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PREFACE

The original Preface by the authours

The aim of this book is to describe the basic geometric methods of di�erential
topology. It is intended for students with a basic knowledge of analysis and
general topology.

We prove embedding, isotopy and transversality theorems, and discuss, as
important techniques, Sard's theorem, partitions of unity, dynamical systems,
and (following the example of Serge Lang) sprays. We also consider connected
sums, tubular neighbourhoods, collars and the glueing together of manifolds
with boundary along the boundary.

We have ourselves learned much from the writings of Milnor, as has nearly
every young topologist today, and there are traces of this in the text. We
have also from time to time drawn on Serge Lang's exemplary exposition [3]
- to studiously avoid doing this would certainly not bene�t any book about
di�erential topology.

The numerous exercises at the end of each chapter are not always easy for a
beginner; they are not used in the text.

We do not discuss analysis on manifolds (Stokes' theorem), Morse theory,
the algebraic topology of manifolds or bordism theory. However, we hope that
our book will provide a solid basis for a closer acquaintance with these more
advanced topics of di�erential topology.

Regensburg, Pentecost 1973 Theodor Bröcker, Klaus Jänich

A comment by the transcriber

This is a LATEX-ed version of Introduction to Di�erential Topology by Theodor
Bröcker and Klaus Jänich. Neil Strickland says this is a very good textbook
on di�erential topology (Unfortunately, the transcriber does not recall where he
found the commment.)

i



ii



Contents

1 Manifolds and Di�erential Structures 1
1.1 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Di�erentiable Atlas . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Di�erentiable Atlas . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Di�erentiable maps . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Di�eomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.8 Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.9 Submanifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.10 Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Tangent Space 15
2.1 Germ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 De�nitions of tangent space . . . . . . . . . . . . . . . . . . . . . 16
2.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Vector bundles 25
3.1 General vector bundle . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Di�erentiable vector bundle . . . . . . . . . . . . . . . . . . . . . 31
3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Linear algebra for vector bundles 37
4.1 De�nitions and examples . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Local and tangential properties 47
5.1 Multivariate calculus and its consequences . . . . . . . . . . . . . 47
5.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Sard's theorem 59
6.1 Theorems of Sard and Brown . . . . . . . . . . . . . . . . . . . . 59
6.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

iii



iv CONTENTS

7 Embedding 65
7.1 Immersions and Embeddngs . . . . . . . . . . . . . . . . . . . . . 65
7.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8 Dynamical Systems 77
8.1 Dynamical systems or �ows . . . . . . . . . . . . . . . . . . . . . 77
8.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9 Isotopy of Embeddings 93
9.1 Isotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10 Connected sums 105
10.1 Connected sums via isotopy . . . . . . . . . . . . . . . . . . . . . 105
10.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

11 Second order di�erential equations and sprays 117
11.1 Sprays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
11.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

12 The exponential map and tubular neighbourhoods 125
12.1 Tubular neighbourhoods . . . . . . . . . . . . . . . . . . . . . . . 125
12.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

13 Manifolds with boundary 139
13.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

14 Transversality 153
14.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Bibliography 163



Chapter 1

Manifolds and Di�erential

Structures

A manifold is a topological space which `locally resembles' Rn, the Euclidean
space of real n-tuples x = (x1, . . . , xn) with the usual topology. Such spaces
result in general, as we shall later see, as solution spaces of non-linear systems
of equations, and many of the concepts of general topology have developed out
of the study of these special spaces. The precise explanation is as follows:

1.1 Manifolds

De�nition 1.1.1. An n-dimensional topological manifold Mn is a Hausdor�
topological space with a countable basis for the topology, which is locally home-
omorphic to Rn. The last condition means that, for each point p ∈ M , there
exists an open neighbourhood U of p and a homeomorphism

h : U → U
′

onto an open set U
′ ⊂ Rn (Fig. 1.1).

The requirement that the space must be Hausdor� does not follow from the
local condition as one might believe. As a counterexample one takes the real line
R, together with an additional point p, see Fig. 1.2, and de�nes the topology
on M = R∪{p} by saying that R is open and that the neighbourhoods of p are
the sets (U \ {0}) ∪ {p}, where U is a neighbourhood of 0 ∈ R.

Examples of topological manifolds (see Fig. 1.3) are:

� every open subset of a Euclidean space;

� the n-sphere Sn = {x ∈ Rn+1||x| = 1};

� the torus or surface of an inner tube (1.8.1).

1



2 CHAPTER 1. MANIFOLDS AND DIFFERENTIAL STRUCTURES

Figure 1.1:

Figure 1.2: A non-Hausdor� space which is locally Hausdor�.

1.2 Charts

De�nition 1.2.1. If Mn is a topological manifold and h : U → U
′
a home-

omorphism of an open subset U ⊂ M onto the open subset U
′ ⊂ Rn, then h

is a chart of M and U is the associated chart domain. A collection of charts
{hα|α ∈ A} with domains Uα is called an atlas for M if ∪Uα∈AUα =M .

Given two charts, both homeomorphisms hα, hβ are de�ned on the inter-
section of their domains Uαβ := Uα ∩ Uβ and one thereby obtains the chart
transformation hαβ as a homeomorphism between open subsets of Rn by means
of the commutative diagram:

Uαβ
hα

yy

hβ

$$
Uα′ ⊃ hα(Uα beta)

hαβ

// hβ(Uβα) ⊂ Uβ′

in which hαβ is de�ned as hβ ◦ h−1
α , see Fig. 1.4.

Occasionally, we shall �nd it useful to include the domain of de�nition of a
map, particularly of a chart, in the notation, and thus we shall write (h, U) for
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Figure 1.3: Examples of topological manifolds

Figure 1.4:

a map h : U → U
′
. If one were to consider the whole manifold as being formed

by a glueing process from the chart domains, which one knows as well as one
knows the open subsets of Euclidean space, then it is precisely the chart trans-
formations which show how di�erent chart domains are to be glued together. If,
apart from the topological, one wishes to extend additional properties from open
subsets of Euclidean space to manifolds by means of a suitable atlas, one must
ensure that the de�nitions are independent of the particular choice of charts in
the atlas, or that the property under consideration is independent of the chart
transformations.

1.3 Di�erentiable Atlas

De�nition 1.3.1. An atlas of a manifold is called di�erentiable, if all its chart
transformations are di�erentiable.

We shall always consider a di�erentiable mapping between open subsets of
Rn to be a C∞-mapping, that is, a mapping whose various (higher) partial
derivatives exist and are continuous. Because, for the chart transformations
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hαβ (wherever the respective maps are de�ned), it is clear that

hαα = id, hβγ ◦ hαβ = hαγ ,

it follows that
h−1
αβ = hβα.

Therefore, the inverses of the chart transformations are also di�erentiable, and
the chart transformations are di�eomorphisms.

If A is a di�erentiable atlas on the manifold M , then the atlas D = D(A)
contains precisely those charts for which every chart transformation with a chart
from A is di�erentiable. The atlas D is then di�erentiable as well, since one can
locally write a chart transformation hβγ inD as a composition hβγ = hαγ ◦ hβα
of chart transformations for a chart hα ∈ A, and di�erentiability is a local
property. As an element in tile family of di�erentiable atlases, the atlas D
can obviously not be enlarged by the addition of further charts, and it is the
largest di�erentiable atlas which contains A. Thus each di�erentiable atlas
unequivocally determines a maximal di�erentiable atlas D(A), so that A ⊂
D(A); and D(A) = D(B) if and only if the atlas A ∪ B is di�erentiable. We
formulate:

1.4 Di�erentiable Atlas

De�nition 1.4.1. A di�erentiable structure on a topological manifold is a max-
imal di�erentiable atlas. A di�erentiable manifold is a topological manifold,
together with a di�erentiable structure.

In order to specify a di�erentiable structure on a manifold, one must specify
a di�erentiable atlas and, in general, one will clearly not choose the maximal
one, but preferably one as small as possible.

Henceforth we shall implicitly assume that all charts and atlases of a di�er-
entiable manifold with a di�erentiable structure D are contained in D. In the
notation, as usual, we employ the abbreviated form M , and not (M,D) for a
di�erentiable manifold.

1.5 Examples

(a) If U ⊂ Rn is an open subset, then the atlas {id}, which only contains
the single chart id : U → U , de�nes the usual di�erentiable structure.
Furthermore, every homeomorphism h : U → U de�nes a di�erentiable
atlas {h}, which gives the same di�erentiable structure if and only if h is
a di�eomorphism. On an open subset of R−n, one can therefore easily
describe various di�erentiable structures for n > 0. However, as we shall
yet see, using such atlases with only one chart h : U → U , one does not
obtain substantially di�erent di�erentiable manifolds.
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(b) The sphere Sn = {x ∈ Rn+1||x| :=
√
x21 + · · ·+ x2n+1 = 1} possesses a

di�erentiable atlas whose di�erentiable structure we shall always consider
as introducing the standard structure on Sn. The chart domains are the
sets

Ukj = {x ∈ Sn|(−1)jxk > 0},
the charts are

hkj : Ukj → D̊n (the open solid ball)

x 7→ (x1, . . . , xk−1, xk+1, . . . , xn+1),

so that the chart hkj forgets the kth coordinate, see Fig. 1.5.

Figure 1.5:

It is easy to verify that this atlas is di�erentiable, since the map h−1
kj : D̊n →

Sn has the kth coordinate (missing in D̊n) (−1)j(1−
∑
i ̸=k x

2
i )

1/2, which is

clearly a di�erentiable function on D̊n in the usual sense; and hkj results by
restricting a di�erentiable mapping Rn → Rn.

(c) The real projective space RPn is the quotient space of the sphere Sn under
the equivalence relation de�ned by x ∼ −x. A point p ∈ RPn is described
by

p = [x] = [x0, . . . , xn] = [−x0, . . . ,−xn],
n∑
i=0

x2i = 1,

and the equivalence relation identi�es precisely the subsets Uk,0 and Uk,1 of
the sphere. Therefore, the subsets

Uk = {|x| ∈ RPn|xk ̸= 0}

are open in RPn, and one has charts

hk : Uk → D̊n, [x0, . . . , xn] 7→ xk · |xk|−1(x0, . . . , xk−1, xk+1, . . . , xn)

for a di�erentiable atlas. The projective spaces are examples of di�erentiable
manifolds which arise naturally as abstract manifolds and not as subsets of
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Euclidean space. And initially, it is not obvious that a projective space
is homeomorphic to a subset of Euclidean space. One also obtains the
topological manifold RPn when one identi�es antipodal boundary points
of the ball Dn = {x ∈ Rn||x| ≤ 1}, that is, forms the quotient for the
equivalence relation `x ∼ −x for |x| = 1'. In this way, one can visualise the
projective plane RP 2 as the result from glueing together a Möbius band B
and a disc A ∪ C along their common boundary S1, as in Fig. 1.6.

Figure 1.6:

(d) An open subset of a di�erentiable manifold possesses a natural structure as
a di�erentiable manifold.

Di�erentiable manifolds will be the subject of this book, more precisely, the
category of di�erentiable manifolds. Its `objects' are di�erentiable manifolds;
its `morphisms' are the di�erentiable mappings which we now de�ne.

1.6 Di�erentiable maps

De�nition 1.6.1. A continuous mapping f : M → N between di�erentiable
manifolds is termed di�erentiable at the point p ∈M if for some (and therefore
for every) chart h : U → U

′
, p ∈ U and k : V → V

′
, f(p) ∈ V of M and N

respectively, the composition k ◦ f ◦h−1 is di�erentiable at the point h(p) ∈ U
′
.

Note that this mapping is de�ned in the neighbourhood h(f−1(V )∩U) of h(p),
see Fig. 1.7.

The mapping f is termed di�erentiable if it is di�erentiable at every point
p ∈ M . In other words: one knows when one can call a mapping between
chart domains of M and N di�erentiable, because these are identi�ed by the
charts with open subsets of Euclidean space, and locally a continuous mapping
is always written as a mapping between chart domains. Independence from the
particular choice of chart depends upon the fact that the chart transformations
are di�erentiable.

Remark 1.6.2. The identity mapping of a di�erentiable manifold is di�eren-
tiable; the composition of di�erentiable mappings is di�erentiable. One assumes
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Figure 1.7:

both these assertions in saying that di�erentiable manifolds and mappings form
a category, the di�erentiable category which will be written C∞ for short.

Correspondingly, let

C∞(M,N) := the set of di�erentiable maps M → N ;

C∞)M) := C∞(M,R).

The composition of di�erentiable maps is therefore a map

C∞(M,N)× C∞(L,M) → C∞(L,N) (f, g) 7→ f ◦ g.

Many concepts arise in a category in a purely formal way; they are formu-
lated using the maps of the category and their composition, as, for example,
isomorphism, sum, and product.

1.7 Di�eomorphism

De�nition 1.7.1. A di�eomorphism is an invertible di�erentiable map.

`Invertible', it is worth noting, means invertible in the di�erentiable category,
therefore f : M → N is a di�eomorphism if there is a di�erentiable map g :
N → M , so that f ◦ g = idN and g ◦ f = idM . This means, in other words: f
is bijective and, also, f−1 is di�erentiable. We denote di�eomorphisms by ≃;
they form the isomorphisms of the di�erentiable category.

A di�erentiable homeomorphism need not be a di�eomorphism, as is shown
by the map R → R, x 7→ x3.

For example, in (a) we have introduced, in general, many distinct di�eren-
tiable structures on an open subset U ⊂ Rn, but the di�erentiable manifolds U
with atlas {id}, and U with atlas {h}, are of course di�eomorphic; h : U → U
is a di�eomorphism (U, {h}) → (U, {id}) of the second onto the �rst. Thus,
both manifolds are essentially the same in so far as their di�erential topology is
concerned.
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In contrast, the problem of constructing two distinct di�erentiable struc-
tures on a topological manifold, so that the resulting di�erentiable manifolds
are not di�eomorphic, is very deep indeed. For example, the topological 7-
sphere possesses exactly 15 mutually distinct non-di�eomorphic structures as a
di�erentiable manifold. These are precisely 15 mutually distinct di�erentiable
manifolds which are, however, all homeomorphic to the sphere S7 (Kervaire &
Milnor, 1963). Such results are far beyond the scope of this book.

Every chart h : U → U
′
of M is a di�eomorphism between U and U

′
,

where U
′
carries the standard structure as an open subset of Rn (d), and the

di�erentiable structure of M consists precisely of the set of all di�eomorphisms
of open subsets of M with open subsets of Rn.

The function t 7→ tan((π/2)t) de�nes a di�eomorphism (−1, 1) → R.
Di�erential topology deals with those properties which remain constant un-

der the action of di�eomorphisms. For local considerations, one can therefore al-
ways assume that one is dealing with an open subset of Rn; instead of a function
f on U , one considers f ◦h−1 on U

′
; instead of an open subset V ⊂ U , the subset

h(V ) ⊂ U
′
; and so forth. Since images in Rn are given by their coordinates, one

also often describes a chart ofM around p in terms of a local coordinate system.
The chart h : U → U

′
is written in components as h = (h1, . . . , hn), where the

coordinate functions hi : U → Rn are di�erentiable functions; by translation
in Rn, one can further assume that h(p) = 0 = (0, . . . , 0) for a �xed point
p ∈ U . Thus, in a neighbourhood U of p, after the introduction of a coordinate
system, every point is uniquely determined by the values of the coordinate func-
tions. Thus, for each point in U , one can assign coordinates (x1, . . . , xn) with
(0, . . . , 0) = coordinates of p.

A function on U is thus di�erentiable if and only if it is di�erentiable as a
function of the coordinates in the usual meaning of the di�erential calculus.

In the di�erentiable category there are sums and products:

1.8 Sum

De�nition 1.8.1. The disjoint union of two n-dimensional di�erentiable man-
ifolds M1, M2 is, in a natural way, a di�erentiable manifold expressed by
M1 +M2, see Fig. 8.

The topology is determined by the fact that both manifolds M1, M2 are
open subsets of M1 +M2:, and a di�erentiable atlas is the union of atlases of
both manifolds.

The manifoldM1+M2 is called the (di�erentiable) sum ofM1 andM2. One
has ean0nical inclusions

iν :Mν →M1 +M2

as open subsets. A map f : M1 + M2 → N is then clearly di�erentiable if
and only if both restrictions f ◦ iν are di�erentiable; in other words one has a
canonical bijection

C∞(M1 +M2, N) → C∞(M1, N)× C∞(M2, N), f 7→ (f ◦ i1, f ◦ i2)
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Figure 1.8:

for every di�erentiable manifold N (universal property of the sum).
Dually, one constructs the Cartesian product M1 ×M2 of two di�erentiable

manifolds M1, M2 of dimensions n, k, and gives this the structure of a (n+ k)-
dimensional di�erentiable manifold which is called the (di�erentiable) product
of M1 and M2. If hν : Uν → U

′

ν are charts of the di�erentiable structure of Mν ,
then

h1 × h2 : U1 × U2 → U
′

1 × U
′

2 ⊂ Rn × Rk = Rn+k

is a chart of M1 ×M2, and the set of all these charts de�nes the di�erentiable
structure for M1 ×M2 (see Fig. 1.9).

Figure 1.9:

(M1 = M2 = S1, with (p, q) a general point in the product.) One has
canonical projections pν : M1 × M2 → Mν and, analogously to the sum, a
canonical bijection

C∞(N,M1 ×M2) → C∞(N,M1)× C∞(N,M2), f 7→ (p1 ◦ f, p2 ◦ f)

for every di�erentiable manifold N (universal property of the product). The last
remark states that a map into the product is di�erentiable if and only if both its
components fν = pν ◦ f are di�erentiable; locally one maps into a chart domain
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U1 × U2, and the composition with a chart

h1 × h2 : U1 × U2 → U
′

1 × U
′

2 ⊂ Rn+k

is then di�erentiable if and only if both its components are di�erentiable.
Less canonical and, therefore, not so uniformly de�ned in the literature, is

the concept of submanifold.

1.9 Submanifold

De�nition 1.9.1. A subset N ⊂Mn+k is called an n-dimensional di�erentiable
submanifold of M if, for every point p ∈ N , there exists a chart around p

h : U → U
′
⊂ Rn+k = Rn × Rk

so that
h(N ∩ U) = U

′
∩ Rn

where we consider Rn as Rn × 0 ⊂ Rn × Rk.

The number k = dimM − dimN is called the codimension of the subman-
ifold. In short one says: locally the submanifold N lies in M as Rn lies in
Rn+k.

The de�nition is justi�ed by the remark that there is a canonical di�eren-
tiable structure on N . From a chart h, as in de�nition (1.9.1), one obtains a
chart h

′
= h|U ∩N → U

′ ∩Rn, and the set of all these charts is a di�erentiable
atlas for N , see Fig. 1.10.

Figure 1.10:

1.10 Embedding

De�nition 1.10.1. A di�erentiable map f : N →M is called an embedding if
f(N) ⊂ M is a di�erentiable submanifold, and f : N → f(N) is a di�eomor-
phism.
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If N andM have the same dimension, then f(N) is open inM , as de�nition
(1.9.1) unmistakably shows, and the inclusion of an open subset is also an em-
bedding. Otherwise, it is necessary that dimN < dimM . Every point p ∈ M
de�nes an embedding

ip : N →M ×N, q 7→ (p, q)

so that p2 ◦ ip = idN and, similarly, every point p ∈ M de�nes a projection
πp :M+N →M , so that πp ◦ ipi1 = idM . The second factor, of course, behaves
quite analogously; if p ∈M and q ∈ N , then ip(N) and iq(M) meet precisely in
the point (p, q) ∈M ×N , see Fig. 1.11.

Figure 1.11:

1.11 Exercises

Exercise 1.11.1. Show that every (di�erentiable) manifold possesses a countable
(di�erentiable) atlas.

Exercise 1.11.2. Show that the sphere Sn possesses a di�erentiable atlas with
precisely two charts. Also, one with only one chart?

Exercise 1.11.3. Describe the chart transformation for the atlas of RPn in (c),
and show that it is di�erentiable.

Exercise 1.11.4. Let M be a di�erentiable manifold and τ : M → M a �xed
point free involution, that is, τ is a di�eomorphism with τ ◦τ = id and τ(x) ̸= x
for all x.

Show that the quotient space M/τ , which is obtained from M by identi�-
cation of points corresponding to each other under τ , is a topological manifold
which possesses exactly one di�erentiable structure with respect to which the
projection M →Mτ is locally di�eomorphic.

Exercise 1.11.5. Show that RP 1 ≃ S1.
Exercise 1.11.6. Provide the surface of a cube {x ∈ Rn+1|max{|xi|} = 1} with
the structure of a di�erentiable manifold.
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Exercise 1.11.7. Let M be a di�erentiable manifold and f : N → M a home-
omorphism. Prove that N possesses exactly one structure as a di�erentiable
manifold, so that f is di�eomorphic.

Exercise 1.11.8. Provide the complex projective space CPn with the structure
of a 2n-dimensional di�erentiable manifold. This space is de�ned as follows:
on the complex vector space Cn+1, one has the equivalence relation x ∼ y ⇔
there is a number λ ∈ C, λ ̸= 0, such that λx = y. The quotient space (Cn+1 \
{0})/ ∼ is de�ned to be CPn.

Exercise 1.11.9. Prove that if M is a non-empty, n-dimensional manifold and
k ≤ n, then there is an embedding Rk →M .

Exercise 1.11.10. Let N be a compact, M a connected manifold, both of di-
mension n and non-empty. Let f : N →M be an embedding. Show that f is a
di�eomorphism.

Exercise 1.11.11. Show that Sn is a submanifold of Rn+1.

Exercise 1.11.12. Describe an embedding S1×S1 → R3 by means of elementary
functions.

Exercise 1.11.13. Show that the composition of two embeddings is again an
embedding and that the Cartesian product f1 × f2 : N1 × N2 → M1 ×M2, of
two embeddings f1,f2, is again an embedding.

Exercise 1.11.14. Show that if the n-dimensional manifoid M is a product of
spheres, then there exists an embedding M → Rn+1. Hint: describe an embed-
ding Sn × R → Rn+1 and use 1.11.13.

Exercise 1.11.15. The points of CP k (see 1.11.8) are described by the homo-
geneous coordinates x = [x0, . . . , xk] := class of (x0, . . . , xk) under ∼. Show
that the mapping

f : CPm × CPn → CPmn+m+n

(x, y) 7→ [x0y0, x0y1, . . . , xνyν , . . . , xmyn]

is an embedding. Show the same for the real projective spaces.

Exercise 1.11.16. LetM(m×n) be the vector space of real (m×n)-matrices, and
Mr(m× n) the subset of matrices of rank r. Then Mr(m× n) is a submanifold
of M(m× n) of codimension (n− r) · (m− r), for r ≤ min(m,n).
Hint : a typical chart domain around a point of Mr(m × n) is given by the set
U ⊂M(m× n) of matrices of the form[

A AB
D DB + C

]
, A ∈M(m× n), det(A) ̸= 0.

Such a matrix lies in Mr(m× n) if and only if C = 0.

Exercise 1.11.17. The inclusion Rn+1 ⊂ Rn+2 induces an embedding RPn ⊂
RPn+1 and RPn+1 \ RPn ≃ Rn+1.
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Exercise 1.11.18. Let RPn+1 = {(x, a0, . . . , an−1)|x, ai ∈ R}. The set of points
such that xn + an−1x

n−1 + · · · + a0 = 0 is a submanifold of codimension 1 of
Rn+1, and is di�eomorphic to Rn.
Exercise 1.11.19. The set C∞(M) is an algebra under the natural addition and
multiplication of functions. A di�erentiable mapping f :M → N de�nes algebra
homomorphism

f∗ : C∞(N) → C∞(M), φ 7→ φ ◦ f

with the functorial properties: id∗M = id, (f ◦ g)∗ = g∗ ◦ f∗.
Exercise 1.11.20. Notation as in 1.11.19. For a point p ∈M let

Mp = {φ ∈ C∞(M)|φ(p) = 0}.

Show:

(a) Mp is a maximal ideal of C∞(M).

(b) If M is compact and M ∈ C∞(M) is a maximal ideal, then there exists
some p ∈M such that M = Mp.
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Chapter 2

Tangent Space

Problems in di�erential topology often divide into a local and a global part; in
this section we begin explaining basic local concepts.

The dominating concept of local theory is that of the tangent space at a
point p ∈ M of a manifold. Let us assume that the manifold is embedded in
Euclidean space Rn, then it is quite obvious that to every point p ∈ M there
is assigned a certain linear subspace of Rn, the space of tangent vectors of M
at p, the velocity vectors, of possible movements on M . Thus the sphere Sn is
embedded in Rn+1, as Sn = {x ∈ Rn+1||x| = 1}, and the tangent space at the
point x ∈ Sn is the set of vectors {v ∈ Rn+1|⟨v, x⟩ = 0}, see Fig. 2.1.

Figure 2.1:

Since, in general, such an embedding is not canonically given, we must de-
scribe the tangent space by the intrinsic properties of the manifold.

2.1 Germ

For local considerations it is clear that one takes into account not just maps
f :M → N de�ned on a11 of M , but also those maps which are de�ned only in

15
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a neighbourhood of p ∈M . Two such maps can be looked upon as equal if they
agree in a (perhaps smaller) neighbourhood. Thus on the set of di�erentiable
maps

{f |f : U → N, for a neighbourhood U of p ∈M}

we construct the following equivalence relation:

f ∼ g ⇔ there is a neighbourhood V of p, such that f |V = g|V .

De�nition 2.1.1. An equivalence class for this relation is called the germ of a
mapM → N at p. We denote such a germ, represented by f , as f : (M,p) → N
and also f : (M,p) → (N, q), if f(p) = q. Given germs (M,p) −→

f
(N, q) −→

g

(L, r), one obtains a composition g ◦ f : (M,p) → (L, r) as the germ of the
composition of suitable representatives. A function germ is a di�erentiable
germ (M,p) → R. The set of all function germs around p ∈ M is written as
E (p).

Thus E (p) has the structure of a real algebra: addition and multiplication
are de�ned by the corresponding operations on representatives. A di�erentiable
germ f : (M,p) → (N, q) de�nes by composition a homomorphism of algebras

f∗ : E (q) → E (p), φ 7→ φ ◦ f,

and one has the functorial properties

id∗ = id, (g ◦ f)∗ = f∗ ◦ g∗.

From the functorial properties it follows in particular that an invertible germ f
relative to composition induces an isomorphism f∗:

f ◦ f−1
= id ⇒ f−1∗ ◦ f∗ = id .

If, therefore, p ∈ Mn, then one can �nd a chart h about p, which de�nes an
invertible germ h : (M,p) → (Rn, 0), and therefore an isomorphism

h∗ : En → E (p); En = set of germs (Rn, 0) → R.

The study of the algebras E (p) can thus be limited to the typical examples En.

2.2 De�nitions of tangent space

Since we have thus far directed our attention to the local, we now turn to tangent
spaces. There are three prevailing equivalent de�nitions, each of which has its
advantages, and we wish to learn to move freely among them: the de�nitions

(A) the algebraist's

(Ph) the physicist's
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(G) the geometer's

De�nition 2.2.1 (The algebraist's de�nition). The tangent space TpM of the
di�erentiable manifold M at point p is the real vector space of the derivations
of E (p). A derivation of E (p) is a linear map X : E (p) → R which satis�es the
product rule

X(φ · ψ) = X(φ) · ψ(p) + φ(p) ·X(ψ).

A di�erentiable germ f : (M,p) → (N, q), for example one associated with a
di�erentiable map f :M → N , induces the algebra homomorphism f∗ : E (q) →
E (p) and thereby the linear tangent map (the di�erential) of f at p:

Tpf : TpM → TqN, X 7→ X · f∗.

One immediately checks, that a linear combination of derivations is again a
derivation, that these thus form a vector space. From the product rule it follows
that X(1) = X(1) + X(1), therefore X(1) = 0 for the constant function with
value 1, thus, because of linearity, X(c) = 0 also for every constant c. The
de�nition of the di�erential implies that for a germ φ : (N, q) → R:

Tpf(X)(φ) = X · f∗(φ) = X(φ · f).

From this, or from the functorial properties of ∗, if follows that for a com-
position

(M,p) −→
f

(N, q) −→
g

(L, r),

one has the functorial property

Tp(g · f) = Tqg · Tpf

for the tangential map. One reads directly from the de�nition that the tangential
map is linear.

Now if h : (N, p) → (Rn, 0) is the germ of a chart, then the induced map
h∗ : En → E (p) is an isomorphism, as is the tangential map Tph : TpN → T0Rn.
In order to describe the latter vector space the following is useful:

Lemma 2.2.2. Let U be an open ball around, the origin of Rn or Rn itself,
and f : U → R a di�erentiable function, then there exist di�erentiable functions
f1, . . . , fn : U → R such that

f(x) = f(0) +

n∑
ν=1

xν · fν(x).

Proof.

f(x)− f(0) =

� 1

0

d

dt
f(tx1, . . . , txn)dt =

n∑
ν=1

xν

� 1

0

Dνf(tx1, . . . , txn)dt,
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where Dνdenotes the partial derivative with respect to the νth variable. There-
fore, set

fν(x) :=

� 1

0

Dνf(tx1, . . . , txn)dt.

Among the derivations - as the name implies - of the algebra En are the
partial derivatives, which we usually write in the old fashioned way:

∂

∂xν
: En → R, φ 7→ ∂

∂xν
φ(0).

Proposition 2.2.3 (Consequence.). The {∂/∂xν}nν=1 form a basis of the vector
space T0Rn of the derivations of En.

Proof. If the derivation
∑n
ν=1 aν(∂/∂xν) = 0 then, in particular, one obtains

for xµ, the µth coordinate function: aµ =
∑n
ν=1 aν(∂xµ/∂xν) = 0 for all µ.

Therefore the ∂/∂xν are linearly independent.
Now let X ∈ T0(Rn), X(xν) =: aν , then we shall show that:

X =

n∑
ν=1

aν
∂

∂xν
.

If we set Y := X−
∑n
ν=1 aν(∂/∂xν), then Y is a derivation and, by construction,

Y (xν) = 0 for every coordinate function. If f ∈ Fn an arbitrary function germ,
we then write, by lemma (2.2.2), f = f(0) +

∑n
ν=1 xν · fν and obtain

Y (f) = Y (f(0)) +

n∑
ν=1

Y (xν) · fν(0) = 0.

At this point, note that the tangent space at a point of an n-dimensional
di�erentiable manifold has the vector space dimension n, so that the dimension
is indeed unequivocally de�ned. It is not so easy to see this in the topological
case, but it is nonetheless true.

After introducing local coordinates (x1, . . . , xn) about a point p ∈ Nn, we
can explicitly describe the vectors in TpN as linear combinations of the ∂/∂xi.
If f : (Nn, p) → (Mm, q) is a di�erentiable germ, and if we also construct local
coordinates (y1, . . . , ym) around q, then f is written as a germ (Rn, 0) → (Rm, 0),
which we shall also simply denote by f :

(N, p)
f //

��

(M, q)

��
(Rn, 0)

f

// (Rm)
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The tangential map T0f is computed as follows: If φ ∈ Em, then following
de�nition (2.2.1) and the chain rule,

T0f

(
∂

∂xi

)
(φ) =

∂

∂xi
(φ · f) =

m∑
j=1

∂φ

∂yj
(0) · ∂fj

∂xi
(0)

therefore

T0f

(
∂

∂xi

)
=

m∑
j=1

∂fj
∂xi

(0)
∂

∂yj

The matrix

Df :=

(
∂fi
∂xj

)
is called the Jacobi matrix. We can therefore compute the di�erential of f in
matrix notation, thus: if v =

∑
ai(∂/∂xi), then T0f(v) =

∑
bj(∂/∂yj), where

b = Df0 · a.

We summarise all this as:

Theorem 2.2.4. If one introduces local coordinates (x1, . . . , xn) and (y1, . . . , ym)
around p ∈ Nn and q ∈ Mm respectively, then the derivations ∂/∂xi, ∂/∂yj
form vector space bases of TpN and TqM respectively, and the tangential map
of a germ f : (N, p) → (M, q) with respect to these bases is given by

Df0 :: Rn → Rm.

The de�nition of the algebraist is the easiest to apply. However, it is rather
abstract (and also unsuitable, when one considers in�nite dimensional manifolds,
or just �nitely often di�erentiable ones).

Physicists proceed from the coordinate dependent version of theorem (2.2.4).
One hears descriptions such as: `A contravariant vector or tensor of the �rst
order is a real n-tuple which transforms according to the Jacobi matrix'. This we
interpret as follows: if h, k : (N, p) → (Rn, 0) are germs of charts, then the chart

transformation g := k ◦ h−1
: (Rn, 0) → (Rn, 0) is an invertible di�erentiable

germ. The various invertible germs (Rn, 0) → (Rn, 0), that is, all possible chart
transformations, form a group G under composition `◦', and thus for two chart
germs h, k there is exactly one g ∈ G , such that g ◦ h = k. To every g ∈ G we
assign the Jacobi matrix at the origin Dg0 and, as in the di�erential calculus,
the product of the matrices is then associated with the composition of the maps;
in particular, one has a homomorphism of groups

G → GL(n,R), g 7→ Dg0

from G into the linear group of invertible matrices.
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Figure 2.2:

De�nition 2.2.5 (The physicist's de�nition). A tangent vector at the point
p ∈ Nn is a rule assigning to each chart germ h : (N, p) → (Rn, 0) a vector
v = (v1, . . . , vn) ∈ Rn, so that the vector Dg0 · v corresponds to the chart germ
g · h, see Fig. 2.2.

Thus if we denote by Kp, the set of chart germs

h : (N, p) → (Rn, 0),

the physicist's tangent space Tp(N)Ph equals the set of maps

v : Kp → Rn,

for which
v(g · h) = Dg0 · v(h) for all g ∈ G .

These maps form a vector space because Dg0 is a linear map. For a �xed chart
h, clearly one can arbitrarily choose the vector v ∈ Rn, and the choice of all
other chart germs is �xed by this: the vector space Tp(N)Ph, is isomorphic to
Rn. An isomorphism is given by the choice of a local coordinate system. The
canonical isomorphism

TpN → Tp(N)Ph

with the algebraically de�ned tangent space (2.2.1), given the chart

h = (h1, . . . , hn) : (N, p) → (Rn, 0)

assigns to the derivation X ∈ TpN the vector (Xh1), . . . , X(hn) ∈ Rn. The
components of this vector are precisely the coe�cients of X with respect to
the basis of TpN in (2.2.4); through identi�cation they are transformed by the
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Jacobi matrix because the basis in (2.2.4) is mapped by the transposed Jacobi
matrix.

The di�erential is, given local coordinate systems about the image and preim-
age points, described by the Jacobi matrix, as in (2.2.4), although formally this
is rather awkward to write down because of the many coordinate systems.

The de�nition of the geometer is the most intuitive one; it is derived from
the concept that the tangent vectors are velocity vectors of paths through the
point p at this point. Everything is of course again considered locally near the
point.

De�nition 2.2.6 (The geometer's de�nition). On the set Wp of germs of dif-
ferentiable maps

w : (R, 0) → (N, p)

(that is, the germs of paths passing through p) we formulate the equivalence
relation w ∼ v ⇔ for every function germ f ∈ E (p), (d/dt)f ◦ w(0) = (d/dt)f ◦
v(0). An equivalence class [w], for this relation, is a tangent vector to the point
p, see Fig. 2.3.

Figure 2.3:

Two path germs de�ne the same tangent vector if and only if they de�ne
the same `di�erentiation of functions in the direction of the curve'. To every
equivalence class [w] there is, in this way uniquely associated, the derivation Xw

of E (p):

Xw(f) :=
d

dt
f ◦ w(0).

This association de�nes an injective map

Wp/ ∼:= Tp(N)G → TpN, [w] 7→ Xw

of the set of equivalence classes of path germs into the tangent space. This map is
also surjective since, if (in local coordinates) w(t) = (ta1, . . . , tan), then Xw =∑n
ν=1 aν(∂/∂xν). Indeed, one only needs to check an equality of derivations

Xw = Xv on the coordinate functions of a local coordinate system (the values



22 CHAPTER 2. TANGENT SPACE

are precisely the coe�cients with respect to the basis ∂/∂xv). Hence one can
also say: w ∼ v if and only if for a local coordinate system (d/dt)wi(O) =
(d/dt)vi(O) for i = 1, . . . , n.

In this de�nition the tangent map is also very clear: a germ f : (N, p) →
(M, q) induces the map

Tp(N)G → Tq(M)G, [w] 7→ [f ◦ w],

see Fig. 2.4.

Figure 2.4:

The fact that this de�nition is compatible with the earlier de�nition (2.2.1)
is shown by the equation

Xfw(φ) =
d

dt
φfw(0) = Xw(φf) = Tpf(Xw)(φ).

From now on we shall make no distinction between the di�erent de�nitions
of the tangent space. Our intuition follows the geometrical de�nition; explicit
computations, where necessary, use the coordinate description (2.2.4).

A �nite dimensional real vector space V is a di�erentiable manifold. A choice
of basis determines an isomorphism V

≃−→ Rn, which one can take as a chart
for an atlas. Because linear maps of Rn are di�erentiable, the di�erentiable
structure de�ned in this way is independent of the basis. The tangent space
TpV is canonically isomorphic to V for each point p ∈ V . One can describe
the isomorphism thus: the curve wv : t 7→ p + tv through p corresponds to the
vector v ∈ V , and [wv] is the associated tangent vector (geometer's language).
Naturally, ifM has dimension n, the tangent space TpM is always isomorphic to
Rn but, in general, there is no canonical, in some way preferred, isomorphism.
This we shall see even more clearly in the next chapter.

2.3 Exercises

Exercise 2.3.1. Show that m(p) := {φ ∈ E (p)|φ(p) = 0} is the only maxima1
ideal of E (p).



2.3. EXERCISES 23

Exercise 2.3.2. Show that if p ∈Mn and n ̸= 0, then the ideal m(p) in exercise
2.3.1 is not the only non-trivial proper (i.e., ̸= 0, ̸= E (p)) ideal of E (p).

Exercise 2.3.3. Show that if f : M → N is an embedding, and f(p) = q, then
the map f∗ : E (q) → E (p)is surjective and Tp(f) injective.

Exercise 2.3.4. Show that the maximal ideal mn ∈ En is generated by the germs
x1, . . . , xn of the coordinate functions.

Exercise 2.3.5. Show that if mn ⊂ En is the maxima1 ideal, then Mk
n is the

ideal of the germs f , for which all partial derivatives of order < k vanish at the
origin.

Exercise 2.3.6. Show that the Taylor series at the point zero de�nes a homomor-
phism En → R[[x1, . . . , xn]]into the ring of formal power series in n variables.
The kernel of this homomorphism is m∞

n := ∩∞
k=1m

k
n (see 2.3.5).

Exercise 2.3.7. Following the notation of 2.3.4: En/mn ≃ R; consequently
mn/m

2
n ≃ Rn. Show that a germ f : (Rn, 0) → (Rm, 0) induces f∗ : Em → En,

f∗mm ⊂ mn, and so one obtains a linear map

f∗ : Rm ≃ mm
m2
m

→ mn
m2
n

≃ Rn.

This is given by tDf0.

Exercise 2.3.8. Show that if the map f : Sn → R is di�erentiable, then there
are two di�erent points p, q ∈ Sn, such that Tp(f) and Tq(f) are both 0.

Exercise 2.3.9. Let M = {x ∈ Rn|x21 = x22 + x23 + · · · + x2n, x1 ≥ 0}, n > 1.
Show that M is not a di�erentiable submanifold of Rn.
Exercise 2.3.10. Let Rn → Rk be a di�erentiable map such that for every real
number t one hasf(t · x) = t · f(x). Show that f is linear.

Exercise 2.3.11. Let Rn → Rk, f(0) = 0 be a di�erentiable map, and let

ft(x) = t−1f(tx).

Show that ft(x), if extended to t = 0 by Df0 depends di�erentiably on t, x.

Exercise 2.3.12. Let f : R → R be a di�erentiable function for which f(0) =
f

′
(0) = · · · = fn−1(0) = 0 and fn(0) > 0. Show that there exists an invertible

germ h : (R, 0) → (R, 0) such that f ◦ h = xn.
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Chapter 3

Vector bundles

Through the construction of tangent spaces there is a vector space associated to
every point of a manifold. In general, in di�erential topology and in topo1ogy,
there is often occasion to attach a vector space to every point of a manifold or of
a topological space, so that one has not just one single vector space, but rather
a whole `bundle' of vector spaces, as in Fig. 3.1.

Figure 3.1:

3.1 General vector bundle

De�nition 3.1.1. A(n n-dimensional real topological) vector bundle is a triple
(E, π,X), where π : E → X is a continuous surjective map, every Ex := π−1(x)
has the structure of an n-dimensional real vector space such that the following
�local triviality�:

Axiom of local triviality Every point of X has a neighbourhood U , for which
there exists a homeomorphism

f : π−1(U) → U × Rn

25
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such that for every x ∈ U

fx := f |Ex
: Ex → {x} × Rn

is a vector space isomorphism, see Fig. 3.2.

Figure 3.2:

Notation 3.1.2. (E, π,X) is called a vector bundle over X; E is called the total
space; Ex the �bre; X the base; and π the projection of the bundle. Instead of
(E, π,X) one usually writes E for short.

De�nition 3.1.3. (f, U) as in the axiom of local triviality is called a bundle
chart. A bundle over X is called trivial if it has a bundle chart (f,X).

The vector bundles over a �xed space X form in a natural manner the
objects of a category. The corresponding `morphisms' are the so-called `bundle
homomorphisms', which we shall now de�ne.

De�nition 3.1.4. Let E and E
′
be vector bundles over X. A continuous map

f : E → E
′
is called a bundle homomorphism if the following is commutative

and every fx : Ex → E
′

x is linear.

E
f //

π
��

E
′

π
′

~~
X

De�nition 3.1.5. If E is an n-dimensional vector bundle over X and E
′ ⊂ E

is a subset such that around every point in X there is a bundle chart (f, U)
with

f(π−1(U) ∩ E
′
) = U × Rk ⊂ U × Rn,

then (E
′
, π|E′ , X) is in a natural manner a vector bundle over X and is called

a k-dimensional subbundle of E, see Fig. 3.3.
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Figure 3.3:

For example if f : E → F is a bundle homomorphism of constant rank
rank fx = const, then

ker f := ∪x∈X ker fx

is a subbundle of E and
im f := ∪x∈X im fx

is a subbundle of F . This is obvious because we have

Theorem 3.1.6 (Rank theorem for bundle homomorphisms). Let f : E → F
be a bundle homomorphism of constant rank rank fx = k, of vector bundles over
X, then around every point x ∈ X there are bundle charts (φ,U) for E and
(ψ,U) for F , such that for every u ∈ U one has

(ψ ◦ f ◦ φ−1)u(v
1, . . . , vm) = (v1, . . . , vk, 0, . . . , 0).

E|U
f //

φ

��

F |U

ψ

��
U × Rm

(u,(v1,...,vm)) 7→(u,(v1,...,vk,0,...,0)

// U × Rn

Proof. First we may look at f on arbitrary charts and therefore w.l.o.g, suppose
that f is a bundle homomorphism U ×Rm → U ×Rn, (u, v) 7→ (u, fu(v)). Here
fu = (f1u , . . . , f

n
u ) : Rm → Rn is a linear map of rank k, which may be described

by a matrix (depending on u), and w.l.o.g. (after a suitable permutation of
coordinates in Rm and Rn) the submatrix of the �rst k rows and columns of the
particular matrix fx is non singular. But then the bundle homomorphism

φ : U × Rm → U × Rn, φu(v) = (f1u(v), . . . , f
k
u (v), v

k+1, . . . , vm)

is isomorphic on the �bre over u = x, and therefore w.l.o.g, isomorphic on every
�bre (if the determinant of φu does not vanish at the point u = x, it does not
vanish at nearby points either). Using this bundle homomorphism as a new
chart for U × Rm, we must look at f ◦ φ−1 and obtain

(f ◦ φ−1)u : v 7→ (v1, . . . , vk, gk+1
u (v), . . . gnu(v)).
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Since this still has rank k, the last n − k components gk+1, . . . , gn (for given
u ∈ U) in fact only depend on the �rst k components (v1, . . . , vk) of v; in matrix
notation :

(f ◦ φ−1)u =


1 0

. . .
...

1 0
g 0


So we may also write

(f ◦ φ−1)u : v 7→ (v1, . . . , vk, gk+1
u (v1, . . . , vk), . . . gnu(v

1, . . . , vk)).

But then on the other side we have the chart ψ : U × Rn → U × Rn,

φu(w) = (v1, . . . , vk, wk+1 − gk+1
u (w1, . . . , wk), . . . wn − gnu(w

1, . . . , wk))

and (ψ ◦ f ◦ φ−−1)u(v) = (v1, . . . , vk, 0, . . . , 0).

Having thus refreshed ourselves in the oasis of a proof, we now turn again
into the desert of de�nitions. First, we must mention another viewpoint from
which we may consider bundles as being contained within other bundles.

De�nition 3.1.7. If (E, π,X) is a vector bundle and X0 ⊂ X, then

(π−1(X0), π|π−1(X0), X0)

is a vector bundle over X0, which is usually written as E|X0
and is called the

restriction of E to X0, see Fig. 3.4.

Figure 3.4:
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De�nition 3.1.8 (`section'). By a section of a vector bundle (E, π,X) we mean
a continuous map σ : X → E with σ(x) ∈ Ex for all x ∈ X. For example, every
vector bundle has a `zero-section'

X → E, x 7→ 0 ∈ Ex,

see Fig. 3.5.

Figure 3.5:

Remark 3.1.9. Note that if σ : X → E is a section, then σ : X → σ(X) is a
homeomorphism.

In particular therefore, one can without harm identify the image of the zero-
section with the base space X itself since via the zero-section one has a canonical
homeomorphism.

From one vector bundle one can `induce' new vector bundles. Suppose we are
given an n-dimensional vector bundle E over Y and a continuous map f : XtoY :

E

π

��
X

f
// Y

Thus we obtain the induced bundle f∗E over X by attaching the �bre Ef(x) to
every x ∈ X. This may be described as:

De�nition 3.1.10. Let (E, π, Y ) be a vector bundle over Y and : X → Y be
continuous. Let us consider the graph of f and the canonical homeomorphism
Graph(f)

≃−→ X, see Fig. 3.6.
Then by the composition

f∗E := (X × E)|Graph(f) ⊂ X × E //

f∗π

++

Graph(f) ⊂ X × Y

��
X
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Figure 3.6:

we de�ne a vector bundle (f∗E, f∗π,X), which is called the bundle induced by
f .

Remark 3.1.11. Note that the total space of f∗E is

{(x, e)|π(e) = f(x)} ⊂ X × E.

This space is also called the �bre product (or pull-back) of f and π.

The map f∗E → E given by the projection X ×E → E maps every �bre of
f∗E linearly and isomorphically to a �bre of E. Such maps are called bundle
maps. As a notion, including bundle homomorphisms and bundle maps as
special cases, one also considers the quite general linear maps which are only
required to map �bres linearly to �bres:

De�nition 3.1.12. If E, F respectively, are vector bundles over X, Y respec-
tively, and f : X → Y is continuous, then a continuous map f̃ : E → F is called
a linear map overf iff̃ maps every �bre Ex linearly into Ff(x):

E
f̃ //

��

F

��
X

f
// Y.

If these maps are isomorphisms Ex ≃ Ff(x) as well, then f̃ is called a bundle
map over f .

The reason for explaining, just here, the terminology of bundle homomor-
phisms, bundle maps, and linear maps is that the construction of the induced
bundle shows how one can write every linear map as the composition of a bundle
homomorphism and a bundle map:

Remark 3.1.13. Note that if φ : E → F is a linear map of vector bundles over
f and if f̃ : f∗F → F is the canonical bundle map, then there is one and only
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one bundle homomorphism h : E → f∗F such that φ = f̃ ◦ h:

E
h //

π
!!

f∗F
f̃ //

��

F

��
X

f
// Y

namely, h(v) = π(v), φ(v)) ∈ X × E. This is called the universal property of
the induced bundle.

3.2 Di�erentiable vector bundle

Up to now we have only considered `topological' vector bundles. We now wish
to introduce the concept of di�erentiable vector bundle over a di�erentiable
manifold. In order to do this we must �rst discuss the concept of the bundle
atlas.

De�nition 3.2.1. Let (E, π,X) be an n-dimensional vector bundle. A set
{(fα, Uα)|α ∈ A} of bundle charts is called a bundle atlas for E, if ∪α∈AUα = X.
The continuous mappings given by overlapping of the bundle charts

Uα ∩ Uβ → GL(n,R), x 7→ fβx ◦ f−1
αx

are called the transition functions of the atlas, see Fig. 3.7.

Figure 3.7:

De�nition 3.2.2. A bundle atlas for a vector bundle over a di�erentiable man-
ifold is di�erentiable if all its transition functions are di�erentiable. A di�er-
entiable vector bundle is a pair (E,B) consisting of a vector bundle E over M
and a maximal di�erentiable bundle atlas B for E.

Remark 3.2.3. Note that the total space of a k-dimensional di�erentiable vector
bundle over an n-dimensional manifold M is naturally an (n + k)-dimensional
di�erentiable manifold.
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Remark 3.2.4. The de�nitions and statements made up to now about topological
vector bundles apply in an obvious manner to di�erentiable vector bundles.

We often encounter di�erentiable and topological vector bundles in a form
in which one could perhaps call them `pre-vector bundles'. Given are the usual
de�ning terms

E total space

π projection

X base

B bundle atlas

with the sole omission that the topology on E is not yet de�ned. E appears, for
the present, simply as the union of the (disjoint!) vector spaces Ex = π−1(x).
However, one can construct this topology in a canonical way and thereby obtain
a real vector bundle.

As we obtain very many of our geometrically relevant vector bundles by
these means, we shall make the notion of a `pre-vector bundle' more precise:

De�nition 3.2.5. An n-dimensional pre-vector bundle is a quadruple (E, π,X,B)
consisting of a set (!) E, a topological space X, a surjective mapping π : E → X
with a vector space structure on every Ex := π−1(x), and a `pre-bundle atlas'
B, that is, a set {(fα, Uα)|α ∈ A}, where {Uα|α ∈ A} is an open covering of X
and

fα : π−1(Uα) → U × Rn, Ex
≃7−→ {x} × Rn,

a bijective map which is a linear isomorphism for every x ∈ Uα in such a way
that all the transition functions Uα ∩ Uβ → GL(n,R) of B are continuous.

Remark 3.2.6. First, note that if (E, π,X,B) is a pre-vector bundle, then there
is exactly one topology on E, relative to which (E, π,X) is a vector bundle and
B is a bundle atlas thereof.

Remark 3.2.7. Second, note that ifM is a di�erentiable manifold and (E, π,M,B)
is di�erentiable pre-vector bundle, that is, if all the transition functions of B
are di�erentiable, then by the maximal extension B̃ of B we clearly have a
di�erentiable vector bundle (E, B̃) over M .

Our �rst application, for whose sake alone the whole sequence of de�nitions
would have been worthwhile, is the construction of the tangent bundle.

De�nition 3.2.8 (Tangent bundle). Let M be a di�erentiable n-dimensional
manifold and A be a di�erentiable atlas ofM . Then we are given a di�erentiable
pre-vector bundle (TM, π,M,B) as follows:

TM := ∪p∈MTpM
π : canonically (TpM → p)

B := {(fh|(h, U) ∈ (A))}
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where
fh : π−1(U) → U × Rn, X 7→ p× (v1, . . . , vn)

is given by the `physical' coordinates vi = X(hi) of X ∈ TpM with respect to
(h, U), see (2.2.5) and Fig. 3.8.

Figure 3.8:

The di�erentiable n-dimensional vector bundle TM over M given in this
way, which is clearly independent of the choice of atlas, is called the tangent
bundle of M .

De�nition 3.2.9. Let M be a di�erentiable manifold. By a (di�erentiable)
vector �eld on M one understands a (di�erentiable) section

M− → TM

of the tangent bundle.

De�nition 3.2.10. If f :M → N is a di�erentiable map, then the di�erentials

Tpf : TpM → Tf(p)N

de�nes a di�erentiable map

Tf : TM → TN

(as one can see from (2.2.4)), which is called the di�erential of f .

Remark 3.2.11. Note that the di�erential is a `linear map of vector bundles'.
As remarked earlier (3.1.13), there is one and only one bundle homomorphism
TM → f∗TN , so that the diagram

TM
Tf //

$$

TN

zz
F ∗TN

commutes.
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3.3 Exercises

Exercise 3.3.1. Let U be a topological space and f : U →M(n×k,R) a mapping
into the space of real (n× k)-matrices. Show that the map given by f

F : U × Rk → Rn, (u, x) 7→ f(u) · x

is continuous if and only if f is continuous. Show also that if U is a manifold
then F is di�erentiable if and only if f is di�erentiable.
Remark. We have already made implicit use of this statement in the text.

Exercise 3.3.2. Let (E, π,X) be a vector bundle over a connected space X, let
f : E → E be a bundle homomorphism and f ◦f = f . Show that f has constant
rank.

Exercise 3.3.3. Let (E, π,X) be a vector bundle over a connected space X
and f : E → E be a bundle homomorphism and f ◦ f = idE . Show that
Fix(f) := {v ∈ E|f(v) = v} is a subbundle of E.

Exercise 3.3.4. Let E be a vector bundle over X, let X0 ⊂ X be a subspace and
i : X0 ⊂ X the inclusion. Show that i∗E and E|X0

are naturally isomorphic.

Exercise 3.3.5. Show that if (E, π,X) is a trivial vector bundle, then every
induced bundle f∗E (for f : Y → X) is also trivial.

Exercise 3.3.6. Let (E, π,X) be a vector bundle and π0 := π|E\{zero-section}.
Construct a nowhere vanishing `canonical' section of π∗

0E.

Exercise 3.3.7. Show that a vector bundle is trivial if and only if it possesses a
bundle atlas, all of whose transition functions are maps into {id} ⊂ GL(n,R).
Exercise 3.3.8. Over RPn = Sn/ ∼ let us consider the 1-dimensional subbundle

ηn := {([x], λx)|x ∈ Sn, λ ∈ R}

of RPn×Rn+1. (Why is it a subbundle?) Prove that for n ≥ 1, ηn is non-trivial.
Hint : consider ηn \ {zero-section}.
Exercise 3.3.9. Prove that every 1-dimensional vector bundle over S1 is either
trivial or isomorphic to the bundle

η1

��
S1 ≃ RP 1

The surface η1 is also called the (unbounded) Möbius band (see Fig. 1.6 and
Fig. 3.9).

Exercise 3.3.10. Prove: if one removes a point from RPn+1, then one obtains a
manifold which is di�eomorphic to the total space of ηn:

RPn+1 \ pt ≃ ηn

Hint : w.l.o.g. pt = [0, . . . , 0, 1].
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Figure 3.9:

Exercise 3.3.11. Let n ≥ 1. Show that there exist precisely two isomorphism
types of n-dimensional vector bundles over S1 (see exercise 3.3.9).

Exercise 3.3.12. Show that TS1 ≃ S1 × R.
Exercise 3.3.13. Show that the tangent bundle of S2 possesses an atlas with two
bundle charts.

Exercise 3.3.14. Let M be connected. Show that a di�erentiable map

f :M → N,

whose di�erential Tf is everywhere zero, must be constant.

Exercise 3.3.15. Show that if f :M → N is an embedding, then so is

Tf : TM → TN.

Exercise 3.3.16. Construct a vector �eld on S2 which has exactly two zero points.
Exercise 3.3.17. Construct a vector �eld on S2 which has exactly one zero point.

Exercise 3.3.18. Let M ⊂ Rn be a submanifold. Show that

TM ≃ {(x, v) ∈M × Rn|v ∈ TxM ⊂ Rn}.

Exercise 3.3.19. Show that the submanifold of Cn+1

E = {(z0, . . . , zn) ∈ Cn+1|z20 + · · ·+ z2n = 1}

is di�eomorphic to the total space of the tangent bundle of the unit sphere Sn.
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Chapter 4

Linear algebra for vector

bundles

The algebraic operations which one employs in linear algebra for vector spaces
and homomorphisms can usually also be given a meaning on vector bundles and
bundle homomorphisms, by operating in the �bres at every point of the base, as
one has learned to do in linear algebra. For example, one constructs the direct
sum E ⊕ F (the so-called `Whitney sum') of two vector bundles E and F over
X, by using the direct sum Ex⊕Fx as �bre of E⊕F at every point x ∈ X, etc.

Of course, we must explain more precisely the bundle structure of the families
of vector spaces, which arise in this way.

4.1 De�nitions and examples

De�nition 4.1.1. Let E and F be vector bundles over X with bundle atlases
A and B. Then a pre-vector bundle E ⊕ F is given in the following manner:

E ⊕ F := ∪x∈XEx ⊕ Fx

projection : canonical

atlas : {φ⊕ ψ,U ∩ V |(φ,U) ∈ A, (ψ, V ) ∈ B}

where φ⊕ ψ is to be understood in the following way:

Ex ⊕ Fx
φx⊕ψx−−−−→ {x} × (Rn ⊕ Rk).

The vector bundle E ⊕ F associated with this pre-vector bundle is called the
Whitney sum of E and F .

Remark 4.1.2 (Supplement). If f : E → E
′
and g : F → F

′
are bundle homo-

morphisms, then a bundle homomorphism f ⊕ g : E ⊕ F → E
′ ⊕ F

′
is de�ned

in a canonical manner.

37
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Remark 4.1.3. Note that if E and F are di�erentiable, then in a natural manner
so is E ⊕ F ; if f and g are di�erentiable, then so is f ⊕ g.

Example 4.1.4 (Further examples). Analogously, one transfers other notions of
linear algebra `�brewise' to the category of topological, respectively di�eren-
tiable vector bundles over X. Thus, for example, one obtains:

(i) tensor product E ⊗ F ,

(ii) quotient bundle E/F (when F is a subbundle of E),

(iii) dual bundle E∗,

(iv) homomorphism bundle Hom(E,F ),

(v) bundle Altk(E) of alternating k-forms,

(vi) bundle ΛkE of k-fold exterior powers,

for vector bundles E, F over X and, in a natural manner also, the relevant
bundle homomorphisms.

Remark 4.1.5. One must note carefully that some of the functors of linear al-
gebra, which have here been carried over to bundles, are contravariant. For
example, Hom in the �rst variable: bundle homomorphisms f : A → B and
g : F → F

′
induce a bundle homomorphism

Hom(f, g) : Hom(B,F ) → Hom(A,F
′
)

namely, by
B // F

g
��

A //

f

OO

F
′

Correspondingly, the bundle charts of Hom(E,F ) are obtained from bundle
charts (φ,U) of E and (ψ, V ) of F in the form

Hom(φ−1, ψ) : Hom(E,F )|U∩V → (U ∩ V )×Hom(Rn,Rk) = (U ∩ V )× Rnk.

The term orientation requires careful consideration. Naturally, one orients
a vector bundle by orienting each �bre, and in such a way that, for an arbitrary
continuous path in the base, the orientation does not suddenly `jump'.

De�nition 4.1.6 (Orientation of a vector bundle). Let E be an n-dimensional
vector bundle over X. A family

o = {ox}x∈X

of orientations ox of the �bres Ex is called an orientation of E if about every
point of X there is a bundle chart (f, U) for E, so that by means of fu : Eu ≃ Rn
the orientation ou for every u ∈ U is transferred to the same �xed orientation
of Rn.
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Whereas up to now we have been able to transfer the constructions of linear
algebra simply by way of �bres or by way of charts to vector bundles, we now
for the �rst time come upon a global phenomenon: for one vector space, one
�bre, we can always choose an orientation, but the whole bundle need not be
orientable. If one were to orient a speci�c �bre Ex, then this orientation simply
extends through the charts (f, U) in (4.1.6) to the �bres over points in the
neighbourhood U of x.

If, however, one attempts to orient all of E in this way, by passing from
chart to chart, then one notices with certain bundles that, at some point, this
procedure has to lead to a jump in the orientation, as illustrated by Fig. 4.1.

Figure 4.1:

However, one must at times also pose questions of orientation for non-
orientable bundles (for example in the proof of non-orientability or whether one
may apply a certain known theorem for orientable bundles to non-orientable
bundles also), and for this it is very useful to employ the concept of orientation
cover, which is de�ned for every bundle.

De�nition 4.1.7 (Orientation cover). Let (E, π,X) be an n-dimensional vector
bundle and ΛnE the 1-dimensional nth exterior power bundle. If one de�nes an
equivalence relation in ΛnE \ {zero-section} by x ∼ y ⇔ y = λx for some λ > 0

and introduces the quotient topology on the set X̃(E) of equivalence classes,
then the canonical projection

X̃(E)

π̃

��
X

is a two leaved covering of X and is called the orientation cover of E, see Fig.
4.2.
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Figure 4.2:

The relation known from linear algebra between orientation and n-fold exte-
rior product (two bases (v1, . . . , vn) and (w1, . . . , wn) have the same orientation
if and only if v1 ∧ · · · ∧ vn and w1 ∧ · · · ∧wn di�er only by some positive factor)
shows immediately that X̃(E), as a set, is canonically the same as the set of all
orientations of all �bres, and π̃−1(x) consists of the two orientations of Ex, see
Fig. 4.3.

Figure 4.3:

One may also think of X̃(E) in this way; the description as

(ΛnE \ zero-section)/ ∼

has the technical advantage of immediately giving the topology on X̃(E).

Remark 4.1.8. Note that E is orientable if and only if X̃(E) is a trivial cover,
that is, isomorphic to X × Z/2Z. An orientation of E is then to be thought of
as a section X o−→ X̃(E) (continuous mapping with π ◦ o = idX).
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Remark 4.1.9. Note that the cover X̃(E) is also canonically isomorphic (that is,
could also have been described as) to (ΛnE \ zero-section)/ ∼ and to (AltnE \
zero-section)/ ∼.

De�nition 4.1.10 (Orientation of a manifold). By an orientation of a manifold
M , one means an orientation of the tangent bundle TM .

Another concept taken from linear algebra, the carrying over of which to
vector bundles requires some attention, is that of scalar product.

If V is a real vector space then, as is known, one can consider the bilinear
forms

V × V → R

as the elements of (V ⊗ V )∗ = Hom(V ⊗ V,R). If E is a vector bundle over X
then, by (4.1.4), the bundle (E ⊗ E)∗ is de�ned and we come to:

De�nition 4.1.11 (Scalar product, Riemannian metric). If (E, π,X) is a vector
bundle then, by a scalar product or a Riemannian metric for E, we mean a
continuous section

s : X → (E ⊗ E)∗

such that for every x ∈ X the bilinear form determined by this

Ex × Ex → R, (v, w) 7→ ⟨v, w⟩x

is symmetric and positive de�nite. The metric is di�erentiable if X is a manifold
and E and s are di�erentiable.

Proposition 4.1.12. If the vector bundle E is equipped with a Riemannian
metric and F ⊂ E is a subvector bundle, then

F⊥ := ∪x∈XF⊥
x

is also a subvector bundle.

Proof. If (f, U) is a bundle chart of E, which represents F |U as U × (Rk ×
0) ⊂ U × Rn, and if v1, . . . , vn are sections of |U , which under f correspond to
the canonical basis vectors of Rn, then one obtains by means of the Schmidt
orthogonalisation process sections v

′

1, . . . , v
′

n of E|U , which form an orthonormal
basis of Ex for every x ∈ U , and in such a way that v

′

1, . . . , v
′

k precisely span
Fx, and v

′

k+1, . . . , v
′

n span F⊥
x .

Therefore,

f
′
: E|U → U × Rn, λ1v

′

1(x) + · · ·+ λ
′

n(x) 7→ (x, λ1, . . . , λn)

de�nes a bundle chart, which represents F |U as U × Rk and F⊥|U as the com-
plementary U × Rn−k.

Since f
′
is obviously orthogonal in every �bre, we can note the following as

a subsiduary of the proof:



42 CHAPTER 4. LINEAR ALGEBRA FOR VECTOR BUNDLES

Remark 4.1.13. Note that every vector bundle with a Riemannian metric pos-
sesses a bundle atlas consisting of �brewise orthogonal bundle charts. In partic-
ular, the transition functions of such an atlas are maps into O(n) ⊂ GL(n,R).
Remark 4.1.14. Note that if E is equipped with a Riemannian metric and F ⊂ E
is a subbundle, then the composition

F⊥ ⊂ E −−→
proj

E/F

is a bundle isomorphism F⊥ ≃ E/F ; one can thus consider E/F simply as F⊥.

For dimensional reasons one has only to consider that the kernel of this
composition vanishes. For every �bre this means F⊥

x ∩ Fx = 0.
This clear presentation of the quotient bundle as an orthogonal complement

should, in particular, be kept in mind when considering the normal bundle of a
submanifold.

De�nition 4.1.15 (Normal bundle). IfM is a di�erentiable manifold and X ⊂
M is a submanifold, then `normal X'

⊥X := (TM |X)/TX

is called the normal bundle of X in M , see Fig. 4.4.

Figure 4.4:

De�nition 4.1.16 (Riemannian manifold). A manifoldM , whose tangent bun-
dle has a di�erentiable scalar product, is called a Riemannian manifold (`a
Riemannian manifold is a pair (M, ⟨, ⟩), consisting . . . ).

Remark 4.1.17. Note that ifM is a Riemannian manifold andX ⊂M a subman-
ifold, then the normal bundle of X in M is canonically isomorphic to (TX)⊥,
see Fig. 4.5.

Now we come to the important question of the existence of Riemannian
metrics on vector bundles. Let (E, π,X) be a vector bundle. We look for a
section

s : X → (E ⊗ E)∗,
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Figure 4.5:

such that every s(x) is symmetric and positive de�niite. It is, of course, quite
easy to �nd such a section for E|U for every bundle chart (f, U) of E, we need
only to begin with the usual scalar product in Rn; E|U ≃ U ×Rn. If we do this
for every chart of a bundle atlas, then we come to the following situation: We
have `local' sections (illustrated in Fig. 4.6):

Figure 4.6:

However, we are looking for a global section (illustrated in Fig. 4.7):
One often faces such a problem in topology, and it can be quite di�cult or

insoluble (orientation!). However, there is help at hand if the property required
of the Vectors s(x) is a `convex' property, that is if, with s1(x) and s2(x)also,
all

(1− t)s1(x) + tS2(x)

have this property for t ∈ [0, 1]: Symmetry and positive de�niteness (see Fig.
4.8) are such convex properties.

The technical tool, with which one stitches together locally given sections to
form a global section - something which the di�erential topologist must always
have at hand - is a partition of unity:

De�nition 4.1.18. Let X be a topological space. A family {τα}α∈A of contin-
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Figure 4.7:

Figure 4.8:

uous functions
τα : X → [0, 1]

is called a partition of unity if every point in X has a neighbourhood in which
only �nitely many of the τα are di�erent from zero and for all x ∈ X we have∑

α∈A
τα(x) = 1.

De�nition 4.1.19. Such a partition of unity is said to be subordinate to a given
covering ofX if for every α the support of τα (that is, supp τα := {x ∈ X|τα ̸= 0}
is entirely contained in one of the covering subsets.

Theorem 4.1.20. If X is paracompact, then for every open cover there exists
a subordinate partition of unity.

Proof. See [8], p. 17; for manifolds see Chapter 7.

Corollary 4.1.21. Ir E is a vector bundle over a paracompact space (e.g. a
manifold), then one can equip E with a Riemannian metric.
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Proof. Let A be an atlas for E and {τα}α∈A a partition of unity subordinate to
{U}(f,U)∈A. For every α we choose a bundle chart (fα, Uα), suschthat supp τα ⊂
Uα, and a Riemannian metric sα for E|Uα

. Then ταsα is a continuous section
of (E ⊗ E)∗ de�ned on all of X, if one understands ταsα as being given by the
zero section outside the support of τα, see Fig. 4.9.

Figure 4.9:

Then s :=
∑
α∈A ταsα is clearly a Riemannian metric for X.

Remark 4.1.22. On di�erentiable manifolds there is even a di�erentiable subor-
dinate partition of unity for every open covering, that is, the τα can be chosen
to be di�erentiable, and consequently every di�erentiable vector bundle also has
a di�erentiable Riemannian metric. Because of the great importance of di�er-
entiable partitions of unity in di�erential topology we do not wish to close our
treatment of them with this remark. Their existence will be proved in detail in
Chapter 7 and, until then, we shall refrain from making use of them.

4.2 Exercises

Exercise 4.2.1. Show how the bundle homomorphisms

f : E → F

can be considered as sections in E∗ ⊗ F = hom(E,F ).

Exercise 4.2.2. Prove that if E1 ⊕E2 ≃ E3 and if two of the vector bundles Ei
are orientable, then the third is orientable as well.

Exercise 4.2.3. Let E be an orientable vector bundle and F ⊂ E a subbundle.
Show that E/F is orientable if and only if F is orientable.

Exercise 4.2.4. Prove that a vector bundle is orientable if and only if it possesses
a bundle atlas, aft of whose transition functions are maps in

GL+(n,R) := {A ∈ GL(n,R)|detA > 0}

Exercise 4.2.5. Let E be a vector bundle. Show that E ⊕ E is orientable.
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Exercise 4.2.6. Let (E, π,X) be a vector bundle and π̃ : X̃(E) → X its orien-
tation cover. Show that π̃∗E possesses a (canonical) orientation.

Exercise 4.2.7. By the orientation cover M̃ → M of a manifold M , one means
the orientation cover of TM . Show that the manifold M̃ is orientable.

Exercise 4.2.8. Show that RPn is orientable for odd values of n and non-
orientable for even values of n.

Exercise 4.2.9. Show that for every submanifold M ⊂ Rn the Whitney sum

TM ⊕⊥M

of the tangent bundle and the normal bundle is trivial.

Exercise 4.2.10. A vector bundle is stably trivial if its Whitney sum with a
suitable trivial bundle is trivial. Show that TSn is stably trivial.

Exercise 4.2.11. Let M be a manifold and ∆M the diagonal in M ×M :

∆M := {(x, x) ∈M ×M |x ∈M}.

Show that ∆M is a submanifold of M ×M , for which the tangent bundle and
normal bundle are isomorphic:

T∆M ≃ ⊥∆M .

Exercise 4.2.12. Show that if (E, π,X) is a trivial bundle with a Riemannian
metric, then there is a bundle isomorphism

E ≃ X × Rn,

which is an isometry in every �bre.

Exercise 4.2.13. Let E be a vector bundle over X and A a bundle atlas for E,
all of whose transition functions are maps into O(n) ⊂ GL(n,R). Show that
there is precisely one Riemannian metric ⟨, ⟩ on E, such that all charts of A are
isometrics on the �bres.

Exercise 4.2.14. LetX be a space (e.g. a manifold), on which there is a partition
of unity subordinate to every open covering. Show that for every `line bundle'
(that is, 1-dimensional vector bundle) L over X, L⊗ L is trivial.

Exercise 4.2.15. Show that a product of two non-empty di�erentiable manifolds
M × N is orientable if and only if both factors M , N are orientable. Let
T = {(z, w) ∈ C× C||z| = |w| = 1} be the torus, and τ : T → T the involution
τ(z, w) = (−z, w). Using exercise 1.11.4, give the structure of a di�erentiable
manifold. It is called the `Klein bottle'. Is it orientable?



Chapter 5

Local and tangential

properties

For the local study of manifolds it is, above all, important to see whether a
germ f : (M,p) → (N, q) is invertible, that is, whether a mapping maps a
neighbourhood of p di�eomorphically onto a neighbourhood of q. The functorial
property shows that for such a germ the di�erential Tpf : TpM → TqN is an
isomorphism and the di�erential calculus shows that this condition is su�cient.

5.1 Multivariate calculus and its consequences

Theorem 5.1.1 (Inverse function theorem). A di�erentiable germ is invertible
if and only if its di�erential is an isomorphism.

If we introduce charts h : (M,p) → (Rm, 0) and k : (N, q) → (Rn, 0), then f
induces the germ

g = k ◦ f ◦ k : (Rm, 0) → (Rn, 0).

The di�erential is then a linear map Rm → Rn, which, by (2.2.4), is described
by the Jacobi matrix at the origin Dg0. If this is invertible (the di�erential an
isomorphism, in particular m = n), then some representative g of g is invertible
in some neighbourhood, that is, g and hence also f are invertible (see Lang [2],
chapter 17, section 3, pp. 349).

In a yet more general situation a germ is described by its di�erential:

De�nition 5.1.2. The rank of a di�erentiable map f : M → N at the point
p ∈M (the rank of the germ f : (M,p) → N) is the number

rankp f := rankTpf.

Remark 5.1.3. The rank of a map is lower semi-continuous. If rankp f = r, then
there is a neighbourhood U of p, such that rankq f ≥ r for all q ∈ U .

47
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Proof. After choosing charts, one must show that the rank of a Jacobi matrix
Df cannot decrease locally around p ∈ V ⊂ Rm. The components of this matrix
describe a di�erentiable map:

Df : V → Rm·n, q 7→ (
∂fi
∂xj

(q)).

Since rankp f = r, there is a (r × r)-submatrix of Dfp (w.l.o.g., consisting of
the �rst r rows and columns), whose determinant does not vanish at the point
p, that is, the map

V //

��

R

Rm·n // Rr·r

OO p � //
_

��

determinant

Dfp
� // submatrix

_

OO

neither vanishes at the point p, nor in a neighbourhood U of p; the rank cannot
decrease there.

Of course, arbitrarily close to p, the rank can be greater than rankp f , ex-
ample:

f : R → R, x 7→ x2 :

has the di�erential Dfx = 2x ̸= 0 for x ̸= 0.
If a germ f : (M,p) → (N, q) is described for suitable charts around p and q

by a linear map, that is, if there is a linear map g : Rm → Rn and charts h, k,
so that the following diagram commutes,

(M,p)

h
��

f // (N, q)

k
��

(Rm, 0)
g
// (Rn, 0)

then the di�erential Tg is given by the Jacobi matrix, and the Jacobi matrix Dg
of the linear map g : x 7→ y with

hi =
∑
j

aijxj

is (∂yi/∂xj) = (aij), therefore constant. Thus the rank of a representative f
is locally constant, that is, the same as the rank of the matrix (aij). This
condition on the rank is not only necessary, but - as we shall soon see - also
su�cient for describing the germ f by the di�erential Tpf = g, subject to the
choice of suitable charts.

By suitable choice of bases, a linear map of rank r can always be taken as

g : Rm → Rn, (x1, . . . , xm) 7→ (x1, . . . , xr, 0, . . . , 0).

We wish to say that a germ has constant rank if it possesses a representative
with constant rank.
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Theorem 5.1.4 (See Fig. 5.1). If f : (M,p) → (N, q) is a germ of constant
rank r, then there are charts h around Ep and k around q, such that the germ

k ◦ f ◦ h−1
: Rm → Rn is represented by the map

(x1, . . . , xm) 7→ (x1, . . . , xr, 0, . . . , 0).

Figure 5.1:

Proof. We may immediately assume f : (Rm, 0) → (Rn, 0); we then �nd an
(r × r)-submatrix of Df , which is regular at the origin, and after exchanging
coordinates in Rm and Rn we obtain a matrix

∂fi
∂xj

, quad1 ≤ i, j ≤ r

which is regular at the origin.
Let h : (Rm, 0) → (Rn, 0) be represented by the map

h : (x1, . . . , xm) 7→ (f1(x), . . . , fr(x), xr+1, . . . , xm),

then the Jacobi matrix of h has the form

Dh =

[
∂fi/∂xj

0 Em−r

]
, det(Dh0) = det(∂fi/∂xj(0))i,j≤r ̸= 0

Thus, by the inverse function theorem,h is an invertible germ and the diagram

(Rm, 0)
f //

h
��

(Rn, 0)

(Rm, 0)
g=f◦h−1

::
(x1, . . . , xm) � //

_

��

(f1(x), . . . , fr(x))

(f1(x), . . . , fr(x), xr+1, . . . , xm)

(
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(z1, . . . , zm)
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shows that the germ g = f ◦ h−1
is represented by the map

(z1, . . . , zm) 7→ (z1, . . . , zr, gr+1(z), . . . , gn(z)). (5.1.5)

The Jacobi matrix of g therefore has the form

Dg =

[
Er 0
? A(z)

]
, A(z) = (∂gi/∂zj).

Transformation in the pre,image space leads this far, and we have only made
use of the fact that rank0 f ≥ r.

But now since rank(f) = rank(g) = rank(Dg) = r in a neighbourhood of
the origin, in this neighbourhood we must have A(z) = 0, therefore

∂gi
∂xj

= 0 for r + 1 ≤ i ≤ n, r + 1 ≤ j ≤ m. (5.1.6)

Let the germ k : (Rm, 0) → (Rn, 0) be represented in the image space by a map

(y1, . . . , yn) 7→
(y1, . . . , yr, yr+1 − gr+1(y1, . . . , yr, 0, . . . , 0), . . . , yn − gn(y1, . . . , yr, 0, . . . , 0)).

The Jacobi matrix of k has the form

Dk =

[
Er 0
? En−r

]
and thus k is invertible and k ◦f ◦h−1

= k ◦g is represented by the composition

(z1, . . . , zm)
g7→ (z1, . . . , zr, gr+1(z), . . . , gn(z))

k7→
(z1, . . . , zr, gr+1(z)− gr+1(z1, . . . , zr, 0, . . . , 0), . . . , gn(z)− gn(z1, . . . , zr, 0, . . . , 0)).

If we now restrict ourselves to a cube neighbourhood |zi| < ε for su�ciently
small ε, then

gi(z1, . . . , zn)− gi(z1, . . . , zr, 0, . . . , 0) = 0, r + 1 ≤ i ≤ n

on account of 5.1.6, thus k ◦ g is represented by

(z1, . . . , zm) 7→ (z1, . . . , zr, 0, . . . , 0).

The rank theorem, in other words the inverse function theorem, dominates
the elementary geometry of di�erentiable maps.

If rankp f is maximal, that is, the same as the dimension of M or N , then
the rank is locally constant (5.1.3), and the rank theorem is applicable.
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De�nition 5.1.7. A di�erentiable map f :M → N is called:

a submersion if rankp f = dimN,

an immersion if rankp f = dimM,

for all p ∈ M . A point p ∈ M is regular if the di�erential Tpf is surjective. A
point q ∈ N is a regular value of f if every point of f−1(q) is regular. Instead
of `non-regular' one can also say singular or critical.

Note in particular that a point q ∈ N is a regular value, if f−1(q) = ∅, that
is, if it is not a value. The map f is then a submersion if and only if every point
p ∈M is regular, or every q ∈ N is a regular value.

The statement that f is an immersion means that the di�erential Tf is
injective at every point p ∈ M . Then by the rank theorem, locally in speci�c
coordinates, f has the form

(x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0)

In particular, every point of M possesses a neighbourhood which is embedded
by f . However, f need not be injective, see Fig. 5.2, and even if f is injective,
f need not be an embedding by de�nition (1.10.1).

Figure 5.2:

The obvious counterexample is illustrated in Fig. 5.3.
If, however, M is compact, f : M → N an immersion and injective, then f

is an embedding; more generally:

Theorem 5.1.8. Let f :M → N be an injective immersion and f :M → f(M)
be a homeomorphism where f(M) ⊂ N carries the subspace topology. Then f
is an embedding.

Proof. If p ∈ M and f(p) = q ∈ N , the rank theorem yields charts h : U →
U

′ ⊂ Rm and k : V → V
′ ⊂ Rm × Rs around p and q, such that f induces the

map
f̃ = k ◦ f ◦ h −1 : x 7→ (x, 0).
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Figure 5.3:

U is then chosen so small that f is de�ned on all of U
′
, and U

′ × B ⊂ V
′
for

some neighbourhood B of 0 in Rs. Then let V be so shrunk that U
′ ×B = V

′
.

Since f is a homeomorphism, U = f−1W for some open neighbourhoodW of
q, and for the chart k

′
:= k|(V ∩W ) we have k

′
(f(M)∩V ∩W ) = m∩k′

(V ∩W ).
Therefore, f(M) is a submanifold of N and f : M → f(M) is both locally
invertible and bijective and is therefore a di�eomorphism. Fig. 5.4 illustrates
this proof.

Figure 5.4:

For an immersion f : M → N , as well as for an embedding, one can de�ne
a normal bundle. Since by deÂ¿mition (5.1.7), the map Tf : TM → TN maps
every �bre injectively, the induced homomorphism (3.1.13)

h : TM → f∗TN

of vector bundles over M is injective, and the quotient bundle

f∗TN/h(TM) (5.1.9)

is called the normal bundle of f .
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Lemma 5.1.10. If q is a regular value of the di�erentiable map f : Mn+k →
Nn, then f−1(q) is a di�erentiable submanifold of M with codimension n.

Proof. If f(p) = q, then by (5.1.3) the rank of f around p is locally constant
because it cannot become larger than n. Therefore, using the rank theorem, one
can introduce local coordinate systems around p and q so that, with respect to
these coordinates in a neighbourhood U of p, f is given by

(x1, . . . , xn+k) 7→ (x1, . . . , xn)

p = (0, . . . , 0), q = (0, . . . , 0).

Then f−1(q) ∩ U = Rk ∩ U ⊂ Rn+k ∩ U ; thus f−1(q) is a submanifold of
dimension k.

This lemma is the most important tool in showing that a subset of a di�er-
entiable manifold is a submanifold, or in constructing manifolds. For example,
the contour lines of a (geographical) map are submanifolds, just so long as the
height is regular, see Fig. 5.5.

Figure 5.5:

By way of illustration we give the following:

Proposition 5.1.11. The set O(n) of real orthogonal (n × n)-matrices is a
submanifoM of Rn·n, the set of all matrices, of dimension 1

2 · n · (n− 1).

Proof. A matrix A ∈ Rn·n is orthogonal if and only if tAA is the identity matrix
E. In any case, tAA is symmetric. Therefore, O(n) is the pre-image of E under
the map

f : Rn·n → S, A 7→ tAA

into the set S of symmetric matrices (S = R 1
2n(n+1)).

In calculating the di�erential of f we consider the mapping of the paths
w(λ) = A+ λ ·B through the point A with f(A) = E:

f(A+ λB) = E + λ(tAB + tBA) + λ2 · tBB.
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Thus, TA(f)(Rn·n) contains precisely all matrices of the form (tAB + tBA),
where tAA = E and B ⊂ Rn·n is arbitrary. These are, however, precisely all
the symmetric matrices, as one can see, if for a symmetric matrix C, one puts
B = 1

2AC. Therefore E is a regular point of f , O(n) ⊂ Rn·n is a submanlfold,
and its codimension is dim(S) = 1

2n(n+ 1).

De�nition 5.1.12. LetM , N be di�erentiable manifolds and let L ⊂ N be a k-
dimensional submanifold. A di�erentiable map f : M → N is called transverse
to L if the transversality condition

Tpf(TpM) + Tf(p)L = Tf(p)N iff(p) ∈ L, (5.1.13)

is satis�ed for all p ∈M , see Fig. 5.6.

Figure 5.6:

Such pictures must of course be regarded with care: the behaviour of the
map cannot be read o� from its image set alone.

The transversality condition imposes a requirement only on the points from
the pre-image of L. For example, a map, whose image does not meet the sub-
manifold, is certainly transverse; and if dimM < codimL, then f is transverse
to L if and only if f(M) ∩ L = ∅, because the condition (5.1.13) cannot other-
wise be satis�ed. The sum of vector spaces in the transversality condition need
not be direct, for example every map is transverse to L = N .

Equivalently, one can also formulate: (5.1.13) ⇔ the composition of linear
maps

TpM
Tpf //

$$

TqN

projection

��
TqN/TqL

is surjective, for q = f(p) ∈ L. The condition states that the tangent space of
M is to be mapped `as skew as possible' to that of the submanifold L.

If L is a point, then the map f is transverse to L if and only if this point is
regular.
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Theorem 5.1.14. If f :M → N is transverse to the k-codimensional subman-
ifold L ⊂ N and f−1(L) ̸= ∅, then f−1(L) is a k-codimensional submanifold of
M and, for the normal bundles, one has a canonical bundle isomorphism

⊥(f−1L) ≃ f ∗ (⊥L).

Proof. Let f(p) = q ∈ L, and in some neighbourhood V E of q in suitable local
coordinates let V ≃ V

′ ⊂ Rn:

L ∩ V ≃ Rn−k ∩ V
′
,

where Rn−k ⊂ Rn is given by the vanishing of the last k coordinates. Let
π : Rn → Rk be the projection on these last coordinates. Then the transversality
condition in a neighbourhood U of p states that 0 ∈ Rk is a regular value of the
map

U
f //

""

V ≃ V
′

π|
V

′

��
Rk.

Therefore the pre-image of zero, namely, f−1(L) ∩ U , is by (5.1.10) a subman-
ifold of codimension k of U and, therefore, f−1(L) ⊂ M is a k-codimensional
submanifold (this is a local condition!), see Fig. 5.7.

Figure 5.7:

The isomorphism ⊥(f−1L) → f ∗ (⊥L) is induced by the tangent map

Tf |f−1(L) : TM |f−1(L) → TN |L.

It induces a map TM |f−1(L) → (TN |L)/TL, which is linearly epimorphic on
every �bre (transversality condition) and, since T (f−1L) obviously lies in the
kernel, the map

TM |f−1(L)

T (f−1L)
→ TN |L

TL

is an isomorphism on every �bre, which induces the required isomorphism by
(3.1.13).
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The pre-image of a regular point q ∈ N therefore has a trivial normal bundle,
since it is induced from the trivial bundle Tq(N) → {q}.

An arbitrary point does not, of course, need to be a regular value, nor does
an arbitrary map need to be transverse; an arbitrarily prescribed closed set
A ⊂ M can arise as the pre-image of a point q ∈ M under a di�erentiable
mapping M → N (14.0.1). However, as we shall see in the following chapters,
such pathological maps are `unlikely', transversality being the usual case. The
concept of transversality thus plays a decisive role in di�erential topology.

We close this section with a further application of the rank theorem:

Theorem 5.1.15. Letf : M → M be a di�erentiable map of a di�erentiable
connected manifold into itself with f ◦f = f , then f(M) is a closed di�erentiable
submanifold of M .

Proof. We have f(M) = {x ∈ M |f(x) = x} = �xed point set of f , and this is
closed.

It is su�cient to consider the map f in a neighbourhood of a point of f(M).
By the rank theorem it then su�ces to show that the rank of f is constant
in some neighbourhood of every point of f(M). We �rst show that rankp f is
constant on f(M).

If p ∈ f(M), then the di�erential of f at p satis�es the equation Tpf ◦Tpf =
Tpf therefore as above

im(Tpf) = {v ∈ TpM |Tpf(v) = v} = ker(id− Tpf),

and thus, in particular,

rankp f + rank(id−Tpf) = dimM

for all p ∈ f(M). Since both ranks on the left side can only increase in a
neighbourhood of a point, rankp f is locally constant on f(M), hence constant
because f(M) is connected.

Now let rankp f = r for p ∈ f(M), then there is an open neighbourhood U
of f(M), such that rankq f ≥ r for all q ∈ U . But rankq f = rankq(f ◦ f) =
rank(Tf(q)f ◦ Tqf) ≤ rankf(q) f = r, therefore rankq f is constant on U .

In general, if A ⊂ X and f : X → A is a mapping such that f |A = idA,
that is, a mapping which throws X onto A, keeping each point of A �xed, then
one calls f a retraction. We have thus shown that the image of a di�erentiable
retraction is a di�erentiable submanifold. A continuous (non-di�erentiable) re-
traction can, however, have very wild image sets.

5.2 Exercises

Exercise 5.2.1. Let R+ R be a di�erentiable sum of the manifold R with itself
(1.8.1), and let f : R+R → R2 be the map with the components f1(x) = (x, 0)
and f2(y) = (0, exp(y)). Show that f is an injective immersion, but not an
embedding, and draw a sketch of the image.
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Exercise 5.2.2. Let the map f : R+ S1 → C have the components

f1(t) = (1 + exp(t)) · exp(it),
f2(exp(it)) = exp(it), with S1 = {z ∈ C||z| = 1}.

Show that f is an injective immersion, but not an embedding, and draw a sketch
of the image.

Exercise 5.2.3. (a) Show that if c ∈ R is irrational, then the subgroup generated
by exp(2πic) is dense in S1 = {z ∈ C||z| = 1}.

(b) The map
R → C× C, t 7→ (exp(ait), exp(bit))

is an immersion if b ̸= 0; show that if a/b is irrational, then it is injective
and the image is dense in S1 × S1 ⊂ C× C.

Exercise 5.2.4. Let A be a symmetric real (n× n)-matrix, and 0 ̸= b ∈ R, show
that the quadric

M = {x ∈ Rn|txAx = b}
is an (n− 1)-dimensional submanifold of Rn.
Exercise 5.2.5. For an integer d ≥ 0 the Brieskorn manifold W 2n−1(d) is de�ned
as the set of points (z0, . . . , zn) ∈ Cn+1, which satisfy the equations

zd0 + zd1 + · · ·+ zdn = 0,

z0z0 + z1z1 + · · ·+ znzn = 2.

Show that W 2n−1(d) is a (2n− 1)-dimensional manifold.

Exercise 5.2.6. Let CPn be a complex projective space, and

H(m,n) = {(z, w) ∈ CPn × CPn|
m∑
i=0

ziwi = 0}

for m ≤ n, where z = [z0, . . . , zm] and w = [w0, . . . , wn] are homogeneous
coordinates. Show that H(m,n) is a 2(m+ n− 1)-dimensional manifold. Cor-
responding manifolds are also obtained from the real projective spaces. They
are called Milnor manifolds.

Exercise 5.2.7. Show that the manifold of orthogonal matrices O(n) is compact,
the group operations

O(n)×O(n) → O(n) (multiplication),

O(n) → O(n), A 7→ A−1,

are di�erentiable, and that O(n) has two connected components.

Exercise 5.2.8. A k-frame in Rn is an orthonormal k-tuple (v1, . . . , vk) of vectors
in RRn. The set V kn ⊂ Rn × · · · × Rn (k factors) of k-frames in Rn is called a
Stiefel manifold. Show that V kn is a compact di�erentiable manifold of dimension
n · k − 1

2 · · · k · (k + 1).
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Exercise 5.2.9. Show that the set U(n) of unitary matrices, considered as a
subset of O(2n), is a submanifold of O(2n) of dimension n2.

Exercise 5.2.10. Let f : M → N be a di�erentiable retraction and p ∈ f(M).
Show that there is a local coordinate system around p, in which f is given by

(x1, . . . , xr, . . . , xn) 7→ (x1, . . . , xr, 0, . . . , 0).

Note that here, unlike in the rank theorem, one cannot choose charts indepen-
dently in the image and pre-image manifolds!

Exercise 5.2.11. Let M , N , L be di�erentiable manifolds, and

L

g

��
M

f
// N

di�erentiable maps, so that for every point p ∈M and q ∈ L with f(p) = g(q) =
r ∈ N , we have

Tpf(TpM) + Tqg(TqL) = Tr(N).

Show that the �bre product (or pull-back) of f and g:

{(p, q) ∈M × L|f(p) = g(q)}

is a di�erentiable manifold.



Chapter 6

Sard's theorem

6.1 Theorems of Sard and Brown

The aim of this chapter is the proof of the following theorem.

Theorem 6.1.1 (Sard's theorem). The set of critical values of a di�erentiable
mapping of manifolds has Lebesgue measure zero.

In particular, if f : M → Rn is di�erentiable, then for almost all b the set
f−1{b} ⊂M is an n-dimensional submanifold; in other words the di�erentiable
system of equations on M

f1(x) = h1

...
...

fn(x) = hn

has (for given f) for nearly every choice of bi an n-codimensional submanifold
of M as its solution set (5.1.10).

We now come to more detailed explanations:

De�nition 6.1.2. A subset C ⊂ Rn has measure zero (almost every point
is not in C), if for every ε > 0 there is a sequence of cubes Woi ⊂ Rn with
C ⊂ ∪∞

i=1Wi and
∑∞
i=1|Wi| < ε. Here, |W | is the volume of the cube W , that is

|Wi| = (2a)n if W = {x||xi − x0i | ≤ a}.

A countable union of sets of measure zero again has measure zero, for if we
have C ⊂ ∪∞

ν=1Cν and Cν ⊂ ∪∞
i=1W

ν
i with

∑∞
i=1|W ν

i | < ε/2ν , then C ⊂ ∪i,νW ν
i

and
∑
i,ν |W ν

i | < ε. For similar reasons it does not matter if one takes open or
closed cubes, rectangular blocks, or balls.

Lemma 6.1.3. Let U ⊂ Rm be open, C ⊂ U a set of measure zero, and let
f : U → Rm be di�erentiable, then f(C) also has measure zero.

59
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Proof. Since U is the union of a sequence of compact balls, one may assume
that C is contained in a compact ball, and that the cubes of a covering of C
according to (6.1.2) are also contained in a somewhat larger ball K ⊂ U . The
mean value theorem of di�erential calculus provides an estimate

f(x+ h) = f(x) +R(x, h), |R(x, h)|/leqc|h|

for x, x + h ∈ K, for some constant c. If, therefore, a cube W ⊂ K has edge
length a, |x−x0| ≤

√
m·a for x ∈W , and |f(x)−f(x0)l| ≤ c·

√
m·a. Thus f(W )

lies in a cube of volume (2 ·
√
m · c)m|W | and, since the constant (2 ·

√
m · c)m

is independent of the cube, the assertion follows.

This lemma makes it meaningful also to speak of sets of measure zero in a
di�erentiable manifold.

De�nition 6.1.4. A subset C of a di�erentiable manifold M has measure zero
if for every chart h : U → U

′ ⊂ Rm the set h(C ∩ U) ⊂ Rm has measure zero.

Since a manifold has a countable base for its topology, from every atlas
one can choose a subatlas with countably many charts (Kelley [8], chapter 1,
theorem 15, p. 49); if one applies lemma (6.1.3) to the chart transformations in
such an atlas, then it follows that C has measure zero if for all charts hα of a
chosen �xed atlas hα(C ∩ Uα) has measure zero in Rm.

A corresponding de�nition for a topological manifold has no meaning because
non-di�erentiable homeomorphisms can map a measure mero set onto a set of
positive measure (an example of this cannot be simply given).

After the introduction of charts it is only necessary to carry out the proof
that a set has measure zero for subsets of Rm. Here the following special case
of Fubini's theorem provides an induction procedure:

Theorem 6.1.5 (Fubini). Let Rn−1
t := {x ∈ Rn|xn = t}; let C ⊂ Rn be

compact and Ct := C ∩Rn−1
t have measure zero in Rn−1

t ≃ Rn−1 for all t ∈ Rn.
Then C has measure zero in Rm.

following Steinberg [9. ] We use the following elementary

Proposition 6.1.6. An open covering of the interval [0, 1] by subintervals con-

tains a �nite covering [0, 1] = ∪kj=1Ij with
∑k
j=1|Ij | ≤ 2.

Proof. One chooses a �nite subcovering, from which it is not. possible to exclude
any further interval. Then every point of [0, 1] lies only in, at most, two intervals
of this covering: if it were to lie in three, then one of these would have the
smallest initial point and one would have the largest end point, a further one
would be super�uous.

Now back to the proof of Fubini's theorem. W.l.o.g., let C ⊂ Rn−1 × [0, 1],
and Ct have measure zero in Rn−1 × t for all t ∈ [0, 1]. For every ε > 0 we �nd
a covering of Ct by open cubes W i

t in Rn−1
t with volume sum < ε. Let Wt be
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Figure 6.1:

the projection of ∪iW i
t ⊂ Rn−1

t on the �rst factor Rn−1 of Rn−1× [0, 1], see Fig.
40.

lf xn is the last coordinate, then, for �xed t, the function |xn−t| is continuous
on C, it vanishes precisely on Ct and outside of [Wt × [0, 1] it a minimum value
a because C is compact. Thus we have

{x ∈ C||xn − t| < α} ⊂Wt × It with It = (t−−α, t+ α).

The various intervals It constructed like this cover [0, 1] and, according to the
proposition, from these we may choose a �nite subcovering {Ij |j = 1, . . . , k} of
volume sum ≤ 2. Here Ij = Itj for some tj ∈ [0, 1]. The rectangular blocks

{W i
tj × Ij |j = 1, . . . , k; i ∈ N}

cover C and have volume sum < 2ε.

Remark 6.1.7. The hypothesis that C is compact may be easily weakened; it
is clearly su�cient that C be a countable union of compact sets. In particular,
this holds for closed sets, open sets, images of sets of this class under continuous
maps, countable unions and �nite intersections of such sets. This class will
satisfy us.

With this we come to the proof of Sard's theorem (see Milnor [6]). Following
the introduction of charts, by de�nition (6.1.4) one has to show the following:

Theorem 6.1.8. Let U ⊂ Rn be open, f : U → Rp di�erentiable and let D ⊂ U
be the set of critical points of f , then f(D) ⊂ Rp has measure zero.

Proof. We proceed by induction on n; for n = 0, Rn is a point, f(U) is, at most,
one point and the theorem holds.

For the induction step let Di ⊂ U be the set of points x ∈ U , at which
all partial derivatives of order ≤ i vanish. The Di clearly form a decreasing
sequence of closed sets

D ⊃ D1 ⊃ D2 ⊃ · · · ,

and we show
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(a) f(D \D1) has measure zero,

(b) f(Di \Di+1) has measure zero,

(c) f(Dk) has measure zero for su�ciently large k.

Note that all the sets appearing here fall into the class to which by (6.1.7) we
may apply Fubini's theorem; further, it su�ces in each case to show that each
point x ∈ D \ D1 (. . . respectively) possesses a neighbourhood V such that
f(V ∩ (D \D1)) has measure zero, for D \D1 (. . . respectively) is covered by
countably many such neighbourhoods.

Proof of (a) One can assume p ≥ 2 since for p = 1, D = D1. Let x ∈ D \D1;
as x ̸∈ D1, some partial derivative of f does not vanish at the point x, we may
therefore assume that ∂f/∂x1(x) ̸= 0; then by (5.1.5) the map

h : U → Rn, (x1, . . . , xn) 7→ (f1(x), x2, . . . , xn)

is not singular at the point x; so its restriction to a neighbourhood V of x is a
chart h : V → V

′
, and the transformed map g := f ◦ h−1 has the form

g : (z, . . . , zn) 7→ (z1, g2(z), . . . , gp(z))

locally about h(x). The mapping takes the hyperplane {z|z1 = t} into the plane
{y|y1 = t}; let

gt : (t× Rn−1) ∩ V
′
→ t× Rp−1

be the restriction of g. Then a point from (t×Rn−1)∩V ′
is critical for g if and

only if it is critical for gt, since g has the Jacobi matrix

Dg =

[
1 0
? Dgt

]
However, by the inductive hypothesis, the set of critical values of gt has measure
zero in t×Rn−1, thus the set of critical values of g has an intersection of measure
zero with each hyperplane {y|y1 = t}. Hence, by Fubini's theorem, it itself also
has measure zero, and (a) is proved.

Proof of (b) We proceed similarly. For each point x ∈ Dk \Dk+1 there exists
some (k+1)st derivative which does not vanish at the point x. We may suppose
that

∂k+1f1/∂x1∂xν1 , . . . , ∂xνk(x) ̸= 0.

Let w : U → R be the function

w = ∂k+1f1/∂xν1 , . . . , ∂xνk ,

then therefore w(x) = 0, ∂w/∂x1(x) ̸= 0, and as before the map

h : x 7→ (w(x), x2, . . . , xn),

de�nes a chart h : V → V
′
about x, and

h(Dk ∩ V ) ⊂ 0× Rn−1 ⊂ Rn.
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We may therefore again consider the transformed map g := f ◦ h−1 : V
′ → Rp,

and its restriction g0 : (0 × V
′
) ∩ V ′ → Rp, which by the inductive hypothesis

has set of critical values of measure zero. However, each point from h(Dk ∩ V )
is critical for g0 because all partial derivatives of g, hence also of g0, of order
≤ k, in particular of �rst order, vanish. Therefore f(Dk ∩ V ) = g ◦ h(Dk ∩ V )
has measure zero.

Proof of (c) Let W ⊂ U be a cube with edges of length a, and let k >
(n/p) − 1, then we shall show that f(W ∩Dk) has measure zero. Since U is a
countable union of cubes, this will be su�cient. The Taylor formula yields an
estimate

f(x+ h) = f(x) +R(x, h), |R(x, h)| ≤ c · |h|k+1,

for x ∈ Dk ∩W and x + h ∈ W , where the constant c is �xed for given f and
W .

Now decompose W into rn cubes with edges of length a/r. If W1 is a cube
of the decomposition, which contains a point x ∈ Dk, then each point from W1

can be written as x+ h with

|h| ≤
√
n · a
r

.

From the remainder estimate above, f(W1) lies in a cube with edges of length

2 · c · (
√
n·)k+1

fk+1
=

b

rk+1
,

with a constant b, depending only on W and f and not on the decomposition.
All these cubes together have a combined volume s ≤ rn · bp/rp(k+1) and, for
p(k+1) > n, this expression converges to zero as r increases. Hence, by choice of
a su�ciently �ne decomposition, the combined volume can be made arbitrarily
small.

The most important consequence of Sard's theorem is the older result of
Brown, which we wish to state separately:

Theorem 6.1.9 (Brown's theorem). The regular values of a di�erentiable map
f :M → N are dense in N .

6.2 Exercises

Exercise 6.2.1. Let f :M → N×Rn be a di�erentiable map; show that for each
ε > 0 there exists a vector v ∈ Rn with |v| < ε, such that the map

g :M → N × Rn, x 7→ f(x) + v

is transverse to the submanifold Nx× 0 ⊂ N × Rn.
Exercise 6.2.2. Show that, if Mn ⊂ Rp is a di�erentiable submanifold, then
there exists a hyperplane in Rp, which cuts Mn transversally.
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Exercise 6.2.3. Show that there is no surjective di�erentiable map Rn → Rn+1.

Exercise 6.2.4. Let Mn be a compact manifold, f :Mn → Rn+1 di�erentiable,
and 0 ̸∈ f(M). Show that there exists a line through the origin of Rn+1 which
only meets �nitely many points of f(Mn).

Exercise 6.2.5. Let f :M → Rp be a di�erentiable map and N ⊂ Rp a di�eren-
tiable submanifold. Show that for each ε > 0 there exists v ∈ Rp, with |v| < ε
such that the map M → Rp, x 7→ f(x) + v is transverse to N . Hint: consider
the map M ×N → Rp, (x, y) 7→ y − f(x).

Exercise 6.2.6. For a di�erentiable map f :M → N let

i∑
(f) := {p ∈M | rankp f = i}.

Let f : Rm → Rn be di�erentiable and ε > 0. Show that there exists a linear
map α : Rm → Rn of norm < ε, such that

∑i
(f + α) is a di�erentiable sub-

manifold of Rm.
Hint : apply exercise 6.2.5 to Df and use (1.11.16).

Exercise 6.2.7. Let f : Rm → Rn be di�erentiable and m ≤ 2n. Show that for
each ε > 0 there exists a linear map α : Rm → Rn of norm < ε, such that the
map f + α : Rm → Rn is an immersion.
Hint : this is a side result of the solution to exercise 6.2.6.

Exercise 6.2.8. Let Mk ⊂ Rn+1 be a compact submanifold and n ≥ 2k. Show
that, for the projection π : Rn+1 → Hn onto a suitable hyperplane H of Rn+1,
the restriction π|M :M → H is an immersion.
Hint : consider the (2k−1)-dimensional manifold PTM , whose elements are the
1-dimensional subspaces of the tangent spaces of M , and study the canonical
map PTM → RPn.
Exercise 6.2.9. Let Mk ⊂ Rn+1 be a compact submanifold and n ≥ 2k + 1.
Show that, for the projection π : Rn+1 → Hn onto a suitable hyperplane H of
Rn+1, the restriction π|M :M → H is an embedding.



Chapter 7

Embedding

7.1 Immersions and Embeddngs

What we have studied up to now - apart from the tangent bundle - is essentially
the local structure of di�erentiable manifolds, and at �rst it is not obvious
that between two manifolds there can ever exist non-trivial maps, and that
everything which one intuitively describes as `smooth' can also be realised by
means of di�erentiable maps. The essential technical tool for the passage from
local to global is the partition of unity which we now manufacture.

Lemma 7.1.1. Let M be a di�erentiable manifold and U = {Uλ|λ ∈ Λ} an
open covering of M . Then there exists an atlas A = {hν : Vν → V

′

ν |ν ∈ N} of
M with the following properties:

(a) {Vν |ν ∈ N} is a locally �nite re�nement of {Uλ|λ ∈ Λ},

(b) V
′

ν = {x ∈ Rm||x| < 3} =: K(3),

(c) The sets Wν := h−1
ν {x ∈ Rm||x| < 1} = h−1

ν K(1) still cover M .

Such an atlas is called a good atlas subordinate to the covering U.

Proof. Since M is locally compact with a countable basis, we can easily �nd a
sequence of compact subsets Ai such that Ai ⊂ Åi+1 and ∪∞

i=1Ai =M . (Choose
a countable cover {Cn}n∈N of M by compact sets, and then choose A1 = C1

and An as a compact neighbourhood of An−1 ∪ Cn.) Now for each i we may
choose �nitely many charts hν : Vν → K(3), such that Vν ⊂ Åi+2 \ Ai−1 and
Vν ⊂ Uλ for some λ, and such that the sets Wν = h−1

ν (K(1)) still form a cover
of Ai+1 \ Åi−1. This follows easily, since this set is compact and has Åi+2 \Ai−1

as an open neighbourhood (see Fig. 7.1).
All these charts for all i ∈ N together form the sought for atlas.

Next we recall that the function (illustrated in Fig. 7.2)

λ : R → R, t 7→

{
0 for t ≤ 0

exp(−t−−2) for t ≥ 0

65
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Figure 7.1:

is in�nitely di�erentiable, that 0 ≤ λ ≤ 1, and that λ(t) = 0 ⇔ t ≤ 0.

Figure 7.2:

For t > 0 the derivatives of λ have the form q(t) · exp(−t−2), where q is a
rational function, and they therefore converge to zero as t goes to zero. Now let
ε > 0 and φε(t) = λ(t) · (λ(t) + λ(ε− t))−1 (Fig. 7.3), then φε is di�erentiable,
0 ≤ φε ≤ 1, and φε(t) = 0 ⇔ t ≤ 0, and φε(t) = 1 ⇔ t ≥ ε.

For the ball
K(r) = {x ∈ Rn||x| < r}, r > 0, (7.1.2)

we can therefore �nd the di�erentiable bump function (Fig. 7.4)

ψ : Rn → R, x 7→ 1− φε(|x| − r)

with the properties:

0 ≤ ψε ≤ 1 for all x ∈ Rn,

ψ(x) = 1 ⇔ x ∈ K(r),

ψ(x) = 0 ⇔ |x| ≥ r + ε.

About the point x = 0, where |x| is not di�erentiable, ψ is locally constant and
therefore di�erentiable.
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Figure 7.3:

Figure 7.4:

If one composes such a bump function with a suitable chart, then one obtains
a function ψ ◦ h : U → R on the chart domain of a manifold, and because this
function vanishes outside h−1K(r+ ε) ⊂ U , one can extend it (by 0 on M \ U)
as a di�erentiable function over the whole manifold M .

Theorem 7.1.3. For every open covering of a di�erentiable manifold, there
exists a subordinate di�erentiable partition of unity.

Proof. Using (7.1.1) we may choose a good atlas A subordinate to the cover U
of M , also a hump function ψ for the ball K(1) with ψ|K(1) = 1, ψ(x) = 0 for
|x| ≥ 2. De�ne the function ψνon M by

ψν =

{
ψ ◦ hν on Vν = h−1

ν K(3),

0 otherwise.

Then ψν is di�erentiable, and s =
∑∞
ν=1 ψν is well de�ned and di�erentiable,

since the family {supp(ψν)} of supports is locally �nite and di�erentiability is
a local property. Besides, s(p) ̸= 0 for all points p ∈M , so that the functions

φν := (1/s)ψν

form the sought for partition of unity.
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An easy consequence:

Remark 7.1.4. If A0, A1 are disjoint dosed subsets of the di�erentiable manifold
M , then there exists a di�erentiable function (separating function) φ :M → R,
0 ≤ φ ≤ 1, such that φ|A0 = 0, φ|A1 = 1.

Proof. Let {φν |ν ∈ N} be a partition of unity subordinate to the covering by
the sets Ui =M \Ai and put

φ =
∑
ν∈K

φν

with ν ∈ K if and only if supp(φν) ⊂ U1.

In what follows, we shall concern ourselves with approximations to given
maps with `nice' properties (embeddings, transverse maps, etc.). In doing this
we must ensure that for the approximation, not only the values of the function,
but also the values of the partial derivatives, undergo no more than a small
change. However, we do not wish to involve ourselves unnecessarily with the
appropriate topologies on the set of di�erentiable maps C∞(M,N), and restrict
ourselves to the bare minimum.

De�nition 7.1.5. Let U ⊂ Rm be open and K ⊂ U compact; let f ∈ C∞(U),
then set

|f |K := max{|f(x)||x ∈ K}+
m∑
ν=1

max{|∂f/∂xν(x)||x ∈ K}.

If f = (f1, . . . , fn) : U → Rn, then |f |K := max{|fν |K}.

It is straightforward to check that |f |K de�nes a seminorm on C∞(U), that
is,

|f + g|K ≤ |f |K + |g|K ,
|λf |K = λ|f |K for λ > 0,

|f · g|K ≤ |f |K · |g|K .

Furthermore, for K ⊂ L, |f |K ≤ |f |L, but clearly it is possible that |f |K = 0
without f = 0 (but f |K = 0).

In particular this seminorm makes C∞(U,Rn)into a topological space C∞(U,Rn)K :
ε-neighbourhoods with respect to the seminorm |f |K form a neighbourhood ba-
sis.

Lemma 7.1.6. Let U be open in Rm and K ⊂ U compact; the set of di�er-
entiable maps f : U → Rn, which have rank m at all points of K, is open in
C∞(U,Rn)K , and is dense in the case of 2m ≤ n.
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Proof. The condition rankx f = m means that the Jacobi matrix Dfx has rank
m, or that the map K → Rm·n, x 7→ Dfx has image contained in the open set
of matrices of rank ≥ m. If now |f − g|K is su�ciently small, then it follows
that |Dfx−Dgx| is so small on K that Dgx|K also maps into this open set (see
(7.1.5)).

Now let 2m ≤ n, ε > 0, and let the vectors ∂f/∂xi for i = 1, . . . , s <
m be already linearly independent at each point of U , then we �nd a map g
with |f − g|K < ε such that the vectors ∂g/∂bi, i = 1, . . . , s + 1 are linearly
independent at each point. The result will then follow by induction. To this
end we consider the map

φ : Rs × U → Rn, (λ1, . . . , λs, x) 7→
s∑
j=1

λj
∂f

∂xj
(x)− ∂f

∂xs+1
(x).

For s < m, dim(Rs × U) = s+m < 2m ≤ n, so by Sard's theorem we can �nd
a point a = (a1, . . . , an) ∈ Rn of arbitrarily small norm with a ̸∈ φ(Rn × U).
Now, set

g(x) = f(x) + xs+1 · a,

then ∂g/∂xi = ∂f/∂xi for i ≤ s, and ∂g/∂xs+1 = ∂f/∂xs+1 + a. A linear
relation

s∑
j=1

λj
∂g

∂xj
=

∂g

∂xs+1

is satis�ed nowhere in U , for that would imply that

s∑
j=1

λj
∂f

∂xj
− ∂f

∂xs+1
= a.

In this proof only the trivial case (6.1.3) of Sard's theorem is used. Another
proof depends on (6.2.7). From this local result by means of a good atlas we
can cobble the appropriate global result together.

Theorem 7.1.7 (Immersion theorem (H. Whitney)). LetMm be a di�erentiable
manifold, δ : M → R an everywhere strictly positive continuous function and
f : M → Rn a di�erentiable map with 2m ≤ n. Let A ⊂ M be closed and
rankp f = m for all p ∈ A. Then there exists an immersion g : M → Rn, with
g|A = f |A and |g(p)− f(p)| < δ(p) for all p ∈M .

In other words, not only one can �nd an immersion M → Rn, but one can
also always approximate a given map by an immersion where the `nearness'
δ of the approximation can be prescribed by an arbitrary continuous positive
function.

One can express such statements about approximation more elegantly in
terms of a topology on C∞(M,N).
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De�nition 7.1.8. Let U be open in M ×N and VU the set of g ∈ C∞(M,N)
for which the graph {(p, g(p))|p ∈ M} lies completely in U . The C0-topology
(which is the only one considered in this book ) on C∞(M,N) has the sets VU
as a basis of open sets, see Fig. 7.5.

Figure 7.5:

If one chooses a metric d on N , and a di�erentiable manifold admits a
metric (7.1.12), then, given a neighbourhood VU of f ∈ C∞(M,N), one easily
constructs a continuous function δ :M → R, δ > 0, such that

U(δ) := {(p, q)|d(f(p), q) < δ(p)} ⊂ U.

(Let {φN |n ∈ N} be a partition of unity on M with compact supports, and
δn > 0 be such that (p, q) ∈ U for p ∈ supp(φn), and d(f(p), q) < δn; set
δ =

∑∞
n=1 δnφn.) Therefore, one can certainly restrict oneself, as in the theorem,

to consideration of special neighbourhoods Vδ := VU(δ) of a map f . Moreover,
the C0-topology does not depend on the choice of metric and, if M is compact,
one can choose δ to be constant (topology of uniform convergence). With the
help of locally �nite atlases on M and N one can also introduce topologies on
C∞(M,N) which describe the convergence of the higher derivatives in the same
way that the C0-topology describes the convergence of the function values. But
we do not want to go into this (see Narasimhan [7].)

The immersion theorem thus says that immersions are dense in C∞(M,Rn),
if 2m ≤ n; also one does not need to disturb the map f on any closed set, where
it already has maximal rank.

Proof. (of Whitney immersion theorem 7.1.7) Since locally the rank of f can-
not decrease (5.1.3), there exists an open neighbourhood U of A, such that
rankp(f) = m for all p ∈ U . For the cover {(M \ A), U} of M we choose,
using (7.1.1), a subordinate good atlas {hν : Vν → K(3))|ν ∈ Z}; the sets
Wν = h−1

ν K(1) still cover M . We set Uν = h−1
ν K(2) and so arrange the num-

bering that Vν ⊂ U if and only if ν < 1. Only in the chart domains Vν with
positive index shall be g, being di�erentiated from f . Inductively, we construct
maps gν :M → Rn, ν ≥ 0, with the following properties:
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(a) g0 = f ,

(b) gν = gν−1(x) for x ̸∈ Uν ,

(c) if d = min{δ(x)|x ∈ Uν}, then |gν(x)−gν−1(x)| < εν := d/2ν for all x ∈M ,

(d) gν has rank m on ∪i≤νW i.

Having done this, we set g = limν→∞ gν . Since the covering {U} is locally
�nite, (b) implies that gν+1(x) = gν(x) for almost all ν, and the sequence {gν}
converges to a di�erentiable map g, which, by (a) and the numbering of our
atlas, coincides with f on A. Locally for large ν, g agrees with gnu and, by (d),
therefore has maximal rank m. Finally by (c)

|g − f | = |g − g0| ≤ δ
∑
ν

2−ν = δ.

We now come to the construction of the sequence gν , illustrated in Fig. 7.6.

Figure 7.6:

For this, by (7.1.2), we choose a bump function ψ : Rm → R for K(1) with
support in K(2), and a bound s, such that |ψ|K ≤ s for K = K(2), hence for
all K. Now consider the map

gν−1 ◦ h−1
ν : K(3) → Rn.

It has rank m on the compact set

C := hν(Uν ∩i<ν W i) ⊂ K(2)

and, by the local result (7.1.6), the same holds for every map q : K(3) → Rn
with

|gν−1 ◦ h−1
ν − q|C < η
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for some suitable η > 0. Using (7.1.6) again, we �nd such a q, which has rank
m on K(2), and such that

|gν−1 ◦ h−1
ν − q|K < η < min{η · s−1, εν}.

We set

gν(x) =

{
gν−1(x) + ψ ◦ hν(x) · (q · hν(x)− gν−1(X)) for x ∈ Vν

gν−1(x) for x ̸∈ Uν .

See Fig. 7.7.

Figure 7.7:

The de�nitions agree on the open intersection of the domains of de�nition
since there ψ ◦ hν = 0. Moreover,

|gν ◦ h−1
ν − gν−1 ◦ h−1

ν |C ≤ s · η < η

and therefore gν ◦h−1
ν has rank m on C. The same holds for gν on ∪i<νW i∩Uν .

OnWν we have ψ ·hν = 1, and hence there gν = q ◦hν also has rank m. Finally,

|gν − gν−1| ≤ |q · hν − gν−1| < η < ε

on Uν and hence everywhere. This concludes the proof of the theorem.

Underpinning this proof is a general procedure of passing from a local state-
ment - in this case (7.1.6) - to a global statement.

For an injective immersion one needs more room, as the mapping S1 → R2

in Fig. 7.8 demonstrates.

Theorem 7.1.9. Let f : Mm → Rn be a di�erentiable map and 2m < n.
Let A ⊂ M be closed and let the restriction of f to a neighbourhood U of A
be an injective immersion. Then arbitrarily close to f there exists an injective
immersion g :M → Rn, such that g|A = f |A.
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Figure 7.8:

Proof. As in the previous theorem, we describe the `nearness' by an everywhere
positive function δ : M → R. From the previous theorem we may also assume
that f is already an immersion. Then by the rank theorem (5.1.4) f is locally
an embedding; we may choose a cover {Uα} of M such that for all α, f |Uα is
an embedding, and such that Uα ⊂ U or Uα ⊂ M \ A. Then once more using
(7.1.1), we choose a good atlas {hν : Vν → K(3)|ν ∈ Z}, which is subordinate
to this cover, and so numbered that Vν ⊂ U if and only if ν ≤ 0. Finally, we
may choose a bump function ψ for K(1) with support in K(2), and set

ψν := ψ ◦ hν :M → R

Inductively, we construct a sequence of immersions gν :M → Rn by

g0 = f,

gν = gν − 1 + ψν · bν , bν ∈ Rn;

where the point b has yet to be speci�cally chosen.
First, it follows from (7.1.6) that gν has rank m on h−1

ν K(2) and hence
everywhere, provided that bν is chosen su�ciently small. Choose bν to be also
su�ciently small, so that for all x, |gν(x)− gν−1(x)| < 2−ν · δ(x). Thus all the
functions gν , together with g := limν→∞ gν , remain immersions - they lie in the
prescribed neighbourhood of f and agree with f on A. In the choice of bν let

N2m ⊂M ×M

be the open subset of points (p, q) with ψν(p) ̸= ψν(q).
Consider the map

N2m → Rn, (p, q) 7→ (gν−1(p)− gν−1(q)) · (ψν(p)− ψν(q))
1.

Since 2m < n Sard's theorem implies that the image of this map has measure
zero, and we may choose bν not to be in this image. Then

gν(p)− gν(q) ⇔ (gν−1(p)− gν−1(q)) = −(ψν(p)− ψν(q)) · bν ,
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and so by choice of bν if and only if

ψν(p) = ψν(q) hence gν−1(p) = gν−1(q).

Since the limit function g agrees locally with gν for large values of ν, it follows
that, if p ̸= q and g(p) = g(q), then gν(p) = gν(q) for su�ciently large ν. Hence
by downward induction

ψν(p) = ψν(q) and gν(p) = gν(q) for all ν ≥ 0.

On account of the second condition, in particular, f(p) = f(q), and so p and q
cannot lie in the same chart domain Vν . However, if p ∈ Wν ⊂ Vν and ν > 0,
then ψν(p) = 1 = ψν(q), implying that q ∈ Vν . The remaining possibility is that
both p and q lie in a chart domain Wν with v ≤ 0. But in this case, p, q ∈ U
and f |U = g|U is injective

An injective immersion is, as we know, in general not yet an embedding, nor
is it possible in general to approximate a given map by an embedding (example in
the exercises). However; an injective map of locally compact spaces f : X → Y
clearly induces a homeomorphism f : X− → f(X) if it is proper, that is, if
it may be extended continuously to a map of the one point compacti�cations
fO : XO → Y O by mapping the extra point to the extra point. In other words,
f is proper if f−1(K) is compact for each compact subset K. In this case,
f(X) ⊂ Y is closed, for f(X)O ⊂ Y O is compact.

Theorem 7.1.10 (Embedding theorem). Anm-dimensional di�erentiable man-
ifold can be embedded as a closed subset of the Euclidean space Rn, if 2m < n.

For this we need:

Lemma 7.1.11. If M is a di�erentiable manifold and n > O, then there exists
a proper di�erentiable map M → Rn.

Proof. Choose a countable partition of unity {φν |ν ∈ N} with compact supports
supp(φν) and set

f =

∞∑
ν=1

ν · φν :M → R.

If K ⊂ R is compact, then K ⊂ [−n, n] for some n ∈ N, and f(x) ∈ K. Then
x ∈ ∪nν=1 supp(φν), and this set is compact. Hence f is proper, and one obtains
a proper map M → Rn if one chooses f to be the �rst component.

Proof. (of 7.1.10) By (7.1.11) one can choose a proper map f : M → Rn, and
by (7.1.9) approximate this by an injective immersion g : M → Rn, so that
|g − f | ≤ 1 and A = ∅. If K ⊂ Rn is compact, then K ⊂ K(r) for some radius
r, hence g−1(K) is closed in the compact set f−1K(r + 1), hence compact.
Therefore g is proper, hence an embedding.
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One can improve the results presented here in several ways; as we have
already said, one can involve the higher derivatives in the approximations and,
by deeper theorems of Whitney and Hirsch, the embedding theorem (7.1.10)
holds also for n = 2m. There exists a large literature on embedding and non-
embedding theorems. For non-embedding theorems in particular, we lack all the
tools here. They substantially depend on the methods of algebraic topology. For
example, it is very plausible that there exists no embedding RP 2 → R3 of the
projective plane in the intuitive `space' of our visual perceptions, but it is an
unhappy undertaking to attempt to prove this directly.

Remark 7.1.12. From the embedding theorem it follows that a di�erentiable
manifold is homeomorphic to a closed subset of Euclidean space; hence it inherits
a complete metric from the Euclidean space, which induces the given topology on
the manifold. This occasionally may simplify arguments from general topology.

7.2 Exercises

Exercise 7.2.1. Let M be a di�erentiable manifold and p ∈ M . Show that the
map

C∞(M) → E (p), f 7→ f

is surjective.

Exercise 7.2.2. Let A ⊂M be closed, U an open neighbourhood of A, and f a
di�erentiable map from U into Rn. Show that there exists a di�erentiable map
g :M → Rn with g|A = f .

Exercise 7.2.3. Construct an injective di�erentiable map f : S1 → R2, whose
image consists of the points {x ∈ R2|max(|x1|, |x2|) = 1}.
Exercise 7.2.4. Let f : M → N be a continuous map. Show that f is di�eren-
tiable if and only if for each g ∈ C∞(N), g ◦ f ∈ C∞(M).

Exercise 7.2.5. Show that the ring E n possesses zero-divisors.

Exercise 7.2.6. Give an immersion R → R2 (and not just a picture!), which
cannot be approximated with proximity? 1 by an embedding.

Exercise 7.2.7. Show that for each n there exists a di�erentiable map f : R → Rn
such that for each k ∈ N

f(t ∈ R|t ≥ k)

contains all points, for which all coordinates are rational.

Exercise 7.2.8. Find a function δ : R → R, δ > 0, and for each n ∈ N a
di�erentiable map f : R → Rn, such that for no embedding g : R → Rn one has
|g − f | < δ.
Hint: use exercise 7.

Exercise 7.2.9. For a compact manifold Mm it is easy to prove an embedding
theorem without regard to the dimension. One can choose a �nite good atlas
{hν |ν = 1, . . . , r}, a bump function ψ for K(1) with support in K(2), and one
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sets ψν := ψ · hν : M → R and kν := ψν · hν : M → Rm (both maps vanish
outside Vν). Show that the map

M →
r∏

ν=1

Rm ×
r∏

ν=1

R, p 7→ (k1(p), . . . , tr(p), ψ1(p), . . . , ψr(p))

is an embedding, without using anything else from this chapter.

Exercise 7.2.10. Let Mm be a connected non-compact di�eren�able manifold.
Show that there exists a sequence of open subsets Vν ⊂ M , such that Vν ≃
K(1) ⊂ Rm, Vν ∩Vν+1 ̸= ∅, Vν ∩Vλ = ∅ if λ ̸∈ {ν−1, ν, ν+1}, and {Vν |ν ∈ N}
is locally �nite, see Fig. 49.

Figure 7.9:

Exercise 7.2.11. Show that there exists a closed embedding of the real line in
every connected non-compact di�erentiable manifold.
Hint: use exercise 7.2.10.



Chapter 8

Dynamical Systems

8.1 Dynamical systems or �ows

The di�erential topologist sometimes `pushes' a submanifold aside, `dents' it
somewhere, `bends' or `deforms' it, and the handwaving which accompanies
such operations all the more undermines the con�dence of the observer. He
believes the assertions are plausible but that they have not been proven.

We propose to make such `bending' precise by means of isotopies of em-
beddings and, in order to be able to construct isotopies, one needs dynamical
systems on manifolds. Both for their own importance and for the applications
we turn our attention �rst to these.

De�nition 8.1.1. Let M be a di�erentiable manifold. A di�erentiable map

Φ : R×M →M

is called a dynamical system or �ow onM , if for all x ∈M and t, s ∈ N we have

(i) Φ(O, x) = x,

(ii) Φ(t,Φ(s, x)) = Φ(t+ s, x).

The essential content of these two conditions becomes clear if one replaces
Φ by a family of maps M →M , parametrised by R. We write

Φt :M →M, x 7→ Φ(t, x)

Then (i) and (ii) read Φ0 = idM , and Φt ◦ Φs = Φt+s, so Φ−t = −Φt, and one
has:

Remark 8.1.2. A di�erentiable map Φ : R ×M → M is a dynamical system if
and only if the map t 7→ Φt de�nes a group homomorphism of the abelian group
(R,+) into the group Diff(M) of di�eomorphisms of M onto itself. One also
says that the group (R,+) operates (or acts) on M .

77
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Geometrically, one takes a quite di�erent position if one considers the �ow
Φ : R×M →M as a family of curves R →M parametrised by M .

De�nition 8.1.3. If Φ : R×M →M is a �ow, and x ∈M , the curve

αx : R →M, t 7→ Φt(x)

is called the �ow line or integral curve of x. The image αx(R) of the �ow line
is called the orbit of x, see Fig. 8.1.

Figure 8.1:

Remark 8.1.4. If a �ow is given on a manifold, then exactly one orbit passes
through each point p of M .

Proof. The relation x ∼ y ⇔ x = Φt(y) for some t is an equivalence relation for
points ofM , as one can easily check. The orbits are the equivalence classes.

In order to obtain an idea of the geometric mechanism of a �ow, one does not
usually consider the single di�eomorphism Φt, but one tries to give an overall
picture of the behaviour of all the orbits. There are three types of orbit:

Remark 8.1.5. A �ow line αx : R →M of a �ow is either

an injective immersion that is, αx is an immersion and there exists some
p > 0 with αx(t+ p) = αx(t) for all t; (Fig. 8.2)

or

a periodic immersion that is, αx is constant, αx(t) = x for all t, (Fig. 8.3).
In this case x is called a �xed point of the �ow.

Proof. If α : (a, b) → M is a di�erentiable curve in M and t0 ∈ (a, b), then we
write α̇(t0) ∈ Tα(t0)M for the velocity vector of the curve at the point t0. Thus
α̇(t0) as a derivation is given by α̇(t0)(f) := (d/dt)fα(t0), see Fig. 8.4.

Now for a �ow line αx (see Fig. 8.5)
we have α̇(t0) = T (Φt0)(α̇(x)(0)), for αx(t + t0) = (Φt0 ◦ αx)(t). Since Φt0

is a di�eomorphism, either (α̇x(t) ̸= 0 for all t, that is, the �ow line is an
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Figure 8.2:

Figure 8.3:

immersion (non-singular curve) or, (α̇x(t) = 0 for all t for all t, that is, αx is
constant. If αx is not injective, hence αx(t0) = αx(t1) for speci�c values t0 < t1,
then Φt0(x) = Φt1(x), hence also ΦtΦt0(x) = ΦtΦt1(x) for all t. It follows that
Φt(x) = Φt+(t1−t0)(x), that is, αx(t) = αx(t+ (t1 − t0)) for all t.

If we have a �ow on M and U is an open subset of M , then we see from Fig.
8.6 that, in general, it is not the ease that �ow lines of points in U lie entirely
in U .

On account of continuity however, if x ∈ U the �ow line αx must belong to
U for some small interval (ax, bx) about 0 ∈ R, see Fig. 8.7.

This situation leads us to the de�nition of the concept of a `local �ow':

De�nition 8.1.6. Let M be a di�erentiable manifold. By a local �ow Φ on M
we understand a di�erentiable map

Φ : A→M

from an open subset A ⊂ R ×M , containing 0 ×M , to M , such that for each
x ∈M the intersection A ∩ (R× {x}) is connected, see Fig. 8.8, and such that

(i) Φ(0, x) = x
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Figure 8.4:

Figure 8.5:

(ii) Φ(t,Φ(s, x)) = Φ(t+ s, x)

for all t, s, x for which both sides are de�ned.

A local �ow with A = R×M is dearly a �ow (global �ow).

Notation 8.1.7. If Φ : A → M is a local �ow on M , then we shall denote the
domain of de�nition of the �ow line αx:

t 7→ Φ(t, x)

by (ax, bx), see Fig. 8.9.

Note that for a local �ow, one can, in general, no longer talk of the di�eo-
morphism Φt, since for �xed t ̸= 0, x 7→ Φ(t, x) is not necessarily de�ned on all
of M , see Fig. 8.10.

De�nition 8.1.8. If Φ is a (local or global) �ow on M , then the vector �eld

Φ :M → TM, x 7→ α̇x(0)

is called the velocity �eld of the �ow, see Fig. 8.11.
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Figure 8.6:

Figure 8.7:

Remark 8.1.9. For all �ow lines and for all t ∈ (ax, bx), α̇x(t) = Φ̇(αx(t)), see
Fig. 8.12.

Proof. This follows from the de�nition for t = 0. For z = αx(t), we have
αz(s) = αx(s + t), provided that both sides are de�ned (in any case in some
neighbourhood of s = 0), hence α̇z(0) = α̇x(t).

Often in geometric considerations, one needs �ows which `do' something or
other, that is, have preassigned properties. It would be highly inconvenient to
always have to explicitly construct such �ows as maps R×M →M or A→M .
What really makes �ows usable is the result that a �ow is completely determined
by its velocity �eld and that, to a prescribed velocity �eld, there actually exists
a �ow.

Theorem 8.1.10 (Integrability theorem for vector �elds). Every vector �eld is
the velocity �eld of exactly one maximal local �ow; on a compact manifold even
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Figure 8.8:

Figure 8.9:

of a global one.

Proof. The essential mathematical kernel of this theorem is the theorem on
the existence and uniqueness of solutions to �rst order ordinary di�erential
equations, which we want to quote here. Our problem consists then only in the
translation into the language of manifolds. Therefore:

Quotations from the theory of ordinary di�erential equations: Let Ω ⊂ Rn
be an open subset and f : Ω → Rn a di�erentiable (C∞) map. Then we have

(a)

Theorem 8.1.11 (Uniqueness theorem). If

α : (a0, a1) → Ω

and
β : (b0, b1) → Ω
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Figure 8.10:

Figure 8.11:

are di�erentiable curves with α(0) = β(0) = x, and α̇(t) = f(α(t)), β̇(t) =
f(β(t)) for all values of t in the appropriate domain of de�nition, then
α(t) = β(t) for all t ∈ (a0, a1) ∩ (b0, b1).

(Lang [2], chapter 8, section 1, theorem 3, p. 375.)

(b)

Theorem 8.1.12 (Existence theorem). For each x ∈ Ω there exists an open
neighbourhood W ⊂ Ω, some ε > 0 and a di�erentiable (C∞) map

φ : (−ε, ε)×W → Ω

with the property that φ(0, x) = x for all x ∈ W , and φ̇(t, x) = f(φ(t, x))
for all (t, x) ∈ (−ε, ε)×W .

(Lang [2], chapter 8, section 4, theorem 7, p. 388.)
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Figure 8.12:

Connection with di�erential topology. Let X be a vector �eld on M and
(h, U) a di�erentiable chart of M . By means of the bundle chart of TM associ-
ated to (h, U), we transplant X|U to a map

f : U
′
→ TU

′
= U

′
× Rn → Rn

of U
′
into Rn, namely, f(h(x)) := Txh(X(x)), see Fig. 8.13.

Figure 8.13:

Here Th(x)U
′ ≃ Rn in the usual way. Then for curves α : (a, b) → U we have

α̇(t) = X(α(t)) ⇔ ˙(h ◦ α)(t) = f(h ◦ α(t)),

see Fig. 8.14.
We now want to call a curve α : (a, b) →M a solution curve for X, if α̇(t) =

X(α(t)) everywhere. Then the considerations above show that, for each x ∈M ,
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Figure 8.14:

there is exactly one maximal solution curve αx : (ax, bx) →M with αx(O) = x.
The existence of a solution curve with α(0) = x follows (using a chart about
x) from the existence theorem for ordinary di�erential equations, and any two
solution curves agree on the intersection of their intervals of de�nition. This
follows since the set of t, where the two solutions agree, is closed by continuity,
but it is also open, as one sees by applying the uniqueness theorem in the image
of a chart about y ∈ M . Therefore, the uniquely determined maximal solution
curve is given on the union of all intervals of de�nition of all solution curves
with α(0) = x, see Fig. 8.15.

Figure 8.15:

Now let us turn to the proof proper of the theorem. We �rst establish the
following assertion:

Proposition 8.1.13. The set

A := ∪x∈M (ax, bx)× x

determined by the domains of de�nition of maximal solution curves is open in
R×M , and the map

Φ : A→M
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given by the solution curves is a maximal local �ow with the given vector �eld
as velocity �eld.

Proof. To prove this it is enough to show that A is open and Φ is di�erentiable,
since the conditions Φ(0, x) = x and Φ(t,Φ(s, x)) = Φ(t + s, x) follow simply
from the fact that Φ|(ax, bx)× x is a solution curve. Both

t 7→ Φ(t+ s, x)

and
t 7→ Φ(t,Φ(s, x))

(where we allow all t for which both expressions make sense) de�ne maximal
solution curves for the initial value Φ(s, x) and hence are necessarily identical.
The maximality of the �ow follows immediately from the maximality of the
solution curves.

Now for each x ∈ M , one considers the interval Jx ⊂ R+, which consists of
those t ≥ 0, for which A contains a neighbourhood of [0, t] × x, on which Φ is
di�erentiable.

Then we have to show that Jx = [0, bx) and the corresponding result for
t ≤ 0. By de�nition, Jx is open and it is enough to show that Jx is non-empty
and closed in [0, bx). Both follow from the local existence theorem:

For a point p ∈ M we �nd a neighbourhood W of p in M , an ε > 0 and a
di�erentiable map

φ : (−2ε, 2ε)×W →M,

such that φ|−2ε,2ε×q is a solution curve for the initial value q ∈ W . From this
follows, �rst of all, that A contains a neighbourhood of 0 ×M , on which Φ is
di�erentiable, for, given the uniqueness of the solution curves, we must have
Φ|(−2ε,2ε)×W = φ. Hence Jx is non-empty. If τ ∈ Jx (closure in [0, bx)!) and
Φτ (x) = p then, by de�nition of Jx, we have a set [0, τ − ε]× U in A, in whose
neighbourhood Φ is de�ned and di�erentiable. Here, U is a neighbourhood of
x in M , and ε is chosen as above for the point p with τ − 2ε > 0. If one now
de�nes the neighbourhood U

′
of x in M by

U
′
= Φ−1

τ−εφ−ε(W ),

with W the neighbourhood of p chosen above, see Fig. 8.16,
then Φ is de�ned and di�erentiable in a neighbourhood of [0, τ + ε] × U

′
,

hence particularly in a neighbourhood of [0, τ ]× x. Note that the di�erentiable
map

(τ − 2ε, τ + 2ε)× U
′
→M, (t, u) 7→ φ(t− τ, (τ, u))

correctly extends the solution curves given by Φ on U
′ × [0, τ − ε] because of

the uniqueness theorem, see Fig. 8.17.
Therefore τ ∈ Jx, which is what we had to show.
In this way, we have associated a maximal local �ow to the preassigned

velocity �eld. That this is the only maximal one follows immediately from
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Figure 8.16:

Figure 8.17:

(8.1.13), for each �ow with the same velocity �eld must be a restriction of Φ
since its �ow lines are solution curves of the �eld and Φ has the maximal solution
curves as �ow lines. Thus, the uniqueness part of the integrability theorem for
vector �elds is also proved, and it only remains to show that the maximal �ow
of a velocity �eld given on a compact manifold is global.

If M is compact, then for some ε > 0, A contains a subset of the form
(−ε, ε)×M , see Fig. 8.18.

Then (−2ε, 2ε) ×M must also be contained in A, for one can extend the
�ow de�ned on (−ε, ε)×M to (−2ε, 2ε)×M M by setting

Φ(t, x) := Φ

(
t

2
,Φ

(
t

2
, x

))
.

Since Φ : A → M is maximal, it follows that (−2ε, 2ε) × M ⊂ A. Clearly,
therefore, R×M = A, which concludes the proof.

A generalisation of this last part of the theorem actually holds: a maximal
solution curve, which is not de�ned for all time, eventually leaves each compact
set. This means, if α : (ax, bx) → M is a maximal solution curve of a vector
�eld on M , bx <∞ and K ⊂M is compact, then there exists some ε > 0, such
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Figure 8.18:

that α(bx − ε, bx) ∩K = ∅. For the proof, one needs only to choose ε so small
that K × [0, ε] belongs to the domain of de�nition A of the local �ow.

As a �rst typical geometric application of the integration theorem for vector
�elds we prove the important

Theorem 8.1.14 (Fibration theorem of Ehresmann). Let f : E → M be a
proper submersion of di�erentiable manifolds, then f is a locally trivial �bration,
that is, if p ∈M and F = f−1(p) the �bre of p, then there exists a neighbourhood
U of p in M and a di�eomorphism φ : U × F → f−1U , such that the following
diagram is commutative:

U × F
φ //

proj1 ""

f−1U

f |f−1U||
U

Proof. The assertion is local relative to M , so that we may replace E, M and
f by f−1U , U and the restriction of f , and thus, w.l.o.g., assume that M = Rn
and p = 0. In this case we have the basic vector �elds ∂/∂xν , and we can lift
these to E, obtaining vector �elds v1, . . . , vn on E, such that for all x ∈ E

Txf(vν(x)) = ∂/∂xν .

Locally, about a point x ∈ E, such �elds are easy to �red because, by the rank
theorem, f is transformable to the form proj1 : U × V → U , and one obtains
the vν on all of E by glueing together the locally chosen �elds by means of a
partition of unity.

Now by (8.1.8), (8.1.10), the vector �elds Vν determine local �ows Φν on E,
and in order to prove the theorem we put

F = f−1(0), φ(u, x) = Φ1
u1
◦· · ·◦Φnun

(x), x ∈ F, u = (u1, . . . , un) ∈M = U = Rn
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It is perhaps not immediately clear that the map φ(u, x), de�ned in this way,
actually exists for all u ∈ Rn, but in any case, so long as the local �ows exist,

u = proj1(u, x) = f ◦ φ(u, x),

for
f ◦ Φνuν

(y) = f ◦ Φν0(y) + uνeν ,

where eν ∈ Rn is the n-th unit vector. Namely, the equation holds for uν = 0,
and the agreement of the derivatives according to uν is assured, because vν lifts
the �eld ∂/∂xν .

Then, however, it also follows that all the �ow maps in the de�nition of φ
exist, because for |u| ≤ K the �ow lines remain inside the compact set f−1{u ∈
Rn||u| ≤ K}. Here we use the assumption that f is proper. Finally, one obtains
the inverse map φ−1 : E → U × F for U = Rn by setting f(y) = u and

φ−1(y) = (u,Φn−un
◦ · · · ◦ Φ1

−u1
(y)).

The assumption that f is proper is essential; if, for example, we remove a
point from E, the restriction of f is still a submersion but, in general, it is no
longer a �bration.

8.2 Exercises

Exercise 8.2.1. Show that for each n ≥ 0 there is a �ow on S1 with exactly n
�xed points.

Exercise 8.2.2. Show that for each vector �eld X on M there is an everywhere
positive function ε :M → R, such that ε(X) is globally integrable.

Exercise 8.2.3. Show that each bounded vector �eld de�ned on Rn is globally
integrable.

Exercise 8.2.4. Let G ⊂ R be a closed subset and subgroup of (R,+). Show
that either G = 0, or G ≃ Z, or G = R.

Let αx : R → M be a �ow line of a dynamical system; show that G := {t ∈
R|αx(t) = x} is a closed subgroup of (R,+), and that the following hold:

� αx is an immersion i� G ̸= R.

� αx is periodic i� G ≃ Z. The smallest period is then a generator for G.

� If αx is periodic, then αx(R) ⊂ M is a submanifold, di�eomorphic to a
circle.

Exercise 8.2.5. Let M be a compact manifold of dimension ≥ 2. Show that
there exists an injective immersion R →M , whose image is not a �ow line of a
�ow on M .
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Exercise 8.2.6. Show that every submanifold of M di�eomorphic to S1 arises as
the orbit of a global �ow on M .
Hint : Use partitions of unity.

Exercise 8.2.7. An open set U ⊂ Rn is called star-shaped for p ∈ U if, for each
x ∈ U , the line segment joining x to p lies entirely in U . Show that a star-shaped
subset of ⋉ is di�eomorphic to Rn.
Hint : construct a di�eomorphism which maps the orbits of the vector �eld
X(x) = x − p on Rn onto the orbits of a vector �eld ε · X on U , with ε as in
exercise 8.2.2, see Fig. 8.19.

Figure 8.19:

Exercise 8.2.8. Give an example of a �xed point free �ow on S2n−1.
Hint : S2n−1 ⊂ Cn.

Exercise 8.2.9. De�ne a �ow on S2, which has exactly two �xed points, and
exactly one closed orbit.

Exercise 8.2.10. Give an example of a �ow on the projective plane RP 2, which
has exactly one �xed point and otherwise only closed orbits.

Exercise 8.2.11. For each λ ∈ [0, 1] let a �ow Φ(λ) : R× S1 → S1 be given, such
that the associated map [0, 1] × R × S1 → S1 is di�erentiable, and so that Φ1)

is the reversed �ow for Φ(0), that is, Φ(1)(t, x) = Φ(0)(−t, x). Show that each
point x ∈ S1 is a �xed point of Φ(λ) for some λ, see Fig. 69.

Exercise 8.2.12. Show that if X is a vector �eld on S2, which is nowhere tan-
gential to the `equator' S1 = S2 ∩ (R2 × 0) ⊂ R3, then each �ow line meets the
equator at most once.

Exercise 8.2.13. Show that on the torus S1 × S1 there exists a vector �eld for
which no orbit of the associated �ow is a submanifold of S× S1.
Hint : S1 × S1 = (R × R)/(Z × Z). Consider a speci�c constant vector �eld on
R2.

Exercise 8.2.14. Show that on each non-compact connected manifold there exists
a vector �eld which is not globally integrable. Hint: apply exercise 7.2.11.
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Figure 8.20:

Exercise 8.2.15. Let g : R → R+ be continuous, lim|x|→∞ g(x) = 0, and A =
{(t, x) ∈ R2|t < g(x)}. Show that there is a maximal local �ow on R, which is
de�ned on A but not on all of R× R.



92 CHAPTER 8. DYNAMICAL SYSTEMS



Chapter 9

Isotopy of Embeddings

9.1 Isotopy

For the intuitive, as well as the formal, understanding of the theory of di�eren-
tiable manifolds, it is important to know the extent to which submanifolds can
be `moved'.

De�nition 9.1.1. Let f : M → N be an embedding. A di�erentiable map
h : [0, 1]×M → N is called an isotopy of f if h0 = f and each of the maps

ht :M → N, x 7→ h(t, x)

is an embedding; h is called an isotopy between h0 and h1, and h0 and h1 are
called isotopic embeddings, see Fig. 9.1.

Figure 9.1:

At the `boundary points', for example (O, x) by `di�erentiable' we mean that
there exists some neighbourhood Ũ of (0, x) in R×M and a di�erentiable map
h̃ : Ũ → N , which agrees with h on Ũ ∩ ([0, 1]×M), see Fig. 9.2.

93
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Figure 9.2:

Although this is the way one thinks and speaks about isotopy, it is often
technically more convenient to use a modi�ed (but equivalent) de�nition. For
example, without further assumptions, the de�nition above does not imply that
isotopy between embeddings is a transitive relation. Thus, when we naively
stick together isotopies h between f and f

′
, and k between f

′
and f

′′
:

(t, x) 7→

{
h(2t, x) for 0 ≤ t ≤ 1

2

h(2t− 1, x) for 1
2 ≤ t ≤ 1

illustrated by Fig. 9.3;

Figure 9.3:

then, because h1 = k0 = f
′
, this map is certainly continuous but, in general,

not di�erentiable.

De�nition 9.1.2. A di�erentiable map h : R×M → N will be called a technical
isotopy, if each ht is an embedding and also for some ε > 0,

ht =

{
h0 for t ≤ ε

h1 for t ≥ 1− ε

as illustrated by Fig. 9.4;
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Figure 9.4:

It is clear that one can easily join such technical isotopies together, as in
Fig. 9.5, and that the combined isotopy is again technical.

Figure 9.5:

If h is a technical isotopy between h0 and h1, then clearly h|0, 1] ×M is an
isotopy between h0 and h1. Conversely, given an isotopy h : [0, 1] ×M → N
between h0 and h1, and a C∞-function φ : R → [0, 1] of the kind illustrated by
Fig. 9.6

(compare Chapter 7), then the map

R×M → N, (t, x) 7→ h(φ(t), x)

is a technical isotopy between h0 and h1. In particular therefore, `isotopic' is
an equivalence relation.

De�nition 9.1.3. By a di�eotopy of a manifold N we understand a di�eren-
tiable map

H : [0, 1]×N → N,

such thatH0 = idN and eachHt : N → N , Ht(x) = H(t, x) is a di�eomorphism.

If H is a di�eotopy of N and f :M → N is an embedding, then ht := Ht ◦ f
gives an isotopy of f ; any movement of the big manifold carries all submanifolds
with it.
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Figure 9.6:

De�nition 9.1.4. De�nition. An isotopy h : [0, 1] × M → N is said to be
embeddable in a di�eotopy if there exists a di�eotopy H of N , such that for all
t, ht = Ht ◦h0. The embeddings h0 and h1 are then said to be di�eotopic in N .

Two di�eotopic embeddings h0 and h1 are, in particular, clearly equivalent
in the sense that there exists a di�eomorphism (here equal to H1) from N to
itself, so that the following diagramme is commutative, something which for
merely isotopic embeddings need not be the case.

N

≃

��

M

h0

>>

h1   
N

One is frequently in the situation where one has isotopy and would like to have
di�eotopy. The following theorem, which constitutes the main content of the
present chapter, shows that, under certain conditions, this wish can be ful�lled.

Theorem 9.1.5 (R. Thom 1957). If h is a (technical) isotopy of embeddings of
M in N , which holds �xed all points outside a compact subset M0 of M , then
one can embed h in a (technical) di�eotopy of N , and indeed even in one which
holds �xed all points outside a compact subset N0 of N .

Although the theorem is valid for arbitrary isotopies, we shall only prove the
weaker remit for technical isotopies. (Transcriber's note: Even then, the proof
is quite involved.) This is enough for all applications - in particular, one can
conclude from the existence of an isotopy the existence of an embedded isotopy.

Proof. Let h : R×M → N be a technical isotopy which holds �xed every point
outside the compact set M0 ⊂M . We can choose a compact neighbourhood N0

of h([0, 1]×M0), as in Fig. 9.7.
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Figure 9.7:

We want to construct a technical di�eotopy H : R ×M → N , which holds
�xed all points outsideN0 and which has the required property that ht = Ht◦h0,
see Figs. 9.8 and 9.9.

To this end we consider �rst the map

F : R×M → R×N, (t, x) 7→ (t, ht(x))

In order to embed h in a di�eotopy we try to de�ne a global �ow on R×N ,

Φ : R× (R×N) → R×N

on which we impose the following conditions:

(i) Φt = Φ(t, τ, x), τ ∈ R, x ∈ N should map τ ×N onto (r + t)×N , see Fig.
9.10.

(ii) Φ should carry the isotopy along with it, which is commutative for all t;

0×N

Φt|0tiesN

��

M

h0

;;

h1 ##
1×N

and �nally,

(iii) Outside [ε, 1− ε]×N0 the projection of an arbitrary �ow line on N should
be locally constant.

If Φ satis�es these three conditions, then clearly the di�erentiable map H :
R×N → N , de�ned by the diagram

R× (0×N
Φ //

H
&&

R×N

proj

��
N
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Figure 9.8:

Figure 9.9:

has the properties required by the theorem. Since Φ is a �ow, H0 = idN ;
condition (i) implie s that each Ht : N → N is a di�eomorphism (Φ−t|t × N
takes care of the inverse); because of (thm:95-b) ht = Ht ◦ h0 and because of
(thm:95-c) H is a technical di�eotopy which holds �xed all points outside N0.

Since every �ow is determined by its velocity vector �eld, we may formulate
the conditions (i)-(iii) as conditions on ˙Phi.

Assertion 1 in the proof. I Φ is a global �ow on R×N , then the conditions
(i)-(iii) are equivalent to the conditions (i

′
)-(iii′) on X := Φ̇:

(i
′
) The R-component of X, that is, the image of X under the di�erential of

the projection R×N → R is equal everywhere to the `unit tangent vector'
∂/∂t.

(ii
′
) On F (R×M) the �eld X is given by T(t,x)F (∂/∂t) = X(F (t, x)), see Fig.

9.11.

This means that the curves R → R × N , (t 7→ (t, ht(x))) given by the
isotopy are solution curves of X, hence �ow lines of Φ, and this again
means precisely that the isotopy is 'carried' as in (ii) above.

(iii
′
) Outside [ε, 1− ε]×N0 the �eld X equals ∂/∂t.
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Figure 9.10:

Figure 9.11:

Assertion 2 in the proof. If a vector �eld X on R×N has the properties (i
′
)-

(iii
′
), then it is the velocity �eld of a global �ow Φ, since [0, 1]×N0 is compact

and the maximal solution curves for initial points outside [0, 1] × N0 have at
least (−ε, ε) in the domain of de�nition. Hence (−δ, δ)× (R×N) ⊂ A for some
δ > 0, hence also (−2δ, 2δ)× (R×N) ⊂ A, etc.

We therefore obtain, as an intermediate result: the theorem is proved once
we can �nd a vector �eld X on R×N with the properties (i

′
)-(iii

′
).

First of all, we remark that the conditions (i
′
)-(iii

′
) for the section X :

R×N → T (R×N) are conditions on the individual vectors X(t, x), and that if
the conditions are satis�ed for v and w out of T(t,x)(R×N), then they are also
satis�ed for all λv + (1 − λ)w. Hence it is enough to show that such a vector
�eld exists locally about each point because we can then construct the required
vector �eld on all of R×N by means of a partition of unity.

If, for each point outside the compact (and hence closed) subset F ([ε, 1 −
ε]×M0) ⊂ R×N , one de�nes X as ∂/∂t, then one has already solved the local
construction problem for all points in R×N \ F ([ε, 1− ε]×M0) (Fig. 9.12).

We therefore consider a point q0 = F (t0, p0) with (t0, p0) belonging to [ε, 1−
ε]×M0. We want a neighbourhood U of q0 in R×N and a vector �eld X0 on
U with the properties (i

′
)-(iii

′
).
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Figure 9.12:

First, we choose local coordinates about the point q0 in t0×N , with respect
to which ht0(M) is given by xk+1 = · · · = xn = 0. This is possible because ht0
is an embedding, see Fig. 9.13.

Figure 9.13:

With respect to these coordinates and on a su�ciently small neighbourhood
of (t0, p0, 0) in R×M × Rn − k, the map

(t, p, xk+1, . . . , xn) 7→ F (t, p) + (0, 0, . . . , 0, xk+1, . . . , xn)

is a di�erentiable map into R×N , which has maximal rank at the point (t0, p0, 0)
and, therefore, is a local di�eomorphism. We may choose δ > 0 and a small
neighbourhood V of p0 in M , such that on

W := (t0 − δ, t0 + δ)× V × {x ∈ Rn−k||x| < δ},

this map, which we now want to label F̂ , de�nes a di�eomorphism

F̂ :W → F̂ (W ) =: U.

We may also chooseW so small that the projection from U on N remains inside
N0 and that, apart from the points F̂ (t, p, 0), no other points of F (R ×M) lie
in U , see Fig. 9.14.
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Figure 9.14:

If this last condition could not be ful�lled, then there would exist a sequence
(ti, pi)i∈N with ti 7→ t0, pi ∈ M \ V and F (ti, pi) → q0. It would be impossible
for in�nitely many points pi to belong to the compact set M0 \ V , because
these would have an accumulation point p̃ ∈ M \ V , for which F (t0, p̃) = q0,
contradicting the injectivity of ht0 . Hence only �nitely many points pi belong to
M0, and the sequence (ti, pi) belongs ultimately to R×(M \M0). However, there
h is, by assumption, independent of t, hence not only does F (ti, pi) → q0, but
also F (t0, pi) → q0, but then ht0 could not be an embedding: a contradiction.

Next, one carries the vector �eld ∂/∂t on W over to a vector �eld X0 on U
by means of F̂ :

X0(u) = Tu(F̂
−1)−1(∂/∂t),

and obtains thereby a local vector �eld near q0 with the properties (i
′
), (i

′
),

(iii
′
).
This closes the gap in the construction, and proves the `isotopy theorem'

(9.1.5).

9.2 Exercises

Exercise 9.2.1. Let M be a connected manifold with dim(M) ≥ 2. Let x1, . . . , xk
be distinct points of M , and let y1, . . . , yk also be distinct points of M . Show
that there exists a di�eomorphism φ :M →M with φ(xi) = yi (i = 1, 2, . . . , k).

Exercise 9.2.2. Let M be a closed submanifold of the connected manifold N ,
codimM ≥ 2, and p, q ∈ N \M . Show that there exists a di�eomorphism of N
to itself, which is the identity on M , and which maps p to q.

Exercise 9.2.3. If Φ : R × M → M is a �ow, then Φ|[0,1]×M is of course a
di�eotopy. Give an example of a di�eotopy which is not the restriction of a
�ow.

Exercise 9.2.4. Let K ⊂ Rn be compact and U ⊂ Rn open and non-empty.
Construct a globally integrable vector �eld on Rn susch that Φ1(K) ⊂ U .
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Exercise 9.2.5. Show that in a di�erentiable vector bundle every di�erentiable
section is an embedding isotopic to the zero-section.

Exercise 9.2.6. Consider the embedding S1+S1 → C, which is the usual inclusion
on the �rst factor and which is given on the second by x 7→ 2x, see Fig. 9.15.

Figure 9.15:

De�ne an isotopy of this embedding hτ : S1 + S1 → C by

e2πit 7→ e2πi(t+τ), e2πis 7→ 2e2πi(s−τ)

for 0 ≤ τ ≤ 1, and embed it in a di�eotopy.

Exercise 9.2.7. Show that the antipodal map

Sn → Sn, x 7→ −x

is isotopic to the identity if and only if n is odd.

Exercise 9.2.8. Construct an embedding f : R → R with f(R) = (0, 1).

Exercise 9.2.9. Give an isotopy of the embedding

(0, 1) 7→ R2, t 7→ (t, 0),

which cannot be embedded in a di�eotopy of R2.

Exercise 9.2.10. Show that any two orientation preserving embeddings R → R
are isotopic.

Exercise 9.2.11. Let n > m be natural numbers. Show that two arbitrary
embeddings Rm → Rn are isotopic.

Exercise 9.2.12. Give two orientation preserving but not di�eotopic embeddings
R → R.
Exercise 9.2.13. Show that the embeddings in Fig. 9.16,

S1 ⊂ R2 \ {0},

and
S1 ⊂ R2 \ {0}, x 7→ x+ (2, 0)

are not isotopic in R2 \ \{0}.
Hint : use complex variable theory.
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Figure 9.16:

Exercise 9.2.14. Find an isotopy h : R×M → N such that the map

R×M → R×N, (t, x) 7→ (t, h(t, x))

fails to be an embedding.
Hint : try M = R, N = R2.
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Chapter 10

Connected sums

It is intuitively clear how one can combine two connected manifoldsM1 andM2

into a third connected manifold M1#M2 (Fig. 10.1).

Figure 10.1:

10.1 Connected sums via isotopy

We treat this process in this section as an application of the isotopy theorem,
(9.1.5), because it is the isotopy theorem which shows why the result M1#M2

is essentially well de�ned, hence independent of the technicalities of the combi-
nation.

De�nition 10.1.1. Let Mn be a connected n-dimensional manifold and f, g :
Rn → Mn two embeddings. We say that f and g are compatibly oriented if

105
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either Mn is not orientable or, f and g, relative to �xed orientations of R and
Mn, are both either orientation preserving or reversing.

Remark 10.1.2. If τ : Rn → Rn is given by τ(x1, . . . , xn) = (−x1, . . . , xn) and
f, g : Rn →Mn are not compatibly oriented, then f and g ◦ τ are.

Lemma 10.1.3. lf two embeddings of Rn in the connected n-dimensional man-
ifold Mn are compatibly oriented, then they are isotopic.

Caveat : The proof of Lemma 10.1.3 is quite involved.

Proof. Let f and g be the two embeddings. First, we want to convince ourselves
that, w.l.o.g., we may take f(0) = g(0).

On a connected manifold for any two points p and q there always exists a
di�eotopy H, which takes p into q: H1(p) = q. One only needs to embed an
isotopy between the embeddings

{p} → {p} ⊂M

and
{p} → {q} ⊂M

in some di�eotopy by means of (9.1.5), and each di�erentiable path from p to q
gives us such an isotopy, see Fig. 10.2.

Figure 10.2:

If now H is a di�eotopy with H1(f(0)) = g(0), then it is enough to show
that H1 ◦ f and g are isotopic, since isotopy is an equivalence relation. Since it
is clear that all Ht ◦ f are compatibly oriented, so are H1 ◦ f and g, so that the
problem is reduced to the case f(O) = g(O). We shall now therefore assume
that f(O) = g(O).

The next step in the proof will be to `shrink' f and g. But before doing that,
we wish to make a short remark about Rn, which will also be frequently useful
later. Given prescribed r0 > 0, ε > 0 we choose a C∞-function φ on [0,∞) with
everywhere positive slope, which is given by φ(r) = r on [0, r0] and whose limit
as r → ∞, is r0 + ε, see Fig. 10.3.
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Figure 10.3:

Then, if ψ(r) = (1/r)φ(r), ψ is also a C∞-function on [0,∞), see Fig. 10.4,

Figure 10.4:

and
σt(x) := ψ(t|x|) · x

de�nes an isotopy e of embeddings Rn → Rn (work in polar coordinates!), of
which we wish to collect some properties for future use.

Proposition 10.1.4. For prescribed r0 > 0 and ε > 0 there exists an isotopy σ
(shrinking) between the identity on Rn and an embedding Rn → Rn, with image

(r0 + ε)D̊n = {x ∈ Rn||x| < r0 + ε},

which is such that all points of r0Dn = {x ∈ Rn||x| ≤ r0} are held �xed during
the isotopy, see Fig. 10.5.

In particular, σ1 is a di�eomorphism between Rn and (r0 + ε)D̊n, which is
the identity on r0Dn. For example, we have:

Corollary 10.1.5. 1fan open neighbourhood of r0Dn ⊂ Rn is embedded in a
manifold M , then there also exists an embedding Rn → M , which agrees with
the given embedding on r0Dn.
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Figure 10.5:

Now we continue with the proof of lemma (10.1.3). We can choose a chart
about the point f(0) = g(0) in M , so that the image of the chart domain U is
all of Rn, see Fig. 10.6.

Figure 10.6:

This is easy to do, since εD̊n ≃ Rn.
Next, we can choose a shrinking (10.1.4) su�cient to ensure that f◦σ1(Rn) ⊂

U and g ◦ σ1(Rn) ⊂ U , see Fig. 10.7.
Since f ◦σ1 is isotopic to f (the isotopy is given by ht := f ◦σt), and likewise

g ◦ σ1 to g, we have yet to show that f ◦ σ1 and g ◦ σ1 are isotopic.
It is now enough to consider embeddings Rn → Rn, and we pick one such

φ : Rn → Rn, with φ(0) = 0. Then (and this is the essential point of the whole
proof) φ is isotopic to the linear embedding Dφ0 : Rn → Rn, given by the
Jacobi matrix at the point zero.

In fact, by lemma (2.2.2), there exist di�erentiable maps ψi : Rn → Rn,
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Figure 10.7:

i = 1, 2, . . . , n, with φ(x) =
∑n
i=1 xiψi(x), and then the Jacobi matrix consists

precisely of the columns ψi(0):

Dφ0 = (ψ1(0), . . . , ψn(0)).

One now de�nes the isotopy between φ and Dφ0 by

(t, x) 7→
n∑
i=1

xiψi(t, x) =

{
φ(tx)/t for t > 0

Dφ0 · x for t = 0.

Note that
∑n
i=1 xiψi(tx) is smooth and that φ(tx)/t and Dφ0 ·x form an imbed-

ding Rn → Rn for each t.
If now two linear embeddings (hence isomorphisms)Rn → Rn are compatibly

oriented, then they are in the same connected component of GL(n,R), and
are therefore isotopic (the elementary transformations of a matrix - adding a
multiple of a row (column) to another, multiplying a row (column) by some
number α ̸= 0 - do not change the path component if α > 0).

In the case of an oriented manifold M we can now complete the proof of
lemma (10.1.3): here not only f and g but also f ◦σ1 and g ◦σ1 are compatibly
oriented, both with respect to M and also with respect to U ≃ Rn. Therefore
we obtain isotopic Jacobi matrices, since they have the same orientation.

If, however,M is not orientable, so that f and g cannot be assumed to satisfy
an orientation condition, then f ◦σ1 and g ◦σ1 may be oppositely oriented with
respect to U ≃ Rn. At �rst, therefore, the route via Jacobi matrices seems
blocked.

Clearly, this problem is solved if we can prove the following:

Proposition 10.1.6. lf M is a connected, non-orientable manifold and p ∈M
then there exists a di�eotopy H of M with H1(P ) = p, such that TpH1 : TpM →
TpM is orientation reversing.

Proof. Let us suppose that this proposition is false. Then we could choose an
orientation for TpM and orient every other tangent space TqM in the followhag
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way: choose a di�erentiable path α : [0, 1] → M , α(0) = p, α(1) = q; embed it
in a di�eotopy Hα and orient TqM via

TpH
α
1 : TpM ≃ TqM.

This orientation of TqM is indeed independent of the choice of α and Hα be-
cause, if another di�eotopy Hβ induced the opposite orientation, then the com-
position of Hα with the reversed di�eotopy associated with Hβ (see (9.1.2))
would have the property required by the proposition, see Fig. 10.8.

Figure 10.8:

So in this way we would obtain an orientation of M , which was assumed
non-orientable - contradiction.

In this way the proposition, and with it the lemma (10.1.3), is proved.

De�nition 10.1.7. Let M1 and M2 be n-dimensional connected manifolds -
oriented in the orientable case. Let

f1 :Rn →M1

f2 :Rn →M2

be embeddings - if the manifolds are oriented assume f1 preserves the orientation
and f2 reverses it. Then one calls the n-dimensional manifold, which is obtained
from the disjoint union

[M1 \ f1(Dn/3)] + [M2 \ f2(Dn/3]

by the identi�cation of f1(tx) with f2((1− t)x) for all 1/3 < t < 2/3, x ∈ Sn−1,
the connected sum ofM1 andM2 relative to the embeddings f1 and f2, denoted
by M1#M2, see Fig. 10.9.

Before we make ourselves more familiar with the connected sum, this is
perhaps the place to make some general remarks about `identi�cation'.
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Figure 10.9:

Remark 10.1.8 (about identi�cation). Let X and Y be topological spaces, X0 ⊂
X, Y0 ⊂ Y subspaces and α : X0 → Y0 a homeomorphism. Then one can glue
X and Y by means of α along X0 and Y0 to obtain a new topological space
X ∪α Y .

Thus: In X + Y , one introduces an equivalence relation ∼ by setting each
point x0 ∈ X0 equivalent to its image point α(x) ∈ Y0. The equivalence classes
take the form

{x}forx ∈ X \X0,

{y}forx ∈ Y \ Y0,
{x, α(x)} forx ∈ X0.

The set X + Y/ ∼ of equivalence classes, equipped with the quotient topology,
is then denoted by X ∪α Y , see Fig. 10.10.

Assertion. One can canonically consider X and Y as subspaces of X ∪α Y .
Assertion. If X and Y are di�erentiable manifolds, X0 and Y0 open sub-

manifolds, α : X0 → Y0 a di�eomorphism and (!) X ∪α Y a Hausdor� space,
then X ∪α Y is again in canonical fashion a di�erentiable manifold.

So, for example, if instead of the identi�cation f1(tx) 7→ f2((1 − t)x), illus-
trated in Fig. 10.11, we take the identi�cation f1(tx) 7→ f2(tx), illustrated in
Fig. 10.12, we do not obtain a manifold (even though the identi�cation space
is still locally Euclidean).
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Figure 10.10:

Figure 10.11:

The condition that X ∪α Y is again Hausdor� can be stated thus: if x ∈
X \X0, xν ∈ X0 and lim(xν) = x, then lim(α(xν)) does not exist in Y0.

Remark 10.1.9 (Assertion and orientation convention). A connected sum of
connected manifolds M1 and M2 is orientable precisely when M1 and M2 are
orientable, and there then exists exactly one orientation on M1#M2 which is
compatible with the given orientations on Mi \ fi(Dn/3), i = 1, 2. From now
on, a connected sum of oriented manifolds will always be given this orientation.

The construction of M1#M2 uses embeddings fi : Rn → Mi. That such
embeddings always exist (assuming that Mi is non-empty) is obvious (charts
and (10.1.5)). To what extent however is M1#M2 independent of the choice of
these embeddings?

First of all, the following is clear: if fi : Rn → Mi and f
′

i : Rn → M
′

i are
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Figure 10.12:

such embeddings and φi :Mi
≃−→M

′

i di�eomorphisms, for which

Mi

φi

��

Dn

fi|Dn
==

f
′
i |Dn

  
M

′

i

is commutative, then the φi induce a di�eomorphism between M1#M2 (formed
using f1 and f2) and M

′

1#M
′

2 (formed using f
′

1 and f
′

2).
In the case Mi = M

′

i , we know already that fi and f
′

i are isotopic because
of the assumed compatibility of orientation (lemma (10.1.3)). This isotopy,
however, does not necessarily �x all points outside a compact subset of Rn, and
so, without further discussion, we cannot embed it in a di�eotopy. We would
like to do this, because then

Mi

H

��

Dn

fi|Dn
==

f
′
i |Dn

  
M

′

i

would be commutative. It is, however, also unnecessary to embed the whole
isotopy in a di�eotopy, since we only use it on Dn.

Proposition 10.1.10 (Complement to the isotopy theorem). lf h is a tech-
nical isotopy of embeddings M → N and M0 ⊂ M is compact, then there
is a di�eotopy H of N , which is �xed outside a compact subset of N , with
ht|M0

= Ht ◦ h0|M0
.
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Proof. The proof proceeds almost exactly as that of the isotopy theorem itself
(9.1.5), except that the required vector �eld X on R×N has to satisfy condition
(ii

′
):

T(t,x)F (∂/∂t) = X(F (t, x))

only for points (t, x) ∈ R×M0. The argument around and below Fig. 9.14, in
which the independence of ht from t outsideM0 plays a role, is now dispensable.

Corollary 10.1.11. The (where relevant, oriented) di�eomorphism type of
M1#M2 does not depend on the choice of embeddings Rn →Mi.

We can therefore, in cases where it is only a matter of (where relevant,
oriented) di�eomorphism types, simply speak of `the' connected sum M1#M2,
while having in mind some particular connected sum.

10.2 Exercises

Exercise 10.2.1. Let M be an oriented connected manifold, p, q ∈ M and φ :
TpM ∼= TqM an orientation preserving isomorphism. Show that there exists a
di�eomorphism f :M →M with Tpf = φ.

Exercise 10.2.2. Show that there exists no embedding f : R2 → S1 × R, for
which f(R2) contains one of the sets S1 × {x}, see Fig. 10.13.

Figure 10.13:

Hint : use exercise 9.2.13.

Exercise 10.2.3. That fact that two arbitrary embeddings of Rn in an n-dimensional,
non-orientable, connected manifold are isotopic has a remarkable consequence:
in the case that our universe, which we only know locally, is globally not di�eo-
morphic to R3, but, for example, to S1 ×RP 2, then one would be able to make
a journey from which one's mirror image would return (heart on the right-hand
side, etc.). Try to believe it!
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Exercise 10.2.4. If one picks a base point from each of k copies of Sn, and
passes from the disjoint union Sn + · · · + Sn to the quotient space obtained
by identifying these k points, one obtains a so called `bouquet' of k n-spheres.
Describe a subspace of Rn+1, which is homeomorphic to this bouquet of spheres.
Is the bouquet a manifold?

Exercise 10.2.5. Let A = {hα : Uα → U
′

α|α ∈ A} be an atlas for a topological
n-dimensional manifold M . Consider the �nest equivalence relation on the
topological disjoint sum

∑
α∈A U

′

α, under which two points are equivalent if they
correspond to each other under some change of chart. Show that

∑
α∈A U

′

α/ ∼
is homeomorphic to M .

Exercise 10.2.6. Show that

(M1#M2)#M3
∼=M1#(M2#M3),

M1#M2
∼=M2#M1,

M#Sn ∼=M,

where the various connected sums may be de�ned using (10.1.7) and (10.1.9).

Exercise 10.2.7. Rn# · · ·#Rn ∼= ? ⊂ Rn.
Exercise 10.2.8. Show that RP 2#RP 2 admits a nowhere vanishing vector �eld.

Exercise 10.2.9. Show that ifM1 andM2 are compact submanifolds of Rk, then
M1#M2 is also embeddable in Rk.
Exercise 10.2.10. If n is odd, then RPn is orientable. Now that the di�eomor-
phism type of RPn#M is independent of which orientation one chooses in the
two summands.

Exercise 10.2.11. LetM1, . . . ,Mk be connected n-dimensional manifolds. Show
that

#Mk#M1#M2#

is di�eomorphic to M1#M2# · · ·#Mk#(S1 × Sn−1), see Fig. 10.14.
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Figure 10.14:



Chapter 11

Second order di�erential

equations and sprays

IfM is an open subset 0f Rn, the straight line from each point x ∈M , t 7→ x+tv,
with prescribed velocity, remains withM for some time (Fig. 11.1) and any two
points in M which are su�ciently close to each other can be joined by such a
path.

Figure 11.1:

On a general manifold, one can of course do the same thing locally with the
help of charts, but for global problems this is worthless, since the connecting
paths of course depend on the charts, and so in the regions of overlap are not
well de�ned.

For example, if M is open in Rn and f, g :: X → M are close in the C0-
topology, then a homotopy between f and g in M is de�ned by

(x, t) 7→ (1− t)f(x) + tg(x),

see Fig. 11.2.

117
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Figure 11.2:

In order to imitate such a construction for a general manifold M , we need a
coordinate free substitute for the connecting paths between two points. This is
the concern of the present chapter.

11.1 Sprays

Traditionally this is carried out `quite simply': one introduces a Riemannian
metric on M ; locally the geodesics play the role of straight lines. For a book
such as this one, this has the disadvantage that one must assume a knowledge
of Riemannian geometry. Therefore, we follow instead the method of sprays,
applied by S. Lang in [3], and which can be completely developed in a few pages.

Notation 11.1.1. We recall, once more, that for a di�erentiable curve γ : (a, b) →
M in a manifold, we denote by γ̇(t) ∈ TγtM the velocity vector of the curve:

γ̇(t) := Ttγ(d/dt).

The velocity curve γ̇ : (a, b) → TM is then a di�erentiable curve in TM , for
which we can again apply the same notation:

γ̈ : (a, b) → TTM

is the velocity curve of γ̇, where TTM denotes the tangent bundle of the total
space of the tangent bundle of M .

De�nition 11.1.2. A second order di�erential equation on a manifold M is a
vector �eld ξ on TM with the property that every solution curve β of ξ is the
velocity curve of its projection on M , that is, β = γ̇ for γ = π ◦β, see Fig. 11.3.

De�nition 11.1.3. A curve γ : (a, b) → M is called a solution curve of the
second order di�erential equation ξ on M if γ̇ is the solution curve of ξ on TM ,
that is, if for all t

. . . γ(t) := ξ(γ̇(t)).
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Figure 11.3:

Since the solution curves of ξ on TM and M are related by the formulae

γ = π ◦ β, β = ˙gamma,

we can consider them as two ways of looking at one and the same thing.
The de�nition of a second order equation on M as a vector �eld on TM

corresponds to the more familiar use of the same notation in calculus. Thus,
the second order equation

y
′′
= f(y, y

′
)

is equivalent to
y

′
= z, z

′
= f(y, z).

Notation 11.1.4. If ξ is a second order di�erential equation on M , then for each
v ∈ TM the associated maximal solution curve of ξ in TM will be denoted by
βv, and the projection π ◦ βv on M by γv.

Thus, for v ∈ TxM the curve γv : (av, bv) → M is the maximal solution
curve of ξ in M with γv(0) = x and γ̇v(0) = v, see Fig. 11.4.

Such a curve t 7→ γv(t) will be the substitute for the straight line t 7→ x+ tv
in Rn. But, in order to make such a substitute geometrically usable, one will
have to demand, at least, that γv and γsv di�er from each other only in the
velocity of passage (in contrast to say ballistics, where di�erent solution curves
are associated with di�erent initial velocities along the same direction, see Fig.
11.5).

De�nition 11.1.5. A second order di�erential equation ξ on M is called a
spray if for s, t ∈ R, v ∈ TM , the number t belongs to the domain of de�nition
of γsv if and only if st belongs to the domain of de�nition of γv, and if in this
case

γsv(t) = γv(st).
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Figure 11.4:

Figure 11.5:

Theorem 11.1.6 (Theorem on the existence of sprays). On every manifold
there exists a spray.

Proof. Until now we have stated the conditions on a vector �eld ξ on TM to be
a second order di�erential equation and a spray as conditions on the solution
curves. What do they say directly about ξ?

Proposition 11.1.7 (Assertion 1). A vector �eld ξ on TM is a second order
di�erential equation if and only if Tπ ◦ ξ = idTM :

TTM
Tπ // TM

TM

ξ

OO

idTM

::

Proof. For if ξ is a second order di�erential equation, v ∈ TM , βv is the solution
curve for v in TM and γv := π ◦ βv the solution curve in M , then

Tπ ◦ ξ(v) = Tπ(β̇v(0)) = γ̇v(0) = βv(0) = v,
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or Tπ ◦ ξ = idTM . If, the other way round, si is the vector �eld with Tπ ◦ ξ =
idTM , then for the �ow lines β we have

β(t) = Tπ ◦ ξ(β(t)) = Tπ(β̇(t)) = γ̇(t).

This checks the second order condition on β, and completes the proof of the
�rst assertion.

Proposition 11.1.8 (Assertion 2). A second order di�erential equation ξ on
M is a spray if and only if for all s ∈ R, and v ∈ TM , we have

ξ(sv) = Ts(sξ(v)),

where Ts : TTM → TTM denotes the di�erential of multiplication by s.

Proof. For if ξ is a spray, then for �xed s ∈ R, v ∈ TM and for t allowed to
vary in a neighbourhood of zero,

γsv(t) = γv(st) ⇒ γ̇sv(t) = γ̇v(st) ⇒ βsv(t) = sβv(st) ⇒ β̇sv(t) = Ts(sβ̇v(st)).

Hence for t = 0,
ξ(sv) = Ts(sξ(v)),

which is the required condition.
Conversely, let ξ be a second order di�erential equation which satis�es this

equation, and let
γv : (av, bv) →M

be the maximal solution curve in M with initial velocity v. We show �rst that
the equation α(t) := γv(st) gives a solution curve with initial velocity sv. To
this end we check that

˙α(0) = sγ̇v(0) = sβv(0) = sv,

the correct initial value and, moreover,

α̇(t) = sγ̇v(st).

Therefore,
. . . α(t) = Ts(s

. . . γv(st)) = Ts(sξ(γ̇v(st))) which, by the assumed
formula however, equals

ξ(sγ̇v(st)) = ξ(α̇(t)).

Therefore, α̇(t) = ξ(α̇(t)), and α is the solution curve associated with initial
velocity sv. For all values of t, for which γv(st) is de�ned, it follows that γsv(t)
is also de�ned and that γv(st) = γsv(t). It only remains to show that if γsv(t)
is de�ned, then so is γv(st). For s ̸= 0we have only to apply the argument
above with 1/s instead of s; for s = 0 it is clear in any case, because each
solution curve is de�ned at the point zero. This concludes the proof of the
second assertion.
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We now turn to the construction of a spray on a given manifold M . The
conditions from assertions 11.1.71 and 11.1.8, thus

Tπ ◦ ξ = idTM and ξ(sv) = Ts(sξ(v)) for all s, v,

which ξ must satisfy, are conditions on the restrictions ξ|TxM , which must be
satis�ed for each x ∈ M , see Fig. 11.6. Both are dearly `convex' conditions in

Figure 11.6:

the sense that, given two sections ξ1, and ξ2 of TTM |TxM , which satisfy the
conditions, then so does (1− λ)ξ1 + λξ2. Hence it is enough to show that each
point in M has a neighbourhood U , on which there exists a spray, for we can
then glue such local sprays together to form a global spray on M by means of
a partition of unity.

For the local problem, we are justi�ed in taking U as an open subset of Rn.
We can therefore write

TU = U × Rn, TTU = U × Rn × Rn × Rn,

which is to so arrange things that the velocity curve of a curve

t 7→ (x(t), v(t)) ∈ TU = U × Rn

is given by
t 7→ (x(t), v(t), dx/dt(t), dv/dt(t)).

Since π : TU → U is given by (x, v) 7→ x, and hence Tπ : TTU → TU by
(x, v, w, b) 7→ (x,w), one writes the di�erential of multiplication by s

Ts : TTU → TTU, (x, v, w, b) 7→ (x, sv, w, sb).

A second order di�erential equation is therefore a section ξ :: TU → TTU of
the form ξ(x, v) = (x, v, v, ψ(x, v)). Translated into the usual terminology of
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the in�nitesimal calculus, the di�erential equation becomes y
′′
= ψ(y, y

′
), and

such a di�erential equation is a spray precisely if ψ(x, sv) = s2(x, v).
If, as in our case, no further conditions need to be imposed on the spray,

then we have, for example, in

ξ : TU → TTu (x, v) 7→ (x, v, v, 0),

found a spray on U , see Fig. 11.7. With this therefore we have also proved

Figure 11.7:

theorem (11.1.6).

11.2 Exercises

Exercise 11.2.1. Let (E, π,M) be a di�erentiable vector bundle. If one restricts
Tπ : TE → TM to TE|M (M = zero-section!), then one has bundle homomor-
phism TE|M → TM . Show that this bundle homomorphism is surjective, and
that the subbundle E ⊂ TE|M is its kernel.

Exercise 11.2.2. Let (E, π,M) be a di�erentiable vector bundle. Prove that
TE ∼= π∗E ⊕ π∗TM .

Exercise 11.2.3. Give an example of a non-trivial di�erentiable vector bundle
E, whose tangent bundle TE is trivial.

Exercise 11.2.4. Let M be a non-empty connected manifold. Show that there
exists a di�erentiable curve γ : R → M , such that the image of the velocity
curve γ̇ : R → TM is dense in TM .

Exercise 11.2.5. Construct a spray for M = S1, for which not all maximal
solution curves are de�ned on all of R.
Exercise 11.2.6. Let M be a manifold, dimM ≥ 1. Show that not every curve
in M can arise as the solution curve of a second order di�erential equation.

Exercise 11.2.7. Give an example of a spray on Sn (as a vector �eld on TSn ⊂
Sn × Rn+1, whose solution curves are great circles.
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Chapter 12

The exponential map and

tubular neighbourhoods

12.1 Tubular neighbourhoods

Proposition 12.1.1. Let ξ be a spray on M . Then the set

Oξ := {v ∈ TM |γv(1) is de�ned}

is an open neighbourhood of the zero-section in TM .

Proof. We denote the maximal �ow on TM , whose velocity �eld is ξ, by Φ and
its domain of de�nition by A ⊂ R× TM . Therefore

Oξ = {v ∈ TM |(1, v) ∈ A}

is open (compare (8.1.13)) becauseA is open. Moreover, from ξ(sv) = Ts(sξ(v)),
putting s = 0 one sees that ξ vanishes on the zero-section, and thus the �ow
lines of the points of the zero-section (as �xed points) are de�ned for all R, in
particular for t = 1. Therefore Φξ contains the zero-section.

De�nition 12.1.2. If ξ is a spray on M , then the map

expξ : Oξ →M, v 7→ γv(1)

is called the exponential map of ξ, see Fig. 12.1. see Fig. 12.1.

Clearly, expξ is a di�erentiable mapping because, if Φ is the �ow associated
to ξ, then expξ is given by v 7→ π ◦ Φ(1, v). We now want to determine the
di�erential

Tp expξ : TpTM → TpM

of expξ at the points of the zero-section M ⊂ TM . (Since Oξ is open in TM ,
TpOξ = TPTM .)

125
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Figure 12.1:

To this end, �rst let us agree on a notation. If E is a di�erentiable vector
bundle over M and p ∈ M is a point of the zero-section, then TpE has two
signi�cant subspaces TpEp and TpM ; for both Ep and M (= zero-section ) are
submanifolds of E (Fig. 12.2), which pass through p. By looking at a bundle

Figure 12.2:

chart we see that TpE is actually the direct sum of TpEp and TpM and, since
TpEp is canonically isomorphic to Ep, we have TpE = Ep⊕TpM for each p ∈M .
Globally we have TE|M = E ⊕ TM .

Notation 12.1.3. If E is a di�erentiable vector bundle over M , then in the
canonical isomorphism

TE|M = E ⊕ TM

we wish to keep to this order of summands, so that even in the case

TTM |M = TM ⊕ TM

there will be no confusion as to the meaning of the summands.

Remark 12.1.4. The di�erential T expξ :: TTM → TM , restricted to TTM |M =
TM ⊕ TM is

(id, id) : TM ⊕ TM → TM.



12.1. TUBULAR NEIGHBOURHOODS 127

The di�erential of the projection π : TM →M , restricted in the same way, is

(0, id) : TM ⊕ TM → TM.

Proof. Both maps, expξ and π, are the identity on the zero-section M , from
which it follows that on the second summand of TM ⊕ TM both their di�eren-
tials are the identity.

Now let v be a vector from the �rst summand; then v is the velocity vector of
the curve t 7→ tv in TM , Oξ respectively, at the point t = 0, see Fig. 12.3. The

Figure 12.3:

image curve under the projection is constant, therefore Tπ(v) = 0. However,
the image curve under the exponential map is t 7→ expξ(tv) = γtv(1) = γv(t),
and therefore T expξ(v) = γ̇v(0) = v.

Corollary 12.1.5. On the zero-section the di�erential of the map (π, expξ) :
Oξ →M ×M is given by[

0 id
id id

]
: TpM ⊕ TpM → TpM ⊕ TpM = Tp,pM ×M

In particular, on the zero-section the map has maximal rank.

From now on in this chapter we shall be much concerned with maps of this
kind. An important geometric consequence of the property of having maximal
rank on the zero-section is formulated in the following lemma:

Lemma 12.1.6. LetM be an n-dimensional manifold, (E, π,X) a di�erentiable
vector bundle with n-dimensional total space E. Let U be an open neighbourhood
of the zero-section in E (see Fig. 12.5) and f : U → M a di�erentiable map
which has maximal rank on the zero-section and which also embeds the zero-
section X in M . Then there is an open neighbourhood U0 of the zero-section in
U , such that f |U0

is an embedding and, therefore, here it is a di�eomorphism
onto an open neighbourhood of f(X) in M (see Fig. 12.6).
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Figure 12.4:

Figure 12.5:

Proof. We may assume that f is everywhere of maximal rank on U (5.1.3), then
f : U → f(U) is open and a local homeomorphism. We may further assume
that f(U) =M , and the embedding f |X allows us to consider X as a subset of
M . We are therefore looking for a local inverse to the map f : U → M near
X. For the proof we recall the following lemma from general topology (which
is familiar in sheaf theory, see Godement [1], p. 150):

Lemma 12.1.7 (Section extension lemma). Let f : U → M be a local homeo-
morphism, X ⊂ M a subset such that each neighbourhood of X in M contains
a paracompact neighbourhood (this holds in particular for manifolds and, more
generally, for metric spaces M). Let s : X → U be a section of f , that is,
f ◦ s = idX . Then there exists an open neighbourhood W of X in M , and an
extension of s to a section s :W → U , and s(W ) =: U0 is open in U .

Proof. (of (12.1.7)) In M we may choose a family {Vλ}λ∈Λ of open sets, which
cover X, and sections sλ : Vλ → U of f , which are such that sλ|Vλ∩X =
s|Vλ∩X . This is possible because f is a local homeomorphism. Now we may
assume that the Vλ cover all of M , that M is paracompact (replace M by some
neighbourhood of X), that this covering is locally �nite, and that it admits a
re�nmement {Wλ}λ∈Lambda with Wλ ⊂ Vλ. (See Lemma 7.1.1.)
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Figure 12.6:

Now we put

W := {x ∈M |x ∈Wλ ∩Wµ ⇒ sλ(x) = sµ(x)}.

Then, clearly, X ⊂ W , and we have extended the section s : X → U continu-
ously to W . It therefore only remains to show that W (respectively s(W )) is a
neighbourhood of X.

Suppose then that x ∈ X. We choose a neighbourhood Q of s(x), which is
mapped homeomorphically by f onto a neighbourhood of x, see Fig. 12.7. Next

Figure 12.7:

we choose a neighbourhood A of x in M , which is so small, that

(i) A ⊂ f(Q),

(ii) A intersects only �nitely many Wλ, say W 1, . . .W k,

(iii) x ∈W i, i = 1, . . . , k,
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(iv) A ⊂ Vi, i = 1, . . . , k,

(v) si(A) ⊂ Q, i = 1, . . . , k.

Then s1|A = · · · = sk|A = (f |Q)−1|A, and so from (ii) A ⊂W .
With this we have proved (12.1.7)) and hence (12.1.6).

In this proof we have followed S. Lang [3]. In the literature one frequently
�nds other proofs of (12.1.6), which use a somewhat complicated topological
argument, but which do not generalise to in�nite dimensional manifolds. More-
over, at this point, the following assertion easily slips into the argument (we
have found it in four books): if f : U → M is a local homeomorphism, A ⊂ U
is closed, and f |A : A → f(A) is injective, then it is possible to extend f to a
homeomorphism of a neighbourhood of A.

Counterexample (Fig. 12.8): U = (0, 1) × (0, 1); M = R2, A = (0, 1) × 1
2 .

Figure 12.8:

The mistake lies in the assumption that, given the hypotheses, f |A : A→ f(A)
is a local homeomorphism.

Next, in order to make the application of (12.1.6) easier, we wish to remark
that a `nice' neighbourhood of the zero-section is contained in every preassigned
neighbourhood of the zero-section, see Fig. 12.9.

Remark 12.1.8. If (E, π,X) is a di�erentiable vector bundle with a Riemannian
metric ⟨, ⟩ and if U is a neighbourhood of the zero-section, then there exists
a di�erentiable everywhere positive function ϵ : X → R, such that the open
neighbourhood

ϵD̊E = {v ∈ E|v| < ϵ(π(v))}

is contained in U .

Proof. Locally this is clearly possible, even with constant ϵ (see Fig. 12.10): For
an appropriate cover, one chooses a subordinate partition of unity {τn|n ∈ N}
and obtains a global ϵ in the form ϵ =

∑
n∈N ϵn · τn.
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Figure 12.9:

Figure 12.10:

As a �rst application of the exponential map and of the Lemma (12.1.6) we
prove

Theorem 12.1.9. Let M be a manifold and Y a topological space. If two
continuous maps

f, g : Y →M

are su�ciently close in the C0-topology (compare De�nition (7.1.8)), then they
are homotopic, that is, there exists a continuous map h : [0, 1] × Y → M with
h(0, y) = f(y) and h(1, y) = g(y) for all y ∈ Y .

Proof. We choose a spray on M and a Riemannian metric for TM . Then for
the exponential map

exp : O →M

of the spray, we choose a small positive function ϵ, such that ϵD̊TM ⊂ O, and
such that

(π, exp)|ϵD̊TM
is a di�eomorphism onto an open neighbourhood U of the diagonal ∆M in
M ×M . All this is possible by Corollary (4.1.21), Theorem (11.1.6), Corollary
(12.1.5), Lemma (12.1.6), and Remark (12.1.8).
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Observe that the diagram

ϵD̊TM
(π,exp)//

π

��

U ⊂M ×M ∋

��

(p, q)
_

��
M // ∆M (p, p)

is commutative;therefore the points (π, exp)−1(p, q) all lie in the �bre over p.
Next, if f, g : Y → M are su�ciently close in the C0-topology (com-

pare (7.1.8)), then (f(y), g(y)) must lie in U for all y ∈ Y (that is, close to
(f(y), f(y)) ∈ ∆M ), see Fig. 12.11.

Figure 12.11:

If we set

h(t, y) := exp(t((π, exp)|ϵD̊TM)−1(f(y), g(y)))

we have found the required homotopy, see Fig. 12.12.

Figure 12.12:

Now we wish to turn to tubular neighbourhoods. In the study of submani-
folds X ⊂M we must often handle problems which, while not local and so not
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transferable by means of a chart to a problem in Rn, do not involve the whole
manifold M , but only the consideration of a neighbourhood of the submanifold.
For such considerations it is therefore very useful to know that the `position' of
X in such a neighbourhood is the `same' as the `position' of X as zero-section
in its normal bundle. The following de�nition makes this precise:

De�nition 12.1.10. If X ⊂M is a submanifold, then by a tubular map for X
one understands an embedding

τ : ⊥X →M

of the normal bundle ⊥X of X intoM , which on X is the inclusion X ⊂M , and
for which the di�erential induces the identity ⊥X → ⊥X on the zero-section.

The di�erential of τ , restricted to (T⊥X)|X , is a bundle homomorphism

⊥X ⊕ TX → TM |X

(compare (12.1.3)), because τ restricted to X is the inclusion. The condition
stated last in the de�nition concerns itself with the composition

⊥X ⊕ 0
Tr−→ TM |X

proj−−→ ⊥X = (TM |X)/TX.

Theorem 12.1.11 (Theorem on the existence of tubular maps). For every
submanifold there exists a tubular map.

Proof. Let X ⊂ M be a submanifold. We choose a spray on M with an ex-
ponential map exp : O → M , and choose a Riemannian metric ⟨, ⟩ for TM .
By means of the canonical isomorphism ⊥X = (TX)⊥ we consider ⊥X as a
subbundle of TM |X . Then on the neighbourhood

U := O ∩⊥X

of the zero-section in ⊥X, a map

U →M

is given by the exponential map, which is the inclusion X ⊂ M on X. Since
the di�erential of the exponential map, restricted to TTM |M is exactly (id, id) :
TM ⊕ TM → TM (Remark 12.1.4), then the di�erential of exp |U : U → M ,
restricted to (T⊥X)|X = ⊥X ⊕ TX is just the identity

⊥X ⊕ TX
∼=−→ TM |X .

From this we draw two conclusions: �rst, the di�erential has maximal rank on
the zero-section and thus ful�ls the hypotheses of Lemma 12.1.6 and, second, it
induces the identity ⊥X → ⊥X.

Next, we choose a small positive function ϵ on X, such that ϵD̊⊥X ⊂ U and
that exp |ϵD̊⊥X is an embedding ((12.1.6), (12.1.8)).
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Finally, we choose a di�eomorphism

⊥X
∼=−→ ϵD̊⊥X,

which on (ϵ/2)·D̊⊥X is the identity (compare the technique applied for (10.1.4)).
Then, clearly, the composition

⊥X → ϵD̊⊥X exp−−→M

is a tubular map.

De�nition 12.1.12. If τ : ⊥X → M is a tubular map for X ⊂ M , and if ⊥X
is equipped with a Riemannian metric ⟨, ⟩, then the neighbourhood

τ(D⊥X)

of X in M is called a tubular neighbourhood of X.

Therefore the tubular map τ equips the tubular neighbourhood with the
structure of a `disc bundle' so that with the given tubular map one also speaks
of �bres and of the projection

tubular neighbourhood → X(see Fig. 12.13).

Figure 12.13:

For certain constructions which make use of all of this structure, it is im-
portant to know how far the construction depends on the choice of the tubular
neighbourhood. To this end one has the following uniqueness theorem with
which we want to end this section:

Theorem 12.1.13 (Uniqueness theorem for tubular neighbourhoods of compact
submanifolds). Let X be a compact submanifold of a manifoldM ; τ0, τ1 : ⊥X →
M tubular maps; ⟨, ⟩0 and ⟨, ⟩1 Riemannian metrics on ⊥X; and �nally let
U0 := τ0(D0⊥X) and U1 := τ1(D1⊥X) be the associated tubular neighbourhoods
of X. Then there exists a di�eotopy H of M , which is �xed on X and which is
such that H1 maps the tubular neighbourhood U0 �brewise onto U1. Furthermore,
it is even possible to choose H, so that all points outside a compact subset of
M are likewise held �xed, and so that for each point p ∈ X and each t, TpHt

induces the identity ⊥pX → ⊥pX.
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Proof. Clearly, it is enough to prove the theorem for the two special cases

(a) τ0 = τ1 := τ

(b) ⟨, ⟩0 = ⟨, ⟩1 := ⟨, ⟩.
For (a): we only need to �nd a �bre preserving isotopy h of the identity on

⊥X, which leaves a neighbourhood of the zero-section �xed, and for which h1
maps the disc bundle D0⊥X = {v ∈ ⊥X|v|0 ≤ 1} onto D1⊥X. Then we can
embed the isotopy of τ |D0⊥X , given by

τ ◦ ht
in a di�eotopy H with the required properties (see 10.1.10).

W.l.o.g., we may assume that |v|0 ≤ |v|1 for all v ∈ ⊥X. If ϕ : R → [0, 1] is
a C∞-function of the kind illustrated in Fig. 12.14 (compare Chapter 7), then

Figure 12.14:

an isotopy of the required kind is given by

h(t, v) =

[
ϕ(t|v|0)

|v|1
|v|0

+ (1− ϕ(t|v|0))
]
v

(Naturally one sets h(t, 0) = 0.) This proves case (a).
For (b): here it is enough to �nd an isotopy between τ0 and τ1, such that

each τt is a tubular map. We can forget the metric on ⊥X. Instead of this we
choose a metric ⟨, ⟩ for TM , a spray on M and ϵ > O, such that

(π, exp) : D̊(TM |X) → X ×M

is an embedding, see Fig. 12.15.
Next we must make use of the possibility of shrinking a di�erentiable vector

bundle: there always exists a �bre preserving isotopy of the identity, which leaves
�xed a neighbourhood of the zero-section, and whose end-embedding maps the
whole bundle into a preassigned neighbourhood of the zero-section.

Seizing this possibility for ⊥X we recognise that we may already take τ0 and
τ1 to be so small, that (π, τ0)(⊥X) ⊂ X ×M and (π, τ0)(⊥X) ⊂ X ×M are
contained in (π, exp)( 12D̊(TM |X)). Therefore, both

τ
′

0 := (π, exp)−1(π, τ0)

τ
′

1 := (π, exp)−1(π, τ1)
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Figure 12.15:

are �bre preserving maps

⊥X → TM |X

which, after composition with the exponential map, give τ0 and τ1, see Fig.
12.16.

Figure 12.16:

It is now enough to show that τ
′

0 and τ
′

1 are connected by a �bre preserving
isotopy which keeps the zero-section �xed, which for each p and t induces the
identity on ⊥pX via Tτ

′

p, and which takes place completely in ϵD̊TM |X . Then
τ := exp ◦ τ ′

will do what is required.
We can forget the condition that τ

′
takes place in ϵD̊TM |X : if the argument

works anywhere in TM |X , it will work equally well in ϵD̊TM |X (shrinking
argument).
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Since we now have all TM |X to play with, we can replace τ
′

0 and τ
′

1 by the
bundle maps given by their di�erentials at the zero-section

τ
′′

0 ⊥X → TM |X
τ

′′

1 ⊥X → TM |X .

This `linearisation' proceeds exactly as in the proof of (10.1.3) by means of
lemma (2.2.2):

[0, 1]×⊥X → TM |X

(t, v) 7→

{
τ
′
0(tv)
t for t ̸= 0

Tpτ
′

0(v) for t = 0

is the isotopy between τ
′

0 and τ
′′

0 , which we need. The argument for τ
′

1 is
analogous.

To �nish the argument, compose both τ
′′

0 and τ
′′

1 with the projection

⊥X τ
′
1−→ TM |X

proj−−→ (TM |X)/TX = ⊥X, i = 0, 1.

This gives the identity of ⊥X, something which holds also for each

(1− t)τ
′′

0 + tτ
′′

1 .

With

τ
′′

1 : [0, 1]×⊥X → TM |X
(t, v) 7→ (1− t)τ

′′

0 (v) + tτ
′′

1 (v)

we obtain an isotopy with the required properties.

12.2 Exercises

Exercise 12.2.1. Let X ⊂ M be a submanifold whose normal bundle possesses
a section non-zero everywhere. Show that the inclusion X ⊂ M is isotopic to
an embedding whose image is disjoint from X.

Exercise 12.2.2. Show that two disjoint closed submanifolds of M also have
disjoint tubular neighbourhoods.

Exercise 12.2.3. Let X be a submanifold of M . how that if X is compact and
M \X is connected, then so is the complement of every tubular neighbourhood
of X in M . The hypothesis that X is compact is not super�uous.

Exercise 12.2.4. LetM be a connected manifold and X ⊂M be a (codimension
one) connected submanifold. If X lies `one sidedly' in M , that is, the normal
bundle ⊥X is not trivial, show that M \X is connected.
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Exercise 12.2.5. LetM be a manifold. Show that a connected subset X ⊂M is
a submanifold, provided that there exists an open neighbourhood U of X and
a di�erentiable map f : U → U with f ◦ f = f and f(U) = X.

Exercise 12.2.6. Let X be a closed k-codimensional submanifold in M with a
trivial normal bundle. Show that there is a di�erentiable map

f :M → Sk,

such that X is the pre-image of a regular value of f .

Exercise 12.2.7. Let (E, π,M) be a di�erentiable vector bundle. Then the set
P (E) of 1-dimensional subspaces of the �bres is in a canonical manner a manifold
and, over P (E), we have a canonical di�erentiable line bundle

η(E) → P (E),

for which the �bre over a point p = V ⊂ Ex of P (E) is the line {p} × V .
Clearly, we have a canonical linear map of vector bundles η(E) → E (one says
that η(E) arises from E by `blowing up' the zero-section). Show that there is a
di�eomorphism

η(E) \ 0− section
∼=−→ E \ 0− section

given by the canonical map η(E) → E.

Exercise 12.2.8. Let X ⊂ M be a compact submanifold and τa tubular map
for X. Show that there exists exactly one di�erentiable structure on (M \X)∪
P (⊥X) =:MX , for which the maps (1) and (2) below are embeddings:

1. M \X ⊂MX

2.

η(⊥X) →MX

v 7→

{
v for v ∈ P (⊥X) = 0− section of η(⊥X)

τ(ϕ(v)) for v ∈ η(⊥X) \ 0− section,

where ϕ : η(⊥X) → ⊥X is the canonical map. Show that the di�erentiable
structure of MX does not depend on the choice of tubular map. (One says that
the di�erentiable manifold MX arises from M by `lowing up' X.)

Exercise 12.2.9. Show that the blowing up of a codimension one submanifold
has no e�ect.

Exercise 12.2.10. Show that by blowing up a point in Sn, one obtains the projec-
tive space RPn. (In general, blowing up a point ofMn is, up to di�eomorphism,
the same as taking the connected sum M#RPn.)
Exercise 12.2.11. Construct a non-empty, n-dimensional manifold M , n ≥ 2,
for which the blowing up of a point does not change the di�eomorphism type.



Chapter 13

Manifolds with boundary

Manifolds, which are locally modelled on Euclidean space, are not the only
interesting geometric objects one can imagine. However, without further as-
sumptions one cannot base the theory developed so far on local models other
than Euclidean space, even if a corresponding generalisation of manifold were
easy to de�ne. The basic methods which we have learnt rest, namely, on the
possibility of performing analysis on manifolds (di�erential equations, inverse
functions, etc.), and here the essential local statements depend on properties of
Euclidean spaces.

However, one can extend many methods from the theory of manifolds to
spaces, which are built up from local models other than Euclidean space, as
long as these spaces or local models are su�ciently sensibly composed or built
up from manifolds (�strati�ed spaces�). We shall not go into this, restricting
ourselves to the classical and simplest case of manifolds with boundary, which
locally look like the closed Euclidean half-space

Rn+ = {x ∈ Rn|xn ≥ 0} Fig. 13.1.

Figure 13.1:

139
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These manifolds with boundary are important, not only as a generalisation
but, also, as an aid in the theory of `ordinary' manifolds.

Since it makes sense (as is well known from in�nitesimal calculus) to speak
of C∞-maps de�ned on open subsets of Rn+, there is no di�culty in replacing
Rn everywhere by Rn+ in the de�nition of a di�erentiable manifold. Since we
want to call on this analogy several times from now on, we shall explicitly write
down the de�nition on this �rst occasion:

De�nition 13.0.1. A topological n-dimensional manifold with boundary is a
second countable Hausdor� space M , which is locally homeomorphic to Rn+.
An atlas of local charts

h : U → U
′

(U open in M , U
′
open in Rn+, h homeomorphism) is called di�erentiable if

the chart transformations are di�erentiable; and an n-dimensional di�erenli-
able manifold with boundary is a pair consisting of a topological n-dimensional
bounded manifold M and a maximal di�erentiable atlas D for M .

The rank theorem easily gives an example:

Remark 13.0.2. If M is an (ordinary) manifold and a ∈ R a regular value of
f : M → R, then f−1((−∞, a]) is canonically a manifold with boundary, see
Fig. 13.2. About a point p ∈ f−1(a), one can clearly choose a − f as last

Figure 13.2:

coordinate of a chart.

In this way many examples of manifolds with boundary present themselves
to us, for example the disc

Dn = {x ∈ Rn||x|2 ≤ 1}

or, more generally, for a di�erentiable vector bundle (E, π,X) with Riemannian
metric ⟨, ⟩ and a positive di�erentiable function ϵ on X, the ϵ-disc bundle

ϵDE := {v ∈ E||v|2 ≤ ϵ2(π(v))}.
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A di�eomorphism of one open subset of Rn+ onto another, maps each point of
the `boundary' (that means, each point with xn = 0) to a point on the boundary,
because an invertible germ (Rn, x) → (Rn, y) possesses an open representative,
and hence cannot take an `interior' point to a point on the boundary, see Fig.
13.3. It follows that the boundary of a manifold with boundary is well de�ned

Figure 13.3:

and can itself be given the structure of a di�erentiable manifold.

De�nition 13.0.3. If M is an n-dimensional manifold with boundary, then a
point p ∈M , which is mapped by some (and hence by every) chart about p to a
point with xn = 0, is called a boundary point of M . The set of boundary points
of M is canonically an (n− 1)-dimensional manifold (in the usual sense) which
we shall denote by ∂M , and call the boundary of M (Fig. 13.4). M \ ∂M is

Figure 13.4:

canonically an (ordinary) n-dimensional manifold, and is called the interior of
M .

Remark 13.0.4. In order to avoid always having to speak of `ordinary' instead of
the newly introduced manifolds with boundary, we wish to agree that manifolds
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with boundary will always be called manifolds with boundary, and that the
word `manifold' will be reserved for the usual, unbounded manifolds. However,
it will be possible for a manifold with boundary to have an empty boundary. If
M is a manifold with boundary and ∂M = ∅, then M = M \ ∂M is of course
also canonically a manifold. By a closed manifold we understand a compact
manifold (without boundary).

A manifold with boundary is formed from the two manifolds M \ ∂M and
∂M . We have, therefore, �rst of all, to describe how these two manifolds �t
together, that is, to describe a neighbourhood of ∂M in M .

De�nition 13.0.5. By a collar for a manifold with boundary we mean a dif-
feomorphism from the manifold with boundary ∂M × [0, 1) onto an open neigh-
bourhood of ∂M in M , which is the inclusion ∂M ⊂ M on ∂M , see Fig. 13.5.

Figure 13.5:

Theorem 13.0.6. Every manifold with boundary has a collar.

Proof. Note that one can consider the boundary as a submanifold and therefore
obtain the collar as half a tubular neighbourhood. In detail, and in a simpler
fashion, we argue as follows:

For manifolds with boundary, one de�nes the tangent bundle (TM, π,M)
as for unbounded ones, and indeed so that also for the boundary points, TxM
is a vector space, rather than just a half-space. (To apply the `geometer's
de�nition' meaningfully here would be rather clumsy; however, the de�nitions
of the `algebraist' or the `physicist' carry over word for word, compare (2.2.1)
or (2.2.5).) For x ∈ ∂M , Tx∂M is a codimension 1 subspace of TxM , which
decomposes TxM into two half-spaces, of which, relative to some and hence
to every chart about x, one lies on the side of the manifold. We wish to call
a vector v ∈ TxM , which is not tangential to ∂M and which belongs to this
half-space, an inward pointing vector, see Fig. 13.6.

Pointing inward is a convex property in the sense already used several times.
Therefore, by means of a partition of unity, we can easily construct a vector
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Figure 13.6:

�eld X on M , so that each vector of X|∂M points inward. Then there exists a
positive function ϵ on M , and a di�erentiable map of

{(x, t) ∈ ∂M × R+|0 ≤ t < ϵ(x)}

to M , which for each �xed x is a solution curve of X with initial value x. This
map is the inclusion on ∂M , it is injective, it is of maximal rank everywhere
and, therefore, as can be easily seen, it is a di�eomorphism onto an open neigh-
bourhood of ∂M in M , see Fig. 13.7.

Figure 13.7:

By means of `shrinking' (compare (10.1.4)) we easily obtain a di�eomorphism
of ∂M× [0, 1) - indeed, if we so wish, we can map ∂M×R onto a neighbourhood
of ∂M in M , which is the inclusion ∂M ⊂M on M .

For collars, as for tubes, there exists a uniqueness theorem which, here (for
the sake of simplicity) we only formulate and prove for compact boundaries.

Theorem 13.0.7. 1f M is a manifold with compact boundary, and κ0, κ1 are
two collars for M , and K is a compact neighbourhood of ∂M in M , then there
exists ϵ > 0 and a di�eotopy of M , which leaves ∂M and the complement of K
pointwise �xed, and which on ∂ × [0, ϵ) takes the collar κ0 into κ1.
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Proof. We construct a family Xλ of vector �elds, depending di�erentiably on X,
on a neighbourhood of ∂M inM as follows: The vector �eld ∂/∂t on ∂M× [0, 1)
(Fig. 13.8) is taken by κ0 and κ1 into two vector �elds, both de�ned in a

Figure 13.8:

neighbourhood of κ0, κ1. Label these �elds X0 and X1 on the intersection U of
the two neighbourhoods (Fig. 13.9). Then let us de�ne Xλ := (1−λ)X0 +λX1

Figure 13.9:

on U .
Along ∂M each Xλ points inward. By integration we therefore obtain, for

su�ciently small ϵ, an isotopy κ between κ0 and κ1 on ∂M × [0, 2ϵ). Here each
κλ is a collar and, indeed, the whole isotopy takes place in the (topological)
interior K̊ of K. As in the isotopy theorem (complement (10.1.10)) we now �nd
a di�eotopy of K̊, which leaves �xed all points outside a compact subset of K,
and in which κ|[0,1]×∂M×[0,ϵ] is embedded. We extend this di�eotopy to one of
M by decreeing all points outside of K̊ to be held �xed. In this way we have
found the required di�eotopy.

In order to prepare a �rst application of collars, just look at the following
situation: let N be a manifold and τ : N → N at a �xed point free involution,
that is, a di�eomorphism with τ(p) ̸= p for all p, and τ ◦ τ = idN .

If one identi�es points which correspond to each other under τ and denotes
the coset space by N/τ , then the canonical projection N π−→ N/τ is topologically
a two leaved covering and, because τ is a di�eomorphism, there exists exactly one
di�erentiable structure onN/τ with respect to which π is a local di�eomorphism.
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We therefore consider N/τ as a di�erentiable manifold.
Example: τ : Sn → Sn, x 7→ −x, then Sn/τ = RPn.

De�nition 13.0.8. Let M be a manifold with boundary, τ : ∂M → ∂M a
�xed point free involution, and κ a collar for M . Then there exists exactly one
di�erentiable structure on the (unbounded) topological manifold M/τ , which
is obtained by identifying points which correspond to each other under τ , with
respect to which the canonical inclusion M \ ∂M ⊂M/τ and the map

∂M × (−1, 1)

τ × (− id)
→ M

τ

[p, t] 7→

{
κ(p, t) for t ≥ 0

κ(τp,−t) for t ≤ 0

de�ned by κ are embeddings. The di�erentiable manifold de�ned in this way
will also be denoted by M/τ .

The de�nition shows how one can use the canonical di�erentiable glueing of
∂M × [0, 1) to itself, giving ∂M × (−1, 1)/τ × (− id) (locally this is illustrated
in Fig. 13.10), by means of a collar to explain the di�erentiable identi�cation

Figure 13.10:

space M/τ .
The di�erentiable structure of M/τ indeed depends on the choice of the

collar, as one recognises, for example, by considering the paths

(−1, 1) →M/τ

t 7→

{
κ(p, t) for t ≥ 0

κ(τp,−t) for t ≤ 0

which must be di�erentiable for each p ∈ ∂M . For example, if M = R2
+ +R+

2,
hence ∂M = R + R, and τ is the natural interchange of the two boundary
components, thenM/τ is both as set and as topological manifold the same as R2.
If one uses the natural collar (x, t) 7→ (x, t), then one obtains the di�erentiable
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structure of R2. If however, one chooses the collar given by (x, t) 7→ (x + t, t),
then the paths t 7→ (x + |t|, t) become di�erentiable in M/τ = R2, see Fig.
13.11. In fact the di�eomorphism type of M/τ does not depend on the collar,

Figure 13.11:

that is, two manifolds M/τ formed from two distinct collars are nonetheless
di�eomorphic.

In the case of compact boundaries there even follows:

Corollary 13.0.9 (Corrollary from the uniqueness theorem for collars). Let
M be a manifold with (compact) boundary, τ : ∂M → ∂M a �xed point free
involution and κ0, κ1 collars for M . Then there is a di�eomorphism

M/τ →M/τ

which takes the di�erentiable manifold M/τ , formed using κ0, onto that formed
using κ1κ1, and which on ∂M/τ and outside a preassigned compact neighbour-
hood of ∂M/τ is the identity.

Remark 13.0.10. It is clear that everything said so far about the construction
of M/τ applies also to the case when τ is not de�ned on all ∂M , but when
τ : XtoX is a �xed point free involution on an open and closed subset X of ∂M
(equal to a union of boundary components, see Fig. 13.12).

Figure 13.12:
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As a convention, we want to agree that, in cases where only the di�eomor-
phism type is important, given M and τ , we shall speak of `the' di�erentiable
manifold M/τ without specifying the collar.

As a special case of the construction, we consider the identi�cation of two
manifolds with boundary by means of a di�eomorphism of the boundaries.

De�nition 13.0.11. Let M1, M2 be manifolds with boundary, Xi ⊂ ∂Mi be
open and closed and ϕ : X1

∼=−→ X2 be a di�eomorphism. Then we write

M1 ∪ϕM2 :=M/τ,

where M = M1 + M2 and τ : X1 + X2 → X1 + X2 is given by τ |X1 = ϕ,
τ |X2

= ϕ−1, see Fig. 13.13.

Figure 13.13:

The particular manifold without boundary M ∪id M which one obtains if
one glues together two copies of M by means of id : ∂M → ∂M , is called the
double of M .

An another application of the collar theorem, we shall show how one can
present the product of two manifolds with boundary, again as a manifold with
boundary. IfM and N are manifolds with boundary, then (M×N)\(∂M×∂N)
has a canonical structure as a manifold with boundary, see Fig. 13.14. At the

Figure 13.14:

points of (∂M × ∂N), from the charts for M ×N , we obtain `charts' for M ×N
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which, instead of the half-space, map into open subsets of the `quarter-space'

Rm+ × Rn+ = Rm+n−2 × R+ × R+ (Fig. 13.15).

In order to de�ne a di�erentiable structure on all M ×N , we use the homeo-

Figure 13.15:

morphism of the half-plane R2
+ (see Fig. 13.16 onto the quadrant R+ ×R+ (see

Figure 13.16:

Fig. 13.17), which in polar coordinates is given by halving the angle. Denote

Figure 13.17:

this by ϕ:

ϕ : (r, θ) 7→ (r, θ/2).

ϕ de�nes a di�eomorphism R2
+ \ 0 ∼= (R+ × R+) \O.
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De�nition 13.0.12. Let M and N be manifolds with boundary with collars κ
and λ, taken here for technical reasons in the form

κ : ∂M × R+ →M

λ : ∂N × R+ → N

Then there exists exactly one di�erentiable structure on M × N , relative to
which the maps

(M ×N) \ (∂M × ∂N) ⊂M ×N,

and

∂M × ∂N × R2
+

id×ϕ−−−→ ∂M × ∂N × R+ × R+

∼= (∂M × R+)× (∂N × R+)
κ×λ−−−→M ×N

are embeddings, that is, are di�eomorphisms onto open subsets of M × N .
HenceforthM×N is to be understood in this fashion as a di�erentiable manifold
with boundry.

The technique used here is called `straitening the angle'.

Remark 13.0.13. The boundary of M ×N is (∂M ×N) ∪id∂M×∂N
(M × ∂N) if

one uses the collars given by κ and λ for ∂M ×N and M × ∂N , see Fig. 13.18
If one is only concerned with di�eomorphism type, then one can simmply speak

Figure 13.18:

of `the' product M × N as a di�erentiable manifold with boundary, without
specifying the collars.

We want to conclude this chapter on manifolds with boundary by introducing
the notion of `bordism', which plays so great a role in advanced di�erential
topology.

Every manifold without boundary is the boundary of a manifold with bound-
ary, for exampleM = ∂(M× [0, 1)). But to be the boundary of a compact man-
ifold with boundary is a restriction with interesting geometric consequences.
More generally, one divides closed (that is, compact, unbounded) manifolds
into `bordism classes' as follows:
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De�nition 13.0.14. Two closed n-dimensional manifoldsM1 andM2 are called
bordant if there is a compact manifold with boundary W , such that ∂W =
M1 +M2 (Fig. 13.19). If the closed manifold M is the boundary of a compact

Figure 13.19:

manifold with boundary, we call M bounding or nullbordant.

De�nition 13.0.15. To be `bordant' is an equivalence relation. The equiva-
lence classes are called bordism classes; we denote the bordism class of M by
[M ].

Proof. (that `bordism' is an equivalence relation.) Clearly symmetric relation is,
given by ∂(M × [0, 1]) =M +M , which also gives re�exive relation. In order to
understand transitivity, we apply the technique of glueing manifolds together: if
M1 ∼M2 and M2 ∼M3, and if W1, W2 are compact manifolds with boundary
such that ∂w1

∼=M1+M2, ∂W2
∼=M2+M3, then ∂(W1∪idM2

W2) =M1+M3.
So transitivity follows, see Fig. 13.20.

Figure 13.20:

Remark 13.0.16. The disjoint sum of manifolds makes the set Nnof bordism
classes of n-dimensional manifolds into an abelian group; the Cartesian product
de�nes a multiplication

N×Nm → Nn+m,

which makes N∗ := ⊕∞
n=0Nn into a Z/2Z-algebra.
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One convinces oneself of this without di�culty or surprise, though the struc-
ture of this algebra lies very deep.

The geometric-analytic techniques which we have described o far in this
book, certainly form the basis of the study of di�erentiable manifolds, but they
do not su�ce to solve most of the harder problems. Here one also needs the
help of algebraic topology. With the de�nition of the algebra N∗, we have come
to a threshold between geometry and algebra. For quite a lot of geometric
problems, which can be solved only with the help of algebraic topology, it is of
great importance to know the structure of N∗. This structure was determined
by R. Thom, who thereby laid the foundations for the extensive bordism theory.
His result is:

Theorem 13.0.17 (Thom 1954). Let Z/2Z[X2, X4, X5, X6, X8, X9 . . . ] be the
polynomial ring over Z/2Z on countably many variables Xi, one for each i ≥ 0,
which is not of the form 2j − 1. Then there is an algebra isomorphism

Z/2Z[X2, X4, . . . ] → N∗,

which maps each Xi onto an element of Ni. One can so set up the isomorphism,
that for each even i, the variable Xi is mapped onto the bordism class of the i-
dimensional real projective space.

13.1 Exercises

Exercise 13.1.1. Let M be a closed manifold and a, b ∈ R be regular values of a
di�erentiable function f :M → R. Show that the manifolds f−1(a) and f−1(b)
are bordant.

Exercise 13.1.2. Show that on each manifold with boundary M there exists a
di�erentiable function with f−1(0) = ∂M .

Exercise 13.1.3. Show that M \ ∂M = ∅ implies that M = ∅ also.

Exercise 13.1.4. Show that an orientable manifold with boundary has a bound-
ary which is also orientable.

Exercise 13.1.5. Give an example of a manifold with (non-empty) boundary,
whose di�eomorphism type is unaltered by the removal of an arbitrary point.

Exercise 13.1.6. Let M be a compact manifold with boundary and X a vec-
tor �eld on M , which is inward pointing on the boundary. Show that R+ is
contained in the domain of de�nition of each maximal solution curve.

Exercise 13.1.7. Show that M1#M2 is bordant to M1 +M2.

Exercise 13.1.8. Show that every closed manifold is bordant to a connected
manifold.

Exercise 13.1.9. Let A0 and A1 be disjoint closed subsets of the di�erentiable
manifold M . Show that there exists a decomposition M = M0 ∪M1, ∂M0 =
∂M1 =M0∩M1 of M into two manifolds with boundary, which are glued along
the common boundary, and which are such that Aν ⊂Mν , see Fig. 13.21.
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Figure 13.21:

Exercise 13.1.10. Show that the double of a compact manifold with boundary
certainly bounds.

Exercise 13.1.11. Let M be a compact manifold with boundary and ϕ : ∂M →
∂M × 0 the canonical di�eomorphism. Show that M is di�eomorphic to M ∪ϕ
(∂M × [0, 1]), see Fig. 13.22.

Figure 13.22:

Exercise 13.1.12. Show that for each di�eomorphism ϕ : Sn−1 → Sn−1, the
manifold Dn ∪ϕ Dn is homeomorphic to Sn.
Exercise 13.1.13. Give examples of oriented manifolds with boundary M1 and
M2 and of a di�eomorphism ϕ : ∂M1

∼=−→ ∂M2, such that M1 ∪ϕ M2 is not
orientable.

Exercise 13.1.14. Show that a closed manifold, on which a �xed point free
involution exists, necessarily bounds.

Exercise 13.1.15. Show that Dn × Dm ∼= Dn+m.
Exercise 13.1.16. How many bordism classes of 15-dimensional manifolds are
there? Use (13.0.17).



Chapter 14

Transversality

We study the following situation: let f : M → N be a di�erentiable map of
di�erentiable manifolds, and let L ⊂ N be a submardfold. What can we say
about the pre-image −1(L) ⊂ M? If f is transverse to L, then we know that
f−1(L) ⊂ M is a submanifold of the same codimension as L in N . However,
without further hypotheses, f−1(L) has in general no structure of any kind, see
Fig. 14.1.

Figure 14.1:

Theorem 14.0.1 (Whitney). Every closed subset of a di�erentiable manifold
is the set of zeros of some di�erentiable function.

Proof. Suppose, �rst, that A is a closed subset of the open subset V of Rm, then
we may cover the open set V \A with a sequence of open discs {Kν |ν ∈ N} and
choose for each ν ∈ N a di�erentiable function ψν : V → R with the properties

(a) 0 ≤ ψν and ψν(x) > 0 ⇔ x ∈ Kν ,

(b) the absolute values of the functions ψν and of all their derivatives, up to
the ν-th order, are smaller than 2−ν .

Condition (a) is easy to satisfy (Chapter 7); one satis�es condition (b) when one
multiplies a function which satis�es (a), by a su�ciently small constant factor.

153
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Now set ψ :=
∑∞
ν=1 ψν . This sequence converges uniformly on all V because

of (a), as does the sequence for each derivative of the ψν , and hence the limit
function ψ is di�erentiable. Because of (a) ψ(x) > 0 if and only if x ∈ Kν for
some ν, that is, if and only if x /∈ A.

More generally, suppose that A ⊂ M is closed, and choose a partition of
unity {ϕi = i ∈ N}, such that supp(ϕi) is contained in a chart Vi for each i.
Then supp(ϕi)∩A is closed in Vi and, as above, one �nds a function λi : Vi → R,
λi ≥ 0, λi(x) = 0 ⇔ x ∈ supp(ϕi) ∩ A. Now set λ =

∑∞
i=1 ϕiλi (with λi = 0

outside Vi).
The function λ is well de�ned and di�erentiable because the sum is locally

�nite. If x ∈ A, then λi(x) = 0 for all i, hence λ(x) = 0. If x /∈ A, then ϕi(x) > 0
for some i and x /∈ supp(ϕi) ∩ A, hence λi(x) > 0, hence ϕi(x)λi(x) > 0 and
therefore λ(x) > 0.

Remark 14.0.2. If we set α(x) := exp(−λ(x)2) with the function λ as con-
structed above, then 0 ≤ α < 1, and α−1(0) = A. All derivatives of α vanish on
A (with respect to any charts) because exp(−t2) vanishes if and only if t = 0,
and has a trivial Taylor Series at the origin. Such functions are a useful technical
aid.

Every closed subset A ⊂M is thus the pre-image of the submardfold {0} ⊂ R
under an appropriate di�erentiable map. The situation is quite di�erent for
analytic or algebraic functions; for these there exists a large and interesting
theory of zero sets for the appropriate functions. But the theory of pre-images of
submanifolds under di�erentiable maps does not end here, since the peculiarly
pathological maps, such as the one here constructed, are, in a certain sense,
untypical exceptions - the usual state of a map is that of transversality. We shall
show here - similarly to the immersion theorem - that one can approximate a
map arbitrarily closely by a transverse map. First some preliminaries:

De�nition 14.0.3. We say that a vector bundle E is of �nite type if E is a
subbundle of a trivial bundle π : B × Rk → B. In other words, there exists a
vector bundle F over B such that E ⊕ F is trivial (4.2.10.)

Lemma 14.0.4. A di�erentiable vector bundle over a di�erentiable manifold
has �nite type.

Proof. The real reason is that the base is �nite dimensional. In order not to
have to load ourselves with too much topology, we permit ourselves the following
argument: if a bundle has �nite type, so clearly has every subbundle, likewise the
restriction of the bundle to a subspace of the base. Moreover, the tangent bundle
TM of a di�erentiable manifold has �nite type, for the embedding M ⊂ Rn
(following (7.1.10)) induces an inclusion TM ⊂ TRn|M , and the tangent bundle
of Rn is trivial.

Now let E → N be some di�erentiable vector bundle, such that the total
space E is a di�erentiable manifold and, as we have just said, the tangent bundle
TE is of �nite type. The same holds for the restriction of this bundle TE|N → N
the zero-section N ⊂ E. This bundle contains E as a subbundle, the normal
bundle of the zero-section (12.1.3).
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The general transversality theorem depends on the special case.

Proposition 14.0.5. Let (E, π,M) be a di�erentiable vector bundle which is
equipped with a Riemannian metric. Let N ⊂ E be a di�erentlable submani-
fold and ϵ a continuous everywhere positive function on M . Then there exists
a di�erentiable section s : M → E, |s(p)| < ϵ(p) for all p ∈ M , such that s is
transverse to N . lf A ⊂M is closed and the zero-section satis�es the transver-
sality condition (5.1.12) with respect to N for all points of A, then one can
choose the section s, such that s|A = 0 (Fig. 14.2.)

Figure 14.2:

Proof. Choose �rst a complement (E
′
, π

′
,M) to the vector bundle (E, π,M),

such that E ⊕E
′
is the trivial bundle M ×Rk. Let f : E ⊕E

′ → E be the pro-
jection on the �rst factor, then the map f :M ×Rk → E is a submersion, hence
f−1(N) ⊂ M × Rk is a submanifold (for a submersion is certainly transverse),
and the �bres of the normal bundle of f−1(N) in M × Rk are mapped by Tf
isomorphically onto the �bres of the normal bundle of N in E.

Hence a section s of the trivial bundleM×Rk →M is transverse to f−1(N)
if and only if the section f ◦ s is transverse to N . To summarise: w.l.o.g., we
may suppose that E is the trivial bundle M × Rk → M . By the way, f−1(N)
is the total space of the bundle π∗E

′ |N over N .
Suppose, therefore, that E = M × Rk, that α is the function associated to

the given closed set A ⊂ M in (14.0.2), U = M \ A and δ = ϵ · α : M → R.
Then 0 < δ(p) < ϵ(p) for all p ∈ U , and both δ and all its derivatives vanish on
A.

We have a bundle map

g : EU = U × Rk → U × Rk, (p, v) 7→ (p, (δ(p))−1v),

so choose a regular value w ∈ Rk, |w| < 1, of the composition

N ∩ (EU )
g−→ U × Rk proj 2−−−→ Rk,

and de�ne the required section s by

s(p) = (p, δ(p)−1w).

We are here using Sard's theorem (6.1.1), see Fig. 14.3. At the point p ∈ A, the
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Figure 14.3:

value of the function s and its di�erential agree with those of the zero-section; by
hypothesis, transversality is satis�ed. If p ∈ U , one has only to convince oneself
that at p the section g ◦ s|U (which has the constant value w) is transverse to
g(N ∩ E|U ), see Fig. 14.4.

Figure 14.4:

Theorem 14.0.6 (Transversality theorem for sections (R. Thom)). Let f :
E → M be a di�erentiable map between di�erentiable manifolds, and let s :
M → E be a di�erentiable section of f (that is, f ◦ s = idM ). Let N ⊂ E
be a di�erentiable submanifold, then arbitrarily close to s there exists a section
t : M → E transverse to N . If the transversality condition on s is already
satis�ed for all points of a closed subset A ⊂M , then one can choose the section
t such that t|A = s|A (Fig. 14.5).

Figure 14.5:
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`Arbitrarily close' is to be formulated with respect to some metric on E and
the C0-topology for maps, see (7.1.8).

Proof. We choose a welt adapted tubular neighbourhood of s(M), and apply
Proposition (14.0.5) in this tubular neighbourhood:

The section s is di�erentiable and an immersion, for Tf ◦ Ts = id; also
s : M → s(M) is a homeomorphism with inverse map f |s(M) and so, following
(5.1.8), s is an embedding. Because f |s(M) has rank equal to the dimension of
M , f is a submersion in some neighbourhood U of s(M), and it is enough to
prove the theorem for f : U →M , s :M → U and N ∩U ⊂ U . In other words,
we may assume that f is a submersion (U = E).

Consider the bundle ker(Tf) over E which is a subbundle of the tangent
bundle TE; then ker(Tf)|s(M) is a complement of the tangent bundle of s(M)
in TE|s(M) and therefore may serve as a normal component: The inclusion
ker(Tf)|s(M) → TE|s(M) induces an isomorphism with the normal bundle of
s(M) in E. One can now de�ne a spray xi : TE → TTE, such that ξ(v) ∈
T (ker(Tf)) for vectors v ∈ ker(Tf) and, therefore, such that the integral curves,
which begin in the direction of a vector out of ker(Tf), certainly preserve a
direction from this subbundle. Put another way: the integral curves, which at
one point are tangential to the `�bre' f−1(p), p ∈ M , never leave f−1(p). The
argument is illustrated by Figs. 14.5 and 14.6.

Figure 14.6:

From this spray one obtains a tubular map

τ : ker(Tf)|s(M) → E,

such that the diagramme

ker(Tf)|s(M)
τ //

π

��

E

f

��
s(M)

∼=
f

// M
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commutes. Since τ is an open embedding, one can apply the Proposition (14.0.5)
directly to the left-hand side of the diagramme.

As a special case we obtain the classical result of Thom:

Theorem 14.0.7 (Transversality theorem for maps (R. Thom)). Let f :M →
N be di�erentiable, and let L ⊂ N be a di�erentiable submanifold. Then, arbi-
trarily close to f , there exist maps g :M → N transverse to L. If the transver-
sality condition on f is already satis�ed at the points of a closed subset A ⊂M ,
then one can choose g such that f |A = g|A (Fig. 14.7).

Figure 14.7:

Proof. Consider the compositionM s−→M×N π−→ N , s = (id, f), π = projection,
then f = π ◦ s, and π is a submersion, and hence transverse to L with the pre-
image π−1(L) = M × L ⊂ M ×N . We may therefore approximate the section
s of the projection M ×N →M , following (14.0.6) by a section t transverse to
M × L. Hence - by the same conclusion as in the �rst step of the proposition -
the map π ◦ t :M → N is transverse to π(M × L) = L.

Note that, in this proof, we do not use the fact that the approximation t of
s is a section. Without this condition (14.0.6) is much simpler to demonstrate
because one can argue with a completely arbitrary tubular neighbourhood of
s(M).

Transversality theorems are basic to all `general position' arguments in dif-
ferential topology. With them begins cobordism theory, as well as the stability
theory of di�erentiable maps, and they really explain why di�erential topol-
ogy, far from being a desert of pathologies, yields a cornucopia of geometric
phenomena.

As a topologist, one tries to approximate mappings between manifolds by
other with good properties (di�erentiable, transverse,... ) because su�ciently
close maps are homotopic (12.1.9). Suppose, therefore, f0, f1 : M → N are
su�ciently close approximations to a map f and are transverse to a submanifold
L ⊂ N , then both are homotopic to f via di�erentiable homotopiesM× [0, 1] →
N , i = 0, 1, which do not depend on t, wherever f0(p) = f(p) or f1(p) = f(p).

Let us choose a `technical homotopy which, for example, between the times
0 ≤ t ≤ 1/3 and 2/3 ≤ t ≤ 1 is independent of t, then we can ompose the two
original homotopies and obtain a di�erentiable (technical) homotopy F between
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f0 and f1, see Fig. 14.8. By assumption, f0 and f1 are transverse to L and,

Figure 14.8:

if we choose the homotopy to be stationary for the times 0 ≤ t ≤ 1/3 and
2/3 ≤ t ≤ 1, then it follows that F |M×(0,1/3] and F |M×[2/3,1) are transverse to
L. Using (14.0.7) we may replace the homotopy F |M×(0,1) by a map which is
transverse to L without altering it on the closed set M × ([0, 1/3] ∪ [2/3, 1]).
Consider now the pre-image F−1(L) ⊂ M × [0, 1]; then F−1(L) ∩M × (0, 1) is
a submanifold of the same codimension as L in N , and

F−1(L) ∩ [0, 1/3) = f−1
0 × [0, 1/3);

F−1(L) ∩ [0, 1/3) = f−1
1 × (2/3, 1].

Putting everything together, one sees that F−1(L) is a manifold with bound-
ary equal to f−1

0 (L) + f−1
1 (L), hence homotopic maps which are transverse to

L have bordant pre-images. The bordism class of f−1(L) is thus independent of
which particular approximation to f , transverse to L, one takes.

Indeed, one only needs to assume that the original map f is continuous,
since any continuous map can be approximated by a di�erentiable one.

Theorem 14.0.8. Let f :M → N be a continuous map which is di�erentiable
on an open neighbourhood U of the closed set A ⊂ M . Then, arbitrarily close
to f , there exists a di�erentiable map g :M → N , such that g|A = f |A.

Proof. Choose a closed embedding N ⊂ Rn, and a tubular neighbourhood V on
N in Rn with projection π : V → N (see (7.1.10), (12.1.11)). Now let W be a
neighbourhood of the graph of f in M ×N , such that

Q := {(p, q) ∈M × V |πq ∈W}

is a neighbourhood of the graph of the graph of f in M × V . If the graph of a
di�erentiable map g : M → Rn lies in Q, then the graph of π ◦ g lies in W , so
we may assume that N = Rn.

In this case we consider an ϵ-neighbourhood of f , where ϵ : M → R is a
strictly positive function; choose with this a covering {Uν |ν ∈ Z} of M with a
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subordinate di�erentiable partition of unity {ϕν} together with constants fν ,
such that |f(p)− fν | < ϵ(p) for all p ∈ Uν , and such that Uν ⊂ U for ν < 0, and
Uν ⊂M \A for ν ≥ 0. Then one sets

g(p) =
∑
ν<0

f(p) · ϕν(p) +
∑
ν≥0

fνϕν(p).

14.1 Exercises

Exercise 14.1.1. Let A0, A1, be disjoint closed subsets of the di�erctiable man-
ifold M . Show that there exists a di�erentiable function α : M → R such that
0 ≤ α ≤ 1, α−1(0) = A0, α−1(1) = A1.

Exercise 14.1.2. Let M be a compact connected di�erentiable manifold, and
A ⊂M a non-empty closed subset. Show that there exists a vector �eld on M ,
which vanishes on A and only on A.
Hint: �rst construct a vector �eld for which the set of zeros is �nite.

Exercise 14.1.3. In the transversality theorem (14.0.6) we have assumed that
N ⊂ E is a submanifold. Show that the same theorem holds if one replaces this
inclusion by an arbitrary di�erentiable map g : NtoE. In this ease, one must
formulate the transversality condition (on s : M → E) as follows: if p ∈ M ,
q ∈ N and s(p) = g(q) = x ∈ E, then Tps(TpM) + Tqg(TqN) = TxE.

Exercise 14.1.4. Formulate and prove a generalisation of the transversality the-
orem for maps (14.0.7), which corresponds to the generalisation of (thm:14-6)
in exercise 14.1.3.

Exercise 14.1.5. Let B be a manifold with boundary and let L ⊂ M be a
di�erentiable submanifold. Show that each continuous map f : B → M is
homotopic to a map g : B → M , such that g−1L ⊂ B is a di�erentiable
submanifold with boundary and ∂(g−1L) = g−1L ∩ ∂B.
Exercise 14.1.6. Let M be an oriented di�erentiable manifold, and let fν :
Nν → M , ν = 1, 2, be di�erentiable maps of oriented closed manifolds of com-
plementary dimensions, that is, dim(N1)+dim(N2) = dim(M). The intersection
number [f1] ◦ [f2] ∈ Z is then de�ned as follows:
choose a map g homotopic to f , and transverse in the sense of exercise 14.1.3
to f2. Then the �bre product F := {(p, q) ∈ N1 × N2|g(p) = f2(q)} is �nite
(5.2.11) and, for each pair (p, q) ∈ F , one has an isomorphism of oriented vector

spaces Tp(N1) ⊕ Tq(N2)
(Tg,Tf2)−−−−−−→ Tg(p)M , and we may set ϵ(p, q) = ±1 de-

pending on whether this isomorphism preserves or reverses orientatation. Then
[f1]◦ [f2] :=

∑
F ϵ(p, q), see Fig. 14.9. Show that the intersection number is well

de�ned and depends only on the homotopy classes of the maps fν . Furthermore,
[f1] ◦ [f2] = (−1)n1·n2[f2] ◦ [f1], nν := dimNν .

Exercise 14.1.7. For a connected manifold M let πnM be the set of homotopy
classes of continuous maps Sn →M . Show that if n < k, then πnSk = 0. Hint:
(14.0.8), (6.1.1).
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Figure 14.9:

Exercise 14.1.8. Let i : {p} → Sn be the inclusion of a point. Show that the
following map s : πnSn → Z, n > 0 is surjective: if α ∈
pnSn is represented by the map a : Sn → Sn, then s(α) := [a] · [i], see exercises
14.1.6 and 14.1.7.

Exercise 14.1.9. More generally than in exercise 14.1.8 let M be a closed, ori-
ented, connected, di�erentiable n-dimensional manifold and Π the set of homo-
topy classes of continuous maps f : M → Sn. If i : {p} → Sn is again the
inclusion of a point, then f 7→ [f ] · · · [i] is a surjection Π → Z.
Exercise 14.1.10. Show that the map Π → Z in exercise 14.1.9is bijective hence,
in partitular, that πnSn ∼= Z.
Hint: use (10.1.3).

Exercise 14.1.11. Let s : M → TM be a vector �eld on a closed oriented
manifold (TM possesses a canonical orientation (4.2.5), (11.2.2)). The number
χ(M) := [s] ◦ [s] is called the Euler characteristic of M . Show that χ(M)
depends only on M (exercise 14.1.6). If there exists a nowhere vanishing vector
�eld on M , then χ(M) = 0.

Exercise 14.1.12. Show that χ(S2n+1) = 0, χ(S2n) = 2 (see exercise 14.1.11).
Hint: S2n+1 is the unit sphere in Cn+1, and one can construct a nowhere van-
ishing vector �eld. For S2n consider the vector �eld induced by rotation about
an axis.
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