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Motivation

Quasifibrations are essentialiy fibrations up to weak homotopy. They play a
fundamental role in homotopy theory since a variety of important constructions
give rise to quasifibrations which fail to be fibrations. Quasifibrations were in-
troduced in a basic 1958 paper by Dold and Thom [2], and some refinements
of their work were added by Hardie in 1970 [4]. The importance of quasifibra-
tions to the study of classifying spaces and fibrations was first established in a
1959 paper of Dold and Lashof [1], and a systematic account was given in [5].
Quasifibrations played an essential role in Quillen’s 1973 paper [7] in which he
introduced the higher algebraic K-groups of rings. They have been applied in
quite a large number of more recent papers.

Despite their importance, quasifibrations have not been treated in any text-
book, and I know of no better published reference than the original paper (in
German) of Dold and Thom. Around 1972, I proved a new theorem about weak
homotopy equivalences of pairs of spaces and observed that the basic facts about
quasifibrations are very easy consequences of that result. I’'ve never published
this material, which was intended as part of a still projected volume on the ho-
motopical foundations of algebraic topology. In view of its close connection to
the theme of the Montreal conference, I thought that I would seize the occasion
to give an exposition.

We give some preliminaries and state our theorem about weak equivalences
in §1. We explain the application to the theory of quasifibrations in §2. We
prove the theorem about weak equivalences in §3.



1 Weak equivalences of pairs

A map f: X — Y of spaces is said to be an n-equivalence if, for all x € X,
fo 1 mg(X,x) = my(Y, f(x)) is a bijection for 0 < ¢ < n and a surjection for
g =n A map f : (X,A) — (Y,B) of pairs of spaces is said to be an n-
equivalence if (£.)~'im(rgB — mY) = im(ngA — mpX) and, for all a € A,
feimg(X,A,a) = ng(Y, B, f(a)) is a bijection for 1 < ¢ < n and a surjection for
q = n. The condition on components means that if f(x) can be connected to a
point of B, then x can be connected to a point of A; it is automatically satisfied
when X and Y are path connected. In both the absolute and the relative cases,
f is said to be a weak equivalence if it is an n-equivalence for all n.

By the evident long exact sequences and the five lemma, plus some tedious
extra details to handle fundamental groups, we have the following relationship
between weak equivalences of pairs and of their constituent spaces.

Lemma 1. Let f : (X,A) — (Y, B) be a map of pairs such that both f. : mpA —
noB and fi. : 1oX — noY are bijections. If any two of the three maps f : A — B,
f:X->Y, and f:(X,A) — (Y, B) are weak equivalences, then so is the third.

Our new theorem on weak equivalences of pairs is a kind of analogue in the
context of excisive triads. Recall that a triad (X; A, B) is said to be ezxcisive if
X is the union of the interiors of A and B.

Theorem 2. Let f : (X;X1,X2) — (Y;Y1,Ys) be a map of excisive triads such
that f : (X;, X1 N X)) — (Y;,Y1NYs) is an n-equivalence fori =1 andi =2. Then
(X, X;) = (Y.Y:) is an n-equivalence fori =1 and i = 2.

No useful conclusion could be derived with an assumption on only one of the
pairs (X;, X; N X3). While this result really does seem to be new, th following
immediate consequence of the lemma and theorem is folklore; a proof appears
in Gray [3]-[16.24].

Corollary 3. Let f: (X; X1, X2) — (Y;Y1,Ys) be a map of excisive triads such
that f : X1NXe > Y1NYs, f: X1 > Y1, and f: Xo — Yo are weak equivalences.
Then f: X — Y is a weak equivalence.

In turn, this implies a local criterion for a map to be a weak equivalence.

Corollary 4. Let f : X —> Y be a map and let O be an open cover of Y which
is closed under finite intersections. If f : f1U — U is a weak equivalence for
allU € 0, then f : X = Y is a weak equivalence.

Proof. Let ¢ be the collection of subspaces V of Y such that V is a union of
spaces in @, f : f~1V — V is a weak equivalence, and f : f~1(UNV) - UNV is
a weak equivalence for all U € 0. Order € by inclusion. The union of a chain in
€ is in € by an obvious colimit argument, and € is nonempty since it contains
0. Thus € has a maximal element V. Suppose V # Y. Then there is a U € 0
which is not contained in V. The previous corollary implies that U UV is in €,
contradicting the maximality of V. ]



2 Quasifibrations

If p: E — B is a fibration, then p : (E,p~'A) — (B, A) is a weak equivalence
for all nonempty subspaces A of B; in particular, p : (E,p~'b) — (B,b) is a
weak equivalence for all b € B (e.g. [9] [p-187]). The notion of a quasifibration
turns this desirable property into a definition.

Definition 5. A surjective map p : E — B is a quasifibration if p : (E,p~'b) —
(B, b) is a weak equivalence for all b € B.

It is to be emphasized that this notion does not properly belong to fibration
theory since the pullback of a quasifibration need not be a quasifibration.

Assume given a fixed surjectiv map p : E — B. We shall derive various
criteria for p to be a quasifibration.

Clearly p : E — B is a quasifibration if and only if its restriction p~'C — C
is a quasifibration for each path component C of B. Thus we may as well restrict
attention to path connected bas spaces B. Of course, if p is a quasifibration,
then, for b € B and x € p~!b, the exact sequence of homotopy groups of the
pair (E, p~'b) yields an exact sequence

C 7Tn+1(B’ b) - ﬂn(p_lbsx) - ﬂn(Esx) - ﬂn(B’b) — ﬂO(B9b)

Let N, = {(x,w)|w : I — B,w(1) = p(x)} C ExB! and let g : N, — B be the
fibration specified by ¢(x,w) = w(0); thus ¢~'b is the usual homotopy theoretic
fibre of p over b. If 1 : E — N, is the natural equivalence, A(x) = (x, cp(x)),
then god = p and A restricts to a map p~'h — ¢~ 'b for each b € B. Clearly p is
a quasifibration if and only if A : (E, p—"1b) — (N,,q~'b) is a weak equivalence
for all b € B. By Lemma 1, this holds if and only A : p~'b — ¢~ 'b is a weak
equivalence for all b € B. With B connected, the fibres g~'b all have the same
homotopy type, hence the fibres p~'b all have the same weak homotopy type if
p is a quasifibration.

Say that a subspace A of B is distinguished if the restriction p : p™1A — A
is a quasifibration. Since p : (E,p~'A, p~ta) — (B, A, a) induces a map of long
exact sequences of homotopy groups of triples, the five lemma and some tedious
verifications on the 7 level give the following observation.

Lemma 6. Let A be a distinguished subspace of B. Then the maps p : (E,p~ta) —
(B, a) are weak equivalence for all a € A if and only if the map p : (E,p~'A) —
(B, A) is a weak equivalence.

The following analogue of Corollary 3, which is the heart of the Dold-Thomm
theory of quasifibration, is now a direct consequence of Theorem 2. This obser-
vation is perhaps the main point of our work.

Corollary 7. Let (B; By, B2) be an excisive triad. If By N By, By, and By are
distinguished, then p : E — B is a quasifibration.

Proof. With (B, A) replaced by (B;, By N B3), Lemma 6 gives that

p: (p_lBi,p_lBl ﬂp_lBQ) — (Bi, B1 N By)



is a weak equivalence for i = 1 and i = 2. By Theorem 2,
p:(E.p~'Bi) — (B.By)

is a weak equivalence for i = 1 and i = 2. By Lemma 6 applied with A = B;,
p:(E,p~'b) — (B, b) is a weak equivalence for all b € B;, i =1 and i = 2, and
thus for all b € B. O

The proof of Corollary 4 applies to give the quasifibration analogue of that
result.

Corollary 8. Let O be an open cover of B which is closed under finite inter-
sections. If each U € O is distinguished, then p : E — B is a quasifibration.

These results are usually used in conjunction with the following observation.
Recall that a homotopy h; : B — B is a deformation of B onto A if hy = id,
hi(a) =a for a € A, and hy(B) C A.

Lemma 9. Let A be a distinguished subspace of B. Suppose there ewist defor-
mations h of B onto A and H of E onto p~'A such that p o Hy = hi o p and
Hi:p~' = p~thi(b) is a weak equivalence for allb € B. Then p : E — B is a

quasifibration.

Proof. By Lemma 1, H, : (E,p~'b) — (p~'A, p~'hy(b)) is a weak equivalence
for all b € B. Passage to homotopy groups from the commutative diagramme

(E.p~'b) —2> (p~' A, p~ hy (b))

(B, b) ——— (4, h1(b)

gives the conclusion. O

Say that B is filtred if it is given as the union of an increasing sequence of
subspaces F,B such that each inclusion F,B — F,1B is a cofibration. By an
evident colimit argument, a map p : E — B is a quasifibration if each F,B
is distinguished. The following immediate inductive consequence of Corollary
7 and Lemma 9 is probably the most generally useful criterion for p to be a
quasifibration.

Theorem 10. Let p : E — B be a map onto a filtred space B and suppose that
the following conditions hold.

(i) FoB and each open subset of each F,B — F,_1B are distinguished.

(ii) For each n > 1, there is an open neighbourhood U, of F,_1B in F,B and
there are deformations h of U,, onto F,_1B and H of ~'U, onto p~'F,_1B
such that poHy =hi0op and Hy : p~'b — p~'hi(b) is a weak equivalence
for each b € U,.



Then each F,B is distinguished and p : E — B is a quasifibration.

There is an alternative criterion that often applies when E and B are built
up from successive compatible pushout diagrammes.

Theorem 11. Let p : E — B be a map of filtred spaces such that F,E = p~'F,B
forn >0 and, forn > 1, p: F,E — F,B is obtained by passage to pushouts

from a commutative diagramme of the form

F,E<*-D,—"~E,

Fp-1B<—— A, —> B,

Suppose that the following conditions hold.
(i) FyB is distinguished.
(ii) Each map p, : E, — B, is a fibration.
(iii) Each map i, : A,, — By, is a cofibration.
(iv) Each right square is a pullback.
(v) gn: (qgn)"1(a) = p~Lfu(a) is a weak equivalence for all a € A,.
Then each F,B is distinguished and p : E — B is a quasifibration.

The inductive step here is a consequence of the second of the following two
lemmas, which are due to Hardie [4]. Both refer to a commutative diagramme

E
pj
B

Lemma 13. If, in (12), p, q, and p  are quasifibrations and the maps g :
g ' a) = pa) and j : g (a) — (p)7'i(a) are weak equivalences for all
a € A, then the induced map s : M(j,g) — M(i, ) of double mapping cylinders
is a quasifibration.

< p1F (12)

’

p

»<—0
.°°\<—[".l

B
q
<~ A ——

f i

Proof. M(i,f) = BUy (AX1I)V; B’ is the union of B Ur (A x[0,2/3]) and
(Ax[1/3,1])U; B', and similarly for M(j, g). The conclusion follows easily from
Lemma 9 and Corollary 7. O

Lemma 14. Suppose that (12) satisfies the following conditions.

(i) p is a quasifibration.



(ii) p’ is a fibration.
(iii) i is a cofibration.
(iv) The right square is a pullback.
(v) g:q (a) = p~Lf(a) is a weak equivalence for all a € A.
Then the map r : E Ug E' — B Uy B induced by p and p’ is a quasifibration.

Proof. We have the commutative diagramme

M(j.g) —L~EU E

M(i,f)T-BUfB

Since i and j are cofibrations (the latter by [9]-[1.7.14]), the quotient maps @ and
B are homotopy equivalences by a standard result on pushouts of equivalences.
The map s is a quasifibration by the previous lemma. By Lemma 1 and a
chase of the diagramme it suffices to show that g : s7!(x) — r~1(x) is a weak
equivalence for each x € M(i, f). If x € Bor x € B'\i(A), B8 is a homeomorphism.
If x = (a,s), where a € A and 0 < s < 1, then it is easy to see that 8 can be

identified with the weak equivalence g : ¢ (a) — p~1f(a). O



3 The proof of Theorem 2

We begin with an analysis of the notion of an n-equivalence. In the absolute
case, we have the following result. We omit the proof since a generalised version
of the based analogue is given in [6]-[Lemma 1] and we shall shortly be proving
the more difficult relative analogue.

Lemma 15. For each n > 1, the following statements about a map f : X —» Y
are equivalent.

(i) For eachx € X, f, : mg(X,x) = ng(Y, fx) is an injection for g =n—1 and
a surjection for q = n.

(ii) If h: e ~ fg on OI" in the following diagramme, then there exist g and h
which make the diagramme commute.

61”—“)6[” ><I<il—(9]"

i
NP

I"x1 - "

i1

(iii) The conclusion of (ii) holds when e = fg on OI" and h is the constant
homotopy.

In order to prove the relative analogue, we will need the following relative
homotopy extension property.

Lemma 16 (relative HEP). Let (L;J,K) be a triad such that the inclusions
JNK — K and JUK — L are cofibrations. Then any homotopy h : (J,JNK)XI —
(X, A) of the restriction of a map f : (L,K) — (X, A) extends to a homotopy
H:(L,K)yxI— (X,A) of f.

Proof. This holds by two applications of the usual HEP:

JNK——" ~(nK)xI and JUK——" < (JUK)XI

/ hUR
A X
f f
n H
K - KxI L -
i io

LxI




Before proceeding, we must fix some notations. Let
JO={0} and J"=@I"xD)UI"x{0}) cI™ for n>1.
For a pair (X, A) with base point a € A, we take
T.(X, A a) = [(I",dI",J" ), (X,A,a)] for n>1.

Let I" = I"x {1} and 81" =0I"x1=J"NT . Define the negative of a homotopy
h to be h traversed from 1 to 0 and define the sum A; +--- + h; of homotopies
hi : fi-1 = f; to be the homotopy obtained by traversing /; on the interval
(= 1/.i/]-

The following lemma and its proof are due to Sugawara [8].

Lemma 17. For each n > 0, the following statements about a map f : (X,A) —
(Y, B) are equivalent.

(i) For each a € A, f. : ny(X,A,a) — ny(Y,B, fa) is an injection for g = n
and a surjection for g = n+1. (Whenn =0, replace the injectivity statement
by (fo)"'im(moB — mpY) = im(mpA — 719X).)

(ii) If h : e = fg on J" in the following diagramme, then there exist g and h
which make the diagramme commute.

o1 f0 JoT"y x I n o1
/ /
8
(v,,B) ~— (X, A)
(In+1’ 7”) i (In+1’ 7") N i (In+1’ 771)

(i1i) The conclusion of (ii) holds when e ~ fg on J" and h is the constant
homotopy.

Proof. We shall leave to the reader the minor modifications of proofs needed
when n = 0. Of course, (ii) implies (iii) trivially, and (iii) implies (i) by appro-
priate specialisations. A direct proof that (i) implies (ii) is possible, but it is
simpler to prove that (iii) implies (ii) and (i) implies (iii).

(iii) implies (ii). Assume given h : e ~ fg on J" in the diagramme of (ii).
By application of relative HEP to the triad (I"+1;J",7n), there is a homotopy
j: Ty x 1 — (Y,B) of e which extends h. Since j; = fg on J", (iii)
gives a map g : (I””j") — (X, A) such that g = ¢ on J" and a homotopy
k : j1 ~ fg such that k extends the constant homotopy 4" at fg on J". Choose
a homotopy L : (J" X I, al" x I)x 1 — (Y,B) from h+h to h which is constant
at fg on both J”"x {0} and J" x{1}. By application of relative HEP to the triad
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(I"*2; Jnx [U I x 81, I" X I), there is a homotopy L : (I"*2, 7" x I)xI — (Y,B)
of j +k which 7 the union of L and the constant homotopies at e and f on
I"x {0} and I" x {1}. Let h=1L, : e = fg- Then h extends h, as required.

(i) implies (iii). Assume that e =~ fg on J" and that h is the constant
homotopy in the diagramme of (ii). Let * = (0,...,0,1) € I"*! and let a = g(*)
and b = f(a). Since (J”,(ﬁn, x) is equivalent to (I"*, 01", J" 1), g : (J”,(?Tn, *) —
(X, A,a) may be regarded as representing an element of x,,(X, A,a). Since e is
defined on I"*! with e(fn) C B, fg represents the trivial element of 7, (Y, B, b).
Since f is injective on m,,, there is a homotopy j : (J", oI, x)XI — (X, A, a) from
g to the trivial map a at a. Relative HEP gives a homotopy K : (I”“jn) X1 —
(Y, B) of e which extends fj. Since fji = b, Ky : (I"*},1""1,J") — (Y, B, D)
represents an element of m,.1(Y, B, b). Since f is surjective on 7,41, there is a
map Jy : (I, 00, J") — (X, A, a) and a homotopy L : K1 =~ fJ; of maps of
triples. Another application of relative HEP (with unit interval reversed) gives
a homotopy J : (1"“,7”) X I — (X,A) which ends at J; and extends j. Let
g=1Jo

Certainly g extends joy = g, and we have the homotopy K+ L - fJ: fg =~ fg
on J"xI. Choose any homotopy M : (J" X1, a1 xI)xI — (Y, B) from fi+b—fj
to the constant homotopy at fg such that M is constant at fg on both J" x {0}
and J" x {1}. Relative HEP gives a homotopy M : (I"*zjn xI)xI— (Y,B) of
K+ L - fJ which extends the union of M and the constant homotopies at e and
£ on I" x {0} and I"*! x {1}. Let = h= M; : e ~ fg; h is constant at fg on
J", as required. O

Proof. (of Theorem 2) Replacing X by the mapping cylinder of f with its evident
induced decomposition as an excisive triad, we may assume without loss of
generality that f is an inclusion. Suppose given maps g : (J¢ ,67q) — (X, X;)
and e : (171" = (¥,Y;) such that fg = e on J9, where 0 < ¢ < n and

= 1 or i = 2. By the previous lemma, it suffices to construct an extenswn

ST S (X, X;) of g and a homotopy h:e= fg of maps (191, 77) —
(Y Y;) such that h restricts on J9 to the constant homotopy & at fg. Cubically
subdivide I9*! so finely that the image under e of each closed subcube lies
entirely in the interior of ¥;, j =1 or j = 2. Since f is an inclusion, the image
under g of the intersection of each subcube with J7 lies entirely in the interior
of X; for the same j. Regard I9*! as I9 x I. The subdivision of I9*! gives a
cubical subdivision of /¢ and a partition of / into subintervals I, = [v,-1,v,],
where 0 = vg < vy < --- < vy = 1. We shall construct g and %, on the spaces
K X I, where K runs through the cubical cells of /7 and 1 < r < s, proceeding
by induction on r and, for fixed r, by induction on the dimension of K. We shall
so arrange things that

(a) 3K x1I,) c X; and b, (K x I,) C ¥} if e(K x I,) C int(Y,);
(b) 3K x{v,}) € X1 N Xz and h (K X {v,}) C Y1 NYs if e(K X {v,}) C Y1 NYy.

Since eI c X, (a) and the case r = s of (b) ensure that g(/9) c X; and
hs(I17 c Y;. At each stage, the given maps g and h, = fg on J? and the



11

induction hypothesis specify maps g and hy on 0K X I, UK X {v;_1}, where 0K
is empty if K is a vertex. If either e(K X {v,}) is not contained in ¥Y; N Y5 or
e(K x 1) is contained in the intersection of the interiors of ¥; and Y5, we simply
choose a representation (d,u) of (KX 1I,,0K x I, UK X {v,_1}) as a DR-pair and
specify g and h; on K X I, by

edo; (x) if 0<r<1/2

g=2d d h(x)={~
g=gdi(x) and hu(x) {hg,dl(x) if 1/2<r<1.

If e(K x {v,}) is contained in ¥; NY, and e(K X I,) is contained in the interior
of just one of the Y;, the induction hypothesis gives

8: (0K x I Ul x{V,_1},0K x {v;}) = (X;, X1 N X3)
and a homotopy hiex~ fg of maps
(0K X I, UK X {v,_1},0K X {v,}) = (Y;,Y1 NY>)
Application of (ii) of Lemma 17 to the n-equivalence
[ (X5, XinX2) = (Y, Y1 nYa)

gives the required extensions of g and h; to K X I,. ]
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