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Motivation

Quasi�brations are essentialiy �brations up to weak homotopy. They play a
fundamental role in homotopy theory since a variety of important constructions
give rise to quasi�brations which fail to be �brations. Quasi�brations were in-
troduced in a basic 1958 paper by Dold and Thom [2], and some re�nements
of their work were added by Hardie in 1970 [4]. The importance of quasi�bra-
tions to the study of classifying spaces and �brations was �rst established in a
1959 paper of Dold and Lashof [1], and a systematic account was given in [5].
Quasi�brations played an essential role in Quillen's 1973 paper [7] in which he
introduced the higher algebraic K-groups of rings. They have been applied in
quite a large number of more recent papers.

Despite their importance, quasi�brations have not been treated in any text-
book, and I know of no better published reference than the original paper (in
German) of Dold and Thom. Around 1972, I proved a new theorem about weak
homotopy equivalences of pairs of spaces and observed that the basic facts about
quasi�brations are very easy consequences of that result. I've never published
this material, which was intended as part of a still projected volume on the ho-
motopical foundations of algebraic topology. In view of its close connection to
the theme of the Montreal conference, I thought that I would seize the occasion
to give an exposition.

We give some preliminaries and state our theorem about weak equivalences
in �1. We explain the application to the theory of quasi�brations in �2. We
prove the theorem about weak equivalences in �3.
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1 Weak equivalences of pairs

A map 𝑓 : 𝑋 → 𝑌 of spaces is said to be an 𝑛-equivalence if, for all 𝑥 ∈ 𝑋,
𝑓∗ : 𝜋𝑞 (𝑋, 𝑥) → 𝜋𝑞 (𝑌, 𝑓 (𝑥)) is a bijection for 0 ≤ 𝑞 < 𝑛 and a surjection for
𝑞 = 𝑛. A map 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) of pairs of spaces is said to be an 𝑛-
equivalence if ( 𝑓∗)−1 im(𝜋0𝐵 → 𝜋0𝑌 ) = im(𝜋0𝐴 → 𝜋0𝑋) and, for all 𝑎 ∈ 𝐴,
𝑓∗ : 𝜋𝑞 (𝑋, 𝐴, 𝑎) → 𝜋𝑞 (𝑌, 𝐵, 𝑓 (𝑎)) is a bijection for 1 ≤ 𝑞 < 𝑛 and a surjection for
𝑞 = 𝑛. The condition on components means that if 𝑓 (𝑥) can be connected to a
point of 𝐵, then 𝑥 can be connected to a point of 𝐴; it is automatically satis�ed
when 𝑋 and 𝑌 are path connected. In both the absolute and the relative cases,
𝑓 is said to be a weak equivalence if it is an 𝑛-equivalence for all 𝑛.

By the evident long exact sequences and the �ve lemma, plus some tedious
extra details to handle fundamental groups, we have the following relationship
between weak equivalences of pairs and of their constituent spaces.

Lemma 1. Let 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) be a map of pairs such that both 𝑓∗ : 𝜋0𝐴→
𝜋0𝐵 and 𝑓∗ : 𝜋0𝑋 → 𝜋0𝑌 are bijections. If any two of the three maps 𝑓 : 𝐴→ 𝐵,
𝑓 : 𝑋 → 𝑌 , and 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) are weak equivalences, then so is the third.

Our new theorem on weak equivalences of pairs is a kind of analogue in the
context of excisive triads. Recall that a triad (𝑋; 𝐴, 𝐵) is said to be excisive if
𝑋 is the union of the interiors of 𝐴 and 𝐵.

Theorem 2. Let 𝑓 : (𝑋; 𝑋1, 𝑋2) → (𝑌 ;𝑌1, 𝑌2) be a map of excisive triads such
that 𝑓 : (𝑋𝑖 , 𝑋1∩𝑋2) → (𝑌𝑖 , 𝑌1∩𝑌2) is an 𝑛-equivalence for 𝑖 = 1 and 𝑖 = 2. Then
𝑓 : (𝑋, 𝑋𝑖) → (𝑌,𝑌𝑖) is an 𝑛-equivalence for 𝑖 = 1 and 𝑖 = 2.

No useful conclusion could be derived with an assumption on only one of the
pairs (𝑋𝑖 , 𝑋1 ∩ 𝑋2). While this result really does seem to be new, th following
immediate consequence of the lemma and theorem is folklore; a proof appears
in Gray [3]-[16.24].

Corollary 3. Let 𝑓 : (𝑋; 𝑋1, 𝑋2) → (𝑌 ;𝑌1, 𝑌2) be a map of excisive triads such
that 𝑓 : 𝑋1 ∩ 𝑋2 → 𝑌1 ∩𝑌2, 𝑓 : 𝑋1 → 𝑌1, and 𝑓 : 𝑋2 → 𝑌2 are weak equivalences.
Then 𝑓 : 𝑋 → 𝑌 is a weak equivalence.

In turn, this implies a local criterion for a map to be a weak equivalence.

Corollary 4. Let 𝑓 : 𝑋 → 𝑌 be a map and let O be an open cover of 𝑌 which
is closed under �nite intersections. If 𝑓 : 𝑓 −1𝑈 → 𝑈 is a weak equivalence for
all 𝑈 ∈ O, then 𝑓 : 𝑋 → 𝑌 is a weak equivalence.

Proof. Let c be the collection of subspaces 𝑉 of 𝑌 such that 𝑉 is a union of
spaces in O, 𝑓 : 𝑓 −1𝑉 → 𝑉 is a weak equivalence, and 𝑓 : 𝑓 −1 (𝑈 ∩𝑉) → 𝑈 ∩𝑉 is
a weak equivalence for all 𝑈 ∈ O. Order C by inclusion. The union of a chain in
C is in C by an obvious colimit argument, and C is nonempty since it contains
O. Thus C has a maximal element 𝑉 . Suppose 𝑉 ; 𝑌 . Then there is a 𝑈 ∈ O

which is not contained in 𝑉 . The previous corollary implies that 𝑈 ∪𝑉 is in C,
contradicting the maximality of 𝑉 . □
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2 Quasi�brations

If 𝑝 : 𝐸 → 𝐵 is a �bration, then 𝑝 : (𝐸, 𝑝−1𝐴) → (𝐵, 𝐴) is a weak equivalence
for all nonempty subspaces 𝐴 of 𝐵; in particular, 𝑝 : (𝐸, 𝑝−1𝑏) → (𝐵, 𝑏) is a
weak equivalence for all 𝑏 ∈ 𝐵 (e.g. [9] [p.187]). The notion of a quasi�bration
turns this desirable property into a de�nition.

De�nition 5. A surjective map 𝑝 : 𝐸 → 𝐵 is a quasi�bration if 𝑝 : (𝐸, 𝑝−1𝑏) →
(𝐵, 𝑏) is a weak equivalence for all 𝑏 ∈ 𝐵.

It is to be emphasized that this notion does not properly belong to �bration
theory since the pullback of a quasi�bration need not be a quasi�bration.

Assume given a �xed surjectiv map 𝑝 : 𝐸 → 𝐵. We shall derive various
criteria for 𝑝 to be a quasi�bration.

Clearly 𝑝 : 𝐸 → 𝐵 is a quasi�bration if and only if its restriction 𝑝−1𝐶 → 𝐶

is a quasi�bration for each path component 𝐶 of 𝐵. Thus we may as well restrict
attention to path connected bas spaces 𝐵. Of course, if 𝑝 is a quasi�bration,
then, for 𝑏 ∈ 𝐵 and 𝑥 ∈ 𝑝−1𝑏, the exact sequence of homotopy groups of the
pair (𝐸, 𝑝−1𝑏) yields an exact sequence

· · · → 𝜋𝑛+1 (𝐵, 𝑏) → 𝜋𝑛 (𝑝−1𝑏, 𝑥) → 𝜋𝑛 (𝐸, 𝑥) → 𝜋𝑛 (𝐵, 𝑏) → · · · → 𝜋0 (𝐵, 𝑏)

Let 𝑁𝑝 = {(𝑥, 𝜔) |𝜔 : 𝐼 → 𝐵, 𝜔(1) = 𝑝(𝑥)} ⊂ 𝐸 ×𝐵𝐼 and let 𝑞 : 𝑁𝑝 → 𝐵 be the
�bration speci�ed by 𝑞(𝑥, 𝜔) = 𝜔(0); thus 𝑞−1𝑏 is the usual homotopy theoretic
�bre of 𝑝 over 𝑏. If 𝜆 : 𝐸 → 𝑁𝑝 is the natural equivalence, 𝜆(𝑥) = (𝑥, 𝑐𝑝 (𝑥)),
then 𝑞 ◦𝜆 = 𝑝 and 𝜆 restricts to a map 𝑝−1𝑏 → 𝑞−1𝑏 for each 𝑏 ∈ 𝐵. Clearly 𝑝 is
a quasi�bration if and only if 𝜆 : (𝐸, 𝑝−−1 𝑏) → (𝑁𝑝 , 𝑞

−1𝑏) is a weak equivalence
for all 𝑏 ∈ 𝐵. By Lemma 1, this holds if and only 𝜆 : 𝑝−1𝑏 → 𝑞−1𝑏 is a weak
equivalence for all 𝑏 ∈ 𝐵. With 𝐵 connected, the �bres 𝑞−1𝑏 all have the same
homotopy type, hence the �bres 𝑝−1𝑏 all have the same weak homotopy type if
𝑝 is a quasi�bration.

Say that a subspace 𝐴 of 𝐵 is distinguished if the restriction 𝑝 : 𝑝−1𝐴 → 𝐴

is a quasi�bration. Since 𝑝 : (𝐸, 𝑝−1𝐴, 𝑝−1𝑎) → (𝐵, 𝐴, 𝑎) induces a map of long
exact sequences of homotopy groups of triples, the �ve lemma and some tedious
veri�cations on the 𝜋1 level give the following observation.

Lemma 6. Let 𝐴 be a distinguished subspace of 𝐵. Then the maps 𝑝 : (𝐸, 𝑝−1𝑎) →
(𝐵, 𝑎) are weak equivalence for all 𝑎 ∈ 𝐴 if and only if the map 𝑝 : (𝐸, 𝑝−1𝐴) →
(𝐵, 𝐴) is a weak equivalence.

The following analogue of Corollary 3, which is the heart of the Dold-Thomm
theory of quasi�bration, is now a direct consequence of Theorem 2. This obser-
vation is perhaps the main point of our work.

Corollary 7. Let (𝐵; 𝐵1, 𝐵2) be an excisive triad. If 𝐵1 ∩ 𝐵2, 𝐵1, and 𝐵2 are
distinguished, then 𝑝 : 𝐸 → 𝐵 is a quasi�bration.

Proof. With (𝐵, 𝐴) replaced by (𝐵𝑖 , 𝐵1 ∩ 𝐵2), Lemma 6 gives that

𝑝 : (𝑝−1𝐵𝑖 , 𝑝
−1𝐵1 ∩ 𝑝−1𝐵2) → (𝐵𝑖 , 𝐵1 ∩ 𝐵2)
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is a weak equivalence for 𝑖 = 1 and 𝑖 = 2. By Theorem 2,

𝑝 : (𝐸, 𝑝−1𝐵𝑖) → (𝐵, 𝐵𝑖)

is a weak equivalence for 𝑖 = 1 and 𝑖 = 2. By Lemma 6 applied with 𝐴 = 𝐵𝑖,
𝑝 : (𝐸, 𝑝−1𝑏) → (𝐵, 𝑏) is a weak equivalence for all 𝑏 ∈ 𝐵𝑖, 𝑖 = 1 and 𝑖 = 2, and
thus for all 𝑏 ∈ 𝐵. □

The proof of Corollary 4 applies to give the quasi�bration analogue of that
result.

Corollary 8. Let O be an open cover of 𝐵 which is closed under �nite inter-
sections. If each 𝑈 ∈ O is distinguished, then 𝑝 : 𝐸 → 𝐵 is a quasi�bration.

These results are usually used in conjunction with the following observation.
Recall that a homotopy ℎ𝑡 : 𝐵 → 𝐵 is a deformation of 𝐵 onto 𝐴 if ℎ0 = id,
ℎ𝑡 (𝑎) = 𝑎 for 𝑎 ∈ 𝐴, and ℎ1 (𝐵) ⊂ 𝐴.

Lemma 9. Let 𝐴 be a distinguished subspace of 𝐵. Suppose there exist defor-
mations ℎ of 𝐵 onto 𝐴 and 𝐻 of 𝐸 onto 𝑝−1𝐴 such that 𝑝 ◦ 𝐻1 = ℎ1 ◦ 𝑝 and
𝐻1 : 𝑝−1 → 𝑝−1ℎ1 (𝑏) is a weak equivalence for all 𝑏 ∈ 𝐵. Then 𝑝 : 𝐸 → 𝐵 is a
quasi�bration.

Proof. By Lemma 1, 𝐻1 : (𝐸, 𝑝−1𝑏) → (𝑝−1𝐴, 𝑝−1ℎ1 (𝑏)) is a weak equivalence
for all 𝑏 ∈ 𝐵. Passage to homotopy groups from the commutative diagramme

(𝐸, 𝑝−1𝑏) 𝐻1 //

𝑝

��

(𝑝−1𝐴, 𝑝−1ℎ1 (𝑏))

𝑝

��
(𝐵, 𝑏)

ℎ1

// (𝐴, ℎ1 (𝑏))

gives the conclusion. □

Say that B is �ltred if it is given as the union of an increasing sequence of
subspaces 𝐹𝑛𝐵 such that each inclusion 𝐹𝑛𝐵 → 𝐹𝑛+1𝐵 is a co�bration. By an
evident colimit argument, a map 𝑝 : 𝐸 → 𝐵 is a quasi�bration if each 𝐹𝑛𝐵

is distinguished. The following immediate inductive consequence of Corollary
7 and Lemma 9 is probably the most generally useful criterion for 𝑝 to be a
quasi�bration.

Theorem 10. Let 𝑝 : 𝐸 → 𝐵 be a map onto a �ltred space 𝐵 and suppose that
the following conditions hold.

(i) 𝐹0𝐵 and each open subset of each 𝐹𝑛𝐵 → 𝐹𝑛−1𝐵 are distinguished.

(ii) For each 𝑛 ≥ 1, there is an open neighbourhood 𝑈𝑛 of 𝐹𝑛−1𝐵 in 𝐹𝑛𝐵 and
there are deformations ℎ of 𝑈𝑛 onto 𝐹𝑛−1𝐵 and 𝐻 of −1𝑈𝑛 onto 𝑝−1𝐹𝑛−1𝐵
such that 𝑝 ◦ 𝐻1 = ℎ1 ◦ 𝑝 and 𝐻1 : 𝑝−1𝑏 → 𝑝−1ℎ1 (𝑏) is a weak equivalence
for each 𝑏 ∈ 𝑈𝑛.
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Then each 𝐹𝑛𝐵 is distinguished and 𝑝 : 𝐸 → 𝐵 is a quasi�bration.

There is an alternative criterion that often applies when 𝐸 and 𝐵 are built
up from successive compatible pushout diagrammes.

Theorem 11. Let 𝑝 : 𝐸 → 𝐵 be a map of �ltred spaces such that 𝐹𝑛𝐸 = 𝑝−1𝐹𝑛𝐵
for 𝑛 ≥ 0 and, for 𝑛 ≥ 1, 𝑝 : 𝐹𝑛𝐸 → 𝐹𝑛𝐵 is obtained by passage to pushouts
from a commutative diagramme of the form

𝐹𝑛−1𝐸

𝑝

��

𝐷𝑛

𝑔𝑛oo

𝑞𝑛

��

𝑗𝑛 // 𝐸𝑛

𝑝𝑛

��
𝐹𝑛−1𝐵 𝐴𝑛

𝑓𝑛

oo
𝑖𝑛

// 𝐵𝑛.

Suppose that the following conditions hold.

(i) 𝐹0𝐵 is distinguished.

(ii) Each map 𝑝𝑛 : 𝐸𝑛 → 𝐵𝑛 is a �bration.

(iii) Each map 𝑖𝑛 : 𝐴𝑛 → 𝐵𝑛 is a co�bration.

(iv) Each right square is a pullback.

(v) 𝑔𝑛 : (𝑞𝑛)−1 (𝑎) → 𝑝−1 𝑓𝑛 (𝑎) is a weak equivalence for all 𝑎 ∈ 𝐴𝑛.

Then each 𝐹𝑛𝐵 is distinguished and 𝑝 : 𝐸 → 𝐵 is a quasi�bration.

The inductive step here is a consequence of the second of the following two
lemmas, which are due to Hardie [4]. Both refer to a commutative diagramme

𝐸

𝑝

��

𝐷
𝑔oo

𝑞

��

𝑗 // 𝐸
′

𝑝
′

��
𝐵 𝐴

𝑓
oo

𝑖
// 𝐵

′
.

(12)

Lemma 13. If, in (12), 𝑝, 𝑞, and 𝑝
′
are quasi�brations and the maps 𝑔 :

𝑞−1 (𝑎) → 𝑝−1 (𝑎) and 𝑗 : 𝑞−1 (𝑎) → (𝑝′ )−1𝑖(𝑎) are weak equivalences for all
𝑎 ∈ 𝐴, then the induced map 𝑠 : 𝑀 ( 𝑗 , 𝑔) → 𝑀 (𝑖, 𝑓 ) of double mapping cylinders
is a quasi�bration.

Proof. 𝑀 (𝑖, 𝑓 ) = 𝐵 ∪ 𝑓 (𝐴 × 𝐼) ∪𝑖 𝐵
′
is the union of 𝐵 ∪ 𝑓 (𝐴 × [0, 2/3]) and

(𝐴× [1/3, 1]) ∪𝑖 𝐵
′
, and similarly for 𝑀 ( 𝑗 , 𝑔). The conclusion follows easily from

Lemma 9 and Corollary 7. □

Lemma 14. Suppose that (12) satis�es the following conditions.

(i) 𝑝 is a quasi�bration.
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(ii) 𝑝
′
is a �bration.

(iii) 𝑖 is a co�bration.

(iv) The right square is a pullback.

(v) 𝑔 : 𝑞−1 (𝑎) → 𝑝−1 𝑓 (𝑎) is a weak equivalence for all 𝑎 ∈ 𝐴.

Then the map 𝑟 : 𝐸 ∪𝑔 𝐸
′ → 𝐵 ∪ 𝑓 𝐵

′
induced by 𝑝 and 𝑝

′
is a quasi�bration.

Proof. We have the commutative diagramme

𝑀 ( 𝑗 , 𝑔)
𝛽 //

𝑠

��

𝐸 ∪𝑔 𝐸
′

𝑟

��
𝑀 (𝑖, 𝑓 )

𝛼
// 𝐵 ∪ 𝑓 𝐵

′

Since 𝑖 and 𝑗 are co�brations (the latter by [9]-[1.7.14]), the quotient maps 𝛼 and
𝛽 are homotopy equivalences by a standard result on pushouts of equivalences.
The map 𝑠 is a quasi�bration by the previous lemma. By Lemma 1 and a
chase of the diagramme it su�ces to show that 𝛽 : 𝑠−1 (𝑥) → 𝑟−1 (𝑥) is a weak
equivalence for each 𝑥 ∈ 𝑀 (𝑖, 𝑓 ). If 𝑥 ∈ 𝐵 or 𝑥 ∈ 𝐵′ \𝑖(𝐴), 𝛽 is a homeomorphism.
If 𝑥 = (𝑎, 𝑠), where 𝑎 ∈ 𝐴 and 0 < 𝑠 ≤ 1, then it is easy to see that 𝛽 can be
identi�ed with the weak equivalence 𝑔 : 𝑞−1 (𝑎) → 𝑝−1 𝑓 (𝑎). □
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3 The proof of Theorem 2

We begin with an analysis of the notion of an 𝑛-equivalence. In the absolute
case, we have the following result. We omit the proof since a generalised version
of the based analogue is given in [6]-[Lemma 1] and we shall shortly be proving
the more di�cult relative analogue.

Lemma 15. For each 𝑛 ≥ 1, the following statements about a map 𝑓 : 𝑋 → 𝑌

are equivalent.

(i) For each 𝑥 ∈ 𝑋, 𝑓∗ : 𝜋𝑞 (𝑋, 𝑥) → 𝜋𝑞 (𝑌, 𝑓 𝑥) is an injection for 𝑞 = 𝑛 − 1 and
a surjection for 𝑞 = 𝑛.

(ii) If ℎ : 𝑒 ≃ 𝑓 𝑔 on 𝜕𝐼𝑛 in the following diagramme, then there exist 𝑔̃ and ℎ̃
which make the diagramme commute.

𝜕𝐼𝑛
𝑖0 //

��

𝜕𝐼𝑛 × 𝐼

��

ℎ

{{

𝜕𝐼𝑛
𝑖1oo

��

𝑔
}}

𝑌 𝑋
𝑓oo

𝐼𝑛
𝑖0

//

𝑒

>>

𝐼𝑛 × 𝐼
ℎ̃

cc

𝐼𝑛
𝑖1

oo
𝑔

aa

(iii) The conclusion of (ii) holds when 𝑒 = 𝑓 𝑔 on 𝜕𝐼𝑛 and ℎ is the constant
homotopy.

In order to prove the relative analogue, we will need the following relative
homotopy extension property.

Lemma 16 (relative HEP). Let (𝐿; 𝐽, 𝐾) be a triad such that the inclusions
𝐽∩𝐾 → 𝐾 and 𝐽∪𝐾 → 𝐿 are co�brations. Then any homotopy ℎ : (𝐽, 𝐽∩𝐾)×𝐼 →
(𝑋, 𝐴) of the restriction of a map 𝑓 : (𝐿, 𝐾) → (𝑋, 𝐴) extends to a homotopy
𝐻 : (𝐿, 𝐾) × 𝐼 → (𝑋, 𝐴) of 𝑓 .

Proof. This holds by two applications of the usual HEP:

𝐽 ∩ 𝐾 𝑖0 //

��

(𝐽 ∩ 𝐾)) × 𝐼

��

ℎ

yy
𝐴

𝐾
𝑖0

//

𝑓

<<

𝐾 × 𝐼
ℎ

ee

and 𝐽 ∪ 𝐾 𝑖0 //

��

(𝐽 ∪ 𝐾)) × 𝐼

��

ℎ∪ℎ

yy
𝑋

𝐿
𝑖0

//

𝑓

<<

𝐿 × 𝐼
𝐻

ee

□
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Before proceeding, we must �x some notations. Let

𝐽0 = {0} and 𝐽𝑛 = (𝜕𝐼𝑛 × 𝐼) ∪ (𝐼𝑛 × {0}) ⊂ 𝐼𝑛+1 for 𝑛 ≥ 1.

For a pair (𝑋, 𝐴) with base point 𝑎 ∈ 𝐴, we take

𝜋𝑛 (𝑋, 𝐴, 𝑎) = [(𝐼𝑛, 𝜕𝐼𝑛, 𝐽𝑛−1), (𝑋, 𝐴, 𝑎)] for 𝑛 ≥ 1.

Let 𝐼
𝑛
= 𝐼𝑛 × {1} and 𝜕𝐼𝑛 = 𝜕𝐼𝑛 × 𝐼 = 𝐽𝑛 ∩ 𝐼𝑛. De�ne the negative of a homotopy

ℎ to be ℎ traversed from 1 to 0 and de�ne the sum ℎ1 + · · · + ℎ 𝑗 of homotopies
ℎ𝑖 : 𝑓𝑖−1 ≃ 𝑓𝑖 to be the homotopy obtained by traversing ℎ𝑖 on the interval
[(𝑖 − 1)/ 𝑗 , 𝑖/ 𝑗].

The following lemma and its proof are due to Sugawara [8].

Lemma 17. For each 𝑛 ≥ 0, the following statements about a map 𝑓 : (𝑋, 𝐴) →
(𝑌, 𝐵) are equivalent.

(i) For each 𝑎 ∈ 𝐴, 𝑓∗ : 𝜋𝑞 (𝑋, 𝐴, 𝑎) → 𝜋𝑞 (𝑌, 𝐵, 𝑓 𝑎) is an injection for 𝑞 = 𝑛

and a surjection for 𝑞 = 𝑛+1. (When 𝑛 = 0, replace the injectivity statement
by ( 𝑓∗)−1 im(𝜋0𝐵 → 𝜋0𝑌 ) = im(𝜋0𝐴→ 𝜋0𝑋).)

(ii) If ℎ : 𝑒 = 𝑓 𝑔 on 𝐽𝑛 in the following diagramme, then there exist 𝑔̃ and ℎ̃
which make the diagramme commute.

(𝐽𝑛, 𝜕𝐼𝑛) 𝑖0 //

��

(𝐽𝑛𝜕𝐼𝑛) × 𝐼

��

ℎ

xx

(𝐽𝑛, 𝜕𝐼𝑛)𝑖1oo

��

𝑔
yy

(𝑌, , 𝐵) (𝑋, 𝐴)
𝑓oo

(𝐼𝑛+1, 𝐼𝑛)
𝑖0

//

𝑒

99

(𝐼𝑛+1, 𝐼𝑛) × 𝐼
ℎ̃

ff

(𝐼𝑛+1, 𝐼𝑛)
𝑖1

oo
𝑔

ee

(iii) The conclusion of (ii) holds when 𝑒 ≃ 𝑓 𝑔 on 𝐽𝑛 and ℎ is the constant
homotopy.

Proof. We shall leave to the reader the minor modi�cations of proofs needed
when 𝑛 = 0. Of course, (ii) implies (iii) trivially, and (iii) implies (i) by appro-
priate specialisations. A direct proof that (i) implies (ii) is possible, but it is
simpler to prove that (iii) implies (ii) and (i) implies (iii).

(iii) implies (ii). Assume given ℎ : 𝑒 ≃ 𝑓 𝑔 on 𝐽𝑛 in the diagramme of (ii).

By application of relative HEP to the triad (𝐼𝑛+1; 𝐽𝑛, 𝐼𝑛), there is a homotopy
𝑗 : (𝐼𝑛+1, 𝐼𝑛) × 𝐼 → (𝑌, 𝐵) of 𝑒 which extends ℎ. Since 𝑗1 = 𝑓 𝑔 on 𝐽𝑛, (iii)

gives a map 𝑔̃ : (𝐼𝑛+1, 𝐼𝑛) → (𝑋, 𝐴) such that 𝑔̃ = 𝑔 on 𝐽𝑛 and a homotopy
𝑘 : 𝑗1 ≃ 𝑓 𝑔̃ such that 𝑘 extends the constant homotopy ℎ

′
at 𝑓 𝑔 on 𝐽𝑛. Choose

a homotopy 𝐿 : (𝐽𝑛 × 𝐼, 𝜕𝐼𝑛 × 𝐼) × 𝐼 → (𝑌, 𝐵) from ℎ + ℎ′
to ℎ which is constant

at 𝑓 𝑔 on both 𝐽𝑛 × {0} and 𝐽𝑛 × {1}. By application of relative HEP to the triad
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(𝐼𝑛+2; 𝐽𝑛 × 𝐼 ∪ 𝐼𝑛+1 × 𝜕𝐼, 𝐼𝑛 × 𝐼), there is a homotopy 𝐿̃ : (𝐼𝑛+2, 𝐼𝑛 × 𝐼) × 𝐼 → (𝑌, 𝐵)
of 𝑗 + 𝑘 which 7 the union of 𝐿 and the constant homotopies at 𝑒 and 𝑓 on
𝐼𝑛 × {0} and 𝐼𝑛 × {1}. Let ℎ̃ = 𝐿̃1 : 𝑒 ≃ 𝑓 𝑔̃. Then ℎ̃ extends ℎ, as required.

(i) implies (iii). Assume that 𝑒 ≃ 𝑓 𝑔 on 𝐽𝑛 and that ℎ is the constant
homotopy in the diagramme of (ii). Let ∗ = (0, . . . , 0, 1) ∈ 𝐼𝑛+1 and let 𝑎 = 𝑔(∗)
and 𝑏 = 𝑓 (𝑎). Since (𝐽𝑛, 𝜕𝐼𝑛, ∗) is equivalent to (𝐼𝑛, 𝜕𝐼𝑛, 𝐽𝑛−1), 𝑔 : (𝐽𝑛, 𝜕𝐼𝑛, ∗) →
(𝑋, 𝐴, 𝑎) may be regarded as representing an element of 𝜋𝑛 (𝑋, 𝐴, 𝑎). Since 𝑒 is
de�ned on 𝐼𝑛+1 with 𝑒(𝐼𝑛) ⊂ 𝐵, 𝑓 𝑔 represents the trivial element of 𝜋𝑛 (𝑌, 𝐵, 𝑏).
Since 𝑓 is injective on 𝜋𝑛, there is a homotopy 𝑗 : (𝐽𝑛, 𝜕𝐼𝑛, ∗)×𝐼 → (𝑋, 𝐴, 𝑎) from
𝑔 to the trivial map 𝑎 at 𝑎. Relative HEP gives a homotopy 𝐾 : (𝐼𝑛+1, 𝐼𝑛) × 𝐼 →
(𝑌, 𝐵) of 𝑒 which extends 𝑓 𝑗 . Since 𝑓 𝑗1 = 𝑏, 𝐾1 : (𝐼𝑛+1, 𝜕𝐼𝑛+1, 𝐽𝑛) → (𝑌, 𝐵, 𝑏)
represents an element of 𝜋𝑛+1 (𝑌, 𝐵, 𝑏). Since 𝑓 is surjective on 𝜋𝑛+1, there is a
map 𝐽1 : (𝐼𝑛+1, 𝜕𝐼𝑛+1, 𝐽𝑛) → (𝑋, 𝐴, 𝑎) and a homotopy 𝐿 : 𝐾1 ≃ 𝑓 𝐽1 of maps of
triples. Another application of relative HEP (with unit interval reversed) gives

a homotopy 𝐽 : (𝐼𝑛+1, 𝐼𝑛) × 𝐼 → (𝑋, 𝐴) which ends at 𝐽1 and extends 𝑗 . Let
𝑔̃ = 𝐽0.

Certainly 𝑔̃ extends 𝑗0 = 𝑔, and we have the homotopy 𝐾 + 𝐿 − 𝑓 𝐽 : 𝑓 𝑔 ≃ 𝑓 𝑔

on 𝐽𝑛× 𝐼. Choose any homotopy 𝑀 : (𝐽𝑛× 𝐼, 𝜕𝐼𝑛× 𝐼)× 𝐼 → (𝑌, 𝐵) from 𝑓 𝑗 +𝑏− 𝑓 𝑗
to the constant homotopy at 𝑓 𝑔 such that 𝑀 is constant at 𝑓 𝑔 on both 𝐽𝑛 × {0}
and 𝐽𝑛 × {1}. Relative HEP gives a homotopy 𝑀 : (𝐼𝑛+2, 𝐼𝑛 × 𝐼) × 𝐼 → (𝑌, 𝐵) of
𝐾 + 𝐿 − 𝑓 𝐽 which extends the union of 𝑀 and the constant homotopies at 𝑒 and
𝑓 𝑔̃ on 𝐼𝑛+1 × {0} and 𝐼𝑛+1 × {1}. Let = ℎ̃ = 𝑀1 : 𝑒 ≃ 𝑓 𝑔̃; ℎ̃ is constant at 𝑓 𝑔 on
𝐽𝑛, as required. □

Proof. (of Theorem 2) Replacing 𝑋 by the mapping cylinder of 𝑓 with its evident
induced decomposition as an excisive triad, we may assume without loss of
generality that 𝑓 is an inclusion. Suppose given maps 𝑔 : (𝐽𝑞 , 𝜕𝐼𝑞) → (𝑋, 𝑋𝑖)
and 𝑒 : (𝐼𝑞+1, 𝐼𝑞) → (𝑌,𝑌𝑖) such that 𝑓 𝑔 = 𝑒 on 𝐽𝑞, where 0 ≤ 𝑞 ≤ 𝑛 and
𝑖 = 1 or 𝑖 = 2. By the previous lemma, it su�ces to construct an extension
𝑔 : (𝐼𝑞+1, 𝐼𝑞) → (𝑋, 𝑋𝑖) of 𝑔 and a homotopy ℎ̃ : 𝑒 ≃ 𝑓 𝑔̃ of maps (𝐼𝑞+1, 𝐼𝑞) →
(𝑌,𝑌𝑖) such that ℎ̃ restricts on 𝐽𝑞 to the constant homotopy ℎ at 𝑓 𝑔. Cubically
subdivide 𝐼𝑞+1 so �nely that the image under 𝑒 of each closed subcube lies
entirely in the interior of 𝑌 𝑗 , 𝑗 = 1 or 𝑗 = 2. Since 𝑓 is an inclusion, the image
under 𝑔 of the intersection of each subcube with 𝐽𝑞 lies entirely in the interior
of 𝑋 𝑗 for the same 𝑗 . Regard 𝐼𝑞+1 as 𝐼𝑞 × 𝐼. The subdivision of 𝐼𝑞+1 gives a
cubical subdivision of 𝐼𝑞 and a partition of 𝐼 into subintervals 𝐼𝑟 = [𝑣𝑟−1, 𝑣𝑟 ],
where 0 = 𝑣0 < 𝑣1 < · · · < 𝑣𝑠 = 1. We shall construct 𝑔̃ and ℎ̃𝑡 on the spaces
𝐾 × 𝐼𝑟 , where 𝐾 runs through the cubical cells of 𝐼𝑞 and 1 ≤ 𝑟 ≤ 𝑠, proceeding
by induction on 𝑟 and, for �xed 𝑟, by induction on the dimension of 𝐾. We shall
so arrange things that

(a) 𝑔̃(𝐾 × 𝐼𝑟 ) ⊂ 𝑋 𝑗 and ℎ̃𝑡 (𝐾 × 𝐼𝑟 ) ⊂ 𝑌 𝑗 if 𝑒(𝐾 × 𝐼𝑟 ) ⊂ int(𝑌 𝑗 );

(b) 𝑔̃(𝐾 × {𝑣𝑟 }) ⊂ 𝑋1 ∩ 𝑋2 and ℎ̃𝑡 (𝐾 × {𝑣𝑟 }) ⊂ 𝑌1 ∩ 𝑌2 if 𝑒(𝐾 × {𝑣𝑟 }) ⊂ 𝑌1 ∩ 𝑌2.

Since 𝑒(𝐼𝑞) ⊂ 𝑋𝑖, (a) and the case 𝑟 = 𝑠 of (b) ensure that 𝑔̃(𝐼𝑞) ⊂ 𝑋𝑖 and
ℎ̃𝑡 (𝐼𝑞 ⊂ 𝑌𝑖. At each stage, the given maps 𝑔 and ℎ𝑡 = 𝑓 𝑔 on 𝐽𝑞 and the
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induction hypothesis specify maps 𝑔̃ and ℎ̃𝑡 on 𝜕𝐾 × 𝐼𝑟 ∪ 𝐾 × {𝑣𝑟−1}, where 𝜕𝐾
is empty if 𝐾 is a vertex. If either 𝑒(𝐾 × {𝑣𝑟 }) is not contained in 𝑌1 ∩ 𝑌2 or
𝑒(𝐾 × 𝐼𝑟 ) is contained in the intersection of the interiors of 𝑌1 and 𝑌2, we simply
choose a representation (𝑑, 𝑢) of (𝐾 × 𝐼𝑟 , 𝜕𝐾 × 𝐼𝑟 ∪𝐾 × {𝑣𝑟−1}) as a DR-pair and
specify 𝑔̃ and ℎ̃𝑡 on 𝐾 × 𝐼𝑟 by

𝑔̃ = 𝑔̃𝑑1 (𝑥) and ℎ̃𝑡 (𝑥) =
{
𝑒𝑑2𝑡 (𝑥) if 0 ≤ 𝑡 ≤ 1/2
ℎ̃2𝑡𝑑1 (𝑥) if 1/2 ≤ 𝑡 ≤ 1.

If 𝑒(𝐾 × {𝑣𝑟 }) is contained in 𝑌1 ∩ 𝑌2 and 𝑒(𝐾 × 𝐼𝑟 ) is contained in the interior
of just one of the 𝑌 𝑗 , the induction hypothesis gives

𝑔̃ : (𝜕𝐾 × 𝐼𝑟 ∪ 𝐼𝑟 × {𝑉𝑟−1}, 𝜕𝐾 × {𝑣𝑟 }) → (𝑋 𝑗 , 𝑋1 ∩ 𝑋2)

and a homotopy ℎ̃ : 𝑒 ≃ 𝑓 𝑔̃ of maps

(𝜕𝐾 × 𝐼𝑟 ∪ 𝐾 × {𝑣𝑟−1}, 𝜕𝐾 × {𝑣𝑟 }) → (𝑌 𝑗 , 𝑌1 ∩ 𝑌2)

Application of (ii) of Lemma 17 to the 𝑛-equivalence

𝑓 : (𝑋 𝑗 , 𝑋1 ∩ 𝑋2) → (𝑌 𝑗 , 𝑌1 ∩ 𝑌2)

gives the required extensions of 𝑔̃ and ℎ̃𝑡 to 𝐾 × 𝐼𝑟 . □
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