 is a free monoid generated by the set 𝑋

(in the category of monoids, whose morphisms are homomorphisms of monoids
that translate the unit into the unit).

Now suppose that the set 𝑋 is a topological (pointed) space. Then the
topological space will also be the set 𝑋∞ of all words (as a disjoint union of
topological spaces 𝑋𝑛, 𝑛 ≥ 0), and hence its coset space 𝐽𝑋 (with respect to
the coset topology). In this case, the space 𝑋 will obviously be a subspace of
the space 𝐽𝑋 and in the case when in diagramme (10.4) the monoid 𝑀 is a
topological monoid, and the map 𝜑 is a continuous map, the map Φ will also be
continuous. Nevertheless, it is impossible to assert that 𝐽𝑋 is a free topological
monoid generated by the space 𝑋 for the simple reason that, generally speaking, -
for example, in the case when 𝑋 is a �eld of rational numbers, - the multiplication

𝐽𝑋 × 𝐽𝑋 → 𝐽𝑋 (10.6)

in the monoid 𝐽𝑋 is not continuous, and therefore this monoid simply will not
be a topological monoid. (Here we again encounter the general defect of the
category 𝒯ℴ𝓅, which is already known to us by the example of the exponential
law. As in the case of the exponential law, to eliminate it, you need to go either
to canonical spaces or to canonical maps.)

We will call the monoid 𝐽𝑋 the universal monoid of the pointed space 𝑋.
It is easy to see that for any continuous map 𝑓 : 𝑋 → 𝑌 , the map 𝑓∞ : 𝑋∞ →

𝑌∞, de�ned by the formula 𝑥1 · · · 𝑥𝑛 ↦→ 𝑦1 · · · 𝑦𝑛 where 𝑦1 = 𝑓 (𝑥1), . . . 𝑦𝑛 = 𝑓 (𝑥𝑛),
is continuous and compatible with the factorisation map 𝑋∞ → 𝐽𝑋 and 𝑌∞ →
𝐽𝑌 . Therefore, this map induces some continuous map

𝐽 𝑓 : 𝐽𝑋 → 𝐽𝑌,

and it is obvious that the correspondences 𝑋 ↦→ 𝐽𝑋, 𝑓 ↦→ 𝐽 𝑓 constitute a 𝐽
functor from the category 𝒯ℴ𝓅• to the category of pointed topological spaces
that are simultaneously monoids.

At the same time, it is clear that
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Proposition 10.7. the functor 𝐽, considered as a functor 𝒯ℴ𝓅• → 𝒯ℴ𝓅
•, is

a homotopy functor

(for any homotopy 𝑓𝑡 : 𝑋 → 𝑌 , the maps 𝐽 𝑓𝑡 make up a homotopy from 𝐽𝑋

to 𝐽𝑌), and therefore its homotopy is de�ned by [𝒯ℴ𝓅•] → [𝒯ℴ𝓅•], which we
will denote by the same symbol is 𝐽.

10.3 Filtration of universal monoids

Let 𝑛 ≥ 0, and let 𝐽𝑛𝑋 be the set of all given words 𝑎 = 𝑥1 · · · 𝑥𝑘 where 𝑘 ≤ 𝑛.
This set is the coset of the set 𝑋𝑛, and we will provide it with the appropriate
coset topology.

Let 𝑈1, . . . ,𝑈𝑘 , 𝑘 ≤ 𝑛, be open sets of the space 𝑋 that do not contain its
base point 𝑥0, and let 𝑈0 be an arbitrary (open) neighbourhood of the point 𝑥0.
For any monotone map

𝜆 : [1, . . . , 𝑘] → [1, . . . , 𝑛] (10.8)

we will introduce into consideration the open set 𝑉𝜆𝑛 = 𝑉𝜆𝑛 (𝑈0;𝑈1, . . . ,𝑈𝑘) of the
space 𝑋𝑛 de�ned by the formula

𝑉𝜆𝑛 = 𝑈𝜆1 × · · · ×𝑈𝜆𝑛 ,

where

𝑈𝜆𝑖 =

{
𝑈𝑖 , if 𝑗 = 𝜆(𝑖),
𝑈0, if 𝑗 ∉ im𝜆,

𝑖 = 1, . . . , 𝑛.

Let 𝑉𝑛 = 𝑉𝑛 (𝑈0;𝑈1, . . . ,𝑈𝑘) be the union of all possible sets 𝑉𝜆𝑛 and 𝑊𝑛 =

𝑊𝑛 (𝑈0;𝑈1, . . . ,𝑈𝑘) is its image by the factorisation map 𝑋𝑛 → 𝐽𝑛𝑋. It is clear
that the preimage of the set 𝑊𝑛 of the map 𝑋𝑛 → 𝐽𝑛𝑋 is just the set 𝑉𝑛.
Therefore

Proposition 10.9. all sets 𝑊𝑛 = 𝑊𝑛 (𝑈0;𝑈1, . . . ,𝑈𝑘) are open in 𝐽𝑛𝑋.

Now let 𝑌 be an arbitrary topological space, and𝑊 be a subset of the product
𝐽𝑛𝑋 × 𝑌 that its complete preimage 𝑉 in 𝑋𝑛 × 𝑌 of the natural map

𝑋𝑛 × 𝑌 → 𝐽𝑛𝑋 × 𝑌 (10.10)

is open in 𝑋𝑛 × 𝑌 . Let's show that

Proposition 10.11. if a point 𝑥0 is closed in 𝑋, then for any point (𝑎, 𝑦) ∈
𝐽𝑛𝑋 ×𝑌 there exists a set 𝑊𝑛 = 𝑊𝑛 (𝑈0;𝑈1, . . . ,𝑈𝑘) and an open set 𝑈 ⊂ 𝑌 such
that

(𝑎, 𝑦) ∈ 𝑊𝑛 ×𝑈 ⊂ 𝑊. (10.12)
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Proof. Indeed, let 𝑎 = 𝑥1 · · · 𝑥𝑘 , where 𝑥1, . . . , 𝑥𝑘 ≠ 𝑥0. For any monotone map
(10.8), we de�ne a point 𝑎𝜆 = (𝑥𝜆1 , . . . , 𝑥𝜆𝑘 ) of the space 𝑋 by the formula

𝑥𝜆𝑗 =

{
𝑥𝑖 , if 𝑗 = 𝜆(𝑖),
𝑥0, if 𝑗 ∉ im𝜆,

𝑗 = 1, . . . , 𝑛.

It is clear that (𝛼𝜆, 𝑦) ∈ 𝑉 , and therefore the points 𝑥𝜆1 , . . . , 𝑥
𝜆
𝑘
and 𝑦 have

neighbourhoods 𝑉𝜆1 , . . . , 𝑉
𝜆
𝑘
and𝑈𝜆 such that the neighbourhood 𝑉𝜆1 ×· · ·×𝑉𝜆𝑘 ×𝑈

𝜆

of the point (𝛼𝜆, 𝑦) is contained in 𝑉 . We will put 𝑈 = ∩𝜆𝑈𝜆 where ∩𝜆 means
the intersection across all maps (10.8) and

𝑈0 = ∩𝜆 ∩ 𝑗∈im𝜆 𝑉
𝜆
𝑗 𝑈𝑖 = (𝑋 \ 𝑥0) ∩ ∩𝜆𝑉𝜆𝜆(𝑖) , 𝑖 = 1, . . . , 𝑘 .

Then it is clear that the set 𝑊𝑛 = 𝑊𝑛 (𝑈0;𝑈1, . . . ,𝑈𝑘) is de�ned and (𝑎, 𝑦) ∈
𝑊𝑛 ×𝑈 ⊂ 𝑊 . □

The proven statement entails two simple but important consequences.
First, since all sets of the form 𝑊𝑛 (𝑈0;𝑈1, . . . ,𝑈𝑘) are open in 𝐽𝑛𝑋, the

inclusion (10.12) means that the point (𝑎, 𝜆) is the inner point of the set 𝑊 .
Therefore, due to the arbitrariness of this point, the set𝑊 is open. By de�nition,
this means that the map (10.10) is an epimorphism.

In particular, for any 𝑛, 𝑚 ≥ 0, the epimorphisms will be the maps 𝑋𝑛×𝑋𝑚 →
𝐽𝑛𝑋 × 𝑋𝑚 and 𝐽𝑛𝑋 × 𝑋𝑚 → 𝐽𝑛𝑋 × 𝐽𝑚𝑋, and therefore their component will be
an epiomorphism

𝑋𝑛 × 𝑋𝑚 → 𝐽𝑛𝑋 × 𝐽𝑚𝑋.
Thus, in the commutative diagrammme

𝑋𝑛 × 𝑋𝑚 //

��

𝑋𝑛+𝑚

��
𝐽𝑛𝑋 × 𝐽𝑚𝑋 // 𝐽𝑛+𝑚𝑋

the horizontal arrows of which represent the map of juxtaposition of words, both
vertical arrows are epiomorphisms. Since the upper arrow is a continuous map,
it follows that the lower arrow is also a continuous map. Thus, it is proved that

Proposition 10.13. for any 𝑛, 𝑚 ≥ 0 the map

𝐽𝑛𝑋 × 𝐽𝑚𝑋 → 𝐽𝑛+𝑚𝑋,

induced by multiplication in 𝐽𝑋, is continuous.

Secondly, for 𝑌 = pt, i.e. for the natural epiomorphism 𝑋𝑛 → 𝐽𝑛𝑋, we get
that for any set 𝑊 open in 𝐽𝑛𝑋 and any of its points 𝑎 ∈ 𝑊 there is a set of the
form 𝑊𝑛 such that 𝑎 ∈ 𝑊𝑛 ⊂ 𝑊 . By de�nition, this means that

Proposition 10.14. the sets 𝑊𝑛 = 𝑊𝑛 (𝑈0;𝑈1, . . . ,𝑈𝑘) form the basis of the
topology of the space 𝐽𝑛𝑋.
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The analoguue of the set 𝑊𝑛 (𝑈0;𝑈1, . . . ,𝑈𝑘) in the space 𝐽𝑋 are the sets
𝑊 (𝑈0;𝑈1 . . . ,𝑈𝑘) - images of the factorisation map 𝑋∞ → 𝐽𝑋 of the set

𝑉 =

∞∐
𝑛=𝑘

𝑉𝜆𝑛 (𝑈0;𝑈1 . . . ,𝑈𝑘), 𝑥0 ∈ 𝑈0; 𝑈1, . . . ,𝑈𝑘 ∈ 𝑋 \ 𝑥0,

where 𝜆 runs through all sorts of monotone maps (10.8). It is clear that the
preimage of the set 𝑊 in 𝑋∞ is just the set of 𝑉 . Since the set 𝑉 is obviously
open in 𝑋∞, it follows that all sets 𝑊 (𝑈0;𝑈1, . . . ,𝑈𝑘) are open in 𝐽𝑋.

But it's easy to see that

𝐽𝑛 ∩𝑊 (𝑈0;𝑈1, . . . ,𝑈𝑘) =
{
𝑊𝑛 (𝑈0;𝑈1, . . . ,𝑈𝑘), if 𝑛 ≥ 𝑘,
∅ if 𝑛 < 𝑘.

Therefore (under the previous assumption of the closure of the point 𝑥0 in the
space 𝑋), the topology of the space 𝐽𝑛𝑋 coincides with the topology induced in
𝐽𝑛𝑋 by the topology of the space 𝐽𝑋, i.e.

Proposition 10.15. for any 𝑛 ≥ 0 the space 𝐽𝑛𝑋 is a subspace of the space 𝐽𝑋.

(In fact, this is true without any conditions for the point 𝑥0, but due to
our general attitude to avoid general-topological pathologies, we will not prove
this.)

In addition, it is easy to see (under the same - now essential - assumption of
the closure of the point 𝑥0) that

Proposition 10.16. for any 𝑛 ≥ 0 the subspace 𝐽𝑛𝑋 is closed in the space 𝐽𝑋.

Proof. Indeed, if the point 𝑎 ∈ 𝐽𝑋 does not lie in 𝐽𝑛𝑋, i.e. it has the form 𝑎 =

𝑥1 . . . 𝑥𝑘 , where 𝑘 > 𝑛 and 𝑥1, . . . , 𝑥𝑘 ≠ 0, then its neighbourhood𝑊 (𝑈0;𝑈1, . . . ,𝑈𝑘),
where 𝑈0 = 𝑋, and 𝑈1 = · · · = 𝑈𝑘 = 𝑋 \ 𝑥0, does not intersect with 𝐽𝑛𝑋. □

Moreover,

Proposition 10.17. the space 𝐽𝑋 is a free union (direct limit) of its subspaces
𝐽𝑛𝑋, 𝑛 ≥ 0: 𝐽𝑋 = lim−−→𝑛

𝐽𝑛𝑋.

i.e. the set 𝑊 ⊂ 𝐽𝑋 if and only if it is open in 𝐽𝑋 when for any 𝑛 ≥ 0 the
intersection 𝑊 ∩ 𝐽𝑛𝑋 is open in 𝐽𝑛𝑋.

Proof. Indeed, if 𝑊 is open in 𝐽𝑋, then 𝑊 ∩ 𝐽𝑛𝑋 is open in 𝐽𝑛𝑋, because 𝐽𝑛𝑋
is a subspace of the space 𝐽𝑋. Conversely, let 𝑊 ∩ 𝐽𝑛𝑋 be open in 𝐽𝑋 for any
𝑛 ≥ 0, and let 𝑉 be the complete preimage of the set 𝑊 of the factorisation map
𝑋∞𝐽𝑋, and 𝑊𝑛 is the complete preimage of the set 𝑊 ∩ 𝐽𝑛𝑋 of the factorisation
map 𝑋𝑛 → 𝐽𝑛𝑋. By convention, all sets 𝑉𝑛 are open in 𝑋𝑛. But it is clear that
𝑉 = ∪∞𝑛=0𝑉𝑛, and since 𝑋∞ =

∐∞
𝑛=0 𝑋

𝑛, then, consequently, the set 𝑉 is open in
𝑋∞ Therefore, 𝑊 is open in 𝐽𝑋. □
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An increasing sequence

𝑌0 ⊂ 𝑌1 ⊂ · · · ⊂ 𝑌𝑛 ⊂ · · ·

of subspaces of the space 𝑌 are called �ltration of the space 𝑌 if all subspaces
𝑌𝑛 are closed, and the space 𝑌 is their free union (= inductive limit). Thus,
summing up everything proved, we can say that

Proposition 10.18. the spaces 𝐽𝑛𝑋 constitute a �ltration of the space 𝐽𝑋.

If {𝑌𝑛} is a �ltration of the space 𝑌 , then the map 𝑓 : 𝑌 → 𝐵 is continuous
if all its restrictions 𝑓 |𝑌𝑛 are continuous. With this in mind, consider for any
point 𝑎 ∈ 𝐽𝑋 the maps

𝐿𝑎 :𝐽𝑋 → 𝐽𝑋, 𝑢 ↦→ 𝑎𝑢,

𝑅𝑎 :𝐽𝑋 → 𝐽𝑋, 𝑢 ↦→ 𝑢𝑎.

If 𝑎 ∈ 𝐽𝑚𝑋, then for any 𝑛 ≥ 0 the map 𝐿𝑎 |𝐽𝑛𝑋 decomposes into a composition
of continuous maps

𝐽𝑛𝑋 → 𝐽𝑚𝑋 × 𝐽𝑛𝑋 → 𝐽𝑚+𝑛𝑋 ⊂ 𝐽𝑋,
𝑢 ↦→ (𝑎, 𝑢) ↦→ 𝑎𝑢

and therefore continuous. For similar reasons, the map 𝑅𝑎 |𝐽𝑛𝑋 is continuous.
Therefore,

Proposition 10.19. the maps 𝐿𝑎, 𝑅𝑎 : 𝐽𝑋 → 𝐽𝑋 are continuous.

For any 𝑛 ≥ 1, the factorisation map 𝑋𝑛 → 𝐽𝑛𝑋 is obviously a relative home-
omorphism (𝑋𝑛, 𝑋𝑛𝑛−1) → (𝐽𝑛𝑋, 𝐽𝑛−1𝑋), where, as in the Appendix to Lecture 5,
𝑋𝑛𝑛−1 denotes a subspace a space 𝑋

𝑛 consisting of points, at least one coordinate
of which is the base point 𝑥0 (and for which therefore the corresponding co�bre
- cf. �4.14 - 𝑋𝑛/𝑋𝑛𝑛−1 is an 𝑛-tuple of the mixed power

𝑥∧𝑛 =

𝑛︷        ︸︸        ︷
𝑋 ∧ · · · ∧ 𝑋

of the pointed space 𝑋). Being a relative homeomorphism, the map 𝑋𝑛 → 𝐽𝑛𝑋

induces a homeomorphism of co�bre. Thus, for any 𝑛 ≥ 1 the space 𝐽𝑛𝑋/𝐽𝑛−1𝑋
is homeomorphic to the space 𝑋∧𝑛.

10.4 The case of well-pointed spaces

De�nition 10.20. A �ltration {𝑌𝑛} of the space 𝑌 is called a co�bration �ltra-
tion (or Borsuk �ltration) if for each 𝑛 ≥ 1, the pair (𝑌𝑛, 𝑌𝑛−1) is a co�bration.

It is easy to see that
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Proposition 10.21. for any well-pointed space 𝑋, the �ltration {𝐽𝑛𝑋} of the
space 𝐽𝑋 is a co�bration �ltration.

Proof. Indeed, since the factorisation map 𝑋𝑛 → 𝐽𝑛𝑋 represents a relative home-
omorphism (𝑋𝑛, 𝑋𝑛𝑛−1) → (𝐽𝑛𝑋, 𝐽𝑛−1𝑋), then in the case when the space 𝑋 is
well-pointed (and therefore the pair (𝑋𝑛𝑋𝑛𝑛−1) = (𝑋, 𝑥0)𝑛 is a co�bration), each
pair (𝐽𝑛𝑋, 𝐽𝑛−1𝑋) by applying Lemma 4.41 of Lecture 4 will be a co�bration. □

Lemma 10.22. For any co�bration �ltration{𝑌𝑛} of a space 𝑌 all pairs (𝑌𝑚, 𝑌𝑛),
𝑚 ≥ 𝑛 ≥ 0, as well as all pairs (𝑌,𝑌𝑛), 𝑛 ≥ 0, are co�brations.

Proof. For each pair (𝑌𝑚, 𝑌𝑛), 𝑚 ≥ 𝑛 ≥ 0, the inclusion 𝑌𝑛 → 𝑌𝑚 is a composition
of inclusions 𝑌𝑛 →𝑛+1→ 𝑌𝑛+2 → · · · → 𝑌𝑚, each of which is, by the condition, a
co�bration. Therefore, the inclusion 𝑌𝑛 → 𝑌𝑚 will also be a co�bration. This
proves Lemma 10.22 for a pair (𝑌𝑚, 𝑌𝑛).

Less formally, this reasoning can be stated as follows. The statement that
the pair (𝑌𝑚, 𝑌𝑛) is a co�bration means that the homotopy 𝑓𝑡 : 𝑌𝑛 → 𝑍 extends
to 𝑌𝑚 if its initial map 𝑓0 extends to 𝑌𝑚. But if the map 𝑓0 is extended to
𝑌𝑚, then it is thus extended to 𝑌𝑛+1 (if 𝑛 + 1 ≤ 𝑚). Therefore, since the pair
(𝑌𝑛+1, 𝑌𝑛) is by convention a co�bration, the homotopy 𝑓𝑡can be extended to
𝑌𝑛+1. Applying the same reasoning to this extension, we get an extension of the
homotopy 𝑓𝑡 to 𝑌𝑛+2, etc., until we reach 𝑌𝑚.

If now the map 𝑓0 is extended to all 𝑌 , then this construction will give us
the extension of the homotopy 𝑓𝑡 to each subspace 𝑌𝑚, 𝑚 ≥ 𝑛, and thus give us
the required homotopy 𝑓 𝑡 : 𝑌 → 𝑍 (its continuity is ensured by the fact that

the space 𝑌 is a free union of spaces 𝑌𝑚, on each of which the homotopy 𝑓 𝑡 is
continuous).

This proves Lemma 10.22 for pairs (𝑌,𝑌𝑛). □

With regard to �ltration {𝐽𝑛𝑋}, we get from here that

Proposition 10.23. if the space 𝑋 is well-pointed, then all pairs (𝐽𝑚𝑋, 𝐽𝑛𝑋),
𝑚 ≥ 𝑛 ≥ 0, as well as all pairs (𝐽𝑋, 𝐽𝑛𝑋), 𝑛 ≥ 0, are co�brations.

Since 𝐽0𝑋 = {∅}, we see in particular that for any well-pointed space 𝑋, the
space 𝐽𝑋 is also well-pointed (with respect to the base point 𝜑).

10.5 Meridian maps

Let's return now to the space Ω𝑆•𝑋. For now, we will only assume that the base
point 𝑥0 of the space 𝑋 is functionally separable, i.e. that there is a continuous
function 𝜑 : 𝑋 → 𝐼 such that 𝑓 (𝑥0) = 0 and 𝜑(𝑥) ≠ 0 if 𝑥 ≠ 0. (In particular,
this condition is satis�ed if the space 𝑋 is well-pointed.)

Using the function 𝜑, for ach point 𝑥 ∈ 𝑋 we associate the Moore loop 𝑢𝑥 of
the space 𝑆•𝑋 of length 𝜑(𝑥) de�ned by the formula

𝑢𝑥 (𝑡) =
[
𝑥,

𝑡

𝜑(𝑥)

]
, if 0 ≤ 𝑡 ≤ 𝜑(𝑥).
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Thus, the point 𝑢𝑥 (𝑡), when changing 𝑡 from 0 to 𝜑(𝑥), runs through the meridian
of the suspension 𝑆•𝑋 passing through the point 𝑥. On this basis, we will call
the map 𝑥 ↦→ 𝑦𝑥 from 𝑋 to Ω𝑀𝑆•𝑋 a meridian map.

The composition of the meridian map 𝑋 → Ω𝑀𝑆•𝑋 with the inclusion

Ω𝑀𝑆•𝑋 → Ω𝑀𝑆•𝑋 × R+, 𝑢 ↦→ (𝑢#, 𝑎) (see Lecture 3)

is obviously given by the formula 𝑥 ↦→ (𝑢 (0)𝑥 , 𝜑(𝑥)), where 𝑢 (0)𝑥 is a loop 𝑡 ↦→ [𝑥, 𝑡].
Since the map 𝑥 ↦→ 𝑢

(0)
𝑥 from 𝑋 to Ω𝑆•𝑋 ⊂ (𝑆•𝑋)𝐼 is adjoint to the factorisation

map 𝑋 × 𝐼 → 𝑆•𝑋, (𝑥, 𝑡) ↦→ [𝑥, 𝑡], and therefore continuous, it follows that the

map 𝑥 ↦→ (𝑢 (0)𝑥 , 𝜑(𝑥)) is continuous. Hence,

Proposition 10.24. the meridian map 𝑋 → Ω𝑀𝑆•𝑋 is continuous.

Therefore, due to the universality of the monoid 𝐽𝑋, this map uniquely
extends to

𝒊 : 𝐽𝑋 → Ω𝑀𝑆•𝑋,

which we will also call the meridian map. By de�nition, it is an algebraic
homomorphism of monoids.

Now let (𝑋, 𝑥0) and (𝑌, 𝑦0) be two pointed spaces with functionally distin-
guished base points, and let 𝜑 : 𝑋 → 𝐼, 𝜓 : 𝑌 → 𝐼 be functions such that
𝜑(𝑥0) = 𝜓(𝑦0) = 0 and 𝜑(𝑥) ≠ 0, 𝜓(𝑦) ≠ 0 if 𝑥 ≠ 𝑥0, 𝑦 ≠ 𝑦0. The map
𝐽𝑋 → Ω𝑀𝑆•𝑋 constructed using the function 𝜑 is denoted by 𝒊𝜑, and the map
𝐽𝑌 → Ω𝑀𝑆•𝑌 constructed using the function 𝜓 is denoted by 𝒊𝜓. Then it is
easy to see that

Proposition 10.25. for any pointed map 𝑓 : 𝑋 → 𝑌 the following diagramme

𝐽𝑋
𝐽 𝑓 //

𝒊𝜑
��

𝐽𝑌

𝒊𝜓
��

Ω𝑀𝑆•𝑋
Ω𝑀𝑆• 𝑓

// Ω𝑀𝑆•𝑌

is homotopy commutative.

Proof. Indeed, by matching each point (𝑥, 𝑡) ∈ 𝑋 × 𝐼 the Moore loop 𝐹 (𝑥, 𝑡) ∈
Ω𝑀𝑆•𝑌 of length 𝑎(𝑥, 𝑡) = (1 − 𝑡)𝜑(𝑥) + 𝑡𝜓( 𝑓 (𝑥)), de�ned by the formula

𝐹 (𝑥, 𝑡) (𝜏) =
[
𝑓 (𝑥), 𝜏

𝑎(𝑥, 𝑡)

]
, 0 ≤≤ 𝑎(𝑥, 𝑡),

we will get (as it is easy to see, a continuous) map 𝐹 : 𝑋 × 𝐼 → Ω𝑀𝑆•𝑌 , which
has the property that (𝑥, 0) = 𝑆• 𝑓 ◦ 𝑢𝑥 and 𝐹 (𝑥, 1) = 𝑢 𝑓 (𝑥 ) . The extension of
this map to 𝐽𝑋 will therefore be a homotopy from 𝐽𝑋 to Ω𝑀𝑆•𝑌 , connecting
the map Ω𝑀𝑆• 𝑓 ◦ 𝒊𝜑 to the map 𝒊𝜓 ◦ 𝐽 𝑓 . □

For 𝑋 = 𝑌 and 𝑓 = id, we obtain, in particular, that,
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Proposition 10.26. up to homotopy, the map 𝒊 = 𝒊𝜑 does not depend on the
choice of the function 𝜑, and passing to homotopy classes (i.e., to the category
[𝒯ℴ𝓅•]), that the homotopy class [𝒊]• is a morphism (natural transformation)
of the functor 𝐽 into the functor Ω𝑀𝑆• considered as functors from [𝒯ℴ𝓅•] to
[𝒯ℴ𝓅•]).

Remark 10.27. At �rst glance, it seems that the dependence of the map 𝒊 on
𝜑 can be eliminated by moving from the space Ω𝑀𝑆•𝑋 to the space Ω𝑆•𝑋, i.e.
by combining the map 𝒊 with the retraction 𝑔 : Ω𝑀𝑆•𝑋 → Ω𝑆•𝑋, 𝑢 ↦→ 𝑢#,
since the composition 𝑋 → Ω𝑆•𝑋 of the map 𝑋 → Ω𝑀𝑆•𝑋 with retraction 𝑟

is given by the correspondence 𝑥 ↦→ 𝑢
(0)
𝑥 and therefore does not depend on the

choice of the function 𝜑 (and is the map 𝒊 discussed at the beginning of this
lecture). However, due to the non-associativity of the multiplication in Ω𝑆•𝑋,
the resulting map 𝐽𝑋 → Ω𝑆•𝑋 still depends on the choice of the function 𝜑

(although, of course, only up to homotopy), and therefore the transition from
Ω𝑀𝑆•𝑋 to Ω𝑆•𝑋 does not give any advantages.

10.6 James' theorem and the transformation of
the suspension sequence.

The importance of the meridian map for the theory of homotopy groups is
determined by the following remarkable theorem of James.

Theorem 10.28. For each connected well-pointed space 𝑋, the homomorphism

𝒊∗ : 𝜋𝑛𝐽𝑋 → 𝜋𝑛Ω
𝑀𝑆•𝑋

induced by the map 𝒊 : 𝐽𝑋 → Ω𝑀𝑆•𝑋, is an isomorphism for any 𝑛 ≥ 0.

Remark 10.29. If the space 𝑋 is numerically locally contractible, then, as Puppe
showed, the map 𝒊 is even a homotopy equivalence. However, proving this
statement is somewhat troublesome. We will present the general technique on
which Puppe's reasoning is based in addition to this lecture, but we will leave
the details to the reader (see note 10.C in the Appendix).

The meridian map is, of course, (identical on 𝑋) a map of a pair (𝐽𝑋, 𝑋) into
a pair (Ω𝑀𝑆•𝑋, 𝑋) and therefore induces homomorphism of the corresponding
homotopy sequences. By applying Theorem 10.28 and the �ve lemma, this
homomorphism will be an isomorphism, i.e. all homomorphisms

𝒊∗ : 𝜋𝑛 (𝐽𝑋, 𝑋) → 𝜋𝑛 (Ω𝑀𝑆•𝑋, 𝑋), 𝑛 ≥ 0

will be isomorphisms. Since the groups 𝜋𝑛 (Ω𝑀𝑆•𝑋, 𝑋) are obviously isomorphic
to the groups 𝜋𝑛 (Ω𝑆•𝑋, 𝑋, we see that Theorem 10.281 allows the suspension
sequence of the space 𝑋 to be rewritten in the following signi�cantly simpler
form:

· · · → 𝜋𝑛 (𝑋)
𝐸−→ 𝜋𝑛+1𝑆

•𝑋
𝐻−→ 𝜋𝑛 (𝐽𝑋, 𝑋)

𝑃−→ 𝜋𝑛−1𝑋 → · · · (10.30)
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(here the homomorphisms 𝐻 and 𝑃 di�er, of course, from the homomorphisms
𝐻 and 𝑃 of the corresponding isomorphisms in (10.2)). We will achieve a further
(and �nal) simpli�cation of this sequence in Lecture 182

10.7 The Moore variant of the Serre �bration

To prove Theorem 10.28, we will need a Moore variant of the space 𝑃𝑋.
For any pointed space 𝑋, we denote by 𝑃𝑀𝑋 the space of all Moore paths of

the space 𝑋 starting at the base point 𝑥0. The operation of multiplying Moore
paths obviously determines the action of the monoid Ω𝑀𝑋 on the space 𝑃𝑀𝑋,
i.e. the continuous map

Ω𝑀𝑋 × 𝑃𝑀𝑋 → 𝑃𝑀𝑋, (𝑢, 𝑣) ↦→ 𝑢𝑣,

having the property that, for any Moore path 𝑣 ∈ 𝑃𝑀𝑋 holds,

(i) the equality 𝑢1 (𝑢2𝑣) = (𝑢1𝑢2)𝑣, where 𝑢1, 𝑢2 are arbitrary Moore loops of
Ω𝑀𝑋, and

(ii) the equality 𝑒𝑣 = 𝑣, where 𝑒 is the unit of the monoid Ω𝑀𝑋.

We will consider the space 𝑃𝑀𝑋 s a pointed space with a base point 𝑒.
It is clear that the formula 𝜔𝑀1 (𝑣) = 𝑣(𝑎), where 𝑣(𝑎) is the end of the Moore

path 𝑣, de�nes a continuous pointed map

𝜔𝑀1 : 𝑃𝑀𝑋 → 𝑋,

and it is easy to see that, like the map 𝜔1 : 𝑃𝑋 → 𝑋,

Proposition 10.31. the map 𝜔𝑀1 is a �bration.

Proof. Indeed, for any commutative diagramme

𝑌

𝜎0

��

𝑃𝑀𝑋
𝑓oo

𝜔𝑀1
��

𝑌 × 𝐼
𝐹

//

𝐹

;;

𝑋

The covering homotopy 𝐹 can be de�ned by the formula

𝐹 (𝑦, 𝑡) = 𝑓 (𝑦) · 𝐹𝑦,𝑡 , 𝑦 ∈ 𝑌, 𝑡 ∈ 𝐼,

where 𝐹𝑦,𝑡 is the restriction of the path 𝜏 ↦→ 𝐹 (𝑦, 𝜏), 𝜏 ∈ 𝑌 , on the segment [0, 𝑡]
(so that the length of the path 𝐹 (𝑦, 𝑡) is 𝑎𝑦 + 𝑡, where 𝑎𝑦 is the length of the

path 𝑓 (𝑦)). □

2The transcriber guesses that Postnikov means Chapter 8 of �Cellular Homootopy�.
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The �bre of the �bration 𝜔𝑀1 is obviously the space of the Moore loops Ω𝑀𝑋.
Like the space 𝑃𝑋,

Proposition 10.32. the space 𝑃𝑀𝑋 is contractible.

Proof. Indeed, putting

𝑓𝑡 (𝑣) = 𝑣 | [0,𝑡𝑎] , 𝑣 ∈ 𝑃𝑀𝑋, 0 ≤ 𝑡 ≤ 1,

where 𝑎 is the length of the path 𝑣, we will obviously get a homotopy 𝑓𝑡 :
𝑃𝑀𝑋 → 𝑃𝑀𝑋, for which 𝑓0 = const and 𝑓1 = id. □

10.8 Proof of James' theorem

It is clear that if Theorem 10.28 holds for a space 𝑋, then it holds for any
space homotopically equivalent to 𝑋. On the other hand, it is easy to see that
every space is homotopically equivalent to a space whose base point 𝑥0 has a
contractible neighbourhood rel 𝑥0 (it is enough to glue a whisker3 and apply
Proposition 2.18 of Lecture 2). Therefore, when proving Theorem 10.28, it can
be assumed without loss of generality that in the space 𝑋 the base point has
a contractible neighbourhood 𝑈0, i.e. that this space satis�es the condition
imposed in James' lemma (Lecture 9, Proposition 9.16).

With this in mind, let's consider the space 𝐸 obtained by applying James'
construction to the (as we know, continuous) left shift map 𝐿 : 𝑋 × 𝐽𝑋 → 𝐽𝑋,
(𝑥, 𝑢) ↦→ 𝑥𝑢, and the corresponding map 𝑝 : 𝐸 → 𝑆•𝑋. Since the space 𝑋 is by
condition connected, each map 𝐿𝑥 : 𝑢 ↦→ 𝑥𝑢 is homotopic to the identity map,
and therefore is a homotopy equivalence. Thus, all the conditions of James'
lemma are ful�lled, and therefore, according to this lemma,

Proposition 10.33. the map 𝑝 : 𝐸 → 𝑆•𝑋 is a weak �bration.

Since the map 𝐿 is surjective, the space 𝐸 = (𝐶•𝑋 × 𝐽𝑋) ∪𝐿 𝐽𝑋 is the coset
space of the product 𝐶•𝑋×𝐽𝑋 with respect to the minimum equivalence relation
in which (𝑥, 𝑢) ∼ (𝑥0, 𝑥𝑢). Let 𝐸𝑛 be the image in 𝐸 of the subspace 𝐶•𝑋×𝐽𝑛𝑋 ⊂
𝐶•𝑋 × 𝐽𝑋 by the factorisation map 𝐶•𝑋 × 𝐽𝑋 → 𝐸 .

It is clear that the subspace 𝐸0is naturally homeomorphic to the cone 𝐶•𝑋.
In addition, for any 𝑛 > 1, the preimage of the subspace 𝐸𝑛−1 ⊂ 𝐸𝑛, by the the
factorisation map 𝐶•𝑋 × 𝐽𝑛𝑋 → 𝐸𝑛 is obviously the subspace (𝐶•𝑋 × 𝐽𝑛+1𝑋) ∪
(𝑥0 × 𝐽𝑛𝑋), from which it directly follows that this map represents a relative
homeomorphism of the pair

(𝐶•𝑋 × 𝐽𝑛𝑋, (𝐶•𝑋 × 𝐽𝑛−1𝑋) ∪ (𝑥0 × 𝐽𝑛𝑋)) = (𝐶•𝑋, 𝑥0) × (𝐽𝑛𝑋, 𝐽𝑛−1𝑋)

for the pair (𝐸𝑛, 𝐸𝑛−1). Therefore, for any 𝑛 ≥ 1 the pair (𝐸𝑛, 𝐸𝑛−1) is a
co�bration, and its co�bre 𝐸𝑛/𝐸𝑛−1 is homeomorphic to the co�bre (𝐶•𝑋 ×
𝐽𝑛𝑋)/((𝐶•𝑋 × 𝐽𝑛−1𝑋) ∪ (𝑥0 × 𝐽𝑛𝑋)).

3This technique is called the �whiskering�
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On the other hand, it is clear that for any two pairs (𝑋, 𝐴) and (𝑌, 𝐵) there
is a natural homeomorphism

(𝑋 × 𝑌 )/((𝑋 × 𝐵) ∪ (𝐴 × 𝑌 )) = (𝑋/𝐴) ∧ (𝑌/𝐵)

that is,

Proposition 10.34. the co�bre of the direct product of two pairs is the product
of their co�bres.

Therefore, in particular, the co�bre 𝐸𝑛/𝐸𝑛−1 is homeomorphic to the product

𝐶•𝑋 ∧ (𝐽𝑛𝑋/𝐽𝑛−1𝑋) = 𝐶•𝑋 ∧ 𝑋∧
𝑛

.

But it is easy to see that

Proposition 10.35. if a pointed space 𝑋 is contractible, then for any pointed
space 𝑌 the smash product 𝑋 ∧ 𝑌 is also contractible.

Proof. Indeed, if id𝑋 ∼ const, then id𝑋∧𝑌 = id𝑋 ∧ id𝑌 ∼ const∧ id𝑌 . It follows
directly from the de�nitions that const∧ = const for any map 𝑔. So id𝑋∧𝑌 ∼
const, i.e. the space 𝑋 ∧ 𝑌 is contractible. □

Since the cone 𝐶•𝑋 is contractible, this statement applies, in particular, to
the product 𝐶•𝑋 ∧ 𝑋∧𝑛 . This proves that

Proposition 10.36. for any 𝑛 ≥ 1 the co�bre 𝐸𝑛/𝐸𝑛−1 is contractible.

But it is obvious that

Proposition 10.37. if for a co�bration (𝑋, 𝐴) the subspace 𝐴 and the co�bre
𝑋/𝐴 are contractible, then the space 𝑋 is also contractible.

Proof. (since - see lemma 4.46 of Lecture 4 - it is homotopically equivalent to
the space 𝑋/𝐴). □

Since the space 𝐸0 = 𝐶•𝑋 is contractible, it follows by obvious induction
that

Proposition 10.38. for any 𝑛 ≥ 0 the space 𝐸𝑛 is contractible.

Further, from the fact that the spaces 𝐽𝑛𝑋 constitute the �ltration of the
space 𝐽𝑋, it directly follows that the spaces 𝐸𝑛 constitute the �ltration of the
space 𝐸 . Therefore, for any compact set 𝐶 ⊂ 𝐸 , there exists an 𝑛 ≥ 0 such that
𝐶 ⊂ 𝐸𝑛 (otherwise, all sets (𝐸𝑛/𝐸𝑛−1) ∩ 𝐶 would not be empty and, choosing a
point in each of them, we would get an in�nite discrete subset in 𝐶, which is
impossible due to the compactness of 𝐶). Since each sphere is S𝑟 is compact,
hence it follows that for any map 𝑓 : S𝑟 → 𝐸 there exists an 𝑛 ≥ 0 such
that 𝑓 (S𝑟 ) ⊂ 𝐸𝑛. Therefore, since the space 𝐸𝑛 is contractible, the map 𝑓 is
null-homotopic (as a map in 𝐸𝑛, and therefore as a map in 𝐸). This proves that



334 LECTURE 10.

Proposition 10.39. 𝜋𝑟𝐸 = 0 for any 𝑟 ≥ 0, i.e. that the space 𝐸 is aspherical
in all dimensions (∞-connected).

Now we can proceed directly to the proof of Theorem 10.28.

Proof. (of Theorem 10.28) Let's compare the weak �bration 𝑝 : 𝐸 → 𝑆•𝑋 with
the strong �bration 𝜔1 : 𝑃𝑀 (𝑆•𝑋)𝑡𝑜𝑆•𝑋. Naturally generalising the meridian
map, we have each point 𝑎 = [𝑥, 𝑡]𝐶 ∈ 𝐶•𝑋 is comparable to the Moore path
𝑢𝑎 ∈ 𝑃𝑀 (𝑆•𝑋) of length 𝑡𝜑(𝑥) (where, as above, 𝜑 is an arbitrary function
𝑋 → 𝐼, equal to zero only at the base point 𝑥0 ∈ 𝑋), putting

𝑢𝑎 (𝜏) =
[
𝑥,

𝜏

𝜑(𝑥)

]𝑆
, 0 ≤ 𝜏 ≤ 𝑡𝜑(𝑥).

It is clear that the correspondence (𝑎, 𝑢) ↦→ 𝒊(𝑢)𝑢𝑎 well de�nes the map ℎ : 𝐸 →
𝑃𝑀 (𝑆•𝑋), for which the following diagramme is communicative

𝐸
ℎ //

𝑝
  

𝑃𝑀 (𝑆•𝑋)

𝜔𝑀1zz
𝑆•𝑋

and which therefore induces a homomorphism of the homotopy sequence of the
weak �bration 𝑝 into the homotopy sequence of the �bration 𝜔𝑀1 , which is an
identity map on the groups 𝜋𝑛𝑆

•𝑋. Since on the groups 𝜋𝑛𝐸 this homomor-
phism is an isomorphism (since the groups 𝜋𝑛𝑃

𝑀 (𝑆•𝑋), like the groups 𝜋𝑛𝐸 ,
are zero), it follows from here, by applying the �ve lemma, that the map ℎ

induces isomorphism of homotopy groups of �bres.
To complete the proof of the theorem, it remains to note that above the point

𝑥0, the �bre of the weak �bration 𝑝 is the space 𝐽𝑋, the �bre of the �bration 𝜔1

is the space Ω𝑀𝑆•𝑋 and that on 𝐽𝑋 the map ℎ coincides with the map 𝒊. □



Appendix

In connection with the above proof of James' theorem, the question naturally
arises whether the space 𝐸 involved in it will be not only aspherical in all
dimensions, but also contractible. In this Appendix, we will outline Milnor's
general theory designed to answer these kinds of questions.

10.A Telescope normalisation of �ltrations

Let 𝑋 be an arbitrary topological space and let

𝑋0 ⊂ 𝑋1 ⊂ · · · ⊂ 𝑋𝑛 ⊂ · · ·

be some of its �ltration. The telescope 𝑇 over {𝑋𝑛} is the subspace of the
product 𝑋 ×R+ (where R+ is the set of all non-negative real numbers) consisting
of points (𝑥, 𝑟), 𝑥 ∈ 𝑋, 𝑟 ∈ R+, such that 𝑥 ∈ 𝑋𝑛 if 𝑛 ≤ 𝑟 < 𝑛 + 1. The telescope
T can be visually depicted in Fig. 10.A.1. It can also be imagined as the result

Figure 10.A.1:

of gluing the reversed cylinders 𝐶𝑛+1 = Cyl(𝑖𝑛) of the inclusions 𝑖𝑛 : 𝑋𝑛 → 𝑋𝑛+1
over the spaces 𝑋𝑛 contained in them.

It is easy to see that the subspaces 𝑇𝑛 of the telescope 𝑇 consisting of points
(𝑥, 𝑟) for which 𝑟 ≤ 𝑛, make up its �ltration

𝑇0 ⊂ 𝑇1 ⊂ · · · ⊂ 𝑇𝑛 ⊂ · · ·

This �ltration is said to be a telescopic normalisation of the �ltration {𝑋𝑛}.
Obviously, this �ltration is a co�bration �ltration.

335
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Note that
𝑇𝑛 = 𝐶0 ∪ · · · ∪ 𝐶𝑛−1, for 𝑛 ≥ 1

(where 𝑇0 = 𝑋0).
The projection 𝑝 : (𝑥, 𝑟) ↦→ 𝑥 obviously translates each subspace 𝑇𝑛 into

the corresponding subspace 𝑋𝑛 (i.e., as they say, preserves the �ltration of the
spaces 𝑇 and 𝑋). This means that there is a commutative diagramme

𝑇0 //

𝑝0

��

𝑇1 //

𝑝1

��

· · · // 𝑇𝑛 //

𝑝𝑛

��

𝑇𝑛+1 //

𝑝𝑛+1

��

· · ·

𝑋0
// 𝑋1

// · · · // 𝑋𝑛 // 𝑋𝑛+1 // · · ·

the horizontal arrows of which are inclusions, and the vertical ones are induced
by the map 𝑝.

We will embed 𝑋𝑛 into 𝑇𝑛 by identifying each point 𝑥 ∈ 𝑋𝑛 with the point
(𝑥, 𝑛) ∈ 𝑇𝑛 (this embedding is obviously consistent with the inclusions 𝑋𝑛 ⊂ 𝐶𝑛−1
and 𝐶𝑛−1 ⊂ 𝑇𝑛). Then the map 𝑝𝑛 : 𝑇𝑛 → 𝑋𝑛 will be a retraction. Moreover, it
is easy to see that

Proposition 10.40. the map 𝑝𝑛 : 𝑇𝑛 → 𝑋𝑛 is a strict deformation retraction.

Proof. Indeed, the map 𝑓𝑡 : (𝑥, 𝑟) ↦→ (𝑥, (𝑛 − 𝑟)𝑡 + 𝑦) constitutes a homotopy
�xed on 𝑋𝑛 from 𝑇𝑛 to 𝑇𝑛, connecting the identity map id : 𝑇𝑛 → 𝑇𝑛 with the
map (𝑥, 𝑟) ↦→ (𝑥, 𝑛), which is a composition of the map 𝑝𝑛 and the embedding
𝑋𝑛 → 𝑇𝑛. □

Thus, we see that

Proposition 10.41. all maps 𝑝𝑛 : 𝑋𝑛 → 𝑇𝑛 are homotopy equivalences.

Nevertheless, the complete map 𝑝 : 𝑋 → 𝑇 will not be a homotopy equiva-
lence, in general.

De�nition 10.42. The �ltration {𝑋𝑛} is called homotopically correct if the
map 𝑝 : 𝑋 → 𝑇 is a homotopy equivalence. In this case, it is also said that the
space 𝑋 is the homotopy limit of the subspaces 𝑋𝑛.

10.B Homotopy equivalence of homotopy limits

Let 𝑋 and 𝑌 be two spaces with �ltrations {𝑋𝑛} and {𝑌𝑛}, respectively, and 𝑇𝑋
and 𝑇𝑌 be the corresponding telescopes. Then for any �ltration-preserving map
𝑓 : 𝑋 → 𝑌 the formula

(𝑇 𝑓 ) (𝑥, 𝑟) = ( 𝑓 𝑥, 𝑟), (𝑥, 𝑟) ∈ 𝑇𝑋,

obviously de�nes some kind of telescope-�ltration map 𝑇 𝑓 :: 𝑇𝑋 → 𝑇𝑌 .
On the other hand, since the map 𝑓 : 𝑋 → 𝑌 preserves �ltrations, it de�nes

some map for any 𝑛 ≥ 0
𝑓𝑛 : 𝑋𝑛 → 𝑌𝑛.

Let's �rst consider the special case when 𝑋 = 𝑌 and 𝑋𝑛 = 𝑌𝑛.
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10.C Milnor's theorem

Proposition 10.43 (Milnor). If the map 𝑓 : 𝑋 → 𝑋, preserving the �ltration
{𝑋𝑛} has the property that for any 𝑛 ≥ 0 the map 𝑓𝑛 : 𝑋𝑛 → 𝑋𝑛 is homotopic to
the identity map, then the map

𝑇 𝑓 : 𝑇𝑋 → 𝑇𝑌

is a homotopy equivalence.

Proof. Let 𝑓𝑛,𝑡 : 𝑋𝑛 → 𝑋𝑛 be a homotopy connecting the map id𝑋𝑛 to the map
𝑓𝑛. Then the formula

ℎ𝑡 (𝑥, 𝑟) =



( 𝑓 (𝑥), 𝑛 + 𝑠(2𝑡 + 1)), if 0 ≤ 𝑡 ≤ 1/2, 0 ≤ 𝑠 ≤ 1/2,
( 𝑓 (𝑥), 𝑛 + 2(1 − 𝑠)𝑡 + 2), if 0 ≤ 𝑡 ≤ 1/2, 1/2 ≤ 𝑠 ≤ 1,

( 𝑓𝑛,2−2𝑡 (𝑥), 𝑛 + 2𝑠), if 1/2 ≤ 𝑡 ≤ 1, 0 ≤ 𝑠 ≤ 1/2,
( 𝑓𝑛,1−(3−4𝑠) (2𝑡−1) (𝑥), 𝑛 + 1), if 1/2 ≤ 𝑡 ≤ 1, 1/2 ≤ 𝑠 ≤ 3/4,
( 𝑓𝑛+1,1−(4𝑠−3) (2𝑡−1) (𝑥), 𝑛 + 1), if 1/2 ≤ 𝑡 ≤ 1, 3/4 ≤ 𝑠 ≤ 1,

where 𝑛 = [𝑟] (and, therefore, 𝑥 ∈ 𝑋𝑛), and 𝑠 = 𝑟 − 𝑛, will be well (see Fig.
10.C.1) de�ne the homotopy ℎ𝑡 : 𝑇𝑋 → 𝑇𝑋 connecting he map 𝑇 𝑓 with the

Figure 10.C.1:

map ℎ = ℎ1 de�ned by the formula

ℎ(𝑥, 𝑟) =


(𝑥, 𝑛 + 2𝑠), if 0 ≤ 𝑠 ≤ 1/2,
( 𝑓𝑛,4𝑠−2) (𝑥), 𝑛 + 1), if 1/2 ≤ 𝑠 ≤ 3/4,
( 𝑓𝑛+1,4−4𝑠 (𝑥 ) , 𝑛 + 1), if 3/4 ≤ 𝑠 ≤ 1,

where still 𝑛 = [𝑟] and 𝑠 = 𝑟 − 𝑛. Therefore, it is su�cient to prove that the
homotopy equivalence is the map ℎ.

With this in mind, we note that by applying the equalities

ℎ

(
𝑥, 𝑛 + 1

2

)
= ℎ(𝑥, 𝑛 + 1) = (𝑥, 𝑛 + 1)

the following formula

ℎ(𝑥, 𝑟) =
{
(𝑥, 𝑛 + 2𝑠), if 0 ≤ 𝑠 ≤ 1/2,
ℎ
(
𝑥, 𝑛 + 3−2𝑠

2

)
, if 1/2 ≤ 𝑠 ≤ 1,
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well de�nes some continuous map

𝑔 : 𝑇𝑋 → 𝑇𝑋.

Let

𝜑𝑡 (𝑥, 𝑟) =


(𝑥, 𝑛 + (1 + 6𝑡)𝑠), if 0 ≤ 𝑡 ≤ 1/2, 0 ≤ 𝑠 ≤ 1/4,
(𝑥, 𝑛 + 2(1 − 𝑠) (𝑡 + 𝑠)), if 0 ≤ 𝑡 ≤ 1/2, 1/4 ≤ 𝑠 ≤ 1,

ℎ(𝑥, 𝑛 + 𝑡), if 1/2 ≤ 𝑡 ≤ 1, 𝑡/2 ≤ 𝑠 ≤ (3 − 2𝑡)/2,
(ℎ ◦ 𝑔) (𝑥, 𝑟), if 1/2 ≤ 𝑡 ≤ 1, and either 0 ≤ 𝑠 ≤ 𝑡/2, or (3 − 2𝑡)/2 ≤ 𝑠 ≤ 1.

It is automatically veri�ed (see Fig. 10.C.2) that this formula well de�nes a

  

 

Figure 10.C.2:

homotopy 𝜑𝑡 : 𝑇𝑋 → 𝑇𝑋 such that 𝜑0 = id and 𝜑1 = ℎ ◦ 𝑔. Similarly, the
following formula

𝜓𝑡 (𝑥, 𝑟) =


(𝑥, 𝑛 + (1 + 6𝑡)𝑠), if 0 ≤ 𝑡 ≤ 1/2, 0 ≤ 𝑠 ≤ 1/4,
(𝑥, 𝑛 + 2(1 − 𝑠) (𝑡 + 𝑠)), if 0 ≤ 𝑡 ≤ 1/2, 1/4 ≤ 𝑠 ≤ 1,

𝑔(𝑥, 𝑛 + 𝑡), if 1/2 ≤ 𝑡 ≤ 1, 𝑡/2 ≤ 𝑠 ≤ (3 − 2𝑡)/2,
(𝑔 ◦ ℎ) (𝑥, 𝑟), if 1/2 ≤ 𝑡 ≤ 1, and either 0 ≤ 𝑠 ≤ 𝑡/2, or (3 − 2𝑡)/2 ≤ 𝑠 ≤ 1.

well de�nes a homotopy 𝜓𝑡 : 𝑇𝑋 → 𝑇𝑋 such that 𝜓0 = id and 𝜓1 = 𝑔 ◦ ℎ.
So the map ℎ is indeed a homotopy equivalence (with the inverse homotopy

equivalence 𝑔). □

Corollary 10.44. If

a) the �ltration {𝑋𝑛} of the space 𝑋 is homotopically correct;

b) the �ltration-preserving map 𝑓 : 𝑋 → 𝑋 has the property that for any 𝑛 ≥ 0
the map 𝑓𝑛 : 𝑋𝑛 → 𝑋𝑛 is homotopic to the identity map,

then the map 𝑓 : 𝑋 → 𝑋 is a homotopy equivalence.

Proof. In the (obviously commutative) diagramme below

𝑇𝑋
𝑇 𝑓 //

𝑝

��

𝑇𝑋

𝑝

��
𝑋

𝑓
// 𝑋
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all arrows except the lower one are homotopy equivalences. Therefore, the lower
arrow will also be a homotopy equivalence. □

Remark 10.45. Under the conditions of Corollary 8.39, the map 𝑓 will not, in
general, be homotopic to the identity map.

Corollary 10.46. Let 𝑋 and 𝑌 be topological spaces with �ltrations {𝑋𝑛} and
{𝑌𝑛}, respectively, and let 𝑓 : 𝑋 → 𝑌 be a continuous �ltration-preserving map.
If

a) the �ltrations {𝑋𝑛} and {𝑌𝑛} are homotopically correct;

b) for any 𝑛 ≥ 0, the map 𝑓𝑛 : 𝑋𝑛 → 𝑌𝑛 is a homotopy equivalence;

c) there is a �ltration-preserving map 𝑔 : 𝑌 → 𝑋 such that for every 𝑛 ≥ 0
the map 𝑔𝑛 : 𝑌𝑛 → 𝑋𝑛 is a homotopy equivalence inverse to the homotopy
equivalence 𝑓𝑛 : 𝑋𝑛 → 𝑌𝑛,

then the map 𝑓 : 𝑋 → 𝑌 is a homotopy valence.

Proof. The map 𝑔◦ 𝑓 : 𝑋 → 𝑌 satis�es the conditions of Corollary 10.44. There-
fore, it is a homotopy equivalence. Similarly, the map 𝑓 ◦𝑔 : 𝑌 → 𝑌 is homotopy
equivalence. Therefore, the map 𝑓 will also be a homotopy equivalence (with the
inverse homotopy equivalence ℎ ◦ 𝑔 : 𝑌 → 𝑋, where ℎ : 𝑋 → 𝑋 is the homotopy
equivalence inverse to the homotopy equivalence 𝑔 ◦ 𝑓 : 𝑋 → 𝑋). □

Remark 10.47. The map 𝑔 (though being a homotopy equivalence) will not, in
general, be homotopically equivalent to the inverse of the homotopy equivalence
𝑓 .

Corollary 10.48. If the space 𝑋 has a homotopically correct �ltration {𝑋𝑛}
such that for every 𝑛 ≥ 0 the space 𝑋𝑛 is contractible, then the space 𝑋 is also
contractible.

Proof. This corollary is a special case of Corollary 10.46, corresponding to the
case when 𝑌 = pt (and 𝑌𝑛 = pt for any 𝑛 ≥ 0). □

Interestingly, the conclusion of Corollary 10.46 follows only from conditions
a) and b), so that condition c) is actually super�uous. To prove this, we will
need the following lemma, which explains, by the way, why we call the �ltration
{𝑇𝑛} the normalisation of the �ltration {𝑋𝑛}.

Lemma 10.49. The telescopic normalization {𝑇𝑛} of an arbitrary �ltration
{𝑋𝑛} is homotopically correct.

Proof. The telescope 𝑇 (𝑇) of the telescope 𝑇 = 𝑇 (𝑋) consists of points of the
form (𝑥, 𝑟, 𝑠), where is 𝑥𝑖𝑛𝑋, and 𝑟, 𝑠 ∈ R+, having the property that 𝑥 ∈ 𝑋[𝑟 ]
and 𝑟 ≤ [𝑠]. Therefore, the formula

𝑞(𝑥, 𝑟) = (𝑥, 𝑟, 𝑟 + 1), (𝑥, 𝑟) ∈ 𝑇,
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de�nes some map 𝑞 : 𝑇 → 𝑇 (𝑇), which is a section of the projection 𝑝 : 𝑇 (𝑇) →
𝑇 , (𝑘, 𝑟, 𝑠) ↦→ (𝑥, 𝑟), i.e. such that 𝑝 ◦ 𝑞 = id. In addition, the correspondence
(𝑥, 𝑟, 𝑠) ↦→ (𝑥, 𝑟, (1 − 𝑡)𝑠 + 𝑡 (𝑟 + 1)), 0 ≤ 𝑡 ≤ 1, will determine the homotopy 𝑇 (𝑇)
in 𝑇 (𝑇), connecting the identity map to the map 𝑞 ◦ 𝑝. This proves that the
projection 𝑝 is a homotopy equivalence, and, therefore, the �ltration {𝑇𝑛} is
homotopically correct, □

Theorem 10.50 (Milnor). Let 𝑋 and 𝑌 be topological spaces with �ltrations
{𝑋𝑛}) and {𝑌𝑛}, respectively, and let 𝑓 : 𝑋 → 𝑌 be a continuous �ltration map.

a) the �ltrations {𝑋𝑛} and {𝑌𝑛} are homotopically correct;

b) for any 𝑛 ≥ 0, the map 𝑓𝑛 : 𝑋𝑛 → 𝑌𝑛 is a homotopy equivalence,

then the map 𝑓 is a homotopy equivalence, too.

Proof. Let 𝑔𝑛 : 𝑌𝑛 → 𝑋𝑛 be the homotopy equivalence inverse to the homotopy
equivalence 𝑓𝑛 : 𝑋𝑛 → 𝑌𝑛, and let 𝑖𝑛 : 𝑋𝑛 → 𝑋𝑛+1 and 𝑗𝑛 : 𝑌𝑛 → 𝑌𝑛+1 be
inclusions. Then

𝑖𝑛 ◦ 𝑔𝑛 ∼ 𝑔𝑛+1 ◦ 𝑓𝑛+1 ◦ 𝑖𝑛 ◦ 𝑔 = 𝑔𝑛+1 ◦ 𝑗𝑛 ◦ 𝑔𝑛 ∼ 𝑔𝑛+1 ◦ 𝑗𝑛,

i.e., the following diagramme

𝑌𝑛 //

𝑔𝑛

��

𝑌𝑛+1

𝑔𝑛+1

��
𝑋𝑛 // 𝑋𝑛+1

the horizontal arrows of which are inclusions, is homotopically commutative.
Let 𝐹𝑛 : 𝑌𝑛 × 𝐼 → 𝑋𝑛+1 be a homotopy connecting the map 𝑖𝑛 ◦ 𝑔𝑛 with the map
𝑔𝑛+1 ◦ 𝑗𝑛. By putting

ℎ(𝑦, 𝑟) =
{
(𝑔𝑛 (𝑦), 𝑛 + 2𝑠), if 0 ≤ 𝑠 ≤ 1/2,
(𝐹𝑛 (𝑦, 2𝑠 − 1), 𝑛1), if 1/2 ≤ 𝑠 ≤ 1,

where 𝑛 = [𝑟] and 𝑠 = 𝑟 −𝑛, we will well de�ne a �ltration-preserving continuous
map ℎ : 𝑇𝑌 → 𝑇𝑋, which has the property that for the map ℎ ◦ 𝑇 𝑓 : 𝑇𝑋 → 𝑋

for any 𝑛 > 0, the following commutative diagramme takes place

𝑋𝑛 //

𝑔𝑛◦ 𝑓𝑛
��

𝑇𝑛𝑋

ℎ◦𝑇 𝑓 𝑛
��

𝑋𝑛 // 𝑇𝑛𝑋

the horizontal arrows of which indicate the inclusion 𝑥 ↦→ (𝑥, 𝑛), 𝑥 ∈ 𝑋𝑛. Since
this embedding, as we know, is a homotopy equivalence, and the map 𝑔𝑛 ◦ 𝑓𝑛 is
homotopic to the identity map, it follows that every map (ℎ◦𝑇 𝑓 )𝑛 : 𝑇𝑛𝑋 → 𝑇𝑛𝑌 is
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homotopic to the identity map, and since by applying Lemma 10.49 the �ltration
{𝑇𝑛 (𝑋)} is homotopically correct, then, according to Corollary refcor:10-A1, the
map ℎ ◦ 𝑇 𝑓 will be a homotopy equivalence.

For similar reasons, the map 𝑇 𝑓 ◦ ℎ will be a homotopy equivalence. There-
fore, the map 𝑇 𝑓 also represents a homotopy equivalence (with the inverse
homotopy equivalence ℎ ◦ 𝑘, where 𝑘 is the homotopy equivalence, the inverse
of the homotopy equivalence 𝑇 𝑓 ◦ ℎ). By applying condition a), this proves the
theorem (cf. with the proof of Corollary 10.44). □

10.D Homotopy exactness of co�bration �ltra-
tions

There are several di�erent criteria for homotopy exactness of �ltration. We will
prove the following criterion, which was �rst mentioned, apparently, by Puppe.

Proposition 10.51. Any co�bration �ltration {𝑋𝑛} is homotopically correct.

Proof. First of all, we will build some �ltration-preserving map 𝑞 : 𝑋 → 𝑇𝑋,
and then we prove that it is a homotopy equivalence with the inverse homotopy
equivalence 𝑝 : 𝑇𝑋 → 𝑋.

To construct the map 𝑞, it is su�cient for all 𝑛 ≥ 0 to construct continuous
maps 𝑞𝑛 : 𝑋𝑛 → 𝑇𝑛, having the property that for each 𝑛 ≥ 0 the following
diagramme

𝑋𝑛 //

𝑞𝑛

��

𝑋𝑛+1

𝑞𝑛+1

��
𝑇𝑛 // 𝑇𝑛+1

(10.52)

the horizontal arrows of which are inclusions, are commutative. Indeed, by
putting 𝑞(𝑥) = 𝑞𝑛 (𝑥), if 𝑥 ∈ 𝑋𝑛, we will uniquely de�ne then the map 𝑞 : 𝑋 → 𝑇 ,
which will be continuous, because the maps 𝑞𝑛 are continuous, and the space 𝑋
is a free union of spaces 𝑋𝑛.

We will construct the maps 𝑞𝑛 : 𝑋𝑛 → 𝑇𝑛 by induction on 𝑛, taking for 𝑞0
the identity map of the space 𝑋0 = 𝑇0.

To carry out the induction, we additionally require that there be a homotopy
𝑞𝑛,𝑡 : 𝑋𝑛 → 𝑇𝑛 for any 𝑛 ≥ 0, connecting the map 𝑋𝑛 → 𝑇𝑛, 𝑥 ↦→ (𝑥, 𝑛), with the
map 𝑞𝑛 : 𝑋𝑛 → 𝑇𝑛. To satisfy this condition for 𝑛 = 0, is it su�cient for any
𝑡 ∈ 𝐼 put 𝑞0,𝑡 = id.

Suppose that for some 𝑛 ≥ 0 the map 𝑞𝑛 : 𝑋𝑛 → 𝑇𝑛 and the homotopy
𝑞𝑛,𝑡 : 𝑋𝑛 → 𝑇𝑛 have already been constructed. Let 𝑞𝑛,𝑡 (𝑥) = (𝑞𝑛,𝑡 (𝑥), 𝑟𝑛,𝑡 (𝑥)),
where 𝑞𝑛,𝑡 (𝑥) ∈ 𝑋𝑛 and 0 ≤ 𝑟𝑛,𝑡 (𝑥) ≤ 𝑛 for each point 𝑥 ∈ 𝑋𝑛 (and, of course,
𝑞𝑛,𝑡 (𝑥) ∈ 𝑋𝑘 if 𝑘 ≤ 𝑟𝑛,𝑡 (𝑥) ≤ 𝑘 + 1). We de�ne the homotopy of 𝑄𝑛,𝜏 : 𝑋𝑛 × 𝐼 →
𝑇𝑛+1 of the map 𝑄𝑛 : (𝑥, 𝑡) ↦→ 𝑞𝑛,𝑡 (𝑥), considered as a map in 𝑇𝑛+1, by putting

𝑄𝑛,𝜏 (𝑥, 𝑡) = (𝑞𝑛,𝑡 (𝑥), 𝑟𝑛,𝑡 (𝑥) + 𝜏)
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for any 𝑥 ∈ 𝑋𝑛 and 𝑡, 𝜏 ∈ 𝐼. Let 𝑄 (0)𝑛,𝜏 be the homotopy from 𝑋𝑛 to 𝑇𝑛+1, de�ned

by the formula 𝑄 (0)𝑛,𝜏 (𝑥) = 𝑄𝑛,𝜏 (𝑥, 0). Since by the condition 𝑞𝑛,0 (𝑥) = 𝑛 and

𝑄0
𝑛,𝜏 (𝑥) = 𝑛, then 𝑄 ( (0)𝑛,𝜏 (𝑥) = (𝑥, 𝑛 + 𝜏) and, in particular, 𝑄 (0)

𝑛,1 (𝑥) = (𝑥, 𝑛 + 1).
This means that the map 𝑄 (0)

𝑛,1 represents a limit on 𝑋𝑛 of the map 𝑗𝑛+1 : 𝑋𝑛+1 →
𝑇𝑛+1. Since the pair (𝑋𝑛+1, 𝑋𝑛) is by convention a co�bration, it follows that the

homotopy 𝑄 (0)𝑛,𝜏 is a restriction on 𝑋𝑛 of a homotopy 𝑄𝑛,𝜏 : 𝑋𝑛+1 → 𝑇𝑛+1 such

that 𝑄𝑛,1 𝑗𝑛+1. For the homotopy 𝐻𝑡 : (𝑥, 𝜏) ↦→ 𝑄𝑛,𝜏 (𝑥, 𝑡) from 𝑋𝑛× 𝐼 to 𝑇𝑛+1, this
means that its initial map 𝐻0 : (𝑥, 𝜏) ↦→ 𝑄𝑛,𝜏 (𝑥, 0) = 𝑄 (0)𝑛,𝜏 (𝑥) is a restriction onto

the 𝑋𝑛 × 𝐼 of the map 𝑋𝑛+1 × 𝐼 → 𝑇𝑛+1 de�ned by the formula (𝑥, 𝜏) ↦→ 𝑄𝑛,𝜏 (𝑥).
Therefore, since the pair (𝑋𝑛+1× 𝐼, 𝑋𝑛× 𝐼) is also a co�bration, this homotopy is a
restriction on 𝑋𝑛 × 𝐼 of some homotopy 𝐻𝑡 : (𝑥, 𝜏) ↦→ 𝐻𝑡 (𝑥, 𝜏), 𝑥 ∈ 𝑋𝑛+1, 𝑡, 𝜏 ∈ 𝐼,
which has the property that 𝐻0 (𝑥, 𝜏) = 𝑄𝑛,𝜏 (𝑥) for any point (𝑥, 𝜏) ∈ 𝑋𝑛+1×𝐼 (see
Fig. 10.D.1). Since for 𝑥 ∈ 𝑋𝑛 the equality 𝐻1 (𝑥, 0) = 𝐻1 (𝑥, 0) = 𝑄𝑛,0 (𝑥, 1) =

Figure 10.D.1:

𝑄𝑛 (𝑥, 1) = 𝑞𝑛𝑋 holds, the map 𝑞𝑛+1 : 𝑥 ↦→ 𝐻1 (𝑥, 0) in Diagramme (10.52 is
commutative. In addition, putting for any point (𝑥, 𝑡) ∈ 𝑋𝑛+1 × 𝐼

𝑄𝑛+1 (𝑥, 𝑡) =
{
𝑄𝑛,1−2𝑡 (𝑥), if 0 ≤ 𝑡 ≤ 1/2,
𝐻2𝑡−1 (𝑥, 0), if 1/2 ≤ 𝑡 ≤ 1,

(10.53)

we will get a homotopy 𝑄𝑛+1 : 𝑋𝑛+1 × 𝐼 → 𝑇𝑛+1 connecting the map 𝑥 ↦→
𝑄𝑛+1 (𝑥, 0) = 𝑄𝑛,1 (𝑥) = 𝑗𝑛+1 (𝑥) with the map 𝑞𝑛+1 : 𝑥 ↦→ 𝐻1 (𝑥, 0).

Thus, all maps 𝑞𝑛 are completely constructed by induction. Therefore, the
map 𝑞 is also constructed.

Now we need to show that 𝑝 ◦ 𝑞 ∼ id and 𝑞 ◦ 𝑝 ∼ id. To do this, it is
again su�cient to construct homotopies 𝑓𝑛,𝑡 : 𝑋𝑛 → 𝑋𝑛 and 𝑔𝑛,𝑡 : 𝑇𝑛 → 𝑇𝑛,
connecting the identity maps id𝑋𝑛 , and id𝑇𝑛 with the maps 𝑝𝑛 ◦ 𝑞𝑛 : 𝑋𝑛 → 𝑋𝑛
and 𝑞𝑛 ◦ 𝑝𝑛 : 𝑇𝑛 → 𝑇𝑛 respectively, for any 𝑡 ∈ 𝐼 and every 𝑛 ≥ 0 there exist
commutative diagrammes

𝑋𝑛 //

𝑓 𝑛,𝑡

��

𝑋𝑛+1

𝑓𝑛+1,𝑡
��

𝑋𝑛 // 𝑋𝑛+1

𝑇𝑛 //

𝑔𝑛,𝑡

��

𝑇𝑛+1

𝑔𝑛+1,𝑡

��
𝑇𝑛 // 𝑇𝑛+1
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the horizontal arrows of which are inclusions.
Let's �rst consider the homotopy 𝑓𝑛,𝑡 : id ∼ 𝑝𝑛 ◦ 𝑞𝑛. By construction, the

maps 𝑝𝑛 ◦ 𝑞𝑛,𝑡 : 𝑋𝑛 → 𝑋𝑛 also constitute a homotopy from 𝑋𝑛 to 𝑋𝑛, connecting
the map 𝑝𝑛 ◦ 𝑞𝑛,0 = 𝑝𝑛 ◦ 𝑗𝑛 = id with the map 𝑝𝑛 ◦ 𝑞𝑛,1 = 𝑝𝑛 ◦ 𝑞𝑛. This means
that the map 𝐹𝑛 : 𝑋𝑛 × 𝐼 → 𝑋𝑛, (𝑥, 𝑡) ↦→ 𝑓𝑛,𝑡 (𝑥) coincides on (𝑋𝑛 × 0) ∪ (𝑋𝑛 × 1)
with the map 𝑝𝑛 ◦ 𝑄𝑛 : 𝑋𝑛 × 𝐼 → 𝑋𝑛, (𝑥, 𝑡) ↦→ (𝑝𝑛 ◦ 𝑞𝑛,𝑡 ) (𝑥). As an additional
condition facilitating the construction by induction of the homotopy 𝑓𝑛,𝑡 , we
will require that for any 𝑛 ≥ 0 there exists a homotopy Φ𝑛 : 𝑋 × 𝐼 × 𝐼 → 𝑋𝑛,
�xed on (𝑋 × 0) ∪ (𝑋 × 1) connecting the map 𝑝 ◦𝑄𝑛 with the map 𝐹𝑛.

Assuming now that the homotopies 𝐹𝑛 and Φ𝑛 have already been con-
structed, consider the homotopy 𝑝𝑛+1 ◦𝑄𝑛+1, where 𝑄𝑛+1 is the homotopy given
by formulae (10.53).

So for 𝑥 ∈ 𝑋𝑛 the homotopy 𝑝𝑛+1 ◦𝑄𝑛+1 is given by the formula

𝑝𝑛+1 ◦𝑄𝑛+1 (𝑥, 𝑡) =
{
𝑥, if 0 ≤ 𝑡 ≤ 1/2,
(𝑝𝑛 ◦𝑄𝑛) (𝑥, 2𝑡 − 1), if 1/2 ≤ 𝑡 ≤ 1,

then the formula

Φ𝑛 =

{
𝑥, if 0 ≤ 𝑡 ≤ 1−𝜏

2 ,

Φ
(
𝑥, 2𝑡+𝜏−11+𝜏 , 𝜏

)
, if 1−𝜏

2 ≤ 𝑡 ≤ 1,

where 𝑥 ∈ 𝑋𝑛, 𝑡, 𝜏 ∈ 𝐼, de�nes (well due to the identity Φ(𝑥, 0, 𝜏) = 𝑥) �xed
on (𝑋𝑛 × 0) ∪ (𝑋 × 1) the homotopy Φ𝑛 : 𝑋𝑛 × 𝐼 × 𝐼 → 𝑋𝑛, connecting the
homotopy 𝑝𝑛+1 ◦ 𝑄𝑛+1 on 𝑋𝑛 × 𝐼 with the homotopy 𝐹𝑛. Therefore, - since the
pair (𝑋𝑛+1 × 𝐼, 𝑋𝑛), where 𝑋𝑛 = (𝑋𝑛+1 × 0) ∪ (𝑋𝑛 × 𝐼) ∪ (𝑋𝑛+1 × 1), is, according to
Proposition 2.19 of Lecture 2, a co�bration, - the homotopy Φ is a restriction
�xed on (𝑋𝑛+1×0)∪(𝑋𝑛+1×1) of the homotopyΦ𝑛+1 : 𝑋𝑛+1×𝐼×𝐼 → 𝑋𝑛, connecting
the homotopy 𝑝𝑛+1 ◦𝑄𝑛 + 1 with some homotopy 𝐹𝑛+1, and coinciding with the
homotopy 𝐹𝑛 on 𝑋𝑛 × 𝐼.

Thus, homotopies 𝐹𝑛 are constructed for all 𝑛 ≥ 0.
The construction of the homotopy 𝐺𝑛 : (𝑧, 𝑡) ↦→ 𝑔𝑛,𝑡 (𝑧), 𝑧 ∈ 𝑇𝑛, 𝑡 ∈ 𝐼 is

carried out similarly. As an additional condition, we require that for any 𝑛 ≥ 0
there exists a homotopy Ψ𝑛 : 𝑇𝑛× 𝐼× 𝐼 → 𝑇𝑛 �xed on (𝑇𝑛×0)∪(𝑇𝑛×1), connecting
the homotopy 𝐺𝑛 : 𝑇𝑛 × 𝐼 → 𝑇𝑛 with the homotopy 𝑄𝑛 : 𝑇𝑛 × 𝐼 → 𝑇𝑛 de�ned for
any 𝑧 = (𝑥, 𝑟) ∈ 𝑇𝑛 and each 𝑡 ∈ 𝐼 by the formula

𝑄𝑛 (𝑥, 𝑡) =
{
(𝑥, 2(𝑛 − 𝑟)𝑡 + 𝑟), if 0 ≤ 𝑡 ≤ 1/2,
𝑄𝑛 (𝑥, 2𝑡 − 1), if 1/2 ≤ 𝑡‘1,

and also connecting maps id𝑇𝑛 and 𝑞𝑛 ◦ 𝑝𝑛.
Putting for any point (𝑧, 𝑡, 𝜏) ∈ 𝑇𝑛 × 𝐼 × 𝐼, 𝑧 = (𝑥, 𝑟),

Ψ𝑛 (𝑧, 𝑡, 𝜏) =


(𝑥, 2(𝑛 − 𝑟 + 1 − 2𝜏)𝑡 + 𝑟), if 0 ≤ 𝑡 ≤ 1/2, 0 ≤ 𝜏 ≤ 1/2,
(𝑥, 𝑛 + 3 − 4𝑡 − 2𝜏), if 1/2 ≤ 𝑡 ≤ 3−2𝜏

4 , 0 ≤ 𝜏 ≤ 1/2,
𝑄𝑛 (𝑥, 4𝑡+2𝜏−32𝜏+1 ), if 3−2𝜏

4 ≤ 𝑡 ≤ 1, 0 ≤ 𝜏 ≤ 1/2,
Ψ𝑛 (𝑧, 𝑡, 2𝜏 − 1), if 1/2 ≤ 𝜏 ≤ 1,
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we get a homotopy Ψ𝑛 : 𝑇𝑛× 𝐼× 𝐼 → 𝑇𝑛 �xed on (𝑇𝑛×0) ∪ (𝑇𝑛×1), connecting the
homotopy 𝑄𝑛+1 with the homotopy 𝐺𝑛 on 𝑇𝑛 × 𝐼. Since the pair (𝑇𝑛+1, 𝑇𝑛), and
therefore the pair (𝑇𝑛+1 × 𝐼, 𝑇𝑛), where 𝑇𝑛 = (𝑇𝑛+1 × 0) ∪ (𝑇𝑛 × 𝐼) ∪ (𝑇𝑛+1 × 1), is a
co�bration, the homotopy Ψ𝑛 is a restriction of the homotopy Ψ𝑛+1 : 𝑇𝑛+1×𝐼×𝐼 →
𝑇𝑛+1 �xed on 𝑇𝑛+1×0)∪𝑇𝑛+1×1, connecting the homotopy 𝑄𝑛+1 with a homotopy
𝐺𝑛+1 such that 𝐺𝑛+1 |𝑇𝑛×𝐼 = 𝐺𝑛.

Proposition 10.51 is thus fully proved. □

Remark 10.54. According to Proposition 10.51 and the Corollary 10.48 of Propo-
sition 10.43, the space 𝐸 involved in the proof of James' theorem is contractible.
Therefore, the map ℎ : 𝐸 → 𝑃𝑀 (𝑆•𝑋) is a homotopy equivalence and, therefore,
according to Proposition 2.57 of the Appendix to Lecture 2 - assuming that 𝑝
is a (homotopy at least) �bration, it will be a �bre homotopy equivalence. In
particular, the homotopy equivalence will be the restriction of this map on the
�bre 𝐽𝑋 of the �bration 𝑝, i.e. the meridian map 𝒊. Thus, to prove Puppe's
theorem (see Remark 9.3 of Lecture 9), it is su�cient to prove that the map
𝑝 : 𝐸 → 𝑆•𝑋 is not a weak, but a strong �bration. Recalling the proof of Lemma
9.17 of Lecture 9 and Theorem 9.31 from the Appendix to Lecture 9, we see that
for this, in turn, it is su�cient to prove that under the conditions of this lemma,
the map 𝑝𝑉 : 𝑝−1𝑉 → 𝑉 induced by 𝑝 is a homotopy �bration (two-element
covering {𝑌,𝑊} is obviously enumerable). Pupe shows that for a enumerable
locally contractible space 𝑋, the map 𝑝𝑉 is homotopically equivalent (over 𝑉)
to some homotopy �bration 𝑞 : 𝑉𝑡𝑜𝑉 and, therefore (lemma 2.51 from the Ap-
pendix to Lecture 2), is itself a homotopy �bration. At the same time, for 𝑉
you can take the space (𝑝−1𝑉 × 𝐼) ∪ 𝑓 (𝑉 × 𝑌 ), obtained by gluing the product
𝑝−1𝑉 × 𝐼 to the space 𝑉 × 𝑌 by the map 𝑓 : (𝑢, 1) ↦→ (𝑝(𝑢), 𝑟 (𝑢)), 𝑢 ∈ 𝑝−1𝑉 ,
where 𝑟 : 𝑝−1𝑉 → 𝑌 is the retraction constructed in the proof of Lemma 9.17 of
Lecture 9, and the �bration 𝑞 : 𝑉 → 𝑉 is set by the correspondence (𝑣, 𝑦) ↦→ 𝑣,
𝑢 ∈ 𝑝−1𝑉 , 𝑡 ∈ 𝐼, 𝑣 ∈ 𝑉 .

Detailed conduct of the relevant reasoning we'll leave it to the reader.
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