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Lecture 1

Axiomatic Homology Theory

Homology theory has been around for more than 120 years. Its founding father
was the French mathematician Henri Poincaré who gave a somewhat fuzzy defi-
nition of “homology” in 1895. In today’s perspective, what he defined was close
to modern “cobordism”.

Thirty years later, the German mathematician Emmy Noether realised that
abelian groups were the right context to study homology, rather than the then
known and extensively used Betti numbers. In the decades after the advent
of Poincaré’s homology invariants, many different theories were developed (e.g.
simplicial homology, singular homology, Cech homology etc.) by many topol-
ogists (e.g. Alexander, Cech, Eilenberg, Lefschetz, Veblen, and Vietoris) that
were all called “homology theories”.

In 1945, Samuel Eilenberg and Norman Steenrod gave the first (and still
used) definition of what an (ordinary) (co-)homology theory should be, based
on the similarities between the different, then known, theories.

1.1 The Eilenberg-Steenrod Axioms

We introduce some categorical notation that will be used to dispense ambiguities
and inaccuracies often found in existing documents on homology theory. This
may seem, at first sight, a bit pedantic, but in the end the readers will be
convinced that it is a “must”. For categorical notion, the reader is referred to
“An Introduction to Category Theory” by Harold Simmons.

We denote by T o2, T 07, T 07 the categories of topological spaces,
pairs of spaces (called “pairs” for short), and triples of spaces respectively, where

T op 2 The objects of are pairs (X, A), where X € Ob(J ¢ ) is a topological
space and A C X,
a morphism f : (X,A) — (Y¥,B) is a continuous map f : X — Y with
f(A) c B.

T op 3 Theobjects of 70z ) are triples (X, A, B), where X € Ob(J ¢ ) and

5



6 LECTURE 1. AXIOMATIC HOMOLOGY THEORY

BcAcCX,
a morphism f : (X,A,B) — (Y,A’,B’) is a continuous map f : X — Y
with f(A) c A" and f(B) c B'.

We use the term “inclusion” for maps in 7 ¢ 2,y or 7 ¢ 23, to mean “inclusion
in each component”. If x € X is a point, we will also write (X,x) for (X, {x})
(mutatis mutandis for triples). Moreover, we say “space” to mean “a set endowed
with a certain topology” and assume all maps to be continuous unless otherwise
specified.

We get canonical inclusions

Top—Topyg — I ongs

by sending each space X to (X,@) and (X, A) to (X, A, @): in this way we can
view T oz (resp. T o79) as a full subcategory of T ¢z, (resp. T o).
We will use this identification throughout this section and so, we will usually
write X to mean (X, @).

Alternatively, one could also send X to (X, X) and (X, A) to (X,A,A). It’s
not surprising that these two types of inclusions constitute to two adjunctions.
If we denote the first inclusion by F and the second one by G the adjunctions
are as follows: first inclusion by F and the second one by G the adjunctions are
as follows:

U F
Topo L _JTop and Top 1~ Topam
G U

where U : T 079 — T oz is the forgetful functor (X,A) — X (similarly for
T opn) and T op9)).

We notice that 7 ¢ 2y and T ¢z, are bicomplete (i.e. have small limits
and colimits) and the (co-)limits are given by taking them componentwise. Note
that a category is

complete (or properly, small complete) if it has all limits,
cocomplete (or properly, small cocomplete) if it has all colimits.

For example, if we have a family (X, A;)jes of objects in 02, then their
product is given by ([;es Xj, [1jes Aj)-
Notation 1.1. We use the notation I := [0, 1] to denote the unit interval.

Definition 1.2 (admissiblity). A subcategory € C T 02 o) is called admissible
for homology theory iff

(i) € contains a space {x} consisting of a single point (i.e. a final object in
T o). Furthermore, € contains all points (in 7 ¢z). That means that
for X € Ob(¥) and 1 ~ {+}, we have

Homg (1, X) = Homgoﬂm (1,X) = Homg, ,(1, X).

Here 1 means a fixed one-point space in 6.



1.1. THE EILENBERG-STEENROD AXIOMS 7

(ii)) If (X,A) € Ob(®) then the following diagram of inclusions (called the
lattice of (X, A)) lies in €, too:

(X,2)

N

(2,0) — (A, ) (X,A) — (X, X)

~

(A, A4)

Moreover, we require that for f : (X,A) — (Y, B) in €, € also contains all
the maps from the lattice of (X, A) to that of (Y, B), induced by f.

(iii) For any (X, A) € Ob(%), the following diagramme lies in €

Lo
(X,A) (X xI,AxI)

where ¢, : X > X X I, x — (x,t) for ¢t € {0,1}.

Remark 1.3. We notice that axioms (i) and (ii) imply that € really contains
all points (i.e. also points in T ¢pn,). That means, for any (X,A) € Ob(¥)
(and not only for the (X,®) as in (i)) € contains all maps (1,2) — (X, A).
The reason being that € contains the inclusion (X, @) — (X, A). Moreover, it
follows that € contains [ since € contains 1 and 1 X7 = [.

Example 1.4. The following categories are all examples of admissible categories
for homology theory.

T 073)), which is the largest admissible category.
The full subcategory of T ¢, consisting of all pairs of compact spaces.

The subcategory of 7 ¢ 5, having as objects all pairs (X, A), where X is
locally compact Hausdorff and A c X is closed and as arrows all maps of
pairs, satisfying that the preimage of compact subsets are compact.

Definition 1.5. A homotopy between two maps fy, f1 : (X,A) —» (Y,B) in &€
is a map
Fi(XxI,AxI) — (Y,B),

in € satisfying fox = f(x,0) and fix = f(x,1). That means that f is an ordinary
homotopy from fy : X - Y to fi : X — Y, viewed as maps in I ¢z with the
additional requirement, that f(A,t) Cc BVt € I. For t € I, we write f; : (X,A) —
(Y,B), x — f(x,t) and will loosely refer to this family of maps as a homotopy
from fy to fi. As always, we call fy and f; as above homotopic iff there is a
homotopy f in € from f to fi.
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With the notation from the last definition, a homotopy between fy and fi
is a diagramme of the form

Lo
(X.A) — = (XxLAxXI)—L= (v.B),

L1

satisfying f o = fop and fo = fi.

Definition 1.6. Let & be an admissible category. We define the so-called
restriction functor p : € — € which sends (X, A) to (A,2) and f : (X,A) —
(Y,B) to pf =: fla: (A,@) — (B,@), x — fx. This functor is well-defined by
axiom (ii) in the definition of an admissible category 1.2.

Definition 1.7. A homology theory on an admissible category € consists of a
family of functors (H,, : € — «),ez, where & is an abelian category and a family
of natural transformations (9, : H, — H,_1 0 p)pez. Hn(X, A) is called the n*h
homology of (X,A) and 0, the n'* boundary operator or connecting morphism.
As mentioned before, we identify X with (X, @) and in the same spirit write
H,X or H,(X) for H,(X, ), which we call the n*" (absolute) homology of X.

Sometimes, we write f. for H,(f) : H,(X,A) — H,(Y, B) where f : (X,A) —
(Y, B) and we will omit the index and write d for d,, “to avoid unnecessarily
complicated notation”. Explicitly, d being a natural transformation means that
the following diagramme commutes for all f: (X,A) — (¥Y,B) in €.

(X9A) Hn(XsA)L n-14

Lf Hn(f)l LHn(f)

(Y’B) Hn(Y,b)T'Hn—lB

These are required to satisfy

(i) (Homotopy Invariance) For each homotopy (f;)se; in € we have H,(fp) =
H,(f1). Equivalently, with the above notation, we could also require

Hy(f) (o) = Hu(f)(1)-

(ii) (Long Exact Homology Sequence) For each (X, A) € Ob(®) we have a long
exact sequence

a 17
= Hpp (X, A) » HWA —» Hy X — Hy(X,A) — -+,
where the unnamed arrows are induced by the canonical inclusions.

(iii) (Excision Axiom) If (X,A) € Ob(%), U c X open with U C fA and the
standard inclusion (X \ U,A \ U) — (X, A) lies in €. Then this inclusion
induces for each n € Z an isomorphism

Hy(X\U,A\U) = Hy(X, A),

called the excision of U.
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Some authors require a weaker form of the excision axiom instead of the one

before.

(iii)* (Weak Excision Axiom)
If (X,A) € Ob(®), U c X and f : X — I is a map, satisfying U c f710 c
F71[0,1[c A and the inclusion (X \ U, A\U) — (X, A) lies in €. Then this
inclusion induces for each n € Z an isomorphism

Hpy(X\U,A\U) = Hy(X, A),

called the ezcision of U.
For 1 € Ob(%) a one-point space the H,1 are called the coefficients of the
homology theory. If furthermore the following axiom is satisfied, we speak of an
ordinary homology theory.

(iv) (Dimension Axiom) If 1 € Ob(%) is a one-point space then
Hol=H,(1,0)=0 VneZ)\ {0}.

So in an ordinary homology theory only the coefficient Hyl is of any in-
terest. If we have chosen an isomorphism Hyl ~ G € & we call this an
ordinary homology theory with coefficients in G and write H, (X, A; G) :=
H,(X,A).

1.2 First Consequences

For the rest of this chapter, (H, : € — & )nez, (On)nez is a given (not necessarily
ordinary) homology theory and all spaces and maps are assumed to be admissible
(i.e. liein €). As a first remark we look at the homology of an empty space and
at the homology of a space, relative to itself (i.e. the homology of a pair (X, X)).
Using the long exact homology sequence, one easily deduces (a) in the following
remark. And using the homotopy invariance axiom (and functoriality of Hp)
one deduces the first part of (b) and with the long exact homology sequence of
(X, A) one proves the second part.

Recall that two spaces X and Y are called homotopy equivalent if there exist
maps f: X — Y and g: Y — X such that f o g is homotopic to idy and go f is
homotopic idx. That is,

do: X xI—> X, q)|X><O =g0f, (1)|X><1 =idy,
AY .Y xI —>Y, "P|Y><0:f0g, lI"|Y><1=id.y.

Remark 1.8. Let X be a topological space.
(a) Hy(X,X)=0VneZ and as a special case H,? = H,(3,2) =0 Vn € Z.

(b) If f: A - X is a homotopy equivalence then n(f) : H,A — H,X is an
isomorphism. In particular if A is a deformation retract of X (i.e. the
inclusion i : A ~» X is a homotopy equivalence) then H, (i) : H,A — H,X is
an isomorphism and H,(X, A) = 0.
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More generally, one immediately deduces the following from part (b) of the
last remark, the long exact homology sequences for (X, A) and (Y, B), and the
5-Lemma.

Remark 1.9. If f: (X, A) — (Y, B) is such that f: X — A and f|§ :A — B are
homotopy equivalence then H, (f) : H,(X,A) —» H,(Y, B) is an isomorphism.

As a next step, we are going to study the homology of a finite topological
sum (i.e. a coproduct of topological spaces). Of course, one will immediately
ask questions about the dual situation (i.e. the homology of a product) which
would lead to the definition of the so-called cross product in homology. But for
now let us concentrate on the coproduct.

Theorem 1.10. The homology functors preserve finite coproducts. Fxplicitly,
for pairs (X1,A1), (X2, As) let (X,A) := (X1 [ X2, A1 [ A2) be their coproduct
(i.e. topological sum) with the standard inclusions i, : (X;,A;) = (X,A), t €
{1,2}. Then for all n € Z the diagramme
H, (i Hy, (i
Hy (X1, Ar) s 1, (X, 4) S g (0, A9)

is a coproduct in A (and so H,(X,A) is even a biproduct since A is abelian).
Put differently,

Hn,(il))
Hp (i2)

Hn(Xl,Al) (&) Hn(XQ,AQ) — Hn(X, A)

is an isomorphism.

Proof. Consider the morphism (Z”Ei;;

homology sequences for (X7, A1), (X2, As) to the long exact homology sequence
for (X, A). In view of the 5-lemma it is enough to show the proposition for the
case where A; = Ay = @. We have the standard inclusions

) from the direct sum of the long exact

X5 xS (xx) and X, 3 xS (X, Xy),

whose induced morphisms can be combined in a commutative diagramme

Hu X, & Hy, (X, X2)
Hiy (ir) A;
H,X

n
Hy’ Hy (j1)

HnX2 fa Hn(X, Xl)

By the long exact homology sequences the diagonals are exact and by the exci-
sion axiom any morphism of the form H,(Y,B) — H,(Y [ Z, B]] Z), induced by
the inclusion, is an isomorphism. So in particular, f; and f; are isomorphisms.
The following lemma gives the desired result. ]



1.2. FIRST CONSEQUENCES 11
Lemma 1.11. Given a commutative diagramme

\/
N

A2—>Bl

in an abelian category with exact diagonals. Then the following conditions are
equivalent:

(a) f1 and f> are isomorphisms;
(b) (i;) 1 A1 ® As — X is an isomorphism;
(¢) (j1,J2) : X — B1 ® By is an isomorphism.

Considering the long exact homology sequence of a pair, one is forced to ask
whether there is an analogue for a triple (X, A, B) and indeed there is. There are
topological proofs for this but we prefer an algebraic one (even if that means
that we have to draw a nasty diagramme) since it uses only the Long Exact
Homology Sequence axiom.

For a triple (X, A, B) € Ob(J ¢z 3)) with (X, A), (X, B), (A, B) € Ob(%), we
define another boundary operator

9 Hy (X, A) S H,A — H, (A, B),

where the first morphism is the boundary map given by our homology theory
and the second morphism is induced by the inclusion (A, @) — (A, B). We shall
also write 9 for this morphism as there should be no risk of confusion.

If we now consider the three pairs (X,A), (X, B), and (A, B), we can put
their long exact homology sequences into a so-called homology braid of C. T. C.
Wall

2 2
1) P N
~
2 n+1(XsA)5 I—In(A:B)s 6 H,- 1(3) /

: Ho(A) : Hu(X, B) 5 S Huor(A)
H,(B) Ho(X) THa (X, A) ™~

4) \/ \/ \_/

2]

2EA

where the sequences (1), (3), and (4) are the long exact homology sequences of
(X,A), (X,B), and (A, B) respectively. The sequence (2) will be called the long
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exact homology sequence for the triple (X, A, B). One easily checks that this is
a chain complex (i.e. the composition of two morphisms is 0) and the following
lemma gives us exactness.

Lemma 1.12 (Braid Lemma). Suppose we have a braid diagramme as below
for abeilan groups.

~N N @ @ T "~

If three of the sequences are exact and the fourth is a chain complez, i.e.,
1 E—-A—B—G— K s exact,

2FE—>1—>J—>G—>C—>D isezxact,

3A—-F—>J—>K-—>H-—>D isexact

Then I - F - B — C — H is exact is exact, too.

Definition 1.13. By the above discussion, the following definition makes sense.
For each triple (X, A, B) we have an exact sequence

C 5 Hpt (X, A) D Hy(AB) = Hy(X.B) - Hy(X,A) D

where 0 is the boundary morphism of the triple (X, A, B).

The braid diagramme of C. T. C. Wall

The above discussion of the exact sequence for a triple (X, A, B) is rather terse.
We are going to be a bit more specific, following Bredon.

Theorem 1.14. If BCc A C X and we let 0, : H;i(X,A) — H;_1(A, B) be the
composition of 8, : H;(X,A) — H;_1(A) with the map H;_1(A) — H;_2(A, B)
induced by inclusion, then the following sequence is exact, where the maps other
than 0. come from inclusions:

Os i B O i
- 55 H,(A,B) = Hp(X,B) 55 Hy(X, A) => Hp_1(A,B) = -

Proof. There is the following commutative diagramme:

~ N TN TN~

Hi (X, A) H;(A,B) H;_1(B) H;_1(X)
< Caw’ HE) Ha ) >
H;(B) H;(X) H;(X,A) H;_1(A,B)
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This is called a “braid” diagramme. (This kind of diagramme is due to Wall
and Kervaire.) There are four braids and three of them are exact (the exact
sequences for the pairs (X, A), (X, B), and (A, B)). The fourth is the sequence
of the triple (X, A, B) which we wish to prove exact. This sequence is easily seen
from the commutativity to be of order two except for the composition

H,(A,B) g Hi(X, B) g Hl(X,A)

But this composition factors through H;(A, A) = 0, so the entire sequence is of
order two. The theorem now follows from the following completely algebraic
fact. O

Lemma 1.15 (Wall). Consider the following commutative braid diagramme:

N S

r /NG /—\G /\

/\/\/\G/\
\/\/\/”’\/

\_/\JI’VQ

S N

If all the three (8) braids except the one with single subscripts are exact and the
fourth is of order two, then the fourth one is also exact.

Proof. The proof is by a diagramme chase. For simplicity in doing the chase we
shall introduce some special notation for it. Elements of, for example, G/L2 will
be denoted by a/m, b/1,2’ etc. To indicate that an element ay; € Gy comes from
an element b; 3, not yet defined, we just write 3b; 3 — a;. To indicate that an
element a; € G goes to 1.2 € G1.2 we just write a; — b2, and if by o has not
yet been defined, this does so. The notation as — 0 means that the element
as € Gy goes to 0 in G3. Now we begin the chase. In following the arguments
the reader will find it helpful to diagramme the elements and relations as they
arise.

First we prove exactness at Gy for the composition G; — Gy — G3. Thus
suppose az — 03. Then if ay — a12, a12 — ()'1"3 by commutativity. By
exactness, a1 — ai12. Let a; — ba. Then ay — a2 and by — a; 2 imply
ag — b2 i 01,2. Thus 3&2,3 — dg — bg. Since a; — b2 we have b2 — 03.
Thus ag — bg - 03, and so as 3 — 03. Therefore 3611,3 — a2 3. Let a3 — bl.
Since a1,3 — az3 — az — by and ay 3 — by it follows from commutativity that
by — as — bs. But a; — bs, so a1 + by — bs + (as — bs) = as, as desired.

Next we prove exactness at G3. Thus let ag — 01 Define az — a/l"?). Then
a'{’g — 0'1’ so that Ja; 2 — a/ll’?). Since az — aI’S — 0;,3 we have a;9 — 0'2'3.
Consequently, Jas — ay,9. Let as — bs. Then as — bz — 0’1"3. Thus Jas 3 —
as — bs. Let az s — Ca. Then as +co — by + (613 - bg) =as as claimed.
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Finally we prove exactness at G;. Thus suppose a; — 0z. Then a; — 012

SO 3611,3 — aj. Let a3z — dz3. Then as sz — 02 so that 3(,112 — d23.

Let 01,2 i b1,3. Then note bl,g - 01. Then we have a3 — blyg - 02,3
’ ’

SO 3613 — d1,3 — b1,3. Now a3 — b1’3 — d] — 01 = ayp, SO that as — a1 as

claimed. O

1.3 Reduced Homology

Although the coefficients H, 1 are important, they do not contain any geometric
information whatsoever. Because of this and for the sake of readability (so
that we do not always have to carry these one-point spaces with us while doing
algebraic manipulations), we want to split them off the homologies of our spaces.
This leads to the idea of reduces homology.

Definition 1.16. Let X be a non-empty space and p : X — 1 the unique map
to a one-point space. We define the n'" reduced homology of X as

H,X :=ker(H,(p) : H, X — H,1).

For f: X — Y, we get again an induced morphism H,(f) : H,X — H,Y in
the obvious way. Like that we can extend H, to a homotopy invariant functor
T opn — Ab (ie. if fis a homotopy equivalence, then H,(f) is an isomorphism).

Obviously, by definition, we can calculate the reduced homology if we have
the usual (i.e. non-reduced) homology given. One could ask whether it’s also
possible to go the other way. And indeed by some elementary algebraic facts
we can. If we choose a point x € X and look at the inclusion x : 1 — X and
p: X — 1, we have p ox = id; and the long exact homology sequence for (X, x)
reads as

a H’l a Hn
o Hy (X0 S H1 2 g ox o B (X0 D H1 22,

Because H,(p) o Hy(x) = idg,: it follows that H,(x) is a monomorphism and
by exactness imd = 0. So we can rewrite this as a short exact sequence, which
splits since H, (p) is a retraction of H, (x).

H;, (x)

0 H,1 H,X H,(X,x) ——0
idﬂk{ lHn(n)
H,1

The triangle on the left gives us an isomorphism (H,,i(x)) :H,X ® Hy1 = H, X,

where i : H,X — H,X is the standard inclusion. One plainly checks this as
follows:

H,X =~ ker H,(p) ® H,(x)(H,1) = H,X & H, (x)(H,1) ~ H,X & H,]1.
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By the first isomorphism theorem Hn(j)lﬁ,,x : HyX = H,(X,x) is an isomor-
phism, where j : X — (X, x) is the standard inclusion:

Hy(X, %) = Hy X [Hy(x) (Hy1) = (Hy X & Hy(x)(Hp 1)) /Hn (x) (Ha1) = H,X
and finally these two together give

(i) ~
HoX = Hy(X,x)0H,1, H,X —"" H,X®(H,1)

Hy () |7, x ¥ Lt

L H, (X, x)®H,1,

which is exactly the usual splitting condition for a short exact sequence

A special case is when X is contractible. Then H, (x) is an isomorphism (by
Remark 1.8) and putting this into the above short exact sequence gives us that
0 — H,(X,x) — 0is exact from which one easily deduces the following theorem.

Theorem 1.17. If X is contractible, then H,X ~ H,(X,x) =0 Vn € Z.

To finish this section, we are going to introduce the analogue of the long
exact homology sequence in the reduced case. As one easily verifies, this is just
a special case of the long exact homology sequence for a triple, where the triple
is of the form (X, A,x), where x € A C X is a point.

Theorem 1.18. (Reduced Long Exact Homology Sequence) Let (X, A) be a pair
with A # @. Then the image of the boundary operator d : H,41(X,A) — H,A
lies in HyA. As a consequence, by restricting the long exact homology sequence
of the pair (X, A), we get another long exact sequence for the reduced homology

o Ho (X, A) S HoA — HyX = Ha(X.A) S -

Proof. Consider the unique arrow p : X — 1 (resp. p: A > lor p: (X,A) —
(1,1)). Then the long exact sequences of (X, A) and (1,1) yield

e Hpr (X, A) —2 ﬁTA ﬁTX Ha(¥, A) 2>
) F
o Hyt (X, A) — = HyA ——= HyX ——= H, (Y, A) —2= .
Hy, (p) Hn(p)T Hn(p)]: H,(p)
T> n+1(1,1) 0 H,1 = H,1 0 Hn(lal)_0>"'

In the lower long exact sequence, we have used that H, (1,1) = 0 and get all the 0-
morphisms. Either by exactness or by the fact that 1 — 1 is a homeomorphism,
we conclude that H,1 — H,1 is an isomorphism. The upper row consists
simply of the kernels of the corresponding vertical morphisms H,(p) (observe
that ker H,(p) : Hy(X,A) — H,(1,1)) = H,(X,A) since H,(1,1) = 0). By
naturality of d the lower squares in the diagramme commute and so, since
H,(p)od =00 H,(p) we have imd C ker H, (p) which proves the first part of



16 LECTURE 1. AXIOMATIC HOMOLOGY THEORY

the proposition (this actually proves more generally that the induced morphisms
in the upper row are well-defined).

For the second part, we observe that all the H,(p) are epimorphisms for
if we choose any point x : 1 — A (resp. x: 1 » X or x : (1,1) — (X, A)),
we have that H,(p) o x = id; and so p has a section. By a general theorem
(whose proof is left as an exercise) which says that if we have an epimorphism
of exact sequences then its kernel is also exact (and dually for a monomorphism
of exact sequences and its cokernel) we get the exactness of the reduced long
exact homology sequence. O

1.4 Homology of Spheres

In this section, we delve into the problem of calculating the homology of the
spheres just from the axioms. To do so, we observe first, that we can divide the
sphere $” ¢ R™*! in an upper and lower hemisphere

DY = {(x1,...,xp41) € S"| £ xp41 = 0},

Obviously D7} ~ D" by simply projecting D} along the x,41-axis to R" x {0} c
R™1. Moreover, we observe that we have for any n € N an inclusion

S8 (xq, .. x0) (X1, .., X, 0)

or a little more geometric, by viewing S"~! as the equator of $". By combining
these we get S? < S < §2 — .... Let’s furthermore fix the notation e; € R
to denote the i*" standard basis vector having (e;); = 6;,; (the Kronecker delta)
and with this, let’s write N := e,,41 and S := —e,41 for the north and south pole
of S" respectively. Now, for n € N5 we look at the commutative diagramme

Hy (D", ") ———— H(S", DY)

| |

Hi (D2, D2\ {S}) —— HiS", 8"\ {S})

induced by inclusions. Because $"~! < D"\{S} and D” — S"\{S} are homotopy
equivalences, it follows that the vertical arrows are isomorphisms (by Remark
1.9). For the bottom arrow, we can use the excision axiom with U := int D} and
deduce that this is also an isomorphism. In conclusion, the top arrow has to be
an isomorphism, too.

We choose * := e; = (1,0,...,0) € $" ! ¢ S" and insert this isomorphism in
a second diagramme

1

Hy(D",8"") —2= Hy (8", %) Hy_ 8"

~ (T+ (J'+
¥ v

Hy (8", D) <——— H (8", %) HiS"

13
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The reduced long exact homology sequence of (D", S"!) reads as

-5 B (D") = H (D", 5" S B (8" = Hy (D) = -+

Since D" ~ D" ! is contractible, we deduce from theorem 1.17 that Hy(D") =
Hi_1(D") = 0 and so 8 is an isomorphism. By the same argument, j is an
isomorphism, since {*} < D" is a homotopy equivalence. Now we can easily
define o, to be the unique isomorphism making the diagramme commute.

Lemma 1.19. H,S° ~ H,1 for all n € Z.

Proof. Choose a point x : 1 — S° and denote the other point by y : 1 — SO,
Let’s also write H,(i) : H,S% — H,S° for the standard inclusion. As seen in
the section about the reduced homology and theorem Theorem 1.10, we get a
commutative diagramme

i Y
H,S°® H,1 (*j) H,S° ’j) H,l®H,1

nl nl

where the vertical arrows are the standard inclusions into the second summand.
If we define the isomorphism

-1 .
f:: (y*) O(l) :ﬁnSOGBHnl;)Hnl@Hnl,
Xy X

we can rewrite this as a commutative diagramme

0——>H,b——>H,S° ® H, - H,S° 0
0 H, b H,1® H,b H,1 0

where the rows are exact and f is the unique arrow between the cokernels,
induced by f, making the diagramme commute. By the 3-lemma (which is the
special case of the 5-lemma for short exact sequences) it follows that f is an
isomorphism. O

Theorem 1.20. For all k € Z and n € N we have isomorphisms
HiS" ~ Hy_py1  and  HiS" =~ Hy_,1 ® Hy 1.
It follows that we also have isomorphisms

Hp (D™, S") = He_1S" @ Hy—(na) 1.
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Proof. As seen in the last paragraph, we have isomorphisms
HS" ~ He 18"V~ oo~ Hy S0 ~ Hy 1,

where we used the above lemma for the last isomorphism. By remembering
ourselves that H;S" ~ HyS"®H k—(n+1)1 the first part of the proposition follows.
For the second part, let’s look at the reduced long exact homology sequence for
(D™, $™). Because D" is contractible, this looks like

o ~
0 — Hi (D™, 8" = Hi S" — 0
and so 9 is an isomorphism. O

Corollary 1.21. Let (Hp)nez, (On)nez be an ordinary homology theory having
coefficient Hyl ~ G, then for n € N5

G k=n+1

0 otherwise 0 otherwise.

G k € {0, .
HiS" ~ { {0.m} and similarly Hp (D", S") ~ {
By noticing that an ordinary homology theory with non-trivial coefficient
exists (e.g. singular homology, which will be treated in Chapter ?7), we easily
deduce

Corollary 1.22 (Invariance of Dimension). R™ ~R" & m =n for m,n € N.

Proof. The direction “<"is trivial and for the other direction, we assume that
for m # n we have a homeomorphism R — R". The case where m =0 or n =0
is trivial and so the case m,n > 1 is left. We can extend our homeomorphism
R™ — R" to a homeomorphism of the one-point compactifications, which is
S™ — SR” but since m # n by the above theorem H,S™ = 0 but H,S" ~ G #
0. O

Corollary 1.23. S" is not contractible Vn € N,



Lecture 2

Acyclic Models

In this chapter we will be concerned with studying so-called acyclic models
and will prove a form of the famous acyclic model theorem. The theory of
acyclic models is in some sense a way to abstract the standard models arising in
homology theory, like the standard simplices in singular homology (see Chapter
3). The acyclic model theorem will be useful in this text to prove homotopy
invariance and the excision axiom for singular homology but generally finds wide
applications throughout algebraic topology and homological algebra.

2.1 Models

Let € be a category. A specified set # c Ob(%) of objects in € will be called
models of €. From now on we fix the notation ./ to denote a set of models of
a category.

Ezample 2.1. The intuition (and our primary use for that matter) is the fol-
lowing: There is a purely combinatorial theory of simplices known as simplicial
sets. The easiest “models” of this theory in a topological context are the stan-
dard simplices A, ¢ R7*'. And in fact, we will investigate {A;|q € N} as models
of T oz in the next chapter using the tool(s) we are going to develop in this
one.

Definition 2.2. A functor F: € — R— /o< for R any ring will be called free
with models A iff there is a subset 4’ C /# and for each M € ./’ an element
ey € FM such that for every C € Ob(%) the module FC is free and the set

{(Fa)ey € FCIM € M',a € €(M,C)}

forms a basis for FC. Put differently, the functor F factors as

Sets
€ R—Mod
F

19
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where §eZ3 — R — Mo is the free construction and the functor € — Sefs
maps C € Ob(%¥) to the set described above and b: C — D in € to b, with
b.((Fa)ep) := F(ba)ep . If F does map to €%(R—M o) (the category of chain
maps between chain complexes of R-modules) we call F free with models M ift
it is free with models ./# at each degree F),, wherefor p € Z F,,: € —» R—Mod
maps a: C = D to (Fa),: (FC), — (FD)p. One should notice that at each
degree, we can have a different subset ., C ./ and different elements 65\)4 e F,M
for M € M,,.

Finally, let’s call a functor F: € — €% (R — M o) a-acyclic on the models
M (“a-acyclic” stands for almost acyclic) iff for each M €  the chain complex
FM is exact everywhere except at the degree 0. L.e. H;(FM) = 0for alli € Z\{0}.
In the same spirit, we call a chain complex a acyclic iff it is acyclic except at
degree 0.

Definition 2.3. Let F,G: € — €% (R—- M 0<«) be two functors and @, 8: F —
G two natural transformations. We say that a and B are naturally chain ho-
motopic or simply naturally homotopic iff all their components are chain ho-
motopic in a natural way. That is for each C € Ob(%) there is a chain map
xc: FC — GC of degree 1 (i.e. (xc)n: FnC — Gpi1C,Vn € Z) such that

ac —Bc =0Gc ° xc + xc ° Orc,

where drc and dgc denote the boundaries of FC and GC respectively. Further-
more, yc is required to be natural in C. That is, for each a: C — D in € the
following diagramme commutes

c FC 2. Gc

| owl e

D FD——GD
Xxc

So in some sense y is a natural transformation F — G, which is not completely
honest since the components y¢ are not really arrows in €% (R — M 0<). To be
even more formal, one could say that y is a natural transformation F — S~ oG
where S™: €% (R — Mod) — €/ (R — Mod) is the shift functor that shifts a
chain complex X by —1. So X is mapped to X’ = S™X, having X = X,41 with
the obvious boundaries (the arrow function of S~ is obvious, t00).

2.2 The Acyclic Model Theorem

In this section we will state and prove a form of the acyclic model theorem.

Theorem 2.4 (Acyclic Model Theorem). Let € be a category with models M
and F,G: € — €%4(R — Mod) functors which are 0 in negative degrees (i.e.
F, =G, =0Vn € Z.). If F is free with models # and G is a-acyclic on M
and there is a natural transformation ¢: HoF — HoG (where HyF,HyG: € —
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R — Mo ) then there is a natural transformation ¢: F — G, which induces ¢.
Moreover, ¢ is unique up to natural homotopy.

Remark 2.5. For the sake of readability we will omit unnecessary indices in the
following proof. We will assume that the attentive reader will still be capable
of following it and fill in the details.

This proof seems a little complicated at first glance (which it really isn’t).
Because of this we will briefly sketch it before formalising it rigorously. For
C € Ob(%¥), we want to define ¢ as to make the diagramme

i 2 .. % FcC Hy(FC) ——=0

g g Iz wl
v Y
P P P P
o2 GpaC G C

%
GoC — Ho(GC) —=0

commute. We do this inductively in each degree n. To do so, we first consider
the case where C = M is a model and so the lower row is exact. We can use this
exactness to “lift” ¢ from degree n to n + 1. Afterwards we use the fact that F
is free with models . to extend this to arbitrary C € Ob(%).

Proof. By presumption, for each n € N there is a collection ., C # and for each
M € M, an element e}, € F, M as in the definition of a free functor with models
M. Now, let C € Ob(®) be arbitrary. Again by presumption, FoC = Zy(FC)
and GoC = Zy(GC) are the cycles of FC and GC at degree 0 respectively. Thus,
we get standard projections onto the 0'" homology modules as in the following
diagramme

F()C _—> Ho(FC)

v jso

v
GOC —> Ho(GC)

Thus, we can augment F and G by (re)defining F_1C := Hy(FC) and G_1C :=
Hy(GC) and defining the standard projections as the boundary morphisms. By
this, ¢ is defined in degree —1, where it is simply ¢.

For the inductive step let’s assume that ¢ is defined in degree n—1 for n > 0.
For each model M € ./, we consider ¢(de’y,) € G,_1M (which we have already
defined). Since the diagramme

FM—2~F, M- ~F,,

N

GaM —2~ Gy M -2~ G,

commutes and the lower row is exact (because G is a-acyclic on ) we conclude
that dg(de},) = p(ddely,) = 0 and so ¢(de}y,) € G,-1M must be a boundary.



22 LECTURE 2. ACYCLIC MODELS

Le. we can choose ¢ € G,M satistying dc = ¢(de’},) and define ge’}, := ¢, which
makes the above diagramme commute.

For a: M — C a morphism in € (F,a)e}, € F,C is a basis element of F,C
and we define ¢((F,a)e},) := (Gpa)pe’y,. We do this for every a and every M
and like that define ¢ on the basis elements of F,,C which means that we can
extend it uniquely to ¢: F,,C — G,C. To check that ¢ thus defined is a chain
morphism (i.e. commutes with the boundaries), we look at the following cubical
diagramme

F,M GuM
F,.M
_ Gpa
F,C l ¥ ~aG,c
Fn—lM — Gn_lM
Fn_1a ¢
Fn—lc — Gn—1C

¢

where the downward arrows are all boundary morphisms. The left and right
faces of the cube obviously commute and the bottom commutes by inductive
hypothesis. For the element e}, € F,,M the top and the back faces commute by
definition of ¢. So the front face has to commute, too for (F,a)elj, € F,,C. Since
this holds for all M and all a the front face commutes for all basis elements of
F,,C and so commutes as a whole. This defines ¢ in degree n. One easily checks
the naturality of ¢, i.e. for a: C — D an arrow in € the equation goFa = Gaog
holds.

What is left to prove is the uniqueness up to natural homotopy. So suppose
that @,¢: F — G are two natural transformations inducing ¢ in the 0" ho-
mology, or put differently, that lift ¢ (defined in degree —1). For each object
C € Ob(®) we must define a chain homotopy y: FC — GC from @ to ¢ (i.e. x
is of degree 1 and satisfies 9y + yd = & — ), which is natural in C. y is already
defined in degree —1 (note that we are still working with the augmented F and
G), where it is simply 0 because there holds ¢ = v = ¢. Suppose now, that y
is defined in degree n — 1 with n > 0. F,C has {(Fa)e}j,} .4 as a basis and we
notice that _

b= gey, — ey, — x(dely)
is a cycle because
b = 0(pey — vehy — x(9e}y))
= @(dely) —y(dely) — (x(9dey,) + ¢(dey,) -y (Dey,) = 0.

Because GM is a-acyclic, b must be a boundary, i.e. there is a ¢ € G+ 1 M
with dc = b and we define yel), := c. By defining y((Fpa)e},) = (Gur1a)xey,
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we have defined y on all basis elements and thence can extend it uniquely to
X : F,C — G,4+1C. One can easily check that y thus defined is really a chain
morphism of degree 1 by using a cubical diagramme, similar to the one above.
By construction this gives us a chain homotopy y : @ ~ ¢ and it is plain to
check naturality in C. O

Corollary 2.6. If F,G : € — €% (R— Mod) are functors which are 0 in neg-
ative degrees and both free and a-acyclic on M and there is natural isomorphism
¢ : HyF = HyG, then ¢ can be extended to a natural isomorphism ¢ : HF = HG,
where H : €4 (R — Mod) — €%#(R — Mod) is the homology functor.

Corollary 2.7. If F: € — €/%4(R — Mo) is 0 in negative degrees and both
free with models M and a-acyclic on M and « : F — F is a natural endo-
transformation inducing the identity in 0 — th homology. Then a is naturally
homotopic to idg. In particular, for each C € Ob(€) there is a chain homotopy
ac ~idpc (i.e. ac and idpc are chain homotopic).

Proof. By the acyclic model theorem there is a natural transformation ¢ : F —
F which induces idg,r : HoFF — HoF and is unique up to homotopy. But «
and idg are two such natural transformations and so @ and idr are naturally
homotopic. O






Lecture 3

Singular Homology

In this chapter we are going to quickly repeat the definition of singular homology,
mainly to introduce the reader to the notation used in this text. Afterwards we
are going to prove the axioms for an ordinary homology theory in the case of
singular homology.

3.0.1 Definitions

We repeat the definition of singular homology in this section. We do so, mainly,
to fix the notation but we will also prove as a first result that the singular
homology of contractible spaces vanishes in positive degrees.

3.0.2 Homotopy Invariance

As promised in chapter 2, we are going to prove, using the acyclic model theo-
rem, that for X a topological space (p(X) and ¢; (X) induce the same morphisms
in homology, here ¢,(X) : X —» X X I, x — (x,t) for t € {0,1} as defined in ?7.
We are going to use the following models to apply the acyclic model theorem to
singular homology.

Definition 3.1. For the rest of this ssection, we will write & for the collection
§ = {Aylq € N}

of objects of T ¢z and call these the standard models. They will be key in
applying the acyclic model theorem to singular homology.

Remark 3.2. The functor S : Top — JEC#»pn is free with models & and
aacyclic (see the last paragraph of Definition 2.2) on &. It is obviously aacyclic
since all the A, are contractible. The freeness has to be checked at each degree.
To do so, let p € N and we consider & := {A4} € 8 and the element e, := 15, €
SpAp. By definition for X any space, the set {o.e, = 0 € S, X[o : A, — X}
forms a basis for S, X.

25
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3.1 Barycentric Subdivision
3.2 Small Simplices and Standard Models

3.3 Excision

This section is solely devoted to proving the excision axiom for singular homol-
ogy. Here our investment into the machinery of homological algebra (in the
form of the acyclic model theorem) pays off again and the proof boils down to
simple algebra with no geometric arguments whatsoever.



