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Foreword

The reference for Section 5 and Section 6 is A. Borel’s ‘Seminar on Transforma-
tion Groups’, Chapter VII (by G.E. Bredon) and Chapter VIII (by R.S. Palais).
The other four sections use some results from: -

e N. Bourbaki : General Topology, Part 1

e (. Chevalley : Theory of Lie Groups, I.

e Hewitt and Ross : Abstract Harmonic Analysis, 1.
e S. Lang : Introduction to Differentiable Manifolds
e D. Husemoller : Fiber Bundles

In these notes, “smooth” will mean C'°°, and a manifold will always be assumed
to be finite-dimensional paracompact and Hausdorff. An acquaintance with the
exponential map is assumed.

If G is a group and H a subgroup of G, then G/H (resp. H\G) denote the
set of left (resp. right) cosets of G modulo H.
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1 Introduction: Transformation Groups

A (right) transformation group is a set X together with a group G and a function
(or action) ¢: X x G — X such that :-

T1l. o(z,1)=ax Ve X
T2. ¢(x,gh) = ¢(p(z,9),h) Vo € X, g,h € H

Such a transformation group will be denoted by ¢: X x G — X, i.e., by the
action. We speak of G acting on X.
Writing ¢(y, g) as y.g, T1 x T2 becomes :-

T1. zl==z Ve e X
T2. xz.(gh) = (x.9).h Vee X,g,he H
Denote by ¢, : G — X themap g — y.g, fory € X, and denote by g: X — X
th map z — z.g for ¢ € G. Note that g: X — X is a bijection, with inverse
gl X = X,
The action is

effective if for each g € G, g # 1, there exists € X such that z.g # «
free ifx.g=ox=9=1
transitive if V pairs z,y € X, there exists g € G such that y = x.g.

Note that every free action is effective.

The set G, = {g € G: x.g = x} is a subgroup of G, called the isotropy group
of x.

Define an equivalence relation ~ on X by:

x~y<dge G such that z.g =y.

The equivalence classes are called orbits; the equivalence class of x € X - the
orbit through x - is {xG = x.g: g € G}. The set of equivalence classes, denoted
X/@, is called the orbit set. Further there is a canonical projection

p: X - X/G, z~ zG.
Proposition 1.1. There is a natural bijection
0: G \G — G, Gp.gr— x.g.

Proof.

1

Grg=G,hehgteG, e vhg =r o rh=21yg.

O

A topological group is a group G endowed with a topological space structure
such that :-
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TG1. The map G — G, g +— g~ ', is continuous.
TG2. The map G x G — G, (g, h) — gh, is continuous.

If G is a topological group, then a subset H C G is a (topological) subgroup
of G if H is an abstract subgroup of the abstract group G, and H, given the
subspace topology, satisfies TG1 and TG2.

A topological transformation group (TTG) is a topological space X together
with a topological group G and a continuous action ¢: X x G — X satisfying
T1 and T2. X is called a G-space.

Notice that g: X — X is a homeomorphism.

Proposition 1.2. Let p: X x X — X be a TTG, If X is Hausdorff, then
isotropy groups are closed.

Proof. Take x € X. ¢,: G — X is the composite

G5 XxG—>X

where i(g) = (z, g), and is therefore continuous. So if X is Hausdorff, then {z}
is closed, thus ¢, 1(z) is closed; and ¢, !(z) = G,. O

As remarked above, we have a canonical projection p: X — X/G. We give
X/G the identification topology given by p (i.e., U is defined to be open in
X/G < p~1(U) is open in X). X/G with this topology, is called the orbit
space. Further, p is continuous.

Proposition 1.3. p: X — X/G is an open map.

Proof. Let V be open in X. We want to prove that p(V') is open in X/G, i.e.,
that p~!p(V) is open in X. We have :-
p'p(V)={x € X: p(z) =p(v), forsome veV}
={reX:z=vg, forsome veV andsome g¢gecG}
={UV.g: g € G}

But each V.g is open since g: X — X is a homeomorphism, so p~!p(V) is
open. U

Proposition 1.4.
0: G:\G — zG, Gpy—zxg

18 a continuous bijection.

Proof. We have only to show 6 is continuous. We have the commutative dia-
gram,

G—2" 5 a2G

| A

G.\G
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where IT: G — G, \G is the projection g — G,.g.
G, \G has (by definition) the identification topology given by II. Thus if @,
is continuous, then 6 is continuous. O

If G is a topological group and H a (topological) subgroup, then H acts
continuously on G by right translations, i.e.,

p: Gx H—G, (g,h)— gh.

The orbit through g € G is gH and the orbit space G/H - the space of left
cosets of G by H - is called an homogeneous space.
A Lie group is a group G with a smooth manifold structure such that

L1. The map G — G, g — ¢!, is smooth
L2. The map G x G — G, (g, h) — gh, is smooth

A differential (or Lie) transformation group (DTG) is a smooth manifold
M together with a Lie group G and a smooth action ¢: M x G — M satisfying
T1 and T2. M is called a G-manifold or a smooth G-space.

Notice that g: M — M,z + x.g is a diffeomorphism.

Ezample 1.5. We list examples.
(1) Lie groups :
e R™ C™ under addition
e {0}, 5%, S under multiplication
e the classical groups GL,(R), GL,(C), SL,(R), O0,,,S0O,,,SU,,
e discrete groups, e.g., Z
(2) Topological groups :
e All Lie groups
e Q" under addition

e groups of all homeomorphisms X — X, where X is a compact topo-
logical space

e the group having the compact open topology
(3) Homogeneous spaces :

e Spheres S"°1 =0,,/0,,_1
o Stiefel manifolds V;» = O,,/O0,,_x

e Grassmann manifolds G} = O,,/(0,— x Oy)
(4) Differential transformation groups :

e X a Riemannian manifold, G the group of all isometries of X
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e If X is a compact smooth manifold and v is a vector field on X, then
a unique section ¢: X x R — X such that for each x € X, the tangent
at x of the curve t p(z,t) is s(x) - i.e., Op /It = so .

(5) Topological transformation groups : Let G be a topological space, H be a
subgroup of G, then G acts on the homogeneous space H\G by ¢: H\G —
H\G, (Hg1,92) — Hg1g2

See C. Chevalley “Theory of Lie Groups I” for (1 - 3), and S. Lang “introduction
to Differentiable Manifolds, Chapter IV” for (4).
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2 Analytic Topology of Topological Groups and
Topological Transformation Groups

Proposition 2.1. (1) If H is an abstract subgroup of a topological group G,
then H is a (topological) subgroup of G. Further if H is normal, then H is
normal.

(2) If H is a normal subgroup of G, then G/H is a topological group.

Proof. (1) Denote by 6: G x G — G the map (z,y) — xy~!. Take g,9' €
H and consider ¢g’¢g~!. Let U be any neighbourhood of ¢g’¢g~!, then by the
continuity of 6 (which follows from the definition of a topological group) there
exist neighbourhoods V, V' of g, ¢’ respectively, such that V'V~! c U. Since
9,9 € H, there exist h € VN H and b’ € V-'NH such that ”h~1 € (V'V-1)N
HcUNH,ie,UNH#@. Soif ¢¢g~' € H, then H is a subgroup.

Now suppose H is normal. Take € H and consider a x ™!, where a € G.
Let U be a neighbourhood of a x a~', then since the map y — a 'ya is a
homeomorphism, a 'Ua is a neighbourhood of 2. Hence a~'UaN H # @ which
implies a='(U N H)a # @ (since H is normal) thus U N H # @ so a 'wa € H,
ie.,aHa ' C H.

(2) This is straightforward. O

Proposition 2.2. If H is an open subgroup of G, then H is closed and G/H
is discrete.

Proof. 1f H is open then Hg is open for all g € G so H = G\ Uy¢ g Hg is closed.
Any point in G/H is both open and closed. O

Separation

From now onwards, a topological group will always be assumed to be Ty (i.e.,
if x,y are two distinct points then either there exists a neighbourhood of = not
containing y or there exists a neighbourhood of y not containing z).

Proposition 2.3. Topological groups are Ty (i.e., points are closed).

Proof. Let G be a topological group. Let a € {1},a # 1 then for all neigh-
bourhoods of A of a, AN {1} # &, ie., 1 € A. Since G is Tp, there exists a
neighbourhood B of 1, such that a € B and hence a ¢ BN B~! - contradiction.
So {1} = {1}, i.e., {1} is closed, thus all points of G are closed (since for any
x € G the map p,: G — G,y — xy, is a homeomorphism), i.e., G is T7. O

Proposition 2.4. (1) If H is a subgroup of the topological subgroup G, then
G/H is Ty if and only if H is closed in G.

(2) Ty homogeneous spaces are reqular.
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Proof. (1) G/H has the identification topology given by the canonical projection
p: G — G/H. Hence H is closed in G if and only if {15, 5} is closed in G/H if
and only if all points of G/H are closed if and only if G/H is Tj.

(2) Let G/H be a Ty homogeneous space. Let C be closed in G/H and let
x € G/H\ C. Since

¢:GxG/H = G/H, (91,92H) — g192H

is continuous, (1,z) has an open neighbourhood U x V mapped into G/H \ C
by ¢ (since G/H \ C is a neighbourhood of x). Then U~'C and V are disjoint
sets; V is an open neighbourhood of  and we show that U~'C is an open
neighbourhood of C.

The map G — G,g + g~ ! is a homeomorphism so U~! is open. If y =
xH € C, then U~z is open in G so U~ 'y is open in G/H, since p: G — G/H
is open by Proposition 1.3. O

1

Proposition 2.5. If H is a subgroup of the topological group G, then G/H is
Hausdorff if and only if H is closed in G.

Proof. Let g1H, g2 H € G/H such that g1 H # goH, ie., g1g; " ¢ H where H
is closed. Then map G x G — G, (x,y) — zy~ ! is continuous and so taking a
neighbourhood W of g1g5 !'such that WNH = @ (which is possible since H is
closed), there exist neighbourhoods U of g1,V of gy such that UV~t C W.
Now P(U), P(V') are open neighbourhoods of g1 H, g2 H respectively, where
p: G — G/H is the projection, and further P(U) and P(V) are disjoint. For if
pU NpV # & then there exist u € U,v € V such that uH = vH if and only if
uv~! € H - contradicting UV~ C W and W N H = @. So G/H is Hausdorff.
If G/H is Hausdorff then G/H is T} so H is closed, by Proposition 2.4. O

Corollary 2.6. H is a closed subgroup of G if and only if G/H is Ts (i.e.,
reqular and Hausdorff).

Using Proposition 2.3 and putting H = {1} in Proposition 2.6, we have :-
Corollary 2.7. Topological groups are Tj.
Remark 2.8. 2.4, 2.5, 2.6 did not use the fact that G was Tj.

Compactness

Proposition 2.9. Let a topological group G act on a locally compact space
X, such that X/G is Hausdorff. Then X/G is locally compact and for any
compact K' C X/G, there exists a compact K C X such that p(K) = K', where
p: X = X/G is the projection.

Proof. Take 2G € X/G. X islocally compact so = has a compact neighbourhood
A. pis open and continuous thus p(A) is a compact neighbourhood of p(z) =
xG. So X/G is locally compact.
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Let K’ be compact in X/G. For each y € K’ let Vy be a compact neigh-
bourhood of some point of p~1(y) in X (thus f(Vy) is a compact neighbourhood
of y). There are a finite number of y; € K’ such that the f(Vy;) cover K.

Let K be the compact set U;Vy; in X. We have K’ C f(K;) and hence K =
K1 N f71(K") is compact (since X/G Hausdorff, K’ is closed, so K1 N f~1(K’)
is closed in K7) and f(K) = K'. O

We quote the next two results, which can be found in Hewitt and Ross
“Abstract Harmonic Analysis 1”:

Proposition 2.10. (1) Let H be a subgroup of the topological group G. If H
and G/H are (locally) compact, then G is (locally) compact. (See p. 39)

(2) A locally compact topological group is paracompact, and hence normal. (See
p. 76).

Connectedness

If G is a topological group, denote by G, the component of G which contains 1.

Proposition 2.11. If G is a topological group then G, is a closed normal
subgroup.

Proof. G, is closed by definition. The maps G — G,z + 2~ ! and = +— a~'za,

for some a € G, are homeomorphisms leaving 1 fixed, thus they map G, into
G,. The map ¢: G x G — G, (z,y) — xy is continuous. As G, is connected,
G, x G, is connected thus f(G, x G,) is connected; and f(G, x G,) contains
1. So G, is a normal subgroup. O

Proposition 2.12. If H is a connected subgroup of G and A is a connected
subset of G/H, then p~'(A) is a connected subset of G, p: G — G/H being the
projection.

Proof. Suppose p~(A4) = PUQ, where P,Q are disjoint and open in p~!(A).
Since each orbit is connected (because H is), each of P, is a union of orbits,
P=p"YB),Q =p (C) say. Then A= BUC,BNC =@ and B, are open
in BUC = A. So one of P,Q is empty. O

Corollary 2.13. If H is a subgroup of the topological group G, then :-
(1) If H and G/H are connected, then G is connected

(2) The only connected subsets of G/G, are points (i.e., G/H, is totally dis-
connected ).

Proposition 2.14. Let G be a connected topological group and U any open
subset of G. Then U generates the abstract group G.
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Proof. Let H be the subgroup generated by U. Then H contains a neighbour-
hood (in G) of each u € U and hence contains a neighbourhood of each of its
points. H is thus an open subgroup. By Proposition 2.2, G/H is discrete, and
is connected, so G/H has only one point. O

Proposition 2.15. let G be a connected topological group and D a discrete
normal subgroup. Then D is contained in the centre of G.

Proof. The map = — x~'dz, for some d € G, is a homeomorphism G — G. If
d € D then {d} is a neighbourhood of d and so there exists a neighbourhood U
of 1 such that U~'dU C {d}, i.e., 7 'dz = d for all z € U. Using (2.14), we see
that y~'dy = d for all y € G. O

Proper Actions

For this section, the reader is referred to Bourbaki : “General Topology”, part
1, Chapter I §10 and Chapter I1I §4.

A continuous map f: X — Y is proper if f is closed and f~!(y) is compact
for each y € Y.

An action ¢: X x G — X of a TTG is proper if

(Lp): X xG—=XxX, (z,9)— (z,2.9)

is a proper map.

We will assume the following result (proved in Bourbaki Chapter I §10.1 and
§10.2) :-
Axiom :

The composite of two proper maps is proper.

Proposition 2.16. If a map f: X — Y is proper, then for any compact set
K c U, f7Y(K) is compact.

Proof. The map fx: f~ 1K) — K, fx = f|f~1(K), is proper (true for any set
K CY), and so is the map K — P, where P is a one-point space (since K is
compact). Hence the composite

YRk p

is proper, thus f~1(K) is compact. O

Theorem 2.17. An action ¢: X x G — X of a TTG, where X is Hausdorff,
is proper so @ is closed and all isotropy groups of X are compact.

Proof. The closed condition on ¢ is obvious.
If ¢ is proper then the map

(Lp): X xXG—=>XxX, (z,9)— (z,z.9),
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is proper so

(1,) Mz, y) ={(z,9) e {a} x G: 2.g =y} = Gay

is compact for all (z,y) € X x X. In particular G, , = {z} x G, is compact for
all x € X, so G, is compact for all z € X. O

Ezample 2.18. If ¢: X X G — X is a proper action of a TTG, and G =R or Z,
then Vo € X, G, = {1}.

Proposition 2.19. Let G be a topological group acting on a Hausdorff space X
and let K C G be a compact set. Then p: X x K — X, (x,s) — x.s is proper.

Proof. p is the composite

Xx K3 XxK-"0x

where a(z,g) = (z.9,2) and « is a homeomorphism. As K is compact, the
projection : X x K — X is proper, and hence p is proper. O

Corollary 2.20. With the notation of 2.19,

(1) If A is a closed (compact) subset of X, then A.K is a closed (compact)
subset of X

(2) p: X — X/K is proper.
We also deduce :-

Theorem 2.21. If G is a compact topological group acting on a Hausdorff space
X, then the action is proper. Further, p: X — X/G is proper.

Corollary 2.22. If G is a compact topological group acting on a Hausdorff
space X, then X/G is (locally) compact if and only if X is (locally) compact.

Theorem 2.23. If a topological group G acts properly on a space X, then X/G
18 Hausdorff. Further, X is Hausdorff.

Proof. Let ¢: X x G — X be the action. If ¢ is proper, then (1,¢): X x G —
X x X is proper, and in particular closed. So the set

C={(z,zg9) e X xX:Vx e X,g€ G}

is closed in X x X. But C' = (px p)~1(A), where px p: X x X — X/G x X/G
and A is the diagonal in X/G. Hence A(p x p)(C) is closed (since X/G has the
identification topology determined by p) thus X/G is Hausdorff.

Since G is Ty, the map 0: X — X x G,z — (z,1), is a homeomorphism
onto a closed subset of X x G and therefore is proper. Composing 6 with the
map X X G = X x X, (z,9) — (x,z.g), which is proper by hypothesis, we get a
proper map X — X x X,z — (z,2) so A(X) is closed, thus X is Hausdorff. O
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Proposition 2.24. Let G be a compact topological group acting on a space X,
and let I be a G-invariant subset of X. Then any neighbourhood of I contains
a G-invariant neighbourhood of I.

Proof. Let V be an open set containing I. Then W = X \ p~1(p(X \ V)) is
G-invariant and W C V, where p: X — X/G is the projection. By Theorem
2.21, p is proper so W is open; further, I C W. O

The following result will be very useful :-

Theorem 2.25. Let G act properly on X, ¢: X x G — X, then the following
hold :-

(1) Isotropy groups are compact.
(2) ou: G— X, g+ 2.9, is a proper map, for each x € X.
(8) Orbits are closed.

(4) The natural map 0: G,\G — ©.G, Grg — x.g is a homeomorphism, for
each x € X.

Proof. (1) Apply Theorem 2.23 to Theorem 2.17.

(2) Ify e X,0; (y) = {9 € G: 2.9 = g} - which was proved to be compact
in the proof of Theorem 2.17.

By Theorem 2.23 X is Hausdorff. Hence, F' is closed in G, thus {z} x F is
closed in X x G hence (z,p.(F)) = (i,¢)(z, F) is closed in X x X and so in
{z} x X. So ¢, (F) is closed in X. Thus ¢, is proper.

(3) {2} x G is closed in X X G so x.G is closed in X.
(4) We have the commutative diagram :-

G—2" 5 aG

el

G.\G

0 has already shown to be a continuous bijection, so it is sufficient to show that
it is closed. F is closed in G, \G if and only if 71 (F) closed in G so @, (7~ 1(F))
is closed in x.G implies O(F) is closed in z.G. O

Corollary 2.26. If G acts properly on a compact space X, then X/G and G
are compact.

Proof. p: X — X/G is continuous so p(X) = X/G is compact (this is true for
any action). By part (2) to Theorem 2.25, ¢, : G — X is proper; by part (3),
2.G is closed in X and is therefore compact. G = ¢, !(2.G) and is therefore
compact. ]
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We now quote two useful results; proofs will be found in Bourbaki Chapter
111

Theorem 2.27. Let G be a locally compact group acting on a Hausdorff space
X. Then

G acts properly on X.

=

for each pair of points x,y € X, and neighbourhoods V, of x, Vy, of y such that
{9 € G: Vy,NV,.g # @} has compact closure (see §4.4 Prop. 7)

=

for all compact sets K,L C X,{g € G: K.gNL # &} has compact closure. (See
84.5 Theorem 1)

If G is a locally compact group acting on a Hausdorff space X, then x € X is
a wandering point if it has a neighbourhood V,, such that {g € G: V,.gNV, # &}
has a compact closure, or equivalently, if there exists a compact subset K C G
such that g ¢ K implies V,.g NV, = @.

It follows that the action is proper if and only if all points of X are wandering
points. The set of all wandering points is clearly open.

An action ¢: X x G — X is called a principal bundle if ¢ is free and proper.
If p: X x G — X is a proper action and G is a discrete group, ¢ is said to be
properly discontinuous (thus isotropy groups are finite).
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3 G-Vector Bundles

Let V be areal (or complex), finite dimensional vector space, and let ¢: VxG —
Vbe a TTG such that Vg € G, the map g: V — V,v — v.g is linear (and hence
a linear isomorphism). The action v is called a linear action and V is called a
representation space of G (or G-module).

In the case ¥: V x G — V is a DTG, v is called a smooth linear action and
V is called a smooth representation space of G.

Let G be a topological group. A G-vector bundle is a real (or complex)
vector bundle p: £ — X with finite dimensional fibre, together with TTG’s
p: X XG— X, ¢¥: ExG— FE, such that

(1) Then following diagram is commutative

ExG—sE

XXGT>X

ie., p(ple),g) = p(e,g) for all e € E,g € G which is written, p(e).g =
p(e.g). p is thus a morphism of G-spaces (or an equivariant map).

(2) The induced action of ¥ on each fibre is linear, i.e., given z € X,v,w €
p~1(x), then (Av + pw).g = A(v.g) + p(w.g), for all g € G, A\, u € R (or C).

Ezxample 3.1. Let ¢: M x G — M be a DTG, then we have a canonical action
dp: TM x G — TM given by ((z,v),9) — (x.9,dgz(v)). It is easy to see that
the projection m: TM — M together with the DTG’s ¢: M x G — M and
de: TM x G — TM is a smooth G-vector bundle.

Let p: E — X be a vector bundle. Denote by F X x E the set

{(v,w) € Ex E: p(v) = p(w)}.

In the case X is a topological space, E xx E is a subspace of F x F; in the
case X is a manifold, E X x E is a submanifold of F x E (see for instance Lang
: Introduction to Differentiable Manifolds).

A vector bundle p: E — X, with finite dimensional fibre, is said to have
Riemann structure if there exists a continuous map

<,>:Exx E—-R, (vw)—<ovw>,
such that for each x € X,
<> [p7 () xp~H(@): pT (@) x p T (z) = R

is an inner product; the Riemann structure is said to be smooth if <,>: E X x
E — R is smooth. Note that if X is paracompact (which is the case if X is
a manifold) then any vector bundle ¢: E — X has a Riemann structure (see
Husemoller “Fibre Bundles”).
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One object of this section is to prove that if p: E — X is a G-vector bundle
with Riemann structure, where GG is compact, then there exists a G-invariant
Riemann structure on the bundle; that is, there exists a Riemann structure
<,>: F xx F — R such that

Viv,w) e Exx E VfeG <v,w>=<v.g,w.g>.

We need the following result (for the proof see Hewitt and Ross “Abstract
harmonic Analysis I” and Chevalley “Theory of Lie Groups I”, Chapter V.)

Axiom

(a) If G is a compact topological group, then there exists a linear map [ : C(G,R) —

R (where C(G,R) is the space of continuous maps G — R) such that :-

(I1) If f: G — R is non-negative, then [, f >0

(I2) If f: G — R is non-negative and not identically zero, then fG f>0
(I3) If f: G — R is identically 1, then [, f =1

(14)

I4) For any g € G,f € C(G,R), [ fopy; = [of = [[o)\,, where
pg: G = G, Ag: G — G are the right, left translation of G by g.

(I5) For any f € C(G,R), [, f= [, foi, where i: G — G,g— g~!
(b) Further, if G is a Lie group, then fG: C(G,R) — R is the usual integral

defined on compact, oriented manifolds (recall that all Lie groups are ori-
ented).

Proposition 3.2. Let G be a compact group. If f: M x G — IR is continuous
(resp. smooth), then
F: M — IR, x»—>/ f(z,9)dg
G

is continuous (resp. smooth).

Proof. (a) The continuous case. For each (z,9) € M x G and € > 0, by the
continuity of f there exist neighbourhoods V, 4, of v € X and U, 4 of g € G
such that

(Y, h) € Varg xUsp g = |f(y, h) — f(z,9)] <e.

For afixed 2 € X, {uz,4: g € G} is a cover for G, so there exists a finite subcover
Usgrr -y Usz,g; put V = ﬂf:1V$7g,i. Then

yeVe=|fly,9) — f(z,9)l <e Vgeq.

Denote by f,: G — R, the map g — f(y,g) and let ||| be the sup norm on
C(G,R). We have :-

yeVe=Ifyl9) = folg)l <&, VgeG=|fy—full<e

I [ (t0) = a)dsl < [ 15, = toldg < [ edg=c [ 1dg =<
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i.e.,
yeV,= I/Gf(yy)dg —/Gf(%g)dgl <e,

i.e., F' is continuous.

(b) The smooth case. We only have to prove the result in the case M = U, an
open set in some Euclidean space. If (V) is a chart of G and 8: U x V — R
is a smooth map, then the map

BiU SR s /V B(u, g)dg = /w R

the usual Lebesgue integral, is smooth: for the proof see Dieudonné P. 172
(Leibnitz’s rule).
Let
{(Ui7§0i): 1= la"'ap}

be a finite collection of charts of G such that the V; covers G, and let

{(Wi):i=1,...,p}

be an associated smooth partitions of unity. Then maps

UxVi=R, (z,9)— vi(9)f(z,9)

for i =1,...,p, are smooth, and by the result above so are the maps

U—R, wH/Vz/Ji(g)f(w,g)dg
fori=1,...,p so the map
P
U—R, xHZ/V U(9)f(x, g)dg
i=17Vi

is smooth. But

;A¢i(g)f(x,g)dg;/G?/}i(g)f(x,g)dg
/Giz_;%(g)f(ﬂv,g)dg = /Gf(m,g)dg = F(x).

Hence f: M - R, z+— fG f(z, g)dg is smooth. O

Note that the group properties of G were not used in the proof of this
theorem.

The existence of partitions of unity follows from the paracompactness of
manifolds (See Lang.)
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Proposition 3.3. Let VXG — V be a continuous (resp. smooth) linear action,
where G is compact and V is a finite dimensional real vector space. Then there
exists a continuous (resp. smooth) G-invariant inner product on V.

Proof. Let <,>* be an inner product on V. We have a continuous (resp.
smooth) map

VxVxG-=oR, (v,wg)—=<v.g Wg>";

it follows from Proposition 3.2 therefore that the map
<,>:VxV =R, givenby (v,w)— / <wv.g,w.g >" dg
G

is continuous (resp. smooth).

We show that <, > is an inner product. The bilinearity of <, > follows from
that of <, >* and the linearity of the integral; <, > is symmetric since <, >* is.
For any v eV,

<fu,v>>0@/ <v.g,v.9g >"dg >0
G
S<v.g,v.g>">0 forsome geG <vg#0sv#£0.

So <, > is an inner product. It is G-invariant since for any v,w € V, k € G,
<vkwk>= / <wv.kg,w.kg >dg= / <wv.h,wh>*k7'dh, where h=kg
G G
:/ <v.h,w.h >"dh=<wv,w>.
G

O

Theorem 3.4. Let p: E — X be a (smooth) G-vector bundle, where G is
compact, with a (smooth) Riemann structure; then there exists a (smooth) G-
mvariant Riemann structure on p: E — X.

Proof. Let the given Riemann structure be <,>*: E xx F — R. We have a
continuous (resp. smooth) map

Exx ExG—=R, (v,w,g)—»<uv.gw.g>".
By Proposition 3.2, the map

<,>: Exx E—R, (v7w)»—>/ <wv.g,w.g >*dg,
G

is continuous (resp. smooth); by Proposition 3.3, for any z € X,

<> p7 (@) xp~ (2)

is a G-invariant inner product. O
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Remark 3.5. Let ¢: M x G — M be a DTG, where G is compact. Then the
canonical projection 7w: TM — M together with the DTG’s

0: M xG— M, dp:TM xG — TM,

is a G-vector bundle; by Theorem 3.4, we can give the bundle 7TM — M
a G-invariant Riemann structure. It follows that for any ¢ € G, the map
g: M — M is such that for any v € M, dg,: N, — M, 4 preserves the Riemann
structure. Since the exponential map depends only on the metric, we have for
all x € M, g € G, the commutative diagram,

dge
My —— M, 4

.
exp J{exp
M——- M

g

Using this result we can deduce,

Theorem 3.6. Let p: M x G — M be a DTG, where G is compact, and let
p € M be a stationary point (i.e., p.g = p for all g € G). Then there exists
a (G-invariant) neighbourhood U of p in M such that U is isomorphic as a
G-space to an open set in a linear representation space of G.

Proof. Give M a G-invariant metric. By Proposition 2.24 there exists a G-
invariant neighbourhood U of p, so ¢|U x G: U x G — U is a DTG.

Assume U is small enough such that U is the diffeomorphic image of a dice
V', centre 0, in Mp under exp. The action of dp: TM x G — T M restricted to
Mp x G is such that ((p,v),g) — (p,dgp(v)), since p is a stationary point. M
has a G-invariant metric, so dp|Mp x G sends V x G onto V; we then have the
commutative diagram,

VxG-2,v

exp X 1‘[% zlcxp

UXGT>U

dp|Mp x G: Mp x G — Mp is a linear section and thus Mp is a linear repre-
sentation space of (G; the above commutative diagram assures the result. O
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4 Local Triviality

First we state the Rank Theorem; proofs can be found in Dieudonné ‘Founda-
tions of Modern Analysis’, and in Flett ‘Modern Analysis’.

Theorem 4.1 (The Rank Theorem (Vector Spaces)). Let E be an m-dimensional,
and F an n-dimensional, real vector space, A an open neighbourhood of a € F,
and f: E — F a C%-map such that for all x € A, df, has rank p, for some fized
integer p > 0. Then there exist,

(1) An open neighbourhood U C A of a and a CU-diffeomorphism u: U — I™
(the m-cube).

(2) An open neighbourhood V> f(A) of f(a) and a C?-diffeomorphismv: I —
V, such that flU = voiou, where i: I"™ — I™ is the map (z1,...,%m) —
(x1,...,2p,0,...,0).

From 4.1 we deduce :-

Theorem 4.2 (The Rank Theorem (Smooth Manifolds)). Let M be a smooth
m-manifold and N a smooth n-manifold, A an open neighbourhood of a € M,
and f: M — N a smooth map such that for all x € A, df, has rank p, for
some fized integer p > 0. Then there exists a neighbourhood W of 0 in M, and
diffeomorphisms

v Weu(W)Cc M
v*: fu (W) = df, (W)

where u* (W) is a neighbourhood of a and df,|W = v* fu*|W.

Proof. We can assume A is such that (A, ) is a chart of M around a, for some
®, so that f(A) C B, where (B, 1) is a chart of N around f(a) for some . We
have the commutative diagram,

and we can apply 4.1 to f on ¢(A).

Hence there exists an open neighbourhood U’ C ¢(A) of ¢(a) and open
neighbourhood V' o fo(A) of fy(a), and diffeomorphisms o': U/ — I™,
v': I — V', such that f|U’ =v' oiou/, where

it Im = I (x1,...,2Zm) — (21,...,2p,0,...,0)
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It follows the there are open neighbourhoods U C A of a and V C B of f(a)
such that the following commutes,

where u, v are diffeomorphisms. Hence, df, = dv(iu(a)) o i o du,, where
dug: My ~R™
i: R™ - R"
dv(iu(a)): R™ — Ny
SO
df, = dv(iu(a)) ov™ ' o (fIU)ou™t,
on the open set (du,)~1)(I"), i.e.,

dfo|W = 0™ fux|W,
where W is an open neighbourhood of 0 in M, and

ux: W~ ux(W) a neighbourhood of a in M
wei fu (W) = dfa(W)

O

Let f: X — X be a continuous map. We say f is locally trivial if for each
x € X there exists a set U C X containing x such that f|U: U — f(U) is a
homeomorphism onto a neighbourhood of f(x) in Y. U is called a local cross
section at x.

Theorem 4.3. Let o: M x G be a DTG and let x € M have trivial isotropy
group (i.e., Gy = {1}). Then the map

Yeig—> M, g—2ag
1S an 1mmersion.

Proof. Let py: G — G denote the right translation of G by g, i.e., ps(h) = hg
for all h € G, and recall that we denote by g: N — M the diffeomorphism given
by x +— z.g for all z € M. We have a commutative diagram,

1 g
T~ g

Py
AN



4 LOCAL TRIVIALITY 20

which gives rise to the commutative diagram,

1

G ——— G,

dpa 1l ldcpmg

My —— Mg,
dgz

so, rank of dy,g is the same for all g € G. O

Corollary 4.4. Let G be a Lie group acting smoothly and properly on the smooth
manifold M, and let © € M have trivial isotropy group. Then the map

et G—> M, g—2x.yg

is an imbedding.

Proof. Since the action of G on M is proper, ¢, : G — M is proper by Theorem
2.25; in particular ¢, is closed. By Theorem 4.3, ¢, is an injective immersion.
Hence by the rank theorem, ¢, is locally equivalent to dpl (i.e., there exist
suitable diffeomorphisms u*,v* such that ¢, = dpl o v* on a suitable neigh-
bourhood). But ¢, is injective and hence so is dplg for all g € G, thus ¢, is
an immersion. O

‘We now come to the main result of this section :-

Theorem 4.5. Let p: M x G — M be a DTG, where the action of ¢ is free
and proper. Then p: M — M/G, the canonical projection, is locally trivial.

Proof. For each € M, we have an immersion ¢,: G — M (by Theorem 4.3),
and so dpl : Gy — M, is injective. (In fact, ¢, is an imbedding by Corollary
4.4). Thus M, = T,,®1(G1), where T}, is the orthogonal compliment of dy’(G)
in M,; note that dpl(G) is the tangent space of the orbit through z, at .
Choose a disc (i.e., a closed ball) D C T, such that D is a neighbourhood of 0
in T}, and such that D is so small to be mapped diffeomorphically by exp into
a chart neighbourhood of x; thus we can assume exp D is in a Euclidean space.
Note that = € exp D.

We claim that there exists a disc D* C D (D* is a neighbourhood of 0 in
T,) such that p|exp D* maps exp D* homeomorphically onto a neighbourhood
of p(x) in M /G, which will prove the theorem. As the action is proper, M/G
is Hausdorff by Theorem 2.23. Hence since D* is compact, p|exp D* is closed,
and it is therefore sufficient to prove :-

(1) p|exp D* is injective
(2) p(exp D*) is a neighbourhood of p(z) in M/G.
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(1) We shall show that there exists a disc D* C D such that ¢|(exp D*) x G is
injective, from which it follows that

21.G =22.G = x1 =29 forall z,z9 € expD*,
and so that
p(z1) = p(xe) = x1 = x2 for all z1,z9 € exp D*.

That is, we shall show that there exists a disc D* C D such that orbits which
intersect exp D* only intersect at single points, i.e., that

yg==z yzc€expDgeG=y=zg9=1

By Theorem 2.27, the set

K={g€G: expDnN(expD)g # &}
is compact; so we know that
yg==z, y,z€expD*=gekK.
The set
J={(y,2,9) €expD xexpD x K: y.g =z}

is a closed (and therefore compact) subset of exp D x exp D x K - since it is the
inverse image of the diagonal in exp D x exp D under the map

expD xexpD x K s expD xexpD, (y,2,9)— (y.9,2).

Further J does not meet {x} x {z} x (K'\ {1}); by the Hausdorff property of M,
it follows that J is disjoint from some neighbourhood W of {z} x {z} x (K'\{1})
in exp D xexp D x (K \{1}) (and therefore in M x M x K). We can assume W =
exp D* x exp D* x L, where D* C D is small enough disc. Then ¢|exp D* x G
is injective.

(2) Since p is an open map (Proposition 1.3), it is sufficient to prove (exp D*)G
is a neighbourhood of = in M. By taking partial differentials, we have that

dp(z,1): My x Gy — M,

is given by
dp(z,1)(a,v) = a+ dpg ().

So the restriction
do(x,1)|D* x G1: D* x Gy — D* @ dpk(G1)

is an isomorphism, since dil is injective and D* lies in the orthogonal compli-
ment of dpl(G1). As D* lies in a neighbourhood of 0 in T}, D* @ dpi(G1) is a
neighbourhood of 0 in
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So the rank of dp(z,1)|D* x Gy is dim M.

If do(x,1)|D* x Gy then do(y, g)|D* x Gy has maximal rank, for (y,g) in
some neighbourhood N of (z,1) in M x G, and since D* is compact, we can
assume (exp D* x U) C N, where U is some neighbourhood of 1 in G. By the
Rank Theorem, it follows that if ¢(exp D* x U) is a neighbourhood of z, then
(exp D*)G is a neighbourhood of x. O

Corollary 4.6. If G is a Lie group and H a closed Lie subgroup, then the
canonical projection p: g — G/H is locally trivial.

Proof. The action
GxH—G, (g,h)— gh

is smooth and free. We show it is proper: the result then follows from Theorem
4.5. The map

(i,9): G X G = GxG, (g1,92) = (91, 9192)

is a homeomorphism and is therefore proper. As H is closed in G, G x H is
closed in G x G. So

(l,p)[GxH:GxH—=>GxG
is also proper, which holds if and only if the action
GxH: -GxG, (g,h)— gh
is proper (by definition). O

N.B. If U is a local cross section of p: G — G/H at 1, then HNU = {1}.

Remark 4.7 (G/H has a G-manifold structure). First, we put a manifold struc-
ture on G/H. For each = € G, there exists a set U,, containing x such that
p|Uz: Uz — p(Uy) is a homeomorphism onto a neighbourhood of p(z). Let (V, 6)
be a chart of G/H around x; then (p(V)Np(U,),t0q,) is defined to be a chart of
G/H around p(x) where q,: p(u,) — U, is (p|lv,)~! and t is a “straightening”
map from the relevant Euclidean space to itself (recall that p is an open map).
Clearly the set of all such charts forms a smooth atlas for G/H.
Finally, we have the commutative diagram,

GxG——G

G/H x G—— G/H

where a(g1,92) = g2g1 and &(g1H, g2) = g2g1 H.

The manifold structure defined on G/H dictates that p be smooth, and in
fact, is a local diffeomorphism, so & is smooth; and we have already shown in
Section 1 that &: G/H x G — G/H is a transformation group.

So G/H is a G-manifold.
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Theorem 4.8. Let o: M x G — M be a DTG and let x € M have (closed)
isotropy group H. Then the map

0: H\G - M, Hgw—z.g
1S an 1mmersion.

Proof. H being a closed subgroup, is thus a Lie subgroup (see C. Chevalley
‘Theory of Lie Groups I, pp 130-135). Hence p: G — H\G is a local diffeomor-
phism. We have the commutative diagram,

G5 H\G

N

M

where p is a local diffeomorphism and ¢, is smooth. So 6 is smooth.
Let pig: H\G — H\G be the right translation of H\G by [g] = p(g).
Then pig[h] = [hg].pjg) is a diffeomorphism by the remark above. We have he

commutative diagram,

[1]
Plqg)
H\Gj) —— H\G|g

deml ld&[y]

g(l?

Hence the rank of df[g] is the same for all [g] € H\G. By the rank theorem,
df[g] is locally equivalent to 6, for all [g] € H\G. As 0 is injective, so is df[g]
for all [g] € H\G, so 6 is an immersion. O

Corollary 4.9. Let ¢o: M xG — M be a DTG, where the section of ¢ is proper,
and let © € M have isotropy group H, Then

0: H\G - M, Hgw z.g,

18 an 1mbedding.
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5 Slices

Let o: M x G — M be a DTG, and H a closed subgroup of G. A (smooth)
H-slice in M is a subset S of M such that

(1) S is invariant under H.
(2) SgnS#o=g9g€H.

(3) If U is a local cross-section at 1 of the projection p: G — H\G, then
p|SxU: S xU — M is a diffeomorphism onto some neighbourhood in M.

In the case of a TTG, the concept of an H-slice can be defined analogously -
“diffeomorphism” in (3) being replaced by “homeomorphism”.

Note: By (2), s € S = Gp C H. Further, if z € M, then a slice at x is a
G -slice S which contains z, and such that, with notation of (3), ¢|S x U — M
is a diffeomorphism onto a neighbourhood of x in M (¢(S x U) automatically
contains x).

Lemma 5.1. Let f: V X Z — V be a continuous map, where V is a metric
space and Z a topological space. Let K be a compact subset of Z and let v € V;
then given € > 0, there exists a § > 0 such that

dist(v,w) < § = dist(f (v, 2), f(w,2)) <e forall z€ K.

Proof. By the continuity of f, there exist a §(z) > 0 and an open neighbourhood
N, of z such that

fiB(u,6(2)) x N. = B(f(v, 2),€/2),
where B(a, \) denotes the open A-disc centred at a. Note that if 2’ € N,., then
dist(v,w) < §(z) = dist(f(v, '), f(w, 2)) < e.

The open sets N, form a cover for K and K is compact, so there exists a
finite subcover {N,,, -, N, } for K. Put

0 =min{d(z):i=1,...,k}.
Then for all 2’ € K,
dist(v, w) < 6 = dist(f(v, 2), f(w,2')) < e
O

Theorem 5.2 (Existence of Slices). Let ¢: M x F' — M be a DTG, where the
section of ¢ is proper. Then there exists a smooth slice at each point of M.
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Proof. Take x € M and let « have isotropy group H. The action of ¢ is proper,
so H is compact. Thus we can give M an H-invariant metric. By Theorem 4.8,
the map

0: H\G — M, Hgwr z.g,

is an immersion (it is in fact an imbedding by Corollary 4.9) so
dol: (H\G); — M,

is injective. Note that d01(H\G); is the tangent space to the orbit of x at x.
Let T, be the orthogonal subspace of df1(H\G); in M, and take a disc D in
T, such that D is a neighbourhood of 0 in 7, and such that D is so small that
it is mapped diffeomorphically by exp. Put S = exp D. We shall show that by
restricting D if necessary, S is a slice at z, that is the conditions (1), (2) and
(3) are satisfied. As in the proof of Theorem 4.5, we can assume S is contained
in some chart neighbourhood of z, i.e., that S is in a Euclidean space.

(1) Since M has an H-invariant metric, for h € H, we have the commutative
diagram,

dhs
M, —— M,

exp exp
M — M

where M, =T, © d01(H\G);.

Recall that the differential of exp is the identity map, from which it follows
that exp maps df1(H\G); - the tangent space of x.G at x - onto z.G. Hence,
x.G is invariant under h, so d01(H\G); is invariant under dh,. Since M has an
H-invariant metric, T, is invariant under dh,, thus dh,(D) = D, which means
S = expodhgz(D) = h(S) = S.h. So S is H-invariant.

(2) We want to show that if S.gNS # & then g € H.

Let U be a local cross-section of p: G — H\G at 1, such that p(U) is open
(which exists by Corollary 4.6). Then p~!p(U) = HU, and since p(U) is open
in H\G, HU is open in G (since H\G has the identification topology). HU
is thus an open neighbourhood of H; and G \ HU is closed. As ¢ is proper,
@z G — M is proper and hence closed. So z.(G \ HU) is closed in M and
further = ¢ =.(G\ HU).

The action of ¢ is proper, so there exists a neighbourhood V. if = such that

K={geG:VgnV, £ o}

is compact (Theorem 2.27), and we can assume D is small enough such that
S C Vg, (Note that H C K).
It follows from Lemma 5.1 that given £ > 0, there exists a 6 > 0 such that

dist(z,y) < d) = dist(z.g,y.9) <&, forall ge€K.
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Let dist(x, 2.(G\HU)) = &, then by restricting D if necessary we can assume
that the radius of S is < § < /2, where ¢ is such that

dist(x,y) < §) = dist(z.9,y.9) <e/2, forall ge K.
Suppose S.g N S # @, then there exist s,¢t € S such that s.g =¢. Now

dist(x, x.g) < dist(z,t) and
dist(t, z.g) = dist(z, t) + dist(s.g, z.g)
<eg/2+¢e/2=¢.

Hence g ¢ G\ HU. ie., g € HU. So g = hu, for some h € H,u € U. We have
that t = s.g = sh.u = s'.u, where sh = s' € S - since S is H-invariant.

If w# 1 (then u ¢ H since U N H = {1} - see N.B. to Corollary 4.6), then
x.u # x and so there exists a neighbourhood W of x such that WunW = @.
Restricting D if necessary, we can assume S C W implies S.u NS = &. Hence

t=slwu, tsteSuelU=u=1.

So g = h.

(3) We want to show that if U is a local cross-section of p: G — H\G at 1,
then p|S x U: S x U — S.U is a diffeomorphism onto a neighbourhood of z in
M.

(a) p|S xU: S xU — S.U is a homeomorphism. Since ¢ is continuous and
closed (since it is proper) we only have to show that it is injective. Suppose
s.u = t.w, where s,t € S, u,v € V, then uwv=! € H (by (2)), uv=! = h say.
So u = hv and p(u) = p(hv) = p(v) if and only if u = v since p|U: U — p(U)
is a homeomorphism, so s = t.

(b) o|S xU: S xU — S.U is a homeomorphism onto a neighbourhood of z.
Let ¢: S x p(U) — S.U be the map defined by ¢(s, Hu) = s.u (which is
well-define since U N H = {1}), so we have the commutative diagram,

S x p(U) —— s.U

SxU
As | S x U is injective, so is ¢. Since ¢ is smooth and p|U: U — p(U) is a
diffeomorphism, ¢ is smooth.

Recall that the tangent space to S at z is T, (since the differential of exp
is the identity)
dg(z,1): T, x p(U)1 — M,

is given by d¢(x,1)(a,b) = a + dp,1(b), where

Pz p(U) = SU Huw ux
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ie., @, = 0p(U).

As P(U) ¢ H\G, T, lies in the orthogonal complement of d@.(P(U)1)
so dp(x,1) is injective. Now P(U) is a neighbourhood of 1 in H\G, so
p(U)1 = (H\G): implies

d0(z,1): Ty x p(U)1 ~ Ty @ dpu1(p(U)1) = Ty @ dIL(H\G)1 = M,.

So d@(x, 1) is surjective, and is therefore an isomorphism. dp(y, Hg) is
therefore an isomorphism for (y, Hg) in some neighbourhood N of (z,1) in
S x p(U). Thus by the Rank Theorem ¢(N) is a neighbourhood of = in M,
hence ¢(S x U) = S.U is a neighbourhood of = in M.

©|SxU — S.U is an immersion. By (b), there exists a neighbourhood N of
(z,1) in S x p(U) such that d@(y, Hg) is an isomorphism for (y, Hg) € N.
As S is compact, we can take S so small such that S x {1} C N.

We have the commutative diagram,

lxdﬁulwz %Tdus

S. x p(U) m

where

pu:p(U) = pU), Hvw Hvu, and wueU.

Hence dp(s, Hu) is an isomorphism - and in particular injective - for all
(s, Hu) in S x p(U). @ is thus an immersion, so is ¢ (by the commutativity
of diagram of (b) ).

O
N.B.

In constructing a slice at point € M, we have thrown away the original
metric on M and replaced it by a G -invariant one. Thus the exponential
map used in constructing the slice, will not necessarily be the same as the
exponential map used to construct a slice at another point ¥ when M has
a Gy-invariant metric.

The slice theorem shows in effect that points with isotropy groups of the
same dimension (whose orbits have the same dimension and vice versa) are
locally equivalent, in the sense that they have neighbourhoods diffeomorphic
to D x U, where D is a disc of dimension = dim M — dim (orbit) and U
is a local cross-section of p: G — H\G at 1, of dimension = dim (orbit)

(since P|U: U — p(U) is a homeomorphism onto a neighbourhood and
0: H\G =~ z.G).
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A continuous map f: X — X’ between G-spaces X, X' is equivariant if for
all z € X, g € G, we have f(x.9) = f(z).g.

Theorem 5.3. Let f: X — X’ be a continuous (resp. smooth) equivariant
map between G-spaces (resp. G-manifolds) X, X', and let S’ be an H-slice
(resp. smooth H-slice) in X'. Then S = f~1(S’) is an H-slice (resp. smooth
H-slice) in X.

Proof. We verify that conditions (1) - (3) for slices, hold for S.

(1) If s € S,h € H then f(s.h) = f(s).h € 5. Indeed if S’ is H-invariant, then

s.h € S, so s is H-invariant.

(2) If s = t.g where s,t € S,g € G, then f(s) = f(t).g implies g € H since

f(s),f(t) e S'. So S.gnNS # @, thus g € H.

(3)

(a) In the continuous case, all we have to show is that ¢ = p|SxU: SxU — S.U
is a homeomorphism onto a neighbourhood of X, where p: X x G — X is
the action of G on X, and U is a local cross-section of p: G — H\G at 1.
Let ¢': X’ x G — X’ be the action of G on X'.

Note that S.U C f=1(S".U). We have the commutative diagram,

SXULS/XU

@J/ RJ(@'S/XU

lFWSU%—TASU

- the commutativity follows from the equivariance of f.

Clearly ¢ is onto f~1(S".U) ie., S’.U = f~1(S".U). ¢ is also injective,
since if sy.u; = $o.us where S1,Sy € S,uy,us € U, then 51 = sz.uQul_l
if and only if upu;' = 1 (since U N H = {1}) if and only if u; = uy and
$1 = Sg. Since ¢ is continuous and closed, it is a homeomorphism. Now,
S'U is a neighbourhood in X', sois f~1(S'U) in X. Hence f~1(S'U) = S.U
@: S xU — S.U is thus a homeomorphism onto a neighbourhood in X.

(b) In the differentiable case we have to show further that ¢ is a diffeomorphism.
As ¢ is smooth, we show its inverse ¢! is smooth. Consider the two maps
P1: S.U—=U, su—u
Po: S U —= S, suws

where s € S and u € U. So v is the composite:

proj

sv—1s5U ~ suru

where s.u — f(s).u — (f(s),u) — u, and is therefore smooth; and 1y is
the composite:

11Xy 1xinv.

SU"HSUxU " S Uxu ! —2+8
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where s.u — (s.u,u) — (s.u,u™!) — s, and 80 15 is smooth. And p~1: S.U —

S x U is given by s.u — (s.u), thus s.u — (a(s.u),11(s.u)), so ¢~ is

smooth.
O

Theorem 5.3 is the first step in extending the slice existence theorem to the
topological case, but before we can continue we need the following Lemmas:-

Lemma 5.4. Let G be a compact Lie group and H a closed subgroup. Then
there exist a linear representation space, V. of G and an element v € V' such
that the isotropy group of v, G, is equal to H.

Proof. See Borel ‘Seminar on Transformation Groups’, Chap. VIII (by Palais),
Prop. 2.2 U

Lemma 5.5. Let ¢: X X G — X be a TTG, where G is compact, and let
xg € X. Then there exists an equivariant map of X into a linear representation
space of G, which is injective on z¢.G.

Proof. By Lemma 5.4 there exist a linear representation space V of G and an
element v € V such that G, = G,; hence the map

fir20.G > vG, .9 — vg

is well-defined, continuous and equivariant. Since z(.G is a compact subset of
X, and X is Hausdorff, we can apply Tietze’s Extension Theorem to obtain a
continuous extension f: X — V of f; note that f is injective on z.G.
The map ~
G—=V, g~ f(zg)g™!

is continuous, since it the composite

g ((2.9),97 ") = (flag)g™) = Flz.9)g".

As G is compact (see Proposition 3.2) the map F': X — V is continuous, where

/fwg '

We show that F' is equivariant and is injective on zq.G. Now
F(x.h) = /Gf(ac.hg)g_ldg = /G f(z.k)k~'hdk, where k= hg
= (/G f(x.k)k~tdk)h = F(z)h, forall ze€ X, heQa.
Flaoh) = [ Favha)g™dg = [ faohag™dg = [ fGaondg

= (/G f(zo)dg).h = (/G vdg).h =v.h, forall heGQG.

so F' is injective on z.G, since G, = G,. O
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We are now in a position to extend 5.2 to the case of topological transfor-
mation groups, where the group of the action is a compact Lie group.

Theorem 5.6 (Existence of Slices). Let v: X x G — X be a TTG, where G is
a compact Lie group. Then there exists a slice at each point of X.

Proof. Take z € X. By Lemma 5.5 there exists an equivariant map F: X — V,
where V is a linear representation of G, such that F' is injection on .G and that
Gy = Gpy). V is a smooth G-space and so there exists a (smooth) G p(y)-slice
S" at F(x). By Theorem 5.3, F~1(5’) is a Gr(a)-slice at z; but Gp(y) = Gz, O
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6 Orbit Types and Principal Orbits

Let G be a group. We define an equivalence relation on the subgroups of G by

H, ~ Hy, & Elg € G such that H; = gingg.

The equivalence classes of this relation (i.e., the conjugacy classes of the sub-
groups) are called orbit types.

Let p: X x G — X be a TTG. The orbit type of a point x € X is defined
to be the orbit type of the isotropy group of x. Note that if x € X has isotropy
group H, then x.g € .G has isotropy group g~ ! Hg; so the points on a particular
orbit have the same orbit type. The (orbit) type of an orbit in X is the orbit
type of any point that lies on the orbit.

Two orbits, of perhaps different G-spaces, are called equivalent if there ex-
ists an equivariant homeomorphism (i.e., a continuous equivariant map with
continuous inverse) mapping one orbit to the other.

Proposition 6.1. Two orbits have the same type if and only if they are equiv-
alent.

Proof. Let T" be an orbit in the G-space X, and let I be an orbit in the G-space
X'. If I, TV have the same orbit type, then there exist z € I', 2’ € T’ such that
G, = G. The mapping

f:T =T zg—2.yg

is well defined, bijective and equivariant. It is continuous with a continuous
inverse because of the commutative diagram,

X G——x.G

1)

¥ xG—2'.G

This proves the first part.

Now suppose there exists an equivariant homeomorphism f: I' — I''. Then
for each 2 € T, the fact that f: 2.g — f(x).g assures that G, C Gj(,). As
F is an equivariant homeomorphism, so is f~'. Thus Gy, C G,. Hence
Gz = Gy(z), so I',I" have the same orbit type. O

We now come to our main result for orbit type :-

Theorem 6.2. let p: M x G — M be a DTG, where the action of ¢ is proper.
Then M has locally a finite number of orbit types.

Proof. In the case M is O-dimensional, for each z € M, {z} is a neighbourhood
of z and {z}, since it contains just one point, contains just one orbit type. So
the assertion holds in this case.
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Now suppose that the assertion holds in the case M is a k-manifold, for all &
such that 0 £ k < n. This implies that if M is compact, M has a finite number
of orbit types. Thus, if M = S¥,0 < k < n, M has a finite number of orbit
types. We shall show that this last result implies that the theorem holds in the
case M is an n + l-manifold. This will prove the theorem.

Let M be an (n + 1)-manifold and let x € M. Let H be the isotropy group
of 2 and give M an H-invariant metric (recall that if the action is proper, then
isotropy groups are compact). We can construct a slice S at = (as in Theorem
5.2), so x has a neighbourhood (e.g., S.U where U is a local cross-section at 1
of p: G — H\G) such that every orbit in the neighbourhood meets S. So it is
sufficient to show that there are only a finite number of orbit type in S. Recall
that if s € S, then Gy C H, thus we only have to consider the action of H on
S, i.e., we can restrict our attention to the DTG - o|M x H: M x H — M.

Note that = is a stationary pint of H , and further S is H-invariant. By
Theorem 3.6 we see that$ is isomorphic, as an H-space, to the disc D = exp™! S,
where exp: M, — M. Recall that D is a neighbourhood in N,, where N, is the
normal space to .G at . H leaves 0 € D fixed, acts linearly and isometrically
on D, and leaves D in N,; so H acts orthogonally on D. Clearly, all points on
the same open radius (i.e., a radius excluding the centre point) of D have the
same isotropy group, so the different orbit types occur on the boundary of D
and at 0. The boundary of D is S*, for some k,0 £ k < n and the inductive
hypothesis assures that there are only a finite number of orbit types on S*;
further, there is just one orbit type at 0 - namely the one determined by H. D
has thus a finite number of orbit types, so does S. O

In order to introduce the concept of a “principal orbit”, we need the following
proposition :-

Proposition 6.3. Let G be a compact Lie group and let H be a proper Lie
subgroup. Then either

(1) dim H < dim G

or

(2) dim H = dim G, and H has fewer components than G.

Proof. First note that the compactness of G implies that G has a finite number
of components. Also H C G dictates dim H < dim G.

Suppose dim H = dimG. Then H contains a neighbourhood of 1 in G, so
H contains Go. As H is a proper subgroup of G, H/G) is a proper subgroup of
G /Gy (recall that Gy is a closed normal subgroup , by Proposition 2.11). G/Gy
is compact discrete (since Gg is open and closed), and is therefore finite. But
the components of G are the cosets of Gy. O

Let o: M x G — M be a DTG, where the action of ¢ is proper. Since the
action is proper, the isotropy groups are compact. In the class of all isotropy
groups of the action, we can therefore speak of a particular isotropy group H
being “minimal” in the senses that :-

(1) dim H is as small as possible.
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(2) subject to (1) the number of components of H is as small as possible.

An orbit of the action is called a principal orbit if there is a point on the

orbit whose isotropy group is minimal in the sense described above. Note that

condition (1) implies the dimension of the principal orbit is as large as possible.
Proposition 6.3 assures that the principal orbit always exist.

Notation:

If o: M x G — M is a DTG, where the action of ¢ is proper, the set of points
in M lying on the principal orbits of the action is denoted by P(M, G).

Lemma 6.4. Let ¢: X xG — X is a TTG and let S be an H-slice in X. Then
the map
a: S/H — SG/G, sHw— sG

is a homeomorphism.

Proof. We have the flowing two restrictions of ¢, and their associated projections
from the corresponding restrictions of X to their corresponding orbit space :-

v1: SGx G — SG; p1: SG— SG/G, s.g+— s.G
w2: SxH—S; p:S—S/H, s+~ s.H.

Note that p;(S) = SG/G. For s1,s2 € S, s1.G = $2.G if and only if 57 = so.9
for some g € G if and only if s; = s2.g for some g € H (condition (2) of the
Section 5) if and only if s;.H = so.H So « is injective. We have the commutative

diagram,
» / \

SG/G+——— S/H

Since p1|S and ps are onto, so is «; and since p;|S and ps are open and contin-
uous, again, so is @. Thus a: S/H — SG/G is a homeomorphism. O

We now come to the main (and rather surprising) result of this section :-

Theorem 6.5 (Principal Orbits). Let ¢: M x G — M be a DTG, where M is
connected and the action of ¢ is proper. Then P(M,G) is an open dense set in
M, whose image in M/G is connected. Further, all principal orbits are of the
same type.

Proof. In the case M is 0-dimensional, M has just one point, the theorem
follows trivially. We assume that the result holds in the case M is a connected
k-manifold, for all k such that 0 £ k < n, and show that this implies that the
result holds in the case M is a connected n + 1-manifold. This will prove the
theorem.
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(1)

P(M,G) is open : Take x € P(M,G) and let S be a slice at . Then SG is
a neighbourhood of = and every orbit in SG meets S. For s € S, G5 C G,
but G5 ¢ G, because G, is minimal. Hence G5 = G, so s € P(M,G) and
thus SG C P.

P(M, Q) is dense: Since M is connected, it is enough to show that P(M, G)
is open. Take x € P(M,G) and let S be a slice at . Recall that SG
is a neighbourhood of x and every orbit of SG meets S, hence S meets
P(M,G) say in y. Put G, = H and consider the action of H on S, i.e.,
p|SxH:SxH—S. Fors €S, Gs C Gy, = H implies G5 = Hy. Hence
s € S lies on a principal orbit of the action ¢|SG x G: SG x G — SG
if and only if s lies on a principal orbit of the action ¢|S x H — S, i.e.,
s € P(SG,QG) if and only if s € P(S,H) N S if and only if sg € P(SG,G)
for all g € G.

(a) In the case dim s # 0, we have that
S\ z~exp (S\z)=(exp ' S)\ 0=~ S"x]0,1]

for some k,0 < k < n, where exp: M, — M. We have the commutative

diagram,
(5%x]0,1]) x H —F—5 §%x]0,1]
((exp™ )\ 0) x H—2— (exp™' §)\ 0
expx1 |~ zlexp
(S\z)x H———— S5 \x
where ¢, ¢* are the actions induced by ¢, and the map g, is the home-
omorphism

(exp~t8)\ 0 = S¥x]o,1].

As remarked in the proof of Theorem 6.2 H acts orthogonally on D,
which implies the induced action of H on the cylinder S*x]0,1] is one
of rotation about its axis, i.e., H acts orthogonally on S* but does not
act on |0, 1].

We are saying in fact that

¢" = (5, 1) (5*x]0,1]) x H — §%x]0,1],  ((s,),h) = (p5(s, k), 1))
for all s € S,t €]0,1],h € H for some orthogonal action ¢f: S¥ x H —
Sk,

The principal orbits of ¢f: S* x H — S* are, by the inductive hypoth-
esis dense in S*, for k # 0; when k = 0, there is either just one orbit
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or the isotropy group of both points of S° is H, thus P(S°, H) = S°,
in either case. Hence the principal orbits of

©*(S%x]0,1]) x H — S*x]0,1]
are dense, so the principal orbits of
el(S\z)x H: (S\z) x H— (S\z)

are dense in S\ z, thus P(SG,G) N S is dense in S (by above), thus

P(M,G)NS is dense in S. Hence S C P(M,G) and so SG C P(M,G).
Thus P(M,G) is open.

(b) In the case dim S = 0, .G has the same dimension as M (since dim S =
0 implies S = {z} , thus .G is a neighbourhood in M). The map

0: H\G - +.GC M, Hgw— x.g

is a diffeomorphism (Corollary 4.9) so z.G is open by the inverse func-
tion theorem. Since the action of ¢ is proper, x.G is closed (Theorem
2.25). Thus the connectedness of M implies /G = M, x.G being the
only orbit is thus principal.

(3) P(M,G)/G is connected : Suppose P(M,G)/G = U UV, where U,V are
disjoint open sets in P(M,G)/G. Then P(M,G) = p~*(U)Up~1(V), where
p: M — M/G is the canonical projection. By (2),

M =P(M,G)=p Y (U)up~ (V)

so there exists € p~H(U) N p~1(V) since M is connected.

Let S be a slice at z. If dim S = 0, it follows from (2b) that P(M,G)/G is
a one point set and is thus connected. So we can suppose dim S # 0.

From (2), we have that P(SG,G) NS = P(S,H); and if p;: SF — SG/G
is the canonical projection, the relation

p1(s.g) =pi(s) =s.G, forall s€S geCG

assures (P(SG,G)N S)/G = P(SG,G)/G; Applying Lemma 6.4, we have
that
P(S,H)/H ~ (P(SG,G)n S)/G = P(SG,G)/G;

in particular
P(SG\z2.G,G)/G~ P(S\z,H)/H

and we know that
P(S\ z, H)/H = P(S*, H)x]0,1])/H = P(S*, H)|Hx]0,1].

The inductive hypothesis implies P(S*, H)/H is connected which implies
P(SG\ z.G,G)/G is connected, and so P(SG,G)/G is connected. Since
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P(SG,G) = P(M,G) N SG and SG and P(M,G) are neighbourhoods in
M, P(SG,G)/G is thus a connected neighbourhood of P(x) in M/G. Now
p(z) € UNV, but P(SG,G)/G C P(M,G)/G =UUV,so P(SG,G)/G lies
entirely in U or entirely in V', thus either U or V is empty. So P(M,G)/G
is connected.

The principal orbits are of the same type. The proof of (1) implies that
each point of p has a neighbourhood, in M, in which all the principal orbits
are of the same type. Hence the orbits of a given type form an open set in
M and therefore its image in M /G, and thus in P(M,G)/G is open. Thus
P(M,G)/G is the disjoint union of open sets, each open set being the image
in M/G of the open set in M consisting of points in P(M, Q) of a particular
orbit type. As P(M,G)/G is connected, all but one of these disjoint open
sets is empty. So all the principal orbits have the same type.

O



