
Acyclic Models

Lemérange





Contents

1 Axiomatic Homology Theory 5

1.1 The Eilenberg-Steenrod Axioms . . . . . . . . . . . . . . . . . . . 5
1.2 First Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Reduced Homology . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Homology of Spheres . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Acyclic Models 19

2.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 The Acyclic Model Theorem . . . . . . . . . . . . . . . . . . . . . 20

3 Singular Homology 25

3.0.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.0.2 Homotopy Invariance . . . . . . . . . . . . . . . . . . . . 25

3.1 Barycentric Subdivision . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Small Simplices and Standard Models . . . . . . . . . . . . . . . 26
3.3 Excision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3





Lecture 1

Axiomatic Homology Theory

Homology theory has been around for more than 120 years. Its founding father
was the French mathematician Henri Poincaré who gave a somewhat fuzzy de�-
nition of �homology� in 1895. In today's perspective, what he de�ned was close
to modern �cobordism�.

Thirty years later, the German mathematician Emmy Noether realised that
abelian groups were the right context to study homology, rather than the then
known and extensively used Betti numbers. In the decades after the advent
of Poincaré's homology invariants, many di�erent theories were developed (e.g.
simplicial homology, singular homology, �Cech homology etc.) by many topol-
ogists (e.g. Alexander, �Cech, Eilenberg, Lefschetz, Veblen, and Vietoris) that
were all called �homology theories�.

In 1945, Samuel Eilenberg and Norman Steenrod gave the �rst (and still
used) de�nition of what an (ordinary) (co-)homology theory should be, based
on the similarities between the di�erent, then known, theories.

1.1 The Eilenberg-Steenrod Axioms

We introduce some categorical notation that will be used to dispense ambiguities
and inaccuracies often found in existing documents on homology theory. This
may seem, at �rst sight, a bit pedantic, but in the end the readers will be
convinced that it is a �must�. For categorical notion, the reader is referred to
�An Introduction to Category Theory� by Harold Simmons.

We denote by Top,Top(2) ,Top(3) the categories of topological spaces,
pairs of spaces (called �pairs� for short), and triples of spaces respectively, where

Top(2) The objects of are pairs (𝑋, 𝐴), where 𝑋 ∈ Ob(Top) is a topological
space and 𝐴 ⊂ 𝑋,
a morphism 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) is a continuous map 𝑓 : 𝑋 → 𝑌 with
𝑓 (𝐴) ⊂ 𝐵.

Top(3) The objects of Top(3) are triples (𝑋, 𝐴, 𝐵), where 𝑋 ∈ Ob(Top) and
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6 LECTURE 1. AXIOMATIC HOMOLOGY THEORY

𝐵 ⊂ 𝐴 ⊂ 𝑋,
a morphism 𝑓 : (𝑋, 𝐴, 𝐵) → (𝑌, 𝐴′ , 𝐵′ ) is a continuous map 𝑓 : 𝑋 → 𝑌

with 𝑓 (𝐴) ⊂ 𝐴′ and 𝑓 (𝐵) ⊂ 𝐵′ .

We use the term �inclusion� for maps in Top(2) or Top(3) to mean �inclusion
in each component�. If 𝑥 ∈ 𝑋 is a point, we will also write (𝑋, 𝑥) for (𝑋, {𝑥})
(mutatis mutandis for triples). Moreover, we say �space� to mean �a set endowed
with a certain topology� and assume all maps to be continuous unless otherwise
speci�ed.

We get canonical inclusions

Top→ Top(2) → Top(3)

by sending each space 𝑋 to (𝑋,∅) and (𝑋, 𝐴) to (𝑋, 𝐴,∅): in this way we can
view Top (resp. Top(2) ) as a full subcategory of Top(2) (resp. Top(3) ).
We will use this identi�cation throughout this section and so, we will usually
write 𝑋 to mean (𝑋,∅).

Alternatively, one could also send 𝑋 to (𝑋, 𝑋) and (𝑋, 𝐴) to (𝑋, 𝐴, 𝐴). It's
not surprising that these two types of inclusions constitute to two adjunctions.
If we denote the �rst inclusion by 𝐹 and the second one by 𝐺 the adjunctions
are as follows: �rst inclusion by 𝐹 and the second one by 𝐺 the adjunctions are
as follows:

Top(2) ⊥
𝑈 //

Top
𝐺
oo and Top ⊥

𝐹 //
Top(2)

𝑈
oo

where 𝑈 : Top(2) → Top is the forgetful functor (𝑋, 𝐴) ↦→ 𝑋 (similarly for
Top(3) and Top(2) ).

We notice that Top(2) and Top(3) are bicomplete (i.e. have small limits
and colimits) and the (co-)limits are given by taking them componentwise. Note
that a category is

complete (or properly, small complete) if it has all limits,

cocomplete (or properly, small cocomplete) if it has all colimits.

For example, if we have a family (𝑋 𝑗 , 𝐴 𝑗 ) 𝑗∈𝐽 of objects in Top(2) then their
product is given by (∏ 𝑗∈𝐽 𝑋 𝑗 ,

∏
𝑗∈𝐽 𝐴 𝑗 ).

Notation 1.1. We use the notation 𝐼 := [0, 1] to denote the unit interval.

De�nition 1.2 (admissiblity). A subcategory C ⊂ Top(2) is called admissible
for homology theory i�

(i) C contains a space {∗} consisting of a single point (i.e. a �nal object in
Top). Furthermore, C contains all points (in Top). That means that
for 𝑋 ∈ Ob(C) and 1 ≃ {∗}, we have

HomC (1, 𝑋) = HomTop(2) (1, 𝑋) = HomTop (1, 𝑋).

Here 1 means a �xed one-point space in C.
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(ii) If (𝑋, 𝐴) ∈ Ob(C) then the following diagram of inclusions (called the
lattice of (𝑋, 𝐴)) lies in C, too:

(𝑋,∅)

$$
(∅,∅) // (𝐴,∅)

::

$$

(𝑋, 𝐴) // (𝑋, 𝑋)

(𝐴, 𝐴)

::

Moreover, we require that for 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) in C, C also contains all
the maps from the lattice of (𝑋, 𝐴) to that of (𝑌, 𝐵), induced by 𝑓 .

(iii) For any (𝑋, 𝐴) ∈ Ob(C), the following diagramme lies in C

(𝑋, 𝐴)
𝜄0 //

𝜄1
// (𝑋 × 𝐼, 𝐴 × 𝐼)

where 𝜄𝑡 : 𝑋 → 𝑋 × 𝐼, 𝑥 ↦→ (𝑥, 𝑡) for 𝑡 ∈ {0, 1}.

Remark 1.3. We notice that axioms (i) and (ii) imply that C really contains
all points (i.e. also points in Top2). That means, for any (𝑋, 𝐴) ∈ Ob(C)
(and not only for the (𝑋,∅) as in (i)) C contains all maps (1,∅) → (𝑋, 𝐴).
The reason being that C contains the inclusion (𝑋,∅) → (𝑋, 𝐴). Moreover, it
follows that C contains 𝐼 since C contains 1 and 1 × 𝐼 ≃ 𝐼.
Example 1.4. The following categories are all examples of admissible categories
for homology theory.

Top(2) ), which is the largest admissible category.

The full subcategory of Top(2) , consisting of all pairs of compact spaces.

The subcategory of Top(2) , having as objects all pairs (𝑋, 𝐴), where 𝑋 is
locally compact Hausdor� and 𝐴 ⊂ 𝑋 is closed and as arrows all maps of
pairs, satisfying that the preimage of compact subsets are compact.

De�nition 1.5. A homotopy between two maps 𝑓0, 𝑓1 : (𝑋, 𝐴) → (𝑌, 𝐵) in C

is a map

𝑓 : (𝑋 × 𝐼, 𝐴 × 𝐼) → (𝑌, 𝐵),

in C satisfying 𝑓0𝑥 = 𝑓 (𝑥, 0) and 𝑓1𝑥 = 𝑓 (𝑥, 1). That means that f is an ordinary
homotopy from 𝑓0 : 𝑋 → 𝑌 to 𝑓1 : 𝑋 → 𝑌 , viewed as maps in Top with the
additional requirement, that 𝑓 (𝐴, 𝑡) ⊂ 𝐵 ∀𝑡 ∈ 𝐼. For 𝑡 ∈ 𝐼, we write 𝑓𝑡 : (𝑋, 𝐴) →
(𝑌, 𝐵), 𝑥 ↦→ 𝑓 (𝑥, 𝑡) and will loosely refer to this family of maps as a homotopy
from 𝑓0 to 𝑓1. As always, we call 𝑓0 and 𝑓1 as above homotopic i� there is a
homotopy 𝑓 in C from 𝑓0 to 𝑓1.
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With the notation from the last de�nition, a homotopy between 𝑓0 and 𝑓1
is a diagramme of the form

(𝑋, 𝐴)
𝜄0 //

𝜄1
// (𝑋 × 𝐼, 𝐴 × 𝐼)

𝑓 // (𝑌, 𝐵),

satisfying 𝑓 ◦ 𝜄0 = 𝑓0 and 𝑓 ◦ 𝜄1 = 𝑓1.

De�nition 1.6. Let C be an admissible category. We de�ne the so-called
restriction functor 𝜌 : C → C which sends (𝑋, 𝐴) to (𝐴,∅) and 𝑓 : (𝑋, 𝐴) →
(𝑌, 𝐵) to 𝜌 𝑓 =: 𝑓 |𝐴

𝐵
: (𝐴,∅) → (𝐵,∅), 𝑥 ↦→ 𝑓 𝑥. This functor is well-de�ned by

axiom (ii) in the de�nition of an admissible category 1.2.

De�nition 1.7. A homology theory on an admissible category C consists of a
family of functors (𝐻𝑛 : C → A)𝑛∈Z, whereA is an abelian category and a family
of natural transformations (𝜕𝑛 : 𝐻𝑛 → 𝐻𝑛−1 ◦ 𝜌)𝑛∈Z. 𝐻𝑛 (𝑋, 𝐴) is called the 𝑛th

homology of (𝑋, 𝐴) and 𝜕𝑛 the 𝑛th boundary operator or connecting morphism.
As mentioned before, we identify 𝑋 with (𝑋,∅) and in the same spirit write
𝐻𝑛𝑋 or 𝐻𝑛 (𝑋) for 𝐻𝑛 (𝑋,∅), which we call the 𝑛th (absolute) homology of 𝑋.

Sometimes, we write 𝑓∗ for 𝐻𝑛 ( 𝑓 ) : 𝐻𝑛 (𝑋, 𝐴) → 𝐻𝑛 (𝑌, 𝐵) where 𝑓 : (𝑋, 𝐴) →
(𝑌, 𝐵) and we will omit the index and write 𝜕 for 𝜕𝑛, �to avoid unnecessarily
complicated notation�. Explicitly, 𝜕 being a natural transformation means that
the following diagramme commutes for all 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) in C.

(𝑋, 𝐴)

𝑓

��
(𝑌, 𝐵)

𝐻𝑛 (𝑋, 𝐴)
𝜕 //

𝐻𝑛 ( 𝑓 )
��

𝐻𝑛−1𝐴

𝐻𝑛 ( 𝑓 )
��

𝐻𝑛 (𝑌, 𝑏)
𝜕

// 𝐻𝑛−1𝐵

These are required to satisfy

(i) (Homotopy Invariance) For each homotopy ( 𝑓𝑡 )𝑡∈𝐼 in C we have 𝐻𝑛 ( 𝑓0) =
𝐻𝑛 ( 𝑓1). Equivalently, with the above notation, we could also require
𝐻𝑛 ( 𝑓 ) (𝜄0) = 𝐻𝑛 ( 𝑓 ) (𝜄1).

(ii) (Long Exact Homology Sequence) For each (𝑋, 𝐴) ∈ Ob(C) we have a long
exact sequence

· · · → 𝐻𝑛+1 (𝑋, 𝐴)
𝜕−→ 𝐻𝑛𝐴→ 𝐻𝑛𝑋 → 𝐻𝑛 (𝑋, 𝐴)

𝜕−→ · · · ,

where the unnamed arrows are induced by the canonical inclusions.

(iii) (Excision Axiom) If (𝑋, 𝐴) ∈ Ob(C), 𝑈 ⊂ 𝑋 open with 𝑈 ⊂
∫
𝐴 and the

standard inclusion (𝑋 \𝑈, 𝐴 \𝑈) → (𝑋, 𝐴) lies in C. Then this inclusion
induces for each 𝑛 ∈ Z an isomorphism

𝐻𝑛 (𝑋 \𝑈, 𝐴 \𝑈) ≃ 𝐻𝑛 (𝑋, 𝐴),

called the excision of 𝑈.
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Some authors require a weaker form of the excision axiom instead of the one
before.
(iii)∗ (Weak Excision Axiom)

If (𝑋, 𝐴) ∈ Ob(C), 𝑈 ⊂ 𝑋 and 𝑓 : 𝑋 → 𝐼 is a map, satisfying 𝑈 ⊂ 𝑓 −10 ⊂
𝑓 −1 [0, 1[⊂ 𝐴 and the inclusion (𝑋 \𝑈, 𝐴 \𝑈) → (𝑋, 𝐴) lies in C. Then this
inclusion induces for each 𝑛 ∈ Z an isomorphism

𝐻𝑛 (𝑋 \𝑈, 𝐴 \𝑈) ≃ 𝐻𝑛 (𝑋, 𝐴),

called the excision of 𝑈.
For 1 ∈ Ob(C) a one-point space the 𝐻𝑛1 are called the coe�cients of the
homology theory. If furthermore the following axiom is satis�ed, we speak of an
ordinary homology theory.

(iv) (Dimension Axiom) If 1 ∈ Ob(C) is a one-point space then

𝐻𝑛1 = 𝐻𝑛 (1,∅) = 0 ∀𝑛 ∈ Z \ {0}.

So in an ordinary homology theory only the coe�cient 𝐻01 is of any in-
terest. If we have chosen an isomorphism 𝐻01 ≃ 𝐺 ∈ A we call this an
ordinary homology theory with coe�cients in 𝐺 and write 𝐻𝑛 (𝑋, 𝐴;𝐺) :=
𝐻𝑛 (𝑋, 𝐴).

1.2 First Consequences

For the rest of this chapter, (𝐻𝑛 : C → A)𝑛∈Z, (𝜕𝑛)𝑛∈Z is a given (not necessarily
ordinary) homology theory and all spaces and maps are assumed to be admissible
(i.e. lie in C). As a �rst remark we look at the homology of an empty space and
at the homology of a space, relative to itself (i.e. the homology of a pair (𝑋, 𝑋)).
Using the long exact homology sequence, one easily deduces (a) in the following
remark. And using the homotopy invariance axiom (and functoriality of 𝐻0)
one deduces the �rst part of (b) and with the long exact homology sequence of
(𝑋, 𝐴) one proves the second part.

Recall that two spaces 𝑋 and 𝑌 are called homotopy equivalent if there exist
maps 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 such that 𝑓 ◦ 𝑔 is homotopic to id𝑌 and 𝑔 ◦ 𝑓 is
homotopic id𝑋. That is,

∃Φ : 𝑋 × 𝐼 → 𝑋, Φ|𝑋×0 = 𝑔 ◦ 𝑓 , Φ|𝑋×1 = id𝑋,

∃Ψ : 𝑌 × 𝐼 → 𝑌, Ψ|𝑌×0 = 𝑓 ◦ 𝑔, Ψ|𝑌×1 = id𝑌 .

Remark 1.8. Let 𝑋 be a topological space.

(a) 𝐻𝑛 (𝑋, 𝑋) = 0 ∀𝑛 ∈ Z and as a special case 𝐻𝑛∅ = 𝐻𝑛 (∅,∅) = 0 ∀𝑛 ∈ Z.

(b) If 𝑓 : 𝐴 → 𝑋 is a homotopy equivalence then 𝑛( 𝑓 ) : 𝐻𝑛𝐴 → 𝐻𝑛𝑋 is an
isomorphism. In particular if 𝐴 is a deformation retract of 𝑋 (i.e. the
inclusion 𝑖 : 𝐴⇝ 𝑋 is a homotopy equivalence) then 𝐻𝑛 (𝑖) : 𝐻𝑛𝐴→ 𝐻𝑛𝑋 is
an isomorphism and 𝐻𝑛 (𝑋, 𝐴) = 0.
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More generally, one immediately deduces the following from part (b) of the
last remark, the long exact homology sequences for (𝑋, 𝐴) and (𝑌, 𝐵), and the
5-Lemma.

Remark 1.9. If 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) is such that 𝑓 : 𝑋 → 𝐴 and 𝑓 |𝐴
𝐵
: 𝐴→ 𝐵 are

homotopy equivalence then 𝐻𝑛 ( 𝑓 ) : 𝐻𝑛 (𝑋, 𝐴) → 𝐻𝑛 (𝑌, 𝐵) is an isomorphism.

As a next step, we are going to study the homology of a �nite topological
sum (i.e. a coproduct of topological spaces). Of course, one will immediately
ask questions about the dual situation (i.e. the homology of a product) which
would lead to the de�nition of the so-called cross product in homology. But for
now let us concentrate on the coproduct.

Theorem 1.10. The homology functors preserve �nite coproducts. Explicitly,
for pairs (𝑋1, 𝐴1), (𝑋2, 𝐴2) let (𝑋, 𝐴) := (𝑋1

∐
𝑋2, 𝐴1

∐
𝐴2) be their coproduct

(i.e. topological sum) with the standard inclusions 𝑖𝑡 : (𝑋𝑡 , 𝐴𝑡 ) → (𝑋, 𝐴), 𝑡 ∈
{1, 2}. Then for all 𝑛 ∈ Z the diagramme

𝐻𝑛 (𝑋1, 𝐴1)
𝐻𝑛 (𝑖1 )−−−−−→ 𝐻𝑛 (𝑋, 𝐴)

𝐻𝑛 (𝑖2 )←−−−−− 𝐻𝑛 (𝑋2, 𝐴2)

is a coproduct in 𝐴 (and so 𝐻𝑛 (𝑋, 𝐴) is even a biproduct since 𝐴 is abelian).
Put di�erently,

𝐻𝑛 (𝑋1, 𝐴1) ⊕ 𝐻𝑛 (𝑋2, 𝐴2)
(𝐻𝑛 (𝑖1 )
𝐻𝑛 (𝑖2 ))−−−−−−−→ 𝐻𝑛 (𝑋, 𝐴)

is an isomorphism.

Proof. Consider the morphism
(𝐻𝑛 (𝑖1 )
𝐻𝑛 (𝑖2 )

)
from the direct sum of the long exact

homology sequences for (𝑋1, 𝐴1), (𝑋2, 𝐴2) to the long exact homology sequence
for (𝑋, 𝐴). In view of the 5-lemma it is enough to show the proposition for the
case where 𝐴1 = 𝐴2 = ∅. We have the standard inclusions

𝑋1
𝑖1−→ 𝑋

𝑗1−→ (𝑋, 𝑋1) and 𝑋2
𝑖2−→ 𝑋

𝑗2−→ (𝑋, 𝑋2),

whose induced morphisms can be combined in a commutative diagramme

𝐻𝑛𝑋1
𝑓1 //

𝐻𝑛 (𝑖1 ) ##

𝐻𝑛 (𝑋, 𝑋2)

𝐻𝑛𝑋

𝐻𝑛 ( 𝑗2 )

99

𝐻𝑛 ( 𝑗1 )

%%
𝐻𝑛𝑋2

𝑓2

//

𝐻𝑛 (𝑖2 )
;;

𝐻𝑛 (𝑋, 𝑋1)

By the long exact homology sequences the diagonals are exact and by the exci-
sion axiom any morphism of the form 𝐻𝑛 (𝑌, 𝐵) → 𝐻𝑛 (𝑌

∐
𝑍, 𝐵

∐
𝑍), induced by

the inclusion, is an isomorphism. So in particular, 𝑓1 and 𝑓2 are isomorphisms.
The following lemma gives the desired result. □
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Lemma 1.11. Given a commutative diagramme

𝐴1
𝑓1 //

𝑖1   

𝐵2

𝑋

𝑗2

>>

𝑗1

  
𝐴2

𝑓2

//

𝑖2

>>

𝐵1

in an abelian category with exact diagonals. Then the following conditions are
equivalent:

(a) 𝑓1 and 𝑓2 are isomorphisms;

(b)
(𝑖1
𝑖2

)
: 𝐴1 ⊕ 𝐴2 → 𝑋 is an isomorphism;

(c) ( 𝑗1, 𝑗2) : 𝑋 → 𝐵1 ⊕ 𝐵2 is an isomorphism.

Considering the long exact homology sequence of a pair, one is forced to ask
whether there is an analogue for a triple (𝑋, 𝐴, 𝐵) and indeed there is. There are
topological proofs for this but we prefer an algebraic one (even if that means
that we have to draw a nasty diagramme) since it uses only the Long Exact
Homology Sequence axiom.

For a triple (𝑋, 𝐴, 𝐵) ∈ Ob(Top(3) ) with (𝑋, 𝐴), (𝑋, 𝐵), (𝐴, 𝐵) ∈ Ob(C), we
de�ne another boundary operator

𝜕 : 𝐻𝑛+1 (𝑋, 𝐴)
𝜕−→ 𝐻𝑛𝐴→ 𝐻𝑛 (𝐴, 𝐵),

where the �rst morphism is the boundary map given by our homology theory
and the second morphism is induced by the inclusion (𝐴,∅) → (𝐴, 𝐵). We shall
also write 𝜕 for this morphism as there should be no risk of confusion.

If we now consider the three pairs (𝑋, 𝐴), (𝑋, 𝐵), and (𝐴, 𝐵), we can put
their long exact homology sequences into a so-called homology braid of C. T. C.
Wall

(1)
))
𝐻𝑛+1 (𝑋, 𝐴)

𝜕

$$

𝜕 ))
𝐻𝑛 (𝐴, 𝐵)

𝜕

$$

))
𝐻𝑛−1 (𝐵)   

))(2) 88

(3)
𝜕
&&

𝐻𝑛 (𝐴)
66

((
𝐻𝑛 (𝑋, 𝐵)

𝜕 55

))
𝐻𝑛−1 (𝐴)

99

%%𝐻𝑛 (𝐵) ::

55
𝐻𝑛 (𝑋) ::

55
𝐻𝑛 (𝑋, 𝐴)

𝜕

>>

𝜕 55

(4)
𝜕 55

where the sequences (1), (3), and (4) are the long exact homology sequences of
(𝑋, 𝐴), (𝑋, 𝐵), and (𝐴, 𝐵) respectively. The sequence (2) will be called the long
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exact homology sequence for the triple (𝑋, 𝐴, 𝐵). One easily checks that this is
a chain complex (i.e. the composition of two morphisms is 0) and the following
lemma gives us exactness.

Lemma 1.12 (Braid Lemma). Suppose we have a braid diagramme as below
for abeilan groups.

𝐴
))

((
𝐵

))

))
𝐶

))

))
𝐷

𝐸

66

))
𝐹

66

))
𝐺

55

))
𝐻

55

𝐼 55

55

𝐽 55

55

𝐾

55

If three of the sequences are exact and the fourth is a chain complex, i.e.,

1 𝐸 → 𝐴→ 𝐵→ 𝐺 → 𝐾 is exact,

2 𝐸 → 𝐼 → 𝐽 → 𝐺 → 𝐶 → 𝐷 is exact,

3 𝐴→ 𝐹 → 𝐽 → 𝐾 → 𝐻 → 𝐷 is exact

Then 𝐼 → 𝐹 → 𝐵→ 𝐶 → 𝐻 is exact is exact, too.

De�nition 1.13. By the above discussion, the following de�nition makes sense.
For each triple (𝑋, 𝐴, 𝐵) we have an exact sequence

· · · → 𝐻𝑛+1 (𝑋, 𝐴)
𝜕−→ 𝐻𝑛 (𝐴, 𝐵) → 𝐻𝑛 (𝑋, 𝐵) → 𝐻𝑛 (𝑋, 𝐴)

𝜕−→ · · ·

where 𝜕 is the boundary morphism of the triple (𝑋, 𝐴, 𝐵).

The braid diagramme of C. T. C. Wall

The above discussion of the exact sequence for a triple (𝑋, 𝐴, 𝐵) is rather terse.
We are going to be a bit more speci�c, following Bredon.

Theorem 1.14. If 𝐵 ⊂ 𝐴 ⊂ 𝑋 and we let 𝜕∗ : 𝐻𝑖 (𝑋, 𝐴) → 𝐻𝑖−1 (𝐴, 𝐵) be the
composition of 𝜕∗ : 𝐻𝑖 (𝑋, 𝐴) → 𝐻𝑖−1 (𝐴) with the map 𝐻𝑖−1 (𝐴) → 𝐻𝑖−2 (𝐴, 𝐵)
induced by inclusion, then the following sequence is exact, where the maps other
than 𝜕∗ come from inclusions:

· · · 𝜕∗−→ 𝐻𝑝 (𝐴, 𝐵)
𝑖∗−→ 𝐻𝑝 (𝑋, 𝐵)

𝑗∗−→ 𝐻𝑝 (𝑋, 𝐴)
𝜕∗−→ 𝐻𝑝−1 (𝐴, 𝐵)

𝑖∗−→ · · ·

Proof. There is the following commutative diagramme:

((
𝐻𝑖+1 (𝑋, 𝐴)

##

))
𝐻𝑖 (𝐴, 𝐵)

$$

))
𝐻𝑖−1 (𝐵)

$$

))
𝐻𝑖−1 (𝑋)

66

&&
88

&&
𝐻𝑖 (𝐴)

66

((
𝐻𝑖 (𝑋, 𝐵)

55

))
𝐻𝑖−1 (𝐴)

55

))
𝐻𝑖 (𝐵) ;;

55
𝐻𝑖 (𝑋) ::

55
𝐻𝑖 (𝑋, 𝐴) ::

55
𝐻𝑖−1 (𝐴, 𝐵)

88

((66
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This is called a �braid� diagramme. (This kind of diagramme is due to Wall
and Kervaire.) There are four braids and three of them are exact (the exact
sequences for the pairs (𝑋, 𝐴), (𝑋, 𝐵), and (𝐴, 𝐵)). The fourth is the sequence
of the triple (𝑋, 𝐴, 𝐵) which we wish to prove exact. This sequence is easily seen
from the commutativity to be of order two except for the composition

𝐻𝑖 (𝐴, 𝐵) → 𝐻𝑖 (𝑋, 𝐵) → 𝐻𝑖 (𝑋, 𝐴).

But this composition factors through 𝐻𝑖 (𝐴, 𝐴) = 0, so the entire sequence is of
order two. The theorem now follows from the following completely algebraic
fact. □

Lemma 1.15 (Wall). Consider the following commutative braid diagramme:

!!
𝐺
′
1,2

**

""

𝐺2,3
))

  

𝐺3
))

""

𝐺
′′
1

==

��

AA

��

𝐺1,3

<<

""

𝐺2

>>

  

𝐺
′′
1,3

<<

""
𝐺
′
3 55

<<

𝐺1 44

>>

𝐺1,2 44

<<

𝐺
′′
2,3

AA

!!
==

If all the three (3) braids except the one with single subscripts are exact and the
fourth is of order two, then the fourth one is also exact.

Proof. The proof is by a diagramme chase. For simplicity in doing the chase we
shall introduce some special notation for it. Elements of, for example, 𝐺

′
1,2 will

be denoted by 𝑎
′
1,2, 𝑏

′
1,2, etc. To indicate that an element 𝑎1 ∈ 𝐺1 comes from

an element 𝑏1,3, not yet de�ned, we just write ∃𝑏1,3 → 𝑎1. To indicate that an
element 𝑎1 ∈ 𝐺1 goes to 1,2 ∈ 𝐺1,2 we just write 𝑎1 → 𝑏1,2, and if 𝑏1,2 has not
yet been de�ned, this does so. The notation 𝑎2 → 0 means that the element
𝑎2 ∈ 𝐺2 goes to 0 in 𝐺3. Now we begin the chase. In following the arguments
the reader will �nd it helpful to diagramme the elements and relations as they
arise.

First we prove exactness at 𝐺2 for the composition 𝐺1 → 𝐺2 → 𝐺3. Thus
suppose 𝑎2 → 03. Then if 𝑎2 → 𝑎1,2, 𝑎1,2 → 0

′′
1,3 by commutativity. By

exactness, ∃𝑎1 → 𝑎1,2. Let 𝑎1 → 𝑏2. Then 𝑎2 → 𝑎1,2 and 𝑏2 → 𝑎1,2 imply
𝑎2 − 𝑏2 → 01,2. Thus ∃𝑎2,3 → 𝑎2 − 𝑏2. Since 𝑎1 → 𝑏2 we have 𝑏2 → 03.
Thus 𝑎2 − 𝑏2 → 03, and so 𝑎2,3 → 03. Therefore ∃𝑎1,3 → 𝑎2,3. Let 𝑎1,3 → 𝑏1.
Since 𝑎1,3 → 𝑎2,3 → 𝑎2 − 𝑏2 and 𝑎1,3 → 𝑏1 it follows from commutativity that
𝑏1 → 𝑎2 − 𝑏2. But 𝑎1 → 𝑏2, so 𝑎1 + 𝑏1 → 𝑏2 + (𝑎2 − 𝑏2) = 𝑎2, as desired.

Next we prove exactness at 𝐺3. Thus let 𝑎3 → 0
′′
1 . De�ne 𝑎3 → 𝑎

′′
1,3. Then

𝑎
′′
1,3 → 0

′′
1 so that ∃𝑎1,2 → 𝑎

′′
1,3. Since 𝑎3 → 𝑎

′′
1,3 → 0

′′
2,3 we have 𝑎1,2 → 0

′′
23.

Consequently, ∃𝑎2 → 𝑎1,2. Let 𝑎2 → 𝑏3. Then 𝑎3 − 𝑏3 → 0
′′
1,3. Thus ∃𝑎2,3 →

𝑎3 − 𝑏3. Let 𝑎2,3 → 𝑐2. Then 𝑎2 + 𝑐2 → 𝑏3 + (𝑎3 − 𝑏3) = 𝑎3 as claimed.
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Finally we prove exactness at 𝐺1. Thus suppose 𝑎1 → 02. Then 𝑎1 → 01,2
so ∃𝑎1,3 → 𝑎1. Let 𝑎1,3 → 𝑎2,3. Then 𝑎2,3 → 02 so that ∃𝑎′1,2 → 𝑎2,3.

Let 𝑎
′
1,2 → 𝑏1,3. Then note 𝑏1,3 → 01. Then we have 𝑎1,3 − 𝑏1,3 → 02,3

so ∃𝑎′3 → 𝑎1,3 − 𝑏1,3. Now 𝑎1,3 − 𝑏1,3 → 𝑎1 − 01 = 𝑎1, so that 𝑎
′
3 → 𝑎1 as

claimed. □

1.3 Reduced Homology

Although the coe�cients 𝐻𝑛1 are important, they do not contain any geometric
information whatsoever. Because of this and for the sake of readability (so
that we do not always have to carry these one-point spaces with us while doing
algebraic manipulations), we want to split them o� the homologies of our spaces.
This leads to the idea of reduces homology.

De�nition 1.16. Let 𝑋 be a non-empty space and 𝑝 : 𝑋 → 1 the unique map
to a one-point space. We de�ne the 𝑛th reduced homology of 𝑋 as

𝐻𝑛𝑋 := ker(𝐻𝑛 (𝑝) : 𝐻𝑛𝑋 → 𝐻𝑛1).

For 𝑓 : 𝑋 → 𝑌 , we get again an induced morphism 𝐻𝑛 ( 𝑓 ) : 𝐻𝑛𝑋 → 𝐻𝑛𝑌 in
the obvious way. Like that we can extend 𝐻𝑛 to a homotopy invariant functor
Top→ Ab (i.e. if 𝑓 is a homotopy equivalence, then 𝐻𝑛 ( 𝑓 ) is an isomorphism).

Obviously, by de�nition, we can calculate the reduced homology if we have
the usual (i.e. non-reduced) homology given. One could ask whether it's also
possible to go the other way. And indeed by some elementary algebraic facts
we can. If we choose a point 𝑥 ∈ 𝑋 and look at the inclusion 𝑥 : 1 → 𝑋 and
𝑝 : 𝑋 → 1, we have 𝑝 ◦ 𝑥 = id1 and the long exact homology sequence for (𝑋, 𝑥)
reads as

· · · → 𝐻𝑛+1 (𝑋, 𝑥)
𝜕−→ 𝐻𝑛1

𝐻𝑛 (𝑥 )−−−−−→ 𝐻𝑛𝑋 → 𝐻𝑛 (𝑋, 𝑥)
𝜕−→ 𝐻𝑛−11

𝐻𝑛 (𝑥 )−−−−−→ · · ·

Because 𝐻𝑛 (𝑝) ◦ 𝐻𝑛 (𝑥) = id𝐻𝑛1 it follows that 𝐻𝑛 (𝑥) is a monomorphism and
by exactness im 𝜕 = 0. So we can rewrite this as a short exact sequence, which
splits since 𝐻𝑛 (𝑝) is a retraction of 𝐻𝑛 (𝑥).

0 // 𝐻𝑛1
𝐻𝑛 (𝑥 ) //

id𝐻𝑛1 ""

𝐻𝑛𝑋 //

𝐻𝑛 (𝑝)
��

𝐻𝑛 (𝑋, 𝑥) // 0

𝐻𝑛1

The triangle on the left gives us an isomorphism
( 𝑖
𝐻𝑛 (𝑥 )

)
: 𝐻𝑛𝑋 ⊕ 𝐻𝑛1

∼−→ 𝐻𝑛𝑋,

where 𝑖 : 𝐻𝑛𝑋 ↩→ 𝐻𝑛𝑋 is the standard inclusion. One plainly checks this as
follows:

𝐻𝑛𝑋 ≃ ker𝐻𝑛 (𝑝) ⊕ 𝐻𝑛 (𝑥) (𝐻𝑛1) = 𝐻𝑛𝑋 ⊕ 𝐻𝑛 (𝑥) (𝐻𝑛1) ≃ 𝐻𝑛𝑋 ⊕ 𝐻𝑛1.
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By the �rst isomorphism theorem 𝐻𝑛 ( 𝑗) |𝐻𝑛𝑋
: 𝐻𝑛𝑋

∼−→ 𝐻𝑛 (𝑋, 𝑥) is an isomor-
phism, where 𝑗 : 𝑋 → (𝑋, 𝑥) is the standard inclusion:

𝐻𝑛 (𝑋, 𝑥) ≃ 𝐻𝑛𝑋/𝐻𝑛 (𝑥) (𝐻𝑛1) ≃ (𝐻𝑛𝑋 ⊕ 𝐻𝑛 (𝑥) (𝐻𝑛1))/𝐻𝑛 (𝑥) (𝐻𝑛1) ≃ 𝐻𝑛𝑋

and �nally these two together give

𝐻𝑛𝑋 ≃ 𝐻𝑛 (𝑋, 𝑥)⊕𝐻𝑛1, 𝐻𝑛𝑋
( 𝑖
𝐻𝑛 (𝑥))←−−−−−− 𝐻𝑛𝑋⊕(𝐻𝑛1)

𝐻𝑛 ( 𝑗 ) |𝐻𝑛𝑋
×1𝐻𝑛1

−−−−−−−−−−−−−−→ 𝐻𝑛 (𝑋, 𝑥)⊕𝐻𝑛1,

which is exactly the usual splitting condition for a short exact sequence
A special case is when 𝑋 is contractible. Then 𝐻𝑛 (𝑥) is an isomorphism (by

Remark 1.8) and putting this into the above short exact sequence gives us that
0→ 𝐻𝑛 (𝑋, 𝑥) → 0 is exact from which one easily deduces the following theorem.

Theorem 1.17. If 𝑋 is contractible, then 𝐻𝑛𝑋 ≃ 𝐻𝑛 (𝑋, 𝑥) = 0 ∀𝑛 ∈ Z.

To �nish this section, we are going to introduce the analogue of the long
exact homology sequence in the reduced case. As one easily veri�es, this is just
a special case of the long exact homology sequence for a triple, where the triple
is of the form (𝑋, 𝐴, 𝑥), where 𝑥 ∈ 𝐴 ⊂ 𝑋 is a point.

Theorem 1.18. (Reduced Long Exact Homology Sequence) Let (𝑋, 𝐴) be a pair
with 𝐴 ≠ ∅. Then the image of the boundary operator 𝜕 : 𝐻𝑛+1 (𝑋, 𝐴) → 𝐻𝑛𝐴

lies in 𝐻𝑛𝐴. As a consequence, by restricting the long exact homology sequence
of the pair (𝑋, 𝐴), we get another long exact sequence for the reduced homology

· · · → 𝐻𝑛+1 (𝑋, 𝐴)
𝜕−→ 𝐻𝑛𝐴→ 𝐻𝑛𝑋 → 𝐻𝑛 (𝑋, 𝐴)

𝜕−→ · · ·

Proof. Consider the unique arrow 𝑝 : 𝑋 → 1 (resp. 𝑝 : 𝐴 → 1 or 𝑝 : (𝑋, 𝐴) →
(1, 1)). Then the long exact sequences of (𝑋, 𝐴) and (1, 1) yield

· · · // 𝐻𝑛+1 (𝑋, 𝐴)
𝜕 //

��

��

𝐻𝑛𝐴 //
��

��

𝐻𝑛𝑋 //
��

��

𝐻𝑛 (𝑋, 𝐴)
𝜕 //

��

��

· · ·

· · · // 𝐻𝑛+1 (𝑋, 𝐴)
𝜕 //

��

𝐻𝑛 (𝑝)
��

𝐻𝑛𝐴 //
��

𝐻𝑛 (𝑝)
��

𝐻𝑛𝑋 //
��

𝐻𝑛 (𝑝)
��

𝐻𝑛 (𝑋, 𝐴)
𝜕 //

��

𝐻𝑛 (𝑝)
��

· · ·

· · ·
0
// 𝐻𝑛+1 (1, 1) 0

// 𝐻𝑛1 ∼
// 𝐻𝑛1 0

// 𝐻𝑛 (1, 1) 0
// · · ·

In the lower long exact sequence, we have used that 𝐻𝑛 (1, 1) = 0 and get all the 0-
morphisms. Either by exactness or by the fact that 1→ 1 is a homeomorphism,
we conclude that 𝐻𝑛1 → 𝐻𝑛1 is an isomorphism. The upper row consists
simply of the kernels of the corresponding vertical morphisms 𝐻𝑛 (𝑝) (observe
that ker𝐻𝑛 (𝑝) : 𝐻𝑛 (𝑋, 𝐴) → 𝐻𝑛 (1, 1)) = 𝐻𝑛 (𝑋, 𝐴) since 𝐻𝑛 (1, 1) = 0). By
naturality of 𝜕 the lower squares in the diagramme commute and so, since
𝐻𝑛 (𝑝) ◦ 𝜕 = 0 ◦ 𝐻𝑛 (𝑝) we have im 𝜕 ⊂ ker𝐻𝑛 (𝑝) which proves the �rst part of
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the proposition (this actually proves more generally that the induced morphisms
in the upper row are well-de�ned).

For the second part, we observe that all the 𝐻𝑛 (𝑝) are epimorphisms for
if we choose any point 𝑥 : 1 → 𝐴 (resp. 𝑥 : 1 → 𝑋 or 𝑥 : (1, 1) → (𝑋, 𝐴)),
we have that 𝐻𝑛 (𝑝) ◦ 𝑥 = id1 and so 𝑝 has a section. By a general theorem
(whose proof is left as an exercise) which says that if we have an epimorphism
of exact sequences then its kernel is also exact (and dually for a monomorphism
of exact sequences and its cokernel) we get the exactness of the reduced long
exact homology sequence. □

1.4 Homology of Spheres

In this section, we delve into the problem of calculating the homology of the
spheres just from the axioms. To do so, we observe �rst, that we can divide the
sphere S𝑛 ⊂ R𝑛+1 in an upper and lower hemisphere

D𝑛
± := {(𝑥1, . . . , 𝑥𝑛+1) ∈ S𝑛 | ± 𝑥𝑛+1 ≥ 0}.

Obviously D𝑛
± ≃ D𝑛 by simply projecting D𝑛

± along the 𝑥𝑛+1-axis to R𝑛 × {0} ⊂
R𝑛+1. Moreover, we observe that we have for any 𝑛 ∈ N an inclusion

S𝑛−1 → S𝑛, (𝑥1, . . . , 𝑥𝑛) ↦→ (𝑥1, . . . , 𝑥𝑛, 0)

or a little more geometric, by viewing S𝑛−1 as the equator of S𝑛. By combining
these we get S0 ↩→ S1 ↩→ S2 ↩→ · · · . Let's furthermore �x the notation 𝑒𝑖 ∈ R𝑛
to denote the 𝑖th standard basis vector having (𝑒𝑖) 𝑗 = 𝛿𝑖, 𝑗 (the Kronecker delta)
and with this, let's write 𝑁 := 𝑒𝑛+1 and 𝑆 := −𝑒𝑛+1 for the north and south pole
of S𝑛 respectively. Now, for 𝑛 ∈ N>0 we look at the commutative diagramme

𝐻𝑘 (D𝑛
− , S

𝑛−1) //

��

𝐻𝑘 (S𝑛,D𝑛
+)

��
𝐻𝑘 (D𝑛

− ,D
𝑛
− \ {𝑆}) // 𝐻𝑘S

𝑛, S𝑛 \ {𝑆})

induced by inclusions. Because S𝑛−1 ↩→ D𝑛\{𝑆} and D𝑛
+ ↩→ S𝑛\{𝑆} are homotopy

equivalences, it follows that the vertical arrows are isomorphisms (by Remark
1.9). For the bottom arrow, we can use the excision axiom with 𝑈 := intD𝑛

+ and
deduce that this is also an isomorphism. In conclusion, the top arrow has to be
an isomorphism, too.

We choose ∗ := 𝑒1 = (1, 0, . . . , 0) ∈ S𝑛−1 ⊂ S𝑛 and insert this isomorphism in
a second diagramme

𝐻𝑘 (D𝑛
− , S

𝑛−1) 𝜕 //

≃
��

𝐻𝑘−1 (S𝑛−1, ∗) ≃

𝜎+

��

𝐻𝑘−1S
𝑛−1

𝜎+
��

𝐻𝑘 (S𝑛,D𝑛
+) 𝐻𝑘 (S𝑛, ∗)

𝑗
oo ≃ 𝐻𝑘S

𝑛
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The reduced long exact homology sequence of (D𝑛
− , S

𝑛−1) reads as

· · · → 𝐻𝑘 (D𝑛
−) → 𝐻𝑘 (D𝑛

− , S
𝑛−1) 𝜕−→ 𝐻𝑘−1 (S𝑛−1) → 𝐻𝑘−1 (D𝑛

−) → · · ·

Since D𝑛
− ≃ D𝑛−1 is contractible, we deduce from theorem 1.17 that 𝐻𝑘 (D𝑛

−) =
𝐻𝑘−1 (D𝑛

−) = 0 and so 𝜕 is an isomorphism. By the same argument, 𝑗 is an
isomorphism, since {∗} ↩→ D𝑛

− is a homotopy equivalence. Now we can easily
de�ne 𝜎+ to be the unique isomorphism making the diagramme commute.

Lemma 1.19. 𝐻𝑛S
0 ≃ 𝐻𝑛1 for all 𝑛 ∈ Z.

Proof. Choose a point 𝑥 : 1 → S0 and denote the other point by 𝑦 : 1 → S0.
Let's also write 𝐻𝑛 (𝑖) : 𝐻𝑛S

0 ↩→ 𝐻𝑛S
0 for the standard inclusion. As seen in

the section about the reduced homology and theorem Theorem 1.10, we get a
commutative diagramme

𝐻𝑛S
0 ⊕ 𝐻𝑛1 ∼

( 𝑖𝑥∗) // 𝐻𝑛S
0 𝐻𝑛1 ⊕ 𝐻𝑛1∼
(𝑦∗𝑥∗)oo

𝐻𝑛1
OO

OO

𝐻𝑛1
OO

OO

where the vertical arrows are the standard inclusions into the second summand.
If we de�ne the isomorphism

𝑓 :=

(
𝑦∗
𝑥∗

)−1
◦
(
𝑖

𝑥∗

)
: 𝐻𝑛S

0 ⊕ 𝐻𝑛1
∼−→ 𝐻𝑛1 ⊕ 𝐻𝑛1,

we can rewrite this as a commutative diagramme

0 // 𝐻𝑛1 // // 𝐻𝑛S
0 ⊕ 𝐻𝑛1 // //

𝑓∼
��

𝐻𝑛S
0 // //

𝑓̂

��

0

0 // 𝐻𝑛1 // // 𝐻𝑛1 ⊕ 𝐻𝑛1 // // 𝐻𝑛1 // // 0

where the rows are exact and 𝑓̂ is the unique arrow between the cokernels,
induced by 𝑓 , making the diagramme commute. By the 3-lemma (which is the

special case of the 5-lemma for short exact sequences) it follows that 𝑓̂ is an
isomorphism. □

Theorem 1.20. For all 𝑘 ∈ Z and 𝑛 ∈ N we have isomorphisms

𝐻𝑘S
𝑛 ≃ 𝐻𝑘−𝑛1 and 𝐻𝑘S

𝑛 ≃ 𝐻𝑘−𝑛1 ⊕ 𝐻𝑘1.

It follows that we also have isomorphisms

𝐻𝑘 (D𝑛+1, S𝑛) ≃ 𝐻𝑘−1S
𝑛 ⊕ 𝐻𝑘−(𝑛+1)1.



18 LECTURE 1. AXIOMATIC HOMOLOGY THEORY

Proof. As seen in the last paragraph, we have isomorphisms

𝐻𝑘S
𝑛 ≃ 𝐻𝑘−1S

𝑛−1 ≃ · · · ≃ 𝐻𝑘−𝑛S
0 ≃ 𝐻𝑘−𝑛1,

where we used the above lemma for the last isomorphism. By remembering
ourselves that 𝐻𝑘S

𝑛 ≃ 𝐻𝑘S
𝑛 ⊕𝐻𝑘−(𝑛+1)1 the �rst part of the proposition follows.

For the second part, let's look at the reduced long exact homology sequence for
(D𝑛+1, S𝑛). Because D𝑛+1 is contractible, this looks like

0→ 𝐻𝑘 (D𝑛+1, S𝑛) 𝜕−→ 𝐻𝑘S
𝑛 → 0

and so 𝜕 is an isomorphism. □

Corollary 1.21. Let (𝐻𝑛)𝑛∈Z, (𝜕𝑛)𝑛∈Z be an ordinary homology theory having
coe�cient 𝐻01 ≃ 𝐺, then for 𝑛 ∈ N>0

𝐻𝑘S
𝑛 ≃

{
𝐺 𝑘 ∈ {0, 𝑛}
0 otherwise

and similarly 𝐻𝑘 (D𝑛+1, S𝑛) ≃
{
𝐺 𝑘 = 𝑛 + 1
0 otherwise.

By noticing that an ordinary homology theory with non-trivial coe�cient
exists (e.g. singular homology, which will be treated in Chapter ??), we easily
deduce

Corollary 1.22 (Invariance of Dimension). R𝑚 ≃ R𝑛 ⇔ 𝑚 = 𝑛 for 𝑚, 𝑛 ∈ N.

Proof. The direction �⇐�is trivial and for the other direction, we assume that
for 𝑚 ≠ 𝑛 we have a homeomorphism R𝑚 → R𝑛. The case where 𝑚 = 0 or 𝑛 = 0
is trivial and so the case 𝑚, 𝑛 ≥ 1 is left. We can extend our homeomorphism
R𝑚 → R𝑛 to a homeomorphism of the one-point compacti�cations, which is
S𝑚 → SR𝑛 but since 𝑚 ≠ 𝑛 by the above theorem 𝐻𝑛S

𝑚 = 0 but 𝐻𝑛S
𝑛 ≃ 𝐺 ≠

0. □

Corollary 1.23. S𝑛 is not contractible ∀𝑛 ∈ N.



Lecture 2

Acyclic Models

In this chapter we will be concerned with studying so-called acyclic models
and will prove a form of the famous acyclic model theorem. The theory of
acyclic models is in some sense a way to abstract the standard models arising in
homology theory, like the standard simplices in singular homology (see Chapter
3). The acyclic model theorem will be useful in this text to prove homotopy
invariance and the excision axiom for singular homology but generally �nds wide
applications throughout algebraic topology and homological algebra.

2.1 Models

Let C be a category. A speci�ed set M ⊂ Ob(C) of objects in C will be called
models of C. From now on we �x the notation M to denote a set of models of
a category.

Example 2.1. The intuition (and our primary use for that matter) is the fol-
lowing: There is a purely combinatorial theory of simplices known as simplicial
sets. The easiest �models� of this theory in a topological context are the stan-
dard simplices Δ𝑞 ⊂ R𝑞+1. And in fact, we will investigate {Δ𝑞 |𝑞 ∈ N} as models
of Top in the next chapter using the tool(s) we are going to develop in this
one.

De�nition 2.2. A functor 𝐹 : C → 𝑅−Mod for 𝑅 any ring will be called free
with models M i� there is a subset M′ ⊂ M and for each 𝑀 ∈ M′ an element
𝑒𝑀 ∈ 𝐹𝑀 such that for every 𝐶 ∈ Ob(C) the module 𝐹𝐶 is free and the set

{(𝐹𝑎)𝑒𝑀 ∈ 𝐹𝐶 |𝑀 ∈M′, 𝑎 ∈ C(𝑀,𝐶)}

forms a basis for 𝐹𝐶. Put di�erently, the functor 𝐹 factors as

Sets

&&
C

𝐹
//

<<

𝑅 −Mod

19
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where Sets → 𝑅 −Mod is the free construction and the functor C → Sets

maps 𝐶 ∈ Ob(C) to the set described above and 𝑏 : 𝐶 → 𝐷 in C to 𝑏∗ with
𝑏∗ ((𝐹𝑎)𝑒𝑀 ) := 𝐹 (𝑏𝑎)𝑒𝑀 . If 𝐹 does map toCh(𝑅−Mod) (the category of chain
maps between chain complexes of 𝑅-modules) we call 𝐹 free with models M i�
it is free with models M at each degree 𝐹𝑝, where for 𝑝 ∈ Z 𝐹𝑝 : C → 𝑅−Mod

maps 𝑎 : 𝐶 → 𝐷 to (𝐹𝑎)𝑝 : (𝐹𝐶)𝑝 → (𝐹𝐷)𝑝. One should notice that at each
degree, we can have a di�erent subsetM𝑝 ⊂M and di�erent elements 𝑒

𝑝

𝑀
∈ 𝐹𝑛𝑀

for 𝑀 ∈M𝑝.
Finally, let's call a functor 𝐹 : C → Ch(𝑅 −Mod) a-acyclic on the models

M (�a-acyclic� stands for almost acyclic) i� for each 𝑀 ∈M the chain complex
𝐹𝑀 is exact everywhere except at the degree 0. I.e. 𝐻𝑖 (𝐹𝑀) = 0 for all 𝑖 ∈ Z\{0}.
In the same spirit, we call a chain complex a acyclic i� it is acyclic except at
degree 0.

De�nition 2.3. Let 𝐹, 𝐺 : C → Ch(𝑅−Mod) be two functors and 𝛼, 𝛽 : 𝐹 →
𝐺 two natural transformations. We say that 𝛼 and 𝛽 are naturally chain ho-
motopic or simply naturally homotopic i� all their components are chain ho-
motopic in a natural way. That is for each 𝐶 ∈ Ob(C) there is a chain map
𝜒𝐶 : 𝐹𝐶 → 𝐺𝐶 of degree 1 (i.e. (𝜒𝐶 )𝑛 : 𝐹𝑛𝐶 → 𝐺𝑛+1𝐶,∀𝑛 ∈ Z) such that

𝛼𝐶 − 𝛽𝐶 = 𝜕𝐺𝐶 ◦ 𝜒𝐶 + 𝜒𝐶 ◦ 𝜕𝐹𝐶 ,

where 𝜕𝐹𝐶 and 𝜕𝐺𝐶 denote the boundaries of 𝐹𝐶 and 𝐺𝐶 respectively. Further-
more, 𝜒𝐶 is required to be natural in 𝐶. That is, for each 𝑎 : 𝐶 → 𝐷 in C the
following diagramme commutes

𝐶

𝑎

��
𝐷

𝐹𝐶
𝜒𝐶 //

𝐹𝑎

��

𝐺𝐶

𝐺𝑎

��
𝐹𝐷

𝜒𝐶
// 𝐺𝐷

So in some sense 𝜒 is a natural transformation 𝐹 → 𝐺, which is not completely
honest since the components 𝜒𝐶 are not really arrows in Ch(𝑅−Mod). To be
even more formal, one could say that 𝜒 is a natural transformation 𝐹 → 𝑆− ◦𝐺
where 𝑆− : Ch(𝑅 −Mod) → Ch(𝑅 −Mod) is the shift functor that shifts a
chain complex 𝑋 by −1. So 𝑋 is mapped to 𝑋 ′ = 𝑆−𝑋, having 𝑋 ′𝑛 = 𝑋𝑛+1 with
the obvious boundaries (the arrow function of 𝑆− is obvious, too).

2.2 The Acyclic Model Theorem

In this section we will state and prove a form of the acyclic model theorem.

Theorem 2.4 (Acyclic Model Theorem). Let C be a category with models M

and 𝐹, 𝐺 : C → Ch(𝑅 −Mod) functors which are 0 in negative degrees (i.e.
𝐹𝑛 = 𝐺𝑛 = 0 ∀𝑛 ∈ Z<0). If 𝐹 is free with models M and 𝐺 is a-acyclic on M

and there is a natural transformation 𝜑 : 𝐻0𝐹 → 𝐻0𝐺 (where 𝐻0𝐹, 𝐻0𝐺 : C →
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𝑅 −Mod) then there is a natural transformation 𝜑 : 𝐹 → 𝐺, which induces 𝜑.
Moreover, 𝜑 is unique up to natural homotopy.

Remark 2.5. For the sake of readability we will omit unnecessary indices in the
following proof. We will assume that the attentive reader will still be capable
of following it and �ll in the details.

This proof seems a little complicated at �rst glance (which it really isn't).
Because of this we will brie�y sketch it before formalising it rigorously. For
𝐶 ∈ Ob(C), we want to de�ne 𝜑 as to make the diagramme

· · · 𝜕 // 𝐹𝑛+1𝐶
𝜕 //

𝜑

��

𝐹𝑛𝐶
𝜕 //

𝜑

��

· · · 𝜕 // 𝐹0𝐶 // //

𝜑

��

𝐻0 (𝐹𝐶) //

𝜑

��

0

· · · 𝜕 // 𝐺𝑛+1𝐶
𝜕 // 𝐺𝑛𝐶

𝜕 // · · · 𝜕 // 𝐺0𝐶 // // 𝐻0 (𝐺𝐶) // 0

commute. We do this inductively in each degree 𝑛. To do so, we �rst consider
the case where 𝐶 = 𝑀 is a model and so the lower row is exact. We can use this
exactness to �lift� 𝜑 from degree 𝑛 to 𝑛 + 1. Afterwards we use the fact that 𝐹
is free with models M to extend this to arbitrary 𝐶 ∈ Ob(C).

Proof. By presumption, for each 𝑛 ∈ N there is a collectionM𝑛 ⊂M and for each
𝑀 ∈M𝑛 an element 𝑒𝑛

𝑀
∈ 𝐹𝑛𝑀 as in the de�nition of a free functor with models

M. Now, let 𝐶 ∈ Ob(C) be arbitrary. Again by presumption, 𝐹0𝐶 = 𝑍0 (𝐹𝐶)
and 𝐺0𝐶 = 𝑍0 (𝐺𝐶) are the cycles of 𝐹𝐶 and 𝐺𝐶 at degree 0 respectively. Thus,
we get standard projections onto the 0th homology modules as in the following
diagramme

𝐹0𝐶 // //

𝜑

��

𝐻0 (𝐹𝐶)

𝜑

��
𝐺0𝐶 // // 𝐻0 (𝐺𝐶)

Thus, we can augment 𝐹 and 𝐺 by (re)de�ning 𝐹−1𝐶 := 𝐻0 (𝐹𝐶) and 𝐺−1𝐶 :=
𝐻0 (𝐺𝐶) and de�ning the standard projections as the boundary morphisms. By
this, 𝜑 is de�ned in degree −1, where it is simply 𝜑.

For the inductive step let's assume that 𝜑 is de�ned in degree 𝑛−1 for 𝑛 ≥ 0.
For each model 𝑀 ∈M𝑛 we consider 𝜑(𝜕𝑒𝑛

𝑀
) ∈ 𝐺𝑛−1𝑀 (which we have already

de�ned). Since the diagramme

𝐹𝑛𝑀
𝜕 //

𝜑

��

𝐹𝑛−1𝑀
𝜕 //

𝜑

��

𝐹𝑛−2

𝜑

��
𝐺𝑛𝑀

𝜕 // 𝐺𝑛−1𝑀
𝜕 // 𝐺𝑛−2

commutes and the lower row is exact (because 𝐺 is a-acyclic on M) we conclude
that 𝜕𝜑(𝜕𝑒𝑛

𝑀
) = 𝜑(𝜕𝜕𝑒𝑛

𝑀
) = 0 and so 𝜑(𝜕𝑒𝑛

𝑀
) ∈ 𝐺𝑛−1𝑀 must be a boundary.



22 LECTURE 2. ACYCLIC MODELS

I.e. we can choose 𝑐 ∈ 𝐺𝑛𝑀 satisfying 𝜕𝑐 = 𝜑(𝜕𝑒𝑛
𝑀
) and de�ne 𝜑𝑒𝑛

𝑀
:= 𝑐, which

makes the above diagramme commute.
For 𝑎 : 𝑀 → 𝐶 a morphism in C (𝐹𝑛𝑎)𝑒𝑛𝑀 ∈ 𝐹𝑛𝐶 is a basis element of 𝐹𝑛𝐶

and we de�ne 𝜑((𝐹𝑛𝑎)𝑒𝑛𝑀 ) := (𝐺𝑛𝑎)𝜑𝑒𝑛𝑀 . We do this for every 𝑎 and every 𝑀
and like that de�ne 𝜑 on the basis elements of 𝐹𝑛𝐶 which means that we can
extend it uniquely to 𝜑 : 𝐹𝑛𝐶 → 𝐺𝑛𝐶. To check that 𝜑 thus de�ned is a chain
morphism (i.e. commutes with the boundaries), we look at the following cubical
diagramme

𝐹𝑛𝑀
𝜑 //

��

𝐹𝑛𝑀

zz

𝐺𝑛𝑀

��

𝐺𝑛𝑎yy
𝐹𝑛𝐶

𝜑 //

��

𝐺𝑛𝐶

��

𝐹𝑛−1𝑀
𝜑

//

𝐹𝑛−1𝑎

zz

𝐺𝑛−1𝑀

𝐺𝑛−1𝑎yy
𝐹𝑛−1𝐶

𝜑

// 𝐺𝑛−1𝐶

where the downward arrows are all boundary morphisms. The left and right
faces of the cube obviously commute and the bottom commutes by inductive
hypothesis. For the element 𝑒𝑛

𝑀
∈ 𝐹𝑛𝑀 the top and the back faces commute by

de�nition of 𝜑. So the front face has to commute, too for (𝐹𝑛𝑎)𝑒𝑛𝑀 ∈ 𝐹𝑛𝐶. Since
this holds for all 𝑀 and all 𝑎 the front face commutes for all basis elements of
𝐹𝑛𝐶 and so commutes as a whole. This de�nes 𝜑 in degree 𝑛. One easily checks
the naturality of 𝜑, i.e. for 𝑎 : 𝐶 → 𝐷 an arrow in C the equation 𝜑◦𝐹𝑎 = 𝐺𝑎◦𝜑
holds.

What is left to prove is the uniqueness up to natural homotopy. So suppose
that 𝜑, 𝜓 : 𝐹 → 𝐺 are two natural transformations inducing 𝜑 in the 0th ho-
mology, or put di�erently, that lift 𝜑 (de�ned in degree −1). For each object
𝐶 ∈ Ob(C) we must de�ne a chain homotopy 𝜒 : 𝐹𝐶 → 𝐺𝐶 from 𝜑 to 𝜓 (i.e. 𝜒
is of degree 1 and satis�es 𝜕𝜒 + 𝜒𝜕 = 𝜑 − 𝜓), which is natural in 𝐶. 𝜒 is already
de�ned in degree −1 (note that we are still working with the augmented 𝐹 and
𝐺), where it is simply 0 because there holds 𝜑 = 𝜓 = 𝜑. Suppose now, that 𝜒
is de�ned in degree 𝑛 − 1 with 𝑛 ≥ 0. 𝐹𝑛𝐶 has {(𝐹𝑎)𝑒𝑛

𝑀
}𝑀,𝑎 as a basis and we

notice that
𝑏 := 𝜑𝑒𝑛𝑀 − 𝜓𝑒𝑛𝑀 − 𝜒(𝜕𝑒𝑛𝑀 )

is a cycle because

𝜕𝑏 = 𝜕 (𝜑𝑒𝑛𝑀 − 𝜓𝑒𝑛𝑀 − 𝜒(𝜕𝑒𝑛𝑀 ))
= 𝜑(𝜕𝑒𝑛𝑀 ) − 𝜓(𝜕𝑒𝑛𝑀 ) − (𝜒(𝜕𝜕𝑒𝑛𝑀 ) + 𝜑(𝜕𝑒𝑛𝑀 ) − 𝜓(𝜕𝑒𝑛𝑀 ) = 0.

Because 𝐺𝑀 is a-acyclic, 𝑏 must be a boundary, i.e. there is a 𝑐 ∈ 𝐺𝑛+1𝑀
with 𝜕𝑐 = 𝑏 and we de�ne 𝜒𝑒𝑛

𝑀
:= 𝑐. By de�ning 𝜒((𝐹𝑛𝑎)𝑒𝑛𝑀 ) := (𝐺𝑛+1𝑎)𝜒𝑒𝑛𝑀
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we have de�ned 𝜒 on all basis elements and thence can extend it uniquely to
𝜒 : 𝐹𝑛𝐶 → 𝐺𝑛+1𝐶. One can easily check that 𝜒 thus de�ned is really a chain
morphism of degree 1 by using a cubical diagramme, similar to the one above.
By construction this gives us a chain homotopy 𝜒 : 𝜑 ≃ 𝜓 and it is plain to
check naturality in 𝐶. □

Corollary 2.6. If 𝐹, 𝐺 : C → Ch(𝑅 −Mod) are functors which are 0 in neg-
ative degrees and both free and a-acyclic on M and there is natural isomorphism
𝜑 : 𝐻0𝐹

∼
= 𝐻0𝐺, then 𝜑 can be extended to a natural isomorphism 𝜑 : 𝐻𝐹

∼
= 𝐻𝐺,

where 𝐻 : Ch(𝑅 −Mod) → Ch(𝑅 −Mod) is the homology functor.

Corollary 2.7. If 𝐹 : C → Ch(𝑅 −Mod) is 0 in negative degrees and both
free with models M and a-acyclic on M and 𝛼 : 𝐹 → 𝐹 is a natural endo-
transformation inducing the identity in 0 − th homology. Then 𝛼 is naturally
homotopic to id𝐹 . In particular, for each 𝐶 ∈ Ob(C) there is a chain homotopy
𝛼𝐶 ≃ id𝐹𝐶 (i.e. 𝛼𝐶 and id𝐹𝐶 are chain homotopic).

Proof. By the acyclic model theorem there is a natural transformation 𝜑 : 𝐹 →
𝐹 which induces id𝐻0𝐹 : 𝐻0𝐹 → 𝐻0𝐹 and is unique up to homotopy. But 𝛼
and id𝐹 are two such natural transformations and so 𝛼 and id𝐹 are naturally
homotopic. □





Lecture 3

Singular Homology

In this chapter we are going to quickly repeat the de�nition of singular homology,
mainly to introduce the reader to the notation used in this text. Afterwards we
are going to prove the axioms for an ordinary homology theory in the case of
singular homology.

3.0.1 De�nitions

We repeat the de�nition of singular homology in this section. We do so, mainly,
to �x the notation but we will also prove as a �rst result that the singular
homology of contractible spaces vanishes in positive degrees.

3.0.2 Homotopy Invariance

As promised in chapter 2, we are going to prove, using the acyclic model theo-
rem, that for 𝑋 a topological space 𝜄0 (𝑋) and 𝜄1 (𝑋) induce the same morphisms
in homology, here 𝜄𝑡 (𝑋) : 𝑋 → 𝑋 × 𝐼, 𝑥 ↦→ (𝑥, 𝑡) for 𝑡 ∈ {0, 1} as de�ned in ??.
We are going to use the following models to apply the acyclic model theorem to
singular homology.

De�nition 3.1. For the rest of this ssection, we will write S for the collection

S := {Δ𝑞 |𝑞 ∈ N}

of objects of Top and call these the standard models. They will be key in
applying the acyclic model theorem to singular homology.

Remark 3.2. The functor 𝑆 : Top → AbGrp is free with models S and
aacyclic (see the last paragraph of De�nition 2.2) on S. It is obviously aacyclic
since all the Δ𝑞 are contractible. The freeness has to be checked at each degree.
To do so, let 𝑝 ∈ N and we consider S

′
:= {Δ𝑞} ⊂ S and the element 𝑒𝑝 := 1Δ𝑝

∈
𝑆𝑝Δ𝑝. By de�nition for 𝑋 any space, the set {𝜎∗𝑒𝑝 = 𝜎 ∈ 𝑆𝑝𝑋 |𝜎 : Δ𝑝 → 𝑋}
forms a basis for 𝑆𝑝𝑋.
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3.1 Barycentric Subdivision

3.2 Small Simplices and Standard Models

3.3 Excision

This section is solely devoted to proving the excision axiom for singular homol-
ogy. Here our investment into the machinery of homological algebra (in the
form of the acyclic model theorem) pays o� again and the proof boils down to
simple algebra with no geometric arguments whatsoever.


