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Preface

A word from the transcriber

This is an attempt to translate the monumental work of M. M. Postnikov “Lec-
tures on algebraic topology - Fundamentals of homotopy theory” into English.

Postnikov is renowned for many good textbooks on mathematics he has
written, and most of which have been translated into many languages including
English. Unfortunately, as long as the transcriber is aware, no attempt has
been made to translate this work into other languages. That is the reason of
the devil-may-care behaviour of the transcriber, who hopes his attempt is not
a complete waste of time.

The preface by the original authour

This book is a systematic textbook on homotopy theory in the unexpectedly
extensive part that can be constructed without involving homological methods.

As is well-known, teaching and studying algebraic topology is extremely
complicated by the fact that the theory of homology and cohomology, which oc-
cupies a central place in this science- this place (which, by the way, is also true
for the modern stage of its development - with an appropriate, more general un-
derstanding of homology and cohomology), is extremely cumbersome, requiring
for its accurate presentation of entire books. Before reaching at least the sim-
plest applications, the student must cross a vast desert of abstract constructions,
the role and meaning of which remain incomprehensible and unknown for him
for a long time and which he is forced to study only out of trust in the teacher.
The authours of textbooks on algebraic topology have shown a lot of care to
make this road easier for students, but they did not achieve significant results.
Meanwhile, there is a very simple and elegant way of understanding homology
theory, which fits into one or two lectures. Its idea is to define groups of chains
of cellular spaces as relative homotopic groups of spans and on this basis to
build homology and cohomology groups. Of course, this requires a sufficiently
advanced homotopy theory, which therefore needs to be pre-stated. In general,
this path may be painfully difficult: instead of crossing a flat, although boring,
the desert has to overcome the steep slopes and deep gorges of the mountainous
country. But this country is not lifeless, and upon entering it, beautiful views
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almost immediately open up before the traveller, prompting him to move on.
Of course, this path also has its drawbacks, the most important of which is the
creation of a false perspective in the student about the meaning of elementary
homotopy (= not using homology theory) methods and their underestimation
of the power and effectiveness of the methods of homology theory. Another
objection to this path is that without homology theory, the proofs of a number
of key theorems are significantly complicated and made unnecessarily difficult.
However, it should be borne in mind, that the inner nontriviality of the theory
can never be circumvented, and if you manage to pull out the beak, then the tail
gets bogged down. At the same time, subsequently studying homological proofs
of the same theorems and comparing them with elementary homotopy proofs
with full force makes it possible to emphasise the power of homology theory and
easily correct the false impression that was formed at the beginning. Thus, the
advantages of the proposed path significantly outweigh the disadvantages.

The concrete construction of homology theory on the basis of homotopy
theory will be carried out in the next issues of these “Lectures”.

This book grew out of the summary of a special course that I have repeatedly
read to students and postgraduates of the Faculty of Mechanics and Mathemat-
ics of Moscow State University. Each lecture of the presentation in the book
turned out to be a recording of a real oral lecture, although significantly revised.

Due to the acute shortage of time when reading a special course much more
often than in a mandatory course, one has to limit oneself to the idea of evidence,
leaving their detailed conduct to the listeners. Auxiliary statements from other
departments of mathematics need only be formulated with references to the
literature, and examples illustrating the general theory can only be described,
also providing their detailed analysis to listeners. When transferring an oral
lecture to paper, there is no need to preserve these features and, more moreover,
all the evidence should be produced in detail, once the boron of examples is
carried out to the end, and the “extraneous” lemmas are proved. This explains
the unexpected painful volume of some lectures in the book.

Material that was not presented for one reason or another at lectures, it
is taken out in additions. (Thus, the distribution of material by lectures and
supplements in the basics was dictated by the requests of the special course and
has only very little to do with its internal mathematical value and significance.
Nevertheless, when reading the book for the first time, it is recommended to
skip the Appendices and return - contact them as needed.)

Lecture 0 has an introductory character and is devoted to the main expla-
nation is based on examples of the subject and method of algebraic topology.
In Appendix, the exponential law for mapping spaces is stated.

Lectures 1 and 2 are devoted to cofibrations, fibrations and related issues. In
Appendix to these lectures, Dold’s theorems on fibrations are presented. (Dual
theorems are not mentioned. Their formulation and proof are left to the reader.)

In Lecture 3, general construction methods are outlined homotopically in-
variant factors, the necessity of transition to pointed spaces is justified, co-H-
spaces and H-spaces, products and loop spaces are introduced. In Appendix, it
is proved that any connected H-monoid is an H-group.
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Lecture 4 contains a general discussion of the category of pointed spaces and
its relationship with the category of spaces without base points. In connection
with the current issue, the fundamental group is introduced. In Appendix, the
mixing of topological spaces and homotopy classes is studied, the Lyusternik-
Schnirelman category invariant is introduced, and conditions ensuring the nilpo-
tency or abelicity of homotopy class groups are considered.

Lecture 5 presents the usual material about the absolute-homotopy groups,
and in addition, the exact sequences of Puppe are constructed.

Lecture 6 is devoted to covers in general and methods for computing fun-
damental groups in particular. In Appendix, after presenting the necessary
algebraic material, the Seifert-van Kampen theorem is proved.

In Lecture 7 , the concept of degree is introduced and calculated m,,(S™)
groups for m < n. The Appendix sets out standard geometric consequences
of the non-stretchability of the sphere (Borsuk’s theorem on an unbounded
component, topological invariance of dimension, characterisation of sets that do
not dissect the sphere, the theorem of invariance of domain).

In Lecture 8, returning to the general theory of homotopy groups, we in-
troduce relative homotopy groups. In Appendix, the exactness of homotopy
sequences of triples and triads is proved.

In the following lecture 9, the following theory of quasi-fibrations (called
weak fibrations in the book). In Appendix, Dold’s theorem on homotopy fibra-
tions is proved.

Lecture 10 is devoted to James’ product sequence theorem. In Appendix,
well-known general theorems on homotopy properties of filtrations are proved.

This concludes the first part of the course devoted to the general concepts of
homotopy theory and homotopy groups. Only this part of the course is included
in this book.

The following lectures (which make up a separate book “Homotopy Theory
of cellular Spaces”, planned to be published in 1985) mainly concentrate on
around the concept of cellular space.

In Lecture 11, the category of cellular spaces is introduced and studied.
The more troublesome properties of cellular spaces (local contractibility and
paracompactness) are taken out in Appendix.

In Lecture 12, on the basis of the usual smooth approximation technique, the
connectivity of pairs (X, X") and the cell approximation theorem are proved. As
an application, Freudenthal’s theorem with the usual consequences is proved.
In conclusion, the properties of antipodal maps are considered. In Appendix,
after the presentation of the basic concepts of the theory of simplicial spaces,
the approximation theorem is proved in the simplicial version.

In Lecture 13, the category of cellular spaces is compared with the category
of all spaces (the theorem that any topological space is weakly homotopically
equivalent to a cellular space). Whitehead’s theorem on homotopy equivalences
is also proved here. Appendix to this lecture is devoted to the representability
theorems (Brown, Adams and Heller).

At this point, the general theory of cellular spaces is temporarily interrupted
and from the next lecture we turn to the theory of homotopy operations.
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In Lecture 14, general theorems on homotopy operations (arising from the
representability of homotopy groups) are presented, additive operations are
characterised, and Whitehead product is introduced.

Lecture 15 discusses generalised Whitehead product and proves its algebraic
properties (skew-commutativity, bilinearity, and Jacobi identity). In Appendix
to lecture 15 The Hilton-Milnor homotopy theorem is proved - in groups of
bouquets of add-ons.

Geometric properties of multiplication The properties of multiplication and
Whitehead multiplication are discussed in Lecture 16. The Hopf invariant and
its Whitehead generalisations are also introduced there. The Whitehead method
computes the Hopf invariant of the Hopf construction and, in particular, the
Hopf invariant of the Hopf map. In Addition, Hopf invariants generalised by
Hilton are introduced and studied. In particular, the left distributive law for
compositional multiplication is discussed.

In Lecture 17, returning for the last time to cellular spaces, we prove the the-
orem of Blakers and Massey on cutting for triads and, based on it, Freudenthal’s
theorem for any connected spaces.

In lecture 18, the “difficult part of the Freudenthal’s theorem” is proved and
the groups m,,+1(S") and m,.2(S™) are calculated. In calculating the last group,
the key role is played by the fact that the element 7, o 1,41 of group m,+2(S") is
nonzero. The “modern” proof of this fact is based on the theory of cohomology
operations. Since this path is not yet available to us, we are forced to present a
direct geometric proof proposed at the time by G. W. Whitehead.

The material of the final lecture 19 concentrates around the question of the
effect of cell gluing on homotopy groups of 7. For n = 1, we obtain a well-known
description of the generators and relations of the fundamental groups of cellular
spaces, which, in particular, allows us to prove the Seifert-van Kampen theorem
for these spaces in its classical formulation. At n > 1 killing spaces are intro-
duced, Eilenberg-Mac Lane spaces are constructed and the group m, (X", X"~ 1)
is calculated (on this basis and will be built next semester homology theory).
In Appendix to this lecture, three-dimensional manifolds and their fundamental
groups are briefly considered.

Although algebraic topology has developed mainly before the eyes of our
generation, there are already many dark places in its history. This puts the
authors of textbooks on topology in front of a number of intractable tasks, for
example, when compiling a bibliography, which ideally should be an annotated
student’s guide to the labyrinth of journal literature. Without prior clarification
of all priorities, influences and borrowings, any such bibliography will contain
a lot of historical errors and will create an occasion for discussions, accusations
and insults. A simple enumeration of all known to the author of articles (or
only articles used by him), for educational purposes, is almost useless, for sure,
due to the inevitable randomness of their choice, that will give the same result.

Also a very difficult question about the authorship of certain theorems; even
the concept of “the author of the theorem” has no clear explication (say, for
example, who is the author of the theorem that group [K,X] of homotopy
classes of maps from a n-dimensional cellular space K to a (n — 1)-connected



space X is isomorphic to the cohomology group H"(K;r,(X)): Hopf, who first
described the group [K, X], but in other terms and only for the case when X is
S, Whitney, who attracted cohomology, or Whitehead, who introduced cellular
spaces and casually remarked that Whitney’s formulation is suitable for any
cellular spaces?).

Fuchs and Rokhlin in their famous textbook [10] cut the Gordian knot of
these problems in one fell swoop: they left theorems nameless, and in the bibli-
ography they limited to an un-commented list of books and articles containing
additional information to which there are references in the text.

In these “Lectures” another decision was made: a complete and commented
bibliography is given, not only books-with few exceptions-only in Russian the
language is considered the most accessible, and the traditional names of theo-
rems are interpreted as simple, easy-to-reference labels that are not necessarily
associated with authorship (which is why in indisputable cases is specifically
indicated).

M. M. Postnikov
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Lecture 0

In this introductory lecture, we will explain what algebraic topology is and how
it is applied to solving specific geometric problems.

Terminology used by Postnikov: moneomorphism = a homeomorphism onto its
image.

0.1 Extension and retraction tasks

Let X, Y be topological spaces, A be a subspace of the space X, with f: A > Y
and f : X — Y continuous maps. Recall that the map f is called the restriction
of the map f to A, and the map f is the extension (or continuation) of the map
f from A to X, if f(a) = f(a) for any point a € A. The restriction f of the map
7 to A is indicated by the symbol f|a. Equality f = f|a is equivalent to the
equality of f = f oi, where i : A — X is an inclusion (restriction of the identity
map id : X — X).

In the common problem, X, A, Y and f are given and it is required to find
out if ? exists. This problem is represented by a diagramme

A—sx (0.1)
fL A

£ f

Y

where the dotted arrow denotes a map whose existence should be proved, and
the diagramme is assumed to be commutative (we will keep these conventions
throughout the course).

An interesting special case of the extension problem occurs when ¥ = A and
f=id:

A—s (0.2)
idl - )

p
A

The solution r to this problem is called a retracting map (or simply retraction).
When it exists, the subspace A is called a retract of the space X. As a rule,
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to indicate the retracting the letter r is used for map. It is easy to see that a
retracting map is always an epimorphism (a surjective map having the property
that a subset in A is open if and only if its complete preimage in X is open).

For typographical reasons (to save paper) we will write diagramme (0.2) in
the form

Generalisation of the extension problem occurs when in diagramme (0.1)
A is considered an arbitrary space, and i is an arbitrary map. In this case,
the map f we will call the extension of the map f with respect to the map i.
The solution is similar in a logical way to the generalised problem (0.2) we will
call the retraction of the map i, and the map i : A — X, for which there is
a retraction r : X — A, is a retractible map. However, this generalisation, in
essence, does not give anything new, since, as it is easy to see, any retractible
map [ : A — X is a moneomorphism (a homeomorphism to its own image) and
therefore can be considered as an embedding of A in X.

The value of retractions for problem (0.1) is that

Proposition 0.3. a pair (X,A) (i : A — X) has the property that extension
exists for an arbitrary space Y and an arbitrary map f : A — Y if and only if
the subspace A is a retract of the space X (the map i is retractible).

Proof. Indeed, if the retraction r : X — A exists, then the map f = f o r will
obviously be, the extension of the map f, and, conversely, if the map f: X — Y
exists for any map f : A — Y for any space Y, then, in particular, it exists for
Y =A, f=1id4 and is in this case the desired retract r. O

0.2 Lifting and cross-section tasks

Known from general category theory the “trick of turning arrows” translates
problem (0.1) into a dual problem

A<"—X (0.4)

A f
Y

Traditionally, in this problem, it is customary to denote spaces, X, A, Y by E,
B, X, the map i by p, and to write the diagramme in an “inverted” form:

E (0.5)

A l”

X——8B

RN



0.3. THE SUBJECT AND METHOD OF ALGEBRAIC TOPOLOGY 3

The problem (0.5) is called the lifting problem, and the map £ is the lifting of
the map f to E. It is also said that the map f covers the map f.
Dual to problem (0.2)
K4
s
. M

B ——
id

(0.6)

whose solution is called the cross section of the map p. As a rule, the letter s
is used to denote the section. The map p is a retraction of any of its sections
(and, conversely, any retractible map is a section of its retraction). Therefore,
in particular, every map for which there is a section, is an epiomorphism, and
any section of it is a moneomorphism.

Proposition 0.7. For this map p : E — B the problem of lifting (0.5) is soluble
if and only if for an arbitrary space X and an arbitrary map f : X — B, the
map p has a section s : B — E.

Proof. Indeed, if s exists, then the map F = s o f covers the map f, and,
conversely, if the map F : X — E exists for any map f : X — B and any space
X, then, in particular, it exists for X = B, f =idp, and is in this case the desired
section s. O

It is useful to keep in mind that tasks (0.5) and (0.6) (also as generalised
problems (0.1) and (0.2)) make sense in an arbitrary category.

0.3 The subject and method of algebraic topol-
ogy

Algebraic topology can be defined in the first approximation as the science
that deals with the solution of problem (0.1), (as well as problems (0.2), (0.5)
and (0.6) in the category J ¢z of topological spaces and continuous maps.
Since problem (0.1) appears in mathematics almost everywhere (it suffices to
note that any the existence theorem can be considered as a statement about
the solubility in the corresponding category of some problem (0.1)) and since
most mathematical objects are endowed with the structure of a topological
space, this explains why algebraic topology plays one of the key roles in modern
mathematics.

Very often there are specific tasks that do not have the form (0.1), but more
or less easily reduced to task (0.1). General methods and principles of this kind
of information are also usually included in algebraic topology.

Let on the category of 7 ¢z (or on some its sufficiently broad subcategory)
is given a functor II that takes values in some category A. By applying the



4 LECTURE 0.

functor IT to diagramme (0.1), we get the diagramme (0.8)

A —*> X (0.8)

nf
£

1504

representing by writing the problem of finding a morphism ¢ in category A that
satisfies the relation ITf = ¢ o ITi. Each solution of problem (0.1) gives us a
solution ¢ =TIIf of the problem (0.8), so

Proposition 0.9. the solubility of problem (0.8) is a necessary condition for
the solubility of problem (0.1).

Therefore, if problem (0.8) has no solution, then problem (0.1)) is all the
more insoluble.

We can say that the whole algebraic topology comes down to the application
of this simple consideration. Therefore, it is advisable to choose category A and
functor IT only for each specific task. Of course, in order for the transition from
problem (0.1) to problem (0.8) to make practical sense, you need to choose
category A consisting of simpler objects than topological spaces. In principle,
the simplest mathematical objects are considered in algebra. Therefore, one of
the “algebraic” (studied in algebra) categories is usually chosen as category A,
and thus the geometric problem (0.1) is replaced by the algebraic problem (0.8)
(which is usually called the derived algebraic problem).

For problem (0.5), the derived algebraic problem has, of course, the form

I1E

Ip

X — B
Ty

It goes without saying that for wide application the described method re-
quires a sufficiently large stock of functors I1. Therefore, the first technical
task of algebraic topology is the construction and study of such functors. Over
time, as more and more difficult problems (0.1) and (0.5) entered science, it was
necessary to build more and more complex functors I1, and by now algebraic
topology certainly holds the record for the complexity of the specific algebraic
objects used.

Since the affirmative solution of problem (0.8), generally speaking, says noth-
ing about the existence of a solution to problem (0.1), the method of algebraic
topology, in principle, can only give “negative” answers. It is not a disadvan-
tage, but rather an advantage, since it is the theorems about the non-existence
of solutions, as a rule, that are the most difficult and interesting. However,
sometimes (not especially often) it is possible to prove that the solubility of a
derivative algebraic problem is not only necessary, but also sufficient for the
solubility of the original problem. Such results are also included in algebraic
topology.
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0.4 Example: the drum theorem and Brouwer’s
fixed point theorem

Let us illustrate these general remarks with a simple but effective example.

Let E" be a ball |x| < 1 in the space R", and S"~! be an (n — 1)-dimensional
sphere |x| = 1 bounding it. In due course we will show that on the category
of T o there exists such a functor IT taking values in the category of abelian
groups that ITE" = 0 and T1S""! # 0. Using this functor, it is immediately
shown that

Proposition 0.10. the sphere S"~! is not a retract of the ball E™,

i.e. that the problem below has no solution.

id C sr-l g

Indeed, the derived algebraic problem below

id O Hsn—l <—> HE"

with TIE” = 0 and I1S"~! # 0 is obviously insoluble.

The fact that the circle S' is not a retraction of the circle E2 is a theoretical
explanation of why a film can be stretched over the circle, i.e., a drum can be
made. Therefore, the proved theorem is sometimes called the drum theorem.

An easy consequence of the drum theorem is Brouwer’s fixed point theorem,
which states that

Proposition 0.11. for any continuous map f : E™ — E" there is at least one
fized point, i.e. such a point x € E™, that f(x) =x.

Proof. Indeed, if f(x) # x, then a straight line passing through the points x and
f(x) is defined. Let r(x) be the one of the two points of intersection of this line
with the sphere $"~! that is not separated from the point x to the point f(x). If

rix)

Figure 1:

f(x) # x for all points x € E", then this construction defines a continuous map
r: E" — S"! which is obviously a retract map (r(x) = x if x € S*71). Since the
existence of such a map contradicts the drum theorem, the inequality f(x) # x
for all points x € E™ cannot be fulfilled. O

Brouwer’s theorem (and its generalisations) are a source of innumerable the-
orems of the existence of solutions to a wide variety of equations in analysis
(since any equation can be written in the form f(x) — x).
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0.5 Example: complex projective plane and Hopf
map

Another interesting example will be obtained by considering the complex pro-
jective plane CP2, the points of which are the classes [zo : 71 : z2] of proportional
triples (zo,z1,22) € C3, complex numbers other than triples 0 = (0,0,0) (and
whose topology is the coset topology of the space C2\ 0). The points of the
plane CP2, for which zo = 0, constitute an “improper line”, which is naturally
identified with a complex projective line consisting of classes [z : z1] of propor-
tional pairs (zg,z1) € CP?\ 0. Next semester we will construct a contravariant
functor H* from the category of 7 ¢ 7 to the category of (Z/2Z) - ¢ ¢*, graded
algebras over the field of Z/2Z and calculate its value on the spaces CP' and
CP". (Recall that an algebra A is called a graded algebra if it is decomposed
into a direct sum of lineals A", and A"A™ c A™™ for any n and m; the formula
dega = n means that a € A™.) Due to the contravariance of the functor H* after
applying it to diagramme (0.2) (when X = CP? and A = CP!) the following
diagramme is obtained

. )
A*(CP?) == i*(CPY) QL

It turns out that the algebra H*(CP') contains a single nontrivial element T;
(such that Tl2 = 0), and the algebra ﬁ*(CPQ) is generated as a linear space
by two linearly independent elements T» and 77 (such that 75 = 0); in this
case, degT) = degT> = 2. In addition, since the homomorphisms ¢ and ﬁ*(i),
being morphisms of the category (Z/2Z) — ¢ g*, preserve the grading, thus
Ty = aT» and H*(i)T» = bTy, where a,b € Z/2Z. But H*(i)T» o ¢ = id and
therefore a = b = 1. Therefore, T22 = (¢Th)? = go(Tf) = 0, which is impossible,
because T3 # 0 in H*(i)(CP?). The resulting contradiction proves that CP? is
not retractable on CP!.

Note that in this discussion we essentially used the multiplicative structure
of the algebra H*(X).

Let E* be a unit ball of space C? consisting of points (zg,z1) such that
|z0|? +|z1|? < 1. The formula

h:(z0,21) = [20: 210 1= z0)* = |z1]?]

defines - obviously, an epiomorphic - map & : E* — CP?, so that the plane CP?
turns out to be the coset space of the ball E*. On the inside |zo|? +|z1|? < 1 of
the ball E* the map % is a homeomorphism on CP? \ C!, and on its boundary
sphere S3 : |zo]? + |z1|? = 1 - is a continuous map (zg,z1) — [zo : z1] to CPL.
Since the complex projective line CP! is naturally identified with the Riemann
sphere C* (the point [z : z1] corresponds to the complex number z = zo/z; or -
when z; = 0 is the symbol o) and, therefore, with the sphere S?, the last map
is called the Hopf map - we can consider the map $2 — S2. We will denote the
Hopf map by the symbol #.
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The group S' of complex numbers of the form e’ acts on the sphere S$3
according to the formula e'%(zg, z1) = (¢/9z0, ¢'?z1), and the orbits of this action
are large circles of the sphere S3, representing the preimage of the points of the
sphere S? when 7% is selected (so this map induces a homeomorphism $3/S! =
S?).

Thus, we can say that the complex projective plane CP? is obtained from a
ball E* by contracting a certain family of large circle into points of its boundary
sphere S? (just as the real projective space RP" is obtained from the ball E" by
identifying pairs of antipodal points of its boundary sphere $"71).

Suppose that the Hopf map can be extended to E*. This assumption means
that there is a map g : E* — C! satisfying the relation g|gs = %4|gs. But then the
formula r = g o 271 will exactly determine the continuous map r : CP? — CP?!,
identity on CP!, i.e. being retraction. Since such a map cannot exist, this proves
that the Hopf map % : % — S2 does not extend to E*.

0.6 Reduction of the extension problem to the
retraction problem

The relationship between the non-retractibility of CP? onto CP! and the non-
extendibility of Hopf map is quite general.

In the situation of diagram (0.1), i.e. for a pair (X, A) and a continuous map
f A =Y, we can consider the space X Uy Y, which is the coset space of the
disjoint union X LY by the minimal equivalence relation in which a ~ f(a) for
any point a € A. This space is said to be obtained by gluing the space X to the
space Y by map f. This terminology finds its justification in the fact that the
restriction of the factorisation maps X11Y — XU¢Y on Y is, as can be easily seen,
a homeomorphism, so that it is possible, by applying this homeomorphism, to
consider the space Y as a subspace of the space X Uy Y. Similarly, the subspace
X \ A can also be considered a subspace of space X Uy Y, and then equality will
take place

XUrY=(X\A)UY.

The space X Uy Y has the property (called the universal property) that for any
topological space Z and any commutative diagram of the form

b

1
_

~
N=<=—n

N<—
o

——
J

where j and g are continuous maps, and i is an embedding, the map g : XUY —
Z, coinciding on X \ A with g, and on Y with j, is continuous (and has the
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property that the following diagramme commutes.)

\/

XUfY 8

/\

In particular, if the map j is an embedding, and the map g on X\ A is a bijective
map on X \Y, then the map g will be a bijective continuous map and, therefore,
will be a homeomorphism, if the space X Uy Y is compact, and the space Z
is Hausdorff. Since the space X Uy Y is obviously compact when the spaces X
and Y are compact, these conditions are met when X = E*, A = §3, Y = CP!,
Z = CP? and f = #%. Thus, we can assume that the complex projective plane
CP? is obtained as a result of gluing to the sphere S? to the ball E* by means
of the Hopf map:

CP?=E'u; §2

If in diagramme (0.1) there is a map f : X — Y, then by the universal
property (applied to g = f) there is a map g : X UsY — Y, identical on Y,
i.e. being a retraction. Conversely, if there is a retraction r : X Us Y — Y,
then the composition with this retraction, restricted to X, factorisation maps
XUuY — XUyY will be the map X — Y, which is the extension of the map f.
This proves the following proposition.

Proposition 0.12. In diagramme (0.1) the extension f of themap f:A—Y
exists if and only if the space X Uy Y retracts to the space Y.

Thus, the general problem of extension (0.1) is reduced to its particular case
(0.2). This reduction is often useful.

0.7 Vector fields on spheres

Let us now give an example of the problem of lifting (0.5) (or, more precisely,
its special case (0.6)).

A wvector field on a sphere S" is a continuous map that maps to each point
x € S" some vector v(x) touching the sphere at this point. Since the vector v
touching the sphere S" at point x is characterised by the condition (x,v) = 0,
vector fields on S” can be considered as continuous maps v : " — R"*! satisfying
the relation (x,v(x)) = O, x € S". We will be particularly interested in fields
consisting of vectors of unit length, and such sets of them that at each point their
vectors are orthogonal. In other words, we will be interested in sets vi,...,v,
of such selections v; : " — S", i =1,...,m that at any point x € S” there are
equalities (x,v;(x)) = 0 and (v;(x),v;(x)) = O0,i=1,...,m. We will call such
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sets m-frame fields (or, in short, m-fields) on the sphere S". Of course, it is
assumed here that 0 < m < n.

If n = 2k — 1, then we can treat the sphere S" as the unit sphere of the
complex space C¥, and then the formula v(x) = ix, where i = V-1, will obviously
define some 1-field on S". For n = 4k — 1 the sphere S" is the unit sphere of the
quaternion space H¥ and formulae v; (x) = ix, vo(x) = jx, v3(x) = kx define some
3-field on S"™. Similarly, using the so-called Clifford algebras, the special cases
of which are the algebras C and H, on the sphere S" it is possible, as Radon and
Hurwitz showed, to construct a (2¢+8b—1)-field where a and b are integers such
that 0 < a < 3 and 29+%? is the highest power of two which divides the number
n+ 1. The question arises whether this result is accurate or whether there are
such n that an m-field can be constructed on the sphere S" for m > 2¢ +8b. For
example, for i = 5, the Radon-Hurwitz method gives us only a 1-field on the S$°
sphere. Is there a 2-field on this sphere?

To answer this question, we must reformulate it in the form of one of the tasks
(0.1) - (0.6). To this end, we will introduce into consideration the set V,41 m+1
of all (m + 1)-frames of the space R**!, i.e. (m + 1)-member of orthonormal
families of vectors (v1, ..., v;u+1) of this space. Since (m+1)-frames are naturally
identified with (m + 1) X (n + 1)-matrices whose columns are orthonormal, the
set Vyi1,m+1 turns out to be a subset of the topological space R(m + 1,n + 1)
of all (m + 1) X (n+ 1)-matrices, and therefore itself is a topological space (in
fact, even a smooth manifold). It is clear that by comparing for each point

(V15 s Vime1) € Vit me1 with vectors v € S, we get a continuous map

D Virime — S (0.13)
Now if {vi,...,v;u} is an arbitrary m-field on S", then the formula s(x) =
W1 (x),...,vu(x),x), x € S", will determine the section s : S" — V41 ms1 to

the map p and, conversely, any cross section of this map will specify some m-
field. Thus, the question of the existence of a field of m-frames on the sphere
S™ is reformulated in the form of a question about the existence of at least one
section for the map (0.13).

The corresponding derivative algebraic problem (obtained by using the func-
tor H*) has the form

_ H*(p) _
id O H*(S") T H* (Via1,m+1) (0.14)

where, as it turns out, H*(S") is a graded algebra over Z/2Z with one generator o
of degree n, subordinate to the relation o = 0. As for the algebra ﬁ*(VMLmJ,l),
then, as can be shown, in this algebra all elements of degree < n are equal to zero
and there is the only non-zero element a of degree n, which is the image of the
element o mapped by H*(p). Therefore, the map ¢ : ﬁ*(Vn+1,m+1) — H*(S"),
which closes the diagram (0.14), should be determined by the formula

_ o, if &=q, ~,
So(f) - {0, if f £ a, “;: €H (Vn+l,m+1)
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Since this map is obviously a homomorphism of algebras, we do not get any
contradiction. This means that for the problem under consideration, the functor
H* was too weak to give a definite answer.

However, as we will show in the next semester, the H* functor actually
takes values in the category of graded Z/2Z-algebras, which are simultaneously
modules over some remarkable algebra called the Steenrod algebra. Therefore,
the map ¢ in the diagram (0.14) must be not only a homomorphism of algebras,
but also a homomorphism of modules, i.e. it must be permutable with actions
of elements of the Steenrod algebra. The Steenrod algebra is quite complicated,
but it is enough for us now to know that for any m > 1 it has an element denoted
by the symbol Sq"”, under the action of which the degrees of all elements of the
algebra H*(X) increase by m. Since there are no nonzero elements of degree # n
in the algebra H*(S"), it follows that Sq™ o = 0 for any m > 1. At the same time,
it turns out (a very non-trivial fact!) that if m = 2% is the highest power of two
dividing the number n + 1, then in the algebra ﬁ*(VMLmH) there is a relation
Sq™ a # 0. Therefore for m = 2%, the above map ¢ cannot be a homomorphism
of modules (because then the equality Sq™ @ = Sq™ ¢(0) = ¢(Sq™ o) = ¢(0) =0
would take place.) This proves that the field of 2X-frames on the sphere S does
not exist. In particular, there is no 2-field on the sphere S°.

If, as above, we represent k as a + 4b, where 0 < a < 3, then the equality
2k = 24 4 8p will take place only when b = 0. Therefore, for b > 0, the proven
result (known, by the way, as the theorem of Steenrod and Whitehead) gives
only a partial answer to the above question. The full answer (asserting the
accuracy of the Radon-Hurwitz estimate) was obtained about twenty years ago
by Adams, who used a very powerful functor KO (which we will also study the
next year).

0.8 Homotopies, cofibrations, and the effective-
ness of the algebraic topology method

We see that the solution of a particular problem by the method of algebraic
topology is naturally divided into two stages. At the first stage, this problem
is reformulated as one of the problems (0.1), (0.2), (0.5) and (0.6), and at the
second stage, the corresponding derived algebraic problem is studied. The main
difficulty here lies in choosing a suitable algebraic functor, which, on the one
hand, must be efficiently computable (at least for the spaces involved in the
problem only) and, on the other hand, must take values in the category of
which structurally has sufficiently rich objects to give a definite answer.

The examples considered are characteristic of algebro-topological problems
also in the sense that these problems are, as a rule, nontrivial and interesting
already for the simplest (from the point of view of general topology) spaces-
spheres, balls, their ‘finite unions’ (so-called “polyhedra”) etc. Therefore, al-
though we formulated the main problems of algebraic topology without any
a priori conditions for the spaces appearing in them, but in practice we will
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not hesitate to impose on these spaces any general methodological restrictions
such as, say, the axioms of separability or certain conditions of local simplicity,
which for one reason or another will be convenient for us. Exemption from these
conditions will lie beyond the scope of our presentation.

However, even the simplest topological spaces have the cardinality of contin-
uum, and efficiently computable algebraic objects are finite or countable. This
means that when moving from task (0.1) to task (0.8), there is a colossal loss
of information. Only for this reason, strictly speaking, the method of algebraic
topology turns out to be applicable to specific geometric problems. But, the
question is, why is it not lost essential information, i.e. why does algebraic
topology successfully slip between the Scylla of non-computable informative-
ness and the Charybdis of computable uninformativeness?

(Transcriber’s note: Scylla and Charybdis are sea monsters appearing in Greek
mythology. “Between Scylla and Charybdis” means “to choose the lesser of two
evils”.)

The answer to this question turns out to be very interesting.

Definition 0.15. Let X and Y be topological spaces. A homotopy from X to Y
is an arbitrary continuous map

F:XxI—7Y, (0.16)
where I = [0,1] is a unit segment.

Any homotopy (0.16) by the formula
fix)=F(x,1), xeX,0<t<1,

that is, according to the formula f; = Fooy, 0 <t <1, where 07 : X — X X1 -
map x — (x,t), defines a family of continuous maps

fi:X—>Y, 0<t<l. (0.17)

Such a family is also called a homotopy from X to Y. Thus, a family of maps
fi : X > Y is a homotopy if and only if when the map F : X X I — Y is defined
by the formula F(x,t) = f;(x), x € X, 0 <t < 1, continuously. In this case, it is
also said that the maps f; continuously depend on t.

Homotopy (0.16) and (0.17) is said to connect the map fp : X — Y with the
map f1: X =Y.

Maps f,g : X — Y are called homotopic if there exists a homotopy F :
X x I — Y connecting the map f with the map g (i.e. such that f = fo and
g = f1). In this case, write F : f ~ g or just f ~ g.

Clearly, the homotopy of two maps means that one of them can be continu-
ously transformed into the other.

The question of homotopy of maps f,g : X — Y is obviously equivalent to
the problem of extension the map /& : (X Xx0) U (X x1) —» Y to X X I, given by

the formula
Wy < {70 1=0,
g(x), if r=1.
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Thus, homotopy theory (which studies the homotopy relation of maps) is in-
cluded in algebraic topology.
It is easy to see that

Proposition 0.18. on the set of T on(X,Y) of all continuous maps X — Y,
the homotopy relation is an equivalence relation.

Proof. Indeed, first of all, F : f ~ f where F(x,t) = f(x) for any x € X and
t € I. Secondly, if F: f ~ g then G : g ~ f, where G(x,1) = F(x,1—1t), x € X,
tel. Finally,if F: f ~gand G: g ~ h, then H: f ~ h, where

Hixn) F(x,2t), if 0<tr=1/2,
X, 1) =
G(x,2t-1), if 1/2<r<1.

O

Therefore, all continuous maps of X — Y are divided into classes of homotopy
maps to each other. These classes are called homotopy classes of maps from X
to Y.

The set of all homotopy classes of maps from X to Y is denoted by the symbol
[X,Y], and the class containing this map f : X — Y is denoted by the symbol
/1.

The transition to homotopy classes makes everything significantly more ef-
ficient, since for “reasonable” spaces X and Y the set [X,Y] turns out to be, as
a rule, finite, or countable.

Definition 0.19. It is said that the map i : A — X is a cofibration or that
it satisfies the homotopy extension axiom (aziorn HE) if for any space Y, any
homotopy f; : A — Y and any map f: X —» Y satisfying the relation foi-fo,
there exists a homotopy ft X — Y such that fo = f and f, oi = f; for any

\/
|

AxI—>X><I

X F(a,t) = fi(a), F(x,0)=f,(x). (0.20)

A pair (X, A) consisting of a space X and its subspace A is called a cofibration
(or Borsuk pair) if the inclusion i : A — X satisfies the axiom HE.
In particular, for any cofibration (X, A), it follows that

Proposition 0.21. if the maps f,g : A — Y are homotopic and f is extensible
to X, then g is also extensible to X.
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In other words, for the cofibration (X, A), the map property f : A — Y is
extensible to X depends only on its homotopy class [f]. This means that in
problem (0.1) we can consider their homotopy classes instead of maps, which,
according to the above, leads us from the world of continuum powers to the
world of countable sets, for an adequate study of which there are no obvious
obstacles by means of algebra. This explains, why, for cofibrations, the method
of algebraic topology makes it possible to efficiently solve problem (0.1). In the
case when (X, A) is not a cofibration, this method does not work. Fortunately,
all really occurring on in practice, problems (0.1) either have the property that
for them pairs (X, A) are cofibrations, or they are trivially reduced to such
problems.

It can be said that the natural object of studying algebraic topology is not
so much continuous maps as their homotopy classes. In this sense, algebraic
topology is almost completely absorbed by homotopy theory.

Thus, although it is generally impossible to put an equal sign between al-
gebraic topology and homotopy theory, they are in fact intertwined so closely
that they become indistinguishable from each other.

0.9 Homotopy category

It is easy to see that

Proposition 0.22. the homotopy relation is consistent with the composition of
maps, i.e. if fdimg, where f,g: X —> Y, then fok ~gok and ho f ~hog
for any continuous maps k :Z - X and h:Y — Z.

Proof. Indeed, if the maps f and g are connected by the homotopy f; : X — Y,
then the map f o k and g o k will be connected by the homotopy fio: Z — Y,
and the maps ho f and h o g are homotopy ho f; : X — Z. O

It follows that the formula

[glo[fl=[gof]l. f:X—>Y.g:Y>Z

well defines the composition of homotopy classes. It is clear that with respect to
this composition, the totality of all topological spaces and all homotopy classes
of their continuous maps forms a category. This category is called the homotopy
category and is denoted by the symbol [T o 2] (or 0T o). It is the natural
domain of algebraic topology.

For any category & and any of its objects A, B the symbol &/ (A, B) denotes
the set of all morphisms A — B. In these notations

[X.Y] = [Zop](X.Y)

for any topological spaces X and Y.
The transition from the category ¢z to the category [J ¢ 2] can be easily
axiomatised.
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We will call category o a category with homotopies, if for any of its objects
A, B in the set &/ (A, B) some families of {f;,# € I} morphisms f; : A — B, called
homotopies, are assigned, and the following axioms are satisfied:

1°)
(2°)
(3%

(4°)

Every family {f; : A — B} for which f; = f; for all # € I, is a homotopy.
For any homotopy {f; : A — B} family {fi_, : A — B} is a homotopy.

For any homotopy {f; : A — B} and {g; : A — B}, having the property
that f1 = go, family {h, : A — B}, defined by the formula

| if 0<r<1/2,
"7 gan ifl/2<t <1,

is a homotopy.

For any homotopy {f; : A — B} and any morphisms £ : C — A and
h : B — C, the family {fy ok : C — B} and {ho f; : A — C} are
homotopies.

Homotopy classes are defined in such a category and a transition is possible
to the corresponding homotopy categories # o — of = [].

We will not systematically deal with this abstract nonsense!, but it will often
be useful for us to keep it in mind.

IThis is not a swear word, but a term proposed by N. Steenrod to denote general-category
constructions



Appendix

0.A Basic concepts of general topology

Let us list the basic concepts of general topology that we assume to be known
(see, for example, [1] or [8]).

Topologies and topological spaces. Open and closed sets. Neighbourhood.
Bases and pre-bases. Local bases (fundamental neighbourhood systems). Ax-
ioms of countability (first and second; separability condition).

Continuous maps. Open maps. Monomorphisms, epiomorphisms and home-
omorphisms.

Subspaces. The coset space and the coset topology. Direct products and
direct sums (disjoint unions) of topological spaces.

Axioms of separability: Hausdorff, regular and normal spaces.

Coverings (open). The refinement of the coverings. Compact, locally com-
pact and paracompact spaces.

We will need only the simplest properties of these concepts. In particular, we
will assume that the bijective continuous map of a compact space to a Hausdorff
space is a homeomorphism and that any Hausdorff locally compact space is
regular.

We will also assume it is known that

Proposition 0.23. for any normal space X and any closed subspace A of it,
every continuous map A — R can be extended to all X.

This statement is called the Tietze theorem (despite the fact that it was first
proved by Uryson).

A special case of the Tietze theorem (necessary, however, to prove) states
that for two closed disjoint subspaces A and B of a normal space X there exists
a continuous function ¢ : X — I, which is equal to zero on A and one on B.
This special case is called Uryson’s lemma, and any such function ¢ is called
Uryson function for A and B.

We will recall other less well-known (or more special) general methodological
results when we need them.

The exception is the so-called exponential law, which it will be convenient
for us to state immediately.
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16 LECTURE 0.

0.B Exponential law for sets of maps

Let X and B be arbitrary topological spaces. Although there are quite a few
ways to topologise the set of ¢ (X, B) of all continuous maps X — B, but we
will use only the compact-open topology of this set (also called the topology of
compact convergence). In this topology a set is open if and only if it is a union
of finite intersections of sets 7' (K, U), each of which is given by a compact set
of K ¢ X, an open set of U C B and consists of all maps f : X — B for which
f(K) c U. (In the terminology of the theory of topological spaces, the sets
W (K,U) constitute the prebase of a compactly open topology.)

The set of 7 ¢ 2(X, B)) provided the compact-open topology, will be denoted
by the symbol BX. This notation is justified by the fact that in the case when
X is a discrete space consisting of n points x1,...,x,, the space BX is naturally
homeomorphic to the space B x --- x B = B" by homeomorphism BX — B" by
the correspondence

[ (fOa)s fa)s £ eBY (f(x)..., flxn)) € B™.

(Another justification for this designation is the exponential law (BX)Y = BX*Y

proved below.)
For any three spaces X, Y and B and any continuous map f : X XY — B,
the formula

(O W]x=f(x,y), xeX,yeY,

defines some map
0f : Y - BX

of the space Y to the space BX, called the map associated with f. It turns out
that

Proposition 0.24. in the compact-open topology, the map 0f is continuous.

Proof. Obviously, it is enough to show that for any compact set K ¢ X and any
open set U C B the preimage (0f) % (K,U) of # (K,U) c BXisopeninY, i.e.
that each point yq of it is its internal point. But since (8f)(yg) € # (K, U), i.e.
[(8f)(yo)]K c U, then f(x,yo) € U for any point x € K, i.e. K xyg c f~1(U).
On the other hand, the set f~!(U) is open in X xY and therefore is by combining
sets of the form G x H (“rectangles”), where G is open in X and H is open in K.
Due to the compactness of the set K (and, therefore, so is the set K X yg), there
is a finite system
GixH...,G, xH,

of these rectangles, covering the set K X yg. Then the open subset H = H; N
--- N Hy, of the space Y will contain a point yg and each of its points y will
have the property that K xy c f~1(U), and hence (8f)(y) € # (K, U). In other
words, H will be the neighbourhood of the point yg in ¥ contained in the set
(0f)~'% (K,U), and, therefore, the point y, will be the inner point of the last
set. O
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So the correspondence 6 : f — 6f is a map
0:Ton(XXY,B) — Ton(Y,BX)

from the set Ton(X xY,B) to the set o (Y,BX). This map is called the
association map.
Equality 6 f = 0g, where f,g : X XY — B means that

S y) =10 (M]x = [(0g)(»)]x = g(x,y)

for any points x € X, y € Y, hence f = g. Hence, the association map is injective.
To find out when the map 6 is bijective, we will introduce the map

w:XxBX 5B,
defined by the formula
wx,f)=f(x), xeX,f:X—>B,

and called the evaluation map.
It turns out that

Proposition 0.25. the association map 0 : Ton(X xXY) = Ton(Y,BX) is
bijective for any space Y, if and only if the evaluation map w : X X BX — B is
continuous.

Proof. if the map w is continuous, then for any map g : ¥ — BX, the map
f =wo(idxg) : XxY — B (ie., the map (x,y) — w(x,g(y)) = [g(y)]x)
will be continuous, i.e. it will lie in T e2(X XY, B), and, obviously, will have
the property that 8f = g. Therefore, if the map w is continuous, then the
map @ is surjective, and, therefore, bijective (for, as already noted above, this
map is always injective). Conversely, if the map 6 is bijective for any ¥ and, in
particular, for ¥ = BX, then the continuous map " = 6~'(id) € 7 ¢ 2(X xBX, B)
will be for any point (x, f) € X x BX satisfy the relationship

' (x.f) = [0()f1(x) = f(x) = w(x. f)
and, therefore, it will coincide with w. Therefore, the map w is continuous. O
On the other hand, it is easily shown that

Proposition 0.26. if the space X is locally compact and Hausdorff, then for
any space B the evaluation map w is continuous.

Proof. In fact, let (xo, fy) € X x BX, and let U arbitrary neighbourhood of
the point w(xg, fo) = fo(xp) in the space B. Since the map is fy : X — B is
continuous, and the space X is locally compact and Hausdorff (and therefore
regular), then in X there exists such a neighbourhood V of a point xo with a
compact closure V, with fy(V) c U. Therefore, an open set %' (V, U) containing
the point fy is defined in BX, and in X x BX - an open set W = V x %' (V,U)
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containing the point (xg, fo). At the same time, for any point (x, f) € W, the
inclusion holds

wx, f) = f(x) € f(V) c (U),

showing that w(W) c U. So, for each point (xg, fo € xBX and any neighbour-
hood of U of the point w(xg, fy) € B, there is a neighbourhood W of the point
(x0, fo) such that w(W) c U. O

Thus,

Proposition 0.27. if the space X is locally compact and Hausdorff, then for
any spaces Y and B the association map

0:Ton(XxY,B) - T on((Y,BY
1s bijective.

This statement is called the exponential law for sets of maps. The rather
strong conditions imposed on the space X (by the way, very close to the nec-
essary ones) are a particular manifestation of the general defectiveness of the
category J oz in relation to the direct product. A general way to get rid of
such conditions (which we will encounter in other situations later) is to move to
a category whose objects are topological spaces, and morphisms are such maps
of f: X — Y topological spaces (called kaonic maps)? that for any compact
space K and any continuous map ¢ : K — X composite map fogp: K — Y is
continuous, or, which is essentially equivalent, to a category whose morphisms
are continuous maps, and objects are such topological spaces X (called kaonic
spaces) that the set C C X is closed if and only if, for any compact space K and
any continuous map f : K — X, its preimage ¢~ 'C is closed in K. However,
in this course we will not pursue the formal perfection of the theory and will
prefer to stay in the more familiar category of 7 ¢ .

0.C Exponential law for mapping spaces

In connection with the exponential law, the question also naturally arises about
its validity for mapping spaces, i.e., whether the associated map will be a home-
omorphism of space BX*Y of (or at least in B) space (BX)Y. The answer is,
generally speaking, affirmative only for Hausdorff spaces X and Y. Although we
will need this fact only in a limited way, we will prove it here in full generality
for the sake of completeness,

First of all, we show that

Proposition 0.28. if the space Y is Hausdorff, then for any spaces X and B
the association map
0 . BXXY N (BX)Y

18 continuous.

2The kaon, a special case of meson particle, is made of one quark and one antiquark.
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Proof. Indeed, by definition, every open set in (BX)Y is a union of finite inter-
sections of sets of the form % (L,V), where L is a compact subset in ¥ and V
is an open subset in BX. Therefore, it is sufficient to show that for any sets of
the form %' (L, V), its preimage by the map 6 is open in BX*Y. Let f € W' (L,V)
and y € L. Since f(y) € V and since the set V, in turn, is the union of finite
intersections of sets of the form %' (K;, U;), where K; are compact sets in X, and
U; are open sets in B, then in X there are such compact sets Kly, . ,K,yly, and

in B there are such open sets Uy, ..., U, that f(y) € V, c V, where
Vy = (K, U2)n---nW(Ky, Uy).

But then, since the map f : Y — B* is continuous, in Y there will be such a
neighbourhood G, of the point y that f(G,) C V. At the same time, since the
space L, being Hausdorff (as a subspace of the Hausdorff space ¥) and compact,
regular, then in L there exists such a neighbourhood H, of y € L, such that

Hyc GyNL.
Let’s now choose such a finite system of points, yi,...,y, in L such that
the neighbourhood of Hy,,...,H,, covers L (such a system exists due to the

compactness of L). Since
f(Hy) C f(Gy)CVy, CV, i=1,...,m,

and o o
Vy, =W (K, U) N nW (K, Up,)

where for the sake of brevity we set
i _ pYi i _ ypYi =
Kj—Kj , Uj—Uj , andn; = ny,
foranyi=1,...,m and any j =1,...,n;, thus we have

fEeWHy, WK, U)), i=1,....,mj=1,...,n

(sets Hy,, being closed subsets of a compact set L, are compact) and means
f € W, where - o
W =i L, W (Hy,, 7 (K}, Uj).

On the other hand, if g € W, i.e. if
g(Hy,) C m;?;IW(K"., Uy =V, cV
forany i=1,...,m, then
g(L) =Vl g(Hy) CV

and therefore g € #'(L,V). Thus W c #'(L,V). This proves that any point
f € W(L,V) has a neighbourhood of the form W in % (L, V) and, therefore, the
set @' (L,V) is a union of sets of the form W, i.e., finite intersections of sets of
the form % (L, % (K,U)), where K is a compact set in X, and U is an open set
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in B. Therefore, it is enough for us to prove that a complete preimage is open
in BX*Y when 6 maps each set of the form % (L, % (K,U)). But this is obvious,
because, as follows directly from the definition of the map 6, this preimage is
the set # (K X L, U). O

Thus, for Hausdorff ¥ (and any X and B), the map 6 is continuous (and, as
we know, injective) map of the space BX*Y into the space (BX)Y. We show that

Proposition 0.29. if X is also a Hausdorff space, then the map 0 is an open
(and hence homeomorphic) map since im @ = §(BX*Y),

Proof. 1t is clear that it suffices to prove that for any compact set M of XtimesY
and any open set U of B the set % (M,U) is open in im @, that is, that any
of its points gg = 0 fy, where fy € #' (M, U), is its inner point. Let K and L be
projections of the set M in X and Y, respectively. Since the map fy : X XY — B
is continuous, and the spaces K and L, being compact and Hausdorff, are regular
(even normal), then for any point z = (x,y) € M, where x € K, y € L, there
are such neighbourhoods V, and W, of points x and y in the spaces K and L,
respectively, that fo(V, x W.) c U and, therefore, (go,V.)W, C U, i.e.
8o € W(Vz’ W(WZ’ U))

(since the sets V. and W, being closed subsets of compact spaces, are compact,
then the symbol %' (V,, # (W, U)) makes sense). On the other hand, since the
set M is compact, there exists in it such a finite system of points z1,..., z,) that
the sets

Ve XWe oo Vo, XW,,

cover M. The set
W = (im6) 0 [Ny 7 (Vo T (W, U)]
is open in im 6 and, according to what has just been said, contains the map go.
Let ¢ = 0f be an arbitrary map from W. Since g € %' (V,, W' (W.,U)) for
any i =1,...,n, it is that gV, )W, c U, ie., f(V, xW;) c U, and hence,
fM) & f (U, (Ve x W) € U,

ie., f € W(M,U). This proves that # c 0% (K,U), and, it means that the
point gg is the inner point of the set im 6. O

Combining the results obtained with the exponential law, we obtain that
Proposition 0.30. if
(a) the space X is Hausdorff and locally compact,
(b) the space Y is Hausdorff,
then for any space B the association map
0 : BXY - (BX)Y
is a homeomorphism.

This statement is known as the ezponential law for mapping spaces.



Lecture 1

1.1 Homotopies and paths

Recall that a path in the topological space X is an arbitrary continuous map
u: I — X. The point u(0) is called the starting point of the path, and the
point u(1) is its ending point. It is also said that the points u(0) and u(1) are
connected by u.

All paths of space X make up the topological space X'.

A topological space X is called connected (or, more precisely, path connected)
if any two of its points can be connected by a path!. Each space is X is a union
of maximal connected subsets called its components.

By denoting a topological space consisting of a single point with the symbol
pt, we can consider each path I — X as a map pt X/ — X, i.e. as a homotopy
from pt to X. In accordance with this, the components of the space X are
nothing more than homotopy classes of maps pt — X.

Oun the other hand, it is clear that the exponential law (for sets of maps)
allows, on the contrary, any a homotopy can be interpreted as some path by
which a map associated with an arbitrary homotopy F: X X I — Y is nothing
but a path I — YX in the map space YX.

Unfortunately, this elegant and visual interpretation of homotopy is quite
adequate only for locally compact and Hausdorff spaces X. For arbitrary spaces
X, not every path in YX will be a homotopy from X to Y. Therefore, in particular,
only for of locally compact and Hausdorff spaces X, the homotopy classes of
maps from X to Y can be identified with the components of the space YX. In
general, each such component can consist of several homotopy classes.

A more satisfactory result will be obtained when we will apply the exponen-
tial law by rearranging X and I beforehand. Then the map associated with an
arbitrary homotopy F: X x I — Y (which we will allow ourselves to denote with
the same letter F) will be given by the formula

(F(x))(t) = F(x,t), xeX,tel,

ITranscriber’s note: This conventions is adopted by Fuchs-Rokhlin, as connected but not
path-connected spaces are pathological in view of algebraic topology.

21
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and will be a continuous map X — Y. Since the space I (which here plays the
role of the space X from the formulation of the exponential law) is obviously
locally compact and Hausdorff, we see, therefore, that

Proposition 1.1. for any spaces X and Y, the homotopies X X I — Y from X
to Y are in natural bijective correspondence with continuous maps X — Y,

Therefore, we will also call the maps X — Y! homotopies from X to Y.

How with this interpretation homotopies are obtained are the maps f; and
f1 related to them? To answer this question, we note that for any spaces X and
B, any map f: X — B and any point xo € X formula

wx[)f = f(xo0)

defines some map

wy,: BX - B

(slice by xo of the w evaluation map). Although the map w is generally discon-
tinuous, the map wy, for any point xo € X is continuous, since for each open set
U C B is its preimage w;ﬂlU when mapped by wy, is an open set # ({xo}, U) (in
any topological space, all single-point subsets are compact).

In particular, the maps of the path space

wQ:BI—>B, wltBI—>B

are continuous, which correspondingly maps each path to its starting and ending
points.

1.2 Cofibrations

Now it is clear that (we replace B with Y)

Proposition 1.2. for each homotopy F: X — Y! compositions wgo F: X = Y
and wi o F: X — Y are maps connected by this homotopy.

Therefore, for example, the axiom of homotopy extension can be written in
the form of a diagramme

>

A—
Fl "

Ylﬁ-
W,

(1.3)

f

\\

~<——o

i
0
much more visual and convenient than Diagramme (0.20) of the Lecture 0.

Lemma 1.4. Fach cofibration i: A — X is an injective map, and if its image
i(A) is closed in X, then it is a moneomorphism.
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Proof. Let
CA=AXI/AX0

The quotient is obtained from the product space of A X I by contracting the
subspace A X0 to a point. (The space CA is called a cone over A; we will return
to it in the next lecture.) Further, let ag be the image of the subspace Ax0 in CA
(the vertez of the cone), and let j: A — CA be the moneomorphism induced by
the map a — (a,1), a € A. We can consider the factorisation map A x I — CA
as a homotopy from A to CA, connecting the constant map consty — CA,
a +— ag, with the map j. Therefore, since const4 = consty oi, where consty is a
map X — CA, x — ag, then, according to the axiom HEP, there exists a map
g: X — CA such that g oi = j. But the map j is injective. Therefore, the map
i is also injective. Also, iP = g7'(jP) NiA for any subset P ¢ A. Therefore, if
iA is closed, then for any closed subset of P C A, the set iP is closed (since by
applying the continuity of the map g and the moneomorphism of the map j,
the set g71(jP) closed). Hence, in this case the map i is a moneomorphism. 0O

The concept of a cofibration allows for a useful and very important dualisa-
tion.

1.3 Push-outs

According to the general Proposition 0.12 of the Lecture 0, the axiom of ho-
motopy extension can be formulated as a requirement for the existence of some
kind of retraction. The corresponding construction is quite elementary, but with
a view to dualising it later, we will present it now in general categorical terms,
which will allow us, in particular, to prove the Proposition 0.12 of the lecture 0
anew.

Let o/ be an arbitrary category, and let ig: C — A and ig: C — B be two
morphisms of this category with the same domain of definition of C.

A straight cone over a pair of (is,ip) comprises each pair (ja, jp) and mor-
phisms ja: A — D, jp: B — D satisfying the relation j4 oig = jpoip i.e. such
that the diagramme

iA

|

h}
;.

(1.5)

&
=—"0

o

—
B

commutes. A morphism of the cone (ja: A — D, jg: B — D) into the cone
(j;‘: A— D/,j;g: B — D') comprises a morphism ¢: D — D’ such that jso¢ =
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le and jpop = j;w i.e. that there is a commutative diagramme

D

Z2h
A B

@

’

D

It is clear that all straight cones (over a given pair (i4,ig)) and all their mor-
phisms make up a category €¢7(ia,ip).

An initial object of this category, i.e. such a cone (ja: A — D, jg: B — D)
that for any other cone (j;‘,j;) over (ia,ig) in the category € o7 (ia,ip) there

is a single morphism (j,jg) — (j;‘,j;;), called an push-out (or amalgam) of

the diagramme A & C LN B or, admitting a certain inaccuracy, a push-out of
objects A and B with an amalgamated object C. Sometimes the D object itself
is called a push-out. Diagramme (1.5), in which D is a push-out, is called a
universal (or Cartesian) square.

It is easy to see that

Proposition 1.6. in the category T oz an amalgam exists for any diagramme

Aol

Proof. The space D will be the coset space of the disjoint union A LI B by the
minimum equivalence relation in which a ~ b if there exists such a ¢ € C that
ia(c) =a and ig(c) = b, and the maps ja: A — D and jg: In — D are maps
induced by inclusions A — AUB and B — AUB. Indeed, by construction jsois =
JB oip and for any cone (j,,jz € €o7n(ia,ip), maps a = j,, b — J, induce

(obviously the only) map ¢: D — D', for which j;x =@Qoja, j;g =¢pojp. O

In the case when C = A U In, and the maps i, and I, are inclusions, the
push-out of D is the union of A Uin. This explains the origin of the term
“push-out”.

1.4 Push-outs and co-induced cofibrations

For the diagramme X ;A L Y, where i is an embedding, the push-out will be
the space X Uy Y constructed in Lecture 0. Assuming a certain liberty, we will

use the notation X U, Y for the pushu-out of the diagramme X SA L Y and in
the case of an arbitrary map i. The corresponding maps are X — X U fY and
Y — X Uy Y (which are constraints of the factorisation map X UY — X Uy Y)
we will denote by the symbols fu and iy. Together with the maps i and f, they
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make up a co-universal square

A———
fl
Y—X

The map iy is said to be co-induced by the map i via the map iy. If the map
i is injective, then the map iy will be a moneomorphism to a closed subspace.
In this case, having identified the points y and if(y), we will consider Y to be
a closed subspace of the space X Uy Y (which is consistent with the conventions
from Lecture O concerning the case when i is an embedding).

Proposition 0.12 of Lecture 0, i.e. the statement that

(1.7)

X
lf#

UrY

if

Proposition 1.8. the extension of f: X — Y of the map f: A — Y with respect
to the map i: A — X ezists if and only if the co-induced map iy: Y — X UfY is
retractible,

remains true for any map i.

Proof. Indeed, if the map iy is retractible and r: XU¢Y — Y is the corresponding
retraction, then the composition is f = r o f# will obviously satisfy the relation
fo = f. Conversely, if f exists, then the pair (id: ¥ —» ¥, f: X — Y) will be a
straight cone over (7, f), and therefore there will be a morphism r: X U Y — Y
push-outs X Uy Y into this cone. But then r oiy = id, so that the morphism r
will be a retract of the map iy. O

Thus, the problem of extension of the map f is equivalent to the problem
of the existence of a retraction of the co-induced map iy. However, this is
essentially a general categorical statement, it would be virtually useless for us
if, when moving from i to i, we left the cofibration class. And in fact, everything
is fine in this regard, i.e.

Proposition 1.9. the mapiy: Y — XUfrY, co-induced by the cofibrationi: A —
X, is also a cofibration.

Proof. Indeed, from any diagramme of the form

Yy —L XU,y (1.10)

Zr— sz
wo

by composing its vertical arrows with the vertical arrows of Diagramme 1.7, we
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get the diagramme

X

l~.

F o
- goPx
¥
—7
wo

A
Gcfl
1

for which the homotopy F exists by condition. Obviously, F with G together
homotopically forms a cone (F,G) over the pair (i, f). Therefore, there is a
morphism G: X Us Y — Z! from the cone (fy,ir) into the cone (F,G), which
will be the homotopy closing Diagramme (1.10). Thus, for any diagramme of
the form (1.10), there is a closing homotopy G and, therefore, the map irisa
cofibration. ]

This proof is clearly depicted by the diagramme

(1.11)

V4
/ el

Y : XUy

consideration of which makes the proof quite obvious.

1.5 The mapping cylinder

Definition 1.12. The cylinder Cyl(i) of the continuous map i: A — X is the
push-out (A X I) U; X of the diagramme

AxT AL x.

This push-out is obtained by gluing the space A X I to the space X by the
map (a,0) — i(a). There is a co-universal square for it

A—t o X (1.13)

‘TDL l(a'o)i

Ly

the map (o09); of which is a monomorphism (note that we "transposed" the
square (3), which, of course, does not interfere with anything). We will assume
that the space X is embedded in the cylinder Cyl(i) by means of the monomor-
phism (o0y);-
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For any point (a,t) € A X I we will denote the point i4(a,t) € Cyl(i) by the
symbol [a,t]. Thus, each point from Cyl(i) either has the form [a,t], a € A,
t €I, or is a point x from X. In this case, [a,0] =i(a) for any point a € A.

Due to the universality, the formula

jla,t] = (ia,t), (a,t) € AxI,
jx)=((x,0), xeX,

well determine the continuous map
j: Cyli) » X x 1.

In the most important special case, when A C X and 7 is an embedding, the map
J, as it is easy to see, is an injective map to a subspace A = (X x0) U (A x I) of
the product X x I. Generally speaking, it is not a monomorphism. However,

Proposition 1.14. if A is closed in X, then j is a moneomorphism,

so in this case, considering j an embedding, we can identify the cylinder
Cyl(i) with the subspace A of the space X x I.

Proof. Indeed, by definition, the set C c Cyl(i) is closed if its preimage in X
and in A X I are closed. In the case when A C X, this is equivalent to the fact
that the intersections of jC N (X x0) and jC N (A X I) are closed respectively in
X x0 and AXI. But since X X0 is closed in X x I, the intersection of jC N (X x0)
is closed in X X 0 if and only if it is closed in X x I. Similarly, if A is closed in X,
then A X I is closed in X X I, and, therefore, the intersection of jC N (A X I) is
closed in A X I if and only if it is closed in X X I. Therefore, if A is closed, then
for any set closed in Cyli, C is a set with

JjC=(CN(Xx0)U((CN(AXI)
is closed in X x I, and, therefore, in A = (X x 0) U (A x I). O

Pairs of (X, A) with closed A are called closed.

1.6 Characterisation of cofibrations

Proposition 1.15. A map i: A — X is a cofibration if and only if the map
J: Cyl(i) » X X I is retractible.

Proof. Homotopy of F: Ax I — Y and extension of f: X — Y to X of its initial
map fy = F o 0y define a map

FUf:(AxHuX —Y,

that takes the same values at points (a,0) and i(a), @ € A. Therefore, the
map F U f induces some map g: Cyl(t) — Y, which has the property that
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gla,t] = F(a,1) and g(x) = f(x) for any points [a,] and x of Cyl(i). Note that
the pair (F, f) is a cone over (0y,i) and g is nothing but a morphism of the cone
(i4, (00);) into the cone (F , ) provided by the co-universality of the push-out
Cyl(i). Therefore, if the retraction is r: X X I — Cyl(i) exists, then the map
F=gor: XxI— Y will be a homotopy with the initial map f (for this map
satisfies the relation F = g, and therefore F(x,0) = (F o j)(x) = g(x) = f(x) for
any point x € X), which is an extension (in relation to the map i) of the homotopy
F (for F(ia,t) = (Foj)[a,t] = gla,t] = F(a,t) for any point (a,r) € AxI). Thus,
if the map J is retractible, then the map i is a cofibaration.

Conversely, the map i can be viewed as a homotopy from A to Cyl(i) with
the initial map, being a constraint (with respect to i) maps (og);; therefore,
if the map i: A — X is a cofibration, then there is a map r: X x I — Cyl(i)
satisfying the relations r(x,0) = x and r(ia,t) = [a,t], i.e. being a retraction of
the map ;. O

Corollary 1.16. A closed pair (X, A) is a cofibration if and only if the subspace
A= (Xx0)U(AXI) is a retract of the space X X I.

Strom showed that the assumption about the closeness of the sub-space A in
this corollary is actually superfluous. However, in accordance with our general
set-up, we will ignore this statement, since it is only valid for non-Hausdorff
spaces X, thus

Proposition 1.17. if for a pair (X, A) such that the space X is Hausdorff and
the subspace A = (X x0) U (A X 1) is a retract of the space X X I, the pair (X, A)
1s closed.

Proof. Indeed, the composition j or of the reacting map r: X x I — A and the
embeddings j: A — X x [ is a continuous map X X I — X x I, the sets of fixed
points of which is A. By applying the Hausdorff space X x I, it follows that A is
closed in X x I. But then its preimage A is also closed (in X) with a continuous
map oy: x — (x,1). |

Note, by the way, that

Proposition 1.18. For a closed cofibration (X, A) the subspace A is even func-
tionally separable, i.e. there exists a continuous function ¢: X — I, such that
@(a) =0 if and only if a € A.

Proof. Indeed, let r: X X I — A be a retraction map and let p(x,1) be the
projection of the point r(x,?), (x,7) € X X I onto I. Consider the function
¢: X — I defined by the formula

@(x) =max(t - p(x,1)), xe€X.
tel
By applying Lemma 1.19 proved below, the function ¢ is continuous on X. If

a € A, then p(a,t) =t for any t € I and therefore ¢(a) = 0. Conversely, if
¢(a) =0, i.e. p(a,t) >t for all r € T, then, in particular, p(a,t) > 0 for r > 0
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and, therefore, r(a,t) € AxI. Since the subspace A (and therefore the subspace
A x 1) is closed by condition, it follows that

(a,0)=r(a,0)= }ir% r(a,t) e AxI

and thus a € A. O

Lemma 1.19. For any compact space C, arbitrary topological space X and any
continuous function : XXC — R the function ¢: X — R defined by the formula

ceC

18 continuous on X.

Proof. From the compactness of the space C it follows, firstly, that for any point
x € X the maximum is reached, i.e. there exists (generally speaking, not the
only one) a point ¢, € C such that ¢(x) = ¢(x,cy). Secondly, the function
is equally continuous at each point x of the space X, i.e. for any £ > 0 and
any point xo € X, there is a neighbourhood U c X of the point x, such that
| (x, c) — ¥ (xp,c)|e for any points x € U and ¢ € C. Therefore, if X € U and

@(x) = ¢(xp), then

lo(x) = e(xo) = @(x) = @(x0) < Y(x,cx) —¢h(x,cx0) = W (x,cx) —(x, e, < €
and if ¢(x) < ¢(xp), then
lo(x) =@ (xo)| = @(x0) = @(x) < ¥ (x0, Cxo) =¥ (X0, Cxy) = [ (X, Cxp) =¥ (X0, Cx| < &

So |p(x) — ¢(xg)| < € for any point x € U, i.e. the function ¢ is continuous. O

1.7 The product of cofibrations

The pair (X,A) X (Y,B) := (X XY, X X BU A XY) is called the product of pairs
(X,A) and (Y, B).

Proposition 1.20 (Theorem of Strom). The product
(Z,C)=(XxY,XxXxBUAXY)
of closed cofibrations (X, A) and (Y, B) is a closed cofibration.

Proof. According to the corollary to Proposition 1.15, the subspace A=Xx0U
AxTIand B =Y x0UBXI are retracts of the spaces X X I and Y X I, respectively.
Let r: XX I — A and s: Y X I — B be the corresponding retractions, and let

r(x,t) = (r(x,t), p(x, 1), (x,t) € XxI,
s, 1) = (5(y,0),0(y,1), (y,1) €Y XI,
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where 7(x,t) € X, s(y,t) €Y and p(x,1),0(y,t) € I, with p(x,t) =0if r(x,t) ¢ A
and o(y,t) =0if 5(y,7) ¢ B. Now, we let

¢(x) =max(r - p(x,1), xe€X,
te
Y(y) = ntlguIX(t -o(y,1), yevY.
And let

Plx.y.1) = 0, if ¢ <min(e(x),¥(y)),
> —min(p(x),w(y),  if 2 min(p(x),y(y)),

and _
R(x,y,t) = (F(x, min(z,¢(y))), s(y, min(z, ¢(x)))).
If R(x,y,1) ¢ C = XXBUAXY, then 5(y, min(z, ¢(x))) ¢ B, 7(y, min(r, ¢ (y))) ¢ A,

so o (y, min(z, ¢(x))) = 0, p(x, min(¢,¥(y))) = 0. Hence min(z, p(x)) < ¥ (y) and
min(z, ¥ (y)) < ¢(x), i.e., r < min(e(x),¥(y)), and therefore P(x,y,t) = 0. Hence
the formula

R(x,y,1) = (R(x,y,1), P(x,y,1)), (x,y,1) € ZXI,
defines some map _
R:ZXI—->C=Zx0UCXxlI.

At the same time, if (x,y,t) € 5, i.e. either + = 0, or y € B (and, therefore,
¥(y) =0), or x € A (and, therefore, y(x) = 0), then P(x,y,) =t and R(x,y,1) =
(r(x,0),5(»,0)) = (x,y), i.e. R(x,y,t) = (x,y,t). Therefore, the map R is a
retraction, and therefore the pair (Z, C) is a cofibration. O

Corollary 1.21. For any closed cofibration (X,A) and any n > 0 the pair
n

(X,A) x---%x(X,A) is a cofibration.

Proof. Obvious induction. O

Corollary 1.22. For any closed cofibration (X, A) and any topological space Y
the pair (X XY, AXY) is a closed cofibration.

Proof. This is a special case of Proposition 1.20, obtained when B = @. However,
this corollary follows directly from the corollary of Proposition 1.15, since for
each retraction r: XxI — A the map rxid: XXIXY — AXY will be a retraction
XxIxY = XXxY xI on the subspace AXY = (XXYX0)U(AXYXI) = AxY. O

It is clear that

Proposition 1.23. the composition of two cofibrations is a cofibration, so in
particular if X D A D B and pairs (X,A) and (A, B) are cofibrations, then the
pair (X, B) will also be a cofibration.

Applying this statement to the pairs (X XY, X X B) and (X X B, A X B) and
using Corollary 1.22, we will immediately get

Corollary 1.24. For any two closed cofibrations (X,A) and (Y, B), the pair
(X XY,AXB) is also a closed cofibration.
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1.8 Fibrations

According to the general categorical principle of duality, for the concept of a
cofibration, there must be a dual concept resulting in “the reversal of all arrows”.

Definition 1.25. A map p: E — B is called a fibration (in the sense of Hure-
vicz) if for any space X, any homotopy f;: X — B and any map f satisfying
the relation p o f = fp, there is such a homotopy 7,: X — E that 70 = f and
pof,=f foranytel.

XXOL)E

Xx]—>B
7

Thus, the map p: — B is a fibration if, the initial map fy: X — B of some
homotopy f;: X — B can be lifted to E, it follows that on E it is possible to lift
each map f;, and the lift 7, can be chosen so that they form a homotopy.

This requirement is called the aziom of covering homotopy (in short, the
aziom CH).

Clearly, the axiom of covering homotopy is represented by the diagramme

Xx0-L - (1.26)

XxI—>B
F

the dual of Diagramme (1.3).
In particular, we see that

Proposition 1.27. if the maps f,g: X — B are homotopic and f can be lifted
to E, then g can also be lifted to E, so that for fibrations the property of map
f: X — B allowing a lift to E depends only on its homotopy class [ f]

Thus, in the lifting problem (problem (0.5) of Lecture 0) we can also move
into the homotopy category.

This explains why in algebraic topology the lifting problem is considered
only for fibrations. (However, as we will see in Lecture 3, this is not a serious
limitation.)

Lemma 1.28. If the map p: — B is a fibration, then for any path u: I — B
and any point e € E such that p(e) = u(0), there exists a path v: I — E starting
at the point e and the covering path u (i.e. such that poy =u).

Proof. Let us define a homotopy u,: I — B by the formula

u,(s) =u(ts), s,tel.
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Since ug(s) = u(0) = p(e) for all s € I, then p o 0, = ug, where 0,: s > e — a
constant path at the point e. Therefore, there is a homotopy v;: I — E such
that povy = u, for all ¢t € I (and vy = 0.). In particular, p o vy = u;. Since
v1(0) = e and u; = u, this proves the lemma (with v = vy). |

Corollary 1.29. For any fibration p: E — B (with non-empty E ), the set p(E)
is the union of the components of the space B. In particular, if the space B is
connected, then p is an injective map.

Proof. Let b € p(E), and let u: I — B be an arbitrary path starting at b.
We need to prove that u(1l) € p(E). Let p(e) = b, and let v: I — B be a
path covering the path u and starting at e. Then p(v(1)) = u(1) and hence
u(l) € p(E). O

The last statement of this corollary is dual to the first statement of Lemma
1.4. The dualisation of the second statement of Lemma 1.4 (the question of
epimorphism of fibrations) is of little interest, and we will not deal with it. One
can, for example, show that the fibration E — B will be an epimorphic map in
the case when the space B is connected and locally connected, but discussing
whether this condition on B can be considered dual to the condition of closure
of the subspace iA from Lemma 1.4 would lead us too far to the side. That some
conditions on B are necessary is shown by an example of an identical map of a
set of rational numbers Q with the discrete topology to Q with the conventional
topology. While the map is not an epimorphism, as an easy check shows, it is a
fibration.

1.9 Pull-backs and induced fibrations

Let o/ be an arbitrary category, and let pp: A — C and pg: B — C are two
morphisms of this category with the same target domain. The cocone over the
pair (pa,pp) is a pair (ga,gpg) of morphisms g4: D — A and gg: D — B
satisfying the relation ps o g4 = pp o gp i.e. such that the diagramme

D A
[’Bl lm
B C

commutes. The morphism of the cone (q;‘: D — A,q;gs D’ — B) into the cone
(ga: D — A,gp: D — B) is a morphism ¢: D' — D of category &, such that

qA
_—

(1.30)

_—
PB
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gaoy= q'A and gg o ¢ = q/B, i.e. such that there is a commutative diagramme

D
ay ap
A @
D

It is clear that all cocones (over a given pair (pa, pg)) and all their morphisms
make up a category Cone(pa, pg)- The terminal object of this category, i.e. such

acone (qa: D — A,qp: D — B) that for any other cone (q:4, q/B) over (pa,pp)
in the category Cone(pa, pp) there is a single morphism (q;‘,q'B) — (pa>PB),

called the pull-back of the diagramme A 20 B or, admitting a certain
inaccuracy, pull-back objects A and B over object C. Sometimes a pull-back is
called the object D itself. Diagramme (1.30), in which D is an pull-back, is
called a universal (or co-Cartesian) square.

Since in any category a terminal object (when it exists) up to the canonical
isomorphism is defined in a unique way, the same is true for pull-back.

It is easy to see that

Proposition 1.31. in the category T ¢ p2 the pull-back exists for any diagramme
PA PB

A— C «— B.

Proof. The space D will be a subset of the direct product A X B, consisting
of points (a,B) € A X B such that pa(a) = pp(b), and the maps g4: D — A
and gp: D — B are the constraints of the natural projections A X B — A and
A X B — B. Indeed, by the construction of ps o g4 = pp © gg and for any cone
(q'A: D — A,q;gz D'toB) formula ¢(x) = (q;\(x),q;g(x)), x € D', defines the
(obviously unique) map ¢: D' — D, for which q:4 =gaopand gy =qgpop. O

In the case when A ¢ C and B c C, and the maps p4 and pg are embeddings,
the pull-back D is naturally identified with the intersection of A N B of the
subspaces A and B.

With each lifting problem

lp
. M

X —

!

we will associate the pull-back diagramme

ehplx
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We will denote this pull-back with the symbol E Ny X, and the projections
ENsX — X and E Ny X — E with the symbols p; and f#. Thus, E Ny X is
a subspace of the direct product of E X X consisting of points (e,x) for which
p(e) = f(x), and the maps py and f7# act according to the formulae (e,x) — x
and (e,x) — e. Together with the maps f and p these maps make up a universal

square

f#
EnyX ——E

| j

X—8B
f

The map py: ENy X — X is said to be induced by the map p: E — B and the
map f: X — B.

Naturally, the map py has the properties dual to the properties of the co-
induced map iy. Namely,

Proposition 1.32. the map f: X — E, covering the map f: X — B, exists if
and only if the induced map py: E Ny X — X has a section.

Proof. Indeed, if there is a section s: X — E Ny X to the map pys, then the
composition f = f# o s will obviously satisfy the relation po f = f. Conversely,
if the map F exists, then the pair (id: X — X, f: X — E) will be the cocone
over (f, p), and therefore there will be a morphism s: X — E Ny X of this cone
into the cone (py, f#). In particular, there will be equality pros=id, so that
the morphism s will be section to the map p. O

Thus, the problem of lifting the map f is equivalent to the problem of the
existence of the induced cross section py. At the same time, with regard to the
applicability of the method of algebraic topology, we lose nothing, because

Proposition 1.33. if the map p: E — B is a fibration, then for any map
f:X — B, the induced map py: E Ny X will also be a fibration.

Proof. For the proof, it is enough to consider the diagramme

f#
EnsZ : E
™ “
pr 0’0 p
z
/ \
X B

the dual diagramme of Diagramme (diag:01-5). |
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The map py and f # have certain properties of naturalness (functoriality).
For example, if f = id, then the space ENyX = ENiq B is naturally identified with
E, and the maps f# and p r are identified with the maps id and p respectively.
Similarly, for any map g: ¥ — X the space (E Ny X) Ng Y is naturally identified
with the space ENfog Y, and the maps f# og# and (py), with the maps (fog)#
and p fog, respectively. Thus, modulo the above identifications

id# = id, pia =p,
(fog)® =f*og?, prog=(pg)f.

A note on terminology. The construction of the space E Ny X can be con-
sidered as a generalisation of the construction of the direct product. Therefore,
in English the space (as well as the corresponding fibration ps: E Ny X — X)
is called fibre product. Russian tracing paper “stratified product” is an indis-
putable solecism that does not adorn the Russian mathematical terminology.
The use of this term, which sometimes occurs in a general categorical situation,
is already completely meaningless and represents an obvious spoil of language.

It should also be cautioned against using the asymmetric term “induced map”
(induced morphism) outside the scope of the lifting problem and, similarly, the
term “co-induced morphism” outside the scope of the extension problem.

1.10 The mapping cocylinder and the axiom of
the covering path

We now dualise the notion of a mapping cylinder.

Definition 1.34. Cocylinder Cocyl(p) of the continuous map p: E — B is the
pull-back B! N, E of the diagramme

Bl B L E.

By definition, this pull-back is a subspace of the direct product of B! x E,
consisting of such pairs (u, ¢), where u: I — B, and e € E, that u(0) = p(e). For
it there is a universal square

o
Cocyl(p) —E (1.35)

N

Bl— B
(0]

where p,, (4, e) = u and w0# (u,e) = e. In addition, the formula
g(v) = (pov,v(0). veE,
defines, obviously, a continuous map

q: E' - Cocyl(p).
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Proposition 1.36. The map p: E — B is a fibaration if and only if to the map
q: ET — Cocyl(p) there is a section s: Cocyl(p) — E'.

Before proving this Proposition we will state a few comments that have an
independent interest.

Setting Diagramme (1.26) without the dotted arrow is obviously equivalent
to setting a commutative diagramme

X

/|

Bl —~
wo

f
B —

(1.37)

<~
<

in which the same letter F is used to denote the map X — B!, associated with
the homotopy F: X x I — B. The commutativity of Diagramme (1.37) means
that the pair (F, f) is an co-cone over the pair (wg, p). The corresponding
morphism (F, ?) — (pwo,w#) is a map ¢: : X — Cocyl(p), acting according
to the formula x +— (fx, Fx).

On the other hand, having Diagramme (1.37), we can allocate a subspace in
the cylinder Cocyl(f) € X x E! the map f consisting of such pairs (x,v),x € X,
v:I— E, f(x) =*v(0), that F(x) =pov.

We will denote this subspace by the symbol Cocyl(F, f) and we will call
it the cocylinder of the pair (F, f). We will denote its projection (x,v) + x
onto the space X by the symbol gx. As the immediate checking whether a
commutative diagramme takes place

Cocyl(F, f) ——— E!

X—(F— Cocyl(p)
the upper horizontal arrow of which is a projection of (x,v) > v.
At the same time, it is easy to see that

Proposition 1.38. for Diagramme (1.87) there is a covering homotopy F: X x
I — E if and only if the projection gx: Cocyl(F,f) — X has the section
sx: X — Cocyl(F, f).

Proof. Indeed, the formula
Sx = (x,fx), xeX,

establishes a bijective correspondence between sections sx and homotopies F
interpreted as maps X — E'.

Now Proposition 1.36 becomes almost obvious.
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Proof. (of Proposition 1.36) If a section s: Cocyl(p) — ET exists, then for any
diagramme (1.37) the formula

SX(X) = (.X', (S o ‘p)(-x))7 X € X’

defines some section of sx: X — Cocyl(F, f) for the map gx. Therefore, for
Diagramme (1.37) there is a covering homotopy F: X x I — E. Consequently,
the map p: E — B is a fibration.

Conversely, let the map p: E — B s a fibration and, then, for any diagramme
(1.37), the corresponding map gx has a section sx. In particular, this will be
the case for Diagramme (1.35) for X = Cocyl(p) and F = p,, f= a)#. But it
is clear that the projection

Cocyl(Puwe, i) — EL, - ((e,u),v) = v,

is a homeomorphism (for e = v(0) and u = p ov) and with this homeomorphism
to the sections Cocyl(p) — Cocyl(pw,, w#), projections ((e,u),v) — (e,u)
correspond to sections Cocyl(p) — E' of the map g: v — (v(0), p o v). O

The statement that the map s is a cross section map of ¢, means that s(e, u)
is a path in E, covering this path u in B and starting at this point e € E|,
projecting to the beginning of the path u. The fact of the existence of such a
path is the content of Lemma 1.19. What is new is the statement that, firstly,
this choice can be made in a continuous (by u and e) way, and secondly, that
the possibility of such a choice is not only necessary, but also sufficient for the
map p to be a fibration.

The requirement for the existence of a section s is usually called the aziom
of the covering path (in short, the aziom CP).

1.11 Fibrations of mapping spaces

For an arbitrary space Y, each continuous map the map 7: A — X determines,
by the formula

iy: (f)y=foi, f:X->Y
a map
iy: Ton(X,Y) > Ton(AY).

Since the map i is continuous, then for any compact set K C A the set iK Cc X
is also compact. Therefore, in o 2(X,Y) for any open the set U C Y the set
W (iK,U) is defined, which is obviously a preimage of the set 7 (K, U) by the
map the iy. This proves that

Proposition 1.39. in the compact open topology the map iy is continuous, i.e.
it is a map iy : YX — Y2 of topological spaces.

Proof. If i: A — X is an embedding, then iy f is nothing other than the re-
striction of the map f: X — A to A. Therefore, in this case we will call iy a
restriction map. O
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Proposition 1.40. If the space X is locally compact and Hausdorff, its sub-
space A is closed and the pair (X, A) is a cofibration, then for any space Y the
constraint map

iy: YX - y4

is a fibration.

Proof. 1t should be shown that for any diagramme of the form

7L o yx (1.41)

F . .
(o) ly

Zx]—syA
F

there is a closing map F. But since the space X (and, of course, by applying
closure, the subspace A) is locally compact and Hausdorff, the exponential law
applies to the horizontal map of this diagramme, i.e. these maps are associated
with some maps g: Zx X — Y and G: Zx A — Y! (we allow ourselves to
rearrange multipliers in direct products in a convenient way for us), which are,
obviously, the diagramme

id xi

ZXA——=7ZxX

v -y
wo

Since in the terms of the Proposition 1.40 thee pair (ZXx X, ZX A) is a cofibration
(see Corollary 1.22 of Proposition 1.20), for the last diagramme there is a closing
map G. The associated map is Z x I — YX and will obviously be the map F
closing Diagramme (1.41). mi

Example 1.42. For X = I and A = {1}, the set A= (I x0)U (1x1I), which is
the union of the lower and right sides of the square X X I =1 X I, is obviously a
retraction of this square (the retracting map is for example, a projection centred
at (0,2); see fig. 1.11.1). Since in this case the space Y is naturally identified
with the space Y, and since the the constraint map iy passes in this case into
the map w;: Y! — Y, we get, by applying Proposition 1.40, (denoting ¥ by X)
that for each space X

Proposition 1.43. the map
w1 x5 x

is a fibration.

Note now that
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Figure 1.11.1:

Proposition 1.44. for any fibration p: E — B and any subspace A C B, the
map

pa=plp1(A): pH(A) = A
is a fibration,

Proof. since this map is naturally identified with the fibration p;, by the induced
fibration p by the embedding map i: A — B. O

To apply this general remark to the bundle w;, for any subspace A C X,
we will introduce the subspace X!(A) of the space X!, consisting of all paths
ending in A. This subspace exactly coincides with the preimage a)Il(A) of the
subspace A by the map w;. Denoting the map constraint w; by X’(A) again
through w1, we get, therefore, that

Proposition 1.45. for any pair (X, A) the map
wi: XI(A) - A
is a fibration.

The last statement is useful to generalise. To do this, returning again to the
situation to which Proposition 1.40 refers, suppose that we are given arbitrary
families {A,} and {Y,} subspaces of spaces A and Y with indices from the
same set M. Let [Y4]m is a subspace of the space Y4 consisting of such maps
f:A > Y that f(A,) C Y, for any u € M, [YA]y is its preimage of the
restriction map iy (lying in the space YX). Denoting the restriction of the map
iy to [YX]ay again by iy, we get that

Proposition 1.46. in the conditions of Proposition 1.40 for any families {A,}
and {Y,} the map
iv: [Y¥1n = Y 1u
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is a fibration.

Ezample 1.47. Let X =1 and A = {0,1}. It is easy to see that in this case the
conditions of Proposition 1.40 are met (the proof that the pair (Z,{0,1}) is a
cofibration, i.e. that the square I X I is retracted into its three sides I x 0 U
{0,1} x I =Ix0UO0xIU1XxI is illustrated in Fig. 1.11.2). Assuming that

Figure 1.11.2:

the set of indices M consists of only one element u, and assuming A, = {0},
Y,, = {yo} where y¢ is some point of the space Y, we can obviously identify the
space [Y4]y with the component of the space Y containing the point yg, and
the space [YX]p with the subspace of all paths of the space Y starting at the
point yo. Replacing again Y by X (and yo by x¢), and denoting with the symbol
P(X,xo) the set of all paths of the space X starting at the point xo € X, we get,

Proposition 1.48. for any connected space X and any of its points xq, the map
wr: P(X,x0)— > X, uu(l),
is a fibration.

Proof. For each diagramme of the form

C—- P(X.x0)
l 2 l
F .-
wo w1
C x I“T- X
the covering homotopy F can be defined by the formula

(&), if 0<r<2,
flx,s+2t-2) if 5 <r<1.

F(x,s)(t) = {
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This fibration is called the Serre fibration of paths spaces.

In a more general way, we can consider the space P(X, A) consisting of paths
beginning in A C X, or its subspace P(X, A, B), consisting of paths ending in
B c X. In both cases,

Proposition 1.49. the maps
wi: P(X,A) > X, w;:P(X,A,B) > B

are fibrations.

Note in conclusion that the conditions of Proposition 1.40 not only sufficient,
but also necessary. More precisely,

Proposition 1.50. if the space X is locally compact and Hausdorff, the pair
(X, A) is closed and for each space Y the restriction map YX — Y4 is a fibration,
then the pair (X, A) is a cofibration.

However, in practice, this fact does not have to be used, therefore we will
not prove it.






Appendix

1.A The axiom of weak extension of covering ho-
motopy

By definition, the map p: E — B is a fibration if it satisfies the axiom of covering
homotopy, which is expressed by the diagramme

/

_

XX ——
F

(1.51)

Now let A c X, and let the covering homotopy F already be built on AxI c XxI.
Is it possible to extend it to a covering homotopy on all X x I7

Together with this map f: X — E (considered as a map X X 0 — E), this
homotopy A x I — E constitutes some map A — E, where A = (X x0) U (AX ),
which we will still denote by f and which closes the commutative diagramme

Zz(XxO)U(AxI)%E (1.52)

XX]———8B
F

where 07 is the inclusion. Our question now boils down to the following question:
is there a continuous map F: X x I — E, indicated in this diagramme by the
dotted arrow? B

Of course, here it is assumed that the map f: A — E is continuous (a
sufficient condition for which is the closeness of the subspace A).

Surprisingly, the requirements to map p: E — B be a fibration, the answer
to the question about the existence of a homotopy F turned out to be affirmative
for any f and F with not overly restrictive conditions on the pair (X, A). For
example, as we will show in the next lecture, it is enough for a pair of (X, A) be
a closed cofibration.

43
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Now we will consider sufficient conditions of a somewhat similar plan con-
necting the existence of a homotopy F with the possibility of homotopy extension
A x I — E for at least some neighbourhood of the subspace A.

A subset U of a space X is called a functional neighbourhood (or rim) of a
subset A if A ¢ U and there exists such a continuous function ¢: X — I that
¢la =0, ¢|x\v = 1. Every functional neighbourhood is a (not necessarily open)
neighbourhood of the closure A of the set A, and if the space X is normal, then
by applying Urysohn’s lemma (see Lecture 0 Section 0.A) any neighbourhood
U of the set A is a functional neighbourhood of the set A.

We emphasise that we do not require the functional neighbourhood to be
an open set. Therefore, any subset containing a functional neighbourhood U of
the set A will also be a functional neighbourhood of the set A.

Note that

Proposition 1.53. for any continuous function ¢: X — I and each ty € I,
to # 0, the set V. = ¢ 1([0,19]) € U is a functional neighbourhood of the set
A=¢1(0).

Proof. Indeed, the function
¥ (x) = min (1, @) , x€eX,
0

is continuous and has the property that ¢ =0 by A and ¢ =1 outside of V.= O

Since the functional neighbourhood V is closed, it follows, in particular, that
any functional neighbourhood U contains a closed functional neighbourhood.
If for the subspace A from Diagramme (1.52) we are given some of its func-
tional neighbourhood U, then we can consider the diagramme
-~ 7
A——F (1.54)

T
— F .-
oy p

F

where A" = (Ux0)U(AXI), f = 7|K’7 5’6 = 0ol 7, and F' = F|yxs. The map
F of this diagramme is nothing more than a covering homotopy, which is an
extension of the homotopy A X I — E over U.

Definition 1.55. We will say that the map p: E — B satisfies the aziom
of weak covering homotopy extension (in short, the aziom WCHE), if a map F
exists for each diagramme (1.52), for which it is possible to find such a functional
area U of the subspace A that for the corresponding Diagramme (1.54) there is

amap F .

It is clear that the functional neighbourhood U we can always assume closed
here.
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Proposition 1.56. A map p: E — B if satisfies the aziom of a weak extension
of the covering homotopy if and only if it satisfies the aziom of the covering
homotopy, i.e. it is a fibration.

Proof. Since with A = @ the axiom WCHE passes into the axiom of CH (it is
enough to put U = @), only the statement needs proof that any fibration satisfies
the axiom WCHE. In other words, we need to show that for Diagramme (1.52)
there exists a homotopy F if the map p: E — B is a fibration and there is such a
closed functional neighbourhood U of the subs,pace A that for the corresponding
Diagramme (1.54) there exists a homotopy F .

Let ¢: X — I be such a continuous function that ¢ = 0 on A and ¢ =1
outside U, and let

G(x,t) = F(x,min(1,1 - ¢(x) +1)), (x,1) e XxI

_ f(x), if wkx)=1
g(x) = {—' :
F (x,1-¢(x)), if xeU

(the map g: X — E is well-defined; it is continuous since the sets U and ¢~1(1)
are closed). Automatic verification shows that the diagramme

commutes. Since the map p: E — B is by condition a fibration, there is a
closing homotopy G: X X I — E for this diagramme. Then the formula

Fx, 1) = F (x,0), if xeU,0<t<1-¢(x),
G()C,l‘—1+90), if 1+¢p(x)§tsl’

will well determine the homotopy F: Xx —, that closes Diagramme (1.52). O

1.B  Weak maps

Let Ac U c X. A section s: A —» E to the map g: E — X over A is called
continued on U if there exists a section 5: U — E map g over U such that
ElA =3S.

By analogy with the axiom WCHE, we will say that the map g: E — X
satisfies the aziom of weak section extension (in short, the aziom WSE) if for
any subspace A C X each section s: A — E of the map g over A, continued on
some functional neighbourhood U of the subspace A, is continued on all X.

Maps satisfying the axiom WSE, we will call weak maps for brevity.

Applying the axiom WSE to A = @, we get, in particular, that
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Proposition 1.57. any weak map has a cross section.
By applying Proposition 1.36, it follows that
Proposition 1.58. if for the map p: E — To the natural map
g: El - Cocyl(p), v (pov,v(0)
is weak, then the map p: E — B is a fibration.
The converse is also true, i.e.

Proposition 1.59. for any fibration p: E — B, the map q: E' — Cocyl(p) is
weak.

Proof. Indeed, for any subset of A c Cocyl(p) there is a commutative dia-

gramme
A E
A X B

the map F which maps an arbitrary point ((u, e), ) of the product A X I where
tel,ue B, eeE and u(0) =0, to the point u(t) € B.

In this case, the plugging map F: A x I — E, considered by applying the
exponential law,as a map A — E!, will be nothing more than a section of the
map g over A. Therefore the axiom WSE for the map ¢ is a consequence of the
axiom WCHE (See 1.55.) for the map p. mi

‘UolA
_—
7

Iﬁ-

This explains our interest in weak maps. The theory of these maps was
constructed by Dold. We will now present its new results.

1.C Two lemmas about weak maps

Lemma 1.60. For any weak map q: E — X and any open set U C X, the
complement of which is functionally distinguished, the map

qu =qlgrw): g (U) > U
1s also weak.
Caveat: the proof is rather involved.

Proof. Let A c U, and let s be a section of the map gy over A that, there exists
a continuous function ¢: U — I, an open set V C U and a section 5: V — E
which maps gy over V such that ¢ =0 on A, ¢ =1 outside U and 5|4 = 5. We
need to prove that there exists a section s* of the map gy on all U such that
s*|a = s. At the same time, without loss of generality, we can obviously assume
that A= ¢ 1 (0) and V=U\ ¢~ (1).
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By condition there is a continuous function w: X — [ such that U = X \
w™1(1). For any n > 2 we put

W,=U,s1 NV, where

Un=X\w1([n_1

,1

)s Vn:U\Qol(

)

It is clear that U, Cc U,4+1, U, € U and W,, C U. Therefore, in particular, for
each n > 2, the section s is defined on the W,,.

It turns out that for any n > 2 there exists a section s,: X — E of the map
q such that:

a) if x € Uy, then s,41(x) = 5, (x);
b) if x € W,,, then s,(x) =5(x).

Indeed; a direct check shows that the formulae

() < (il max(0.1 =61 ¢ - @), it xeU, e 0w =l
Y(x) = L if x¢gU, ie wk) =1,

defines a continuous function y: X — I such that X \ ¢y~ ' (1) =U\ o 1 (1) =V
and Wy C ¢~1(0). Therefore, an open (not only in U, but also in X) set V is, in
X, a functional neighbourhood of the set W5. Therefore due to the weakness of
the map ¢, there is a section s, coinciding on Wy with the section 5. Thus, the
existence of the section s, for n = 2 is fully proved (note that the condition a)
is meaningless for n = 2).

Reasoning by induction, let us now assume that for some n > 2 the section
sp satisfying the conditions a) and b) has already been constructed. It is easy
to see that there are numerical functions «,,, 8,: I — I such that

<an(t) < B, <1 forevery tel,

n 1
H<—— if t>-—,
B(®) n+1 n
n+1 1
an(t) , if r<
n() n+2 n+1
For example, you can put
n+l 1
n—_'_?)) pne) lf O <t< T+l
_ ) n+3-2(n+1)t : 1 1
() =" i gy sr<g
n-1 if L<r<i,
n n
n+2 : 1
_ ) n“+5n+2-2(n+1)t 1 1
Ba() =\ —Grnoms i mg st
n : 1
P lf n <t< 1’
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Let T,, be a subset of the set U consisting of points x € X for which w(x) <
Bn(p(x)). By condition, if ¢(x) > %, then B, (¢(x)) < 745, and therefore if, in

addition, x € T,, then w(x) < ;25,i.e. x € Uy41. This proves that 7,, C Up41 UV,

Since U, NV, =W, and s, =5 on W, it follows that the formula

sn(x), if x€Upy, i e o) <2,
tn(x) = —_ . . 1 m
s(x), if xeV,, ie ok <y

On the other hand, the formula

0, if wx) <an(px)),
n(x) = { gl i 0, (p(x)) < w(x) < Balp(x)),
1, if Bu(ex)) <w(x) or wkx)=1 i e x¢U

defines a continuous function ¢,,: X — I such that ¢, = 1 outside T}, and ¢, =0
on the set X, of all points x € U for which w(x) < @, (¢(x)). Therefore, T;, is a
functional neighbourhood of the set X, in X, and since the section ¢, is defined
on Ty, then due to the weakness of the map ¢, there is a section s,41: X — E,
coinciding with the section 7,, on X,,.

If x e Uy, ie. w(x) < "T_l, then w(x) < a,(p(x)), and this means x € X,
Moreover, if x € U,41, then s,41(x) = t,(x) = s,(x). Similarly, if x € W41 and
thus ¢(x) < n—il, w(x) < Z—:%, then w(x) < a,(¢(x)), i.e., x € X,,. And since in
addition, x € V,;, then 5,41 (x) = 1,,(x) = 5(x).

Thus, the existence of sections of s, is proved for n > 2.

It is clear that

XU, =U.

Therefore, by applying condition a), the formula
s*(x) =s,(x), if xeU,,

well defines on U a certain section s*: U — E of the map ¢ (or, equivalently,
the map gy). In addition, sinceA c V,, for any n > 2, for each point x € A, there
exists an n such that x € U,,, and therefore

s*(x) = s5,(x) =5(x) = s(x), x€A.
Therefore s*|4 = s. O

By applying Lemma 1.60, if the map ¢: E — X is weak, then for any open
cover of {U,} of the space X all the maps go = qu,: ¢ *(Uy) — U, are also
weak. It turns out that under very weak general methodological conditions for
covering {U,}, the converse is also true, i.e. the map ¢ is weak if all the map
q o are weak.

Let X be an arbitrary topological space.

A family {p,} of continuous functions ¢,: X — I is called locally finite if
for any point x € X there exists a neighbourhood U ¢ X, in which only a finite
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number of functions ¢, are nonzero. A locally finite family of functions {¢,} is
called a partition of unity if for any point x € X the equality

Z Palx) =1

holds (note that, due to the condition of local finiteness, this sum has a definite
meaning). A partition of the unity {¢,} is called subordinate to the open cover
o} (with the same set of indices) if ¢, = 0 outside U, for any «. (Note that
there is another, more restrictive definition in the literature, which requires that
U, contains not only the set, where ¢, # 0, but also its closure.) An open cover
{Uy} is called numerable, if there is a partition of the unity {¢,} subordinate
to it.

Remark 1.61. It is easy to see that a Hausdorff space is paracompact if and
only if each of its open covers is enumerable. Therefore, the condition of the
enumerability of coverings is one of the variants of the paracompact condition.

It is obvious that for any continuous map f:Y — X and any open cover
{U,} of the space X, the set f~1(U,) constitute an open cover of the space Y.
At the same time,

Proposition 1.62. if the coverage is {Uy,} is numerable, then the coverage of
{f~Y(Uy)} will also be numerable.

Proof. Indeed, it is clear that for the partitions of unity {¢,} subordinate to
the covering of {Uguipna}, functions ¢, o f: Y — I will constitute a partitions of
unity subordinate to the covering {f~'(U,)}. O

We will call the covering {f~'(U,)} the covering preimage of {U,} for the
map f.

Lemma 1.63. Let g: E — X be a map. If there exists a numerable covering
{Uq} for the space X such that that all maps

qa: q_l(U(t) - U,
are weak, then the map q: E — X 1is also weak.

The proof is involved.

Proof. Let A C X and sg: A — E be a section of the map ¢g over A such that
there exists a continuous function ¢: X — I, an open set V C A and a section
So: V — E for the map g over V, such that ¢ = 0 on A, ¢ = 1 outside V and
Sola = so.

Consider an arbitrary partition of unity {¢4,a € A}, subordinate to the
covering {U,}. Assuming that the symbol 0 is not contained in the set of
indices A, we put

Yo=1-9¢, Ya=¢pa, a€cA.
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It is clear that the family {¢3}, where 8 € AU{0} is a partition of unity. Due to
the local finiteness of the family {yz} for any subset of B ¢ AU {0} a continuous
function

Yp:ix Zwﬁ(x), xeX

peB

taking values in [ is defined. Let

Ve =X \yz (0).

Is it clear that A c Vg if 0 € B, and ANBg = @ if 0 ¢ B. In addition, A c Vo C V.

Let’s now consider the set S of all .pairs of the type (B,s), where B is an
arbitrary subset of A U {0}, containing element 0, with s is a section over Vp
such that s[4 = so. Since ({0}, 50lv,,,) € S, the set S is not empty.

We introduce a partial ordering to the set S, assuming that (B,s) < (B',s),
if B ¢ B (and, therefore, Vg C Vy) and s (x) = s(x) if g (x) = p(x) (ie.
wp =0 for any g € B\ B).

Let K be an arbitrary chain in S. Putting,

I'=Ug,s)ek B,

for any open set W c Vr, we denote by I'y a subset of the set I' consisting of
all indices B € I' for which the function g is nonzero at least at one point of
W. Let {W} be the family of all open sets W € Vr for which the set Ty is finite.
Due to the local finiteness of the partition of unity {¢¥ g}, the family {W} covers
the set Vr.

For each set W € {W} we consider a subset/ Ky of a chain K consisting of
pairs (B, s) such that I'yy € B. Due to the finiteness of the set I'y, for any pair
(B, s) € K there exists a pair (B',s) € Kw such that (B,s) < (B, s).

If (B,s) € Kw, then W c Vg, and if (B,s), (B,s) € Ky, then s =s on W.
Therefore , the formula

t(x) =s(x), xeVp,

where s is an arbitrary section of the ¢ map for which there exists a set of indices
B c T" and an open set W € {W} containing a point x that (B,s) € Ky, well
defines on V, the section ¢: Vi — E to the maps ¢, which obviously has the
property that (I',¢) € S.

If (B,s) € K, then by the construction B € I'. Let x be a point of Vg such
that ¢, = 0 for all y € I' \ B. Choosing an arbitrary neighbourhood W of
the point x belonging to the family {W}, consider in Ky an arbitrary element
(B',s") < (B,s). Since Uy(x)=0atye B\ B, then follows s(x) = s (x). But by
the construction s (x) = #(x). Therefore, s(x) = 7(x).

This proves that (B,s) < (I,t) for any element (B,s) € K, i.e. that the
element (I',¢) is the upper bound of the chain K.

Thus, in the partially ordered set S, any chain has an upper bound. There-
fore, by applying Zorn’s Lemma, the set S has a maximum element (B, s).
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Let B # AU {0}, and let @ € A\ B. The formula

Yolx) —yp(x)
Vo (x)

defines on the set V, = X \ ¢;*(0) a continuous function : V,tol, which obvi-
ously has the property V, \ ¢ ~1(1) C Vz. In particular, we see that the section
s is defined on the set V, \ ¢~'(1). Since this set is by definition a functional
neighbourhood of the set ~1(0), we thus obtain that the section sly-1(0) of the
map qvy,: ¢ 1 (Ve) = Vo \ ¥~ (1) satisfies the conditions of the axiom WSE.
But it is clear that V, C U,, and therefore gy, = gaolg-1(v,). Since the map g4
is weak by condition, therefore the map gy, is also weak according to Lemma
1.60. Therefore, for the section s|,-1() there is a section s : Vo — E for the
map gy, over V such that @' = s on ¢ ~'(0).
Now let T = BU {a}. Putting for any point x € Vp = Vg UV,

¥ (x) = max |0, . Yalx) £0,

o2 [S@ e < v,
s (x), lf l//a/(-x) 2 W,B(x)’
we will obviously get a cross section ¢: Vp — E of the map ¢ over Vr such

that (I',¢) € S and (B,s) < (I',¢). Since this contradicts the maximality of
the element (B,,s), it is thus proved that B = A U {0} and, consequently, that

Ve =X.
Thus, the section s is defined on all X and coincides on A with the section
so- Hence, the map g is weak. O

1.D Lemma on coverings of space X X [

To apply the results obtained to fibrations, we need the following technical
lemma, which is useful in other matters as well.

Lemma 1.64. For each numerable covering {Uy,a € A} of the space X X I,
we can find a numerable covering {Vg,B € B} of the space X, which has the
property that for any B € B there exists a positive number eg > 0 such that for
any segment J C I of length < eg there is such a @ € A that Vg xJ C U,.

Let us prove the following classical lemma beforehand.

Lemma 1.65 (Lebesgue lemma). For an arbitrary cover U, of a compact metric
space X, there exists a positive number € > 0 such that any subset of K C X of
a diameter smaller than & is contained in some element of the coverage {Ug,}.

Proof. If such a number & does not exist, then for any n > 0 in X there will
be a subset of K, of a diameter smaller than 1/n that is not contained in any
element of the coverage of {U,}. Let x,, € K,. Since the space X is compact
by condition, there exists a point xg € X, any neighbourhood of which contains
infinitely many points x,,. Let xg € U,,, and let d be the distance from x¢ to
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X\ Uy, If n>2/d and p(xg,x,) < d/2, then for any point x € K, there is an
inequality

d 1
p(x0,x) < p(x0,xn) + p(xp,x) < 5 + - <d,

showing that, contrary to the assumption, K, C U,,. The resulting contradic-
tion proves the lemma. O

The upper bound of the numbers ¢ is called the Lebesgue number of the
covering {U,}.
Now we can prove Lemma 1.64.

Proof. (of Lemma 1.64) By condition, there is a partition of unity {¢4}, subor-
dinate to the covering {U,}, i.e. such that X \ ¢,'(0) c U, for any @ € A. In
order not to introduce new letters, we assume that X \ ¢3(0) = U,. It is clear
that this assumption does not limit generality.

Let B be the set of all finite sequences of elements of the set A. Thus, each
element of B € B has the form (ay,...,@,), where r < 0. We will denote the
length of the sequence B with the symbol |B].

To each element 8 = (a1,...c,a,) € B we will associate the continuous
function g : X — I defined by the formula

i-1 i+1
r+1r+1

.
wﬁ(X)=l_[glei;}som(X,ti), where i; =
i=1 "

Let Vg = X \ y5'(0). It is clear that x € f if and only if o # 0 on {x} x I; for
each i =1,...,r. In particular, we see that Vg x I; C Uy, i=1,...,r.

Since any segment J C I of length less than H_Ll is contained in one of the
segments I;, i = 1,...,r, it follows that for gg = ﬁ the family {Vz} has the
property claimed by Lemma 1.64. Therefore, to prove Lemma 1.64, we only
need to show that the family {Vg} is a numerable covering of the space X.

By definition of the product topology, each point (x,7) € X x I has a “rect-
angular” neighbourhood U, ; X Vy; contained in some element of the covering
{Uq}. Here Uy, is some neighbourhood in X of the point x € X, and V, ; is some
neighbourhood in I of the point # € I. For any point x € X all neighbourhoods
of the form V, , form an open covering of the segment /. Let r be an integer
such that the length % of the corresponding segments I;, i = 1,...,r, does
not exceed the Lebesgue number of this covering. Then every set of the form
{x} xI;, i =1,...,r, will be contained in some neighbourhood Uy ; X V, and
therefore in some element Ualf“ of the covering {U,}. Therefore, ol # 0 on

{x} xI;, and this means x € Vg0 where B = (aio), ey aﬁO)). This proves that
the family {Vg, 8 € B} is a covering of the space X.

In order not to introduce a new notation, we can assume that the neigh-
bourhood Uy ; X Vy; also has the property that each of them intersects only
with a finite number of elements of the covering {U,}). Then by choosing for
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each point x € X from the covering {V,,} of the segment I (which is a compact
space) a finite subcovering {Vy,,...,Vy,, } and putting

U= Ux,t1 ﬁ"'ﬁUx,tns

we will get a neighbourhood U of the point x in the space X such that U, N (U X
I) # @ only for a finite number of indices @ € A. Hence, in sequences 8 € B for
which UN (U X I) # @, only a finite number of different indices can participate
a € A and, therefore, for any r > 0 such sequences with || < r will be of only a
finite number. Therefore , the formula

4 (x) = Z Up(x), xeX,
IBl<r

will define on X some continuous non-negative function 2,: X — R (for r = 1
we, by definition, consider 1; = 0). Let

Jﬁ(x) =max(0,y¥p(x) —rd,(x)), where r=|B|,B¢€B.

It is clear that ZB (x) = 0iyg(x) = 0. Therefore, the sequences 8 € B and |g| for

which JB (x) #0 on U, are also of a finite number.

Having now chosen the sequence for the point x € X 8y € B with x € Vg,
of length |Bg| = ro which has the smallest possible value, consider an arbitrary
number r > rg for which yg, > % Then rA, > 1, and therefore rd, > 1
in some neighbourhood of the point x (which we can consider coinciding with
the neighbourhood U constructed above). Thus, for any 8 with |8] = r in the
neighbourhood of U, the equality Zﬁ = 0 holds. Therefore, |8] # 0 on U only for
a finite number of sequences of 8 € B. Thus, it is proved that the family {ZB}
is locally finite, and therefore the formula

P = > pl), xeX,

peB

well defines on X some continuous function ¥ : X — R.

Since by the condition the length of r¢ = |8] is the sequence of By for which
x € Vg, ie. yg, # 0, has the smallest possible value, then ¢z = 0 for 8| < ro,
and, therefore, A,,, = 0. Therefore, Y5 (x) = g, (x) # 0 and, therefore, ¥ (x) # O.

This proves that the functions Zﬁ /y are defined everywhere on X. Since they
obviously constitute a partition of unity subordinate to the covering of {Vg},
Lemma 1.64 is thereby completely proved. O

Corollary 1.66. For each numerable covering {Uy,a@ € A} of the space B there
can be found a numerable covering {Vg,3 € B of the space B!, which has the
property that for any B € B there exists a positive number eg > 0 such that for
an arbitrary segment J C I of length < eg, there is an a = a(B,J) € A such that
u(J) c Uy for each path u € Vg.
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Proof. 1t is enough to apply Lemma 1.64 to the numerable covering of the space
B! x I, which is the preimage of the covering {U,} by the evaluation map

w:B'xI— X, (ut) u(l).
O

Using the notation introduced in the Section 0.C of Appendix to Lecture 0
for basic sets of compactly open topology, we can write the properties of sets
Vp claimed in this consequence as a formula

Ve c g (J,Unp,))s

where the intersection is taken over all segments J C I of length < eg.
Now let ng be an integer such that ngeg > 1, and let Ig;, be a segment

[i_l L], where i = 1,2,...,ng. Then Vg C Wp, where

ng * ng

Wp =2 W UpisUnp)s  @i(B) = a(B,1g;).

Sets Wg are open in the space of B! and make up the numerable covering of
this space (the partition of the unity subordinate to the covering of {Vz}, will
obviously be subordinate to the covering {Wg}). Denoting them again by Vj,
we get

Corollary 1.67. For each numerable covering {Uy, @ € A} of the space B there
can be found a numerable covering {Vg, B € B} of the space B!, having the the
property that for any index  in B there are indices a1 = a1(B), . .., any = Ang(B)
in A such that u € Vg if and only if u(lg;) C Uap, ) foreachi=1,..., ng.

Here it is convenient to introduce into consideration the parts of the paths
n € Vg on the segments Ig, i.e. the paths u;, i = 1,...,ng, determined (taking
into account the necessary parameter transformation) by the formula

t+i—1

u,-(t)zu( ), 0<r<1.

Due to the inclusion of u(lg,;) C Ug, gy, we can consider the path u; as a path in
Ua,(p)- Hence, by matching the paths u € Vg with the sequence (u1,...,u,,) of
paths u; we will get (as it is easy to see a homeomorphic) map of the set Vs to a

I I . .
subset of the product Ual(ﬁ) Xoee X Ua”ﬁ ) consisting of sequences (u1, ..., un,),
u; € Ué 3 such that u;(0) = u;1(1) for any i > 1. Henceforth, in order not

to introduce unnecessary notation, we will identify the paths u € Vg with the
corresponding sequences (U1, ..., Uny).

1.E Dold’s theorem

Let’s now consider an arbitrary map p: E — B, its cocylinder Cocyl(p) ¢ ExB!
and the map ¢: E! — Cocyl(p), u — (u(0),p o u). Still assuming a given
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numerable covering {U,, @ € A} of the space B, we denote by Wg the preimages
under the natural projection of p,,,: Cocyl(p) — B!, (u,e) — u provided
by Corollary 1.67 of the Lemma 1.64 for the sets of Vg. According to the
identifications described above, we can consider as points of each set Wy sets of
the form (e,u1,...,un,), where u;, i = 1,...,ng, are paths in U,, (g) such that
;i (0) = u;—1(1) for i > 1, and e is a point from E (and in fact from p~'(Uy,,g)).
such that u1(0) = p(e). Being a preimage of the numerable coverings under a
continuous map, the family {Wg,8 € B} is a numerable covering of the space
Cocyl(p).
For every B € B we will introduce the map

a8 =qlgr(wy): 4 (Wp) > Wp.

Here is the way that v € ¢g71(Wp) E! is also convenient to split into parts, i.e.
each such path is identified with the sequence (vq,...,v,) of paths

t+i—1

vi(t):v( ), 0<r<l1.

Because, as it is easy to see that ¢~'(Wg) = p;'(Vg, where p.: El — B map

u — pou, the sequence (vi,...c,v,;) paths in E if and only if the path v €

g~ 1(Wp) satisfies v;(0) = v;_1(1) for i > 1 and each path v;, i = 1,...,ng, is a

path in p~' (U, s))- The map of ¢ fz will be determined by the formula
ag(Vis--sVng) = (vi(0),povy,...,povyy).

Accordingly, each section of s: Wg — ¢~'(Ws) maps to gg, we can identify
the sequence (s1,...,sy,) with the continuous maps s;: W — E!, having the
following properties:

a) for any point (e,u) € Wy the path v; = s;(e,u) is a path in p‘l(U‘,l.)ﬁ));
b) if u = (ul,...,unﬁ), then p ov; = u; for every i = 1,...,ng;
¢) v1(0) = e and v;(0) = v;_1(1) for i > 1.

However, the map s; are more convenient to interpret as the homotopy Wg x
I — E, or, more precisely, by applying the condition a), as the homotopy
Wgx1 — p~t(U,,), where a; = @;(B). In this case, the conditions b) and ¢) will
be equivalent to the commutativity of the diagramme

$i-1007

W ——p " (Us,) i=1,...,ng (1.68)

!

ng x 1 T> Ua/i
where the homotopy ¢;: Wg X I — Uy, is defined by the formula

pi((e,u),1) =u;(t), for wu=(ui,...,un,),
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and p; represents a map pg,: p~(Uq;) — Ua,, induced by the map p. (By the
map s;_; o 0y for i = 1 here, of course, we mean the projection w(: (e,u) — e.)

Lemma 1.69. If all maps p;, i =1, ..., ng satisfy the axziom WCHE (See 1.55.),
then the map qpg is weak.

Proof. Let A c U c Wg, and the set U bes a functional neighbourhood of the
set A (in Wg), and let 5: u — g~ ' (W) be an arbitrary section of the map gg
over U, i.e. there is a sequence of homotopies 5;: U X I — p~1(U,,), for which
the following diagramme commutes

Si-1007

U——p ' (Uq)

5
O'OL jl’i

Ux[——>U,,
i !

We must prove that there exists a section s of the map gg over the entire set Wg
coinciding on A with the section ¥, i.e. that there exist homotopies s;: Wgx1 —
p~ Y (Ua,),i=1,...,ng, for which Diagramme (1.68) are commutative and which
on A X I coincide with homotopies ;.

Let ¢ be a continuous function such that ¢ = 0 on A and ¢ = 1 outside U,

and let .
Uiz&pl([o,l—L]), i=1,....ng
ng

Then
ACUnﬁc---cUchUic‘--cmcU,

moreover, each set U;, i < ng, will be a functional neighbourhood of the set Uj1,
and the set U will be a functional neighbourhood of the set U;.

We will construct a homotopy s;, by induction on i, for which we additionally
require that for each i = 1,...,ng the following equality takes place

Siluyxi = Siluixr;

in other words, we will replace each Diagramme (1.68) with a diagramme

’U;LP_I(UM) i:l,...,l’lﬁ, (170)

|

W X [ ———> U,

where U; = (Wg x0) U (U; xI), and ¢; the map defined by the formula

si—1((e,u),1), if t=0,

Yi((e,u),1) = {Ei((e,u),t), if (e,u) €U
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(for i = 1, instead of s;_1((e, u),t), you should write e).

But Diagramme (1.70) has the form of Diagramme (1.52) with X = Wpg,
A=U, f=4vi, F=g¢,and p = p;. Since in the corresponding Diagramme
(1.54) (with U = U;_; for i > 1) the closing map F obviously exists (it will be a
restriction on U;_1 x I of the homotopy 5;), then by applying the axiom WCHE
(See 1.55.), the homotopy s; in Diagramme (1.70) also exists. Thus, homotopies
s, in a step by step fashion, are constructed for all 1 =1,...,ng. O

Now we can prove the main theorem of Dold.

Theorem 1.71. If for the map p: E — B there exists a numerable covering
{Uq} of the space B such that each map

Pa = plp’l(UG): p_l(Ua) - U,
is a fibration, then the map p: E — B will also be a fibration.

Proof. According to Proposition 1.56, the fibration p, satisfies the axiom WCHE,
and therefore, according to Lemma 1.69, all maps gg: ¢~*(Wg) — Wj are weak,
where, recall, Wg is a subset of the space Cocyl(p), which is the preimage of
the projection (u,e) +— u of subsets of Vg ¢ B! from Corollary 1.67 of Lem-
mas 1.64. But, as already noted above, the family {Wg} is a numerable cov-
ering of the space Cocyl(p). Therefore, according to Lemma 1.63, the map
q: E' — Cocyl(p) is weak, and hence the map p is a fibration. o

1.F Locally trivial fibrations

Dold’s theorem finds an important application to the so-called locally trivial
fibrations.
If in the diagramme below

the space E is the product B x Y of space B by some space Y (and, therefore,
the map f: X — E is given by the formula f(x) = (f1(x), fa(x)) where f;: X —
B, fo: X —» Y), and p: E — B is a projection (b,y) — b, b € B, y € Y,
then the homotopy F obviously exists (and is given by the formula F(x,f) =
(F(x,1), f2(x))). Hence, for any spaces B and Y, the projection BxY — B is a
fibration.
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We will call two maps p: E — B and p': E. — B are isomorphic if a
homeomorphism E — exists such that the diagramme

is commutative. It is clear that a map isomorphic to a fibration will itself be
a fibration. Therefore, in particular, every map p: E — B isomorphic to the
projection B X X — B of the direct product will be a fibration. Such fibrations
are called trivial fibrations.

Accordingly, amap p: E — B is called a locally trivial fibration if there exists
an open covering {U,} of the space B such that all maps po: p*(Uy) — U, are
trivial fibrations.

This terminology suggests its justification in that, following directly from
Theorem 1.71, if a space is paracompact, then every locally trivial fibration is
actually a fibration.

Remark 1.72. Dold prefers a variant of the definition in which the covering {U,}
is assumed to be numerable. Then the assumption about the paracompactness
of the space B becomes unnecessary.

Remark 1.73. It should be borne in mind that in mathematics the term “fibra-
tion” is used in many different senses, sometimes almost uncorrelated with each
other. Therefore, strictly speaking, it is always necessary to clarify what the
meaning of this term is meant. In these lectures, a “fibration”, unless explicitly
stated to the contrary, will always be understood as a fibration in the sense of
Definition 1.25 of Lecture 1 (i.e., in the sense of Hurevicz).

Remark 1.74. One of the most important classes of fibrations are the so-called
bundles in the sense of Steenrod, also called bundles with a structural group or
skew products (in English fibre bundle). These include vector bundles known
from differential geometry and numerous bundles constructed with their help
(say, bundles into spheres). All bundles in the sense of Steenrod are, by defi-
nition, locally trivial and therefore (if their base in paracompact) are fibrations
in the sense of Hurevicz.

All this gives us an inexhaustible supply of examples of concrete fibations.
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2.1 Homotopy equivalences

Definition 2.1. A continuous map f : X — Y is called homotopy equivalence
if its homotopy class [f] is an isomorphism of the homotopy category [T ¢ z].
This is equivalent to the fact that there is a continuous map g : ¥ — X (called
inverse homotopy equivalence) such that

fog~idy, and gof~idyx. (2.2)

Since [g] is nothing but [f]~!, and since in any category a morphism, an in-
verse isomorphism, is defined in a unique way, the inverse homotopy equivalence
up to homotopy is defined in a unique way.

Spaces that are isomorphic in the category [T ¢ 2], i.e. connected by homo-
topy equivalence, are called homotopically equivalent. Homotopically equivalent
spaces are also said to have the same homotopy type.

Similarly, two continuous maps f : X — ¥ and f : X — Y are called
homotopically equivalent if they are isomorphic in the category of morphisms of
the category [T ¢ ], i.e. if there exist homotopy equivalences ¢ : X — X and
W Y — Y such that the following diagramme

Y
|+
Y

is homotopically commutative (commutative in the category [T ¢z]), i.e. it has
the property that ¥ o f ~ f o ¢.

A remarkable fact justifying our interest in fibrations and cofibaraiotns from
a new and unexpected side is indicated in the following theorem.

f

X ——s

|

X ——

f

Theorem 2.3. Any continuous map is homotopically equivalent to both a fibra-
tion and a cofibration.

Thus, in homotopy theory, without loss of generality, we can consider all
maps to be fibrations or cofibrations if desired!

59



60 LECTURE 2.

2.2 Reduction of an arbitrary map to a cofibra-
tion

The proof of Theorem 2.3 is based on the concepts of a cylinder and a mapping
cylinder introduced in Lecture 1. However, for purely technical reasons (and
to tell the truth, it’s mostly by tradition) “reversed” cylinders and cocylinders
are convenient here, resulting in replacing ¢ with 1 —¢. In addition, it will be
convenient for us here to denote the map for which the cylinder and cocylinder
are being constructed with the symbol f : X — Y, which will free up the letters
i and p for other purposes.

Thus, the reversed cylinder of the map f : X — Y is called a push-out

(X xI)UysY of the diagramme X x I Iy L Y, obtained by gluing the direct
product of X x I to the space Y by the map (x,1) — f(x), that is, the coset
space of the disjunct union (X X I) UY by the minimal equivalence relation in
which (x,1) ~ f(x) for any point x € X. We will denote the reversed cylinder
with the same symbol Cyl(f) as the straight cylinder from Lecture 1.

For an inverted cylinder , a co-universal square (1.13) of Lecture 1 has (after
transposition) the form

x—7I .y (2.4)

Fll l/(a-l)f

X x [ —— Cyl(f).
S

For any point (x,¢) € X xI, we will denote its image by the map fx by [x,].
It is clear that [xq,f1] = [x9,t2] if and only if either x; = xo and £, = o, or
t1=t2=1and f(x1 = f(x2).

For the sake of simplicity, we denote the co-induced map o by the symbol
J. In addition, we will introduce into consideration the map i = fx o oy :
X — Cyl(f), that is, the map x — [x,0]. Obviously, both maps i and j are
moneomorphisms.

As arule, the points are x € X we will identify x and y with the points ix and
Jy, respectively, i.e. we will consider the maps i and j as attachments. Thus,
by applying this agreement, X c Cyl(f) and Y c Cyl(f).

Each point of z € Cyl(f) either has the form [x,¢], x € X, t € I, or is some
point y € Y. In this case, [x,1] = f(x) for any point x € X.

Lemma 2.5. The map i is a cofibration (and, consequently, the pair (Cyl(f), X)
is a cofibration,).

Proof. The formula

([x,tr+t—7],0), iftr+t—72>0,
(x, —tT —17), iftr+t -1 <0,

7([x,t],7) = {

where (x,t] € Cyl(f), and 7 € I together with the formula
7(y,7)=(y,0), yeYcCyl(f), 0<t<1,
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well determines the corresponding map
7:Cyl(f) xXI — (Cyl(f) x0) U (X xI).

Since X is obviously closed in Cyl(f), this proves Lemma 2.5 (see Proposition
1.15 of Lecture 1). o

Define the map
r:Cyl(f) »Y (2.6)

by the formulae

r(x,t]) =[x, 1], [x,t] € Cyl(f),
r(y) =y, yeY cCyl(f).

Lemma 2.7. The map r is a homotopy equivalence.

Proof. Let, as above, j : Y — Cyl(f) an inclusion. It is clear that ro j =id. On
the other hand, H : j or ~ id, where the homotopy

H : Cyl(f) x I — Cyl(f)
is defined by the formula

H([x,t],7) =[x, tt+1-7], [x,t] € Cyl(f),

2.8
H(y,7) =y, yeY cCyl(f). 28

Corollary 2.9. Any continuous map f : X — Y is homotopically equivalent to
a cofibration i : X — Cyl(f).

Proof. Tt suffices to note that f(x) = [x,1] = r[x,0] = (r o i)(x) for any point
x € X, i.e., the following diagramme is commutative.

X——Y

This corollary proves Theorem 2.3 with respect to cofibrations.
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2.3 Deformation retract

The homotopy equivalence of r has the property that r o j = id and, therefore,
is a retraction. This type of retraction deserves a separate name.
Let Ac X andi: A — X is an inclusion.

Definition 2.10. A map f : X — A is called deformation retraction if roi =id A
and ior ~ idy. A subspace A for which there is a deformation retraction X — A
is called a deformation retract of the space X. The homotopy X X I — X
connecting the maps i o r and idy is called a retraction deformation.

A space X is said to be deformable into the subspace A if there exists a
homotopy f; : X — X such that fy = id and f;(X) C A, i.e. if there exists a
map ¢ : X — A such that i o ¢ ~idx. It is easy to see that

Proposition 2.11. a subspace A is a deformation retract of the space X if and
only if it is a retract of the space X and the space X is deformed into the subspace
A.

Proof. Indeed, if r : X — A is a retraction and ¢ : X — A is a map such that
iop~id,thenior ~ioroiog=io¢g ~id, and, therefore, r is a deformation
retraction. O

Every deformation retraction r : X — A is, of course, a homotopy equiv-
alence. The inverse homotopy equivalence in this case will be the inclusion
i: A— X. Conversely

Proposition 2.12. if the inclusion i : A — X is a homotopy equivalence,
then in the case where the pair (X, A) is a cofibration, the subspace A will be a
deformation retraction of the space X.

Proof. Indeed, let j : X — A be the homotopy equivalence inverse to the inclu-
sion i : A — X. By definition, the map j|4 = j oi is homotopic to the identity
map id4. Therefore , the map j is homotopic to the map r : X — A, for which
r|a =idg4, i.e. being a retraction X — A. Since ior ~io j ~ idy, this retraction
is a deformation retraction. |

Interestingly, an arbitrary homotopy equivalence is reduced to deformation
retractions and corresponding embeddings. Namely, it turns out that

Proposition 2.13. for any homotopy equivalence f : X — Y there exists a space
Z containing both spaces X and Y as deformation retracts, such that f =roi,
where i : X — Z is an inclusion, and r : Z — Y is a deformation retraction.
Moreover, for this space Z, we can take the (reversed) Cylinder Cyl(f) of the

map f.
All this follows directly from the following proposition.

Proposition 2.14. A map f : X — Y is a homotopy equivalence if and only if
the space X is a deformation retract of the cylinder Cyl(f).
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Proof. If X is a deformation retract, then the inclusion i : X — Cyl(f) is a
homotopy equivalence. Thus, in decompositions f = roi, both maps i and r are
homotopy equivalences. Therefore, the map f is a homotopy equivalence, too.

Conversely, let the map f : X — Y be a homotopy equivalence, and let g :
Y — X be the inverse homotopy equivalence. We should construct a retraction
p : Cyl(f) — X and a homotopy K : Cyl(f) x I — Cyl(f), connecting the
identical map id : Cyl(f) — Cyl(f) with the map i o p : Cyl(f) — Cyl(f). We
will compose a homotopy K from four consecutive homotopies. First we will
define the homotopy 2.8 on the segment [0,1/4]. This means that at 0 < 7 <
1/4, the homotopy K will be determined by the formulae

K([x,t],7) = [x,t + 41 — dt7], [x,t] € Cyl(f),
K(y,7)=y, yeY cCyl()).

As a result, from the map id : Cyl(f) — Cyl(f) we get the map jor : Cyl(f) —
Cyl(f), which takes values in Y.

On the next segment [1/4, 1/2] we will take as a homotopy K the composition
of the map j or and the homotopy G : Y X I — Y connecting the identical map
id: Y — Y with the map fog:Y — Y, i.e., more precisely, homotopy

joGo(rxid): Cyl(f) xI — Cyl(f),

connecting the map j o r with the map jo f o g or, and subjected to a linear
transformation of the parameters. Thus, the homotopy K for 7 € [1/4,1/2] will
be determined by the formulae

K([x,t],7) = jG(f(x),47 = 1), [x,t] € Cyl(f),
K(y,7)=jG(y,4t=1), yeY c Cyl(f).

The map j o f o g or translates the point [x,¢t] € Cyl(f) to the point
f(g(f(x))) = [g(f(x)),1], and the point y € Cyl(f) to the point f(g(y)) =
[g(y),1]. Therefore, the formulae ([x,¢],7) — [g(f(x)),1 - 7] and (y,7)
(g(y),1 = 1) will well determine the homotopy of this map to the map [x, ] —
g(f(x)), y — g(y). We will take this homotopy for the homotopy K on the
segment [1/2,3/4]. Given the shift of the parameters, we get, therefore, that
the homotopy K is determined for 7 € [1/2,3/4] by the formulae

K([x,t],7) = [g(f(x)),3 —4r], [x,t] € Cyl(f),
K(y,7)=[g(y),3-47r] yeY cCyl(f).

With v = 3/4, we actually get a map to X. Therefore, for the points [x, ¢], the
homotopy F : X xXI — X can be applied to it, connecting the map gof: X —» X
with the identity map id : X — X. This homotopy we will take K as a homotopy
on the segment [3/4,1]. At the same time, in order to avoid a gap for r = 1,
you need to multiply the parameter by 1 —¢. In addition, it is necessary to take
into account the shift of the parameter change area. Thus at 7 € [3/4, 1] we get
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for the homotopy K of the formula

K([x,1],7) =iF(x,(1 = 1)(47 = 3)), [x,t] € Cyl(f),
K(y,7)=ig(y), yeY cCyl(f).

The resulting homotopy K : Cyl(f) xI — Cyl(f) connects the identical map
id : Cyl(f) — Cyl(f) with the map i o rho : Cyl(f) — Cyl(f), where p is the
map Cyl(f) — X defined by the formulae

p[-x’t] :F(x’l_t)’ [-x9t] ECyl(f),
p(y)=g(y), yeYcCyl(f).

(due to the relation F(x,0) = g(f(x)), the map p is well-defined).
To complete the proof of Proposition 2.14, it remains to note that since
plx,0] = F(x,1) = x, we have p oi =id. O

2.4 Contractible spaces and cones

A particularly interesting case is when the space Y consists of only one point.
We will denote such a space by the symbol pt, and the (unique) map X — pt
by the symbol constyx (or just const).

Definition 2.15. A space X is called contractible if the map consty is a homo-
topy equivalence.

Since the inverse homotopy equivalence g : pt — X is given by the point
xo = g(pt) of the space X, and consty og = id¢ and g o consty, = consty,, where
consty, : X — X is a constant map x — x, the space X is contractible if there
exists such a point xo € X, such that const,, ~ idy. It is said that the space X
contracts to the point xg.

It is curious that the contractible space shrinks to any point of its own.
Indeed, if x¢,x; € X and consty, ~ id, then consty, ~ consty, o consty, ~ id.

The homotopy connecting the map idy with the map of consty, is called the
contraction of the space X.

Examples of a contractible spaces are the n-dimensional ball E" (and, in
particular, a segment I = [0,1]) and, in general, any convex set or at least
stellar set relative to some point of its own body.

The cylinder of the map consty is called a cone over the space X. Two cones
are possible: straight and reversed. The first one is obtained from the product
X x I by contracting to the point of the subspace X X 0, and the second by
contracting to the point of the subspace X x 1. As a rule, we will consider an
inverted cone and denote it with the symbol CX. Thus, by definition

CX=(XxD/(Xx1).

We will denote the image of the point (x, ) € X[ for the coset map XxI — CX,
by the symbol [x,¢]€ or simply [x,¢]. In particular, all symbols of the form [x, 1]
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denote a single point of the cone CX, depending on x. This point is denoted by
the symbol pg and is called the vertez of the cone CX.

The correspondence [x,t] — [x,7+t —7t], T € I, defines a homotopy from
CX to CX connecting an identical map with a constant map [x,¢] — po. This
means that the cone CX shrinks to its vertex (and, therefore, to any point).

Each continuous map f : X — Y is determined by the formula

CHIx,t] =[f(x),t], xeX,tel,

so Cf : CX — CY is continuous, and it is clear that the correspondences X +—
CX, f — Cf constitute a functor from T oz to T oz.

If 11,0 # 1, then [xq,f1] = [x2,22] if and only if x; = xo and t; = 5. In
particular, we see that the correspondence x +— [x,0] defines a moneomorphic
map X — CX. A subspace of the cone CX consisting of points of the form [x, 0],
x € X, is called the base of the cone. Usually, by means of the moneomorphism
x > [x,0], it is identified with X. According to Lemma 2.5, the pair (CX, X) is
a cofibration, and according to proposition 2.14, the space X is contractible if
and only if X is a deformation retract of the cone CX.

A map f: X — Y is called null-homotopic if it is homotopic to the constant
map consty, : X — Y, x = yg, where yo € Y, i.e. if there exists a homotopy
F : XxXI — Y such that F(x,0) = x and F(x,1) = yg for any point x € X.
Since such homotopies are in natural bijective correspondence with the maps
f: CX — X that coincide on X with the map f (the homotopy corresponding
to the map f is by the composition of the factorisation map X X I — CX and
the map ?), we obtain that the map f : X — Y can be extended to CX if and
only if is homotopic to zero :

X —CX

1
s f
Y

It is also obvious that the space Y is contractible if and only if for each space
X any map X — Y is null-homotopic.

C

2.5 Relative homotopies and strong deformation
retracts

A deformation retraction (2.6) also has the following property that for the cor-
responding homotopy (2.8) there is an equality H(y,t) = y for any point y € Y
and any t € [

It is also worth introducing the appropriate general terminology here.

Definition 2.16. A homotopy f; : X — Y is called fized (or connected on the
subspace A C X, if f;(a) = fo(a) for any point a € A and any ¢ € I. A homotopy
fixed on A is also called a homotopy relative to A.
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Of course, a homotopy fixed on A can only be associated with maps f, g :
X — Y that coincide on A, i.e. such that f|a = g|a. Maps coinciding on A are

called (connected) homotopy relative to A (notation f ~ grel A or f 2 g) if they
are connected by a homotopy fixed on A. This relation is an equivalence relation
and the corresponding classes [f]rel A are called homotopy classes relative to
A.

All maps X — Y coinciding on A constitute a subspace (YX, f) of the space
YX, consisting of extensions to X of some fixed map fy : A — Y. In this case,
homotopies with respect to A can be considered as paths of this subspace. The
converse is generally true only if the space X is Hausdorff and locally com-
pact, and then the classes [ f] rel A are nothing but components of the subspace

<YX’ f0>

Definition 2.17. A deformation retraction r : X — A is called strict (or strong)
ifior ~idrel A. If such a retraction exists, then the subspace A is called a strong
deformation retraction of space X. In this case, we will write X 3\ A.

Proposition 2.18. If the pair (X, A) is a closed cofibration, then each defor-
mation retraction r : X — A is a strong deformation retraction.

To prove this proposition, we need the following lemma.

Lemma 2.19. For any closed cofibration (X, A), the pair (X X I,X4), where
Xa=(Xx0)U(AXIT)U (X x1) is also a cofibration.

We will prove this lemma below, but for now we will use it is used to prove
Proposition 2.18.

Proof. (of Proposition 2.18.) Let i : A — X be an inclusion and F : X X I — X
be a free homotopy connecting the map ior : X — X with the identity map idy.
Since, according to Lemma 2.19, the pair (X X I, X4) is a cofibration, so there
exists a homotopy from X X I to X, the initial map of which is the homotopy F
and which for every 7 € I is given by X4 by the formula

F((ior)x,1), if r=0,
Fr(x,t) ={F(x,t+(1-1)7), if xeA 0<r<l,
X, if r=1.

The end map F; of this homotopy will be the homotopy X X I — Xrel A con-
necting id to i or. O

Corollary 2.20. For a closed cofibration (X, A), the subspace A is a strong
deformation retract of the space X if and only if the embedding i : A — X is a
homotopy equivalence.

Corollary 2.21. A closed pair (X, A) is a cofibration if and only if the space
A=(XX%x0)U(AXI) is a strong deformation retract of the space X X I.
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Proof. If X x I \, Z, then the pair (X, A) is a cofibration by applying the
corollary from Proposition 1.15 of Lecture 1. Conversely, since the product
X x I is obviously deformed into the subspace X x O and, consequently, into
the subspace A, then in the case when there is a retraction r : X x I — A (i.e.,
by applying the same corollary of Proposition 1.15 of Lecture 1, when the pair
(X,A) is a cofibration), this retraction will be a deformation retraction and,
therefore, by applying Proposition 2.18 (applied to the pair (X x I, A)) a strong
deformation retraction. (However, you can do without any references if you
notice that putting r(x,t) = (r(x,t), p(x,1)), where x € X, t € I and r(x,?) € X,
p(x,t) € I, we can define the deformation retraction g, : X x I — X x I by an
explicit formula

g, )= (x,1=-1)1),(1 —7p(x,t) +71), x€ X, 7€l
Indeed, it is clear that gpi or, g1 =id and g, (x,t) = (x,1), if (x,1) € X). |

2.6 Homotopy invariance of the gluing operation

Let (X, A) be a closed cofibration, F : AXI — Y be an arbitrary homotopy and
f :A;0Y, a— F(a,0) be the initial homotopy map of F. Since A X1 C X X I,
the space is (X X I) Up Y. Let us compare it with the space X Uy Y.

Consider for this purpose the space AU FY.

Since AXIc Ac XxI and (X xI) N\ A the space A UpY is contained in
the space (X xI) Up Y and is its strong deformatlon retract. On the other hand,
since (AXI)NA =AX0 and F(a,0) = f(a), a € A, the space AUpY is naturally
identified with the space X Uy Y. This proves that

Proposition 2.22. the space X Uy Y is homotopically equivalent to the space
(XxI)UpY.

A similar statement holds, of course, for theend map g: A —» Y, a — F(a,1),
homotopy F. Hence,

Proposition 2.23. if a closed pair (X, A) is a cofibration, then for any two
homotopy maps f : X =Y and g : X — Y the spaces X Uy Y and X Uy Y are
homotopically equivalent.

In this sense, the operation of gluing spaces is homotopically invariant.

Note that in the process of proving, we actually constructed some homotopy
& XUY — X UyY, the initial map o of which is the factorisation map
g :XUY — XU;Y and which has the property, that its restriction £;|4 to A,
considered as a homotopy from A to B, is nothing more than a homotopy of
a — (a,t) connecting the map f with the map g. At he same time the map

p:XUgY > XUgY.

induced by the map ¢, (i.e. such that £; = ¢o g, where ¢ is the factorisation
map X UY — X U, Y)), is a homotopy equivalence.
From this remark it easily follows that
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Proposition 2.24. for any closed cofibration (X,A) and any map f : A > Y
every homotopy equivalence of h : Y — Z extends to some homotopy equivalence

h:XUfY—>XUhOfZ.

Indeed, it is clear that the map & : X UrY — X Upor Z coinciding on Y with
map h and identical on X is uniquely defined and continuous. Therefore, it is
only necessary to prove that it is a homotopy equivalence.

For this purpose, let us consider the inverse homotopy equivalence g : Z — Y
and its extension

g: X Uhof Z— X Ugoho f Y,

identical on X. Since goho f ~ f, then as has been proved, there is a homotopy
equivalence
tp:XUgohon—>XUfY.

In the diagramme

; id
xuy 99 xuz % xuy

N

q J 4 XUpY

e

XUfYﬁXUhOfZ—7>XUgchon
h 4

the vertical arrows of which are factorisation maps, both squares are commu-
tative by construction, and the right triangle is homotopy commutative by the
remark just made. Therefore

¢o§oﬁ~qo(idl_l(goh)).

But it’s easy to see that the formula

k. = g o (idUs), if 0<r<1/2,
" \laoio(du(goh)), if 1/2<r<1,

where s; : ¥ — Y is the homotopy connecting the identity map of the space Y
with the map goh, and ¢, : XUY — X Uy Y is the homotopy connecting the
map g with map @ ogq”, well defines homotopy k, : X 1Y — X Ur Y, connecting
the ¢ map to the map

(pog )o(idU(goh) =¢pogohogq

and compatible with the projection g, i.e. having the form &, = k; o q, where
kr:XUpY — XUrY. At the same time,

ko=id and ki =¢ogoh.
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Thus, ¢ 0 g o h ~ id, where ¢ is a homotopy equivalence.
épplying the same reasoning h o f and g instead of f and k, we get that

Y ohog ~id, where h is some map, and ¢ is a homotopy equivalence.
But if ¢’ is a homotopy equivalence inverse to the homotopy equivalence ¢,
then goh ~ ¢, and, therefore, goho @ ~ ¢ o ¢ ~ id. Therefore

woz~(//oﬁo§oﬁo<p~504p,

and therefore (ho @) 0 g ~ id.
This proves that g is a homotopy equivalence (with the inverse homotopy
equivalence ho ¢). Therefore, the homotopy equivalence will also be the map h.

2.7 Neighbourhood deformation retracts and cofi-
brations

Note that Lemma 2.19 has not yet been proved. Its proof is based on a single,
interesting for its own sake, proposition that gives a local characterisation of
closed cofirations.

Definition 2.25. A subspace A of a topological space X is called a neighbour-
hood strong deformation retract (abbreviated NSDR) if it is a strong deformation
retract of some open set U D A, i.e. if there exists a fixed homotopy g; : U —» U
on A such that go(x) = x and g;(x) € A for any point x € U.

Similarly, a subspace of A is called an weak NSDR if there exists a homotopy
g: : U — X fixed on A such that go(x) = x and g;(x) € A for each point x € U.

An NSDR (in the strong or weak sense) is called functionally distinguished
(abbreviated as FNSDR) if there exists a continuous function f : X — I such
that A = ¢~ 1(0) and X \ U = ¢~ '(1).

Lemma 2.26. A subspace A C X is a FNSDR in the weak sense if and only if
there is a continuous function ¥ : X — I and a fized homotopy G : X X I — X
on A such that A =y~ 1(0), G(x,0) =x and G(x,1) € A fort y(x) <t.

Proof. If the function ¢ and the homotopy G exist, then the homotopy con-
straint of G on U x I, where U = X \ ¢~1(1), ¢ = ¢ will be a homotopy from U
to X fixed on A = ¢~1(0), having the property that go(x) = x and g;(x) € A for
each point x € U.

Conversely, let there be a function ¢ : X — I such that A = ¢~1(0), and a
homotopy g; : U — X fixed on A, where U = X \ ¢~ !(1) such that go(x) = x and
g1(x) € A for each point x € U. Then A = ~1(0), where ¢ (x) = min(2¢(x), 1),
and the formula
X, if k) >1,

et = {g7<x>, i () <1,

where

1 if t2>2¢p(x),
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well defines a homotopy G : X X I — X such that G(x,0) = x and G(x,t) € A for
U(x) <t. O

Proposition 2.27 (local characterisation of closed cofibrations). A closed pair
(X, A) is a cofibration if and only if the subspace A is a FNSDR in the weak
sense.

Proof. Let (X, A) be a closed cofibration, and let f: X X I — A be an arbitrary
retraction, where, as always, A = (X X 0) U (A x I). Let, as above

r(x,t) = (r(x,1),p(x,t), where 7r(x,t) € X,p(x,t)€l.

As shown in Proposition 1.18, for the function ¥ (x) = max,c;(t—p(x, 1)) there is
an equality ¥ ~1(0) = A. In addition, if ¥/(x) < t, then p(x,t) > 0, and therefore
f(x,1) € A. Thus, the function ¥ and the homotopy G = 7 satisfy the conditions
of Lemma 2.26, and therefore A is a FNSDR in the weak sense.

Conversely, if A is a FNSDR in the weak sense, then, according to Lemma
2.26, there exists a continuous function y : X — I such that ¥~ !(0) = A, and a
fixed homotopy G : X X I — X on A, such that G(x,0) = x and G(x,t) € A for
¢(x) < t. Thus the formula

(G(x,1),0)), if t<yx),

r(x,t) = . (x,1) e Xx1I,
{(G()C,t),[ - l//(x))v lf t 2 d/(x)7

will determine the retraction f : XxXI — X, so the pair (X, A) is a cofibration. O

Ezample 2.28. Let f : X — Y be an arbitrary map and Cyl(f) its reversed
cylinder. It is clear that the formulae

elx,tl=7,0(1) 1, xeX,tel,yeY,

define a continuous function ¢ : Cyl(f) — I, for which ¢1(0) = X and ¢~ 1(1) =
Y, and the formula

ga([x, 7)) =[x, (1-07], xe€X,tel,

defines the homotopy g; : U — Cyl(f), U = Cyl(f)\Y, for which go[x, 7] = [x, 7]
and gi[x,7] = —[x,0] € X. This shows that the subspace X of the cylinder
Cyl(f) is a FNSDR in the weak sense and, therefore, the pair (Cyl(f), X) is a
cofibration. Thus we have proved Lemma 2.5 anew.

Now we can prove Lemma 2.19 as well.

Proof. (of Lemma 2.19) Since the pair (X, A) is a closed cofibration, then, ac-
cording to proposition 2.27, there exists a continuous function f¢ : X — I and a
homotopy g; : U — X rel A, such that U = X\ ¢~ 1(1), ¢~1(0) = A and go(x) = x,
g1 = A for any point x € U. But then, as a direct checking shows, the continuous
function ¢ : X X I — I defined by the formula

Y(x, ) =2min(2¢(x), 7,1 -7), (x,7) € X X1,
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has the property that ¢=1(0) = X4, and the homotopy h; : V — X x I, where
V =XxI\y (1) is a set of points (x,7) € X x I, for which either 7 # 1 or
@(x) < 1, defined (see Fig. 2.7.1) by the formula

9

Figure 2.7.1:
(x,7(1 =1)), if 27 < p(x),
(g(x, ¢2&) - 1Dt,7(1-1)), if @(x) <21 <min(2¢(x),1),
(g(x,0), (t = 20(x))t + 1), if o(x) <7 <min(2¢(x),1/2),
he(x,7) =4 (g(x,10),7), if 2p(x) << 1-2¢(x),

(g(x, 1), 7+ Qe(x)+1t—-1)1), if max(l-2¢(x),1/2) <27 <2-¢(x),
((r, BUz — D), t+1—11), if max(2(1 - ¢(x), 1) < 27 < 2= ¢(x),
(x,T+1—11), if 2-¢(x) <27,

the properties that hg(x,7) = (x,7), h1(x,7) € X4 for any point (x,7) € X x I
and h;(x,7) = (x,7), for any point (x,7) € X4. Thus, EX, is FNSDR in the
weak sense, and therefore the pair (X X I, X4) is a cofibration. O

2.8 Strong deformation retracts and homotopy
equivalences

Let’s now return to the map f : X — Y and its cylinder Cyl(f). Since, as
already noted, homotopy (1.10) is a homotopy relative to Y, we see that for any
map f : X — Y the space Y is a strong deformation retraction of the cylinder
Cyl(f).

As for the space X, then, according to proposition 2.14, in order for it to be a
strong deformation retraction of the cylinder Cyl(f), it is necessary in any case
that the map f : X — Y be a homotopy equivalence. Moreover, if we remember
that the deformation retraction constructed in the proof of proposition 2.14 is
obviously not a homotopy with respect to X, it turns out that this necessary
condition is also sufficient.
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Proposition 2.29. A map f: X — Y is a homotopy equivalence if and only if
the space X is a strong deformation retract of the cylinder Cyl(f).

Proof. This proposition follows directly from Propositions 2.14, 2.18 and Lemma
2.5. |

Corollary 2.30. A space X is contractible if and only if it is a strong defor-
mation retract of the cone CX.

2.9 Two more axioms characterising fibrations

The aziom on the covering extension and the axiom on the covering homotopy
extension

The concept of strict deformation retraction also allows us to give a new
characterisation of maps that are fibrations.

We will say that the map p : E — B satisfies the aziom of the covering
map extension (in short, the aziorn CME) if for any pair (X, A) in which the
subspace A is functionally separable and is a strong deformation retract of the
space X, for each commutative diagramme of the form

A
X

there exists a map f where i is the inclusion.
Since the subspace X = X x 0 of the product X x [ is obviously functionally
separable and is its strong deformation retract,

L (2.31)

o p
. !

_—
f

8

Proposition 2.32. every map p : E — B satisfying the axiom of the extension
of the covering map is a fibration.

The converse is also true, i.e.

Proposition 2.33. any fibration satisfies the axiom of the extension of the
covering map.

Proof. Indeed, let, in the diagramme (2.31), the map p : E — B be a fibration,
and the subspace A of the space X be functionally separable and represent a
strong deformation retract of the space X. Let, further, r : X — A be a strong
deformation retraction, H : X X1 — X be a homotopy fixing A, connecting maps
ior:X — X with the identity map id : X — X, and ¢ : X — [ is a continuous
function such that ¢~1(0) = A. Then it is clear that the formula

H H(x,t/¢(x)), if r<e(x) and x¢A,
X, t) =
X, if t>¢(x) or xe€A,
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well defines some continuous map H : X x I — X, which is also a homotopy
fixed on A connecting the map i o r to the identity map id. At the same time,
if we similarly “excite” the map oy, i.e. consider the map o : X — X[, defined
by the formula
Eo(x) = (.X, ‘P(x)), X € X7
then the equality H o oo = id will take place (whereas H o oy = i o r). However,
op=0pon A,ie oggoi=0goi.
Let us now consider the diagramme

A—t o x A E

Nt

X —>XxI—>=X B
To H f

According to what has just been said, this diagramme is commutative.
By combining the corresponding maps, we can combine the central and right
squares of this diagramme into one (also commutative) diagramme

X E
X X B
where G = f o H. Since the map p : E — B is by condition a fibration, there is

a covering homotopy G : X x I — E for this diagramme, and then it is directly
verified that the map f = G o T closes the diagram (2.31). ]

—>
7

I—>—

The result obtained has an important corollary concerning the problem of
extending the covering homotopy:
A E
Xx]—>B

where A ¢ X and A = (X x0) U (A X I) (see diagram (1.52) from the Appendix
to Lecture 1).

We will say that the map p : E — B satisfies the axiom of covering homotopy
extension (in short, the axiom HE) if for any diagram (2.34) in which (X, A) is
a closed cofibration, there exists a covering homotopy F.

For A = @, the axiom CHE turns into the axiom HE, so that

f
_—
/,

(2.34)

Proposition 2.35. any map satisfying the aziom of the covering homotopy
extension is a fibration.
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And conversely, it turns out that

Proposition 2.36. any fibration satisfies the aziom of the covering homotopy
extension.

Proof. Since fibrations satisfy the axiom CME, to prove this statement, it is
sufficient to show that the axiom CME follows from the axiom CH, i.e. that for
any closed cofibration (X, A) Diagramme (2.34) is a special case of Diagramme
(2.31), or, in other words, that the subspace A of the space X X I is its strong
deformation retract and is functionally separable. The first property is provided
by by the above-proven Corollary 2.30 to Proposition 2.29, and for the proof of
the second it is sufficient to show that for a functional distinguished subspace
A C X, the subspace A C X X [ is also functionally allocated (for, as was proved
in Proposition 1.18 in Lecture 1, for any closed cofibration (X, A), the subspace
A is functionally separable). But if ¢ : X — [ is a continuous function such
that A = ¢~1(0), then the function ¢ : X x I — I defined by the formula
W(x,t) =min(zt, ¢(x)), (x,1) € X x I, will have the property that A =¢~1(0). O

Combining the result obtained with the other characterisations of fibrations
proved above, we obtain

Theorem 2.37. For an arbitrary map p : E — B, the following axioms are
equivalent:

CH Covering homotopy.
CP Covering path.
WCHE Weak covering homotopy extension.
CHE Covering homotopy extension.
CME Covering map extension.
Thus, fibrations can be characterised by each of these axioms.

Corollary 2.38. Let in the diagramme where p is a fibration

A
X x

the homotopy F be stationary on a closed subspace of A C X. Then, if the pair
(X, A) is a cofibration, then the homotopy F can also be chosen to be fized on
A.

_

p

<1

f
_ 7
F

Proof. The condition of immobility of homotopy F on A sets this homotopy on
A. Therefore, we can apply the axiom on the covering homotopy extension. O
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2.10 The preimage of the cofibration

An important proposition follows from this corollary, concerning the preimages
of cofibrations.

Proposition 2.39. For any fibration p : E — B and any closed subspace A C B
having the property that the pair (B, A) is a cofibration, the pair (E, p~'A) will
also be a cofibration.

Proof. According to proposition 2.27 and Lemma 2.26, there exists a continuous
function ¢ : B — I such that ¢~1(0) = A, and a fixed homotopy g; : B — B on
A, such that go =idg and g;(x) € A for t > ¢/(x). The homotopy pog; : E — B
is fixed on p~'A, and its initial map p o go = p is covered by the map idg.
Therefore, according to Corollary 2.20, there exists a fixed homotopy on p~'A
and a homotopy &, : E — E such that hy =idg and h; op = po g, for any ¢ € I.
Consider on E the function ¢ = ¢ o p : E — I and the homotopy g, : E — E
defined by the formula

g,(x) = h(x), where 7 =min(t,¥(x)),x € E.

It is clear that J_l(()) = plA, go(x) = x, and g,(x) € p~lA for t > Y(x).
Therefore, the pair (E, p~'A) is a cofibration. O

2.11 Reduction of an arbitrary map to a fibration

Let us now return to Theorem 2.3 (which, recall, we so far proved only for
cofibrations).
The reversed cocylinder of the map f : X — Y is by definition the push-out

of the diagramme Y/ 2y <i X, i.e. a subset of the product of Y/ x X consisting
of points (u,x), u : I — Y, x € X, such that u(1) = f(x). We will denote this
cylinder with the same symbol Cocyl(f).

In the notation of Lecture 1 a commutative diagramme takes place for an

inverted cocylinder
wf
Cocyl(f) — X

o)

YVi— vy
w1

The map a)f7E : (u,x) — x we will denote by the symbol R to simplify the
formulae. In addition, we will introduce into consideration the map p = wgpo f,, :
Cocyl(f) — Y, acting according to the formula (u,x) — u(0).

Lemma 2.40. The map p : Cocyl(f) — Y is a fibration.

Proof. Let Cocyl(p) be the cocylinder (non-inverted) of the map p and ¢ :
Cocyl(f)! — Cocyl(p) be the map w — (p o w,w(0)), w : I — Cocyl(f).
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According to Proposition 1.36 of Lecture 1, to prove Lemma 2.40, it is enough
for us to construct a map s : Cocyl(p) — Cocyl(f)!, such that g o s = id. The
exponential law allows us to consider the map s as a map

Cocyl(p) x I — Cocyl(f)!,
i.e., (we use this law again) as a pair of maps
a:Cocyl(p) xIxI—Y, b:Cocyl(p)xI— X,
connected for any points ¢ € Cocyl(p), t € I by the relation
a(c,t,1) = f(b(c,1)).

In this interpretation, the identity g o s = id is equivalent, as it is easy to see, to
the identities

v(r) =a(e,1,0), u(x)=alc,0,7), x=0b(c0),
which should be the case for any numbers ¢, T € and any point
c¢=(v,c) € Cocyl(p), where v:I—>Y,c=(u,x) e Cocyl(f),

i.e. for any point x € X to any paths v:I — Y and u : I — Y connected by the
relations

w(0) =v(0) u(l) = f(x).

Assuming a natural liberty, we will denote (v, u, x) by the former symbol c.
We will define the map b by the formula

b(x,t)=x, c¢=(v,u,x)€ Cocyl(p) and trel.
Then the map a will satisfy the relations
v() =a(c,1,0), u(r)=a(c,0,1), alct,1)=f(x)
for any points ¢ = (v,u,x) € Cocyl(p) and (¢,7) € I X I. But it is clear that
these relations are satisfied by the map a : Cocyl(p) X I X I — Y, defined by the
formula

a(c,t,7)=(cop)(t,7), c¢=(v,u,x) € Cocyl(p), t,Tel,

where ¢, as above, is a retraction map I X I — (I x 0) U (0 x I), for which
e(1x1I)=(1,0), and ¢'is the map (I x0)U (0xI) — Y, defined by the formulae

c(t,0) =v(t), ¢(0,7)=u(r), t,tel.

(Question: Why is the map a continuous?)
Thus Lemma 2.40 is fully proved. O
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For each point y € Y with the symbol 0,, we will denote a constant path at
the point y, given by the formula

0y(t) =y for any point tel.

In particular, for each point x € X the symbol 0(,) denotes a constant path at
the point f(x) € Y. Because 0f()(1) = f(x), the pair 0f(y),x) lies in Cocyl(f).
Denoting this pair with the symbol i(x), we therefore get a (obviously continu-
ous) map

i: X — Cocyl(f).

With the map r : Cocyl(f) — X, (u,x) — x, the map i is related by the formula
roi = id. Therefore, i is a moneomorphism, and therefore, identifying each
point x € X with a point i(x), we will embed X in Cocyl(f). In this case, the
subspace X will be a retract of the space Cocyl(f) with a retraction map r.

Lemma 2.41. The retract X is a strong deformation retract of the space Cocyl( f),
so that, in particular, the map i is a homotopy equivalence.

Proof. The formula
H((u,x),t) = (vs,x), (u,x) € Cocyl(f), tel
where v, is the path I — Y defined by the formula
vi=u(l-t+7t), te€l,
(obviously satisfying the condition v,(1) = f(x)), defines the homotopy
H : Cocyl(f) x I — Cocyl(f),

fixed on X and connecting the map i or : (u,x) = (0f(y),x) with the identity
id: (u,x) > (u,x). O

Corollary 2.42. Any continuous map f : X — Y is homotopically equivalent
to the fibration p : Cocyl(f) — Y.

Proof. 1t suffices to note that f(x) = 07(x)(0) = p(0f(x),x) = (p oi)(x) for any
point x € X, i.e. that the diagramme

Cocyl(f)
/ lp
X—Y

commutes, i.e., f =poi. O

Thus, Theorem 2.3 is also proved with respect to fibrations.






Appendix

Introduced in an ad hoc fashion at the end of the Appendix to Lecture 1 the
concept of map isomorphism p : E — Band p' : E' — B it can be included in the
general categorical framework, which leads to a significant and very important
generalisation of all our considerations.

2.A Category J ¢ p,

Let o be an arbitrary category and By be some of its fixed object. An object
X of the category A, considered together with some morphism 7x : X — By, is
called an object over By. The morphism ny is called the projection of the object
X.

With another - equivalent - point of view, objects over By are considered to
be the maps of rx themselves.

For any two objects X and Y over By, a morphism over By of an object X
into an object Y is an arbitrary morphism f : X — Y of the category </, for
which the diagramme

f

X— Y

N A

By

commutes. It is clear that all objects over By and all their morphisms over By
constitute a category. We will denote this category by the symbol #/p,.

In particular, for any topological space By, the category I o#wJp,, whose
isomorphisms are the isomorphisms of maps introduced in the Appendix to
Lecture 1.

In the case when the space By consists of only one point (it is a terminal
object of the category T ¢ ), the category I ¢ mp, is naturally identified with
the category T on. Thus, I onup, generalises T ¢z2. This generalisation is
quite meaningful, since in an arbitrary category ¢ zp,, an equally advanced
homotopy theory is possible, as in the category I ¢ .

However, for obvious reasons, we won’t develop in detail the theory of ho-
motopies in categories I o7p,, and we will limit ourselves to its very initial

79
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concepts and results. For us, this theory will have only an auxiliary value, as
one of the tools for a more in-depth study of the category I ¢ z.

A note on terminology

For a topological space X over By, the preimage n)‘(l(b) of an arbitrary point
b € By when projected nx : X — By is usually called the fibre of this space over
the point B. For any two spaces X and Y over By, a continuous map f: X —» Y
if and only if is a map over By when for each point B € To it translates the fibre
nt(b) to the fibre 7' (b). Therefore, the map over By are also called fibrewise
maps.

2.B Homotopies, cofibrations, and fibrations of
the category J ¢ p,

Homotopy in the category I ¢zp, are introduced completely naturally.

Let X and Y be topological spaces over By (objects of the category 7 o»u3sp,).
Maps f,g : X — Y over By (morphisms of the category I ¢up,) are called ho-
motopy in T ¢ p, (or over By), and also fibrewise homotopy if there exists such
a homotopy f; : X > Y that fo=f, fi=gandforanyt € l,themap f; : X - Y
is a map over By. The homotopy f; is said to be a homotopy over By between
f and g. The homotopy relation over By is denoted by the symbol f S8

0

It is clear that fibrewise homotopies satisfy the general axioms (1°) - (4°)
from Lecture 0, therefore, in particular, the relation of homotopy over By is an
equivalence relation. The corresponding equivalence classes are called homotopy
classes over By (or fibrewise homotopy classes). The class containing the map
f is denoted by the symbol [f]3,

Since the formula

[glB, o [f]lB, = [g° flB,

well defines the composition of any homotopy classes over By, then a category
arises [7 ¢ z2p,], whose objects are spaces over By, and morphisms are homotopy
classes over Bg.

Remark 2.43. The category [T ¢ 2p,] should be distinguished from the category
[T 072]B,. These categories are connected by an obvious functor

(T ¢n8,] = [T o2]B,. (2.44)

which is identical on objects, but, generally speaking, not injective and not
surjective on morphisms. See page 111 below.

A morphism f : X — Y in the category I ¢ g, is called a homotopy equiv-
alence over By (or a fibrewise homotopy equivalence) if there exists a morphism
g Y — X such that g o f ~ id and fog ~ id, i.e. if its homotopy class over

0
By is an isomorphism of the category [T 0 728,].
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Each subspace A of the space X over By is automatically a space over By
(with the projection 74 = 7x|A), and the embedding i : A — X is a map over
Bg. In the case when there is a map r : X — A over By, such that r oi = id,
the subspace of A is called a retraction over By (or a fibrewise retraction) of the
space X (and the map r is a retraction over By or fibrewise retraction). If, in
addition, i o r by id, then the retract A is called a deformation retract over By,

0
and if io by idrel A (i.e. if the map i or and id are connected by homotopy over

By, fixed oon A), then a strong deformation retract over By.

For any space X over By we will consider the product of X x I as the space
over By with the projection (x,t) — mx(x). Then homotopies over By will be
nothing more than maps over By of the form X x I — Y.

Maps X — Y! corresponding exponentially to such homotopies will obviously
be characterised by the fact that they translate X into the subspace Yzlao of the
space Y consisting of paths u : I — Y such that my o u = const. Putting
ny ou = Oy, we get the projection r : Yéo — By, with respect to which these
maps will be maps over By. Thus, homotopies over By can also be interpreted
as maps over By of the form X — Y[;,O.

A map of i : A — X over By is called a cofibration over Bg if for each
diagramme of the form

A
/|
Yh,

all maps of which are maps over By, there is a closing map F over By.

12
_

e

F _
f
F
_—
wo

~N <

For any map f : X — Y over By, its cylinder Cyl(f) is a space over By
relative to the projection [x,f] — nx(x), y — 7my(y), and, as it is easy to see,
Lemmas 2.5 and 2.7 of Lecture 2 will remain valid over By, i.e.

Proposition 2.45. the map i : X — Cyl(f) will be a cofibration over By, and
the map r : Cyl(f) — Y is a homotopy equivalence over By (and even a strong
deformation retraction over By).

The Proposition 2.14 of Lecture 2 will also remain valid, as well as Lemma
2.26 of lecture 2 (in which, of course, for the pair (X, A) we need to require it
to be a cofibration over By, i.e. that the embedding i : A — X be a cofibration
over Bg). Therefore, Proposition 2.39 of Lecture 2 will also remain in force. In
particular,

Proposition 2.46. for any homotopy equivalence f : X — Y over By the
subspace X of the cylinder Cyl(f) will be its strong deformation retract over By.

In a dual way, the map p : E — B over By is called a fibration over By if for
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each diagramme of the form

X é— E

L b

X x1I — B

or, equivalently, each diagramme of the form

|

for all maps over By, there exists over By, a closing map of F (a covering
homotopy over By).

The cocylinder over By of the map p : E — In over By is called a subspace
Cocylg, (p) € Cocyl(p), consisting of pairs (u,e), u: 1 — B, e € E, u(0) = p(e),
such that u € B%O, i.e. mp ou = const. It is a space over By with the projection
(u,e) = np(p(e)). It is clear that the map g : E! — Cocyl(p), u +— (pou,u(0)),
will move EIIS,0 to Cocylg, (p) and therefore induces the map

Eg — Cocylg (p). u— (pou,u(0)),

which we will also denote by g. Obviously, this map is a map over By.
Having now re-examined the proof of Proposition 1.36 of Lecture 1, we will
immediately make sure that it is fully preserved for fibrations over By, so that

Proposition 2.47. the map p : E — B over By will there be a fibration over
Bo, if and only if there is a section Cocylg (p) — Eéo to the map q : Ego —
Cocylg, (p) (which is automatically being a map over By).

The results of Lecture 2 concerning fibrations are also transferred to the
category I o g, .

Reversed cocylinder over By of the map f : X — Y over By is the subspace
of the the cocylinder Cocyl(f) consisting of pairs (u,x), u : [ > Y, x € X,
u(1l) = f(x), such that u € Ylgo. It is indicated by the symbol Cocylg (f) and is
a space over By with projection (u,x) — mx(f(x)), and the map

p : Cocylg (a) =Y, (u,x)— u(0)

is a map over By. Moreover, the map p will be a fibration over By. The proof
comprises a verbatim repetition of the proof of Lemma 2.40 of Lecture 2.
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Similarly, Lemma 2.41 of Lecture 2 is also preserved in the category I ¢ zp,,
i.e. for maps

r: Cocylg, (f) = X, (u,x) = x,
i: X — Cocylg (f), x> (0f(x),%),

there are relations
roi=id, ior ~id.
By

In particular, the map i is a homotopy equivalence over By.
2.C Homotopy fibrations.
Application of these concepts and results to the category I o is based on the

obvious observation that we can consider any map p : E — B as a map over B,
considering the spaces E and B as spaces over B with projections ng = p and

g =id:
E—" B
B

Then the statement that the map s : B — E is a cross section of the map p,
would be equivalent to saying that it is a map over B.
Similarly, in any diagramme of the form

X E
X X B
we can consider the spaces X and X X I as spaces over B with projections

ax=pof=Foogand nxx =F accordlngly Then the maps o and f will be
maps over B, so over the category I ¢ zp the diagramme will take place

(2.48)

—>
7

I—>—

X (2.49)
2N
) & I E— > E

F
and, therefore, the condition that the map p : E — B is a fibration will be
equivalent to the fact that for any diagramme (2.49) over B, i.e. for any space
X over B for which on the product X x [ is given a structure of the space over
B (i.e., the projection mxx; : X X I — B is given) such that the embedding
o9 XX — X x I is amap over B, and for any map f : X — E it is necessary over
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B, there is a map F : X x I — E over B, closing this diagramme, i.e. such that
F c0p = ?

This reformulation is not completely meaningless, since it allows for imme-
diate generalisation.

Definition 2.50. It is said that the map p : E — B is a homotopy fibration
((or a fibrarion in the sense of Dold), if for any diagramme of the form (2.49)
(consisting of maps over B) there exists a map F : X xI — E (over B) such that
Fooy p £, i.e., in other words, if for each diagram of the form (2.4) there is a

map F : X x I — E such that its upper triangle is homotopically commutative
over B (whereas the lower triangle is still commutative).

In other words, the map p : E — B is a homotopy fibration if, under the
conditions of the axiom HE (see Definition 0.19), the covering homotopy begins
(generally speaking) not with a given map X — E, but with a map that is
homotopic to it over B.

Any fibration is, of course, a homotopy fibration, but as the simplest exam-
ples show the converse is not true: (right angle E = I x {0} U{0} X I on the plane
R xR and its projection p : (x,y) — x on the segment B = I).

Now it will be convenient for us to shift the emphasis somewhat and consider
objects of the I ¢z the map p : E — B themselves.

Lemma 2.51. Any map p : E — B that is homotopy equivalent over B to a
homotopy fibration p’ : E' — B, will also be a homotopy fibration.

In other words, the property of being homotopy is is invariant with respect
to fibrewise homotopy equivalences.

Proof. By condition , there are maps f : E — E', g : E' toE over B such that
fog p idand go f P id. They allow each diagramme of the form (2.4) to be

supplemented to a commutative diagramme

X S f E g

XXI—>-

E

Since the map p’ is a homotopy fibration, for a composite diagramme

~

of

X—)E
l ’,l
XXIﬁ-B

there is a closing map F : XxI — E’, for which p'oF" = F and F ooy p fof'.
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But then the map F = go F : X x I — E will satisfy the relations
pof:pogof :ploﬁ =F and Foo'ofggofo?z?
that is, it will close Diagramme (2.49) in [7 ¢ 2p]. o

Remark 2.52. The relation fo p id is not used in the proof of Lemma 2.51.

Remark 2.53. The homotopy fibration (I x {0} U ({0} x I) — [ is fibrewise
homotopically equivalent to the identity fibration I — I. This shows that for
fibrations, the analogue of Lemma 2.51 is incorrect.

The validity of Lemma 2.51 for homotopy fibrations is for us the raison d’étre
of this concept.

2.D Homotopy equivalences in comparison with
fibrewise homotopy equivalences

Important circumstances concerning homotopy (and therefore ordinary) fibra-
tions are revealed in connection with questions about the surjectivity on the
morphisms of the functor (2.2) (for By = B).

For any two objects p' : E' — B and p : E — B in the category 7 ¢n%,
the statement that this functor is surjective for morphisms from p’ to p means
that for any homotopy commutative diagramme of the form

E';E
N A
B

the map f is homotopic to the map g : E' — E over B, i.e. the map for which

the diagramme
E - & o E
N A
B

is commutative. It turns out that

Proposition 2.54. this is obviously the case if the map p : E — B is a fibration
(at least homotopy).

Proof. Indeed, in this case, in the diagramme



86 LECTURE 2.

where F is the homotopy connecting the map p o f and r, there is a covering
homotopy F, for which F o oy P f, and therefore the map g = F o oy will be

homotopic to the map f (for Fooy £Fo o) and will have the property that

pog=poFooy=Foo;=p. O
It follows, in particular, that

Proposition 2.55. if the homotopy fibration p : E — B has a section in the
category [T ¢ ], then it will have a section in the category T opn, i.e., in other
words, if there is a map t : B — E, such that p ot ~ id, then there is also a map
s: B — E such that pos=id

Proof. Tt is enough to apply the proven statement to the case when E' = B,
"=idand f =1. O

The following lemma expresses a much deeper fact.

Lemma 2.56. If the map p : E — B is a homotopy fibration, then for any map
f : E = E over B, homotopic (in T opn) to the identity map idg, there exists
over B a map g : E — E such thatfoggid.

Proof. By condition, there is a homotopy F : E X I — E that connects the map
f with the map id. Since po f = p, the homotopy poF : E xI — B will connect
the map p to itself. Therefore, the diagramme

E—)E
S
EXI—)B

is commutative, and, consequently, for it there will be a homotopy F:ExI —>E
covering the homotopy p o F and such that F o oy p id. Since, in view of the
equality of poFooy =poFoo; =p,themap g=Fooy, : E— E is a map
over B, Lemma 2.56 will be proved if we show that the relation fog P id holds

for this map.
To this end, we will introduce into consideration the homotopy H : ExXI — E,
defined by the formula

(foF)(x,1-4r), if 0<r<1/4,
(foG)(x,4t—1), if 1/4<t<1/2,
fx), if 1/2<t<3/4,
F(x,4t - 3), if 3/4<t<1,

H(x,t) =

where G : E x I — E is a homotopy over B connecting the map F o o to the
map idg. The homotopy H connects the map f o g to the map idg, but is not
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homotopy over B, since

(poF)(x,1—41), if 0<r<1/4,
(poH)(x,t) =1p(x), if 1/4<1t<3/4,
(poF)(x,4t-3), if 3/4<t<1,

whereas for homotopy over B equality (p o H)(x,t) = p(x) must be the case for
all points (x,t) € E X 1.

To fix the case, we’ll look at the map @ : E X I x I — B, defined by the
formula

(poF)(x,1—4t(1-1)), if 0<t<a(r),
D(x,1,7) =3 p(x), if a(r) <t <B),
(poF)(x,1-4(1 -1)(1-1), if B(r)<tr<1,

where x € E, 0 <t,7 <1, and
a(t) =min(1/2,1/4(1 - 1)), PB(r)=max(1/2,(3 -47)/4(1 - 1)).
A direct check shows that the map of ® is continuous and that
O(x,1,0)=(poH), (x,1),(x,7)€EXI,
i.e. that there is a commutative diagramme

ExI—2 o

E><1>21T>B

Therefore, there is a map ® : ExIxI — E covering the map @ such that
H P D o oyp.

Because, as it is easy to see, for any point x € E and any f,7 € I there are
equalities
®(x,0,7) = @(x,1,1) = ®(x,1,7) = p(x),

from the fact that @ covers @, it follows that the correspondence
(x,x) - ®(x,0,7), (x,1) > ®(x,1,1), (x,7)— D(x,1,7)
define homotopies over B,the composition of which connects the map
By x> ®(x,0,0) = (o 0p)(x,0)

with the map o .
@, x> @(x,1,0) = (Poop)(x,1).

Thus %o ~ ).
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On the other hand, if ¥ : E X I X I — E is a homotopy over B connecting H
to @ o /sigmag, then the homotopy (x,7) — ¥(x,0, 1) will be a homotopy over
B connecting the map x — H(x,0) = (f o g)(x) with the map x — ¥(x,0,1) =
@(x,0,0) = ©o(x), and the homotopy (x,7) — W(x,1,7) will be a homotopy
over B connecting the map x +— H(x,1) = x with the map x — ¥(x,1,1) =
D(x,1,0) =9, (x).

Thus, fog P @y and idg P ©y.

Consequently,

~ ~ ~idg,
ngB‘PoB%BlE

and Lemma 2.56 is proved. O

An immediate consequence of Lemma 2.56 is the following statement stating
that the fibrewise fibration (at least homotopy) is a homotopy equivalence.

Proposition 2.57. For any homotopy fibration p' : E' — B and p : E — B,
every map f : R — E over B, which is a homotopy equivalence, will be a
homotopy equivalence over B.

Proof. By the condition, there is a continuous map f : E — R’ such that
fof ~idand f o f ~id. At the same time, we can assume (replacing, if
necessary, the map f with a homotopic map) that f' is a map over B. Then the
map fo f : E — E will satisfy all the conditions of Lemma 2.56 and, therefore,
there will be a map f” : E — E over B such that (fo f)o f” p id. Therefore,

putting g = f o f”, we obtain a map g : E — E  over B such that fog p id.

Since the map g is also a homotopy equivalence, the same construction ap-
plies to it. Therefore, over B there exists a map & : E'E such that g o h P id.
But then

h~(fog)oh=fo(goh ~f,

and therefore g o f P id.

Thus, f is a homotopy equivalence over B with the inverse equivalence g. O

Corollary 2.58. Any homotopy fibration p’' : E — B is homotopically equiva-
lent to an ordinary fibrewise fibration.

Proof. According to the corollary of Lemma 2.41 of Lecture 2, the map p’
decomposes into the composition p oi with a homotopy equivalence i : E* — E
and a fibration p : E — B, where E is the cocylinder Cocyl(p’) of the map
p’. Since the equality p’ = p o means that the homotopy equivalence i is a
map over B from the homotopy fibration p'E" — B to the fibration p : E — B
(considered as objects of the category I ¢zp), Proposition 2.57 applies to it.
Hence, this homotopy equivalence will be a homotopy equivalence over B. O
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2.E Collapsing maps

Another important application of Proposition 2.57 relates to to the maps p :
E — B, which are, as selected over B, a homotopy equivalences over B. For such
maps, the inverse equivalence i : B — E, being a map on B, will automatically
be a section of the map p and, therefore, a moneomorphism (homeomorphism
onto its image). By embedding B by this moneomorphism into E, we obtain
from p a deformation retraction over B. In this sense,

Proposition 2.59. every map p : E — B, which is a homotopy equivalence
over B, will also be a deformation retraction over B.

Maps p : E — B that are homotopy equivalences over B, we will call collaps-
ing maps. According to what has been said, they are deformation retractions
p : E — B, such that with a homotopy connecting the maps id and i o p, each
point x € E moves to the point p(x) € B of the set p~(p(x)).

Remark 2.60. The concept of collapsing map is dual to the concept of strong
deformation retraction.

By definition, each map p : E — B is a morphism of the category I ¢ zp of
this map itself, considered as an object of the category I ¢ zp of the object id :
B — B. Therefore, the collapsing map p : E — B is homotopically equivalent
over B to the fibration id. So, by applying Lemma 2.51, it is a homotopy
fibration. In addition, it will of course be a homotopy equivalence.

Conversely, let p : E — B be a homotopy fibration, which is a homotopy
equivalence. Since this map is also a map over B of homotopy fibrations (of
itself of the fibration id), Proposition 2.57 applies to it, according to which it
will be a homotopy equivalence over B, i.e. a collapsing map.

Thus, it has been proven that

Proposition 2.61. the map p : E — B is a collapsing if and only if it is a
homotopy fibration and simultaneously a homotopy equivalence.

Further, it is easy to see that
Proposition 2.62. any collapsing map p : E — B is weak

(i.e., satisfies the axiom WCHE defined in Section 0.A in Appendix to Lec-
ture 1).

Proof. Indeed, if U is a functional neighbourhood in B of a subset of A ¢ B and
5 : U — E is an arbitrary section of the map p over U, then (without loss of
generality that the neighbourhood of U is closed) the formula

< [FO@p. it xev,
T lw i () = 1.

where i : B — FE is the section of the map p, which is the inverse homotopy
equivalence over B, F is the homotopy E X I — E over B, connecting the map
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i o p with the map id, and ¢ is a function B — I such that ¢ =0 on A and ¢ =1
outside U, well defines the section s : B — E for the map p, coinciding on A
with the section . O

2.F Dold’s theorem on fibrewise homotopy equiv-
alences

Now we can prove an important theorem of Dold, which asserts the local char-
acter of the notion of fibrewise homotopy equivalence.

Let p' : E' - B and p : E — B are arbitrary maps (objects of the category
T onp), and let f: E' — E be a map over B from p’ to p:

B
Let, further, {U,, @ € A} be the numerable covering of the space B, and let {V,,}
and {V,} be its preimages under the maps p" and p, respectively (which, as we

know, are numerable covers of spaces E* and E, respectively).
Then for any a € A the map f will induce some map

fa:V, = Va,

closing the commutative diagramme

Vo——————Vo Pa=ply,. Pa=rlv,

that is, being a map over U,,.

If f is a fibrewise homotopy equivalence (over B), then f, will also obviously
be fibrewise homotopy equivalences (over U, ): the inverse equivalences of g, :
Vo — V; will be induced by the inverse equivalence of g : E — E’. It turns out,
that the converse statement is also true.

Theorem 2.63. If for any @ € A the map fo : V,, — V, is a fibrewise homo-
topy equivalence, then the map f : E° — E will also be a fibrewise homotopy
equivalence.

Proof. As noted at the beginning of this Appendix, the map f over B decom-
poses into a composition of the homotopy equivalence i : E — Cocylg(f) over
B and the fibration f : Cocylg(f) — E over B:

i E L Coyly(n) L E
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(we denote the fibration with the symbol f, since the former symbol p is cur-
rently used for another purpose). A similar decomposition

Fa : Vi 5 Coeyly, (fa) 25 Va

admits, of course, every map f,. At the same time, the cocylinder Cocyly, (f)
is naturally identified with the preimage of the set U, with the projection
Cocylg(f) — B, (x,u) — p(x), and the map ?a is the restriction of the map of
7 on this preimage.

Since by the condition the maps f, are homotopy equivalences, so the maps
7(1 will also be homotopy equivalences and therefore, being fibrations, they will
be collapsing, and hence weak maps. Since the covering {V,} is numerable and
V., = f21(V,) for every a € A, hence, by applying Lemma 1.63 of the Appendix
to Lecture 1, it follows that the map f is also weak and therefore has a section

f : E = Cocylg(f), which is automatically a map over B. Therefore, the map
g=jof , where jis the homotopy equivalence of Cocylz(f) — E’, the inverse
of the equivalence i, will be a map over B, satisfying the relation

fog=Foiojof ~Fof =id.

In addition, the map g will translate each set V, into a set V‘; and, therefore,
will induce some map g, : Vo — V;, which obviously satisfies the relation
fao8a by id and therefore is a homotopy equivalence over B, the inverse of the

homotopy equivalence f, : V(; - V,.

We see, therefore, that the map g satisfies the same conditions as the map f
(with the permutation E and E’). Therefore, according to what has already been
proven, there exists a map 4 : E'E such that goh P id. But then A p fogoh p £,
and hence g o f P id.

So fog P id and go f p id, so f is homotopy equivalence over B. O

2.G Induced homotopy fibrations

From Lecture 1 we know that for any fibration p : E — B and any continuous
map f : X — b the induced map

prE(f) = X,

where to simplify formulae the pushout E Ny X being denoted by E(f), is also a
fibration. It is easy to see that this statement also holds for homotopy fibrations,
ie.

Proposition 2.64. for any homotopy fibration p : E — B, the map py :
E(f) — X is also a homotopy fibration.
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Proof. Indeed, with the reasoning as in Lecture 1, let’s consider an arbitrary
diagramme of the form

Since p : E — B is a homotopy fibration, there is a map H : Z X I — E such
that poH = foG and Hoog ~ f# og over B. The equality poH = f oG means
that the pair (H, G) is an inverse cone over the pair (p, f). Therefore, there is a
unique map G : Zx 1 — E(f), for which f#0G = H and Dy oG = G. Similarly,
if h, : Z — E is a homotopy over B connecting the maps H ooy and f# og, then
for any ¢ € I there will be an equality p o h; = f o G o 0y, showing that the pair
(h:, G o 09) is an inverse cone over the pair (p, f). Therefore, there is a unique

map hy : Z — E(f), for which f# o h, = h; and pyroh =G ooy The maps
h, constitute a homotopy (why?) from Z to E(f). Since f# o hg=psoG ooy
and pyo ho=Gohy= pro G o 0y, then by applying uniqueness hg = G o 0.
Similarly, since f#ohy, = hy = f# o3 and pr ohy=Gooy = pfOEO, then b, =3.
Finally, since p fﬁt =Goog=pyso ho, the homotopy #, is a homotopy over X.
SopfoazGand600'0~§over X, as required. O

2.H Fibrations induced by homotopic maps

Now let’s compare the fibration ps : E(f) — X with the fibration pg : E(g) —
X, where g is the map X — B, homotopic to the map f.

To this end, we will first consider an arbitrary homotopy fibration p : E —
Bo x I with a base of the form By x 1. Let Eq = p~'(Byx0) and pg : Eg — By be
the restriction of the map of p to E¢ (we identify By X 0 with By). Let, further,
ip : Eg — E be an inclusion.

We will consider Eg and E to be spaces over By with projections pg and
projg, op, respectively. Then iy will obviously be a map over By.

Lemma 2.65. The map iy is a homotopy equivalence over By.
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Proof. Consider a commutative diagramme

17

E><I—>BO><I

é
7

the map F of which is defined by the formula
F(e,t) = (b,t(1-1)), if p(e)=(b,7),e € E,beB,1,t€l.

Since the map p is by convention a homotopy fibration, there is a covering
(oF = F) homotopy for this diagramme F : E x I — E, which has the property
that id ~ F ooy over Box I, and therefore over By. It is clear that the homotopy
of Fisa homotopy over By, such that F ooy ~ Foy over By. Hence, id ~ F o 0
over By. But since poF ooy = Fooy : e — (b,0), if p(e) = (b,7), then
(F o 01 (E) C Eg and, therefore, F o o = ig o r where r : E — EyE is some map
over By.

Thus, we have constructed a map r : E — Eq such that iy o r ~ id over By.
Therefore, to complete the proof of the lemma it remains only to show that
roig ~id over By.

Since the homotopy connecting the maps idg and F o o5 is a homotopy over
By x I, it induces some homotopy from Eg to Ey over By, connecting the map
idg, with the map (Fooy)o : Ey — Ep, induced by the map Foy. On the other
hand, if e € Eg, i.e. p(e) = (B,0), then by construction F(e,t) = (b,0) and,
therefore, (p o F)(e,t) = (b,0), i.e. F(e,t) € Ey for any ¢ € I. Therefore , the
homotopy F also induces some homotopy from Eq to Eq over By, connecting the
map (F o 0p)o with the map (F o o)g : Eg — Eo, induced by the map F o o7.
Hence, id ~ (F o o) over By.

But the fact that the map (F o o)o is induced by the map F o o, means
that there is a commutative diagramme

(F°0'1)0

[ ]

E——F

Foa'1

Hence, ig o (Foo1)g = (F oo0y)oig =igoroig, and therefore (F o o)y =r oijp.
So, roig ~ id over Byg. O

Remark 2.66. It is clear that the same statement is true for embedding #; :
E1 — E, where E; = p~'(By x 1).

We apply Lemma 2.65 to the homotopy fibration pg : E(F) — X xI induced
by some homotopy F : X X I — B from the homotopy fibration p: E — B. If F
connects the map f : X — B with the map g : X — B, then, as follows directly
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from the functorial property of the pushout, the fibration (pg)y : E(F)y —
X for the fibration pr coincides with the fibration ps : E(f) — X (so, in
particular, E(F)o = E(f)), and the fibration (pg); : E(F); — X coincides
with the fibration p, : E(g) — X. Thus, according to Lemma 2.65, there are
homotopy equivalences over X

E(f) 2 E(F) & E(g)

Hence, the homotopy fibrations ps : E(g) — X and pg : E(g) — X are homo-
topically equivalent over X.
This proves the following Proposition.

Proposition 2.67. Homotopy fibrations pys : E(f) — X and pg : E(g) — X
induced from the homotopy fibration p : E — B by homotopy maps f,g : X —> B
are fibrewise homotopy equivalent.

The fibrewise homotopy equivalence connecting the fibrations p s and pg is
uniquely determined up to the fibrewise homotopy by the homotopy F connect-
ing the maps f and g. We will denote it with the symbol p(F).

By definition of the induced fibration for each map f : X — B the map
f# : E(f) — E is defined for which the diagramme

E(f) L E

| j

X——B

f

is commutative. At the same time, it is clear that for any homotopy F : X XI —
B that connects the map f with the map g, the constraints (F#), = F# oiy and
(F#), = F#) o iy of the map F# : E(F) — E on the subspaces E(F)g) = E(f)
and E(F;) = E(g), respectively, coincide with the maps f# and g7, so that the
diagramme

E(F) —> E(f) <— E(g)

AN

E

is commutative. For the homotopy equivalence p(F), it follows that

Proposition 2.68. the diagramme

E(F)— 2 E(g)
E

is homotopy commutative.
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(The statement about homotopy commutativity is the best possible one,
since the map p(F) is defined up to homotopy.)

Now let f : B; — B be a homotopy equivalence with inverse homotopy
equivalence g : B — B; and let G : Bx I — B be a homotopy such that G : id ~
f og. Because, as we know (see lecture 1), id# =id and (f o g)# = f# o g#, for
composition f# o g# of maps f# : E(f) — E and g# : E(f o g) — E(f) there
is a homotopy commutative diagramme

r(G)
E———E(fog)

E

meaning that in the diagramme

EXUE(rog k() Lk

B B, B
g f

the composition of the arrows of the top line is homotopic to the identity map.
So f# o g# ~ p(G), where p(G) is a homotopy equivalence and the inverse to
the equivalence of p(G), and therefore p(G) o f# 0 g# ~ p(G) o p(G) ~ id. This
proves that there are maps ¢ : E(f) —» E(fog) and ¢ : E — E(f) (namely,
maps ¢ = p(G) o f# and ¢ = g# o p(G)) such that ¢ o g# ~id and f# oy ~ id.

Applying this statement to the fibration ps : E(f) — By and to the map
g o f (also by the condition homotopy identity map), we, in particular, get,
that there is a map ¢ : E(f) — E(f o g) such that g# oy ~ id. But then
U1 ~ (pog#)oyy =¢go(g# o) ~ ¢ and, therefore, g# o f ~id. Thus, g# is a
homotopy equivalence with the inverse homotopy equivalence ¢.

Since f# o g# o p(G) ~ id, it follows that the map f# is also a homotopy
equivalence (with inverse homotopy equivalence f# o p(G)).

Thus we have proven

Corollary 2.69. If in the diagramme

E() Lk

By ——B

the map f is a homotopy equivalence, then the map f# will also be a homotopy
equivalence.

Another interesting case arises when the map f is homotopic to the constant
map.
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Corollary 2.70. If the map f : X — B is homotopic to the constant map
const : X — B, x — bg, then for any homotopy fibration p : E — B, the
induced fibration py : E(f) — X is fibrewise homotopically equivalent to the
trivial fibration with a fibre F = p~'(b).

Proof. By definition, the space E(const) consists of pairs (x, ¢) € X XE for which
p(e) = const(x) = by and, therefore, is the product X X F. The map pconst :
E(const) — X, (x,e) — x, will therefore be a projection of X X F — X. O

A space B is called semilocally contractible if any of its points has a neigh-
bourhood U such that the embedding U — B is homotopic to the constant map.
A fibration p : E — B is called homotopically locally trivial if any point in the
space B has a neighbourhood U such that the fibration py : p~*(U) — U is
homotopically equivalent to the trivial fibration U X F — U (where F, generally
speaking, depends on U).

Corollary 2.71. If the space B is semilocally contractible, then any homotopy
fibration p : E — B is homotopically locally trivial.

Induced fibrations also have the property of functoriality with respect to
fibrewise maps, i.e. for each continuous map f : X — B any fibrewise map
h: E — E induces (by the formula hy(x,e) = (x,h(e))) some fibrewise map
hy : E(f) — E'(f), with hyq = id, hfog = hy o hg and, similarly, idy = id,
(hok)s=hyoky. In addition, for any homotopy F : X X I — B connecting the
map f to the map g with the constraint (hg)g = hr oip and (hp)1 = hp o iy the
maps hp on the subspaces E(F)g = E(f) and E(F); = E(g) correspond to the
maps hy and hg, respectively, so that the diagramme

E(f) =~ EF <" E(g)

b e

El(f) ,—>E/ - E(®)
i[) il

is commutative. Therefore

Proposition 2.72. the diagramme

E(f) 2L E(g)

N

E’(f) - E/(g)
p (f)

18 commautative.

In the special case when g is a constant map const : X — B, x — bg, and,
therefore, the fibrations p, : E(g) — X and pyg : E'(g) — X have accordingly
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the form XxF — X and XxF — X, the map hg is given by the correspondence

(x,y) > (x,h(y)), y € F, and therefore will be a fibrewise homotopy equivalence

if the homotopy equivalence is the map hp, : F — F ", induced by the map .

But then the fibrewise homotopy equivalence will, of course, be the map &y.
We will formulate this result as a separate corollary.

Corollary 2.73. If the map f : X — B is homotopic to the constant map
const : X — B, x +— bg, then for any fibrewise map h : E — E  with the
homotopy fibration p : E — B and the homotopy fibration p’ : E- — B, having
the property that the map hp, : p~1(bo) — P ~1(by) is a homotopy equivalence,
and the map )

hy E(f) = E (f)

of induced fibrations will be a fibrewise homotopy equivalence.

2.1 Maps that are homotopy equivalences on fi-
bres

A space B is called enumerably semilocally contractible if there exists an enu-
merable covering {U,} such that any embedding U, — B is homotopic to the
constant map.

It is said that the layered map h : E — E’ of from homotopy fibration
p : E — B to a homotopy fibration p’ : E* — B is a fibrewise homotopy equiv-
alence if for any point b € B the map hy : p~*(b) — p ~'(b) is a homotopy
equivalence. It is clear that any fibrewise homotopy equivalence will be a ho-
motopy equivalence on fibres. For a numerically semi-locally contractible space
B, the converse is also true:

Proposition 2.74. If the space B is enumerably semilocally contractible, then
any fibrewise map h : E — E  form a homotopy fibration p : E — B to a
homotopy fibration p’ : E' — B, which is a homotopy equivalence on fibres, will
be a fibrewise homotopy equivalence.

Proof. Let {U,} be a enumberable covering of the space B such that for any «
the embedding U, — B is homotopic to the constant map. Then according to
corollary 2.73 every map

hy, i p N (Ua) = p 7 (Ug)

will be a fibrewise homotopy equivalence (recall that for any set U C B the
fibration y = pl,-1(yy : p~*(U) — U coincides with the fibration p; : E(i) — U,
induced by the embedding i : U — B). Therefore, according to Theorem 2.63,
the map h : E — E’ will also be a fibrewise homotopy equivalence. O

Remark 2.75. For any point by € B the space ~'(bg) is a pushout of E(f)
corresponding to the map f : pt — B, translating the point pt to the point
by € B. On the other hand, each path U : I — B of the space B we can
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consider one as a homotopy connecting maps pt — B corresponding to points
bo = u(0) and by = u(1). Therefore, for maps hp, : p~*(bg) — p ~1(bg) and
hyp, : p~1(b1) — p'~(by) there is a homotopically commutative diagramme

pH(bo) ——p ' (b1)

hbg l lhlﬁ

p " H(bo) —p' ' (by)

the horizontal arrows of which are homotopy equivalences. Hence, the map £, is
a homotopy equivalence if and only if the the map A is a homotopy equivalence.
Hence the map & : E — E’ is a homotopy equivalence on fibres if and only if in
each connected component of the space B there exists a point b such that the
map hg : p~1(b) — p'~1(b) represents a homotopy equivalence.



Lecture 3

3.1 Homotopy invariant functors

As explained in introductory Lecture 0, the main task of algebraic topology is
to construct and study various algebraic functors IT defined on the category of
T o, with the aim of their subsequent application to the processing of geo-
metric problems into derived algebraic problems. However, we don’t need any
functors. Since we mean to consider only geometric problems whose formulation
is invariant with respect to the transition to homotopy maps (according to the
“power” arguments explained in Lecture 0, only such problems can count on an
effective solution by means of algebra), it is natural to limit ourselves to homo-
topy invariant functors I1, having the property that I1f = [1g when f ~ g,i.e.,in
other words, being a composition of the factorisation functor 7 ep — [T ¢ ]
and some functor IT given on the homotopy category [T ¢]. (In general, it
would be more consistent to leave the category of 7 ¢z and finally move into
the category of [T ¢ ], but for purely psychological reasons we prefer stay in
the more familiar reality of the 7 ¢z category.) Therefore, we will focus our
attention on methods for constructing only homotopy invariant functors.

3.2 The functor n

The simplest example of a homotopy invariant functor is obtained by considering
for any topological space X the set mpX of all its components. Since for each
continuous map f : X — Y component [ f(x)] of the space Y containing the point
f(x) obviously depends only on the component [(x)] the space X containing the
point x, then the correspondence

mof : [x] = [f(x)]

well defines some map of the set g f : m1gX — npY, and it is clear that thereby
we get the functor
ny: T op—Ens

from the category I ¢z to the category of sets &7 4, which is obviously homo-
topy invariant.

99
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The corresponding functor [T on] — &7ns is also denoted by the symbol
-

As we already noted in Lecture 1, the components of the space X are natu-
rally identified with homotopy classes of maps pt — X, where pt is a topological
space consisting of a single point. Therefore, 70X = [pt, X] and, accordingly,
ol f] is nothing more than the map f. : [pt,X] — [pt,Y], defined by the
formula [x] +— [f o x], where x : pt — X.

3.3 Representable functors

This interpretation of the functor my allows for a very far-reaching generalisation
to any categories of /. Namely, by arbitrarily selecting some object K in the
category &, we can construct a functor K, from o to &4, matching any object
X from of the set

K.(X) = d(K,X)

for all morphisms of K — X, and any morphism f : X — Y from & to the map
K.(f) : Ki(X) = K.(Y)
(also denoted by the symbol fx or f), defined by the formula
K.(f)(a)=foa, a:K-—>K.
Similarly, putting for any object X of o/
K*(X)=d(X,k)
and by matching each morphism f: X — Y of & with the map
K*(f) : K*(Y) = K*(X)
(also denoted by the symbol f* or fX), defined by the formula
K*(f)(B) =Bo f, forany morphism B:Y — K,

we get a contravariant functor K* from & to &»s (i.e., a functor from the
opposite category &/°P to &73).

The functors obtained by this construction are called representable. The
object K is said to represent the functor K, (or the functor K*).

As applied to the homotopy category, this general technique allows us to
construct two homotopy invariant functors for each topological space K

K. : Top—>&ns, K :Ton%—>&Ens
representable by this space (as functors on [T ¢z]). By definition

K.(X) = [K,X], K*(X)=[X.K] (3.1)
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for any topological space X and

fl@)=[foal, a:K—X,
fB®=I(Beofl. B:Y—>X,

for any continuous map f: X — Y.

When K = pt we get the functor mg.

In some cases, with a special choice of the space K in the set [K, X] or [X, K],
it is possible to introduce an algebraic structure (groups, rings, etc.) so that a
functor is obtained in the corresponding algebraic category. Such functors are
also said to be represented by the space K.

It turns out that many homotopy invariant functions of algebraic topology
(including almost all contravariant functors) are representable. (This is partly
explained by Brown’s representability theorem, which we will prove in the next
semester.) Therefore, at first it is reasonable to limit ourselves to studying only
representable functors defined by formulae (3.1) and (3.2).

3.4 Category of groups

There is an obvious case when the set K*(X) = [X,K]| has a natural (with
respect to X) group structure: this is the case when K is a topological group.
Indeed, for any topological group K and any topological space X, the set of
T o n(X,K) of all continuous maps X — K is obviously a group with respect to
the multiplication operation (f,g) — fg, defined by the formula

(fe)(x) = f(x)g(x), xeX, f.g:X—>K. (3:3)

The unit of this group is a constant map const : X — K which maps to the unit
e of the group K, and the element f~!, the inverse of the element f : X — K, is
determined by the formula

=™ (3.4)

(don’t confuse f~! with the inverse map!). If {f; : fo ~ f1 and {g; : go ~ g1,
then {f;g: : fogo ~ fig1 and, therefore, the formula [f][g] = [fg] well defines
multiplication in the set [X, K], with respect to which this set is a group. At the
same time, for any continuous map ¢ : X — Y the map ¢* : [V, K] — [X,K],
[f]1+ [¢o f], will obviously be a homomorphism.

This design is definitely too tight for our purposes (which is evident, for
example, from the fact that it gives too much - a group structure on the set
of T opn(X,K), completely unnecessary for us), but it will serve as a starting
point for broader generalisations. To do this, it is necessary to comprehend the
concept of a group from the general standpoint of category theory.

Multiplication in a group K is nothing more than some map

m:KxK—>K, (x,y)— xy, (3.5)
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form the direct product KxK into K, and the operation x - x~! of the transition
to the inverse element is some map

u:K—K.

At the same time, the fact that the element e € K is a unit of the group K
means that for a constant map const, : K — K, x — e, which is convenient for
us to denote by the symbol &, composite maps
id
K1—18—>K><K1n—>K, x - (x,e) — xe,

exid m
K—> KXK —> K, x (e, x) ex,

represent identical maps, i.e. that the diagrammes

KxK KxK (3.6)
NN
K - K K - K

id id

are commutative. (Here the symbol is @ X 8, where ¢ : X —» A and 8: X — B,
we denote the map X — A X B, defined by the formula (@ X 8)(x) = (a(x), 8(x)).
In the case when @ : X — A and B : y — B, the same symbol will mean the
expression X XY — A X B, defined by the formula (a X 8)(x,y) = (a(x), B(y)).
Thus, when X =Y there is ambiguity. However, with some care, it does not lead
to misunderstandings.)

Similarly, the associativity of multiplication (3.5) means the commutativity
of (m o (id xm) = m o (m x id)) in the diagramme

KxKxK-% gk xK (3.7)
mXidl lm
KxK EEr——— K
and the identities xx~! = e, x"1x = e are the commutativity of diagrammes
K xK K x K (3.8)

N N
K ~ K K - K

Now let of be an arbitrary category. Recall that the (direct) product of
objects A and B of the category & is an object C, such that considered together
with two morphisms proj, : C — A, projg : C — B, for any object X € &/ and
any morphisms @ : X — A, 8 : X — B there is a single morphism y : X —» C
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having the property that proj, oy = @ and projg oy = B. The object C, if it
exists, is unique up to canonical isomorphism. It is denoted by the symbol A X B,
and the morphism vy is denoted by the symbol a X B.

C=AXB

A Yi=axp B

SO

Similarly, the product of any (including empty!) families of objects of the
category & is defined. In this case, the product of an empty family of objects
will be an object 0, which has the property that for any object A € o there is
one and only one morphism A — 0. Such an object is called a terminal object
of the category &f. (We have already encountered this term in Lecture 1 in
connection with the concept of pullback.)

Category & is called finitely multiplicatively closed (fm-closed for short) if
for any finite family of its objects, there exists their product. In particular, the
fm-closed category has a terminal object.

A morphism A — B in an fm-closed category is called constant if it is
passed through a terminal object, i.e. it is a composit morphism of the form
A—0—> B.

Examples of fm-closed categories are the categories 74, 7 o, [T 0] and
Ern. In each of these categories, products are ordinary direct products of sets,
topological spaces or groups, and terminal objects are singleton sets, spaces or
groups. The constant morphisms of these categories are constant maps (for the
category of groups, trivial homomorphisms).

Now it is clear that the concept of a group can be transferred to an arbitrary
fm-closed category &. Namely, an object K of such a category is naturally called
a o category of group (or o/-group), if it is given morphisms m : K x K — K,
u:K — K, e: K — K, such that:

(a) the morphism ¢ is constant;
(b) diagrammes (3.6), (3.7) and (3.8) are commutative.

Groups of the 74 category of sets are ordinary abstract groups, groups
of the T on category are topological groups (and, say, groups of the D7/ /£
category smooth manifolds are Lie groups).

Question: What are the groups of the £»z category?

Answer: See Lemma 4.93 from the Appendix to Lecture 4.

It is obvious that other algebraic structures allow a similar “categorisation”.
For example, a monoid of the category o (or an &/-monoid), where ¢ is an
arbitrary fm-closed category, is an object K of the category &, for which the
following morphism m : K X K — K and a constant morphism ¢ : K — K such
that Diagrammes (3.6), (3.7) are commutative are given.
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In the situations we are interested in, the associativity condition (commuta-
tivity of diagram (3.7) will, oddly enough, often be superfluous. Unfortunately,
there is still no generally accepted name for the corresponding algebraic struc-
ture (multiplication with one) We will call the set in which multiplication with
one is given unitoid.

(Transcrier’s note: that is, a unitoid is a magma with an identity element. Thus,
an H-space is a homotopy unitoid.)

Accordingly for any fm-closed category &, its object K will we call a unitoid
of the category & (or a of-unitoid) for which a morphism m : K x K — K and
a constant morphism ¢ : K — K are given such that Diagrammes (3.6) are
commutative.

Formula (3.3) in categorical notation has the form

fg=mo(fxg), f.g:X—K,

and formula (3.4) is the form
flt=pof, f:X->K.

These formulae do make sense for any &/-group K and any object X € & and, as
is automatically checked, define the structure of the group in the set &/ (X, K) of
all morphisms X — K. The unit of this group is a constant morphism X — K,
which is a composition of an arbitrary morphism « : X — K and the morphism
¢ : K — K (and obviously independent of the choice of morphism «).

A trivial check shows that for any morphism f : X — Y of the category &
the map f*: 8+ Bo f from o (Y,K) to &/ (X, K) is a homomorphism of groups
and that the correspondences of X — & (X,K), f — f* define a functor from
the category & to the category of groups, i.e., in other words, that the structure
of the group in & (X, K) is natural in X

Conversely, suppose that for some object K of the category &/ all the sets
A (X,K), X € of, are equipped with the natural structure of the group in X.
Then, in particular, the set &/ (K X K, K) of all morphisms K X K — K will be
a group. By definition, this group contains two morphisms proj; : K X K — K
and proj, : K x K — K. The product of these morphisms (as elements of
the group &/ (K x K, K)) we denote by m. Similarly, the set &/ (K, K) is also a
group. We will denote the unit of this group by e, and the element inverse to
the element id : K — K by u. The equality id-e = ¢ - id = id in the group
(K, K) is exactly equivalent to the commutativity of Diagrammes (3.6), and
the equality id -y = u - id = € is equivalent to the commutativity of Diagrammes
(3.8). As for Diagramme (3.7), its commutativity is equivalent to the relation
proj; -(proj, - projs) = (proj; - proj,) - projs for the elements proj;, projs, projs :
KxKxK — K of the group & (KxKxK — K, K). Moreover, from the fact that
the map f* for any morphism f : X — Y of the category &/ is a homomorphism
from the group (Y, K) to the group &/ (X, K) and therefore translates the unit
of the first group into the unit of the second group, it immediately follows that
for any morphism f : K — K, the equality € = £ o f holds. In particular, this
equality holds for every constant morphism f : K — K (existing because the
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group & (0, K) is not empty), which is possible only if the morphism & itself is
constant. Thus, the morphism m, u, and & satisfy all the conditions for defining
a g/-group, so that with respect to them the object K is a group of the category
&f. Finally, as the obvious automatic check shows, the structure of the group
in each set &/ (X, K), defined by the formulae (3.3) and (3.4), coincides with the
given one.

This proves that

Proposition 3.9. the sets o/ (X, K) have a group structure natural in X if and
only if the object K is a group of category .

It is clear that the same statement is true with respect to monoids and
unitoids.

3.5 H-groups, H-monoids and H-unitoids (H-spaces)
With respect to the category [T ¢ 2], we obtain, in particular, that

Proposition 3.10. sets [X, K] have a group, monoid, or unitoid structure nat-
uwral in X, if and only if the topological space K is a group, a monoid, or a
unitoid of the category [T o p].

For groups of the category [J ¢ 2] morphisms m, u and ¢ are by definition
homotopy classes of continuous maps. However, in practice it turns out to
be convenient to consider some of their representatives instead of these classes
(choosing, of course, in the class € a constant map const,, where e is some point).
Thus, we come to the concept of a topological space K, for which continuous
maps

m:KxXK—->K, u:K—-K

and a point e € K such that Diagrammes (3.6), (3.7) and (3.8) (with & = const,)
are homotopically commutative, are given. This kind of topological space we will
call an H-group the natural term “homotopy group”, unfortunately, is already
occupied).

(Transcriber’s note: i.e., by the group [S", X].

Similarly, H-monoids and H-unitoids are defined. However, in topology it is
customary to call H-unitoids H-spaces. Despite the colourlessness of this term
(established only due to the lack of a good name in algebra for sets with a mul-
tiplication), we, in order not to break with tradition, will also use it.
(Transcriber’snote: J. P. Serre coined the term “magma” for a set with a mul-
tiplication.)

For any two elements x, y of arbitrary H-space K, element m(x, y) is usually
denoted by the symbol xy and is called the product of these elements. Similarly
(in the case when K is an H-group), the element u(x) is denoted by the symbol
x~1 and is called the inverse element (or, more commonly, homotopy inverse)
to the element x. The element e is called a homotopy unit.

According to the above general statement
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Proposition 3.11. for each H-space K and any topological space X, the set
[X,K] has a natural X structure of a unitoid (the structure of a monoid if K is
a H-monoid, and the structure of a group if K is H-group).

In this case, the multiplication in [X, K] is determined by the formula

[f1lgl =[hl. f.g:X—K,

where & is the map X — K defined by formula (3.3), i.e. formula

h(x) = f(x)g(x), xe€X.

The unit of this multiplication is the homotopy class [const.] of the constant
map const, : X — K, and the operation [f] — [f]! defined (in the case where
K is H-group) by the formula [f]! = [f~!], where f~! : x —~ f(x)~! for any
point x € X.

It is clear that by replacing the map m (and in the case of H-groups and the
map u) by an arbitrary homotopy map to it, and the element e is an arbitrary
element lying in the same connected component, from a given H-space (H-
monoid or H-group) we get again an H-space (H-monoid or H-group). This
H-space (H-monoid or H-group) is called equivalent to the original H-space (H-
monoid or H-group). In other words, two H-spaces (H-monoids or H-groups)
are equivalent if they define the same unitoid (respectively, the same monoid or
the same group) of the category [T ¢z].

From the point of view of general algebra, the morphisms of H-spaces (H-
monoids and H-groups) should be called continuous maps f : K — L for which
the following diagrammes are commutative

kxk 2 rxr k-1 (3.12)
ml lm l l
K———1L K——1L
S f
and also in the case of H-group,the diagramme
f
K——1L (3.13)
K——L
f

We will call this kind of maps algebraic morphisms.

However, since H-spaces are for us only representatives of the unitoids of the
category [T o], of much greater interest to us will be the maps f : K — L,
for which Diagrammes (3.12) and (3.13) are only homotopy commutative. We
will call such maps homotopy morphisms.
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Remark 3.14. In the case when K and L are H-groups, a continuous map f :
K — L will be their homotopy morphism only if the first diagram in (3.12) is
homotopically commutative (for f). Indeed, passing into the homotopy category
[T 0], we can reformulate this statement as a statement that the map of
groups of the category [T ¢ ], preserving multiplication, translates one into
one and the inverse elements in the inverse. For groups of the category &7 4, this
is a well-known statement with a trivial proof (since e? = e, then f(e?) = f(e),
and therefore f(e) = f(e)’f(e)™' = f(e)f(e)~! = E; since xx~! = e, then
F)f(x~1) = f(e) = e, and thanks to this f(x)™" = f(x) " f(x) f(x™1) = fF(x71)).
But, reformulating this proof in the language of diagrammes, we immediately
discover that it remains valid in an arbitrary category, and therefore in the
category [T o p].

It is clear that all H-spaces (H-monoids or H-groups) and all their homotopy
(or only algebraic) morphisms make up a category. At the same time, according
to Remark 3.14, the category of H-groups and their homotopy morphisms will
be a complete subcategory of H-monoids or H-spaces,

Remark 3.15. The category of H-groups and their algebraic morphisms is not a
complete subcategory of the corresponding category of H-monoids or H-spaces.

Homotopy morphisms, which are homotopy equivalences, we will call homo-
topy isomorphisms.

Remark 3.16. Homotopy isomorphisms are not isomorphisms of any category.

Equivalences of H-spaces are their homotopy isomorphisms, which are iden-
tical maps.

If f: K — L is a homotopy equivalence between an H-space K with an
arbitrary space L, then you can obviously introduce in L the structure of an H-
space to which the map f will be a homotopy isomorphism. Up to equivalence,
this structure is unique.

At the same time, it is clear that an H-space homotopically isomorphic to a
H-monoid or H-group will itself be an H-monoid or, respectively, an H-group.

3.6 Category of cogroups

Let us now consider the dual situation.

Let again of be an arbitrary category. An object C of the category o,
considered together with two morphisms incly : A — C, inclg : B — C, is called
the sum (or coproduct) of objects A and B if for any object X € & and any
morphisms @ : A = X, B : B — X there is a single morphism y : C — X that
has the property that y oincly = @, y oinclg = B. The object C, if it exists, is
unique up to canonical isomorphism. It is denoted by the symbol A U B, and
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the morphism v is by the symbol a U .
C=AUB

inclg inclp

A Y i=aup B

S

Similarly , the sum of any (including the empty one!) families of objects of
category o is defined. In this case, the sum of the empty family of objects will
be the object Oy, which has the property that for any object A € & there is
one and only one morphism Oy — A. Such an object is called an initial object
of the category .

A category of is called finitely additively closed (in short, fa-closed) if for
any finite family of its objects there exists their sum. In particular, the fa-closed
category has an initial object.

A morphism A — B in an fa-closed category is called constant if it passes
through an initial object, i.e. it is a compound morphism of the form A —
0y — B.

Examples of fa-closed categories are all the same categories 724, T ¢,
[Topn] and €»z. The sum of objects in the first three categories is their
disjunct union, and in the last one is their free product. The initial object of
the categories &74, T op and [T o] is an empty set of @ (empty space), and
the initial object of the category &# is a trivial group (which is also a terminal
object). The only constant morphisms The categories &7, T on and [T o]
are “maps” of the form @ — X, and in the category €7z the constant morphisms
coincide with the constant ones (i.e. they are trivial homomorphisms).

An object K of an arbitrary fa-closed category & is called a cogroup of the
category o (in short, a &/-cohroup), if morphisms m : K - KUK, u: K — K,
¢ : K — K such that:

(a) the morphism ¢ is constant;

(b) there are commutative diagrams dual to Diagramems (3.6), (3.7) and (3.8)

accordingly.
KUK KUK (3.17)
AN
K , K K , K
id id
K—=" s>KuKk (3.18)

-

KuK——KUKUK
idum
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KUK KUK (3.19)
2N SN
K K K K

& &

If only the morphisms m and ¢ are given, and only Diagrammes (3.17) are
commutative, then the object K is called a counitoid in the category o (or
a o-counitoid). A category of counitoid for which Diagramme (3.18) is also
commutative is called a comonoid in the category o (or &/-comonoid).

For any &f/-cogroup K and any object X € o/, formula

f+g=(fuglom, fg:K—-X (3.20)

defines in the set o/ (K, X) all morphisms K — X is an addition operation, the
zero of which is - as follows directly from the commutativity of Diagrammes
(3.17) - a constant map K — X of the form B o &, where B is an arbitrary
morphism K — X (it is easy to see that the morphism So & does not depend on
the choice of morphism B). From the commutativity of diagram (3.18) follows
the associativity of addition (3.20), and from the commutativity of diagram
(3.19), that the element —f = f o u is the inverse to the element f with respect
to addition (3.20). Thus, with respect to the operation (3.20) the set &/ (K, X)
is a group, and, as it is easy to see, this group structure is natural with X.

Conversely, let for an object K of the category & all the sets & (K, X), X € o,
are provided with a natural X-structure of the (additive) group. Then in the
group & (K, K U K) the element m will be defined - the sum of the morphisms
incl; and incly, and in the group & (K, K) - the zero element & and the element
u, inverse to the element id A more or less automatic check shows that for
these morphisms diagrams (3.17),(3.18) and (3.19) are commutative and that
operation (3.20) in the set o (K, X) coincides with the addition given in &/ (K, X).
In addition, it follows from the naturalness property that the morphism & is
constant. Thus, in full duality to the situation for groups & (X, K), we obtain
that

Proposition 3.21. sets o (K,X) have a group structure natural in X if and
only if the object K is a subgroup of the category of .

It is clear that the same statement is true with respect to comonoids and
counitoids.

3.7 Category I op*

For the case that interests us first of all categories 7 ¢z and [T ¢ ] the results
obtained are of catastrophic character. Indeed, it is as a permanent map K — X
in the category J ¢ exists only when K = @, then in the categories T o and
[T ¢2] there are no nonempty groups, and therefore for any nonempty K in
the sets T o (K, X) and [T ¢z](K, X) = [K, X] it is impossible to introduce a
group structure natural for X!
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To remedy the situation, you can offer a few different ways. The simplest-
and, apparently, the most important- is based on the following definition.

Definition 3.22. A pointed space is a pair (X, xg), consisting of a topological
space X and some of its point xo (called the base point of the pointed space).
Very often, the base point is only implied (= not explicitly specified) and the
pointed space is simply denoted by X.

Often, the base point is also indicated by the symbol pt (or *), the same for
all spaces.

Pointed map f : (X,x9) — (Y,yo) from the pointed space (X,xg) into the
pointed space (Y, yg) is a continuous map X — Y such that f(xg) = yg-

It is clear that pointed spaces and their pointed maps constitute a category.
We will denote this category with the symbol 5 ¢ z°. It is related to the category
T oz by the functor ignoring base points

Top® > Ton

that translates (X, xg) into X.

In the T o2*® there is a product of any family of objects: it will be their
product as topological spaces, in which a base point is marked, each coordinate
of which is a base point of the corresponding factor. In particular, for two
factors

(X,x0) X (¥, y0) = (X XY, (x0, y0))-

The terminal object of the category ¢ z°® is a singleton pointed space ({pt}, pt).
Thus, up to the based points this reasoning works and terminal objects of
the category T ¢ z® are the same as in the category 7 ¢ .
The situation is different with sums and initial objects (which is the raison
d’étre of the category T o 2°).

Definition 3.23. A bouguet sum (or, in short, a bouguet) of a family of pointed
spaces X, is the coset space of their disjoint union resulting in the identification
of the base points. For the base point of the bouquet, the image of the base
points of the components is taken.

The bouquet of spaces X, is indicated by the symbol VX,. To denote a
bouquet of a finite family of pointed spaces, the following notation is also used

X1 VXyV--- VX,

The bouquet X;VXs5V---VX, is naturally homeomorphic to the coordinate cross
of the product X7 X X5 V - -+ X X,, consisting of points, all of whose coordinates,
except perhaps one, are base points. For example, for two terms

XVYZ(XXyo)U(XOxY).

We will also denote the point (x, yg) of the bouquet X VY by the symbol x;
and the point (xg,y) by the symbol y;;.
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Each family of pointed maps f, : X, — Z obviously defines a pointed map
f=Vfa:VXy > Z,
having the property that f oincl, = f, for any a, where
incly : Xo = VX,

are the canonical inclusions. Since the latter property obviously characterises
the map f in the unique way, therefore,

Proposition 3.24. the bouquet sum is the sum in the category of T o n®.

For a finite family of fi,..., f, of the maps V f, the map V f, is also denoted
by the symbol f; V---V f,. In particular, for twomaps f: X - Zandg:Y —» Z
the map fVg: X VY — Z is defined, acting according to the formulae

(fven)=fx), (fvelu) =gy, xeXyeY.

Any family of maps f, : Xo — Y, naturally also defines the map VX, —
VY, which we will denote with the same symbol Vv f, (or, respectively, fi V---V
fo)-

Note that the map Vf : VX, — Z (map Vf, : VX, — VY,) is a restriction
of the map [1f: [1X — Z (the map [] fo : [1 Xe — [1Ya)-

Initial objects of the category ¢z coincide with terminal objects ({pt}, pt)
and, therefore, co-constant maps are constant.

Note that, as in the category of groups, in the category of 7 ¢ z*® for any two
objects X, Y there is a single constant (aka co-constant) map const : X — Y.

By analogy with the category I ¢2°, we can introduce the category &7 4°
of pointed sets, the objects of which are sets with a base point marked in them,
and morphisms are maps that translate base points into based ones. It is conve-
nient, however, to consider this category a complete subcategory of the category
T on®, considering every set is like a topological space with a discrete topology.

In the language of algebra, a pointed set is nothing more than a set with a
single zero operation. Thus, the structure of the pointed set is the weakest of
all possible algebraic structures. Unfortunately, in many situations there is no
other structure on the sets we need, and we have to limit ourselves to what we
have.

For example, the my functor on the category 7 ¢ z°. Naturally, it is a functor
with values in &74° (the component containing the base point is marked), but
in general, no richer algebraic structure can be introduced into the sets of 7y X.

3.8 Category [T op°]

Having introduced the category I ¢ »°*, we must now construct the correspond-
ing homotopy category [T ¢2°®]. To do this, we need to define the concept of
homotopy for pointed maps. We will do this in the most natural way, taking the
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pointed maps as homotopy (X,xg) — (¥, yo) (or, in short, a pointed homotopy)
an arbitrary homotopy f; : X — Y, having the property that for any ¢ € T the
map f; is a pointed map X — Y, that is, it satisfies the relation f;(xg) = yo. In
other words, pointed homotopies are exactly homotopies rel{xg}.

In the interpretation of homotopies as maps F : X X I — Y the condition
f(x0) = yo means that F(xg,t) = yg for all ¢ € I, i.e. that F(xgX1I) = yo. In this
regard, in the category of T oz°® it is advisable to consider, instead of space
X x I, the space

XxI=(Xx1I)/(xgx1I),

resulting from the product of X x I by collapsing the segment xy X I to a point.
This space is naturally pointed - its base point is the image of the segment xqx 1,
and the homotopy of the pointed maps are nothing more than the pointed map
XxI —Y.

Sometimes(very rarely) we will have to consider ordinary homotopy pointed
maps that do not satisfy the condition f;(xg) = yo. We will call such homotopies
free.

For homotopy classes of pointed maps [f]rel{xg}, we will use the more
expressive notation [f]°®, and the set of all homotopy classes of pointed maps
[f]°: (X,x0) — (Y, yp) we will denote either by the symbol [(X,xg), (¥, yg)] or
by the symbol [X,Y]*. We will sometimes denote the pointed homotopy relation
by the symbol ~. Thus, the formulae f~g,, f ~ grel{xo} and [f]°® = [¢]® mean
the same thing.

It is clear that the homotopy class of the composition of pointed maps de-
pends only on the homotopy classes of these maps, which makes it possible to
determine the composition of classes [f]® with respect to which the totality of
all pointed spaces and all homotopy classes of their pointed maps is a category.
We will denote this category by the symbol [T ¢ z]® (or the symbol [T ¢ 2°]).

For any pointed homotopy f; : X —» Z and g, : Y — Z the map f; X g;
and the restriction f; V g; are obviously homotopy. Therefore, the products
(sums) of pointed spaces in the category I oz® will be products (sums) in
the category [T oz]®. The same is, of course, true with respect to initial
(= terminal) objects. As for the constant (= co-constant) morphisms of the
category [T ¢ 2]°, they will be homotopy classes of constant maps. Therefore,
in the category [T ¢22]°, as in the category I ¢ °, for any two objects X and
Y, there is one and only one constant (= co-constant) morphism X — Y.

3.9 H-cogroups, H-comonoids, H-counitoids

Thus, we see that formal obstacles to the existence in the category of [T o 2]*
there are no cogroups, comonoids and counitoids. However, as in a similar situ-
ation for [J ¢ z2]-groups, we prefer instead of homotopy classes m, u, & consider
their arbitrary representatives. Thus we come to the following definitions.

The pointed space (K, e) is called H-counitoid (or, more traditionally, a co-
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H-space) if a pointed map is given
m:K—>KVK.

that Diagrammes (3.17) (in which KUK is replaced by KV K and ¢ is a constant
map const, : K — K) are homotopy commutative (of course, pointed), i.e. if
the space K is a [T ¢ 2]® counitoid with respect to homotopy classes [m]*® and
[e]*.

If, in addition, the diagramme (3.18) is homotopy commutative, then the
H-counitoid K is called the H-comonoid, and if the map u : K — K is given for
which the Diagrammes (3.19) are homotopy commutative, then the H-comonoid
is called a H-cogroup.

The map m is called a co-multiplication, and the base point & is called a
homotopy unit.

Morphisms of H-counitoids, H-comonoids and H-cogroups are determined
in an obvious way. As in the case of H-spaces, they can be algebraic or more
generally homotopic.

Two H-counitoids (two H-comonoids or two H-cogroups) are called equivalent
if, as pointed spaces, they coincide, and their multiplications (and in the case of
cogroups and the map u) are pointed homotopies, i.e. if they define the same
counitoide (the same comonoid or the same cogroup) of the category [T ¢ 2]°.

According to the general-category (theory), results obtained above

Proposition 3.25. for each H-cogroup (each H-comonoid or H-counitoide) K
and any pointed space X the set [K, X]| has a group structure (monoid structure
or unitoid structure) that is natural in X.

Of course, in order for all this to make meaningful sense, we need to have a
fairly large stock of examples of specific H co-groups. We will now outline one
way of constructing them, although not the most general, but sufficient for our
purposes.

3.10 Suspensions

Let X be an arbitrary (non-pointed) topological space.

Definition 3.26. The suspension SX over the space X is the coset space of the
product X x I with respect to equivalence, in which (x1,#1) ~ (x2,#2) if and only
if either x; = x9, t1 = f3, or t; = to = 0, ortg = 1 = 1. Thus, the factorisation
map X XI — SX is a homeomorphism on the subspace X X (0, 1) and maps each
of the subspaces X x 0 and X x 1 to one point respectively (its own for each
subspace - see Fig. 3.10.1). We will call the point ¢ € SX, which is the image of
the subspace X X O, the south pole of the suspension SX, and the point ,; € SX,
which is the image of the subspace X x 1 its north pole. We will call the images
of the segments X X I the meridians of the suspension, and the image of the
subspace X x 1/2 its equator. The equator is naturally homeomorphic to the
space X, and we will usually identify it with this space.
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Figure 3.10.1:
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We will denote the point of the suspension SX which is the image of the
point (x,7) € X x I by the symbol [x, ]S or simply [x,?].
Thus,
[x,0] = po, [x,1] = p1 for any point x € X,

and for 0 < 11,13 < 1, the equality [x1,71] = [x2,f2] holds if and only if x; = x5
and t; = to.

It is clear that the correspondence [x,]€ — [x,]% induces homeomorphism
of the space CX/X to the space SX. Thus, we can assume that SX = CX/X.
(See Section 2.4.)

In the case when X is a unit sphere S"~! of the space R”, by setting up S !
by means of the homeomorphism

[x,t] — (—cosnat,sinmix), xeS" Y rel, (3.27)

it is naturally identified with a single sphere S" in the space R™! = R" x R. At
the same time, the poles, meridians and equator acquire the usual elementary
geometric meaning.

In particular, St = SS°.

Thus, although the sphere S° is disconnected, its suspension S' is connected.
In general, the setting of SX over any space X is connected, since any point of
it is connected by a meridian segment with each pole.

For any continuous map f : X — Y, the correspondence

[x, 1] = [f(x),t], xeX,tel,

defines a continuous map Sf : SX — SY, and it is clear that the correspondences
X +— SX, f — Sf make up some functor

S:Tonp—>Topn.

We will call this functor the suspension functor.
When the equator X is pulled into a point in the suspension SX, a space
SX /X appears, homeomorphic, obviously, to the bouquet SX vV SX of two copies
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Figure 3.10.2:

of the suspension SX, resulting in the identification, say, of the south pole of one
instance with the north pole of the other (see Fig. 3.10.2). (A homeomorphism
SX/X — SX v §X is induced, for example, by the map

m:S8X — SXVSX,

defined by the formula
,2t)1, if 0 1/2,
mx.g] = 4 02 i 0<t<1/ (3.28)
[x,2t — 1]y, if 1/2<t<1,

where x € X, r € 1.)
The map (3.28) is, by definition, a kind of multiplication in the space SX,
and, as we will show below, if we arbitrarily select a base point in SX, then

Proposition 3.29. with respect to this multiplication, the suspension SX will
be an H-cogroup.

Thus we have obtained a large stock of various H-cogroups.

3.11 Reduced suspensions

However, a careful analysis of the presented construction reveals certain rough-
ness in it, due to the fact that although, due to the connectivity of the space SX,
the choice of the base point in it has no real meaning, but for the functoriality
of the whole construction, this choice should be made in some “natural” way.
Unfortunately, we have two natural candidates for the role of the base point -
the north pole and the south pole,the choice between which introduces an un-
pleasant element of arbitrariness. (This, in particular, was reflected in the fact
that although, according to the general theory, when constructing a bouquet
SX Vv SX we need for both copies of the space SX to remove the same base point,
but above, for symmetry, we chose the north pole pg in one instance, and the
south pole p; in the other.) Moreover, since we actually mean to work in the
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category of 7 ¢ 2®, we must also consider the initial space X to be pointed, and
then in order for its identification x +— [x, 1/2] with the equator of the suspen-
sion SX to be an identification in the category of ¢ 2°, it is necessary for the
base point of the suspension SX to select the point [xg,1/2], where xq is the
base point of the space X.

Definition 3.30. The reduced suspension S*X over the pointed space X is
the coset space of the product X X I, resulting in the collapsing the subspace
Xpt = (XX 0)U (xg xI)U (X x1) to a point:

S*X =(XxI)/Xpt
(which is taken as the base point of the above suspension). In other words,
S*X = SX/Sxo,
where Sxg is the meridian passing through the point xg.

Instead of S*X, we will also write S(X, xq).

The points of the above suspension will be denoted by the former symbols
[x,?] or, when necessary, [x,7]%. So now [x1,#;] = [x2, %] if and only if either
x1 =xg and t; = t9, or x; = x9 = pt, or t; = 0,1, t2 = 0,1 (and then [x1,#1] =
[XQ, 2‘2] = pt).

The correspondence x +— [x, 1/2] will still imbed X into S*X, but now it will
already be a pointed map. Assuming that X c S*X, we will thereby identify the
point xg with the base point of the suspension S*X.

Similarly, the correspondence [x, ] — [f(x), ] for any pointed map f: X —
Y will determine the pointed map S°f : S*X — S°Y, and the correspondences
X — 8°X, f— S°f will constitute some functor

We will call this the reduced suspension functor.

Finally, the same formula (3.28) will give us a multiplication m : S*X —
S°X v §°X, with respect to which the space S*X is also, as we will show below,
an H-cogroup (with x as the unit).

Thus, the transition to the above suspension removes all the difficulties noted
above and at the same time nothing, in fact, spoils. This, however, should not be
surprising, since, as we will prove in the next lecture, the spaces SX and S*X are
homotopically equivalent under very broad general methodological conditions.

Remark 3.31. Moreover, under slightly more restricted conditions, the spaces
SX and S°X are even homeomorphic. We will not investigate this question in
full generality and will limit ourselves to proving that

Proposition 3.32. for any n > 0 the reduced suspension S*S"~1 over the (n—1)-
dimensional sphere S"1 is homeomorphic to the n-dimensional sphere S" =
ssn-1,
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Proof. Indeed, by identifying the space R" with the product R x R"~!, and the
space R™! with the product R xR*~! xR, the homeomorphism d : §*S*~1 — §"
can be defined, for example, by the formula

{(1—2t+2tx,2tx,2 r(1-20)(1—x), if 0<r<1/2

d[(x,x,t] = .

(2t =1+2(1-1)x,2(1 = 1)x,24/(1 = 1) (2t = 1) (1 - x), if 1/2<t<1,
(3.33)

where x2 + [x|2 = 1, x € R, 2z € R"! and ¢ € I (this homeomorphism maps
each meridian of the suspension to the circumference of the sphere S$", carved
by the hyperplane of the space R™! passing through the points (x,x,0) and
so = (1,0,0) parallel to the axis x,+1)- O

3.12 Loop spaces

The conceptual advantage of the above suspension is also manifested in the fact
that it allows a dual construction.
Let (X, xg) be an arbitrary pointed space.

Definition 3.34. The path u : I — X of the pointed space (X, xq) is called a
loop if u(0) = u(1) = xg. The set of all loops of the space (X, xg), being a subset
of the topological space X!, is a topological space. We will denote it with the
symbol Q(X,xg) or simply QX.

We will consider the space QX to be a pointed space, taking the constant
loop Oy, : I — X, t — x¢ as its base point.
Each pointed map f : X — Y is defined by the formula

(Qf)u=fou (3.35)

defines the pointed map Qf : QX — QY, and it is clear that the correspondences
X > QX, f — Qf make up a functor

Q:Ton* > Topn'.

We will call this functor the loop functor.
We will introduce multiplication into QX by defining the product of uv of
two loops u,v € QX by the formula

u(2) if 0<r<1/2

. (3.36)
v(2t-1) if 1/2<r<1.

(uv)(1) = {

It is clear that this definition is correct and the resulting map (u,v) + uv from
the product QX x QX to the space QX is continuous.
Below we show that

Proposition 3.37. with respect to this multiplication, the space QX is an H-
group.
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The (homotopy) unit of this H-group is the constant loop Oy,, and the map
u — u~! is given by the formula u='(¢) = u(1 —1).

Note that QX = QX, where X is the component of the space X containing
the base point. Therefore, considering the space QX, we will, as a rule, consider
the space X to be connected.

3.13 Adjoint functors S and Q

In general category theory, two functors F : € — @ and G : 9 — € are
called adjoint (more precisely, the functor F is called adjoint on the left with
the functor G, and the functor G is called adjoint on the right with the functor
F) if for any X € €, Y € @ a natural (with respect to X and Y) bijective map
is given

¢: D(FX,y) > € (X,GY)
(called adjoint isomorphism).

Example 3.38. When € = &ns, D = T»pn the functor E»pn — &7 ignoring
the group structure is adjoint on the right with the &7 4 — &7 2 functor, which
maps an arbitrary set X to a free group with the set X as free generators.

Adjoint functors have a number of important properties, but they are of
interest to us now only in connection with the theory of groups and cogroups.

Let the functor F have the property that for any object X € &, the object
FX is a subgroup of the category & and, therefore, for any object Y € & the
set D(FX,Y) is a cogroup. Then the set €(X,GY) will also be a group, and
the group structure on this set will be natural for X (and, of course, for ¥, but
we don’t care about that at the moment). Therefore, the object GY® will be
a category group €. Since this reasoning is completely reversible, it is proved
that

Proposition 3.39. the functor F takes values in the category of D-cogroups if
and only if the functor G takes values in the category of € -groups.

Let’s return now to the category I ¢ z°.

Proposition 3.40. The functor S* : Top® — T op® is adjoint on the left
with the functor Q : T op® —> T op®

Proof. By composing an arbitrary pointed map f : S*X — X with the factori-
sation map XxI — S°X and moving to the associated map, we get the map
¢of : X = Y explicitly defined by the formula

(ef)(x) (1) = f([x,1]), xeX,tel

Since by the condition f([x,0]) = f([x,1]) = xog map ¢f is actually a map in
QX, so that the correspondence f +— ¢f gives us some (obviously natural with
respect to X and Y) map

©0: Ton" (8% 5 Ton®(X,Q),

and a direct check shows that this map is bijective. O
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A functor T : Topn® - Top® is called homotopy invariant if, for any
(pointed) homotopy f; : X — Y, the maps T(f;) : TX — TY constitute a
homotopy from TX to TY (automatically pointed). For such a functor, the
correspondence [f]°® — [T f]°® is well defined and together with the correspon-
dence X +— TX makes up the functor [T oz®] — [T ¢ °®], which is called a
homotopisation of the functor T and is usually denoted by the same symbol 7.

Examples of homotopy functors are, as can be easily seen, the functors S*
and Q. We will also call their homotopisations a suspension functor and a loop
functor (from [T opn®] — [T or°]).

Remark 3.41. For the homotopy class @ = [f]® € [X,Y]* the homotopy class
S®a = [S°f]° is also denoted by the symbol Ea.

It is clear that the adjoint isomorphism for the homotopy functors S°® and
Q translates into homotopy. Therefore, the functors S* and Q from [T ¢2°] —
[T op®] are also paired (= adjoint).

Therefore, the statement that the above suspension S*X is an H-cogroup is
equivalent to the statement that the loop space is an H-group. So, only one of
them needs a proof.

3.14 Topological monoids of Moore loops

Definition 3.42. The Moore loop of the pointed space (X, xg) is a continuous
map
u:[0,al - X

from the segment [0, a], where a > 0, into the space X, such that u(0) = u(a) =
X0-

The number «a is called the length of the Moore loop u.

Moore loops of length 1 are ordinary loops of space X (i.e. loops in the sense
of Definition 3.34).

Similarly, the Moore path of length a > 0 of the topological space X is an
arbitrary map u : [0,a] — X. The point u(0) is called the beginning of the path
u, and the point u(a) is its end.

For each Moore path u : [0,a] — X the formula u# () = u(at) defines an
ordinary path u# of the space X, and by matching the paths u with a pair
(u”,a), we get a map of the set of all Moore paths of the space X into the
product X! x R*, where R* is the semiaxis of all non-negative real numbers.
It is clear that this map is injective. Considering it as an embedding, we will
introduce the topology of the subspace of the product X! x R* into the set of
Moore loops Q¥ X. Obviously, the space QX will then be a subspace of the
space QM X and the map u — u# will be a retraction Q¥ X — QX.

Moreover, it is easy to see that

Proposition 3.43. this retraction is a strong deformation retraction and, hence,
a homotopy equivalence.
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Proof. Appropriate corresponding deformation f, : Q¥X — QMX 0 <1 < 1,
can be obtained by matching each Moore loop u : [0,a] — X with the Moore
loop fru of length a + 7 — ta, given by the formula

u(ty), if a<landO0<t<a,
(fru)(t) = {xo, if a<landa<t<a+7-r1a,
M(#), lf aZl,
where 0 <t <a+71-art. |

Let u and v be two Moore paths of lengths a and B, respectively, having the
property that the end of u(a) of the path u coincides with the beginning of v(0)
of the path v. Then the formula

u(t), if 0<t<a,
v(t—a), if a<t<a+b,

(uv) (1) = {

defines the Moore path uv of length a + b, called the product of paths u and v.
In particular, the product uv is defined for any two Moore loops u,v € QMx,
and the corresponding map

QMx xQMxXx — QM X,  (u,v) — uv, (3.44)
as it is easy to see, is continuous. In addition, it is clear that it is associative
and the loop const : [0,0] — X (which we will also denote by the symbol e) is

its unit. This means that

Proposition 3.45. with respect to multiplication (3.44), the space QY X is a
topological monoid.

On the other hand, the formula

2(at+b)t . (at+b)+(a=b)

_ (e @) if 0<<7< =g,
mz(u,v)(1) = 2atb)i=(a+b)~(a=b)7 i laxbra=b)r _
V(= —ap)+ab)r ), o =G =I5

(where a and b are the lengths of the Moore paths u and v) defines - as directly
verified - the homotopy m, : Q¥ X x QM X — QX, connecting the map mq :
(u,v) — u#v# with the map m; : (u,v) — (uv)#. Hence, the map u — u? is a
homotopy morphism and, therefore, being a homotopy equivalence, a homotopy
isomorphism.

This proves that

Proposition 3.46. the space with multiplication QX is homotopically isomor-
phic to the topological monoid QM X.
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3.15 The loop space is an H-group.

Hence, the space QX is a H-monoid (and therefore the space S*X is an H-
comonoid).

Since e# = 0y,, the constant loop 0y, is the homotopy unit of the H-monoid
QX (and the base point of the reduced suspension S°X is its homotopy unit).

Remark 3.47. Of course, the latter statements are easily proved directly. Ho-
motopy from QX X QX x QX to QX, the binding map (u,v,w) — (uv)w and
(u,v,w) — u(vw), can be defined by the formula

(L), if 0<r<iT,
[fe(u,v,w)](6) = v(dr—7-1), if BT <p<bT
4t—7-1 : 2+7
W(?, if TSIS_L

where u,v,w € QX, and the homotopies from QX to QX connecting the maps
u — uly, and u — Oy,u with the identical map are formulae

u(£L), if 0<r< MT
t) = T
[fz ()] (1) {XO, if 1+TT <r<l1,
Xo, if 0<r<iE,
t) =
[g-(u)](2) {u(Qtii-IT—l , if 1_TT <t<1,

for u € QX.

The corresponding homotopies for the space S*X have a similar (“adjoint”)
form.
Conventionally constructed homotopies are shown in Figures 3.15.1 and

3.15.2.
i Uz, _ -, u
I N W/
u u

Figure 3.15.1:

Proposition 3.48. The space QX is an H-group (and the space S*X is therefore
an H-cogroup).
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|

Figure 3.15.2:

u v
u v

Proof. In light of all the above, we only need to prove that the maps u +— uu=!
and # — u~'u are homotopic to the constant map QX — QX. To the map
u — uu~!, the corresponding homotopy is defined by the formula

u(20), if 0<r<i3t,
[fe@]() = qu(l-7), if 5F<r<8fueQx,
w(2-20), if Hr<r<i,

(see Fig. 3.15.3), and to the map u — u~'u is obtained from this homotopy by

\4

Figure 3.15.3:
replacing u with u™! (and u™! by u). O

It is clear that the H-group will also be a topological monoid of the Moore
loops QM X,



Appendix

3.A H-monoids that are H-groups

In algebra, we are used to the fact that the structure of a monoid is significantly
weaker than the structure of a group, which is expressed in the existence of the
most diverse monoids that are not groups. It turns out that in the category
[T ¢ 2] the situation is quite different, and with very weak general methodolog-
ical assumptions, every connected H-monoid is an H-group. Here the connect-
edness condition aims to exclude monoids considered in algebra. However, the
same can be achieved under less restrictive conditions.

To formulate these conditions, we recall that for any H-monoid K its com-
ponent the set 7oK is naturally a monoid, and for H-group K this monoid will
be a group. Thus, in order for the H-monoid K to be a H-group, it is necessary
that the monoid myK be a group. It turns out that with appropriate general
methodological constraints, the necessary condition is also sufficient. Exactly,
the following Proposition is true.

Proposition 3.49. Any numerable semi-locally contractible H-monoid K for
which the monoid noK is a group is an H-group.

Proof. This sentence states, therefore, that for H-monoid K there is a continuous
map uK — K, x — x~1, for which the diagrammes

K xK K xK & = const,, (3.50)
N, N
K _ K K _ K

are homotopically commutative. At the same time, it is easy to see that the
map u is characterised uniquely by these conditions (of course, up to homotopy).
Indeed, according to Remark 3.14 of Lecture 3, the identical map K — K should
translate one map y into another. O

We assume the proof of Proposition 3.49 with a few general remarks.

123
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3.B Left and right shifts in H-monoids

For any fixed point a € K we will introduce in consideration, the left shift L,
by a and the right shift R, by a, which are maps K — K, defined respectively
by formulae

L,x =ax, Ry ,x=xa, x¢€K.

The fact that the point e is a homotopy unit, means that the maps L. and R,
are homotopy to the identical map id. In addition, it follows from the homotopy
associativity of multiplication in K that for any two points a,b € K the map
L, o Ly and R, o Ry, are homotopic to the map L, and Rp,, respectively.
Each path u : I — K connecting the point a to the point B determines by
the formula ¢ — Ly ;) (by the formula # — R, (;)) the homotopy connecting the
map Lp (map Rp) with the map L, (the map Rp). On the other hand, if for
the H-monoid K the set 1K is a group, then for any element a € K there exists
an element ¢ € K such that for each point x € K points a (ah)x and a(a x)
(or, equivalently, the points (a’a)x and (ad’)x) lie in the same component as
the point x, i.e. they can be connected to this point in some way. In particular,
the points (a'a)e and (aa’)e, which means that the points a'a and ad’ lie in
the same component as the point e. Therefore, the maps L/, : x — (a'a)x and
L, :x+ (aa’)x are homotopic to the map L., and hence to the identical map

aa

id. Similarly, it is shown that the maps R, and R, are also homotopic to
the identical map id. Since L, ~ LsoL,,and L, ~ L, o L, (and similarly

R, ~RsoR,,and R, ~ R, oR,), this proves the following lemma.

Lemma 3.51. If for a H-monoid K the set noK is a group, then for any element
a € K maps L, and R, are homotopy equivalences.

Conversely, let for an H-monoid K, say, the map L, be homotopy equiva-
lences. Then the map € : K Xx K — K X K, defined by the formula

t(a,x) = (a,ax), a,x €K,

and being, obviously, a map over K, with respect to the projection proj; :
KxK — K, (a,x) — a, will be a homotopy equivalence on fibres. Therefore, if
the H-monoid K is numerable and semi-locally contractible, then, according to
Proposition 2.74 of the Appendix 2.11 to Lecture 2, the map £ will be a fibrewise
homotopy equivalence.

Let £ : Kx K — K x K be an inverse fibrewise homotopy equivalence.
Since proj; of = proj; for any point (a,x) € K X K we will have the equality
£ (a,x) = (a,A(a,x)), where 1 : K x K — K is a map such that the maps

(a,x) » A(a,ax) and (a,x)+— al(a,x), (a,x) € KXK,

from K X K to K are homotopic projections of (a,x) — x. Putting x = ¢ and
ub(a) = A(a, e), we obtain, in particular, a map u’ : K — K, for which the map
a — au’(a) is homotopic to the map const, : K — K, a + e, i.e. for which the
first diagramme of (3.50) is homotopy commutative.
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Similarly, it is proved that if the homotopy equivalences are the maps Ry, a €
K, then there exists a map y” : K — K for which the second diagramme of (3.50)
is homotopy commutative.

But if there are two maps u’ and ju”, then the map u” : x — u”(x) will
be homotopic to the map x +— u”(x)xu’(x), and the map u¢ : x — uf(x) will
be homotopic to the map x +— u"(x)xu’(x). Therefore, due to the homotopy
associativity of multiplication in the H-monoid K, the maps y” and ¢ turn out
to be homotopic. Therefore, we can assume that u” = uf.

Thus, the following lemma is proved.

Lemma 3.52. If for any element a € K of a numerable semilocally contractible
H-monoid K, the maps L, and R, are homotopy equivalences, then the H-
monoid K will be an H-group.

The proof of Proposition 3.49 is immediately obtained by comparing Lemmas
3.51 and 3.52.

Remark 3.53. By applying Lemma 3.51, the condition of Lemma 3.52 is not
only sufficient, but also necessary, i.e.

Proposition 3.54. a numerable semilocally contractible H-monoid K is an H-
group if and only if for any element a € K the maps L, and R, are homotopy
equivalences.






Lecture 4

The introduction to the consideration of pointed spaces forces us to raise the
question of the price that we have to pay for it, i.e. the question of how much
the constructions and results of previous lectures are modified and complicated
when switching to pointed spaces.

Fortunately, it turns out that in most cases this transition is carried out
almost painlessly.

For example, since for any pointed spaces (X,xp) and (Y,yq) the set of
Ton®*((X,x), (Y,y)) lies in the T ¢ 2(X,Y), it is automatically provided with
an induced topology. The resulting topological space is denoted by the sym-
bol (Y,y0)'X,x0). It is naturally pointed: its base point is the constant map
const : X — Y. When there is no possibility of misunderstandings, we will
denote the space (Y, yo) X, xo) with the former symbol YX.

4.1 Exponential law for pointed maps

However, the situation with the exponential law for the category I ¢ z°® turns
out to be more complicated because the map 6f : ¥ — BX associated with the
pointed map f : (X XY, (x0,y0)) — (B, bg), will not, generally speaking, be a
map to (B, bg)X-*0) (unless f(xo,y) = b for any point y € ¥, i.e. f(xoxY) = bg).
Moreover, even if the last requirement is met, the map 6f will not, generally
speaking, be a pointed map (Y, yo) > (B, bo)X*0) (unless, f(x,yo) = b for any
point x € X, i.e. f(X Xyo) = bg). This shows that the role of the space X xY in
the exponential law for pointed maps should be played by the coset space

(X,x0) A (Y, y0) = (X xY)/((X X yo) U (xo XY)),

resulting from the product of X x Y by pulling the coordinate cross into one
point
(X,x0) V (Y, y0) = (X X y0) U (xg X Y)

(which is considered to be the base point of this space).

Definition 4.1. The space (X, x0) A (Y, yo) is called a smash (or a smash prod-
uct) of the pointed spaces (X, xp) and (Y, yo)-

127
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To denote a smash product, instead of the sign A, the sign ® is also used
(Fuchs and Rokhlin [10].) Instead of (X,xo) A (Y,yo), they often write simply
XAY (or X®VY).

The image of the point (x,y) € X XY in the space X A Y is denoted by the
symbol x A y. In these notations, the base point of the space X AY is the point
X0 N Yo.

Similarly, the smash product Xj A- - -AX,, is defined for any number of pointed
spaces Xi,...,X,. They will be the coset space of the product X; X --- X Xj,,
in which all points, at least one coordinate of which is the base point of the
corresponding multiplier, are identified.

In order to avoid misunderstandings, we emphasise that this product is not
a product in the category J ¢ z°* in the sense of general category theory: it will
be, as we already know, a direct product

(X,XO) X (Y,)’O) = (X X Y’ (XO,)’O))~

It should also be borne in mind that, generally speaking, mixed multiplica-
tion does not have the associativity property, i.e. there are such pointed spaces
X, Y and Z that the spaces (X AY) AZ and X AY A Z are not homeomorphic.
(An example is the spaces X = Q, ¥ = Q and Z = Z, where Q is the set of
rational numbers in the usual topology.) We will consider the question of the
associativity of mixed multiplication in the Appendix 4.16 to this lecture.

At the same time, the mixed multiplication is obviously commutative, i.e.
for any pointed spaces X and Y, the spaces X AY and Y A X are naturally
homeomorphic.

Identifying the circle S! with the space 1/{0, 1}, resulting in the identification
of the end points of the segment 7, we immediately get that for any pointed space
(X,x0) the smash S7! A X is the same as the suspension S*X.

Pointed maps f : (X XY, (x9,y09)) — (B, bg) for which the associated map
6f is a map (Y, yo) — (B,bo)X*) ie. for which f((X X yo) Uxg XY)) = b,
are found obviously, in natural bijective correspondence with pointed maps f :
X AY — B (matching is done by combining the maps f with the factorisation
map X XY — X AY). This allows you to embed the set T 02°(X AY, B) into
the set Ton* (X XY,B) C T on(X XY, B) and thereby assume that the map 6
is defined on J o2*(X AY, B). Thus, the association map 6 now turns out to
be the map

Ton*(XNY,B) = Top*(Y,BY) (4.2)

Tt is clear that it is still always (for any X,Y, B) injective, and bijective if and
only if the corresponding map 7 ¢2*(X XY, B) — T ¢n°*(Y, BX) is bijective for
the category I ¢ . In particular,

Proposition 4.3. the map (4.2) is bijective if the space X is locally compact
and Hausdorff.

If, in addition, the space Y is also Hausdorff, then considered as a map
BXNY — (BX)Y | it is a homeomorphism.
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This exponential law for pointed maps, unlike the usual exponential law,
is not directly applicable to pointed homotopies, which are maps of the form
XxI — Y, and not XAI — Y (note that the space X AI does not even make sense,
since the segment I is not pointed). Therefore, homotopy requires a separate
parallel discussion.

As it was said in Lecture 1, each (free) homotopy X X I — Y admits two
interpretations - as a path in the space YX or as a map X — Y/ into the path
space YI. It is clear that the first interpretation also holds for pointed homo-
topies - each pointed homotopy XxI — Y is naturally identified with some path
in the space (Y,yo)X*0) but as for the non-pointed case, this interpretation
is adequate only under strong constraints on the space X (for example, if this
space is Hausdorff and locally compact).

In order to transfer the second (formally more important) interpretation to
the case of pointed homotopies, for any pointed space (Y, yq), we will agree
once and for all to consider the path space Y! as a pointed space, taking the
constant path 0y, : I — Y, t — yg as its base point, at the point yo. Then the
pointed homotopies XXI — Y will naturally be identified with the pointed maps
(X.x0) = (Y/,0y).

4.2 Fibrations and cofibrations in the category
T ont

In particular, since all maps w, : ¥/ — ¥ will now obviously be pointed, it follows
that the axiom of the homotopy extension property in the form of Diagramme
(1.3) of Lecture 1 will remain valid for pointed maps as well.

The concepts of cofibrations and fibrations are transferred to the case of the
category I ¢ 2° in an obvious way: it is only necessary to assume all the maps
pointed in the corresponding diagrammes. At the same time, as was just noted,
both variants of the definition of the fibration (one using the interpretation of
homotopies as maps of X x I — Y, and the other as maps of X — Y7) are still
equivalent to each other. Characterisation of fibrations using the axiom of the
covering path also, of course, is literally transferred to the category I ¢ z°.

Nevertheless, the transition to pointed maps is reflected differently on the
cofibrations and fibrations. Since the extension of the pointed map is automat-
ically a pointed map, the pointed map i : (A, ag) — (X, xg), being a cofibration
(as amap i : A — X of the category ¢ 2°®), will be a cofibration in the cate-
gory o z°. In particular, taking an arbitrary cofibration (X, A) of the category
T op and arbitrarily selecting the base point in A, we get a cofibration of the
category I on°.

On the contrary, from the fact that the map p : E — B is a fibration of the
category I o, it does not follow that the pointed map p : (E,eq) — (B, bg)
will be a fibration of the category I ¢ »°®, since the pointed covering homotopy
F : X x I — E for the homotopy F : X x I — B, may not be pointed.

To at least partially correct the case, we will introduce the following defini-
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tion.

Definition 4.4. A point xg of a topological space X is called nondegenerate if
it is closed in X and the pair (X,xo) is a cofibration, i.e. - which by applying
Proposition 2.27 of Lecture 2 is equivalent - if a one-point set {xo} is a FNSDR
in a weak sense: (FNSDR, = Functionally Distinguished Neighbourhood Strong
Deformation Retract. See Definition 2.25). The pointed space (X,xo) is called
well-pointed if its base point x( is non-degenerate.

It follows directly from the Corollary 2.38 of Theorem 2.37 of Lecture 2 that
if the pointed map p : (E,eq) — (B, bg) is a fibration in the category I ¢z,
then in the category ¢ z°® the axiom of covering homotopy will hold for any
well-pointed space (X,xp). Assuming freedom of speech, we can thus say that
with respect to well-pointed spaces, any fibration of the category I ¢ is a
fibration of the category 7 ¢ z°.

This is quite a lot, because, as we once did we will see that almost all the
pointed spaces that actually occur are well-pointed.

Remark 4.5. The pointed map, which is a (co)-fibration of the category I ¢ z2°*,
a priori may not be a (co)-fibration of the category I ¢ . However, in practice,
such pathological situations do not occur.

4.3 The lemma about gluing a whisker

In connection with the notion of a well-pointed space, it is useful to keep in
mind the following simple lemma.

Lemma 4.6. Any topological space X is homotopically equivalent to a topological
space X having a non-degenerate point xo. In this case, we can assume that the
space X is contained in the space X' as its strong deformation retract. Moreover,
the space X can be chosen so that there exists a path connecting xé) with any
pre-defined point xo € X.

Proof. Noting the point 1 in the segment I, and in the space X this point xq, we
construct a bouquet X' = X v I. Each point of X is either a point x from X, or
the number 7 € I, with xo = 1. It is clear that X c X' is a strong deformation
retract of the space X’ (the corresponding homotopy f; : X c X', fixed on X,
translates each point 7 € I ¢ X' to the point 7+ (1 — )7 € I). Let xé) be the
point 0 € I ¢ X'. Putting ¢(x) = 1 and ¢(7) = 7, we get on X a continuous
function ¢ : X' — I, for which ¢™'(0) = {xo} and ¢~(1) = X, and putting
g-(t) = (1 — )T, we get a homotopy g, : U — X, where U = X'\ X = [0, 1),
such that go(7) = 7 and g1(7) = xE) for any 7 € U. Therefore, the point xé) is
non-degenerate. O

It is said that the space X' is obtained from the space by gluing a whisker-
Thus, gluing a whisker, practically without changing the space X, turns it
into a space with a non-degenerate base point.
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4.4 Cylinders and co-cylinders in the category
T ont

To bring pushouts and pullbacks into the category I ¢ °, it is enough to con-
struct for the corresponding diagrammes their pushouts and pullbacks in the
category I oz and then naturally mark the points in them (in the pushout
diagramme A <« C — B, the base point will be the image of the base point
of the space C, and in the pullback diagramme A — C « B is the base point
of the direct product of A x B). Thus, up to the base points of pushuout and
pullback in the category I ¢ 2°* are the same as in the category I ¢ .

In particular, if you ignore the base points, then the cocylinder of pointed
map f : X — Y will be its cocylinder as an non-pointed map.

At the same time, the corresponding statement is incorrect for the cylinder,
since in its construction the space X x I is replaced by the space XxI, which
means that the cylinder Cyl®(f) of the pointed map f : X — Y is obtained from
its non-pointed mapping cylinder Cyl(f) by shrinking the segment xg X I to a
point:

Cyl*(f) = Cyl(f)/ (x0 X D).

In the literature, the cylinder Cyl®(f) is usually called the reduced mapping
cylinder (and the cylinder Cyl(f), respectively, is called non-reduced).

Despite this modification, the reduction of the extension problem to the
retraction problem carried out with the help of cylinders is completely preserved
for pointed maps. Of course, the reduction of the lifting problem to the cross-
section problem carried out with the help of cylinders is also preserved.

4.5 Contractible pointed spaces

A pointed space (X, xp) is called contractible (notation X N\, pt) if the constant
map const : X — X, x — x is pointed homotopic to the identity map id : X — X,
x - x, i.e. if the point x¢ is a strong deformation retract of the spaces X.

It follows directly from Proposition 2.18 of Lecture 2 that a well-pointed
space (X, xg) is contractible if and only if the non-pointed space X is contractible.
The corresponding pointed homotopy XxX is called a contraction.

This means that the contractibility property is essentially indifferent to
which category (7 oz or T oz°®) we are working.

4.6 Reduced cones

The reduced (reversed) cylinder of the map const is called the reduced cone over
the space X and is denoted by the symbol C*X. Thus, C*X = CX/Cxy.

We will denote the points of the cone C*X with the former symbols [x, ], as
before identifying the points [x, 1] and x, i.e. identifying the space X with the
base the cone C*X. In particular, according to this embedding, the base point
of the cone CX will be the point xy € X.
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It is clear that S*X = C*X/X.
Each pointed map f : X — Y defines by the formula

(C*NIx,t] =[f(x),t], xeX,tel,

the pointed map C°f : C*X — C®Y, and it is clear that the correspondences
X — C*X, f — C*f constitute a functor from T ox® to T on°.
The cone C*X is obviously contractible (as a pointed space), and

Proposition 4.7. the space X is contractible if and only if it is a retract of the
cone C*X

Moreover, it turns out that - as for non - pointed spaces - the words “is a
retract” can be replaced here with the words “is a strong retract”.

Indeed, we can consider any retraction r : C*X — X as a retraction CX — X,
and it is easy to see that the deformation retract F, constructed from this
retraction in the way described in Lecture 2, will be stationary at Cy,, subject
to obvious precautions, and therefore, will induce a deformation retraction of
the cone C*X.

Explicitly, the deformation retraction F can be specified, for example, by
the formula

Plrle, 220, 20539 ) 0] if 25 <r<1,1/4 <5 <1/3,

rlx, S5l 25511, if 2s<t<1,0<s<1/4,
’[2%],0], if 1/2<1<2/3,1/2<s<1-1,
x, A5, if 0<tr<1/3,1/2<s<t,

r[z’ 2=571.01, if 1/2<r<2/3,1-1<s<1/2,
! if 1/2<r<2/3,1/2<s<t,

[x, 9t + 25 — 25t — 8], 0] if 2/3<tr<1,1/3<s<1/2,
[x,10 - 9r + 25 — 25¢],0]  if 2/3<r<1,1/2 <5< 2/3,

[
[
[r[x
[x
F([x,t],s) = {
[r
[r
[x,
[x,

e 2, if 2-25<r<1,2/3<s<1,
ol, if 0<r<2/3,r<s<(2-1)/2

which determines this deformation on the square (¢, s) separately on each of its
ten parts, shown in Fig. 4.6.1.

The pointed map f : X — Y is called nul homotopic if it is pointed homotopic
to the constant map. Just as in the case of non-pointed spaces, the map f :
X — Y is nul homotopic if and only if it can be extended to C*X

X—=C"X
.
Y

In addition, a pointed space Y is contractible if and only if, for every pointed
space X, any pointed map X — Y is null homotopic.
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4.7 Serre fibrations

In contrast to the case of the category J ¢z, the concept of a cone in the
category I ¢2° can be detailed. The corresponding dual object is the space
PX = P(X,xp), already familiar to us from Lecture 1, of all paths of the space
X starting at the base point x¢ (formally, it would be more convenient here to
either go to the straight cone or assume that PX consists of paths, ending at the
point x"; due to the fact that we take an inverted cone for C’X, 1 — ¢ appears
in the formulas below instead of 7).

We will consider PX to be a pointed space, taking the constant path 0y, :
t — xg as its base point.

Like the cone C*X, the space PX is contractible (the corresponding contrac-
tion is given by the correspondence u — u,, u € PX, 7 € I, where u, the path
is defined by the formula u,(f) = u((1 - 7)1), t € I).

It is clear that any pointed map f : X — Y defines by the formula,

((PHu)(t) = f(u(t)), uePX,tel,

the continuous pointed map Pf : PX — PY, and the correspondences X +— PX,
f — Pf constitute a functor from T ¢ x® to T op°.

It is easy to see that, like the functor §* and Q, the functors C* and P are
adjoint, i.e. for any pointed spaces X and Y, there is a natural (with respect toy
X and Y) bijective map

T on*(C*X,Y) S T op*(X,PY)

(each map f : C*X — Y corresponds to a map g : X — PY, defined by the
formula g(x)(t) = flx,1-1¢], x € X, t € I). However, unlike the case of the
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S® and Q functors, the transition to the homotopy category [T ¢2°] makes
little sense for the functors C* and P, since for any pointed spaces X and Y sets
[C*X,Y]* and [X, PY]* are singleton sets due to the contractibility of the spaces
X and PY.

If the space X is contractible, then each contraction X X I — X interpreted
as a map X — X!, will be (after replacing ¢ with 1 —¢) a map in PX, which
has the property that its composition with the Serre fibration w; : PX — X,
u — u(1l) is an identical map of idy, i.e. it will be a section of the fibration w;.
Conversely, it is clear that any section X — PX of the fibration w;, considered
as a map in X!, will be a pointed homotopy connecting the map constx to the
map idy, i.e. after replacing ¢ with 1 — ¢ will be a contraction of the space X.
Thus,

Proposition 4.8. the space X is contractible if and only if the Serre fibration
w1 : PX — X has the section s : X — PX.

(It can be shown that this section also has the property that id ~ s o p, and
the corresponding homotopy f; : PXPX can be chosen so that for any ¢ € I
equality p o f; = p takes place. In the terminology introduced in Appendix 2.11
to Lecture 2, this means that the space X is contractible if and only if the Serre
fibration w; : PXX collapses. This refinement is dual to the statement for cones
obtained by replacing retracts with strong deformation retracts, and is proved
in a dual way.)

Now it is clear that

Proposition 4.9. the pointed map f : X — Y is null homotopic if and only if
it can be lifted to PY:

Remark 4.10. (A note on terminology) G. W. Whitehead [19] warns against
using the term cocone for the space PX. Although we do not see this term as a
special crime, but we will refrain from using it. (Perhaps the space PX should
be called “nus’?)

Transcriber’s note: ‘nus” (Russian) = “nous” (Greek), meaning the God-given
capacity of each person to think (reason); the mind; mental capacity to exercise
reflective thinking.

4.8 Pointed homotopy equivalences
A pointed map f : X — Y is called a pointed homotopy equivalence (or homotopy

equivalence of the category I o p®) if there is a pointed map g : ¥ — X (inverse
pointed homotopy equivalence) such that fog ~id and go f ~ id.
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Of course, any pointed homotopy equivalence will also be an ordinary ho-
motopy equivalence (homotopy equivalence of the category I ¢z°). For well-
pointed spaces, the converse is also true:

Proposition 4.11. If the pointed spaces (X,xq) and (Y,yq) are well-pointed,
then each pointed map f : (X,xg9) — (Y,y0), which is a homotopy equivalence
of the category T oz, will also be a pointed homotopy equivalence.

Thus, the seemingly ambiguous term “pointed homotopy equivalence” is not
really such (at least for well-pointed spaces).

Remark 4.12. If the space is (X',xb) is obtained from the space (X,xg) by
gluing a whisker, then in the case when the space (X,xg) is well-pointed, the
deformation retraction X' — X will, by applying Proposition 4.11, be a pointed
homotopy equivalence. Thus, as expected,

Proposition 4.13. gluing a whisker to a well-pointed space does not change its
pointed homotopy type.

(On the contrary, it is easy to see that if the space (X, xp) is not well-pointed,
then the space (X',x;)) cannot be pointed homotopy equivalent to it).

We will preface two lemmas to the proof of Proposition 4.11.

Lemma 4.14. If the pointed space (X, xg) is well-pointed, then for any pointed
space (Y,yg) each map f : X — Y, for whose point f(xg) lies in the same
component of the space Y as the point yq, is homotopic to some pointed map
(X’XO) - (Y’yO)

Proof. By condition, the point f(xg) can be connected in some way u : I —
Y with the point yo We can consider this path as a homotopy of the map
flx,- Therefore, according to the axiom of homotopy extension (applicable by
condition to the pair (X,xp)), there exists a homotopy f; : X — Y such that
fi(x0) = u(t) for any t € [. Since fi(xg) = u(1)yg, the map f; is a pointed map
(X,x0) = (Y, y0), homotopic to the map f. O

Lemma 4.15. If the pointed space (X, xg) is well-pointed, then for any pointed
map [ : (X,x0) = (X, x9), freely homotopic to the identical map id, there ewists
a pointed map [ : (X,x0) — (X,x0), such that f o f ~id.

Proof. Let F : X X I — X be a free homotopy connecting the map f to the
identical maps id. Since the pair (X,x() is a cofibration, there exists a homotopy
ftl : X — X such that f(; = id and ft (x9) = F(xg,t) for any t € I. Then the
formula
G(x,1) = S0 (f (X)), %f 0<r<1/2,

F(x,2t-1), ifl/2 <t <1,
defines a homotopy G : X x I — X, connecting the map f o f, where f = fll,
with the map id. Since the pair is (X X 1,x¢ X [) is also a cofibration, there exists
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a homotopy @ : (X X I) x I — X with the initial map G such that

(rg. 1.7 = |01 =201 =1) if 0<r<1/2
X0,0,T) =
0 F(xo,1-2(1-1)(1-7)), ifl/2<r<1,

Then the map
(x,7) > ®(x,0,7), (x,1) > DO(x,2,1), (x, 7)) DP(x,1,1-17)

will be pointed homotopies sequentially connecting the map f o f : x —
®(x,0,0) with the map id : x — ®(x, 1, 0). O

Remark 4.16. Lemma 4.15 and Proposition 2.18 of Lecture 2 are special cases
of a general statement dual to Lemma 2.56 from the Appendix 2.11 to Lecture
2.

Proof. (of Proposition 4.11) Let g : ¥ — X be the homotopy equivalence inverse
to the homotopy equivalence f : X — Y. Then the map go f : X —» X
is homotopic to the identical map id, which implies that the point g(yg) =
(go f)(xp) lies in the same component of the space X as the point xo. Therefore,
according to Lemma 4.6, the map g is homotopic to some pointed map (Y, yg) —
(X,x0). Hence, without loss of generality, we can assume the map g to be
pointed.

But then, homotopic to the identity map, the map go f : X — X is also
pointed, and therefore, according to Lemma 4.14, there exists a pointed map
h=(gof) :X— Xsuch that ho(go f) ~id. This proves that there exists a
pointed map g : ¥ — X (namely, the map g = h o g) such that g o f ~ id.

The map g is of course also a homotopy equivalence (the inverse of the
homotopy equivalence of f). Therefore, for the same reasons, a pointed map
f: X > Y exists for it in turn, such that f o g ~id. But then f ~ fogo f ~ f
and, therefore, fog ~ id. Therefore, f is a pointed homotopy equivalence (with
g as the inverse pointed homotopy equivalence). O

4.9 Maps ignoring base points

Proposition 4.11 suggests that the relation of pointed homotopy should coincide
with the relation of ordinary homotopy (at least for smooth pointed spaces), i.e.
that the map

[X,Y] — [X,Y], (4.17)

that occurs when the base points are ignored, is bijective. However, this as-
sumption is false and the situation here is actually more complicated.

Indeed, in order that the map f : X — Y be homotopic to the pointed
map (X,x9) — (Y, yp) in any case, it is necessary that the map nof : moX —
moY translates the component of the space X containing the point x( into the
component of the space Y containing the point yg. This means that the image
of the map (4.17) is obviously contained in the subset [X,Y]q of the set [X,Y],



4.10. THE FUNDAMENTAL GROUP OF POINTED SPACES 137

consisting of homotopy classes of maps X — Y satisfying the last condition.
Since for a disjoint subset Y [X,Y]o, is necessarily a proper subset of the set
[X,Y], we see, therefore, that even for the objectivity of the map (4.17) it is
necessary to assume the space Y connected. For a disconnected space Y, the
question of surjectivity can only stand in relation to the map

[X9Y]. - [XvY]Ov (418)

induced by the map (4.17) (and, note, with a connected ¥ coinciding with the
map (4.17)).

But the answer to this question is exactly given by Lemma 4.6. Thus,
according to this lemma, if the space X is well-pointed, then for any pointed
space Y the map (4.18) is surjective.

In particular,

Proposition 4.19. if the pointed space X is well-pointed, and the pointed space
Y is connected, then the map (4.17) is surjective.

The question of the injectivity of the map (4.17) (or, equivalently, the map
(4.18)) requires some adjustments, because even for the “smoothest” spaces, the
map (4.17) may not be injective, and the study of the question of the structure
of the preimages of the elements of the set [X,Y] with this map is a meaningful
geometric problem.

4.10 The fundamental group of pointed spaces

Definition 4.20. Loops u,v € QX of a pointed space (X,xq) are called homo-
topic if they are homotopic with respect to a two-element set {0,1} c I. The
set [, X] rel{0, 1} of all classes of [u#] homotopy loops is denoted by the symbol
m1(X, x0) (or simply m1X). If the set m1(X,xg) consists of only one element, i.e.
if any two loops of the space X are homotopic, then the pointed space X is called
simply connected.

By applying the exponential homotopy law I in X rel{0, 1} are identified with
the paths of the space QX, and thus the set 71 X is identified with the sets 1oQX
of all components of this space:

mX = moQX.
But since noK = [pt, K], then

Proposition 4.21. for each H-space (each H-monoid or each H-group) K mul-
tiplication is transferred to its coset mgK and with respect to this multiplication,
the set moK is a unitoid (respectively, a monoid or a group).

With respect to K = QX, we obtain, therefore, that
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Proposition 4.22. the formula
[ul[v] = [uv] (4.23)
well defines the multiplication with respect to which this set is a group.

The group 71X is called the fundamental group of the pointed space X.

The unit of this group is the homotopy class [0y,] of the constant loop
Oy, : I = X, t — xo, and the element @' inverse to the element a = [u] is the
homotopy class @~! of the inverse loop u™' : ¢+ u(1 —1).

Each pointed map f : (X,x9) — (Y,yg) determines, by the formula f, :
[u] — [f ou], the map f. : 11X — m1Y, which is a homomorphism, and it is
clear that the correspondences X +— 11X, f — f. constitute a functor from the
category I oz°® to the category €»z. In other words, multiplication (4.23) is
natural with respect to X.

Remark 4.24. Interestingly, as we will show in Lecture 6, multiplication (4.23),
as well as the inverse multiplication [u][v] = [vu] are the only natural group
multiplications on X that can be defined in the set 71 X.

4.11 The action of the group 71Y on the set [X,Y]*

Recall that the action of the group Pi on an object A of some category & is
an arbitrary homomorphism R : IT — Aut A, ¢ = R, of this group into the
group of automorphisms Aut A of the object A. If A is a set (generally speaking,
equipped with an additional structure), then the image of the element @ € A
with the automorphism Rz, &€ € II, is usually denoted by the symbol £éa. The
resulting map

[IxA—> A (&) éa,

is also called an action. In order for the map II X A — A to be an action, it
is necessary and sufficient that for any elements &,17 € T, @ € A the following
diagramme commutes

NxMOxA—->=TIIxA (&7, — (én,a)

L] |

[IxA——A (¢é,na) —— &(na) = (én)a

and so that for any element & € IT the map a — £a, a € A, is a morphism of the
object A on itself. With & = &74, the last condition is automatically fulfilled,
and, for example, with &/ = o #E#» 2, it means that for any elements a,8 € A
the following equality must be met

§la+p) =Ea+EB.

An example of an action is the action (£, @) — &aé™! of a group II on itself by
means of internal automorphisms.
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The orbit of the action of IT X A — A defined by the element « € A, is the
set Il of all elements of the form £a, & € I1. Orbits are the equivalence classes
with respect to the equivalence relation in which @ ~ B if B = £« for some
¢ € II. The corresponding coset is denoted by the symbol A/I1. We emphasise
that, in general in other words, it does not inherit the structure of the object
A. For example, if A is a group, then A/II will, generally speaking, be only a
pointed set (the base point of which is the orbit of unity, which, by the way, is
a singleton set).

We will apply these general definitions to the case when the group IT is
the fundamental group m1Y, and the set A is the set [X,Y]* = [(X, xq), (Y, yo)]
homotopy classes of maps of a well-pointed space (X, xg) to the space (Y, yg).

Let &£ = [u] € mY and a = [f]°® € [X,Y]® Since the space (X,xq) is well-
pointed, there exists a homotopy f; : X — Y such that fy = f and f;(xg) = u(1-t)
for any ¢ € I (see above proof of Lemma 4.6). Let [v] = [u] and [g]* = [f]°,
and let g, : X — Y be a homotopy such that gop = g and g;(xg) = v(1 —t) for
any t € I. This homotopy together with the homotopy f; and the homotopy
wr : I —> Yrel{0, 1}, connecting u and v, defines by the formula

fi(x), if =0,
he(x,7) = w-(1-71), if x=xq,
g:(x), if r=1,

some homotopy h: : Xpt — Y, where, according to the notation introduced in
Lecture 2, Xp = (X x0) U (xo X 1) U (X x 1). Since the map hy is a restriction on
the X,; homotopy rel{xp} connecting the maps f and g, and since, according to
Lemma 2.19 of Lecture 2, the pair (X X I, X;¢) is a cofibration, the homotopy &,
extends to some homotopy h; : X X I — Y. The end map h; of this homotopy
will be the homotopy rel{xg} connecting the maps f; and g;. This proves that
the class [ f1]® of the map f; depends only on the classes & = [u] and a = [f]°,
and not on their representatives u and f. Therefore, denoting it by £, we will
well define some map (&, @) — &a from mY X [X,Y]® to [X,Y]* as the automatic
check shows, by the action of the group 71Y on the set [X,Y]°*.

We will call the constructed action the canonical action of the group m1Y on
the set [X,Y]°.

Proposition 4.25. Orbits of the canonical action
mY x[X, Y] — [X,Y]°

exactly coincide with the preimages for the map (4.17) homotopy classes of
[X,Y].

Proof. By definition, if @ = [f]® and éa = [f1]°, then f ~ fi. Conversely, if
f ~ fiand f; : X > Y be a homotopy connecting f to fi then [f1]°® = [u][f]°,
where u : I — Y be the loop t — f1_;(xq). O

Proposition 4.25 means that there is equality

[X7Y]O = [X,Y]./ﬂ'IY, (426)
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where [X,Y]*/m1Y is the coset of the set [X,Y]® by the action of the group m1Y.
In particular, we see that

Proposition 4.27. if the space Y is connected and simply connected, then
[X,Y] =[X,Y]".

Remark 4.28. If X, and Y are components of the spaces X and Y respectively,
then the set [X,Y] is naturally represented as a disjoint union of sets [X,, Y3].
Similarly, if X4, and Yg, are components of spaces X and Y containing base
points, then the set [X,Y]*® is a disjoint union of the set [X,,,Ys,]* and sets
[Xa, Y] for (a,B) # (a0, Bo). At the same time, on the last sets, the map (4.17)
is an identity map (in particular, the group m1Y acts identically on them), so
only the following map is of interest

[Xaoayﬁo]. - [XCX()?YBQ]‘

Since the group m1Y is naturally identified with the group m1Yg,, we see, there-
fore, that everything is judged to the case of connected spaces X and Y. Namely,
being able to calculate the sets [X,Y]* for connected pointed spaces X and Y,
we will know for the same spaces the sets [X,Y], and therefore we will know
these sets (together with the sets [X,Y]*) and for any spaces X and Y. This
explains why, in homotopy theory, the restriction to connected spaces is usually
considered quite sufficient and does not, in fact, reduce generality. When, in
practice, there is a need to apply the results of homotopy theory to disconnected
spaces, they are easily modified in the necessary way.

Similarly, although the main geometric interest is, of course, the theory of
homotopies in the category of 7 ¢z and the transition to the category of 7 ¢ z°
is caused only by a rigid algebraic necessity, in the light of all the above, we
can now focus all attention on the category of T ¢ n°, keeping “in mind” the
possible ignoration of the base points.

Remark 4.29. For any pointed space X and any well-pointed (i.e. having a
non-degenerate unit) H-cogroup K, the canonical action of the group 71X is an
action on the set of elements of the group [K, X]°®. It turns out that

Proposition 4.30. this action is consistent with the structure of the group on
[K,X]*, i.e. for any element & = [u] of the group m X the map o — Ea,
a € [K, X]®, is an automorphism of the group [K, X]°.

Proof. In fact, let f : K —» X, g : K — X be arbitrary pointed maps, and
a =[f]* and B = [g]* be their homotopy classes. By definition éa = [f1]°® and
&B = [g1]° where fi and g; are terminal maps of homotopies f;,g; : K —» X
such that fo = f, go = g and f;(e) = g:(e) = u(1 —t), where e is the co-unit of
the H-cogroup K. But then the map

fitgr=mo(fivg):K—X, 0<r<1,

will obviously constitute a homotopy connecting the map f+g = mo (fVg) with
the map f1 +g1 =mo (f1 V g1) and satisfying the relation (f; +g;)(e) = u(1—1).
Since, by definition, [f +g]®* = a + B and [f1 + g1]° = £a + £B, this proves that
Ea+EB=E(a+pB). Consequently, the map @ — £a is an automorphism. O
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Remark 4.31. The construction of the canonical action of the group m1Y on the
set [X,Y]* admits a small generalisation, which is often useful.

Let two points yg and y; lying in the same connected component be selected
in the topological space Y. By specifying the point yo as the base point, we get
the pointed space (Y, yp), and by specifying the point y;, we get the pointed
space (Y,y1). Accordingly, for any pointed space (X,xg), two sets of pointed
homotopy classes will be defined

[(X,Xo),(Y,yo)] and [(X,XO),(Y’yl)]-

Now let u : I — Y be an arbitrary path in Y connecting the point yo with
the point y;. If the space (X, xg) is well-pointed, then for any map f : (X,x9) —
(Y, yo) there exists a free homotopy f; : X — Y such that fy = f and f;(xg) =
u(l - 1) (and, therefore, fi(xg) = yo, i.e, f1 : (X,x0) = (¥,y0)). Arguments
that differ only trivially from those used above now show that the class [f1]°® €
[(X,x0), (Y, y0)] depends only on the class [f]* € [(X,x0), (Y, y1)] (and on the
class [u] rel{0, 1} of the path) and that the resulting map

[(X.x0), (¥, y1)] = [(X,x0), (¥, y0)] (4.32)

is a bijective map of the set [(X,xq), (Y, y1)] on the set [(X,xq), (Y, yo)].

Transferring to this case the values entered above, we will denote class [ fi]
with the symbol éa, where @ = [f] and & = [u] rel{0, 1}.

If the path u connects the point yy with the point y; and the path v connects
the point y; with the point ys, then the formula (3.36) of Lecture 3 will well
determine their product uv, which is the path connecting the point yg with the
point ys, and it is clear that the class rel{0, 1} of the path uv depends only on
the classes ¢ and 5 of the paths u and v. This class is called the product of the
classes ¢ and 7 and is denoted by the symbol &7.

If now a € [(X,xp), (Y, y0)], then as shown by an automatic check, equality
(&n)a = é(na) will take place.

In the case when (X,xp) is an H-group (or at least H is a counitoid), the
same reasoning as above shows that

Proposition 4.33. the map (4.32) is an isomorphism of groups (of unitoids).

We emphasise that the map (4.32) depends on the path and (or, more pre-
cisely, on its class & = [u] rel{0,1}) and replacing the path with another (non-
homotopic) path, it can be changed.

Remark 4.34. Recall that a groupoid is a category whose morphisms are all
isomorphisms. For any category &, an ensemble (or local system) of objects of
category & over a groupoid II is an arbitrary functor from IT to &/. Thus, the
ensemble R maps each object x € IT to some object R, € &/ and each morphism
& :x — y to a morphism Rz : Ry — Ry (automatically being an isomorphism),
with R-f’] = R§ o R,] and Rid =id.

An example of a groupoid is the fundamental groupoid TIY of an arbitrary
topological space Y, whose objects are points of space Y, and whose morphisms
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are homotopy classes rel{0, 1} of paths u : I — Y. In this groupoid, the relation
& .y — x means that the paths of the class & connect the point x with the point
v, and the composition of morphisms n and ¢ is the product &n of the classes &
and 7.

Ensembles over the groupoid I1Y are called ensembles (local systems) over
the space Y.

In this terminology, the statements of Remark 4.31 mean that

Proposition 4.35. for any well-pointed space (X, xq) and any topological space
Y the sets Ry, = [(X,x0), (Y,y)] together with the maps Rg : @ — éa constitute
an ensemble of sets over the space Y, which is an ensemble of groups (unitoids)
when the space (X,xo) is an H-cogroup (H-counitoid).

For any groupoid IT and any of its objects yg, the set II(yg,yg) of all
morphisms & : yg — yo is a group, and for any ensemble R of sets over II,
this group acts on the set R,,. For the case Il = IIY the group I1(yo, yo) is
nothing other than the fundamental group 71 (Y, yg) and its action on the set
Ry, = [(X,x0), (Y, y0)] is a canonical action from Proposition 4.25.

4.12 Pointed H-spaces

The transition to the category I ¢ z°* requires, of course, a corresponding mod-
ification in the concepts of H-groups, H-monoids and H-unitoids. Now we must
consider every H-unitoid K (and, in particular, every H-monoid and every H-
group) to be a pointed space with a base point and, accordingly, assume mul-
tiplication m : K x K — K as a pointed map (which is equivalent to equality
e? = ¢), and homotopies connecting maps x +— xe and x — ex with identical
map, pointed homotopies. In addition, for H-monoids and H-groups, diagrams
)3.7) and (3.8) of Lecture 3 should now be commutative up to pointed homo-
topy. Then for any pointed space (X,xg), the set [X,K]* will be an unitoid
(respectively a monoid or a group) with unit [0.]°.

According to Proposition 4.25, if the space (X, xqg) is well-pointed, then the
group m1K acts on the set [X, K]*. It turns out that

Proposition 4.36. this action is trivial, i.e. @ = a for any elements a =
[f]° € [X,K]® and & = [u] € m K.

Proof. Indeed, since by the condition the map ¢ — xe, x € K, is a pointed
homotopy to the constant map, the map f is pointed homotopy to the map
g : x — f(x)e, and the loop u is homotopic to the loop v : t — u(t)e i.e.
a = [g]* and & = [v]. On the other hand, the formula

g(x) = f(u(l-1)

defines a homotopy g; : X — K for which gy = g1 = g and hence g;(xg) = u(1-1).
Hence, éa = [g1]° = [g]° = a. O
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Since every H-unitoid (H-monoid or H-group) of the category I ¢ z°® is, of
course, an H-unitoid (respectively, an H-monoid or H-group) of the category
T opn, the set of free homotopy classes [X, K] of maps X — K will also be a
unitoid (respectively, a monoid or group), and the natural map [X,K]* — [X, K]
will be a homomorphism. Since, according to what has just been proved, this
map is bijective (if the space X is well-pointed), we finally get that

Proposition 4.37. for any well-pointed space X and any pointed H-unitoid (any
H-monoid, any H-group) K unitoids (respectively monoids and groups) [X,K]*
and [X, K] are naturally isomorphic.

4.13 H-spaces with real units

The statement that the point e € K is a homotopy unit of the H-space K means
that the constraint m|gyx of multiplications m : K X L — K on the bouquet
KVK = (Kxe)U(exK) is homotopic to the collapsing map V=1idVvid: KVK —
K, which translates the points x; = (x, e) and x;; = (e, x) of this bouquet to the
point x € K, and the statement that the point e is a real (strict) unit, means
that m|gvkx = V. Therefore, if the point e is non-degenerate and, therefore,
according to Proposition 1.36 of Lecture 1, the pair (K x K,K V K) = (K, e)?
is a cofibration, then multiplication m : K X K — K with homotopy unit e is
homotopic to multiplication m’ : K x K — K for which this unit is a real unit.

At the same time, if, with respect to the multiplication of m, the space K
was an H-monoid, i.e. if the map m o (m xid) and m o (id xm) from K X K X K to
K were homotopic, then the pointed maps m o (m" x id) and m’ o (id xm') will
also be homotopic (freely). But due to the non-degeneracy of the base point of
the space K X K x K (proved by a twofold application of Lemma 1.28 of Lecture
1), the statement about the coincidence of the sets [X, K]* and [X, K] applies
to this space. Therefore, pointed maps m’ o (m" x id) and m’ o (id xm’) will
be homotopic and pointed. Thus, with respect to the multiplication of m’, the
space K will be a pointed H-monoid.

Finally, if the H-space K is an H-group, then, for similar reasons, the map
1 will be homotopic to the pointed map u : (K,e) — (K, e), and for this map,
diagrams (3.8) of Lecture 3, in which m and u are replaced by m" and ', will
be pointed homotopy, i.e. the pointed H-monoid K with multiplication m"> will
be a pintted H-group.

This proves that

Proposition 4.38. every H-space (H-monoid or H-group) whose homotopy unit
is non-degenerate is equivalent to a pointed H-space (H-monoid, H-group) with
a real unit.

Without the assumption of non-degeneracy of the unit, one can only assert
that the H-space K is homotopically isomorphic to the pointed H-space K with
a real unit. To prove it, it is enough to stick to the K whiskers and apply the
previous statement.
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We see, therefore, that in the transition from the category of 7oz to the
category of 7 oz°®, we lose nothing (and gain nothing) with respect to the K*
functions, since the stock of H-spaces K in both categories is practically the
same, and each of them gives the same algebraic objects to K*(X).

4.14 Cofibrations and relative homeomorphisms

In addition to the question of the relationship between the categories of pointed
and non-pointed spaces, we have one more small debt left from the previous
lecture — homotopy equivalence of the reduced and on the reduced suspensions.
Although the latter question is quite elementary in itself, we will take this
opportunity to present in connection with it some general results that have an
independent interest.

For any pair (X, A), the space X/A is called the cofibre. For example, the
cofibre of the pair (X XY, X VY) is the smash product X AY, and the cofibre of
the pair (CX, X) is the suspension SX.

Note that the cofibre X/A of an arbitrary pair (X, A) is naturally a pointed
space, the base point of which is the image of the subspace A for the factorisation
map X — X/A.

A continuous map ¢ : XtoY is called a map (X,A) — (Y,B) from a pair
(X,A) to a pair (Y,B) if ¢(A) c B. The composition of the mappings of the
pairs (X,A) — (¥,B) and (Y,B) — (Z,C) is obviously a map of (X,A) —
(Z,C). Therefore, pairs and their maps make up a category. We will denote
this category by the symbol I ¢ .

It is clear that any map of pairs ¢ : (X, A) — (Y, B) induces a pointed map
¢* : X/A — Y/B of their cofibres with correspondences (X,A) — X/A, ¢ — ¢
constitute a functor from the category I ¢ o to the category I o p°.

The map of pairs f : (X,A) — (Y, B) is called a relative homeomorphism if
as the map X — Y it is an epimorphism on f(X), It is easily verified that

Proposition 4.39. the map X/A — Y /B induced by the relative homeomor-
phism (X,A) — (Y, B) is a homeomorphism.

For any pair (X, A) and any surjective map g : A — B factorisation map
f:(X,A) = (XUg B,B)

is obviously an surjective relative homeomorphism. It’s easy to see that the
opposite is also true.

Lemma 4.40. For any surjective relative homeomorphism f : (X, A) — (Y, B)
the space Y is homeomorphic to the space X U, B, where g = f|a.
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Proof. Consider the diagramme

XUuB
fui
¢ Y
e
XUy B

where i : B — Y is an embedding, ¢ is a factorisation map, and fis a map that
matches on X \ A = ¢(X \ A) with the map f, and on B with the map i. Since
this diagramme is obviously commutative, then, as the map f is epimorphic,
it is continuous. In addition, it is obviously bijective, and for the inverse map
there is a relation ¢ = f=! o (f Ui). But the surjective relative homeomorphism
f is, by definition, an epimorphism, from which it immediately follows that the
map f Ll is also epiomorphic. Hence, by applying the continuity of the map ¢,
the map f~! is continuous, and, therefore, the map f is a homeomorphism. O

Relative homeomorphisms are mostly interesting to us because of their fol-
lowing property.

Lemma 4.41. If the pair (X, A) is a cofibration, then for any relative homeo-
morphism ¢ : (X, A) — (Y, B), the pair (Y, B) will also be a cofibration.

Proof. The statement that the pair (Y, B) is a cofibration means that for each
diagramme of the form (where j is the inclusion)

B Y
l F l
F
P
Z

ZI

)

(4.42)

|

there is a closing homotopy of F. But by superimposing this diagramme with
the following diagramme

L_‘

A X
we will get a similar diagramme (where i is the inclusion)
A——=X
Fo¢pl G L
;
_>. 7
wg
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for a pair (X, A) for which the homotopy G by the condition exists. Since the
map ¢ outside A is injective, the formula

Flg) = F(y), if yeB,
&= G(x), if y¢Bandy=¢pk),

well defines some map F : X — Z!, satisfying the relation G = Fow and
therefore, by applying the epimorphic map ¢, continuous. To complete the
proof, it remains to note that the map F obviously closes the diagram (4.42). O

Corollary 4.43. The cofibre X/A of an arbitrary cofibration (X, A) is a well-
pointed space.

Corollary 4.44. For any well-pointed spaces X and Y, the space
XAY=(XXY)/XVY, XVY=(XXyy)U(xoxY),
is also well-pointed.

Proof. According to the Proposition 1.20 Lecture 1, the pair (X XY, X AY) =
(X, x0) x (Y, yp) is a cofibration. O

Corollary 4.45. For any well-pointed space X, the pair (CX, X) is a cofibration.

Proof. Identification map (X xI, Xpt) — (C*X, X) is a relative homeomorphism,
and the pair (X X I, X, is a cofibration (see Lemma 2.19 of Lecture 1). |

4.15 Cofibrations of contractible subspaces
Let us now prove the following important lemma.

Lemma 4.46. If for a cofibration (X, A) the subspace A is contractible, then
the coset expression
E:X > X/A

is a homotopy equivalence.

Proof. Let f; : A — A be a homotopy connecting the identity map idy : A —» A
with a constant map const,, : A — A. Since the pair (X, A) is a cofibration,
there exists a homotopy 7, : X — X such that 70 =idx and ?, oi =io f; for any
iel,wherei: A — X is an embedding. In particular, 71 oi =1 o const = const,
i.e. ?1|A = const. Therefore, the map fl induces some map h : X/A — X for
which ho& = f,. Hence id ~ h o &. Similarly, since f,(a) € A for any a € A
and any t € I, the homotopy 7, induces the homotopy g; : X/A — X/A, for
which g, =id and g, =& o h. Hence, id ~ ho ¢, so ¢ and h are mutually inverse
homotopy equivalences. O
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4.16 Concluding remarks on suspensions and loop
spaces

Let’s apply the obtained general results to the suspension SX and its meridian
Sx,- If the space X is well-pointed, and therefore, by applying Lemma 4.15,
the pair (X X I, Xpt), where X = (X X 0) U (xo X I) U (X x 1), is a cofibration,
then, according to Lemma 4.41, the pair (SX, S,) with cofibre $*X = SX/S,,
will also be a cofibration (the factorisation map (X X I, Xpt) — (SX, Sy,) is a
relative homeomorphism). Hence, since the meridian Sy,, being homeomorphic
to the segment I, is contractible,

Proposition 4.47. for any well-pointed space X, the factorisation map SX —
S*X is a homotopy equivalence.

In addition, by applying Corollary 4.43 of Lemma 4.41 to the pair (XXI, Xpt),
we get that

Proposition 4.48. if a space X is well-pointed, then its reduced suspension S*X
15 also well-pointed.

A similar statement holds for the loop space, i.e.

Proposition 4.49. for any well-pointed space (X,xo), the loop space (QX,0y,)
15 also well-pointed.

Proof. Indeed, if ¢ : X — I is a continuous function such that ¢=1(0) = {x¢},
then the formula
p(u) =maxp(u(r)), 0<t<1,

will determine the continuous function @ : QX — I, for which ¢~1(0) = {0y, }.
In this case, the set U=0x \ (1) is naturally identified with the space QU,
where U = X \ ¢~!(1), and therefore for any homotopy g; : U — X rel{xq} the
formula

S =giou, uel, 0<r<l,

will be correct to define some homotopy g; : U — QX. Also, if go(x) = x and
g1(x) = xo for any point x € U, then go(u) = u and gy(u) = Oy, for any path
uel. O

It is clear that this reasoning holds for the space of Moore loops QM X as
well.






Appendix

In this Appendix we will consider two unrelated questions: the question of
the properties of composite multiplication and the question of the conditions
ensuring the nilpotency or abelicity of the group [X, K]°.

4.A The lemma on the product of epiomorphisms

The key to the properties of composite multiplication is the following lemma,
which we will need in many other questions.

Lemma 4.50. If the space Y is Hausdorff and locally compact, then for any
epiomorphism & : P — X, the map

Exid: PXY - X XY, (p,y) (£(p).y),

s also an epimorphism.

£
Proof. Introducing into consideration the coset space X X Y of the space P XY
with respect to the equivalence (p1,y1) ~ (p2,y2) if and only if &é(p1) = £(p2)
and y; = y2, we will represent the map £Xid as a composition of the factorisation

& 3
map k : PXY — X XY and some continuous bijective mapi: X XY — X X Y:

£
PxY —*-x%Xvy

X XY

The map & Xid is an epimorphism if and only if the map i is a homeomorphism.

With this in mind, we will consider the map (k) : P — (XxY)Y associated
with the map k. By definition [0(k)p](y) = k(p,y) for any points p e P, y € Y,
and, therefore, 8(k)p, = 0(k)p2 if and only if £(p1) = €(p2). Therefore, in the
diagramme

k &
0N (X xY)Y

~

..~'"Aﬂ

><.
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there is a closing map 17 : X — (X x Y)Y. It is continuous, since the map 6(k) is
continuous, and the map ¢ is an epimorphism. Since the space Y is Hausdorff
and locally compact, and, therefore, the association map 6 is bijective, then

there is amap j: X XY — (X i Y such that 6j = n, and since n o & = 0(k),
jo(&xid) = k. Therefore (ioj)o (éxid) =iok = ¢ xid, and therefore io j =id,
the map £ xid is subjective. Hence, the map i is a homeomorphism (with inverse
homeomorphism j), and the map & x id is an epiomorphism. O

Remark 4.51. We needed Hausdorffness and local compactness of the space Y
in Lemma 4.50 only in order to ensure the bijectivity of the map 6. Therefore,

Proposition 4.52. if the exponential law is true for the spaces X and Y, i.e. if
for the space B the association map

Q:BXXY_)(BY)X

is bijective, then for any epimorphism & : P — X the map £ Xid : PXY — X XY
is also an epiomorphism.

Corollary 4.53. If the spaces X and Y are Hausdorff and locally compact, then
for any epiomorphisms ¢ : P — X andn: Q — Y the map

EXn:PXxQ—-XxY, (p,q)— (£(p).n(q)),
s also an epiomorphism.

Proof. 1s it enough to notice that & xn = (¢ xid) o (id Xn), and take into account
that the composition of two epiomorphisms is an epiomorphism. O

4.B The smash product of homotopy classes

It is clear that for any pointed spaces A, B, X, Y and any pointed maps f : A —
X, g: B — Y the formula a A b — f(a) A f(b), a € A, b € B, well defines the
pointed map

fAg:AANB—> XAY,

moreover, the correspondences (X,Y) — XA, (f,g) — f A g constitute a two-
argument functor from 7 ox® to 7 o z°®, covariant on both arguments.

Proposition 4.54. For any homotopy f; : A —» X and g; : B — Y the map
fi ANgt: ANB — X AY also constitutes a homotopy.

Proof. You need to show that the map

H:(AAB)XI > XAI, (aAb,t)— fi(a)Ag/(b),
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is continuous. But if ;' : AXB — AABand j: XxXY — X AY are canonical
factorisation maps, then there is a commutative diagramme

(AxB)xI—H>X><Y

j’xidj jj

(A/\B)xIT>X/\Y

where the map H is defined by the formula H((a,b),t) = (f;(a), g:(b)) and is
therefore continuous. Hence, the map H o (j x id) = j o H is continuous, and
since, according to Lemma 4.50, the map j X id is an epiomorphism, then the
map H is continuous. O

It follows directly from Proposition 4.54 that for any homotopy classes
a=[f]"€[AX]*, f:A—>X,
=[g]*€[B,Y]*, g:B—Y,

the formula
anp=[fnrgl
well defines a homotopy class

aABe[AANB,XAY]®,

which is called the smash product of the classes @ and .

Obviously, the correspondences (X,Y) — X AY, (a,B8) — a A S make up a
double functor from [T*] to [T*] (homotopisation of the functor A from T* to
T*). In particular, this means that for any spaces A, X, X', B, Y,Y and any
homotopy classes @ € [A,X]*, B € [B,Y]*, £ € [X,X']*, n € [Y,Y']* there is
equality

(@np)o(EAn) =(ao&)A(Bon).

It is clear that for any three pointed spaces X, Y and Z the correspondences
xpAze (XA, ynANZ- (YAZ)n
define a canonical homomorphism
XAYYANZ—> (XANZ)V(YAZ),

having the naturality, i.e. such that for any maps f : A - X, g : B —> Y,
h: C — Z there is a commutative diagramme

(AVB)AC——= (AANC)V(BAC)
(ng>Ahj l(f/\h)\/(g/\h)
(XVBYANZ——= (XANZ)V(YAZ)
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We will always identify the spaces (X VY)AZ and (X AZ)V (Y AZ) in the future
by means of this homeomorphism.

In particular, this allows us for any H cogroup K with the multiplication
m : K —- KV K and any pointed space C,treating m A id as a map K A C —
(KAC)V (K AC): and an automatic, albeit somewhat tedious, checking shows
that with respect to this map,

Proposition 4.55. the space K A C is an H-cogroup.

Therefore, for any elements @, € [K,X]* and y € [C,Z]®, the element
aAy+BAy e [KAC,XAZ] will be defined, On the other hand, in the
group [K, X]* the element a + B8 will be defined, and therefore in the group
[KAC,X AZ]* the element (o + B8) Ay will be defined. A direct calculation
using definitions shows that these elements are the same:

(@+B)Ay=aAy+BAy.

Similarly, it is proved that for any pointed space A and any H-cogroup L with
multiplication m, the space A A L is an H-cogroup with multiplication id Am,
and for any elements a € [A, X]*, and B,y € [L,Y]* there is the equality

aAN(B+y)=aAB+aAy.
In this sense,

Proposition 4.56. the smash product of homotopy classes is distributive with
respect to addition.

As already noted in Lecture 4, the operation of smash product of spaces is
commutative, i.e. the formula x A y — y A x defines a canonical homomorphism
XAY — Y AX. Identifying by means of this homeomorphism of the spaces X AY
and Y A X (as well as by means of a similar homeomorphism a A b +— b A a of
the space A A B and B A A), for any elements @ € [A, X]|*, B € [B,Y]* we can
consider the homotopy class 8 A @ as an element of the set [A A B,X AY]®. Tt
is clear that then this class coincides with the class @ A 8. In this sense,

Proposition 4.57. the smash product of homotopy classes is commutative.
Similarly, if for the spaces X, Y, Z the map
(XAY)ANZ > XANXYANZ), (xAY)AzxA(yAZ), (4.58)

is a homeomorphism (or at least a homotopy equivalence) and if the spaces A,
B, C have the same property, then after the corresponding identifications for
any elements a € [A, X]*, B € [B,Y]’* and y € [C, Z]*® there will be the equality
(@AB)Ay=aA(BAvy). In this sense,

Proposition 4.59. the smash products of homotopy classes are associative.
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4.C Associativity of the smash product of locally
compact Hausdorff spaces

For which spaces X, Y, Z is the map (4.58) a homeomorphism? To answer this
question, we first compare the space (X AY) A Z with the space X A (Y A Z).

By definition, the space X AY is the coset space (X XY)/(X VY) of the space
X XY, the space (X AY) A Z is the coset space [(X AY)XZ]/[(X AY)V Z] of the
space (X AY)xZ and the space X AY AZ is the coset space (XXYXZ)/(XVYVZ)
of the space X XY X Z. Let

J:XXY > XAY,
JXXYXZ > XAYAZ,
JTUXAY)XZ 5 (XAY)AZ

be the corresponding factorisation maps, and let
EXANYANZ > (XAY)ANZ
be the map x Ay Az (x Ay) A z induced by the homeomorphism
EXXYXZ— (XXY)XZ, (x,y,2) ((x,y),2).

Then there is a commutative diagramme

XXYXZ S (XxY)xZ (4.60)
ljxid
7 (XAY)XZ

|

X/\Y/\Z—f>(X/\Y)/\Z

from which it follows that the map & o j is continuous. Since the map j is an
epiomorphism,

Proposition 4.61. the map & is continuous.

Our goal is to find conditions under which the map ¢ is a homeomorphism. It
is clear that this map is bijective. Therefore, it all comes down to the question of
the continuity of the inverse map &£~*. Due to the commutativity of diagramme
(4.60) the map &' o j” o (j xid) is continuous (and even epiomorphic). Since
the map j~ is an epiomorphism, it follows that the map ¢! is continuous if and
only if the map j X id is epiomorphic, for which, by applying Lemma 4.50, is
enough for the space Z which is Hausdorff and locally compact. Thus, we have
proved the following proposition.
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Proposition 4.62. If the space Z is locally compact and Hausdorff, then for
any spaces X and Y the canonical map

XAYANZ > (XAY)ANZ, xAyAz—= (XAY)AZ,
is a homeomorphism.
It is clear that the analogue of Proposition 4.62 holds for the canonical map
XANYANZ>SXANXYANZ), xAyAzH XA (YAZ),
i.e. this map is homeomorphic if the space X is locally compact and Hausdorff.

Corollary 4.63. If the spaces X and Z are locally compact and Hausdorff, then
for any space Y the canonical map

XAY)VAZSXAXANZ), (xAYAzBxA(YAZ),
is a homeomorphism.

Thus, for locally compact and Hausdorff spaces X and Z, all three spaces
(XAY)ANZ, XAN(YAZ) and X AY AZ are canonically homeomorphic and therefore
can be identified with each other. In this sense,

Proposition 4.64. the smash product of spaces is associative.

Corollary 4.65. If the space Y is locally compact and Hausdorff, then for any
space X the canonical maps

SS(XAY) > S*XAY, [xAy ] [x Ay,
S XAY - S (XAY), [xt]Ay [xAy,t],
are mutually inverse homeomorphisms.
Similarly, if the space X is locally compact and Hausdorff, then for any space

Y, the canonical maps will be the inverse of each other homeomorphisms

S*(XAY) > XASY, [xAyt]—>xAlyt]
XASY - S*(XAY), xAly,t] > [xAy,t].

Proof. Suffice it to recall that S*X = S!' A X. |

Considering these homeomorphisms as identifications, we get that for any
homotopy classes a € [L, X]*, B € [B,Y]'®, ¥ € [C, Z]*® the identity

E(aAB)=EaAB=aANEB. (4.66)

(See Remark 3.41 of Lecture 3.)
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4.D Homotopy associativity of the smash prod-
uct of well-pointed spaces

Unfortunately, in homotopy theory we cannot limit ourselves to Proposition
4.62, since many spaces naturally arising in this theory (for example, path
spaces) are not locally compact. Therefore, we are forced to look for other
less restrictive conditions that ensure the associativity of the smash product (at
least up to homotopy equivalence).

Proposition 4.67. For any well-pointed spaces X, Y, Z, the canonical bijective
map
EXANYANZ S (XAY)ANZ, xAyAzb (XAY) Az,

18 a homotopy equivalence.

Proof. According to Corollary 4.44 of Lemma 4.41 Lecture 4 the space X A Y
is well-pointed, i.e. (Lemma 2.26 and Proposition 2.27 of Lecture 2) there
exists a function ¢ : X AY — I, such that ¢='(0) = xg A yg and a homotopy
g XAY —> X AY, such that gg =id and g,(x Ay) =xg Ayg fort > ¢(x Ay). In
this case, the homotopy g; is induced by some homotopy with similar properties
g, X XY = X xY,ie. for any ¢ € I there is a commutative diagramme

XXY 2o xxy

] |

X/\YT>X/\Y

where, as above, j : X XY — X AY is the factorisation map (a similar statement
is true, of course, for the function ¢, but we won’t need it).
It is easy to see that the formulae

h(x Ay Az) =7 (8(x,9), ),
hi((x Ay)AzZ) =g (x Ay) Az,

where j' : X XY XZ — X AY A Z is the factorisation map, well determine
homotopies

hy : XANYANZ—>XANYANZ, h : (XAY)NZ—> (XAY)AZ,

for which the commutative diagramme

XAYAZ —So (XAY)AZ

S

X/\Y/\Z—f>(X/\Y)/\Z
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takes place and which have the property that kg = id, g = id.
Let
n=&Eloh 1 (XAY)AZ— XAYAZ.

Assuming that the map 7 is continuous and considering the relation 5 = hy o0&,
we immediately get that

fOTIZthhO:id, T]szﬁl’VEO:id,

i.e. that &£ and n are mutually inverse homotopy equivalences.

Thus, to complete the proof of proposition 4.67, we only need to prove the
continuity of the map 7.

To this end, we will consider a commutative diagramme

N

XAYANZ L~ (XAY)AZ

j L lj/\id

X/\Y/\Z—§>(X/\Y)/\Z

where j, j and j” are the factorisation maps, and its boundary on the closed
subspace A = ¢~ A Z of the space (X AY) A Z, i.e. the diagramme

N

;g

B ——
' j
B

where A" = (j Aid)™'A, B=¢"'A, and B = (j')"'B. The maps j | and j"'|p
of the last diagramme, being restrictions of epiomorphisms, are themselves epi-
omorphisms. As for the map (& Aid)| 4 » it will obviously be a homeomorphism.
Therefore, the closing map &|p of this diagramme is an epiomorphism, and, be-
ing moreover a bijective continuous map, it is a homeomorphism. This proves
that the map £~! on a closed set A is continuous. Therefore, the map n = hyo&™!
is continuous on A.

Let, then, U = (XAY)\ ¢ (1) and B=UAZ c (X AY)AZ. By the condition
g1(U) = xq A yo and, therefore, by continuity, g1(U) = xo A yo (the point xq A o
being non-degenerate, closed). Therefore, hq(B) = (xg A yo) A 2o, and therefore
n(B) =x9 A yo A 2o, i-e. g = const. Hence, the map 7 is continuous also on B.
Since AUB = (X AY) A Z, the continuity of the map 7 is fully proved, O

K
l (Aid)[ 1)
A

-
élB

Corollary 4.68. For any well-pointed spaces X and Y, the map
S*(XAY) > S°XAY, [xAy ]l [xt]Ay,

is a homotopy equivalence.
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Proof. The map in question is a composition of the map
S*(XAY) > XAYASY, [xAyit]—xAyne?™,

and, being by applying Proposition 4.62 (and identifications S*(X A Y) = S! A
(XAY)=(XAY)AS™!) a homeomorphism, and the map

XAYAS S S°XAY, xAyAe?™ s [x, 1] Ay,

being by applying Proposition 4.67 (and identifications X AY AS' =S AX AY,
S A X = §°X) a homotopy equivalence. ]

Remark 4.69. We emphasise that the map [x,7] Ay — [x A y,t], generally
speaking, is not a continuous map.

It is clear that the analogue of Proposition 4.67 is also valid for the space
XA(YAZ),ie. (assuming that the spaces X, Y, Z are well-pointed) the canonical
map

XANYANZoSXAXYANZ), xAyAz-xA(YA2),

is a homotopy equivalence. Hence,

Proposition 4.70. for well-pointed spaces X, Y and Z, the spaces (X ANY)ANZ
and X A (Y A Z) are homotopically equivalent

(although there is no canonical homotopy equivalence between them, gener-
ally speaking).
Remark 4.71. It immediately follows from the results obtained that the as-
sociativity property of smash product of homotopy classes are valid for any
well-pointed spaces. The same is true for the identities of (4.66).

4.E The invariant cat X

Let us now proceed to the study of the algebraic structure of groups [X, K]°.
Let X be an arbitrary pointed space with a base point xq.

Definition 4.72. We say that cat X < n if
X=A,U---UA,,

where Aq,...,A, are sets such that for any & = 1,...,n there is a homotopy
f,(k) : X — X, having the property that fOk =id and fl(k)(Ak) = Xg.

If there is no n for which cat X < n, then we write cat X = co. Otherwise, the
smallest n for which cat X < n+1 is denoted by cat X.

Remark 4.73. There are many different variants of Definition 4.72 in the liter-
ature. In the very first variant proposed by Lusternik and Schnirelman, it was
only required that for any £ = 1,...,n the embedding Ay — X was homotopic
to the constant map. However, in “reasonable” situations, all these options are
equivalent. For example, for a connected space X, the definition of Lusternik
and Schnirelman will become Definition 4.72 if it is additionally required that
all pairs (X, Ay) are closed cofibrations.
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Remark 4.74. In addition, from the time with Lusternik and Schnirelman to
the most recent time, the symbol cat X denoted a number one more than ours.

It is clear that

Proposition 4.75. if cat X < oo, then the space X is connected, and cat X =0
if and only if the space X is contractible.

Let X}! be a subspace of the space X" = X x---x X, consisting of points

[ ——
n
with at least n — k coordinates equal to xo. For example, X§ = {(xo,...,x0)},
X{=Xv-VvXand X; = X"
————

The subspace X' , will be of particular importance for us. It is clear that
(X", Xp_1) = (X, x0)",
so in particular (see Corollary 1.21 of Proposition 1.20 Lecture 1),

Proposition 4.76. if the point xo is nondegenerate, then the pair (X", X)'_,)
is a coftbration.

It is also useful to keep in mind that
X" | = proji*(xp) U---Uproj,*(xo),

where, as always, proj; : X" — X is the projection on the k-th factor.
The map f : X — Y is said to be contractible to the subspace B C Y if a
homotopy f; : X — Y, exists such that fy = f and f1(X) C B.

Lemma 4.77. The inequality cat X < n holds if and only if the diagonal map
A;'):A:X—>X", x> (x,...,x), (4.78)
is contractible on X]_,.

Proof. Let cat X < n, and let ft(k) : X —> X, k=1,...,n, are homotopies such
that fo(k) =id and fl(k> (Ar) = xg, where A; U---UA, =X. Then the formula

f) =P, L M), xeX,

will obviously define a homotopy f; : X — X, such that fo = Aand fi1(X) C X]/_,.

Conversely, let there be a homotopy f; : X — X" such that fj = A and
fitX) ¢ X' ,. Then for the homotopy ft(k) = projgof; : X — X, k =
1,...,n, the relations will take place fo(k) = id and fl(k)(Ak) = X0, where AK =
(fl(k))_l(xo). But since X' | = proj;*t(xo) U« -+ Uproj,*(xg), X =A1 U---UA,.
Therefore, cat X < n. O

Corollary 4.79. The inequality cat X < 2 holds if and only if the space X is an
H-counitoid.
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Proof. By definition, a space X is an H-counitoid if there exists a map m : X —
X vV X c X X X such that both maps proj; om, proj, om : X — X are homotopic
to the identity map. The corresponding homotopies obviously constitute a ho-
motopy from X to X X X connecting the map m, considered as a map X — X XX,
with the diagonal map A : X — X x X. This shows that the map m exists if and
only if the map A is contractible on X12 =XVX. O

In particular, cat S*X < 2 for any space X (and catS*X =1, if cat X > 0).
However, this also follows directly from the definition (since the space X is the
union of two cones, and each cone is contractible).

In addition, we see that every H-counitoid is a connected space.

The calculation of cat X (for cat X > 2) is, in general in short, quite a difficult
task.

Corollary 4.80 (Bass’ theorem). For any spaces X andY , there is an inequality
cat(X XY) < cat X +catY.

Proof. If f; : X — X" is a homotopy such that fy = A;;') and f1(X) Cc XJI_,,

and g, : Y — Y™ is a homotopy such that f; = Aﬁm) and f1(Y) C Y}, then the
formula

he(x,y) = (fi (x), A% (x), g:(¥), Ay (¥)), x€X,yeY,tel,

defines a homotopy from X XY to X" X X" XY™ x Y" = (X x Y)"* such that

hi(XxY)c X xX"xy" xY"c(Xxym

n+m—1

Therefore, if cat X < n and catY < m, then cat(X XY) < n+m. O

4.F The nilpotence of the group [X,K]*

Recall that the commutator of elements x, y of the group G is the element

[x,y] =xyx~ty~1

In a more general way, you can define a commutator (more precisely, a right-
hand commutator) [xi,...,x,] of elements x1,...,x, of the group G by the
inductive formula

[x1,..coxn] = [[x1,. .5 xn-1], xn].

For n =1, it is convenient to assume that [x;] = x; for any element x; € G.

If the commutator of any n elements of the group G is equal to e, then we
write nilG < n. A group G is called nilpotent if there exists an n such that
nilG < n. The smallest n for which nilG < n + 1 will be denoted by the symbol
nilG. If the group G is not nilpotent, then we write nil G = co.
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Remark 4.81. There are many equivalent definitions of the number nilG. We
have chosen the most convenient one for us.

It is clear that nilG = 0 if and only if G = {e}, and nilG =1 if and only if
the group G is Abelian.

Instead of commutators, it is convenient to consider the corresponding com-
mutator maps

on : G" > G,
defined by formulae
o1 =id, @a=¢: (x,y) = xyx "y, (4.82)
¢n =¢o (ldXgn-1), n>2. (4.83)

It is clear that nil G < n if and only if ¢, = const.

Obviously, [e,x] = [x, e] = x for each element x € G, i.e. ¢2|Gvg = const. By
trivial induction it follows that ¢,|G»_ = const for any n > 1.

All this, of course, is transferred to any H-groups K, and the commutator
maps ¢, : K" — K are determined by the same formulas (4.82) (only the
formula for ¢ needs to be written with brackets due to the lack of associativity:
fi(xy) = ((xy)x~1)y™1). At the same time,

Proposition 4.84. if the unit of the H-group K is non-degenerate, then
@nlgn | ~const for any n 1.

Proof. Indeed, for n = 1 and for n = 2, this is obvious (and true without assuming
the non-degeneracy of unity). Let’s make an inductive transition from n to n+1,
assuming for simplification of formulae ¢, |g» = @,

Since (K", /K)_,) = (K,e)", and the pair (K,e) is by convention a cofibra-
tion, then (K", K)'_,) will also be a cofibration. Therefore, if ¢, ~ const, then
there is a homotopy f; : K" — K, such that fo = ¢, and fi(K]}_,) = e. There-
fore, the map ¢u+1 = ¢ o (id Xg,) = ¢ o (id X fy) will be homotopic to the map
wo(id xf1), and, therefore, the map (plm_l is homotopic the map ¢o (id X f1)|gn+1.
But since K" = (K x K"_,) U (e x K"), then

(idxfi)(K"™) c (Kxe)U(exK)=K VK,
and therefore
@ o (Idxfi)lgn = (¢lrvk) o ((id X f1)[gne1).
Hence, goln ~ const, for pxvg ~ const. |

Proposition 4.85. For any connected H-group K with a non-degenerate unit e
and any pointed space X, there is an inequality

nil[X, L] < cat X. (4.86)

In particular, if cat X < oo, then the group [X, K] is nilpotent.
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Proof. For arbitrary maps gx : X — K, k = 1,...,n, the commutator of their
homotopy classes are set, obviously, by the map

x & xn B pen Oy g (4.87)

In view of the fact that the H-group K is connected, according to the general
results of Lecture 4, we can consider the maps gx pointed without loss of gen-
erality. But then the map is g; X -+ X gg will translate X | into K], and,
therefore, there will be a commutative diagramme of the form

n 1% Xgn
—_—

X K"

NI

X5 e n-1
the vertical arrows of which are inclusions. Therefore, if cat X < n, i.e. if the
map A is homotopic to a map of the form ix o f, where f: X — X" | and then
the map (4.87) will be homotopic to the map

@no (g1 X Xgu)oixof=guoigogof=¢p,0g0f

and, therefore (since <p;1 ~ const), will be homotopic to the constant map, i.e.
its homotopy class, will be the unit of the group [X, K]. Thus, if cat X < n, then
nil[ X, K] < n, which is equivalent to inequality (4.86). O

Remark 4.88. The inequality (4.86) is meaningful only when cat X < co. There-
fore, [X, K] can be replaced in it by [X, K]* and in this form it will also be true
for non-closed H-groups K.

Corollary 4.89. For any H-group K and any H-counitoid L, the group [L,K]*
is Abelian.

4.G The abelicity of the group [L, K]*®

The latter result can be generalised and simultaneously dualised.

Let L be an arbitrary H-counitoid and K be an arbitrary H-space (H-unitoid).
Then, in the set [L, K]°, two structures of a unitoid will be defined - one arising
from the fact that L is an H-counitoid, and the second - from the fact that K is
an H-unitoid.

Proposition 4.90. For any H-counitoid L and any H-unitoid K, these two
unitoide structures on the set [L, K] coincide.

This unitoid is an abelian (commutative) monoid.

In particular, if K is an H-cogroup or L is an H-group, then [L,K]® will be
an Abelian group.
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According to the general definitions of Lecture 3, the concept of a unitoid
makes sense over an arbitrary fm-closed category €. In particular, since the
category of unitoids is an fm-closed category (the product of G1 XG5 of unitoids
G, and G is their direct product as sets with a component-wise multiplication
operation: (a1, @2)(B1,B2) = (@181, @2B2)), we can talk about the unitoids of
the unitoid category. By definition, a unitoid G (the operation in which we
will now write additively and, accordingly, call its unit nul) is a unitoid of the
unitoid category if a homomorphism of unitoids is given

GxG -G, (4.91)
i.e. a multiplication (a,8) +— af such that

a1B1 +azfz = (a1 + a2)(B1 + B2), (4.92)

for any elements a1, as,B1,82 € G, and the element 0 € G is the same with
respect to this multiplication, i.e. O = @0 = a for any element a € G.

Lemma 4.93. Fvery unitoid G of the category of unitoids is an Abelian monoid.
For any elements a, B € G has the equality

a+p=ap.

Proof. We have
a+B=a0+08=(ax+0)(0+p) =ap.

Similarly,
a+B=0a+p0=(0+p)(a+0)=pa.

Finally,
(aB)y=ap+0y=(a+0)+(B+y) =a(f+y)=a(By).

O

Proof. (of 4.90) According to Lemma 4.93, it is sufficient to prove that the
unitoid G = [L,K]* (with the operation induced by multiplication m; : L —
LV L) is a unitoid of the unitoid category (with operation (4.91) induced by
multiplication m : K X K — K), i.e. that for any elements a1, 81, @2, B2 € G the
equality (4.92) holds (identities O = @0 = @ will take place by definition). But
for any two pointed maps f,g : L — K, the map f X g : L —» K X K is defined
by the formula

(fxg)(x) =(f(x).g(x), xelL,
and the map fVv g: LV L — K - by the formula
(fve)2) = {f(x)’ ie=xn cpve

g(x), if z=x,
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(we identify L v L with (L X ¢) U (e x L) and denote (x,e) by x; and (e,x)
by x77). Therefore, for any four pointed maps fi,g1, f2,g2 : L — K, the map
h=(fixga)V(faxgs):LVL— KxK is given by the formula

h(z) = (filx),g1(x)), if z=xy,
(2) = )
(f2(x), g2(x)), if z=xp,

and the map &' = (fi V f2) x (g1 V g2) by the formula

(fi(x),g1(x)), i z=xp,

h' = =
(2)=(fiVv o) x(g1Vg)(2) {(fz(x),gz(X)), i z=xy,

We see, therefore, that h = h'.
On the other hand, by definition

[fI°+g* =[(f Vg om]®,
[f1°-g"=[mo(fVg],
and therefore, if @y = [f1]°, B1 = [g1]°, a2 = [f2]°, B2 = [g2]°, then

@11 +azfz =[(mohomy],
(a1 +B1)(@2pf2) = [(mo b omy].

Since h = k', this proves that a18;1 + @22 = (a1 + B1)(@2B2). O

Corollary 4.94. For any two pointed spaces X and Y, the group [S*X,QY]"* is
Abelian.

4.H Groups [S"X,Q"Y]*
Since the functor S® acts from the category of T ¢2°® to the same category
T o p°®, it can be iterated indefinitely. We will put

SOX =X, S"™Xx=8°(5"X) for n>0,

(so STX = 85°X).
Iterations of the loop functor are defined similarly

QX =X, Q™X=Q(Q"X) for n>0.

In this case, due to the adjointness of the functors §* and Q, for any pointed
spaces X, Y and any numbers n > 0, m > 0, there are equalities

[X, Qn+mY]. — [SlX, Qn+m—ly]o — ...
= [S"X,Q"Y]* = -+ = [S"X, Y]".

Corollary 4.95. For n+m > 1, the set [S"X,Q™Y]* has a group structure
natural in X and Y. For n+m > 2, this group is Abelian.






Lecture 5

5.1 Homotopy groups

The simplest concrete H-cogroup is certainly the suspension S*S"~! over the
unit (n — 1)-dimensional (n > 0) sphere $"~! (in which, say, a base point is
so = (-1,0,...,0)). Since this suspension is homeomorphic to the n-dimensional
sphere S" (see Remark 3.31 of Lecture 3), we get, therefore, that

Proposition 5.1. for any pointed space (X,xq) the set
[(Sn,SO),(X,)Co)] = [Sn’X]. (52)
1§ a group.

Definition 5.3. The group (5.2) is denoted by the symbol 7, (X, x¢) (or simply
71, X) and is called the n-dimensional (or n-th) homotopy group of the space X.

Of course, the multiplication in S depends on the choice of the homeomor-
phism §°S""! — §". Therefore, in order to fix this multiplication (and hence
the structure of the group in 7,X), it is necessary to fix this homeomorphism
once and for all (at least up to homotopy).

We will choose for the homeomorphism §°S"~! — §" the homeomorphism
d defined by formula (3.27) of Lecture 3. In the future we will always assume
that for n > 0 the sphere S" is identified with the suspension §*S"~' — S" by
means of this homeomorphism and in accordance with this point d[x,t] € S",
x € S" 1, ¢t e I, we will simply denote [x,?].

Note that [sg,?] = s¢ for any ¢ € I.

For n = 0, we get not a group, but only a pointed set [S°, X]* (the base point
of which is the homotopy class of the constant map const : S° — X.) It is clear
that [S?, X]* = [pt, X], i.e. that the set [S?, X]* is the set of 70X components of
the space X introduced in Lecture 3 (which, by the way, explains the designation
moX for this set).

Although the set moX, generally speaking, is not a group, we will still allow
ourselves to speak without reservations about homotopy groups m,X for all
n>0.

165
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The operation in the group m,X, n > 1, we will denote the + sign and call
it addition (with the possible exception of the group m1X; see below). In this
regard, the fact that the group consists of only one element, we will write with
the formula 7,X =0 (even if n =0 or n=1).

If elements @ and B of the group 7,X are represented by the maps a :
(S",s0) — (X,x0) and b : (S",59) — (X,xp), then their sum a + 8 will be
represented by the map ¢ = (a Vb)om : (S",s9) — (X,x0), where m is the
co-multiplication §" — S" v §”, defined by the formula (3.28) of lecture 3 (for
X = 8" 1), Explicitly , the map with is given by the formula

olr.d] = {a[x,2t], ?f 0<t<1/2 5.0
b[x,2t - 1], if 1/2<t<1,

where, in accordance with the above, [x,?] denotes d[x,t], x € S"7 !, t € I.
According to the general theory of functors of the form [K, X]*® every pointed
map f : X — y defines by the formula

filal* =[feal, a:(5"s0) = (X,x0),

the homomorphism f, : 71,X — n,Y is also denoted by the symbol 7, (or f,;), and
the correspondences X — n,X, f +— f. represent a functor from the category of
Zopn® to the category of groups &# p:

Top® > Crn

(for n =0 - in the category of pointed sets &74°*). We will call this functor the
functor of n-dimensional homotopy groups.

In particular, the embedding Xy — X of the component Xy into the point
xo induces the homomorphism 7,Xy — 7,X. It is clear that when n > 0 this
homomorphism is an isomorphism.

Thus, in the theory of homotopy groups, without loss of generality, we can
(for n > 0) limit ourselves only to the connected spaces X.

5.2 An alternative definition of homotopy groups

Of course, when constructing the group 7, X, the sphere S” can be replaced by
any space that is homeomorphic to it (i.e., in generally accepted terminology,
any topological sphere $"). It is only necessary to fix a certain homeomorphism
S§" — S" once and for all.

Remark 5.5. Naturally, it is sufficient to specify the homeomorphisms §* — S”
only up to homotopy. In Lecture 12" we will show that there are only two
distinct homotopy classes of such homeomorphisms that can be identified with
the orientations of the sphere S”. Hence, if the pointed topological sphere S" is
oriented, then each pointed map $” — X uniquely defines some element of the

!The transcriber guesses that Postnikov refers to Lecture 2 of “Cellular Homotopy”.
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group 7, X. Therefore, the elements of the group 7, X can be defined - which
was done fifty years ago - as homotopy classes of pointed maps to the space X
of all possible oriented spheres of dimension n. However, this conceptually more
complex definition does not, as experience has shown, have any real advantages
and currently no one uses it.

Let E" be a unit n-dimensional ball consisting of x € R", for which |x| < 1.
The boundary of this ball (for n > 0) is an (n — 1) dimensional sphere $"7!,
and the coset space E*/S"! is homeomorphic to the sphere S". Therefore, by
choosing a certain homeomorphism E"/S*~! — $", we can consider the homo-
topy classes of maps E"/S""! — X as elements of the group 7,X. (As always,
it means that a point is based in the coset space E"/S"!, which is the image
of the sphere $"~! with the canonical map of the identification E" — E"/S""1).
But, as it is easy to see, composing with the factorisation map E" — E*/S"~!
establishes a bijective correspondence between the pointed maps E*/S*" ! — X
and the maps (E",$"™ ') — (X,x). Since this correspondence obviously trans-
lates pointed homotopies into homotopies of pairs (i.e., in this case homotopies
with respect to S"71), we obtain, therefore, that the homotopy classes of maps
(B™, 8" 1) — (X,x0) can be considered as elements of the group 7, X = 7, (X, xo):

(X, x0) = [(B", §"71) = (X, x0)].

This identification of homotopy classes of maps (E"*,S"1) — (X, xo) with
elements of the group n,X depends, of course, on the choice of the homeomor-
phism E"/S"~! — S", or, equivalently, the relative homeomorphism

X (B, S — (S, s0), (5.6)

and at the map level is set by the correspondence a — a o y, where a :
(S",50) = (X,x0). We will agree once and for all to take for homeomorphism
(5.6) a relative homeomorphism defined (by applying the identification R"*!) =
R x R") by the formula

sin 7r|x|

x™(x) = (cosn|x|, —_—
x|

), |x| € B" c R".

Instead of a unit ball, one can, of course, take a unit cube I" homeomorphic
to it, consisting of points ¢t = (¢1,...,t,) of the space R", for which 0 <7, <1
for any i = 1,...,n. By denoting the boundary of this cube with the symbol /",
we obtain, in a way such that

Proposition 5.7. the elements of the group 7, X can be interpreted as homotopy
classes rel I of maps of a : (I", I") — (X, x0),

i.e. functions
a:(ty,...,ty) > a(ty,....ty) €X

variables t1,...,t, € I such that a(t4,...,t,) = x¢ if at least one of the arguments
t1,...,t, 1S zero or one.
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Here, of course, it is also necessary to fix a certain relative homeomorphism
X = Xn s (I 1") — (", 50). (5.8)

For n = 1, we define this homeomorphism by the formula

(1) = (1 — 4¢,2+/2t(1 - 21)), if 0<tr<1/2,
D=4 3 B n@=T).  if 1/2<r<1

(cf. with formula (3.33) of Lectures 3 forx = —1 and x absent), and for n > 1,
identifying the cube I with the product I X I"" by the formula

n(t,8) = [xn-1(0),t], tel, tel™

The addition operation (5.4) transferred using relative homeomorphism (5.8)
to the maps a : (I",I") — (X,xo), will, as it is easy to see, be given by the
formula
a(2e,1), if 0<r<1/2,

. (5.9)
b(2t—1,6), if 1/2<t<1

(a+b)(t,t) = {
(for n = 1, there is no argument ¢). Thus, for n > 1 we come to an alternative
definition of the groupn, X, in which any recollection of the spheres is completely
eliminated. In this definition, the elements of the group n,X are the homotopy
classes rel I of maps a : (I",I") — (X,xp), and addition is induced by the
operation of addition of maps given by the formula (5.9).

This definition of group 7, X is the most convenient in practice, and therefore
it is usually considered the main one. Of course, at the same time it is necessary
to re-check the axioms of the group for 7, X.

In particular, for n = 1, comparing the definitions, we get that

Proposition 5.10. the group m1X coincides with the fundamental group intro-
duced in Lecture 4

(which was not in vain indicated there by the symbol 71X). The only dif-
ference is that in Lecture 4, the operation in the group 71X was called multi-
plication. Thus, for the group 71X we have two competing notation systems
- additive and multiplicative. We will consider them completely equal and in
each case we will use the one that is more convenient. (In some cases, we will
even allow ourselves to use both notations in the same formulal)

Remark 5.11. Similarly, the sum of any number of maps can be determined
(", ")y — (X,xo). For example, the sum a + b + ¢ of three maps a,b,c :
(I", 1) = (X, xp) is defined by the formula

a(3t,1), if 0<r<1/3,
(a+b+c)(1,0) ={b(3t—1,¢), if 1/3<t<2/3,
c(3t-2,8), if 2/3<t<l.

Of course, the map a + b + ¢ is different from the map (a + b) + ¢ (and from the
map a + (b +c¢)), and not homotopic with respect to I1".
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For each map a : (I",I") — (X, xg) we will use the symbol —a to denote the
map (I, I") — (X, xo) defined by the formula

(—a)(t,t) =a(l —1,8), (t,t) e Ix "1 =",

It is clear that in the group m,X, the homotopy classes of maps a and —a
define mutually opposite elements.

In appropriate situations, we will naturally reduce the entered designations.
For example, instead of a + (=b) + ¢, we will simply write a — b + ¢. (Note that
the map a — b + ¢ is thus determined by the formula

a(3t,t), if 0<r<0,
(a=b+c)(t,t) =1b(2 - 31,1), it 1/3<1<2/3,
c(3t = 2,1¢), if 2/3<r<1,

where (t,£) € I x [""1 = ")

5.3 Inductive definition of homotopy groups

The last definition of the groups m,X suggests considering the space Q"X of
all maps (I",I") — (X,xo) (equipped with the subspace topology of the space
X™). Regarding the operation (5.9) this space is an H-space (even an H-group).
The homotopy unit (which is better now called null homotopy) of this space is
the constant map I — X, ¢t — xg. For n =1, it coincides with the space QX.

By applying the exponential law, homotopies with respect to I" are nothing
but paths of the space Q"X. Consequently, we can identify the group n, X with
the group

ﬂnX = NOQ"X

(cf. with a similar formula for the group 71X in Lecture 4).

For n > 1, each map a : (¢,t) — a(t,t) is identified with the path r — a# (1)
of the space Q" 1X, where a# (1) is a point ¢ — a(z,t) of this space. Thus, for
n > 1, the equality takes place

Q"X =Q(Q"1X) (5.12)

(if we put Q°X = X, then for n = 1 the formula (5.12) will turn into the equation
QX = QX already known to us).
Therefore
X = moQ"X = moQUQ"1X) = 1 QVIX

and, in general, as the obvious induction shows,
X = QR X (5.13)

for any k =0,1,...,n.

The formula (5.13) for k = 1 can, as was originally done by Hurevicz, be
used as the basis for another, inductive, definition of the groups m,X. It has
the advantage that it does not require verification of the axioms of the group
(provided that for the group 71X these axioms have already been verified).
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Remark 5.14. A number of special names can be found in the literature for maps
(S",50) — (X,x0) and (I, ") — (X,xp); for example, Fuchs and Rokhlin (see
[10]) adhere to the ancient tradition of calling maps (S”,s0) — (X, xo) spheroids
of the space X. By analogy of the map (I", I") — (X, xq) could be called cuboids
of the space X, and bearing in mind the formula (5.12), n-dimensional (or n-fold)
loops of this space. We will not give preference to any of these terms.

5.4 The action of the group 71X on the groups
1, X

According to Remark 4.29 of Lecture 4, for n > 0, the group m1X acts on the
group , X, i.e. a map is defined

mXXm,X -, X, (§,a) - ¢a, &emX, ac€mX, (5.15)
such that:

a) for each element ¢ € 71X, the map Rs : @ = &, a € 1,X, is an automor-
phism of the group n,X, i.e. it is bijective and for any elements a, 8 € 7, X
there is equality

§la+p) =sa+E&B;

b) the map R : é — R is a homomorphism from the group 71X into the group
Aut 71X of automorphisms of the groupm X, i.e.

(Ena = &(na)
for any elements &, € m X, @ € 1, X.

At the same time, comparing the definitions, we immediately find that the
maps a : (I, I") — (X,x0) and b : (I", I") — (X, xo) then and only then set the
elements a and &a of the group m,X, when there is a map F : I'*! — X from
the cube I'"! = I x I into the space X such that

F(t,0)=a(t), F(t,1)=b(t) (5.16)

for any point ¢ € I" and
F(t,t) =u(l-1) (5.17)

for any point ¢ € I and for any t € I, where u : I — X is the loop defining
the element ¢ of the group 71 X. If desired, you can take this as a definition of
action (5.15), but then statements a) and b) will need proof (which, however, is
carried out quite automatically).

Sometimes, when it is necessary to emphasise the dependence of R on n, we
will write R(;) instead of Rg.

It is obvious that
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Proposition 5.18. for any pointed map f : X — Y and any elements a« € n,X
and & € m X there is an equality

where, when applied to £ and @, the symbol f. means the homomorphism
mnf : mpnX — m,Y, and when applied to &, the homomorphism 71 f : 11X — 7Y
(the functoriality property of the action R : 711X — Autn,X). In the technical
language of group theory with operators, this property means that

Proposition 5.19. the homomorphism f. = n,f : m,X — m,Y is a m1X-
homomorphism

with respect to the action of 711X — Aut Y induced by the homomorphism
fe=mf:mX — mY (i.e. - in other terminology - is a 71 f-homomorphism).

For n = 1, conditions (5.16) and (5.17) mean that with two possible move-
ments on the sides of the square I? from the point (0,0) to the point (1,1)
in one case we run through the path au~', and in the other -the path u~'b.
Therefore, by composing the map F with a piecewise linear map of the square

b (1,1)
u v
\
(00) a )
i
-9
Figure 5.4.1:

I? onto itself, map the segments 0 x I and 1 x I, respectively, to points (0,0)
and (1,1), and the segments I X 0 and I X 1 by breaking them in the middle,
into the polyline 0x U1 x 1 and I x0U 1 x I, respectively, we get a map of the
square 12 = I x I to the space X, which is a homotopy from I to X with respect
to I ={0,1}, connecting the path au~! with the path u~'bh. This means that by
going to the multiplicative notation in the group 71X and denoting the element
&a, in order to distinguish it from the product, with the symbol &(a), we will
have equality aé~! = ¢! - &(a). Thus it is proved that

&(a) = gag‘l for any elements a«,¢ € m X, (5.20)
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i.e.

Proposition 5.21. the automorphism Rz : a — &(a) is an inner automor-
phism of the group n1X defined by the element &.

5.5 Abelian spaces

Definition 5.22. A space X is called homotopically simple in dimension n if
the group m1 X acts trivially on the group 7, X, i.e. if é& = @ for any elements
& e mX, @ € m,X. A space that is homotopically simple in all dimensions is
called abelian.

As was noted in Lecture 4, the fundamental group of an arbitrary H-space
acts trivially on the group of homotopy classes of maps into this space from any
pointed space. In particular, this means that

Proposition 5.23. any H-space is abelian.

However, this fact is easily proved directly, since for every H-space X with
a real unit (which, as we know from Lecture 4, does not limit generality in
essence) the formula

F(t,t)y=a(t)u(l1-1), tel", tel,

defines for any elements a € Q"X, u € QX a map F : I""' — X satisfying
conditions (5.16) and (5.17) with b = a.

Of course, the class of abelian spaces is wider than the class of H-spaces. For
example, it is clear that any simply connected space is abelian. In its place, we
will give examples of non-connected abelian spaces that are not H-spaces.

According to formula (5.20)

Proposition 5.24. a space X is homotopically simple in dimension 1 if and
only if the group m X is abelian.
In particular,

Proposition 5.25. for any abelian space (and, for example, for any H-space)
X, the group m X is abelian.

5.6 Abelicity of homotopy groups for n > 2

As for the groups n,X for n > 1, the following remarkable proposition holds.

Proposition 5.26. For n > 1, the homotopy group n,X of an arbitrary pointed
space X is abelian.

Thus, for n > 1, we can assume that the functor =z, takes values in the
category of abelian groups H&E» n.

Since §" = §28"~2 for n > 1, Proposition 5.26 is a special case of Corollary
4.65 of Proposition 4.62 of Appendix to Lecture 4. We will prove again here
this proposition (and we’ll even give it two proofs).



5.6. ABELICITY OF HOMOTOPY GROUPS FOR n = 2 173

Proof. (The first proof) By applying the formula (5.13) (for k = 2) is sufficient
to prove Proposition 5.26 for the group m2X.

Let a : (I%,1?) — (X,x0), b : (I?,1*) - (X,x0), and let ¢ be the map
(I%,1%) = (X, xg), resulting from the map a + bby “adding on the second coor-
dinate” of the permanent map. Schematically , the ¢ map can be represented
by the drawing 5.6.1

Figure 5.6.1:

and algebraically it is given by formulae

a(2t,2s), if 0<ts<1/2,
c(t,s) =1b(2t — 1, 2s), if 0<s<1/2<t<1,
X0, if 1/2<s<1.

Let us produce a deformation (homotopy with respect to /) over this map,
schematically represented by the Figure 5.6.2

Figure 5.6.2:

and algebraically given by formulae

a(2t,2s), if 0<ts<1/2,
cr(t,)=1b2t—1,2s-71), if i<tr<1lZ<s<Hro<r<l,
X0, in other cases.

As a result, we will get a map schematically represented by the Figure 5.6.3
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Figure 5.6.3:

Having then done the first deform on this map first as in the Figure 5.6.4

Figure 5.6.4:

and then the deformation as in the Figure 5.6.5

Figure 5.6.5:

we will get the map as in the Figure 5.6.6

To complete the proof, it remains to note that the maps (5.6.1) and (5.6.6) are
homotopic with respect to /2, respectively, to the maps a + b and b + a. O

Proof. (The second proof) According to the formula (5.13) (for k = 1)

X =mQ X,



5.7. ENSEMBLE OF HOMOTOPY GROUPS 175
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Figure 5.6.6:

and the group m1Q"'X, being the fundamental group of the H space Q" 'X =
Q(Q"2X), is abelian. m]

An abelian additive group in which the multiplicative group IT acts is called
a I[I-module. Thus, we can say that

Proposition 5.27. for n > 2, the group m,X is a 11X module.

5.7 Ensemble of homotopy groups

In the case when a given space X is not pointed, we have to consider the groups
m,(X,x) for all points x € X at the same time, without giving any of them any
advantage. At the same time, in according to Remark 4.28 of Lecture 4, any
path u € X! will determine some isomorphism uy of the group m,(X,u(1)) to
the group =, (X,u(0)), depending only on the homotopy class & = [u] rel{0, 1}
of the path u. In the case when u(0) = u(1) = xq, i.e. when the path u is a loop,
this is the automorphism already known to us R’(f") ca e fa, a € my(X,xg). For
u(0) # u(1) it is constructed in exactly the same way (using maps F satisfying
conditions (5.16) and (5.17), and we will keep the same notation R(gn) for it (or
just Rg).

At the same time, according to Remark 4.29 of Lecture 4, the correspon-
dences x - m,(X,x), é — R will constitute an ensemble of groups over the
space X.

Assuming a certain liberty, we will denote this ensemble with the symbol

{n (X, )}

Definition 5.28. The ensemble {r, (X, x)} is called the ensemble of n-dimensional
homotopy groups of a topological space X.

For n > 1, it is an ensemble of abelian groups.
Each morphism & : y — x of an arbitrary groupoid IT defines by the formula

Re() =éne™', nell(y,y),



176 LECTURE 5.

some isomorphism Fg : I(y,y) — II(x,x) of the group N(y,y) and the mor-
phism y — y with the group IlI(x,x) and the morphism x — x, and the corre-
spondences x — I1(x,x), & : & — Eg make up an ensemble of groups over IT. It
turns out that,

Proposition 5.29. in the case when the groupoid I1 is the fundamental groupoid
I1X of the topological space X, this ensemble coincides with the ensemble {,i1(X,x)}
of fundamental groups, i.e. E.f = Rg).

Proof. Indeed, for y = x(= xq), this is exactly the statement expressed by formula
(5.20), the proof of which is fully preserved for y # x. |

On the other hand, it is easy to see that

Proposition 5.30. for any ensemble sets (or groups) R over a groupoid I1 each
isomorphism Rg : Ry — Ry, £ 1y = X, is an Eg—isomorphism (with respect to
the natural actions of the groups II(y,y) and II(x,x) on the sets R, and R,),
i.e. for any elements & € Ry and n € I1(y, y) there is an equality

R¢(na) = Re(n)Rg(a).

Proof. Indeed, since, by definition, na = R,a, the latter equality is equivalent
to the formula
R§ (] R,7 = Rﬁf(’l) o] Rg.

On the other hand, R¢ o R;; = R¢y;, s0

RRe(m) © Re = Rengr o Re = Ry
O

For the ensemble {m,(X,x)} from here (and from equality Ry = R(;)) it
follows that for any points xg,x; € X, any elements n € m1(X,x1), a € 7,(X, x)
and any class ¢ of paths connecting the point xg with the point x1, there is an
equality

RY (ne) = R (MRY (@), (5.31)

i.e., that for every n > 1 the isomorphism Ré") s (X, x1) = m(X,x0) is an

R(l)—isomorphism.

~ If the space X is connected, then for any two points x¢,x1 € X in the groupoid
I1X there exists at least one morphism & : x; — xo. Therefore, as follows directly
from formula (5.31), if, with some choice of the base point xo € X, the connected
space X turned out to be homotopically simple in some dimension n > 1, then
it will be homotopically simple in dimension n and with any other choice of this
point. A connected space X having this property is naturally called homotopy
simple in dimension n (and a space homotopy simple in all dimensions is an
abelian space).
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According to Proposition 4.25 of Lecture 4, for every connected space X
homotopically simple in dimension n with any choice of the base point xy € X
ignoring base points, the map

ﬂn(X,Xo) - [Sn’X]

is bijective. By transferring the group structure from 7z, (X,xq) to [S", X], we
thereby define the set [S", X], n > 1, as a group (it is necessary to be abelian
even when n = 1). This group is called the n-dimensional homotopy group of
the homotopically simple space X and is denoted by the former symbol 7, X.

We emphasize that, in contrast to the case of pointed spaces, the group m, X
is defined only for spaces X connected and homotopically simple in dimension n
(for example, simply connected.) At the same time, on the subcategory of the
category of I ¢ consisting of such spaces, the correspondence 7, : X — 7,X
is obviously a functor.

5.8 Homotopy groups of abelian spaces

It is clear that for each ensemble R and with a connected space X, all objects
Ry are isomorphic with each other. In particular, we see that

Proposition 5.32. if the space X is connected, then for any n > 1 all groups
(X, x), x € X, are isomorphic with each other.

This means that for a connected non-pointed space X, we can also talk
about its homotopy group m,X, but only as an abstract group (given up to
isomorphism). Therefore, in particular, for connected spaces, the condition
7, X = 0 makes sense (meaning that for one, and therefore for any choice of the
base point xg, the equality 7, (X,xq) takes place).

5.9 Aspherical spaces

Definition 5.33. A pointed (or non-pointed, but connected) space X is called
aspherical in dimension nif 7,X = 0. A space that is aspherical in all dimensions
< n is called n-connected.

Thus, pointed spaces aspherical in dimension 0 (or, equivalently, 0-connected)
are nothing but connected spaces, and aspherical in dimension 1 are nothing
but simply connected spaces. 1-connected spaces are connected and simply
connected spaces.

It is clear that the space X is 1-connected if and only if for any points
X0,x?1 € X in the groupoid I1X there is a unique morphism xy — x7.

An example of a space that is aspherical in all dimensions (i.e., co-connected)
is the single-point space pt. Therefore, any space that is homotopically equiva-
lent to the space pt, i.e. any contractible space, will also be an aspherical space
in all dimensions. The converse, generally speaking, is true only with some
additional assumptions of a general methodological nature.
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By definition, the map (S",s9) — (X, xo) specifies the zero element of the
group 7, X if it is pointed null homotopic (homotopic to the constant map). But
since the group 71 X acts on the group 7, X by automorphisms, the 71 X-orbit of
zero consists only of zero. Therefore, by applying Proposition 4.25 of Lecture
4, the map (S",s9) — (X,xp) will set the zero element of the group 7, X even
when it is freely null homotopic.

Since, for a connected space X, each map S" — X is homotopic to some
pointed map (S",s9) — (X,xp), it follows in particular that

Proposition 5.34. a connected space X is aspherical in dimension n if and only
if each map S™ — X from an arbitrary n-dimensional sphere S"™ to the space X
is null homotopic.

As we know (see Lecture 1), a null homotopic map X — Y is equivalent to
its extension to the cone CX. On the other hand, the correspondence [x,¢]
tx, t € I, x € S", defines, obviously fixed on Z", the homeomorphism of the
straight cone CS" with the unit ball E™*!. Therefore, the space X is aspherical
in dimension 7 if and only if any map f : S* — X can be extended to E"*:

Sl’l t El’l+1

st

X

We will constantly use this simple asphericity criterion in the future.

5.10 Homotopy sequence of fibrations

Let p : (E,eq) — (B, bg) be an arbitrary pointed fibration and F = p~1(by) - its
fibre. Due to the decomposition I"*! = I* x I each map a : (I"*', ["*') — (B, by)
we can consider the homotopy from /" to B, connecting the constant map const :
I" — B, t — bg, with itself and (for n > 1) fixed on I". Since the constant map
I" — B is covered by the constant map I" — E, it therefore follows from the
axiom WCHE that there is a homotopy ¢ : I X I — E covering the homotopy
a and (for n > 1) fixed on /". In particular, (p o ¢)(¢,1) = a(t,1) = by for any
point ¢ € I, i.e. ¢(t,1) € F. Therefore, putting b(t) = ¢(t,1), t € I, we get a
map b : I" — F, translating (for n > 1) the boundary /" of the cube I" to the
point eg € F, i.e. a map (I",I") — (F,eg). Conventionally, the transition from
a to b is shown in Fig. 5.10.1.

Now let ¢’ be another map (I"*!,["*') — (B,by), and let b be a map
(I"*1, "1y — (F,ep) resulting from a” by the described construction (using the
covering homotopy ¢'). Then it is easy to see that

Proposition 5.35. if a ~ a rel I"*!, then b ~ b’ rel I".

Proof. Indeed, by identifying the cube I"*! with the product I" x I i.e. by
denoting its points with symbols (¢,¢), where t € I, t € I, we can each homotopy
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Figure 5.10.1:

H : I"*' xI — B relative to I"*!, connecting the maps a and a’, to be interpreted
as a homotopy I"*! x I — B and in another way, taking the argument ¢ as a
deformation parameter. Then the homotopy H will bind the constant expression
I'*' — B with itself, it will be stationary on /™! x I c I"™*', and on I" x 0 C
"1 and I" x 1 c "™ it will - after identifying I" x 0 and I x 1 with I" -
coincide, respectively, with maps a and @ interpreted as homotopies. Therefore,
according to the axiom WCHE, there is a homotopy H from I" X[ to E, covering
the homotopy H and on I" x 0 and I" X 1 coinciding, respectively, with the
homotopy ¢ and ¢'. The terminal map of this homotopy, considered as a map
in F and will obviously be a homotopy from I" to F relative to I", connecting
the map b with the map b . O

The proven statement means that although the correspondence a +— b is
constructed with a certain arbitrariness, the homotopy class (rel ") 8 € n,F
of the map b is uniquely determined by the homotopy class (rel I"*') a € 7,B
of the map a, so we get some well-defined map a — g of the group n,B to
the group m,F. It is entirely obvious (since the maps a we add “at the first
coordinate”; and raise to E “at the last coordinate”), that

Proposition 5.36. for n > 1 the map a — B is a homomorphism.

We will denote this homomorphism by the symbol 8, or simply 0.

Together with the homomorphisms i, : 7, F — n,E and p. : 1, E — n,B the
homomorphism 9 : 7,4,1B — 7, F allows you to write a left-right-free sequence
of abelian groups

N a i N 7]
S B S m F S E S B S (5.37)

ending with three, generally speaking, non-abelian groups and three pointed
sets:

4] is P+ o [ P+
"'—>7T1F—>7T1E—>7TlB—>7TOF—>7l'0E—>7ToB.

This sequence is called the homotopy sequence of the fibration p : E — B.
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Homomorphisms 0 link together the “obvious” segments n,F — n,E — n,B
of the sequences (5.37). On this basis, they are called connecting homomor-
phisms.

Finite or infinite sequence

-—-A—>B—>C—>D—---

, (5.38)

of groups connected by homomorphisms (or, more generally, pointed sets) are
called ezact in the term B if the kernel of the “outgoing” homomorphism B — C
(the preimage of the base point in the case when C is only a pointed set) coin-
cides with the image the “incoming” homomorphism A — B (which, therefore,
must necessarily be an normal subgroup, i.e.- in the old terminology - a normal
divisor). A sequence is called ezact if it is exact in every term (except for the
extreme terms when they exist).

Proposition 5.39. The homotopy sequence (5.87) of an arbitrary pointed fi-
bration p : E — B is an exact sequence.

Proof. Let’s prove the exactness of the sequence (5.37) in all its members in
turn.

Ezxactness in the term n,E. Since i o p = const, then i, o p. = 0 and hence
imi, C ker p,.
Conversely, turning on a € ker p,, means that to the map a : (I",I") — (E, eg)
defining element «, there exists a homotopy G : I" x I — B fixed on I"* such
that

G(t,0)=(poa)(t) and G(t,1)=bgy for any point ¢ € I.

According to the axiom WCHE, this homotopy can be covered by a homotopy
G : I"x 1 — E, also fixed on I", such that G(¢,0) = a(¢) for any point ¢ € I".
The map

b:(I",I")— (E,ep), tr G(t1),

gives the same element a of the group 7, f as the map a, but has the properties
that b(t) € F for any point ¢ € I"", and therefore considered as a map in F gives
such an element B of the group 7, F that i.8 = @. Hence, ker p, C imi,.

Ezxactness in the term m,F. By definition, each element a € imd c n,F
is set by the map a : (I",I") — (F,ep), for which there exists a homotopy
a:I"x 1 — E fixed on ", connecting the constant map I" — E, t — eg, with
the map a, considered as a map in E (in this case @ = 4B, where 8 € 7,41 B
is the homotopy class of the map b = poa : (I"*', ") — (B, by)). Hence,
i*a =0, i.e imd C keri,.
Conversely, enabling @ € keri, C m,F means that there exists a homotopy
a:1"xI — E fixed on /i", such that a(t,0) = eg, t € I", and a map t — a(t, 1),
considered as a map in F, gives the element . Then the map b = p o @ will be
the map (I"*', I"™*') — (B, by), for the homotopy class 8 € 7,41 B of which the
equality 8 = @ holds. Hence, keri, C imd.

Ezactness in the term m,.1 B By definition, the element @ € im p. C 7,1 B
is given by the map

a=poa: (I ") = (B,by), where a:(I""', ") = (E,ep).
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Therefore, the class da € n, F will have a constant map ¢ +— a(¢,1), ¢t € I, and,
therefore, this class will be zero. Hence, im p, C ker d.

Conversely, the inclusion @« € kerd C m,41B means that for the map a :
(I, ™YY — (B, bg) of class «, there is a covering map a : I'*' — E such
that a(¢,0) = eq, for any point ¢ € I", and the map a; : t — a(¢t,1), t € I",
considered as a map in F, is homotopic relative to /" to the constant map. Then
the map b : I" x [ — E, defined by the formula

Bt = at,21), if 0<tr<1/2,
T oG (8,2t -1),  if 1/2<t<1,

where G : I" x I — F is a homotopy fixed on I connecting the map @; with the
constant map I* — F, t — eg, will obviously be the map (I'*!, I"*1) — (E, ep)
and, therefore, it will set some element B of the group 7,41 E. By definition, the
image p.f of this element with the homomorphism p. : 7,41 E — 7,41 B will be
given by by the map p o b. But it is clear that

(poB)E.1) = {a(t, 2, if 0srs<1/2

bo, if 1/2<r<1,
that is, up to the transposition of the first and last coordinates - the map p o b
is the sum of (in the sense of formula (5.9)) the map a and a constant map.
Therefore, the map p o b will specify the same element a of the group 7,41 B as
the map a. This means that p.8 = @. Hence, kerd C im p.. O

5.11 Algebraic properties of exact sequences

Let us explain the algebraic consequences of the exactness property of a homo-
topy sequence.

The statement that the homomorphism C — D from the exact sequence
(5.38) is a monomorphism (i.e. that there is equality ker(C — D) = 0), is equiv-
alent in view of the exactness of this sequence in the term C to the statement
that the previous homomorphism B — C is null (i.e. that there is equality
im(B — C) = 0). Similarly, the statement that the homomorphism A — B is
an epimorphism (im(A — B) = B) is equivalent in view of the exactness of the
sequence (5.38) in the term B to the equality ker(B — C) = B, i.e. the statement
that the following homomorphism B — C is null. Schematically:

epi null mono
e —> 0 —> 06— @

Thus,

Proposition 5.40. in the exact sequence of groups, each monomorphism is pre-
ceded by an epimorphism through an arrow, and, conversely, each epimorphism
is followed by a monomorphism through an arrow.
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Similarly,

Proposition 5.41. the equality to zero of any member of the exact sequence is
equivalent to the fact that the preceding (through the arrow) homomorphism is
an epimorphism, and the subsequent one is a monomorphism:
° 21—) e —()—>e om0, o

In particular, the statement that the homomorphism A — B is a monomor-
phism (epimorphism), is equivalent to the statement that the sequence 0 —
A — B (the sequence A — B — 0) is exact. Therefore, the statement that the
homomorphism A — B is an isomorphism is equivalent to the statement about
the exactness of the sequence 0 - A — B — 0.

Sequences of the form deserve special attention

0>A—->B—->C—>0

called short sequences. The statement about the exactness of a short sequence
is equivalent to the statement that the group B is an extension of the group A
by means of the group C.

Another interesting case arises when in sequence (5.38) every third group is
zero. For convenience of formulation, denote the sequence (5.38) by

s n+1ﬁAn_>Bn—>Cn_>An—1_>"', (542)

we can state that in the exact sequence (5.42) all homomorphisms A, — B, are
isomorphisms if and only if all groups C, are zero. More generally,

Proposition 5.43. in the sequence (5.42), the groups C, are equal to zero for
alln < r (for alln > r), if and only if the homomorphisms A, toB, forn <r (for
n > r) are isomorphisms, and the homomorphism A, — B, is an epimorphism
(monomorphism) thus, in the sequence (5.42), the groups C, are equal to zero
for all n < r (for all n > r), if and only if the homomorphisms A, — B, for
n <r (for n>r) are isomorphisms if and only if the homomorphisms A, — B,
are an epimorphisms (monomorphisms).

5.12 Homotopy groups of covering spaces

A surjective map p : X — X is called a covering if the space X is connected and
each point of the space X (also obviously connected) has a neighbourhood U
such that the set p~1(U) is a disjoint union of open sets, each of which the map
p maps homeomorphically to U. The last condition obviously means that the
map P|y : p~1(U) — U induced by the map p is isomorphic (as an object of the
category I ¢y) to the projection of the direct product U X F — U, where F
is some discrete space. Thus, covers are exactly locally trivial fibrations XX
with discrete fibres (and a connected space X). Therefore, if the space X is
paracompact, then any covering X — X is a fibration. (See Appendix 1.11 to
Lecture 1.)
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Remark 5.44. With the help of the properties of coverings proved in the next
lecture, it can be easily shown that the latter statement is true even without the
assumption of paracompact space X. However, due to our general attitudes, we
will ignore this circumstance.

In particular, we see that if the space X is paracompact, then for any pointed
covering p : (X,Xxg) — (X,xg) there is an exact homotopy sequence

=~ Dx o
o>, F -, X >, X >, F > - >mX o> ngF—0

(due to the connectivity 79X = 70X = 0). But since the fibre F is discrete, then
. F =0 for n > 0, from which it immediately follows that

Proposition 5.45. for n > 1 the covering p : X — X induces isomorphisms
D« - nni -, X
of homotopy groups.

Thus, when passing to the covering space X, the higher homotopy groups
m,X, n > 1, remain the same.

Ezample 5.46. The circle S! is covered by a straight line R (if the points of the
circle are considered complex numbers z with |z| = 1, then the covering R — S!
can be given by the formula ¢ — e'’). Hence, 7,S' = 7,R for any n > 1. But
since the line R is contractible, n,R = 0 for all n > 0. This proves that

7,8' =0 for any n> 1. (5.47)

Example 5.48. Having mapped to each point of the unit sphere S™, m > 1, the
space R has a one-dimensional subspace passing through it (a point of the m-
dimensional projective space RP™) we will obviously get a covering $™ — RP™.
Therefore,

1, S™ = m,RP™ forany n>1 and m =1 (5.49)

The last example can be complexified.

5.13 Hopf fibrations

Let S?™*! be a unit sphere of m + 1-dimensional complex space C™*! (given
by the equation |zg|? + -+ + |zm|? = 1), and CP™ be a complex m-dimensional
projective space (the set of all one-dimensional subspaces of the space C"*! or,

equivalently, the set of all proportional classes (zg : z1 : - - : zm) of (m+1)-tuples
(20,215 --+»2m) # (0,...,0)). By matching each point (zg,Zz1,...,2m) € S+
one-dimensional subspace passing through it, i.e. the class (zo : z1 : --+ : Zm),

we get some map

% ST CP™, (2052155 zm) P (200211 Zm)-
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Let Ui be an open set in CP™ consisting of all points (zg : z1 : -+ - : zp) for
which z; # 0, and let £7'U; be its preimage in the sphere S™*! (consisting of
points (2o, 21, ...,2m) € S for which z; # 0). Then it is easy to see that the
formula

|zilz
(z,(zo:21: 2 2m)) - : 2(zo,zl,...,zm),
zivlzol? + -+ + |zm
€S (z0:z1::zm) €U

well defines the map S x U; — 47'U;, which is a homeomorphism translating
the projection S' x U; — U; into the map 47 'U; — U; induced by the map
/%, This proves that the map 7 is a locally trivial fibration. It is called a Hopf
fibration (or map). Its fibre is the circle S*.

Since m,S' = 0 for n > 1, it follows directly from the exactness of the
homotopy sequence of the Hopf fibrations that

Proposition 5.50. for any n > 3 the homomorphism
fow : TSP s 7, CPT, (5.51)
induced by the fibration %, is an isomorphism.

For m = 1 the complex projective line CP' is homeomorphic to the sphere
S? (Riemann sphere). Therefore in this case , the Hopf fibration has the form

%S> §?
(and is given by the formula (z1,z2) — ;—f; see Lecture 0) and the isomorphism
(5.51) turns into an isomorphism

fow i yS® = 1, S, n>3, (5.52)

commonly called Hopf isomorphism.
In particular, we see that

Proposition 5.53. the group n3S? is isomorphic to the group m3S>.

Note that the isomorphism (5.52) is given by the correspondence f + Zo f,
where f: §" — §3, and % : S? — S? is the Hopf map. For n = 3, this means
that the element (3 = [id] of the group m3S? corresponds to the group m3S? of
the homotopy class n3 = [#£] of the Hopf map.

5.14 Functoriality of the homotopy sequence of
fibrations
In addition to the property of accuracy, the homotopy sequence of the fibration

also has the property of functoriality with respect to the maps of the fibration
p : E — B to an arbitrary other fibration p; : E; — By, i.e. maps f : E — E;
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such that for some (obviously uniquely defined) map B — B; (which we will
also denote by f) there is a commutative diagramme

If the fibrations p and p; are pointed, then the map f : E — E; (and therefore
the map f : B — Bjp) is also assumed to be pointed. In this case, the map f
induces some map F — F; of fibres of fibrations p and p; (which we will denote
with the same symbol f). Therefore, each map f : E — E; of pointed fibrations
generates a diagramme

©r——>= T B . F n,E B (5.54)
>y B a1 . Eq By —— -

the horizontals of which are homotopy sequences of fibrations p and ry, and the
vertical arrows are induced by maps f. The functorial property is that

Proposition 5.55. this diagramme is commutative, i.e. that its vertical arrows
constitute a homomorphism of the top row to the bottom.

Proof. For the proof, it is sufficient to note that after applying the map f, all
constructions related to the homotopy sequence of the fibration p : E — B pass
into the corresponding constructions for the homotopy sequence of the fibration
P11 E, — Bj. O

By introducing into consideration the category of pointed fibrations and the
category of exact sequences, we can say that the correspondence between the
fibration and its homotopy sequence, is a functor from the first category to the
second.

5.15 Axiomatic description of homotopy groups
Note that the commutativity of all squares of diagram (5.54), except for squares

containing homomorphisms 4, is a consequence of the fact that the correspon-
dence 7, : X — m,X is a functor, and the commutativity of each square

0
Tns1 B ——m, F

T

Tn1B1 T>7rnF1
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means that the homomorphism 0 : 7,,1B — m,F is a natural transformation
(morphism) of the functor m,4+; o 8 in the functor m, o ¢, where g and ¢ are
functors from the category of pointed fibrations to the category ¢ z°*, matching
each fibrations p : E — B, respectively, its base B and its fibre F.

Suppose now that for any n > 0 on the category I ¢2°, some homotopy
invariant functor n¢ is given, taking values for n > 2 in the category A& »n,
for n = 1 in the category €#z and for n = 0 in the category &74, and for
the category of pointed fibrations, some natural transformation 9 of the functor
& o B to the functor 7 o ¢. Then for any fibration p : E — B we can write the
following
B S n*F 5 n°E LaN niB — - (5.56)

a
T Mt

similar to sequence (5.37).

We will say that {74, 0} is a system of axiomatically defined homotopy groups
if
1 (the exactness axiom) For any pointed fibration p : E — B, the sequence
(5.56) is exact.

2 (the dimension axiom) For a single-point space pt, for any i > 1, the equality
holds
ma(pt) = 0.

3 (the initial condition) For any pointed space X, the set X is in natural
(i.e., functorial) bijective correspondence with the pointed set mpX of the
components of the space X.

(We will discuss the reasons for calling the axiom 2 the axiom of dimension
in the next semester.)

By applying the homotopy invariance of the functors x§ it follows from the
axiom of dimension that 7,X = 0 for n > 1 for any contractible space X. In
particular, 7%(PX) = 0, where PX, as always, is the space of paths in the space
X starting at the base point xg, Therefore, applying the exactness axiom to the

Serre fibration PX — X, we get that

Proposition 5.57. for any axiomatically given homotopy groups n&, there is
an isomorphism
mpX ~mn_QX.

Cf. with the formula (5.13) for k =n -1

Hence, by induction on n (the initial step of which is provided by the initial
condition (3), it immediately follows that for any n > 0 there is a natural (with
respect to X) bijective map 74X — n,X. At the same time, it follows directly
from Remark 4.24 of Lecture 4 that for n = 1 this map is either an isomorphism
or an anti-isomorphism (a bijective map that changes the order of multipliers
to the opposite), from which it follows by the same induction that this map will
be an isomorphism for any n > 2 (since for n > 2 the group 7, X is abelian, then
every anti-isomorphism 7¢X — 7,X is an isomorphism). Thus, we see that
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Proposition 5.58. the azioms 1, 2 and the initial condition 3 unambiguously
up to isomorphism (or for n = 1 up to anti-isomorphism) characterise homotopy
groups m,.

Used in the proof of this statement Remark 4.24 of lecture 4 we will prove
in the next lecture.






Appendix

The technique by which groups are defined in an arbitrary category can also be
applied to exact sequences. For the sake of certainty, we will limit ourselves to
the category [T ¢ 22°], although almost everything is automatically transferred
- with obvious and self-evident changes - to arbitrary categories.

5.A Exact sequences of pointed spaces

Definition 5.59. A sequence

o Apt 22 Ay S Ay — e (5.60)

of pointed spaces and their maps are called exact in the term A, if, for any
pointed space X, the sequence of pointed sets

(an)x (an+1)x
—

o [XA]T — [XLAL]° [X,Apn]® —> - (5.61)
is exact in the term [X, A,]*. Sequence (5.60) is called ezact if it is exact in
every term (except, of course, the extreme members, if there are any).

Example 5.62. The pointed map p : (E, eq) — (B, bg) is called a quasi-fibration
if for any diagramme

G o 0 = const, (5.63)

over the category I ¢2°, in which the terminal map G o o7 of the homotopy
G is a constant map, there is a covering homotopy G:XxI—>E. (Recall
that o : x = (x,0) and o7 : x — (x,1).) Since the fact of the existence of a
homotopy G means that pog ~ const, and the fact of the existence of a homotopy
G means that g ~io f, where i is an embedding F — E, F = p~*(by), and f is
the terminal map G o oy of the homotopy G, considered as a map X — F, then

189
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Proposition 5.64. the map p : E — B is a quasi-fibration when and only when
the three-term sequence

FSELB
is exact in the term E.
Note that any (pointed) fibration is, of course, a quasi-fibration.

The map of the sequence (5.60) into a similar sequence {B,} is a sequence
{fn} of pointed maps f, : A, = B,, which is for any n the diagramme

Ay — Ann

fnl] jfrwl

Bn I Bn+1

is commutative. A (family of) maps {f,} is called homotopy equivalence if all
the maps f, are pointed homotopy equivalences. It is clear that

Proposition 5.65. a sequence of pointed spaces that is homotopically equivalent
to an exact sequence is also an exact sequence.

5.B Short exact sequences of H-groups

Of particular importance are the exact sequences of spaces ending with a one-
point space pt (or starting with such a space).
It is easy to see that

Proposition 5.66. the sequence
-~-—>E£>B—>pt (5.67)

is exact in term B if and only if there exists a map s : B — E that pos ~ id
(the cross section of the map p in the category [T oz°]).

Proof. Indeed, the exactness of the sequence (5.67) in the term B means that
for any space X, the map px : [X,E]* — [X,B]*, [f]1*— [fopl*, f: X > E,
is surjective. In particular, it is surjective for X = B, and, therefore, there is a
map s : B — E such that pg[s]® = [id]®, i.e. sop ~id.

Conversely, if such a map s exists, then px[so g]® =[g]* for any map g : X —
B. O

Remark 5.68. If the map p : E — B is a (at least homotopy) fibration , then
this condition is equivalent to the existence of a map s : B — E (sections of the
map p in the category 7 ¢2°®) that pos =id. See the Appendix 2.11 to Lecture
2, where, however, this fact is proved for non-pointed fibrations.

By analogy with the case of groups, sequences of spaces having the form

pt > F5E L B pt, (5.69)

are called short sequences.
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Remark 5.70. Below we will show (see remark 5.97) that in the case when in
the sequence (5.69) the map p is a fibration and the map i is an embedding of
its fibre, this sequence is exact in the term B, i.e. (see remark 5.68) if and only
if there is a section s for the fibration p.

In particular, we see that for any pointed spaces F and B there is a short

exact sequence
pro

pt = F 2, px B 228, gt (5.71)
where inclg : a — (a, bg) and projg : (a,b) — b, a € F, b € B. (Of course, the
exactness of this sequence is easily and directly proved.)

A short sequence (5.69), whose members F, E, B are H-groups, and the
maps { and p are morphisms (homotopy) of H-groups, we will call the sequence
of H-groups. For any exact sequence of H-groups and any pointed space X, the
sequence

15 X, F]1 5 (X, E] 25 [x,B] > 1 (5.72)

is the usual short exact sequence of groups.
A short exact sequence of groups

1-FLSEL B (5.73)

is called a splitting sequence if the homomorphism p : E — B has (in the
category of groups) the section s : B — E. This section is called a splitting ho-
momorphism, and the group E is called a semidirect product of groups F and B.
An example of a splitting sequence is a sequence whose splitting homomorphism

is the sequence
inclg projpg
1l F—FXB—>B-—1,

the splitting homomorphism of which is the homomorphism inclg : b — (1, b),
b eB.

Proposition 5.74. For any splitting sequence of groups (5.73), the formula
0(a,b) =i(a)-s(B), (a,b)? € F X B, defines a bijective map 6 : F X B — E.

Proof. Indeed, let ¢+ and ¢ be maps E — E defined by the formulae t(x) =
(sop)(x)~' and g(x) =x-t(x), x € E. Then

(Peg)(x)=p&)-(pon)(x) =p(x)-(posop)x)™" =plx) px) =1,
and therefore, by applying exactness, there exists an element r(x) € F such that
i(r(x)) = g(x). Consider the map r X p : E — F X B defined by the formula
(rxp)(x) = (r(x), p(x)), x € B. By definition

(60 (rxp))(x) = 0(r(x), p(x)) = (ior)(x) - (s 0 p)(x) = g(x) - 1(x) " = x
for any element x € E. In addition, (po8)(a,b) = (poi)(a)-(pos)(b) =1-b=b,
and therefore
i((ro6)(a,b)) = (g06)(a,b) =6(a,b) (to6)(a,b)=6(a,b)-(sopob)(ab)"

=i(a)-s(b)-s(b)"* =i(a)
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for any element (a,b) € FXB. So (ro#)(a,b) = a and hence ((r xp)o6)(a,b) =
(a,b). Thus, 6 and r X p are mutually inverse bijective maps. O

If the groups F, E and B are abelian, then the maps 6 and r X p are ho-
momorphisms and, therefore, isomorphisms. Thus (we move on to the additive
notation and change the notation somewhat),

Proposition 5.75. in any splitting sequence of abelian groups
i p
0——=A——C—B——0
N

the group C is isomorphic to the direct sum A & B of groups A and B.

The corresponding injections of A — C and B — C will be homomorphisms
of i and s, and projections of C — B and C — A are homomorphisms p and r
(and the last homomorphisms will be be determined from the relation i(r(x)) =
x=s(p(x)), x € C).

Following Eilenberg and Steenrod [11], we call for abelian groups Ay, ..., A,

injections of natural monomorphisms incl, : A, — ®gAg, and
projections of natural epimorphisms proj, : ®sAg — Ag,.

Recall that proj; oincly +- - - proj, cincln = id.

Similarly, a short exact sequence of H-groups (5.69) is called splitting if an
H-group morphism s : B — E exists such that pos ~ id holds. In this case, each
sequence (5.69) will be a splitting sequence of groups with a splitting homomor-
phism sy : [X,B] — [X, E]. For any H-groups F and B, the sequence (5.71) is
a splitting short exact sequence of the H-group (with respect to multiplication
in F x B, defined in the usual coordinate way). Moreover,

Proposition 5.76. for any splitting short exact sequence of H-groups (5.69),
the space E is homotopically equivalent to the product F X B.

Proof. Indeed (we actually repeat the group-theoretic reasoning stated above),
if t and ¢ are maps of E — E such that [¢]* = [so p]~! and [¢]® = [id]® - [#]® in
the group [E, E]°® then
prlgl* =[pogl®=[pl*-[por]®=[p]*-[posop]*™

in the group [E, B]®, and therefore there is a map r : E — F, such that ig[r]® =
[g]° i.e. [ior]® =[q]®. Therefore, to the map 6 : F x B — E, given by the
formula @ = mo (i Xs), whereiXs: FXB - EXE , andm: EXE — E is
a multiplication in E, i.e. being with respect to m by the product of the maps
ioprojr: FXB — E and soprojg : Fx B — E, in the group [E, E]* equality
will take place

[0 (rxp)]*=[mo(ixs)o(rxp)]®=[mo((ior)x(sop)]”
=lior]" [sop]"=[q]" - [1]* = [id]".
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On the other hand, since the map p is a homotopy morphism of H-groups, i.e.
pom~m o(pxp), where m" : Bx B — B is the multiplication in B, then in
the group [F X B, B]®* we will have the equality

[po6]*=[pomo(ixs)]*=[m o((poi)x(pos)]*
=[poioprojg]®-[posoprojg]® = [const]® - [projg]® = [projz]°,
and, therefore, in the group [F X B, E]® the equality
Ipxplro@]® =[iorof]® =[qo0]" = ([id]" - [¢]*) o [6]*
=[0]°-[t06]°=[6]"-[sopob]"!
= [6]° - [a o projg]*™" = [i o projp]® = Irxg[projr]*.

Since the homomorphism ipxp is by condition a monomorphism, this proves
that [r o 6]® = [projg]°® in the group [F X B, F]*. Hence,

[(rxp)ef]” =[(rx6)x(ped)]" = [projr xprojg] = [id]

in the group [F X B,F X B]*. So 8o (rxp) ~id and (r X p) 00 ~id, i.e. 8 and
r X p are mutually inverse homotopy equivalences. O

If the H-groups F, E and B are abelian (i.e., each exact sequence (5.72)
cousists of abelian groups), then the homotopy equivalences 8 and r X p will be,
as the automatic calculation shows, morphisms of H-groups, so that in this case
the H-group E is homotopically isomorphic to the H-group F X B.

5.C Short exact sequences of H-cogroups

All these results are immediately dualised.

Definition 5.77. A sequence
s Al 2 A, L AL

of pointed spaces and their maps are called coezact in the term A, if, for any
pointed space X, the sequence of pointed sets

X X

o A, X125 (A X1 225 A1, X]* > -

is exact in the term [A,, X]*. A sequence is called coezact if it is coexact in
every term (except, of course, the extreme terms, if there are any).

It is clear that a sequence homotopically isomorphic to a(nother) coexact
sequence is coexact. An example of a coexact sequence is a three-term sequence

AL x L x)a, (5.78)
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where i : A — X is an arbitrary cofibration (considered as an embedding), and
Jj : X — X/A is the factorisation map.
Sequence

pt—>A—i>X—>~~

is co-exact in the term A if and only if when there exists a map r : X — A such
that r oi ~ id (in the case when the map i is a cofibration, such that r oi =id),
and a short sequence of the form

pt—>A—i>Xi>X/A—>pt,

where i is a cofibration, and j is a factorisation map if and only if it is coexact
in the term A, i.e. when X \ A.

A sequence consisting of H-cogroups and their (homotopy) morphisms is
called a sequence of H-cogroups. Short exact sequence of H-cogroups

pt—>A—i>Xi>B—>pt,

is called co-splitting if there exists a morphism of H-cogroups r : X — A such
that r oi ~ id. For any co-splitting short co-exact sequence of H-cogroups, the
space X is homotopically equivalent to the bouquet A V B, and the homotopy
equivalence X — A v B will be a coproduct (with respect to the multiplication
in X) of the maps incly or and inclg oj, where incly : A - AV B and inclp :
B — AV B are canonical inclusions.

The proofs of all these statements are obtained by an obvious dualisation
of the proofs of the corresponding statements for exact sequences, and we will
leave them to the reader.

5.D Homotopy fibres of pointed maps

Let us now turn from these general — essentially purely category-theoretic —
considerations to more meaningful constructions.

Let p : (E,eq) — (B, bo) be an arbitrary pointed map (it is convenient for
us to move away from the standard notation a little now), and let Cocyl(p) be
its reversed cylinder. Recall (see Lecture 2) that the points of the the cylinder
Cocyl(p) are pairs of (u,e), where u : I — B and e € E, with u(1) = p(e), and
that the formula g(u, e) = u(0) defines some fibration ¢ : Cocyl(p) — B.

Definition 5.79. The fibre of the fibration ¢ : Cocyl(p) — B is called the
homotopy fibre of p and is denoted by the symbol F(p).

It is clear that the correspondence p +— F(p) is a functor.
It is easy to see that

Proposition 5.80. if the map p : E — B is a pointed homotopy fibration, then
its homotopy fibre F(p) is pointed homotopically equivalent to its ordinary fibre
F=p~(bo).
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Proof. Indeed, it is clear that the inclusion i : E — Cocyl(p), = (e,0p()),
translates the fibre F into the fibre F(p) and therefore induces some map ; :
F — F(p). In the corresponding commutative diagramme

C

F————>F (5.81)

F(p) ——= Cocyl(p)

the map 7, being a homotopy equivalence and at the same time a map over
B (with respect to the projections p and ¢q), will, according to Proposition
2.57 of the Appendix to Lecture 2 (in its version for the category I ¢z°),
be a fibre homotopy equivalence and, therefore, the map j will be homotopy
equivalence. O

Since diagram (5.81) is commutative and its vertical arrows are pointed ho-
motopy equivalences, the upper row of this diagram is homotopically isomorphic
to its lower exact row and, therefore, is an exact sequence. This proves that

Proposition 5.82. any homotopy fibration is a quasi-fibration.

A very unexpected result!

In the general case of an arbitrary pointed map p : E — B, we can consider
the map p; : F(p) — E, which is a restriction of the projection (u, e¢) — e. This
map has the property that the diagramme

N
S A

Cocyl(p)

the dotted line is homotopy commutative, which means that the upper line of
this diagramme is homotopically isomorphic to its lower exact line and therefore
is also an exact sequence. This proves that

F(p)

Proposition 5.83. for any pointed map p : E — B there is a three-term exact
sequence

Fip)) 2 EL B (5.84)

Iterating this construction and assuming p, = (pn-1)1, Po = p, we get an
exact sequence infinite to the left

+ = F(pn) 25 F(py-1) = -+ > F(p) =5 E 5 B (5.85)
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of pointed spaces, the terms F(p,), n > 0, which are called iterated homotopy
fibres of the pointed map p.

Further, comparing the definitions, we immediately get, that the map p; :
F(p) — E is induced by the Serre fibration w; : PB — B by the map p (i.e.,
in the notation introduced in Lecture 1, is the map (w1),). Hence, the map
p1: F(p) — E is a fibration. Therefore, all maps p,, n > 1, from the sequence
(5.85) will also be fibrations.

5.E The Puppe exact sequence
Applying the functor Q to the sequence (5.85), we get the sequence

Qpn Q Q
5 QF (pp) —25 QF (pu1) = -+ — QF(p) 45 QE 5 OB (5.86)
On the other hand, it is easy to see that

Proposition 5.87. the space QB is homotopically equivalent to the space F(p1),
the space QE is homotopically equivalent to the space F(ps), the space QF (p) =
QF (po) is homotopically equivalent to the space F(p3) and, in general, the space
QF (p,) is homotopically equivalent to the space F(pu+2) (it is convenient to
conditionally assume that F(p-1) =E, F(p-2) = B).

Proof. Indeed, since the map pu4;, n = 0, is a fibration, its homotopy fibre
F(pu+i) is homotopically equivalent to its ordinary fibre F,;. But since the
points of the space F(p,) are pairs (v,e), where v € PF(p,_2), ¢ € F(pu-1)
and v(1) = pu(e), and the map p,.1 is a restricted projection (v,e) — e, the
fibre Fj41 consists of points of the form (v, eg), where e is the base point, and
v € QF (pn—2), and therefore is homeomorphic to the space QF (p,—2). O

To write the homotopy equivalences j, : QF(py—3) — F(pn), n > 1, ex-
plicitly, we note that for n > 1 each point e € F(p,-1) in turn has the form
(u,b), where u € PF(py-3), b € F(py-1) and u(1l) = p,-1(b), and p,(e) = b.
Therefore, the points of the space F(p,) can be considered as pairs (v, u), where
v € PF(pu-1), u € PF(pn—3), u(1) = p,—1(v(1)), and then the map j, will be
determined by the formula j,(u) = (0,u) (and the map p,.1 - by the formula
prr(vou) = (u,v(1))).

It is natural to expect that the homotopy equivalences of j, will constitute
a homotopy isomorphism of sequence (5.86) to sequence (5.85) without the last
three terms, i.e. that the corresponding squares will be homotopy commutative.
However, this is not the case, and here we are faced with one of those rare
cases when seemingly completely natural constructions lead to noncommutative
diagrammes.

To achieve commutativity, each homotopy equivalence j,, with an odd num-
ber n must be combined with the homotopy equivalence QF (p,,—3) — QF (pn-3),
u— u~t, where, as always, u~! : t — u(1—1¢), t € I. In accordance with this, we
will define homotopy equivalences

kn QF(pn—S) - F(Pn), n>1,
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by the formula

_1 ;f
kn(u>={(°’“ o nedd o ().

(0, u), if n even,

These homotopy equivalences already constitute a homotopic isomorphism, i.e.

Proposition 5.88. the diagramme (5.89) is homotopy commutative.

Qpn-
+- ——= QF (pp—2) ——= QF (pp-3) — -

kn+1 L kn L

I F(pn+1) F(pn)

Pn+1

Q Q
QF(p) —2 = QF P . oB

R
F(ps) F(ps) —5—> F(p1) —55= F(p) > E —5= B
(5.89)

P4

Proof. Indeed, the map pp4o © kn41 translates each loop w?®,0 to the point
(w?,0), where £ = (=1)"*!, and the map k, o Qp,_1 - to the point (0, (p,_1 ©
w)™ %) = (0, pp-1 o w™?). Therefore, the homotopy (w,T) = (Vu,Uw.7); (W, T) €
QF(pn-2) X I, where the paths v, ¢, € PF(pn-2), Uw,r € PF(pn-3) are defined
by formulae

Vo, = wg((l - T)t)» Up,r = (pn—l ° wg)(l - Tt)

(it is clear that these paths satisfy the relation u,, (1) = pp—1(ve, (1)), connects
the first map with the second. O

Now applying the functor Q to Diagramme (5.89), we obtain a homotopy
commutative diagramme whose vertical arrows are also homotopy equivalences.
Since the bottom line of this diagramme coincides with the top line of diagram
(5.89), they can be stitched into one three-line homotopy commutative diagram.

Iterating this construction, we get an infinite to the left and up homotopy
commutative diagram, all vertical arrows of which are homotopy equivalences,
the bottom line is a sequence (5.85), and each next line is obtained from the
previous one by applying the functor Q and shifting three terms to the left.

In Diagramme 5.90, the maps

q1=p20ky,Qq1,9%q ...,



LECTURE 5.

198

cei— > Q3B

bm
ky /MH

hww
= Q?F(p) = Q2F(p) > Q’E — % 0?8

k4

k7

- —=F(p7)

Qps

Q?p,

Qks E Qko F

Q
DNSF q1
Q Qp

Qpa Qps D2 Qpy

== QF (py) — QF (p3) = QF (p2) = QF (p1) = QF (p) — QE) — QB

TN

Ps

F(ps) —= F(ps) oz F(pa) = F(p3) 5 F(p2) 3 F(p1) 5> F(p) ;= E > B

(5.90)
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are attached to it, stitching the “terminal” three-term sequences of each line into
a single sequence

Qr Qn Qr
s g 2 onp(p) =2 onE =2 onB — (5.91)
S OBEL Fp) S EL B

Definition 5.92. The sequence (5.91) of pointed spaces is called the Puppe
sequence (or resolvent) of the map p : E — B.

This sequence Q is periodic in the sense that under the influence of the Q
functor, it shifts three terms to the left as a whole, and therefore each of its three
consecutive terms after applying this functor pass into the next three terms.

It is clear that the compositions of the vertical arrows of Diagramme 5.90
constitute a homotopy isomorphism of the Pupe sequence to the sequence (5.85)
of iterated homotopy fibres of the map p. Hence,

Proposition 5.93. the Puppe sequence is an evact sequence, i.e., for any
pointed space X, there is an exact sequence

o [X,Q™B]Y 5 [X,Q'F]° - [X,Q"E]* = [X,Q"B]* - --- . (5.94)

At the same time, according to the results of the Appendix to Lecture 4, all
members of the sequence (5.94) are abelian groups (and the maps connecting
them are homomorphisms), except for the last six

- > [X,QF]* - [X,QE]* - [X,QB]* — [X,F]* —» [X,E]* — [X,B]",

of which the first three are groups and the last three are pointed sets.

In the special case when the map p : E — B is a fibration (at least ho-
motopy), the homotopy fibrer F(p) in the Puppe sequence can be replaced by
an ordinary fibre F of the fibration p (while, of course, replacing the map p;
with the embedding i : F — E, and the map ¢; is the corresponding map
q : QB — F). The resulting sequence

Qll 1 Qn .
oL o L o 2 ong . oL FLEDL B
(5.95)
is called the Puppe sequence of the fibration p. It is, of course, also exact.

Remark 5.96. The map ¢ : QB — F in the sequence (5.95) depends on the
choice of the section s : Cocyl(p) — E! by the axiom CP and maps to the loop
u € QB the end of the path s(eg,u) starting at the point eq € F and covering
this loop:

q(u) = s(eg,u)(1), ue€QB.

Therefore, the statement about the exactness of the sequence (5.95) in the
term F (which is the main stumbling block when trying to directly - not using
Proposition 2.57 from the Appendix to Lecture 2 - prove the exactness of this
sequence) boils down to the statement that the map E! — R’ defined by the



200 LECTURE 5.

formula v — s(v(0),p ov), v € E!, can be related to the identity map by a
homotopy f; : El — E!, such that for any path v € E’ the path po f;v € B does
not depend on ¢. It will be a very good exercise for the reader to try to prove
the last statement and deduce from it the exactness of the sequence (5.95) in
the term F.

Remark 5.97. If there is a cross section s : B — E to the map p : E — B, then
the map Qs : QB — QF will be a cross section of the map Qp : QE — QB, from
which it directly follows that for any space X the homomorphism [X,QFE]* —
[X,QB]* is an epimorphism. Therefore, the sequence (5.94) crumbles into a
short exact sequences

0—-[X,Q"F(p)]* — [X,Q"E]* — [X,QB]* —>0, n=>0,
and, therefore, the sequence (5.91) is a short exact sequences
pt > Q"F(p) > Q"E - Q"B—0, n=>0.

In particular, we see that if in sequence (5.69) the map p is a fibration having a
section (and the map i is an embedding of its fibre), then this sequence is exact.
(See Remark 5.70 above.)

Using the adjointness between the functors Q and S°®, the sequence (5.94)
can also be rewritten in the following form:

.o — [$"™ X, B]* — [S"X,F]* — [S"X,E]* — [S"X,B]* — --- . (5.98)
A special case of the sequence (5.98) (obtained for X = S°) is the homotopy

sequence of the fibration p : E — B.

Remark 5.99. An analogue of the sequence (5.98) (obtained by replacing F with
F(p)) holds, of course, for any map p : E — B; in particular, - for E c B - for
embedding E — B. At the same time, it is easy to see that in the latter case,
the space F(p) is nothing more than the path space P(B, pt, E) of the space B
starting at the base point and ending in the subspace E.

5.F The extended Puppe sequence of a classify-
ing fibration
We will call the pointed fibration p : E — B classified if it is induced (by some

map ¢ : B — By, called a classifying map) fibration py : Eg — Bg with a
contractible space Ey, i.e. if there exists a universal square

E-2~E, (5.100)
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in which the map pg is a fibration, and the space Ej is contractible.
For classified fibrations p : E — B, a simple necessary and sufficient condi-
tion for the solubility of an arbitrary lifting problem can be specified

E (5.101)

P

X——8B

Proposition 5.102. If the fibration p : E — B in problem (5.101) is classified
and if ¢ : B — By is a classifying map, then the covering map f : X — E exists
if and only if the map ¢ o f : X — By is null homotopic.

Proof. Diagrammes (5.100) and (5.101) can be stitched into one diagramme

If the map f exists, then g o f = pg o ¢# o f. Since the space Ej is contractible,
ga# o T =id 090# o ? ~ const 090# o ? = const

and therefore pg o ¢# o f ~ const. Hence, ¢ o f ~ const. (Note that we did not
use the universality of square (5.100) in this argument.)

Conversely, let ¢ o f ~ const. Since the constant map is covered, then by
applying the axiom CP (applied to the fibration pg) there is a map g : X — Eg
covering the map ¢ o f, i.e. such that the pair (f,g) is a cone over the pair
(¢, po). Consequently, due to the universality of the square (5.100), there is a
morphism 7 : X — E of this pair into the pair (p, ¢*). This morphism will be
the map covering the map f. O

Remark 5.103. In the last argument, we did not use the contractibility of the
space Eg. Therefore, if the fibration p : E — B is induced from some (other)
fibration pg : Eg — Bp by a map ¢ : B — By, then for any diagram (5.101) in
which the map f has the property that ¢ o f ~ const, there is a covering map
f.

This simple sufficient condition for the solubility of the lifting problem is
surprisingly often useful.

The existence of the map f is equivalent to the fact that the element [ f] of
the pointed set [X, B]® belongs to the image im p, of the map p. : [X,E]"* —
[X,B]*, and the condition ¢ o f ~ const is that this element belongs to the
kernel ker ¢, of the map ¢. : [X,B]®* — [X, Bg]®. Therefore, the statement of
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Proposition 5.102 is equivalent to the equality im p. = ker ¢., i.e., the statement
about the exactness of the sequence

[X,E]* =5 [X,B]* = [X, Bo]*,
or, in other words, about the exactness of the sequence
EL B B,

Thus, we see that without loss of exactness, the Puppe sequence of the
classified map p : E — B can be extended on the right by one term. The
resulting exact sequence

n Qi n Q'p n Qe n—1
s 'F L 0'E 2 o Z 5 QrlE L
(5.104)

o FSEL B2 B,

is called the extended sequence of a Puppe classified fibration.

It should be borne in mind that for the exactness of the sequence (5.104),
the classification of the fibration p is only sufficient, but not necessary. For
example, according to Remark 5.97, this sequence will remain exact if, in the
universal square (5.100), the conditions for the contractibility of the space Ej
are replaced by a weaker condition such that the map po¢ : E — By is null
homotopic.

5.G Mapping cones and Puppe exact sequences

Let us now consider the dual situation.
Let i : A — X be an arbitrary pointed map, Cyl®(i) be its reversed reduced
cylinder and j : A — Cyl®(i) be the cofibration of a — [a,0], a € A,

Definition 5.105. The cofibre
C*(i) =Cyl*(i)/jA (5.106)

of the cofibrationi j is called the (reduced) cone of the map i. It is obtained
from the cone C*A over the space A by gluing the space X to it by the map
[a,1] ¥ ia.

In particular, if A € X and i is an inclusion, then
C'(i)=CAUX

(see Fig. 5.G.1).
If, in addition, the pair (X, A) is a cofibration, then

Proposition 5.107. the pointed cone C*®(i) is homotopically equivalent to the
cofibre X/A of the pair (X, A)
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x

Figure 5.G.1:

Proof. since this cofibre is naturally homeomorphic to the cofibre C*(i)/CA,
which, according to Lemma 4.46 of Lecture 4, is homotopically equivalent to
the space C*(i) (the conditions of this lemma are fulfilled, since the cone CA
is contractible, and the pair (C*(i), CA) is relatively homeomorphic to the cofi-
bration (X, A) and therefore is also a cofibration). O

Replacing in the coexat sequence (10) with a cofibre X/A on the cone WC* (i),
we get the sequence

AL x5, (5.108)

where i; is the natural inclusion (which is obviously a cofibration). The sequence
(5.108) is coexact, being homotopically isomorphic to the coexact sequence

A — Cyl*(i) — C*(i).

Putting i, = (iy-1)1, io = i, we therefore get an infinite right-hand coexact

sequence

AS X5 C (i) > > C(ina1) =5 C*(iy) — - - (5.109)
all maps of which are cofibrations, except, maybe the first one. The members
of C*(iy,) of this sequence are called iterated cones of the map i.

It is obvious that the cone C°®(i1) is homotopically equivalent to the sus-
pension S*A (which is the fibre C*(i)/X = (CA U X)/X of the cofibration iy),
the cone C*(iz) is homotopically equivalent to the suspension S*X (which is a
cofibre of the cofibration is) and, in general, the cone C*(i,) is homotopically
equivalent to the suspension S*C(i,,—3) over the cone C®(i,_3) (it is convenient
to assume that C*(i_2) = A, C*(i_1) = X).

By definition, each point of the cone C®(i,,), n > 1, either has the form [x,¢],
where x € C*(i,,_2), t € I, or a point from C*(i,,_1), which has the form [a,?],
where a € C*(i,,—3), t € I. In other words, C*(i,) = C*C*(i,—2) U C*C"(i,-3).

map i, of the cone

C*(in) = C*C*(in-2) UC*C*(in-3)
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to the cone
C.(in+1) = C.C.(in—l) U C.C.(in—2)

is on C*C*®(i,—2) an identical map, and on C*C*(i,—3)
C*(in-1) = C*C*(in-3) U C*C*(in-4a)
is an embedding of the cone C*C*®(i,,-1). Thus

Ineolx,t] = [x,2], x€C*(in—2), t€l,
ins2[a,t] = [[a,t],0], ae€C*(i,-3), tel,

Homotopy equivalence j, : C*(i,) — S°C*®(i,,—3) for points [x,t] € C*C*®(i,,—2)
translates to the base point pt, and the points [a,t] € C*C*(iy—1) - to the
points of the suspension S°C®(i,-3) denoted by the same symbol [a,f]. We
define the homotopy equivalence k,, : C*(i,) — S*C*(i,-3), assuming that the
points [x,t] € C°*C*(i,—2) still translate to the point pt, and on the points
[a,t] € C*°C*(in—3), a € C*(i—3), t € I, defined by the formula

[a,1-1], if n isodd,

[a,t], if n iseven.

kn(la,1]) = {

Then it is easy to see that
Proposition 5.110. the diagramme
i1 io

A—tox C* (i) C* (i) ——= C*(in)

[

S*(A) 5*(X)

in+2

C*(in) C*(iny) — -+

kn l/ kn+1 j

e §°C™(in ) o §7C (g 2) —
ln-1

18 homotopically commutative.

Proof. Indeed, every point from C*(i,,) of the form [a,t], a € C*(i,-2), t € I,
the map S°i,—1 o k,, translates, depending on the parity of n, either to the point
[in—1a,1—t], or to the point [i,-1a,t], and the map k;,+1 oin+2 - to the base point
pt.- On the contrary, every point from C*®(i,) of the form [x,t], x € C*(i,,—2),
t € I, the map S°i,,_1 o k translates to the point pt, and the map k,41 © ;40 -
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either to the point [in4+2x,¢], or to the point [i,40x,1 —¢]. Thus, (for n > 4)

[a,1—¢] or [a,t] if aeC*C*(iy_s),
[[a,1-1¢],0] or [a,t,0] if aeC*C*(ip-s),
(kn+1 o in—2) [(17 t] = pt,

(S.infl o ky)[x,t] = pt,

[x,7] or [x,1-1¢] if aeC*°C*(in-4),
[[x,2],0] or [[x,1-1¢],0] if aeC*C*(ip-5).

(8* o kn)la,1] = {

(kn+1 ° in+2) [a,t] = {

With n < 4, the formulae are only simplified. For example, when n = 1 the map
S%g o ki = S% o ky and ks o kig from C*(i1) = CX U CA (see Fig. 5.G.2). to

Figure 5.G.2:
C*(i—1) = S*X are given by formulae

(S*okqi)a,t] = [ia,1 —1t] a,t] € CA,
(kg ois)[a,t] =pt [a,t] € CA,
(S%ioky)[x,t] =pt [x,f] € CX,
(kg oiz)[x,t] = [x,t] [x,t] € CX.

Putting

g:la,t] =lia,1 -t +7t], [a,t] € CA,
gclx,t] = [x,7t], [x,t] € CX,

we will obviously get a homotopy g : C*(i1) — S*X, connecting S?*/*¢!jo k with
the map ko oi3. For n > 1, the homotopy g is constructed, but essentially the
same way. O

It follows from this that, without violating the exactness, we can replace
in sequence (5.109) the part starting with the term C*®(iy) with the result of
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applying the S* functor to sequence (5.109). Iterating this construction, we get
an infinite right S*-periodic co-exact sequence
AL xS e S s'A o sa S ey 3 gnee iy S5 g
(5.111)

where k = kq o iy. This sequence is called the Puppe coezact sequence (or co-
resolvent) of the map i : A — X.

In the case when the map i is also a cofibration (an embedding corresponding
to the cofibration (X, A)), the sequence (5.111) is homotopically isomorphic to
the coexact sequence

. Sn' n
AL X S jx/abstas . oAl x2S (5.112)

where j : X — X/A is the factorisation map. The sequence (5.112) is called the
Puppe coezxact sequence of the cofibration (X, A) (or the cofibration i : A — X).
By definition, the sequence (5.112) is exact means that

Proposition 5.113. for any pointed space Y there is an exact sequence
= [SM(X/A) Y] - [S"X, Y] > [S"AY]T — -, (5.114)
all members of which are abelian groups, except the last six:
o [S(X/A) Y] = [SX,Y]" — [SA Y] - [X/A Y] - [X,Y]* — [A Y],
of which the first three are groups, and the last three are pointed sets.

If the cofibration (X, A) is classified, i.e. X = A U Xy, where the space X,
is contractible, and the pair (Xy, Ag), Ag = Xp N A, is a cofibration, then the
Puppe sequence of ccofibration can be extended by one term to the left while
preserving the exactness:

PIENUS

where ¢ : Ag — A is an embedding (the same will remain true if the condition
for the contractibility of the space Xy is replaced by a weaker condition such
that the embedding i o ¢ : Ag — X was null homotopic).

In the theory of functors dual to the functors of homotopic groups (we will
deal with these functors in the next semester), Puppe coexact sequences play
the same role as exact Puppe sequences (more precisely, their special cases are
homotopy sequences of fibrations) in the theory of homotopy groups.



Lecture 6

In this lecture, using the identification of coverings with fibrations having dis-
crete fibres, we will state the basic properties of covering spaces and on this basis
we will obtain practical methods of calculation of fundamental groups. “Direct”
methods that are not related to covers will be described in the Appendix.

6.1 The lifting problem for coverings

A remarkable property of coverings (determining success their application in
concrete calculations) consists in the fact that it is possible for them (under very
broad general methodological assumptions) to specify a necessary and sufficient
condition for the solubility of an arbitrary lifting problem

(6.1)

We will consider this problem in the category of I ¢z°, i.e. assuming that
p and the given map f are pointed maps and requiring that the desired map
fis also pointed. By applying this assumption, we can, following the general
method of algebraic topology described in Lecture 0, apply the functor m; to
Diagramme (6.1). A necessary condition for the solubility of the corresponding
algebraic problem

7T1X
[
D+

ﬂly‘? 7T1X

is the inclusion of
im f, C im p., (6.2)

since if ¢ exists, then im f, = im(p.o¢) = p.(im¢) C im p,. Therefore, inclusion
(6.2) is necessary for the solubility of problem (6.1).

207
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The question of the sufficiency of this condition is no longer subject to al-
gebraic methods and should be solved by direct geometric construction. At the
same time, of course, we can consider the pointed space Y connected without
loss of generality.

First of all, we note that

Proposition 6.3. for a connected space Y, the covering map f, when it exists,
1S unique.

Proof. Indeed, let ? be another covering map, and let B be a subset of the space
Y consisting of all points b € Y, for which f(b) = f(b). This subset contains
the base point and therefore is non empty. Let b € Y and x = f(b). By the
condition, there exists a neighbourhood U of the point x such that the set p~'1U
is a disjoint union of open sets Uy, each of which p maps homeomorphically onto
U. If b € B, then let U be one of these sets that contains the point f(b) = f(b).
Then the set 7_1(0) Nf~1(U) is open in Y, contains the point b and is contained
in B. Therefore, the set Bisopenin Y. If b ¢ B and, therefore, F(b) £ f(b), then
the points f(b) and f(b) belong to two different sets Uy, say, U; and Us. Then
the set ?_1(171) N f‘l(ﬁg) is open in Y, contains the point b and is contained
in Y\ B. Hence, the set B is closed. Being a non-empty, open and closed subset
of a connected space Y, it coincides with all Y. Therefore f = f. ]

It follows that

Proposition 6.4. the maps f,3 :Y — X are homotopic if the maps f = p o f,
g = p og are homotopic.

Proof. Indeed, according to the axiom CP, the homotopy G connecting the
maps f and g can be covered by the homotopy G connecting the map f with
some map, covering the map g and therefore coinciding with the map g. O

At the same time, if the homotopy G is stationary on some subspace B C Y,
then for any point b € B, the path t — G(b,t) will lie in the fibre above the
point b and therefore, due to the discreteness of this fibre, it will be a constant
map, i.e. the homotopy G will also be fixed on B. Therefore, in particular, the
maps f and g will coincide on B. Thus,

Proposition 6.5. in order to prove that the maps f,g Y — X coinciding on
the subspace B C Y, it is sufficient to prove that the maps po f,pog:Y —» X
coincide on B and are homotopic relative to B.

This way of proving a match on B of maps ¥ — X is often useful.

Recall now (see [9]) that the space Y is called locally (linearly) connected if
any component of each of its open sets is an open set (or, equivalently, each
neighbourhood of an arbitrary point contains a connected neighbourhood).

Lemma 6.6. For any connected and locally connected pointed space Y, the Serre
fibration
w1 PY =Y, uw u(l),

is an epiomorphism.
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Proof. Since the space Y is connected, the map w; is surjective. Therefore, we
only need to prove that every set V c Y whose complete preimage w;'V is open
in PY is open in Y. But by the definition of topology in PY, the openness of
the set w;'V means that it is a union of finite intersections of sets of the form
W (K,U) N PY, where, recall, K is a compact (=closed) subset of the segment I,
U is an open subset of the space Y, and #' (K, U) is the set of all pathsu : I —» Y
having the property that u(K) c U. Therefore, for any path uy € w™'V, there
are compact subsets Ky,...,K, C I and open subsets Uy,...,U, C Y such that
ug € Wy € w™ 'V where

Wo = W(Kl,Ul) N---N W(Kn, Un) N PY.

At the same time, renumbering, if necessary, the sets K1, ..., K, we can assume
that for some m =0,1,...,n (the case of n =0 and m = n are not excluded)

leKin---NK, and 1¢€KpqU---UK,.

Then wq(ug) = ug(1l) € UyN---NU,y, and therefore in Y there exists a connected
neighbourhood V; of the point yg = w1 (ug) such that Vo = Ui N ---NU,,.

Since the neighbourhood V; is open (and the set K = Kjpq U -+ UK, is
closed), there exists a point ¢y < 1 of the segment I such that ug([70,1]) C Vo,
and since the neighbourhood V; is connected, for any point y € V;, there exists
a path v lying entirely in V; and connecting the points ug(#p) and y (see Fig.
6.1.1). Then the path u = ulov, where 0" is the path 1 — wug(tor), t € I,

Figure 6.1.1:

will have the property that u(K;) c U; for any i = 1,...,n (for i > m this
is obvious, because u(K;) = ug(K;) >, and for i < m follows from the fact
that K; = (L; N [0,¢]) U (K; N [tg, 1J), and both u(K; N [0,#9] C ug(K;) C U;,
and u(K; N [19,1] c v(Y) € Wy C Uy, ie., will lie in Wy € w]'V. Therefore,
y = wi(u) € V. This proves that Vy c V, i.e. that the point yg = wi(u) € V is
an internal point of the set V. Since ug is an arbitrary path from a)IlV and,
therefore, yq is an arbitrary point from V, Lemma 6.6 is thus fully proved. O

Now we have everything ready to prove the following main theorem.

Theorem 6.7. If the space Y is connected and locally connected, then the map
f in Diagramme (6.1) exists if and only if the inclusion (6.2) takes place.
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Proof. Since the necessity of this condition has already been proved above, we
only need to prove its sufficiency.
To this end, we note that since the space PY is contractible, the map f o
1 : PY — X is homotopic to the constant map (the corresponding homotopy
is obtained by combining with the map f o w; of the deformation u +— uy,
0 <t < 1, the space PY, where u, : 7 — u(tr), 0 < 7 < 1), and therefore
there is a covering map for it g : PY — X. For the same reasons (applied
to the Serre fibration w; : PX — X) for the map g, there is also a covering
map g : PY — PX, exphc1t1y given by the formula g(u) : t — g(u;), u € PY,
0 <t <1 and therefore satisfying the relation p; o g = fj, where f; : PY — PX
and p; : PX — PX are maps u — fou,u € PY and a — poa, a € PX (for
(prog)w)(t) = p(g(u)(2)) = p(g(ur)) = f(wi(ur)) = f(u(t)) = fi(1) for any path

u € PY). Thus, we have a commutative diagramme

rx - px

It turns out that

Proposition 6.8. the map g preserves fibres of fibrations w, : PY — Y and
w1 : PX — X, i.e. for any paths u,v € PY satisfying the relation wiu = wyv,
i.e. the relation u(1) = v(1), the paths gu,gv € PX, satisfy the relation w1 (gu) =
w1(gv), i.e. the relation (gu)(1) = (gv)(1).

Proof. Indeed, if u(1) = v(1), then the loop uv=! € QY is defined, and hence
the loop fr(uv™!) € QX, whose homotopy class belongs to the subgroup im f;
of the group m X, and therefore, by applying condition (6.2), to the subgroup
im p,. This means that in the space X there is a loop a € Qf, such that the
loop pja € QX is homotopic rel{0, 1} to the loop fr(uv™) = fiu- (fiv)™' =
prgu - (plgv) 1 and therefore the path u' = p;gu = p o gu is homotopic to the
path v’ = pja - p;gv = pi(a-gv) =po(a-gv). Hence, the paths gu and a - gv
coincide on {0,1}. In particular, (gu)(1) = (a-gv)(1)(gv)(1). m|

It follows that the formula
f(y) = (gu)(1), if y=u(l), where yeY,ucPY,

well defines the map f:Y — X, for which fow; = w; 0g = g, and therefore
po fowr = fow;. Since the map w; is surjective, it follows that p sz f, ie.
that the map f closes Diagramme (6.1).

Thus, Theorem 6.7 is fully proved. O
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Corollary 6.9. If the pointed spaceY is connected, locally connected, and simply
connected, then for each pointed covering p : X — X, any potined map f:Y —
—X is uniquely covered by some pointed map f:Y — X.

6.2 Coverings and subgroups of the fundamental
group

The subgroup im p. appearing in Theorem 6.7, of the group 71X consists of
homotopy classes of those loops of the space X that are covered by loops of the
space X. Since, according to the remarks made above, the homotopy of the loop
space X is equivalent to the homotopy of their projections in X and, therefore,
the homomorphism p, : 7 X — m X is a monomorphism (which, however, also
directly follows - due to the exactness of the homotopy sequence of the covering
p: X — X - from the discreteness of its fibre), it follows that

Proposition 6.10. the subgroup im p. of the group m1X is isomorphic to the
group m1X.

The pointed covers of p : (f, X9) — (X,xp) of a given pointed space X
constitute the category €¢+*X (which is a complete subcategory of the category
T o p%), whose morphisms are their maps over X, i.e. pointed maps ¢ : X; —

X,, such that the diagramme

\/

Proposition 6.11. If the space X is locally connected, then for covers p; :
X1 — X and ps : Xo — X the morphism ¢ : X1 — X5 exists if and only if

is commutative.

im p1,. Cim pos.

Proof. The morphism ¢ is a lifting of the map p; with respect to the map ps.
Therefore Proposition 6.11 is a special case of Theorem 6.7. (Note that the
space X; is locally connected if and only if the space X is locally connected.) O

By applying the Corollary 6.9 of Theorem 6.7, if the morphism ¢ there
then it is only one. Hence, and from proposition 6.11, the following corollary
immediately follows.

Corollary 6.12. The pointed covers p1 : X1 — X and ps : Xo — X of a
connected and locally connected space X are isomorphic if and only if when

im pq, =1im pos.
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In the case where the morphism ¢ exists, we will write p; > ps. The relation
> is an order relation on classes of isomorphic covers, and for a locally connected
space X the correspondence

p — imp.

is an anti-isomorphic embedding of the set of all classes of isomorphic covers of
this space into the set of all subgroups of the group m1X ordered by inclusion.
In this sense, the subgroups im p, of the group m1 X classify the coverings p :
X - X.

It is clear that for any element & € 71X and any point x € F the end &x of
a path starting at point x and covering an arbitrary loop of class é~! depends
only on ¢ and x and that thereby we get some action of groups 71X on the fibre
F covering p : X — X. It is also clear that

Proposition 6.13. this action is transitive (the orbit of any point is the entire
fibre F) and that the isotropy subgroup of the point X € F is the subgroup im p.

In particular, it follows that

Proposition 6.14. the correspondence & — &xg defines a bijective map of the
coset
coker p, = m1 X /im p.,

over the fibre F.

The covering p : X — X is called finite-leaved if its fibres F are finite, and
in this case the cardinality of the fibres is called the number of covering sheets
p: X > X.

From the existence of a bijective map coker p, — F it follows directly that

Proposition 6.15. the cover p : X — X is finite if and only if the index
card(coker p.) of the subgroup im p., in the group m1X is finite, and in this case
the number of sheets of the cover p : X — X is equal to this index.

The statement that the number of sheets of the cover p : X > Xis equal
to 1 is equivalent to the statement that this cover is bijective and hence home-
omorphic map X - X. Calling the homeomorphisms X — X trivial covers, we
get, therefore, that

Proposition 6.16. the cover p : X — X is trivial if and only if when im p, =
11X, i.e. when the map p. : mX — m X is an isomorphism.

This seems to be the only case where a simple homotopy condition ensures
the map is homeomorphic.

6.3 Automorphisms of coverings

A homeomorphic (generally speaking, not preserving the base point!) map
¢ : X — X is called an automorphism (or transformation) of the covering of
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p: X — X if it is an isomorphism on itself as an object of the category GouvX,
i.e. if the diagramme

X1—>X2

NP

is commutative. Each such automorphism can be considered as a lifting of
the map p, and therefore, by applying the uniqueness theorem of lifts, two
automorphisms coincide if they act identically on the base point xo € X (recall
that the space X is, by definition, connected). Hence,

Proposition 6.17. the formula ¢ — ¢(Xo) defines an injective map of the group
Aut X = Aut(p : X — X) of the automorphisms of the covering p : X — X into
its fibre F = p~1(xp).

However, it is more convenient to consider the map ¢ — (,o‘l(fo), which is
a composition of the bijective map ¢ — ¢! and the map ¢ ga()?o).

A cover p : X — X is called transitive if this injective map is bijective, i.e.
if the group Aut X acts transitively on the fibre F.

Composing the map ¢ — ¢~ (xg) with the bijective map F — coker p., the
inverse of the map constructed above coker p. — F, we get some injective map

@ : Aut X — coker p,.

To the automorphism ¢, this map maps a residue class by the subgroup im p.,
an element of the group 71X, defined by the loop of the space X, which is an
image when map p of the path of the space X connecting the point xq with the
point f(xp).

It is clear that

Proposition 6.18. the cover p : X — X is transitive if and only if when the
map a is bijective.

Let N, x(im p.) be the normaliser of the subgroup im p., i.e. the largest
subgroup of the group 71X in which the subgroup im p, is normal. Then the
coset group defined by

Weyl(X) = Ny, x(im p.) /im p..,

is called the Weyl group of the covering p : X — X. As a set, it is a subset of
the set coker p..

Proposition 6.19. The map a is a monomorphic map of the automorphism
group Aut X to the Weyl group

@ : Aut X — Weyl(X). (6.20)



214 LECTURE 6.

Proof. The statement that @ maps the group Aut X to the group Weyl(X) is
equivalent to the statement that for any automorphism ¢ € AutX and any
path @ connecting in X the point xo with the point ¢(X,), the homotopy class
[p o u] of the loop u = p ou € QX lies in the normaliser N, (x)(im p.) of the
subgroup im p., i.e. that for any loop v € Q(X, x0) the loop uvu~! € QX, where
v = po7, also has the form pow, where w € Q(X,%o). But uvu™ = poiwy, where
w1 = uvi " - aloop at the point ¢(Xg). Hence, uvu=t = (pop)o(p~tow;) = pow
where w = ¢ =1 o w; is a loop at the point Xy, which is what is required.

Suppose now ¢, € Aut X, and let #,7 be paths in X, connecting the point
Xo with the points ¢(Xp) and ¢ (Xp), respectively. Then let uw, where w = ¢ oV,
connect the point Xy with the point (¢ o ¥)(xg) and there will be the following
equality

pouw=(pou)(pow)=(pou)(peov).

Therefore a(poy) = a(p)a(y), i.e. the map @ is a homomorphism (and therefore
- by applying injectivity - a fortiori a monomorphism). O

A covering p : X — X is called a regular covering (or Galois covering) if
the subgroup im p. is a normal subgroup of the group n1X, i.e. if Weyl(X) =
coker p..

Corollary 6.21. Any transitive covering of p : X > X is reqular.

Proof. For a transitive cover a(Aut X) = coker p., and, according to Proposition
6.19, a(Aut X) c WeylX. At the same time Weyl X C coker p.. Therefore,
coker p, = Weyl(X). O

Proposition 6.22. If the space X is locally connected, then, conversely, any
reqular cover is transitive.

Proof. 1t is enough, obviously, to show that if the space X is locally connected,
then the monomorphism (6.20) is an isomorphism, i.e. that for any loop u €
QX of the space X, the homotopy class [#] which belongs to the normaliser
Ny, (imp.) as the subgroup im p, there is an automorphism ¢ € Aut X such
that the point ¢(Xp) is the end of the path @ : I — X covering the loop u and
starting at the point xXy. But since in the commutative diagramme

~ oyt ~
m1(X, %) —— 71(X, %)

m1(X, xo) 7771(X,xo)

where X1 = u7, the horizontal arrows are isomorphisms, then

pemi(X,X0) = (ps o )my (X, %1) = (u 0 p)mi (X, %1) = puri (X, 51),
and therefore, according to Corollary 6.12 of Proposition 6.11, there is an iso-
morphism ¢ of the covering (X, Xo) — (X, xo) to the covering (X, X1) — (X, xo).

This isomorphism will be an automorphism ¢ € AutX, for which ¢(xy) =
u(l). O
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6.4 Completely discontinuous actions of groups

The action of the group G on the topological space X is called completely dis-
continuous if for each point x € X there exists a neighbourhood U of it such that
g1U N go2U = @ for any two distinct elements g1, g2 € G, i.e., which is obviously
equivalent the statement if U N gU = @ for any element g # e of the group G.
It is clear that

Proposition 6.23. all orbits of Gx of a completely discontinuous action are
discrete and it is an action without fized points (i.e. for g # e each transforma-
tion x — gx has no fixed points).

It is also clear that

Proposition 6.24. every finite group acting without fized points on a Hausdorff
space acts completely discontinuously.

Proposition 6.25. For any cover of p : X — X, the group Aut X acts com-
pletely discontinuously on the space X. If the cover p : X — X is transitive,
then the space X /Aut X of orbits of this group is homeomorphic to the space X.
Conversely, for any connected space X on which some group G acts com-
pletely discontinuously, the natural map p : X — X/G is a transitive cover, the
group Aut X whose automorphisms are naturally isomorphic to the group G.

In short, transitive covering spaces are exactly spaces in which a certain
group acts quite discontinuously.

Proof. Let X € X, and let U be a neighbourhood of the point x = p(X) such
that the set p~1(U) is a disjoint union of open sets U;, each of which covers p
homeomorphically maps on U. Let, in addition, Uy be one of the sets U; which
contains the point X. It is clear that an arbitrary automorphism ¢ € AutX
translates the neighbourhood Uo of the point x into that of the sets U; which
contains the point ¢(¥). Therefore, if ¢ # id, then Uy N Uy = @. This proves
the first assertion of proposition 6.25.

Since the orbits of the group Aut X lie in the layers of the covering p : X5 X,

this covering induces a continuous map X /Autf 2ox , which is, as it is not
difficult to show, an epiomorphism. If the fibration p is transitive, then the
map p is obviously injective and, therefore, represents a homeomorphism. This
proves the second statement.

Now let X be a connected space on which the group G acts completely
discontinuously, and let p : X — X/G be a natural epiomorphism of ¥ — GX.
Let x € X = X/G, X € p~(x), and let U = p(U), where U is a neighbourhood
of the point X, such that Un gﬁ = @ for any element g # e of the group G.
It is clear that p~!(U) is a disjoint union of all possible open sets of the form
gl7, g € G, and on each of these sets the map p is epiomorphic. In addition, if
p(gx1) = p(gXxs), i.e. if there exists an element h € G such that gU N hgU = o,
then g = hg, i.e. h = e, and therefore gx; = g¥». Hence, the map p on gU is
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injective and therefore, being an epimorphism, is a homeomorphism. Thus, the
map p : X > Xisa covering.

Finally, since p(gX) = p(X) for any point ¥ € X and any element g € G,
then the group G is contained in the group Aut X (we identify the elements of
the group G with the transformations they produce). Since the group G acts
transitively on each fibre (which is - the reader should recall - an orbit), for any
automorphism ¢ € Aut X and any point Xy € X there is an element g of a group
G such that ¢(xg) = gxg- Since the map ¢ — ¢(xg), as we know, is injective, it
follows that ¢ = g. Hence, G = Aut X. O

Corollary 6.26. If the space X is the space of orbits )F('/G~0f some group G,
which is completely equivalent on a simply connected space X, then

mX ~G. (6.27)

Proof. Consider the transitive covering of p : X > X =X/G. By applying the
simple connectedness of the space X for this cover, there is an equality im p, =0,
i.e. the equality coker p. = m1 X. Therefore G = Aut X ~ coker p. = m X. ]

This corollary provides us with a powerful way to compute fundamental
groups.

Example 6.28. The formula
ax=x+1, x€R,

where « is the generator of an infinite cyclic group F; defines a completely
discontinuous action of this group on the space R. The corresponding orbits are
nothing more than adjacent classes of the additive group R by the subgroup Z
of integers (isomorphic to the group F;) and, therefore, the space of orbits R/F;
by the coset group R/Z, i.e. the circle S!. Since the space R, being contractible,
is simply connected, it is proved that

St =Fy, (6.29)

or, in additive notation, mS' = Z.

It is easy to see that with the isomorphism (6.29) to the element ¢ = [id]®,
id : (S',s0) — (S',s0) the group m;S' corresponds to the generator @ of the
group Fj. This means that

Proposition 6.30. the element 11 is the generator of the infinite cyclic group
ﬂlsl,

i.e. - in additive notation - that any element of the group mS' is uniquely
represented as nty where n € Z.

Thus, each loop (S!,sq) — S!,s0) corresponds to some integer n € Z, de-
pending only on the homotopy class of this loop. Visually, it is nothing more
than the number of revolutions of this loop. This number can be analytically
expressed by a known integral and on this basis obtain a direct proof of equality
(6.29). (See Lecture 7 below.)
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Remark 6.31. It is important to keep in mind that
Proposition 6.32. the isomorphism (6.27) has the property of naturality,

i.e. for any groups G and H acting completely discontinuously on simply
connected spaces X and Y , any homomorphism ¢ : G — H and any continuous
map f : X — Y having the property that f(g%) = ¢(g)f(X), ¥ € X, g € G,
and therefore inducing a continuous map f : X —» Y, X = X/G, Y = Y/H, a
commutative diagramme takes place

mX L>7T1Y

G——H
@

In other words, isomorphisms G ~ 71X and H ~ 7Y transform the homomor-
phism ¢ into the homomorphism f..

This remark allows us to compute not only fundamental groups, but also
their homomorphisms induced by continuous maps.

Example 6.33. Let f be the antipodal map of S — S!, given by the formula
f(x) = —x. It is easy to see that when identifying St = R/Zy, this map is
induced by the map f : R — R, acting according to the formula f(x) =x +1/2,
x € R. Since af(x) = f(ax), where @ : x — x + 1, then the corresponding
homomorphism ¢ : F; — F; is an identity map. This proves that

Proposition 6.34. the antipodal map S* — S' induces the identical map id :
718t — 1St of the fundamental group of the circle S'.

This example will be useful to us in lecture 13",

6.5 The fundamental group of a bouquet of cir-
cles

As a more complex example of applying the Corollary 6.26 from Proposition
6.25, we calculate the fundamental group 71 (S! v S!) of the bouquet S! v ! of
two circles (the figure “eight”).

For each integer r > 0, we note on the circumference of the plane R? of the
radius r with the centre (0,0) the points that are the vertices of the regular
4-3""1-gon, so that among these points turned out to be the point (r,0). Let’s
call these points vertices of rank r > 0. We will consider the point (0,0) to
be the vertex of the rank 0. We will connect the vertex (0,0) with rectilinear
segments with all four vertices of rank 1 and each vertex of rank r > 0 with the
three vertices of rank r + 1 closest to it (see Fig. 6.5.1).

IThe transcriber guesses Postnikov refers to Lecture 3 of “Cellular Homotopy”.
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Figure 6.5.1:

We will denote the union of all constructed segments by 7', and the inter-
section of T with a circle of radius r and the centre (0,0) by 7. Obviously,
T, is contracted to T,_1, from which it follows directly by induction that 7, is
contractible. Since any compact subset of the plane is contained in a circle of
sufficiently large radius, an arbitrary map S' — T is mapped into some space
T, and therefore - due to the contractibility of this space, it is homotopic to the
constant map. This proves that

Proposition 6.35. the space T is simply connected.

(In fact, the space T is contractible; see Proposition 6.91 of the Appendix to
this lecture.)
The vertices of the space T are conveniently described using the free group
F> with two generators @ and . By definition, the elements of this group are
group words of the form
a’alﬁbl . a’alﬂbl

where is ay, by, ...,an, b, € Z, and it is assumed that as,...,a, and by, ...,b,_1
are nonzero. The multiplication of these words consists in their attribution to
each other, followed, when required, by the reduction of “similar terms”. (Be-
cause of this reduction, checking the associativity of multiplication is somewhat
difficult; see the Appendix to this lecture.) The unit of the group F» is the
empty word @.

To the vertex (0, 0) we will match the empty word @, and to the four vertices
of rank 1 the words a, 8, @', 7! (in any order). Then the construction
continues by induction: if the vertices of the rank r have already been matched
with the elements of the group Fs, the three vertices of the rank r+1, closest to
the top of the rank r, which corresponds to the word o, we match (in any order)
those three of the four words oa, o8, ca~!, o8~!, in which the reduction of
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such terms is not feasible (for example, if the word o ends with B in a positive
degree, then we take the words oa, ca™!, o8; see Fig. 6.5.1). It is obvious that
in this way a one-to-one correspondence is established between the vertices of the
space T and the elements of the group Fs, and the vertex to which the element
o € F, corresponds is connected by segments with the vertices corresponding
to the elements o, 08, ca™' , oB8~" and only with these vertices.

We also define the action of the group Fs in T, assuming that the element
7 € F5 translates the vertex corresponding to the element o € Fs into the vertex
corresponding to the element to, and linearly maps each segment connecting
two vertices is divided into a segment connecting their images. It is clear that
this is quite a discontinuous action. The fundamental domain of this action, i.e.
the set of representatives of its orbit, is the union of two segments connecting
the point (0,0) with the vertices @ and B corresponding to the words a and S,
and the vertices themselves @ and B, are equivalent to the point (0,0). This
means that the orbit space T/F is a bouquet S' v S! of two circles obtained by
identifying the points @ and 8 with the point (0, 0).

Since the space T, as we have seen, is simply connected, it is proved that

(St vsh = F,. (6.36)

It is easy to see at the same time that in the isomorphism (6.36) the elements «
and B correspond to the elements ¢ and ¢ of the group 7 (S! v S'), which are
homotopy classes of canonical embeddings

’

(St stvshx — x7, and Jost > st v St x — Xpg.
Thus,

Proposition 6.37. the group m1(S' vV S') is a free group with two generators
and .

Similarly, it can be proved that

Proposition 6.38. the fundamental group of a bouquet of n circles is a free
group with n generators,

but we prefer to prove this by another method in Appendix to this lecture.

6.6 Uniqueness of multiplication in the group 71 X

Based on the formula (6.36) (and on its analogue when n = 3) it is possible,
in particular, to prove the statement made in Remark 4.12 of Lecture 4 (and
thus complete the proof of categoricity of axioms for homotopy groups from the
previous lecture).

Proposition 6.39. The multiplication ([u], [v]) — [uv] and the inverse mul-
tiplication ([u],[v]) — [vu] are the only natural X multiplications in the set
mX =[SY X]°.
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For any group G, each element s(a, ) = a® g ---a% b of the group F,
defines the map s : G X G — G, translating the element (g, ) € G X G and the
element s(g,h) = g hbr ... g% hbn of the group G. For example, for G = F,
the elements s(a, @) = a®**% and s(2, ) = B21**P» and for G = F3, where
F5 is a free group with three generators a, B, y, the elements s(s(a, 8),y) and
s(a, s(B,7)).

The key to Proposition 6.39 is the following combinatorial lemma:

Lemma 6.40. If the word s(a, B) € Fs satisfies the relations
s(a,2)=a, s(2,8)=8 (6.41)

and

s(s(a, B),y) = s(a, s(B,7)), (6.42)
then either s(a, B) = aff or s(a, B) = Ba.

Proof. The condition s(a, @) = @ means that a1 +---+a, = 1, and the condition
(@,B) = B - that by +---+ b,, = 1. Therefore, n > 1, and if n = 1, then a; =1,
By =1 (ie. s(a,B) = aB), and if n = 2 and a; = 0, then as =1, by =1 (i.e.
s(a, B) = Ba). Therefore, it is enough for us to prove that the case of n > 2 is
impossible, and for n =2, a; =0 and by = 0 are required.

Let first a; > 0 and b, # 0 (n > 2). Then

s(a/ﬁ)al = a“lﬂbl a2 ... a'“”ﬁb” .. Qalﬁblaa2 . aa"ﬁb",

a; times

whence it follows that the word s(s(a, 8),y) has the form a“ gP1a% - ... At the
same time, the word s(a, s(8,7y)) for by > 0 has the form a® g%yt ... and for
by < 0 - the form a®y=P»g=9 ... and therefore obviously different from the
word s(s(a,B),y). Since this contradicts condition (6.42), the case a; > 0 and
b, # 0 is therefore impossible.

If a; > 0, but b,, = 0, then in the word s(a, 8)%* it is necessary to bring similar
terms, i.e. for a, +a; # 0 replace a® BPra® by a®*®  and for a, +a; =0 and
bu_1+b1 # 0 replace BPr-1a% gPra® B0 with BPn-1+P1 etc. Since ay+...b+a, =
1 and By +---+ b, =1, a complete reduction cannot occur in this case, which
implies that the word s(s(a,f),y) will still have the form a® gP1a% .. (for
n = 2 - the form is ¢ Ba®? with a; + as = 1), and therefore condition (6.42)
cannot be fulfilled again.

Now let a; = —a, where a > 0. Then

s(aB)® = B lna ... pb2q L gTP2g T L gl g A

a times

whence, when b, # 0, it follows that the word s(s(a,f),y) has the form
BPra~% ... and therefore cannot match the word s(a,s(8,y)) = a® ---. If
b, # 0 , then - again due to the impossibility of a complete reduction - the
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word s(a, s(8,7)) will have the form a4 g=bn-1q%-1 ... (with n = 2 - the form
a~ 2B la~% with a; + a; = 1) and therefore again cannot coincide with the
word s(a, s(8,7)) (having fort a; > 0 the form a% g% yb1 ... and with a; < 0
- the form a® g% g=bn-1...),

Finally, let a; = 0. If n = 2 (i.e. if s(a,B) = B2aB P, then s(s(a,B),y) =
y?BPap Py at that time as s(a,s(B,7)) = (Y*By' ") a(y"By' "), e,
s(a,s(B,y)) = ¥?B---, if b > 0, and s(a,s(B8,y)) = y*~1p~t---, if b < 0.
Therefore, equality (6.42) is possible only when b =0 or 1, i.e. for s(a, 8) = af8
or Ba.

If n > 2, then

yo bz ... if as >0,
ybrpg=bng=an ... if as <0,

s(s(a, B),y) = {

bl aa b2 3
Yy Y2 if b1 >0,
S(Q’,S(ﬁ), 7) = b o a.  —b,_ .
yn BT nyTO0n-1 if b1 <0,
and in all cases equality (6.42) is impossible. Thus Lemma 6.40 is fully proved.
m]

Proof. (of Proposition 6.39) Let (a,8) > a o 8 be an arbitrary natural X mul-
tiplication in m1X. Then for X = S' v S! is the free group m1(S' v S!) with the
generators ¢ and ¢, in particular, the word s(.',¢") = o¢” will be defined. But
it is clear that for any space X and any elements @, € m1X there is a map
f:S'vS' = X such that fit = @ and fui") = B. Since fus({, 0 = s(ful, fu)
and due to the naturality of f.l' o fit' = f.(¢,."), then in the group m1 X the
following equality holds

aopf=s(a,p). (6.43)

Therefore, to prove Proposition 6.39, it is sufficient to prove that the word
s(a, B) satisfies the conditions (6.41) and (6.42) of Lemma 6.40 (and therefore
is equal to either af or Ba).

With this in mind, we will first show that

Proposition 6.44. for any pointed space X, the unit of the group m X with
respect to the multiplication of o is the class 1 of the constant map S' — X.

Indeed, for any pointed map f : ¥ — X the map f. : mY — mX, being
by applying naturality a homomorphism with respect to the multiplication o,
translates the unit of this multiplication into one. But with Y = pt, the set of
mY is a singleton, and therefore the image of f.(1) being its only element 1
with the map fi :p i1(pt) — m X, induced by the map f : pt — X, will be a
multiplication unit of o. This proves everything, since f.(1) = 1.

Hence, by applying formula (6.43), it immediately follows that s(e,1) = «
and s(1,8) = 8 for any elements a, 8 € 11 X. For X = S! v S!, this gives (6.41).

Finally, since the multiplication o is associative, then for any elements a, 3,y
there is an equality s(s(e, 8),¥) = s(a, s(8,y)), which for X = S' vS!' v S! gives
(6.42). m]
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6.7 Universal coverings

Let us now return to the coverings in order to round out their theory to a certain
extent.

The covering py : Xo — X is called simply connected if the space Xo is simply
connected (and, therefore, im pg. = 0).

The space X is called covered if there is a simply connected covering for it.

The automorphism group Aut Xoof a simply connected covering py : Xo— X
is naturally embedded in the fundamental group 71X and coincides with this
group:

Aut 550 =7 X,

if the space X is locally connected.

For any subgroup G c Aut Xo, the space X = X/G is defined, for which,
firstly, X = G and, secondly, the covering po : Xo — X induces the map
p: X — X, which is obviously a covering. This, in particular, proves that

Proposition 6.45. if a connected space X is locally connected and covered, then
for any subgroup G of the group m1X there is a (unique up to isomorphism)
covering p : X — X such that imp, =G.

Thus, for every connected locally connected and covered space X, the corre-
spondence
p —imp,

is an anti-isomorphism of a partially ordered set of classes of isomorphic covers
of the space X to a partially ordered by inclusion set of all subgroups of the
group m X.

In this correspondence (sometimes called Galois correspondence), normal
subgroups correspond to regular (transitive) coverings, and the corresponding
coset groups will be isomorphic to the automorphism groups of these coverings.

A covering py : Xo — X of a space X is called universal if py > p for any
covering p : X — X of a space X.

Since the map constructed above py : Xo — Xo/G is obviously a map over
X, we see that pg > p for any covering p : X - X, i.e. that

Proposition 6.46. a simply connected covering of a locally connected covered
space X is universal.

Remark 6.47. A non-closed locally connected space can have a universal covering
(of course, it is not connected).

In [9], a topological space X is called simply connected if the identity id :
X — X is its universal covering. Thus, this concept is different from the one
introduced here, but coincides with it for locally connected spaces.

A topological space X is called semilocally simply connected if there exists its
open covering {U,} having the property that every map S! — X whose image is
contained in one of the elements of this cover is homotopic to a constant map.

It is easy to see that
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Proposition 6.48. any covered space X is semilocally simply connected.

Proof. Indeed, if pg : Xog — X is a simply connected covering and U is an open
set in X; over which the fibration pg is trivial, then any map S' — U lifts to
Xo, and since Xj is simply connected, then the lifted map, and therefore the
original map, is homotopic to the constant. O

At the same time, it can be shown (see, for example, [9], p. 180) that

Proposition 6.49. if a connected semi-locally simply connected space is locally
connected, then it is covered.

Since this fact has no direct relation to homotopy theory, we will not prove
it here.

6.8 Fundamental groups of topological groups and
their coset spaces

In [9] it was also proved that if the topological the group G, considered as a
topological space, is covered, and if p : G — G is the corresponding simply
connected pointed covering, then in G it is possible to introduce in the unique
way a group structure with respect to which the covering p will be a homomor-
phism. The kernel ker p of this homomorphism is (see [9], p. 202) a discrete
Abelian normal subgroup of the group G. Its action by left shifts on G is quite
discontinuous and the corresponding coset space is nothing other than the coset
group G /ker p, homeomorphic to the group G. Therefore

ker p. =mG.

This equality, like equality (6.27), is one of the most important tools for cal-
culating fundamental groups. In [9] it is taken as the definition of the group
7T1G.

For any Lie group G and any of its closed subgroup H, the natural map

G—->G/H

is, as it is easy to see, a locally trivial fibration with H a fibre. (Note that any
quotient of a Lie group is obviously paracompact.) Therefore, there is an exact
sequence for it

-+ > 19(G/H) » n1H —» 711G - n1(G/H) —» ngH — - - -

whence it follows that if the subgroup H is connected, then the group 71 (G/H)
is the quotient group of the group 71 G, and if the quotient space G/H is simply
connected, then the group 71G is the quotient group of the group 71 H (see [9],
Propositions 8 and 9 of Lecture 12).






Appendix

6.A Limits of diagrammes over an arbitrary cat-
egory

A diagramme scheme is a set divided into two subsets and equipped with two
maps of the second subset into the first. The elements of the first subset are
called the wertices of the scheme, and the second - its arrows. The case of an
empty set of arrows is not excluded. By the condition, two vertices a and B
correspond to each arrow . It is said that the arrow « is an arrow from a to b
and write @ : a — b.

A morphism of a diagramme scheme @ into a diagramme scheme @ is an
arbitrary map @ — @' that translates vertices into vertices, arrows into arrows
and such that if a > a’, b~ b, e o anda:a — b, thena :d —b'.

It is clear that each category is a diagramme scheme (we ignore here the
differences between “small” and “large” categories). The morphism & — o
of the diagramme scheme & into the category & (considered as a diagramme
scheme) is called a diagramme of the type D over the category .

This formal definition is an explication of the intuitive concept of a dia-
gramme, which has been quite enough for us so far.

If the diagram scheme 2 does not contain arrows, then diagrams of the type
2 are nothing more than a family of objects of the category &, whose indices
are the vertices of the scheme 9.

A (straight) cone over the diagramme d : @ — o with vertex @ is a family
of morphisms j, : d(a) > 9D, a € D, and a category &, such that for any arrow

225
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a:a — b from D, the diagramme

d(a)

d(a)

N A

7

d(b)

is commutative (j, = jp o d(a)). The morphism of the cone j, : d(a) — 2 into
the cone j,, : d(a) — @ is a morphism ¢ : @ — P’ of the category & such that
for any vertex a € & the diagramme

d(a)

D D
@

is commutative. All cones above the diagramme d and their morphisms form,
obviously, a category. We will denote this category with the symbol g(il_e)(d).

In the case when the scheme 2 has the form - « - — -, diagrammes of the
type 9 are pairs of morphisms iy : C — A, i : C — B in the category </, and
we get cones over pairs (ia,ig) in the sense of Lecture 1.

In the case when the scheme & has no arrows and, therefore, diagrammes
of the type 9 are families of {A,,a € D} then objects of the category o, cones
over {A,,a € D} are families of morphisms j, : A, — D, and their morphisms
are ordinary morphisms of families.

Definition 6.50. The limit of the diagramme d : & — o is the vertex D of
the initial object of the category Cone(d), i.e. a cone {j, : d(a) — D} such that

for any cone {j/a :d(a) — D'} € Cone(d) there is a single morphism ¢ : D — D’

from {j,} to {j,}. It is also said that the object D is the limit objects d(a) with
respect to morphisms j,.

d(a)

9 9

It is clear that the limit of the diagramme (when it exists) is uniquely defined
up to canonical isomorphism.

The limit of the diagram A « C — B is its pushout, and the limit of the
family {A,} is the coproduct (direct sum) Li,A, of objects A,.

Proposition 6.51. A limit exists for an arbitrary diagramme over each of the
categories End, Ens®, Ton and T opn°.



6.B. THE LIMITS OF DIAGRAMMES OVER THE CATEGORY OF GROUPS227

Proof. For diagrammes d : 9 — &ns over the category of sets &7 4, they will
be the coset of the disjoint union set Lid(a) of sets d(a), a € D, by the smallest
equivalence relation in which the elements x € d(a) and y € d(b) are equivalent
if in 9 there exists an arrow @ : a — bsuch that y = d(a)x. The same coset
will be the limit of the diagramme d : & — &7 4° over the category of pointed
sets &74° (due to the pointed nature of all maps d(a) based points of all sets
d(a) turn out to be equivalent and their equivalence class is taken beyond the
based limit point). Equipped with a coset topology, the same coset set will be
the limit of the diagramme d over the categories I ¢z and T o z°. O

Remark 6.52. It should be borne in mind that for many diagrammes, although
there are limits, they are of no interest. An example is the diagramme A —
C « B, the limit of which, as it is easy to see, is the object C (so in this case
the limit does not depend on the homomorphisms A — C and B — C). For
such diagrammes, the dual notion of the inverse limit is meaningful, which we
will not need yet.

6.B The limits of diagrammes over the category
of groups

We will need the above general concepts for the case of the category of groups
Er . At the same time, in order not to stray far from the traditional notation,
for an arbitrary diagram d : & — E#»n, we will denote the group d(a) with the
symbol G,.

Proposition 6.53. For any diagramme d : D — E»p, li_r)nd eTists.

Proof. Recall that a word over the set Y is an arbitrary expression of the form
y1y2+:--yx where k > 0 and yi,y9,...,yx € Y. The product of the words
V1,2, ..., Yk and y;,y;, o ,y; is called the word yi,ys,... ,ykyll,ylz, .. ,y;,.
With respect to the multiplication of words, the set M(Y) of all words over
Y is a monoid (associative unitoid). The unit of this monoid is the empty word
D.

Proposition 6.54. The monoid M(Y) is a free monoid generated by the set Y,

i.e., for any monoid M and any map ¢ : Y — M there exists only one monoid
morphism ¢ : M(Y) — M, extending the map ¢ (this morphism is given by the
formula @(y1,y2, ..., yk) = e(y1)e(y2) - - 0(yi)).

We will apply this construction to the construction of the limit limd for
diagrammes d : @ — Z#pn, taking for Y the disjunct union of all groups G,
a € P, and considering in M(Y) the smallest congruence (equivalence relation
consistent with the multiplication) for which

(a) x ~ d(a)x for any element x € G, and any arrow @ : a — b;

(b) xy ~ z for any elements x, y, z € G, for which xy = z in the group G;
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(c) x ~ @ if the element is x € G, is a unit of the group.

Let G(© be the coset monoid of the monoid M(Y) by this congruence. Since
for each word & = y; -+ yx € M(Y) the word &' = y;l e by;1 has, by applying
conditions (b) and (c), the property that £€£7' ~ @ and é7'¢ ~ @, then the
monoid G°) is a group. Let jc(lo) : G4 — G'9 be the composition of the
embedding G, — ¥ — M(Y) and the factorisation map M(¥Y) — G©. By
applying conditions (b) and (c) each map j, is a homomorphism of groups,
and by applying condition (a), the family of homomorphisms jc(,o) is a cone
over the diagramme d. In addition, for any cone {j, : G, — G} over d, the
homomorphism ¢ : M(Y) — G, continuing the map Uj, : ¥ — G, obviously
has the property that ©(£) = ¢(n) for any equivalent words &,n7 € M(Y), and
therefore induces a homomorphism ¢ : G0 — G, being a morphism of the
cone {jt(lo)} to the cone {j,}. Since there is no other morphism {j((zo)} - {ja}
obviously can exist, this proves that the constructed group G°) is the limit of
diagramme d. O

To describe the group G(©) more explicitly, we can use the method of gen-
erators and relations.

6.C Co-presentations of limits

Recall that a group F with a subset of X allocated in it is called a free group
over X (and X is the set of free generators of the group F) if for any group
G each map f¢ : X — G extends in a unique way to some homomorphism
¢ : F — G. It follows directly from this definition that free groups with sets of
equal-cardinality of free generators are isomorphic.

At the same time, it turns out that

Proposition 6.55. for any set X there ewists a free group F(X) over X.

The elements of this group are group words over X, i.e. expressions of the
form

x{Tag? gk, (6.56)
where ay,as,...,a; (the case of k = 0 is not excluded) are nonzero integers,
and x1,x2,...,x; are elements of X such that x; # x;41 for i = 1,2,...,k — 1.

In this case, a word of the form x*! is identified with the element x € X (to
ensure the inclusion of X ¢ F(X)). The multiplication of words consists in their
attribution to each other, accompanied by the “reduction of similar terms”,
so that, in particular, the word (6.56) turns out to be a product of elements
x1,%2,...,x; of degrees x{", x5, ..., x;*. All axioms of the group, with the
exception of associativity, are checked without difficulty (by the unit of the
group F(X) is the empty word @, and the word inverse to the word (6.56) is
the word x, “, ..., x,“*x“"). As for associativity, its direct proof is somewhat
difficult, and we will postpone it for now.
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Proof. Having thus temporarily taken on faith that F(X) is a group, we can
already quite automatically check that this group is free. Indeed, if the homo-
morphism ¢ : F(X) — G extending the map ¢ : X — G exists, then

PG ) = P(x) M P(x2) 2 - B ) = o(xn) M p(x2) -+ (i)

for any word (6.56), and hence this homomorphism is defined in a unique way.
To prove its existence, it is necessary, as always in similar situations, to take
the resulting formula as a definition, i.e. for any word (6.56) put

Py g - xE) = p(xn) @ p(x2) 2 - plxg)
It is obvious that in this way we get a homomorphism ¢F(X) — G, extending
the map ¢ : X — G. O

The assignment of an arbitrary group G by the generators and determining
relations (called, according to the proposal of A. M. Vinogradov, the “copre-
sentation” of the group; however, recently Yu. I. Merzlyakov proposed a more
expressive term - the genetic code) consists in the assignment of some a set X,
whose elements are called generators, and some subset R of a free group F(X),
whose elements are called defining relations. Let Fr(X) be the coset group of the
group F(X) by the smallest normal subgroup [R] g of the group F(X) containing
the set R. They say that the pair (X; R) > is a copresentation of the group G,
and write G = (X; R) if some isomorphism is given ¢ : Fr(X) ~ G, or, equiva-
lently, some epimorphism ¢ : F(X) — G with kernel [R]r. This epimorphism
is uniquely determined by the elements X = ¢(x) of the group G. Admitting a
certain liberty, the elements x are usually denoted simply by x (this is generally
accepted, although not very successful, since it may well happen that for vari-
ous elements x1,x2 € X in the group G will take place equality X; = x3). Each
element of the group G will then be represented (generally speaking, not in only
one way) as a product of the powers of the elements x € X. This explains the
use of the term “generators” in relation to these elements.

For clarity, the equality G = (X; R) is often written as G = (X;r = 1,r € R)
and just G = (X;r1 =1,...,rpm=1)if R={ry =1,...,ry, = 1}. Moreover, if
some word r € R has the form r = a~'b, where a,b € F(X), then a = b is also
written instead of r = 1.

If now for some diagramme d : @ — Z#»p over the category E»pn the
following presentations are given

Go=(Xa;Ry), a€9,

of its groups G, then we can easily write a co-presentation of the limit G = lim d
of this diagramme. For any arrow @ : a — b of the diagramme scheme & and any
generator x, € X,, we will represent the element d(a)x, of the group G, (i.e.,
more precisely, the element d(a)x,) in the form of some (generally speaking,
not unique) group word &(x4, @) from the generators of X,. By entering for any
a € D the epimorphism ¥, : F(X,) — G, with the kernel [R,]F, we can more
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formally define the word &(x,, @) as an element of the group F(Xp) satisfying
the relation

(d(@) o pa)xq = op(E(xa, @)).

Let
X =Ugea X,

be the disjoint union of all sets X,, a € &. Denoting for any arrow a : a — b
from @ with the symbol R, the set of all words over X of the form x,¢(x,, @),
Xq € Xg, we will put

R= (UaGQRa) U (UQGS.JZRQ/)-

Proposition 6.57. The pair (X;R) is a co-presentation of the limit of dia-
gramme d:

limd = (X;R).

—

Proof. We should construct an epimorphism F(X) — G(©) from the free group
F(X) to the group G©) = lim d, the kernel of which is the normal subgroup [R]r.
We show that this epimorﬁsm can be taken as an extension of ¢ the map X —
G© | which is on each term X, a restriction of the map j, 0 ¢4 : F(X,) — G©).
It is clear that the homomorphism ¢ is an epimorphism and that ¢(r) = 1 for
any word r € R, i.e. that [R]F C ker ¢ (we consider all groups F(X,) naturally
embedded in the group F(X); by applying this agreement ¢|r(x, = ja © o and
therefore ¢(ry) = ja(@a(ra)) =1 forR any word r, € R, and

@(xglf(xa»a)) =(Ja o ¢a)(xa)71(1.b o ¢p)(£(xas @)
= (]u ° ()Du)(xa)_l(jb ° d(a')‘pa)(xa)
=(Jao ‘;Oa)(xa)_l(ja °@a)(xq) =1
for any word x,'&(x,,a) € R,). Thus, only the reverse inclusion needs an
additional proof.
With this in mind, consider the canonical epimorphism ¢ : F(X) — Fg(X)
with kernel [R]p. Since for any vertex a € & there is an inclusion [R,]r C

[R]F N F(X,), then there is a homomorphism ¢, : G, — Fr(X), closing the
commutative diagramme

YlF(xa)
F(Xa) —% Fr(X)

o| AT

Ga

Since for any element x, € X, and any arrow a : a — b, the word x,'¢ (x4, @)
lies in the kernel of the epimorphism ¢, then

Wb o d(a)(pa(xa) = Wb 0 @p)(£(xq, @) = Y (£(xa, @)
=Y (xq) = ¥a(@a(xa)),
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and, therefore, ¢, o d(a) = ¥, (because the elements ¢,(x,) = X, generate
the group G,). Thus, the map ¢, : G, — Fr(X) make up a cone over the
diagramme d, and therefore there is a homomorphism 1 : G(©) — Fz(X) such
that 10 j, =y, for any a € 2. But then

/lo¢|F(Xa =A0ja00q=Yq0 ¢4 =W|F(Xaa
and, therefore, A o ¢ = . Therefore, ker ¢ C keryy C Rp. O

Ezample 6.58. The coproduct U,G, of a family of groups (the limit of the
diagram without arrows) is called the free product of these groups. According to
Proposition 6.57, the co-presentation of the free product is obtained by combining
the co-presentations of the multipliers: if G, = (Xa; Ra), then

UaGa = (UaXa; UgRy).

Generally speaking, the co-presentation from Proposition 6.57 is not the
most economical and can often be simplified.

Let G = (X;R), and let S be an arbitrary subset of [R]r. Then it is clear
that G = (X;R U S). Similarly, G = (X U {y};R U {y~1¢}), where y is an
arbitrary character not contained in X, and ¢ is an arbitrary word from F(X).
Transformations of the co-presentation (X; R) into the co-presentations (X; RUS)
and (X U {y}; RU {y~1&}) (as well as inverse transformations) are called Tietze
transformations.

Remark 6.59. It can be shown (this statement is known as Tietze’s theorem)
that two “finite co-presentations set the same (= isomorphic) groups if and only
if when they can be translated into each other by Tietze transformations. How-
ever, this theorem does not indicate any way to find these transformations, and,
moreover, it can be shown that there can be no algorithm that allows this to
be done. In this respect, defining a group by generators and defining relations
is highly ineffective.

Nevertheless, in many situations, the Tietze transformations make it possible
to significantly simplify presentations.

Example 6.60. Let the scheme 2 have the form - « - — - that is, we are

dealing with a push-out of the G diagramme A &L oL o Let, further,
define A = (X;R), B = (Y;Q) and C = (Z;P). For any generator z € Z, we
denote by &,, and 7, the group words over X and Y, which are expressions
through the generating elements is(z) € A and ig(z) € B. Then, according
to Proposition 6.57, the push-out G will have a co-presentation of the form
(XUYUZ;RUQUPUUUYV), where U is the set of all words of the form z'&,,
z € Z, and V is the set of all words of the form z7'n,, z € Z. But since the map is
is a homomorphism, an arbitrary word from P after substitution instead of each
element z € Z of the corresponding word &, will be a consequence of the relations
from R (i.e. it will belong to the normal subgroup [R]r). This means that all
the relations from P are a consequence of the relations from R and U (as well
as, of course, the relations from S and V), and therefore they can be painlessly
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removed from the presentation of the group G (the first Tietze transformation).
Further, it is clear that any pair of relations of the form z71¢, =1 and z7'n, = 1
is equivalent to the relations z7'¢, = 1 and &, = n,. Therefore, by preserving
U (as well as R and Q), we can replace V with a set of relations W of the form
&, = n,. But after this replacement (and removing the relations from P), each
z € Z will appear only in one relation z7'¢, = 1, and therefore, by throwing
out z and this relation, we will not change the group G (the second Tietze
transformation). This proves that

Proposition 6.61. for A = (X;R),B = (Y;Q) and C = (Z;P) the push-out G
diagramme A «<— C — B has a co-presentation of the form

G=(XUY;RUQUW),
where W is the set of all relations of the form &, =n,, z € Z.

Ezample 6.62. If in the previous example the group C is a unit group, i.e. if we
are talking about a diagramme A < 1 — B, then the push-out G will obviously
be a free product of the groups A and B. If the unit group is the group B, then
the push-out G will have a presentation of the form

G =(X;RUW),

where W is the set of all relations of the form &, = 1, and therefore will be a coset
group of the group A = (X; R) by a normal subgroup generated by all elements
&, or, more precisely, elements i(z), z € Z, where i =i4. Since the last subgroup
is obviously nothing more than the smallest normal subgroup containing the
image imi = iC of the homomorphism i, we get, therefore, that

Proposition 6.63. the push-out of the diagram A «— C — 1 is the coset group A’
of the group A by the smallest normal subgroup containing the subgroup iC (the
corresponding initial cone will be the natural epimorphism A — A/).

Of course, this fact is easily established and directly from the definition of
push-out.

6.D The structure of the free product of groups

In Example 6.62, we managed to eliminate - at least from the formulation, if not
in essence - the generators and defining relations, which should be considered as
a certain achievement in the direction of the efficiency of the description of the
limit. Interestingly, a similar (but, perhaps, much more difficult) elimination
can be carried out in the situations of Examples 6.58 and 6.60.

For any diagramme d : @ — €, the group G©) = H_I)nd is generated, of
course, by images of groups G, with homomorphisms j((lo) : Gy — GO e,
any element g of the group G'© can be represented as a product gigs--- g«
each multiplier of which belongs to one of the groups G, (or, more precisely,
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is the image of some element of the group G, with the homomorphism jflo)).

For g # 1, we can assume that this presentation is reduced, i.e. that none
of the factors g1,g2,...,8k is a unit of the corresponding group and any two
neighbouring factors belong to different groups. Naturally, in the general case|
even the reduced presentation is not unique (at least due to the fact that the
homomorphisms jéO) are not, generally speaking, monomorphisms). However,
it turns out that in the situation of Example 6.58, i.e. in the case when G =
UaGa, the reduced presentation of the elements of the group G, i.e. from an
equality
818Kk =81"""8

of only the two reduced products, it follows that k = ¢ and g; = g;. for any
i=1,...,k. In particular, this means that

Proposition 6.64. the natural homomorphisms jéo) : G, — UG, of the groups
G, in their free product UG, are monomorphisms, and therefore the groups G,
can be considered subgroups of the group UG, (which, by the way, justifies our
notation a posteriori).

The natural way to prove this statement (avoiding, by the way, the trouble
with presentations) is to consider for these groups G, the set G of all reduced
words, i.e. words g1,---gx over a disjoint union of all groups G, in which
all elements g1, ..., g, are not units of the corresponding groups and any two
neighbouring elements belong to different groups, and prove that:

1) with respect to the natural multiplication operation, which consists in at-
tributing words to each other and then reducing the resulting word, the set
G is a group;

2) natural embeddings j, : G, — G, (matching the same element to each
element of g # 1 of the group G, but considered as a reduced word longer
than 1) constitute an initial cone (and, therefore, by applying the unity of
the initial cone, the group G is isomorphic to the group G).

Proof. Point 2) of this program does not cause any difficulties: for any family
of homomorphisms j, : G, — G the formula

p(g1---8k) = Ja, (81) -+~ Jay (k)

where ay,...,a; are indexes such that g; € Gg,,....8k € Gg,, well defines a
homomorphism ¢ : G — G satisfying the relations j, = ¢ o j, and no other
homomorphism G — G satisfying these relations obviously can exist.

However, point 1) encounters - again with regard to proving the associativ-
ity of multiplication - serious combinatorial difficulties. To get around these
difficulties, van der Waerden proposed the following artificial technique.

For each index a € &, we define the action of the group G, on the set G,
assuming for any element g € G, and any reduced word & = g1g2---gx € G
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8182 " 8k if g=1,
g if g¢#1, and Ga,
JURID LTI S 81 ¢ Ga (6.65)
¢80 8k if g1€Ggand g =gg1 #1,
g2 &k if g1€Ga and gg1=1~

An automatic verification shows that these formulas really define the action
of the group G, on the set G, ie. 1& = ¢ and (g'g)¢ = g (g&) for any word
& € G and any elements g',g € G,. It is clear that this action is effective,
i.e. considered as a homomorphism of the group G, to the group AutG of
all permutations (bijective maps to itself) of the set G, it is a monomorphism.
Therefore, we can consider the group G, as a subgroup of the group AutG.
Let G be a subgroup of the group Aut G generated by all groups G,. Each
element of the group G other than one admits a reduced presentation of the
form g;--- gk, where g1 € G4, ... 8k € G, all elements g1, ..., gk are different
from one and no two neighbouring elements belong to the same group. We will
denote this element with the symbol &, where ¢ is the reduced word g; - - - g from
G (the difference between E and ¢ is that ¢ is obtained by formally attributing
the elements g1,...c,gx to each other, and g? is a permutation consisting of
sequentially performing permutations 81,-.-,8k)- It is clear at the same time
that by the map ¢ — f of the set G to the group G described in paragraph
1) a multiplication in G translates into a multiplication in the group G (i.e., is
a homomorphism). On the other hand, it follows directly from formulae (6.65)
that £(@) = £ for any word & € G (where @ is an empty word from 5) Therefore,
& =7if and only if & = 1, i.e. the map & — £ is bijective and therefore is an
isomorphism. Thus, the unitoid G is isomorphic to the group G and, therefore,
is itself a group. m|

Thus, we have obtained a completely satisfactory description of the algebraic
structure of the free product UG,,.

In particular, we can now prove that the multiplication of words (6.56) is
associative, i.e. that the unitoid F(X) is a group. Indeed, if the set X consists
of only one element, then this fact is obvious, and the group F(X) will in this
case be an infinite cyclic group. Comparing the definitions now, we immediately
find that in the general case, the unitoid F(X) is nothing more than the unitoid
G for infinite cyclic groups G4 = F({x4}), where x, runs through it a set of X.
Hence, F(X) is a group.

In addition, we have obtained that

Proposition 6.66. any free group is a free product of infinite cyclic groups.

Similar results can be obtained in the situation of Example 6.58 if we addi-
tionally assume that both homomorphisms i4 and ig are monomorphisms, i.e. if
in fact we are dealing with two groups A and B in which isomorphic subgroups
of A" = imig, B =imip and an isomorphism is given i = ig o i;l A" > B. In
this case, the push-out of the G(©) diagramme A & ¢ 5 Bis called the free
product of the groups A and B with the joined subgroup A" = B'.
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It turns out that for this free product, the homomorphisms j4 : A — G(®
and jg : B — G are also monomorphisms, i.e. the groups A and B are
naturally embedded in the group G(®). Let A” be a system of representatives
of the right coset classes of the group A by the subgroup A" other than the
subgroup A’, i.e. such a subset in A that any element of a € A\ A" is uniquely
presented as a'a”, where a' € A, a” € A”, and let similarly B” be a system
of representatives of the right coset classes of the group B by the subgroup B’
other than the subgroup B'. Then it turns out that

Proposition 6.67. any element of the group G©) is presented in the unique
way as a product of a'c¢1---cx, wherea € A', and cy,...,cx € A UB", and if
ci € A", then c;41 € B", and vice versa.

We need this fact only for a clearer presentation of the structure of concrete
examples, and therefore we will leave it without proof (which even after the
improvement of van der Waerden’s software remains very painstaking).

6.E The Seifert-van Kampen theorem

Now let’s return to topology.

Let X be a connected topological space, {X,} be its covering consisting of
connected subspaces, and & be a diagram scheme whose vertices are the indices
a of the cover {X,}, and the arrows are pairs (a, b) such that X, C X, (meaning
that the pair (a, b) is an arrow a — B). Thus, the covering {X,} naturally turns
out to be a diagramme of the type 9 over the category T ¢ .

If the space X is pointed and all subspaces X, contain a base point, then
the covering {X,} will be a diagramme of type & over the category I ¢z, and
the groups G, = 7; X, and homomorphisms G, — G} induced by X, C X, with
attachments X, — Xp, will form a diagramme of groups of the type &. We will
denote this diagramme with the symbol {71 X,}.

It is clear that the homomorphisms i, : 711X, — 71X induced by the em-
beddings of X, — X make up the cone {i, : 11X, — 71X} over the diagramme
{m1X,} with vertex m1X.

A covering {X,} is called saturated if the intersection of any two of its ele-
ments is also a covering element. From any covering, you can move to a satu-
rated covering by adding all possible finite intersections of its elements (but the
condition of connectivity of the covering elements may be violated).

Theorem 6.68. For any pointed connected space X and any of its saturated
covering {U,} consisting of connected open sets U, containing the base point,
the fundamental group m1X of a space X is the limit of groups m1U,,

mX = li_H}{ﬂan},

with respect to homomorphismsi, : myU, — m1 X, induced by attachments U, —
X.
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In a very special special case, this theorem was first proved by Seifert and
almost simultaneously by van Kampen. For a long time it was called the van
Kampen theorem, but now it is more often called the Seifert-van Kampen the-
orem. In fact, Crowell seems to have proved it for the first time.

We will break the proof of Theorem 6.68 into a series of lemmas.

Lemma 6.69. Under the conditions of Theorem 6.68, the group m1 X is gener-
ated by images of groups m1U, with homomorphisms i,.

Proof. Let @ = [u :: (I,I) — (X,x0)] be an arbitrary element of the group mX.
Then if 1/n is less than the Lebesgue number (see Appendix 1.11 to Lecture 1)
of the preimage of the covering {U,} by the map u, then for any k = 1,...,n
there exists an index ay € 9 that the segment I = [(k —1)/n, k/n] passes when
u is mapped to the open set Uy, , i.e. the path uy : I — X defined by the formula

t+k—-1
uk(t):u(+—), iel,
n

is actually a path in U,,. This path connects the point xx_; = u (%) (being
at k = 1 the base point xg) with the point x; = u (%) (at k = n, also being the
base point xg). For k < n, the point xx belongs to the set U, N U,,,,, which
is by condition an element of the covering {U,}, and therefore connected and
containing the point xo. Therefore, in U,, NU,,,, there is a path wy connecting
the point xg with the point x;. For £ = 0, we will assume that this path is a
constant path. For k = n, we will also take a constant path for v,. Then for
any k=1,...,m in Uy, the loop v = wk_lukwlzl will be deﬁned and in X the
product vyvs---v, of all these loops will be homotopic rel I to the product of
uyus - - - u, of paths uy, i.e. it will be homotopic to the loop u. This proves that
the elements B = [vi] of the groups 71U, have the property that the element
« is the product of the elements i, (Br). Therefore, the group 71X is generated
by the subgroups i, (m1U,). O

We will call a loop u elementary if it is contained in one of the elements of
the cover {U,}, and a loop subordinate to the cover {U,} if it is a product of
elementary loops. In this terminology, Lemma 6.69 states that

Proposition 6.70. any loop of the space X is homotopic to rell the loop sub-
ordinate to the covering {U,}.

Loops u and v subordinate to the covering {U,}, we will call elementary
homotopy if u = uir'us and v = uyv us where uy, us are loops subordinate to
the covering {U,}, and u’ and v' are elementary loops, contained in the same
element U, of the coverings {U,} and homotopic rel [ in U,.

Lemma 6.71. Loops u and v subordinate to the covering {U,} are homotopic
if and only if when they are subordinately homotopic rel .
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Proof. 1t is clear that subordinate homotopic loops are homotopic. Conversely,
let the loops u and v subordinate to the covering {U,} be homotopic, and let
F : I x1— X be the homotopy connecting them rel /.

For any N > 0, consider the squares into which the square 7 x I is divided
by the lines s = k/N and t = /N, where k,£ =0,1,...,N. Each such square is

given by two numbers k,£ =1,..., N and consists of all points (s,7) € I x I for
which
k-1 k -1 4
<s<—, — <t —.
N N N N

We will denote this square with the symbol I,f(,.

The reasoning already known to us from the proof of Lemma 6.69, using the
Lebesgue number to the covering {F~'U,}, shows that for a sufficiently large
N, each of the sets F (I,f[) is contained at least in one element of the coverings
{U,}. Assuming that N has this property, we denote for any k and ¢ by a(k, €)
one of the indexes of a for which F(Iz[) C U,. Then the map F, bounded to
the upper side of the square I]%’é,, will be some way in Ugx,¢). We will denote
this path with the symbol uy,. Taking into account the transformation of the
parameter, it is determined by the formula

e = F (L O
Uke - N ’N ’ ’

We will also introduce the path Vi : I — Ugyx,¢), defined by the map F on the
right side of the square 1134’:

k t+(-1
Ve(@)=F|—=,———]|, tel,
Vie (1) (N N )
Then on the lower side of the square I,f , the map F will define the path #y ¢
and on the left - the path vi_1 . Therefore, on the entire square I]f ¢» the map

F will define the homotopy rel I connecting the path % 1V, with the path
Vk_l,gﬁkg. Thus

Uk,e-1Vke ~ Vi-1,eUke  rell in Uy,

Each point of the form (i/N, j/N) is the vertex of four (or fewer) squares
I,f’{,. Let Up(;,j) be the intersection of the corresponding sets U, (k,¢) - Thus, in
particular, Uy, jy C Uak,ey at (i, ) = ((k = 1,¢), (k,€) and (k,€ - 1).

Let k,¢ = 1,...,N. Consider the set Up,). This set is connected and
contains the points xo and xxs = F(k/N,{/N). Let wye be an arbitrary path in
Up(k,¢y connecting the points xo and xx, (and being a constant path if xo = xz¢).
Then in Ugk,¢) loops will be defined

— -1 - -1
Uke = Wi-1,0UkeWrp  and  Vig = Wi p 1VieWyg s
and homotopies will take place for these loops

Uk £-1Vke ~ Vi-1,0Uke rel/ in Ua(k,t)- (6.72)



238 LECTURE 6.

Let us now focus our attention on the polylines in the square I X I connecting
its lower left vertex (0, 0) with its upper right vertex (1, 1) and consisting of the
sides of the squares I]f’ ;- For each such polyline, we will match a loop that is
the product of elementary loops uz, and vi, corresponding to the sides of this
polyline. Since we can move from any polyline to any other polyline a sequence
of elementary steps, at each of which two sides of one of the squares 113{ are
replaced by its other two sides, it follows directly from the formula (6.72) that

Proposition 6.73. the loops corresponding to any two polylines are subordi-
nately homotopic.

Therefore, in particular, the loops are subordinately homotopic

U =uijoU2p - UNOVN1VN2" VNN

and
V. =7VooVo1 - VONUNIUNZ2 " UNN

corresponding to polylines consisting of (subdivided) sides of the square I X I.
But by construction, all loops vy1vne - - vyn and vggvor - - - vont are constant
loops (at the point xo) and, therefore, the subordinated loops u” and v’ are homo-
topic to the loops u = UigUag -+ + - UNo and v = UN1UN2 - - UNN, corresponding
to the lower and upper sides of the square I X I.

Let us now recall that, by the condition, the loop u is, firstly, the restriction
of the map F on the lower side of the square I X I, and secondly, it is subordi-
nated to the covering {U,}, i.e. is the product ujus - - - u, of the element loops
ui,Uus...,u,. Since all of the above is true for any sufficiently large N, we can
additionally require that the number N be divisible by n, i.e. have the form
N =nM, and, consequently, that each loop u;,i = 1,...,n, is the product of the
paths uyo with (i — 1)M < k < iM. At the same time, by the condition for any
i=1,...,n, there is an index a; such that the loop is, and therefore every path
uxo with (i —1)M < k <iM, is contained in U,,. It is clear that, without loss of
generality, we can assume (by increasing, if necessary, M) that U,, contains not
only the path o (i.e., more precisely, the image when map F to the lower side
of the square I,Ef))), but the image F (I,(cﬁ)) of the total square I ,E?J). This means
that for (i — )M < k < iM we can assume that there is an equality a(k,0) = q;
and, consequently, that each loop Uro = wi—1,0lkowy, With (i—1)M < k <iM is
a loop in Ug,. Therefore, the product ul of these loops will be in U, homotopic
to the product of the paths Uy, i.e. it will be homotopic to the loop u;. This
proves that the loop

”

ro
u =M10M20"'MN0=L£1M2'”M

’

n

is subordinately homotopic to the loop u = ujus - - - u,.

Similarly, it is proved that (for possibly even larger N) the loop v" is subor-
dinately homotopic to the loop v.

Thus, there are subordinate homotopies

” ’ ’ ”

U~NU ~U ~V ~V ~V,
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and, therefore, the loops u# and v are subordinately homotopic. O
Now we have everything ready to prove Theorem 6.68.

Proof. (of Theorem 6.68) We need to show that for any cone {j, : m;U, — G}
over the diagramme {m;U,} there exists a morphism ¢ : 711X — G of the cone
{ig : mU, — m X} to the cone {j, : myU, — G} and that this morphism is
unique. But if such a morphism exists and if @ = iy, 81 - ig,B2 - =+ ia,Bn -
presentation of the element o € 71X as a product of elements of the form i,p8,
a €9, BemU, (existing by Lemma 6.69), then

0(@) = ja,P1 ja B2 JanBn- (6-74)

Hence, the morphism ¢ is unique. Therefore, everything will be proved if we
show that formula (6.74) well defines some map ¢ : mX — G (which will
automatically be a homomorphism of groups and a morphism of cones), i.e.
that equality

laB1laB2---- ianﬁm =iby Y1 Y2 b, Ym (6'75)

follows the equality

jalﬁl . jagﬁQ """ janﬂm = ja171 ' juﬂz IR jan')/m~ (676)
Let uy,uo, ..., u, be arbitrary loops of classes 81, 82, ..., Bn, and vi,va, ..., Vi,
be arbitrary loops of classes y1, 2, ..., ¥m- Consider subordinate coverings {U,}

for loops u = ujus -+ u, and v = vivy---vy. Equality (6.75) means that these
loops are homotopic. Therefore, according to Lemma 6.71, they are also sub-
ordinately homotopic. Thus, it is sufficient for us to prove Equality (6.76) only
in the case when the loops u and v are subordinately homotopic. Moreover,
for obvious inductive reasons, it is sufficient to prove this equality only for ele-
mentary homotopy loops u and v, i.e., in other words, for the case whenn = m
and B1 = y1, - Bn = Ym- In turn, it is enough, obviously, to prove that if the
elementary loop u : (I,I) — (X, xg) is contained in the elements U, and U, of
the covering {U,}, then for the elements [u], and [u]; of the groups m1U, and
m1Up, defined by this loop, considered as a loop in U, and in U, respectively,
the equality takes place in the group G

ialula = jululp. (6.77)

Let U. = U, N Up, and let [u] be an element of the group n1U. defined by
the loop and, considered as a loop in U.. Then [u] — [u], and [u] — [u]p
with homomorphisms induced by the corresponding embeddings. Therefore,
by applying the defining property of the cone in the group G, the equality
Jelul = jalula and j.[u] = jp[u]p, and hence Equality (6.77).

Thus, Theorem 6.68 is fully proved, O
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6.F Consequences of the Seifert-van Kampen the-
orem

Using Theorem 6.68, the fundamental group of the bouquet of any well-pointed
spaces is easily calculated.

Proposition 6.78. The fundamental group m1(X VY) of the bouquet X VY of
two connected well-pointed spaces X andY is the free product of the fundamental
groups of these spaces:

71'1(X \% Y) =mXumY.

Proof. By the condition, the base point xo has in the spaces X and Y (now
automatically linked) neighbourhoods U and V such that U \ xg and V \ xo.
Consider in the bouquet X VY open sets

U=XuUV, V=UUY
and their intersection U NV’ = U v V. According to Theorem 6.68, the group
m1(X VY) is a push-out of the diagramme
mU « 7r1(U, N V/) —mV.
But it is clear that U \y X, V' \y ¥ and U NV N\, xo. Therefore, this push-out

is isomorphic to the free product 71 X U mY O

Of course, the analogue of proposition 6.53 also holds for a bouquet of any
number of well-pointed spaces, i.e.

m1(VaXa) = Ugmi Xq
for any well-pointed spaces X,.

Corollary 6.79. As a consequence, the fundamental group of the bouquet of
circles is a free group:

m1(VaSL) = F(A). (6.80)
Here F(A) is a free group, the set of free generators of which is the set of indices
of the number the circles of the bouquet V,SL.

Remark 6.81. The reasoning used in the proof of Proposition 6.78 is of a very
general nature. It is applicable to any family of subspaces {X,} of the space
X (generally speaking, not even a covering) for which there exists a saturated
open covering {U,} of the space X such that:

1) for any index a, there is an inclusion of X, c U, and the corresponding
embedding X, — U, induces a isomorphism 71X, ~ 71U, (so it will be for
example, in the case when U, \, X,);,

2) for any pair of indices a and b, the inclusion X, C X, takes place if and only
if U, c Up holds.

It is clear that
Proposition 6.82. for any such family

h_n)l{ana} =mX.



6.G. GRAPHS 241

6.G Graphs

We will verify the Seifert-van Kampen theorem in Lecture 192, but for now
we will consider one simple but important class of topological spaces whose
fundamental groups can be easily calculated using the previous corollary.

Definition 6.83. A Hausdorff space X is called a graph if a nonempty discrete
subspace X is allocated in it (the points of which are called vertices of the
graph X) such that

1) the complement X \ X° is a disjoint union of open sets, each of which is
homeomorphic to the open interval (0, 1) (these sets - as well as their closures
- are called edges of the graph X);

2) for any edge e C X \ X, there exists a continuous map u : I — X (called the
characteristic path of this edge), the image of which is the closure e of the
edge e and which is on the inside of (0, 1) of the segment [ is homeomorphic
to the edge e;

3) any set C C X is closed (open) if and only if, for any edge e, the intersection
of CNne is closed (open) in e.

A graph is called finite if it has only a finite number of vertices and edges.
For any finite graph, condition 3) is automatically fulfilled.

Since the space X is Hausdorff by condition, it follows from condition 2) that
the boundary é = e\ e of each edge consists of one or two vertices, and in the
first case the set e is homeomorphic to a circle, and in the second case to the
segment 1.

If ¢ is homeomorphic to the segment I, then the edge e is called a simple
edge, and the points from é are called its wvertices. Otherwise, the edge e is
called loop-like edge. Such an edge, by definition, has only one vertex (however,
for the unity of formulations, it is often convenient to assume that a loop-like
edge has two, but coinciding vertices).

Every discrete space is a graph without edges. In a sense, the opposite
example of a graph is any bouquet of circles. This graph has only one vertex
and has no simple edges.

Remark 6.84. In graph theory (which, by the way, has undergone rapid devel-
opment in recent years due to a number of important applied studies), it is
customary to define a graph more abstractly as a collection of two sets (vertices
and edges) connected by some map that maps an unordered pair of vertices (pos-
sibly coincident) to each edge. Graphs in our sense are then called geometric
realisations of this kind of “abstract” graphs. This point of view (usually called
“combinatorial”) is completely equivalent to ours (which can be called “topolog-
ical”), because, as it is easy to see, abstract graphs are isomorphic if and only if
(in an understandable way) their geometric realisations are homeomorphic by
means of homeomorphisms that translate vertices into vertices.

2The transcriber guesses that Postnikov refers to Lecture 9 of “Cellular Homotopy”.
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From the equivalence of the combinatorial and topological points of view, it
follows that each topological property of graphs is equivalent to some of their
combinatorial property, i.e. a property formulated only in terms of vertices and
edges.

For example, it is clear that a graph is a bouquet of circles (topological
property) if and only if when it has only one vertex (combinatorial property).

To obtain similar statements regarding the properties of connectivity and
simple connectedness, we need to introduce a combinatorial analogue of the
concept of path.

We will call an arbitrary symbol of the form e an oriented edge of the graph
X, where e is some edge of the graph X, and € = 1. To each oriented edge e?,
we will arbitrarily match one of the vertices of the edge e, requiring only - in
the case when the edge e is simple - that the edge ¢® be matched by another
vertex of the edge e. The vertex mapped to the edge e?, we will call it the
initial vertex, and the other vertex of the edge e - in the case when the edge e is
simple - the final vertex of the oriented edge e®. For a loop-like oriented edge,
its only vertex will, by definition, be both the initial and the final one.

A graph whose edges are all oriented and whose initial and final vertices are
specified for them is called oriented.

Remark 6.85. Formally, the concept of an oriented graph is identical to the
concept of a circuit diagramme.

A word of the form v{*---v;" consisting of oriented edges of a graph X is
called a route in X if for any i = [,...,n — 1 the final vertex of the edge visi
coincides with the initial vertex of the edge vigﬁl. We also consider the empty
word @ (for which n = 0) to be a route.

A route w = v{* --- vy is said to connect the initial vertex xo of the edge v{*
with the final vertex y, of the edge v;". When xo = y,, the route w is called a
closed route with the pole xo. An empty route, by definition, is closed. Its pole
is considered to be an arbitrary vertex of graph X.

The concept of a route is the combinatorial equivalent of the topological
concept of a path. For routes, it is possible to construct a purely combinatorial
analogue of homotopy theory of path theory, and thus for any pointed graph X
- its “combinatorial” fundamental group, which turns out to be isomorphic to
its usual (“topological”) fundamental group 71 X. We will not do this (although
we strongly recommend that the reader independently conduct all the necessary
reasoning) and we will freely use topological and geometric considerations for
the study of combinatorial constructions.

For each edge e of the graph X, any two of its characteristic paths I — X
differ by some monotone map I — I. Since any two monotone maps I — I of
the same character (i.e. both increasing or both decreasing), as it is easy to see,
are homotopic rel I, we see, therefore, that all characteristic paths I — X for
edge e fall into two classes: paths of the same class (considered as paths in ¢) are
homotopic rel /, and maps of different classes are not homotopic. These classes
are naturally identified with oriented edges e*!, which thus gives a geometric
interpretation of the formally combinatorial concept of an oriented edge.
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We see, therefore, that each oriented edge, and therefore any route, we,
assuming an insignificant arbitrariness that disappears after the transition to
homotopy classes, can be considered as a path in X. (This is the reason why
routes are an adequate combinatorial analogue of paths. Of course, in order to
fully substantiate this thesis, it is necessary and, conversely, to interpret any
path in X - with permissible arbitrariness - as a route, but formally we will
not need it, and therefore in connection with our common, with the installation
explained above, we will leave this to the reader.)

In particular, we see that

Proposition 6.86. any closed route with xo as a pole well defines some element
of the group m1(X,xq)-

A route in a graph X is called simple if it contains neither matching edges
nor edges that differ only in orientations.

We will call a graph X connected if any two of its vertices can be connected
by a simple route. (The fact that this combinatorial notion of connectivity
coincides with the topological one will follow from our final results. Therefore,
we will not prove it here, although we strongly recommend the reader to prove
it now.)

A graph A is called a subgraph of the graph X if every edge (and every vertex)
of the graph A is an edge (vertex) of the graph X. It is easy to see that any two
vertices of a connected graph are contained in a finite connected subgraph.

6.H Trees

A connected graph T is called a tree if for any two of its vertices the simple
route connecting them is unique, i.e., which is obviously equivalent if there are
no non-empty simple closed routes in it. It is clear that

Proposition 6.87. no tree contains loop-like edges and that any connected
subgraph of a tree is a tree.

A tree consisting of only one vertex and having no edges is called a trivial
tree.

A simple edge e of a connected graph X is called branch if one (and only
one) of its vertices is not the vertex of any other edge. Its other vertex y is
said to have a branch eattached to the graph X' obtained from the graph X by
removing the edge e and the vertex x.

It is clear that

Proposition 6.88. for any graph X and any of its vertices y it is possible to
construct a graph X resulting from the graph X' by attaching a branch e at the
vertex y. At the same time, if X is a tree, then X will also be a tree.

On the other hand, it is easy to see that

Proposition 6.89. any nontrivial finite tree T contains a branch.
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Proof. Indeed, by applying finiteness in T, there is a simple route of maximum
length, and it is clear that the initial and final edges of this route are (by
applying maximality) branches. |

By obvious induction, it follows that

Proposition 6.90. any finite tree is obtained from the trivial by sequentially
attaching branches.

Now we can prove the main theorem of the topological theory of trees.

Proposition 6.91. Every tree T is contractible to any of its vertices xo (and
therefore simply connected).

Proof. Tt is clear that if the graph X is obtained from the graph X by attaching
a branch, then X \y X'. Therefore, for a finite tree T, Proposition 6.91 is proved
by an obvious induction on the number of edges.

Let the tree T be infinite. For any vertex x of a tree T in T, there exists a
finite connected subgraph T, (and, therefore, a tree) containing vertices xo and
x, and in this subgraph, the path u, connecting the point xy with the point x
(for example, we can assume that their path is obtained in the way described
above from a simple route connecting the vertices xg and x in Ty). Let e be an
arbitrary edge of the tree T. By choosing for e the characteristic pathu : I —» T
(which, due to the simplicity of the edge e, is a homeomorphism) and putting
x =u(0), y =u(1l), we construct a path v = uxuu;l. This path is given by the
formula

ux(3s), if 0<s<1/3,
v(s) =qu(3s-1), if 1/3<s5<2/3,
uy (3 - 3s), if 2/3<s<1,

and is a loop at the point x(, entirely contained in the finite subgraph 7, =
T, UTy Ue of the tree T. Since the subgraph T, is obviously a finite tree and
therefore, according to what has already been proved, is simply connected, the
loop v is homotopic to zero in T, and therefore in 7. This means that there
is homotopy G : I X! — T such that G(0,t) = G(1,t) = G(s,1) = xp, and
G(s,0) = v(s) for any t,s € I. But a simple elementary geometric construction
(which we will present to the reader) shows that there exists a continuous map
@ : I xI — IxI, which is a homeomorphism on the inside of the square I x I
such that

(0,1 - 3s), if 0<s<1/3,

@(s,0) =1(3s—1,0), if 1/3<s5<2/3,
(1,3s — 2), if 2/3<s<1,

and

¢(0,1) = (0,1), ¢(s,1)=(s,1), ¢(L1)=(11)

1

for any s, € I. It is clear that the formula H = Gog—"" well defines a continuous

map H : I X I — I having the property that
HO,t) =u,(1-1t), H(,t)=uy,(1-1t), tel,

6.92
H(s,0) =uy;, H(s,1)=x9, sel. ( )



6.1. CALCULATION OF THE FUNDAMENTAL GROUP OF GRAPHS 245

Using the fact that the map u is a homeomorphism, we will match any point
z € e and any number ¢ € [ to the point F(z,t) = H(s,t) of the tree T, where
s is a number from I such that z = u(s). It is clear that the resulting map
F :ex I — T is continuous.

On the other hand, it follows directly from formulae (6.92) that this con-
struction is consistent at each vertex x of the tree T, i.e., that the point F(x,t)
does not depend on the choice of the edge e whose vertex is x. This means that
we have well defined the map F : T X1 — T, which has the property that on any
subset of the form e x I it is continuous. But then this map will, by applying
condition 3) of Definition 6.83, be continuous and on the entire product T X I,
i.e. it will be a homotopy.

To complete the proof, it remains to note that, as directly follows from
formulae (6.92), the homotopy F connects the identity map T — T with the
constant map 7T — T. O

6.1 Calculation of the fundamental group of graphs

Now let X be an arbitrary connected graph. Consider the set T of all possible
subtrees (subgraphs that are trees) of the graph X. It is clear that for any family
of trees linearly ordered by embedding T) € T their union UT), is also a tree,
i.e., lies in T. This means that the (obviously non-empty) set T satisfies the
conditions of Zorn’s lemma and therefore contains a maximal element. This
proves that

Proposition 6.93. in any connected graph X there exists a mazimal subtree T .
It is easy to see that

Proposition 6.94. a tree T is maximal if and only when it contains all vertices
of the graph X.

Proof. (=): Indeed, if there are vertices in X that do not belong to the tree T,
then in X there is such a simple edge e that one of its vertices lies in 7', and the
other does not. Then T Ue will be under a tree in X containing a tree 7 and
different from T, which is impossible due to the maximality of T'.

(&): Conversely, let the tree T contain all vertices of the graph X. Then for any
vertex x € X% in the tree T there will be a single simple route w, connecting to
the vertex x some fixed vertex xg. If the tree T is not maximal, then in X there
exists a simple edge e such that the subgraph 7" = T U e is a tree. Let x and
y be the vertices of the oriented edge e*!. Then the routes wy and wye* will
be two different simple routes in T connecting the vertex xo with the vertex y,
which is impossible. Hence, the tree T is maximal. O

Assuming the maximum tree T C X and the vertex xq € X° fixed, we can
consider a closed route wxe“w;1 for any edge e € X \ T, where x, y are the
vertices of the oriented edge e¢*!, and w, and wy, as above, are simple routes in
T connecting the vertex xo with vertices x and y, respectively. According to the
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above, this route uniquely defines some element of the fundamental group 71 X.
Assuming a certain liberty, we will designate this element with the symbol [e].

Theorem 6.95. The fundamental group m1X of an arbitrary connected graph
X is a free group. Elements of the form [e], e € X\ T, are (for any choice of
the mazimum subtree T ) its free generators.

Proof. Consider the coset space X \ T. It is clear that this coset space is a
bouquet of circles, each of which is obtained from some (simple or loop-like) edge
e € X\T, i.e., it has the form ¢e where ¢ is the factorisation map X — X/T. In
this case, the image of the element [e¢] € 11X, e € X\T, with the homomorphism
@« : mX — m(X/T) induced by the map ¢, is obviously the generator of the
fundamental group 71 (¢e) of the circle ge (in a standard way nested in the free
product piy (X/T) of the group m1(¢e)). This means that the homomorphism
s is a homomorphism of the group 71X on a free group n1(X/T), translating
the elements of [e] into free generators of the group 71 (X/T).
On the other hand, it is easy to see that

Proposition 6.96. the pair (X,T) is a cofibration

(we leave this fact to the reader to prove; it is a trivial special case of Borsuk’s
general theorem, which we will prove in Lecture 113; see Theorem 1 of Lecture
11). Therefore, by applying Lemma 4.46 of Lecture 4 and Proposition 6.91, the
map ¢ is a homotopy equivalence and, therefore, the homomorphism ¢, is an
isomorphism. Hence, the group 71X is free and the elements [e¢], e € X \ T, are
its free generators. i

Remark 6.97. It is easy to see that every graph X is covered, and that for any of
its covering XX , the space X is also a graph (see in Lecture 19, proposition
7). Therefore, by applying Theorem 6.95, for any covering X > Xofa graph
X, the group ;X is free. Taking for X a bouquet of circles, and for X — X
a covering corresponding to an arbitrary subgroup G of the group 71X (and
therefore having the property that 71X ~ G), we immediately get from here
that

Proposition 6.98. any subgroup of a free group is free.

This is the famous Nielsen-Schreier theorem, the algebraic proof of which is
extremely difficult.

3The transcriber guesses Postnikov refers to Lecture 1 of “Cellular Homotopy”
4The transcriber guesses Postnikov refers to Lecture 9 of “Cellular Homotopy”
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To apply homotopy groups to individual geometric problems, it is necessary to
be able to calculate these groups for specific spaces. However, in general, this
task turns out to be extremely difficult, and so far, despite all the efforts and
sophisticated techniques developed (which we will gradually become familiar
with), there is not a single space (except for trivial cases like the circle S!)
about which we could say that all its homotopy groups are known to us. This
applies even to such simple spaces as spheres S" for n > 1.

In this lecture we will calculate the homotopy groups x,,,S" for m < n. This
requires some approximation methods, in principle alien to homotopy theory
(but the use of which, apparently, cannot be avoided; interestingly, after m < n
the groups m,,S" are calculated, their calculation at m > n - as far as it can be
done - can already be produced by purely homotopy, or, better to say, by algebro-
topological means). The necessary approximations can be made by means of
either smooth or piecewise linear (= simplicial) maps. We will use smooth
approximations, because, firstly, the basic concepts of the theory of smooth
manifolds are certainly known to the reader from the compulsory course, and
secondly, there are many excellent expositions of this theory in Russian; see,
for example, [14]. However, we will also present all the necessary information
from the theory of simplicial approximations in our place; see the Appendix to
Lecture 12°.

In Lecture 12, we will recalculate the groups x,,S", m < n, and based on
some more general considerations. However, the more geometric methods of
this lecture have their advantages and familiarity with them is by no means
useless.

7.1 Smooth maps and smooth homotopies

In this lecture, we will always understand by a manifold a smooth (of some pre-
scribed class C”, r > 2) compact Hausdorff (and therefore metrisable) manifold,
generally speaking, with boundary. Manifolds without boundary we will call
closed manifolds. The guiding example of a manifold without boundary will be

1 The transcriber guesses Postnkov refers to Lecture 2 of “Cellular Homotopy”.
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a sphere S”, and a manifold with boundary will be its product S" x I with a
segment.

On an arbitrary manifold N, it is always possible to introduce a Rieman-
nian metric, moreover, as proved in the theory of Riemann spaces, for every
Riemannian metric p on N there exists a &g > 0 (usually called Morse number
of a Riemannian manifold N), such that for any two points yg,y; € N with
p(¥0,¥1) < & in N there is a unique geodesic t — y(t;yg,y1) of length < g,
connecting the point ¢ with the point y;. For example, for the sphere S" (in its
natural metric), the Morse number is 7.

Assuming that the geodesic t +— y(t;y9,y1) is related to the parameter ¢,
proportional to the length of the arc and varying from 0 to 1, consider the map
(y0,¥1,1) = y(t;y0, y1) into the manifold N of the open subset {(yo, y1,)|p(yo, y1) <
g0} of the manifold NxN x 1. It follows directly from the theorem on the smooth
dependence of solutions of differential equations on the initial data that this map
is smooth and, in particular, continuous. Therefore, for any topological space
X and any two maps f,g : X — M satisfying the condition p(f(x), g(x)) < &g,
x € X, the formula

F(X,1) =y(1; f(x),8(x))

well defines the homotopy F : X X I — N connecting the map f with the map
g. Thus,

Proposition 7.1. maps to a manifold are homotopic if they are close enough.

Recall now that a continuous map g : M — N of a manifold M to a manifold
N is called a smooth map if in local coordinates it is written by smooth functions.
In the theory of smooth manifolds, it is proved that

Proposition 7.2. any continuous map f : M — N can be arbitrarily approwi-
mated by smooth maps,

i.e. that for any & > 0 there exists a smooth map g : M — N such that
p(f(x),g(x)) < & for any point x € M. (In each coordinate neighbourhood,
the functions defining the map f are approximated - according to the classical
Weierstrass polynomial approximation theorem - by means of smooth functions,
and then these local approximations are stitched into a single map g.) In com-
bination with the previous result, this gives the following statement (we do not
call it a theorem, since it is actually given by us without proof).

Proposition 7.3 (Statement 1). Any continuous map f : M — N of a smooth
manifold M to a smooth manifold N is homotopic to some smooth map g : M —
N.

For manifolds with boundary, this statement admits correction.

Proposition 7.4 (Statement 1°). If a continuous map f : M — N is smooth on
the boundary M of a manifold M, then there exists a smooth map g : M — N
coinciding with f on M and homotopic f with respect to OM.
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The proof of the statement 7.4 is based on the so-called collar theorem, which
states that the boundary d M has a neighbourhood in M diffeomorphic to the
product of dM with the half-open interval [0, 1). In addition, some refinement of
the approximation theorem is required, which guarantees the coincidence of the
approximating and approximating function on the set, where the approximated
function is already smooth. However, we will need the statement 7.4 only for
the case of maps of the form MN (and in fact even S" x I — N), when most of
these technical difficulties are absent (or trivially overcome).

For a closed manifold M, the boundary of the manifold M X I consists of
the manifolds M x 0 and M X 1, and the condition that the map M xI — N
is smooth on the boundary means that this map, considered as a homotopy of
M in N, connects smooth maps. Therefore, with respect to homotopies from
M to N, the statement 7.4 gives us that smooth maps of a closed manifold
M to an arbitrary manifold N are homotopic if and only if they are smoothly
homotopic (i.e. connected by a homotopy from M to N, which is a smooth map
of M xI — N).

Thus, in the study of homotopy classes of maps M — N (and, in particular,
groups 7, S" = [S™,S"]) without loss of generality, we can limit ourselves only
to smooth maps and their smooth homotopies.

7.2 Sard’s theorem

For closed manifolds M and N, every smooth map f : M — N at any point
x € M induces a linear map (df), (called the differential of the map f at point
x) of the tangent space TxM of the manifold M at the point x to the tangent
space Ty, N of the manifold N at the point y = f(x). Inlocal coordinates (or, more
precisely, in the corresponding bases of tangent spaces), the matrix of the linear
map (df), is the Jacobi matrix df/dx of the functions f!,..., f* that define
the map f in local coordinates; the elements of this matrix are the values at the
point (£1(x),...,&™(x)) of partial derivatives 0 f//d¢7 of functions f1,..., f* at
the local coordinates &%, ...,&™ on the manifold M near the point x (here, as
everywhere below, the symbol m we denote the dimension of the manifold M,
and the symbol n is the dimension of the manifold N).

A point x is called the critical point of a smooth map f : M — N if the
linear map (df), is not adjective, i.e., if the rank of the Jacobi matrix df/dx at
point x is less than n. A point y € N is called a regular value of the map f if no
point x € f~(y) is a critical point.

The famous Sard’s theorem (which, however, was already proved by Brown a
few years before Sard, and subsequently significantly improved by Dubovitsky)
states that for any smooth map f : M — N, the set of all its regular values
is dense everywhere (recall that we consider the variety M to be compact; for
a non-compact M the statement of Sard’s theorem is somewhat weakened). In
particular, according to this theorem,

Proposition 7.5. for any smooth map f : M — N there are regular values.
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For m < n, each point x € M is a critical point, and therefore regular values
are exactly points that do not belong to the image f(M) of the manifold M.
Thus, we see that for m < n, Sard’s theorem boils down to the statement that

Proposition 7.6. a smooth map of a manifold to a manifold of greater dimen-
sion is necessarily not surjective (using somewhat fuzzy, but expressive termi-
nology, we can say that a smooth map does not increase dimension ).

7.3 The group n,,S" for m <n

In particular, we see that for m < n for any smooth map f : S” — S" there
exists a point yo € S” such that f(S™) c S$"\ yo. This means that f =io f,
where £ is the map S™ — S\ yo, and i is the inclusion $"\ yo — S". But the set
S™\ yo is homeomorphic (by, say, a stereographic projection) to the space R” and
therefore contractible. Hence, the map f, and hence the map f, is homotopic
to the constant map. Since any continuous map S$™ — S" is homotopic to a
smooth map, it is proved that for m < n the group x,,S" consists only of zero:

St =0, if m<n. (7.7
Assuming m = 1, we get, thus, that

Proposition 7.8. for n > 1 the sphere S" is simply connected.

7.4 The fundamental group of the space S"/G

By applying the general isomorphism (6.27) of Lecture 6, it follows that for
any group G acting completely discontinuously on the sphere S", n > 1, the
fundamental group of the space S$”/G is isomorphic to the group G:

m(8"/G) = G. (7.9)

Example 7.10. A group of order 2 with @ as a generator acts completely discon-
tinuously on the sphere S" according to the formula a(x) = —x, and the corre-
sponding coset space S"/G is an n-dimensional projective space RP". Therefore,

mRP"=72/2Z for n>1

(the space RP! is a circle, and therefore 7;RP! = Z.)

Example 7.11. A cyclic group of order & with a generator @ can act quite discon-
tinuously (= without fixed points) on an odd-dimensional sphere $2"*1 c C"*+!
in many ways. In particular, each set of integers mutually prime with 4 numbers
ap,di,...c,a, (given up to terms that are multiples of /) defines this kind of
action according to the formula

a(ZO9Z1’°"7Zn) = ({aoz()’{alvzla"'{anzn)v (Z07'~-7Zn) € S2n+1’ (712)
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where ¢ is the primitive root of 1 of degree h. (In fact, any completely dis-
continuous action of the group Z/hZ on the sphere $?**! is equivalent to an
action of the form (7.12), but this fact lies beyond the scope of our presenta-
tion.) When replacing ¢ with another primitive root n associated with ¢ by
the equality ¢ = ¢, where a is mutually prime to /&, the numbers ag, a1, ...,a,
are replaced by the numbers aaq, aai,...,aa,. With this in mind, we will call
the quotient space of the sphere S2"*! by the action (7.12) of the group Z/hZ a
lens space of type (ag : a1 : -+ : ay : h) and we will denote it with the symbol
L(ag:ay:+--:ap:h). According to the general formula (7.9)

mL(ag:ay: - :a,:h) =7Z/hZ.

Remark 7.13. A lot of effort has been put into establishing the homeomorphism
and homotopy equivalence of lens spaces. However, the question of homotopy
equivalence is solved without much difficulty and, as it turns out, two lens spaces
L(ag:ay:--+:a,:h)and L(bg: by :---: by, :h) are homotopically equivalent
if and only i when there exists a number ¢ such that

boby -+ b, = "M aga; - - a, mod h.

The only real difficulty is the question of the homeomorphism of lens spaces. It
was solved (and then only partially) only relatively recently on the basis of a
very deep and complex technique.

For three-dimensional (case n = 1) lens spaces L(ag : a; : h), the asymmetric
notation L[a, h] is accepted, where a is a number such that a; = aag mod h.
Two spaces L[a, h] and L[b, h] are homotopically equivalent if and only if there
exists a number ¢ such that b = +c%a mod h, and are homeomorphic if and
only if ¢ = 1 mod h or ¢ = b mod h (in the latter statement, only “only if” is
nontrivial).

7.5 The degree of smooth maps.

Recall that an atlas of a smooth manifold M is called an oriented atlas if for any
two of its charts (with non-empty intersection) the Jacobian of the transition
from the local coordinates of one chart to the local coordinates of the other chart
is positive. A manifold having an oriented atlas is called orientable. Maximal
oriented atlases are called orientations of the orientable manifold M. A manifold
with a fixed orientation is called oriented. Charts of this orientation are called
positive charts. A connected orientable manifold has exactly two orientations,
which are called opposites. Each chart of a connected orientable manifold defines
some orientation of the manifold with respect to which this chart is positive.
If now M and N are two smooth oriented closed manifolds of the same
dimension n, then for any smooth map f : M — N and any of its non-critical
points x € M we can consider in M and N positive charts containing the points
x and y = f(x) and the Jacobian of the functions defining the map f in these
charts. It is clear that the sign of this Jacobian does not depend on the choice



252 LECTURE 7.

of chart, i.e. it is well determined by the point x and the map f (given the
orientations of the manifolds M and N). We will call it the map index of the
map f at the point x and we will denote it with the symbol &7 (x).

It follows directly from the elementary analytic inverse map theorem that a
smooth map f : M — N of closed manifolds on some neighbourhood of each
non-critical point x € M is a diffeomorphism of this neighbourhood to some
neighbourhood of the point y = f(x). Therefore, for any regular value y € N,
its preimage f~!(y) consists of a finite number of (non-critical) points. (Note
that the compactness of the manifold M is essentially used here.) We will put

deg, f= Y &),
xefH(y)

where the summation is extended to all points x € f~!(y). Conventionally, the
number deg, f can be called the “algebraic number” of points from ().

It is clear that every point x € f~!(y) has a neighbourhood, all points of
which are also non-critical (this will be a neighbourhood in which the map f is
a diffeomorphism), and &y, (f) = ex(f) for any point x; of this neighbourhood.
Therefore,

Proposition 7.14. each regular value of y € N the smooth map f has a neigh-
bourhood consisting of reqular values, and for any point y, of this neighbourhood

deg,, f =deg, f. (7.15)

(In the language of analysis, this means that the function y v deg,, f is locally
constant.)

It turns out that

Proposition 7.16. if the manifold N is connected, then equality (7.15) holds
for any regular values y,y1 € N of the map f, i.e. in this case the number deg,, f
does not depend on the choice of the regular value y (the function y — deg, f
is constant).

It would seem that this directly follows from the local constantness of the
function y > deg, f, but in fact the situation here is much more subtle, because
the set of regular values of the map f even with a connected N is, generally
speaking, disconnected To better understand why the function y — deg, f
is constant, we will give this two proofs, one of which can be described as
“analytical” and the other as “geometric”.

Proof. (Analytical proof). This proof is based on the following facts, which
we will assume to be known,:

1. On any oriented compact smooth n-dimensional manifold N there exists a
differential form wq of degree n for which the integral

zmm=Lm
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is nonzero.

If a Riemannian metric is introduced on N, then the shape of the volume
has this property. For a sphere S assigned to ordinary spherical coordinates
with 01,05, ...,0,, the shape of the volume is equal to

cos 05 cos? 05 - - - cos" 1 0,(dO1 A dbs A --- A dBy).

2. If the manifold N is connected, then, each differential form of the degree of
n by N is expressed by the formula

w =rwg +da,
where r € R; and « is some form of degree n — 1.

3. For any open set U Cc M, there exists a form w of degree n such that w =0
outside U and w[M] # 0.

It follows that for any smooth map f : M — N of closed manifolds and any
form w on M for which w[M] # 0, the number
JrwM]

d(f)=——— 7.17

=12 (717)

does not depend on the choice of the form w (assuming that the manifold N

is connected). Indeed, if w = rwy + da, then by applying Stokes’ theorem

w[N] =rinfy wg = rwg[M] and similarly (f*w)[M] =r(f*we)[M]. Thus

frwlM) _ frwolM]
WINT ~ wlN]

On the other hand, if y € N is a regular value of the smooth map f: M — N,
X1,...,Xs € M are all its preimages and Vi,...,Vy ¢ M are disjoint neighbour-
hoods (which we can assume to be coordinate) of points x1, . . ., x5, each of which
the map f diffeomorphically maps to the (coordinate) neighbourhood U of the
point y € N, then for any form w, equal to zero outside U,

wN:/Na):/Ua), (f*w)M:/Mf*a)z Vlf*w+...+ st*a),

and according to the classical rule of replacing variables in multiple integrals,
for any i = 1,...,s, the equality takes place

f*w=8i/w,
Vi U

where ¢; is the sign of the Jacobian of the map f at the point x; (or, equivalently,
in the neighbourhood of V;). Thus

(ffw)M = g1w[N] +...+&50[N] =(e1+... +&;)[N]
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and then d(f) =e1 +...+&5 =deg, f.

Since the number d(f) does not depend on the choice of the point y, there-
fore, the number deg, f also has this property.

Note that we not only proved the independence of the number deg, f from
the point y, but also found an explicit formula for it in the form of a ratio of
two integrals. O

Proof. (Geometric proof). In this proof, as above, we will assume that a
number of statements of the theory of smooth manifolds are known, most of
which are clearly obvious, but it is quite troublesome to prove them accurately.
Bearing in mind what follows, we will formulate them in a somewhat larger
volume than is directly necessary.

Let M and N be smooth manifolds (generally speaking, of different dimen-
sions), P be a submanifold of a manifold N and f : M — N be a smooth map. If
for any point x € f~!P the space Ty(x)N is a smm (not necessarily direct) of its
subspaces (df)xTxM and Ty(x)P, then the map f is called transversal to P (or
t-regular along P). If P = {y}, then this condition reduces to the requirement
that the point y be a regular value of the map f. If the submanifold P has a
boundary 9P, then it is additionally required that f be transversal to 9P, and
if, in addition, M has a boundary (the case when the boundary has N we do not
need), then it is required that the transversality condition (with respect to both
P and dP) was also applied to the restriction of the map f on this boundary.

Proposition 7.18 (Statement 2). If a smooth map f : M — N is transversal to
P, then the preimage f~'P of the submanifold P is a submanifold of the manifold
M of dimension dim M +dim P —dim N, the boundary of which is a preimage of
the boundary of the manifold

In particular,

Proposition 7.19. the preimage f~'(y) of any regular value y € N is a sub-
manifold of the manifold M of dimension dim M — dim N.

Of course, in accordance with the general definition of f-regularity, in the
case when the manifold M has a boundary dM, it is assumed here that y is also
a regular value of the map fl|gps-

In the latter case, we can additionally assert that the intersection of f~*(y)n
OM of the manifold f~!(y) with the boundary dM of the manifold M is its
boundary df~!(y), and at no point x € df~!(y) is the manifold f~!(y) tangent
to the manifold M (i.e. To(f~1(y)) ¢ T (OM)).

For any submanifold P ¢ N and any smooth map f : M — N transversal
to P, it is also possible to describe fairly accurately the behaviour of the map
f near each component Q of the submanifold ~!P. In general, we will not need
a description of this, and therefore we will limit ourselves to the three simplest
cases.

Case 1. (actually already analysed above). Let P be a point y € N (the regu-
lar value of the map f) and dimM = dim N = n. Then the preimage
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1P = f71(y) consists of individual points and each point is x € f(y)
has a neighbourhood U, which f diffeomorphically maps to some neigh-
bourhood V of the point y. By reducing, if necessary, the neighbour-
hoods of U and V, we can assume that the neighbourhood of V is diffeo-
morphic to the open ball E" of the Euclidean space R". By combining
this diffeomorphism with the diffeomorphism f/|,, we get the diffeomor-
phism U — E", for which a commutative diagramme takes place

P

U——V

||

E'"——E
id

Case 2. Let it continue as before P = {y} and dimM = n+ 1. Then f~'P
is a compact one-dimensional manifold, and therefore (of course, this
“because” needs justification) each of its components is diffeomorphic
to either a circle or a segment (which is, as they say, a embedded arc).
In this case, components diffeomorphic to the segment (arc) can exist
only if the manifold M has a boundary dM. It turns out that every
diffeomorphic segment of the component Q the manifolds f~'P have
(in M) a neighbourhood U, and the point yo in N has a neighbourhood
V such that:

(i) there is a commutative diagramme

U———V

|

E'"x]——FE
proj

where the vertical arrows are diffeomorphisms, and the lower hor-
izontal arrow is the projection proj: (x,f) — x, x €e E" t € I.

(ii) the diffeomorphism U — E" x I maps the arc Q to the segment
0x1, and the intersection of UNJM to the union (E"x0)U (E"x1)
(see 7.5.1).

Case 3. Let P be a submanifold of a diffeomorphic segment (i.e. an embedded
arc), and dim = M = dim N = n. Then the submanifold f~!P is again
one-dimensional and we will again consider its component Q, diffeo-
morphic to the segment (which is an embedded arc). In this case, the
submanifolds Q and P have such neighbourhoods U and V that
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Figure 7.5.1:

(i) there is a commutative diagramme

U———V

A

5 .
E" x Ig W‘ E x 18

the vertical arrows of which are diffeomorphisms, and the lower

horizontal arrow is given by the correspondence

((x),1) > x,0(1)), xeBE" 1 rel,,

where I, = (-&,1+¢€), € > 0, and ¢ is a smooth function I, — I
such that ¢(0) =0, and ¢ (0) £ 0, ¢’ (1) # 1;

(i) the diffeomorphisms U — E" X I, > E" x I, represent the arcs Q
and P on the segment 0 X .

Note that from these conditions (and the requirement of transversality) it
follows, firstly, that ¢(1) is equal to either 0 or 1, and secondly, that for 0 < ¢ <1
the number ¢(?) is not equal to either 0 or 1.

In all three cases, it is customary to call the lower arrow of the constructed
diagrams normal form of the map f. Thus, in case 1, the normal form is the
identical map id, in case 2, the projection proj, and in case 3, the map of the
form id X¢ (the map ¢ can also be further normalised, but we won’t need it).

In the language of local coordinates, the existence of these normal forms
means that in the vicinity of U and V, one can choose such local coordinates
&1,...,&, (and &,41 =1 in case 2) and 71, . . .77, that the map f will be in these
coordinates is written by the formulae

nm=&,....,ny=E&, incases 1 and 2,

M =&, fn-1=E&n-1,1n = ¢(&,) in case 3.

Sard’s theorem can also be generalised to the case of arbitrary submanifolds
PCN.
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Let P and P be diffeomorphic submanifolds of a manifold N. This means
that there exists a smooth manifold Py and smooth embeddings i : P — N and
i’ : Py — N such that iPy = P and i' Py = P'. Assuming the embeddings i and
i’ are fixed, we will call the submanifolds P and P’ e-close (with respect to a
certain metric p on N) if p(i(x),i (x)) < & for any point x € Py. The generalised
Sard theorem states that

Proposition 7.20. for any smooth map f : M — N of smooth compact man-
ifolds, any submanifold P ¢ N, and any & > 0, there exists a submanifold P’
e-close to P such that the map f is transversal to P'.

At the same time, if the submanifold P has a boundary 0P and the map f
is transversal to 9P, then you can additionally require that P = dP.

Now we can proceed directly to the proof of the independence of the number
deg, f from y.

Let M and N be closed smooth oriented manifolds of the same dimension n,
and let f : M — N be a smooth map, and yg,y; € N be its two regular values.
Let, moreover, the manifold N be connected. Then (of course, for N # S" it
needs to be proved) the points yg, y; can be connected by a embedded arc P,
and by applying the generalised Sard theorem, it can be assumed that the map
f is transversal to P. According to statement 7.18, the preimage f~'P will be a
one-dimensional manifold with the boundary 8 f~'P, which is the preimage of
F Y (y0) U f~1(y1) of the ends of the arc P. In this case, each point xo € 0f ' P
will be the end of some embedded arc Q - components of the manifold f~'P.
Let x; € P be the other end of this arc.

According to the above, we can assume that in the manifolds M and N there
are positive maps (U;&1,...,&,) and (V;nq,...,n,) such that:

1) Q c U and a point x € U belongs to Q if and only if when
&1(x)=0,...,6-1(x) =0, 0<&x) <1

2) P c V and a point y € V belongs to P if and only if when
m@) =0,....7,-1(y) =0, 0<na(y) <1

3) there is an inclusion fU c V, and the map f is given in local coordinates
&1,...¢,&, and 14, ... ¢, 1, by formulae

m = é:l, e lIn-1 = éjn*l’ Mn = ‘p(fn)’

where ¢ is a smooth function such that ¢(0) = 0 and ¢ (0) > 0, ¢ (1) # 0,
with ¢(1) is equal to either 0 or 1, and 0 < ¢(¢) <1 for 0 < ¢ < 1.

At the same time, without loss of generality, we can assume that &, (xg) = 0,
&n(x1) = 1 and similarly that 7,(yo) = 0, 7,(y1) = 1 (so xg € flyp, and
x1 € flyg if o(1) =0, and x; € f~ly; if (1) = 1).

The Jacobian of the map f at point xo is obviously ¢ (0), so the contri-
bution of point xo to deg, f is ey, = sgn ¢’ (0). Similarly, the point x; gives
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a contribution to deg, f (for ¢(1) = 0) or to deg,, f) (for (1) = 1) equal
to €, = sgn ¢ (1). On the other hand, it follows directly from the conditions
imposed on the ¢ function (see Fig. 7.5.2) that

: sgng' (0), if () =1,
sgny (1) = / . B
—sgn g (0), if (1) =0.
¢ f,
|
| |
} !
0 15 0 3
Case @ (l)=1 Case @(1)=0
Figure 7.5.2:

Therefore, for ¢(1) = 1, the points xo and x; give equal contributions of the
numbers deg, f and deg,, f, and for ¢(1) =0 - mutually decreasing contribu-
tions to the number deg,, f.

Thus, calling the point xq € f~1yo (the point x; € f~'y;) essential if x; €
Fty1 (if xo € f7tyo), and inessntial if x; € f~'yo (respectively xo € f~ly1),
we get that the inessential points are included in f~'y, (and also, of course, in
f71y1) in pairs with different signs (and therefore when counting degrees are
mutually annihilated), and each essential of f~'yg corresponds to each other
uniquely in f~'y;, an essential point with the same sign. Therefore, degy, f =
deg,, f. Cf.Fig 7.5.3. O

The points X0 and X1 The points X0 and X1
are essential. are inessential.

Figure 7.5.3:
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Since deg,, f does not depend on y, then by putting

deg f = deg, f,

where y is an arbitrary regular value of the map f, we well assign to each smooth
map f : M — N some integer deg f (coinciding, note, with the number d(f)
defined by the integral formula (7.17)). This number is called the degree of the
map f.

We emphasize that the manifolds M and N are assumed here to be smooth,
closed, oriented manifolds of the same dimension, and the manifold N is also
assumed to be connected.

7.6 Homotopy invariance of degree
It turns out that

Proposition 7.21. if two smooth maps f,g: M — N are smoothly homotopic,
then their degrees coincide:
deg f = deg g. (7.22)

Proof. This is especially easy to prove using formula (7.17), and for this it must
even be required that the homotopy f; : M — N connecting the map data
be smooth. Indeed, according to the analysis theorem on the dependence of
integrals on a parameter, the number

(o = [ fio
M
continuously depends on ¢. Therefore the number

(ffw)[M]
d = —
AT
also continuously depends on 7. Therefore, being an integer, this number is
constant. |

With the “geometric” approach, it is advisable to prove a more general state-
ment, fee of extraneous details, the trivial consequence of which is the equality
(7.22). To do this, we will need some general results of the theory of smooth
manifolds related to orientations, which we will still accept without proof.

For any (n + 1)-dimensional manifold W with boundary with its boundary
O0W is characterised by the fact that they have charts (U; &y, &1, ... &,) for which
the diffeomorphism x — (&y(x), &1(x), ... & (x)) is a map to the half-space & > 0
of the space R™!. At the same time

(UNOW;éilunaws - - - Enlunow) (7.23)

will be a chart of the manifold OW.
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Proposition 7.24 (Statement 3). If a manifold W is orientable, then its bound-
ary OW is also orientable. Any orientation of the manifold W produces some
orientation of the manifold OW.

Namely, if the chart (U; &, &1, . .., &n) set a given orientation of the manifold
W, then, by definition, map (7.23) will set the induced orientation of the man-
ifold 8W. (Of course, this definition needs - not at all obvious - a correctness
check,)

In the case when W = M x I and, therefore, 0W = (M x 0) U (M x 1), the
manifold W is orientable if and only if W, i.e., the manifold M is orientable.
At the same time, for any map (U;é&1,...,&,) of the manifold M that sets its
orientation o, the chart (U x I;&5,&7,...,¢&;,), where

S0 =16 (x1) =61 (%), &,(x, 1) =&n(x), x€eU, tel,

will set the orientation o X I of the manifold M x I, inducing the orientation o
on M X 0, i.e., more precisely, passing into the orientation o when identifying
(x,0) — x. On the contrary, on M x 1, the orientation of o x I will induce the
opposite orientation of —o, since the orientation of o is obviously induced by
the orientation given by the chart (U x1I;1—¢£5,£7,...,&,) which is opposite to
the orientation of 0o X I. Conditionally , this situation can be written with the
formula
OMXI)=Mx0-Mx1.

It follows, in particular, that for any smooth map A : (M x I) — N, the
following formula holds

deg = deg f — deg g,
where f and g are maps M — N defined by formulae

f(x) =h(x,0), gx) =h(kx1), xeM.

On the other hand, the fact that the maps f and g are homotopic is equivalent
to the statement that the map h is a restriction of some map F : M X I — N
on (M x I). Therefore, the formula (7.22) is an immediate consequence of the
following general lemma.

Lemma 7.25. For any smooth map F : W — N and oriented compact (n +
1)-dimensional manifold W with boundary OW in oriented connected closed n-
dimensional manifold N the degree of map h = Flow : dW — N is zero:

deg(F|sW) = 0.

Proof. Let y be the regular value of the map F (and hence the map &), and xq
is an arbitrary point of the prototype A~'(y). In F~!(y), the point xq is the
end point of some arc-component Q. Let x; be the other end of this arc (also
lying in A~1(y)). Obviously, it is sufficient to prove that the signs €0, and &;
of the Jacobian of the map & at points xg and x; are opposite, i.e. that the
contributions of these points to the power of deg & are mutually reduced.
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But since this statement has a local character, when proving it, we can go
to arbitrary neighbourhoods of the arc Q and the point y. Having chosen the
local coordinates in these neighbourhoods accordingly, we can therefore assume
(see Case 2 above) that

W=E'"xI, N=E" F =proj
x0=1(0,0), x;=1(0,1), y=0.

To complete the proof, it remains to note that in this situation the equality
g1 = —&q is obvious, since on both components E" x 0 and E" x 1 are boundaries
d(E"xI) and the map proj is identical, and the orientations of these components
are different.

Thus, Lemma 7.25, and hence the formula (7.22), is fully proved. ]

7.7 The degree of the homotopy class

Since, as already noted above, any continuous map M — N is homotopic to
a smooth map and two smooth maps are homotopic if and only if they are
smoothly homotopic, it follows from the equality (7.22) that for every homotopy
class @ € [M, N] the formula

dega = deg f,

where f is an arbitrary smooth map of the class @, well defines some integer
deg a - the degree of the class a.

Here M and N are smooth closed oriented manifolds of the same dimension
n > 1, and the manifold N is connected. Thus, we have defined some map

deg: [M,N] — Z.

In particular, for M = N = §" (and, therefore, for [M,N] = 7,S") we get the
map

deg : 1,S" — Z, (7.26)
which, as it is easy to see, is a homomorphism.
Theorem 7.27. The map (7.26) is an isomorphism.

It turns out that in Theorem 7.27, the specificity of the sphere S" plays a
role only when this sphere acts as a manifold N. As for the manifold M, it is
enough to require only connectivity from it. In other words,

Proposition 7.28. for any smooth, closed connected n-dimensional manifold
M, the map

deg: [M,S"] - Z (7.29)

is bijective.
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We will prove this statement.

The injectivity of the map (7.29), i.e. the fact that for any k € Z there
exists a map f : M — S" of degree k, is proved without any difficulty (and even
without the assumption that the manifold M connected).

Proof. Indeed, choosing a system of |k| disjoint open balls in the manifold M,
we will set the map M — S", requiring that the complement to these balls it
translates to the point sy € S, and each ball is diffeomorphically mapped to
a cell e = S"\ sg, preserving orientation at k > 0 and reversing orientation at
k < 0. It is clear that the degree of this map is k.

For M = S", this fact can be proved even more simply by noting that, due
to the homeomorphism of the map (7.26), its image is a subgroup of the group
Z containing the degree 1 of the identical map, and therefore coincides with the
entire group Z. O

7.8 The injectivity of the map deg

Thus, we only need to prove the injectivity of the map (7.29), i.e. the fact that

Proposition 7.30. two maps f,g : M — S" are homotopic if and only if the
degrees of these maps are equal:

deg f =degg.

This statement is the simplest example of so-called homotopy classification
theorems that establish necessary and sufficient conditions for the homotopy of
maps in certain situations.

Due to the general connection between homotopy and extension problems
(see lecture 0) this theorem follows directly from the following extension theorem
(applied to the manifold W = M x I).

Proposition 7.31. A smooth map
f:oW —§"

form the boundary OW of a smooth compact oriented (n + 1)-dimensional con-
nected manifold W into the sphere S" can be extended to the entire manifold W
if and only if when its degree is zero:

deg f=0. (7.32)

Proof. The necessity of condition (7.32) is the content of Lemma 7.25. There-
fore, only its sufficiency needs a proof.

Condition (7.32) means that for some point y € S", its preimage f~'y con-
sists of an even number of points, in one half of which the Jacobian of the
map f is positive, and in the other half is negative. Let’s construct a family of
disjoint nested arcs Q; connecting in W each point of the first type with some
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point of the second type, entirely - with the exception of the ends - lying in the
interior W \ dW of the manifold W, and at the ends not touching the boundary
dW. Obviously, this can always be done (only when n = 1, you should choose
pairs of connected points with some care). We will prove proposition 7.31 by
constructing a smooth map F : W — S" such that:

a) Flow = h;
b) the point y is a regular value of the map F;
c) its preimage F~'y consists of arcs Q;.

We will build such a map in two stages.

Stage 1 Let Q be one of the arcs Q; It is obvious that this arc has a neighbour-
hood U (“tube along Q”) such that there is a diffeomorphism

¢:R'"XI—>U,

translating the segment 0 X I into the arc Q and map the boundary
R"x0UR"x1 of the product R" x I into the intersection UNJW. At the
same time, the neighbourhoods of U corresponding to all possible arcs
of Q; can be considered disjoint. In addition, by reducing, if necessary,
the neighbourhood of U, we can assume that on the components Vy =
¢(R" x 0) and V; = ¢(R" X 0) of the intersection U N W the map h is
a diffeomorphism to some neighbourhood V of a point y.

In Stage 11, we will construct a map F on each neighbourhood U sep-
arately. It is clear that it is enough to build smooth map for this

O:R"xI—>R",
such that
a’) ®|grnxo =id and ®|gnx; = k, where
k= (lenx0) ™ o (k) 0 (hly,) © (¢lanxa)

(we identify R” x 0 with R";
b’) the point 0 € R" is the regular value of the map ®;

¢’) its preimage ® ! is the segment 0 x I. (Indeed, if such a map ® is
constructed, then the map F on U can be set by the formula

F = (hly,) o (¢lrnxo) o @ o ¢t

Let ell : R" — R" be the differential (at the point 0) of the diffeomor-
phism k (considered as the diffeomorphism of ell : R" — R". It is clear
that if the neighbourhoods of U and V are chosen small enough, then
for any point x € R™\ 0 the point 0 will not belong to the segment with
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the ends €(x) and k(x). Therefore, the map ®; : R” X I — R" defined
by the formula

D (x,1) = (1 -1)l(x) +tk(x), x€eR", rel,

will have the property that q>;10 = 0 x I. In this case, the point 0
will obviously be the regular value of the map ®; and there will be
equalities

@y lrnxo =€,  D1lrnx1 = k.

Thus, the homotopy ®; has all the properties 1a’) - 1c’), with the
exception of the first of the properties 1a’).

To correct the case, we will use the fact that, by the condition, the
Jacobians of the diffeomorphisms hly, and h|y, have opposite signs.
Since the diffeomorphisms ¢|grnxo and @|rnx; have the same property,
then, consequently, the Jacobian of the diffeomorphism k is positive, i.e.
the linear operator £ has a positive determinant, and, therefore, belongs
to the unit component of the general linear group GL(n). Therefore, in
GL(n) there is a smooth path ¢ + ¢ connecting the identical operator
id = €y with the operator ¢ = ¢;. We define the (obviously smooth)
homotopy @ : R" x 0 — R" by putting

Oy (x,t) = (6x,1) for any point (x,7) € R" x I.

Obviously, this homotopy also has the properties 1b’) and 1c’), and the
property la’) for it has the form

Do1|rrxo =id,  Dglrnxy = L.

Now it is clear that the homotopy ® obtained when we first produce
the homotopy @ and then the homotopy ®; has (after appropriate
smoothing near the point r = 1/2) all the required properties.

As a result of Stage 1 (performed for all arcs Q;, simultaneously), we
will get on some neighbourhood of the union U;Q;, all arcs Q;, (denote
this neighbourhood again with the symbol U) the map F, satisfying all
the conditions a) - ¢) (with the only caveat, that in condition a) the
boundary of dW should be replaced by the intersection of U N dW).

Since every smooth manifold is - by applying local compactness and
Hausdorffness - a regular space, the submanifold UQ; has in W a neigh-
bourhood V such that V c U.

It is clear that at the intersection of the sets V' \ V and W \ V (closed
in W\ V), the maps F and & coincide. Therefore, the formula

Feo) = F(x), if xeV\V,
VS ), it xeow\v,
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well defines a continuous map F of the union (VUAW)\V of these sets
into the sphere S" that does not touch the point y, i.e. being a map in
S™\y. Since S"\y ~ R", we can therefore consider F as amap in R” and
apply Tietze’s theorem to it (see Appendix to Lecture 0). According to
this theorem, there is a continuous map F:W\V — $"\y coinciding
with (VU c')W) \'V with the map F i.e. matching on V\V with the map
F, and on W \ V with the map h. We will define a continuous map
F, : W — S", assuming that on V it coincides with F, and on W\ V it
coincides with F.

This continuous map is smooth on W and on M. Therefore (see “State-
ment 1” = Proposition 7.3 above) it can be smoothed without changing
it on W (as well as to some neighbourhood of the submanifold UQ;
contained in V). The resulting map will be a smooth extension of the
map h from W to all W.

Thus Proposition 7.31 is fully proved. Together with this, Theorem 7.27 is fully
proved. O

Remark 7.33. Similarly (by introducing the so-called degree mod 2), it can be
proved that if a smooth closed connected n-dimensional manifold M is unori-
entable, then the set [M,S"] consists of two elements. As for manifolds with
boundary, it is easily proved that any map M — S” is null homotopic.

Remark 7.34. Consideration of the prototypes of regular values is also useful
when studying the maps of spheres of various dimensions. On this basis, L.
S. Pontryagin constructed his famous method for calculating homotopy groups
1,S", identifying them with the so-called framed cobordism groups of manifolds.
Unfortunately, we do not have time to present this method (an interested reader
can refer to Pontryagin’s book [7] or to a more accessible, beginner-friendly
presentation Milnor [5]),

Remark 7.35. The notion of degree can also be introduced for maps of man-
ifolds with boundary (to manifolds with boundary). We will not develop the
corresponding general theory here and only write a few special cases where an
ad hoc reduction to the case of maps of spheres is possible.

Casel A continuos map
[ (B8 = (8", 50) (7.36)

Using the standard relative homeomorphism
x i (B, S" 1) — (8", 50) (7.37)

(see lecture 3) any such map we can represent as f = f o y, where
f (S",s9) — (S",80). Assuming, by definition, that deg f = deg f, we
immediately get that maps (7.36) are homotopic if and only if when their
degrees coincide (rel S"71).
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Continuous mapa
(I",1") — (8",50) and (I"*',0) — (S",s0).

This case is very similar to the previous one, only instead of homeomor-
phism (7.37), it is necessary to use relative homeomorphism

x ("1 = (S",50) (7.38)
or respectively pointed homeomorphism

w: (I",0) — (S, 50) (7.39)

We emphasise that here we are dealing with maps of spaces that are not
smooth manifolds (even with boundary).

x (I 1) — (1"1,0) (7.40)

A similar trick is also applicable here, but both homeomorphisms (7.38)
and (7.39) are necessary.

It is useful to keep in mind that in these constructions there is no need to assume
that maps (7.38) and (7.39) are homeomorphisms - it is enough that they are
maps of degree 1.

Of course, in each of the cases 1 - 3 it is possible to give a direct definition
of the degree. For example, if the map (7.40) is smooth on the preimage of
the interior of one of the faces of the cube I"™!, then its degree is equal to the
“algebraic number” of preimages of an arbitrary regular value belonging to this

face.



Appendix

7.A The simplest consequences of the fact that
m,S" # 0

Surprisingly, the fact that the group n,S" (and the groups x,,S" for m < n
are zero) is nonzero has important geometric consequences. For example, since
7,E™1 =0, the functor 7, has the properties that we required from the functor
IT in the proof of the drum theorem in Lecture 0. Thus, we are now (and only
now!) we can consider this theorem proven. At the same time, Brouwer’s fixed
point theorem is also proved (see lecture 0).

Further, we can now prove that

Proposition 7.41. for m # n the spheres S™ and S™ are not homotopically
equivalent.

Proof. Indeed, if, say, m < n, then n,,S" = 0, whereas r,,S™ # 0. O
It follows that
Proposition 7.42. for m # n spaces R™ and R" are not homeomorphic.

Proof. Indeed, any homeomorphism of these spaces would define a homeomor-
phism - and hence a homotopy equivalence - of their one-point compactifications
S™ and S". O

7.B Degrees of maps into spheres

To get more in-depth results, we need a few simple remarks about maps to
spheres.
First of all, we note that

Proposition 7.43. if the space X is normal in a closed pair (X, A), then any
map f: A — S" can be extended to some neighbourhood U of the set A.

Proof. Indeed, due to the embedding $" c R™!, the map f can be considered
as the map A — R™!. By Tietze’s theorem, this map extends to some map

267
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g: X > R™, Let U=X)\g !(0). It is clear that A C V and the formula

g(x)
gl YU

defines a continuous map f : U — S" that coincides on A with the map f. O

fx) =

It follows from this that

Proposition 7.44. if for a closed pair (X, A) the space X is normally stable (i.e.
it is itself normal and the product X X I is normal), then for each commutative

diagram of the form
A " X
\ /
[ox)) Sn (o7
. —
o

AX] ———> X X1
ixid

(7.45)

there is a closing homotopy F : X x I — S" (i.e., as they say, the pair (X, A)
satisfies the axiom HE - ¢f. Definition0.19 - with respect to maps to spheres).

Proof. Indeed, applying the previous proposition to the pair (X x I, Z), where,
as always,A = (Xx0)U(AXI), and to the map f: A — S", given by the formula

ﬂnn={ﬂ”’ Lo

F(x,1), if xeA.

we will be able to extend this map to some the neighbourhood U of the subspace
A. Tt follows directly from the compactness of the segment 7 that in the space X
there exists a neighbourhood V of the subspace A such that VxI c U. According
to Urysohn’s lemma, there is a function ¢ : X — I equal to zero on X \ V and
one on A. Then (x,¢(x)t) € U for any point (x,t) € X X I, and therefore the
formula

F(x,t)=g(x,0x)1), xeX, tel,

where g : U — S" is the extension to U of the map f~, well defines the homotopy

F : X xI— §", obviously, closing the diagram (7.45). m|

Maps X — " that are homotopic to zero are called also non-essential maps.
All other maps X — " are called essential maps.

In the case where X is an n-dimensional manifold, essential maps are exactly
maps whose degree is nonzero.

Note that

Proposition 7.46. any essential map is surjective.

From the proposition proved above, it immediately follows that
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Proposition 7.47. if for a closed pair (X, A) the space X is normally stable,
then any non-essential map f : A — S" admits an extension f : X — S™, which
is also a non-essential map.

7.C Borsuk’s theorem on an unbounded compo-
nent

Now let X be an arbitrary compact subset of the Euclidean space R"*'. Then
for any point xy € R**' \ X the formula

X —Xp

DPxo X xeX,

lx —xol’
defines some continuous map py, : X — S". If the points x¢ and x; lie in
the same component of the complement R™! \ X, then the map Pu(r) Where
u :t > u(t) is an arbitrary path connecting the points xo and x; in R\ X
constitute, obviously, a homotopy connecting the maps py, and py,. Thus,

Proposition 7.48. the homotopy class of the map px, depends only on the
component C of the complement R \ X containing the point x.

With respect to the component C, two cases are possible: either this compo-
nent is bounded, or it is not limited. Let’s first have a component C bounded.
Since the set X is compact, it is contained in some closed ball E. It is clear
that the component C, and therefore its closure C are also contained in E. By
subjecting the space R""! to some parallel transfer and some homotopy, we can
ensure that the point x( coincides with the point 0 (and therefore the map
D = Dx,, is given by the formula x +— x/|x|), and the ball £ was a single ball
E™!. With this in mind, assume that the map p : X — S", x — x/|x]|), is
non-essential. Then, according to the remark made above, it extends to some
(also non-essential) map p : X UC — S". It is clear that the formula

P(x), if xeXUC,
(x) = H n+1
x/|x| if xeE™ \C,

well defines a continuous map r : E™! — §", identity on S", i.e. being a
retraction E**' — S". Since such a retraction cannot exist, the assumption
about the non-essentiality of the map p is false, i.e. this map is essential.

Now let the C component be unlimited. Without loss of generality, we can
assume that the point xq lies outside the ball E and is therefore separated from
X by some hyperplane. Then the directions of the vectors x — xy for points
x € E, and hence for points x € X, are contained in some hemisphere of the
sphere S" and therefore obviously do not fill this entire sphere. Therefore, the
p map is non-essential.

This proves the following

Proposition 7.49. The point xo € R\ X lies in an unbounded component of
the set R"™\ X if and only if when the map py, : X — S" is non-essential.
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This proposition is known as Borsuk’s unbounded component theorem.
As applied to closed subsets of spheres, it follows from Borsuk’s theorem
that

Proposition 7.50. if a closed subset X of a sphere S™' has the property that
each map X — S" is non-essential, then it does not dissect the sphere (the
complement S"*1 \ X is connected).

Proof. Indeed, if the complement $"*! \ X is disconnected and x¢,x; € S**'\ X
are points lying in its various components, then by identifying the punctured
sphere $™*! \ x; with the space R**!, we we get that the point xo will belong
to a bounded component. Therefore, there will be an essential map X — S"
(namely, the map py,). |

7.D Topological invariance of the dimension of
cubable sets

The converse statement is proved by a direct geometric construction that does
not use algebro-topological considerations and is based on one property of the
sphere S$"*!, which it is advisable to discuss in a general way beforehand.

This property is related to the problem of topological invariance of the el-
ementary geometric concept of dimension. To clearly formulate this problem,
it is necessary first of all to clearly describe the class of spaces for which the
“elementary geometric” dimension makes sense.

Let N > 0 be a positive integer. Hyperplanes of the space R" with equations
of the form #; = k27", wherei =1, ...,n, and k € Z, split this space into a union
of closed cubes with sides of length 27V, These cubes, as well as all their faces
(of any dimension), we will call cubes of fineness N in the spaces R”. We will
call a subset of the space R" a cubable set if there exists N > 0 such that this
subset is represented (obviously, in the unique way) as a union of some family
of N fineness cubes containing together with each cube and all its faces. We
will call this family the cubilage of the fineness N of the cubable set. It is clear
that the existence of a cubilage of fineness N implies the existence of a cubilage
of any greater fineness. Thus, each cubable set has cubilages of arbitrarily large
fineness. Any cubable set is closed. It is compact (= bounded) if and only if
all its cubilages are finite. According to Lebesgue’s lemma (see Appendix to
Lecture 1) for any open cover of a compact cubable set there exists N > 0 such
that each element of the cubilage of fineness N of this set is contained in some
element of the cover.

We will call the dimension dim X of the cubable set X the largest dimension
of cubes of its arbitrary cubilage (it is clear that this dimension does not depend
on the choice of cubilage).

The problem we are interested in can now be formulated as follows:

Proposition 7.51. Do the dimensions of two homeomorphic cubable sets coin-
cide?
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The affirmative answer to this question directly follows from the following
proposition.

Proposition 7.52. For a cubable set X, the inequality dim X < n holds if and
only if, for each closed subset A C X, any continuous map f : A — S" can be
ezxtended to all X.

Proof. The sufficiency of this condition easily follows from the drum theorem.
Indeed, if dim X > n, then in X there is a closed subset B homeomorphic to
(n+1)-dimensional ball E"*! (for example, every (n+1)-dimensional cube of any
cubilage of the space X). Let g : B — E""! be an arbitrary homeomorphism,
A = g %(S") and f = gls. By the condition, the map f : A — S" can be
extended to some map f : X — S". But then the map (f|g) og~! will obviously
be a retraction of E"*! — S$". Therefore dim X < n.

The necessity of the condition is proved by a direct construction. Since the
space X is obviously normally stable, then, according to the above, the map f
can be extended to some neighbourhood U of the set A. On the other hand,
considering a sufficiently small cubilage of the set X, we get that all cubes of
this cubilage intersecting A are contained in U. The union of Ay of all these
cubes is a cubable set containing A, to which the map f is extended. Therefore,
without loss of generality, we can assume from the very beginning that the set
A is a cubable set (and consists of cubes from some cubilage of the set X). In
this case, we will extend the map f cube by cube to all cubes of X that do not
belong to A. At each step of this extension, we will encounter a situation where
the map f is given on the boundary of some cube of dimension m < n, and the
task will be to extend this map to the entire cube. But since the pair (cube,
its boundary) is homeomorphic to the pair (E™,S™!) and since, as we already
know, m,,,—1S" = 0 for m < n, this problem is always soluble. Therefore, moving
from cube to cube, as a result we will extend the map f to all X. O

Remark 7.53. Proposition 7.52 suggests a way to define the notion of dimension
dim X for any topological space X. Namely, we can assume that dim X < n if
for every closed subset A ¢ X any continuous map A — S” can be extended to
all X, and dim X = n if dim X < n, but it is not true that dim X < n —1. Then
Proposition 7.52 will state that for any cubable set X, the dimension in this
sense coincides with its elementary-geometric dimension.

If dim X > n, then the map f : A — S” can, generally speaking, be extended
only to X" U Ag, where X" is the union of all cubes of dimension < n of the
considered cubilage of the set X. On the other hand, if dim X =n+ 1 and if in
each (n+ 1)-dimensional cubes from X \ Ay are selected by point, then the set
X \ K, where K is the set of all selected points, will obviously be retracted to
X" U Ag, and therefore the map f can be extended from X" U Ag to X \ K.

This proves that for any continuous map f : A — S" to the sphere S" of a
closed subset A of a cubable (n + 1)-dimensional set X there exists a finite set
K c X\ A, such that f is extended to X \ K.
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7.E Sets that do not dissect the spheres

Let us now return to the sets that do not dissect the sphere.

Proposition 7.54. A closed set X c S"™' does not dissect the sphere S™ if
and only if when each map X — S™! is non-essential.

Proof. The sufficiency of this condition was proved above. Therefore, we only
need to prove its necessity.

Let the complement $™*! \ X be connected, and let f be an arbitrary con-
tinuous map X — S". Since the sphere $"*! is homeomorphic to the cubable
set I"*2, then according to what has just been proved, we can assume that the
map f is extended to some map of the space S"*! \ K to the sphere S", where
K is a finite subset of the complement $"*! \ K. We will call the points from K
singular points of the map f.

Assuming that the sphere $"*! is equipped with a Riemannian metric (for
example, the induced Euclidean metric of the enclosing space R"*?), we call an
arbitrary open ball e ¢ $"! \ X the cell of $"*!\ X. It is clear that any point
xg € S\ X is contained in some cell, the boundary ¢ = ¢ \ e which does
not contain points from K and, moreover, any two points xg,x; € S™1\ X it
is possible to connect a chain of such cells in which any two consecutive cells
intersect.

With this in mind, consider an arbitrary point x; € K and a cell e containing
a point x; and such that its boundary ¢ does not intersect with the set K. Let
x5 be an arbitrary point of e. Since the set e \ x5 is obviously retractible to é,
the map f can be extended to e \ xo.

The resulting map has the same singular points outside e as the map f, and
inside e there is only one singular point xo. We will say that the singular point
x1 is shifted to position x5. (Note that in this case, all other singular points,
if any, contained in e, are also shifted in x».) Since, as already noted, any two
points from §™*!\ X can be connected by a chain of cells, any two neighbouring
cells of which intersect, it follows that all points from K can be shifted to some
fixed point xo € $™!' \ X. In other words, without loss of generality, we can
assume that the map f has only one singular point x(, i.e. that it is a map
S™1\ xy — S$" and, therefore, is non-essential (because the punctured sphere
S"1\ xg is contractible). But then its restriction to X, i.e. the original map f,
is also non-essential. |

7.F The theorem of the invariance of domain

Corollary 7.55. If A c X c S™! and the pair (X, A) is homeomorphic to the
pair (B S™), then the set S\ A is divided into two components, which are

the sets S\ X and X \ A. In particular, the set X \ A is open in the sphere
S"+1.

Proof. Since any map E™*! — S" is non-essential, the set S"*! \ X is connected.
The set X \ A is connected because it is homeomorphic to an open ball. This
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means that the set
S™IVA = (S X) U (X )\ A)

is either connected or consists of two components S"™!' \ X and X \ A. But it
cannot be connected, because there are essential maps A — S” (for example,
the homeomorphism A — S"). ]

Corollary 7.56 (The theorem of the invariance of domain). If subsets U and
V of the sphere S™ are homeomorphic and U is open in S", then V is also open.

Proof. Let f : U — V be a given homeomorphism, and let x € U and O be a
spherical neighbourhood of a point x such that a_c U. Just as the pair (0, O) is
homeomorphic to the pair (E™*', S"), the pair (fO, fO) is also homeomorphic to
the pair (E"*!, $"). Therefore, according to Corollary 7.55, the set fO\ fO = fO
containing the point f(x) € V, is open. Since this set is contained in V = fU,
this proves that the point f(x) is an internal point of the set V, and since any
point from V can be represented as f(x), the set V is open. O

7.G Topological invariance of the dimension of
manifolds

Recall that a topological space X is called a topological n-dimensional manifold
if any of its points has a neighbourhood homeomorphic to the space R".

Corollary 7.57. If subsets U and V of topological n-dimensional manifolds X
and Y are homeomorphic and U is open in X, then V is open in Y.

Proof. Let f : U — V be a given homeomorphism, and let x € U. There are
spaces homeomorphic to R", which means that the space S" \ sg is a neigh-
bourhood P and Q of points x and y = f(x) respectively in the manifolds X
and Y, such that P ¢ U and fP c Q. Having chosen the homeomorphisms
¢:P— S*\sgand ¢ : O — S"\ sg, consider the composition ¢ o f o ™!, which
is a homeomorphism of an open set S"\ sy on its subset (¢ o f)(P). According to
Corollary 7.56, the subset (¢ o f)(P) is open in S", and therefore in S" \ s¢. So,
the set f(P) is open in Q = ¥~ 1(S™ \ s¢), and therefore and in all the manifold
Y. Thus, each point f(x) of the set V = fU has an open neighbourhood fP in
Y, contained in V. Hence the set V is open. O

Remark 7.58. Without the assumption that X and Y are manifolds, Corollary
7.57 is incorrect. To get the corresponding counterexample, it is enough to take
the abscissa axis as U, V and X, and the union of the abscissa axis and the
ordinate axis as Y.

Corollary 7.59. Topological manifolds X and Y of different dimensions are not
homeomorphic.
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Proof. Let dimX — dimY = n > 0, and let, contrary to the statement, the
manifolds X and Y are homomorphic. Then the manifold is ¥ x R" will have
the same dimension as the manifold X, and at the same time will contain a
non-open subset Y X 0, homeomorphic to the manifold X. Since X is open in X,
this contradicts Corollary 7.57. O

Remark 7.60. Another, more instructive way of proving corollary 7.59 is that for
manifolds an analogue of Proposition 7.18 is proved. We will leave the detailed
conduct of the relevant arguments to the reader’s initiative.
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8.1 Exact Il sequences

Let us now return to the general theory of homotopy groups.
A homotopy sequence of an arbitrary fibration belongs to the class of left-
infinite exact sequences of the form

Pn+1 0, L p
oo 2 By — Fy S E, —5 B, — -

, (8.1)
all members of which, with the exception of the last six right-hand members,

are abelian groups, and which end on the right with three non-abelian (multi-
plicatively written) groups and three pointed sets:

iz P2 01 i P1 9 io Po
'—>F2——>E2—>BQQF1——>E1—>Bl—>FQ——>E0—>Bo,

abelian groups non-abelian groups pointed sets

moreover, for any n > 1, the multiplicatively written groups Fy, E1, B; act
respectively on the groups F,, E,, B, (for n = 1 - by means of internal auto-
morphisms).

Following Fuchs and Rokhlin we will say that such a sequence (8.1) is a II-
sequence if, in addition, the group E; acts on the group F,, and the group B;
acts on the set Fj (generally speaking, non-pointed maps), and:

a) the homomorphism p, for n > 2 is a p;-homomorphism;
b) the homomorphism i, for n > 1 is a E;-homomorphism;

c¢) the homomorphism 8, for n = 0 is a Bj-homomorphism; (in relation to the
action of the group Bj in itself by means of left translations), and for n > 1
is an Ei-homomorphism with respect to the action of the group E; on the
group B,.1, induced by the homomorphism p,, given by the action of the
group By;

d) the action of the group F; on the group F, is induced by the homomorphism
i1 by the given action of the group Ej.

275
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For such a sequence, the exactness in the term Fy will be understood in a
stronger sense. Namely, we will require that the preimages of the elements of
the set Ey by the map iy coincide with the orbits of the action of the group B;
in the set Fjp.

Proposition 8.2. The homotopy sequence

17 [ *
—>Jrn+1B—>7rnFl—>7rnE p—)nnB—>
of an arbitrary pointed fibration p : E — B is an exact I1-sequence.

Since for a homotopy sequence the condition a) is nothing more than a
property of the functoriality of the action R : 11X — Aut n,X in relation to the
map p : E — B, to prove proposition 8.2 we need to construct the action of the
group m1E on the group n,F (and the group 71 B on the set moF) and check the
conditions b), ¢) and d) (as well as the exactness in the term noF).

In the construction of this action (as well as, by the way, in the construction
of the action R : 711X — Autnm,X), only the non-degeneracy of the point sq is
used from the properties of the pair (S",s(). Therefore, instead of the group
. F, we consider the general case of a set of the form [X, F]°®, where X is an
arbitrary well-pointed space, and construct the action of the group m1 E on this
set, preserving the group structure when X is an H-cogroup, and such that

1) induced by the embedding i : F — E the map
[X,F]* — [X,E]*
is a w1 E-homomorphism (for X = S” this will give us the property b);

2) induced by this action by the homomorphism i, : 71F — n1E the action of
the group 71 F on the set [X, F]°® coincides with the canonical action from
Proposition 4.25 of Lecture 4 (for X = S" this will give us the property d)).

To construct this action, we notice that any loop u € QFE is determined by
the formula
Gx,t)=(pou)(t), xeX, tel,

a homotopy G : X X I — B such that for each map f : X — F there is a
commutative diagram

{xo0} §—>E

XxI—=B
G
where {Fx‘oy} = (X x0)U ({x0} xI), and g is the map given by the formula

§(x,t)={(i°f)(X), i,

u(t), if  x=xg, (x.1) € {xo}-
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The corresponding covering homotopy G:XxI—>E (existing by the axiom
CHE) has the property that G (x, 1) € F for any point x € X (and G(xo,1) = e).

Therefore, putting

f(x) =G(x,1), xeX,

we get some pointed map f: X — F, and it is obvious that if the formula
fa = [f]’, where ¢ = [u]®, and @ = [f]®, well defines the map (£, @) — £a,
then this map will be the action of the group m1E on the group [X, F]°, having
properties 1) and 2).

Therefore, we only need to check the correctness of this construction, i.e.
show that

Proposition 8.3. if u ~ uyrel{0,1} and f ~ f1, then f~ ﬁ

Proof. To this end, by introducing into consideration the corresponding homo-
topies u; : I — Erel{0,1} and fr : (X,x0) — (E,eo), we will define the map
h: Xpt — E to the space E from the subspace

Xpe = (XX 1) x0U ((Xx0)U ({xo} x ) U (X x 1)) x 1

of the space (X x I) X I by putting

fz(x), if =0,
He.1) = g(x, 1), if =0,

Gi(x,1), if =1,

u-(1), if  x = xo,

where G, is the homotopy of G, built on the map fi, and the path u;. It is
clear that the map & covers over X, the homotopy H : X x I X I — B defined
by the formula

H(x,7,t) = (pouy)(t), (x,7,1)eXxXIXI.

Hence, this map extends to the covering homotopy H : X x I x I — E, and the
map
Hooy:(x,7) > H(x,7,1), (x,7) € XXI,

will obviously be a pointed homotopy connecting the map fthe map g. O

Remark 8.4. It is clear that a similar construction holds for any paths in E (and
not just loops). As a result, an ensemble arises on the space E, whose group (or
pointed set) at the point e € E is the group [(X,xo), (Fp,e)], where B = p(e),
and Fj, = p~1(b) is the fibre above the point b of the fibration p : E — B (which
now there is no need to assume pointed). In particular, we thereby obtain for
any fibration p : E — B (and each n > 0) on the space E an ensemble of
homotopy groups of fibres {m,(Fp,e)} (for n = 0 being an ensemble of pointed
sets).
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Remark 8.5. When interpreting the elements of the group n,F as homotopy
classes of maps (I",I") — (F,eg) the element & € n,F is given by by map
B : (I",I") — (F,ep) related to the map a : (I",I") — (F,ep), specifying the
element a € m,F, and a loop u : (I",I") — (F, ep), specifying element & € 7, E,
by the map G : I"*! — E such that

(poG)(t,1) =(pou)(t) for any point (¢,1) € I"*!,
G(t,0)=a(t), G(t,1)=b(t) for any point e I".

A similar remark is true, of course, with respect to the action of morphisms
of the groupoid I1E on the groups m,,(Fp, €) of the ensemble of homotopy groups
of fibres of the fibration p : E — B.

Now we can proceed directly to the proof of Proposition 8.2.

Proof. (of Proposition 8.2) It remains for us to check the condition c¢) and con-
struct the action of the group 71 B on the set noF (and also prove the exactness
in the term noF).

First of all, we will check the condition c) for n > 1, i.e. we show that for
any elements « € 7,41 B and & € 1 E there is the equality

E(Ona) = On(p«(&)a).

Let the map a : ("™, ™) — (B, by) define the element « € 7, B, and the
loop u : (I,I) = (E,eg) the element &. Let, further, H be a map I"*' xI — B
such that

H(t,0) =a(t) for any point ¢ e ",

H(t,t)=(pou)(t) for tel™ and rel,
(so the map b : t — H(t,1) sets the element p.(£)a € my41B). By applying
the decomposition of 1" = I" x I, t = (s, s), we can consider the map H as a
homotopy I"*' x I — B with the parameter s. The initial map (s,¢) — H(s,0,¢)
of this homotopy is given by the formula (s,#) — (p o u)(¢) and, therefore, is
covered by the map (s,) — ut. Also, if s € [" or s =0, and t =0 or ¢ = 1, then

the homotopy H is covered by the constant map const.,. Therefore, according
to the axiom CHE, there is a homotopy

H:I"'xI—>E, (s,5,1) - H(s,s,1),
such that

H(s,s,t)=ey, sel” or s=0, and r=0 or tr=1,

H(s,0,7) =u(t) for any points selI", tel,
(poH)(s,s,1) = H(t,t) for any points (s,s,7) € ["xIx 1, where t=(s,s).
Putting a(s, s) = H(s, 5,0), we get a homotopy @ : I" x I — E, fixed on I", such

that @(s,0) = eg and p o@ = a. Hence, the map ¢ : s — a(s,1) = H(s, 1,0),
considered as a map (I", ") — (E, ep), sets the element d,a € 7, F.
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Similarly, putting b(s, s) = H(s, s, 1), we get a homotopy b : I" x I — E fixed
on I", such that b(s,0) = eg and p o b = b.

On the other hand, the map G : (s,f) — H(s,1,1) obviously satisfies the
relations

(poG)(t,0)=(pou)(t) forany point (s,7)e€I"xI=1I"",
G(s,0) =c(s), G(s,1)=ci(s) for any point S eI

Therefore, the map ¢, : (I",I") — (F, eg) sets the element &(d,).

Thus

§(Ona) = On(p«(§)a)

Let us now construct the action of the group 71 B on the set mgF.

Let £ € pi1B and « € ngF. By selecting for an arbitrary loop u : (I,1) —
(B, bg) of the class & the path covering this loop u : I — E, starting at some point
eq of the component «, consider the point u(1) € F. An automatic verification
shows that the component £ of this point depends only on ¢ and « (the easiest
way to see this is if you notice that £« is nothing but the image of the element
& by the map dy : m1(B, by) — ng(F,ey) and that the map (£,a) — £a is an
action of the group 7B on the set moF. At the same time, it is clear that for
any elements of &, € 71 B there is equality

00(én) = &(om),

meaning that condition c) is also met when n = 0.

Thus, to complete the proof of Proposition 8.2, we only need to check the
exactness in the term 7y F, i.e., to show that for elements a, 8 € moF the equality
i, = i, holds if and only if there exists an element & € 71 B such that éa = 8.
But the equality é@ = 8 means that the loop defining the element ¢ is covered
by a path starting in the component @ and ending in the component 3, and the
equality i.a =i, means that the components @ and S of the fibre F lie in the
same component of the space E, i.e. that in E there is a path starting in the
component @ and ending in the component 8. Since any such path is the cover
of some loop (namely, its projection into B), the equalities £a = B and i« = i.8
are indeed equivalent.

Thus Proposition 8.2 is fully proved. O

Remark 8.6. Similarly, it is possible for any n > 1 to construct an action of the
group m1B on the set [S", F] of the free homotopy mapping classes S" — F.
Thus, in the case when the fibre F is homotopically simple in dimension n and,
therefore, the set [S", F] is a group 7, F, we get the action of the group m1B on
the group 7, F (and for a non-pointed fibration p : E — B the ensemble {7, F}}
of groups n,Fp, on the space B).

8.2 Category of pointed pairs I ¢ 25

In Lecture 4, we already had the opportunity to introduce the category of pairs
T o, the objects of which are pairs (X, A) of topological spaces, and mor-
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phisms f: (X,A) — (Y, B) are maps f : X — Y such that f(A) C B.

Similarly, for any n > 2 the category of n-ples I ¢ 2, is introduced, whose
objects have the form (X, Aq,...,A;-1), where X D A; D --- D A,_1, but these
categories, unlike the category I ¢, will play a purely official role with us.

The category I ¢n°* of pointed spaces is obviously a complete subcategory
of the category I o ps.

A pointed pair is a triple of the form (X, A,x(), where xg is a point of the
subspace of A (called the pair marked with a point). The complete subcategory
of the category I ¢z generated by pointed pairs is denoted by the symbol
T o5, and its morphisms are called pointed maps of pointed pairs.

There are two obvious functors from the category I ¢ 9, (or the category
T op3) to the category T oz (respectively to the category 7 ¢2*). The first
functor of each pair (X, A) maps the space X and each map f: (X,A) — (¥, B)
is its own, but considered simply as a map X — Y, and the second functor to
the pair (X, A) maps the space A, and to the map f : (X,A) — (Y, B) is the
map A — B induced by it (which we will often denote with the same symbol
f).

A homotopy f; : X — Y is called a homotopy of maps of pairs (or a homotopy
in Tom)if f; : (X,A) = (Y,B) for any ¢ € I. (Homotopy maps of pairs should
not be confused with the narrower concept of homotopy with respect to A.)
Similarly, pointed homotopy maps of pairs are defined.

It is clear that thus the category I ¢ 22, (category I ¢ z3) it turns out to be a
category with homotopies in the sense introduced in Lecture 0. Therefore, all the
usual homotopy concepts make sense in it: homotopy equivalences, deformation
retractions, homotopy invariant functors, etc.

8.3 Relative homotopy groups
An example of a pointed pair is the pair (E",S"7!,sq) consisting of an n-
dimensional (n > 1) ball E", its boundary sphere S"~! and a point sq € S"71.
Definition 8.7. For any pointed pair (X, A, xg), the symbol x,(X, A, xq) or
simply 7, (X, A) denotes the set

[(E", "%, 50), (X, A,x0)] = [(B", "), (X, A)]°
of the homotopy classes of pointed maps (E",S$"7 1, 50) — (X, A, x0).

We will consider this set to be a pointed set, the base point of which is the
class of constant map const : E" — X, a > x¢ (obviously representing the map
(En’ Sn_l’ SO) - (X’ A’XO))'

Let us now introduce the triple (1", I*, I""1), n > 1, where:

I'' , as always, is a single n-dimensional cube consisting of points ¢ = (t13,...,t,) €
R", for which 0 <#; <1lforalli=1,...,n;

I" is its boundary consisting of points ¢ € I", for each of which there is an index
i=1,...,n such that either t; =0, or ¢; = 1;
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J* ! - complement in the boundary /" of the cube of its interior (n — 1)-
dimensional face I""!, defined by the equation f, = 0, i.e. the set of
all points ¢ € I", for each of which there is an index i = 1,...,n, such that
either i <n and t; =0, or t; = 1. See Fig 8.3.1.

1/[ Jﬁ‘l

Figure 8.3.1:

It is clear that the space J*~! is contractible to the point 0. Since the
pairs (I, I") and (I",J""') are obviously cofibrations, then the corresponding
deformation continues to the homotopy of the triple (I", 1", J""') into itself,
connecting the identical map of this triple with the map translating J"~! to the
point 0. This means that the subtriple (1", 1",0) of the triple (I, 1", J"!) is
its deformation retract and, therefore, is homotopically equivalent to it. Since
the triple (I",1",0) (being a pointed pair) is obviously homeomorphic to the
pointed pair (E",S"1,s0), then by selecting and fixing some homeomorphism
of these pairs, we can assume, that

(X, A, x0) = [(I", 1", 7", (X, A, x0)], (8.8)

i.e., that
”n(X7 A,XO) = HOQH(X7 A,XO),

where .
Q"(X, A, x0) = (X, A, xg) "I x".,

Now we can forget about the pair (E", S"",s¢) and use the formula (8.8) to
define the set 7, (X, A, xq).

Definition (8.8) has the advantage that for n > 2 for any two maps
a,b: (I",I",J"1) = (X, A, xo)

the formula (5.4) of Lecture 5 well determines the map

a+b: (I, I",J" Y - (X, A, x),
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moreover, as is directly verified, the formula
la] + [b] = [a + D]

defines in the set 7, (X, A, xg) the addition operation with respect to which it is
a group.

However, as in the case of groups m, X, these rather tedious checks can be
avoided by noting that, by applying the exponential law, the space Q—n(X, A, xg)
for n > 2 is naturally homeomorphic to the loop space QQ" (X, A,xy) and,
therefore,

T.(X, A, xo) = Q"L (X, A, x0).

Generally,
ma(X, A, x0) = 1 Q" %(X, A, xg) forany k=0,1,...,n—1. (8.9)

The group 7, (X, A, xg) is called the n-dimensional homotopy group of the
pointed pair (X, A,xq) (or the n- dimensional homotopy group of the space X
relative to the subspace A; however, the latter term is gradually falling out of
use now).

It is obvious that for A = {x¢}

(X, {x0}, x0) = (X, x0).

In this sense, the “relative” homotopy group m,(X, A, xp) is a generalisation of
the “absolute” group m, (X, xp).
Formula (8.9) for k = 2 shows that

Proposition 8.10. for n > 3 the group n,(X, A,xo) is abelian.

The group w2 (X, A, x¢), generally speaking, is non-Abelian (however, unlike
the group m1(X, xp), to denote the operation in the group (X, A, xg we will not
use the multiplicative notation), and the “group” 1 (X, A, xo) is only a pointed
set.

For n = 0, the group mo(X, A, xo) is not defined. However, for the unity
of formulations, we will sometimes express the fact that each component of
the space X contains at least one component of the space A by the formula
ﬂQ(X,A,XQ) =0.

It is clear that the correspondence (X,A,xo — m,(X,A,x0), n > 1, is a
homotopy invariant functor from the category 7 ¢ 3 to the category o/ &€
of abelian groups for n > 3, to the category £z of groups for n = 2 and to the
category &7 4° of pointed sets for n = 1.

Moreover, if Xy and Ay are components of the spaces X and A containing
the point xq, then the embedding (Xo, Ag, x9) — (X, A, xp) induces for n > 2 an
isomorphism of the group m,(Xg, Ag,x¢) on the group n,(X, A, xg). Therefore,
without much loss of generality, we can assume a pair (X, A) be connected, i.e.
consisting of a connected space X and its connected subspace A.

According to Formula (8.9) for k =n—-1

ﬂn(Xa A7-x0) = ﬂn—IQ(X, A)’
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where Q(X, A) = Q1(X, A, x¢) is the space P(X, A, x¢) already familiar to us from
lecture 1 of all paths in X starting in the subspace A and ending at the point
X0, i.e. the fibre w™!(x() of the fibration

wi: P(X,A) - X, u u(l), (8.11)

where P(X, A) is the space of all paths u : I — X starting in the subspace A.
This space is nothing more than a co-cylinder of the embedding i : A — X,
and therefore, according to Lemma 2.41 of Lecture 2 (which, however, refers to
inverted cocylinders),

Proposition 8.12. the space P(X,A) is homotopically equivalent to the sub-
space A.

(However, the mutually inverse homotopy equivalences P(X,A) — A and
A — P(X,A) are easy to specify directly: they will be the map wq : P(X,A) —
A, u+ u(0), and the map o : A — P(X,A), a — 04; it is clear that wgo o =id,
and o o wg ~ id by the homotopy u — u;, where u,(7) = u(t7r), v € I.) So,

Proposition 8.13. for any n > 0, the group n,P(X,A) is isomorphic to the
group m,A.

Using this isomorphism (and equality (8.9) with k = n — 1), we obtain an
exact IT-sequence from the homotopy sequence of fibration (8.11)

. s .
BN Tp1 X EAN T1(X, A) > 1A N X — - (8.14)

the right end of which has the form

o i B o i
- > r3(X,A) > n3A = moX EiN m(X,A) > mA LN m X

abelian groups non-abelian groups

i o i
EAN m1(X,A) - 1A 5 X,

pointed sets

and which is called the homotopy sequence of the pair (X, A).

Remark 8.15. Like the homotopy sequence of a fibration, the homotopy sequence
of a pair is, by applying Remark 5.99 from Appendix to Lecture 5, a special
case of the Puppe sequence.

A direct comparison of the definitions shows that in the sequence (8.14):

the homomorphisms i, and j. are induced by embeddings i : A — X and
J (A, xg) = (X,A) (i-e., more precisely, the maps i : (A,x9) — (X,xq)
and j : (A,xo,x0) — (X, A, x0));

the homomorphism 8 is induced by the map Q"(X,A) — Q"~'I, which maps
each map (I, I",J"1) — (X, A, xq) to its restriction on the face of I"~! (in
interpretation elements of the group r, (X, A) as pointed maps (E, $""!) —
(X, A) the homomorphism 9 is given by the restriction of these maps on
the sphere S"°1);
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the action of the group m1 A on the group 7, (X, A), n > 1, matches the element
« of the group m,,(X, A), set by the map (1", I*,J*"1) — (X, A, xp), and the
element & of the group 71 A, set by the loop u : (I, 1) — (A, so), an element
of the group m,(X, A), defined by the map b : (I",I",J" 1) — (X, A, xq),
for which there is a homotopy G : I" X I — X of the maps of pairs
(I", 1"y — (X, A), such that

G(t,t)=u(l-1), if teJ" ! rel,
G(t,0)=a(t), G(t,1)=b(t) forany tel;

the action of the group n1X on the set m1(X,A) matches the element a =
[a] € m1(X,A), where a is the path (7,0) — (X,xg) starting at A, and
the element ¢ = [u] € 71X, where u is the loop (I,1) — (X, x), element
fa e (X, A),is set by au’, where u' : t — u(1 —1).

(According to the general definition of IT-sequences, we also need the actions
of the group 71X on groups 7, X and the action of the group 72(X, A) on groups
m,(X,A); but it is clear that the first action is an ordinary action R : 11X —
Aut 7, X, and the second can not be separately considered, since for n = 2 it is
an action by internal automorphisms, and for n > 2 due to the condition d) it is
induced by a homomorphism 9 : 72(X, A) — m1A from the action of the group
m1A. In this case, in the case of n = 2, the condition d) is reduced to the formula

(Va)B=a+B-a (8.16)

which should be the case for any elements @, 8 € m2(X, A).)

Thus, we obtain a direct construction of the sequence (8.14) that does not
rely on the fibration (8.11). Of course, with this approach, the exactness of
this sequence and the fact that it is a IT-sequence need independent verification.
The reader is strongly recommended to do this check with all the details (special
attention should be paid to formula (8.16), the direct proof of which is somewhat
painstaking).

We emphasise that, thus,

Proposition 8.17. the group n,(X,A) for n > 3 is a 11 A-module.

For the sake of unity of terminology, we will also call the group n2(X, A) a
m1A-module, although this group is non-Abelian. When we need to emphasise
the exceptional nature of this group, we will call it a crossed w1 A-module. (In
general, an additively written group G in which a multiplicative group Il acts
is called a crossed I1-module if a homomorphism 0 : G — II is given such that
for any elements @, 8 € G the relation (8.16) holds.)

Of course, instead of the action of the group 71 A on the group n,(X, A), we
can consider the corresponding ensemble {r, (X, A,a),a € A} on A.

An obvious generalisation of the proof of Proposition 4.25 of Lecture 4 shows
that the maps I, I, J"~!) — (X, A, xo) (or maps (E*,S""1,50) — (X, A, xg)) are
freely homotopic, i.e. homotopic as maps (I", I") — (X, A) (maps (E",S""!) —
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(X, A)) if and only if when they belong to the same orbit of the action of the
group m1A. In particular, since the action of the group 71 A preserves the group
structure on 7, (X, A), n > 2, it follows that for n > 2 the map (E,$"!) — (X, A)
sets the null element of the group m, * (X, A) if and only if when it is freely
homotopic to the constant map.

On the other hand, in order for the mapping (E",S"1!) — (X, A) to be freely
homotopic to a constant map, it is sufficient (and, of course, necessary) that it
be homotopic to a map f : (E*, $" ') — (X, A), such that f(E") C A, since any
such map is associated with a constant homotopy map x — f(tx), x € E" r e I,
which is (by applying the condition f(E") c A) a homotopy in the category of
T o ps.

Calling a map f : (BE",S"1!) — (X, A), for which f(E") c A, a map con-
tracted into A, we get, therefore, that

Proposition 8.18. for n > 2 the map (E",S"71,50) — (X, A,xo) sets the null
element of the group m,(X,A) if and only if when it is freely homotopic to the
map contracted into A.

It is clear that this conclusion is also valid for n = 1.
Interestingly, the free homotopy here can be replaced by a homotopy relative
to "1, ie.

Proposition 8.19. the map (B, S"1,50) — (X, A, xq) it is freely homotopic to
a contracted map if and only if when it is homotopic to a map relative to S*~ 1.

Proof. Indeed, any homotopy f; : (B, S"1,50) — (X, A,xp), for which f = f
and f1(E") C A, we can match a homotopy g; : E* — X fixed on $"!, for which
go = f and g1 (E") C A, putting

g(x)=(Foo)(x,t), xeE?, rel,

where F : E" X I — X is a map (x,f) — f;(x), and ¢ isamap E" XTI —» E" x [
such that ¢(x,t) = (x,0) if t =0 or x € $"!, and ¢(x,1) € ("' xI) U (E" x 1)
for any point x € E". (For example, we can assume that

(x,1) (25x.1), i 0<s<min(2(1-x),1),
e(x,t) = - 2 .
(& o), i 200 -|x) <t <1,
for (x,f) e B*x I.) =

In particular, we see that

Proposition 8.20. the equality n,(X, A) =0 is equivalent to the fact that any
map (B",S"1,50) = (X, A,x0) is homotopic (freely or relative to S"™!) to the
contracted map.

By analogy with the absolute case (see Definition 5.33 of Lecture 5), we will
say that a pair (X, A) is aspherical in dimension n > 0 if 7,(X,A,xg) = 0 for
any choice of point xy € A. In this case, we will write 7,(X, A) = 0.
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Asphericity in dimension 0 (equality 7o(X, A) = 0) means that any compo-
nent of the space X intersects with the subspace A. If X is connected, then this
condition is always met.

Asphericity in dimension n > 1 (equality 7, (X, A) = 0) means that each map
(BE", 8" 1) — (X, A) is homotopic (free or relative to S""1) to the contracted
map.

In particular, for asphericity in dimension 1, it is necessary that any com-
ponent of space X contains at most one component of subspace A. If A is
connected, then this condition is met.

A pair of (X, A) is called n-connected if it is aspherical in all dimensions
of < n. In particular, if n > 1, then for the n-connectivity of the pair (X, A),
it is necessary that each component of the space X contains one and only one
component of the space A. If the pair (X, A) is connected, then this condition
is automatically met.

If for a connected pair (X, A) the action of the group 71(A, xg) on the group
(X, A, xg), n > 2, is trivial, then the pair (X, A) is called homotopically simple
in dimension n. In this case, the group =, (X, A) is defined, whose elements are
free homotopy classes of maps (1", [" — (X, A) (or (E",$""!) — (X, A)), which
for any point xg € A is naturally isomorphic to the group n,(X, A, xg). In this
case,

Proposition 8.21. the group m X naturally acts on the group m,(X,A)

(moreover, for A = {x¢}, this action is the standard action of the group m; X
on the group 7, (X, x9) = 1, X).

Proof. Tt is sufficient to apply Remark 8.6 to the fibration (8.11). m]

Note that, as follows directly from the formula (8.16),

Proposition 8.22. if the pair (X, A) is homotopically simple in dimension 2,
then the group mo(X, A) is Abelian. In particular, the group mo(X, A) is Abelian
if the space A is simply connected.

It is also useful to keep in mind that if the space A is connected and simply
connected, then the map 71X — 71(X, A) is bijective, and therefore multiplica-
tion in the group 71X is transferred to the set 71 (X, A). Thus,

Proposition 8.23. if the space A is connected and simply connected, then the
set t1(X, A) is a group.

It also follows directly from the definitions that for any pointed map f :
(X,A) — (Y,B) and any n > 1 there is a commutative diagramme

(X, A) 2>, 1A

| jf*

m.(Y,B) - m,_1B

In the language of category theory, this means that
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Proposition 8.24. the homomorphism 0 : n,(X,A) — m,_1A is a natural
transformation (morphism) of the functor into a functor ny : T o — EECrn
Mp_10a:J op N T on I, AEG7 n,

where « is the functor (X, A) — A.

This remark allows us to formulate axioms for relative homotopy groups
similar to axioms [1]-[3] of Lecture 5 §5.15 for absolute groups (only, for example,
the axiom of exactness is now formulated for pairs) and, essentially the same,
inductive reasoning shows that up to isomorphism (and for non-Abelian groups
up to anti-isomorphism) these axioms uniquely characterize the groups of m,.

8.4 The five lemma

In working with exact sequences of groups, the following simple lemma, known
as the five lemma, has unexpectedly wide applications.

Lemma 8.25. If in the commutative diagramme

a7 a2 as (o7}

Ay A —20 Ay Ay As (8.26)
<P1L <F2l <ﬁ3l </74l ¢5l
By A By 7 B3 7 By 5 Bs

with exact rows, the homomorphisms ¢1, @2, Y4, @5 are isomorphisms, then the
homomorphism @3, is also an isomorphism.

Proof. Let @3(as) = 0, where az € A3z. Then B3(¢3)(as) = 0, and therefore
wa(as(as)) = 0, i.e. as(as) = 0. Therefore, there exists an element as € Ag
such that aa(az) = as. But then Ba(p2(az)) = ¢s(az(a2)) = ¢s(as) = 0,
thus there is an element b; € B such that B1(b1) = ¢2(asz). Since ¢ is
an isomorphism, there exists an element a; € A; such that b1 = ¢1(a1)-
Then cpg(ozl(al)) = ,81((,01((11)) = ,81(171) = 902((12) and ozl(al) = dasz. Thus
asz = as(as) = as(ai(a)) =0, hence ¢3 is a monomorphism.

Similarly, since ¢4 is an isomorphism, then for any element b, € Bs there
exists an element a, € A4 such that B3(b3) = p4(ay4), and therefore ¢5(ay)(ay) =
Ba(ps(aq)) = Ba(p3(b3)) = 0. Therefore, @4(ay) = 0, which means that there
exists an element as € Az such that as(as) = a4. But then B3(¢s3(as)) =
wa(as(as)) = pa(ay) = Bs(bs), and therefore there is an element by € By such
that B2(b2) = ¢3(as) — bs. Since @9 is an isomorphism, there exists an element
az € ag such that g2 (az2) = b, and therefore p3(az(az)) = B2(p2(az) = B2(b2)) =
ws3(as) — bs, i.e. by = ¢p3(as — az(as)), hence @3 is an epimorphism. |

The course of this proof is unambiguously dictated by the arrows of this
diagramme, and it is quite possible to carry it out in your mind, helping yourself
by moving your finger along the diagramme. This method of proof is therefore
called the “diagramme chasing”.
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Remark 8.27. It follows from the proof of Lemma 8.25 that:

a) if ¢ is an epimorphism, and ¢s and ¢, are monomorphisms, then ¢3is a
monomorphism;

b) if ¢ is a monomorphism, and ¢ and ¢, are epimorphisms, then ¢3is an
epimorphism.

This remark is sometimes useful.

To show how Lemma 8.25 works, we compare the homotopy sequence of the
pointed fibration p : E — B with the homotopy sequence of the pair (E, F),
where F = p~'(b) is the fibre of this fibration:

., F . E . (E, F) Tp_1F p1E ——---

idL idL p*l idl idl

. F . E m,.B a1 F 1B ——---
(8.28)

An automatic verification shows that this diagramme is commutative. There-
fore, according to the Five Lemma,

Proposition 8.29. the map
ps i (E,F) —> B (8.30)
for any n > 2 is an isomorphism.

Of course, this statement is easily proved directly using the axiom CHE (do
it!), but applying the Five Lemma reduces the proof to triviality.

On the other hand, if the isomorphism (8.30) is independently established,
then the statements about the exactness of homotopy sequences of fibrations
and pairs turn out to be direct consequences of each other, so that the proof
of the exactness of homotopy sequences of fibration from the previous lecture
can, if desired, be replaced by a proof of the exactness of homotopy sequences
of pairs (see above).

Remark 8.31. Although Lemma 8.25 is usually applied to diagrammes of type
(8.26) consisting of abelian groups (or modules), but, as its proof shows, in which
abelicity is not used, this lemma is also valid for sequences of non-Abelian groups
(we actually used this when deriving the isomorphism (8.30) for n = 2).

For the same reasons, Lemma 8.25 remains valid if in Diagramme (8.26 the
last two groups of each row are only pointed sets. Moreover, it is easy to see that
Lemma 8.25 is preserved if the pointed sets are even the last three groups in
each row, the groups A, and By act on the sets As and Bj3, and the exactness in
terms Az and Bj is understood in the enhanced sense indicated above (i.e., the
preimages of points in the maps @3 and B3 are orbits; in addition, it is assumed,
of course, that the map @3 is a @s-map.

This remark is relevant for the case when the lines of diagram Diagramme
(8.26) are the end segments of exact [T-sequences. In particular, it follows from
it that
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Proposition 8.32. the map (8.80) is an isomorphism (a bijection for n=1).

Remark 8.33. For n = 0, one can only assert that no(E, F) = 0 if and only if
7Z'()B =0.






Appendix

8.A Homotopy sequence of a triple

The isomorphism (8.30) proved in Lecture 8 can be substantially generalised.

Proposition 8.34. For any fibration p : E — B and any subspace A C B, the
homomorphism

pe:Tn(E,Fa) = m,(B,A), n>1, where Fa=p ‘A, (8.35)
induced by the map p : (E,Fa) — (B, A), is an isomorphism.

When A = {by} the isomorphism (8.35) turns into the isomorphism (8.30) of
Lecture 8.

Proposition 8.34 can be proved in many different ways. For example, it is
easily proved (do it!) by a direct geometric constructions using the axiom CHE.
But we will prefer another more instructive way.

Let (X, A, B,xp) be an arbitrary pointed triple. By definition, X is a topo-
logical space, A is its subspace, B is a subspace of space A, and xg is a point of
space B:

xo € BCACX.

Let, further, i : (A,B) — (X,B) and j : (X, B) — (X, A) be inclusions and
i :7m,(A,B) > m,(X,B) and j,.:7n,(X,B) — n,(X,A)
be corresponding homomorphisms of homotopy groups. Finally, let
0 :mn(X,A) = mp-1(A, B)

is the composition of the connecting homomorphism x,, (X, A) — 7,,-1 A from the
homotopy sequence of the pair (X, A) and the homomorphism of the embedding
vitp—1A — m,-1(A, B) from the homotopy sequence of the pair (A, B).

Definition 8.36. The sequence
5 (A B) 5 n(X,B) L5 mn (X, A) S 01 (AB) = - (8.37)
is called the homotopy sequence of the triple (X, A, B).

291
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Proposition 8.38. The homotopy sequence of a triple is exact.

The sequence (8.37) to the left is infinite, and its right end has the form

s 7T2(A’B) - 7T2(X’ B) - HQ(X’A) - ﬂl(A’B) - 7T1(X,B) - ﬂl(X’A)'

non-abelian groups pointed sets

It is possible to easily determine in this sequence the actions of the groups o,
in relation to which it will be a IT-sequence. However, we will not need these
actions.

Proof. (of Proposition 8.38) Let

1:A—> X, is:B—> A, i3:B—-X,
j1 : (X,X()) — (X,A), j2 : (A,)CO) — (A,B), j3 : (X,X()) i (X, B)

be inclusions, and
01 :mpe1(X,A) > A, 0o 1 (A, B) > B, 03 : mp1(X,B) > n,B

be connecting homomorphisms of homotopy sequences of pairs (X, A), (A, B)
and (X, B). Consider the diagramme'

—>7Tn+1(X,A)=7Tn(A,B)—>7Tn 1B—— sy X —

NN TN N
N A

ﬂn(XaB) Tn 1A

ANANTNL

(X A)=7Tn 1(A,B) =

An automatic verification shows that this diagramme is commutative. It con-
sists of four symmetrically arranged sequences, three of which, being homotopy
sequences of pairs, are exact, and the fourth, highlighted in the diagramme
with thickened arrows, is the sequence (8.37). At the same time, since the map
joi: (A,B) » (X,B) can be decomposed into the composition of inclusion
(A,B) » (A,A) - (X,A), and n,(A, A) =0, then j, oi, =0, i.e. imi, C ker j,.
It turns out that proposition 8.38 follows from here by a purely algebraic dia-
gramme chasing.

Indeed, since i1, = 0, then i, 00 =i, 0 js. 001 = j3. 0i1. 001 = 0, and similarly
00 j.=J2.001 00y = jo.0ig, 003 =0. Thus, im 9 C keri and im j, C kerd.

Conversely if y € n,(A,B) and y € keri,, i.e. ioy =0, then d, = 0, and
therefore y = jo.a, where @ € n,A. In this case, j3. 0 i1.@ =i, 0 jo,a@ =i,y =0
and means i1.a = i3.3, where 8 € n,,B. Therefore, i1.(a —i2.8) = 1@ —i3.8 =0,

I Transcriber’s note: this is called Wall’s “braid” diagramme.
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and therefore @ — iy, 8 = 01y , where y' € mu,1(X, A). But then 81y = j2.d1y
Jox(@ —i2.8) = joa =7y, 1. e, y €imd. Thus, keri, C imd.

Similarly, if y € n,(X,A) and y € kerd, i.e. dy = 0, then jo. o 01y = 0,
and therefore 91y = is.B, where B8 € m,_1B. In this case, i3.8 = i1« 0 i2.8 =
i1,00:1y = 0 and, therefore, 8 = 838, where 8 € 7,(X, B). Therefore d;(y—j.8 =
Ay — g 0 B = 0 and, therefore, y — j,8 = ji., where @ € 7,X. But then
Je(jsea +B8) = jlsa + j.f =7y i. e, y € im j,. Thus kerd c im j,.

Finally, we have already seen that imi. C ker j.. Conversely, if 8 € 7,,(X.B)
and B € ker j, i.e. j,B =0, then iy, o 3B = 0, and therefore d3B = day, where
v € (A, B). In this case d3(B8—i.y) = 038—02y = 0 and, therefore, f—i.y = ]3*0/
where a € 1, X. Therefore ji.a = ]*013*(1 J«B— ]*oz v =0 and hence a= zl*a
where @’ € m,A. But then i,(jo,@ +7y) = jg, 0i1.@ +iyy = jas@ +iyy = 8, i.

B € imi, Thus, ker j. C imi,. O

Remark 8.39. Sequence (8.37) can be constructed for any family of {H,,d}
functors H, : T on; — A6EG» 72 and natural transformations 0 : H,(X,A) —
H,_1(A,xq). At the same time, as is directly evident from the above proof, this
sequence is exact if for any pair (X, A) € T ¢ 2o the sequence

C 5 o (X, A) S Hy(Avxo) = Hy(X,x0) — Hy(X, A) —

is also exact if H, (A, A) =0 for any space A € T on°.

We will have occasion to use this remark next semester.

Proof. (of Proposition 8.34 Consider the diagramme

"+7Tn(F‘A’F')%.JTH,(E"F‘)971’}'!(E‘7F‘A)+7TV1—1(F‘A’F‘)97“’”—1(E"F‘)9

A T S T

> ﬂn(AvbO) - ”n(B, bo) - ﬂn(B» A) - ”n—l(A’ bO) - ﬂn—l(B’ bO) e

the upper line of which is the homotopy sequence of the triple (E, Fa, F), the
lower line is the homotopy sequence of the pair (B, A), and the vertical homo-
morphisms are induced by the map p. This diagramme is obviously commuta-
tive and all its vertical homomorphisms, except for the central homomorphism
Ds : Ty (E, Fa) — m,(B, A), being homomorphisms of the form (8.30) from Lec-
ture 8 (recall that the map p4 : FA — A is also a fibration), are isomorphisms.
Therefore, according to the Five Lemma, the central homomorphism is also an
isomorphism. O

Remark 8.40. Our way of proving Propositions 8.34 and 8.38 is not the easiest.
It would be much easier to reverse the sequence of reasoning by first proving
Proposition 8.34 purely geometrically and then by deducing Proposition 8.38
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from it using the diagramme

v ——=mn(S,T) ApaT 1S —— 1,1 (S, T) ——---

| | | |

v > (A,B) —> 1 (X, B) —> 71 (X, A) ——7,-1(A, B) —— -+

where S = Q(X, A) (respectively T = Q(X, B)) is the space of paths in X start-
ing in the subspace A (in the subspace B) and ending at the base point xo.
The top line of this diagramme is the homotopy sequence of the pair Q(X, A),
(Q(X, B)), and its bottom line is the sequence (8.37). Its mmiddle vertical ho-
momorphisms are the isomorphisms inverse to the isomorphism (8.9) of Lecture
8 (for k = n—1), and the lateral homomorphisms are induced by the fibration
wo : Q(X,A) - A and, therefore, by applying proposition prop:08-A1, are also
isomorphisms (clearly, then wy'B = Q(X, B)). An automatic verification shows
that the diagramme in question is commutative. Therefore, the exactness of its
upper line implies the exactness of its lower line. However, this proof does not
allow us to make Remark 8.39.

8.B Homotopy groups of triads

It immediately follows from the exactness of the homotopy sequence of the triple
that

Proposition 8.41. for n,.(A,B) = 0 and n,_1(A,B) = 0, the homomorphism
induced by inclusion
7. (X,B) - n.(X,A) (8.42)

is an isomorphism.

Despite its simplicity, this criterion, as we will see in its place, is very useful
and allows us to obtain important and interesting geometric results. However,
it is insufficient for problems in which, instead of a pair (X, B), a pair of the
form (X', B) is involved, where X' c X. In order to obtain a generalisation of
this criterion necessary for such problems, we must generalise the homotopy
sequence of the triple accordingly.

We will call an n-ad a family (X;A4,...,A,-1), consisting of a topological
space X and its arbitrary subspaces Ay, ...,A,;—1. A continuous map f: X — Y,
for which f(A;) ¢ B; for any i = 1,...,n — 1 is called an n-ad morphism
f i (X;A,...A,-1) — (Y;B1,...,By-1). All n-ads and their morphisms ob-
viously constitute a category with homotopies. We will denote this category by
the symbol T ¢ z(,], and the corresponding homotopy category by the symbol
[T ¢ 72m]-

The category of n-ples ¢ 2, introduced in Lecture 8 is a complete subcat-
egory of the category I ¢zy,). For n = 2, the equality T ¢ns = T 0 (2] takes
place, but already for n = 3, the category J ¢ 3 is a proper subcategory of the
category I o 3]-
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If the space X is pointed and the base point xq lies in each space Ay, ..., A,—1,
then the n-ad (X;Aq,...,A,—1) is called a pointed n-ad. Pointed n-ads make
up the category I ¢z[,), which is a complete subcategory of the category
f707-7[n+1]-

For us, the pointed triads (X; A, B,x) will be of particular interest, which,
as a rule, we will simply denote by (X; A, B). Note that for such a triad, the
intersection C = A N B is not empty.

For each pointed triad (X; A, B) and any r > 0, a homomorphism is defined

ji 7 (A,C) > n.(X,B), C=ANB, (8.43)

induced by the inclusion j : (A,C) — (X, B). To obtain a criterion that this
homomorphism is an isomorphism, we introduce into consideration the groups

7. (X;A,B) =n,_1(Q(X,B),Q(A,C)), r=>2.

Definition 8.44. The group n,(X; A, B) is called the r-dimensional homotopy
group of the triad (X; A, B).

Of course, this “group” for r = 2 is only a pointed set. For r > 4, the group
- (X; A, B) is abelian.

By applying the exponential law, homotopy classes (in the category I ¢ 4]
of maps can be considered as elements of the group x,(X; A, B)

(I 'L "< I, x1,{0}) — (X; A, B,xo), (8.45)

where {0} = (I""1 x 0) U ({0} x I). .

It is clear that the 4-ad (I"' x I; I"~! x I,I"! x 1,{0}) is homotopically
equivalent (in the category I ¢s4]) to the pointed triad (E";E, "', E"1, (),
where B, "1, E"~! are the hemispheres on which the boundary sphere S"~! of the
sphere E" is split by the hyperplane x, = 0. Therefore, we can consider elements
of the group m,(X; A, B) also as homotopy classes (in the category 9'0/1['3]) of
maps

(E";E7LETY — (X;A,B) (8.46)

of pointed triads.

Since the permutation of the hemispheres E; ™! and E"~! translates each map
(8.46) into a similar map for the triad (X; B, A), it immediately follows, that for
any r > 1 there is an isomorphism

. (X;A,B) = n.(X; B, A). (8.47)
Since
- (X,B) =n,-10mega(X,B), I,n.(A,C)=mn._10mega(A,C),

then the homotopy sequence of the pair (Q(X, B), Q(A, C)) gives us the exact
sequence

B ke
o (AC) S (X B) S (XA B) D R (AC) - (8.48)
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which is called the homotopy sequence of the triad (X; A, B). The homomor-
phism j,. of this sequence is the homomorphism (8.43) of interest to us, the
homomorphism k. is to each map (I",1",J"') — (X, B,xo) this is the same
map, but considered as a map of the form (8.45), and the homomorphism 9
maps each map (8.46) to its restriction on the hemisphere E7~!. (To simplify
the formulation, we identify maps and their homotopy classes here; we will allow
ourselves this freedom of speech in the future.)

The sequence (8.48) is naturally a IT-sequence. We will provide a direct
description of the relevant actions to the reader’s initiative.

Due to the exactness of the sequence (8.48), the homomorphism (8.43)
is an isomorphism if m,.1(X;A,B) = 0 and n,.(X;A,B) = 0. Therefore, if
n-(X;A,B) =0 for r < n (the triad (X; A, B) satisfying this condition is called
n-connected), then the homomorphism (8.43) will be an isomorphism for r < n
and an epimorphism for r = n. (just as for a n-connected pair (A, B), the ho-
momorphism (8.42) will be an isomorphism for r < n and is an epimorphism for
r=n).

8.C Invariance of homotopy groups under defor-
mation retractions

For A C B, we can consider any map (8.46) as a map (E",S""!) — (X, A), and
thereby obtain some homomorphism
7. (X;A,B) > n.(X,A), ADB. (8.49)

An automatic verification shows that together with the identity isomorphisms
7(X,B) — n.(X,B) and 7,(A,C) — n,(A, B) (note that C = B for A D B) the
homomorphisms (8.49) constitute a homomorphism of the sequence (8.48) in
the sequence (8.37). Therefore, by applying the Five Lemma,

Proposition 8.50. all homomorphisms (8.49) are isomorphisms.

Thus, for A D B, the group n,(X; A, B) does not depend on B.
This fact can be proved in another way by noting that

Proposition 8.51. if the subspace A of the space X is contractible (A N\, pt),
then

7 (X,A) =n,.X (8.52)
for any r > 1.
Proof. Indeed, in the exact homotopy sequence of the pair (X, A), all groups

m-A are equal to zero, and therefore the homomorphisms 7, X — n,.(X, A) are
isomorphisms. O

This proves anew the isomorphism (8.49), because if for the triad (X; A, B)
there is an inclusion A > B and, therefore, C = B, then
. (X;A,B) = m,(X; B, A) = m,-1(Q(X, A), Q(X, B)) = m,1((X, A), (B, B))
= ﬂrQ(X’A) = ﬂV(X’ A)a
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since the space Q(B, B) = PB, as we know, is contractible.
The isomorphism (8.52) can be easily generalised.

Proposition 8.53. If (X,A) c (X,A"), and the space X is a deformation
retract of the space X', and the space A is a deformation retract of the space
A (ie. X' Ny X and AN\ A), then the inclusion (X,A) — (X', A") induces
isomorphisms

(X, A) =m.(X,A), r>1.

Proof. In the commutative diagramme

A 9.4 (X, A) m_1A 1 X — -
A X (X, A)—=m 1A —= 1 X ——

the vertical homomorphisms of which are induced by inclusions, and the hor-
izontal ones are homotopy sequences of pairs (X,A) and (X', A’), all vertical
homomorphisms, except the central homomorphism 7, (X, A) — (X ,A"), are
isomorphisms. Hence, according to the Five Lemma, this central homomor-
phism will also be an isomorphism. O

When A" = {xo} we get the isomorphism (8.52).

It is clear that a similar statement (with almost the same proof) holds for
triads: if (X;A,B) c (X;A',B’) and each spaceX, A, Band C = ANB is a
deformation retract of the space X', A", B and C' = A" N B, respectively, then

7 (X;A,B) = n.(X ;A B)

for any r > 1.

8.D Homotopy sequence of 4-ads

Is it possible, by analogy with homotopy groups of triads, to define homotopy
groups of n-ad for n > 4?7 For example, it seems natural to define the homotopy
groups n1,(X; A, B,Y) of an arbitrary pointed 4-ad (X; A, B,Y) by the formula

7 (X,A,B,Y) =m,_1(Q(X,Y); Q(X,E), Q(A, D))

(having meaning for any r > 2), where D =Y N A and E =Y N B. For these
groups there is an exact sequence

T ﬂr(XaA9E) - ﬂr(X7A7Y) - ﬂr(X;A9B’Y) - ﬂ-r—l(X;A’E) —

being nothing more than the sequence (8.48) for the triad (Q(X,Y); Q(X, E), Q(A, D))
(just as the sequence (8.48) itself was nothing more than a homotopy sequence
of the pair (Q(X, B),Q(A, C))). However, by rearranging Q(X, E) and Q(A, D)
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(why does the group =, (X; A, B,Y) not change), we similarly get the exact se-
quence

=, (D;DNE) - (Y, E) > 71.(X;A,B.Y) > m1(D;DNE) — -+ -,

from the comparison of which with the homotopy sequence of the triad (Y; D, E),
it immediately follows by applying the Five Lemma that 7, (X; A, B,Y) =~ n,.(Y; D, E).
Thus, the introduced groups are reduced to groups of triads.

Nevertheless, this attempt turned out to be useful to us, because we now see
that

Proposition 8.54. for any pointed 4-ad (X; A, B,Y) there is an exact sequence

S (GAE DS (X AY) D 1 (D E) D e (X AE) >
(8.55)
where D=YNA, E=YNB.

An automatic verification shows that, as expected, the homomorphisms i,
and j, of this sequence are induced by the inclusions

i:(X;AE) > (X;A,Y) and j:(Y;D,E) —> (X;A,E).

As for the binding homomorphism 4, it is a composition of the permu-
tation isomorphism 7, (X;A,Y) = n,.(X;Y,A), the connecting homomorphism
1 (X;Y,A) — m,-1(Y,D) from the homotopy sequence of the triad (X;Y,A),
the homomorphism 7, _1(Y,D) —
pir — 1(Y; E, D) from the homotopy sequence of the triad (Y; E, D) and the iso-
morphism of the permutation n,_1(K;E,D) ~ n,_1(X; D, E).

Note the special case of the sequence (8.55) that occurs when ¥ O B, i.e.
when E = B:

- > 1,.(X;A,B) N - (X;AY) LA n--1(Y; D, B) EAN m_1(X;A,B) > --- .
(8.56)
Of course, the failure of our attempt to construct meaningful (non-reducible
to homotopy groups of triad) homotopy groups n-ad for n > 4 does not mean
that such groups cannot be constructed. We will leave the clarification of this
question to the reader.
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The value of fibrations in the theory of homotopy groups is determined mainly
by the presence of a homotopy sequence for them. Therefore, it is advisable to
study in general the maps for which this sequence can be written.

9.1 Weak fibrations

Definition 9.1. A map p : E — B is called a weak fibration if for any point
eg € E and any n > 0 it induces an isomorphism

pe: n(E, Fyyre0) = ma(B,bo),  bo=p(eo), Fu, =p " (bo),

and if each component of the space E that passes into the component of space
B containing the point bg intersects with Fp,,.

Replacing in the homotopy sequence of pairs (E, Fj,) the group n,(E, Fbg)
with the isomorphic group 7, B, we get an exact sequence

iy P+ a
o > 1 Fpy = mE — 1y B =ty Fpy — -, (9.2)

called the homotopy sequence of the weak fibration p : E — B at the point
eg. Therefore, for calculations with homotopy groups, weak fibrations are no
worse than ordinary fibrations (which we will now allow ourselves to call strong
fibrations).

Remark 9.3. It should be borne in mind that in the literature on topology, the
term “weak fibration” is used in many different senses. For example, Spanier
(see [12], p. 482) calls weak fibrations fibrations in the sense of Serre (maps
satisfying the axiom CH only with respect to cube). On the contrary, weak
fibrations in the sense of Definition 9.1 Dold and Thom (to whom the merit of
introducing this concept belongs) call quasi-fibrations.

Of course, any fibration is a weak fibration. The converse, generally speak-
ing, is not true.

Example 9.4. Let E be a subset of the plane consisting of two horizontal seg-
ments connected by a vertical segment, B be a horizontal segment of double
length and p : E — B is the projection (see Fig. 9.1.1).
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Figure 9.1.1:

It is directly verified that this projection is a weak fibration. However, it
will not be a fibration (even in the sense of Serre), since the path id : B — B in
B is not covered by any path in E.

As we know, if the map p : E — B is a fibration, then for any subspace A C B
the induced map pa = pla : Fa — A, where Fo = p~ 1A, is also a fiibration (this
fact, in particular, was significantly used in the proof of proposition 8.34 from the
Appendix to the previous lecture). The analogous statement for weak fibrations
is, in general, incorrect (and, therefore, the more general statement that a map
induced by a weak fibration is a weak fibration is incorrect).

Ezample 9.5. Let B be a half-plane x > 0 of the plane R2, and E be the same
half-plane, but with a section 0 < x < [, y = 0, from which only its upper side is
left. Obviously, the natural projection p : E — B is a weak fibration (because
all homotopy groups of spaces E, B and Fp,,, By € B, in dimensions > 0 are equal
to zero). At the same time, the preimage Fa of the circle A : (x —1)2+y? =1/4
is a segment, and therefore the projection p4 : F4 — A cannot be a fibration -
even a weak one (because m1(F4) =0, whereas 11 A # 0).

Following Dold and Thom, we will call a subspace A C B distinguished (with
respect to a given surjective map p : E — B) if the map pa : F4 — B is a weak
fibration.

Now it is easy to see by actually repeating verbatim the proof of Proposi-
tion 8.34 from the Appendix to the previous lecture that, when restricted to
distinguished sets, this proposition also holds for weak fibrations i.e.

Proposition 9.6. for any weak fibration p : E — B and any distinguished
subspace of A C B the homomorphism

Dx 1 u(E,Fp) = m(B,A), n>0,

induced by the map p : (E,Fa) — (B, A), is an isomorphism (for any choice of
base points eqg € Fa and bg = p(eo))-

It is natural to expect that similar reservations are needed when generalising,
to weak fibrations, Theorem 1.71 of Appendix to Lecture land, therefore, from
the existence for the space B of a cover (even enumerable) consisting of open
distinguished sets, it does not follow yet, in general, hat the map p : E — B is
a weak fibration (i.e. that the space B is distinguished.)

Ezample 9.7. Let B be the plane R?, and E be the same plane, with a section
0 <x <1,y =0, from which only its upper side is left. According to what
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was said in Example 9.5, the half-lane x > 0 is distinguished with respect to the
natural projection p : E — B. By symmetry, the half-plane x < 1 is also marked,
which together with the half-plane x > 0 is an open cover of the plane B. At
the same time, if the projection p were a weak fibration, then due to the fact
that all the sets p~'(bg), By € B, are points and therefore aspherical, it would
would be an isomorphism of pi1E ~ myB. But n;B = 0, and the group m E is
nontrivial, since the loop bypassing the cut is not homotopic to zero (prove it!).
Therefore, the projection of p : E — B cannot be a fibration - even a weak one.

At the same time, it turns out that

Proposition 9.8. if for a surjective map p : E — B there is a covering of the
space B consisting of distinguished open sets U, such that any of their finite
intersections are also distinguished, then the map p : E — B will be a weak
fibration.

Moreover, the following slightly more general theorem, due to Dold and
Thom, is valid.

Theorem 9.9. A surjective map p : E — B will be a weak fibration if for the
space B there exists a covering consisting of distinguished closed sets U, such
that every intersection Uy, N Ug is a combination of covering elements.

Note that the covering U, is not supposed to be enumerable.
For the proof of Theorem 9.9 we will assume four lemmas, the first of which
has an independent interest.

9.2 The additional lemma

Along with the standard constructions of the sum of elements of homotopy
groups described in Lectures 5 and 6, there are many other constructions for
this, which, although less elegant, are more convenient in certain situations.

Descriptions of these constructions are known by the common name of ad-
ditional lemmas. We will not dive deep into the swamp of these lemmas and
for now we will limit ourselves to only one of them, which is necessary to prove
Theorem 9.9.

This lemma uses the fact that for any pointed pair (X, A,x), we can con-
sider homotopy classes of maps (I, I",0) — (X, A,xq) as elements of the group
Ty (X, A, xo) .

Let K" e a subcube of the cube I consisting of points ¢ = (¢1,...,t,) for
which

1/4<t<1/2,...,1/4<1t,-1 £1/2,0<1, < 1/4

(see Fig. 9.2.1).

It is clear that pair (1", [" UK") is a cofibration, with /" UK™ N\, /). There-
fore, any map (I",1",0) — (X, A,xq), is homotopic (in the category T 0 n3)
to the map that translates the cube K™ to A, and, therefore, to the map that
translates the cube K" to the point x.



302 LECTURE 9.

L_%_'
Figure 9.2.1:

Let, further, K be the boundary of the cube K", and L"~! be the union of
all its faces other than the face K{”l = K" N I", given by the equation 7, = 0.
Let, finally, ¢,, be the linear map

5] H4t1_1»~-'stn—1 th—l_lstn '_’4tn

from the triple (K", K", L*"1) to the triple (I, ", J"1).
The additional lemma we need may be now formulated as follows.

Lemma 9.10. Let the element a € n,(X, A) is given by the map f : (I, ", J"" 1) —
(X,A,xq), and the element B € n,(X,A) is given by_the map g : (I, 1",0) —
(X, A, xq), such that g(K) = xq. Then the map h : (I",1",0) — (X, A, xq), defined
(obviously, well) by the formula
D), if tekn,
ney= { oen 0. te tel (9.11)
g(t), if t¢K",

will set the element a + B € m,(X, A).

Proof. Tt is clear that the pairs (/*, K"~'uUj"~1) and (I, K"UI™) are cofibrations.
A standard reasoning therefore shows that there is a homotopy

8 * (In,ln,O) - (X,A,XO)

such that
=8 &U"H)=x0, gi(K")=x0

for any ¢+ € I. Replacing the map g in formula (9.11) with the map g,, we
obviously get a homotopy &, : (I",I",0) — (X,A,xg), connecting the map
h = hg with the map hy, constructed by the map g;. Therefore, without loss
of generality, we can assume in Lemma 9.10 that the map g has the additional
property that g(J"~1) = xo, i.e., it is., like the map f, a map of the standard form
(I, 1", J"=1) — (X, A, xo) (and, of course, still satisfies the condition g(K") = xo,
which ensures the correctness of formula (9.11)). Moreover, for similar reasons,
we can even require that g(¢) = xo for 0 < 11 < 1/2, i.e. that the map g be the
sum const+g , a constant map const and a map g : (I",I",J"" 1) — (X, A, xq)
defined by the formula

+ 1
2

g'(t)=g(1

,12,...,t,,), t=(t1,t2,...,t,) € 1"
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But then the map A will obviously be the sum f +g  where f : (I",[",J" 1) —
(X, A, xp) is defined by the formula

f’(t) — (fo ‘Pn)(%at%' . ~7tn), if (%,tg,. . .,tn) € Kn,
Yo if (%7t27'-'9tn) éK",

and g as above. Since 8 = [g]* = [const+g'] = [g]*, it follows that to prove
Lemma 9.10 it is sufficient to prove that @ = [f']® i.e. that there is a homotopy
fio (I 1", 01 — (X, A, xo), connecting the map f to the map f . Since such
a homotopy can be defined, for example, by formulae

F ) = {(fo en)(Bota, . ty), i (Bita,... 1) €K,

: t
X0, if (51,[2,...,2‘")QK",
f(t+2t1+1 t+415—1 t+4rn—-1-1 4tn)
1+t 2 143t > 1+3t > 143t/
— : 1-t 1-t 1+t 1-¢ 1+t 1+3t
fi(t) = if TStlﬁl,TSIQST,...,TSZ‘,;_1ST,OSI”ST,
Xxg, Otherwise,
Lemma 9.10 is thus fully proved. O

We will say that the map A is obtained from the map g by pasting the map
f.

9.3 The main lemma

Now we can prove the fundamental lemma Dold and Thom, revealing the in-
ternal “homotopy” springs of the validity of the axiom CHE for cube maps.
This lemma specifies the conditions on the mapping p : E — B and the sub-
space A C B, under which for any map g : (I"*',I") — (B,A), any homo-
topy h, : (J*,I") — (B,A), having the property that hg = g|;, and any
map hy : (J",I") — (E,Fa), Fo = p~'A, covering the map h; (i.e. such
that h; = p o hy), there is a homotopy g; : (I"*',I") — (B,A) and a map
g: (I, 1) — (E, F4) such that

glyjm=h, o=g g =pog
andg;|y» = h; for any t € I.

Lemma 9.12. If for each point eq € Fa and an induced map p, the homomor-
phism
Pn Iﬂn(E,FA,eo) —>7Tn(B,b0), bO:p(eO)’

18 a monomorphism, and the homomorphism

Pn+1 ¢ 7rn+1(E, Fy, 50) - 7rn+1(B, bO)

is an epimorphism, then for any g, h; and hy there are g; and 3.
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Before proving this lemma, we note that the pair (J”, I") is obviously home-
omorphic to the pair (1", /). (Indeed, for any homeomorphism ¢ : (1", [") —
(E", 8" 1) the formula

1 ; -
e {gf“)’ v

T(’D(t)’ if tel y
will determine the homeomorphism of the pair (J", I") = (I"xI)U(I"x1), I" x0)
with the pair (J",I"). So the map ¢! o ¢ will be a homeomorphism (1", I") —
(B™, ™ 1). Therefore, if we fix the homeomorphism (1", ") — (J™, I"), then for
any pair (X, A) each pointed map f : (J", I") — (X, A) will define some element
of the group m,(X,A). Moreover, homeomorphism (1", ") — (J",I") we can
consider (why?) a restriction of some homeomorphism (I"*%,J") — (I"*%, "),
from which it follows that each map g : (I"*!,I") — (X, A) we can consider as
a homotopy from 7" to X, the initial map of which is the map g|;»(considered
as a map (I",I") — (X, A)). Since, when identifying I"*! = I" x I, the subset
J" of the cube I'*! is identified with the subset (/" xI)U (1" x 1) of the product
I" x I, and by the condition g(I") c A, this homotopy will be the homotopy of
the maps of pairs (I",1") — (X, A), and its end image will be a map drawn in
A. Therefore, its initial map will set the zero element of the group n,(X, A).
This proves that

Proposition 9.13. the map f : (J",I") — (X, A) sets the null element of the
group n,(X,A) if and only if when there is a map g : (I"*', ") — (X, A) such
that f = g|m

Proof. (of Lemma 9.12) Let @ be an element of the 7, (E, Fa), defined by the map
hy: (J", 1Y) — (E, Fa) (or, more precisely, the map hy: (J",1",0) — (E, Fa, ep),
where eg = El(O). Then the element p,(a) € 7,(B, A) will be set by the map
hy : (J",I") — (B,A), and therefore by the homotopy map hg : (J*,I") —
(B, A). But by the condition hy = g|s, where g : (I'*',I") — (B, A), from
which, according to the remark just made, it follows that the map hg specifies
the zero element of the group 7, (X, A). Thus, p,(a) =0, and therefore, due to
the assumed injectivity of the homomorphism p,, equality @ = 0 takes place in
the group 7, (E, Fa).

Therefore, there is a map g : (I"*1,I") — (E, F4) such that g'|;» = hy It is
clear that the formula

g(t’ tn+2), lf tn+1 = 09
G(t, tn+1,tn+2) = htn+1 (t, tn+2), if t e I or tn+1 = 1,

(p Og/)(t’ tn+2)a lf tn+1 = 17

where ¢ € I, and fy41,tpe2 € I well defines some map G : (J™, /™) —
(B,A). Let B be the corresponding element of the group m,.1(B,A). Since
the homomorphism p,+1 is by condition an epimorphism, there is a map f :
(I, 7, JMYY — (E, Fy, e), which has the property that the map po f specifies
the element B of the group 7,41 (B, A).
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Let K be the image of a subcube K™ of the cube I"*! under the home-
omorphism y : (1", ["*1) — (J"*1, ["*1), by which we interpret the map G as
the map (I"*!, ["*1) — (B, A). It is clear that by choosing the homeomorphism
x accordingly, we can assume without loss of generality that Enﬂ is contained
in the face "' = 1 of the cube I"*2, i.e. after identifying this face with the
cube I"*! in the cube I"*! (and does not intersect with J"). In addition, it can

be assumed that the map g  translates E’Hl to the point e¢g. Then the map G,
considered as a map (I"*', ["*') — (B, A), will translate the cube K"*! to the
point eg, and therefore will allow pasting the map f. The corresponding map H
will, according to Lemma 9.10, set the element -8+ = 0 of the group n,(B, A),
and therefore there will be a map H' : (I"*2, I'*') — (B, A), coinciding on J"*!
with the transformation H. By applying the identification 1"*? = I"*! x I we
can consider this map as a homotopy g; : I"*! — B. In this case, the relation
H'| 1 = H will be equivalent to the relations gy = g, g/|y» = h;, t € I, and

g1 = p og, where g is the map (I"*',I") — (E, F,), coinciding outside !
, —n+l

with the map g, and on K" with the map f, considered by applying the

homeomorphism Ko gt 2 il g map K™ S Ea

. . . —n+l .
To complete the proof, it remains to note that since K " does not intersect
with J", the map g coincides on J" with the map g, and therefore with the map
hi. m}

9.4 Covering homotopies for weak fibrations

To deduce Theorem 9.9 from Lemma 9.12, we will need a general methodological
(or, better to say, elementary geometric) lemma concerning cubable sets (see
Appendix to Lecture 7).

To shorten the formulations, we will call the open covering {U,,a € A} of a
topological space X an additively saturated covering, if for any indices a,8 € A
the intersection U, N Ug is the union of the covering elements {U, }.

Lemma 9.14. Let Q be a compact cubable set, X be a topological space, {Ua, a €
A} be an additively saturated open covering of the space X, and F : Q — X be
a continuous map. There is a cubilage to the set Q and a map ¢ : K — A such
that:

(i) for any cube o € K there is an inclusion

F(O’) C U¢(U);

(ii) if the cube o € K is a face of the cube T € K, then Uy(s) C Uy(r)-

(iii) In addition, given finite family {Cg,B € B C A} of closed sets Cg € Q,
such that F(Cg) € Ug for any B € B, then the map f can be selected so
that when o N Cg # @, the inclusion

Uyo)y CUp, o €K, BEB.
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takes place.

Proof. Let’s call the cubilage K of a set Q satisfactory with dimension n > 0
if on the set K" of all its cubes of dimension greater than or equal to n a map
¢ : K" — A is given such that the conditions (i), (ii) and (iii) are fulfilled for all
cubes o € K. The statement of the lemma means that there is a satisfactory
cubic with dimension 0. Since for n, greater than the dimension of the set Q,
any cubilage of this set is obviously satisfactory from dimension n, to prove
the lemma, it is therefore necessary to prove that the existence of a cubilage
satisfying from dimension n + 1 implies the existence of a cubilage satisfying
from dimension .

With this in mind, consider an arbitrary cubilage K of the set Q, satisfactory
with dimension n+ 1. Let o be an arbitrary n-dimensional cube of this cubicle,
and let x € o. Due to the conditions imposed on the covering{U,}, there
is an element U, (x) of this covering containing the point f(x) € X such that
Ua(x) C Uy for any (n + 1)-dimensional cube 7 € K having the cube o as its
edge and Uy (x) C Ug for any index § € B that has the property that x € Cg. By
applying the continuity of the map F : Q — X and the compactness of the sets
Cp the point x € Q has in Q a neighbourhood of V(x) such that F(V(x)) C Ug(x)
and V(x) NCg = @ if x ¢ Cg The neighbourhoods V(x), x € o, make up the open
covering of the cube o, and therefore there is a small cubicle K, of this cube
such that each cubicle K is contained in at least one neighbourhood of the form
V(x). Since any smaller cubicle of a cube also has this property, by applying the
finiteness of cubilage K, we can assume that for all n-dimensional cubes o € K
cubes K, have the same fineness N.

Consider the cubilage K of the fineness N of the set Q Any of its cube o
of dimension greater than or equal to n is contained in a single cube o € K of
minimum dimension > n. In the case when dim o~ > n+1 (and therefore the index
(o) is defined), we will put ¢1(01) = ¢(0). If dim o = n, then by construction
o1 € K, and therefore there is a point x € o, which has the property that
o1 C V(x). Arbitrarily choosing such a point x, we will put ¢1(0l) = a(x). A
direct check shows that the cubilage K; with respect to the so-constructed map

¢ K;") — A is a cubilage satisfactory from dimension n. O

Now we can consider the question of what remains of the axiom CH in the
case when the map p : E — B satisfies the conditions of Theorem 9.9.

Lemma 9.15. Let’s say for the map p :— B there is an additively saturated
open covering {Uy;a € A} of the space B, consisting of the distinguished sets,
and and for a compact cubable set P and a continuous map F : Px I — B for
a finite family {Cg,8 € B C A} of closed sets Cg € P x I such that F(Cg) C Ug
for each B € B is given. Then for any commutative diagramme of the form

P—L ok
p

.

Px]l——B
F
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there is a map F : PxI — E such that Fooy = f and a homotopy G, : PxI — B
such that Go = F, Gi = poF, Gioog = Fooy, G,(Cg) C Ug for anyt € I,
B € B.

Proof. According to Lemma 9.14 (applied to the map F and the curated set
Q = P xI), there is a cubilage K of the set Q = PxI and amap f: K — A
having properties (i), (ii) and (iii). We will strengthen Lemma 9.15 by requiring
that for any cube o € K and any ¢ € I there is an inclusion G;(0") C Uy (o). By
applying the property (iii), this will obviously ensure that we have the inclusion
Gt(CB) C Uﬁ.

Each cube o € K has the form 7 X p, where 7 belongs to some cubilage of
the set P, and p belongs to some cubilage of the segment I, i.e. it is either
one of a finite number of points of the form k27" k =0,1,...,2" or one of the
segments I = [k27N, (k+1)27N], 0 < k < 2V — 1. Let’s focus our attention on
cubes of the form 7 x I;. We will arrange these cubes, assuming that 71 X Iy, <
Ty X Iy, if k1 < ko, and for kq = ko if dim7; < dim 1o (cubes with k1 = ko and
dim 7 = dim 7, are ordered in an arbitrary way). We will build the map F and
the homotopy G, separately on each cube of the form 7 X Iz, assuming that
they have already been built on the previous cubes. At each step (including the
initial one) of this construction, after identifying the cube 7 X I} with the cube
I"xI=1In+1,n=dimt, we will deal with the situation of Lemma 9.12, where
the role of the space B will be played by the set U = U,(7x1,), the role of the
space E is its preimage Fyy = p~'U, the role of the map p is the restriction py of
the map p given to us on this preimage and the role of the subspace A is the set
V=Uy(op), Ok =T X {k2N}. The conditions imposed in Lemma 9.12 and a of
the homomorphisms p,, and P,,; will be fulfilled due to the distinguished sets U
and V (note that if the set V c U c B is distinguished with respect to the map
p : E — B, then it will be distinguished in relation to the map py : Fy — U).
The condition that the map F and the homotopy G, are constructed for the
previous cubes of the cubilage K will give us the map g, h; and k1 and the map
g: and g will allow you to extend F and G, to the cube 7 x I. Thus, the map
F and the homotopy G, will be constructed by induction on all cubes 7 x I, i.e.
on the entire set Q = P X I. O

9.5 Proof of the Dold-Thom theorem

Let us now turn directly to the proof of Theorem 9.9.

Proof. (of Theorem 9.9) It is enough to show that the map p : E — B, satisfying
the conditions of Theorem 9.9, has the property that for any point eg € E and
any point containing by = p(e) of an element U,, of the covering {U,} induced
by the map p : (E, Fy,_,eo) = (B,Uq,, bo), the homomorphism

ag

p* :ﬂ'n(EyFUnanO)_)ﬂ-n(B7Ua/0ab0)a n>07
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is an isomorphism. Indeed, then in the commutative diagramme

s> (E, FU‘YO) _>7Tn(FUaO,Fb0) -, (E, Fbo) =, (E, FU(YO) _>7Tn—1(E,FUa0) =

l L l

oo == i1 (B, Fbo) I ﬂn(Uao) —— 7 (B) — 7, (B, Uczo) — ”n—l(Urto) —

the horizontal lines of which are homotopy sequences of the triple (E, Fy,, , Fo)
and of the pair (B, U,,) respectively, and vertical homomorphisms are induced
by the map p, all vertical homomorphisms, except the central one x,,(E, Fp,) —
7, B, are isomorphisms. Therefore, by applying the Five Lemma, the last ho-
momorphisms will also be isomorphisms, i.e. the map p : E —B will be a weak
fibration.

p-« is a monomorphism. Let & be an element of the group 7, (E, Fy,, , o) such
that p.£ = 0. The condition p.& = 0 means that to the map f : (1", I",J"" 1) —
(E, Fy,, . €o0), of the defining element ¢, there exists a homotopy f; : (1", m -
(B,Ug,) such that fo = po f, and fi = const. Let’s apply Lemma 9.15, taking
for P the cube I" (and, therefore, for Q the cube I"*!), for f the map f, and for
F the homotopy f; (interpreted as the map " x I — B). For the family {C,},
we will take the family consisting of a single set Cq, = (I" X I) X (I" x 1) = J"
(so B = {ao}). It is clear that all the conditions of Lemma 9.15 are fulfilled, and
therefore there is a map F : I"*! — E, such that F o 0y = f, and a homotopy
G, : I""' — B, such that Go = F, Gy = poF, G, o0y = fy and G,(J") C Uy,
for any ¢ € I, where, as always, oy : I — I"*! is the inclusion ¢ — (¢,0). Since
G,y =poF and G;(J") C Uq,, then the map F, interpreted as a homotopy
from I" to B, is actually a homotopy (free) from (1", I") to (E,Uq,), connecting
the map f with the map pulled down to U,,). Since the existence of such a
homotopy implies, as we know (see Lecture 8), equality & = 0, this proves that
the homomorphism p. is a monomorphism.

ps 15 an epimorphism. The elements of the group m,(B,U,,) can be con-
sidered as homotopy classes of maps F : (I, I",I"™') — (B, U, bo), i.e. maps
F : I" — B such that F(J"™!) c U,,) and F(I"™') = by. Each such map F,
together with the map f = const,, : I""! — E, satisfies (for P = [""!) the
conditions of Lemma 9.15 (with B = {e} and C,, = J""!). Therefore, there is a
map F : I" — E such that Fooyg = const,,, (i.e. F(I"™') = eg), and a homotopy
G, : I" — Bsuch that Go = F, G, = poF, G, 00y = const,, and G,(J" ') c U,
for any ¢ € I. The conditions that the homotopy G, satisfies mean that this ho-
motopy is a homotopy of maps (1", ", 1""') — (B, Ua,, bo), connecting the map
Fto the map poF. Therefore, firstly, poF is amap (I", ", I""') — (B, Uq,, bo)
and therefore sets some element of the group 7, (B,Ug), and secondly, that
element coincide with the element & € 7,(B, U,, ), set by the map F. Therefore,
the map F will be a map (I", ", I""') — (E, Fy,,-€0), and the element £ of the
group m,(E, Fy, ) will have the property that p. &) =¢.

Thus, Theorem 9.9 is fully proved. O
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9.6 James’ lemma

We will apply Theorem 9.9 to the proof of a useful lemma first established by
James. This lemma involves two pointed spaces X and Y, a reduced cone C*X
over the space X, a pointed map f : XxXY — Y and the space E = (C*XXxY) U7,
obtained by gluing the space C*X XY to the space Y by the map f (since X c C*,
then X XY c C*X xY). We will say that the space E is obtained by applying
James’ constructions to the map f.

Let p: E — S°X be a map defined (obviously well) by formulae

p([x,,t]]c,y) = [xx,t]s, p(yY)=x9, xe€X, yeY, tel.

Proposition 9.16 (James’ lemma). If the base point xo € X has a contractible
relxg neighbourhood Uy and for any point x € X, the map y — f(x,y), y €Y,
fromY toY is a homotopy equivalence, then the map p is a weak fibration.

Let’s first prove the following lemma.

Lemma 9.17. Under the conditions of Proposition 9.16, for the base X of the
cone C*X, there exists a neighbourhood U, of which it is a strong deformation
retraction.

Proof. Let U be a subset (obviously open) of the cone C*X, consisting of points
[x,1] that either x € Uy or ¢ ¢ [1/3,2/3]. Clearly the formula

gelx,t] =[x, p(t,7)],  [x.1] €U,

where
0, if 0<r<Z,
_ ) 3t-x : T 3—-7
p([,T) =13-3¢ lf 3 <t< 3
1, if &f<r<l,

defines a homotopy fixed on X that connects the identity map go =id : U - U
with the map gy : U — U, which is a map to the union of X UC*Uy, where C*Uj
is the cone contained in C*X over the neighbourhood Uy. On the other hand,
since the neighbourhood Uy is contractible relxg, it is a strong deformation
retract of the cone C*Uy, i.e. there is a homotopy h, : C*Uy — C*Uj fixed
on Uy such that sy = id and h1(C°Uy) = Uy. Defining this homotopy on X,
assuming that i, =id on X, and putting

Py if 0<7<1/2
" horo10gr,  iflj2<tT<1,

obviously, we will well define a homotopy fixed on X connecting the identity
map U — U with the map i or, where i : X — U is an inclusion, r : U — X
is some retraction (representing the map hy o g1, considered as a map in X).
Therefore, U \ X. O
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Let V be the image of the neighbourhood U of the factorisation map C*X —
S*X. Since considered as a map (C*X,X) — (S°X,xp), this map is a relative
homeomorphism, the retraction r : U — X defines a strong deformation retrac-
tion V — xq. Thus,

Proposition 9.18. the neighbourhood Vis contractible rel xg.
Consider the set Fy = p~1V.

Lemma 9.19. For any point v € V the set F, = p~1(v) is a deformation retract
of the set Fy.

Proof. By applying the standard identifications Fy = (U \ X) xY) UY, and

p(u,y)=u®, p(y) =xo,

for any point u € U\ X and y € Y, where u’ is the image of the point u in V (i.e.
uS = [x,1]%, if u = [x,£]€), and xq is the base point of the suspension S*X. At
the same time, the homotopy fr : U — U constructed above obviously defines
a homotopy Fy — Fy fixed on Y, connecting the identity map with the map
iog, wherei:Y — Fy is an inclusion, and f is a retraction Fy — Y, defined
(obviously well) by the formulae

r(u,y)= f(ru,y), 7(y)=y, ueU\X, yeY.

Since Fy, =Y, this proves Lemma 9.19 for v = xo.

Let v # xo. Then F, = u XY where is u € U is (obviously, the only) point
such that uS = v. The restriction 7, of the retraction 7 to F, differs from the
homotopy equivalence y — f(x,y) only by the homeomorphism (u,y) — v,
where x = r(u), and therefore is itself a homotopy equivalence. Let g : Y — F,
be the inverse of the homotopy equivalence, and j : F,, — Fy be the inclusion.
Then (go7)oj = goF, ~id, and jo(goF) ~ioFojogor =ioFyogoF ~ioF ~ id,
and hence the map j is a homotopy equivalence. Since the pair (Fy, F,) is
obviously a closed cofibration, this is possible only if Fy X\ F, (Corollary 2.30
of Proposition 2.29 of Lecture 2). ]

Proof. (of Proposition 9.16) Let W be the complement in S*X of the point xg
(or, equivalently, the complement in C*X of the space X). The set W is open,
its preimage p~'W c E is the product W x Y, and the map p on Fy = p~'W
is the projection W xY — Y. The intersection V N W has similar properties,
of course. This means that the sets VN W and W are open and distinguished.
Therefore, by applying Theorem 9.9, to prove Proposition 9.16, it is sufficient
to prove that the set V is distinguished, i.e. that for any point v € V and any
n > 0 the map p induces an isomorphism p, of the group n,(Fy, F,) and the
group p,(V,v). But due to the contractibility of the neighbourhood V and the
deformation retractibility of the set Fy onto the fibre F, just proved (see Lemma
9.19), both these groups are null. Consequently, the map p. is automatically
an isomorphism. |

James found a remarkable application of Proposition 9.16 to the theory of
homotopy groups. We will deal with it in the next lecture.



Appendix

For fibrations, Theorem 1.71 from the Appendix to Lecture 1 is valid, and for
weak fibrations, theorem 9.9 of Lecture 9 is valid. The question is natural: does
a similar theorem hold for homotopy fibrations?
We will show that the answer to this question is yes, moreover, that in this
respect homotopy fibrations behave exactly the same as strong fibrations.
Preliminarily, we will need to prove another characteristic property of ho-
motopy fibrations.

9.A The axiom delayed covering homotopy

We will call a homotopy F : X X B delayed if there is a number g > 0 such that
for 0 <t <ty for any point x € X the equality F(x,t) = F(x,0) is valid.

Definition 9.20. It is said that the map p : E — B satisfies the axiom delayed
covering homotopy (in short, the axiom CDH) if for any diagramme of the form

A

in which the homotopy F is a delayed homotopy, there is a covering homotopy
F.

(9.21)

R —
7

[ ——

The following somewhat unexpected proposition is valid, which illuminates
the concept of homotopy fibration in a new way.

Proposition 9.22. A map p : E — B is a homotopy fibration if and only if
when it satisfies the axiom delayed covering homotopy.

Proof. In the place of Diagramme (9.21), the diagramme, in which the homotopy
F is replaced by the homotopy F' : X x I — B, defined by the formula

F (x,)=F(x,(1—to)t+1y), x€X, 0<t<1.

311
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is also commutative. Therefore, in the case when the map p : E — B is a homo-
topy fibration, for Diagramme (9.21) modified accordingly, there is a covering

homotopy F : X x I — E, which has the property that F o ¢ ~5 f. Denoting
by G : X X I — E the homotopy over B connecting the map f with the map

F ooy, we put

_ ( ) if 0<1t<to,
Fx,t)=4_, " xeX,0<t<1.
F ).

= if rp<tr<i,

> T-ty

An automatic check shows that in this way we obtain a homotopy F : XxI — E,
which closes Diagramme (9.21). Thus, the homotopy fibration p : E — B
satisfies the axiom CDH.

Conversely, assuming that the map p : E — B satisfies the axiom CDH,
consider an arbitrary Diagramme (9.21) (with, generally speaking, non-delayed
homotopy F). It is clear that the formula

F(x,0), if 0<r<1/2,
F*(x ):{ (x,0) ! / xeX, 0<r< 1.

F(x,2t-1), if 1/2<r<1,

defines a delayed homotopy F* : X x I — B (with #y = 1/2), for which the
commutative diagram (9.21) also takes place (with F replaced by F*). Therefore,
for the homotopy F*, there is a covering homotopy F :XxI—>E. By putting

G(x,t) = F (x, %) )

xeX, 0<r<1, (9.23)
— — 1+1¢
F(x,t)ZF (x, )9

2

obviously, we will get homotopies G : X xI — E and F : Xx x I — E such
that G is a homotopy over B connecting the map 7 with the map F o o, and
the homotopy F covers the homotopy F. Therefore, the map p : E — B is a
homotopy fibration. O

Let Cocyl(F, f) be a subspace of the cocylinder Cocyl f consisting of points
(x,ud), x € X, u : I — E, such that

(pou)(t) = F(x,1)
for any point (x,7) € X x I (and, of course, u(0) = f(x)).

Corollary 9.24. The map p : E — B is a homotopy fibration if and only if
when, for any diagram (diag:09-A1) with delayed homotopy, the projection F

Cocyl(F, f) —» X

has a cross section.
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9.B The axiom hyper-weak covering homotopy
extension

Similarly, the axiom WCHE can be transferred to the case of homotopy fibra-
tions.

Definition 9.25. Let for the diagramme

1k

where A ¢ X, A = X x0U A x I and oy is an inclusion, there exists a map

gl

in which fo > O, U is some closed functional neighbourhood (cf. 2.25) of A in
X, (17?:1),0 = (X x[0,70]) U (U x I) and F' is the restriction of the map F on
(1771),0. Then, if there is a homotopy F : X x I — E, closing the diagram
(9.26), then it is said that the map p : E — B satisfies the axiom hyper-weak
covering homotopy extension (in short, the axiom HWCHE).

(9.26)

—>
/f

CU<—D1

F - (Ux I);, — E, closing the diagramme

é

(9.27)

U

X

1)

o /

Proposition 9.28. A map p : E — B is a homotopy fibration if and only if
when it satisfies the axiom hyper-weak covering homotopy extension.

Proof. Let Diagramme (9.26) be given for a homotopy fibration p : E — B, for
which there exists Diagramme (9.27) with a closing map F.

It is clear that without loss of generality, one can put tg = 1/2. Let ¢ denote
the function X — [ which has the property that ¢ =1 on A and ¢ = 0 outside
U, and we consider - obviously, a commutative diagramme

x[0,1/2] —*— E (9.29)

%X [0,1/2] xI—G>B
where the maps g and G are defined by the formulae

gx, 1) = F, (x, min(7 + ¢(x))),

xeX,0<71<1/2
G(x,7,t) = F(x,min(t+7 —tt+ ¢(x)),1), 0<t<1,
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(the formula for g makes sense, since ¢(x) = 0 for x ¢ U). Since the map p is
a homotopy fibration, there exists a map G : (X x [0,1/2]) x X — E such that
pog:G and 600’0 ~B g.

Let H : X x [0,1/2] x E be a homotopy over B (i.e. such that the point

(poH)(x,t,7) does not depend on ¢) connecting the map g with the map G ooy.
Then the formula

F (x,1), it 0<t< ),
F(x,0) =S H(x, 1 — o(x),2(t — p(x)),  if 0<t—g(x)<1/2,
E(x,%,Z(t—go(x)—l), if 1/2<t—¢(x) <1,

will (see Fig. 9.B.1) determine the homotopy F : X X I — E, which closes
Diagramme (9.26).

Flx,1) Mz, 1-p(z), 2(1-p(z))) Btz yz2, 2(1-px))-1)=F(z,)

Figure 9.B.1:

This proves that any homotopy bundle satisfies the axiom c.

Conversely, since any diagramme of the form (9.21) is a diagramme (9.26)
with A = @ and since - assuming that the homotopy F is delayed - for the
corresponding diagramme (9.27) (with U = @), the map F' can be given by the
formula

Fut)=F(x), xeX, 0<1<1,

then any map p : E — B satisfying the axiom HWCHE will satisfy the axiom
CDH and, therefore, will be a homotopy fibration. O

Remark 9.30. Note that in the last argument we used the axiom HWCHE only
when A = @.
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9.C Dold’s theorem for homotopy fibrations

Now we are ready to prove for homotopy fibrations an analogue of Theorem
1.71 from the Appendix to Lecture 1.

Theorem 9.31. If for the map p : E — B there exists a enumerable covering
{Uq,a € A} of the space B such that each map

Pa=Plp-1wy) P (Ua) = Uq

is a homotopy fibration, then the map p : E — B will also be a homotopy
fibration.

Caveat: The proof is quite involved.

Proof. According to Corollary 9.24 of Proposition 9.28, we must prove that for
any diagram (9.21) with delayed homotopy F, the projection

q: Cocyl(F, f) = X, (x,u) = x,

has a cross section. To do this, it is enough to prove that for some numbered
cover {Wg of the space X, each map

ap = qlg1wy) 1 q~ (Wp) = Wg
is a weak map, because then, by applying Lemma 1.63 from the Appendix to
Lecture 1, the map g will also be weak, and therefore there will be a section
for it. We prove this by taking {Wgz} the preimage for homotopy F, considered
as a map X — B! from covering {Vp; B € B} of the space B!, corresponding by
applying Corollary 1.67 of Lemma 1.64 from the Appendix to Lecture 1 to the
covering {U,} of the space B.

According to the identification described in the Appendix to Lecture 1
for any point x € Wg let F(x) € V3 C B! can be considered as a sequence
(u)l‘,...,ujﬁ) of paths u} : I — Ual,...,uﬁli 1 - Uﬁﬁ where ay,...,anp are
some indexes of A (depending only on the index 8 € B), and u;} (0) = u;_, (1) for
any i > 1. Accordingly, any path v : I — E for which p ov = F(x) can be iden-
tified with the sequence (v1i,...,v,,) of paths vy : I = p™'(Ug,)s ... Vs 1 I —
p‘l(UQnB), such that povy =uj,...,povy, = uﬁﬁ and v;(0) =v;_1(1) fori > 1,
and, therefore, points from sequences of the form (x,vi,...,vn,), where x € Wg
ad v1(0) = f(x) (note that if x € Wg, then pf(x) = F(x,0) = UF(0) = Uy, , which
means f(x) € p'(Uqg,)). Therefore, each section s : Wg — Cocyl(F, f) of the
map q over the subspace Wg will be given by ng continuous maps

si: Wg — pil(Um)I, i=1,...,ng,
satisfying the relations for any point x € Wy
51(6)(0) = f(x),
5i(x)(0) = 5;_1(x))(1) for i>1, (9.32)

posi(x)=u; forany i=1,...,ng.
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However, it is convenient here to consider the maps s; as homotopies ug x I —
p~H(U,,) and, accordingly, the maps F; : x +— u as homotopies Ug x I —
Ug,- Then the relations (9.32) will be equivalent to commutativity for each
i=1,...,ng of the diagramme

Si—1007

Wg——=p"'(Us;))  Pi=Par (9.33)

i,

W X [ ———> U,

in which, for 7 = 1, the map s;_; o o should be understood as the map f.

If the section s is set only on the subspace A C Wp then, of course, there will
be commutative diagrammes obtained from Diagrammes (9.33) by replacing Wpg
with A.

We see, therefore, that in order to prove the weakness of the map gg, we
need to prove for an arbitrary subspace A ¢ Wg that from the existence for some
of its functional neighbourhood U (in Wg) of homotopies 5; : U x I — p~!(U,,,
i=1,...,ng such that commutative diagrammes

Si-1007

U-——"—%p " (Uy) (9.34)

5i
O'OL jl’i

UxI——U,,

take place take place where, for i = 1,5;_1 o oy means the map f|y implies the
existence of homotopies s; : Wg x I — p~'(Uy,), i =,...,ng, such that there are
commutative diagrammes (9.33) and

sila =5i|la for any i=1,...,ng.

To this end, we denote by ¢ a function Wg — I having the property that
¢ =0 on A and ¢ = 1 outside U, and we will introduce into consideration the

set .
U=y ([m—i}), i=1,....np.
ng

It is clear that
ACUnﬁC---CUi+1CUiC---CU1CU

and the set U; for any i < ng is a functional neighbourhood of the set Uj,1, and
the set U is a functional neighbourhood of the set and U;. We will construct
homotopies s; by induction on i, additionally requiring that for eachi = 1,...,ng
the following equality holds

Siluyxi = Silu;xi
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that is, so that the commutative Diagramme 9.35 takes place

0~y (W) (9.35)

~ i
o) Pi

W'BXIT>U%,

where U; = (Wg x 0) U (U; x I), 09 is an inclusion, and ?i, are maps defined by
the formulae

5i(x, 1) if xeU;,
(for i = 1 instead of s;_1(x, 1) it is necessary, of course, to write f(x)).

If the map p; were fibrations, then the homotopies s; would immediately
be built on the basis of the axiom WCHE (see similar arguments in Appendix
to Lecture 1), which, by the way, would give us a new proof of Theorem 1.71
from the Appendix to Lecture 1. However, in the current situation, we can only
use the axiom of the HWCHE, and therefore our design should be somewhat
thinner.

First of all, let us note that by doubling, if necessary, the number ng, we
can assume that for each index i > 1 and any point x € Wg there is not only the
inclusion u} C Uy, but also the inclusion u} C U,,_,. In other words, without
loss of generality, we can also consider each homotopy F; to be a homotopy from
Wp to Uq,_, (and hence the maps s;, s;, and f; from Diagrammes (9.34) and
(9.35) as maps in p~t(U,,_,)).

With this in mind and assuming that for some i > 1 the homotopy of si — 1
has already been built, let’s consider a commutative diagramme

=~ 8i _
Ui ————p ' (Us,)

G; 7
o) Pi-1

(Ui—1 x 1)1j2 — Ug,

i

in which
Ui = (W x0)U (Ui x D), (Uict X Dijo = (W x [0,1/2]) U (U; x D),

and g; is a map defined by the formula

(x,1) € Ui

- fi(x,20), it 0<r<1/2,
g[(xat) =43—= X
finn(x,2e=1) if 1/2<r<1,
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and G;. is the restriction on (U;—1 X I)12 of the homotopy G; : Wg X I — Uy,_,
specified by the formula

(x,1) EWﬁXI.

Grny < [P0, i 0<r<1/2
i\X, =
Fi+1(x,2t—1) if ]./QSIS].,

It is directly verified that the map 61’ that closes this diagramme can be given
by the formula
— (x, 21), if 0<tr<1/2,
G(xn) = 0020 : /
Sip1(x,2t = 1) if xeU;.

Therefore, according to the axiom of the HWCHE (for X = Wz, A =U;, U = U;_;
and p = p;_1) for the diagramme

~ 8i -
Ui ——=p " (Uq;_,)

| T

W’B X I _G[ > U(li—l

there is a closing homotopy G, : Wg X1 — p~1(Ug,_,) and it is clear that the

homotopy

t+1
—, (X,I)GWBXI,

i(x,1) =G |xi,
si(x,1) (x 5

where the point s;(x,7) is considered as a point of p~(U,,, closes Diagramme
(9.35).

Thus, to complete the proof of Theorem 9.31, it remains to justify only the
initial step of induction, i.e., to construct the map s;.

If for any r € I there is an equality

51(x,0) = f(x) for @(x) =1, (9.36)

such that the map s1 can be given by the formula

1) s1(x,1), if xeU,
s1(x, =<
! F(x), if x¢U.

Therefore, Theorem 9.31 will be proved if we show that the fulfilment of condi-
tion (9.36) can always be achieved by appropriately transforming the homotopies
5; (without, of course, changing them on A x I). Since we will not use the sets
U, in this transformation, it is advisable to move from the homotopy ; to the
complete homotopy F : U x I — composed of them. The conditions imposed
above on homotopy 5; (the commutative diagramme (9.34) for the homotopy F
mean that its initial map F o oy is a restriction on U of the map f and that



9.C. DOLD’S THEOREM FOR HOMOTOPY FIBRATIONS 319

this homotopy covers over U the homotopy F : X x I — B. As for the condition
(9.36, for the homotopy F it has the form

F(x,t) = f(x) for ¢(x)=1 and 0<t<1/ng. (9.37)

Thus, from the homotopy F : U x I — E satisfying the relations F o o = f|y
and p o F = F|yx;, we must, while maintaining these relations, proceed to a
homotopy satisfying, in addition, the condition (9.37).

We will define a new homotopy by matching

(x,1) — F(x,a(x,1), (x,1)eUxI,
where « is a continuous function U x I — I such that:

a) a(x,0) = 0 for any point x € U (this ensures the relation F o oy = Fflu;

b) if ty > 0 is the number provided for the delay condition of the homotopy F
(i.e. such that F(x,7) = F(x,0)0 for 0 < t < ftp; note that this is the first
time we use this condition), then the function @y : ¢ +— a(x,f) maps the
segment [0, 7] to itself, and on the segment [z, 1] is the identity map (this
requirement ensures that the relation p o F = F|yxg is preserved);

c) a(x,t) =1 for ¢(x) =0 and any ¢ (ensures the invariance on A);

d) a(x,1) =0if o(x) =1 and 0 < 7 < 1ng (ensures the fulfilment of the condition
(9.37)).
Assuming for simplicity that 7o = 1/2, and assuming that ng > 2 (both
assumptions obviously do not lose generality), for ¢(x) < "fl—;l we will take the
identity map I — [ as the function a,, and for ¢(x) > "’fl—: we will take a

function linear on each interval with ends at points 0, 1 —¢(x), 1/ng, 1/2, 1 and
translating these points into points 0, 1 — ¢(x), 1—¢(x), 1/2, 1 (see Fig. 9.C.1).

7-9(z)
0 ///nﬁ 2 ]
0 1-p(x) y2 b
Figure 9.C.1:

It is easy to see that all the conditions a) - d) will be fulfilled at the same
time.
Thus, Theorem 9.31 is fully proved. O






Lecture 10

10.1 Suspension homomorphism and suspension
sequence

The pointed map S°*f : S*A — S°X, obtained by applying the functor S* to the
pointed map f : A — X, is also denoted by the symbol E f, and its homotopy
class S*[ f]°* = [S* f] is denoted by the symbol E[f]* (cf. Remark 3.41 of Lecture
3). This notation is especially convenient for A = S", when the homotopy classes
[f]® are elements of the group 7, X. In this case, by applying the identification
S°S™ = §™! we can consider the map Ef to be a map S™!' — S§°X and,
therefore, the homotopy class Ea is an element of the group 7,415°X. The
resulting map

E:n,X > m,4:15°X, aw— Ea,

is called a suspension map of homotopy groups.

Remark 10.1. In the literature, the symbol S or its variations (say, S* or %) is
also used to indicate the map E.

In the interpretation of the elements of the group n,X as map classes f :
(I",I") — (X,xg) the map E is given by the correspondence f + Ef, where
Ef is the map (I"*, ["*1) — (§°X,x() defined by the formula

(Ef)(t,t) = [f(t),t], tel tel,

(the cube I"*! is identified here with the product 1 x I").

An automatic check shows that the formula i(x) = u,, where u,(¢) = [x,1],
t € I, x € X, defines a homeomorphic map (embedding) of the space X into
the space QS*X (which is nothing more than an adjoint to the identity map
S§*X — §°X). The homomorphism i, : 7,X — i,QS*X induced by this selection
is defined by the formula i, [ f]* = [g]®, where the map g : S — QSP“!¢' X maps
the point x € S” to the path t +— [fx,t] of the space §*°X. On the other hand, as
we know, there is an isomorphism % : 7,QS8*X — m,,15°X, which corresponds
to the class [g]® the class [g]® of the map g : S"*! = §°S” — §°X, defined by the
formula g[x,t] = g(x)(¢). Therefore, the composite homomorphism hoi, : 7, —

321
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T,415°X maps to the class [ f]* the class [f]® of the map f : [x,7] — [fx,1], L.e.
the map S°®f. This proves that

E=hoi,.

In particular, it follows that the suspension map E is a homomorphism (which,
of course, is easily and directly verified). In addition, by introducing an exact
homotopy sequence of the pair (QS*X, X) into consideration

i B o
o i X D QS X D 1 (QSTX,X) D A X

and replacing the group 7,QS°X in it with the isomorphic group 7,+15°X, we
get the exact sequence

o pinX B 10 QS° X s 1, (S X, X) D mp X (10.2)

where H = j, o h™! and P = 0. This sequence is called the suspension sequence
(or EHP-sequence!) of the space X and serves as a powerful means of studying
the homomorphism E.

Of course, for specific calculations, it is necessary to obtain sufficiently com-
plete information about the rather mysterious homomorphisms H and P and,
in particular, about the group n,(QS°X, X).

The first step in this direction is based on the transfer of the notion of a free
monoid known from algebra to the category I o z°.

10.2 A universal monoid of a pointed space

Let X be an arbitrary pointed set. We will call each expression of the form
X1X2* " Xp, (10.3)

a word over X. We will call the word reduced if none of the points x1,...,x, is
the base point xg of the space X. An empty word is a (given) word by definition.
We will denote the set of all the above words with the symbol JX. It is obviously
a monoid with respect to the operation of juxtaposing words each other. The
unit of this monoid is the empty word @.

However, it is more convenient to define the monoid JX somewhat in another
way, by noting that when all the base points included in an arbitrary word are
thrown out, an unambiguously defined reduced word is obtained.

n
N ————

X“:UX", X' =Xx---xX
n=0

in which all words (10.3) with respect to the equivalence relation u ~ v, if after
throwing out the marked points from the words u and v, the same reduced word
is obtained.

L This terminology is by G. Whitehead.



10.2. A UNIVERSAL MONOID OF A POINTED SPACE 323

(In the language of algebra, this means that JX is obtained from a free
monoid over X by superimposing the relation xo = 1.)

The identification of the set X with the set X! obviously includes X in JX.
With respect to this embedding, the monoid JX has the universal property, i.e.
for any monoid M and any pointed map ¢ : X — M (meaning that its unit is
based in M), there is a unique monoid homomorphism ® : JX — M, coinciding
on X with the map ¢:

JX (10.4)
T @
c

In other terminology, this means that
Proposition 10.5. the monoid JX is a free monoid generated by the set X

(in the category of monoids, whose morphisms are homomorphisms of monoids
that translate the unit into the unit).

Now suppose that the set X is a topological (pointed) space. Then the
topological space will also be the set X* of all words (as a disjoint union of
topological spaces X", n > 0), and hence its coset space JX (with respect to
the coset topology). In this case, the space X will obviously be a subspace of
the space JX and in the case when in diagramme (10.4) the monoid M is a
topological monoid, and the map ¢ is a continuous map, the map @ will also be
continuous. Nevertheless, it is impossible to assert that JX is a free topological
monoid generated by the space X for the simple reason that, generally speaking, -
for example, in the case when X is a field of rational numbers, - the multiplication

JXXJX > JX (10.6)

in the monoid JX is not continuous, and therefore this monoid simply will not
be a topological monoid. (Here we again encounter the general defect of the
category I oz, which is already known to us by the example of the exponential
law. As in the case of the exponential law, to eliminate it, you need to go either
to canonical spaces or to canonical maps.)

We will call the monoid JX the universal monoid of the pointed space X.

It is easy to see that for any continuous map f : X — Y, the map f® : X* —
Y%, defined by the formula xy - - - x, — y1 -y, where y; = f(x1),...y, = f(xn),
is continuous and compatible with the factorisation map X* — JX and Y —
JY. Therefore, this map induces some continuous map

Jf:JX = JY,

and it is obvious that the correspondences X + JX, f + Jr constitute a J
functor from the category I o n*® to the category of pointed topological spaces
that are simultaneously monoids.

At the same time, it is clear that
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Proposition 10.7. the functor J, considered as a functor T on® — T on°, is
a homotopy functor

(for any homotopy f; : X — Y, the maps J f; make up a homotopy from JX
to JY), and therefore its homotopy is defined by [T ¢2°] — [T ¢2°], which we
will denote by the same symbol is J.

10.3 Filtration of universal monoids

Let n > 0, and let J,X be the set of all given words a = xy ---x; where k < n.
This set is the coset of the set X", and we will provide it with the appropriate
coset topology.

Let Uy,..., Ui, k < n, be open sets of the space X that do not contain its
base point xg, and let Uy be an arbitrary (open) neighbourhood of the point xo.
For any monotone map

A1, k] > [1,...,n] (10.8)

we will introduce into consideration the open set V! = VA(Uy; Uy, . .., Uy) of the
space X" defined by the formula

A _ gy 1
Vo =Ui x---xU,,
where

Ut =

4

U, if j= A0,
Uo, if J o2 lm/l,

Let V, = V,(Uy;Uy,...,Ur) be the union of all possible sets V,’} and W, =
W, (Ug; Uy, ..., Uy) is its image by the factorisation map X" — J,X. It is clear
that the preimage of the set W, of the map X" — J,X is just the set V.
Therefore

Proposition 10.9. all sets W,, = W,,(Uqy; Uy, ...,Ux) are open in J,X.

Now let Y be an arbitrary topological space, and W be a subset of the product
JnX XY that its complete preimage V in X" XY of the natural map

X"xY - J,XxY (10.10)
is open in X" x Y. Let’s show that

Proposition 10.11. if a point xg is closed in X, then for any point (a,y) €
JuX XY there exists a set W,, = W,,(Ug; U1, ...,Ur) and an open set U C Y such
that

(a,y) e Wy xU CW. (10.12)
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Proof. Indeed, let a = xy - - - x, where x1,...,x; # x9. For any monotone map
(10.8), we define a point a' = (x{,...,x{) of the space X by the formula

A Xi, lf .] = /l(l)’ .
X = . . . ] = ]_, R (N
J X0, if j¢ima4,
It is clear that (at,y) € V, and therefore the points xf,...,xﬁ and y have

neighbourhoods |7 V,f and U* such that the neighbourhood V{lx~ . -><V,f><U’1
of the point (a?,y) is contained in V. We will put U = N U, where N, means
the intersection across all maps (10.8) and

UO:m,lﬂjeimAV]fl U,-:(X\xo)ﬂﬂ,le i=1,...,k.

(i)’
Then it is clear that the set W,, = W, (Up;Uy,...,Uy) is defined and (a,y) €
W, xU cCcW. O

The proven statement entails two simple but important consequences.

First, since all sets of the form W, (Up;U,...,Uy) are open in J,X, the
inclusion (10.12) means that the point (a, ) is the inner point of the set W.
Therefore, due to the arbitrariness of this point, the set W is open. By definition,
this means that the map (10.10) is an epimorphism.

In particular, for any n,m > 0, the epimorphisms will be the maps X"x X" —
Jp X X X™ and J, X X X™ — J,X X J,, X, and therefore their component will be
an epiomorphism

X"x X" - J,X X J,X.

Thus, in the commutative diagrammme

Xn X Xm - o Xn+m

]

In X X I X —— JpemX

the horizontal arrows of which represent the map of juxtaposition of words, both
vertical arrows are epiomorphisms. Since the upper arrow is a continuous map,
it follows that the lower arrow is also a continuous map. Thus, it is proved that

Proposition 10.13. for any n,m > 0 the map
TuX X I X = JpemX,
induced by multiplication in JX, is continuous.

Secondly, for Y = pt, i.e. for the natural epiomorphism X" — J, X, we get
that for any set W open in J,X and any of its points a € W there is a set of the
form W, such that a € W,, ¢ W. By definition, this means that

Proposition 10.14. the sets W,, = W,,(Uy; Uy, ...,Ux) form the basis of the
topology of the space J,X.
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The analoguue of the set W, (Ug; U, ...,Uy) in the space JX are the sets
W(Uy; Uy ...,Uy) - images of the factorisation map X — JX of the set

v:]_[v,f(UO;Ul...,Uk), xo €Uy, Un,...,Ur € X\ xo,
n=k

where A runs through all sorts of monotone maps (10.8). It is clear that the
preimage of the set W in X* is just the set of V. Since the set V is obviously
open in X% it follows that all sets W(Uy; Uy, ..., Uy) are open in JX.

But it’s easy to see that

Wn(Uy; Uy, ..., Uy), if n>k,
T AW(Usi U, .. U = { 00U Uit

%) if n<k.
Therefore (under the previous assumption of the closure of the point x¢ in the
space X), the topology of the space J, X coincides with the topology induced in
Ja.X by the topology of the space JX, i.e.

Proposition 10.15. for any n > 0 the space J,X is a subspace of the space JX.

(In fact, this is true without any conditions for the point xg, but due to
our general attitude to avoid general-topological pathologies, we will not prove
this.)

In addition, it is easy to see (under the same - now essential - assumption of
the closure of the point xg) that

Proposition 10.16. for any n > 0 the subspace J, X is closed in the space JX.

Proof. Indeed, if the point a € JX does not lie in J, X, i.e. it has the form a =
X1 ...Xg, where k > nand x1,...,x; # 0, then its neighbourhood W(Uy; Uy, ..., Uy),
where Uy = X, and Uy =--- = U = X \ xo, does not intersect with J,X. O

Moreover,

Proposition 10.17. the space JX is a free union (direct limit) of its subspaces
I X, n>0:JX = h_rr)l J.X.
n

i.e. the set W c JX if and only if it is open in JX when for any n > 0 the
intersection W N J,X is open in J, X.

Proof. Indeed, if W is open in JX, then W N J, X is open in J, X, because J, X
is a subspace of the space JX. Conversely, let W N J,X be open in JX for any
n > 0, and let V be the complete preimage of the set W of the factorisation map
X*JX, and W, is the complete preimage of the set W N J, X of the factorisation
map X" — J,X. By convention, all sets V,, are open in X". But it is clear that
V = U, Vy, and since X* = [[;_, X", then, consequently, the set V is open in
X Therefore, W is open in JX. O
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An increasing sequence
YocYyCc---CY,C---

of subspaces of the space Y are called filtration of the space Y if all subspaces
Y, are closed, and the space Y is their free union (= inductive limit). Thus,
summing up everything proved, we can say that

Proposition 10.18. the spaces J,X constitute a filtration of the space JX.

If {Y,,} is a filtration of the space Y, then the map f : Y — B is continuous
if all its restrictions f|y, are continuous. With this in mind, consider for any
point a € JX the maps

L,:JX - JX, uw au,
R, JX > JX, um ua.

If a € JmX, then for any n > 0 the map L,|;,x decomposes into a composition
of continuous maps

JnX = I X X IpX — Jpn X C JX,

u (a,u) — au

and therefore continuous. For similar reasons, the map R,|, x is continuous.
Therefore,

Proposition 10.19. the maps Ly, R, : JX — JX are continuous.

For any n > 1, the factorisation map X" — J,x is obviously a relative home-
omorphism (X", X)'_,) — (J,X,J,-1X), where, as in the Appendix to Lecture 5,
X"'_, denotes a subspace a space X" consisting of points, at least one coordinate
of which is the base point x¢ (and for which therefore the corresponding cofibre
- cf. §4.14 - X" /X" | is an n-tuple of the mixed power

n
——

M=XA-AX

of the pointed space X). Being a relative homeomorphism, the map X" — J,X
induces a homeomorphism of cofibre. Thus, for any n > 1 the space J,,X/J,-1X
is homeomorphic to the space X"".

10.4 The case of well-pointed spaces

Definition 10.20. A filtration {Y,} of the space Y is called a cofibration filtra-
tion (or Borsuk filtration) if for each n > 1, the pair (¥,,Y,-1) is a cofibration.

It is easy to see that
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Proposition 10.21. for any well-pointed space X, the filtration {J,X} of the
space JX is a cofibration filtration.

Proof. Indeed, since the factorisation map X" — J, X represents a relative home-
omorphism (X", X' ) — (J,X,J,-1X), then in the case when the space X is
well-pointed (and therefore the pair (X"X) ) = (X,x0)" is a cofibration), each
pair (J, X, J,—1X) by applying Lemma 4.41 of Lecture 4 will be a cofibration. O

Lemma 10.22. For any cofibration filtration{Y,} of a spaceY all pairs (Y, Yy),
m>n >0, as well as all pairs (Y,Y,), n > 0, are cofibrations.

Proof. For each pair (Y,,,Y,), m > n > 0, the inclusion Y,, — Y, is a composition
of inclusions Y, —,41— Y42 — -+ — Y, each of which is, by the condition, a
cofibration. Therefore, the inclusion Y,, — Y, will also be a cofibration. This
proves Lemma 10.22 for a pair (¥, Yy).

Less formally, this reasoning can be stated as follows. The statement that
the pair (Y,,,Y,) is a cofibration means that the homotopy f; : ¥, — Z extends
to Y, if its initial map fy extends to Y,,. But if the map f; is extended to
Y, then it is thus extended to Y41 (if n+ 1 < m). Therefore, since the pair
(Y41, Y,) is by convention a cofibration, the homotopy f;can be extended to
Y,+1- Applying the same reasoning to this extension, we get an extension of the
homotopy f; to Y42, etc., until we reach Y.

If now the map fy is extended to all Y, then this construction will give us
the extension of the homotopy f; to each subspace Y,,,, m > n, and thus give us
the required homotopy ?, : Y — Z (its continuity is ensured by the fact that
the space Y is a free union of spaces Y,,, on each of which the homotopy 7, is
continuous).

This proves Lemma 10.22 for pairs (Y,Y,). O

With regard to filtration {J, X}, we get from here that

Proposition 10.23. if the space X is well-pointed, then all pairs (J,,X,J,X),
m>n >0, as well as all pairs (JX,J,X), n =2 0, are cofibrations.

Since JoX = {@}, we see in particular that for any well-pointed space X, the
space JX is also well-pointed (with respect to the base point ¢).

10.5 Meridian maps

Let’s return now to the space QS*X. For now, we will only assume that the base
point xo of the space X is functionally separable, i.e. that there is a continuous
function ¢ : X — I such that f(xg) =0 and ¢(x) # 0 if x # 0. (In particular,
this condition is satisfied if the space X is well-pointed.)

Using the function ¢, for ach point x € X we associate the Moore loop u, of
the space S*X of length ¢(x) defined by the formula

uy(t) = [x, L] , i 0<t<o(x).
@(x)
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Thus, the point u,(#), when changing ¢ from 0 to ¢(x), runs through the meridian
of the suspension S*X passing through the point x. On this basis, we will call
the map x — y, from X to QM S*X a meridian map.
The composition of the meridian map X — QM §*X with the inclusion
QMg x —» QMS*X xR*, uw (u?,a) (see Lecture 3)

is obviously given by the formula x (uio), ¢(x)), where uio) isaloop t — [x,t].
Since the map x +— u,(co) from X to QS*X c (5°X)! is adjoint to the factorisation
map X X I — S*°X, (x,1) — [x,t], and therefore continuous, it follows that the

map x — (ufco), ¢(x)) is continuous. Hence,

Proposition 10.24. the meridian map X — QM S*X is continuous.

Therefore, due to the universality of the monoid JX, this map uniquely

extends to

i:JX - QMs°x,
which we will also call the meridian map. By definition, it is an algebraic
homomorphism of monoids.

Now let (X,xq) and (Y,yq) be two pointed spaces with functionally distin-
guished base points, and let ¢ : X — I, & : Y — [ be functions such that
e(xo0) = ¢(yo) = 0 and @(x) # 0, y(y) # 0if x # xo, y # yo. The map
JX — QM §*X constructed using the function ¢ is denoted by i,, and the map
JY — QMS*Y constructed using the function  is denoted by iy. Then it is
easy to see that

Proposition 10.25. for any pointed map f : X — Y the following diagramme

Jf

JX ———JY

J

QMg x — -~ QMgy
QMge f

1s homotopy commutative.

Proof. Indeed, by matching each point (x,7) € X x I the Moore loop F(x,t) €
QM S*Y of length a(x, ) = (1 —t)¢(x) + 1y (f(x)), defined by the formula

F(x,t)(7) =

f), ﬁ] , 0<<a(x,t),

we will get (as it is easy to see, a continuous) map F : X x I — QM S*Y, which
has the property that (x,0) = S*f ouy and F(x,1) = ug(y). The extension of
this map to JX will therefore be a homotopy from JX to QM S*Y, connecting
the map QMS'fOi¢ to the map iy o Jf. O

For X =Y and f =1id, we obtain, in particular, that,
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Proposition 10.26. up to homotopy, the map i =i, does not depend on the
choice of the function ¢, and passing to homotopy classes (i.e., to the category
[T o2%]), that the homotopy class [i]°® is a morphism (natural transformation)
of the functor J into the functor QM S® considered as functors from [T on®] to

[T or°]).

Remark 10.27. At first glance, it seems that the dependence of the map i on
¢ can be eliminated by moving from the space QM S*X to the space QS°X, i.e.
by combining the map i with the retraction g : Q¥ S*X — QS*°X, u +— u#,
since the composition X — QS°*X of the map X — QM S*X with retraction r
is given by the correspondence x — uio) and therefore does not depend on the
choice of the function ¢ (and is the map i discussed at the beginning of this
lecture). However, due to the non-associativity of the multiplication in QS°*X,
the resulting map JX — QS°X still depends on the choice of the function ¢
(although, of course, only up to homotopy), and therefore the transition from
QM §*X to QS*X does not give any advantages.

10.6 James’ theorem and the transformation of
the suspension sequence.

The importance of the meridian map for the theory of homotopy groups is
determined by the following remarkable theorem of James.

Theorem 10.28. For each connected well-pointed space X, the homomorphism
i X — m,QM S X
induced by the map i : JX — QM S*X, is an isomorphism for any n > 0.

Remark 10.29. If the space X is numerically locally contractible, then, as Puppe
showed, the map i is even a homotopy equivalence. However, proving this
statement is somewhat troublesome. We will present the general technique on
which Puppe’s reasoning is based in addition to this lecture, but we will leave
the details to the reader (see note 10.C in the Appendix).

The meridian map is, of course, (identical on X) a map of a pair (JX, X) into
a pair (QMS*X, X) and therefore induces homomorphism of the corresponding
homotopy sequences. By applying Theorem 10.28 and the five lemma, this
homomorphism will be an isomorphism, i.e. all homomorphisms

i ma(JX,X) — 1 (QMS°X,X), n>0

will be isomorphisms. Since the groups m,,(QM S*X, X) are obviously isomorphic
to the groups m,(QS*X, X, we see that Theorem 10.281 allows the suspension
sequence of the space X to be rewritten in the following significantly simpler
form:

o) S s X L, ux, ) S X o (10.30)
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(here the homomorphisms H and P differ, of course, from the homomorphisms
H and P of the corresponding isomorphisms in (10.2)). We will achieve a further
(and final) simplification of this sequence in Lecture 182

10.7 The Moore variant of the Serre fibration

To prove Theorem 10.28, we will need a Moore variant of the space PX.

For any pointed space X, we denote by PM X the space of all Moore paths of
the space X starting at the base point xg. The operation of multiplying Moore
paths obviously determines the action of the monoid Q¥ X on the space PMX,
i.e. the continuous map

OMxxpPMx — pMx, (u,v) — uv,
having the property that, for any Moore path v € PM X holds,

(i) the equality ui(uav) = (uyus)v, where uy, us are arbitrary Moore loops of
QM X and

(ii) the equality ev = v, where e is the unit of the monoid QM X.

We will consider the space PMX s a pointed space with a base point e.
It is clear that the formula wjlw (v) =v(a), where v(a) is the end of the Moore
path v, defines a continuous pointed map

oM PMX X,
and it is easy to see that, like the map w; : PX — X,
Proposition 10.31. the map w’l‘/[ is a fibration.

Proof. Indeed, for any commutative diagramme

y < pMy

4
@ M

YxI— =X
F

The covering homotopy F can be defined by the formula

F(y,0)=f(y)-Fy,, yevY, tel,

where F), ; is the restriction of the path 7 — F(y,7), T € Y, on the segment [0, ¢]
(so that the length of the path F(y,) is ay +t, where a, is the length of the

path £()). o

2The transcriber guesses that Postnikov means Chapter 8 of “Cellular Homootopy”.
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The fibre of the fibration w’l"l is obviously the space of the Moore loops Q¥ X
Like the space PX,

Proposition 10.32. the space PM X is contractible.

Proof. Indeed, putting
(V) =Vljosa), veEPMX, 0<t<1,

where a is the length of the path v, we will obviously get a homotopy f; :
PMX — PMX for which fy = const and f; =id. O

10.8 Proof of James’ theorem

It is clear that if Theorem 10.28 holds for a space X, then it holds for any
space homotopically equivalent to X. On the other hand, it is easy to see that
every space is homotopically equivalent to a space whose base point xy has a
contractible neighbourhood relxy (it is enough to glue a whisker® and apply
Proposition 2.18 of Lecture 2). Therefore, when proving Theorem 10.28, it can
be assumed without loss of generality that in the space X the base point has
a contractible neighbourhood Uy, i.e. that this space satisfies the condition
imposed in James’ lemma (Lecture 9, Proposition 9.16).

With this in mind, let’s consider the space E obtained by applying James’
construction to the (as we know, continuous) left shift map L : X X JX — JX,
(x,u) — xu, and the corresponding map p : E — S*X. Since the space X is by
condition connected, each map Ly : u +— xu is homotopic to the identity map,
and therefore is a homotopy equivalence. Thus, all the conditions of James’
lemma are fulfilled, and therefore, according to this lemma,

Proposition 10.33. the map p : E — S*X is a weak fibration.

Since the map L is surjective, the space E = (C*X X JX) U JX is the coset
space of the product C*X xJX with respect to the minimum equivalence relation
in which (x,u) ~ (xg,xu). Let E, be the image in E of the subspace C*X xJ, X C
C*X x JX by the factorisation map C*X X JX — E.

It is clear that the subspace Eyis naturally homeomorphic to the cone C*X.
In addition, for any n > 1, the preimage of the subspace E,_; C E,,, by the the
factorisation map C*X X J,X — E, is obviously the subspace (C*X X J,41X) U
(xg X J,X), from which it directly follows that this map represents a relative
homeomorphism of the pair

(C*X X JuX, (C*X X Jy_1X) U (x0 X JuX)) = (C*X, x0) X (Ju X, Jp_1X)

for the pair (E,, E,-1). Therefore, for any n > 1 the pair (E,,E,-1) is a

cofibration, and its cofibre E,/E,_; is homeomorphic to the cofibre (C*X X
JnX)[((C*X X Jp-1X) U (x0 X J X)).

3This technique is called the “whiskering”
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On the other hand, it is clear that for any two pairs (X, A) and (Y, B) there
is a natural homeomorphism

(XXY)/((XxB)U(AXY))=(X/A) A(Y/B)
that is,

Proposition 10.34. the cofibre of the direct product of two pairs is the product
of their cofibres.

Therefore, in particular, the cofibre E, /E,,_1 is homeomorphic to the product
C*X A (UnX/Jp1X) =C*X A XN
But it is easy to see that

Proposition 10.35. if a pointed space X is contractible, then for any pointed
space Y the smash product X AY is also contractible.

Proof. Indeed, if idx ~ const, then idy,y = idx Aidy ~ const Aidy. It follows
directly from the definitions that const A = const for any map g. So idx.y ~
const, i.e. the space X AY is contractible. O

Since the cone C*X is contractible, this statement applies, in particular, to
the product C*X A X"". This proves that

Proposition 10.36. for any n > 1 the cofibre E,/E,_1 is contractible.
But it is obvious that

Proposition 10.37. if for a cofibration (X, A) the subspace A and the cofibre
X /A are contractible, then the space X is also contractible.

Proof. (since - see lemma 4.46 of Lecture 4 - it is homotopically equivalent to
the space X/A). O

Since the space Ey = C*X is contractible, it follows by obvious induction
that

Proposition 10.38. for any n > 0 the space E, is contractible.

Further, from the fact that the spaces J,X constitute the filtration of the
space JX, it directly follows that the spaces E, constitute the filtration of the
space E. Therefore, for any compact set C C E, there exists an n > 0 such that
C C E, (otherwise, all sets (E,/E,—1) N C would not be empty and, choosing a
point in each of them, we would get an infinite discrete subset in C, which is
impossible due to the compactness of C). Since each sphere is S” is compact,
hence it follows that for any map f : S” — E there exists an n > 0 such
that f(S") c E,. Therefore, since the space E, is contractible, the map f is
null-homotopic (as a map in E,, and therefore as a map in E). This proves that
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Proposition 10.39. 7. E =0 for any r > 0, i.e. that the space E is aspherical
in all dimensions (co-connected).

Now we can proceed directly to the proof of Theorem 10.28.

Proof. (of Theorem 10.28) Let’s compare the weak fibration p : E — S*X with
the strong fibration w; : PM(S*X)t0S*X. Naturally generalising the meridian
map, we have each point a = [x,¢]€ € C*X is comparable to the Moore path
ug, € PM(5°X) of length to(x) (where, as above, ¢ is an arbitrary function
X — I, equal to zero only at the base point x¢ € X), putting

S
uq(7) = [x, L] , 0<1<to(x).
¢(x)

It is clear that the correspondence (a, u) — i(u)u, well defines the map h: E —
PM(S°X), for which the following diagramme is communicative

and which therefore induces a homomorphism of the homotopy sequence of the
weak fibration p into the homotopy sequence of the fibration wll"’ , which is an
identity map on the groups m,S*X. Since on the groups 7, E this homomor-
phism is an isomorphism (since the groups m,PM(S°*X), like the groups m,E,
are zero), it follows from here, by applying the five lemma, that the map A
induces isomorphism of homotopy groups of fibres.

To complete the proof of the theorem, it remains to note that above the point
Xo, the fibre of the weak fibration p is the space JX, the fibre of the fibration w;
is the space QM S*X and that on JX the map & coincides with the map i. O



Appendix

In connection with the above proof of James’ theorem, the question naturally
arises whether the space E involved in it will be not only aspherical in all
dimensions, but also contractible. In this Appendix, we will outline Milnor’s
general theory designed to answer these kinds of questions.

10.A Telescope normalisation of filtrations
Let X be an arbitrary topological space and let
XoCcXjCc---CcX,C---

be some of its filtration. The telescope T over {X,} is the subspace of the
product X XxR* (where R* is the set of all non-negative real numbers) consisting
of points (x,r), x € X, r € R*, such that x € X,, if n < r < n+ 1. The telescope
T can be visually depicted in Fig. 10.A.1. It can also be imagined as the result

Figure 10.A.1:

of gluing the reversed cylinders C,+1 = Cyl(i,) of the inclusions i, : X;, = X1
over the spaces X,, contained in them.

It is easy to see that the subspaces T,, of the telescope T consisting of points
(x,r) for which r < n, make up its filtration

Iyclc---CcT,C---

This filtration is said to be a telescopic normalisation of the filtration {X,}.
Obviously, this filtration is a cofibration filtration.

335
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Note that
T,=CoU---UCy_1, for n>1
(where TO = Xo)
The projection p : (x,r) +— x obviously translates each subspace T, into
the corresponding subspace X,, (i.e., as they say, preserves the filtration of the
spaces T and X). This means that there is a commutative diagramme

T() T1 te Tn Tn+1
LPO p1 l Pn l Pn+1 l
X() X1 te Xn Xn+1

the horizontal arrows of which are inclusions, and the vertical ones are induced
by the map p.

We will embed X, into T;, by identifying each point x € X,, with the point
(x,n) € T, (this embedding is obviously consistent with the inclusions X,, C C;,—1
and C,_1 C T,). Then the map p, : T,, —» X, will be a retraction. Moreover, it
is easy to see that

Proposition 10.40. the map p, : T, — X, is a strict deformation retraction.

Proof. Indeed, the map f; : (x,r) — (x,(n —r)t +y) constitutes a homotopy
fixed on X, from T, to T,, connecting the identity map id : 7,, — T,, with the
map (x,7) — (x,n), which is a composition of the map p, and the embedding
X, —T,. a

Thus, we see that
Proposition 10.41. all maps p, : X, — T,, are homotopy equivalences.

Nevertheless, the complete map p : X — T will not be a homotopy equiva-
lence, in general.

Definition 10.42. The filtration {X,} is called homotopically correct if the
map p : X — T is a homotopy equivalence. In this case, it is also said that the
space X is the homotopy limit of the subspaces X,,.

10.B Homotopy equivalence of homotopy limits

Let X and Y be two spaces with filtrations {X,} and {Y,,}, respectively, and TX
and TY be the corresponding telescopes. Then for any filtration-preserving map
f : X - Y the formula

THr) = (fx.r), (x,r)eTX,

obviously defines some kind of telescope-filtration map Tf :: TX — TY.
On the other hand, since the map f : X — Y preserves filtrations, it defines
some map for any n > 0
Jn i Xy = Y.

Let’s first consider the special case when X =Y and X,, = Y,,.
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10.C Milnor’s theorem

Proposition 10.43 (Milnor). If the map f : X — X, preserving the filtration
{Xn} has the property that for any n > 0 the map f, : X, — X, is homotopic to
the identity map, then the map

Tf:TX > TY
15 a homotopy equivalence.

Proof. Let fu:: Xn — X, be a homotopy connecting the map idx, to the map
fn- Then the formula

(f(x),n+s(2t +1)), if 0<r<1/2, 0<s<1/2,

(F(x),n+2(1 - s)+2), if 0<r<1/2, 1/2<s<1,
he(x,7) = (fa.2—2:(x), 0+ 2s), if 1/2<r<1,0<s<1/2,

(fa,1-(3-45)(20-1) (X),n + 1), if 1/2<r<1, 1/2<s<3/4,

(fas1.1-(as-3)(2r-1) (x), n + 1), it 1/2<tr<1,3/4<s<1,

where n = [r] (and, therefore, x € X,,), and s = r — n, will be well (see Fig.
10.C.1) define the homotopy h; : TX — TX connecting he map Tf with the

¥
I

s
I r

Figure 10.C.1:

map h = hy defined by the formula

(x,n+2s), if 0<s<1/2,
h(x’ r) = (fn,4s—2)(x),n + 1)7 if 1/2 <s< 3/4,
(fn+1,4—4s(x)’n+ 1), if 3/4 <s<1,

where still n = [r] and s = r — n. Therefore, it is sufficient to prove that the
homotopy equivalence is the map h.
With this in mind, we note that by applying the equalities

1
h(x,n+§) =h(x,n+1)=(x,n+1)

the following formula

hx.r) (x,n +2s), if 0<s<1/2,
X,r) =
hx,n+3325),  if 1/2<s<1,
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well defines some continuous map

g: TX - TX.
Let
(x,n+ (1+61)s), if 0<r<1/2, 0<s<1/4,
(x,n+2(1=s)(t+5)), if 0<r<1/2, 1/4<s<1,
SO PANIS i 1/2<i<1, 1/2<s<(3-20)/2,
(hog)(x,r), if 1/2<t<1, andeither0<s<1t/2, or (3—-2r)/2<s<1.

It is automatically verified (see Fig. 10.C.2) that this formula well defines a

L3

Figure 10.C.2:

homotopy ¢; : TX — TX such that ¢y = id and ¢; = h o g. Similarly, the
following formula

(x,n+ (1+61)s), if 0<r<1/2, 0<s<1/4,
(x,n+2(1—-1s)(t+5)), if 0<r<1/2, 1/4<s<1,
Vi r) =0 en 4 ), i 1/2<r<1, 1/2<s<(3-20)/2,
(goh)(x,r), if 1/2<t<1, andeither 0 <s<1/2, or (3-2t)/2<s<1.

well defines a homotopy ¢, : TX — TX such that ¢ =id and ¢; = g o h.
So the map h is indeed a homotopy equivalence (with the inverse homotopy
equivalence g). i

Corollary 10.44. If
a) the filtration {X,} of the space X is homotopically correct;

b) the filtration-preserving map f : X — X has the property that for any n > 0
the map f, : X,, = X, s homotopic to the identity map,

then the map f : X — X is a homotopy equivalence.

Proof. In the (obviously commutative) diagramme below

Tf
TX —TX
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all arrows except the lower one are homotopy equivalences. Therefore, the lower
arrow will also be a homotopy equivalence. O

Remark 10.45. Under the conditions of Corollary 8.39, the map f will not, in
general, be homotopic to the identity map.

Corollary 10.46. Let X and Y be topological spaces with filtrations {X,} and
{Y,}, respectively, and let f : X — Y be a continuous filtration-preserving map.

If
a) the filtrations {X,} and {Y,} are homotopically correct;
b) for any n >0, the map f, : X, — Y, is a homotopy equivalence;

c¢) there is a filtration-preserving map g : Y — X such that for every n > 0
the map g, : Yo — X, is a homotopy equivalence inverse to the homotopy
equivalence f, : X;, — Yy,

then the map f : X — Y is a homotopy valence.

Proof. The map go f : X — Y satisfies the conditions of Corollary 10.44. There-
fore, it is a homotopy equivalence. Similarly, the map fog : Y — Y is homotopy
equivalence. Therefore, the map f will also be a homotopy equivalence (with the
inverse homotopy equivalence ho g :Y — X, where h : X — X is the homotopy
equivalence inverse to the homotopy equivalence go f : X — X). O

Remark 10.47. The map g (though being a homotopy equivalence) will not, in
general, be homotopically equivalent to the inverse of the homotopy equivalence

f.

Corollary 10.48. If the space X has a homotopically correct filtration {X,}
such that for every n > 0 the space X, is contractible, then the space X is also
contractible.

Proof. This corollary is a special case of Corollary 10.46, corresponding to the
case when Y = pt (and Y,, = pt for any n > 0). O

Interestingly, the conclusion of Corollary 10.46 follows only from conditions
a) and b), so that condition c) is actually superfluous. To prove this, we will
need the following lemma, which explains, by the way, why we call the filtration
{T,,} the normalisation of the filtration {X,}.

Lemma 10.49. The telescopic normalization {T,} of an arbitrary filtration
{X,} is homotopically correct.

Proof. The telescope T(T) of the telescope T = T(X) consists of points of the
form (x,r,s), where is xinX, and r,s € R*, having the property that x € X,
and r < [s]. Therefore, the formula

q(x,r)=(x,r,r+1), (x,r)eT,
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defines some map ¢ : T — T(T), which is a section of the projection p : T(T) —
T, (k,r,s) — (x,r), i.e. such that p oq =id. In addition, the correspondence
(e, r,s) > (o,r,(1=t)s+1t(r+1)),0<t <1, will determine the homotopy 7(T)
in T(T), connecting the identity map to the map g o p. This proves that the
projection p is a homotopy equivalence, and, therefore, the filtration {7} is
homotopically correct, O

Theorem 10.50 (Milnor). Let X and Y be topological spaces with filtrations
{Xn}) and {Y,}, respectively, and let f : X — Y be a continuous filtration map.

a) the filtrations {X,} and {Y,} are homotopically correct;
b) for any n >0, the map f, : X,, = Y, is a homotopy equivalence,
then the map f is a homotopy equivalence, too.

Proof. Let g, : Y, — X,, be the homotopy equivalence inverse to the homotopy
equivalence f, : X, — Y, and let i, : X;;, — X1 and j, @ Y, — Yy be
inclusions. Then

in°8n~ 8n+10° fnt1 900 08 = 8n+1°jn © &n ~ &n+1 © Jn>
i.e., the following diagramme

Yn I Yn+1

8n l lg;ﬁl

Xn I Xn+1

the horizontal arrows of which are inclusions, is homotopically commutative.
Let F,, : Y, X I — X,+1 be a homotopy connecting the map i, o g, with the map
8n+1 © Jn- By putting

(gn(y),n+2s), if 0<s<1/2,

h(y,r) =
01 {(Fn(y, 25 —1),nl), if 1/2<s<1,

where n = [r] and s = r —n, we will well define a filtration-preserving continuous
map h : TY — TX, which has the property that for the map hoTf :TX — X
for any n > 0, the following commutative diagramme takes place

X, —=T, X

gnofnL Lhonn

X, —= T, X

the horizontal arrows of which indicate the inclusion x — (x,n), x € X,,. Since
this embedding, as we know, is a homotopy equivalence, and the map g, o f, is
homotopic to the identity map, it follows that every map (hoT f), : T,X — T,Y is
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homotopic to the identity map, and since by applying Lemma 10.49 the filtration
{T,,(X)} is homotopically correct, then, according to Corollary refcor:10-A1, the
map hoTf will be a homotopy equivalence.

For similar reasons, the map 7T f o h will be a homotopy equivalence. There-
fore, the map Tf also represents a homotopy equivalence (with the inverse
homotopy equivalence h o k, where k is the homotopy equivalence, the inverse
of the homotopy equivalence T f o k). By applying condition a), this proves the
theorem (cf. with the proof of Corollary 10.44). m]

10.D Homotopy exactness of cofibration filtra-
tions

There are several different criteria for homotopy exactness of filtration. We will
prove the following criterion, which was first mentioned, apparently, by Puppe.

Proposition 10.51. Any cofibration filtration {X,,} is homotopically correct.

Proof. First of all, we will build some filtration-preserving map g : X — TX,
and then we prove that it is a homotopy equivalence with the inverse homotopy
equivalence p : TX — X.

To construct the map ¢, it is sufficient for all n > 0 to construct continuous
maps ¢, : X, — T,, having the property that for each n > 0 the following
diagramme

X, — Xpi1 (10.52)

‘Inl lLInJrl

Iy ——Twn

the horizontal arrows of which are inclusions, are commutative. Indeed, by
putting g(x) = g, (x), if x € Xj,;, we will uniquely define then the map g : X — T,
which will be continuous, because the maps ¢, are continuous, and the space X
is a free union of spaces X,,.

We will construct the maps ¢, : X, — T, by induction on n, taking for ¢
the identity map of the space Xy = Tj.

To carry out the induction, we additionally require that there be a homotopy
qnt : Xy — T, for any n > 0, connecting the map X, — T, x — (x,n), with the
map ¢, : X, — T,. To satisfy this condition for n = 0, is it sufficient for any
t €l put go, =1id.

Suppose that for some n > 0 the map ¢, : X, — T, and the homotopy
dnt * Xn — T, have already been constructed. Let gn,(x) = (g, ,(x),7n, (X)),
where g, ,(x) € X, and 0 < r,;(x) < n for each point x € X,, (and, of course,
Gnyi(x) € Xg if k < rpy(x) < k+1). We define the homotopy of O, : Xp X I —
Ty+1 of the map Oy : (x,f) — g (x), considered as a map in Ty41, by putting

On.r(x,1) = (4, (X), s (x) + 7)
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for any x € X, and t,7 € I. Let fol
by the formula Qfl?;(x) = Qn,(x,0). Since by the condition g, o(x) = n and

QQ,T(x) = n, then Qi,(,g) (x) = (x,n+ 1) and, in particular, Q(O) (x) = (x,n+1).

n,1

be the homotopy from X,, to 7,41, defined

This means that the map fo; represents a limit on X, of the map j 41 : X1 —
T,.+1. Since the pair (X,+1, X,,) is by convention a cofibration, it follows that the
homotopy Q,(fl is a restriction on X, of a homotopy @,m : X1 — Tpe1 such
that @n,ljnﬂ. For the homotopy H; : (x,7) + Qp - (x,t) from X,, X1 to T,41, this
means that its initial map Ho : (x,7) = Qpn - (x,0) = QS’)Z (x) is a restriction onto
the X, x I of the map X,.41 X I — Ty41 defined by the formula (x,7) — Q,, 1 (x).
Therefore, since the pair (X,.+1 X1, X, X[) is also a cofibration, this homotopy is a
restriction on X, X I of some homotopy H; : (x,7) +— H(x,7), x € Xp41, , T €1,
which has the property that Ho(x, 1) = an,T(x) for any point (x,7) € X,41 X1 (see
Fig. 10.D.1). Since for x € X,, the equality Hi(x,0) = Hy(x,0) = Onolx,1) =

H, /
L

z -
al S e

Xnes

Figure 10.D.1:

Qn(x,1) = ¢,X holds, the map g1 : x — H;(x,0) in Diagramme (10.52 is
commutative. In addition, putting for any point (x,t) € X,41 X I

én,l—Qt(x)’ if 0<tr<1/2,

— . (10.53)
Hgt_l(X,O), if 1/2 <t< 1,

Ons1(x,1) = {

we will get a homotopy Qu+1 : Xu+1 X I — Ty41 connecting the map x —
On+1(x,0) = @, 1(x) = jns1(x) with the map gp41 @ x — H1(x,0).

Thus, all maps ¢, are completely constructed by induction. Therefore, the
map ¢ is also constructed.

Now we need to show that pog ~ id and g o p ~ id. To do this, it is
again sufficient to construct homotopies f,; : X, — X, and gn; : T, — Ty,
connecting the identity maps idx,, and idz, with the maps p,ogn : X — X,
and g, o p, : T, — T, respectively, for any ¢t € I and every n > 0 there exist
commutative diagrammes

Xy —— X T, ——Twn

fn,tj lfmu gn,tl Lgn+1,t

Xp —— Xp1 T ——Tun1
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the horizontal arrows of which are inclusions.

Let’s first consider the homotopy f,; : id ~ pn o g». By construction, the
maps pn ©qn,; - Xn — X, also constitute a homotopy from X, to X,,, connecting
the map p, o gn.0 = pn © jn = id with the map p, o gn,1 = pn © g¢n. This means
that the map Fy, : X,, X I — X,,, (x,1) — f,,.+(x) coincides on (X, X 0) U (X, x 1)
with the map p, 0 Q, : X,y X I — Xn, (x,t) = (pn © gnr)(x). As an additional
condition facilitating the construction by induction of the homotopy f,:, we
will require that for any n > 0 there exists a homotopy @, : X X I X I — X,
fixed on (X X 0) U (X X 1) connecting the map p o Q, with the map F,.

Assuming now that the homotopies F, and ®, have already been con-
structed, consider the homotopy pn+1 © Qu+1, where Q,41 is the homotopy given
by formulae (10.53).

So for x € X,, the homotopy p,+1 © Qn+1 is given by the formula

Opar (ru1) = 4 if 0<r<1/2,
n [e] n X, =
Pt " (PnoQn)(x,20-1), if 1/2<r<1,

then the formula

3. = X, if 5
e ), i LT <r<,
where x € X,,, t,7 € I, defines (well due to the identity ®(x,0,7) = x) fixed
on (X, x 0) U (X x 1) the homotopy ®, : X, x I x I — X, connecting the
homotopy pu+1 © Qn+1 on X, X I with the homotopy F;,,. Therefore, - since the
pair (X1 X1, X,,), where X, = (Xp41 X 0) U (X, X I) U (Xp41 X 1), is, according to
Proposition 2.19 of Lecture 2, a cofibration, - the homotopy ® is a restriction
fixed on (X;4+1X0)U(X},+1X%1) of the homotopy @41 : X,41XIXI — X,,, connecting
the homotopy pj+1 0 On+ 1 with some homotopy Fj,+1, and coinciding with the
homotopy F,, on X, X I.

Thus, homotopies F,, are constructed for all n > 0.

The construction of the homotopy G, : (z,t) ¥ gn,(2), z € T, t € I is
carried out similarly. As an additional condition, we require that for any n > 0
there exists a homotopy ¥y, : T, xIxI — T, fixed on (7,,X0)U(7, X 1), connecting
the homotopy G, : T, X I — T,, with the homotopy Q,, : T,, X I — T, defined for
any z = (x,r) € T,, and each ¢ € I by the formula

(x,20n—r)t+r), if 0<r<1/2,

Onl.1) = {Qn(x, 2% — 1), it 172 <11,

and also connecting maps idz, and g, o p,.
Putting for any point (z,¢,7) € T,, X I X I, z = (x, 1),

(x,2(n—r+1-20)t+r), if 0<r<1/2, 0<7t<1/2,

— (x,n+3—4t—21), if 1/2<r<32L, 0<7<1/2,
Wn(z,t,7) = 4r+27-3 e 3-271
On(x, *5572), if 322<r<1, 0<7<1/2

an(Z’t$2T_1)a lf 1/2STS1’
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we get a homotopy ¥, : T,xIxI — T, fixed on (T, x0)U (T, x1), connecting the
homotopy Q,+1 with the homotopy G, on T,, X I. Since the pair (T,+1,7},), and
therefore the pair (T+1 X 1, T,,), where T, = (Tye1 X 0) U (T, X [) U (Tpq X 1), is &
cofibration, the homotopy ¥, is arestriction of the homotopy Wp+1 : Tpw1 XIXI —
T,11 fixed on Ty,41 X0)UT,,41 X 1, connecting the homotopy Q41 with a homotopy
G 41 such that Gpiilr, <1 = Ga.

Proposition 10.51 is thus fully proved. O

Remark 10.54. According to Proposition 10.51 and the Corollary 10.48 of Propo-
sition 10.43, the space E involved in the proof of James’ theorem is contractible.
Therefore, the map h : E — PM(S°X) is a homotopy equivalence and, therefore,
according to Proposition 2.57 of the Appendix to Lecture 2 - assuming that p
is a (homotopy at least) fibration, it will be a fibre homotopy equivalence. In
particular, the homotopy equivalence will be the restriction of this map on the
fibre JX of the fibration p, i.e. the meridian map i. Thus, to prove Puppe’s
theorem (see Remark 9.3 of Lecture 9), it is sufficient to prove that the map
p: E — S*X is not a weak, but a strong fibration. Recalling the proof of Lemma
9.17 of Lecture 9 and Theorem 9.31 from the Appendix to Lecture 9, we see that
for this, in turn, it is sufficient to prove that under the conditions of this lemma,
the map py : p~'V — V induced by p is a homotopy fibration (two-element
covering {Y,W} is obviously enumerable). Pupe shows that for a enumerable
locally contractible space X, the map py is homotopically equivalent (over V)
to some homotopy fibration ¢ : VtoV and, therefore (lemma 2.51 from the Ap-
pendix to Lecture 2), is itself a homotopy fibration. At the same time, for %
you can take the space (p™'V x I) Uy (V X Y), obtained by gluing the product
p~'V x I to the space VXY by the map f : (u,1) — (p(u),7(u)), u € p~'V,
where 7 : p~'V — Y is the retraction constructed in the proof of Lemma 9.17 of
Lecture 9, and the fibration ¢ : V — V is set by the correspondence v,y) > v,
uep W, tel,veV.

Detailed conduct of the relevant reasoning we’ll leave it to the reader.
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