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PREFACE

The original Preface by the authours

The aim of this book is to describe the basic geometric methods of differential
topology. It is intended for students with a basic knowledge of analysis and
general topology.

We prove embedding, isotopy and transversality theorems, and discuss, as
important techniques, Sard’s theorem, partitions of unity, dynamical systems,
and (following the example of Serge Lang) sprays. We also consider connected
sums, tubular neighbourhoods, collars and the glueing together of manifolds
with boundary along the boundary.

We have ourselves learned much from the writings of Milnor, as has nearly
every young topologist today, and there are traces of this in the text. We
have also from time to time drawn on Serge Lang’s exemplary exposition [3]
- to studiously avoid doing this would certainly not benefit any book about
differential topology.

The numerous exercises at the end of each chapter are not always easy for a
beginner; they are not used in the text.

We do not discuss analysis on manifolds (Stokes’ theorem), Morse theory,
the algebraic topology of manifolds or bordism theory. However, we hope that
our book will provide a solid basis for a closer acquaintance with these more
advanced topics of differential topology.

Regensburg, Pentecost 1973 Theodor Brocker, Klaus Janich

A comment by the transcriber

This is a ITEX-ed version of Introduction to Differential Topology by Theodor
Brocker and Klaus Jénich. Neil Strickland says this is a very good textbook
on differential topology (Unfortunately, the transcriber does not recall where he
found the commment.)
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Chapter 1

Manifolds and Differential
Structures

A manifold is a topological space which ‘locally resembles’ R™, the Euclidean
space of real n-tuples © = (z1,...,x,) with the usual topology. Such spaces
result in general, as we shall later see, as solution spaces of non-linear systems
of equations, and many of the concepts of general topology have developed out
of the study of these special spaces. The precise explanation is as follows:

1.1 Manifolds

Definition 1.1.1. An n-dimensional topological manifold M™ is a Hausdorff
topological space with a countable basis for the topology, which is locally home-
omorphic to R™. The last condition means that, for each point p € M, there
exists an open neighbourhood U of p and a homeomorphism

h:U—U
onto an open set U C R" (Fig. 1.1).

The requirement that the space must be Hausdorff does not follow from the
local condition as one might believe. As a counterexample one takes the real line
R, together with an additional point p, see Fig. 1.2, and defines the topology
on M = RU{p} by saying that R is open and that the neighbourhoods of p are
the sets (U \ {0}) U {p}, where U is a neighbourhood of 0 € R.

Examples of topological manifolds (see Fig. 1.3) are:

e every open subset of a Euclidean space;
e the n-sphere S" = {x € R""!||z| = 1};

e the torus or surface of an inner tube (1.8.1).
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Figure 1.1:

*p

Figure 1.2: A non-Hausdorff space which is locally Hausdorff.

1.2 Charts

Definition 1.2.1. If M™ is a topological manifold and h : U — U’ a home-
omorphism of an open subset U C M onto the open subset U C R", then h
is a chart of M and U is the associated chart domain. A collection of charts
{ha|a € A} with domains U, is called an atlas for M if UUyeaU, = M.

Given two charts, both homeomorphisms h,, hs are defined on the inter-
section of their domains U,s := U, N Ug and one thereby obtains the chart
transformation h,g as a homeomorphism between open subsets of R” by means
of the commutative diagram:

U, 2> ha(Ua beta) hIB(U,@Oé) C Uﬁl

[e3%

hap

in which h,g is defined as hg o h !, see Fig. 1.4.
Occasionally, we shall find it useful to include the domain of definition of a
map, particularly of a chart, in the notation, and thus we shall write (h,U) for
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N

Figure 1.3: Examples of topological manifolds

Figure 1.4:

amap h:U — U . If one were to consider the whole manifold as being formed
by a glueing process from the chart domains, which one knows as well as one
knows the open subsets of Euclidean space, then it is precisely the chart trans-
formations which show how different chart domains are to be glued together. If,
apart from the topological, one wishes to extend additional properties from open
subsets of Euclidean space to manifolds by means of a suitable atlas, one must
ensure that the definitions are independent of the particular choice of charts in
the atlas, or that the property under consideration is independent of the chart
transformations.

1.3 Differentiable Atlas

Definition 1.3.1. An atlas of a manifold is called differentiable, if all its chart
transformations are differentiable.

We shall always consider a differentiable mapping between open subsets of
R™ to be a C*°-mapping, that is, a mapping whose various (higher) partial
derivatives exist and are continuous. Because, for the chart transformations
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hap (wherever the respective maps are defined), it is clear that
haa =id, hgy o hag = hay,

it follows that
hos = hga-

Therefore, the inverses of the chart transformations are also differentiable, and
the chart transformations are diffeomorphisms.

If 2 is a differentiable atlas on the manifold M, then the atlas ©® = D(2)
contains precisely those charts for which every chart transformation with a chart
from 2 is differentiable. The atlas © is then differentiable as well, since one can
locally write a chart transformation hg, in® as a composition hgy = hay © hga
of chart transformations for a chart h, € 2, and differentiability is a local
property. As an element in tile family of differentiable atlases, the atlas ©
can obviously not be enlarged by the addition of further charts, and it is the
largest differentiable atlas which contains 2(. Thus each differentiable atlas
unequivocally determines a maximal differentiable atlas ©(2(), so that 2 C
D(A); and D(A) = D(B) if and only if the atlas A U B is differentiable. We
formulate:

1.4 Differentiable Atlas

Definition 1.4.1. A differentiable structure on a topological manifold is a max-
imal differentiable atlas. A differentiable manifold is a topological manifold,
together with a differentiable structure.

In order to specify a differentiable structure on a manifold, one must specify
a differentiable atlas and, in general, one will clearly not choose the maximal
one, but preferably one as small as possible.

Henceforth we shall implicitly assume that all charts and atlases of a differ-
entiable manifold with a differentiable structure ® are contained in ®. In the
notation, as usual, we employ the abbreviated form M, and not (M,D) for a
differentiable manifold.

1.5 Examples

(a) If U C R™ is an open subset, then the atlas {id}, which only contains
the single chart id : U — U, defines the usual differentiable structure.
Furthermore, every homeomorphism h : U — U defines a differentiable
atlas {h}, which gives the same differentiable structure if and only if A is
a diffeomorphism. On an open subset of R—", one can therefore easily
describe various differentiable structures for n > 0. However, as we shall
yet see, using such atlases with only one chart h : U — U, one does not
obtain substantially different differentiable manifolds.
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(b) The sphere S” = {2z € R""!|z| := \/ai+---+22,, = 1} possesses a

differentiable atlas whose differentiable structure we shall always consider
as introducing the standard structure on S™. The chart domains are the
sets

Uyj = {z € S"|(=1)7z), > 0},

the charts are
hij : Ukj — D" (the open solid ball)
T (1, Bl 1, Thgly - s Trgl)s

so that the chart hy; forgets the kth coordinate, see Fig. 1.5.

Figure 1.5:

It is easy to verify that this atlas is differentiable, since the map hgjl :Dn -
S™ has the kth coordinate (missing in D) (—=1)7(1 — S ik w)!/?, which is
clearly a differentiable function on D" in the usual sense; and hy; results by
restricting a differentiable mapping R™ — R™.

The real projective space RP™ is the quotient space of the sphere S™ under
the equivalence relation defined by x ~ —z. A point p € RP" is described
by

n
p=lz] =[x0,...,2n] = [-Z0y..., —Tn], me =1,
i=0
and the equivalence relation identifies precisely the subsets Uy, o and Uy,1 of
the sphere. Therefore, the subsets

U, = {|l‘| S ]RP"‘.Z‘]C 75 O}
are open in RP™, and one has charts
hi : Uy — HB)”, [T0, ..y Tn] = Tk - TR (T0s ooy TR 1, Thg 1y e ey Ty

for a differentiable atlas. The projective spaces are examples of differentiable
manifolds which arise naturally as abstract manifolds and not as subsets of
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Euclidean space. And initially, it is not obvious that a projective space
is homeomorphic to a subset of Euclidean space. One also obtains the
topological manifold RP™ when one identifies antipodal boundary points
of the ball D" = {# € R"|jz| < 1}, that is, forms the quotient for the
equivalence relation ‘xz ~ —z for || = 1. In this way, one can visualise the
projective plane RP? as the result from glueing together a M&bius band B
and a disc AU C along their common boundary S!, as in Fig. 1.6.

A
B
[of

Figure 1.6:

(d) An open subset of a differentiable manifold possesses a natural structure as
a differentiable manifold.

Differentiable manifolds will be the subject of this book, more precisely, the
category of differentiable manifolds. Its ‘objects’ are differentiable manifolds;
its ‘morphisms’ are the differentiable mappings which we now define.

1.6 Differentiable maps

Definition 1.6.1. A continuous mapping f : M — N between differentiable
manifolds is termed differentiable at the point p € M if for some (and therefore
for every) chart h : U — U,peUandk:V =V, f(p) € Vof M and N
respectively, the composition ko f o h~! is differentiable at the point h(p) € U
Note that this mapping is defined in the neighbourhood h(f~1(V)NU) of h(p),
see Fig. 1.7.

The mapping f is termed differentiable if it is differentiable at every point
p € M. In other words: one knows when one can call a mapping between
chart domains of M and N differentiable, because these are identified by the
charts with open subsets of Euclidean space, and locally a continuous mapping
is always written as a mapping between chart domains. Independence from the
particular choice of chart depends upon the fact that the chart transformations
are differentiable.

Remark 1.6.2. The identity mapping of a differentiable manifold is differen-
tiable; the composition of differentiable mappings is differentiable. One assumes
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/M N
| QY
fip)

[k
kotoh'!
hip) —_— f(p)

U'cR™ V'cR"

-

Figure 1.7:

both these assertions in saying that differentiable manifolds and mappings form
a category, the differentiable category which will be written C'* for short.
Correspondingly, let

C*®(M, N) := the set of differentiable maps M — N;
C®)M) := C(M,R).

The composition of differentiable maps is therefore a map
C™(M,N) x C=(L,M) = C=(L,N) (f.g9)— fogy.

Many concepts arise in a category in a purely formal way; they are formu-
lated using the maps of the category and their composition, as, for example,
isomorphism, sum, and product.

1.7 Diffeomorphism

Definition 1.7.1. A diffeomorphism is an invertible differentiable map.

‘Invertible’, it is worth noting, means invertible in the differentiable category,
therefore f : M — N is a diffeomorphism if there is a differentiable map g¢ :
N — M, so that fog =1idy and g o f = idp;. This means, in other words: f
is bijective and, also, f~! is differentiable. We denote diffeomorphisms by ~;
they form the isomorphisms of the differentiable category.

A differentiable homeomorphism need not be a diffeomorphism, as is shown
by the map R — R,z — 3.

For example, in (a) we have introduced, in general, many distinct differen-
tiable structures on an open subset U C R"”, but the differentiable manifolds U
with atlas {id}, and U with atlas {h}, are of course diffeomorphic; h: U — U
is a diffeomorphism (U,{h}) — (U,{id}) of the second onto the first. Thus,
both manifolds are essentially the same in so far as their differential topology is
concerned.



8 CHAPTER 1. MANIFOLDS AND DIFFERENTIAL STRUCTURES

In contrast, the problem of constructing two distinct differentiable struc-
tures on a topological manifold, so that the resulting differentiable manifolds
are not diffeomorphic, is very deep indeed. For example, the topological 7-
sphere possesses exactly 15 mutually distinct non-diffeomorphic structures as a
differentiable manifold. These are precisely 15 mutually distinct differentiable
manifolds which are, however, all homeomorphic to the sphere S7 (Kervaire &
Milnor, 1963). Such results are far beyond the scope of this book.

Every chart h : U — U "of Mis a diffeomorphism between U and U/,
where U’ carries the standard structure as an open subset of R (d), and the
differentiable structure of M consists precisely of the set of all diffeomorphisms
of open subsets of M with open subsets of R"™.

The function ¢ — tan((7/2)t) defines a diffeomorphism (—1,1) — R.

Differential topology deals with those properties which remain constant un-
der the action of diffeomorphisms. For local considerations, one can therefore al-
ways assume that one is dealing with an open subset of R"; instead of a function
f on U, one considers foh™! on U'; instead of an open subset V C U, the subset
h(V) C U/; and so forth. Since images in R™ are given by their coordinates, one
also often describes a chart of M around p in terms of a local coordinate system.
The chart h: U — U’ is written in components as h = (h1,...,hy), where the
coordinate functions h; : U — R™ are differentiable functions; by translation
in R™, one can further assume that h(p) = 0 = (0,...,0) for a fixed point
p € U. Thus, in a neighbourhood U of p, after the introduction of a coordinate
system, every point is uniquely determined by the values of the coordinate func-
tions. Thus, for each point in U, one can assign coordinates (z1,...,z,) with
(0,...,0) = coordinates of p.

A function on U is thus differentiable if and only if it is differentiable as a
function of the coordinates in the usual meaning of the differential calculus.

In the differentiable category there are sums and products:

1.8 Sum

Definition 1.8.1. The disjoint union of two n-dimensional differentiable man-
ifolds My, M, is, in a natural way, a differentiable manifold expressed by
My + M, see Fig. 8.

The topology is determined by the fact that both manifolds M;, M> are
open subsets of My + Ms:, and a differentiable atlas is the union of atlases of
both manifolds.

The manifold M; + M, is called the (differentiable) sum of My and Ms. One
has eanOnical inclusions
i, : M, — My + M,
as open subsets. A map f : My + My — N is then clearly differentiable if
and only if both restrictions f o, are differentiable; in other words one has a
canonical bijection

COO(MI +M2aN) — COO(M17N) X COO(M27N)5 f — (foilmfolé)
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Figure 1.8:

for every differentiable manifold N (universal property of the sum).

Dually, one constructs the Cartesian product M; x M, of two differentiable
manifolds M;, Ms of dimensions n, k, and gives this the structure of a (n + k)-
dimensional differentiable manifold which is called the (differentiable) product
of My and Ms. If h,, : U, — Ul/, are charts of the differentiable structure of M,,
then

hy X hy : Uy x Uy — U, x Uy C R" x RF = R*F

is a chart of My x Ms, and the set of all these charts defines the differentiable
structure for My x Ms (see Fig. 1.9).

C O -
P 59
st x 8!

= torus

Figure 1.9:

(M = My = S!, with (p,q) a general point in the product.) One has
canonical projections p, : M7 x My — M, and, analogously to the sum, a
canonical bijection

C*™(N, My x My) — C*(N, M) x C*(N,Mz), fr (p1of,p20f)

for every differentiable manifold N (universal property of the product). The last
remark states that a map into the product is differentiable if and only if both its
components f, = p, o f are differentiable; locally one maps into a chart domain
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Uy x Us, and the composition with a chart
hi X hy : Uy x Uy — U, x Uy C R*F

is then differentiable if and only if both its components are differentiable.
Less canonical and, therefore, not so uniformly defined in the literature, is
the concept of submanifold.

1.9 Submanifold

Definition 1.9.1. A subset N C M"** is called an n-dimensional differentiable
submanifold of M if, for every point p € N, there exists a chart around p

h:U—=U cR"™ =R" x R¥

so that )
A(NNU)=U NR"

where we consider R™ as R x 0 ¢ R™ x R¥.

The number k£ = dim M — dim N is called the codimension of the subman-
ifold. In short one says: locally the submanifold N lies in M as R™ lies in
R HE,

The definition is justified by the remark that there is a canonical differen-
tiable structure on N. From a chart h, as in definition (1.9.1), one obtains a
chart b’ = RUNN = U "NR”, and the set of all these charts is a differentiable
atlas for N, see Fig. 1.10.

Figure 1.10:

1.10 Embedding

Definition 1.10.1. A differentiable map f: N — M is called an embedding if
f(N) C M is a differentiable submanifold, and f : N — f(N) is a diffeomor-
phism.
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If N and M have the same dimension, then f(V) is open in M, as definition
(1.9.1) unmistakably shows, and the inclusion of an open subset is also an em-
bedding. Otherwise, it is necessary that dim N < dim M. Every point p € M
defines an embedding

ip: N—>MxN, g~ (p,q)

so that ps 04, = idy and, similarly, every point p € M defines a projection
7p : M+ N — M, so that m,04,%; = idps. The second factor, of course, behaves
quite analogously; if p € M and ¢ € N, then 4,(N) and i,(M) meet precisely in
the point (p,q) € M x N, see Fig. 1.11.

P2

Figure 1.11:

1.11 Exercises

Ezercise 1.11.1. Show that every (differentiable) manifold possesses a countable
(differentiable) atlas.

Exercise 1.11.2. Show that the sphere S™ possesses a differentiable atlas with
precisely two charts. Also, one with only one chart?

FEzercise 1.11.3. Describe the chart transformation for the atlas of RP™ in (c),
and show that it is differentiable.

Ezercise 1.11.4. Let M be a differentiable manifold and 7 : M — M a fixed
point free involution, that is, 7 is a diffeomorphism with 7o7 = id and 7(x) # «
for all x.

Show that the quotient space M /7, which is obtained from M by identifi-
cation of points corresponding to each other under 7, is a topological manifold
which possesses exactly one differentiable structure with respect to which the
projection M — M is locally diffeomorphic.

Exercise 1.11.5. Show that RP! ~ S!.

Ezercise 1.11.6. Provide the surface of a cube {z € R""!|max{|z;|} = 1} with
the structure of a differentiable manifold.
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Exercise 1.11.7. Let M be a differentiable manifold and f : N — M a home-
omorphism. Prove that N possesses exactly one structure as a differentiable
manifold, so that f is diffeomorphic.

Exercise 1.11.8. Provide the complex projective space CP™ with the structure
of a 2n-dimensional differentiable manifold. This space is defined as follows:
on the complex vector space C"*1, one has the equivalence relation z ~ y <
there is a number \ € C, A # 0, such that Az = y. The quotient space (C"*1\
{0})/ ~ is defined to be CP™.

Ezercise 1.11.9. Prove that if M is a non-empty, n-dimensional manifold and
k < n, then there is an embedding R* — M.

Ezercise 1.11.10. Let N be a compact, M a connected manifold, both of di-
mension n and non-empty. Let f: N — M be an embedding. Show that f is a
diffeomorphism.

Ezercise 1.11.11. Show that S™ is a submanifold of R**1.

Ezercise 1.11.12. Describe an embedding S! x S — R3 by means of elementary
functions.

Ezercise 1.11.13. Show that the composition of two embeddings is again an
embedding and that the Cartesian product fi1 X fo : Ny X No — My X Ms, of
two embeddings f1,f2, is again an embedding.

Ezercise 1.11.14. Show that if the n-dimensional manifoid M is a product of
spheres, then there exists an embedding M — R™*!. Hint: describe an embed-
ding S™ x R — R"*! and use 1.11.13.

Exercise 1.11.15. The points of CP* (see 1.11.8) are described by the homo-
geneous coordinates ¢ = [xq,...,x] := class of (xg,...,xx) under ~. Show
that the mapping

f:CP™ x CP" — Cpmtmn

(,y) = [ToYo, ToYLs - s Tulpy - -« s TenYn]

is an embedding. Show the same for the real projective spaces.

Ezercise 1.11.16. Let M (m xn) be the vector space of real (m xn)-matrices, and
M,.(m x n) the subset of matrices of rank 7. Then M, (m x n) is a submanifold
of M(m x n) of codimension (n —r) - (m — r), for r < min(m, n).

Hint: a typical chart domain around a point of M,.(m x n) is given by the set
U C M(m x n) of matrices of the form

{A AB

D DB+C]’ A€ M(mxmn), det(4)#0.

Such a matrix lies in M, (m x n) if and only if C' = 0.

Ezercise 1.11.17. The inclusion R"*! ¢ R"*2 induces an embedding RP" C
RP"! and RP™H! \RP" ~ R+
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Ezercise 1.11.18. Let RP"*! = {(z,ao,...,a,_1)|z,a; € R}. The set of points
such that 2" + a,_12"~ ' + -+ + a9 = 0 is a submanifold of codimension 1 of
R™*!, and is diffeomorphic to R™.

Ezercise 1.11.19. The set C*°(M) is an algebra under the natural addition and
multiplication of functions. A differentiable mapping f : M — N defines algebra

homomorphism
[T CF(N) = CF(M), o pof

with the functorial properties: id}; = id, (f o g)* = g* o f*.

Ezercise 1.11.20. Notation as in 1.11.19. For a point p € M let
M, = {p € CF(M)|e(p) = 0}.

Show:

(a) M, is a maximal ideal of C*°(M).

(b) If M is compact and 9 € C*°(M) is a maximal ideal, then there exists
some p € M such that 0T = 9N,
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Chapter 2

Tangent Space

Problems in differential topology often divide into a local and a global part; in
this section we begin explaining basic local concepts.

The dominating concept of local theory is that of the tangent space at a
point p € M of a manifold. Let us assume that the manifold is embedded in
Euclidean space R"™, then it is quite obvious that to every point p € M there
is assigned a certain linear subspace of R™, the space of tangent vectors of M
at p, the velocity vectors, of possible movements on M. Thus the sphere S™ is
embedded in R""1, as S” = {z € R""!||z| = 1}, and the tangent space at the
point z € S™ is the set of vectors {v € R"™|(v, z) = 0}, see Fig. 2.1.

tangent space
(displaced parallet)

Figure 2.1:

Since, in general, such an embedding is not canonically given, we must de-
scribe the tangent space by the intrinsic properties of the manifold.

2.1 Germ

For local considerations it is clear that one takes into account not just maps
f: M — N defined on all of M, but also those maps which are defined only in

15
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a neighbourhood of p € M. Two such maps can be looked upon as equal if they
agree in a (perhaps smaller) neighbourhood. Thus on the set of differentiable
maps

{f|f : U = N, for a neighbourhood U of p € M}

we construct the following equivalence relation:
f ~ g« there is a neighbourhood V of p, such that f|y = g|v.

Definition 2.1.1. An equivalence class for this relation is called the germ of a

map M — N at p. We denote such a germ, represented by f, as f : (M,p) = N

and also f : (M,p) — (N, q), if f(p) = q. Given germs (M,p) — (N,q) —
7 g

(L,r), one obtains a composition go f : (M,p) — (L,r) as the germ of the
composition of suitable representatives. A function germ is a differentiable
germ (M,p) — R. The set of all function germs around p € M is written as

&(p).

Thus &(p) has the structure of a real algebra: addition and multiplication
are defined by the corresponding operations on representatives. A differentiable
germ f : (M,p) — (N, q) defines by composition a homomorphism of algebras

8@ = &P, prpof,
and one has the functorial properties
id, =id, (gof)" = f"og"

From the functorial properties it follows in particular that an invertible germ f
relative to composition induces an isomorphism f*:

?0?71 =id= f"of =id.

If, therefore, p € M™, then one can find a chart h about p, which defines an
invertible germ h : (M,p) — (R™,0), and therefore an isomorphism

h*: &, — E(p); &n = set of germs (R™,0) — R.

The study of the algebras &(p) can thus be limited to the typical examples &,,.

2.2 Definitions of tangent space

Since we have thus far directed our attention to the local, we now turn to tangent
spaces. There are three prevailing equivalent definitions, each of which has its
advantages, and we wish to learn to move freely among them: the definitions

(A) the algebraist’s
(Ph) the physicist’s
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(G) the geometer’s

Definition 2.2.1 (The algebraist’s definition). The tangent space T,M of the
differentiable manifold M at point p is the real vector space of the derivations
of &(p). A derivation of &(p) is a linear map X : &(p) — R which satisfies the
product rule

X@ ) =X(@) v(p) +3p) X(¥).

A differentiable germ f : (M, p) — (N, q), for example one associated with a
differentiable map f : M — N, induces the algebra homomorphism f* : &(q) —
&(p) and thereby the linear tangent map (the differential) of f at p:

T,f:T,M = T,N, XX f".

One immediately checks, that a linear combination of derivations is again a
derivation, that these thus form a vector space. From the product rule it follows
that X (1) = X(1) + X(1), therefore X (1) = 0 for the constant function with
value 1, thus, because of linearity, X (¢) = 0 also for every constant c¢. The
definition of the differential implies that for a germ @ : (N, q) — R:

T f(X)(@) = X - (@) = X(¢- f).

From this, or from the functorial properties of x, if follows that for a com-
position
(M, p) = (N.q) = (L),

one has the functorial property
Tpy(g-f) =Tg - Tpf

for the tangential map. One reads directly from the definition that the tangential
map is linear.

Now if h : (N,p) — (R",0) is the germ of a chart, then the induced map
h* : &, — &(p) is an isomorphism, as is the tangential map T,h : T,N — ToR™.
In order to describe the latter vector space the following is useful:

Lemma 2.2.2. Let U be an open ball around, the origin of R™ or R™ itself,
and f : U — R a differentiable function, then there exist differentiable functions
fi,--s fn: U= R such that

1 n 1
v=1
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where D, denotes the partial derivative with respect to the vth variable. There-
fore, set

1
fu(x) = /0 Dyf(tfﬂl,...,tifn)dt.
O

Among the derivations - as the name implies - of the algebra &, are the
partial derivatives, which we usually write in the old fashioned way:

0
oz,

)
: R, © .
& =R, P 8mys@(o)

Proposition 2.2.3 (Consequence.). The {0/0x,}7_, form a basis of the vector
space ToR™ of the derivations of &, .

Proof. If the derivation >.'_, a,(0/dx,) = 0 then, in particular, one obtains
for 7, the uth coordinate function: a, = >.\'_, a,(8%,/0x,) = 0 for all u.
Therefore the 9/9x, are linearly independent.

Now let X € To(R™), X (z,) =: a,, then we shall show that:

- 0
X = Z:lal,a—mu.

Ifweset Y := X—3"_, a,(9/0x,), then Y is a derivation and, by construction,
Y (z,) = 0 for every coordinate function. If f € .7, an arbitrary function germ,
we then write, by lemma (2.2.2), f = f(0) +>."'_, T, - f, and obtain

n

v=1
U

At this point, note that the tangent space at a point of an n-dimensional
differentiable manifold has the vector space dimension n, so that the dimension
is indeed unequivocally defined. It is not so easy to see this in the topological
case, but it is nonetheless true.

After introducing local coordinates (x1,...,x,) about a point p € N", we
can explicitly describe the vectors in T, N as linear combinations of the 0/0z;.
If f:(N™,p) — (M™,q) is a differentiable germ, and if we also construct local
coordinates (y1, . . .,¥m) around g, then f is written as a germ (R",0) — (R™, 0),
which we shall also simply denote by f:

(N, p) —— (M, q)

L

(R”,0) —— (R™)
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The tangential map Ty f is computed as follows: If B € &,,, then following
definition (2.2.1) and the chain rule,

—=( 0 . - %0 af]
Tof (6:@) (@) = axl szé)i e (0)

therefore

The matrix

o= (%)
J

is called the Jacobi matriz. We can therefore compute the differential of fin
matrix notation, thus: if v = %" a;(9/90x;), then Ty f(v) = > b;(0/0y;), where

b= Dfo - a.
We summarise all this as:

Theorem 2.2.4. If one introduces local coordinates (x1, ..., 2,) and (y1, ..., Ym)
around p € N™ and g € M™ respectively, then the derivations 0/0x;, 0/0y;
form vector space bases of T,N and T,M respectively, and the tangential map
of a germ f : (N,p) — (M, q) with respect to these bases is given by

Dfy:: R" - R™.

The definition of the algebraist is the easiest to apply. However, it is rather
abstract (and also unsuitable, when one considers infinite dimensional manifolds,
or just finitely often differentiable ones).

Physicists proceed from the coordinate dependent version of theorem (2.2.4).
One hears descriptions such as: ‘A contravariant vector or tensor of the first
order is a real n-tuple which transforms according to the Jacobi matrix’. This we
interpret as follows: if h,k : (N,p) — (R",0) are germs of charts, then the chart
transformation § := ko & = : (R?,0) — (R",0) is an invertible differentiable
germ. The various invertible germs (R™,0) — (R™,0), that is, all possible chart
transformations, form a group ¢ under composition ‘o’; and thus for two chart
germs h, k there is exactly one g € ¢, such that goh = k. To every § € 4 we
assign the Jacobi matrix at the origin Dgy and, as in the differential calculus,
the product of the matrices is then associated with the composition of the maps;
in particular, one has a homomorphism of groups

¥ — GL(n,R), g~ Dy

from ¢ into the linear group of invertible matrices.
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Figure 2.2:

Definition 2.2.5 (The physicist’s definition). A tangent vector at the point
p € N™ is a rule assigning to each chart germ h : (N,p) — (R",0) a vector
v =(v1,...,v,) € R", so that the vector Dgg - v corresponds to the chart germ
G- h, see Fig. 2.2.

Thus if we denote by K, the set of chart germs
b+ (N,p) = (R",0),
the physicist’s tangent space T,,(N) ps, equals the set of maps
v: K, = R",
for which B B
v(g-h)=Dgy-v(h) forall ge¥.

These maps form a vector space because Dy is a linear map. For a fixed chart
h, clearly one can arbitrarily choose the vector v € R™, and the choice of all
other chart germs is fixed by this: the vector space T,(NN)pp, is isomorphic to
R™. An isomorphism is given by the choice of a local coordinate system. The
canonical isomorphism

T,N — T,(N)pn

with the algebraically defined tangent space (2.2.1), given the chart

Ti=(R1s...,hn) : (N,p) — (R™,0)

assigns to the derivation X € T,N the vector (Xhy),...,X(h,) € R". The
components of this vector are precisely the coefficients of X with respect to
the basis of T, N in (2.2.4); through identification they are transformed by the
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Jacobi matrix because the basis in (2.2.4) is mapped by the transposed Jacobi
matrix.

The differential is, given local coordinate systems about the image and preim-
age points, described by the Jacobi matrix, as in (2.2.4), although formally this
is rather awkward to write down because of the many coordinate systems.

The definition of the geometer is the most intuitive one; it is derived from
the concept that the tangent vectors are velocity vectors of paths through the
point p at this point. Everything is of course again considered locally near the
point.

Definition 2.2.6 (The geometer’s definition). On the set %, of germs of dif-
ferentiable maps
w: (R,0) = (N,p)

(that is, the germs of paths passing through p) we formulate the equivalence
relation W ~ T < for every function germ f € &(p), (d/dt)f o w(0) = (d/dt)f o
7(0). An equivalence class [w], for this relation, is a tangent vector to the point
p, see Fig. 2.3.

Figure 2.3:

Two path germs define the same tangent vector if and only if they define
the same ‘differentiation of functions in the direction of the curve’. To every
equivalence class [w] there is, in this way uniquely associated, the derivation X,

of &(p):
_ d—
Xuw(f) = af ow(0).
This association defines an injective map
Wy ~=T,(N)g = T,N, [w]— X,

of the set of equivalence classes of path germs into the tangent space. This map is
also surjective since, if (in local coordinates) w(t) = (taq,...,ta,), then X,, =
S ay(9/0x,). Indeed, one only needs to check an equality of derivations
X, = X, on the coordinate functions of a local coordinate system (the values
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are precisely the coefficients with respect to the basis d/0x,). Hence one can
also say: w ~ v if and only if for a local coordinate system (d/dt)w;(O) =
(d/dt)v;(O) for i =1,...,n.

In this definition the tangent map is also very clear: a germ f : (N,p) —
(M, ¢) induces the map

T,(N)g = Ty(M)g, [w] = [fouw],

see Fig. 2.4.

Figure 2.4:

The fact that this definition is compatible with the earlier definition (2.2.1)
is shown by the equation

Xpu(7) = SHF00) = Xul(@) = T,f(X.)(7).

From now on we shall make no distinction between the different definitions
of the tangent space. Our intuition follows the geometrical definition; explicit
computations, where necessary, use the coordinate description (2.2.4).

A finite dimensional real vector space V is a differentiable manifold. A choice
of basis determines an isomorphism V = R”™, which one can take as a chart
for an atlas. Because linear maps of R" are differentiable, the differentiable
structure defined in this way is independent of the basis. The tangent space
T,V is canonically isomorphic to V' for each point p € V. One can describe
the isomorphism thus: the curve w, : t — p + tv through p corresponds to the
vector v € V, and [w,] is the associated tangent vector (geometer’s language).
Naturally, if M has dimension n, the tangent space T}, M is always isomorphic to
R™ but, in general, there is no canonical, in some way preferred, isomorphism.
This we shall see even more clearly in the next chapter.

2.3 Exercises

Ezercise 2.3.1. Show that m(p) := {% € &(p)[@(p) = 0} is the only maximal
ideal of &(p).
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Ezercise 2.3.2. Show that if p € M™ and n # 0, then the ideal m(p) in exercise
2.3.1 is not the only non-trivial proper (i.e., # 0, # &(p)) ideal of &(p).

Ezercise 2.3.3. Show that if f : M — N is an embedding, and f(p) = ¢, then
the map f* : &(q) = &(p)is surjective and T, (f) injective.

Exercise 2.3.4. Show that the maximal ideal m,, € &, is generated by the germs
T1,...,T, of the coordinate functions.

Erercise 2.3.5. Show that if m,, C &, is the maximal ideal, then 90" is the
ideal of the germs f, for which all partial derivatives of order < k vanish at the
origin.

Ezercise 2.3.6. Show that the Taylor series at the point zero defines a homomor-
phism &, — R[[z1,...,z,]]into the ring of formal power series in n variables.
The kernel of this homomorphism is m3° := N2 mk (see 2.3.5).

Ezercise 2.3.7. Following the notation of 2.3.4: &,/m, =~ R; consequently
m,/m2 ~ R". Show that a germ f : (R",0) — (R™,0) induces f* : &, — &,
f*m,, C m,, and so one obtains a linear map

* . ~ mm mn ~
m n
This is given by tDf,.

Ezercise 2.3.8. Show that if the map f : S — R is differentiable, then there
are two different points p, ¢ € S”, such that T,,(f) and T;(f) are both 0.

Ezercise 2.3.9. Let M = {x € R"|2? =23+ a5+ -+ 22, z1 >0}, n> 1
Show that M is not a differentiable submanifold of R™.

Exercise 2.3.10. Let R® — R* be a differentiable map such that for every real
number ¢ one hasf(t-xz) =t- f(x). Show that f is linear.

Enercise 2.3.11. Let R” — R f(0) = 0 be a differentiable map, and let

folz) =71 f(tw).

Show that fi(x), if extended to t = 0 by D fy depends differentiably on ¢, x.
Ezercise 2.3.12. Let f : R — R be a differentiable function for which f(0) =

’

f(0)=---=f""1(0) =0 and f"(0) > 0. Show that there exists an invertible
germ h: (R,0) — (R, 0) such that foh =7".
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Chapter 3

Vector bundles

Through the construction of tangent spaces there is a vector space associated to
every point of a manifold. In general, in differential topology and in topology,
there is often occasion to attach a vector space to every point of a manifold or of
a topological space, so that one has not just one single vector space, but rather
a whole ‘bundle’ of vector spaces, as in Fig. 3.1.

topological space

vector spaces

Figure 3.1:

3.1 General vector bundle

Definition 3.1.1. A(n n-dimensional real topological) vector bundle is a triple
(E,7,X), where m : E — X is a continuous surjective map, every E, := 7~ !(z)
has the structure of an n-dimensional real vector space such that the following
“local triviality”:

Axiom of local triviality Every point of X has a neighbourhood U, for which
there exists a homeomorphism

f:m N U) = UxR"

25
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such that for every x € U
fo:=flg, : Bz — {z} xR"

is a vector space isomorphism, see Fig. 3.2.

x () UxR"

Figure 3.2:

Notation 3.1.2. (E,w, X) is called a vector bundle over X; E is called the total
space; E, the fibre; X the base; and 7 the projection of the bundle. Instead of
(E,m, X) one usually writes E for short.

Definition 3.1.3. (f,U) as in the axiom of local triviality is called a bundle
chart. A bundle over X is called trivial if it has a bundle chart (f, X).

The vector bundles over a fixed space X form in a natural manner the
objects of a category. The corresponding ‘morphisms’ are the so-called ‘bundle
homomorphisms’, which we shall now define.

Definition 3.1.4. Let E and E be vector bundles over X. A continuous map
f: E — E is called a bundle homomorphism if the following is commutative
and every f, : B, — E, is linear.

Definition 3.1.5. If E is an n-dimensional vector bundle over X and E' C E
is a subset such that around every point in X there is a bundle chart (f,U)
with

f(x"(U)NE)=UxR* cU x R",

then (E', 7|, X) is in a natural manner a vector bundle over X and is called
a k-dimensional subbundle of F, see Fig. 3.3.
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Exo B}

o

Figure 3.3:

For example if f : E — F is a bundle homomorphism of constant rank
rank f, = const, then
ker f := U,ex ker f,
is a subbundle of E and
im f 1= Ugex im f,
is a subbundle of F'. This is obvious because we have
Theorem 3.1.6 (Rank theorem for bundle homomorphisms). Let f : E — F'
be a bundle homomorphism of constant rank rank f, = k, of vector bundles over

X, then around every point x € X there are bundle charts (p,U) for E and
(v, U) for F, such that for every uw € U one has

(Yo fop ..., v™) = (vl,...,vk707...,0).

f
Ely Fly
d I
UxR™ U x R"

(U (0o 0™)) o (1, (01 0% 0,...,0)

Proof. First we may look at f on arbitrary charts and therefore w.l.0.g, suppose
that f is a bundle homomorphism U x R™ — U x R", (u,v) — (u, f,(v)). Here
fu=(fL ..., ") : R™ — R" is a linear map of rank k, which may be described
by a matrix (depending on u), and w.l.o.g. (after a suitable permutation of
coordinates in R™ and R™) the submatrix of the first & rows and columns of the
particular matrix f, is non singular. But then the bundle homomorphism

©:UXR™ U xR @,(v) = (fLw),..., fFw),o* 1 o™)

is isomorphic on the fibre over u = z, and therefore w.l.o.g, isomorphic on every
fibre (if the determinant of ¢, does not vanish at the point u = z, it does not
vanish at nearby points either). Using this bundle homomorphism as a new
chart for U x R™, we must look at f o =1 and obtain

(foo ™ Hu:vm (v}, .. .,Uk,gﬁ"'l(v), cgi(v)).
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Since this still has rank k, the last n — k components ¢g**!, ... ¢" (for given
u € U) in fact only depend on the first k¥ components (v', ..., v"*) of v; in matrix
notation :
1 0
op™h), = :
(foe™ u Lo
g 0

So we may also write
(fow Husvm (0h, o of gt (W 0h), g (0t b)),

But then on the other side we have the chart ¢ : U x R” — U x R",

ou(w) = (1, .. 0P Wt — gE L wR), L w™ = gt (w? L wh))

and (o foyp ——1),(v) = (v},...,v%0,...,0). O

Having thus refreshed ourselves in the oasis of a proof, we now turn again
into the desert of definitions. First, we must mention another viewpoint from
which we may consider bundles as being contained within other bundles.

Definition 3.1.7. If (E, 7, X) is a vector bundle and X, C X, then

(1 (X0)s Tlr-1(x0): Xo0)

is a vector bundle over X, which is usually written as E|x, and is called the
restriction of E to Xy, see Fig. 3.4.

Figure 3.4:
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Definition 3.1.8 (‘section’). By a section of a vector bundle (E, 7, X') we mean
a continuous map o : X — E with o(z) € E, for all z € X. For example, every
vector bundle has a ‘zero-section’

X—=FE x—0€kE,,

see Fig. 3.5.

image of a section
with two ‘zeros’

Figure 3.5:

Remark 3.1.9. Note that if 0 : X — FE is a section, then 0 : X — o(X) is a
homeomorphism.

In particular therefore, one can without harm identify the image of the zero-
section with the base space X itself since via the zero-section one has a canonical
homeomorphism.

From one vector bundle one can ‘induce’ new vector bundles. Suppose we are
given an n-dimensional vector bundle F over Y and a continuous map f : XtoY:

E

Thus we obtain the induced bundle f*E over X by attaching the fibre E¢, to
every x € X. This may be described as:

Definition 3.1.10. Let (E,n,Y) be a vector bundle over Y and : X — Y be
continuous. Let us consider the graph of f and the canonical homeomorphism
Graph(f) = X, see Fig. 3.6.

Then by the composition

f*E = (X X E)|Graph(f) CXxFE—— Graph(f) CcCXxY

i

X
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Y b/k— graph (f)

Figure 3.6:

we define a vector bundle (f*E, f*m, X ), which is called the bundle induced by
f-

Remark 3.1.11. Note that the total space of f*E is
{(z,e)|m(e) = f(z)} C X x E.

This space is also called the fibre product (or pull-back) of f and .

The map f*E — FE given by the projection X x F — E maps every fibre of
f*FE linearly and isomorphically to a fibre of E. Such maps are called bundle
maps. As a notion, including bundle homomorphisms and bundle maps as
special cases, one also considers the quite general linear maps which are only
required to map fibres linearly to fibres:

Definition 3.1.12. If E, F respectively, are vector bundles over X, Y respec-
tively, and f : X — Y is continuous, then a continuous map f : £ — F is called
a linear map over f iff maps every fibre E, linearly into Fjy(,):

!

If these maps are isomorphisms E, ~ Fy) as well, then fis called a bundle
map over f.

7
e

N<—"

P

f

The reason for explaining, just here, the terminology of bundle homomor-
phisms, bundle maps, and linear maps is that the construction of the induced
bundle shows how one can write every linear map as the composition of a bundle
homomorphism and a bundle map:

Remark 3.1.13. Note that if ¢ : B — F'is a linear map of vector bundles over
fandif f: f*F — F is the canonical bundle map, then there is one and only
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one bundle homomorphism h : E — f*F such that ¢ = fo h:

E—lsprt o

namely, h(v) = 7(v),p(v)) € X x E. This is called the universal property of
the induced bundle.

3.2 Differentiable vector bundle

Up to now we have only considered ‘topological’ vector bundles. We now wish
to introduce the concept of differentiable vector bundle over a differentiable
manifold. In order to do this we must first discuss the concept of the bundle
atlas.

Definition 3.2.1. Let (E, 7, X) be an n-dimensional vector bundle. A set
{(fa,Ua)| € A} of bundle charts is called a bundle atlas for E, if Upc AUy = X.
The continuous mappings given by overlapping of the bundle charts

UaNUs = GL(n,R), @+ fap0 fork

are called the transition functions of the atlas, see Fig. 3.7.

R" R"

Figure 3.7:

Definition 3.2.2. A bundle atlas for a vector bundle over a differentiable man-
ifold is differentiable if all its transition functions are differentiable. A differ-
entiable vector bundle is a pair (E,B) consisting of a vector bundle E over M
and a maximal differentiable bundle atlas B for E.

Remark 3.2.3. Note that the total space of a k-dimensional differentiable vector
bundle over an n-dimensional manifold M is naturally an (n + k)-dimensional
differentiable manifold.
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Remark 3.2.4. The definitions and statements made up to now about topological
vector bundles apply in an obvious manner to differentiable vector bundles.

We often encounter differentiable and topological vector bundles in a form
in which one could perhaps call them ‘pre-vector bundles’. Given are the usual
defining terms

total space
projection

base

B >3

bundle atlas

with the sole omission that the topology on FE is not yet defined. E appears, for
the present, simply as the union of the (disjoint!) vector spaces E, = 7~ !(z).
However, one can construct this topology in a canonical way and thereby obtain
a real vector bundle.

As we obtain very many of our geometrically relevant vector bundles by
these means, we shall make the notion of a ‘pre-vector bundle’ more precise:

Definition 3.2.5. An n-dimensional pre-vector bundle is a quadruple (E, w, X, B)
consisting of a set () E, a topological space X, a surjective mapping 7 : B — X
with a vector space structure on every E, := 7~ !(z), and a ‘pre-bundle atlas’
B, that is, a set {(fu,Uq)|a € A}, where {U,|a € A} is an open covering of X
and

fo:m YW Uy) = U xR", E,— {z} xR",

a bijective map which is a linear isomorphism for every x € U, in such a way
that all the transition functions U, N Ug — GL(n,R) of B are continuous.

Remark 3.2.6. First, note that if (E, 7, X,B) is a pre-vector bundle, then there
is exactly one topology on F, relative to which (F,m, X) is a vector bundle and
9% is a bundle atlas thereof.

Remark 3.2.7. Second, note that if M is a differentiable manifold and (F, , M, 9B)
is differentiable pre-vector bundle, that is, if all the transition functions of B
are differentiable, then by the maximal extension B of %6 we clearly have a
differentiable vector bundle (E,B) over M.

Our first application, for whose sake alone the whole sequence of definitions

would have been worthwhile, is the construction of the tangent bundle.

Definition 3.2.8 (Tangent bundle). Let M be a differentiable n-dimensional
manifold and 2 be a differentiable atlas of M. Then we are given a differentiable
pre-vector bundle (TM,w, M,B) as follows:

TM = UpEMTpM
7 : canonically (T,M — p)
B = {(fnl(h,U) € (4))}
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where
froim W U) = UxR", X =px(vi,...,0,)

is given by the ‘physical’ coordinates v; = X (h;) of X € T,M with respect to
(h,U), see (2.2.5) and Fig. 3.8.

pxR"

oM UxR"

h(U)cR"

Figure 3.8:

The differentiable n-dimensional vector bundle T'M over M given in this
way, which is clearly independent of the choice of atlas, is called the tangent
bundle of M.

Definition 3.2.9. Let M be a differentiable manifold. By a (differentiable)
vector field on M one understands a (differentiable) section

M——TM
of the tangent bundle.
Definition 3.2.10. If f : M — N is a differentiable map, then the differentials
Tpf : TyM — Ty N
defines a differentiable map
Tf:TM — TN
(as one can see from (2.2.4)), which is called the differential of f.

Remark 3.2.11. Note that the differential is a ‘linear map of vector bundles’.
As remarked earlier (3.1.13), there is one and only one bundle homomorphism
TM — f*TN, so that the diagram

TM s TN

~

F*T'N

commutes.
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3.3 Exercises

Ezercise 3.3.1. Let U be a topological space and f : U — M (nxk,R) a mapping
into the space of real (n x k)-matrices. Show that the map given by f

F:UxRF 5 R",  (u,x)— f(u) -z

is continuous if and only if f is continuous. Show also that if U is a manifold
then F is differentiable if and only if f is differentiable.
Remark. We have already made implicit use of this statement in the text.

Ezercise 3.3.2. Let (E, 7, X) be a vector bundle over a connected space X, let
f+ E — E be a bundle homomorphism and fo f = f. Show that f has constant
rank.

FEzercise 3.3.3. Let (E,m,X) be a vector bundle over a connected space X
and f : £ — FE be a bundle homomorphism and f o f = idg. Show that
Fix(f) := {v € E|f(v) = v} is a subbundle of E.

Ezercise 3.3.4. Let E be a vector bundle over X, let Xy C X be a subspace and
i: Xo C X the inclusion. Show that ¢*F and E|x, are naturally isomorphic.

Ezercise 3.3.5. Show that if (E, 7, X) is a trivial vector bundle, then every
induced bundle f*E (for f:Y — X) is also trivial.

Exercise 3.3.6. Let (E,m,X) be a vector bundle and 7y := 7|g\ {zero-section} -
Construct a nowhere vanishing ‘canonical’ section of

Ezercise 3.3.7. Show that a vector bundle is trivial if and only if it possesses a
bundle atlas, all of whose transition functions are maps into {id} C GL(n,R).

Ezercise 3.3.8. Over RP™ =S/ ~ let us consider the 1-dimensional subbundle
Ny = {([z], Az)|z € S", A € R}

of RP" x R™"*1. (Why is it a subbundle?) Prove that for n > 1, 5, is non-trivial.
Hint: consider 7, \ {zero-section}.

Ezercise 3.3.9. Prove that every 1-dimensional vector bundle over S! is either
trivial or isomorphic to the bundle

m

|

st ~ RP!

The surface n; is also called the (unbounded) Mdbius band (see Fig. 1.6 and
Fig. 3.9).

FEzercise 3.3.10. Prove: if one removes a point from RP?*!, then one obtains a
manifold which is diffeomorphic to the total space of n,,:

RP™ N\ pt ~ 7,

Hint: w.lo.g. pt=10,...,0,1].
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/

first oriented

|=

Figure 3.9:

Exercise 3.3.11. Let n > 1. Show that there exist precisely two isomorphism
types of n-dimensional vector bundles over S! (see exercise 3.3.9).

Exercise 3.3.12. Show that TS' ~ S! x R.

Ezercise 3.3.13. Show that the tangent bundle of S? possesses an atlas with two
bundle charts.

Exercise 3.3.14. Let M be connected. Show that a differentiable map
f:M — N,

whose differential 7'f is everywhere zero, must be constant.
Exercise 3.3.15. Show that if f: M — N is an embedding, then so is

Tf:TM — TN.

Ezercise 3.3.16. Construct a vector field on S? which has exactly two zero points.
Ezxercise 3.3.17. Construct a vector field on S? which has exactly one zero point.
Exercise 3.3.18. Let M C R”™ be a submanifold. Show that

TM ~{(z,v) € M xR*" v e T,M C R"}.
Exercise 3.3.19. Show that the submanifold of C*+!
E = {(207...,Zn) S Cn+1‘2(2)++23l = 1}

is diffeomorphic to the total space of the tangent bundle of the unit sphere S™.
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CHAPTER 3. VECTOR BUNDLES



Chapter 4

Linear algebra for vector
bundles

The algebraic operations which one employs in linear algebra for vector spaces
and homomorphisms can usually also be given a meaning on vector bundles and
bundle homomorphisms, by operating in the fibres at every point of the base, as
one has learned to do in linear algebra. For example, one constructs the direct
sum E @ F (the so-called ‘Whitney sum’) of two vector bundles F and F over
X, by using the direct sum E, & F, as fibre of E@ F at every point = € X, etc.

Of course, we must explain more precisely the bundle structure of the families
of vector spaces, which arise in this way.

4.1 Definitions and examples

Definition 4.1.1. Let E and F be vector bundles over X with bundle atlases
20 and 9B. Then a pre-vector bundle £ @ F' is given in the following manner:

EDF :=UpexE, ®F,
projection :  canonical
atlas: {p@y,UNV](p,U) e, (¢,V) € B}

where ¢ @ v is to be understood in the following way:
E, @ Fy 222, (2} x (R" @ R¥).

The vector bundle E ¢ F' associated with this pre-vector bundle is called the
Whitney sum of E and F.

Remark 4.1.2 (Supplement). If f: £ — E and g : F — F' are bundle homo-
morphisms, then a bundle homomorphism f@g: EGF — E ® F is defined
in a canonical manner.
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Remark 4.1.3. Note that if £ and F are differentiable, then in a natural manner
sois E @ F; if f and g are differentiable, then so is f & g.

Ezample 4.1.4 (Further examples). Analogously, one transfers other notions of
linear algebra ‘fibrewise’ to the category of topological, respectively differen-
tiable vector bundles over X. Thus, for example, one obtains:

(i) tensor product E ® F,
(ii) quotient bundle E/F (when F is a subbundle of E),
(iii) dual bundle E*,
(iv) homomorphism bundle Hom(E, F),
(v) bundle Alt*(E) of alternating k-forms,
(vi) bundle A¥E of k-fold exterior powers,

for vector bundles E, F' over X and, in a natural manner also, the relevant
bundle homomorphisms.

Remark 4.1.5. One must note carefully that some of the functors of linear al-
gebra, which have here been carried over to bundles, are contravariant. For
example, Hom in the first variable: bundle homomorphisms f : A — B and
g:F—F " induce a bundle homomorphism

Hom(f, g) : Hom(B, F) — Hom(A, F)

namely, by
B——F
i)
A ~F

Correspondingly, the bundle charts of Hom(E, F') are obtained from bundle
charts (¢,U) of E and (¢, V) of F in the form

Hom(o ™', %) : Hom(E, F)|ynv — (UNV) x Hom(R",RF) = (U NV) x R".

The term orientation requires careful consideration. Naturally, one orients
a vector bundle by orienting each fibre, and in such a way that, for an arbitrary
continuous path in the base, the orientation does not suddenly ‘jump’.

Definition 4.1.6 (Orientation of a vector bundle). Let E be an n-dimensional
vector bundle over X. A family

0= {%}zex

of orientations o, of the fibres E, is called an orientation of E if about every
point of X there is a bundle chart (f, U) for E, so that by means of f, : E, ~ R"”
the orientation o, for every u € U is transferred to the same fixed orientation
of R™.
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Whereas up to now we have been able to transfer the constructions of linear
algebra simply by way of fibres or by way of charts to vector bundles, we now
for the first time come upon a global phenomenon: for one vector space, one
fibre, we can always choose an orientation, but the whole bundle need not be
orientable. If one were to orient a specific fibre F,, then this orientation simply
extends through the charts (f,U) in (4.1.6) to the fibres over points in the
neighbourhood U of z.

If, however, one attempts to orient all of E in this way, by passing from
chart to chart, then one notices with certain bundles that, at some point, this
procedure has to lead to a jump in the orientation, as illustrated by Fig. 4.1.

4

/

first oriented

|=

Figure 4.1:

However, one must at times also pose questions of orientation for non-
orientable bundles (for example in the proof of non-orientability or whether one
may apply a certain known theorem for orientable bundles to non-orientable
bundles also), and for this it is very useful to employ the concept of orientation
cover, which is defined for every bundle.

Definition 4.1.7 (Orientation cover). Let (E,w, X) be an n-dimensional vector
bundle and A™E the 1-dimensional nth exterior power bundle. If one defines an
equivalence relation in A" FE \ {zero-section} by x ~ y < y = Az for some A > 0
and introduces the quotient topology on the set X (E) of equivalence classes,
then the canonical projection

is a two leaved covering of X and is called the orientation cover of E, see Fig.
4.2.
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X(E)

1;

-

Figure 4.2:

The relation known from linear algebra between orientation and n-fold exte-
rior product (two bases (v1,...,v,) and (wi,...,w,) have the same orientation
if and only if vy A--- A, and wy A - -+ Aw, differ only by some positive factor)
shows immediately that X (E), as a set, is canonically the same as the set of all
orientations of all fibres, and 7~ !(x) consists of the two orientations of ., see
Fig. 4.3.

some orientation of Ey

-2

A;}ismation
of Ey

Figure 4.3:

One may also think of X (E) in this way; the description as
(A"E \ zero-section)/ ~

has the technical advantage of immediately giving the topology on X (E).

Remark 4.1.8. Note that E is orientable if and only if X (E) is a trivial cover,
that is, isomorphic to X x Z/27Z. An orientation of E is then to be thought of
as a section X % X (FE) (continuous mapping with 7o 0 = idx).
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Remark 4.1.9. Note that the cover X (E) is also canonically isomorphic (that is,
could also have been described as) to (A" E'\ zero-section)/ ~ and to (Alt" E \
zero-section)/ ~.

Definition 4.1.10 (Orientation of a manifold). By an orientation of a manifold
M, one means an orientation of the tangent bundle T'M.

Another concept taken from linear algebra, the carrying over of which to
vector bundles requires some attention, is that of scalar product.
If V is a real vector space then, as is known, one can consider the bilinear
forms
VxV =R

as the elements of (V ® V)* = Hom(V ® V,R). If E is a vector bundle over X
then, by (4.1.4), the bundle (E ® E)* is defined and we come to:

Definition 4.1.11 (Scalar product, Riemannian metric). If (£, 7, X) is a vector
bundle then, by a scalar product or a Riemannian metric for E, we mean a

continuous section
s: X - (E®E)"

such that for every x € X the bilinear form determined by this
E,xE;, =R, (v,w)— (v,w),

is symmetric and positive definite. The metric is differentiable if X is a manifold
and E and s are differentiable.

Proposition 4.1.12. If the vector bundle E is equipped with a Riemannian
metric and F C E is a subvector bundle, then

Fti=U,exFt
is also a subvector bundle.

Proof. If (f,U) is a bundle chart of E, which represents F|y as U x (R x
0) C U x R™, and if vq,...,v, are sections of |7, which under f correspond to
the canonical basis vectors of R™, then one obtains by means of the Schmidt
orthogonalisation process sections vll, e ,v; of E|y, which form an orthonormal
basis of F, for every x € U, and in such a way that v;, cee v;c precisely span
F,, and v;cﬂ, e ,’U;L span Fi-.

Therefore,

’

F Bl = UXRY, Moy(z) + -4 Ay (@) = (@, A0, An)

defines a bundle chart, which represents F|; as U x RF and F*|y as the com-
plementary U x R"~F. O

Since f/ is obviously orthogonal in every fibre, we can note the following as
a subsiduary of the proof:
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Remark 4.1.13. Note that every vector bundle with a Riemannian metric pos-
sesses a bundle atlas consisting of fibrewise orthogonal bundle charts. In partic-
ular, the transition functions of such an atlas are maps into O(n) C GL(n,R).
Remark 4.1.14. Note that if F is equipped with a Riemannian metric and F' C FE
is a subbundle, then the composition

FtcE— E/F
proj
is a bundle isomorphism F+ ~ E/F; one can thus consider E/F simply as F-.

For dimensional reasons one has only to consider that the kernel of this
composition vanishes. For every fibre this means F;- N F, = 0.

This clear presentation of the quotient bundle as an orthogonal complement
should, in particular, be kept in mind when considering the normal bundle of a
submanifold.

Definition 4.1.15 (Normal bundle). If M is a differentiable manifold and X C
M is a submanifold, then ‘normal X’

LX == (TM]|x)/TX

is called the normal bundle of X in M, see Fig. 4.4.

Figure 4.4:

Definition 4.1.16 (Riemannian manifold). A manifold M, whose tangent bun-
dle has a differentiable scalar product, is called a Riemannian manifold (‘a
Riemannian manifold is a pair (M, (,)), consisting ...).

Remark 4.1.17. Note that if M is a Riemannian manifold and X C M a subman-
ifold, then the normal bundle of X in M is canonically isomorphic to (TX)*,
see Fig. 4.5.

Now we come to the important question of the existence of Riemannian
metrics on vector bundles. Let (E,m, X) be a vector bundle. We look for a
section

s: X > (E® E)",
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Figure 4.5:

such that every s(z) is symmetric and positive definiite. It is, of course, quite
easy to find such a section for E|y for every bundle chart (f,U) of E, we need
only to begin with the usual scalar product in R™; E|y ~ U x R™. If we do this
for every chart of a bundle atlas, then we come to the following situation: We
have ‘local’ sections (illustrated in Fig. 4.6):

L X

~~bundle (E® E)}*

Figure 4.6:

However, we are looking for a global section (illustrated in Fig. 4.7):

One often faces such a problem in topology, and it can be quite difficult or
insoluble (orientation!). However, there is help at hand if the property required
of the Vectors s(z) is a ‘convex’ property, that is if, with s;(z) and sa(z)also,
all

(1 —t)s1(x) + tSa2(x)

have this property for ¢ € [0,1]: Symmetry and positive definiteness (see Fig.
4.8) are such convex properties.

The technical tool, with which one stitches together locally given sections to
form a global section - something which the differential topologist must always
have at hand - is a partition of unity:

Definition 4.1.18. Let X be a topological space. A family {7, }aca of contin-
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symmetric, positive
AT definite

Figure 4.7:

fibre, here equal to (Ex® E,)*

Figure 4.8:

uous functions
Ta : X —[0,1]

is called a partition of unity if every point in X has a neighbourhood in which
only finitely many of the 7, are different from zero and for all x € X we have

Z To(z) = 1.

acA

Definition 4.1.19. Such a partition of unity is said to be subordinate to a given
covering of X if for every « the support of 7, (that is, supp 7, := {z € X|7, # 0}
is entirely contained in one of the covering subsets.

Theorem 4.1.20. If X is paracompact, then for every open cover there exists
a subordinate partition of unity.

Proof. See [8], p. 17; for manifolds see Chapter 7. O

Corollary 4.1.21. Ir E is a vector bundle over a paracompact space (e.g. a
manifold), then one can equip E with a Riemannian metric.
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Proof. Let 2 be an atlas for E and {74 }aca a partition of unity subordinate to
{U}(,u)enn- For every a we choose a bundle chart (fo, Uy ), suschthat supp 7, C
U,, and a Riemannian metric s, for E|y,. Then 7,8, is a continuous section
of (E® E)* defined on all of X, if one understands 7,5, as being given by the
zero section outside the support of 7, see Fig. 4.9.

\ \ [EeEy¥
|
\ ! . TeSex
1 ; |
IAENRRRE
Figure 4.9:
Then s := )" 4 TaSa is clearly a Riemannian metric for X. O

Remark 4.1.22. On differentiable manifolds there is even a differentiable subor-
dinate partition of unity for every open covering, that is, the 7, can be chosen
to be differentiable, and consequently every differentiable vector bundle also has
a differentiable Riemannian metric. Because of the great importance of differ-
entiable partitions of unity in differential topology we do not wish to close our
treatment of them with this remark. Their existence will be proved in detail in
Chapter 7 and, until then, we shall refrain from making use of them.

4.2 Exercises
Exercise 4.2.1. Show how the bundle homomorphisms
f+E—=F

can be considered as sections in E* ® F' = hom(E, F').

Ezxercise 4.2.2. Prove that if E1 & Ey ~ E3 and if two of the vector bundles FE;
are orientable, then the third is orientable as well.

FEzxercise 4.2.3. Let E be an orientable vector bundle and F' C E a subbundle.
Show that E/F is orientable if and only if F is orientable.

Ezercise 4.2.4. Prove that a vector bundle is orientable if and only if it possesses
a bundle atlas, aft of whose transition functions are maps in

GL*(n,R) := {A € GL(n,R)|det A > 0}

FEzercise 4.2.5. Let E be a vector bundle. Show that E @ E is orientable.
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Ezercise 4.2.6. Let (E, 7, X) be a vector bundle and 7 : X(E) — X its orien-
tation cover. Show that 7* F possesses a (canonical) orientation.

Exercise 4.2.7. By the orientation cover M — M of a ‘manifold M, one means
the orientation cover of TM. Show that the manifold M is orientable.

Ezxercise 4.2.8. Show that RP™ is orientable for odd values of n and non-
orientable for even values of n.

Exercise 4.2.9. Show that for every submanifold M C R"™ the Whitney sum
TM @ 1M

of the tangent bundle and the normal bundle is trivial.

Exercise 4.2.10. A vector bundle is stably trivial if its Whitney sum with a
suitable trivial bundle is trivial. Show that T'S™ is stably trivial.

Exercise 4.2.11. Let M be a manifold and A, the diagonal in M x M:
Ay = {(z,x) € M x M|z € M}.

Show that Ajs is a submanifold of M x M, for which the tangent bundle and
normal bundle are isomorphic:

TA]V[ ~ J_AM

Ezercise 4.2.12. Show that if (E,m, X) is a trivial bundle with a Riemannian
metric, then there is a bundle isomorphism

E~ X xR,

which is an isometry in every fibre.

Exercise 4.2.13. Let E be a vector bundle over X and 2 a bundle atlas for F,
all of whose transition functions are maps into O(n) C GL(n,R). Show that
there is precisely one Riemannian metric (,) on E, such that all charts of 2 are
isometrics on the fibres.

Ezercise 4.2.14. Let X be a space (e.g. a manifold), on which there is a partition
of unity subordinate to every open covering. Show that for every ‘line bundle’
(that is, 1-dimensional vector bundle) L over X, L ® L is trivial.

Exercise 4.2.15. Show that a product of two non-empty differentiable manifolds
M x N is orientable if and only if both factors M, N are orientable. Let
T = {(z,w) € C x C||z| = |w| = 1} be the torus, and 7 : T — T the involution
7(z,w) = (—z,w). Using exercise 1.11.4, give the structure of a differentiable
manifold. It is called the ‘Klein bottle’. Is it orientable?



Chapter 5

Local and tangential
properties

For the local study of manifolds it is, above all, important to see whether a
germ f : (M,p) — (N,q) is invertible, that is, whether a mapping maps a
neighbourhood of p diffeomorphically onto a neighbourhood of q. The functorial
property shows that for such a germ the differential T, f : T,M — T,N is an
isomorphism and the differential calculus shows that this condition is sufficient.

5.1 Multivariate calculus and its consequences

Theorem 5.1.1 (Inverse function theorem). A differentiable germ is invertible
if and only if its differential is an isomorphism.

If we introduce charts h : (M,p) — (R™,0) and k : (N, q) — (R",0), then f
induces the germ
g=kofok:(R™0) — (R"0).

The differential is then a linear map R™ — R™, which, by (2.2.4), is described
by the Jacobi matrix at the origin Dgg. If this is invertible (the differential an
isomorphism, in particular m = n), then some representative g of g is invertible
in some neighbourhood, that is, g and hence also f are invertible (see Lang [2],
chapter 17, section 3, pp. 349).

In a yet more general situation a germ is described by its differential:

Definition 5.1.2. The rank of a differentiable map f : M — N at the point
p € M (the rank of the germ f: (M,p) — N) is the number

rank,, f :=rank 7T, f.

Remark 5.1.3. The rank of a map is lower semi-continuous. If rank, f = r, then
there is a neighbourhood U of p, such that rank, f > r for all ¢ € U.

47
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Proof. After choosing charts, one must show that the rank of a Jacobi matrix
D f cannot decrease locally around p € V' C R™. The components of this matrix
describe a differentiable map:

Ofi
633j

Df:V—=R"™", g~ (5-(q))

Since rank, f = r, there is a (r x r)-submatrix of Df, (w.l.0.g., consisting of
the first r rows and columns), whose determinant does not vanish at the point
p, that is, the map

% R p ———> determinant
- D f, ——— submatrix

neither vanishes at the point p, nor in a neighbourhood U of p; the rank cannot
decrease there. O

Of course, arbitrarily close to p, the rank can be greater than rank, f, ex-
ample:
f:R-SR, z—a?:
has the differential D f, = 2z # 0 for x # 0.
If a germ f : (M,p) — (N, q) is described for suitable charts around p and ¢
by a linear map, that is, if there is a linear map ¢ : R™ — R™ and charts h, k,
so that the following diagram commutes,

(R™,0) — > (R",0)

then the differential T}, is given by the Jacobi matrix, and the Jacobi matrix Dg
of the linear map ¢ :  — y with
hi = Z aijzj
J

is (0y;/0x;) = (a;j), therefore constant. Thus the rank of a representative f
is locally constant, that is, the same as the rank of the matrix (a;;). This
condition on the rank is not only necessary, but - as we shall soon see - also
sufficient for describing the germ f by the differential 7, f = g, subject to the
choice of suitable charts.

By suitable choice of bases, a linear map of rank r can always be taken as

g:R™ =>R"  (x1,...,2m)— (z1,...,2,,0,...,0).

We wish to say that a germ has constant rank if it possesses a representative
with constant rank.



5.1. MULTIVARIATE CALCULUS AND ITS CONSEQUENCES 49

Theorem 5.1.4 (See Fig. 5.1). If f : (M,p) — (N,q) is a germ of constant
rank r, then there are charts h around Ep and k around q, such that the germ

Eo?oﬁ_l :R™ — R™ is represented by the map

(1, yxm) — (z1,...,2,0,...,0).

Figure 5.1:

Proof. We may immediately assume f : (R™,0) — (R",0); we then find an
(r x r)-submatrix of D f, which is regular at the origin, and after exchanging
coordinates in R™ and R™ we obtain a matrix

Ofi
E)xj

squadl <i,j <

which is regular at the origin.
Let h: (R™,0) — (R™,0) be represented by the map
hei(zy,..,xm) = (f1(@), .., fr(@), Trg1y. oo Tm),
then the Jacobi matrix of h has the form

0fi/0x;

0 Emr:| , det(Dhg) = det(0f;/0x;(0))i j<r # 0

|

Thus, by the inverse function theorem,h is an invertible germ and the diagram

(R™,0) —L~ (R, 0) (@1, 2m) e (f1(2), -, ()
hi 52?0571 I /
(R™,0) (fr(@), ..., fr(x), Try1s e Tm)

(2155 2m)
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shows that the germ g = f o s represented by the map

(Zla cet Zm) = (Zla M Zr,Qr-‘,—l(Z)’ e 7gn(z))' (5]‘5)
The Jacobi matrix of g therefore has the form

D= 4| A0 = @ue.

Transformation in the pre,image space leads this far, and we have only made
use of the fact that ranky f > 7.
But now since rank(f) = rank(g) = rank(Dg)

= r in a neighbourhood of
the origin, in this neighbourhood we must have A(z) =

0, therefore

dg;
8l‘j

=0 for r+1<i<n, r+1<j<m. (5.1.6)

Let the germ k : (R™,0) — (R™,0) be represented in the image space by a map

(ylv"'ayn) —
(y17~~;yr7yr+1 _gr+1(y17'"7y7”707"‘70)7"'7yn_gn(ylv"'aymo,"'vo))'

The Jacobi matrix of k has the form

)

ol )

ETL—T

—1

and thus k is invertible and ko foh = ko( is represented by the composition

k
(21 2m) ¥ (21 2o Grg1 (2)s - oy g (2))
(217"'727’797”4-1(2) 797’+1(217'"727’703"'70)3"'7gn(z) 7gn(zl7~~-azra07"'70))'

If we now restrict ourselves to a cube neighbourhood |z;| < ¢ for sufficiently
small €, then

9i(z1y-oyzn) — gi(21, -0, 20,0,...,0) =0, r+1<i<n
on account of 5.1.6, thus k o g is represented by
(#1,+ -y 2m) — (21, -+, 2r,0,...,0).
O

The rank theorem, in other words the inverse function theorem, dominates
the elementary geometry of differentiable maps.

If rank, f is maximal, that is, the same as the dimension of M or N, then
the rank is locally constant (5.1.3), and the rank theorem is applicable.
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Definition 5.1.7. A differentiable map f : M — N is called:

a submersion if rank, f = dim IV,

an immersion if rank, f = dim M,

for all p € M. A point p € M is regular if the differential T, f is surjective. A
point ¢ € N is a regular value of f if every point of f~!(q) is regular. Instead
of ‘non-regular’ one can also say singular or critical.

Note in particular that a point ¢ € N is a regular value, if f~1(q) = @, that
is, if it is not a value. The map f is then a submersion if and only if every point
p € M is regular, or every ¢ € N is a regular value.

The statement that f is an immersion means that the differential T is
injective at every point p € M. Then by the rank theorem, locally in specific
coordinates, f has the form

(X1, yxm) = (21,00, Tm, 0,...,0)

In particular, every point of M possesses a neighbourhood which is embedded
by f. However, f need not be injective, see Fig. 5.2, and even if f is injective,
f need not be an embedding by definition (1.10.1).

O-CO

Figure 5.2:

The obvious counterexample is illustrated in Fig. 5.3.
If, however, M is compact, f : M — N an immersion and injective, then f
is an embedding; more generally:

Theorem 5.1.8. Let f : M — N be an injective immersion and f : M — f(M)
be a homeomorphism where f(M) C N carries the subspace topology. Then f
is an embedding.

Proof. If p € M and f(p) = q € N, the rank theorem yields charts h : U —
U cR"and k:V — V' cR™ x R* around p and g, such that f induces the
map N

f=kofoh—-1:z+ (z,0).
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f (R) is not a manifold

.........

Figure 5.3:

U is then chosen so small that f is defined on all of U,and U x BcCV for
some neighbourhood B of 0 in R®. Then let V' be so shrunk that U xB=V.

Since f is a homeomorphism, U = f~!W for some open neighbourhood W of
q, and for the chart k' := E|(vaw) we have E(f(M)YNVAW) =m0k (VAWw).
Therefore, f(M) is a submanifold of N and f : M — f(M) is both locally
invertible and bijective and is therefore a diffeomorphism. Fig. 5.4 illustrates
this proof.

>

I )
—_— WW////////Z

Figure 5.4:

O

For an immersion f : M — N, as well as for an embedding, one can define
a normal bundle. Since by deA£mition (5.1.7), the map Ty : TM — TN maps
every fibre injectively, the induced homomorphism (3.1.13)

h:TM — f*TN
of vector bundles over M is injective, and the quotient bundle
f*TN/h(TM) (5.1.9)

is called the normal bundle of f.
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Lemma 5.1.10. If q is a reqular value of the differentiable map f : M" T+ —
N7, then f~1(q) is a differentiable submanifold of M with codimension n.

Proof. If f(p) = q, then by (5.1.3) the rank of f around p is locally constant
because it cannot become larger than n. Therefore, using the rank theorem, one
can introduce local coordinate systems around p and ¢ so that, with respect to
these coordinates in a neighbourhood U of p, f is given by

(1, Tpgk) = (1,0, 20)
p=(0,...,0), ¢=1(0,...,0).

Then f~'(¢) NU = RENU c R*"™* N U; thus f~!(q) is a submanifold of
dimension k. O

This lemma is the most important tool in showing that a subset of a differ-
entiable manifold is a submanifold, or in constructing manifolds. For example,
the contour lines of a (geographical) map are submanifolds, just so long as the
height is regular, see Fig. 5.5.

height

A —_— critical value

A\ fmm T T fr o
AL T T caivalee
Figure 5.5:

By way of illustration we give the following:

Proposition 5.1.11. The set O(n) of real orthogonal (n X n)-matrices is a
1

submanifoM of R™™, the set of all matrices, of dimension 5 -n-(n —1).
Proof. A matrix A € R™" is orthogonal if and only if ' AA is the identity matrix
E. In any case, AA is symmetric. Therefore, O(n) is the pre-image of E under
the map

f:R"™ S A—'AA

into the set S of symmetric matrices (S = Rz"("+1)),
In calculating the differential of f we consider the mapping of the paths
w(A) = A+ A B through the point A with f(A) = E:

f(A+AB)=E+ \'AB+'BA)+ \* - 'BB.
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Thus, Ta(f)(R™™) contains precisely all matrices of the form (*AB + 'BA),
where *AA = E and B C R™" is arbitrary. These are, however, precisely all
the symmetric matrices, as one can see, if for a symmetric matrix C, one puts
B = $AC. Therefore E is a regular point of f, O(n) C R™" is a submanlfold,
and its codimension is dim(S) = in(n + 1). O
Definition 5.1.12. Let M, N be differentiable manifolds and let L. C N be a k-
dimensional submanifold. A differentiable map f : M — N is called transverse
to L if the transversality condition

T, f(TyM) + Ty L = Ty N iff(p) € L, (5.1.13)

is satisfied for all p € M, see Fig. 5.6.

(M) M)

transverse not transverse

Figure 5.6:

Such pictures must of course be regarded with care: the behaviour of the
map cannot be read off from its image set alone.

The transversality condition imposes a requirement only on the points from
the pre-image of L. For example, a map, whose image does not meet the sub-
manifold, is certainly transverse; and if dim M < codim L, then f is transverse
to L if and only if f(M)N L = @, because the condition (5.1.13) cannot other-
wise be satisfied. The sum of vector spaces in the transversality condition need
not be direct, for example every map is transverse to L = N.

Equivalently, one can also formulate: (5.1.13) < the composition of linear
maps

Tp
TM 7

T,N

\ lprojection

T,N/T,L

is surjective, for ¢ = f(p) € L. The condition states that the tangent space of
M is to be mapped ‘as skew as possible’ to that of the submanifold L.

If L is a point, then the map f is transverse to L if and only if this point is
regular.
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Theorem 5.1.14. If f : M — N is transverse to the k-codimensional subman-
ifold L C N and f~Y(L) # @, then f~1(L) is a k-codimensional submanifold of
M and, for the normal bundles, one has a canonical bundle isomorphism
L(f'L) ~ f*(LL).
Proof. Let f(p) = g € L, and in some neighbourhood V E of ¢ in suitable local
coordinates let V ~ V' c R™:
LNV ~R" 0V,

where R"~% C R" is given by the vanishing of the last k& coordinates. Let
7 : R® — R* be the projection on these last coordinates. Then the transversality
condition in a neighbourhood U of p states that 0 € R* is a regular value of the
map

U—Lvay
\ lﬂ'lv/
RF.
Therefore the pre-image of zero, namely, f~*(L) N U, is by (5.1.10) a subman-

ifold of codimension k of U and, therefore, f~1(L) C M is a k-codimensional
submanifold (this is a local condition!), see Fig. 5.7.

(M)

R¥

x—

Figure 5.7:

The isomorphism | (f~1L) — f * (LL) is induced by the tangent map
Tf|f*1(L) : TM|f71(L) — TN|L

It induces a map TM|s-1(zy — (T'N|p)/TL, which is linearly epimorphic on
every fibre (transversality condition) and, since T(f~'L) obviously lies in the
kernel, the map

TMlpaw) |, TNL

T(f~1L) TL
is an isomorphism on every fibre, which induces the required isomorphism by
(3.1.13). O
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The pre-image of a regular point ¢ € N therefore has a trivial normal bundle,
since it is induced from the trivial bundle T, (N) — {q}.

An arbitrary point does not, of course, need to be a regular value, nor does
an arbitrary map need to be transverse; an arbitrarily prescribed closed set
A C M can arise as the pre-image of a point ¢ € M under a differentiable
mapping M — N (14.0.1). However, as we shall see in the following chapters,
such pathological maps are ‘unlikely’, transversality being the usual case. The
concept of transversality thus plays a decisive role in differential topology.

We close this section with a further application of the rank theorem:

Theorem 5.1.15. Letf : M — M be a differentiable map of a differentiable
connected manifold into itself with fof = f, then f(M) is a closed differentiable
submanifold of M.

Proof. We have f(M) = {x € M|f(z) = x} = fixed point set of f, and this is
closed.

It is sufficient to consider the map f in a neighbourhood of a point of f(M).
By the rank theorem it then suffices to show that the rank of f is constant
in some neighbourhood of every point of f(M). We first show that rank, f is
constant on f(M).

If p € f(M), then the differential of f at p satisfies the equation T, foT,f =
Tpf therefore as above

(T, f) = {v € T,M|T,f(v) = v} = ker(id — T, f),
and thus, in particular,
rank, f + rank(id =7, f) = dim M

for all p € f(M). Since both ranks on the left side can only increase in a
neighbourhood of a point, rank, f is locally constant on f(M), hence constant
because f(M) is connected.

Now let rank, f = r for p € f(M), then there is an open neighbourhood U
of f(M), such that rank, f > r for all ¢ € U. But rank, f = rank,(f o f) =
rank(T'yq) f o Tqf) < ranky (g f = r, therefore rank, f is constant on U. O

In general, if A C X and f : X — A is a mapping such that f|4 = ida,
that is, a mapping which throws X onto A, keeping each point of A fixed, then
one calls f a retraction. We have thus shown that the image of a differentiable
retraction is a differentiable submanifold. A continuous (non-differentiable) re-
traction can, however, have very wild image sets.

5.2 Exercises

Exercise 5.2.1. Let R 4+ R be a differentiable sum of the manifold R with itself
(1.8.1), and let f: R+ R — R? be the map with the components f(z) = (z,0)
and f2(y) = (0,exp(y)). Show that f is an injective immersion, but not an
embedding, and draw a sketch of the image.
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Ezxercise 5.2.2. Let the map f: R+ S! — C have the components

f1(t) = (1 + exp(t)) - exp(it),
faexp(it)) = exp(it), with S'={z € C||z| =1}.
Show that f is an injective immersion, but not an embedding, and draw a sketch
of the image.
Ezercise 5.2.3. (a) Show that if ¢ € R isirrational, then the subgroup generated
by exp(2mic) is dense in S* = {z € C||z| = 1}.
(b) The map
R—>CxC, ¢t~ (exp(ait),exp(bit))
is an immersion if b # 0; show that if a/b is irrational, then it is injective
and the image is dense in S' x S' ¢ C x C.
Ezercise 5.2.4. Let A be a symmetric real (n X n)-matrix, and 0 # b € R, show
that the quadric
M = {z € R"|'"z Az = b}
is an (n — 1)-dimensional submanifold of R™.

Ezercise 5.2.5. For an integer d > 0 the Brieskorn manifold W2"~1(d) is defined
as the set of points (2o, ..., 2,) € C""1, which satisfy the equations

Zg+zil+"'+zg:07

2020 + 2121+« + 2nZn = 2.

Show that W?2"~1(d) is a (2n — 1)-dimensional manifold.

Ezercise 5.2.6. Let CP™ be a complex projective space, and

H(m,n) = {(z,w) € CP" x CP"| Zziwi =0}
i=0
for m < n, where z = [z0,...,%m] and w = [wy,...,w,] are homogeneous
coordinates. Show that H(m,n) is a 2(m + n — 1)-dimensional manifold. Cor-
responding manifolds are also obtained from the real projective spaces. They
are called Milnor manifolds.

Ezercise 5.2.7. Show that the manifold of orthogonal matrices O(n) is compact,
the group operations
O(n) x O(n) = O(n) (multiplication),
O(n) = O(n), Aw— A71

are differentiable, and that O(n) has two connected components.

Ezercise 5.2.8. A k-frame in R™ is an orthonormal k-tuple (vy, ..., vx) of vectors
in RR"™. The set V¥ C R" x --. x R (k factors) of k-frames in R™ is called a
Stiefel manifold. Show that V¥ is a compact differentiable manifold of dimension
n-k—3%-k-(k+1).
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Ezercise 5.2.9. Show that the set U(n) of unitary matrices, considered as a
subset of O(2n), is a submanifold of O(2n) of dimension n?.

Ezercise 5.2.10. Let f : M — N be a differentiable retraction and p € f(M).
Show that there is a local coordinate system around p, in which f is given by

(1, &, ) — (21, .., 20,0,...,0).

Note that here, unlike in the rank theorem, one cannot choose charts indepen-
dently in the image and pre-image manifolds!

Exercise 5.2.11. Let M, N, L be differentiable manifolds, and
L
lg

differentiable maps, so that for every point p € M and g € L with f(p) = g(q) =
r € N, we have
Tp f(TpyM) + Tyg(TyL) = T-(N).

Show that the fibre product (or pull-back) of f and g:

{(p,g) e M x L|f(p) = g(a)}

is a differentiable manifold.



Chapter 6

Sard’s theorem

6.1 Theorems of Sard and Brown
The aim of this chapter is the proof of the following theorem.

Theorem 6.1.1 (Sard’s theorem). The set of critical values of a differentiable
mapping of manifolds has Lebesque measure zero.

In particular, if f : M — R" is differentiable, then for almost all b the set
f~Hb} C M is an n-dimensional submanifold; in other words the differentiable
system of equations on M

filz) = M

fn(x) = hn

has (for given f) for nearly every choice of b; an n-codimensional submanifold
of M as its solution set (5.1.10).
We now come to more detailed explanations:

Definition 6.1.2. A subset C' C R"™ has measure zero (almost every point
is not in C), if for every ¢ > 0 there is a sequence of cubes W,; C R™ with
C C U2, W; and Y .2 |W;| < e. Here, |W| is the volume of the cube y, that is
Wil = (2a)™ if W = {z||z; — 2| < a}.

A countable union of sets of measure zero again has measure zero, for if we
have C C U2, C, and C,, C U2, WY with Y .2 |WY| < e/2", then C C U; , W}
and >, |W/| <e. For similar reasons it does not matter if one takes open or
closed cubes, rectangular blocks, or balls.

Lemma 6.1.3. Let U C R™ be open, C C U a set of measure zero, and let
f:U — R™ be differentiable, then f(C) also has measure zero.

39
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Proof. Since U is the union of a sequence of compact balls, one may assume
that C' is contained in a compact ball, and that the cubes of a covering of C
according to (6.1.2) are also contained in a somewhat larger ball K C U. The
mean value theorem of differential calculus provides an estimate

f@+h) = f(z)+ R(x,h), [R(x,h)|/lege|h|

for x,x + h € K, for some constant c. If, therefore, a cube W C K has edge
length a, |z —2° < \/m-afor z € W, and |f(x)— f(2°)l| < ¢-v/m-a. Thus f(W)
lies in a cube of volume (2 - /m - ¢)™|W| and, since the constant (2 - /m - c)™
is independent of the cube, the assertion follows. O

This lemma makes it meaningful also to speak of sets of measure zero in a
differentiable manifold.

Definition 6.1.4. A subset C of a differentiable manifold M has measure zero
if for every chart h: U — U C R™ the set h(C' NU) C R™ has measure zero.

Since a manifold has a countable base for its topology, from every atlas
one can choose a subatlas with countably many charts (Kelley [8], chapter 1,
theorem 15, p. 49); if one applies lemma (6.1.3) to the chart transformations in
such an atlas, then it follows that C' has measure zero if for all charts h, of a
chosen fixed atlas h,(C N U, ) has measure zero in R™.

A corresponding definition for a topological manifold has no meaning because
non-differentiable homeomorphisms can map a measure mero set onto a set of
positive measure (an example of this cannot be simply given).

After the introduction of charts it is only necessary to carry out the proof
that a set has measure zero for subsets of R™. Here the following special case
of Fubini’s theorem provides an induction procedure:

Theorem 6.1.5 (Fubini). Let R}™' := {z € Rz, = t}; let C C R™ be
compact and C; := C MR}~ have measure zero in R}~ ~ R~ for all t € R™.
Then C has measure zero in R™.

following Steinberg [9. | We use the following elementary

Proposition 6.1.6. An open covering of the interval [0, 1] by subintervals con-
tains a finite covering [0,1] = Ulelj with Z§:1|Ij| < 2.

Proof. One chooses a finite subcovering, from which it is not. possible to exclude
any further interval. Then every point of [0, 1] lies only in, at most, two intervals
of this covering: if it were to lie in three, then one of these would have the
smallest initial point and one would have the largest end point, a further one
would be superfluous. O

Now back to the proof of Fubini’s theorem. W.l.o.g., let C C R"~! x [0,1],
and C; have measure zero in R"~! x ¢ for all ¢ € [0,1]. For every £ > 0 we find
a covering of C; by open cubes W} in R ™! with volume sum < e. Let W; be
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Figure 6.1:

the projection of U; W/ C R? ™! on the first factor R"~* of R”~! x [0, 1], see Fig.
40.

If 2, is the last coordinate, then, for fixed ¢, the function |z, —t| is continuous
on C| it vanishes precisely on C; and outside of [W; x [0, 1] it a minimum value
a because C' is compact. Thus we have

{relCllz, -t <a} CWyx I with L= (- —a,t+a).

The various intervals I; constructed like this cover [0,1] and, according to the
proposition, from these we may choose a finite subcovering {I;[j = 1,...,k} of
volume sum < 2. Here I; = I;, for some t; € [0,1]. The rectangular blocks

(Wi, x Ijlj =1,..., ki € N}
cover C' and have volume sum < 2e. O

Remark 6.1.7. The hypothesis that C is compact may be easily weakened; it
is clearly sufficient that C' be a countable union of compact sets. In particular,
this holds for closed sets, open sets, images of sets of this class under continuous
maps, countable unions and finite intersections of such sets. This class will
satisfy us.

With this we come to the proof of Sard’s theorem (see Milnor [6]). Following
the introduction of charts, by definition (6.1.4) one has to show the following:

Theorem 6.1.8. Let U C R"™ be open, f: U — RP differentiable and let D C U
be the set of critical points of f, then f(D) C RP has measure zero.

Proof. We proceed by induction on n; for n = 0, R™ is a point, f(U) is, at most,
one point and the theorem holds.

For the induction step let D; C U be the set of points x € U, at which
all partial derivatives of order < i vanish. The D; clearly form a decreasing
sequence of closed sets

DD>DiD>DyD -+,

and we show
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(a) f(D\ D) has measure zero,
(b) f(D;\ D;t1) has measure zero,
(¢) f(Dy) has measure zero for sufficiently large k.

Note that all the sets appearing here fall into the class to which by (6.1.7) we
may apply Fubini’s theorem; further, it suffices in each case to show that each
point x € D\ Dy (... respectively) possesses a neighbourhood V such that
f(Vn(D\ D;)) has measure zero, for D \ D (... respectively) is covered by
countably many such neighbourhoods.

Proof of (a) One can assume p > 2 since for p =1, D = D;. Let € D\ Dy;
as ¢ ¢ Dy, some partial derivative of f does not vanish at the point x, we may
therefore assume that 0f/0x1(x) # 0; then by (5.1.5) the map

h:U—=R"  (1,...,25) = (fi(x),22,...,2,)
is not singular at the point z; so its restriction to a neighbourhood V of z is a
chart h: V — V', and the transformed map g := f o h~! has the form
g: (2, zn) = (21, 92(2), . .., gp(2))

locally about h(z). The mapping takes the hyperplane {z|z; = t} into the plane

{ylyr = 1}; let ,
gt xR HNV =t xRP!

be the restriction of g. Then a point from (¢ x R"~1)N V' is critical for g if and
only if it is critical for g*, since g has the Jacobi matrix

1 0
Dg:[? Dgt}

However, by the inductive hypothesis, the set of critical values of g has measure
zero in t x R" 1, thus the set of critical values of g has an intersection of measure
zero with each hyperplane {y|y; = ¢t}. Hence, by Fubini’s theorem, it itself also
has measure zero, and (a) is proved.

Proof of (b) We proceed similarly. For each point & € Dy \ Dy there exists
some (k+1)st derivative which does not vanish at the point . We may suppose
that

OF L f1 /02102, . .., 0y, () # 0.

Let w : U — R be the function
w =0 f /0x,, ..., 0,

then therefore w(x) = 0, Ow/0x1(x) # 0, and as before the map
h:xe (w(x),ze,...,¢,),

defines a chart h: V — V' about z, and

h(DL,NV)C0x R cCR"™
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We may therefore again consider the transformed map g := foh™!: V' = Rp,
and its restriction g% : (0 x V/) NV’ = RP, which by the inductive hypothesis
has set of critical values of measure zero. However, each point from h(D; NV)
is critical for ¢° because all partial derivatives of g, hence also of ¢°, of order
< k, in particular of first order, vanish. Therefore f(Dy, NV) = go h(DNV)
has measure zero.

Proof of (¢) Let W C U be a cube with edges of length a, and let &k >
(n/p) — 1, then we shall show that f(W N Dy) has measure zero. Since U is a
countable union of cubes, this will be sufficient. The Taylor formula yields an
estimate

fz+h) = f(z) + R(z,h), [R(z,h)| <c-[n*,
for x € Dy N W and x 4+ h € W, where the constant c is fixed for given f and
w.
Now decompose W into r™ cubes with edges of length a/r. If W; is a cube

of the decomposition, which contains a point x € Dy, then each point from Wy
can be written as x + h with

vn-a

r

k] <

From the remainder estimate above, f(W7) lies in a cube with edges of length

5 (\/ﬁ.)k+l b

- C- fk+1 = Tk+1 s

with a constant b, depending only on W and f and not on the decomposition.
All these cubes together have a combined volume s < 7" - b? /rP(*+1) and, for
p(k+1) > n, this expression converges to zero as r increases. Hence, by choice of
a sufficiently fine decomposition, the combined volume can be made arbitrarily
small. O

The most important consequence of Sard’s theorem is the older result of
Brown, which we wish to state separately:

Theorem 6.1.9 (Brown’s theorem). The regular values of a differentiable map
f:M — N are dense in N.

6.2 Exercises

Exercise 6.2.1. Let f : M — N xR" be a differentiable map; show that for each
€ > 0 there exists a vector v € R™ with |v| < ¢, such that the map

g: M —>NxR" zx— f(z)+v

is transverse to the submanifold Nx x 0 C N x R".

Ezercise 6.2.2. Show that, if M™ C RP? is a differentiable submanifold, then
there exists a hyperplane in R?, which cuts M™ transversally.



64 CHAPTER 6. SARD’S THEOREM

Ezercise 6.2.3. Show that there is no surjective differentiable map R™ — R"+1,

Ezercise 6.2.4. Let M™ be a compact manifold, f : M™ — R"*! differentiable,
and 0 ¢ f(M). Show that there exists a line through the origin of R"*! which
only meets finitely many points of f(M™).

Ezercise 6.2.5. Let f: M — RP be a differentiable map and N C R? a differen-
tiable submanifold. Show that for each ¢ > 0 there exists v € RP, with |v| < &
such that the map M — RP, x — f(z) + v is transverse to N. Hint: consider
the map M x N — RP, (z,y) — y — f(x).

Exercise 6.2.6. For a differentiable map f: M — N let

7

> (f) = {p € M|rank, f = i}.

Let f : R™ — R" be differentiable and € > 0. Show that there exists a linear
map « : R™ — R™ of norm < ¢, such that > °(f + «) is a differentiable sub-
manifold of R™.

Hint: apply exercise 6.2.5 to Df and use (1.11.16).

Ezercise 6.2.7. Let f: R™ — R™ be differentiable and m < 2n. Show that for
each € > 0 there exists a linear map « : R”™ — R” of norm < ¢, such that the
map f + «: R™ — R™ is an immersion.

Hint: this is a side result of the solution to exercise 6.2.6.

Ezercise 6.2.8. Let M* c R™t! be a compact submanifold and n > 2k. Show
that, for the projection 7 : R**! — H” onto a suitable hyperplane H of R"*!,
the restriction w|M : M — H is an immersion.

Hint: consider the (2k —1)-dimensional manifold PT M, whose elements are the
1-dimensional subspaces of the tangent spaces of M, and study the canonical
map PTM — RP"™.

Ezercise 6.2.9. Let M* ¢ R™*! be a compact submanifold and n > 2k + 1.
Show that, for the projection 7 : R®*! — H" onto a suitable hyperplane H of
R+ the restriction 7|M : M — H is an embedding.
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Embedding

7.1 Immersions and Embeddngs

What we have studied up to now - apart from the tangent bundle - is essentially
the local structure of differentiable manifolds, and at first it is not obvious
that between two manifolds there can ever exist non-trivial maps, and that
everything which one intuitively describes as ‘smooth’ can also be realised by
means of differentiable maps. The essential technical tool for the passage from
local to global is the partition of unity which we now manufacture.

Lemma 7.1.1. Let M be a differentiable manifold and 4 = {Ux|\ € A} an
open covering of M. Then there exists an atlas A = {h, : V, = V, |v € N} of
M with the following properties:

(a) {Vi|v € N} is a locally finite refinement of {Ux|\ € A},

(b) V, = {z € R™[|z| < 3} = K(3),

(c) The sets W, := h,;{x € R™||z| < 1} = h,;* K (1) still cover M.

Such an atlas is called a good atlas subordinate to the covering i1.

Proof. Since M is locally compact with a countable basis, we can easily find a
sequence of compact subsets A; such that A; C 4,11 and U2, A; = M. (Choose
a countable cover {C),},en of M by compact sets, and then choose A; = C
and A, as a compact neighbourhood of A4, _; UC,.) Now foro each ¢ we may
choose finitely many charts h, : V, — K(3), such that V,, C 4,42\ A;—1 and
V,, C Uy for some X, and such that the sets W, = h, ' (K (1)) still form a cover
of A;4+1\ A;—1. This follows easily, since this set is compact and has A; 12\ 4;_1

as an open neighbourhood (see Fig. 7.1).
All these charts for all ¢ € N together form the sought for atlas. O

Next we recall that the function (illustrated in Fig. 7.2)

0 for t<0

AMR—->R, t—
exp(—t—"2) for t>0

65
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Figure 7.1:

is infinitely differentiable, that 0 < A < 1, and that A(t) =0 < ¢t < 0.

Figure 7.2:

For ¢t > 0 the derivatives of A have the form ¢(t) - exp(—t~2), where ¢ is a
rational function, and they therefore converge to zero as t goes to zero. Now let
e>0and p.(t) = A(t) - (A(t) + Me —t)) ! (Fig. 7.3), then ¢, is differentiable,
0<p.<1l,and . (t) =0t <0,and p.(t) =1 <t >e.

For the ball

Kir)y={zeR"||z| <r}, r>0, (7.1.2)

we can therefore find the differentiable bump function (Fig. 7.4)

Y:R" >R, ax—=1-—p(z]—7r)
with the properties:

0<9Y. <1 forall xeR",

Y(x)=12€ K(r),
Y(E)=0&|z| >r+e.

About the point & = 0, where |x| is not differentiable, 1) is locally constant and
therefore differentiable.
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Figure 7.3:

Figure 7.4:

If one composes such a bump function with a suitable chart, then one obtains
a function ¥ o h : U — R on the chart domain of a manifold, and because this
function vanishes outside h=' K (r + ) C U, one can extend it (by 0 on M \ U)
as a differentiable function over the whole manifold M.

Theorem 7.1.3. For every open covering of a differentiable manifold, there
ezists a subordinate differentiable partition of unity.

Proof. Using (7.1.1) we may choose a good atlas 2 subordinate to the cover i
of M, also a hump function ¢ for the ball K (1) with ¢|K (1) =1, ¢(z) = 0 for
|z] > 2. Define the function i,on M by

b = oh, on V,=h;1K(3),
"0 otherwise.

Then v, is differentiable, and s = 250:1 1, is well defined and differentiable,
since the family {supp(¢,)} of supports is locally finite and differentiability is
a local property. Besides, s(p) # 0 for all points p € M, so that the functions

pu = (1/8)¢y
form the sought for partition of unity. O
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An easy consequence:

Remark 7.1.4. If Ay, A; are disjoint dosed subsets of the differentiable manifold
M, then there exists a differentiable function (separating function) ¢ : M — R,
0 < ¢ <1, such that ¢|4, =0, ¢|a, = 1.

Proof. Let {¢,|v € N} be a partition of unity subordinate to the covering by
the sets U; = M \ A4; and put

W:ZWV

veK

with v € K if and only if supp(p,) C U;. O

In what follows, we shall concern ourselves with approximations to given
maps with ‘nice’ properties (embeddings, transverse maps, etc.). In doing this
we must ensure that for the approximation, not only the values of the function,
but also the values of the partial derivatives, undergo no more than a small
change. However, we do not wish to involve ourselves unnecessarily with the
appropriate topologies on the set of differentiable maps C°°(M, N), and restrict
ourselves to the bare minimum.

Definition 7.1.5. Let U C R™ be open and K C U compact; let f € C>*(U),
then set

Flic = max{|f (@) € K} + Y max{|0f/a, (2)||x € K.

v=1

If f=(f1,...,fn) : U — R" then |f|x := max{|f, |k}

It is straightforward to check that |f|x defines a seminorm on C*°(U), that
is,

lf +9lk < |flx + 19l
|>\f|K = >\|f|K for A\ > 0,

If -9l <I|flx 9|k

Furthermore, for K C L, |f|x < |f|L, but clearly it is possible that |f|x = 0
without f = 0 (but f|x = 0).

In particular this seminorm makes C'°°(U, R™)into a topological space C*° (U, R™) k:
e-neighbourhoods with respect to the seminorm |f|x form a neighbourhood ba-
sis.

Lemma 7.1.6. Let U be open in R™ and K C U compact; the set of differ-
entiable maps f : U — R™, which have rank m at all points of K, is open in
C>(U,R™)k, and is dense in the case of 2m < n.
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Proof. The condition rank, f = m means that the Jacobi matrix D f, has rank
m, or that the map K — R™", x — D f, has image contained in the open set
of matrices of rank > m. If now |f — g|k is sufficiently small, then it follows
that |Df, — Dg,| is so small on K that Dg,|x also maps into this open set (see
(7.1.5)).

Now let 2m < n, ¢ > 0, and let the vectors 9f/0x; for i = 1,...,s <
m be already linearly independent at each point of U, then we find a map g
with |f — g|k < € such that the vectors dg/0b;, i = 1,...,s + 1 are linearly
independent at each point. The result will then follow by induction. To this
end we consider the map

s 0
@:RSXU%Rn,(Ah--- '_)Z/\Jax 61‘11
j S

For s <m, dim(R* x U) = s + m < 2m < n, so by Sard’s theorem we can find
a point a = (ay,...,a,) € R™ of arbitrarily small norm with a € p(R™ x U).
Now, set

g(z) = f(z) + Ts41 - a,

then 0g/0x; = Jf/0x; for i < s, and 0g/0xs41 = Of/Oxsy1 + a. A linear

relation
u dg
pY
Z J 31@3 8I3+ 1

is satisfied nowhere in U, for that would imply that

XS:/\] of of =a

Oz 8ms+1

O

In this proof only the trivial case (6.1.3) of Sard’s theorem is used. Another
proof depends on (6.2.7). From this local result by means of a good atlas we
can cobble the appropriate global result together.

Theorem 7.1.7 (Immersion theorem (H. Whitney)). Let M™ be a differentiable
manifold, § : M — R an everywhere strictly positive continuous function and
f+ M — R" a differentiable map with 2m < n. Let A C M be closed and
rank, f = m for all p € A. Then there exists an immersion g : M — R™, with

gla = fla and |g(p) — f(p)| < &(p) for allp € M.

In other words, not only one can find an immersion M — R™, but one can
also always approximate a given map by an immersion where the ‘nearness’
¢ of the approximation can be prescribed by an arbitrary continuous positive
function.

One can express such statements about approximation more elegantly in
terms of a topology on C*°(M, N).
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Definition 7.1.8. Let U be open in M x N and V; the set of g € C°(M, N)
for which the graph {(p,g(p))|p € M} lies completely in U. The C°-topology
(which is the only one considered in this book ) on C*°(M, N) has the sets Vi
as a basis of open sets, see Fig. 7.5.

+U
+U8)
graph (f)

§

Figure 7.5:

If one chooses a metric d on N, and a differentiable manifold admits a
metric (7.1.12), then, given a neighbourhood Vi of f € C*°(M, N), one easily
constructs a continuous function ¢ : M — R, § > 0, such that

U(9) := {(p,9)ld(f(p),q) <d(p)} CU.

(Let {¢n|n € N} be a partition of unity on M with compact supports, and
dn > 0 be such that (p,q) € U for p € supp(p,), and d(f(p),q) < dn; set
8 =301 0npn-) Therefore, one can certainly restrict oneself, as in the theorem,
to consideration of special neighbourhoods Vs := Vi;(5) of a map f. Moreover,
the C°-topology does not depend on the choice of metric and, if M is compact,
one can choose ¢ to be constant (topology of uniform convergence). With the
help of locally finite atlases on M and N one can also introduce topologies on
C* (M, N) which describe the convergence of the higher derivatives in the same
way that the C%-topology describes the convergence of the function values. But
we do not want to go into this (see Narasimhan [7].)

The immersion theorem thus says that immersions are dense in C*°(M,R™),
if 2m < n; also one does not need to disturb the map f on any closed set, where
it already has maximal rank.

Proof. (of Whitney immersion theorem 7.1.7) Since locally the rank of f can-
not decrease (5.1.3), there exists an open neighbourhood U of A, such that
rank,(f) = m for all p € U. For the cover {(M \ A),U} of M we choose,
using (7.1.1), a subordinate good atlas {h, : V, — K(3))|lv € Z}; the sets
W, = h;1K(1) still cover M. We set U, = h,;1 K(2) and so arrange the num-
bering that V,, C U if and only if v < 1. Only in the chart domains V, with
positive index shall be g, being differentiated from f. Inductively, we construct
maps g, : M — R", v > 0, with the following properties:
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)
b) g, = gv—1(x) for z € U,,
(c) if d = min{d(x)|z € U, }, then |g,(z) —g,—1(2)| < &, :=d/2" for all z € M,

(d) g, has rank m on U;<, W,.

Having done this, we set g = lim, ,o g,. Since the covering {U} is locally
finite, (b) implies that g,11(z) = g, (x) for almost all v, and the sequence {g,}
converges to a differentiable map g, which, by (a) and the numbering of our
atlas, coincides with f on A. Locally for large v, g agrees with g _,, and, by (d),
therefore has maximal rank m. Finally by (c)

lg—fl=lg—gol <6 27" =0.

We now come to the construction of the sequence g,, illustrated in Fig. 7.6.

Uicy W, : here g,

7 < ? \\\ is an imr-ersion
72 NN
NN

; ‘\\‘

i here don't
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Figure 7.6:

For this, by (7.1.2), we choose a bump function ¢ : R™ — R for K (1) with
support in K(2), and a bound s, such that ||k < s for K = K(2), hence for
all K. Now consider the map

gy_10h;': K(3) — R",

It has rank m on the compact set

C = hu(UV r_]i<1/ WZ) - K(2)
and, by the local result (7.1.6), the same holds for every map ¢ : K(3) — R"
with
lgy—10h, " —dqlo <n
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for some suitable n > 0. Using (7.1.6) again, we find such a ¢, which has rank
m on K(2), and such that

|gy—10 h;l —¢qlxk <n < min{n - s_l,g,,}.

We set

g (l‘) _ Gu—1(x) +poh,(x)-(q-hy(x) = gp_1(X)) for z¢€ KV
Y gv—1() for z¢&U,.

See Fig. 7.7.

Figure 7.7:

The definitions agree on the open intersection of the domains of definition
since there 1) o h,, = 0. Moreover,

v o byt —gu10ohy o <s-n<n

and therefore g, oh;1 has rank m on C. The same holds for g, on Ui<uW¢ NnU,,.
On W, we have 9 -h,, = 1, and hence there g, = goh,, also has rank m. Finally,

|gu_gu71| < |Q'hv_gu71| <n<e

on U, and hence everywhere. This concludes the proof of the theorem. O

Underpinning this proof is a general procedure of passing from a local state-
ment - in this case (7.1.6) - to a global statement.

For an injective immersion one needs more room, as the mapping S' — R?
in Fig. 7.8 demonstrates.

Theorem 7.1.9. Let f : M™ — R™ be a differentiable map and 2m < n.
Let A C M be closed and let the restriction of f to a neighbourhood U of A
be an injective immersion. Then arbitrarily close to f there exists an injective
immersion g : M — R™, such that gla = f|a.
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O-CO

Figure 7.8:

Proof. As in the previous theorem, we describe the ‘nearness’ by an everywhere
positive function § : M — R. From the previous theorem we may also assume
that f is already an immersion. Then by the rank theorem (5.1.4) f is locally
an embedding; we may choose a cover {U,} of M such that for all «, fly, is
an embedding, and such that U, C U or U, C M \ A. Then once more using
(7.1.1), we choose a good atlas {h, : V,, = K(3)|v € Z}, which is subordinate
to this cover, and so numbered that V,, C U if and only if » < 0. Finally, we
may choose a bump function ¢ for K (1) with support in K (2), and set

Py, i=voh,: M - R
Inductively, we construct a sequence of immersions g, : M — R" by

g0 = f,
gu:gV*1+¢u'bu; bueRn;

where the point b has yet to be specifically chosen.

First, it follows from (7.1.6) that g, has rank m on h,'K(2) and hence
everywhere, provided that b, is chosen sufficiently small. Choose b, to be also
sufficiently small, so that for all z, |g, () — gv—1(z)| < 27¥ - 6(z). Thus all the
functions g, together with g := lim,_, g, remain immersions - they lie in the
prescribed neighbourhood of f and agree with f on A. In the choice of b, let

N?™ c MxM

be the open subset of points (p, ¢) with v, (p) # 1. (q).
Consider the map

N?™ SR (p,q) = (g—1(p) — 9-1(q)) - (¥ (p) — ¥ ()"

Since 2m < n Sard’s theorem implies that the image of this map has measure
zero, and we may choose b, not to be in this image. Then

9 (p) — 9(q) & (gu—1(P) — Gu—1(q)) = — (¥ (p) — ¥ (q)) - by,
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and so by choice of b, if and only if

Yu(p) =¥u(q) hence g,-1(p) = gu-1(q).

Since the limit function g agrees locally with g, for large values of v, it follows
that, if p # ¢ and g(p) = ¢(q), then g, (p) = ¢.(¢) for sufficiently large v. Hence
by downward induction

¢u(p) = wu(Q) and gu(p) = gV(Q) forall v>0.

Ou account of the second condition, in particular, f(p) = f(¢), and so p and ¢
cannot lie in the same chart domain V,,. However, if p € W, C V,, and v > 0,
then ¥, (p) = 1 = v,(q), implying that ¢ € V,,. The remaining possibility is that
both p and ¢ lie in a chart domain W, with v < 0. But in this case, p,q € U
and f|y = g|y is injective O

An injective immersion is, as we know, in general not yet an embedding, nor
is it possible in general to approximate a given map by an embedding (example in
the exercises). However; an injective map of locally compact spaces f: X — Y
clearly induces a homeomorphism f : X— — f(X) if it is proper, that is, if
it may be extended continuously to a map of the one point compactifications
@ : X© — Y© by mapping the extra point to the extra point. In other words,
f is proper if f~'(K) is compact for each compact subset K. In this case,
f(X) C Y is closed, for f(X)© C Y© is compact.

Theorem 7.1.10 (Embedding theorem). An m-dimensional differentiable man-
ifold can be embedded as a closed subset of the Fuclidean space R™, if 2m < n.

For this we need:

Lemma 7.1.11. If M is a differentiable manifold and n > O, then there ezists
a proper differentiable map M — R™.

Proof. Choose a countable partition of unity {¢,|v € N} with compact supports
supp(y, ) and set

o0
f:ZV'gay:M%R.
v=1
If K C R is compact, then K C [-n,n] for some n € N, and f(z) € K. Then
x € U'_ supp(e, ), and this set is compact. Hence f is proper, and one obtains
a proper map M — R™ if one chooses f to be the first component. O

Proof. (of 7.1.10) By (7.1.11) one can choose a proper map f : M — R", and
by (7.1.9) approximate this by an injective immersion g : M — R", so that
lg— fl|<land A=@. If K C R"is compact, then K C K(r) for some radius
r, hence g~1(K) is closed in the compact set f~1K(r+ 1), hence compact.
Therefore g is proper, hence an embedding. O
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One can improve the results presented here in several ways; as we have
already said, one can involve the higher derivatives in the approximations and,
by deeper theorems of Whitney and Hirsch, the embedding theorem (7.1.10)
holds also for n = 2m. There exists a large literature on embedding and non-
embedding theorems. For non-embedding theorems in particular, we lack all the
tools here. They substantially depend on the methods of algebraic topology. For
example, it is very plausible that there exists no embedding RP? — R? of the
projective plane in the intuitive ‘space’ of our visual perceptions, but it is an
unhappy undertaking to attempt to prove this directly.

Remark 7.1.12. From the embedding theorem it follows that a differentiable
manifold is homeomorphic to a closed subset of Euclidean space; hence it inherits
a complete metric from the Euclidean space, which induces the given topology on
the manifold. This occasionally may simplify arguments from general topology.

7.2 Exercises

Ezercise 7.2.1. Let M be a differentiable manifold and p € M. Show that the
map

C¥(M)—&®p), f=f
is surjective.

Exercise 7.2.2. Let A C M be closed, U an open neighbourhood of A, and f a
differentiable map from U into R™. Show that there exists a differentiable map
g: M — R" with g|a = f.

Exercise 7.2.3. Construct an injective differentiable map f : S' — R2, whose
image consists of the points {z € R?| max(|z1], |z2|) = 1}.

Ezercise 7.2.4. Let f: M — N be a continuous map. Show that f is differen-
tiable if and only if for each g € C*°(N), go f € C=(M).

Ezercise 7.2.5. Show that the ring &™ possesses zero-divisors.

Exercise 7.2.6. Give an immersion R — R? (and not just a picture!), which
cannot, be approximated with proximity? 1 by an embedding.

Exercise 7.2.7. Show that for each n there exists a differentiable map f : R — R"
such that for each k € N
ft eR|t > k)

contains all points, for which all coordinates are rational.

Exercise 7.2.8. Find a function § : R — R, § > 0, and for each n € N a
differentiable map f : R — R"™, such that for no embedding g : R — R" one has

lg — f <.
Hint: use exercise 7.

Exercise 7.2.9. For a compact manifold M™ it is easy to prove an embedding
theorem without regard to the dimension. One can choose a finite good atlas
{hylv=1,...,7}, a bump function ¢ for K (1) with support in K(2), and one
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sets ¥, ;=¥ -h, : M —- R and k, := ¢, - h, : M — R™ (both maps vanish
outside V,,). Show that the map

M — H R™ x H Ra p= (kl(p)’ s 7t7'(p)71/)1(p)’ s ﬂ//r(p))
v=1 v=1
is an embedding, without using anything else from this chapter.

Ezercise 7.2.10. Let M™ be a connected non-compact differenfiable manifold.
Show that there exists a sequence of open subsets V,, C M, such that V,, ~
K1) cR™ VNV, 0, V,nVa=agif Ag {vr—1,v,v+1}, and {V,|v € N}
is locally finite, see Fig. 49.

Figure 7.9:

Exercise 7.2.11. Show that there exists a closed embedding of the real line in
every connected non-compact differentiable manifold.
Hint: use exercise 7.2.10.



Chapter 8

Dynamical Systems

8.1 Dynamical systems or flows

The differential topologist sometimes ‘pushes’ a submanifold aside, ‘dents’ it
somewhere, ‘bends’ or ‘deforms’ it, and the handwaving which accompanies
such operations all the more undermines the confidence of the observer. He
believes the assertions are plausible but that they have not been proven.

We propose to make such ‘bending’ precise by means of isotopies of em-
beddings and, in order to be able to construct isotopies, one needs dynamical
systems on manifolds. Both for their own importance and for the applications
we turn our attention first to these.

Definition 8.1.1. Let M be a differentiable manifold. A differentiable map
O:RxM—M

is called a dynamical system or flow on M, if for all x € M and ¢, s € N we have
(i) ®(0,x) = «,
(ii) (¢, P(s,x)) = (¢t + s, ).

The essential content of these two conditions becomes clear if one replaces
® by a family of maps M — M, parametrised by R. We write

O M — M, x— D(t,x)
Then (i) and (ii) read ®¢ = idps, and $; o g = Py, s0 P, = — Py, and one
has:

Remark 8.1.2. A differentiable map ® : R x M — M is a dynamical system if
and only if the map ¢ — ®; defines a group homomorphism of the abelian group
(R,+) into the group Diff (M) of diffeomorphisms of M onto itself. One also
says that the group (R, +) operates (or acts) on M.

7
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Geometrically, one takes a quite different position if one considers the flow
®:R x M — M as a family of curves R — M parametrised by M.

Definition 8.1.3. If ®: R x M — M is a flow, and = € M, the curve
a; :R—= M, t— O(x)

is called the flow line or integral curve of x. The image a,(R) of the flow line
is called the orbit of z, see Fig. 8.1.

orbit of x

Figure 8.1:

Remark 8.1.4. If a flow is given on a manifold, then exactly one orbit passes
through each point p of M.

Proof. The relation z ~ y < = = ®,(y) for some ¢ is an equivalence relation for
points of M, as one can easily check. The orbits are the equivalence classes. [

In order to obtain an idea of the geometric mechanism of a flow, one does not
usually consider the single diffeomorphism ®;, but one tries to give an overall
picture of the behaviour of all the orbits. There are three types of orbit:

Remark 8.1.5. A flow line o, : R — M of a flow is either

an injective immersion that is, «, is an immersion and there exists some
p > 0 with o, (t + p) = a,(t) for all ¢; (Fig. 8.2)

or

a periodic immersion that is, «, is constant, a,(t) = x for all ¢, (Fig. 8.3).
In this case x is called a fized point of the flow.

Proof. If a : (a,b) — M is a differentiable curve in M and to € (a,b), then we
write &(to) € Ta(to)M for the velocity vector of the curve at the point ¢y. Thus
G(to) as a derivation is given by &(to)(f) := (d/dt) fa(to), see Fig. 8.4.

Now for a flow line o, (see Fig. 8.5)

we have &(tg) = T(Py, )(&(x)(0)), for ay(t 4+ tg) = (Ps, © ay)(t). Since Py,
is a diffeomorphism, either (&, (t) # 0 for all ¢, that is, the flow line is an



8.1. DYNAMICAL SYSTEMS OR FLOWS 79

Figure 8.2:

Figure 8.3:

immersion (non-singular curve) or, (éy(t) = 0 for all ¢ for all ¢, that is, o, is
constant. If a, is not injective, hence ay (tg) = . (t1) for specific values to < 1,
then @, (z) = @, (), hence also &,®,,(x) = ®, D¢, (z) for all ¢t. It follows that
Di(x) = Py (4, —1y)(2), that is, a,(t) = ag(t + (t1 —to)) for all ¢. O

If we have a flow on M and U is an open subset of M, then we see from Fig.
8.6 that, in general, it is not the ease that flow lines of points in U lie entirely
inU.

On account of continuity however, if z € U the flow line «, must belong to
U for some small interval (ay,b;) about 0 € R, see Fig. 8.7.

This situation leads us to the definition of the concept of a ‘local flow’:

Definition 8.1.6. Let M be a differentiable manifold. By a local flow ® on M
we understand a differentiable map

d:A—- M

from an open subset A C R x M, containing 0 x M, to M, such that for each
x € M the intersection AN (R x {z}) is connected, see Fig. 8.8, and such that

(i) ®(0,2) ==«
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Figure 8.4:

oty (to)

Figure 8.5:

(il) @(t, (s,x)) = P(t + s,2)
for all ¢, s, x for which both sides are defined.

A local flow with A =R x M is dearly a flow (global flow).

Notation 8.1.7. If & : A — M is a local flow on M, then we shall denote the
domain of definition of the flow line a,:

t— O(t,x)

by (as,b.), see Fig. 8.9.

Note that for a local flow, one can, in general, no longer talk of the diffeo-
morphism P, since for fixed ¢ # 0, x — D(¢,x) is not necessarily defined on all
of M, see Fig. 8.10.

Definition 8.1.8. If ® is a (local or global) flow on M, then the vector field
O M —TM, s d,(0)

is called the welocity field of the flow, see Fig. 8.11.
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%

Figure 8.6:

Figure 8.7:

Remark 8.1.9. For all flow lines and for all ¢ € (ag,by), de(t) = ®(ay(t)), see
Fig. 8.12.

Proof. This follows from the definition for ¢ = 0. For z = a,(t), we have
a,(s) = agz(s + t), provided that both sides are defined (in any case in some
neighbourhood of s = 0), hence &,(0) = & (¢). O

Often in geometric considerations, one needs flows which ‘do’ something or
other, that is, have preassigned properties. It would be highly inconvenient to
always have to explicitly construct such flows as maps Rx M — M or A — M.
What really makes flows usable is the result that a flow is completely determined
by its velocity field and that, to a prescribed velocity field, there actually exists
a flow.

Theorem 8.1.10 (Integrability theorem for vector fields). Every vector field is
the velocity field of exactly one mazimal local flow; on a compact manifold even
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Figure 8.8:

Figure 8.9:

of a global one.

Proof. The essential mathematical kernel of this theorem is the theorem on
the existence and uniqueness of solutions to first order ordinary differential
equations, which we want to quote here. Our problem consists then only in the
translation into the language of manifolds. Therefore:

Quotations from the theory of ordinary differential equations: Let Q C R™
be an open subset and f : Q — R™ a differentiable (C°°) map. Then we have

(a)
Theorem 8.1.11 (Uniqueness theorem). If
a: (ag,a1) = N

and
ﬁ : (bo,bl) —Q
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txM

Figure 8.10:

velocity field

Figure 8.11:

&3

are differentiable curves with o(0) = B(0) = z, and a(t) = f(a(t)), B(t) =
f(B(t)) for all values of t in the appropriate domain of definition, then

a(t) = B(t) for allt € (ag,ar) N (bo, b1).
(Lang [2], chapter 8, section 1, theorem 3, p. 375.)

(b)

Theorem 8.1.12 (Existence theorem). For each x € ) there exists an open

neighbourhood W C Q, some ¢ > 0 and a differentiable (C*) map

p:(—ee)xW—=Q

with the property that ©(0,x) = x for all x € W, and ¢(t,z) = f(p(t,x))

for all (t,z) € (—g,e) x W.
(Lang [2], chapter 8, section 4, theorem 7, p. 388.)
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Figure 8.12:

O

Connection with differential topology. Let X be a vector field on M and
(h,U) a differentiable chart of M. By means of the bundle chart of T'M associ-
ated to (h,U), we transplant X|y to a map

f:U S5TU =U xR 5 R®
of U’ into R™, namely, f(h(x)) := T.h(X(x)), see Fig. 8.13.

X(x) € T,M

J
|

/

f(hix)

hix) fUcRP

Figure 8.13:
Here Th(I)UI ~ R™ in the usual way. Then for curves « : (a,b) — U we have
a(t) = X(a(t) < (hoa)(t) = f(hoa(t)),

see Fig. 8.14.
We now want to call a curve a : (a,b) — M a solution curve for X, if &(t) =
X (a(t)) everywhere. Then the considerations above show that, for each « € M,
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a7
o

hoat

Figure 8.14:

there is exactly one maximal solution curve oy : (az,by) = M with o, (0) = =.
The existence of a solution curve with «(0) = x follows (using a chart about
x) from the existence theorem for ordinary differential equations, and any two
solution curves agree on the intersection of their intervals of definition. This
follows since the set of ¢, where the two solutions agree, is closed by continuity,
but it is also open, as one sees by applying the uniqueness theorem in the image
of a chart about y € M. Therefore, the uniquely determined maximal solution
curve is given on the union of all intervals of definition of all solution curves
with «(0) = z, see Fig. 8.15.

RN |

Figure 8.15:

Now let us turn to the proof proper of the theorem. We first establish the
following assertion:

Proposition 8.1.13. The set
A= Ugenm(ag, by) X @

determined by the domains of definition of maximal solution curves is open in
R x M, and the map

D: A M
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given by the solution curves is a mazimal local flow with the given vector field
as velocity field.

Proof. To prove this it is enough to show that A is open and @ is differentiable,
since the conditions ®(0,z) = x and ®(t, P(s,x)) = P(t + s, ) follow simply
from the fact that ®|(a,,b,) x x is a solution curve. Both

t— O(t+s,x)

and
t— O(t,P(s,x))

(where we allow all ¢ for which both expressions make sense) define maximal
solution curves for the initial value ®(s, ) and hence are necessarily identical.
The maximality of the flow follows immediately from the maximality of the
solution curves.

Now for each € M, one considers the interval J, C R, , which consists of
those ¢t > 0, for which A contains a neighbourhood of [0,¢] x x, on which ® is
differentiable.

Then we have to show that J, = [0,b;) and the corresponding result for
t < 0. By definition, J,, is open and it is enough to show that J, is non-empty
and closed in [0,b,). Both follow from the local existence theorem:

For a point p € M we find a neighbourhood W of p in M, an ¢ > 0 and a
differentiable map

p:(—2¢,2e) x W = M,

such that ¢|_oc 2:x4 i a solution curve for the initial value ¢ € W. From this
follows, first of all, that A contains a neighbourhood of 0 x M, on which & is
differentiable, for, given the uniqueness of the solution curves, we must have
P®|(—2c,2¢)xw = . Hence J, is non-empty. If 7 € J (closure in [0,b,)!) and
& (x) = p then, by definition of J,, we have a set [0,7 —¢] X U in A, in whose
neighbourhood @ is defined and differentiable. Here, U is a neighbourhood of
x in M, and ¢ is chosen as above for the point p with 7 — 2¢ > 0. If one now
defines the neighbourhood U’ of z in M by

U =atp (W),

with W the neighbourhood of p chosen above, see Fig. 8.16,
then @ is defined and differentiable in a neighbourhood of [0,7 4 &] x U,
hence particularly in a neighbourhood of [0, 7] x z. Note that the differentiable
map
(r—2e,7+2)xU — M, (t,u)— o(t—r,(1,u))

correctly extends the solution curves given by ® on U " x [0,7 — €] because of
the uniqueness theorem, see Fig. 8.17.

Therefore 7 € J,., which is what we had to show.

In this way, we have associated a maximal local flow to the preassigned
velocity field. That this is the only maximal one follows immediately from
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U- [ B B R
U T-26 T-& T T+& T+2€

Figure 8.16:

1
T

Figure 8.17:

(8.1.13), for each flow with the same velocity field must be a restriction of ®
since its flow lines are solution curves of the field and ® has the maximal solution
curves as flow lines. Thus, the uniqueness part of the integrability theorem for
vector fields is also proved, and it only remains to show that the mazimal flow
of a velocity field given on a compact manifold is global.

If M is compact, then for some € > 0, A contains a subset of the form
(—e,e) x M, see Fig. 8.18.

Then (—2¢,2¢) x M must also be contained in A, for one can extend the
flow defined on (—&,e) x M to (—2¢,2¢) x M M by setting

om0 (o (40))

Since ® : A — M is maximal, it follows that (—2¢,2¢) x M C A. Clearly,
therefore, R x M = A, which concludes the proof. O

A generalisation of this last part of the theorem actually holds: a maximal
solution curve, which is not defined for all time, eventually leaves each compact
set. This means, if « : (ay,b,) — M is a maximal solution curve of a vector
field on M, b, < oo and K C M is compact, then there exists some £ > 0, such
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Figure 8.18:

that a(b, —e,b,) N K = @. For the proof, one needs only to choose & so small
that K x [0,¢] belongs to the domain of definition A of the local flow.

As a first typical geometric application of the integration theorem for vector
fields we prove the important

Theorem 8.1.14 (Fibration theorem of Ehresmann). Let f : E — M be a
proper submersion of differentiable manifolds, then f is a locally trivial fibration,
that is, if p € M and F = f~*(p) the fibre of p, then there exists a neighbourhood
U of p in M and a diffeomorphism ¢ : U x F — f~'U, such that the following
diagram is commutative:

UXF—>

P& %1[]

Proof. The assertion is local relative to M, so that we may replace E, M and
f by f~'U, U and the restriction of f, and thus, w.l.o.g., assume that M = R"
and p = 0. In this case we have the basic vector fields 9/9z,, and we can lift
these to FE, obtaining vector fields vy, ...,v, on E, such that for all z €

T.f(v,(x)) = 0/0x,.

Locally, about a point = € F, such fields are easy to fired because, by the rank
theorem, f is transformable to the form proj; : U x V' — U, and one obtains
the v, on all of E' by glueing together the locally chosen fields by means of a
partition of unity.

Now by (8.1.8), (8.1.10), the vector fields V,, determine local flows ®” on F,
and in order to prove the theorem we put

F = f750),p(u,z) = @} o---0®} (z), z€ Fu=(ui,...,u,) € M =U=R"
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It is perhaps not immediately clear that the map p(u,x), defined in this way,
actually exists for all © € R™, but in any case, so long as the local flows exist,

u = proj; (u, z) = f o ¢(u, r),

for
fo®, (y) = fo®5(y) + uvey,

where e, € R is the n-th unit vector. Namely, the equation holds for w, = 0,
and the agreement of the derivatives according to u, is assured, because v, lifts
the field 9/0z,.

Then, however, it also follows that all the flow maps in the definition of ¢
exist, because for |u| < K the flow lines remain inside the compact set f~1{u €
R™||u] < K'}. Here we use the assumption that f is proper. Finally, one obtains
the inverse map ¢p~!: E — U x F for U = R" by setting f(y) = u and

Wil(y) = (U, q)ﬁun ©---0 ‘I)l—ul (y))
O

The assumption that f is proper is essential; if, for example, we remove a
point from F, the restriction of f is still a submersion but, in general, it is no
longer a fibration.

8.2 Exercises

Ezercise 8.2.1. Show that for each n > 0 there is a flow on S' with exactly n
fixed points.

Ezercise 8.2.2. Show that for each vector field X on M there is an everywhere
positive function € : M — R, such that ¢(X) is globally integrable.

Exercise 8.2.3. Show that each bounded vector field defined on R™ is globally
integrable.

Ezercise 8.2.4. Let G C R be a closed subset and subgroup of (R,+). Show
that either G =0, or G ~ Z, or G = R.

Let a; : R — M be a flow line of a dynamical system; show that G := {t €
Rla,(t) = «} is a closed subgroup of (R, +), and that the following hold:

e «, is an immersion iff G # R.
e «, is periodic iff G ~ Z. The smallest period is then a generator for G.

e If o, is periodic, then a,(R) C M is a submanifold, diffeomorphic to a
circle.

Ezercise 8.2.5. Let M be a compact manifold of dimension > 2. Show that
there exists an injective immersion R — M, whose image is not a flow line of a
flow on M.
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Ezercise 8.2.6. Show that every submanifold of M diffeomorphic to S! arises as
the orbit of a global flow on M.
Hint: Use partitions of unity.

Exercise 8.2.7. An open set U C R" is called star-shaped for p € U if, for each
x € U, the line segment joining x to p lies entirely in U. Show that a star-shaped
subset of x is diffeomorphic to R™.

Hint: construct a diffeomorphism which maps the orbits of the vector field
X(z) = x — p on R™ onto the orbits of a vector field ¢ - X on U, with ¢ as in
exercise 8.2.2, see Fig. 8.19.

Figure 8.19:

Ezercise 8.2.8. Give an example of a fixed point free flow on §?7~1.

Hint: S*»~1 c C™.

Ezercise 8.2.9. Define a flow on S?, which has exactly two fixed points, and
exactly one closed orbit.

Ezercise 8.2.10. Give an example of a flow on the projective plane RP?, which
has exactly one fixed point and otherwise only closed orbits.

Ezercise 8.2.11. For each \ € [0,1] let a flow ®) : R x S' — S be given, such
that the associated map [0,1] x R x S' — S' is differentiable, and so that ®%)
is the reversed flow for ®©, that is, @) (t,z) = ®©)(—¢,2). Show that each
point = € S! is a fixed point of ) for some )\, see Fig. 69.

FEzercise 8.2.12. Show that if X is a vector field on S?, which is nowhere tan-
gential to the ‘equator’ S' = S? N (R? x 0) C R?, then each flow line meets the
equator at most once.

Ezercise 8.2.13. Show that on the torus S' x S' there exists a vector field for
which no orbit of the associated flow is a submanifold of S x S'.

Hint: S' x St = (R x R)/(Z x Z). Consider a specific constant vector field on
R2.

Ezercise 8.2.14. Show that on each non-compact connected manifold there exists
a vector field which is not globally integrable. Hint: apply exercise 7.2.11.
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Figure 8.20:

Ezercise 8.2.15. Let g : R — R, be continuous, lim;|_,. g(x) = 0, and A =
{(t,z) € R?|t < g(x)}. Show that there is a maximal local flow on R, which is

defined on A but not on all of R x R.
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Chapter 9

Isotopy of Embeddings

9.1 Isotopy

For the intuitive, as well as the formal, understanding of the theory of differen-
tiable manifolds, it is important to know the extent to which submanifolds can
be ‘moved’.

Definition 9.1.1. Let f : M — N be an embedding. A differentiable map
h:[0,1] x M — N is called an isotopy of f if hg = f and each of the maps

hi : M — N, zw— h(t,z)

is an embedding; h is called an isotopy between hy and hy, and hg and h; are
called isotopic embeddings, see Fig. 9.1.

ho(M)

l,

(M)

Figure 9.1:

At the ‘boundary points’, for example (O, ) by ‘differentiable’ we mean that
there exists some neighbourhood U of (0,z) in R x M and a differentiable map
h:U — N, which agrees with h on U N ([0, 1] x M), see Fig. 9.2.

93



94 CHAPTER 9. ISOTOPY OF EMBEDDINGS

Figure 9.2:

Although this is the way one thinks and speaks about isotopy, it is often
technically more convenient to use a modified (but equivalent) definition. For
example, without further assumptions, the definition above does not imply that
isotopy between embeddings is a transitive relation. Thus, when we naively
stick together isotopies h between f and f', and k between f and f:

(h2) > h(2t,x) for
' h(2t — 1, 2) for

o= O
IA A
INIA

t<3
t<1

illustrated by Fig. 9.3;

differentiable?

Figure 9.3:

then, because h; = ko = f ', this map is certainly continuous but, in general,
not differentiable.

Definition 9.1.2. A differentiable map h : Rx M — N will be called a technical
isotopy, if each h; is an embedding and also for some ¢ > 0,

ho for t<e
h1 for t>1—¢

as illustrated by Fig. 9.4;
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here hg . here hy

Figure 9.4:

It is clear that one can easily join such technical isotopies together, as in
Fig. 9.5, and that the combined isotopy is again technical.

here
here hg hi=ko here k,

Figure 9.5:

If h is a technical isotopy between hg and hq, then clearly h|0,1] x Mis an
isotopy between hg and hy. Conversely, given an isotopy h : [0,1] x M — N
between hy and hi, and a C*°-function ¢ : R — [0, 1] of the kind illustrated by
Fig. 9.6

(compare Chapter 7), then the map

Rx M — N, (t,z)— h(e(t),z)
is a technical isotopy between hg and h;. In particular therefore, ‘isotopic’ is
an equivalence relation.

Definition 9.1.3. By a diffeotopy of a manifold N we understand a differen-
tiable map
H:[0,1]x N — N,
such that Hy = idy and each Hy : N — N, Hy(z) = H(t, z) is a diffeomorphism.
If H is a diffeotopy of N and f: M — N is an embedding, then h; := H;o f

gives an isotopy of f; any movement of the big manifold carries all submanifolds
with it.
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Figure 9.6:

Definition 9.1.4. Definition. An isotopy h : [0,1] x M — N is said to be
embeddable in a diffeotopy if there exists a diffeotopy H of N, such that for all
t, hy = Hyohg. The embeddings hg and h; are then said to be diffeotopic in N.

Two diffeotopic embeddings hy and h; are, in particular, clearly equivalent
in the sense that there exists a diffeomorphism (here equal to Hy) from N to
itself, so that the following diagramme is commutative, something which for
merely isotopic embeddings need not be the case.

One is frequently in the situation where one has isotopy and would like to have
diffeotopy. The following theorem, which constitutes the main content of the
present chapter, shows that, under certain conditions, this wish can be fulfilled.

Theorem 9.1.5 (R. Thom 1957). If h is a (technical) isotopy of embeddings of
M in N, which holds fized all points outside a compact subset My of M, then
one can embed h in a (technical) diffeotopy of N, and indeed even in one which
holds fized all points outside a compact subset Ny of N.

Although the theorem is valid for arbitrary isotopies, we shall only prove the
weaker remit for technical isotopies. (Transcriber’s note: Even then, the proof
is quite involved.) This is enough for all applications - in particular, one can
conclude from the existence of an isotopy the existence of an embedded isotopy.

Proof. Let h: R x M — N be a technical isotopy which holds fixed every point
outside the compact set My C M. We can choose a compact neighbourhood Ny
of h([0,1] x Mpy), as in Fig. 9.7.
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INgEN

Mo
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Figure 9.7:

We want to construct a technical diffeotopy H : R x M — N, which holds
fixed all points outside Ny and which has the required property that hy = H;ohy,
see Figs. 9.8 and 9.9.

To this end we consider first the map

F:RxM—=RxN, (t,z)— (t,hi(x))
In order to embed h in a diffeotopy we try to define a global flow on R x IV,
P:Rx(RxN)—=>RxN
on which we impose the following conditions:

(i) @, = ®(t,7,z),7 € R,z € N should map 7 x N onto (r +t) x N, see Fig.
9.10.

(if) @ should carry the isotopy along with it, which is commutative for all ¢;
0x N

y

M P4 |0tiesN
x
1x N
and finally,

(iii) Outside [e,1—¢€] x Ny the projection of an arbitrary flow line on N should
be locally constant.

If ® satisfies these three conditions, then clearly the differentiable map H :
R x N — N, defined by the diagram

Rx(0xN-2>RxN

S

N
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he{M)
\ : |
4 1-¢ 1 R
Figure 9.8:
-
I —a—

Figure 9.9:

has the properties required by the theorem. Since ® is a flow, Hy = idy;
condition (i) implie s that each H; : N — N is a diffeomorphism (®_;|t x N
takes care of the inverse); because of (thm:95-b) h; = Hy o hg and because of
(thm:95-c) H is a technical diffeotopy which holds fixed all points outside Ny.

Since every flow is determined by its velocity vector field, we may formulate
the conditions (i)-(iii) as conditions on Phi.

Assertion 1 in the proof. 1 ® is a global flow on R x N, then the conditions
(i)-(iii) are equivalent to the conditions (i')-(iii’) on X := &:

(i/) The R-component of X, that is, the image of X under the differential of
the projection R x N — R is equal everywhere to the ‘unit tangent vector’

0/ot.
(ii') On F(R x M) the field X is given by T2y F(0/0t) = X(F(t,x)), see Fig.
9.11.

This means that the curves R — R x N, (¢ — (¢, h¢(z))) given by the
isotopy are solution curves of X, hence flow lines of ®, and this again
means precisely that the isotopy is ’carried’ as in (ii) above.

(iii') Outside [e,1 — ¢] x Ny the field X equals 8/0t.
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Figure 9.11:

Assertion 2 in the proof. If a vector field X on R x N has the properties (i')—
(iii'), then it is the velocity field of a global flow ®, since [0, 1] x Ny is compact
and the maximal solution curves for initial points outside [0,1] x Ny have at
least (—e, ¢) in the domain of definition. Hence (—4,0) x (R x N) C A for some
4 > 0, hence also (—26,20) x (R x N) C A, etc.

We therefore obtain, as an intermediate result: the theorem is proved once
we can find a vector field X on R x N with the properties (i )-(iii ).

First of all, we remark that the conditions (i')-(iii') for the section X :
R x N — T(R x N) are conditions on the individual vectors X (¢, ), and that if
the conditions are satisfied for v and w out of T(; ,,(R x N), then they are also
satisfied for all Av 4+ (1 — A)w. Hence it is enough to show that such a vector
field exists locally about each point because we can then construct the required
vector field on all of R x N by means of a partition of unity.

If, for each point outside the compact (and hence closed) subset F([e,1 —
] x My) C R x N, one defines X as 0/0t, then one has already solved the local
construction problem for all points in R x N\ F([e,1 — ¢] x Myp) (Fig. 9.12).

We therefore consider a point go = F(to, po) with (tg,po) belonging to [e,1—
] x My. We want a neighbourhood U of ¢y in R x N and a vector field X, on
U with the properties (i )-(iii').
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/\.

Figure 9.12:

First, we choose local coordinates about the point qq in tg x N, with respect
to which hs, (M) is given by xg41 = -+ = x, = 0. This is possible because hy,
is an embedding, see Fig. 9.13.

AXat o %n

/> <g7<

Figure 9.13:

With respect to these coordinates and on a sufficiently small neighbourhood
of (tg,po,0) in R x M x R™ — k, the map

(t,p, a1y -+ xn) — F(t,p) +(0,0,...,0,Zkr1,- -, %n)

is a differentiable map into R x N, which has maximal rank at the point (o, po, 0)
and, therefore, is a local diffeomorphism. We may choose § > 0 and a small
neighbourhood V of py in M, such that on

W= (tg — 0,t0 + 6) x V x {x € R"¥||z| < 5},
this map, which we now want to label ﬁ, defines a diffeomorphism
F:W —FW)=:U.

We may also choose W so small that the projection from U on N remains inside
Ny and that, apart from the points F(¢,p,0), no other points of F(R x M) lie
in U, see Fig. 9.14.
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/l FIRxM)nU

UcRxN

Figure 9.14:

If this last condition could not be fulfilled, then there would exist a sequence
(ti, pi)ien With t; — to, p; € M \'V and F(t;,p;) — go- It would be impossible
for infinitely many points p; to belong to the compact set My \ V, because
these would have an accumulation point p € M \ V, for which F(to,p) = qo,
contradicting the injectivity of h;,. Hence only finitely many points p; belong to
My, and the sequence (¢;, p;) belongs ultimately to R x (M \ My). However, there
h is, by assumption, independent of ¢, hence not only does F(¢;,p;) — qo, but
also F'(to,p;) — qo, but then hy, could not be an embedding: a contradiction.

Next, one carries the vector field 9/9t on W over to a vector field X on U
by means of F:

Xo(u) = Tu(F~1)7(9/0),

/

and obtains thereby a local vector field near ¢y with the properties (i,), (i),
(iii").

This closes the gap in the construction, and proves the ‘isotopy theorem’
(9.1.5). O

9.2 Exercises

Ezercise 9.2.1. Let M be a connected manifold with dim(M) > 2. Let z1, ...,z
be distinct points of M, and let y1,...,y, also be distinct points of M. Show
that there exists a diffeomorphism ¢ : M — M with p(z;) =y; (i =1,2,...,k).

Ezercise 9.2.2. Let M be a closed submanifold of the connected manifold N,
codimM > 2, and p,q € N\ M. Show that there exists a diffeomorphism of N
to itself, which is the identity on M, and which maps p to q.

Ezercise 9.2.3. If @ : R x M — M is a flow, then @[ 1)« is of course a
diffeotopy. Give an example of a diffeotopy which is not the restriction of a
flow.

Ezercise 9.2.4. Let K C R™ be compact and U C R" open and non-empty.
Construct a globally integrable vector field on R™ susch that ®,(K) C U.
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Exercise 9.2.5. Show that in a differentiable vector bundle every differentiable
section is an embedding isotopic to the zero-section.

Exercise 9.2.6. Consider the embedding S'+S! — C, which is the usual inclusion
on the first factor and which is given on the second by x — 2z, see Fig. 9.15.

Figure 9.15:

Define an isotopy of this embedding h, : S' +S' — C by

e2mit 2mi(t+7) e2mis 27i(s—7)

7

e — 2e

for 0 < 7 <1, and embed it in a diffeotopy.
Exercise 9.2.7. Show that the antipodal map

S*" —S" zw— —x
is isotopic to the identity if and only if n is odd.

Ezercise 9.2.8. Construct an embedding f : R — R with f(R) = (0, 1).
Exercise 9.2.9. Give an isotopy of the embedding

(0,1) = Rt (t,0),

which cannot be embedded in a diffeotopy of R2.

Ezercise 9.2.10. Show that any two orientation preserving embeddings R — R
are isotopic.

Exercise 9.2.11. Let n > m be natural numbers. Show that two arbitrary
embeddings R™ — R"™ are isotopic.

Exercise 9.2.12. Give two orientation preserving but not diffeotopic embeddings
R — R.

Exercise 9.2.13. Show that the embeddings in Fig. 9.16,
St ¢ R%\ {0},
and
St R2\ {0}, z+ z+(2,0)

are not isotopic in R? \ \{0}.
Hint: use complex variable theory.
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Figure 9.16:

Exercise 9.2.14. Find an isotopy h : R x M — N such that the map
RxM—=RxN, (t,a)— (t,h(tz))

fails to be an embedding.
Hint: tty M =R, N = R2,
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Chapter 10

Connected sums

It is intuitively clear how one can combine two connected manifolds M7 and M,
into a third connected manifold M;# M, (Fig. 10.1).

M'|—'Pr'M2

Figure 10.1:

10.1 Connected sums via isotopy

We treat this process in this section as an application of the isotopy theorem,
(9.1.5), because it is the isotopy theorem which shows why the result M;# Mo
is essentially well defined, hence independent of the technicalities of the combi-
nation.

Definition 10.1.1. Let M" be a connected n-dimensional manifold and f, g :
R™ — M™ two embeddings. We say that f and g are compatibly oriented if

105
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either M™ is not orientable or, f and g, relative to fixed orientations of R and
M™, are both either orientation preserving or reversing.

Remark 10.1.2. If 7 : R™ — R" is given by 7(21,...,2,) = (—21,...,2,) and
f,9:R™ — M™ are not compatibly oriented, then f and g o7 are.

Lemma 10.1.3. If two embeddings of R™ in the connected n-dimensional man-
ifold M™ are compatibly oriented, then they are isotopic.

Caveat: The proof of Lemma 10.1.3 is quite involved.

Proof. Let f and g be the two embeddings. First, we want to convince ourselves
that, w.l.o.g., we may take f(0) = g(0).

On a connected manifold for any two points p and ¢ there always exists a
diffeotopy H, which takes p into ¢: Hi(p) = ¢g. One only needs to embed an
isotopy between the embeddings

{p} = {ptc M

and
{p}={gyc M

in some diffeotopy by means of (9.1.5), and each differentiable path from p to ¢
gives us such an isotopy, see Fig. 10.2.

p=Holp)

Figure 10.2:

If now H is a diffeotopy with H1(f(0)) = ¢(0), then it is enough to show
that H; o f and g are isotopic, since isotopy is an equivalence relation. Since it
is clear that all H; o f are compatibly oriented, so are H; o f and g, so that the
problem is reduced to the case f(O) = ¢g(O). We shall now therefore assume
that f(O) = ¢(O).

The next step in the proof will be to ‘shrink’ f and g. But before doing that,
we wish to make a short remark about R™, which will also be frequently useful
later. Given prescribed ro > 0, € > 0 we choose a C*°-function ¢ on [0, 00) with
everywhere positive slope, which is given by ¢(r) = r on [0, r¢] and whose limit
as r — 00, is g + ¢, see Fig. 10.3.
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lot€

o

Figure 10.3:

Then, if ¢(r) = (1/r)p(r), ¢ is also a C*°-function on [0, c0), see Fig. 10.4,

Figure 10.4:

and
oi(z) == Y(tlz]) -z

defines an isotopy e of embeddings R” — R"™ (work in polar coordinates!), of
which we wish to collect some properties for future use.

Proposition 10.1.4. For prescribed ro > 0 and £ > 0 there exists an isotopy o
(shrinking) between the identity on R™ and an embedding R™ — R™, with image

o

(ro+e)D" = {z € R"||z| < 1o + ¢},

which is such that all points of roD™ = {x € R"||z| < 1o} are held fized during
the isotopy, see Fig. 10.5.

In particular, oy is a diffeomorphism between R™ and (ro + €)D", which is
the identity on rqD™. For example, we have:

Corollary 10.1.5. Ifan open neighbourhood of roD™ C R"™ is embedded in a
manifold M, then there also exists an embedding R™ — M, which agrees with
the given embedding on roD™.
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remains
pointwise fixed

Figure 10.5:

Now we continue with the proof of lemma (10.1.3). We can choose a chart
about the point f(0) = g(0) in M, so that the image of the chart domain U is
all of R", see Fig. 10.6.

El chart h* U—R"
Rn

Figure 10.6:

This is easy to do, since eD” ~ R".

Next, we can choose a shrinking (10.1.4) sufficient to ensure that foo;(R™) C
U and g ooy (R™) C U, see Fig. 10.7.

Since f oo is isotopic to f (the isotopy is given by h; := fooy), and likewise
g ooy to g, we have yet to show that f ooy and g o oy are isotopic.

It is now enough to consider embeddings R™ — R", and we pick one such
¢ :R™ = R", with ¢(0) = 0. Then (and this is the essential point of the whole
proof) ¢ is isotopic to the linear embedding Dyy : R® — R™, given by the
Jacobi matrix at the point zero.

In fact, by lemma (2.2.2), there exist differentiable maps 1; : R® — R™,
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uzR"

Figure 10.7:

i=1,2,...,n, with p(z) = 37" | z;9;(x), and then the Jacobi matrix consists
precisely of the columns ;(0):

Dy = (1/)1(0% oo 7wn(0))

One now defines the isotopy between ¢ and Dyg by

(t,x) — inwi(t,x) =

i=1

o(tx)/t for t>0
Dy -z for t=0.

Note that > | ;1;(tx) is smooth and that o(tz)/t and Dy -2 form an imbed-
ding R™ — R" for each t.

If now two linear embeddings (hence isomorphisms)R™ — R™ are compatibly
oriented, then they are in the same connected component of GL(n,R), and
are therefore isotopic (the elementary transformations of a matrix - adding a
multiple of a row (column) to another, multiplying a row (column) by some
number « # 0 - do not change the path component if a > 0).

In the case of an oriented manifold M we can now complete the proof of
lemma (10.1.3): here not only f and g but also f ooy and go oy are compatibly
oriented, both with respect to M and also with respect to U ~ R™. Therefore
we obtain isotopic Jacobi matrices, since they have the same orientation.

If, however, M is not orientable, so that f and g cannot be assumed to satisfy
an orientation condition, then f ooy and goo; may be oppositely oriented with
respect to U ~ R™. At first, therefore, the route via Jacobi matrices seems
blocked.

Clearly, this problem is solved if we can prove the following;:

Proposition 10.1.6. If M is a connected, non-orientable manifold and p € M
then there exists a diffeotopy H of M with H,(P) = p, such that T,Hy : T,M —
T,M is orientation reversing.

Proof. Let us suppose that this proposition is false. Then we could choose an
orientation for T, M and orient every other tangent space T, M in the followhag
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way: choose a differentiable path « : [0,1] = M, a(0) = p, a(1) = ¢; embed it
in a diffeotopy H* and orient T, M via

T,HY : TyM ~T,M.

This orientation of T, M is indeed independent of the choice of o and H® be-
cause, if another diffeotopy H” induced the opposite orientation, then the com-
position of H® with the reversed diffeotopy associated with H? (see (9.1.2))
would have the property required by the proposition, see Fig. 10.8.

Figure 10.8:

So in this way we would obtain an orientation of M, which was assumed
non-orientable - contradiction. O

In this way the proposition, and with it the lemma (10.1.3), is proved. [

Definition 10.1.7. Let M; and M be n-dimensional connected manifolds -
oriented in the orientable case. Let

f1 R™ — Ml
fQ R — M2
be embeddings - if the manifolds are oriented assume f; preserves the orientation

and f5 reverses it. Then one calls the n-dimensional manifold, which is obtained
from the disjoint union

(M \ f1(D"/3)] + [Mz \ f2(D" /3]

by the identification of fi(tx) with fo((1 —t)x) for all 1/3 <t < 2/3, z € S*~ 1,
the connected sum of M; and Ms relative to the embeddings f; and fo, denoted
by M,# M, see Fig. 10.9.

Before we make ourselves more familiar with the connected sum, this is
perhaps the place to make some general remarks about ‘identification’.



10.1. CONNECTED SUMS VIA ISOTOPY 111

M, My-f, (D7)

My #My

Figure 10.9:

Remark 10.1.8 (about identification). Let X and Y be topological spaces, Xy C
X, Yy C Y subspaces and « : Xg — Yy a homeomorphism. Then one can glue
X and Y by means of a along Xy and Y to obtain a new topological space
XU, Y.

Thus: In X 4+ Y, one introduces an equivalence relation ~ by setting each
point zg € X, equivalent to its image point a(x) € Yy. The equivalence classes
take the form

{z}orz € X \ Xo,
{y}orz € Y\ Yy,
{z,a(z)} forz e X,.

The set X + Y/ ~ of equivalence classes, equipped with the quotient topology,
is then denoted by X U, Y, see Fig. 10.10.

Assertion. One can canonically consider X and Y as subspaces of X U, Y.

Assertion. If X and Y are differentiable manifolds, Xy and Y, open sub-
manifolds, « : Xg — Yp a diffeomorphism and (!) X U, Y a Hausdorff space,
then X U, Y is again in canonical fashion a differentiable manifold.

So, for example, if instead of the identification f(tx) — f2((1 — t)z), illus-
trated in Fig. 10.11, we take the identification fi(tx) — fa(tx), illustrated in
Fig. 10.12, we do not obtain a manifold (even though the identification space
is still locally Euclidean).
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X Y XUpY

Figure 10.10:

VAV

Figure 10.11:

The condition that X U, Y is again Hausdorff can be stated thus: if x €
X\ Xo, z, € Xo and lim(x,) = «, then lim(a(z,)) does not exist in Yp.

Remark 10.1.9 (Assertion and orientation convention). A connected sum of
connected manifolds M; and M, is orientable precisely when M; and M, are
orientable, and there then exists exactly one orientation on M;# M, which is
compatible with the given orientations on M; \ f;(D"/3), ¢ = 1,2. From now
on, a connected sum of oriented manifolds will always be given this orientation.

The construction of M;# My uses embeddings f; : R™ — M,;. That such
embeddings always exist (assuming that M; is non-empty) is obvious (charts
and (10.1.5)). To what extent however is My# M> independent of the choice of
these embeddings?

First of all, the following is clear: if f; : R* — M, and fl/ :R® — Ml/ are
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\ / = %mrﬁ

Figure 10.12:

such embeddings and ¢, : M; — MZ/ diffeomorphisms, for which

fi V

D" 0

\\fi/ pn

’

M.

K2

M;

is commutative, then the ¢; induce a diffeomorphism between M;# M, (formed
using f1 and f5) and Mi#Mé (formed using f, and f,). ,

In the case M; = M,, we know already that f; and f; are isotopic because
of the assumed compatibility of orientation (lemma (10.1.3)). This isotopy,
however, does not necessarily fix all points outside a compact subset of R™, and
so, without further discussion, we cannot embed it in a diffeotopy. We would
like to do this, because then

M;

D" H

\\fi/lD”

M;
would be commutative. It is, however, also unnecessary to embed the whole
isotopy in a diffeotopy, since we only use it on D",

Proposition 10.1.10 (Complement to the isotopy theorem). If h is a tech-
nical isotopy of embeddings M — N and My C M is compact, then there
is a diffeotopy H of N, which is fixed outside a compact subset of N, with
ht‘Mo = Ht O h0|M0.
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Proof. The proof proceeds almost exactly as that of the isotopy theorem itself
(9.1.5), except that the required vector field X on R x N has to satisfy condition
(ii'):

only for points (¢,2) € R X My. The argument around and below Fig. 9.14, in
which the independence of h; from ¢ outside M plays a role, is now dispensable.
O

Corollary 10.1.11. The (where relevant, oriented) diffeornorphism type of
Mi# My does not depend on the choice of embeddings R™ — M.

We can therefore, in cases where it is only a matter of (where relevant,
oriented) diffeomorphism types, simply speak of ‘the’ connected sum M;# Mo,
while having in mind some particular connected sum.

10.2 Exercises

Exercise 10.2.1. Let M be an oriented connected manifold, p,q € M and ¢ :
T,M = T,M an orientation preserving isomorphism. Show that there exists a
diffeomorphism f : M — M with T,,f = .

Ezxercise 10.2.2. Show that there exists no embedding f : R? — S! x R, for
which f(R?) contains one of the sets S! x {x}, see Fig. 10.13.

Figure 10.13:

Hint: use exercise 9.2.13.

Ezercise 10.2.3. That fact that two arbitrary embeddings of R™ in an n-dimensional,

non-orientable, connected manifold are isotopic has a remarkable consequence:
in the case that our universe, which we only know locally, is globally not diffeo-
morphic to R3, but, for example, to S' x RP?, then one would be able to make
a journey from which one’s mirror image would return (heart on the right-hand
side, etc.). Try to believe it!
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Exercise 10.2.4. If one picks a base point from each of k copies of S", and
passes from the disjoint union S™ + --- + S™ to the quotient space obtained
by identifying these k points, one obtains a so called ‘bouquet’ of k n-spheres.
Describe a subspace of R"*1, which is homeomorphic to this bouquet of spheres.
Is the bouquet a manifold?

Ezercise 10.2.5. Let 2 = {hq : Uy — U,|a € A} be an atlas for a topological
n-dimensional manifold M. Consider the finest equivalence relation on the
topological disjoint sum ;. 4 U, under which two points are equivalent if they

correspond to each other under some change of chart. Show that ) ., U(;/ ~
is homeomorphic to M.

Ezercise 10.2.6. Show that

(M1 #Mo)#Ms = Mi#(Mo#Ms),
My# My = Mo M,
MAS™ = M,

where the various connected sums may be defined using (10.1.7) and (10.1.9).
Exercise 10.2.7. R"# .- #R" =7 C R"™.
Ezercise 10.2.8. Show that RP2#RP? admits a nowhere vanishing vector field.

Exercise 10.2.9. Show that if M; and M, are compact submanifolds of R*, then
Mi#M, is also embeddable in R¥.

Exercise 10.2.10. If n is odd, then RP™ is orientable. Now that the diffeomor-
phism type of RP"#M is independent of which orientation one chooses in the
two summands.

Exercise 10.2.11. Let My, ..., My be connected n-dimensional manifolds. Show
that

# M7 M 7£ Mo f

is diffeomorphic to My#Ma# - - - #M#(St x S*~1), see Fig. 10.14.
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Figure 10.14:



Chapter 11

Second order differential
equations and sprays

If M is an open subset 0f R"™, the straight line from each point x € M, t — z+tv,
with prescribed velocity, remains with M for some time (Fig. 11.1) and any two
points in M which are sufficiently close to each other can be joined by such a
path.

Figure 11.1:

On a general manifold, one can of course do the same thing locally with the
help of charts, but for global problems this is worthless, since the connecting
paths of course depend on the charts, and so in the regions of overlap are not
well defined.

For example, if M is open in R™ and f,g :: X — M are close in the C°-
topology, then a homotopy between f and g in M is defined by

(z,t) = (1 =) f(x) + tg(x),
see Fig. 11.2.

117
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glx)
f{x}

Figure 11.2:

In order to imitate such a construction for a general manifold M, we need a
coordinate free substitute for the connecting paths between two points. This is
the concern of the present chapter.

11.1 Sprays

Traditionally this is carried out ‘quite simply’: one introduces a Riemannian
metric on M; locally the geodesics play the role of straight lines. For a book
such as this one, this has the disadvantage that one must assume a knowledge
of Riemannian geometry. Therefore, we follow instead the method of sprays,
applied by S. Lang in [3], and which can be completely developed in a few pages.

Notation 11.1.1. We recall, once more, that for a differentiable curve v : (a, b) —
M in a manifold, we denote by §(t) € T, M the velocity vector of the curve:

() = Tyy(d/dt).

The velocity curve 7 : (a,b) — TM is then a differentiable curve in TM, for
which we can again apply the same notation:

5 :(a,b) = TTM

is the velocity curve of 4, where TT M denotes the tangent bundle of the total
space of the tangent bundle of M.

Definition 11.1.2. A second order differential equation on a manifold M is a
vector field € on TM with the property that every solution curve § of £ is the
velocity curve of its projection on M, that is, 8 = % for v = wo 3, see Fig. 11.3.

Definition 11.1.3. A curve 7 : (a,b) — M is called a solution curve of the
second order differential equation & on M if 4 is the solution curve of £ on T'M,
that is, if for all ¢
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{a,b)

Figure 11.3:

Since the solution curves of £ on T'M and M are related by the formulae

7:’”057 ﬂ:gammaa

we can consider them as two ways of looking at one and the same thing.

The definition of a second order equation on M as a vector field on T'M
corresponds to the more familiar use of the same notation in calculus. Thus,
the second order equation

v = fy)
is equivalent to
v =2 2 =f2)
Notation 11.1.4. If £ is a second order differential equation on M, then for each

v € TM the associated maximal solution curve of £ in TM will be denoted by
By, and the projection 7 o 8, on M by ~,.

Thus, for v € T, M the curve 7, : (ay,b,) = M is the maximal solution
curve of £ in M with ~,(0) =z and 4,(0) = v, see Fig. 11.4.

Such a curve t — ,(t) will be the substitute for the straight line ¢ — x + tv
in R™. But, in order to make such a substitute geometrically usable, one will
have to demand, at least, that -, and ~s, differ from each other only in the
velocity of passage (in contrast to say ballistics, where different solution curves
are associated with different initial velocities along the same direction, see Fig.
11.5).

Definition 11.1.5. A second order differential equation £ on M is called a
spray if for s,t € R, v € T M, the number ¢ belongs to the domain of definition
of 74, if and only if st belongs to the domain of definition of ,, and if in this
case

Vv (t) = Yo (st).
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Figure 11.4:

Figure 11.5:
Theorem 11.1.6 (Theorem on the existence of sprays). On every manifold
there exists a spray.

Proof. Until now we have stated the conditions on a vector field & on T'M to be
a second order differential equation and a spray as conditions on the solution
curves. What do they say directly about £7

Proposition 11.1.7 (Assertion 1). A wvector field £ on TM is a second order
differential equation if and only if T o & = idrp;:

TTM -~ TM

TM

Proof. For if € is a second order differential equation, v € T M, f3, is the solution
curve for v in TM and 7, := 7 o 3, the solution curve in M, then

Tro&(v) = Tm(5.(0)) = 4(0) = B,(0) = v,
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or T'mo & =1idpy. If, the other way round, ¢¢ is the vector field with Tw o & =
id7 s, then for the flow lines 8 we have

Bt) = Tr o &(B(t)) = Tm(B(t)) = (D).

This checks the second order condition on 3, and completes the proof of the
first assertion. O

Proposition 11.1.8 (Assertion 2). A second order differential equation £ on
M is a spray if and only if for all s € R, and v € TM, we have

§(sv) = T's(s£(v)),
where Ts : TTM — TTM denotes the differential of multiplication by s.

Proof. For if ¢ is a spray, then for fixed s € R, v € TM and for ¢ allowed to
vary in a neighbourhood of zero,

Ysu(t) = Yo (8t) = Fs0(t) = Yo (8t) = Bsp(t) = 8B, (st) = ﬁsv(t) = Ts(st(st)).

Hence for ¢t =0,
§(sv) = T's(s§(v)),

which is the required condition.
Conversely, let £ be a second order differential equation which satisfies this
equation, and let
Yo i (A, by) = M

be the maximal solution curve in M with initial velocity v. We show first that
the equation «(t) := 7,(st) gives a solution curve with initial velocity sv. To
this end we check that

a(0) = 5%,(0) = 58,(0) = sv,
the correct initial value and, moreover,

a(t) = sy, (st).

Therefore, - a(t) = T's(s - v,(st)) = Ts(s(Fw(st))) which, by the assumed
formula however, equals

§(s7w(st)) = £(a(t)).

Therefore, &(t) = &(&(t)), and « is the solution curve associated with initial
velocity sv. For all values of ¢, for which ~, (st) is defined, it follows that 7, (t)
is also defined and that 7, (st) = s, (t). It only remains to show that if s, (t)
is defined, then so is 7,(st). For s # Owe have only to apply the argument
above with 1/s instead of s; for s = 0 it is clear in any case, because each
solution curve is defined at the point zero. This concludes the proof of the
second assertion. O
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We now turn to the construction of a spray on a given manifold M. The
conditions from assertions 11.1.71 and 11.1.8, thus

Trof =idry and &(sv) =Ts(s€(v)) forall s,v,

which ¢ must satisfy, are conditions on the restrictions &|r,as, which must be
satisfied for each x € M, see Fig. 11.6. Both are dearly ‘convex’ conditions in

#é(v)

i
1
T
! M

L]

here £!T, M

/

AR S

(v
|
alik

=T -

Figure 11.6:

the sense that, given two sections &1, and & of TT M|, apr, which satisfy the
conditions, then so does (1 — A)&; + A&2. Hence it is enough to show that each
point in M has a neighbourhood U, on which there exists a spray, for we can
then glue such local sprays together to form a global spray on M by means of
a partition of unity.

For the local problem, we are justified in taking U as an open subset, of R™.
We can therefore write

TU =U xR", TTU =U x R" x R" x R",
which is to so arrange things that the velocity curve of a curve
t— (z(t),v(t)) e TU =U x R"

is given by
t— (x(t),v(t), dz/dt(t), dv/dt(t)).

Since 7 : TU — U is given by (z,v) — =z, and hence Tw : TTU — TU by
(z,v,w,b) — (z,w), one writes the differential of multiplication by s

Ts:TTU - TTU, (z,v,w,b)— (z,sv,w,sb).

A second order differential equation is therefore a section ¢ :: TU — TTU of
the form &(z,v) = (z,v,v,¢(z,v)). Translated into the usual terminology of
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the infinitesimal calculus, the differential equation becomes y” = Y(y, y/), and
such a differential equation is a spray precisely if ¥(z, sv) = s%(z,v).

If, as in our case, no further conditions need to be imposed on the spray,
then we have, for example, in

E:TU - TTu (z,v)— (x,v,v,0),

found a spray on U, see Fig. 11.7. With this therefore we have also proved

U

solution curve trex+tv

Figure 11.7:

theorem (11.1.6). O

11.2 Exercises

Ezxercise 11.2.1. Let (E, 7, M) be a differentiable vector bundle. If one restricts
Tr:TE — TM to TE|p (M = zero-section!), then one has bundle homomor-
phism TE|y — TM. Show that this bundle homomorphism is surjective, and
that the subbundle E C TE|); is its kernel.

Ezercise 11.2.2. Let (E, 7, M) be a differentiable vector bundle. Prove that
TE=mE®n*TM.
Exercise 11.2.3. Give an example of a non-trivial differentiable vector bundle

E, whose tangent bundle T'F is trivial.

Ezercise 11.2.4. Let M be a non-empty connected manifold. Show that there
exists a differentiable curve v : R — M, such that the image of the velocity
curve ¥ : R — T M is dense in T'M.

Ezercise 11.2.5. Construct a spray for M = S!, for which not all maximal
solution curves are defined on all of R.

Ezercise 11.2.6. Let M be a manifold, dim M > 1. Show that not every curve
in M can arise as the solution curve of a second order differential equation.

Ezercise 11.2.7. Give an example of a spray on S™ (as a vector field on T'S™ C
S™ x R™*! whose solution curves are great circles.
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Chapter 12

The exponential map and
tubular neighbourhoods

12.1 Tubular neighbourhoods

Proposition 12.1.1. Let £ be a spray on M. Then the set
O¢ :={v € TM|v,(1) is defined}

is an open neighbourhood of the zero-section in T M.

Proof. We denote the maximal flow on T'M, whose velocity field is £, by ® and
its domain of definition by A C R x T'M. Therefore

O ={veTM|(1,v) € A}

is open (compare (8.1.13)) because A is open. Moreover, from &(sv) = T's(s&(v)),
putting s = 0 one sees that £ vanishes on the zero-section, and thus the flow
lines of the points of the zero-section (as fixed points) are defined for all R, in
particular for ¢ = 1. Therefore ®¢ contains the zero-section. O

Definition 12.1.2. If £ is a spray on M, then the map
expg 1 Og = M, v 7,(1)
is called the exponential map of £, see Fig. 12.1. see Fig. 12.1.

Clearly, exp, is a differentiable mapping because, if ® is the flow associated
to &, then exp; is given by v — 7o ®(1,v). We now want to determine the
differential

Tpexpe : T, TM — T, M

of exp, at the points of the zero-section M C T'M. (Since O is open in T'M,
T,0: =TpTM.)

125
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%

\eXPE (v)

Figure 12.1:

To this end, first let us agree on a notation. If F is a differentiable vector
bundle over M and p € M is a point of the zero-section, then 7, E has two
significant subspaces T, E, and T,M; for both E, and M (= zero-section ) are
submanifolds of E (Fig. 12.2), which pass through p. By looking at a bundle

Figure 12.2:

chart we see that 7,,E is actually the direct sum of T,E, and T, M and, since
T, E, is canonically isomorphic to E,, we have T,E = E,®T, M for each p € M.
Globally we have TE|yy = E® TM.

Notation 12.1.3. If E is a differentiable vector bundle over M, then in the
canonical isomorphism
TE|y=E®TM

we wish to keep to this order of summands, so that even in the case
TTM|py=TM & TM

there will be no confusion as to the meaning of the summands.

Remark 12.1.4. The differential T exp; :: TT'M — T M, restricted to TTM|p =
TM & TM is
(id,id) : TM @ TM — TM.
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The differential of the projection w : TM — M, restricted in the same way, is
(0,id) : TM ®TM — TM.

Proof. Both maps, exp, and 7, are the identity on the zero-section M, from
which it follows that on the second summand of TM & T'M both their differen-
tials are the identity.

Now let v be a vector from the first summand; then v is the velocity vector of
the curve ¢t — tv in T M, O¢ respectively, at the point ¢t = 0, see Fig. 12.3. The

e

Figure 12.3:

image curve under the projection is constant, therefore T'7(v) = 0. However,
the image curve under the exponential map is ¢ — exp¢(tv) = v, (1) = 7,(1),
and therefore T exp¢(v) = 4,(0) = v. O

Corollary 12.1.5. On the zero-section the differential of the map (m,exp;) :
O¢f = M x M 1is given by

0 id
Ld id} - T,M & T,M — T,M & T,M =T, ,M x M

In particular, on the zero-section the map has mazimal rank.

From now on in this chapter we shall be much concerned with maps of this
kind. An important geometric consequence of the property of having maximal
rank on the zero-section is formulated in the following lemma:

Lemma 12.1.6. Let M be an n-dimensional manifold, (E,m, X) a differentiable
vector bundle with n-dimensional total space E. Let U be an open neighbourhood
of the zero-section in E (see Fig. 12.5) and f : U — M a differentiable map
which has mazimal rank on the zero-section and which also embeds the zero-
section X in M. Then there is an open neighbourhood Uy of the zero-section in
U, such that f|y, is an embedding and, therefore, here it is a diffeomorphism
onto an open neighbourhood of f(X) in M (see Fig. 12.6).
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Figure 12.4:

Figure 12.5:

Proof. We may assume that f is everywhere of maximal rank on U (5.1.3), then
f:U — f(U) is open and a local homeomorphism. We may further assume
that f(U) = M, and the embedding f|x allows us to consider X as a subset of
M. We are therefore looking for a local inverse to the map f : U — M near
X. For the proof we recall the following lemma from general topology (which
is familiar in sheaf theory, see Godement [1], p. 150):

Lemma 12.1.7 (Section extension lemma). Let f : U — M be a local homeo-
morphism, X C M a subset such that each neighbourhood of X in M contains
a paracompact neighbourhood (this holds in particular for manifolds and, more
generally, for metric spaces M ). Let s : X — U be a section of f, that is,
fos=1idx. Then there exists an open neighbourhood W of X in M, and an
extension of s to a section s : W — U, and s(W) =: Uy is open in U.

Proof. (of (12.1.7)) In M we may choose a family {V)} ca of open sets, which
cover X, and sections sy : V), — U of f, which are such that s\|y,nx =
slvynx. This is possible because f is a local homeomorphism. Now we may
assume that the V) cover all of M, that M is paracompact (replace M by some
neighbourhood of X), that this covering is locally finite, and that it admits a
refinmement {W}xe, ambda With Wy C V. (See Lemma 7.1.1.)
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>

Figure 12.6:

Now we put
W:={zeMzeW,nNW, = s\(z) =s,(z)}.

Then, clearly, X € W, and we have extended the section s : X — U continu-
ously to W. It therefore only remains to show that W (respectively s(W)) is a
neighbourhood of X.

Suppose then that © € X. We choose a neighbourhood @ of s(z), which is
mapped homeomorphically by f onto a neighbourhood of z, see Fig. 12.7. Next

Figure 12.7:

we choose a neighbourhood A of z in M, which is so small, that

(i) AcC f(Q),
(ii) A intersects only finitely many Wy, say Wy,... Wy,
(i) e Wi, i=1,....k
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(v) ACVi,i=1,...,k
(v) si(A)CcQ,i=1,... k.

Then s1]4 =+ = si|la = (flo) |4, and so from (i) A C W.
With this we have proved (12.1.7)) and hence (12.1.6). O

O

In this proof we have followed S. Lang [3]. In the literature one frequently
finds other proofs of (12.1.6), which use a somewhat complicated topological
argument, but which do not generalise to infinite dimensional manifolds. More-
over, at this point, the following assertion easily slips into the argument (we
have found it in four books): if f: U — M is a local homeomorphism, A C U
is closed, and f|a : A — f(A) is injective, then it is possible to extend f to a
homeomorphism of a neighbourhood of A.

Counterexample (Fig. 12.8): U = (0,1) x (0,1); M = R?, A = (0,1) x

1
5

Figure 12.8:

The mistake lies in the assumption that, given the hypotheses, f|a : A — f(A)
is a local homeomorphism.

Next, in order to make the application of (12.1.6) easier, we wish to remark
that a ‘nice’ neighbourhood of the zero-section is contained in every preassigned
neighbourhood of the zero-section, see Fig. 12.9.

Remark 12.1.8. If (E, 7, X) is a differentiable vector bundle with a Riemannian
metric (,) and if U is a neighbourhood of the zero-section, then there exists
a differentiable everywhere positive function € : X — R, such that the open
neighbourhood

eDE = {v € E|v| < e(r(v))}

is contained in U.

Proof. Locally this is clearly possible, even with constant € (see Fig. 12.10): For
an appropriate cover, one chooses a subordinate partition of unity {r,|n € N}

and obtains a global € in the form e =)\ €, - Ty. O
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{ nice
/ beighbourhodd

- ;
/
//M///’// /

Figure 12.10:

As a first application of the exponential map and of the Lemma (12.1.6) we
prove

Theorem 12.1.9. Let M be a manifold and Y a topological space. If two
continuous maps
fg:Y =M

are sufficiently close in the C°-topology (compare Definition (7.1.8)), then they
are homotopic, that is, there exists a continuous map h : [0,1] x Y — M with

h(0,y) = f(y) and h(1,y) = g(y) for ally € Y.

Proof. We choose a spray on M and a Riemannian metric for 7M. Then for
the exponential map
exp: 0 - M

of the spray, we choose a small positive function €, such that eDTM C O, and
such that

(m,exp). pras
is a diffeomorphism onto an open neighbourhood U of the diagonal Ajs in

M x M. All this is possible by Corollary (4.1.21), Theorem (11.1.6), Corollary
(12.1.5), Lemma (12.1.6), and Remark (12.1.8).
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Observe that the diagram

(m,exp)

eDTM S UcCMxM 5 (pq)

]

M Ay (p,p)

is commutative;therefore the points (7, exp)~!(p, ¢) all lie in the fibre over p.
Next, if f,g : ¥ — M are sufficiently close in the C°-topology (com-
pare (7.1.8)), then (f(y),g(y)) must lie in U for all y € Y (that is, close to

(f(y), f(y)) € An), see Fig. 12.11.

\AM
2%
7%
4
/ i
LV
A /2/‘ L M
y
bet
/
A

Figure 12.11:

If we set
h(t,y) == exp(t((m, exp)[eDTM) " (f(y),9(y)))

we have found the required homotopy, see Fig. 12.12. O
BT, M

gly)

Figure 12.12:

Now we wish to turn to tubular neighbourhoods. In the study of submani-
folds X € M we must often handle problems which, while not local and so not



12.1. TUBULAR NEIGHBOURHOODS 133

transferable by means of a chart to a problem in R™, do not involve the whole
manifold M, but only the consideration of a neighbourhood of the submanifold.
For such considerations it is therefore very useful to know that the ‘position’ of
X in such a neighbourhood is the ‘same’ as the ‘position’ of X as zero-section
in its normal bundle. The following definition makes this precise:

Definition 12.1.10. If X C M is a submanifold, then by a tubular map for X
one understands an embedding

T:1X > M

of the normal bundle L X of X into M, which on X is the inclusion X C M, and
for which the differential induces the identity 1. X — 1 X on the zero-section.

The differential of 7, restricted to (T LX)|x, is a bundle homomorphism
1XeTX - TM|x

(compare (12.1.3)), because 7 restricted to X is the inclusion. The condition
stated last in the definition concerns itself with the composition

IX @0 TM|x 2% 1 X = (TM|x)/TX.

Theorem 12.1.11 (Theorem on the existence of tubular maps). For every
submanifold there exists a tubular map.

Proof. Let X C M be a submanifold. We choose a spray on M with an ex-
ponential map exp : O — M, and choose a Riemannian metric (,) for T'M.
By means of the canonical isomorphism | X = (TX)* we consider L X as a
subbundle of TM|x. Then on the neighbourhood

U=0n1X
of the zero-section in 1. X, a map
U—-M

is given by the exponential map, which is the inclusion X C M on X. Since
the differential of the exponential map, restricted to TT M|,y is exactly (id, id) :
TM & TM — TM (Remark 12.1.4), then the differential of exp|y : U — M,
restricted to (TLX)|x = LX & TX is just the identity

1XaTX S TM|x.

From this we draw two conclusions: first, the differential has maximal rank on
the zero-section and thus fulfils the hypotheses of Lemma 12.1.6 and, second, it
induces the identity 1 X — 1 X.

Next, we choose a small positive function € on X, such that eD1X C U and

that exp|.p, y is an embedding ((12.1.6), (12.1.8)).



134CHAPTER 12. THE EXPONENTIAL MAP AND TUBULAR NEIGHBOURHOODS

Finally, we choose a diffeomorphism
1X S eDlX,

which on (€/2)-D_LX is the identity (compare the technique applied for (10.1.4)).
Then, clearly, the composition

exp

1X s eD1X 22 M

is a tubular map. O

Definition 12.1.12. If 7: L X — M is a tubular map for X C M, and if L X
is equipped with a Riemannian metric (, ), then the neighbourhood

T(DLX)
of X in M is called a tubular neighbourhood of X.

Therefore the tubular map 7 equips the tubular neighbourhood with the
structure of a ‘disc bundle’ so that with the given tubular map one also speaks
of fibres and of the projection

tubular neighbourhood — X (see Fig. 12.13).

Figure 12.13:

For certain constructions which make use of all of this structure, it is im-
portant to know how far the construction depends on the choice of the tubular
neighbourhood. To this end one has the following uniqueness theorem with
which we want to end this section:

Theorem 12.1.13 (Uniqueness theorem for tubular neighbourhoods of compact
submanifolds). Let X be a compact submanifold of a manifold M ; 79,7 : LX —
M tubular maps; (,)o and {,)1 Riemannian metrics on LX; and finally let
Uy :=10(Do LX) and Uy := 11(D1 LX) be the associated tubular neighbourhoods
of X. Then there exists a diffeotopy H of M, which is fized on X and which is
such that Hy maps the tubular neighbourhood Uy fibrewise onto Uy. Furthermore,
it is even possible to choose H, so that all points outside a compact subset of
M are likewise held fized, and so that for each point p € X and each t, T,H;
induces the identity 1, X — 1pX.
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Proof. Clearly, it is enough to prove the theorem for the two special cases
(a) o=m:=71

(b) Clo=(hi=()-

For (a): we only need to find a fibre preserving isotopy % of the identity on
1 X, which leaves a neighbourhood of the zero-section fixed, and for which h;
maps the disc bundle Dy L X = {v € LX|v|p < 1} onto D;LX. Then we can
embed the isotopy of 7|p, 1 x, given by

Toht

in a diffeotopy H with the required properties (see 10.1.10).
W.l.o.g., we may assume that |v|o < |v|; forallv e LX. If ¢ : R — [0,1] is
a C*°-function of the kind illustrated in Fig. 12.14 (compare Chapter 7), then

172 1

Figure 12.14:

an isotopy of the required kind is given by

V1
At ) = [$(eelo) 22+ (1 = oleolo) | o
(Naturally one sets h(t,0) = 0.) This proves case (a).
For (b): here it is enough to find an isotopy between 7y and 71, such that
each 7t is a tubular map. We can forget the metric on 1 X. Instead of this we
choose a metric (,) for TM, a spray on M and € > O, such that

(m,exp) : D(TM|X) — X x M

is an embedding, see Fig. 12.15.
Next we must make use of the possibility of shrinking a differentiable vector
bundle: there always exists a fibre preserving isotopy of the identity, which leaves
fixed a neighbourhood of the zero-section, and whose end-embedding maps the
whole bundle into a preassigned neighbourhood of the zero-section.
Seizing this possibility for L X we recognise that we may already take 79 and
71 to be so small, that (m,79)(LX) C X x M and (7, 79)(LX) C X x M are
contained in (w,exp)(%ﬁ(TM|X)). Therefore, both
T(; = (m,exp) !

Ti = (m,exp) !

(m,70)

(m,711)
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Figure 12.15:

are fibre preserving maps
1X - TM|x

which, after composition with the exponential map, give 79 and 71, see Fig.
12.16.

Figure 12.16:

It is now enough to show that T(; and T{ are connected by a fibre preserving
isotopy which keeps the zero-section fixed, which for each p and ¢ induces the
identity on 1,X via TTZ;, and which takes place completely in elo)TM|X. Then
T:=exrpo 7" will do what is required.

We can forget the condition that 7 takes place in eDTM |x: if the argument
works anywhere in TM|x, it will work equally well in eDTM|x (shrinking
argument).
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Since we now have all TM|x to play with, we can replace T(l) and 7'1 by the
bundle maps given by their differentials at the zero-section

7o LX = TM|x
L LX — TM|x.

This ‘linearisation’ proceeds exactly as in the proof of (10.1.3) by means of
lemma (2.2.2):

[0,1] x LX - TM|x

‘r/(t'u)
(t, ’U) . Ofl fOI‘ t # 0
Tpro(v) for t=0

is the isotopy between 7'(,) and ’7'(;,, which we need. The argument for ’7'{ is

analogous.
To finish the argument, compose both 7, and 7; with the projection

LX D5 TM|x 2% (TM|x)/TX = 1LX, i=0,1.
This gives the identity of L X, something which holds also for each

(1- t)T(;/ + tT{/.

With
7 10,1 x LX — TM|x
(t,v) = (1 —t)7g (V) + t7y (V)
we obtain an isotopy with the required properties. O

12.2 Exercises

Ezercise 12.2.1. Let X C M be a submanifold whose normal bundle possesses
a section non-zero everywhere. Show that the inclusion X C M is isotopic to
an embedding whose image is disjoint from X.

Exercise 12.2.2. Show that two disjoint closed submanifolds of M also have
disjoint tubular neighbourhoods.

Ezercise 12.2.3. Let X be a submanifold of M. how that if X is compact and
M\ X is connected, then so is the complement of every tubular neighbourhood
of X in M. The hypothesis that X is compact is not superfluous.

Ezercise 12.2.4. Let M be a connected manifold and X C M be a (codimension
one) connected submanifold. If X lies ‘one sidedly’ in M, that is, the normal
bundle | X is not trivial, show that M \ X is connected.
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Ezercise 12.2.5. Let M be a manifold. Show that a connected subset X C M is
a submanifold, provided that there exists an open neighbourhood U of X and
a differentiable map f: U — U with fo f = f and f(U) = X.

Ezxercise 12.2.6. Let X be a closed k-codimensional submanifold in M with a
trivial normal bundle. Show that there is a differentiable map

f: M — Sk,

such that X is the pre-image of a regular value of f.

Ezercise 12.2.7. Let (E,m, M) be a differentiable vector bundle. Then the set
P(FE) of 1-dimensional subspaces of the fibres is in a canonical manner a manifold
and, over P(F), we have a canonical differentiable line bundle

n(E) = P(E),

for which the fibre over a point p = V C Ex of P(FE) is the line {p} x V.
Clearly, we have a canonical linear map of vector bundles n(E) — E (one says
that n(E) arises from E by ‘blowing up’ the zero-section). Show that there is a
diffeomorphism

n(E)\ 0 — section — E \ 0 — section
given by the canonical map n(E) — E.

Ezercise 12.2.8. Let X C M be a compact submanifold and 7a tubular map
for X. Show that there exists exactly one differentiable structure on (M \ X)U
P(LX) =: Mx, for which the maps (1) and (2) below are embeddings:

1. M\ X C My

2.
n(J_X) — Mx
vy JY for ve P(LX)=0—section of n(LX)
T(o(v)) for ven(LX)\O0— section,

where ¢ : n(LX) — LX is the canonical map. Show that the differentiable
structure of Mx does not depend on the choice of tubular map. (One says that
the differentiable manifold M arises from M by ‘lowing up’ X.)

Ezercise 12.2.9. Show that the blowing up of a codimension one submanifold
has no effect.

Ezercise 12.2.10. Show that by blowing up a point in S™, one obtains the projec-
tive space RP™. (In general, blowing up a point of M™ is, up to diffeomorphism,
the same as taking the connected sum M#RP™.)

Ezercise 12.2.11. Construct a non-empty, n-dimensional manifold M, n > 2,
for which the blowing up of a point does not change the diffeomorphism type.



Chapter 13

Manifolds with boundary

Manifolds, which are locally modelled on Euclidean space, are not the only
interesting geometric objects one can imagine. However, without further as-
sumptions one cannot base the theory developed so far on local models other
than Euclidean space, even if a corresponding generalisation of manifold were
easy to define. The basic methods which we have learnt rest, namely, on the
possibility of performing analysis on manifolds (differential equations, inverse
functions, etc.), and here the essential local statements depend on properties of
Euclidean spaces.

However, one can extend many methods from the theory of manifolds to
spaces, which are built up from local models other than Euclidean space, as
long as these spaces or local models are sufficiently sensibly composed or built
up from manifolds (“stratified spaces”). We shall not go into this, restricting
ourselves to the classical and simplest case of manifolds with boundary, which
locally look like the closed Euclidean half-space

R? = {z € R"|z, > 0} Fig. 13.1.

Figure 13.1:

139
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These manifolds with boundary are important, not only as a generalisation
but, also, as an aid in the theory of ‘ordinary’ manifolds.

Since it makes sense (as is well known from infinitesimal calculus) to speak
of C'*°-maps defined on open subsets of R, there is no difficulty in replacing
R™ everywhere by R’ in the definition of a differentiable manifold. Since we
want to call on this analogy several times from now on, we shall explicitly write
down the definition on this first occasion:

Definition 13.0.1. A topological n-dimensional manifold with boundary is a
second countable Hausdorff space M, which is locally homeomorphic to R} .
An atlas of local charts

h:U—=U

(U open in M, U open in R, h homeomorphism) is called differentiable if
the chart transformations are differentiable; and an n-dimensional differenli-
able manifold with boundary is a pair consisting of a topological n-dimensional
bounded manifold M and a maximal differentiable atlas ® for M.

The rank theorem easily gives an example:

Remark 13.0.2. If M is an (ordinary) manifold and a € R a regular value of
f: M — R, then f~!((—00,a]) is canonically a manifold with boundary, see
Fig. 13.2. About a point p € f~!(a), one can clearly choose a — f as last

Figure 13.2:

coordinate of a chart.

In this way many examples of manifolds with boundary present themselves
to us, for example the disc

D" = {z € R"||z? < 1}

or, more generally, for a differentiable vector bundle (E, 7, X) with Riemannian
metric (,) and a positive differentiable function € on X, the e-disc bundle

eDE = {v € E||v|* < &(n(v))}.
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A diffeomorphism of one open subset of R’} onto another, maps each point of
the ‘boundary’ (that means, each point with z,, = 0) to a point on the boundary,
because an invertible germ (R™, x) — (R™,y) possesses an open representative,
and hence cannot take an ‘interior’ point to a point on the boundary, see Fig.
13.3. It follows that the boundary of a manifold with boundary is well defined

X1,...,Xn.‘| X1,...,Xn_]

Figure 13.3:

and can itself be given the structure of a differentiable manifold.

Definition 13.0.3. If M is an n-dimensional manifold with boundary, then a
point p € M, which is mapped by some (and hence by every) chart about p to a
point with z,, = 0, is called a boundary point of M. The set of boundary points
of M is canonically an (n — 1)-dimensional manifold (in the usual sense) which
we shall denote by OM, and call the boundary of M (Fig. 13.4). M \ OM is

aM

Figure 13.4:

canonically an (ordinary) n-dimensional manifold, and is called the interior of
M.

Remark 13.0.4. In order to avoid always having to speak of ‘ordinary’ instead of
the newly introduced manifolds with boundary, we wish to agree that manifolds
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with boundary will always be called manifolds with boundary, and that the
word ‘manifold’ will be reserved for the usual, unbounded manifolds. However,
it will be possible for a manifold with boundary to have an empty boundary. If
M is a manifold with boundary and OM = &, then M = M \ M is of course
also canonically a manifold. By a closed manifold we understand a compact
manifold (without boundary).

A manifold with boundary is formed from the two manifolds M \ OM and
OM. We have, therefore, first of all, to describe how these two manifolds fit
together, that is, to describe a neighbourhood of OM in M.

Definition 13.0.5. By a collar for a manifold with boundary we mean a dif-
feomorphism from the manifold with boundary M x [0,1) onto an open neigh-
bourhood of M in M, which is the inclusion M C M on M, see Fig. 13.5.

Figure 13.5:

Theorem 13.0.6. Every manifold with boundary has a collar.

Proof. Note that one can consider the boundary as a submanifold and therefore
obtain the collar as half a tubular neighbourhood. In detail, and in a simpler
fashion, we argue as follows:

For manifolds with boundary, one defines the tangent bundle (TM,w, M)
as for unbounded ones, and indeed so that also for the boundary points, 7, M
is a vector space, rather than just a half-space. (To apply the ‘geometer’s
definition” meaningfully here would be rather clumsy; however, the definitions
of the ‘algebraist’ or the ‘physicist’ carry over word for word, compare (2.2.1)
or (2.2.5).) For z € OM, T,OM is a codimension 1 subspace of T,,M, which
decomposes T, M into two half-spaces, of which, relative to some and hence
to every chart about x, one lies on the side of the manifold. We wish to call
a vector v € T, M, which is not tangential to M and which belongs to this
half-space, an inward pointing vector, see Fig. 13.6.

Pointing inward is a convex property in the sense already used several times.
Therefore, by means of a partition of unity, we can easily construct a vector
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Figure 13.6:

field X on M, so that each vector of X|sps points inward. Then there exists a
positive function € on M, and a differentiable map of

{(z,t) € OM x Ry|0 <t < e(x)}

to M, which for each fixed zx is a solution curve of X with initial value x. This
map is the inclusion on M, it is injective, it is of maximal rank everywhere

and, therefore, as can be easily seen, it is a diffeomorphism onto an open neigh-
bourhood of OM in M, see Fig. 13.7.

aMx R. M

Figure 13.7:

By means of ‘shrinking’ (compare (10.1.4)) we easily obtain a diffeomorphism
of OM x [0, 1) - indeed, if we so wish, we can map OM x R onto a neighbourhood
of OM in M, which is the inclusion OM C M on M. O

For collars, as for tubes, there exists a uniqueness theorem which, here (for
the sake of simplicity) we only formulate and prove for compact boundaries.

Theorem 13.0.7. 1f M is a manifold with compact boundary, and kg, k1 are
two collars for M, and K is a compact neighbourhood of OM in M, then there
ezists € > 0 and a diffeotopy of M, which leaves OM and the complement of K
pointwise fized, and which on 0 x [0,€) takes the collar kg into K.
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Proof. We construct a family X of vector fields, depending differentiably on X,
on a neighbourhood of OM in M as follows: The vector field 9/0t on M x[0,1)
(Fig. 13.8) is taken by ko and k1 into two vector fields, both defined in a

E
\J

Figure 13.8:

neighbourhood of kg, k1. Label these fields Xy and X; on the intersection U of
the two neighbourhoods (Fig. 13.9). Then let us define X := (1 —X\)Xo + X3

Xg on U Xy on U

Figure 13.9:

on U.

Along OM each X, points inward. By integration we therefore obtain, for
sufficiently small €, an isotopy k between ko and k1 on M x [0, 2¢). Here each
k) is a collar and, indeed, the whole isotopy takes place in the (topological)
interior K of K. As in the isotopy theorem (complement (10.1.10)) we now find
a diffeotopy of K , which leaves fixed all points outside a compact subset of K,
and in which &[[g1]xanx [0, is embedded. We extend this diffeotopy to one of

M by decreeing all points outside of K to be held fixed. In this way we have
found the required diffeotopy. O

In order to prepare a first application of collars, just look at the following
situation: let N be a manifold and 7: N — N at a fixed point free involution,
that is, a diffeomorphism with 7(p) # p for all p, and 7o 7 = idy.

If one identifies points which correspond to each other under 7 and denotes
the coset space by N/, then the canonical projection N 5 N/ is topologically
a two leaved covering and, because 7 is a diffeomorphism, there exists exactly one
differentiable structure on N/7 with respect to which  is a local diffeomorphism.
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We therefore consider N/7 as a differentiable manifold.
Example: 7:S" — S", z — —x, then S"/7 = RP".

Definition 13.0.8. Let M be a manifold with boundary, 7 : OM — OM a
fixed point free involution, and « a collar for M. Then there exists exactly one
differentiable structure on the (unbounded) topological manifold M /7, which
is obtained by identifying points which correspond to each other under 7, with
respect to which the canonical inclusion M \ OM C M /7 and the map

OM x (—1,1) . M

T x (—1id) T
f >
1] > k(p,t) or t>0
k(Tp, —t) for ¢t<0

defined by x are embeddings. The differentiable manifold defined in this way
will also be denoted by M/.

The definition shows how one can use the canonical differentiable glueing of
OM % [0,1) to itself, giving OM x (—=1,1)/7 x (—id) (locally this is illustrated
in Fig. 13.10), by means of a collar to explain the differentiable identification

aM/T

aM
=
%p\% %

Figure 13.10:

space M/t.
The differentiable structure of M /7 indeed depends on the choice of the
collar, as one recognises, for example, by considering the paths

(-1,1) = M/t
. k(p,t) for t>0
k(Tp, —t) for t<0

which must be differentiable for each p € M. For example, if M = Ri +R,2,
hence OM = R + R, and 7 is the natural interchange of the two boundary
components, then M /7 is both as set and as topological manifold the same as R?.
If one uses the natural collar (z,t) — (z,t), then one obtains the differentiable
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structure of R2. If however, one chooses the collar given by (z,t) — (z +t,1),
then the paths t — (z + [t|,t) become differentiable in M/7 = R?, see Fig.
13.11. In fact the diffeomorphism type of M /7 does not depend on the collar,

M/ am/r

differentiable paths in differentiable paths in
Mirw.rt klx, 1) =(x,1) Mirw.rt klx,t={x+t1)

Figure 13.11:

that is, two manifolds M /7 formed from two distinct collars are nonetheless
diffeomorphic.
In the case of compact boundaries there even follows:

Corollary 13.0.9 (Corrollary from the uniqueness theorem for collars). Let
M be a manifold with (compact) boundary, T : OM — OM a fized point free
involution and Ko, k1 collars for M. Then there is a diffeomorphism

M/T— M/t

which takes the differentiable manifold M /7, formed using kg, onto that formed
using k1K1, and which on OM /T and outside a preassigned compact neighbour-
hood of OM /T is the identity.

Remark 13.0.10. It is clear that everything said so far about the construction
of M /7 applies also to the case when 7 is not defined on all M, but when
7 : XtoX is a fixed point free involution on an open and closed subset X of OM
(equal to a union of boundary components, see Fig. 13.12).

Figure 13.12:
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As a convention, we want to agree that, in cases where only the diffeomor-
phism type is important, given M and 7, we shall speak of ‘the’ differentiable
manifold M /7 without specifying the collar.

As a special case of the construction, we consider the identification of two
manifolds with boundary by means of a diffeomorphism of the boundaries.

Definition 13.0.11. Let M;, M, be manifolds with boundary, X; C dM; be
open and closed and ¢ : X3 =N X5 be a diffeomorphism. Then we write

Ml U¢ M2 = 1\4/7'7

where M = M; + My and 7 : X; + X2 — X; + X5 is given by 7|x, = ¢,
T|x, = ¢~ 1, see Fig. 13.13.

Figure 13.13:

The particular manifold without boundary M U;q M which one obtains if
one glues together two copies of M by means of id : 9M — OM, is called the
double of M.

An another application of the collar theorem, we shall show how one can
present the product of two manifolds with boundary, again as a manifold with
boundary. If M and N are manifolds with boundary, then (M x N)\ (OM xON)
has a canonical structure as a manifold with boundary, see Fig. 13.14. At the

MxN

Figure 13.14:

points of (OM x ON), from the charts for M x N, we obtain ‘charts’ for M x N
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which, instead of the half-space, map into open subsets of the ‘quarter-space’
RT x R? =R™" 2 xR, x Ry (Fig. 13.15).

In order to define a differentiable structure on all M x N, we use the homeo-

NN
DN

Figure 13.15:

morphism of the half-plane R% (see Fig. 13.16 onto the quadrant Ry x R, (see

Figure 13.16:

Fig. 13.17), which in polar coordinates is given by halving the angle. Denote

\\

Figure 13.17:

this by ¢:
¢ (r,0)— (r,0/2).
¢ defines a diffeomorphism R% \ 0 = (R} x Ry) \ O.
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Definition 13.0.12. Let M and N be manifolds with boundary with collars s
and A, taken here for technical reasons in the form

ki OM xR, — M
A:ON xR, = N

Then there exists exactly one differentiable structure on M x N, relative to

which the maps
(M x N)\ (OM x ON) C M x N,

and

OM x ON x R2 2% M x ON x Ry x Ry
KX

>~ (OM xRy) x (ON xRy) —= M x N

are embeddings, that is, are diffeomorphisms onto open subsets of M x N.
Henceforth M x N is to be understood in this fashion as a differentiable manifold
with boundry.

The technique used here is called ‘straitening the angle’.

Remark 13.0.13. The boundary of M x N is (OM X N) Uid,yon (M X ON) if
one uses the collars given by x and A for OM x N and M x ON, see Fig. 13.18
If one is only concerned with diffeomorphism type, then one can simmply speak

Figure 13.18:

of ‘the’ product M x N as a differentiable manifold with boundary, without
specifying the collars.

We want to conclude this chapter on manifolds with boundary by introducing
the notion of ‘bordism’, which plays so great a role in advanced differential
topology.

Every manifold without boundary is the boundary of a manifold with bound-
ary, for example M = (M % [0,1)). But to be the boundary of a compact man-
ifold with boundary is a restriction with interesting geometric consequences.
More generally, one divides closed (that is, compact, unbounded) manifolds
into ‘bordism classes’ as follows:
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Definition 13.0.14. Two closed n-dimensional manifolds M; and My are called
bordant if there is a compact manifold with boundary W, such that oW =
M, + Ms (Fig. 13.19). If the closed manifold M is the boundary of a compact

L)

Figure 13.19:

manifold with boundary, we call M bounding or nullbordant.

Definition 13.0.15. To be ‘bordant’ is an equivalence relation. The equiva-
lence classes are called bordism classes; we denote the bordism class of M by
[M].

Proof. (that ‘bordism’ is an equivalence relation.) Clearly symmetric relation is,
given by 9(M x [0,1]) = M + M, which also gives reflexive relation. In order to
understand transitivity, we apply the technique of glueing manifolds together: if
My ~ My and My ~ Ms, and if Wy, Wy are compact manifolds with boundary
such that Ow, & My + My, OWs = My + M3, then 8(W1 Uid M, Wg) = My + Ms.
So transitivity follows, see Fig. 13.20. O

Figure 13.20:

Remark 13.0.16. The disjoint sum of manifolds makes the set 91,0f bordism
classes of n-dimensional manifolds into an abelian group; the Cartesian product

defines a multiplication
N x mm — mn+ma

which makes 91, := ®22 N, into a Z/2Z-algebra.



13.1. EXERCISES 151

One convinces oneself of this without difficulty or surprise, though the struc-
ture of this algebra lies very deep.

The geometric-analytic techniques which we have described o far in this
book, certainly form the basis of the study of differentiable manifolds, but they
do not suffice to solve most of the harder problems. Here one also needs the
help of algebraic topology. With the definition of the algebra 91,, we have come
to a threshold between geometry and algebra. For quite a lot of geometric
problems, which can be solved only with the help of algebraic topology, it is of
great importance to know the structure of .. This structure was determined
by R. Thom, who thereby laid the foundations for the extensive bordism theory.
His result is:

Theorem 13.0.17 (Thom 1954). Let Z/27Z[X2, X4, X5, X6, X5, X9 ...] be the
polynomial ring over Z /27 on countably many variables X;, one for each i > 0,
which is not of the form 27 — 1. Then there is an algebra isomorphism

Z/QZ[XQ,X4, .. ] — ‘ﬁ*,

which maps each X; onto an element of N;. One can so set up the isomorphism,
that for each even i, the variable X; is mapped onto the bordism class of the i-
dimensional real projective space.

13.1 Exercises

Ezercise 13.1.1. Let M be a closed manifold and a,b € R be regular values of a
differentiable function f: M — R. Show that the manifolds f~!(a) and f~1(b)
are bordant.

Ezercise 13.1.2. Show that on each manifold with boundary M there exists a
differentiable function with f=1(0) = oM.

FEzercise 13.1.3. Show that M \ OM = @ implies that M = & also.

Ezercise 13.1.4. Show that an orientable manifold with boundary has a bound-
ary which is also orientable.

Ezercise 13.1.5. Give an example of a manifold with (non-empty) boundary,
whose diffeomorphism type is unaltered by the removal of an arbitrary point.

Ezercise 13.1.6. Let M be a compact manifold with boundary and X a vec-
tor field on M, which is inward pointing on the boundary. Show that R, is
contained in the domain of definition of each maximal solution curve.

Ezercise 13.1.7. Show that M;# M, is bordant to My + M.

Ezercise 13.1.8. Show that every closed manifold is bordant to a connected
manifold.

Exercise 13.1.9. Let Ay and A; be disjoint closed subsets of the differentiable
manifold M. Show that there exists a decomposition M = My U My, OMy =
OM, = MyN M, of M into two manifolds with boundary, which are glued along
the common boundary, and which are such that A, C M, see Fig. 13.21.
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Q(

Figure 13.21:

Ezercise 13.1.10. Show that the double of a compact manifold with boundary
certainly bounds.

Exercise 13.1.11. Let M be a compact manifold with boundary and ¢ : OM —
OM x 0 the canonical diffeomorphism. Show that M is diffeomorphic to M U,

(OM x [0,1]), see Fig. 13.22.

M aMx[0,1]

Figure 13.22:

Ezercise 13.1.12. Show that for each diffeomorphism ¢ : S*~! — S*~! the
manifold D" Uy D™ is homeomorphic to S™.

Exercise 13.1.13. Give examples of oriented manifolds with boundary M; and
M, and of a diffeomorphism ¢ : dM; — OM>, such that My Uy My is not
orientable.

Exercise 13.1.14. Show that a closed manifold, on which a fixed point free
involution exists, necessarily bounds.

Ezercise 13.1.15. Show that D" x D™ = prtm,

Exercise 13.1.16. How many bordism classes of 15-dimensional manifolds are
there? Use (13.0.17).



Chapter 14

Transversality

We study the following situation: let f : M — N be a differentiable map of
differentiable manifolds, and let L C N be a submardfold. What can we say
about the pre-image ~!(L) C M? If f is transverse to L, then we know that
f~YL) C M is a submanifold of the same codimension as L in N. However,
without further hypotheses, f~1(L) has in general no structure of any kind, see
Fig. 14.1.

LcN

Figure 14.1:

Theorem 14.0.1 (Whitney). Ewvery closed subset of a differentiable manifold
is the set of zeros of some differentiable function.

Proof. Suppose, first, that A is a closed subset of the open subset V of R™, then
we may cover the open set V' \ A with a sequence of open discs {K, |v € N} and
choose for each v € N a differentiable function v, : V' — R with the properties

(a) 0<%, and ¢, (z) >0 x € K,,

(b) the absolute values of the functions 1, and of all their derivatives, up to
the v-th order, are smaller than 27%.

Condition (a) is easy to satisfy (Chapter 7); one satisfies condition (b) when one
multiplies a function which satisfies (a), by a sufficiently small constant factor.

153
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Now set 1 := Y7 | 1,,. This sequence converges uniformly on all V because
of (a), as does the sequence for each derivative of the v, and hence the limit
function ¢ is differentiable. Because of (a) ¢(z) > 0 if and only if z € K, for
some v, that is, if and only if x ¢ A.

More generally, suppose that A C M is closed, and choose a partition of
unity {¢; = ¢ € N}, such that supp(¢;) is contained in a chart V; for each i.
Then supp(¢;)NA is closed in V; and, as above, one finds a function A; : V; — R,
Ai >0, \(z) =0 < 2z €supp(¢;) NA. Now set A = 02 ¢\ (with \; =0
outside V;).

The function A is well defined and differentiable because the sum is locally
finite. If x € A, then A;(z) = 0 for all 4, hence A(z) = 0. If © ¢ A, then ¢;(x) > 0
for some i and x ¢ supp(¢;) N A, hence A;(z) > 0, hence ¢;(z)A;(x) > 0 and
therefore A(z) > 0. O

Remark 14.0.2. If we set a(x) = exp(—A(x)?) with the function \ as con-
structed above, then 0 < o < 1, and a1 (0) = A. All derivatives of « vanish on
A (with respect to any charts) because exp(—t?) vanishes if and only if t = 0,
and has a trivial Taylor Series at the origin. Such functions are a useful technical
aid.

Every closed subset A C M is thus the pre-image of the submardfold {0} C R
under an appropriate differentiable map. The situation is quite different for
analytic or algebraic functions; for these there exists a large and interesting
theory of zero sets for the appropriate functions. But the theory of pre-images of
submanifolds under differentiable maps does not end here, since the peculiarly
pathological maps, such as the one here constructed, are, in a certain sense,
untypical exceptions - the usual state of a map is that of transversality. We shall
show here - similarly to the immersion theorem - that one can approximate a
map arbitrarily closely by a transverse map. First some preliminaries:

Definition 14.0.3. We say that a vector bundle FE is of finite type if E is a
subbundle of a trivial bundle 7 : B x R¥ — B. In other words, there exists a
vector bundle F' over B such that F @ F is trivial (4.2.10.)

Lemma 14.0.4. A differentiable vector bundle over a differentiable manifold
has finite type.

Proof. The real reason is that the base is finite dimensional. In order not to
have to load ourselves with too much topology, we permit ourselves the following
argument: if a bundle has finite type, so clearly has every subbundle, likewise the
restriction of the bundle to a subspace of the base. Moreover, the tangent bundle
TM of a differentiable manifold has finite type, for the embedding M C R™
(following (7.1.10)) induces an inclusion TM C TR"|s, and the tangent bundle
of R™ is trivial.

Now let £ — N be some differentiable vector bundle, such that the total
space F is a differentiable manifold and, as we have just said, the tangent bundle
TE is of finite type. The same holds for the restriction of this bundle TE|xy — N
the zero-section N C FE. This bundle contains F as a subbundle, the normal
bundle of the zero-section (12.1.3). O
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The general transversality theorem depends on the special case.

Proposition 14.0.5. Let (E,m, M) be a differentiable vector bundle which is
equipped with a Riemannian metric. Let N C E be a differentlable submani-
fold and € a continuous everywhere positive function on M. Then there exists
a differentiable section s : M — E, |s(p)| < e(p) for all p € M, such that s is
transverse to N. If A C M is closed and the zero-section satisfies the transver-
sality condition (5.1.12) with respect to N for all points of A, then one can
choose the section s, such that s|a =0 (Fig. 14.2.)

Figure 14.2:

Proof. Choose first a complement (E', 7, M) to the vector bundle (E,x, M),
such that E @ E' is the trivial bundle M x R*. Let f: E®E — E be the pro-
jection on the first factor, then the map f : M x R* — E is a submersion, hence
f7YH(N) C M x R* is a submanifold (for a submersion is certainly transverse),
and the fibres of the normal bundle of f~*(N) in M x R* are mapped by Tf
isomorphically onto the fibres of the normal bundle of N in FE.

Hence a section s of the trivial bundle M x R¥ — M is transverse to f~1(N)
if and only if the section f o s is transverse to N. To summarise: w.l.o.g., we
may suppose that FE is the trivial bundle M x R¥ — M. By the way, f~1(N)
is the total space of the bundle 7*E’ |n over N.

Suppose, therefore, that E = M x R*, that « is the function associated to
the given closed set A C M in (14.0.2), U = M\ Aand § =e-a: M — R.
Then 0 < d(p) < €(p) for all p € U, and both ¢ and all its derivatives vanish on
A.

We have a bundle map

g:Eu =UxRF 5 UxR",  (p,v) = (p,(8(p)) " v),
so choose a regular value w € R¥, |w| < 1, of the composition
NN (Ey) S U x RF 2212 gk
and define the required section s by
s(p) = (p,0(p) ™ w).

We are here using Sard’s theorem (6.1.1), see Fig. 14.3. At the point p € A, the
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Figure 14.3:

value of the function s and its differential agree with those of the zero-section; by
hypothesis, transversality is satisfied. If p € U, one has only to convince oneself
that at p the section g o s|y (which has the constant value w) is transverse to
g(N N E|y), see Fig. 14.4. O

S(NNE/W)

Figure 14.4:

Theorem 14.0.6 (Transversality theorem for sections (R. Thom)). Let f :
E — M be a differentiable map between differentiable manifolds, and let s :
M — E be a differentiable section of f (that is, f os = idy ). Let N C E
be a differentiable submanifold, then arbitrarily close to s there exists a section
t: M — FE transverse to N. If the transversality condition on s is already
satisfied for all points of a closed subset A C M, then one can choose the section
t such that t|a = s|la (Fig. 14.5).

Figure 14.5:
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‘Arbitrarily close’ is to be formulated with respect to some metric on E and
the C°-topology for maps, see (7.1.8).

Proof. We choose a welt adapted tubular neighbourhood of s(M), and apply
Proposition (14.0.5) in this tubular neighbourhood:

The section s is differentiable and an immersion, for T'f o T's = id; also
s: M — s(M) is a homeomorphism with inverse map f|s(ar) and so, following
(5.1.8), s is an embedding. Because f|s(as) has rank equal to the dimension of
M, f is a submersion in some neighbourhood U of s(M), and it is enough to
prove the theorem for f: U — M, s: M — U and NNU C U. In other words,
we may assume that f is a submersion (U = E).

Consider the bundle ker(T'f) over E which is a subbundle of the tangent
bundle T'E; then ker(T'f)|s(ar) is a complement of the tangent bundle of s(M)
in TE|s) and therefore may serve as a normal component: The inclusion
ker(T'f)|s(ary — TE|s(ary induces an isomorphism with the normal bundle of
s(M) in E. One can now define a spray xi : TE — TTE, such that £(v) €
T(ker(T'f)) for vectors v € ker(T'f) and, therefore, such that the integral curves,
which begin in the direction of a vector out of ker(T'f), certainly preserve a
direction from this subbundle. Put another way: the integral curves, which at
one point are tangential to the ‘fibre’ f~1(p), p € M, never leave f~1(p). The
argument is illustrated by Figs. 14.5 and 14.6.

Figure 14.6:

From this spray one obtains a tubular map
7 ker(Tf)| sy = E,
such that the diagramme
ker(T f)|s(vy —— E

| i

s(M) ——

IR

~
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commutes. Since T is an open embedding, one can apply the Proposition (14.0.5)
directly to the left-hand side of the diagramme. O

As a special case we obtain the classical result of Thom:

Theorem 14.0.7 (Transversality theorem for maps (R. Thom)). Let f : M —
N be differentiable, and let L C N be a differentiable submanifold. Then, arbi-
trarily close to f, there exist maps g : M — N transverse to L. If the transver-
sality condition on f is already satisfied at the points of a closed subset A C M,
then one can choose g such that f|a = g|la (Fig. 14.7).

Figure 14.7:

Proof. Consider the composition M 2 MxN 5 N, s = (id, f), m = projection,
then f = mos, and 7 is a submersion, and hence transverse to L with the pre-
image 7~1(L) = M x L C M x N. We may therefore approximate the section
s of the projection M x N — M, following (14.0.6) by a section ¢ transverse to
M x L. Hence - by the same conclusion as in the first step of the proposition -
the map mot: M — N is transverse to m(M x L) = L. O

Note that, in this proof, we do not use the fact that the approximation ¢ of
s is a section. Without this condition (14.0.6) is much simpler to demonstrate
because one can argue with a completely arbitrary tubular neighbourhood of
s(M).

Transversality theorems are basic to all ‘general position’ arguments in dif-
ferential topology. With them begins cobordism theory, as well as the stability
theory of differentiable maps, and they really explain why differential topol-
ogy, far from being a desert of pathologies, yields a cornucopia of geometric
phenomena.

As a topologist, one tries to approximate mappings between manifolds by
other with good properties (differentiable, transverse,... ) because sufficiently
close maps are homotopic (12.1.9). Suppose, therefore, fo, f1 : M — N are
sufficiently close approximations to a map f and are transverse to a submanifold
L C N, then both are homotopic to f via differentiable homotopies M x [0, 1] —
N, i=0,1, which do not depend on ¢, wherever fo(p) = f(p) or f1(p) = f(p).

Let us choose a ‘technical homotopy which, for example, between the times
0<t<1/3 and 2/3 <t <1 is independent of ¢, then we can ompose the two
original homotopies and obtain a differentiable (technical) homotopy F' between
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fo and fi, see Fig. 14.8. By assumption, fy and f; are transverse to L and,

Figure 14.8:

if we choose the homotopy to be stationary for the times 0 < ¢ < 1/3 and
2/3 <t <1, then it follows that F'[ysx(0,1/3) and F|arxj2/3,1) are transverse to
L. Using (14.0.7) we may replace the homotopy F'|ysx(0,1) by a map which is
transverse to L without altering it on the closed set M x ([0,1/3] U [2/3,1]).
Consider now the pre-image F~!(L) C M x [0,1]; then F~1(L) N M x (0,1) is
a submanifold of the same codimension as L in N, and

F7HL)N[0,1/3) = f3 ' x [0,1/3);
FHL)N[0,1/3) = fi ' x (2/3,1].

Putting everything together, one sees that F'~1(L) is a manifold with bound-
ary equal to fo '(L) + f; *(L), hence homotopic maps which are transverse to
L have bordant pre-images. The bordism class of f~1(L) is thus independent of
which particular approximation to f, transverse to L, one takes.

Indeed, one only needs to assume that the original map f is continuous,
since any continuous map can be approximated by a differentiable one.

Theorem 14.0.8. Let f : M — N be a continuous map which is differentiable
on an open neighbourhood U of the closed set A C M. Then, arbitrarily close
to f, there exists a differentiable map g : M — N, such that gla = f|a.

Proof. Choose a closed embedding N C R", and a tubular neighbourhood V' on
N in R™ with projection 7 : V. — N (see (7.1.10), (12.1.11)). Now let W be a
neighbourhood of the graph of f in M x N, such that

Q:={(p,q) e M xV|rn, e W}

is a neighbourhood of the graph of the graph of f in M x V. If the graph of a
differentiable map g : M — R™ lies in ), then the graph of 7 o g lies in W, so
we may assume that N = R",

In this case we consider an e-neighbourhood of f, where e : M — R is a
strictly positive function; choose with this a covering {U,|v € Z} of M with a
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subordinate differentiable partition of unity {¢,} together with constants f,,
such that |f(p) — f,| < e(p) for all p € U,,, and such that U, C U for v < 0, and
U, C M\ Afor v > 0. Then one sets

9(p) = _ f(p) ¢up) + > fudu(p)-

v<0 v>0

14.1 Exercises

Ezercise 14.1.1. Let Ag, A1, be disjoint closed subsets of the differctiable man-
ifold M. Show that there exists a differentiable function « : M — R such that
0<a<1,a1(0)= Ay, a (1) = A;.

Ezercise 14.1.2. Let M be a compact connected differentiable manifold, and
A C M anon-empty closed subset. Show that there exists a vector field on M,
which vanishes on A and only on A.

Hint: first construct a vector field for which the set of zeros is finite.

Ezercise 14.1.3. In the transversality theorem (14.0.6) we have assumed that
N C FE is a submanifold. Show that the same theorem holds if one replaces this
inclusion by an arbitrary differentiable map g : NtoE. In this ease, one must
formulate the transversality condition (on s : M — E) as follows: if p € M,
g € N and s(p) = g(¢) =z € E, then T,s(T,M) + T,9(T,N) =T,E.

Exercise 14.1.4. Formulate and prove a generalisation of the transversality the-
orem for maps (14.0.7), which corresponds to the generalisation of (thm:14-6)
in exercise 14.1.3.

Exercise 14.1.5. Let B be a manifold with boundary and let . C M be a
differentiable submanifold. Show that each continuous map f : B — M is
homotopic to a map g : B — M, such that ¢g~'L C B is a differentiable
submanifold with boundary and d(¢~*L) = g~ 'L N dB.

Exercise 14.1.6. Let M be an oriented differentiable manifold, and let f, :
N, — M, v =1,2, be differentiable maps of oriented closed manifolds of com-
plementary dimensions, that is, dim(N7)+dim(N2) = dim(M). The intersection
number [f1] o [f2] € Z is then defined as follows:

choose a map g homotopic to f, and transverse in the sense of exercise 14.1.3
to fo. Then the fibre product F := {(p,q) € N1 X Na|g(p) = f2(q)} is finite
(5.2.11) and, for each pair (p,q) € F, one has an isomorphism of oriented vector

spaces T,(N1) & T,(N2) @ToTh), TypyM, and we may set e(p,q) = 1 de-

pending on whether this isomorphism preserves or reverses orientatation. Then
[fi]o[fa] := > €(p,q), see Fig. 14.9. Show that the intersection number is well
defined and depends only on the homotopy classes of the maps f,,. Furthermore,
[A] o [fo] = (=1)""2[fo] o [f1], ny == dim N,

Exercise 14.1.7. For a connected manifold M let m,, M be the set of homotopy
classes of continuous maps S — M. Show that if n < k, then 7,S*¥ = 0. Hint:
(14.0.8), (6.1.1).
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[f‘l]o [f2] =0 [f'l] 0 [f2] =]

Figure 14.9:

Ezercise 14.1.8. Let i : {p} — S™ be the inclusion of a point. Show that the
following map s : m,S™ — Z, n > 0 is surjective: if a €

pnS™ is represented by the map a : S — S", then s(«) := [a] - [i], see exercises
14.1.6 and 14.1.7.

Ezercise 14.1.9. More generally than in exercise 14.1.8 let M be a closed, ori-
ented, connected, differentiable n-dimensional manifold and II the set of homo-
topy classes of continuous maps f : M — S™. If i : {p} — S™ is again the
inclusion of a point, then f — [f]---[¢] is a surjection II — Z.

Exercise 14.1.10. Show that the map Il — Z in exercise 14.1.9is bijective hence,
in partitular, that 7,S™ = Z.
Hint: use (10.1.3).

Exercise 14.1.11. Let s : M — TM be a vector field on a closed oriented
manifold (T'M possesses a canonical orientation (4.2.5), (11.2.2)). The number
X(M) := [s] o [s] is called the FEuler characteristic of M. Show that x(M)
depends only on M (exercise 14.1.6). If there exists a nowhere vanishing vector
field on M, then x (M) = 0.

Ezercise 14.1.12. Show that y(S?"*1) =0, x(S**) = 2 (see exercise 14.1.11).
Hint: S?"*! ig the unit sphere in C"*!, and one can construct a nowhere van-
ishing vector field. For S?* consider the vector field induced by rotation about
an axis.
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