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Preface

These notes are the authour's attempt to make an accessible account on singular
homology theory:

� Singular homology theory is introduced and is shown to satisfy certain
axioms (of Eilenberg-Steenrod), and cellular spaces and their homology
are explained.

� Singular cohomology theory is introduced together with certain products,
and Poincaré duality and its application for manifolds are explained.

The authour has no claim for originality, possibly except for organisation. In
fact, these notes are a hodgepodge of materials from literally tens of textbooks
and lecture notes.

An excuse

There is made no special provision for category theory and homological algebra:
in fact no section is devoted to category theory, and homological algebra required
to understand universal coe�cient theorems are given in an ad hoc fashion.

It is true that those two disciplines have originated from algebraic topology,
but, without much care, the former tends be �abstract nonsense� (an expression
coined by N. Steenrod) and the latter reduces to boredom as in the quotes bel-
low.

A recall by M. M. Postnikov
The assistant dean ... called me in to say, �Postnikov, you need to have an

advisor for your senior thesis. Who do you want, Lusternik or Alexandrov? �
At this point a very strange thing happened. Without a moment's hesitation I
blurted out, �I want Lev Semenovich Pontryagin! � The reason why this was so
strange is that I did not know Pontryagin, and had only taken his very boring,
formalistic course of homological algebra.

An excerpt from �An Introduction to Homological Algebra� by J. J. Rotman
When I was a graduate student, Homological Algebra was an unpopular

subject. The general attitude was that it was a grotesque formalism, boring to
learn, and not very useful once one had learned it.

An excerpt from �Algebra: Chapter 0� by P. Alu�
Proving the snake lemma is something that should not be done in public,

and it is notoriously useless to write down the details of the veri�cation for
others to read: the details are all essentially obvious, but they lead quickly
to a notational quagmire. Such proofs are collectively known as the sport of
�diagram chase�, best executed by pointing several �ngers at di�erent parts of
a diagram on a blackboard, while enunciating the elements one is manipulating
and stating their fate.
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Lecture 1

Introduction

Topology is the study of topological spaces (e.g. subsets of R𝑛) and continuous
maps between them. The basic idea of algebraic topology is to study functors
𝐹 from topological spaces to groups (or some other type of algebraic category).
This means is that for every topological space 𝑋, we assign a group 𝐹 (𝑋),
and to each continuous map 𝑓 : 𝑋 → 𝑌 , we assign a group homomorphism
𝐹 ( 𝑓 ) : 𝐹 (𝑋) → 𝐹 (𝑌 )

𝑋
𝑓 //

𝐹

��

𝑌

𝐹

��
𝐹 (𝑋)

𝐹 ( 𝑓 )
// 𝐹 (𝑌 )

such that for any pair of composable maps

𝑋
𝑔
−→ 𝑌

𝑓
−→ 𝑍

we have

𝐹 ( 𝑓 ◦ 𝑔) = 𝐹 ( 𝑓 ) ◦ 𝐹 (𝑔) 𝑋

𝑓 ◦𝑔

##𝑔 //

𝐹

��

𝑌
𝑓 //

𝐹

��

𝑍

𝐹

��
𝐹 (𝑋)

𝐹 ( 𝑓 ◦𝑔)

77𝐹 (𝑔)
// 𝐹 (𝑌 )

𝐹 ( 𝑓 )
// 𝐹 (𝑍)

and also that identity maps are sent to identity maps:

𝐹 (id𝑋) = id𝐹 (𝑋) .

To see how this sort of thing may be useful, observe that if two spaces 𝑋 and
𝑌 are isomorphic (i.e. homeomorphic), then 𝐹 (𝑋) and 𝐹 (𝑌 ) must be isomorphic
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2 LECTURE 1. INTRODUCTION

for every functor 𝐹. It turns out that the most powerful way to prove that two
spaces 𝑋, 𝑌 are not homeomorphic is to �nd a functor such that 𝐹 (𝑋) and 𝐹 (𝑌 )
are not isomorphic.

For another application, we begin with a de�nition. A subset 𝐴 ⊂ 𝑋 is called
a retract, if there exists a continuous map 𝑟 : 𝑋 → 𝐴 such that 𝑓 (𝑎) = 𝑎 for all
𝑎 ∈ 𝐴: for example, the inclusion R ↩→ R2 as the 𝑥-axis is a retract using the
map 𝑟 (𝑥, 𝑦) = (𝑥, 0). Inclusion of sets de�nes an injective map 𝑖 : 𝐴 ↩→ 𝑋. If 𝐴
is a retract in 𝑋, then there exists 𝑟 such that

𝑟 ◦ 𝑖 = id𝐴 .

For any functor, this means that

𝐹 (𝑟) ◦ 𝐹 (𝑖) = 𝐹 (𝑟 ◦ 𝑖) = 𝐹 (id𝐴) = id𝐹 (𝐴) .

In particular, this means that 𝐹 (𝑖) must be injective when 𝐴 ⊂ 𝑋 is a retract
(if not, 𝐹 (𝑟) ◦ 𝐹 (𝑖) = id𝐹 (𝐴) would not be injective, a contradiction). Using this
idea, we will prove that the unit circle S1 is not a retract inside the unit disk
D2.

The kinds of functors we will learn about in this course are the (singular)
homology and cohomology functors. These functors come in families labelled by
non-negative integers called the degree (also called dimension): 𝐻0, 𝐻1, 𝐻2, . . .

for homology and 𝐻0, 𝐻1, 𝐻2, . . . for cohomology. Both homology and cohomol-
ogy take values in abelian groups, though we will also study variations that take
values in vector spaces.

The historical motivation for homology theory came from vector calculus.
(The development of homology theory is usually attributed to the work of
Poincaré in the late 19th to the early 20th, though the subject didn't really
come into it's own until the 1930's through the work of numerous other mathe-
maticians including S. Eilenberg and H. Whitney.) Recall that there are various
versions of the Fundamental Theorem of Calculus (Stokes' Theorem, Green's
Theorem, the Divergence Theorem) that equate an integral over a manifold
(curve, surface, solid, etc.) with an integral over its boundary (set of points, a
curve, surface, respectively). Homology emerged, from (more or less intuition-
driven) e�orts of mathematicians including J. W. Alexander, S. Lefschetz and
O. Veblen, to understand how many �independent� submanifolds there are with
respect to a given domain. Roughly speaking, the 0-homology 𝐻0 (𝑋) is gener-
ated by points in 𝑋, the 1-homology 𝐻1 (𝑋) is generated by (oriented) closed
curves in 𝑋, the 2-homology is generated by (oriented) closed surfaces, and so
on. The homology class is trivial if the curve, surface, etc. is the boundary of a
surface, solid, etc . . . .

To see how this might work, consider the disconnected subset 𝑋 ⊂ R2 pic-
tured in Figure 1.1.

A point 𝑝 in one component cannot be joined by a continuous path to a point
𝑞 in another component. It follows that 𝑝 and 𝑞 determine di�erent elements
[𝑝] and [𝑞] in 𝐻0 (𝑋). We will show that there is an isomorphism 𝐻0 (𝑋) � Z𝑛

where 𝑛 is the number of path-components of 𝑋.
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Figure 1.1: A space 𝑋 with two path components

Figure 1.2: Loop in an annulus

Consider now a annulus 𝐴 in R2 (Figure 1.2).
The closed loop 𝐶 represents an element in 𝐻1 (𝐴). It is intuitively clear that

S1 is not the boundary of a surface in 𝐴, so 𝐶 represents a non-trivial element
[𝐶] in 𝐻1 (𝐴). Indeed, we will show that 𝐻1 (𝐴) � Z and that 𝐶 represents one
of the generators (the other generator is obtained by reversing the orientation
on 𝐶). On the other hand, if we take a union of 𝐶 with a curve 𝐷 that winds
around the annulus in the opposite direction, we see that together they form
the boundary of a surface (Figure 1.3).

Figure 1.3: Two loop in an annulus bound a surface

There are many di�erent kinds of homology that are de�ned in di�erent ways.
The approach we will take in this course is called singular homology. Singular
homology has some great theoretical advantages over others (such as simplicial
homology and cellular homology), but has the drawback of being di�cult to
calculate directly. Indeed, it will take some time before we establish the fact
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that oriented submanifolds determine homology classes which has been the ba-
sis of today's lecture. (It is possible to de�ne a kind of homology theory using
oriented manifolds directly, called bordism. One of the reasons that this ap-
proach is not standard in introductory courses is that the theory of manifolds
gets complicated in dimensions greater than two.) Instead, singular homology
is based on �singular simplices� which we will be introduced in Chapter 3.



Lecture 2

Review of Point-Set Topology

We collect some basic facts from general topology that will be required in this
course. Proofs of these results can be found in any introductory textbook on
general topology (e.g, Jänich Topology, and Viro et al. Elementary Topology
Problem Textbook.)

De�nition 2.1. A topological space (or simply space) (𝑋, 𝜏) is a set 𝑋 and
a collection 𝜏 of subsets of 𝑋, called the open sets, satisfying the following
conditions:

i) ∅ and 𝑋 are open,

ii) Any union of open sets is open,

iii) Any �nite intersection of open sets is open.

A set is called closed if its complement is open. Usually, we will denote the
topological space (𝑋, 𝜏) simply by 𝑋.

Example 2.2 (Euclidean Topology). An open ball in R𝑛 is a set of the form

𝐵 = 𝐵𝜖 (𝑝) := {𝑥 ∈ R𝑛 |∥𝑥 − 𝑝∥ < 𝜖}

for some 𝑝 ∈ R𝑛 and 𝜖 > 0. A subset 𝑈 ⊂ R𝑛 is called open if it is a union of
open balls. Equivalently, 𝑈 is open if for every 𝑝 ∈ 𝑈, there exists an open ball
𝐵 such that 𝑝 ∈ 𝐵 ⊂ 𝑈.

In the example above, we say that open balls form a basis for the Euclidean
topology. More generally, a collection of open sets 𝔅 in a topological space 𝑋
is called a basis if every other open set in 𝑋 is a union of sets in 𝔅.

De�nition 2.3. A continuous map 𝑓 : 𝑋 → 𝑌 between topological spaces is a
map of sets for which pre-images of open sets are open. I.e.

𝑈 ⊂ 𝑌 is open ⇒ 𝑓 −1(𝑈) := {𝑥 ∈ 𝑋 | 𝑓 (𝑥) ∈ 𝑈} ⊂ 𝑋 is open

5



6 LECTURE 2. REVIEW OF POINT-SET TOPOLOGY

De�nition 2.4. A homeomorphism is a continuous bijection 𝑓 : 𝑋 → 𝑌 such
that the inverse 𝑓 −1 is also continuous. This is the notion of isomorphism for
topological spaces.

We will only rarely need use the abstract De�nition 2.3 explicitly. More
often, we will make use of certain properties of continuous functions, including
the following.

Proposition 2.5. Let 𝑋, 𝑌 and 𝑍 be topological spaces.

� The identity map id𝑋 : 𝑋 → 𝑋 is continuous.

� If 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 are continuous, then the composition 𝑔 ◦ 𝑓 :
𝑋 → 𝑍 is continuous.

� Any constant map 𝑓 : 𝑋 → 𝑌 is continuous.

The �rst two conditions above make (topological spaces + continuous maps)
into a category. We will speak more about categories later.

2.1 New spaces from old

Most of the topological spaces we encounter in this course are constructed from
R𝑛 using the operations below.

De�nition 2.6. Let 𝑋 be a topological space and 𝐴 ⊂ 𝑋 a subset. The subspace
topology on 𝐴 is the topology for which 𝑉 ⊂ 𝐴 is open if and only if 𝑉 = 𝐴 ∩𝑈
for some open set 𝑈 in 𝑋.

Example 2.7. Any subset of R𝑛 acquires a subspace Euclidean topology. Unless
otherwise stated, we will always assume subsets of R𝑛 to have this topology.

The inclusion map 𝑖 : 𝐴 ↩→ 𝑋 is continuous (with respect to the subspace
topology). In fact, we have the following special property: A map 𝑓 : 𝑌 → 𝐴

from a topological space 𝑌 is continuous if and only if the composition 𝑖 ◦ 𝑓 :
𝑌 → 𝑋 is continuous.

De�nition 2.8. The product space 𝑋×𝑌 of two spaces 𝑋 and 𝑌 is the Cartesian
product of sets 𝑋 ×𝑌 , with a basis of open sets of the form 𝑈 ×𝑉 where 𝑈 ⊂ 𝑋
and 𝑉 ⊂ 𝑌 are both open.

The above de�nition iterates to de�ne products of any �nite number of
spaces (in�nite products require a di�erent de�nition).

Example 2.9. The 𝑛-fold product

𝑛︷        ︸︸        ︷
R × · · · × R is homeomorphic to R𝑛 with the

Euclidean topology.
The key property of product spaces is that a map

𝐹 : 𝑍 → 𝑋 × 𝑌

is continuous if and only if the coordinate functions 𝐹 = (𝐹1, 𝐹2) are continuous
as maps from 𝑍 to 𝑋 and to 𝑌 respectively.



2.1. NEW SPACES FROM OLD 7

De�nition 2.10. Let {𝑋𝛼} be a (possibly in�nite) collection of spaces indexed
by 𝛼. The coproduct space or mphdisconnected union

∐
𝛼 𝑋𝛼 is the disjoint

union of the sets 𝑋𝛼 with 𝑈 ⊂ ∐
𝛼 𝑋𝛼 is open if and only if 𝑈 ∩ 𝑋𝛼 is open for

all 𝑋𝛼.

The inclusions 𝑖𝛼0
: 𝑋𝛼0

↩→∐
𝛼 𝑋𝛼 are all continuous. A map 𝐹 :

∐
𝛼 𝑋𝛼 →

𝑌 is continuous if and only if the composition 𝐹 ◦ 𝑖𝛼 : 𝑋𝛼 → 𝑌 are continuous
for all 𝑋𝛼.

De�nition 2.11. An equivalence relation on a set 𝑋 is a relation ∼ satisfying,
for all 𝑥, 𝑦 ∈ 𝑋

(i) 𝑥 ∼ 𝑥

(ii) 𝑥 ∼ 𝑦 implies 𝑦 ∼ 𝑥

(iii) 𝑥 ∼ 𝑦 and 𝑦 ∼ 𝑧 implies 𝑥 ∼ 𝑧.

Given any relation 𝑅 on 𝑋, we can generate the �smallest� equivalence rela-
tion ∼𝑅 such that 𝑥𝑅𝑦 implies 𝑥 ∼𝑅 𝑦. Explicitly, we de�ne 𝑥 ∼𝑅 𝑦 if and only
if there exists a �nite sequence {𝑥𝑖 ∈ 𝑋}𝑛𝑖=0 for 𝑛 ≥ 0 satisfying

𝑥0 = 𝑥,

𝑥𝑛 = 𝑦 and,

𝑥𝑖𝑅𝑥𝑖−1 or 𝑥𝑖−1𝑅𝑥𝑖 for all 𝑖 = 1, . . . , 𝑛.

Given 𝑥 ∈ 𝑋, the equivalence class of 𝑥 is

[𝑥] := {𝑦 ∈ 𝑋 |𝑥 ∼ 𝑦}

Notice that [𝑥] = [𝑦] if and only if 𝑥 ∼ 𝑦. The equivalence classes determine
a partition of 𝑋 into disjoint sets. Let 𝐸 := {[𝑥] |𝑥 ∈ 𝑋} be the set of equivalence
classes (we will sometimes denote 𝐸 = 𝑋/∼). There is a canonical map

𝑄 : 𝑋 → 𝐸, 𝑥 ↦→ [𝑥]

called the coset map.

De�nition 2.12. Let 𝑋 be a topological space and let ∼ be an equivalence
relation on the set underlying 𝑋. The coset topology or induced topology on 𝐸
is the topology for which 𝑈 ⊂ 𝐸 is open if and only if 𝑄−1(𝑈) is open in 𝑋.

Observe that 𝑄 : 𝑋 → 𝐸 is continuous and that a map 𝑓 : 𝐸 → 𝑌 is
continuous if and only if 𝑓 ◦𝑄 : 𝑋 → 𝑌 is continuous.

Example 2.13. Suppose 𝑋 and 𝑌 are topological spaces, 𝐴 ⊂ 𝑋 is a subspace,
and 𝑓 : 𝐴 → 𝑌 is a continuous map. De�ne an equivalence relation on the
coproduct 𝑋

∐
𝑌 generated by 𝑓 (𝑎) ∼ 𝑎 for all 𝑎 ∈ 𝐴. We say that the coset

space (𝑋∐
𝑌 )/∼ is obtained by attaching 𝑋 to 𝑌 along 𝐴 using 𝑓 .
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De�nition 2.14. Suppose 𝐺 is a group, and 𝑋 is a set. A left action of 𝐺 on
𝑋 is a map 𝐺 × 𝑋 → 𝑋, written (𝑔, 𝑥) ↦→ 𝑔 · 𝑥, with the following properties:

(i) 𝑔1 · (𝑔2 · 𝑥) = (𝑔1𝑔2) · 𝑥 for all 𝑥 ∈ 𝑋 and all 𝑔1, 𝑔2 ∈ 𝐺.

(ii) 1 · 𝑥 = 𝑥 for all 𝑥 ∈ 𝑋.

Similarly, a right action is a map 𝑋 × 𝐺 → 𝑋, written (𝑥, 𝑔) ↦→ 𝑥 · 𝑔, with the
same properties except that composition works in reverse: (𝑥 ·𝑔1) ·𝑔2 = 𝑥 · (𝑔1𝑔2).

Any right action determines a left action in a canonical way, and vice versa,
by the correspondence

𝑔 · 𝑥 = 𝑥 · 𝑔−1.

De�nition 2.15. For any 𝑥 ∈ 𝑋, the set 𝐺 · 𝑥 = {𝑔 · 𝑥 : 𝑔 ∈ 𝐺} ⊂ 𝑋 is called the
orbit of 𝑥. The action is said to be transitive if for every pair of points 𝑥, 𝑦 ∈ 𝑋,
there is a group element 𝑔 such that 𝑔 · 𝑥 = 𝑦, or equivalently if the orbit of each
point is the entire space 𝑋. The action is said to be free if the only element of
𝐺 that �xes any point in 𝑋is the identity; that is, if 𝑔 · 𝑥 = 𝑥 for some 𝑥 implies
𝑔 = 1.

Example 2.16. Suppose 𝑋 is a topological space, and 𝐺 is a group that acts on
𝑋 via homeomorphisms, i.e. 𝐺 ⊂ Aut(𝑋). De�ne two points in 𝑋 equivalent if
they lie in the same orbit of 𝐺. The coset space in this case is called the orbit
space and is denoted 𝑋/𝐺.

2.2 Connectedness and Path-Connectedness

Let 𝐼 denote the unit interval [0, 1] ⊂ R with the Euclidean topology.

De�nition 2.17. A space 𝑋 is called path-connected if for any two points
𝑝, 𝑞 ∈ 𝑋 there exists a continuous map 𝛾 : 𝐼 → 𝑋 such that 𝛾(0) = 𝑝 and
𝛾(1) = 𝑞.

De�nition 2.18. A space 𝑋 is called connected if there is no proper subset
𝐴 ⊂ 𝑋 which is both open and closed. (�Proper� means other than 𝑋 or ∅,
which are always both open and closed).

Observe that if 𝐴 ⊂ 𝑋 is both open and closed, then the complement 𝐴𝑐

is also both open and closed, and there is a natural isomorphism 𝐴
∐
𝐴𝑐 � 𝑋.

Thus spaces that are not connected can be decomposed into a disconnected
union of nonempty spaces.

Proposition 2.19. Path-connected spaces are connected.

The converse of Proposition 2.19 is not true in general. However all the
connected spaces we encounter in this course will also be path-connected, as
connected and not path-connected spaces are pathological.
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The famous �topologist's sine curve� makes up a typical pathology: consider
subsets 𝑇0 and 𝑇+ in R2.

𝑇0 = {(𝑥, 𝑦) |𝑥 = 0 and 𝑦 ∈ [−1, 1]},
𝑇+ = {(𝑥, 𝑦) |𝑥 ∈ (0, 2/𝜋] and 𝑦 = sin(1/𝑥)}

Figure 2.1: A topologist's sine curve

Connectedness and path-connectedness are preserved under the following
operations

� A product of (path-)connected spaces is (path-)connected.

� The continuous image of a (path-)connected space is (path-)connected.

� Let {𝑈𝛼} be a covering of 𝑋 such that each 𝑈𝛼 is (path-)connected and
the intersection ∩𝛼𝑈𝛼 is non-empty. Then 𝑋 is (path-)connected.

2.3 Covers and Compactness

De�nition 2.20. An open (closed) cover of a topological space 𝑋 is a collection
of open (resp. closed) sets {𝑈𝛼} such that the union ∪𝛼𝑐 = 𝑋.

Proposition 2.21. Let {𝑈𝛼} be either an open cover or a �nite closed cover of
𝑋. A map of sets

𝑓 : 𝑋 → 𝑌

between topological spaces is continuous if and only if the restrictions 𝑓 |𝑈𝛼 :
𝑈𝛼 → 𝑌 are continuous for all 𝛼 (where 𝑈𝛼 has the subspace topology).

The preceding proposition will be used in two ways: to test if a map 𝑓 is
continuous by considering the restrictions, and also to construct a map 𝑓 by
gluing together continuous maps de�ned on the 𝑈𝛼 that agree on overlaps.
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De�nition 2.22. A space 𝑋 is called compact if every open cover {𝑈𝛼} of 𝑋
contains a �nite subcover. I.e., there exists a �nite collection {𝑈1, . . . ,𝑈𝑛} ⊂
{𝑈𝛼} such that ∪𝑛

𝑖=1𝑈𝑖 = 𝑋.

Proposition 2.23. A subspace of R𝑛 is compact if and only if it is closed and
bounded.

Compactness is preserved under the following:

� A closed subspace of a compact space is compact.

� A �nite union of compact spaces is compact.

� A product of compact spaces is compact.

� If 𝑓 : 𝑋 → 𝑌 is continuous and 𝑋 is compact, then the image 𝑓 (𝑋) ⊂ 𝑌 is
compact.

2.4 Metric spaces and the Lebesgue number lemma

De�nition 2.24. Let 𝑋 be a set. A metric on 𝑋 is a function

𝑑 : 𝑋 × 𝑋 → R≥0

called the distance or metric function, satisfying

1. 𝑑 (𝑥, 𝑥′ ) = 0⇔ 𝑥 = 𝑥
′
(𝑑 separates points)

2. 𝑑 (𝑥, 𝑥′ ) = 𝑑 (𝑥′ , 𝑥) (𝑑 is symmetric)

3. 𝑑 (𝑥, 𝑥′′ ) ≤ 𝑑 (𝑥, 𝑥′ ) + 𝑑 (𝑥′ , 𝑥′′ ) (the triangle inequality)

A metric space (𝑋, 𝑑) determines a metric topology on 𝑋, which is generated
by the basis of open balls 𝐵𝜖 (𝑝) = {𝑥 ∈ 𝑋 |𝑑 (𝑥, 𝑝) < 𝜖}. If 𝐴 is a subset of
a metric space 𝑋 then 𝐴 becomes a metric space by restriction. The metric
topology on 𝐴 is the same as the subspace topology on 𝐴.

The following result will come up repeatedly.

Lemma 2.25 (Lebesgue number Lemma). Let A be an open covering of a
compact metric space 𝑋. There exists 𝛿 > 0, called the Lebesgue number, such
that for all 𝑝 ∈ 𝑋, the open ball 𝐵𝛿 (𝑝) is contained in some 𝑈 ∈ A.

2.5 Hausdor� spaces

De�nition 2.26. A space 𝑋 is called Hausdor� if for any pair of distinct points
𝑝, 𝑞 ∈ 𝑋, there exist open sets 𝑈,𝑉 such that 𝑝 ∈ 𝑈, 𝑞 ∈ 𝑉 and 𝑈 ∩𝑉 = ∅.

Proposition 2.27. Any metric space is Hausdor�. In particular, any subset
of R𝑛 is Hausdor�.



2.5. HAUSDORFF SPACES 11

The Hausdor� property is preserved under the following:

� Products of Hausdor� spaces are Hausdor�.

� Subspaces of Hausdor� spaces are Hausdor�.

� Coproducts of Hausdor� spaces are Hausdor�.





Lecture 3

Singular Homology

In this chapter we are going to quickly review the de�nition of singular homology,
mainly to introduce the reader to the notation used in this text. Afterwards we
are going to prove the so called �axioms for an ordinary homology theory� in
the case of singular homology.

3.1 Simplices

The standard 𝑞-simplex Δ𝑞 is the simplex spanned by the zero vector 𝑒0 = ®0
and the standard basis vectors 𝑒1, . . . , 𝑒𝑞 in R𝑞 (Figure 3.1). Thus,

Δ𝑞 := {(𝑡1, . . . 𝑡𝑛) |𝑡𝑖 ≥ 0 ∀𝑖 = 1, . . . , 𝑞, and
∑︁
𝑖

𝑡𝑖 ≤ 1}

Figure 3.1: The standard simplices

If 𝑋 is a topological space, a singular 𝑞-simplex (or simply simplex ) in 𝑋 is

13
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a (continuous) map
𝜎 : Δ𝑞 → 𝑋.

Thus a singular 0-simplex in 𝑋 is simply a point in 𝑋, a singular 1-simplex
in 𝑋 is a continuous path in 𝑋, etc. We can think of singular simplices as probes
used to study the space 𝑋.
Example 3.1. Let 𝑣0, . . . , 𝑣𝑞 be a set of 𝑞+1-vectors in R𝑛 for some 𝑛 ∈ N. De�ne

[𝑣0, . . . , 𝑣𝑞] : Δ𝑞 → R𝑛, (𝑡1, . . . , 𝑡𝑛) ↦→ (1 − 𝑡1 − · · · − 𝑡𝑞)𝑣0 + 𝑡1𝑣1 + · · · + 𝑡𝑞𝑣𝑞 .

We call [𝑣0, . . . , 𝑣𝑞] the a�ne simplex de�ned by 𝑣0, . . . , 𝑣𝑞. Slightly abusing
notation, de�ne the face maps for 0 ≤ 𝑖 ≤ 𝑞, de�ne by

𝐹𝑖𝑞 : Δ𝑞−1 → Δ𝑞

by 𝐹𝑖𝑞 = [𝑒0, . . . , 𝑒̂𝑖 , . . . , 𝑒𝑞] where the 𝑒̂𝑖 means �omit 𝑒𝑖�. More speci�cally, 𝐹𝑖𝑞
is the a�ne map that sends and therefore maps Δ𝑞−1 homeomorphically onto

𝑒0 ↦→ 𝑒0
· · · · · ·
𝑒𝑖−1 ↦→ 𝑒𝑖−1
𝑒𝑖 ↦→ 𝑒𝑖+1
· · · · · ·
𝑒𝑞−1 ↦→ 𝑒𝑞

the boundary face of Δ𝑞 opposite the vertex 𝑒𝑖.

Figure 3.2: Faces of the standard 2-simplex

The 𝑖-th face of a singular 𝑞-simplex 𝜎 : Δ𝑞 → 𝑋 is the 𝑞 − 1-simplex

𝜎 (𝑖) : Δ𝑞−1 → 𝑋

de�ned by composition with the face map:

𝜎 (𝑖) := 𝜎 ◦ 𝐹𝑖𝑞 .
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3.2 Chains, cycles, and boundaries

De�ne 𝑆𝑞 (𝑋) to be the free Abelian group generated by singular 𝑞-simplices.
The elements of 𝑆𝑞 (𝑋) are called singular chains and are formal linear combi-
nations of the form ∑︁

𝜎

𝑎𝜎𝜎

where the coe�cients 𝑎𝜎 ∈ Z and the sum is over a �nite number of singular
𝑞-simplices 𝜎. By convention, 𝑆𝑞 (𝑋) = 0 for 𝑞 < 0.
Caveat : Unless 𝑋 is �small� (�nite, say), 𝑆𝑞 (𝑋), 𝑞 ≥ 0 is huge as a set.

The boundary map 𝜕𝑞 : 𝑆𝑞 (𝑋) → 𝑆𝑞−1(𝑋) is a homomorphism, de�ed on
singular simplices by

𝜕𝑞 (𝜎) =
𝑞∑︁
𝑖=0

(−1)𝑖𝜎 (𝑖) =
𝑞∑︁
𝑖=0

(−1)𝑖𝜎 ◦ 𝐹𝑖𝑞

and extended linearly to all 𝑆𝑞 (𝑋) by the rule

𝜕𝑞 (
∑︁

𝜎𝑎𝜎𝜎) =
∑︁
𝜎

𝜕𝑞 (𝜎).

We will often drop the subscript and write 𝜕 = 𝜕𝑞 when it is unlikely to cause
confusion.

Figure 3.3: Faces of the standard 2-simplex

Example 3.2. Let 𝜎1 and 𝜎2 be singular 2-simplices in 𝑋. Then −2𝜎1 + 3𝜎2 ∈
𝑆2 (𝑋) is a 2-chain and

𝜕2 (−2𝜎1 + 3𝜎2) = −2𝜕2 (𝜎1) + 3𝜕2 (𝜎2)

= −2(𝜎 (0)1 − 𝜎 (1)1 + 𝜎 (2)1 ) + 3(𝜎
(0)
2 − 𝜎 (1)2 + 𝜎 (2)2 )

= −2𝜎 (0)1 + 2𝜎 (1)1 − 2𝜎 (2)1 + 3𝜎 (0)2 − 3𝜎 (1)2 + 3𝜎 (2)2

is a 1-chain in 𝑆1 (𝑋).
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The boundary map can be understood schematically from Figure 3.3, but
be careful not to confuse singular simplices (which are maps) with their images
(which are sets).

Proposition 3.3. The composition 𝜕𝑞−1 ◦ 𝜕𝑞 : 𝑆𝑞 (𝑋) → 𝑆𝑞−2(𝑋) is the zero
map. Dropping subscripts, we write this

𝜕2 = 0.

Caveat : A bare-hand brute-force approach will turn out to be a notational
nightmare. Note that 3.4 below circumvents di�culties in the proof.

Proof. Since 𝑆𝑞 (𝑋) is generated by simplices, it su�ces to check that 𝜕𝑞−1 ◦
𝜕𝑞 (𝜎) = 0 for all 𝑞-simplices 𝜎.

First we note that the face maps satisfy the commutation relation

𝐹𝑖𝑞 ◦ 𝐹
𝑗

𝑞−1 = 𝐹
𝑗
𝑞 ◦ 𝐹𝑖−1𝑞−1 when 𝑖 > 𝑗 , (3.4)

as can be seen immediately by observing that the vertices of Δ𝑞−2 are mapped
according to the following chart: In other words, both 𝐹𝑖𝑞 ◦ 𝐹

𝑗

𝑞−1 and 𝐹 𝑗𝑞 ◦ 𝐹𝑖−1𝑞−1

𝐹
𝑗

𝑞−1 𝐹𝑖𝑞 𝐹𝑖−1𝑞−1 𝐹
𝑗
𝑞

𝑒0 ↦→ 𝑒0 ↦→ 𝑒0 𝑒0 ↦→ 𝑒0 ↦→ 𝑒0
· · · · · · · · · · · · · · · · · ·
𝑒 𝑗−1 ↦→ 𝑒 𝑗−1 ↦→ 𝑒 𝑗−1 𝑒 𝑗−1 ↦→ 𝑒 𝑗−1 ↦→ 𝑒 𝑗−1
𝑒 𝑗 ↦→ 𝑒 𝑗+1 ↦→ 𝑒 𝑗+1 𝑒 𝑗 ↦→ 𝑒 𝑗 ↦→ 𝑒 𝑗+1
· · · · · · · · · · · · · · · · · ·
𝑒𝑖−2 ↦→ 𝑒𝑖−1 ↦→ 𝑒𝑖−1 𝑒𝑖−2 ↦→ 𝑒𝑖−2 ↦→ 𝑒𝑖−1
𝑒𝑖−1 ↦→ 𝑒𝑖 ↦→ 𝑒𝑖+1 𝑒𝑖−1 ↦→ 𝑒𝑖 ↦→ 𝑒𝑖+1
· · · · · · · · · · · · · · · · · ·
𝑒𝑞−2 ↦→ 𝑒𝑞−1 ↦→ 𝑒𝑞 𝑒𝑞−2 ↦→ 𝑒𝑞−1 ↦→ 𝑒𝑞

are equal to the a�ne simplex [𝑒0, . . . , 𝑒̂ 𝑗 , . . . , 𝑒̂𝑖 , . . . , 𝑒𝑞].
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Using this, we compute

𝜕𝑞−1 ◦ 𝜕𝑞(𝜎) = 𝜕𝑞−1(
𝑞∑︁
𝑖=0

(−1)𝑖𝜎 (𝑖) )

=

𝑞∑︁
𝑖=0

(−1)𝑖𝜕𝑞−1(𝜎 ◦ 𝐹𝑖𝑞)

=

𝑞∑︁
𝑖=0

(−1)𝑖
𝑞−1∑︁
𝑗=0

(−1) 𝑗 (𝜎 ◦ 𝐹𝑖𝑞 ◦ 𝐹
𝑗

𝑞−1)

=

𝑞∑︁
𝑖=0

𝑞∑︁
𝑗=0

(−1)𝑖+ 𝑗 (𝜎 ◦ 𝐹𝑖𝑞 ◦ 𝐹
𝑗

𝑞−1)

=
∑︁

0≤𝑖≤ 𝑗≤𝑞−1
(−1)𝑖+ 𝑗 (𝜎 ◦ 𝐹𝑖𝑞 ◦ 𝐹

𝑗

𝑞−1) +
∑︁

0≤ 𝑗≤𝑖≤𝑞
(−1)𝑖+ 𝑗 (𝜎 ◦ 𝐹𝑖𝑞 ◦ 𝐹

𝑗

𝑞−1)

=
∑︁

0≤𝑖≤ 𝑗≤𝑞−1
(−1)𝑖+ 𝑗 (𝜎 ◦ 𝐹𝑖𝑞 ◦ 𝐹

𝑗

𝑞−1) −
∑︁

0≤ 𝑗≤𝑖−1≤𝑞−1
(−1)𝑖−1+ 𝑗 (𝜎 ◦ 𝐹 𝑗𝑞 ◦ 𝐹𝑖−1𝑞−1)

= 0

as these two sums cancel term by term by changing the index of the �rst sum
by 𝑖 ↦→ 𝑗 , 𝑗 ↦→ 𝑖 − 1. □

A geometric illustration of 𝜕2 = 0 is provided for 𝑞 = 2 in Figure �g:3-4.

Figure 3.4: 𝜕2 = 0 for 𝑞 = 2

De�nition 3.5. The group of 𝑞-cycles 𝑍𝑞 (𝑋) is the kernel of 𝜕𝑞:

𝑍𝑞 (𝑋) := {𝛼 ∈ 𝑆𝑞 (𝑋) |𝜕 (𝛼) = 0}.
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The group of 𝑞-boundaries 𝐵𝑞 (𝑋) is the image of 𝜕𝑞+1:

𝐵𝑞 (𝑋) := {𝜕 (𝛽) |𝛽 ∈ 𝑆𝑞+1 (𝑋)}.

By Proposition 3.3, 𝐵𝑞 (𝑋) is a subgroup of 𝑍𝑞 (𝑋): 𝐵𝑞 (𝑋) ⊳ 𝑍𝑞 (𝑋). The 𝑞th
degree singular homology of 𝑋 is the coset group:

𝐻𝑞 (𝑋) := 𝑍𝑞 (𝑋)/𝐵𝑞 (𝑋).

Example 3.6. The homology of a point. If 𝑋 = {pt} is a single point, then
there is only one singular simplex in each degree, which is the constant map
𝜎𝑞 : Δ𝑞 → {pt}. The chain groups are1

𝐶𝑞 ({pt}) = Z𝜎𝑞 � Z.

The boundary map satis�es (for 𝑞 ≥ 1)

𝜕𝑞 (𝜎𝑞) =
𝑞∑︁
𝑖=0

(−1)𝑖𝜎𝑞 (𝑖)

=

𝑞∑︁
𝑖=0

(−1)𝑖𝜎𝑞 − 1

=

{
𝜎𝑞−1 if 𝑞 is even
0 if 𝑞 is odd

while 𝜕0 (𝜎0) = 0.
It follows that for 𝑞 ≥ 1

𝑍𝑞 ({pt}) = 𝐵𝑞 ({pt}) =
{
0 if 𝑞 is even
𝐶𝑞 ({pt}) if 𝑞 is odd

while 𝑍0 ({pt}) � Z and 𝐵0 ({pt}) = 0. Thus

𝐻𝑞 ({pt}) = 𝑍𝑞 ({pt})/𝐵𝑞 ({pt}) =
{
0 if 𝑞 ≥ 1

Z if 𝑞 = 0

Remark 3.7. A space 𝑋 for which 𝐻𝑞 (𝑋) � 𝐻𝑞 ({pt}) for all 𝑞 is called acyclic,
meaning no cycles that are not also boundaries.

Proposition 3.8. Let {𝑋𝑘} be the set of path components of a space 𝑋 (indexed
by 𝑘). Then

𝐻𝑞 (𝑋) = ⊕𝑘𝐻𝑞 (𝑋𝑘)

for all 𝑞 ≥ 0.

1The case of a point is highly unusual in this respect. For most spaces 𝑌 , 𝐶𝑞 (𝑌 ) is huge,
with an uncountable rank.
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Proof. Because the standard 𝑞-simplex is path connected (indeed convex), the
image of a singular 𝑞-simplex 𝜎 : Δ𝑞 → 𝑋 must be path connected and in
particular must lie within one of the path components of 𝑋. It follows that for
all 𝑞 we have a canonical decomposition,

𝐶𝑞 (𝑋) = ⊕𝑘𝐶𝑞 (𝑋𝑘).

Moreover, it is clear that the boundary map 𝜕 respects this decomposition, so
that

𝑍𝑞 (𝑋) = ⊕𝑘𝑍𝑞 (𝑋𝑘) and 𝐵𝑞 (𝑋) = ⊕𝑘𝐵𝑞 (𝑋𝑘)
and �nally that

𝐻𝑞 (𝑋) = 𝑍𝑞 (𝑋)/𝐵𝑞 (𝑋)
= (⊕𝑞𝑍𝑞 (𝑋𝑘))/(⊕𝑞𝐵𝑞 (𝑋𝑘))
= ⊕𝑘 (𝑍𝑞 (𝑋𝑘)/𝐵𝑞 (𝑋𝑘))
= ⊕𝑘𝐻𝑞 (𝑋𝑘).

□

We denote by 𝜋0 (𝑋) the set of path components of a space 𝑋.

Proposition 3.9. There is a canonical isomorphism

𝐻0 (𝑋) = Z𝜋0 (𝑋).

Thus 𝐻0 (𝑋) � Z𝑛 where 𝑛 is the number of path components of 𝑋.

Proof. By Proposition 3.8, it su�ces to show that if 𝑋 is path connected, then
there is a canonical isomorphism

𝐻0 (𝑋) = Z.

Recall that a singular 0−simplex is the same thing as a point in 𝑋. Thus

𝑆0 (𝑋) = 𝑍0 (𝑋) = ⊕𝑝∈𝑋Z𝑝.

The standard one simplex Δ1 is equal to the unit interval [0, 1] ⊂ R, so a singular
1-simplex is a continuous path in 𝜎 : [0, 1] → 𝑋. Since 𝑋 is path-connected, for
any two points 𝑝, 𝑞 ∈ 𝑋, there exists a path 𝜎 such that 𝜎(0) = 𝑝 and 𝜎(1) = 𝑞.
Consequently, the boundary satis�es

𝜕 (𝜎) = 𝜎(1) − 𝜎(0) = 𝑝 − 𝑞 ∈ 𝑆0 (𝑋).

and thus
𝐵0 (𝑋) = SpanZ{𝑝 − 𝑞 |𝑝, 𝑞 ∈ 𝑋} ⊂ ⊕𝑝∈𝑋Z𝑝.

Observe that 𝐵0 (𝑋) is equal to the kernel of the homomorphism

𝜖 : ⊕𝑝∈𝑋Z𝑝 → Z

de�ned on generators by 𝜖 (𝑝) = 1. It follows that 𝜖 descends to a homomorphism

𝐻0 (𝑋) = 𝑍0 (𝑋)/𝐵0 (𝑋) � Z.

□
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3.2.1 Homology as a functor

Suppose that 𝑓 : 𝑋 → 𝑌 is a continuous map. If 𝜎 is a 𝑞-simplex for 𝑋, then
the composition 𝑓 ◦ 𝜎 is a 𝑞-simplex for 𝑌 . This de�nes a homomorphism

𝑆𝑞 ( 𝑓 ) : 𝑆𝑞 (𝑋) → 𝑆𝑞 (𝑌 ), 𝑆𝑞 ( 𝑓 ) (
∑︁
𝜎

𝑎𝜎𝜎) =
∑︁
𝜎

𝑎𝜎 𝑓 ◦ 𝜎.

Clearly 𝑆𝑞 (id 𝑋) = id𝑆𝑞 (𝑋) and 𝑆𝑞 ( 𝑓 ◦ 𝑔) = 𝑆𝑞 ( 𝑓 ) ◦ 𝑆𝑞 (𝑔) for composable con-
tinuous maps 𝑓 and 𝑔. Thus 𝑆𝑞 is functor from topological spaces to abelian
groups. It allows commuting with the boundary map.

Lemma 3.10. 𝜕𝑞 ◦ 𝑆𝑞 ( 𝑓 ) = 𝑆𝑞−1( 𝑓 ) ◦ 𝜕𝑞.

Proof. It is enough to check for simplices.

𝜕𝑞𝑆𝑞 ( 𝑓 ) (𝜎) = 𝜕 ( 𝑓 ◦ 𝜎)

=

𝑞∑︁
𝑖=0

(−1)𝑖 ( 𝑓 ◦ 𝜎) (𝑖)

=

𝑞∑︁
𝑖=0

(−1)𝑖 𝑓 ◦ 𝜎 ◦ 𝐹𝑖𝑞

=

𝑞∑︁
𝑖=0

(−1)𝑖 𝑓 ◦ 𝜎 (𝑖)

= 𝑆𝑞 ( 𝑓 ) (
𝑞∑︁
𝑖=0

(−1)𝑖𝜎 (𝑖) )

= 𝑆𝑞 ( 𝑓 ) (𝜕𝜎)

using associativity of composition. □

It follows then 𝑆𝑞 ( 𝑓 ) (𝑍𝑞 (𝑋)) ⊂ 𝑍𝑞 (𝑌 ) and 𝑆𝑞 ( 𝑓 ) (𝐵𝑞 (𝑋) ⊂ 𝐵𝑞 (𝑌 ) and thus
induces a homomorphism between the coset groups

𝐻𝑞 ( 𝑓 ) : 𝐻𝑞 (𝑋) → 𝐻𝑞 (𝑌 ).

Now, it easily follows from the fact that 𝑆𝑞 is a functor that 𝐻𝑞 is a functor
from topological spaces to abelian groups. It is common to use short hand

𝑓∗ = 𝐻𝑞 ( 𝑓 )

though we will try to avoid doing so, as �∗� is overused.

3.3 Homotopy Invariance

Recall that two continuous maps 𝑓 , 𝑔 : 𝑋 → 𝑌 are said to be homotopic if there
exists a continuous map

ℎ : 𝑋 × 𝐼 → 𝑌
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where 𝐼 = [0, 1] is the unit interval and both ℎ(𝑥, 0) = 𝑓 (𝑥) and ℎ(𝑥, 1) = 𝑔(𝑥).
Intuitively, two maps are homotopic if one can be continuously deformed into
the other.

The goal of this section is to prove the following theorem.

Theorem 3.11. Let 𝑓 and 𝑔 be homotopic maps from 𝑋 to 𝑌 . For all 𝑞 ≥ 0,
the induced maps on homology are equal: 𝐻𝑞 ( 𝑓 ) = 𝐻𝑞 (𝑔).

Recall that two spaces 𝑋 and 𝑌 are called homotopy equivalent if there exist
maps 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 such that 𝑓 ◦ 𝑔 is homotopic to id𝑌 and 𝑔 ◦ 𝑓 is
homotopic id𝑋. That is,

∃Φ : 𝑋 × 𝐼 → 𝑋, Φ|𝑋×0 = 𝑔 ◦ 𝑓 , Φ|𝑋×1 = id𝑋,

∃Ψ : 𝑌 × 𝐼 → 𝑌, Ψ|𝑌×0 = 𝑓 ◦ 𝑔, Ψ|𝑌×1 = id𝑌 .

Corollary 3.12. If 𝑋 and 𝑌 are homotopy equivalent, then 𝐻∗𝑞 (𝑋) (𝑋) � 𝐻∗𝑞 (𝑌 )
for all 𝑞 ≥ 0.

Proof. By Theorem 3.11 and functoriality, we have

𝐻𝑞 ( 𝑓 ) ◦ 𝐻𝑞 (𝑔) = 𝐻𝑞 ( 𝑓 ◦ 𝑔) = 𝐻𝑞 (id𝑌 ) = id𝐻𝑞 (𝑌 )

and similarly 𝐻𝑞 (𝑔) ◦ 𝐻𝑞 ( 𝑓 ) = id𝐻𝑞 (𝑋) . The 𝐻𝑞 ( 𝑓 ) and 𝐻𝑞 (𝑔) are inverse iso-
morphisms between 𝐻𝑞 (𝑋) and 𝐻𝑞 (𝑌 ). □

Recall that a space is called contractible if it is homotopy equivalent to
a point. Examples of contractible spaces include all convex subspaces of R𝑛.
By Corollary 3.12, a contractible space 𝑋 satis�es 𝐻𝑞 (𝑋) = 0 for 𝑞 ≥ 1 and
𝐻0 (𝑋) = Z (i.e. contractible spaces are acyclic).

Before proving Theorem 3.11, it will be helpful to introduce some abstract
(= purely algebraic) ideas about chain complexes.

3.3.1 Chain complexes and chain homotopy

De�nition 3.13. A chain complex (of abelian groups)

𝐶 := (𝐶𝑞 , 𝜕𝑞)𝑞∈Z

is a sequence of abelian groups (𝐶𝑞)𝑞∈Z and homomorphisms 𝜕𝑞 : 𝐶𝑞 → 𝐶𝑞−1
such that 𝜕𝑞−1 ◦ 𝜕𝑞 = 0 for all 𝑞 ∈ Z.

· · ·
𝜕𝑞+3−−−→ 𝐶𝑞+2

𝜕𝑞+2−−−→ 𝐶𝑞+1
𝜕𝑞+1−−−→ 𝐶𝑞

𝜕𝑞−−→ 𝐶𝑞−1
𝜕𝑞−1−−−−→ 𝐶𝑞−2

𝜕𝑞−2−−−−→ · · ·

Typically 𝐶𝑞 = 0 for 𝑞 < 0.

Example 3.14. The singular chain complex 𝑆(𝑋) = (𝑆𝑞 (𝑋), 𝜕𝑞)𝑞∈Z is indeed a
chain complex.

We de�ne 𝑍𝑞 (𝐶) = ker(𝜕𝑞), 𝐵𝑞 (𝐶) = im(𝜕𝑞+1) and 𝐻𝑞 (𝐶) = 𝑍𝑞 (𝐶)/𝐵𝑞 (𝐶),
called respectively the 𝑞-chains, 𝑞-boundaries, and 𝑞-homology groups of the
chain complex. If 𝑧 ∈ 𝑍𝑞 (𝐶), denote by [𝑧] ∈ 𝐻𝑞 (𝐶) the coset represented by 𝑧.
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De�nition 3.15. A morphism of chain complexes (or a chain map for short)
𝑓 : 𝐶 → 𝐶

′
is a sequence of homomorphisms ( 𝑓𝑞 : 𝐶𝑞 → 𝐶

′
𝑞)𝑞∈Z that commutes

with boundary maps, i.e., that satis�es 𝑓𝑞−1𝜕𝑞 = 𝜕
′
𝑞 𝑓𝑞 for all 𝑞.

𝐶𝑞
𝜕𝑞 //

𝑓𝑞

��

𝐶𝑞−1

𝑓𝑞−1
��

𝐶
′
𝑞

𝜕
′
𝑞

// 𝐶
′
𝑞−1

Example 3.16. Given a continuous map 𝜙 : 𝑋 → 𝑌 , the morphisms 𝑆𝑞 (𝜙) :
𝑆𝑞 (𝑋) → 𝑆𝑞 (𝑌 ) determine a chain morphism 𝑆(𝜙) : 𝑆(𝑋) → 𝑆(𝑌 ).

A chain map 𝑓 : 𝐶 → 𝐶
′
induces a homomorphism in homology 𝐻𝑞 ( 𝑓 ) :

𝐻𝑞 (𝐶) → 𝐻𝑞 (𝐶
′ ) for all 𝑞 ∈ Z by the same reasoning as in �3.2.1 by the rule

𝐻𝑞 ( 𝑓 ) ( [𝑧]) = [ 𝑓𝑞 (𝑧)] .

Thus each 𝐻𝑞 is a functor from chain complexes to abelian groups.
Let 𝑓 , 𝑔 : 𝐶 → 𝐶

′
be two chain maps. A chain homotopy between 𝑓 and 𝑔

is a sequence of homomorphism (𝑃𝑞 : 𝐶𝑞 → 𝐶𝑞+1)
′ )𝑞∈Z such that

𝜕
′
𝑞+1𝑃𝑞 + 𝑃𝑞−1𝜕𝑞 = 𝑓𝑞 − 𝑔𝑞 .

𝐶𝑞+1
𝜕𝑞+1 //

��

𝐶𝑞
𝜕𝑞 //

𝑓𝑞−𝑔𝑞
��𝑃𝑞xx

𝐶𝑞−1

��𝑃𝑞−1
xx

𝐶
′
𝑞+1

𝜕
′
𝑞+1

// 𝐶
′
𝑞

𝜕
′
𝑞

// 𝐶
′
𝑞

The chain maps 𝑓 and 𝑔 are called chain homotopic if there exists a chain
homotopy between them.

Proposition 3.17. If chain maps 𝑓 , 𝑔 : 𝐶 → 𝐶
′
are chain homotopic, then the

induced maps on homology are equal: 𝐻𝑞 ( 𝑓 ) = 𝐻𝑞(𝑔) as maps from 𝐻𝑞 (𝐶) to
𝐻𝑞 (𝐶

′ ).

Proof. Let [𝑧] ∈ 𝐻𝑞 (𝐶) be represented by 𝑧 ∈ 𝑍𝑞 (𝐶). Then, since 𝜕𝑞 (𝑧) = 0,

𝑓𝑞 (𝑧) − 𝑔𝑞 (𝑧) = 𝑃𝑞−1𝜕𝑞 (𝑧) + 𝜕
′
𝑞+1𝑃𝑞 (𝑧) = 𝜕

′
𝑞+1𝑃𝑞 (𝑧)

is a boundary. Thus

𝐻𝑞 ( 𝑓 ) ( [𝑧]) − 𝐻𝑞 (𝑔) ( [𝑧]) = [ 𝑓𝑞 (𝑧)] − [𝑔𝑞 (𝑧)] = [ 𝑓𝑞 (𝑧) − 𝑔𝑞 (𝑧)] = [𝜕
′
𝑞+1𝑃𝑞 (𝑧)] = 0

so 𝐻𝑞 ( 𝑓 ) ( [𝑧]) = 𝐻𝑞 (𝑔) ( [𝑧]). □
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The prism operator

For 𝑡 ∈ 𝐼 = [0, 1], de�ne

𝜄𝑡 : 𝑋 ↩→ 𝑋 × 𝐼, 𝜄𝑡 (𝑥) = (𝑥, 𝑡). (3.18)

Lemma 3.19. The two maps 𝜄0, 𝜄1 : 𝑋 → 𝑋 × 𝐼, determine chain homotopic
chain morphisms 𝑆(𝜄0) and 𝑆(𝜄1).

Proof. The �rst step is to de�ne a decomposition of Δ𝑞 × 𝐼 ⊂ R𝑛+1 into (𝑞 + 1)-
simplices. Denote the vertices lying in Δ𝑞 × {0} by 𝑣0, . . . , 𝑣𝑞 and those lying in
Δ𝑞 × {1} by 𝑤0, . . . , 𝑤𝑞. For each 𝑖, the image of the a�ne simplex

[𝑣0, . . . , 𝑣𝑖 , 𝑤𝑖+1, . . . , 𝑤𝑞] : Δ𝑞 → Δ𝑞 × 𝐼

can be thought of as the graph of a map from Δ𝑞 to 𝐼, because composing the
projection Δ𝑞 × 𝐼 → Δ𝑞 is the identity map. These graphs slice Δ𝑞 × 𝐼 into the
images of a�ne (𝑞 + 1)-simplices

[𝑣0, . . . , 𝑣𝑖 , 𝑤𝑖 , . . . , 𝑤𝑞] : Δ𝑞+1 → Δ𝑞 × 𝐼, 𝑖 ∈ {0, . . . , 𝑞}.

Figure 3.5: Prism decomposition

For arbitrary 𝑋, de�ne the prism operator 𝑃𝑞 : 𝑆𝑞 (𝑋) → 𝑆𝑞+1 (𝑋 × 𝐼) on
simplices by

𝑃𝑞 (𝜎) :=
𝑞∑︁
𝑖=0

(−1)𝑖 (𝜎 × id𝐼 ) ◦ [𝑣0, . . . , 𝑣𝑖 , 𝑤𝑖 , . . . , 𝑤𝑞] .
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This will be our chain homotopy.

𝜕𝑞+1𝑃𝑞 (𝜎) = 𝜕𝑞+1
𝑞∑︁
𝑖=0

(−1)𝑖 (𝜎 ◦ id𝐼 ) ◦ [𝑣0, . . . , 𝑣𝑖 , 𝑤𝑖 , . . . , 𝑤𝑞]

=

𝑞∑︁
𝑖=0

∑︁
𝑗≤𝑖
(−1)𝑖+ 𝑗 (𝜎 ◦ id𝐼 ) ◦ [𝑣0, . . . , 𝑣 𝑗 , . . . , 𝑣𝑖 , 𝑤𝑖 , . . . , 𝑤𝑞]

+
𝑞∑︁
𝑖=0

∑︁
𝑗≥𝑖
(−1)𝑖+ 𝑗+1(𝜎 ◦ id𝐼 ) ◦ [𝑣0, . . . , . . . , 𝑣𝑖 , 𝑤𝑖 , . . . , 𝑤 𝑗 , . . . , 𝑤𝑞]

On the other hand,

𝑃𝑞−1𝜕𝑞 (𝜎) = 𝑃𝑞−1
𝑞∑︁
𝑖=0

(−1) 𝑗 (𝜎 ◦ ◦[𝑒0, . . . , 𝑒̂ 𝑗 , . . . , 𝑒𝑞])

=

𝑞∑︁
𝑖=0

∑︁
𝑗≤𝑖
(−1)𝑖+ 𝑗+1 (𝜎 ◦ id𝐼 ) ◦ [𝑣0, . . . , 𝑣 𝑗 , . . . , 𝑣𝑖 , 𝑤𝑖 , . . . , 𝑤𝑞]

+
𝑞∑︁
𝑖=0

∑︁
𝑗≥𝑖
(−1)𝑖+ 𝑗 (𝜎 ◦ id𝐼 ) ◦ [𝑣0, . . . , . . . , 𝑣𝑖 , 𝑤𝑖 , . . . , 𝑤 𝑗 , . . . , 𝑤𝑞]

Adding together, we get

𝜕𝑞+1𝑃𝑞 (𝜎) + 𝑃𝑞−1𝜕𝑞 (𝜎) =
𝑞∑︁
𝑖=0

(𝜎 ◦ id𝐼 ) ◦ [𝑣0, . . . , 𝑣̂𝑖 , 𝑤𝑖 , . . . , 𝑤𝑞]

−
𝑞∑︁
𝑖=0

(𝜎 ◦ id𝐼 ) ◦ [𝑣0, . . . , 𝑣𝑖 , 𝑤𝑖 , . . . , 𝑤𝑞]

= 𝜎 ◦ id𝐼 ◦[𝑤0, . . . , 𝑤𝑞] − 𝜎 ◦ id𝐼 ◦[𝑣0, . . . , 𝑣𝑞]
= 𝜄1 ◦ 𝜎 − 𝜄0 ◦ 𝜎.

□

It follows that
𝜕𝑞+1𝑃𝑞 + 𝑃𝑞−1𝜕𝑞 = 𝑆𝑞 (𝜄1) − 𝑆𝑞 (𝜄0).

Proof. (of Theorem 3.11) A homotopy between two maps 𝑓 , 𝑔 : 𝑋 → 𝑌 is a map
ℎ : 𝑋 × 𝐼 → 𝑌 such that 𝑓 = ℎ ◦ 𝜄0 and 𝑔 = ℎ ◦ 𝜄1. By Lemma 3.19, 𝑆𝑞 (𝜄1)
and 𝑆𝑞 (𝜄0) are chain homotopic, so Proposition 3.17 implies 𝐻𝑞 (𝜄0) = 𝐻𝑞 (𝜄1).
Finally we see that

𝐻𝑞 ( 𝑓 ) = 𝐻𝑞 (ℎ) ◦ 𝐻𝑞 (𝜄0) = 𝐻𝑞 (ℎ) ◦ 𝐻𝑞 (𝜄1) = 𝐻𝑞 (𝑔).

□

In fact, it is not hard to show that 𝑆( 𝑓 ) and 𝑆(𝑔) are chain homotopic via
the chain homotopy 𝑆𝑞+1 (𝐻) ◦ 𝑃𝑞.
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3.4 Relative Homology and the long exact ho-

mology sequence

A topological pair (𝑋, 𝐴) consists of a space 𝑋 and a subspace 𝐴 ⊂ 𝑋. A pair
(𝑋, 𝐴) gives rise to an inclusion of chain groups 𝑆𝑞 (𝐴) ≤ 𝑆𝑞 (𝑋) (technically the
inclusion map 𝑖 : 𝐴 ↩→ 𝑋 determines an injective homomorphism 𝑆𝑞 (𝑖)). De�ne
the relative chain group of the pair to be the coset group

𝑆𝑞 (𝑋, 𝐴) := 𝑆𝑞 (𝑋)/𝑆𝑞 (𝐴).

The relative chain groups combine to form the relative chain complex

· · · 𝑆𝑞+1 (𝑋, 𝐴)
𝜕𝑞+1−−−−→ 𝑆𝑞 (𝑋, 𝐴)

𝜕𝑞−−→ 𝑆𝑞−1(𝑋, 𝐴)
𝜕𝑞−1−−−−→ · · ·

where the boundary map is de�ned by the following commutative diagramme

𝑆𝑞 (𝑋)
𝜕𝑞 //

��

𝑆𝑞−1(𝑋)

��
𝑆𝑞 (𝑋, 𝐴)

𝜕𝑞

// 𝑆𝑞−1(𝑋, 𝐴)

where the vertical arrows are coset maps.
Note that 𝜕𝑞 is well de�ned because 𝜕𝑞 sends 𝑆𝑞 (𝐴) to 𝑆𝑞−1(𝐴) and that

𝜕
2
= 0 because 𝜕2 = 0. It follows that we can de�ne relative cycles, relative

boundaries, and relative homology as described in 3.3.1, which are denoted

𝑍𝑞 (𝑋, 𝐴), 𝐵𝑞 (𝑋, 𝐴), 𝐻𝑞 (𝑋, 𝐴)

respectively. Geometrically, a relative cycle in 𝑍𝑞 (𝑋, 𝐴) is represented by a chain
in 𝑍𝑞 (𝑋) whose boundary lands in 𝑆𝑞−1(𝐴).
Remark 3.20. Observe that if 𝐴 = ∅, then 𝑆𝑞 (𝐴) = 0 for all 𝑞. It follows that
𝑆𝑞 (𝑋,∅) = 𝑆𝑞 (𝑋) and that 𝐻𝑞 (𝑋,∅) = 𝐻𝑞 (𝑋). Thus it is possible to think of
homology as just a special case of relative homology.

A map of topological pairs

𝑓 : (𝑋, 𝐴) → (𝑋 ′ , 𝐴′ )

is a continuous map 𝑓 : 𝑋 → 𝑋
′
such that 𝑓 (𝐴) ⊂ 𝐴′ . Such a map determines

a morphism of chain complexes 𝑆( 𝑓 ) : 𝑆(𝑋, 𝐴) → 𝑆(𝑋 ′ , 𝐴′ ) and thus also a
homomorphism on homology

𝐻𝑞 ( 𝑓 ) : 𝐻𝑞 (𝑋, 𝐴) → 𝐻𝑞 (𝑋
′
, 𝐴

′ ).

The following properties are proven similarly to their counterparts for 𝐻𝑞 (𝑋).
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� 𝐻𝑞 is functor from topological pairs to Abelian groups. I.e. 𝐻𝑞 ( 𝑓 ) ◦
𝐻𝑞 (𝑔) = 𝐻𝑞 ( 𝑓 ◦ 𝑔) and 𝐻𝑞 (id(𝑋,𝐴) ) = id𝐻𝑞 (𝑋,𝐴) .

� If {𝑋𝑘} is the set of path components of 𝑋 and 𝐴𝑘 = 𝐴 ∩ 𝑋𝑘 , then there is
a canonical isomorphism 𝐻𝑞 (𝑋, 𝐴) = ⊕𝑘𝐻𝑞 (𝑋𝑘 , 𝐴𝑘).

� Let ℎ : 𝑋◦𝐼 → 𝑋
′
be a homotopy between maps such that ℎ𝑡 (𝑎) := ℎ(𝑎, 𝑡) ∈

𝐴
′
for all 𝑎 ∈ 𝐴 and 𝑡 ∈ 𝐼. Then 𝐻𝑞 (ℎ0) = 𝐻𝑞 (ℎ1) as homomorphisms from

𝐻𝑞 (𝑋, 𝐴) to 𝐻𝑞 (𝑋
′
, 𝐴

′ ).

The coset morphisms 𝑆𝑞 (𝑋) → 𝑆𝑞 (𝑋, 𝐴) �t together into a morphism of
chain complexes 𝑗 : 𝑆(𝑋) → 𝑆(𝑋, 𝐴). Combined with inclusion chain morphism
𝑖 : 𝑆(𝐴) → 𝑆(𝑋) we get a commutative diagramme (Recall that 𝑆𝑞 (𝑋, 𝐴) =
𝑆𝑞 (𝑋)/𝑆𝑞 (𝐴).)

· · · // 𝑆𝑞+1 (𝐴) //

𝑖

��

𝑆𝑞 (𝐴) //

𝑖

��

𝑆𝑞−1(𝐴) //

𝑖

��

· · ·

· · · // 𝑆𝑞+1 (𝑋) //

𝑗

��

𝑆𝑞 (𝑋) //

𝑗

��

𝑆𝑞−1(𝑋) //

𝑗

��

· · ·

· · · // 𝑆𝑞+1 (𝑋, 𝐴) // 𝑆𝑞 (𝑋, 𝐴) // 𝑆𝑞−1(𝑋, 𝐴) // · · ·

(3.21)

By functoriality, these chain morphisms give rise to homology homomor-
phisms 𝐻𝑞 (𝐴) → 𝐻𝑞 (𝑋) → 𝐻𝑞 (𝑋, 𝐴) for all 𝑞 ≥ 0. The most important property
of relative homology is the existence of a connecting homomorphism

𝐻𝑞 (𝑋, 𝐴)
𝜕−→ 𝐻𝑞−1(𝐴),

(denoted by 𝜕 using abuse of notation). To show is, we need some homological
algebra as below.

3.4.1 Some homological algebra

For a space 𝑋 we de�ned (see 3.14) the �singular chain complex� 𝑆(𝑋) =

(𝑆𝑞 (𝑋), 𝜕𝑞)𝑞∈Z of 𝑋. From that point, the de�nition of the homology groups
𝐻𝑞 (𝑋) and some simple properties were derived completely algebraically. Such
�chain complexes� can, and will, occur in other contexts. Accordingly, it is very
useful to abstract the algebraic part of the process, in order to apply it to future
situations.

Recall that (see 3.13) a chain complex (of abelian groups)

𝐶 := (𝐶𝑞 , 𝜕𝑞)𝑞∈Z

is a sequence of abelian groups (𝐶𝑞)𝑞∈Z and homomorphisms 𝜕𝑞 : 𝐶𝑞 → 𝐶𝑞−1
such that 𝜕𝑞−1 ◦ 𝜕𝑞 = 0 for all 𝑞 ∈ Z.
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As de�ned in 3.5, the homology of a chain complex 𝐶 = (𝐶𝑞 , 𝜕𝑞)𝑞∈Z is

𝐻 (𝐶) := (ker 𝜕𝑞 : (𝐶𝑞 → 𝐶𝑞−1)/im 𝜕𝑞+1 : (𝐶𝑞+1 → 𝐶𝑞))𝑞∈Z

Thus 𝐻𝑞 (𝑋) = 𝐻𝑞 (Δ(𝑋)).
As de�ned in 3.15, a chain map 𝑓 : 𝐴∗ → 𝐵∗ between two chain com-

plexes 𝐴∗ = {𝐴𝑞}𝑞∈Z and 𝐵∗ = {𝐵𝑞}𝑞∈Z is a collection of homomorphisms
𝑓𝑞 : 𝐴𝑞 → 𝐵𝑞such that 𝑓 ◦ 𝜕 = 𝜕 ◦ 𝑓 . In other words, a chain map is a
�ladder� of homomorphisms which commutes:

· · · 𝜕 // 𝐴𝑞+1
𝜕 //

𝑓

��

𝐴𝑞
𝜕 //

𝑓

��

𝐴𝑞−1
𝜕 //

𝑓

��

· · ·

· · ·
𝜕

// 𝐵𝑞+1
𝜕

// 𝐵𝑞
𝜕

// 𝐵𝑞−1
𝜕

// · · ·

A chain map 𝑓 : 𝐴∗ → 𝐵 induces a homomorphism of graded groups 𝑓∗ :
𝐻∗ (𝐴∗) → 𝐻∗∗𝐵∗ by 𝑓 [𝑎] = [ 𝑓 (𝑎)], such that ( 𝑓 ◦ 𝑔)∗ = 𝑓∗ ◦ 𝑔∗ and 1∗ = 1.

De�nition 3.22. A sequence of groups 𝐴
𝑖−→ 𝐵

𝑗
−→ 𝐶 is called exact if im( 𝑗) =

ker( 𝑗).

Exact sequences are common and fundamental in algebraic topology. Note

that an exact sequence of the form 0 → 𝐴
𝑖−→ 𝐵

𝑗
−→ 𝐶 → 0 means that 𝑖 is an

isomorphism of 𝐴 onto a subgroup of 𝐵 and 𝑗 induces an isomorphism of 𝐵/𝑖(𝐴)
onto 𝐶. Also note that to say that 𝑘 : 𝐴 → 𝐵 is an isomorphism (onto), is the

same as to say that 0→ 𝐴
𝑘−→ 𝐵→ 0 is exact.

Theorem 3.23. A �short� exact sequence 0 → 𝐴∗
𝑖−→ 𝐵∗

𝑗
−→ 𝐶∗ → 0 of chain

complexes and chain maps induces a �long� exact sequence

· · · 𝜕∗−→ 𝐻𝑝 (𝐴∗)
𝑖∗−→ 𝐻𝑝 (𝐵∗)

𝑗∗−→ 𝐻𝑝 (𝐶∗)
𝜕∗−→ 𝐻𝑝−1 (𝐴∗)

𝑖∗−→ · · · (3.24)

where 𝜕∗ [[𝑐]] = [[𝑖−1◦𝜕◦ 𝑗−1(𝑐)]] and is called the �connecting homomorphism�.

Proof. The arguments in this proof are of a type called �diagramme chasing�
consisting, in this case, of carrying elements around in the diagramme

0 // 𝐴𝑝+1
𝑖 //

𝜕

��

𝐵𝑝+1
𝑗 //

𝜕

��

𝐶𝑝+1 //

𝜕

��

0

0 // 𝐴𝑝
𝑖 //

𝜕

��

𝐵𝑝
𝑗 //

𝜕

��

𝐶𝑝 //

𝜕

��

0

0 // 𝐴𝑝−1
𝑖 // 𝐵𝑝−1

𝑗 // 𝐶𝑝−1 // 0
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We will see this one through in detail, but later such arguments will be ab-
breviated, since they are almost always straightforward to one with previous
experience.

𝜕∗ is well de�ned : We begin by checking that the de�nition given for 𝜕∗
really does de�ne a unique homomorphism 𝐻𝑝 (𝐶∗) → 𝐻𝑝−1 (𝐴∗). Suppose given
𝑐 ∈ 𝐶𝑝 such that 𝜕𝑐 = 0. Since 𝑗 is onto there is a 𝑏 ∈ 𝐵𝑝 with 𝑐 = 𝑗 (𝑏). Then
𝑗 (𝜕𝑏) = 𝜕 ( 𝑗 (𝑏)) = 𝜕 (𝑐) = 0. By exactness there is a unique element 𝑎 ∈ 𝐴𝑝−1
such that 𝑖(𝑎) = 𝜕𝑏. Then 𝑖(𝜕𝑎) = 𝜕 (𝑖(𝑎)) = 𝜕𝜕𝑏 = 0. Thus 𝜕𝑎 = 0 since 𝑖 is a
monomorphism. Therefore [[𝑎]] ∈ 𝐻𝑝−1 (𝐴∗) is de�ned. As indicated 𝜕∗ [[𝑐]] is
de�ned to be [[𝑎]].

We must show that this does not depend on the choices of 𝑏 and of 𝑐 within
its homology class. First suppose 𝑐 = 𝑗 (𝑏′ ), so that 𝑗 (𝑏 − 𝑏′ ) = 0. Then
𝑏 − 𝑏′ = 𝑖(𝑎0) for some 𝑎0 ∈ 𝐴𝑝. Thus 𝜕𝑏 − 𝜕𝑏′ = 𝜕 (𝑖(𝑎0)) = 𝑖(𝜕𝑎0). But the
left-hand side of this equation is 𝜕𝑏 − 𝜕𝑏′ = 𝑖(𝑎) − 𝑖(𝑎′ ) = 𝑖(𝑎 − 𝑎′ ). It follows
that 𝑎 − 𝑎′ = 𝜕𝑎0 and so 𝑎 ∼ 𝑎′ as desired.

We now consider the e�ect of changing 𝑐 within its homology class. Let
𝑐
′
= 𝑐 + 𝜕𝑐′′ . Then we can set 𝑐 = 𝑗 (𝑏) and 𝑐′′ = 𝑗 (𝑏′′ ). Let 𝑏′ = 𝑏 + 𝜕𝑏′′ . We

calculate 𝑗 (𝑏′ ) = 𝑗 (𝑏) + 𝑗 (𝜕𝑏′′ ) = 𝑐 + 𝜕𝑐′′ = 𝑐′′ But 𝜕𝑏′ = 𝜕𝑏 + 𝜕𝜕𝑏′′ = 𝜕𝑏 and so
𝜕𝑏 and 𝜕𝑏

′
, being equal, pull back to the same thing under 𝑖−1.

One also must show that 𝜕∗ is a homomorphism. But for two classes 𝑐 and
𝑐
′
, we can trace the de�nition back for both and, at any stage, the addition of

the elements going into the de�nition work for the sum 𝑐 + 𝑐′ which proves this
contention.

The �long� sequence 3.24 is exact : First, we show it is of �order two� (i.e.,
the composition of adjoining homomorphisms is zero). There are three cases.
First, 𝑗∗𝑖∗ = ( 𝑗 ◦ 𝑖)∗ = 0∗ = 0.

Second, consider 𝜕∗ 𝑗∗ [[𝑏]], where 𝜕𝑏 = 0. By de�nition of 𝜕∗, this is obtained
by taking 𝑏, then applying 𝜕 to it, giving 𝜕𝑏 = 0, and pulling this back (to 0)
to 𝐴∗.

Third, consider 𝑖𝜕∗. This is the result of taking an element of 𝐶∗, pulling it
back to 𝐵∗, taking 𝜕 of it, pulling that back to 𝐴∗ (this being the 𝜕∗ part) and
then pushing this out to 𝐵∗ again. But this element of 𝐵∗ is, by construction, 𝜕
of something, which has homology class 0, as claimed.

Now we must show that an element in the kernel of one of the maps 𝑖∗, 𝑗∗ or
𝜕∗ is in the image of the preceding one. Again the proof of this has three cases.

First, we show the exactness at 𝐻∗ (𝐵∗). Suppose that 𝑗∗ [[𝑏]] = 0. This
means that 𝑗 (𝑏) = 𝜕𝑐 for some 𝑐 ∈ 𝐶∗. Let 𝑏

′ ∈ 𝐵∗ be such that 𝑗 (𝑏′ ) = 𝑐. Then

𝑗 (𝑏 − 𝜕𝑏′ ) = 𝑗 (𝑏) − 𝑗 (𝜕𝑏′ ) = 𝜕𝑐 − 𝜕 ( 𝑗 (𝑏′ )) = 𝜕𝑐 − 𝜕𝑐 = 0.

This shows that we could have taken the representative b of its homology class
to be such that 𝑗 (𝑏) = 0. For this choice, then, 𝑏 = 𝑖(𝑎) for some 𝑎 ∈ 𝐴∗ (and
𝜕𝑎 = 0 since it maps, by the monomorphism 𝑖, into 𝜕𝑏 = 0). Thus [[𝑏]] = 𝑖∗ [[𝑎]]
as claimed.
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Second, for the exactness at 𝐻∗ (𝐴∗), suppose that 𝑖∗ [[𝑎]] = 0. Then 𝑖(𝑎) =
𝜕𝑏 for some 𝑏 ∈ 𝐵∗. Then put 𝑐 = 𝑗 (𝑏). We have 𝜕𝑐 = 𝜕 𝑗 (𝑏) = 𝑗 (𝜕𝑏) =
𝑗 (𝑖(𝑎)) = 0. Thus 𝑐 represents a homology class, and by construction of 𝜕∗,
𝜕∗ [[𝑐]] = [[𝑎]].

Third, for the exactness at 𝐻∗ (𝐶∗), suppose that 𝜕∗ [[𝑐]] = 0. Then for an
element 𝑏 ∈ 𝐵∗ for which 𝑗 (𝑏) = 𝑐, there is an 𝑎 ∈ 𝐴∗ such that 𝑖(𝑎) = 𝜕𝑏, by
the construction of 𝜕∗, and 𝑎 must be a boundary since it represents 𝜕∗ [[𝑐]] = 0.
Thus let 𝑎 = 𝜕𝑎

′
. Then 𝜕𝑖(𝑎′ ) = 𝑖(𝜕𝑎′ ) = 𝑖(𝑎) = 𝜕𝑏. Accordingly, 𝜕 (𝑏−𝑖(𝑎′ )) = 0

and 𝑗 (𝑏 − 𝑖(𝑎′ )) = 𝑐 − 0 = 𝑐. Therefore 𝑗∗ [[𝑏 − 𝑖(𝑎
′ )]] = [[𝑐]] as required. □

The connecting homomorphism in the long exact homology sequence satis�es
an important naturality property.

Proposition 3.25 (Naturality of the Connecting Homomorphism). Suppose

0 // 𝐶∗
𝐹 //

𝜅

��

𝐷∗
𝐺 //

𝛿
��

𝐸∗ //

𝜖

��

0

0 // 𝐶
′
∗

𝐹
′
// 𝐷
′
∗

𝐺
′
// 𝐸
′
∗ // 0

(3.26)

is a commutative diagramme of chain maps in which the horizontal rows are
exact. Then the following diagramme commutes for each 𝑝:

𝐻𝑝 (𝐸∗)
𝜕∗ //

𝜖∗
��

𝐻𝑝−1 (𝐶∗)

𝜅∗
��

𝐻𝑝 (𝐸
′
∗) 𝜕∗

// 𝐻𝑝−1 (𝐶
′
∗).

Proof. Let [𝑒𝑝] ∈ 𝐻𝑝 (𝐸∗) be arbitrary. Then 𝜕∗[𝑒𝑝] = [𝑐𝑝−1], where 𝐹𝑐𝑝−1 =

𝜕𝑑𝑝 for some 𝑑𝑝 such that 𝐺𝑑𝑝 = 𝑒𝑝. Then by commutativity of (3.26),

𝐹
′ (𝜅𝑐𝑝−1) = 𝛿𝐹𝑐𝑝−1 = 𝛿𝜕𝑑𝑝 = 𝜕 (𝛿𝑑𝑝);
𝐺
′ (𝛿𝑑𝑝) = 𝜖𝐺𝑑𝑝 = 𝜖𝑒𝑝 .

By de�nition, this means that

𝜕∗𝜖∗ [𝑒𝑝] = 𝜕∗ [𝜖∗𝑒𝑝] = [𝜅𝑐𝑝−1] = 𝜅∗[𝑐𝑝−1] = 𝜅∗𝜕∗[𝑒𝑝] .

which was to be proved. □

The following lemma is helpful for calculations:

Lemma 3.27 (The 5-lemma). Consider a commutative diagramme of abelian
groups

𝐴1
//

� 𝛼

��

𝐴2
//

� 𝛽

��

𝐴3
//

𝛾

��

𝐴4
//

� 𝛿

��

𝐴5

� 𝜖

��
𝐵1

// 𝐵2
// 𝐵3

// 𝐵4
// 𝐵5
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where the rows are exact. If 𝛼, 𝛽, 𝛾 and 𝜖 are all isomorphisms, then 𝛾 is also
an isomorphism.

Proof. This is a fairly straightforward diagramme chase. First suppose 𝑎3 ∈
ker(𝛾). Then 𝑎3 maps into ker(𝛿) = 0, so that 𝑎3 comes from some 𝑎2 ∈ 2 by
exactness. If we push 𝑎2 to 𝑏2 ∈ 𝐵2 then that goes to 0 in 𝐵3 and thus comes
from some 𝑏1 ∈ 𝐵1, and in turn that can be lifted to 𝑎1 ∈ 𝐴1. But 𝑎1 maps to
𝑎2, since the images of these in 𝐵2 are equal. But then 𝑎1 maps to 𝑎3 and so
the latter is 0 by exactness. This shows that 𝛾 is a monomorphism.

Now, forgetting the above notation, let 𝑏3 ∈ 𝐵3. Map this to 𝑏4 ∈ 𝐵4 and
pull it up to 𝑎4 ∈ 𝐴4. This must map to 0 in 𝐴5 since it goes to 0 in 𝐵5. By
exactness, there is an 𝑎3 ∈ 𝐴3 mapping to 𝑎4. If we map this to 𝐵3 and subtract
it from the original 𝑏3 (= 𝑏3 − 𝛾(𝑎3)) we conclude that this goes to 0 in 𝐵4.
Accordingly, we may as well assume that the original 𝑏3 maps to 0 in 𝐵4, and
hence comes from some 𝑏2 ∈ 𝐵2. Pulling this up to 𝐴2 and pushing it into 𝐴3

gives us an element that maps to 𝑏3, showing that 𝛾 is onto. □

Let's get back to topology. Recall that if 𝐴 ⊂ 𝑋 be a pair of spaces, then
𝑆𝑞 (𝐴) is a subgroup of 𝑆𝑞 (𝑋) and the inclusion is a chain map. As we de�ned
𝑆𝑞 (𝑋, 𝐴) = 𝑆𝑞 (𝑋)/𝑆𝑞 (𝐴), we have am exact sequence of chain complex

0→ 𝑆(𝐴) → 𝑆(𝑋) → 𝑆(𝑋, 𝐴) → 0 (3.28)

Since we de�ned 𝐻𝑞 (𝑋, 𝐴) = 𝐻𝑞 (𝑆(𝑋, 𝐴)), by applying Theorem 3.23 to the
sequence 3.28 we obtain

Theorem 3.29. The following sequence is exact.

· · · → 𝐻𝑞+1 (𝑋, 𝐴)
𝜕−→ 𝐻𝑞 (𝐴)

𝐻𝑞 (𝑖)−−−−−→ 𝐻𝑞 (𝑋)
𝐻𝑞 ( 𝑗 )−−−−−→ 𝐻𝑞 (𝑋, 𝐴)

𝜕−→ 𝐻𝑞−1(𝐴) → · · ·

It is called the long exact homology sequence associated to the pair (𝑋, 𝐴).

Denote by 𝜋0 (𝑋, 𝐴) the set of path components of 𝑋 that do not intersect
𝐴.

Proposition 3.30. There is a canonical isomorphism

𝐻0 (𝑋, 𝐴) � Z𝜋0 (𝑋, 𝐴).

In particular, 𝐻0 (𝑋, 𝐴) � Z𝑚 where 𝑚 is the number of path components of 𝑋
that do not intersect 𝐴.

Proof. Let 𝑖 : 𝐴 ↩→ 𝑋 denote the inclusion of 𝐴 into 𝑋. Then we have an exact
sequence

𝐻0 (𝐴)
𝐻0 (𝑖)−−−−→ 𝐻0 (𝑋)

𝐻0 ( 𝑗 )−−−−−→ 𝐻0 (𝑋, 𝐴) → 0.

Exactness implies that 𝐻0 (𝑋, 𝐴) � 𝐻0 (𝑋)/im(𝐻0 (𝑖)). We know (Proposition
3.9) that 𝐻0 (𝑋) = Z𝜋0 (𝑋) and the image of 𝐻0 (𝑖) is generated by those path
components of 𝑋 that contain a path component of 𝐴. The result follows. □
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One of the great merits of the long exact homology sequence is that it is
functorial with respect to maps of pairs.

Proposition 3.31. Let 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) be a map of pairs. This induces
homomorphisms on homology such that the following diagramme commutes.

// 𝐻𝑞+1 (𝑋, 𝐴)
𝜕 //

𝑓∗

��

𝐻𝑞 (𝐴) //

𝑓∗

��

𝐻𝑞 (𝑋) //

𝑓∗

��

𝐻𝑞 (𝑋, 𝐴)
𝜕 //

𝑓∗

��

𝐻𝑞−1(𝐴) //

𝑓∗

��
// 𝐻𝑞+1 (𝑌, 𝐵)

𝜕

// 𝐻𝑞 (𝐵) // 𝐻𝑞 (𝑌 ) // 𝐻𝑞 (𝑌, 𝐵)
𝜕

// 𝐻𝑞−1(𝐵) //

Proof. The commutativity of squares not involving 𝜕 are evident, as all involved
homomorphisms are induced from commuting continuous maps. The commu-
tativity of squares involving 𝜕 can be proven using Proposition 3.25. □

Proposition 3.32. If 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) is a map of pairs such that two out
of three families of induced maps on homology

{𝐻𝑞 (𝐴) → 𝐻𝑞 (𝐵)}𝑞∈Z,
{𝐻𝑞 (𝑋) → 𝐻𝑞 (𝑌 )}𝑞∈Z,
{𝐻𝑞 (𝑋, 𝐴) → 𝐻𝑞 (𝑌, 𝐵)}𝑞∈Z,

are isomorphisms in all degree, then the remaining family is isomorphisms in
all degrees.

Proof. Apply the 5-lemma 3.27 to the diagramme:

// 𝐻𝑞+1 (𝑋, 𝐴)
𝜕 //

𝑓∗

��

𝐻𝑞 (𝐴) //

𝑓∗

��

𝐻𝑞 (𝑋) //

𝑓∗

��

𝐻𝑞 (𝑋, 𝐴)
𝜕 //

𝑓∗

��

𝐻𝑞−1(𝐴) //

𝑓∗

��
// 𝐻𝑞+1 (𝑌, 𝐵)

𝜕

// 𝐻𝑞 (𝐵) // 𝐻𝑞 (𝑌 ) // 𝐻𝑞 (𝑌, 𝐵)
𝜕

// 𝐻𝑞−1(𝐵) //

□

Example 3.33. If a map of pairs 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) restricts to homotopy
equivalences between 𝑋 and 𝑌 and between 𝐴 and 𝐵, then 𝑓∗ : 𝐻𝑞 (𝑋, 𝐴) →
𝐻𝑞 (𝑌, 𝐵) is an isomorphism in all degrees.

3.4.2 Reduced Homology

It is sometimes convenient to use a modi�ed version of singular homology called
reduced homology. For any space 𝑋, there exists a unique map to a point 𝜖 :
𝑋 → {pt} called �augmentation�. De�ne the reduced homology

𝐻𝑞 (𝑋) := ker𝐻𝑞 (𝜖).
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It is an easy consequence of (3.6) that if 𝑋 has 𝑛 path components,

𝐻𝑞 (𝑋) �
{
𝐻𝑞 (𝑋) if 𝑞 ≥ 1

Z𝑛−1 if 𝑞 = 0

More canonically, 𝐻0 (𝑋) is the kernel of the map Z𝜋0 (𝑋) → Z that sends each
generator to 1. For relative homology we de�ne

𝐻𝑞 (𝑋, 𝐴) = 𝐻𝑞 (𝑋, 𝐴)

if 𝐴 ≠ ∅. Basically, reduced homology is designed so that 𝐻𝑞 ({pt}) = 0 for all
degrees without exception and this sometimes makes calculations less clumsy.

Functoriality, homotopy invariance, and the long exact sequence all work for
relative homology. In particular, if 𝐴 is non-empty, then we have a long exact
sequence

· · · → 𝐻𝑞+1 (𝑋, 𝐴)
𝜕−→ 𝐻𝑞 (𝐴) → 𝐻𝑞 (𝑋) → 𝐻𝑞 (𝑋, 𝐴)

𝜕−→ 𝐻𝑞−1(𝐴) → · · · (3.34)

Remark 3.35. If 𝑋 is a path-connected space and 𝑝 ∈ 𝑋, then the long exact
sequence de�nes a natural isomorphism

𝐻𝑞 (𝑋, 𝑝) = 𝐻𝑞 (𝑋, 𝑝) � 𝐻𝑞 (𝑋)

in all degrees.

3.5 Excision

The last property we need before we can do practical calculations is called
excision. Given an ordered pair (𝑋, 𝐴) we say a subspace of 𝐵 ⊂ 𝐴 can be
excised if the inclusion (𝑋 \ 𝐵, 𝐴 \ 𝐵) ↩→ (𝑋, 𝐴) induces isomorphisms

𝐻𝑞 (𝑋 \ 𝐵, 𝐴 \ 𝐵) � 𝐻𝑞 (𝑋, 𝐴)

in all degrees 𝑞.

Theorem 3.36. If the closure of 𝐵 is contained in the interior of 𝐴: (𝐵 ⊂ int 𝐴),
then 𝐵 can be excised.

Corollary 3.37. If 𝑉 ⊂ 𝐵 ⊂ 𝐴 and

1. 𝑉 can be excised, and

2. the inclusion (𝑋 \𝐵, 𝐴 \𝐵) ↩→ (𝑋 \𝑉, 𝐴 \𝑉) determine homotopy equivalences
𝑋 \ 𝐵 ↩→ 𝑋 \𝑉 and 𝐴 \ 𝐵 ↩→ 𝐴 \𝑉 ,

then 𝐵 can be excised.
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B

Figure 3.6: Excisive pair (𝐴, 𝐵)

Proof. We want to prove that 𝐻𝑞 (𝑋 \ 𝐵, 𝐴 \ 𝐵) → 𝐻𝑞 (𝑋, 𝐴) is an isomorphism.
By functoriality, it is enough to show that the homomorphisms 𝐻𝑞 (𝑋\𝐵, 𝐴\𝐵) →
𝐻𝑞 (𝑋 \𝑉, 𝐴 \𝑉) and 𝐻𝑞 (𝑋 \𝑉, 𝐴 \𝑉) → 𝐻𝑞 (𝑋, 𝐴)are isomorphisms. The �st is
an isomorphism by by homotopy invariance (Example 3.33) and the second is
an isomorphism because 𝑉 can be excised. □

Before we give the proof for Theorem 3.36, we do some actual calculations.

Proposition 3.38. The homology groups of the unit sphere S𝑛 for 𝑛 ≥ 1 satisfy

𝐻𝑞 (S𝑛) =
{
Z if𝑞 = 0 or 𝑞 = 𝑛

0 otherwise

Proof. It will be more convenient to work with reduced homology, so our goal
is to prove that

𝐻𝑞 (S𝑛) =
{
Z if 𝑞 = 𝑛

0 otherwise

Let E𝑛+ and E𝑛− denote the upper and lower closed hemispheres of S𝑛. Note that
for 𝑛 ≥ 1, E𝑛+ ∩ E𝑛− � S𝑛−1. We claim by an excision that

𝐻𝑞 (S𝑛,E𝑛−) � 𝐻𝑞 (E𝑛+, S𝑛−1), ∀𝑞 ∈ Z, 𝑛 ≥ 1.

Here we are excising the interior of the lower hemisphere E𝑛−. This does not
satisfy the hypotheses of Theorem 3.36, but a slightly smaller open disk does
and then we can apply Corollary 3.37. Now consider the long exact sequences
(LES) associated to these pairs. Because E𝑛+ is contractible, the LES of the pair
(E𝑛+, S𝑛−1) breaks into isomorphisms

0→ 𝐻𝑞 (E𝑛+, S𝑛−1)
∼−→ 𝐻𝑞−1(S𝑛−1) → 0

for all 𝑛 ≥ 1 and all 𝑞 ∈ Z. Likewise, the LES of (S𝑛,E𝑛− gives rise to isomor-
phisms

0→ 𝐻𝑞 (S𝑛)
∼−→ 𝐻𝑞 (S𝑛,E𝑛−) → 0

for all 𝑛 ≥ 1 and all 𝑞 ∈ Z. Combined, we obtain isomorphisms

𝐻𝑞 (S𝑛) � 𝐻𝑞−1(S𝑛−1)
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Figure 3.7: (S𝑛,E𝑛−) vs (E𝑛+, S𝑛−1)

for all 𝑛 ≥ 1 and all 𝑞 ∈ Z.
Since S0 is a disconnected union of two points, it follows that

𝐻𝑞 (S0) =
{
Z if 𝑞 = 0

0 otherwise

The result now follows by induction. □

Proposition 3.38 hints at the special role that spheres play in homology.
Later, in �3.7, we will consider a special class of spaces built out of spheres
called cellular spaces that are particularly well suited to algebraic topology.

Theorem 3.39 (Brouwer Fixed Point Theorem). Let 𝑓 : E𝑛 → E𝑛 be a con-
tinuous map from a closed 𝑛-disk E𝑛 to itself. There exists 𝑝 ∈ E𝑛 such that
𝑓 (𝑝) = 𝑝.

Proof. We resort to contradiction, so suppose that no such 𝑝 exists. Then
𝑓 (𝑥) ≠ 𝑥 for all 𝑥 ∈ E𝑛 and we can de�ne a continuous map 𝑟 : E𝑛 → S𝑛−1 as
illustrated in Figure 3.8. Notice that for points 𝑥 ∈ S𝑛−1, 𝑟 (𝑥) = 𝑥. This implies

Figure 3.8: Brouwer retraction

that 𝑟 is retract. In particular, this means 𝑟 : 𝐻𝑛 (E𝑛) → 𝐻𝑛 (S𝑛−1) is surjective
which contradicts the fact that 𝐻𝑛−1(S𝑛−1) � Z and 𝐻𝑛 (E𝑛) = 0. □

3.5.1 Subdivision

Caveat : This �3.5.1 is quite involved.
We wish to prove Theorem 3.36, i.e, that singular homology satis�es the Excision
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Axiom. First we will indicate the di�culty with doing this, and outline the
remedy, and �nally we go into the detailed proof.

Suppose, for example, 𝑈 ⊂ 𝐴 ⊂ 𝑋 with 𝑈 ⊂ int(𝐴) and we wish to �excise� 𝑈.
If all singular simplices which are not completely within 𝐴 miss 𝑈 completely,
then we could just discard any simplex in 𝐴. Thus the problem is with �large�
singular simplices, those touching both 𝑋 \ 𝐴 and 𝑈. These sets are �separated,�
i.e., their closures do not meet. Thus if we could somehow �subdivide� a singular
simplex into smaller simplices (a chain) which satisfy the above condition then
we might be able to make excision work.

We are going to de�ne an operator Υ called �subdivision� on Δ𝑖 (𝑋) and a
chain homotopy 𝑇 from Υ to the identity.

Recall that the standard 𝑞-simplex Δ𝑞 ⊂ R𝑛+1. Let 𝐿∗(Δ𝑞) be the subcom-
plex of Δ∗ (Δ𝑞) generated by the a�ne singular simplices, i.e., singular simplices
of the form 𝜎 : Δ𝑝 → Δ𝑞 such that 𝜎(∑𝑖 𝜆𝑖𝑒𝑖) = ∑

𝑖 𝜆𝑖𝑣𝑖 where
∑
𝑖 𝜆𝑖 = 1 and

𝑣𝑖 = 𝜎(𝑒𝑖). We denote such a�ne singular simplices by 𝜎 = [𝑣0, . . . , 𝑣𝑝].
Now we de�ne the �cone operator� which takes an a�ne simplex and forms

the �cone� on it from some point, producing a simplex of one higher dimension.
Let 𝑣 ∈ Δ𝑞 and let 𝜎 = [𝑣0, . . . , 𝑣𝑝] : Δ𝑝 → Δ𝑞 be a�ne. The cone on 𝜎

from 𝑣 is then de�ned to be 𝑣𝜎 = [𝑣, 𝑣0, . . . , 𝑣𝑝] : Δ𝑝+1 → Δ𝑞. For a chain
𝑐 =

∑
𝜎 𝑛𝜎𝐿𝑝 (Δ𝑞), let 𝑣𝑐 =

∑
𝜎 𝑛𝜎𝑣𝜎 ∈ 𝐿𝑝+1 (Δ𝑞). Taking 𝑐 ↦→ 𝑣𝑐 gives a

homomorphism
𝐿𝑝 (Δ𝑞) → 𝐿𝑝+1 (Δ𝑞).

(By de�nition, 𝑣0 = 0.) If 𝑝 > 0 then we compute

𝜕 [𝑣, 𝑣0, . . . , 𝑣𝑝] = [𝑣0, . . . , 𝑣𝑝] −
∑︁
𝑖

(−1)𝑖 [𝑣, 𝑣0, . . . , 𝑣̂𝑖 , . . . , 𝑣𝑝]

= [𝑣0, . . . , 𝑣𝑝] − 𝑣(𝜕 [𝑣0, . . . , 𝑣𝑝]).

If 𝑝 = 0 then 𝜕𝑣𝜎 = 𝜎 − [𝑣]. Thus, for a 0-chain 𝑐, 𝜕𝑣𝑐 = 𝑐 − 𝜖 (𝑐) [𝑣] where
𝜖 is the augmentation, of Subsection 3.4.2, assigning to 0-chain the sum of its
coe�cients. Thus we have that

𝜕 (𝑣𝑐) =
{
𝑐 − 𝑣(𝜕𝑐) if deg(𝑐) > 0,

𝑐 − 𝜖 (𝑐) [𝑣] if deg(𝑐) = 0.

We now de�ne the �barycentric subdivision� operator Υ : 𝐿𝑝 (Δ𝑞) → 𝐿𝑝 (Δ𝑞)
inductively by

Υ(𝜎) =
{
𝜎(Υ(𝜕𝑐)) for 𝑝 > 0,

𝜎 for 𝑝 = 0,

where 𝜎 denotes the �barycentre� of the a�ne simplex 𝜎, i.e., 𝜎 = (∑𝑝

𝑖=0 𝑣𝑖)/(𝑝+
1) for 𝜎 = [𝑣0, . . . , 𝑣𝑝]. This de�nes Υ on a basis of 𝐿𝑝 (Δ𝑞) and thus we extend
it linearly to be a homomorphism. See Figure 3.9

Lemma 3.40. Υ : 𝐿𝑝 (Δ𝑞) → 𝐿𝑝 (Δ𝑞) is a chain map.
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Figure 3.9: Barycentric subdivision

Proof. We shall show that Υ(𝜕𝜎) = 𝜕 (Υ(𝜎)) inductively on 𝑝 where 𝜎 is an
a�ne 𝑝-simplex.
Case: 𝑝 = 0
Υ(𝜕𝜎) = Υ(0) = 0, while 𝜕 (Υ(𝜎)) = 𝜕𝜎 = 0, since there are no (−𝑙)-chains.
Case: 𝑝 = 1:
Υ(𝜕𝜎) = 𝜕𝜎 while 𝜕 (Υ(𝜎)) = 𝜕 (𝜎(Υ(𝜕𝜎))) = 𝜕 (𝜎(𝜕𝜎)) = 𝜕𝜎−𝜖 (𝜕𝜎) [𝜎] = 𝜕𝜎.
Case: 𝑝 > 1:
Assuming that the formula is true for chains of degree < 𝑝, we have 𝜕 (Υ(𝜎)) =
𝜕 (𝜎Υ(𝜕𝜎)) = Υ(𝜕𝜎) − 𝜎(𝜕Υ𝜕𝜎) = Υ(𝜕𝜎) since 𝜕Υ𝜕𝜎 = Υ𝜕𝜕𝜎 = 0 by the
inductive assumption. □

Now we de�ne 𝑇 : 𝐿𝑝 (Δ𝑞) → 𝐿𝑝+1(Δ𝑞) by induction on the formula

𝑇𝜎 = 𝜎(Υ𝜎 − 𝜎 − 𝑇 (𝜕𝜎)),

and 𝑇 = 0 for 𝑝 = 0.
We wish to show that 𝑇 is a chain homotopy from id to Υ, i.e, 𝜕𝑇+𝑇𝜕 = Υ−id.

For 𝑝 = 0 we compute

𝜕𝑇𝜎 + 𝑇𝜕𝜎 = 𝜕 (𝜎(Υ𝜎 − 𝜎)) = 0

since Υ𝜎 = 𝜎 for 𝑝 = 0. For the same reason (Υ − 1)𝜎 = 0.
For 𝑝 > 0 we compute

𝜕𝑇𝜎 = (Υ𝜎 − 𝜎 − 𝑇𝜕𝜎) − 𝜎(𝜕Υ𝜎 − 𝜕𝜎 − 𝜕𝑇𝜕𝜎). (3.41)

The term 𝜕𝑇𝜕𝜎 = (Υ− id−𝑇𝜕) (𝜕𝜎) = (Υ𝜕𝜎 − 𝜕𝜎) so that the entire right-hand
term of (3.41) vanishes, which yields the claimed formula. Thus 𝑇 is a chain
homotopy from id to Υ.

We are now done for a�ne chains in Δ𝑞. We now transfer these results to
general singular chains of 𝑋.

We wish to de�ne Υ : Δ𝑝 (𝑋) → Δ𝑝 (𝑋) and 𝑇 : Δ𝑝 (𝑋) → Δ𝑝+1 (𝑋) such that:

(1) (naturality) Υ𝑆( 𝑓 ) (𝑐) = 𝑆( 𝑓 ) (Υ𝑐) and 𝑇 (𝑆( 𝑓 ) (𝑐)) = 𝑆( 𝑓 ) (𝑇 (𝑐)) for 𝑓 : 𝑋 →
𝑌 ;
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(2) Υ is a chain map and 𝜕𝑇 + 𝑇𝜕 = 𝑇 − id;

(3) Υ and 𝑇 extend the previous de�nition on a�ne chains; and

(4) Υ𝜎 and 𝑇𝜎 are chains in im(𝜎).

Note that (4) follows from (1): we list it for stress.
Thus let 𝜎 : Δ𝑝 → 𝑋. Then we have 𝜎 = 𝑆(𝜎) (idΔ𝑝 ) and, of course,

idΔ𝑝 ∈ 𝐿𝑝 (Δ𝑝). We de�ne

Υ𝜎 = 𝑆(𝜎) (Υ idΔ𝑝 ),
𝑇𝜎 = 𝑆(𝜎) (𝑇 idΔ𝑝 ).

Of course, one must check that these coincide with the previous de�nitions when
𝜎 is a�ne, but this is obvious because Υ and 𝑇 were de�ned on a�ne simplices
using only a�ne operations. Property (4) is also clear, so this settles (3) and
(4).

To show naturality (1) we compute Υ𝑆( 𝑓 )𝜎 = Υ𝑆( 𝑓 ◦ 𝜎) (idΔ𝑝 ) = 𝑆( 𝑓 ◦
𝜎) (Υ idΔ𝑝 ) = 𝑆( 𝑓 ) (𝑆(𝜎) (Υ idΔ𝑝 )) = 𝑆( 𝑓 ) (Υ𝜎), and similarly for 𝑇 .

It remains to prove property (2). To show that Υ is a chain map, we compute

Υ𝜕𝜎 = Υ(𝜕 (𝑆(𝜎) (idΔ𝑝 )
= Υ(𝑆(𝜎) (𝜕 idΔ𝑝 ) (since 𝑆(𝜎) is a chain map)

= 𝑆(𝜎) (Υ(𝜕 idΔ𝑝 )) (naturality)

= 𝑆(𝜎) (𝜕 (Υ idΔ𝑝 )) (since idΔ𝑝 is a�ne)

= 𝜕 (𝑆(𝜎) (Υ idΔ𝑝 )) (since 𝑆(𝜎) is a chain map)

= 𝜕 (Υ𝜎) (by de�nition).

Similarly, for the formula involving 𝑇 we compute

𝑇𝜕𝜎 = 𝑇 (𝑆(𝜎) (𝜕 idΔ𝑝 ) = 𝑆(𝜎) (𝑇𝜕 idΔ𝑝 )

and
𝜕𝑇𝜎 = 𝜕𝑆(𝜎) (𝑇𝜕 idΔ𝑝 ) = 𝑆(𝜎) (𝜕𝑇 idΔ𝑝 )

so that

(𝑇𝜕+𝜕𝑇) (𝜎) = 𝑆(𝜎) ((𝑇𝜕+𝜕𝑇) idΔ𝑝 ) = 𝑆(𝜎) ((Υ−id) idΔ𝑝 ) = (Υ−id)𝑆(𝜎) (idΔ𝑝 ) = Υ𝜎−𝜎

Corollary 3.42. For 𝑘 ≥ 1, Υ𝑘 : Δ𝑝 (𝑋) → Δ𝑝 (𝑋) is chain homotopic to the
identity.

Proof. This follows from Υ2 ∼ Υ ◦ id ∼ id ◦ id ∼ id, etc. Another way to show it,
which displays the chain homotopy explicitly is to note that

Υ𝑘 − id = Υ𝑘 − Υ𝑘−1 + Υ𝑘−1 − · · · − id = (Υ𝑘−1 + Υ𝑘−2 + · · · + Υ + id) (Υ − id)
= 𝐺 (Υ − id) = 𝐺 (𝑇𝜕 + 𝜕𝑇) = (𝐺𝑇)𝜕 + 𝜕 (𝐺𝑇).

□
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Let us denote this chain homotopy 𝐺𝑇 (in the second proof) by 𝑇𝑘 and note
that it is natural.

Lemma 3.43. lf 𝜎 = [𝑣0, . . . , 𝑣𝑝] is an a�ne simplex of Δ𝑞 then any simplex
in the chain Υ𝜎 has diameter at most (𝑝/(𝑝 + 1)) diam(𝜎).

Proof. A simplex in Υ𝜎 has the form 𝜎𝜏 where 𝜏 is a simplex of Υ(𝜕𝜎), i.e.,
𝜏 is a simplex of Υ(𝜎 (𝑖) ) for some 𝑖. Thus a simplex of Υ𝜎 has the form
[𝜎0, 𝜎1, 𝜎2, . . . ] where 𝜎 = 𝜎0 > 𝜎1 > 𝜎2 . . . , using 𝛼 > 𝛽 to mean that 𝛽 is a
proper face of 𝜎. Each barycentre 𝜎

𝑖
is the average of some of the 𝑣𝑘 . If 𝑗 > 𝑖

then 𝜎
𝑗
is the average of some of these 𝑣𝑘 . Thus by reordering the vertices, the

lemma comes down to the following:
If 𝑤1, . . . , 𝑤𝑘 ∈ R𝑞 with 𝑚 < 𝑘 ≤ 𝑝 + 1 then




 1𝑘 𝑘∑︁

𝑖=1

𝑤𝑖 −
1

𝑚

𝑚∑︁
𝑖=1

𝑤𝑖






 ≤ 𝑝

𝑝 + 1 max∥𝑤𝑖 − 𝑤 𝑗 ∥.

Since 𝑥/(𝑥+1) is an increasing function and 𝑚 < 𝑘 ≤ 𝑝+1, it su�ces to show
that the left-hand side of this inequality is at most ((𝑘 − 1)/𝑘)max∥𝑤𝑖 − 𝑤 𝑗 ∥.
We calculate




 1𝑘 𝑘∑︁

𝑖=1

𝑤𝑖 −
1

𝑚

𝑚∑︁
𝑖=1

𝑤𝑖






 =





 1𝑚 𝑚∑︁

𝑖=1

𝑤𝑖 −
1

𝑘

𝑚∑︁
𝑖=1

𝑤𝑖 −
1

𝑘

𝑘∑︁
𝑖=𝑚+1

𝑤𝑖







=






 𝑘 − 𝑚𝑘𝑚

𝑚∑︁
𝑖=1

𝑤𝑖 −
1

𝑘

𝑘∑︁
𝑖=𝑚+1

𝑤𝑖







=
𝑘 − 𝑚
𝑘






 1𝑚 𝑚∑︁
𝑖=1

𝑤𝑖 −
1

𝑘 − 𝑚

𝑘∑︁
𝑖=𝑚+1

𝑤𝑖






 .
Both terms in the norm of the last expression are in the convex span of the
𝑤𝑖 and so this entire expression is at most ((𝑘 − 𝑚)/𝑘)max∥𝑤𝑖 − 𝑤 𝑗 ∥ ≤ ((𝑘 −
1)/𝑘)max∥𝑤𝑖 − 𝑤 𝑗 ∥. □

Corollary 3.44. Each a�ne simplex in Υ𝑘 (idΔ𝑝 ) ∈∈ 𝐿𝑞 (Δ𝑞) has a diameter of

at most (𝑝/(𝑝 + 1))𝑘 diam(Δ𝑞), which approaches 0 as 𝑘 →∞.

Corollary 3.45. Let 𝑋 be a space and 𝑼 = {𝑈𝛼} be an open covering of 𝑋. Let
𝜎 be a singular 𝑝-simplex of 𝑋. Then ∃𝑘 ∋ Υ𝑘 (𝜎) is 𝑼-small. That is, each
simplex in Υ𝑘 (𝜎) has image in some 𝑈𝛼.

Proof. This is an easy consequence of Corollary 3.44 and the Lebesque Lemma
(Lemma 2.25 of Chapter 2). □

De�nition 3.46. Let 𝑼 be a collection of subsets of 𝑋 whose interiors cover
𝑋. Let Δ𝑼

∗ (𝑋) ⊂ Δ∗𝑋) be the subcomplex generated by the 𝑼-small singular
simplices and let 𝐻𝑼

∗ (𝑋) = 𝐻∗ (Δ𝑼
∗ (𝑋)).
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Theorem 3.47. The map 𝐻𝑼
∗ (𝑋) → 𝐻∗ (𝑋) generated by inclusion is an iso-

morphism.

Proof. First we show the map to be a monomorphism. Let 𝑐 ∈ Δ𝑼
∗ (𝑋) with

𝜕𝑐 = 0. Suppose that 𝑐 = 𝜕𝑒 for some 𝑒 ∈ Δ𝑝+1(𝑋). We must show that 𝑐 = 𝜕𝑒
′

for some 𝑒
′ ∈ Δ𝑼

𝑝+1(𝑋). There is a 𝑘 such that Υ𝑘 (𝑒) ∈ Δ𝑼
𝑝+1(𝑋) and

Υ𝑘 (𝑒) − 𝑒 = 𝑇𝑘 (𝜕𝑒) + 𝜕𝑇𝑘 (𝑒) = 𝑇𝑘 (𝑐) + 𝜕𝑇𝑘 (𝑒).

Thus
𝜕Υ𝑘 (𝑒) − 𝜕𝑒 = 𝜕𝑇𝑘 (𝑐),

so that
𝑐 = 𝜕𝑒 = 𝜕 (Υ𝑘 (𝑒) − 𝑇𝑘 (𝑐)) ∈ 𝜕 (Δ𝑼

∗ (𝑋))
by the naturality of 𝑇𝑘 .

Now we shall show the map to be onto. Let 𝑐 ∈ Δ𝑝 (𝑋) with 𝜕𝑐 = 0. We
must show that there is a 𝑐

′ ∈ Δ𝑼
𝑝 (𝑋) such that 𝑐 ∼ 𝑐′ . There is a 𝑘 such that

Υ𝑘 ∈ Δ𝑼
𝑝 (𝑋). Then

Υ𝑘 (𝑐) − 𝑐 = 𝑇𝑘 (𝜕𝑐) + 𝜕𝑇𝑘 (𝑐) = 𝜕𝑇𝑘 (𝑐).

Thus 𝑐
′
= Υ𝑘 (𝑐) works. □

We remark that it can be shown that the isomorphism of Theorem 3.47 is
induced by a chain equivalence.

To discuss the relative case of this result, put

Δ𝑼
∗ (𝑋, 𝐴) = Δ𝑼

∗ (𝑋)/Δ𝑼∩𝐴
∗ (𝐴)

where 𝑼 ∩ 𝐴 is the set of intersections of members of 𝑼 with 𝐴. We have the
commutative diagramme

0 // Δ𝑼∩𝐴
∗ (𝐴) //

��

Δ𝑼
∗ (𝑋) //

��

Δ𝑼
∗ (𝑋, 𝐴) //

��

0

0 // Δ∗ (𝐴) // Δ∗ (𝑋) // Δ∗ (𝑋, 𝐴) // 0

This induces a commutative �ladder� in homology

// 𝐻𝑼∩𝐴
𝑖 (𝐴) //

≈
��

𝐻𝑼
𝑖 (𝑋) //

≈
��

𝐻𝑼
𝑖 (𝑋, 𝐴) //

��

𝐻𝑼∩𝐴
𝑖−1 (𝐴) //

≈
��

𝐻𝑼
𝑖−1 (𝑋) //

≈
��

// 𝐻𝑖 (𝐴) // 𝐻𝑖 (𝑋) // 𝐻𝑖 (𝑋, 𝐴) // 𝐻𝑖−1 (𝐴) // 𝐻𝑖−1 (𝑋) //

Thus 𝐻𝑼
𝑖
(𝑋, 𝐴) ≈−→ 𝐻𝑖 (𝑋, 𝐴) follows from the 5-lemma.

Now we are prepared to prove the Excision Axiom. Note that the following
statement of it is slightly stronger than the axiom itself.
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Theorem 3.48 (Excision). If 𝐵 ⊂ 𝐴 ⊂ 𝑋 with 𝐵 ⊂ int(𝐴) then the inclusion

(𝑋 \ 𝐵, 𝐴 \ 𝐵) ↩→ (𝑋, 𝐴) induces an isomorphism 𝐻∗ (𝑋 \ 𝐵, 𝐴 \ 𝐵)
≈−→ 𝐻∗ (𝑋, 𝐴).

Proof. Let 𝑼 = {𝐴, 𝑋 \ 𝐵}. Then 𝑋 = int(𝐴) ∪ (𝑋 \ 𝐵) = int(𝐴) ∪ int(𝑋 \ 𝐵).
Thus we have 𝐻𝑼

∗ (𝑋, 𝐴)
≈−→ 𝐻∗ (𝑋, 𝐴). Note that

Δ𝑼
∗ (𝑋) = Δ∗ (𝐴) + Δ∗ (𝑋 \ 𝐵)

as a subgroup of Δ∗ (𝑋). (The sum is not direct.) Also

Δ∗ (𝐴 \ 𝐵) = Δ∗ (𝐴) ∩ Δ∗ (𝑋 \ 𝐵).

By one of the Noetherian isomorphisms it follows that inclusion induces the
isomorphism

Δ∗ (𝑋 \ 𝐵)/Δ∗ (𝐴 \ 𝐵)
≈−→ Δ𝑼

∗ (𝑋)/Δ∗ (𝐴).
Thus the inclusion maps induce

Δ∗ (𝑋 \ 𝐵)/Δ∗ (𝐴 \ 𝐵)
≈ //

))

Δ𝑼
∗ (𝑋)/Δ∗ (𝐴)

vv
Δ∗ (𝑋)/Δ∗ (𝐴)

This diagramme of chain complexes and chain maps induces the following dia-
gramme in homology:

𝐻∗ (𝑋 \ 𝐵, 𝐴 \ 𝐵)
≈ //

incl∗ ''

𝐻𝑼
∗ (𝑋, 𝐴)

≈
xx

𝐻∗ (𝑋, 𝐴)

It follows that the map marked incl∗ is an isomorphism. □

3.5.2 Mapping cylinders and cones

A subspace 𝐴 ⊂ 𝑋 is called a deformation retract if there is a homotopy ℎ :
𝑋 × 𝐼 → 𝐴 such that ℎ(𝑥, 0) = 𝑥 and ℎ(𝑥, 1) ∈ 𝐴 for all 𝑥 ∈ 𝑋 and ℎ(𝑎, 𝑡) = 𝑎 for
all 𝑎 ∈ 𝐴 and 𝑡 ∈ 𝐼. Note that the map 𝑟 : 𝑋 → 𝐴 de�ned by 𝑟 (𝑥) = ℎ(𝑥, 1) is a
retraction of 𝑋 onto 𝐴, and ℎ is a homotopy between id𝑋 and 𝑖 ◦ 𝑟, whence the
inclusion 𝑖 : 𝐴 ↩→ 𝑋 is a homotopy equivalence.

A closed subspace 𝐴 ⊂ 𝑋 is called a neighbourhood deformation retract if
there exists an open neighbourhood 𝐴 ⊂ 𝑈 ⊂ 𝑋 such that 𝐴 is a deformation
retract of 𝑈. In other words, there exist continuous functions 𝑢 : 𝑋 → 𝐼 and
ℎ : 𝑋 × 𝐼 → 𝑋 such that:

(i) 𝐴 = 𝑢−1(0);

(ii) ℎ(𝑥, 0) = 𝑥 for all 𝑥 ∈ 𝑋;
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(iii) ℎ(𝑎, 𝑡) = 𝑎 for all 𝑎 ∈ 𝐴, 𝑡 ∈ 𝐼;

(iv) ℎ(𝑥, 1) lies in 𝐴 for all 𝑥 ∈ 𝑢−1( [0, 1)).

Example 3.49. The inclusion of S1 ⊂ R2 is a neighbourhood deformation retract
because it includes as a deformation retract into an open annulus.

Proposition 3.50. Let 𝐴 ⊂ 𝑋 be a neighbourhood deformation retract that
intersects every path component of 𝑋. Then there is a canonical isomorphism

𝐻𝑞 (𝑋, 𝐴) � 𝐻𝑞 (𝑋/𝐴)

where 𝑋/𝐴 is the coset space of 𝑋 obtained by shrinking all 𝐴 to a point by
identi�cation.

Proof. Since 𝐴 ↩→ 𝑈 is a homotopy equivalence, we know by Example 3.33 that

𝐻𝑞 (𝑋, 𝐴) � 𝐻𝑞 (𝑋,𝑈)

for all 𝑞. By excision (Theorem 3.48)

𝐻𝑞 (𝑋 \ 𝐴,𝑈 \ 𝐴) � 𝐻𝑞 (𝑋,𝑈).

On the other hand, if we denote by 𝐴/𝐴 the point in 𝑋/𝐴 that 𝐴 is collapsed
to, it is not hard to see that 𝑈/𝐴 deformation retracts onto 𝐴/𝐴. Thus

𝐻𝑞 (𝑋/𝐴) � 𝐻𝑞 (𝑋/𝐴, 𝐴/𝐴) � 𝐻𝑞 ((𝑋/𝐴)\(𝐴/𝐴).(𝑈/𝐴)\(𝐴/𝐴)) � 𝐻𝑞 (𝑋\𝐴,𝑈\𝐴)

where the �rst isomorphism follows from Remark 3.35 since 𝑋/𝐴 is path con-
nected. □

Example 3.51. The coset space D𝑛/𝜕D𝑛 is homeomorphic to the sphere S𝑛. It
follows that

𝐻𝑞 (D𝑛, 𝜕D𝑛) � 𝐻𝑞 (S𝑛)
which was basically what we used in the proof of Proposition 3.38.

Example 3.52. If 𝑋 contains a contractible neighbourhood deformation retrac-
tion 𝐴, then 𝐻𝑞 (𝑋) � 𝐻𝑞 (𝑋/𝐴) for all 𝑞. (Indeed, one may show that 𝑋 → 𝑋/𝐴
is a homotopy equivalence.)

The hypotheses of Proposition 3.50 hold in many situations, but not always,
so it is convenient to have a construction that works in general. Let 𝑓 : 𝑌 → 𝑋

be a continuous map. The mapping cylinder associated to 𝑓 is the coset space
(or adjunction)

Cyl( 𝑓 ) := (𝑌 × 𝐼) ⊔ 𝑓 𝑋 = ((𝑌 × 𝐼) ⊔ 𝑋)/∼

where the relation is generated by (𝑦, 1) ∼ 𝑓 (𝑦) for all 𝑦 ∈ 𝑌 . The inclusion
𝑋 ↩→ Cyl( 𝑓 ) is a homotopy equivalence with homotopy inverse Cyl( 𝑓 ) → 𝑋,
𝑥 ↦→ 𝑥 and (𝑦, 𝑡) ↦→ 𝑓 (𝑥).

The mapping cone of 𝑓 : 𝑌 → 𝑋 is the cosetspace

Cone( 𝑓 ) := Cyl( 𝑓 )/(𝑌 × {0})
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Proposition 3.53. Given any map of spaces 𝑓 : 𝑌𝑡𝑜𝑋 such that the image of
𝑓 intersects every path component of 𝑋, we can de�ne a long exact sequence in
homology

· · · → 𝐻𝑞+1 (Cone( 𝑓 )) → 𝐻𝑞 (𝑌 ) → 𝐻𝑞 (𝑋) → 𝐻𝑞 (Cone( 𝑓 )) → 𝐻𝑞−1(𝑌 ) → · · ·

in case 𝑖 : 𝑌 ↩→ 𝑋 is a subspace inclusion, this is canonically isomorphic to the
long exact sequence of the pair

· · · → 𝐻𝑞+1 (𝑋,𝑌 ) → 𝐻𝑞 (𝑌 ) → 𝐻𝑞 (𝑋) → 𝐻𝑞 (𝑋,𝑌 ) → 𝐻𝑞−1(𝑌 ) → · · ·

Proof. The subspace 𝑌 × {0} is a closed subset of Cyl( 𝑓 ) and is a deformation
retract of the open subset 𝑌 × [0, 1), so 𝑌 × {0} is a neighbourhood deformation
retract in Cyl( 𝑓 ). Thus we have a canonical isomorphisms

𝐻𝑞 (Cone( 𝑓 )) � 𝐻𝑞 (Cyl( 𝑓 ), 𝑌 × {0}).

Since 𝑌 × {0} is homotopy equivalent to 𝑌 and Cyl( 𝑓 ) is homotopy equivalent to
𝑋, a long exact sequence can be obtained from the LES of the pair (Cyl( 𝑓 );𝑌 ×
{0}) by replacing groups with isomorphic groups.

In case 𝑓 : 𝑌 → 𝑋 is a subspace inclusion, then the homotopy equivalence
Cyl( 𝑓 ) → 𝑋 sending (𝑦, 𝑡) ∈ 𝑌 × 𝐼 to 𝑓 (𝑦) restricts to a homeomorphism from
𝑌 × {0}. The resulting morphism of long exact sequences

𝐻𝑞 (𝑌 × {0}) //

��

𝐻𝑞 (Cyl( 𝑓 )) //

��

𝐻𝑞 (Cyl( 𝑓 ), 𝑌 × {0}) //

��

𝐻𝑞−1(𝑌 × {0}) //

��

𝐻𝑞−1(Cyl( 𝑓 ))

��
𝐻𝑞 (𝑌 ) // 𝐻𝑞 (𝑋) // 𝐻𝑞 (𝑋,𝑌 ) // 𝐻𝑞−1(𝑌, 𝐵) // 𝐻𝑞−1(𝑋)

which must be an isomorphism by the 5-Lemma. □

Example 3.54. (The wedge sum) Let 𝑋𝑘 be a collection of spaces containing base
points 𝑝𝑘 ∈ 𝑋𝑘 . The wedge product (or bouquet) is the space

∨𝑘𝑋𝑘 = (⊔𝑘𝑋𝑘)/∼

where we identify basepoints 𝑝𝑖 ∼ 𝑝 𝑗 for all 𝑖, 𝑗 . If the base points neighbourhood
deformation retracts (= well-pointed) then

𝐻 (∨𝑘𝑋𝑘) � ⊕𝑘𝐻 (𝑋𝑘)

by Proposition 3.50.

3.6 Applications to spheres: the degree of a map

Recall that our calculation of 𝐻𝑛 (S𝑛) relied on the following sequence of isomor-
phisms

𝐻𝑛 (S𝑛)
�−→ 𝐻𝑛 (S𝑛,E𝑛−)

�←− 𝐻𝑛 (E𝑛+, S𝑛−1)
�−→ 𝐻𝑛 (S𝑛−1)
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Figure 3.10: Constructing a cycle generating 𝐻1 (S1)

We can use this to construct a cycle representing the generator of 𝐻1 (S1)
by the Figure 3.10. Indeed, the cycle we have constructed is the barycentric
subdivision of a simplex 𝜎 : Δ1 → S1 that winds once around the circle. It is
not hard to show that (exercise) that any �chain� of 1-simplices that wraps once
around the circle also represents the generator of 𝐻1 (S1).

Recall that 𝐻𝑛 (S𝑛) � Z. Given a continuous map 𝑓 : S𝑛 → S𝑛, the induced
map 𝑓∗ : 𝐻𝑛 (S𝑛) → 𝐻𝑛 (S𝑛) must be of the form 𝑓∗ (𝛼) = 𝑑𝛼 for some integer
𝑑 ∈ Z. We call 𝑑 = deg( 𝑓 ) the degree of the map 𝑓 .

Since 𝐻𝑛 is a functor, we see immediately that deg(idS𝑛 ) = 1, that deg( 𝑓 ◦𝑔) =
deg( 𝑓 ) deg(𝑔) for two maps 𝑓 , 𝑔 : S𝑛 → S𝑛, and that homotopic maps have the
same degree. (It is also true that two maps from S𝑛 to S𝑛 are homotopic if
and only if they have the same degree. The proof of this requires Hurewicz's
theerem in homotopy theory.)

Proposition 3.55. A map 𝑓 : S𝑛 → S𝑛 that is not surjective has degree zero.

Proof. Suppose 𝑝 ∈ S𝑛 is not in the image of 𝑓 . Then 𝑓 factors through the
inclusion map S𝑛 → S𝑛 \ {𝑝} → S𝑛 so by functoriality 𝐻𝑞 ( 𝑓 ) factors through
𝐻𝑞 (S𝑛 \ {𝑝}) � 0 and thus must be zero. □

Given a space 𝑋, de�ne the suspension 𝑆𝑋 := 𝑋 × 𝐼/∼ to be the coset of 𝑋 × 𝐼
where ∼ collapses 𝑋 × {0} and 𝑋 × {1} to distinct points. If 𝑓 : 𝑋 → 𝑌 is a map,
de�ne the suspension of 𝑓

𝑆 𝑓 : 𝑆𝑋 → 𝑆𝑌, 𝑆 𝑓 (𝑥, 𝑡) = ( 𝑓 (𝑥), 𝑡).

This de�nes the suspension functor from spaces to spaces.

Lemma 3.56. The suspension of a sphere satis�es 𝑆S𝑛 = S𝑛+1. Given a map
𝑓 : S𝑛 → S𝑛, the suspension 𝑆 𝑓 : S𝑛+1 → S𝑛+1 satis�es deg( 𝑓 ) = deg(𝑆 𝑓 ).

Proof. The homeomorphism 𝑆S𝑛 = S𝑛+1 is pretty clear; this is the picture where
S𝑛 includes into S𝑛+1 as the equator. Because the long exact homology sequence
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Figure 3.11: 𝑆S𝑛 = S𝑛+1 for 𝑛 = 1

is functorial with respect to pairs and the excision isomorphism is canonical, we
obtain a commutative diagramme with horizontal arrows isomorphisms

𝐻𝑛 (S𝑛) //

(𝑆 𝑓 )∗
��

𝐻𝑛 (S𝑛,E−𝑛) //

(𝑆 𝑓 )∗
��

𝐻𝑛 (E+𝑛, S𝑛−1) //

(𝑆 𝑓 )∗
��

𝐻𝑛 (S𝑛−1)

𝑓∗
��

𝐻𝑞 (S𝑛) // 𝐻𝑛 (S𝑛,E−𝑛) // 𝐻𝑛 (E+𝑛, S𝑛−1) // 𝐻𝑛 (S𝑛−1)

so 𝑆( 𝑓 ) and 𝑓 have the same degree. □

Proposition 3.57. Let 𝑟𝑛 : S𝑛 → S𝑛 be a restriction of a re�exion on R𝑛+1 →
R𝑛+1. Then deg( 𝑓 ) = −1.

Proof. For 𝑛 ≥ 1, we can identify 𝑟𝑛 = 𝑆𝑟𝑛−1, so by induction it su�ces to prove
the case 𝑛 = 0. In this case, S0 = {𝑁, 𝑆} is a pair of points and 𝑟0 transposes
them. The points represent 0-simplices and 𝐻0 (S0) is generated by [𝑁] − [𝑆].
We have

(𝑟0)∗ ( [𝑁] − [𝑆]) = [𝑟0 (𝑁)] − [𝑟0 (𝑆)] = [𝑆] − [𝑁] = −([𝑁] − [𝑆])

so deg(𝑟0) = −1. □

We de�ne the antipodal map on S𝑛 by 𝑥 ↦→ −𝑥.

Proposition 3.58. If 𝑓 : S𝑛 → S𝑛 is a map with no �xed points (i.e. there is
no point 𝑝 ∈ S𝑛 such that 𝑓 (𝑝) = 𝑝), then 𝑓 is homotopic to the antipodal map.
In particular, deg( 𝑓 ) = (−1)𝑛+1.

Proof. If 𝑓 has no �xed points, then the path 𝑡 𝑓 (𝑥) − (1 − 𝑡)𝑥 does not pass
through the origin. It follows that

ℎ : S𝑛 × 𝐼 → S𝑛, ℎ𝑡 (𝑥) =
𝑡 𝑓 (𝑥) − (1 − 𝑡)𝑥
|𝑡 𝑓 (𝑥) − (1 − 𝑡)𝑥 |

is a homotopy joining the antipodal map ℎ0 to 𝑓 = ℎ1. Finally, note that the
antipodal map is equal to a composition of (𝑛 + 1) re�exions on S𝑛 ⊂ R𝑛+1 so it
has degree (−1)𝑛+1 by Proposition 3.57. □
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Theorem 3.59 (Hairy Ball Theorem). Every continuous vector �eld on an even
dimensional sphere has a zero.

Proof. A continuous vector �eld on S𝑛 is equivalent to a map 𝑉 : S𝑛 → R𝑛+1 such
that 𝑉 (𝑥) is orthogonal to 𝑥 for all 𝑥 ∈ S𝑛. If a non-vanishing vector �eld 𝑉 exists,
then we can de�ne an associated map 𝑓 : S𝑛 → S𝑛 by 𝑓 (𝑥) = 𝑉 (𝑥)/|𝑉 (𝑥) | which
has no �xed points. By Proposition 3.58, this implies that deg( 𝑓 ) = (−1)𝑛+1.
One the other hand, since 𝑓 (𝑥) and 𝑥 are always orthogonal, we can build a
homotopy

ℎ : S𝑛 × 𝐼 → S𝑛, ℎ𝑡 (𝑥) = cos(𝑡𝜋/2)𝑥 + sin(𝑡𝜋/2) 𝑓 (𝑥)

between the identity map and 𝑓 , from with we conclude that 𝑑𝑒𝑔( 𝑓 ) = 1. If 𝑛
is even, this leads to a contradiction. □

Remark 3.60. In contrast with Theorem 3.59, if 𝑛 is odd S𝑛 always admits a
non-vanishing vector �eld. This is because S2𝑚−1 ⊂ R2𝑚 = C𝑚 and we can
use complex scalar multication to rotate each vector by 90 degrees. Explicitly,
𝑉 (𝑥1, 𝑦1, . . . , 𝑥𝑛, 𝑦𝑛) = (−𝑦1, 𝑥1, . . . ,−𝑦𝑛, 𝑥𝑛).

Alternative approach For 𝑛 ≥ 0, the homology group 𝐻𝑛 (S𝑛) is isomorphic
to Z. There are two possible isomorphisms 𝐻𝑛 (S𝑛) � Z depending on a choice
of generator. A choice of this generator is called an (global) orientation of S𝑛.

Given a point 𝑝 ∈ S𝑛 and an open neighbourhood 𝑝 ∈ 𝑈 ⊂ S𝑛, we have
canonical isomorphisms

𝐻𝑛 (S𝑛)
�−→ 𝐻𝑛 (S𝑛, S𝑛 \ {𝑝})

�←− 𝐻𝑛 (𝑈,𝑈 \ {𝑝}). (3.61)

composing the long exact sequence of the pair (S𝑛, S𝑛 \ {𝑝}) with excision. A
choice of orientation for 𝐻𝑛 (𝑈,𝑈 \ {𝑝}) � Z is called a local orientation of S𝑛 at
𝑝. Because the isomorphism (3.61) is natural, an orientation of S𝑛 determines
a local orientations at all points 𝑝 ∈ S𝑛, and vice versa.

Now suppose that 𝑓 : S𝑛 → S𝑛 is a map and for some point 𝑝 ∈ S𝑛 the
preimage 𝑓 −1(𝑝) is a �nite set of points {𝑞1, . . . , 𝑞𝑘} ⊂ S𝑛.2 Suppose further
that for some open neighbourhood 𝑝 ∈ 𝑈 the preimage 𝑓 −1(𝑈) is a disjoint
union of open sets 𝑉1 ∪ · · · ∪ 𝑉𝑘 for which 𝑞𝑖 ∈ 𝑉𝑖. For each 𝑖, the restriction of
𝑓 induces homomorphism

𝐻𝑛 (𝑉𝑖 , 𝑉𝑖 \ {𝑝}) → 𝐻𝑛 (𝑈,𝑈 \ {𝑝}).

Since both groups are isomorphic to Z, the homomorphism must be multiplica-
tion by an integer 𝑑𝑖 which we call the local degree.

Proposition 3.62. Under the conditions above, the degree of 𝑓 is the sum of
the local degrees: deg( 𝑓 ) = ∑𝑘

𝑖=1 𝑑𝑖.

2Such a point always exists if 𝑓 is di�erentiable (Sard's Theorem)
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Proof. Fix an orientation Z = 𝐻𝑛 (S𝑛 and use this to impose local orientations
at all points. We have a commutative diagramme where natural and orientation
isomorphisms are indicated by double lines.

𝐻𝑛 (S𝑛)
𝑓∗ //

��

𝐻𝑛 (S𝑛)

Z

𝐴

''

𝐻𝑛 (S𝑛, S𝑛 \ 𝑓 −1(𝑝))
𝑓∗ // 𝐻𝑛 (S𝑛, S𝑛 \ {𝑝})

⊕𝑘𝑖=1𝐻𝑛 (𝑉𝑖 , 𝑉𝑖 \ {𝑞𝑖})
𝑓∗ // 𝐻𝑛 (𝑈,𝑈 \ {𝑝})

Z𝑘
𝐵

// Z

In matrix notation, we have

𝐴 = [1 1 · · · 1]𝑡 𝐵 = [𝑑1 𝑑2 · · · 𝑑𝑘]

So the composition 𝑑1 + · · · + 𝑑𝑘 is the degree of 𝑓 . □

In the simplest case, 𝑝 and 𝑈 can be chosen so that 𝑓 restricts to local
homemorphisms 𝑉𝑖 → 𝑈. In this case the local degrees are all ±1, so the degree
is obtained by counting points 𝑞1, . . . , 𝑞𝑘 with signs according to whether 𝑓 is
locally orientation preserving or reversing.

Example 3.63. We can construct a map S𝑛 → S𝑛 of degree 𝑑 ≥ 2 as follows. Let
𝐴 ⊂ S𝑛 be the complement of 𝑑 disjoint open disks 𝐵𝑖 in S𝑛. Let

𝑞 : S𝑛 → S𝑛 = 𝑋/𝐴 � ∨𝑑S𝑛

be the quotient map. The orientation on S𝑛 induces local orientations and hence
global orientations on each sphere in the wedge sum. Let

𝑝 : ∨𝑑S𝑛 → S𝑛

map each sphere by a degree 1 homeomorphism to S𝑛.

The preimage (𝑝𝑞)−1(𝑦) of a generic point 𝑦 ∈ S𝑛 consists of a single point in
each disk 𝐵𝑖 each with local degree is 1 because 𝑝𝑞 is a local homeomorphism.
Therefore deg(𝑝𝑞) = 𝑑. By precomposing 𝑝𝑞 with a re�exion, we can construct
a map of degree −𝑑.

Consider the map given 𝑑 ∈ Z

𝑤𝑑 : S1 → S1, 𝑤𝑑 (𝑒𝑖 𝜃 ) = 𝑒𝑖𝑑𝜃

for 𝑑 ≥ 1 we can see by Figure 3.12 that deg(𝑤𝑑) = 𝑑.
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Figure 3.12: The winding map 𝑤4

Note that 𝑤−𝑑 is equal to the composition of 𝑤𝑑 with a re�exion, so deg(𝑤−𝑑) =
−𝑑. By suspension, we construct maps

S𝑛 (𝑤𝑑) : S𝑛+1 → S𝑛+1

of degree 𝑑 for any integer.

Theorem 3.64 (Fundamental Theorem of Algebra). A complex polynomial
function 𝑓 (𝑧) of degree 𝑑 ≥ 1 has a complex root. Hence C is algebraically
closed.

Proof. The case 𝑑 = 1 is obvious, so suppose that 𝑑 ≥ 2. We assume 𝑓 is monic
for simplicity so 𝑓 (𝑧) = 𝑧𝑑 + 𝑂 (𝑧𝑑−1). Assume that 𝑓 (𝑧) has no complex roots.
Then there is a well-de�ned, continuous map

𝑔 : C→ S1, 𝑔(𝑧) = 𝑓 (𝑧)
| 𝑓 (𝑧) |

(
=
𝑧𝑑 +𝑂 (𝑧𝑑−1)
|𝑧𝑑 +𝑂 (𝑧𝑑−1 |

)
.

De�ne a homotopy ℎ : S1 × 𝐼 → S1 by

ℎ𝑡 (𝑒𝑖 𝜃 ) = 𝑔
( 𝑡

1 − 𝑡 𝑒
𝑖 𝜃
)
.

for 𝑡 < 1 and extend by continuity for 𝑡 = 1. We have ℎ0 (𝑒𝑖 𝜃 ) = 𝑔(0) is a constant
and thus deg(ℎ0) = 0. On the other hand, for large values of 𝑧, 𝑔(𝑧) becomes
dominated by the highest degree terms in the numerator and denominator, so
in the limit 𝑡 → 1, we have

ℎ1 (𝑒𝑖 𝜃 ) = 𝑒𝑖𝑑𝜃

so deg(ℎ1) = 𝑑, which contradicts degree being a homotopy invariant. □

3.7 Cellular homology

3.7.1 Cellular spaces

Let
D𝑛 := {𝑥 ∈ R𝑛 | |𝑥 | ≤ 1}
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denote the unit disk or closed 𝑛-cell with boundary

S𝑛−1 = 𝜕D𝑛 := {𝑥 ∈ R𝑛 | |𝑥 | = 1}.

Given a topological space 𝑋 and a continuous map 𝑓 : S𝑛−1 → 𝑋, we may
construct a new space

𝑌 := (𝑋
∐

D𝑛)/∼
where we quotient by the equivalence relation generated by 𝑝 ∼ 𝑓 (𝑝) for all
𝑝 ∈ S𝑛−1. We say that 𝑌 is obtained from 𝑋 by attaching an 𝑛-cell ; the map
𝑓 is called the attaching map. More generally, if we have a collection of maps
𝑓𝛼 : S𝑛−1 → 𝑋, then we construct

𝑌 = (𝑋
∐
(
∐
𝛼

D𝑛𝛼))/∼

where 𝑝 ∼ 𝑓𝛼 (𝑝) for all 𝑝 ∈ S𝑛−1 and 𝛼.
A cellular space (also called CW-complex ) is a space that is constructed

inductively by attaching cells. For instance,

� A 0-dimensional cellular space 𝑋0 is a discrete set of points (i.e. a discon-
nected union of 0-cells).

� A 1-dimensional cellular space 𝑋1 is a space constructed by attaching a
collection of 1-cells to 𝑋0.

� A 2-dimensional cellular space 𝑋2 is constructed by attaching 2-cells to
𝑋1.

� and so on . . .

In general, a cellular space 𝑋 may have cells in arbitrarily high dimensions, in
which case it is called ∞-dimensional. Each 𝑛-cell determines a characteristic
map 𝜙𝛼 : D𝑛 → 𝑋. A subset 𝑆 ⊂ 𝑋 is open/closed if and only if 𝜙−1𝛼 (𝑆) ⊂ D𝑛 is
open/closed for all cells.
Example 3.65. A wedge of 𝑛-spheres ∨𝐼S𝑛 is constructed by attaching 𝐼 many
𝑛-cells onto point 𝑋0 = {𝑝} by the only possible attaching map 𝑓 : S𝑛−1 → {𝑝}.
Example 3.66. The torus S1 × S1 can be constructed by attaching a 2-cell onto
a wedge of two circles 𝑋 = S1 ∨S1. If we denote by 𝑎 and 𝑏 the loops de�ned by
the two circles in 𝑋, then the attaching map 𝑓 : S1 → 𝑋 is the loop 𝑎 ·𝑏 ·𝑎−1 ·𝑏−1.
See the left side of Figure 3.13.
Example 3.67. More generally, the genus 𝑔 surface Σ𝑔 is constructed by glu-
ing a 2-cell to a wedge of 2𝑔 circles. If the loops de�ned by the circles are
called 𝑎1, 𝑏1, . . . 𝑎𝑔, 𝑏𝑔, then the attaching map sends S1 to the concatenation∏𝑔

𝑖=1 [𝑎𝑖 , 𝑏𝑖], where [𝑎𝑖 , 𝑏𝑖] = 𝑎𝑖𝑏𝑖𝑎−1𝑖 𝑏−1
𝑖

is the commutator. See the right side
of Figure 3.13 for 𝑔 = 2.

A subset 𝐴 ⊂ 𝑋 is called a cellular subspace if it is a closed union of cells
(that is, of images of characteristic maps). Given a cellular subspace 𝐴 ⊂ 𝑋, the
coset 𝑋/𝐴 de�ned by identifying all points in 𝐴 with each other, is naturally a
cellular space called a coset cellular space of 𝑋.
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Figure 3.13:

3.7.2 Co�bration

One of the fundamental questions in topology is the �extension problem.� This
asks for criteria for being able to extend a map 𝑔 : 𝐴→ 𝑌 de�ned on a subspace
𝐴 of 𝑋 to all of 𝑋. Of course, this cannot always be done as is shown by the
case 𝐴 = 𝑌 = S𝑛, 𝑋 = D𝑛+1.

It is natural to ask whether or not this problem is in the scope of algebraic
topology. That is, does the answer depend only on the homotopy class of 𝑔?
The answer to this is �not generally� as is shown by the space 𝑋 = [0, 1],
𝐴 = {0} ∪ {1/𝑛|𝑛 = 1, 2, . . . }, and 𝑌 = 𝐶𝐴, the cone on 𝐴. The map 𝑔 which is
the canonical inclusion of 𝐴 in 𝑌 cannot be extended to 𝑋, since the extension
would have to be discontinuous at {0}. However, 𝑔 ∼ 𝑔′ , where 𝑔′ is the constant
map of 𝐴 to the vertex of the cone, and 𝑔

′
obviously extends to 𝑋.

However, it turns out that some very mild conditions on the spaces will
ensure that this problem is homotopy theoretic, as we now discuss.

De�nition 3.68. Let (𝑋, 𝐴) and 𝑌 be given spaces. Then (𝑋, 𝐴) is said to have
the homotopy extension property with respect to 𝑌 if the following diagramme
can always be completed to be commutative:

𝐴 × 𝐼 ∪ 𝑋 × {0} //
� _

��

𝑌

𝑋 × 𝐼

88

Note that one can also depict this with the following type of diagramme:

𝐴 × {0} //
� _

��

𝐴 × 𝐼� _

��

}}
𝑌

𝑋 × {0} //

;;

𝑋 × 𝐼

aa
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If (𝑋, 𝐴) has the homotopy extension property with respect to 𝑌 then ex-
tensibility of maps 𝑔 : 𝐴 → 𝑌 clearly depends only on the homotopy class of
𝑔.

De�nition 3.69. Let 𝑓 : 𝐴 → 𝑋 be a map. Then 𝑓 is called a co�bration if
one can always �ll in the following commutative diagramme:

𝐴 × {0} //

𝑓 ×id

��

𝐴 × 𝐼

𝑓 ×id

��

}}
𝑌

𝑋 × {0} //

;;

𝑋 × 𝐼

aa

for any space 𝑌 .

Note that if 𝑓 is an inclusion then this is the same as the homotopy extension
property for all 𝑌 . That attribute is sometimes referred to as the �absolute
homotopy extension property.�

Theorem 3.70. For an inclusion 𝐴 ↩→ 𝑋 the following are equivalent:

(1) The inclusion map 𝐴 ↩→ 𝑋 is a co�bration.

(2) 𝐴 × 𝐼 ∪ 𝑋 × {0} is a retract of 𝑋 × 𝐼.

Proof. (1) ⇒ (2): consider the diagramme of De�nition 3.69 with 𝑌 = 𝐴 × 𝐼 ∪
𝑋 × {0}. The �lled-in map is the desired retraction.

(2)⇒ (1): composing the retraction of (2) with a map 𝐴×𝐼∪𝑋×{0} → 𝑌 gives
the homotopy extension property for all 𝑌 , which, as mentioned, is equivalent
to (1). □

Corollary 3.71. If 𝐴 is a cellular subspace of a cellular space 𝑋, then the
inclusion 𝐴 ↩→ 𝑋 is a co�bration.

Proof. One constructs a retraction ((𝐴∪𝑋 (𝑟))×𝐼)∪(𝑋×{0}) → (𝐴×𝐼)∪(𝑋×{0})
by induction on 𝑟. If it has been de�ned for the (𝑟 − 𝑙)-skeleton then extending
it over an 𝑟-cell is simply a matter of extending a map on S𝑟−1× 𝐼∪D𝑟 ×{0} over
D𝑟 × 𝐼, which can always be done because the pair (D𝑟 × 𝐼, S𝑟−1 × 𝐼 ∪ D𝑟 × {0})
is homeomorphic to (D𝑟 × 𝐼,D𝑟 × {0}), see Figure 3.14.

These maps for each cell �t together to give a map on the 𝑟-skeleton because
of the topology (See 3.7.1) on 𝑋 × 𝐼. The union of these maps for all 𝑟 gives a
map on 𝑋 × 𝐼, again because of the topology of 𝑋 × 𝐼. □

The main technical result for proving that particular inclusions are co�bra-
tions is the following rephrasing of 3.5.2. Note that conditions (1) and (2) always
hold if 𝑋 is metric.
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Figure 3.14:

Theorem 3.72. Assume that 𝐴 ⊂ 𝑋 is closed and that there exists a neigh-
bourhood 𝑈 of 𝐴 and a map 𝜙 : 𝑋 → 𝐼, such that:

(1) 𝐴 = 𝜙−1(0);

(2) 𝜙(𝑋 \𝑈) = {0}; and

(3) 𝑈 deforms to 𝐴 through 𝑋 with 𝐴 �xed. That is, there is a map 𝐻 : 𝑈×𝐼 → 𝑋

such that 𝐻 (𝑎, 𝑡) = 𝑎 for all 𝑎 ∈ 𝐴, 𝐻 (𝑢, 0) = 𝑢, and 𝐻 (𝑢, 1) ∈ 𝐴 for all
𝑢 ∈ 𝑈.

Then the inclusion 𝐴 ⊂ 𝑋 is a co�bration. The converse also holds.

Proof. We can assume that 𝜙 = 1 on a neighbourhood of (𝑋 \𝑈, by replacing 𝜙
with min(2𝜙, 1). It su�ces to show that there exists a map

Φ : 𝑈 × 𝐼 → 𝑋 × {0} ∪ 𝐴 × 𝐼

such that Φ(𝑥, 0) = (𝑥, 0) for 𝑥 ∈ 𝑈 and Φ(𝑎, 𝑡) = (𝑎, 𝑡) for 𝑎 ∈ 𝐴 and all 𝑡, since
then the map 𝑟 (𝑥, 𝑡) = Φ(𝑥, 𝑡 (𝑙 − 𝜙(𝑥))) for 𝑥 ∈ 𝑈 and 𝑟 (𝑥, 𝑡) = (𝑥, 0) for 𝑥 ∉ 𝑈

gives the desired retraction 𝑋 × 𝐼 → 𝐴 × 𝐼 ∪ 𝑋 × {0}.
We de�ne Φ by

Φ(𝑢, 𝑡) =
{
𝐻 (𝑢, 𝑡/𝜙(𝑢)) × {0} for 𝜙(𝑢) > 𝑡,
𝐻 (𝑢, 1) × {𝑡 − 𝜙(𝑢)} for 𝜙(𝑢) ≤ 𝑡.

We need only show that Φ is continuous at those points (𝑢, 0) such that 𝜙(𝑢) = 0,
i.e., at points (𝑎, 0) for 𝑎 ∈ 𝐴.

Note that 𝐻 (𝑎, 𝑡) = 𝑎 for all 𝑡 ∈ 𝐼 Thus, for 𝑊 a neighbourhood of 𝑎, there
is a neighbourhood 𝑉 ⊂ 𝑊 of 𝑎 such that 𝐻 (𝑉 × 𝐼) ⊂ 𝑊 . Therefore, 𝑡 < 𝜖 and
𝑢 ∈ 𝑉 imply that Φ(𝑢, 𝑡) ∈ 𝑊 × [0, 𝜖], and hence that Φ is continuous.

We will now prove the converse.
Let 𝑟 : 𝑋 × 𝐼 → (𝐴 × 𝐼) ∪ (𝑋 × {0}) be a retraction, let 𝑠(𝑥) = 𝑟 (𝑥, 1) and

put 𝑈 = 𝑠−1(𝐴 × (0, 1]). Let 𝑝𝑋, 𝑝𝐼 be the projections of 𝑋 × 𝐼 to its factors.
Then put 𝐻 = 𝑝𝑋 ◦ 𝑓 : 𝑈 × 𝐼 → 𝑋. This satis�es (3). For (1) and (2), put
𝜙(𝑥) = max𝑡∈𝐼 |𝑡 − 𝑝𝐼𝑟 (𝑥, 𝑡) | which makes sense since 𝐼 is compact. That this
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satis�es (1) and (2) is clear and it remains to show that 𝜙 is continuous. Let
𝑓 (𝑥, 𝑡) = |𝑡 − 𝑝𝐼𝑟 (𝑥, 𝑡) | and 𝑓𝑡 (𝑥) = 𝑓 (𝑥, 𝑡), all of which are continuous. Then

𝜙−1(−∞, 𝑏]) = {𝑥 | 𝑓 (𝑥, 𝑡) < 𝑏 for all 𝑡} = ∩𝑡∈𝐼 𝑓 −1𝑡 ((−∞, 𝑏])

is an intersection of closed sets and so is closed. Similarly

𝜙−1( [𝑎,∞)) = {𝑥 | 𝑓 (𝑥, 𝑡) > 𝑎 for some 𝑡} = 𝑝𝑋 ( 𝑓 −1( [𝑎,∞)))

is closed since 𝑝𝑋 is closed. Since the complements of the intervals of the
form [𝑎,∞) and (−∞, 𝑏] give a subbase for the topology of R, the contention
follows. □

It can be shown that, in the situation of Theorem 3.72, 𝑋 × {0} ∪ 𝐴 × 𝐼 is a
deformation retract of 𝑋×𝐼. See May �A Concise Course in Algebraic Topology�,
pp. 43-44.

Suppose that 𝑓 : 𝑋 → 𝑌 is any map. Recall that the �mapping cylinder� 𝑀 𝑓

of 𝑓 is de�ned to be the coset space

𝑀 𝑓 = ((𝑋 × 𝐼) + 𝑌 )/((𝑥, 0) ∼ 𝑓 (𝑥)).

The inclusion 𝑖 : 𝑋 ↩→ 𝑀 𝑓 clearly satis�es Theorem 3.72 and hence is a co�bra-
tion. Also, the retraction 𝑟 : 𝑀 𝑓 → 𝑌 is a homotopy equivalence with homotopy
inverse being the inclusion 𝑌 ↩→ 𝑀 𝑓 . The diagramme

𝑋
𝑖 //

𝑓 ��

𝑀 𝑓

≃
𝑟

~~
𝑌

commutes. This shows that any map 𝑓 is a co�bration, up to a homotopy
equivalence of spaces.

Also recall the de�nition of the �mapping cone� of 𝑓 : 𝑋 → 𝑌 as the coset
space

𝐶 𝑓 = 𝑀 𝑓 /(𝑋 × {1}) ≈ 𝑀 𝑓 ∪ 𝐶𝑋.
In the case of an inclusion 𝑖 : 𝐴 ↩→ 𝑋, we have 𝐶𝑖 = 𝑋 ∪ 𝐶𝐴. There is the map

𝐶𝑖
ℎ−→ 𝑋/𝐴,

de�ned as the coset map 𝑋 ∪ 𝐶𝐴 → (𝑋 ∪ 𝐶𝐴)/𝐶𝐴 composed with the inverse
of the homeomorphism 𝑋/𝐴→ (𝑋 ∪ 𝐶𝐴)/𝐶𝐴. It is natural to ask whether ℎ is
a homotopy equivalence. This is not always the case, but the following gives a
su�cient condition for it to be so.

Theorem 3.73. If 𝐴 ⊂ 𝑋 is closed and the inclusion 𝑖 : 𝐴 ↩→ 𝑋 is a co�bra-
tion then ℎ : 𝐶𝑖 → 𝑋/𝐴 is a homotopy equivalence. In fact, it is a homotopy
equivalence of pairs

(𝑋/𝐴, ∗) ≃ (𝐶𝑖 , 𝐶𝐴) ≃ (𝐶𝑖 , 𝑣),
where 𝑣 is the vertex of the cone.
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Proof. The mapping cone 𝐶𝑖 = 𝑋∪𝐶𝐴 consists of three di�erent types of points,
the vertex 𝑣 = {𝐴 × {1}}, the rest of the cone {(𝑎, 𝑡) |0 < 𝑡 < 1} where (𝑎, 0) =
𝑎 ∈ 𝐴 ⊂ 𝑋, and points in 𝑋 itself, which we identify with 𝑋 × {0} to simplify
de�nitions of maps.

De�ne 𝑓 : 𝐴 × 𝐼 ∪ 𝑋 × {0} → 𝐶𝑖, as the collapsing map and extend 𝑓 to
𝑓 : 𝑋 × 𝐼 → 𝐶, by the de�nition of co�bration. Then 𝑓 (𝑎, 1) = 𝑣, 𝑓 (𝑎, 𝑡) = (𝑎, 𝑡)
and 𝑓 (𝑥, 0) = 𝑥.

Put 𝑓 𝑡 = 𝑓 |𝑋×{𝑡 } . Since 𝑓 1 (𝐴) = {𝑣}, there is the factorisation 𝑓 1 = 𝑔 ◦ 𝑗 ,
where 𝑗 : 𝑋 → 𝑋/A is the coset map and 𝑔 : 𝑋/𝐴 → 𝐶𝑖. (𝑔 is continuous by
de�nition of the coset topology.)

We claim that 𝑔 is a homotopy equivalence and a homotopy inverse to ℎ.
First we will prove that ℎ𝑔 ≃ id. There is the homotopy ℎ 𝑓 1 : 𝑋 → 𝑋/𝐴.

For all 𝑡, this takes 𝐴 into the point {𝐴}. Thus it factors to give the homotopy

ℎ𝑔 ≃ { 𝑓 1} ≃ {ℎ 𝑓 0𝑐 = { 𝑗} = id .

Next we will show that 𝑔ℎ ≃ id. For this, consider 𝑊 = (𝑋 × 𝐼)/(𝐴 × {1})
and the maps illustrated in Figure 3.15. The map 𝑓

′
is induced by 𝑓 . The map

Figure 3.15: A homotopy equivalence and homotopy inverse

𝑘 is the �top face� map. We see that

𝑓
′
◦ 𝑙 = id,

𝜋 ◦ 𝑘 = id (which we don't need),

𝑘 ◦ 𝜋 ≃ id,

𝑓
′
◦ 𝑘 = 𝑔 (de�nition of g),

𝜋 ◦ 𝑙 = ℎ.

Hence 𝑔 ◦ ℎ = 𝑓
′
◦ (𝑘 ◦ 𝜋) ◦ 𝑙 ≃ 𝑓

′
◦ 𝑙 = id, as claimed. □

A non-example of Theorem refthm:Br7-1-6 is 𝐴 = {0} ∪ {1/𝑛|𝑛 = 1, 2, . . . },
and 𝑋 = [0, 1]. Here 𝐶𝑖, is not homotopy equivalent to 𝑋/𝐴, which is a one-
point union of an in�nite sequence of circles with radii going to zero. (𝐶𝑖 has
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homeomorphs of circles joined along edges, but the circles do not tend to a point
and so any prospective homotopy equivalence 𝑋/𝐴→ 𝐶𝑖 would be discontinuous
at the image of {0} in 𝑋/𝐴.)

As a corollary we have

Proposition 3.74. If 𝐴 ⊂ 𝑋 is closed and the inclusion 𝐴 ↩→ 𝑋 is a co�bration
then the map 𝑗 : (𝑋, 𝐴) → (𝑋/𝐴, ∗) induces isomorphisms

𝐻∗ (𝑋, 𝐴)
≈−→ 𝐻∗ (𝑋/𝐴, ∗) ≈ 𝐻 (𝑋/𝐴).

Hence we have a long exact sequence in homology

· · ·𝐻𝑞+1 (𝑋/𝐴) → 𝐻𝑞 (𝐴) → 𝐻𝑞 (𝑋) → 𝐻𝑞 (𝑋/𝐴) → 𝐻𝑞−1(𝐴) → · · ·

Proof. 𝐻∗ (𝑋/𝐴, ∗) ≈ 𝐻∗ (𝐶𝑖 , 𝐶𝐴) ≈ 𝐻∗ (𝑋 ∪ (𝐴 × [0, 1/2]), 𝐴 × 𝐴 × [0, 1/2]) ≈
𝐻∗ (𝑋, 𝐴). □

A nonexample is 𝑋 = S2 with 𝐴 ⊂ 𝑋 the �sin(1/𝑥)� subspace pictured in
Figure 3.16. Here 𝑋/𝐴 ≈ S2 ∨ S2, so that 𝐻2 (𝑋/𝐴) ≈ Z ⊕ Z. But 𝐻1 (𝐴) = 0 =

Figure 3.16: A pseudo-circle

𝐻2 (𝐴), so that 𝐻2 (𝑋, 𝐴) ≈ 𝐻2 (𝑋) ≈ Z. It follows that the inclusion 𝐴 → S2 is
not a co�bration.

Let us recall the notion of the pointed category and some notational items.
The pointed category has, as objects, spaces with a base point ∗, and, as maps,
those maps of spaces preserving the base point. There is also the category of
pairs of pointed spaces. There is also the notion of homotopies in this category,
those homotopies which preserve the base point.

If 𝑓 : 𝑋 → 𝑌 is a pointed map then the reduced mapping cylinder of 𝑓 is the
coset space 𝑀 𝑓 of (𝑋 × 𝐼) ∪ 𝑌 modulo the relations identifying (𝑥, 0) with 𝑓 (𝑥)
and identifying the set {∗} × 𝐼 to the base point of 𝑀 𝑓 .

The reduced mapping cone is the coset of the reduced mapping cylinder 𝑀 𝑓

gotten by identifying the image of 𝑋 × {1} to a point, the base point.
The one-point union of pointed spaces 𝑋 and 𝑌 is the coset space 𝑋 ∨ 𝑌 of

the disjoint union 𝑋 + 𝑌 obtained by identifying the two base points.
The wedge, or smash, product is the pointed space 𝑋 ∧𝑌 = (𝑋 ×𝑌 )/(𝑋 ∨𝑌 ).
The circle S1 is de�ned as 𝐼/𝜕𝐼 with base point {𝜕𝐼}.
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The reduced suspension of a pointed space 𝑋 is 𝑆𝑋 = 𝑋 ∧ S1. It can also be
considered as the coset space (𝑋 × 𝐼)/[(𝑋 × 𝜕𝐼) ∪ ({∗} × 𝐼)].

S𝑛 ∧ S𝑛 is the one-point compacti�cation of R𝑛 × R𝑚 and hence is homeo-
morphic to S𝑛+𝑚. Thus we can, and will in this article, rede�ne S𝑛 inductively
by letting S𝑛+1 = 𝑆S𝑛. Also note that

𝑆(𝑆𝑋) = (𝑆𝑋) ∧ S1 = (𝑋 ∧ S1) ∧ S1 = 𝑋 ∧ S2, etc.

The preceding results of this section can all be rephrased in terms of the
pointed category. Extending the proofs is elementary, mostly a matter of seeing
that the unreduced versions become the reduced versions by taking the coset of
spaces by sets involving the base point. For example, Proposition 3.74 would say
that if 𝐴 is a closed, pointed, subspace of the pointed space 𝑋 and if the inclusion
𝑖 : 𝐴→ 𝑋 is a co�bration (same de�nition since the base point is automatically
taken care of) then 𝑋/𝐴 ≃ 𝐶𝑖, where the latter is now the reduced mapping one,
and the homotopies involved must preserve the base points.

De�nition 3.75. A base point 𝑥0 ∈ 𝑋 is said to be non-degenerate if the
inclusion {𝑥0} ↩→ 𝑋 is a co�bration. A pointed Hausdor� space 𝑋 with non-
degenerate base point is said to be well-pointed.

Any pointed manifold or cellular space is clearly well-pointed. An example
of pointed space that is not well-pointed is {0} ∪ {1/𝑛|𝑛 ≥ 1} with 0 as base
point. The reduced suspensions of this also fail to be well-pointed.

If 𝐴 ↩→ 𝑋 is a co�bration then 𝑋/𝐴, with base point {𝐴}, is well-pointed as
follows easily from Theorem 3.72.

If a whisker is appended at the base point of any pointed space 𝑋, then
changing the base point to the other end of the whisker provides a well-pointed
space. (This is, of course, just the mapping cylinder of the inclusion of the base
point into 𝑋.)

Theorem 3.76. If 𝑋 is well-pointed then so are the reduced cone 𝐶𝑋 and
the reduced suspension 𝑆𝑋. Moreover, the collapsing map Σ𝑋 → 𝑆𝑋, of the
unreduced suspension to the reduced suspension, is a homotopy equivalence.

Proof. Denote the base point of 𝑋 by ∗. Consider a homeomorphism

ℎ : [𝐼 × 𝐼, (𝐼 × {0}) ∪ (𝜕𝐼 × 𝐼)] ≈−→ (𝐼 × 𝐼, 𝐼 × {0})

which clearly exists. Then the induced homeomorphism

id×ℎ : 𝑋 × 𝐼 × 𝐼 ≈−→ 𝑋 × 𝐼 × 𝐼

carries (𝑋×𝐼×{0})∪(𝑋×𝜕𝐼×𝐼) to 𝑋×𝐼×{0}. Hence it takes 𝐴 = (𝑋×𝐼×{0})∪(𝑋×
𝜕𝐼×𝐼)∪({∗}×𝐼×𝐼) to (𝑋×𝐼×{0})∪({∗}×𝐼×𝐼). Therefore, the pair (𝑋×𝐼×𝐼, 𝐴) is
homeomorphic to the pair 𝐼×[𝑋×𝐼, (𝑋×{0})∪({∗}×𝐼)]. Since (𝑋×{0})∪({∗}×𝐼)
is a retract of 𝑋 × 𝐼 by the de�nition of �well-pointed,� it follows that 𝐴 is a
retract of 𝑋 × 𝐼 × 𝐼. This implies that the inclusion (𝑋 × 𝜕𝐼) ∪ ({∗} × 𝐼) ↩→ 𝑋 × 𝐼
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is a co�bration. Therefore, 𝑆𝑋 = (𝑋 × 𝐼)/[(𝑋 × 𝜕𝐼) ∪ ({∗} × 𝐼)] is well-pointed.
A similar argument using a homeomorphism [𝐼 × 𝐼, (𝐼 × {0}) ∪ ({1} × 𝐼)] ≈−→
(𝐼 × 𝐼, 𝐼 × {0}) shows that the inclusion [(𝑋 × {1}) ∪ ({∗} × 𝐼)] ↩→ 𝑋 × 𝐼 is a
co�bration and so 𝐶𝑋 = (𝑋 × 𝐼)/[𝑋 × {1}) ∪ ({∗} × 𝐼)] is well-pointed.

The fact that (𝑋 × 𝜕𝐼) ∪ ({∗} × 𝐼) ↩→ 𝑋 × 𝐼 is a co�bration implies that the
induced inclusion 𝐼 ≈ {∗} × 𝐼 ↩→ (𝑋 × 𝐼)/{𝑋 × {0}, 𝑋 × {1}} = Σ𝑋 is a co�bration
by an easy application of Theorem 3.72. By Theorem 3.73, Σ𝑋 ≃ Σ𝑋 ∪ 𝐶𝐼 ≃
Σ𝑋/𝐼 = 𝑆𝑋 via the collapsing map. □

The cellular subspace 𝑋𝑛 ⊂ 𝑋 consisting of all cells of dimension ≤ 𝑛 is called
the 𝑛-skeleton of 𝑋 (by convention 𝑋−1 = ∅). If 𝑋 is in�nite dimensional, the
topology on 𝑋 satis�es 𝑆 ⊂ 𝑋 is open (resp. closed) if and only if 𝑆 ∩ 𝑋𝑛 is open
(resp. closed) in 𝑋𝑛 for all 𝑛. In particular, a map 𝑓 : 𝑋 → 𝑌 is continuous if
and only if the restrictions 𝑓𝑛 : 𝑋𝑛→ 𝑌 are continuous for all 𝑛. We say 𝑋 has
the direct limit topology with respect to 𝑋𝑛.

Lemma 3.77. Let 𝑋 be a cellular space and 𝐶 ⊂ 𝑋 a compact subspace. Then
𝐶 is contained within �nitely many cells of 𝑋.

Proof. Choose a sequence of points 𝑥𝑖 ∈ 𝐶 lying in distinct cells. We will show
that the set 𝑆 := {𝑥𝑖} is �nite. We begin by showing 𝑆 is closed.

First observe that

𝑆 ⊂ 𝑋 is closed ⇔ 𝑆 ∩ 𝑋𝑛 is closed in 𝑋,∀𝑛

We use induction on 𝑛.
Clearly 𝑆∩𝑋0 is closed in 𝑋0 hence in 𝑋, because every subset of 𝑋0 is closed.

Assume by induction that 𝑆 ∩ 𝑋𝑛−1 is closed in 𝑋. Thus for any characteristic
map

𝜙𝛼 : D𝑘 → 𝑋

the pre-image 𝜙−1𝛼 (𝑆 ∩ 𝑋𝑛−1) is closed in 𝐷𝑘 . For 𝑘 < 𝑛, the pre-image 𝜙−1𝛼 (𝑆 ∩
𝑋𝑛) = 𝜙−1𝛼 (𝑆 ∩ 𝑋𝑛−1) is closed in D𝑘 . For 𝑘 = 𝑛, the pre-image 𝜙−1𝛼 (𝑆 ∩ 𝑋𝑛) ⊂ D𝑛

equals 𝜙−1𝛼 (𝑆 ∩ 𝑋𝑛−1) plus at most one point, thus it is a union of two closed
sets, hence is closed in D𝑛. We deduce that 𝑆 ∩ 𝑋𝑛 is closed in 𝑋𝑛 hence also in
𝑋. By induction, this holds for all 𝑛 so 𝑆 is closed in 𝑋.

The same argument shows that every subset of 𝑆 is also closed, so 𝑆 has
the discrete topology. But 𝑆 is a closed subset of the compact set 𝐶, so it is
compact. We conclude that 𝑆 is �nite. □

3.7.3 The Compact-Open Topology

Let 𝑋 be a locally compact Hausdor� space, and 𝑌 any Hausdor� space. By 𝑌𝑋

we mean the set of continuous functions 𝑋 → 𝑌 .

De�nition 3.78. The compact-open topology on 𝑌𝑋 is the topology generated
by the sets 𝑀 (𝐾,𝑈) = { 𝑓 ∈ 𝑌𝑋 | 𝑓 (𝐾) ⊂ 𝑈}, ] where 𝐾 ⊂ 𝑋 is compact and 𝑈 ⊂ 𝑌
is open.
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Recall that �generated� here means that these sets form a subbasis for the
open sets. Henceforth, unless otherwise noted, 𝑌𝑋 will always be given the
compact-open topology.

Lemma 3.79. Let 𝑲 be a collection of compact subsets of 𝑋 containing a neigh-
bourhood base at each point of 𝑋. Let 𝑩 be a subbasis for the open sets of 𝑌 .
Then the sets 𝑀 (𝐾,𝑈),for 𝐾 ∈ 𝑲 and 𝑈 ∈ 𝑩,form a subbasis for the compact-
open topology.

Proof. Note that 𝑀 (𝐾,𝑈)∩𝑀 (𝐾,𝑉) = 𝑀 (𝐾,𝑈∩𝑉), which implies that it su�ces
to consider the case in which 𝑩 is a basis. We need to show that the indicated
sets form a neighbourhood basis at each point 𝑓 ∈ 𝑌𝑋. Thus it su�ces to show
that if 𝐾 ⊂ 𝑋 is compact and 𝑈 ⊂ 𝑌 is open, and 𝑓 ∈ 𝑀 (𝐾,𝑈), then there exist
𝐾1, . . . , 𝐾𝑛 ∈ 𝑲 and 𝑈1, . . . ,𝑈𝑛 ∈ 𝑩 such that 𝑓 ∈ ∩𝑀 (𝐾𝑖 ,𝑈𝑖) ⊂ 𝑀 (𝐾,𝑈).

For each 𝑥 ∈ 𝐾, there is an open set 𝑈𝑥 ∈ 𝑩 with 𝑓 (𝑥) ∈ 𝑈𝑥 ⊂ 𝑈, and there
exists a 𝐾𝑥 ∈ 𝑲 which is a neighbourhood of 𝑥 such that 𝑓 (𝐾𝑥) ⊂ 𝑈𝑥 . Thus
𝑓 ∈ 𝑀 (𝐾𝑥 ,𝑈𝑥).

By the compactness of 𝐾 there exist points 𝑥1, . . . , 𝑥𝑛 such that 𝐾 ⊂ 𝐾𝑥1 ∪
· · · ∪ 𝐾𝑥𝑛 . Then 𝑓 ∈ ∩𝑀 (𝐾𝑥𝑖 ) ⊂ 𝑀 (𝐾,𝑈). □

Proposition 3.80. For 𝑋 locally compact Hausdor�, the �evaluation map� 𝑒 :
𝑌𝑋 × 𝑋 → 𝑌 , de�ned by 𝑒( 𝑓 , 𝑥) = 𝑓 (𝑥), is continuous.

Proof. If 𝑓 and 𝑥 are given, let 𝑈 be an open neighbourhood of 𝑓 (𝑥). Since 𝑓

is continuous, there is a compact neighbourhood 𝐾 of 𝑥 such that 𝑓 (𝐾) ⊂ 𝑈.
Thus 𝑓 ∈ 𝑀 (𝐾,𝑈) and 𝑀 (𝐾,𝑈) × 𝐾 is taken into 𝑈 by the evaluation 𝑒. Since
𝑀 (𝐾,𝑈) × 𝐾 is a neighbourhood of ( 𝑓 , 𝑥) in 𝑌𝑋, we are done. □

Theorem 3.81. Let 𝑋 be locally compact Hausdor� and 𝑌 and 𝑇 arbitrary
Hausdor� spaces. Given a function 𝑓 : 𝑋 × 𝑇 → 𝑌 , de�ne, for each 𝑡 ∈ 𝑇 , the
function 𝑓𝑡 : 𝑋 → 𝑌 by 𝑓𝑡 (𝑥) = 𝑓 (𝑥, 𝑡). Then 𝑓 is continuous ⇔ both of the
following conditions hold:

(a) each 𝑓𝑡 is continuous; and

(b) the function 𝑇 → 𝑌𝑋 taking 𝑡 to 𝑓𝑡 is continuous.

Proof. The implication⇐ follows from the fact that 𝑓 is the composition of the
map 𝑋 × 𝑇 → 𝑌𝑋 × 𝑋 taking (𝑥, 𝑡)to ( 𝑓𝑡 , 𝑥), with the evaluation 𝑌𝑋 × 𝑋 → 𝑌 .

For the implication ⇒, (a) follows from the fact that 𝑓𝑡 is the composition
𝑋 → 𝑋 × 𝑇 → 𝑌 of the inclusion 𝑥 ↦→ (𝑥, 𝑡) with 𝑓 . To prove (b), let 𝑡 ∈ 𝑇 be
given and let 𝑓𝑡 ∈ 𝑀 (𝐾,𝑈). It su�ces to show that there exists a neighbourhood
𝑊 of 𝑡 in 𝑇 such that 𝑡

′ ∈ 𝑊 → 𝑓𝑡 ′ ∈ 𝑀 (𝐾,𝑈). (That is, it su�ces to prove the
conditions for continuity for a subbasis only.)

For 𝑥 ∈ 𝐾, there are open neighbourhoods 𝑉𝑥 ⊂ 𝑋 of 𝑥 and 𝑊𝑥 ⊂ 𝑇 of 𝑡 such
that 𝑓 (𝑉𝑥 ×𝑊𝑥) ⊂ 𝑈. By compactness, 𝐾 ⊂ 𝑉𝑥1 ∪ · · · ∪ 𝑉𝑥𝑛 = 𝑉 say. Put 𝑊 =

𝑊𝑥1 ∩· · ·∩𝑊𝑥𝑛 . Then 𝑓 (𝐾 ×𝑊) ⊂ 𝑓 (𝑉 ×𝑤) ⊂ 𝑈, so that 𝑡 ′ ∈ 𝑊 ⇒ 𝑓𝑡 ′ ∈ 𝑀 (𝐾,𝑈)
as claimed. □
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This theorem implies that a homotopy 𝑋 × 𝐼 → 𝑌 , with 𝑋 locally compact,
is the same thing as a path 𝐼 → 𝑌𝑋 in 𝑌𝑋.

An often used consequence of Theorem 3.81 is that in order to show a func-
tion 𝑇 → 𝑌𝑋 to be continuous, it su�ces to show that the associated function
𝑋 × 𝑇 → 𝑌 is continuous.

Theorem 3.82 (The Exponential Law). Let 𝑋 and 𝑇 be locally compact Haus-
dor� spaces and let 𝑌 be an arbitrary Hausdor� space. Then there is the home-
omorphism

𝑌𝑋×𝑇
≈−→ (𝑌𝑋)𝑇

taking 𝑓 to 𝑓 ∗, where 𝑓 ∗ (𝑡) (𝑥) = 𝑓 (𝑥, 𝑡) = 𝑓𝑡 (𝑥).

Proof. Theorem 3.81 says that the assignment 𝑓 ↦→ 𝑓 ∗ is a bijection. We must
show it and its inverse to be continuous. Let 𝑈 ⊂ 𝑌 be open, and 𝐾 ⊂ 𝑋, 𝐾 ′ ⊂ 𝑇
compact. Then

𝑓 ∈ 𝑀 (𝐾 × 𝐾 ′ ,𝑈) ⇔ (𝑡 ∈ 𝐾 ′ , 𝑥 ∈ 𝐾 ⇒ 𝑓𝑡 (𝑥) = 𝑓 (𝑥, 𝑡) ∈ 𝑈)
⇔ (𝑡 ∈ 𝐾 ′ ⇒ 𝑓𝑡 ∈ 𝑀 (𝐾,𝑈))
⇔ 𝑓 ∗ ∈ 𝑀 (𝐾 ′ , 𝑀 (𝐾,𝑈)).

Now the 𝐾×𝐾 ′ give a neighbourhood basis for 𝑋×𝑇 . Therefore the 𝑀 (𝐾×𝐾 ′ ,𝑈)
form a subbasis for the topology of 𝑌𝑋×𝑇 .

Also, the 𝑀 (𝐾,𝑈) give a subbasis for 𝑌𝑋 and therefore the 𝑀 (𝐾 ′ , 𝑀 (𝐾,𝑈))
give a subbasis for the topology of (𝑌𝑋)𝑇 .

Since these subbases correspond to one another under the exponential cor-
respondence, the theorem is proved. □

Proposition 3.83. If 𝑋 is locally compact Hausdor� and 𝑌 and 𝑊 are Haus-
dor� then there is the homeomorphism

𝑌𝑋 ×𝑊𝑋 ≈−→ (𝑌 ×𝑊)𝑋

given by ( 𝑓 , 𝑔) ↦→ 𝑓×𝑔 = ( 𝑓 × 𝑔) ◦ diag, where diag : 𝑈 → 𝑈 ×𝑈 is the diagonal
map.

Proof. This is clearly a bijection. If 𝐾, 𝐾
′ ⊂ 𝑋 are compact, and 𝑈 ⊂ 𝑌 and

𝑉 ⊂ 𝑊 are open then we have

( 𝑓 , 𝑔) ∈ 𝑀 (𝐾,𝑈) × 𝑀 (𝐾 ′ , 𝑉) ⇔ (𝑥 ∈ 𝐾 ⇒ 𝑓 (𝑥) ∈ 𝑈) and (𝑥 ∈ 𝐾 ′ ⇒ 𝑔(𝑥) ∈ 𝑉)
⇔ (𝑥 ∈ 𝐾 ⇒ ( 𝑓×𝑔) (𝑥) ∈ 𝑈 ×𝑊)
and (𝑥 ∈ 𝐾 ′ ⇒ ( 𝑓×𝑔) (𝑥) ∈ 𝑌 ×𝑉)
⇔ ( 𝑓×𝑔) ∈ 𝑀 (𝐾,𝑈 ×𝑊) ∩ 𝑀 (𝐾 ′ , 𝑌 ×𝑉).

Thus ( 𝑓 , 𝑔) ↦→ 𝑓×𝑔 is open.
Also, ( 𝑓 , 𝑔) ∈ 𝑀 (𝐾,𝑈) × 𝑀 (𝐾,𝑉) ⇔ ( 𝑓×𝑔) ∈ 𝑀 (𝐾,𝑈 × 𝑉), which implies

that the function in question is continuous. □
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Proposition 3.84. If 𝑋 and 𝑇 are locally compact Hausdor� spaces and 𝑌 is
an arbitrary Hausdor� space then there is the homeomorphism

𝑌𝑋+𝑇
≈−→ 𝑌𝑋 × 𝑌𝑇

taking 𝑓 to ( 𝑓 ◦ 𝑖𝑋, 𝑓 ◦ 𝑖𝑌 ).

Proof. Let
𝑖𝑋 : 𝑋 → 𝑋 + 𝑇, 𝑖𝑇 : 𝑇 → 𝑋 + 𝑇

be the inclusions. Now de�ne a function 𝜃 : 𝑌𝑋 ×𝑌𝑇 → (𝑌 +𝑌 )𝑋+𝑇 by 𝜃 (𝜆, 𝜇) =
𝜆 + 𝜇, where 𝜆 : 𝑋 → 𝑌 and 𝜇 : 𝑇 → 𝑌 , and consider the composite functions

𝜙 : 𝑌𝑋+𝑇
Δ−→ 𝑌𝑋+𝑇 × 𝑌𝑋+𝑇

id𝑖𝑋 × id𝑖𝑇−−−−−−−−→ 𝑌𝑋 × 𝑌𝑇

and
𝜓 : 𝑌𝑋×𝑇 𝜃−→ (𝑌 + 𝑌 )𝑋+𝑇 ∇id

−−−→ 𝑌𝑋+𝑇 ,

where Δ is the diagonal map, and ∇ : 𝑌 + 𝑌 → 𝑌 is the folding map. Given
𝜈 : 𝑋 + 𝑇 → 𝑌 , 𝜙(𝜈) = (𝜈𝑖𝑋, 𝜈𝑖𝑇 ), and given 𝜆 : 𝑋 → 𝑌 and 𝜇 : 𝑇 → 𝑌 ,
𝜓(𝜆, 𝜇) = ∇(𝜆 + 𝜇). Thus 𝜙𝜓 and 𝜓𝜙 are identity functions, and the only
point that remains in showing that 𝜙 is a homeornorphism is to show that 𝜃 is
continuous.

To do so, consider the set 𝑀𝐾,𝑈 , where 𝐾 ⊂ 𝑋 +𝑇 is compact and 𝑈 ⊂ 𝑌 +𝑌
is open. Now

𝜃−1 = {(𝜆, 𝜇) | (𝜆 + 𝜇) (𝐾) ⊂ 𝑈}
= {(𝜆, 𝜇) | (𝜆) (𝐾 ∩ 𝑋) ⊂ 𝑈 ∩ (𝑌 × 𝑦0) and (𝜇) (𝐾 ∩ 𝑇) ⊂ 𝑈 ∩ (𝑦0 × 𝑌 )}

where 𝑦0 is a non-degenerate point of 𝑌 (i.e., a point such that {𝑦0} ↩→ 𝑌 is a
co�bration) and 𝑋 and 𝑇 are identi�ed with their images in 𝑋 + 𝑇 . Certainly
𝑈1 = 𝑈 ∩ (𝑌 × 𝑦0) and 𝑈2 = 𝑈 ∩ (𝑦0 × 𝑌 ) are open, since 𝑈 is the intersection
with 𝑌 +𝑌 of an open set in 𝑌 ×𝑌 . But since 𝑋 and 𝑇 are Hausdor�, so is 𝑋 ×𝑇
and 𝑋 + 𝑇 : thus 𝐾, 𝑋 and 𝑇 are closed in 𝑋 + 𝑇 , so that 𝐾 ∩ 𝑋 and 𝐾 ∩ 𝑇 are
closed and hence compact. That is, 𝜃−1𝑀𝐾,𝑈) = 𝑀𝐾∩𝑋,𝑈1

× 𝑀𝐾∩𝑇,𝑈2
so 𝜃 is

continuous. Hence 𝜙 is a homeomorphism. □

Theorem 3.85. For 𝑋 locally compact and both 𝑋 and 𝑌 Hausdor�, 𝑌𝑋 is a
covariant functor of 𝑌 and a contravariant functor of 𝑋.

Proof. A map 𝜙 : 𝑌 → 𝑍 induces 𝜙𝑋 : 𝑌𝑋 → 𝑍𝑋, by 𝜙𝑋 = 𝜙 ◦ 𝑓 . We must show
that 𝜙𝑋 is continuous. By Theorem 3.81 it su�ces to show that 𝑌𝑋 × 𝑋 → 𝑍,
taking ( 𝑓 , 𝑥) to 𝜙( 𝑓 (𝑥)), is continuous. But this is the composition 𝜙 ◦ 𝑒 of 𝜙
with the evaluation, which is continuous.

Next, for 𝜓 : 𝑋 → 𝑇 , both spaces locally compact, we must show that
𝑌 𝜓 : 𝑌𝑇 → 𝑌𝑋, taking 𝑓 to 𝑓 ◦𝜓, is continuous. It su�ces, by Theorem 3.81, to
show that 𝑌𝑇 × 𝑋 → 𝑌 , taking ( 𝑓 , 𝑥) to 𝑓 (𝜓(𝑥), is continuous. But this is just
the composition 𝑒 ◦ (id×𝜓), which is continuous. □
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Corollary 3.86. For 𝐴 ⊂ 𝑋 both locally compact and 𝑋, 𝑌 Hausdor�, the
restriction 𝑌𝑋 → 𝑌 𝐴 is continuous.

Theorem 3.87. For 𝑋, 𝑌 locally compact, and 𝑋, 𝑌 , 𝑍 Hausdor�, the function

𝑍𝑌 × 𝑌𝑋 → 𝑍𝑋

taking ( 𝑓 , 𝑔) to 𝑓 ◦ 𝑔, is continuous.

Proof. It su�ces, by Theorem 3.81, to show that the function 𝑍𝑌 × 𝑌𝑋 × 𝑋 →
𝑍, taking ( 𝑓 , 𝑔, 𝑥) to ( 𝑓 ◦ 𝑔) (𝑥), is continuous. But this is the composition
𝑒 ◦ (id×𝑒). □

All of these things, and the ones following, have versions in the pointed
category, the veri�cation of which is trivial.

We �nish this section by showing that, for 𝑌 metric, the compact-open topol-
ogy is identical to a more familiar concept.

Lemma 3.88. Let 𝑌 be a metric space, let 𝐶 be a compact subset of 𝑌 , and let
𝑈 ⊃ 𝐶 be open. Then there is an 𝜖 > 0 such that 𝐵𝜖 (𝐶) ⊂ 𝑈.

Proof. Cover 𝐶 by a �nite number of balls of the form 𝐵𝜖 (𝑥𝑖 ) (𝑥𝑖) such that
𝐵2𝜖 (𝑥𝑖 ) (𝑥𝑖) ⊂ 𝑈. Put 𝜖 = min(𝜖 (𝑥𝑖)). Suppose 𝑥 ∈ 𝐵𝜖 (𝐶). Then there is a 𝑐 ∈ 𝐶
with dist(𝑥, 𝑐) < 𝜖 and an 𝑖 such that 𝑑𝑖𝑠𝑡 (𝑐, 𝑥𝑖) < 𝜖 (𝑥𝑖). Thus 𝑥 ∈ 𝐵2𝜖 (𝑥𝑖 ) (𝑥𝑖) ⊂
𝑈. □

Theorem 3.89. If 𝑋 is compact Hausdor� and 𝑌 is metric then the compact-
open topology is induced by the uniform metric on 𝑌𝑋 i.e., the metric given by
dist( 𝑓 , 𝑔) = sup{dist( 𝑓 (𝑥), 𝑔(𝑥)) |𝑥 ∈ 𝑋}.

Proof. For 𝑓 ∈ 𝑌𝑋, it su�ces to show that a basic neighbourhood of 𝑓 in each
of these topologies contains a neighbourhood of 𝑓 in the other topology.

Let 𝜖 > 0 be given. Let 𝑁 = 𝐵𝜖 ( 𝑓 ) = {𝑔 ∈ 𝑌𝑋 | dist( 𝑓 (𝑥), 𝑔(𝑥)) < 𝜖 for all 𝑥 ∈
𝑋}. Given 𝑥, there is a compact neighbourhood 𝑁𝑥 of 𝑥 such that 𝑝 ∈ 𝑁𝑥 ⇒
𝑓 (𝑝) ∈ 𝐵𝜖 /2 ( 𝑓 (𝑥)). Cover 𝑋 by 𝑁𝑥1 ∪ · · · 𝑁𝑥𝑘 . We claim that

𝑉 = 𝑀 (𝑁𝑥1 , 𝐵𝜖 /2 ( 𝑓 (𝑥1))) ∩ · · · ∩ 𝑀 (𝑁𝑥𝑘 , 𝐵𝜖 /2 ( 𝑓 (𝑥𝑘))) ⊂ 𝑁.

To see this, let 𝑔 ∈ 𝑉 , i.e., 𝑥 ∈ 𝑁𝑥𝑖 ⇒ 𝑔(𝑥) ∈ 𝐵𝜖 /2( 𝑓 (𝑥𝑖)). But 𝑓 (𝑥) ∈ 𝐵𝜖 /2 ( 𝑓 (𝑥𝑖))
and so it follows that 𝑔 ∈ 𝑉 ⇒ dist( 𝑓 (𝑥), 𝑔(𝑥)) < 𝜖 for all 𝑥. That is, 𝑉 ⊂ 𝑁.

Conversely, suppose that 𝑓 ∈ 𝑀 (𝐾1,𝑈1)∩· · ·∩𝑀 (𝐾𝑟 ,𝑈𝑟 ), i.e., 𝑓 (𝐾𝑖) ⊂ 𝑈𝑖 for
𝑖 = 1, . . . , 𝑟. By Lemma reflem:Br7-2-11, there is an 𝜖 > 0 such that 𝐵𝜖 ( 𝑓 (𝐾𝑖)) ⊂
𝑈𝑖 for all 𝑖 = 1, . . . , 𝑟. If 𝑥 ∈ 𝐾𝑖 then 𝐵𝜖 ( 𝑓 (𝑥)) ⊂ 𝐵𝜖 ( 𝑓 (𝐾𝑖)) ⊂ 𝑈𝑖. Therefore, if
𝑔 ∈ 𝐵𝜖 ( 𝑓 ) and 𝑥 ∈ 𝐾𝑖 then 𝑔(𝑥) ∈ 𝐵𝜖 ( 𝑓 (𝑥)) ⊂ 𝑈𝑖. Thus 𝑔 ∈ 𝑀 (𝐾𝑖 ,𝑈𝑖) for all 𝑖
and so 𝐵𝜖 ( 𝑓 ) ⊂ ∩𝑀 (𝐾𝑖 ,𝑈𝑖). □

Corollary 3.90. If 𝑋 is locally compact Hausdor� and 𝑌 is metric then the
compact-open topology on 𝑌𝑋 is the topology of uniform convergence on compact
sets. That is, a net 𝑓𝛼 ∈ 𝑌𝑋 converges to 𝑓 ∈ 𝑌𝑋 in the compact-open topology
⇔ 𝑓𝛼 |𝐾converges uniformly to 𝑓 |𝐾 for each compact set 𝐾 ⊂ 𝑋.
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Proof. For ⇒ recall from Corollary 3.86 that 𝑌𝑋 → 𝑌𝐾 is continuous. Thus
𝑓𝛼 |𝐾 → 𝑓 |𝐾 in the compact-open topology. But 𝑌𝐾 has the topology of the
uniform metric and so 𝑓𝛼 |𝐾 converges to 𝑓 |𝐾 uniformly.

For ⇐, suppose that 𝑓𝛼 |𝐾 converges uniformly to 𝑓 |𝐾 for each compact
𝐾 ⊂ 𝑋. Let 𝑓 ∈ 𝑀 (𝐾,𝑈). Then there exists an 𝜖 > 0 such that 𝐵𝜖 ( 𝑓 (𝐾)) ⊂ 𝑈.
There is an 𝛼 such that 𝛽 > 𝑎 ⇒ dist( 𝑓𝛽 (𝑥), 𝑓 (𝑥)) < 𝜖 for all 𝑥 ∈ 𝐾. That is,
𝑓𝑏𝑒𝑡𝑎 (𝑥) ∈ 𝐵𝜖 ( 𝑓 (𝐾)) ⊂ 𝑈. Thus 𝛽 > 𝛼⇒ 𝑓𝑏𝑒𝑡𝑎 ∈ 𝑀 (𝑋,𝑈). This implies that 𝑓𝛼
converges to 𝑓 in the compact-open topology. □

3.7.4 Cellular space propaganda

We present some results (without proof) showing that many interesting spaces
are either homeomorphic or homotopy equivalent to cellular spaces.

De�nition 3.91. A real analytic function 𝑓 : R𝑛 → R is a in�nitely di�eren-
tiable function such that at every point 𝑝 ∈ R𝑛, 𝑓 equals its Taylor series at 𝑝
on some positive radius. A real analytic set 𝑋 ⊂ R𝑛 is the solution set of a �nite
collection of equations 𝑓1 (𝑥) = · · · = 𝑓𝑛 (𝑥) = 0, for 𝑓𝑖 real analytic.

Example 3.92. Polynomial functions, exponential functions, trigonometric func-
tions, etc. are real analytic.

Theorem 3.93 (Lojasiewicz 1964). Every real analytic set 𝑋 ⊂ R𝑛 is homeo-
morphic to a cellular space.

Let 𝑋 and 𝑌 be two topological spaces. Let 𝐶 (𝑋,𝑌 ) be the set of all contin-
uous maps from 𝑋 to 𝑌 with the compact-open topology.
Example 3.94. The space 𝐿𝑌 = 𝐶 (S1, 𝑌 ) is called the free loop space of 𝑌 .

Theorem 3.95 (Milnor 1959). If 𝑋 and 𝑌 are cellular spaces and 𝑋 is compact,
then 𝐶 (𝑋,𝑌 ) is homotopy equivalent to a cellular space.

De�nition 3.96. A topological space 𝑋 is called a (topological) 𝑛-manifold if
it is Hausdor� and if every point 𝑝 ∈ 𝑋 is contained in an open neighbourhood
𝑝 ∈ 𝑈 ⊂ 𝑋 that is homeomorphic to R𝑛.

� Every open set in R𝑛 is an 𝑛-manifold.

� The sphere S𝑛 is an 𝑛-manifold.

� Surfaces of any genus are 2-manifolds.

� The product of an 𝑚-manifold and an 𝑛-manifold is an 𝑚 + 𝑛-manifold.

An example of a space that is locally Euclidean but is not a manifold is
constructed by taking two copies of the real line R

∐
R = R× {𝑎, 𝑏} and forming

the coset by (𝑡, 𝑎) ∼ (𝑡, 𝑏) if 𝑡 ≠ 0. This space looks locally like R, but the points
(0, 𝑎) and (0, 𝑏) cannot be separated by open sets. See Figure 3.17.

Theorem 3.97. Every compact 𝑛-manifold is homotopy equivalent to a cellular
space. It remains an open question whether or not every compact 𝑛-manifold is
homeomorphic to a cellular space.
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Figure 3.17: The line with two origins

3.7.5 Cellular Homology

In this section, we introduce cellular homology, which is a homology theory �be-
spoke� for cellular spaces, and show that it is isomorphic to singular homology.

Cellular homology is often the most useful for computing. In fact computa-
tion is much easier than the standard singular homology (for cellular spaces).

Before giving a precise de�nition, we will give a rough sketch of the reasoning.
If 𝑋 is a cellular space with 𝑛-skeleton 𝑋𝑛, the cellular-homology modules

are de�ned as the homology groups 𝐻𝑞 of the �cellular chain complex�

· · · → 𝐶𝑛+1 (𝑋𝑛+1, 𝑋𝑛) → 𝐶𝑛 (𝑋𝑛, 𝑋𝑛−1) → 𝐶𝑛−1(𝑋𝑛−1, 𝑋𝑛−2) → · · · ,

where 𝑋−1 is taken to be the empty set.
The group

𝐶𝑛 (𝑋𝑛, 𝑋𝑛−1)

is free abelian, with generators that can be identi�ed with the 𝑛-cells of 𝑋. Let
𝑒𝛼𝑛 be an 𝑛-cell of 𝑋, and let 𝜒𝛼𝑛 : 𝜕𝑒𝛼𝑛 � S𝑛−1 → 𝑋𝑛−1 be the attaching map.
Then consider the composition

𝜒
𝛼𝛽
𝑛 : S𝑛−1

�−→ 𝜕𝑒𝛼𝑛
𝜒𝛼𝑛−−→ 𝑋𝑛−1

𝑞
−→ 𝑋𝑛−1/

(
𝑋𝑛−1 \ 𝑒𝛽𝑛−1

)
�−→ S𝑛−1,

where the �rst map identi�es S𝑛−1 with 𝜕𝑒𝛼𝑛 via the characteristic map Φ𝛼
𝑛 of

𝑒𝛼𝑛 , the object 𝑒
𝛽

𝑛−1 is an (𝑛− 1)-cell of 𝑋, the third map 𝑞 is the coset map that
collapses 𝑋𝑛−1 \ 𝑒𝛽𝑛−1 to a point (thus wrapping 𝑒𝛽

𝑛−1 into a sphere S𝑛−1), and

the last map identi�es 𝑋𝑛−1/
(
𝑋𝑛−1 \ 𝑒𝛽𝑛−1

)
with S𝑛−1 via the characteristic map

Φ
𝛽

𝑛−1 of 𝑒𝛽
𝑛−1.

The boundary map

𝜕𝑛 : 𝐶𝑛 (𝑋𝑛, 𝑋𝑛−1) → 𝐶𝑛−1(𝑋𝑛−1, 𝑋𝑛−2)

is then given by the formula

𝜕𝑛 (𝑒𝛼𝑛 ) =
∑︁
𝛽

deg
(
𝜒
𝛼𝛽
𝑛

)
𝑒
𝛽

𝑛−1,
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where deg
(
𝜒
𝛼𝛽
𝑛

)
is the degree of 𝜒𝛼𝛽𝑛 and the sum is taken over all (𝑛 − 1)-cells

of 𝑋, considered as generators of 𝐶𝑛−1(𝑋𝑛−1, 𝑋𝑛−2).
Now we move on to the details:

Lemma 3.98. If 𝑋 is a cellular space, then:

(a) 𝐻𝑞 (𝑋𝑛, 𝑋𝑛−1) is zero if 𝑞 ≠ 𝑛 and is an free abelian group with generators
corresponding to the 𝑛-cells when 𝑞 = 𝑛.

(b) 𝐻𝑞 (𝑋𝑛) = 0 for 𝑞 > 𝑛. Thus 𝐻𝑞 (𝑋) = 0 for 𝑞 > dim(𝑋).

(c) The inclusion 𝑖 : 𝑋𝑛 ↩→ 𝑋 induces an isomorphism 𝐻𝑞 (𝑖) : 𝐻𝑞 (𝑋𝑛) → 𝐻𝑞 (𝑋)
for 𝑞 < 𝑛.

Proof. By Proposition 3.74, we have an isomorphism 𝐻𝑞 (𝑋𝑛, 𝑋𝑛−1) � 𝐻𝑞 (𝑋𝑛/𝑋𝑛−1)
and 𝑋𝑛/𝑋𝑛−1 is a wedge of spheres indexed by the 𝑛-cells of 𝑋. Property (a)
follows.

Property (b) is proven by induction. Clearly true for 𝑛 = 0. Now suppose it
has been proven for 𝑛 − 1. The long exact sequence of the pair contains

→ 𝐻𝑞 (𝑋𝑛−1) → 𝐻𝑞 (𝑋𝑛) → 𝐻𝑞 (𝑋𝑛, 𝑋𝑛−1) →

where both 𝐻𝑞 (𝑋𝑛−1) = 𝐻𝑞 (𝑋𝑛, 𝑋𝑛−1) = 0 for 𝑞 > 𝑛 by induction and property
(a). Thus 𝐻𝑞 (𝑋𝑛) = 0 as well.

To prove property (c), consider the exact sequence

𝐻𝑞+1 (𝑋𝑛+1, 𝑋𝑛) → 𝐻𝑞 (𝑋𝑛) → 𝐻𝑞 (𝑋𝑛+1) → 𝐻𝑞 (𝑋𝑛+1, 𝑋𝑛).

By (a), the two groups on the end vanish if 𝑞 < 𝑛 so 𝐻𝑞 (𝑋𝑛) � 𝐻𝑞 (𝑋𝑛+1).
Repeating this argument, we get

𝐻𝑞 (𝑋𝑛) � 𝐻𝑞 (𝑋𝑛+1) � 𝐻𝑞 (𝑋𝑛+2) � · · ·

which su�ces if 𝑋 is �nite dimensional. To take care of the in�nite dimensional
case, observe that Lemma 3.77 implies that every chain in 𝑆𝑞 (𝑋) must be in the
image of 𝑆𝑞 (𝑋𝑛) for some 𝑛 (since the union of images of simplices occurring
in the chain is a compact subset of 𝑋). Thus every cycle 𝑍𝑞 (𝑋) arises as the
image of a cycle in 𝑍𝑞 (𝑋𝑛) for some 𝑛, and every boundary in 𝐵𝑞 (𝑋𝑛) arises as
the image of a boundary in 𝐵𝑞 (𝑋𝑛) for some 𝑛. The result follows. □

De�ne a homomorphism 𝑑𝑛 : 𝐻𝑛 (𝑋𝑛, 𝑋𝑛−1) → 𝐻𝑛−1(𝑋𝑛−1, 𝑋𝑛−2) by the com-
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mutative diagramme

0

0

$$

𝐻𝑛 (𝑋𝑛+1) � 𝐻𝑛 (𝑋𝑛)

77

𝐻𝑛 (𝑋𝑛)

88

𝑗𝑛

&&
𝐻𝑛+1 (𝑋𝑛+1, 𝑋𝑛)

𝑑𝑛+1
//

𝜕𝑛+1
::

𝐻𝑛 (𝑋𝑛, 𝑋𝑛−1)
𝑑𝑛 //

𝜕𝑛 ''

𝐻𝑛−1(𝑋𝑛−1, 𝑋𝑛−2)

𝐻𝑛−1(𝑋𝑛−1)
𝑗𝑛−1

88

0

77

where the diagonal maps occur in the long exact sequences of pairs. Notice that
𝑑𝑛 ◦ 𝑑𝑛+1 = 0 because it factors through 𝜕𝑛 ◦ 𝑗𝑛 = 0. Thus (𝐻𝑛 (𝑋𝑛, 𝑋𝑛−1), 𝑑𝑛)𝑛∈Z
forms a chain complex, called the cellular chain complex. The homology of the
cellular chain complex is called the cellular homology.

Theorem 3.99. The cellular homology groups are naturally isomorphic to the
singular homology groups.

Proof. From the diagramme, we may identify 𝐻𝑛 (𝑋) � 𝐻𝑛 (𝑋𝑛) = im(𝜕𝑛+1).
Since 𝑗𝑛 is injective, this is isomorphic to im( 𝑗𝑛) = im(𝑑𝑛+1). By exactness,
this is the same as ker(𝜕𝑛) = im(𝑑𝑛+1). Finally, because 𝑗𝑛−1 is injective, this is
equal to ker(𝑑𝑛) = im(𝑑𝑛+1). □

Theorem 3.99 is very useful for calculations, because it allows us to replace
the usually uncountably in�nite rank 𝑆𝑞 (𝑋) by the - at most countable and
often �nite rank - 𝐻𝑛 (𝑋𝑛, 𝑋𝑛−1). Before getting started with examples, we want
a more direct understanding of the boundary maps 𝑑𝑛. Denote by {𝑒𝑛𝛼}𝛼 the
set of 𝑛-cells of a cellular space 𝑋, so that 𝐻𝑛 (𝑋𝑛, 𝑋𝑛−1) is the free abelian group
generated by {𝑒𝑛𝛼}𝛼.
Proposition 3.100. For 𝑛 > 1, the cellular boundary map satis�es

𝑑𝑛 (𝑒𝑛𝛼) =
∑︁
𝛽

𝑑𝛼,𝛽𝑒
𝑛−1
𝛽

where 𝑑𝛼,𝛽 is the degree of the map

S𝑛−1𝛼→ 𝑋𝑛−1 → S𝑛−1𝛽

de�ned by composing the attaching map of 𝑒𝑛𝛼 with the coset map 𝑋𝑛−1 → S𝑛−1
𝛽

=

𝑋𝑛−1/(𝑋𝑛−1 \ 𝑒𝑛𝛽).
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Proof. The proof is based on the following commutative diagramme

𝐻𝑛 (D𝑛𝛼, 𝜕D𝑛𝛼)
𝜕

�
//

Φ𝛼∗

��

𝐻𝑛−1(𝜕D𝑛𝛼)
(Δ𝛼,𝛽 )∗ //

𝑓𝛼∗

��

𝐻𝑛−1(S𝑛−1𝛽 )

𝐻𝑛 (𝑋𝑛, 𝑋𝑛−1)
𝜕𝑛 //

𝑑𝑛 ((

𝐻𝑛−1(𝑋𝑛−1)
𝑞∗ //

𝑗𝑛−1

��

𝐻𝑛−1(𝑋𝑛−1/𝑋𝑛−2)

�

��

𝑞𝛽∗

OO

𝐻𝑛−1(𝑋𝑛−1/𝑋𝑛−2) �
// 𝐻𝑛−1(𝑋𝑛−1/𝑋𝑛−2, 𝑋𝑛−2/𝑋𝑛−2)

where

� Φ𝛼∗ is the characteristic map for 𝑒𝑛𝛼 and 𝑓𝛼 the attaching map.

� 𝑞 : 𝑋𝑛−1 → 𝑋𝑛−1/𝑋𝑛−2 is the coset map.

� 𝑞𝛽 : 𝑋𝑛−1/𝑋𝑛−2 → S𝑛−1
𝛽

is the coset map obtained by collapsing everything
belonging to the complement of the cell 𝑒𝑛−1

𝛽
to a point, the resulting coset

(sphere) being identi�ed with S𝑛−1
𝛽

= D𝑛−1
𝛽
/𝜕D𝑛−1

𝛽
via the characteristic

map Φ𝛽.

� Δ𝛼,𝛽 = 𝑞𝛽 ◦ 𝑞 ◦ 𝑓𝛼 is, the attaching map of 𝑒𝑛𝛼 followed by the coset map
𝑋𝑛−1 → S𝑛−1

𝛽
collapsing the complement of 𝑒𝑛

1

𝛽
inn 𝑋𝑛−1 to a point.

The map Φ𝛼∗ sends the generator [D𝑛𝛼] ∈ 𝐻𝑛 (D𝑛𝛼, 𝜕D𝑛𝛼) to a generator of the
Z summand of 𝐻𝑛 (𝑋𝑛, 𝑋𝑛−1) corresponding to 𝑒𝑛𝛼. Letting 𝑒𝑛𝛼 denote this
generator, commutativity of the left half of the diagramme then gives 𝑑𝑛 (𝑒𝑛𝛼 =

𝑗𝑛−1 𝑓𝛼∗𝜕 [D𝑛𝛼]. In terms of the basis for 𝐻𝑛−1(𝑋𝑛−1, 𝑋𝑛−2) corresponding to the
cells 𝑒𝑛−1

𝛽
, the map 𝑞𝛽∗ is the projection of 𝐻𝑛−1(𝑋𝑛−1/𝑋𝑛−2) onto its Z summand

corresponding to 𝑒𝑛−1
𝛽

. Commutativity of the diagramme then yields the formula
for 𝑑𝑛 given above. □

3.7.6 Examples

Example 3.101. A genus 𝑔 surface 𝜎𝑔 is constructed by attaching a 2-cell to a
wedge of 2𝑔 circles using an attaching map

∏𝑔

𝑖=1 [𝑎𝑖 , 𝑏𝑖]. The cellular complex
is:

0→ Z
𝑑2−−→ Z2𝑔 𝑑1−−→ Z.

The boundary map 𝑑1 is zero, because each 1-cell meets the 0-cell twice and
the attaching map S0 → {pt} sends 𝐻0 (S0) to zero by de�nition. The boundary
map 𝑑2 is also zero, because the attaching map winds around each loop twice,
but in opposite directions, giving total degree zero. It follows that

𝐻𝑞 (Σ𝑔) =

Z if 𝑞 = 0, 2

Z2𝑔 if 𝑞 = 1

0 otherwise
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Figure 3.18: Σ𝑔 with 𝑔 = 3

Example 3.102. The non-orientable surface 𝑁𝑔 of genus 𝑔 ≥ 0 is constructed
by attaching a single 2-cell to a wedge sum of 𝑔 + 1 circles 𝑎0, . . . , 𝑎𝑔 by the
attaching map 𝑎20 · · · 𝑎2𝑔. The surface 𝑁0 in the real projective plane and 𝑁1 is
the Klein bottle. The cellular chain complex is

Figure 3.19: Klein bottle 𝑁𝑔 with 𝑔 = 1

Z
𝑑2−−→ Z𝑔+1

𝑑1−−→ Z.

As before, 𝑑1 = 0. The attaching map for the 2-cell winds twice around each
circle in the same direction and thus has degree 2 for each 1-cell. Consequently,
𝑑2 (𝑛) = (2𝑛, . . . , 2𝑛). If we do a change of basis for Z𝑔+1 using generators
(1, 1, . . . , 1), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1) then with respect to the new basis,
𝑑2 (𝑛) = (2, 0, . . . , 0).

𝐻𝑞 (𝑁𝑔) =

Z if 𝑞 = 0

Z/2Z ⊕ Z𝑔 if 𝑞 = 1

0 otherwise

Example 3.103. A emphproduct of spheres S𝑚 × S𝑛 with 𝑚, 𝑛 ≥ 1 has the struc-
ture of a cellulr space with four cells, in dimensions 0, 𝑚, 𝑛, and 𝑚 + 𝑛. To see
this observe that D𝑚+𝑛 � D𝑚 × D𝑛 and

S𝑚 × S𝑛 � (D𝑚 × D𝑛)/si � (D𝑚/∼) × (D𝑛/∼)
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where ∼ is generated by the relations (𝑥, 𝑦) ∼ (𝑥, 𝑦′ ) if 𝑦, 𝑦′ ∈ 𝜕D𝑛 and (𝑥, 𝑦) ∼
(𝑥′ , 𝑦) if 𝑥, 𝑥′ ∈ 𝜕D𝑚. Since the relations occur only in the boundary of D𝑚 ×D𝑛,
this can be understood as attaching a (𝑚 + 𝑛)-cell to the coset of

𝜕 (D𝑚 × D𝑛) = (𝜕D𝑚 × D𝑛) ∪ (D𝑚 × 𝜕D𝑛)

which is identi�ed as the wedge sum S𝑚∨S𝑛, which is a cellular space with cells
in dimension 0, 𝑚, and 𝑛 (compare the case of a torus S1 × S1).

Suppose that 𝑛 ≥ 𝑚 and 𝑛 > 1. Then the (𝑛+ 1)-skeleton is equal to S𝑚 ∨ S𝑛
so by Lemma 3.98, 𝐻𝑞 (S𝑚 × S𝑛) = 𝐻𝑞 (S𝑚 ∨ S𝑛) for 𝑞 ≤ 𝑛. It follows that the
boundary map in the cellular chain complex is trivial and that

𝐻𝑞 (S𝑚 × S𝑛) =
{
Z if 𝑞 = 0, 𝑚, 𝑛, or 𝑚 + 𝑛
0 otherwise

Example 3.104. The complex projective space C𝑃𝑛 is the set of one dimensional
vector subspaces of C𝑛+1. It may also be construct as the coset of the sphere
S2𝑛+1 by the relation 𝑣 ∼ 𝜆𝑣 where 𝜆 ∈ S1 is a unit scalar (= a complex number
of norm 1.)

We can construct C𝑃𝑛 inductively by attaching a 2𝑛-dimensional cell to
C𝑃𝑛−1. To see this, consider the embedding from D2𝑛 ⊂ C𝑛 to C𝑛 × C by

𝑤 ↦→ (𝑤,
√︁
1 − |𝑤 |2).

The boundary of D2𝑛 is sent to the unit sphere in S2𝑛−1 ⊂ C𝑛×{0} and there is a
one-to-one correspondence between the interior of D𝑛 and the one-dimensional
subspaces of C𝑛×C not contained in C𝑛×{0}. Thus C𝑃𝑛 is obtained by attaching
D2𝑛 to C𝑃𝑛−1 by the coset map S2𝑛−1 → C𝑃𝑛−1.

Since C𝑃𝑛 = 𝑒0 ∪ 𝑒2 ∪ · · · ∪ 𝑒2𝑛 only has cells in even dimension, this means
the boundary maps in the cellular chain complex are necessarily zero, and we
obtain

𝐻𝑞 (C𝑃𝑛) =
{
Z if 0 ≤ 𝑞 ≤ 2𝑛 and is even
0 otherwise

Example 3.105. The real projective space needs more care compared with the
complex case. The space R𝑃𝑛 is de�ned as the set of all lines in R𝑛+1 through
he origin.

We claim that as a cellular space, R𝑃𝑛 can be seen as the union of one 𝑘 cell
for each 𝑘 ≤ 𝑛. We prove this by induction. First we notice that the statement
is trivially true for 𝑛 = 0. Then consider that R𝑃𝑛 � S𝑛−1/∼ where 𝑣 ∼ −𝑣
for all 𝑣 ∈ S𝑛. Note that this is the same as saying that R𝑃𝑛 � D𝑛/∼ where
𝑣 ∼ −𝑣 for all 𝑣 ∈ 𝜕D𝑛 = S𝑛−1. In other words, R𝑃𝑛 = R𝑃𝑛−1 ∪ 𝑒𝑛. Thus
R𝑃𝑛 = 𝑒0 ∪ 𝑒1 ∪ · · · ∪ 𝑒𝑛. Notice that for each 𝑘, the 𝑘-skeleton of R𝑃𝑘 is R𝑃𝑘−1.
Thus we analyse the following chain complex:

0→ Z
𝑑𝑛−−→ Z

𝑑𝑛−1−−−−→ · · · 𝑑1−−→ Z→ 0
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To understand the boundary maps, we must determine the degrees of the
composition of the attaching map 𝜙𝑘 : 𝜕𝑒𝑘 � S𝑘−1 → R𝑃𝑘−1 and the coset map
𝑞 : R𝑃𝑘−1 → R𝑃𝑘−1 → R𝑃𝑘−1/R𝑃𝑘−2 � S𝑘−1.

Notice that the preimage of R𝑃𝑘−2 under the map 𝜙𝑘 is clearly S𝑘−2 ⊂ S𝑘−1.
Moreover, we have that S𝑘−1 \ S𝑘−2 = B𝑘−11 ⊔B𝑘−12 , two 𝑘 − 1 open balls. These,
under 𝜙𝑘 , are mapped homeomorphically to R𝑃𝑘−1 \ R𝑃𝑘−2. One easily notices
that the image B𝑘−11 under 𝜙𝑘 is the �top� part of R𝑃𝑘 , i.e. 𝜙𝑘 restricted to B𝑘−11

is the identity map (which has degree 1).
On the other hand, 𝜙𝑘 restricted to B𝑘−12 is the antipodal map, as the second

open ball is mapped to the �lower part� of R𝑃𝑘 . As we saw in Proposition 3.58,
the degree of the antipodal map of S𝑘−1 is (−1)𝑘 . Therefore the map 𝜙𝑘 ◦ 𝑞
can be seen as the sum of the identity and the antipodal map, hence we can
conclude that its degree is 1 + (−1)𝑘 .

Thus we get that

𝑑𝑘 (𝑒𝑘) =
{
2𝑒𝑘−1 if 𝑘 is even
0 if 𝑘 is odd.

Therefore, if 𝑘 is even ker(𝑑𝑘) = {0} and im(𝑑𝑘) � Z; while when 𝑘 is odd,
ker(𝑑𝑘) � Z and im(𝑑𝑘) = {0}.

The chain complex is

0→ Z
0−→ Z

2−→ Z
0−→ · · · 2−→ Z

0−→ Z→ 0

if 𝑛 is odd and
0→ Z

2−→ Z
0−→ Z

2−→ · · · 2−→ Z
0−→ Z→ 0

if 𝑛 is even. We obtain homology groups,

𝐻𝑘 (R𝑃𝑛) =

Z if 𝑞 = 0 or 𝑞 = 𝑛 and 𝑛 is odd
Z/2Z if 0 < 𝑘 < (𝑛 − 1) and is odd
0 otherwise

3.8 Mayer-Vietoris Sequence

The Mayer-Vietoris sequence is an alternative to the long exact sequence of a
pair (𝑋, 𝐴) that sometimes more convenient to use.

Let 𝑋 be a topological space and let 𝐴, 𝐵 ⊂ 𝑋 be a pair of subspaces such
that 𝐴 ∪ 𝐵 = 𝑋. We consider the open covering U = {𝐴, 𝐵}. We need the
following maps:

𝐴

𝜅1

��
𝐴 ∩ 𝐵

𝑖1

<<

𝑖2 ""

𝑋

𝐵

𝜅2

??
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Note that by de�nition, the sequence

0→ 𝑆∗ (𝐴 ∩ 𝐵)
(𝑖1 ,𝑖2 )−−−−−→ 𝑆∗ (𝐴) ⊕ 𝑆∗ (𝐵) → 𝑆𝔘∗ (𝑋) → 0

is exact. Here, the second map is

(𝛼1, 𝛼2) ↦→ 𝜅1 (𝛼1) − 𝜅2 (𝛼2).

Theorem 3.106 (Mayer-Vietoris). There is a long exact sequence

· · · 𝛿−→ 𝐻𝑛 (𝐴 ∩ 𝐵) → 𝐻𝑛 (𝐴) ⊕ 𝐻𝑛 (𝐵) → 𝐻𝑛 (𝑋)
𝛿−→ 𝐻𝑛−1(𝐴 ∩ 𝐵) → · · ·

A similar sequence exists for reduced homology

· · · → 𝐻𝑛 (𝐴 ∩ 𝐵) → 𝐻𝑛 (𝐴) ⊕ 𝐻𝑛 (𝐵) → 𝐻𝑛 (𝑋) → 𝐻𝑛−1(𝐴 ∩ 𝐵) → · · ·

Proof. The proof follows from Theorem 3.23 with Theorem 3.48 applied to
𝑆𝔘∗ (𝑋) ∼ 𝑆∗ (𝑋). □

Proposition 3.107. For a path connected space 𝑋, there is a canonical iso-
morphism

𝐻𝑞+1 (𝑆𝑋) � 𝐻𝑞 (𝑋)

for all 𝑞 ∈ Z, where 𝑆𝑋 denotes the suspension of 𝑋.

Proof. Note that 𝑆𝑋 = (𝑋 × 𝐼)/(𝑋 × {0, 1}) and regard 𝐴 = (𝑋 × 𝐼)/(𝑋 × {0})
and 𝐵 = (𝑋 × 𝐼)/(𝑋 × {1}). Then 𝐴 and 𝐵 form a covering of 𝑆𝑋, 𝐴 ∪ 𝐵 = 𝑆𝑋

and 𝐴 ∩ 𝐵 = 𝑋 × 𝐼̊ ∼ 𝑋.
Since 𝐴 and 𝐵 are contractible, 𝐻∗ (𝐴) = 𝐻∗ (𝐵) = 0, and 𝐻∗ (𝐴∩ 𝐵) = 𝐻∗ (𝑋).

Apply Theorem 3.106 to the triad (𝐴∪ 𝐵 = 𝑆𝑋, 𝐴, 𝐵) and the result follows. □

3.9 Homology with coe�cients

So far we have developed singular homology theory for integer coe�cients, mean-
ing that our chains are �nite formal sums

∑
𝜎 𝑎𝜎𝜎 with coe�cients 𝑎𝜎 ∈ Z.

More generally, it is possible (and useful) to work with coe�cients in any com-
mutative ring 𝑅 with identity 1 ∈ 𝑅; in particular, this means we have a canon-
ical ring homomorphism Z→ 𝑅. The most interesting cases are when 𝑅 = Z/𝑛Z
is the ring of integers modulo 𝑛, or when 𝑅 is a �eld, such as Q, R, C or Z/𝑝Z
for prime 𝑝.

To that end, we need some preparations.

3.9.1 Tensor Products

The tensor product may be de�ned for any pair of bimodules, but we shall
examine the simpler case of modules over a commutative ring with unity. This
is enough for many applications like algebraic topology.
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Let 𝑅 a commutative ring and 𝑈, 𝑉 , 𝑊 be any 𝑅-modules. We shall write
them as left modules, although it is only a matter of notation whether a module
over a commutative ring is regarded as a left or right module.

We want to consider bilinear mappings from 𝑈, 𝑉 to 𝑊 , i.e. maps

𝑓 : 𝑈 ×𝑉 → 𝑊, (3.108)

such that 𝑓 is 𝑅-linear in each argument. Our object will be to construct a
𝐾-module 𝑇 and a bilinear map 𝑝 : 𝑈 ×𝑉 → 𝑇 which is universal for all bilinear
maps (3.108), in the sense that to any bilinear mapping 𝑓 as in (3.108) there
corresponds a unique linear mapping 𝑓

′
: 𝑇 → 𝑊 such that the accompanying

diagramme commutes.

𝑈 ×𝑉 𝑝 //

𝑓 ""

𝑇

𝑓
′

��
𝑊

A module 𝑇 with these properties is called a tensor product of 𝑈 and 𝑉 and is
denoted by 𝑈 ⊗𝑅 𝑉 or simply 𝑈 ⊗ 𝑉 . If it exists it is unique up to isomorphism,
as universal object and we shall speak of the tensor product.

To prove the existence of 𝑇 we form the free 𝑅-module 𝐴 on the set 𝑈 × 𝑉
(without the module structure); in 𝐴 we consider the submodule 𝐵 generated
by all the elements

(𝑢 + 𝑢′ , 𝑣) − (𝑢, 𝑣) − (𝑢′ , 𝑣), (𝑢, 𝑣 + 𝑣′ ) − (𝑢, 𝑣) − (𝑢, 𝑣′ ) (𝑢, 𝑢′ ∈ 𝑈, 𝑣, 𝑣′ ∈ 𝑉)
(𝛼𝑢, 𝑣) − 𝛼(𝑢, 𝑣), (𝑢, 𝛼𝑣) − 𝛼(𝑢, 𝑣), 𝛼 ∈ 𝑅. (3.109)

There is a map 𝑝 : 𝑈 ×𝑉𝐴/𝐵, obtained by taking the inclusion map 𝑈 ×𝑉 → 𝐴,
followed by the natural homomorphism 𝐴 → 𝐴/𝐵. This map 𝑝 is bilinear,
for the elements (3.109) generating 𝐵 were just chosen to ensure this. We set
𝑇 = 𝐴/𝐵 and claim that 𝑇 , with the map 𝑝, is the required tensor product.
Let 𝑓 : 𝑈 × 𝑉 → 𝑊 be any bilinear mapp; regarded as a set map, i.e. ignoring
bilinearity, it may be extended to a unique homomorphism 𝑓1 : 𝐴→ 𝑊 , because
𝐴 is free on the elements (𝑢, 𝑣). We claim that ker 𝑓1 ⊃ 𝐵; for we have

𝑓1 [(𝑢 + 𝑢
′
, 𝑣) − (𝑢, 𝑣) − (𝑢′ , 𝑣)] = 𝑓 [(𝑢, 𝑣 + 𝑣′ )] − 𝑓 [(𝑢, 𝑣)] − 𝑓 [(𝑢, 𝑣′ )] = 0,

𝑓1 [(𝛼𝑢, 𝑣) − 𝛼(𝑢, 𝑣)] = 𝑓 [(𝛼𝑢, 𝑣) − 𝑓 [𝛼(𝑢, 𝑣)] = 0,

by the bilinearity of 𝑓 , and similarly for the other relations. Hence 𝑓1 may
be taken via 𝑇 , by the factor theorem, and this provides the required map
𝑓 : 𝑇 → 𝑊 . This map 𝑓

′
is unique since its values are determined on the images

of (𝑢, 𝑣) in 𝑇 and these form a generating set. Our conclusions may be summed
up as follows:

Theorem 3.110. Let 𝑈, 𝑉 be modules over a commutative ring 𝑅. Then there
exists an 𝑅-module 𝑈 ⊗𝑉 together with a bilinear map 𝑝 : 𝑈 ×𝑉 → 𝑈 ⊗𝑉 which
is universal for bilinear maps from 𝑈 ×𝑉 to 𝑅-modules.
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The image of (𝑢, 𝑣) in 𝑈 ⊗𝑉 is denoted by 𝑢 ⊗ 𝑣. Thus 𝑈 ⊗𝑉 is an 𝑅-module
with generating set {𝑢 ⊗ 𝑣𝑢 ⊗ 𝑣 |𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉} and de�ning relations

(𝑢 + 𝑢′ ) ⊗ 𝑣 = 𝑢 ⊗ 𝑣 + 𝑢′ ⊗ 𝑣, 𝑢, 𝑢
′ ∈ 𝑈,

𝑢 ⊗ (𝑣 + 𝑣′ ) = 𝑢 ⊗ 𝑣 + 𝑢 ⊗ 𝑣′ , 𝑣, 𝑣
′ ∈ 𝑉,

(𝛼𝑢) ⊗ 𝑣 = 𝑢 ⊗ (𝛼𝑣) = 𝛼(𝑢 ⊗ 𝑣), 𝛼 ∈ 𝑅.

There is another way of expressing Theorem 3.110 which is often useful. The-
orem 3.110 states in e�ect that for any 𝑅-modules 𝑈, 𝑉 , 𝑊 there is a natural
bijection between the set of bilinear maps 𝑈 ×𝑉 → 𝑊 and the set of homomor-
phisms 𝑈 ⊗ 𝑉 → 𝑊 . Now a map 𝑓 : 𝑈 ×𝑉 → 𝑊 is linear in the second variable
i� for each 𝑢0 ∈ 𝑈, the map 𝑉 → 𝑈 × 𝑉 → 𝑊 given by 𝑣 ↦→ (𝑢0, 𝑣) ↦→ 𝑓 (𝑢0, 𝑣)
is linear. Further, 𝑓 is bilinear i� in addition the map 𝑈 → Hom𝑅 (𝑉,𝑊) given
by 𝑢 ↦→ 𝑓 (𝑢,−) is linear, i.e. 𝑓 ∈ Hom(𝑈,Hom(𝑉,𝑊)). Hence there is a natural
bijection

Hom𝑅 (𝑈,Hom𝑅 (𝑉,𝑊)) � Hom𝑅 (𝑈 ⊗𝑅 𝑉,𝑊). (3.111)

This is easily veri�ed to be an isomorphism of 𝑅-modules. The property ex-
pressed in (3.111) is known as adjoint associativity.

From the de�nition it is easy to check that tensor products satisfy the asso-
ciative and commutative laws:

Proposition 3.112. Let 𝑈, 𝑉 , 𝑊 be any 𝑅-modules, where 𝑅 is a commutative
ring. Then

𝑈 ⊗ 𝑉 � 𝑉 ⊗ 𝑈, (3.113)

𝑈 ⊗ (𝑉 ⊗𝑊) � (𝑈 ⊗ 𝑉) ⊗𝑊. (3.114)

Proof. The rule (𝑢, 𝑣) ↦→ 𝑣 ⊗ 𝑢 is a bilinear map 𝑈 ×𝑉 → 𝑉 ⊗𝑈, and hence gives
rise to a homomorphism 𝛼 : 𝑈 ⊗𝑉 → 𝑉 ⊗𝑈, in which 𝑢 ⊗ 𝑣 ↦→ 𝑣 ⊗ 𝑢. The general
element of𝑈⊗𝑉 has the form

∑
𝑢𝑖⊗𝑣𝑖, and it follows that 𝛼 :

∑
𝑢𝑖⊗𝑣𝑖 ↦→

∑
𝑣𝑖⊗𝑢𝑖.

The same argument shows that 𝛽 :
∑
𝑣𝑖 ⊗ 𝑢𝑖 ↦→

∑
𝑢𝑖 ⊗ 𝑣𝑖 is a homomorphism;

clearly it is inverse to 𝛼, hence 𝛼 is an isomorphism and (3.113) follows.
The proof of (3.114) is quite similar. We consider the map 𝛼 : 𝑈 ×𝑉 ×𝑊 →

𝑈 ⊗ (𝑉 ⊗ 𝑊) given by (𝑤, 𝑣, 𝑤) ↦→ 𝑢 ⊗ (𝑣 ⊗ 𝑤). For �xed 𝑤 this is bilinear in
𝑢, 𝑣 and hence gives rise to a map 𝛼

′′
: (𝑈 ⊗ 𝑉) ⊗𝑊 → 𝑈 ⊗ (𝑉 ⊗𝑊), in which

(𝑢 ⊗ 𝑣) ⊗ 𝑤 ↦→ 𝑢 ⊗ (𝑣 ⊗ 𝑤). The inverse map is constructed in the same way and
this shows 𝛼

′′
to be an isomorphism, which proves (3.113). □

We observe that it is possible to de�ne 𝑈 ⊗ 𝑉 ⊗𝑊 directly by the universal
property for trilinear maps, and a similar proof will show that it is isomorphic
to either of the modules in (3.114). The same holds for more than three factors;
this is just the generalised associative law. We shall therefore omit brackets in
repeated tensor products.

Next we prove a `distributive law':

Proposition 3.115. For any 𝑅-modules 𝑈, 𝑉
′
, 𝑉

′′
we have

𝑈 ⊗ (𝑉 ′ ⊕ 𝑉 ′′ ) � (𝑈 ⊗ 𝑉 ′ ) ⊕ (𝑈 ⊗ 𝑉 ′′ ). (3.116)
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Proof. We show that the module on the right of (3.116) satis�es the universal
property of the tensor product. A bilinear map from 𝑈 × (𝑉 ′ ⊗ 𝑉 ′′ ) is given by
(𝑢, 𝑣′ , 𝑣′′ ) ↦→ (𝑢 ⊗ 𝑣′ , 𝑢 ⊗ 𝑣′′ ). If 𝑓 : 𝑈 × (𝑉 ′ ⊗ 𝑉 ′′ ) → 𝑊 is any bilinear map, then

𝑓 (𝑢, 𝑣′ , 𝑣′′ ) = 𝑓 (𝑢, 𝑣′ ) + 𝑓 (𝑢, 𝑣′′ ),

and the expression on the right can be regarded as a map from (𝑈 ⊗𝑉 ′ ) ⊕ (𝑈 ⊗
𝑉
′′ ). Thus 𝑓 is uniquely factored by the standard bilinear map, and the result

follows. □

The de�nition of the tensor product by a universal property is useful for
proving the existence of mappings from 𝑈 ⊗𝑉 to an 𝑅-module, for we need only
�nd the appropriate bilinear map from 𝑈×𝑉 . It also has the merit of generality;
but the de�nition is not such that it allows the structure of 𝑈 ⊗𝑉 to be read o�.
For example, if 𝑟, 𝑠 are coprime integers, then (Z/𝑟Z) ⊗ (Z/𝑠Z) = 0. This is seen
as follows. Since 𝑟, 𝑠 are coprime, there exist 𝑚, 𝑛 ∈ Z such that 𝑚𝑟 + 𝑛𝑠 = 1.
Now for any 𝑎 ∈ Z/𝑟Z, 𝑏 ∈ Z/𝑠Z we have

𝑎 ⊗ 𝑏 = 𝑚𝑟 (𝑎 ⊗ 𝑏) + 𝑛𝑠(𝑎 ⊗ 𝑏) = 𝑚(𝑟𝑎 ⊗ 𝑏) + 𝑛(𝑎 ⊗ 𝑠𝑏) = 0(Z/𝑟Z)⊗(Z/𝑠Z) .

It follows that (Z/𝑟Z) ⊗ (Z/𝑠Z) = 0, because the tensor product is generated by
elements of the form 𝑎 ⊗ 𝑏.

It is important to bear in mind that the general element of 𝑈 ⊗ 𝑉 is not of
the form 𝑢 ⊗ 𝑣, but is a swm of such terms:

∑
𝑢𝑖 ⊗ 𝑣𝑖. For example, if 𝑉 is a

free 𝑅-module, with basis 𝑒1 . . . , 𝑒𝑛 then every element of 𝑈 ⊗ 𝑉 can be written
uniquely in the form

∑
𝑢𝑖 ⊗ 𝑒𝑖 (𝑢𝑖 ∈ 𝑈), i.e. 𝑈 ⊗ 𝑅𝑛 � 𝑈𝑛. To prove this fact, let

us �rst take the case 𝑛 = 1:
𝑈 ⊗ 𝑅 � 𝑈. (3.117)

We have a bilinear map 𝜃 : (𝑢, 𝜆) ↦→ 𝑢𝜆 from𝑈×𝑅 to𝑈, and if 𝐹 : 𝑈× → 𝑊 is any
bilinear mapping, then 𝑓 (𝑢, 𝜆) = 𝑓 (𝑢𝜆, 1), hence 𝑓 = 𝜃 𝑓 ′ , where 𝑓 ′ : 𝑢 ↦→ 𝑓 (𝑢, 1),
and clearly 𝑓

′
is the only map with this property. Thus 𝑈 satis�es the universal

property of Theorem 3.110 and (3.117) follows. Now 𝑈 ⊗ 𝑅𝑛 � 𝑈𝑛 follows by
induction on 𝑛, using the distributive law (Proposition 3.115). Thus we obtain

Proposition 3.118. For any 𝑅-module 𝑈 over a commutative ring 𝑅, the tensor
product with a free 𝑅-module of rank 𝑛 is a direct sum of 𝑛 copies of 𝑈:

𝑈 ⊗ 𝑅𝑛 � 𝑈𝑛. (3.119)

By symmetry a corresponding result holds for the �rst factor, and combining
the two, we obtain

Corollary 3.120. If 𝑈 and 𝑉 are free 𝑅-modules of �nite rank over a com-
mutative ring 𝑅, say 𝑈 � 𝑅𝑚, 𝑉 � 𝑅𝑛, then 𝑈 ⊗ 𝑉 � 𝑅𝑚𝑛. In particular,
this applies to �nite-dimensional vector spaces over a �eld, and we then have
dim(𝑈 ⊗ 𝑉) = dim𝑈 · dim𝑉 .
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Explicitly, if 𝑒1, . . . , 𝑒𝑚 is a basis for 𝑈 and 𝑓1, . . . , 𝑓𝑛 is a basis for 𝑉 , then
the elements 𝑒𝑖 ⊗ 𝑓 𝑗 (𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛) form a basis for 𝑈 ⊗ 𝑉 .

We record a property noted before (3.117), namely the independence prop-
erty of the tensor product:

Proposition 3.121. Let 𝑈 be any 𝑅-module and 𝑉 be a free 𝑅-module with
basis 𝑒1, . . . , 𝑒𝑛 over a commutative ring 𝑅. Then every element of 𝑈 ⊗ 𝑉 is
unique of the form ∑︁

𝑢𝑖 ⊗ 𝑒𝑖 , where 𝑢𝑖 ∈ 𝑈. (3.122)

Caution is needed in applying this result. Thus if
∑
𝑢𝑖 ⊗ 𝑣𝑖 = 0 in 𝑈 ⊗ 𝑉

and the 𝑣𝑖, are linearly independent over 𝑅, then it does not follow that the 𝑢𝑖
must vanish. If the submodule generated by the 𝑣𝑖, is denoted by 𝑉

′
(so that

the 𝑣𝑖 form a basis for 𝑉
′
) then all we can conclude is that the 𝑢𝑖 all vanish if∑

𝑢𝑖 ⊗ 𝑣𝑖 = 0 in 𝑈 ⊗ 𝑉 ′ . Now the inclusion 𝑉
′ → 𝑉 induces the homomorphism

𝑈 ⊗ 𝑉 ′ → 𝑈 ⊗ 𝑉. (3.123)

which however may not be injective. For example, the inclusion 2Z → Z is
injective, but it does not remain so on tensoring with Z/2Z. If 𝑍/2Z, Z, 2Z
are generated by 𝑒, 𝑓 , 𝑓

′
respectively, then (Z/2Z) ⊗ Z, (Z/2Z) ⊗ 2Z are both

isomorphic to Z/2Z, by (3.117), with generators 𝑒 ⊗ 𝑓 , 𝑒 ⊗ 𝑓 ′ respectively. But
𝑓
′
maps to 2 𝑓 and 𝑒 ⊗ 𝑓 ′ ↦→ 𝑒 × 2 𝑓 = 2𝑒 ⊗ 𝑓 = 0. Thus (3.123) is the zero map

in this case. A more precise analysis of this phenomenon will be undertaken in
homological algebra. For the moment we note that (3.123) is certainly injective
if 𝑉

′
is a direct summand in 𝑉 , by Proposition 3.115; so in that case we can

identify 𝑈 ⊗𝑉 ′ with its image in 𝑈 ⊗𝑉 . We note that this always holds when 𝑅
is a �eld.

Let us next consider the e�ect of the tensor product on homomorphisms.
Given any 𝑅-linear maps 𝛼 : 𝑈 → 𝑈

′
, 𝛽 : 𝑉 → 𝑉

′
, there is a unique 𝑅-linear

map 𝛼 ⊗ 𝛽 : 𝑈 ⊗ 𝑉 → 𝑈
′ ⊗ 𝑉 ′ such that the left-hand square of the diagramme

below commutes:

𝑈 ×𝑉
𝛼×𝛽 //

𝜆

��

𝑈
′ ×𝑉 ′

𝛼
′×𝛽′ //

𝜆
′

��

𝑈
′′ ×𝑉 ′′

𝜆
′′

��
𝑈 ⊗ 𝑉

𝛼⊗𝛽
// 𝑈
′ ⊗ 𝑉 ′

𝛼
′⊗𝛽′
// 𝑈
′′ ⊗ 𝑉 ′′

(3.124)

For the map (𝑢, 𝑣) ↦→ 𝛼𝑢 ⊗ 𝛽𝑣 from 𝑈 × 𝑉 to 𝑈
′ ⊗ 𝑉 ′ is bilinear, and hence can

be taken via 𝑈 ⊗ 𝑉 , by the universal property of 𝑈 ⊗ 𝑉 .
If 𝛼

′
: 𝑈

′ → 𝑈
′′
, 𝛽

′
: 𝑉

′ → 𝑉
′′
is another pair of homomorphisms, we obtain

a commutative diagramme (3.124). Since (𝛼′ × 𝛽′ ) (𝛼 × 𝛽) (𝑢, 𝑣) = (𝛼′𝛼𝑢, 𝛽′ 𝛽𝑣)
for any 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 , we have (𝛼′ × 𝛽′ ) (𝛼 × 𝛽) = 𝛼′𝛼 × 𝛽′ 𝛽, and it follows from
the diagramme (3.124) that

𝛼
′
𝛼 ⊗ 𝛽′ 𝛽 = (𝛼′ ⊗ 𝛽′ ) (𝛼 ⊗ 𝛽) (3.125)
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In the special case 𝑉
′′
= 𝑉

′
= 𝑉 , 𝛽

′′
= 𝛽

′
= 1, (3.125) reduces to

𝛼
′
𝛼 ⊗ 1 = (𝛼′ ⊗ 1) (𝛼 ⊗ 1), (3.126)

and together with the obvious equation 1⊗1 = 1 this shows that the assignment
𝑈 ↦→ 𝑈 ⊗ 𝑉 is a functor from 𝑅-modules to 𝑅-modules, for any given 𝑉 . By
symmetry the assignment 𝑉 ↦→ 𝑈 ⊗ 𝑉 is also a functor for �xed 𝑈. Thus the
tensor product is a bifunctor.

The above diagramme shows that there is a correspondence between pairs of
maps (𝛼, 𝛽) ∈ Hom𝑅 (𝑈,𝑉)×Hom 𝑅(𝑉,𝑉) and maps 𝛼⊗𝛽 ∈ Hom𝑅 (𝑈⊗𝑉,𝑈

′⊗𝑉 ′ ).
So we have a map (𝛼, 𝛽) ↦→ 𝛼 ⊗ 𝛽 which is clearly bilinear; by the universal
property of the tensor product it induces a linear map

Hom𝑅 (𝑈,𝑈
′ ) ⊗ Hom𝑅 (𝑉,𝑉

′ ) → Hom𝑅 (𝑈 ⊗ 𝑉,𝑈
′ ⊗ 𝑉 ′ ). (3.127)

We remark that for a pair of maps 𝛼 : 𝑈 → 𝑈
′
, 𝛽 : 𝑉 → 𝑉

′
the expression 𝛼 ⊗ 𝛽

is ambiguous: it may mean the element of the left of (3.127) or the induced
homomorphism from 𝑈 ⊗ 𝑉 to 𝑈

′ ⊗ 𝑉 ′ , and one of these is mapped to the other
in (3.127). It will usually be clear from the context which interpretation is
intended; in some important cases the mapping (3.127) is an isomorphism and
the ambiguity disappears. For example, when 𝑈 and 𝑉 are free of �nite rank,
say 𝑈 = 𝑅𝑚, 𝑉 = 𝑅𝑛, then (3.127) reduces to 𝑈

′𝑚 ⊗𝑉 ′𝑛 � (𝑈 ⊗𝑉)𝑚𝑛, by a double
application of Proposition 3.115, together with the relation

Hom𝑅 (𝑅𝑛,𝑈) � 𝑈𝑛,

which follows by associating with (𝑢1, . . . , 𝑢𝑛) ∈ 𝑈𝑛 the map 𝑒𝑖 ↦→ 𝑢𝑖, where
𝑒1, . . . , 𝑒𝑛 is the standard basis of 𝑅𝑛. In particular, when 𝑈

′
= 𝑈, 𝑉

′
= 𝑉 , we

obtain

Proposition 3.128. If 𝑈, 𝑉 are free modules of �nite rank (over a commutative
ring 𝑅), then the map (
refeq:C4-8-14) induces the isomorphism

End𝑅 (𝑈) ⊗ End𝑅 (𝑉) � 𝐸𝑛𝑑𝑅 (𝑈 ⊗ 𝑉).

When we come to consider tensor products over a non-commutative ring, the
corresponding construction leads in the �rst instance to abelian groups rather
than modules. Thus let 𝑅 be any ring, 𝑈 be a right 𝑅-module and 𝑉 be a left
𝑅-module, and for any abelian group 𝑊 consider maps 𝑓 : 𝑈 × 𝑉 → 𝑊 which
are biadditive, i.e. additive in each argument, and 𝑅-balanced, i.e.

𝑓 (𝑢𝑟, 𝑣) = 𝑓 (𝑢, 𝑟𝑣) for all 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅.

A map which is biadditive and 𝑅-balanced will again be called 𝑅-bilineary or
simply bilinear, if the ring 𝑅 is clear from the context. We can again construct
𝑈 ⊗ 𝑉 , now merely an abelian group, universal for 𝑅-balanced biadditive maps
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from 𝑈 × 𝑉 to abelian groups. The existence is proved as before, 𝑈 × 𝑉 = 𝐴/𝐵,
where A is the free abelian group on 𝑈 ×𝑉 and 𝐵 is the subgroup generated by

(𝑤 + 𝑢′ , 𝑣) − (𝑢, 𝑣) − (𝑢′ , 𝑣), 𝑢, 𝑢
′ ∈ 𝑈,

(𝑢, 𝑣 + 𝑣′ ) − (𝑢, 𝑣) − (𝑢, 𝑣′ ), 𝑣, 𝑣
′ ∈ 𝑉,

(𝑢𝑟, 𝑣) − (𝑢, 𝑟𝑣), 𝑟 ∈ 𝑅.

Suppose now that 𝑈 is an (𝑆, 𝑅)-bimodule and 𝑉 is an (𝑅,𝑇)-bimodule, for
some rings 𝑆, 𝑇 . Then the tensor product 𝑈 ⊗ 𝑉 just de�ned may be regarded
as an (𝑆, 𝑇)-bimodule in the following way. Take 𝑠 ∈ 𝑆 and consider the map
𝜆𝑠 : 𝑈 ×𝑉 → 𝑈 ⊗ 𝑉 de�ned by

𝜆𝑠 : (𝑢, 𝑣) ↦→ 𝑠𝑢 ⊗ 𝑣.

Clearly this is biadditive and balanced; e.g. to prove the latter, we have 𝑠(𝑢𝑟) ⊗
𝑣 = (𝑠𝑢)𝑟 ⊗ 𝑣 = 𝑠𝑢 ⊗ 𝑟𝑣, by the bimodule property of 𝑈. It follows that 𝜆 induces
a homomorphism 𝑈 ⊗ 𝑉 → 𝑈 ⊗ 𝑉 which is simply denoted by 𝑠; thus we have

𝑠(
∑︁

𝑢𝑖 ⊗ 𝑣𝑖) =
∑︁

𝑠𝑢𝑖 ⊗ 𝑣𝑖 . (3.129)

If we do this for each 𝑠 ∈ 𝑆 we obtain a left 𝑆-module structure on 𝑈 ⊗𝑉 , for we
have, for any 𝑠, 𝑠

′ ∈ 𝑆,

(𝑠𝑠′ ) (𝑢 ⊗ 𝑣) = (𝑠𝑠′ )𝑢 ⊗ 𝑣 = 𝑠(𝑠′𝑢) ⊗ 𝑣 = 𝑠[′𝑢 ⊗ 𝑣] = 𝑠[𝑠′ (𝑢 ⊗ 𝑣)],

and of course 1(𝑢⊗𝑣) = 𝑢⊗𝑣. Similarly we can de�ne a right 𝑇−module structure
on 𝑈 ⊗ 𝑉 such that (𝑢 ⊗ 𝑣)𝑡 = 𝑢 ⊗ 𝑣𝑡 for 𝑡 ∈ 𝑇 , and 𝑈 ⊗ 𝑉 is an (𝑆, 𝑇)-bimodule,
because

𝑠[(𝑢 ⊗ 𝑣)𝑡] = 𝑠[𝑢 ⊗ 𝑣𝑡] = 𝑠𝑢 ⊗ 𝑣𝑡 = (𝑠𝑢 ⊗ 𝑣)𝑡 = [𝑠(𝑢 ⊗ 𝑣)]𝑡.

Given any (𝑆, 𝑇)-bimodule 𝑊 , we can as before regard any homomorphism 𝑓 :
𝑈 × 𝑉 → 𝑊 which is 𝑆-linear in the �rst, 𝑇-linear in the second argument and
𝑅-balanced, as de�ning for each 𝑢 ∈ 𝑈 a 𝑇-linear map 𝑓𝑢 : 𝑣 ↦→ 𝑓 (𝑢, 𝑣). The
set of all these 𝑇-linear maps has a natural (𝑆, 𝑅)-bimodule structure induced
from Hom𝑇 (𝑉,𝑊) and the map 𝑢 ↦→ 𝑓𝑢 is a homomorphism of (𝑆, 𝑅)-bimodules;
𝑢𝑟 ↦→ 𝑓𝑢𝑟 and 𝑓 (𝑤𝑟, 𝑣) = 𝑓 (𝑢, 𝑟𝑣) because 𝑓 is 𝑅-balanced. Thus the natural
homomorphism (3.111) leads to an isomorphism of 𝑆-bimodules, again called
adjoint associativity :

Hom𝑇 (𝑈⊗𝑅,𝑊) � Hom𝑅 (𝑈,Hom𝑇 (𝑉,𝑊)) (𝑆𝑈𝑅, 𝑉𝑇 , 𝑆𝑊𝑇 ) (3.130)

By symmetry we likewise have an isomorphism of T-bimodules:

Hom𝑆 (𝑈⊗𝑅,𝑊) � Hom𝑅 (𝑈,Hom𝑆 (𝑉,𝑊)) (3.131)

Like the hom-functor, the tensor product is not an exact functor; however it is
right exact:
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Proposition 3.132. For any ring 𝑅, the tensor product 𝑈 ⊗𝑅 𝑉 is right exact
in each variable.

Proof. By symmetry it will be enough to show that − ⊗ 𝑉 is right exact. Given
an exact sequence of right 𝑅-modules:

𝑈
′ → 𝑈 → 𝑈

′′ → 0,

we have to show that for any right 𝑅-module 𝑉 , the sequence

𝑈
′ ⊗ 𝑉 𝛼⊗1−−−→ 𝑈 ⊗ 𝑉

𝛽⊗1
−−−→ 𝑈

′′ ⊗ 𝑉 → 0

is exact. Clearly 𝛽⊗1 is surjective and (𝛽⊗1) (𝛼⊗1) = 0, i.e. im𝛼⊗1 ⊂ ker 𝛽⊗1
and it remains to show that equality holds. Since im𝛼 = ker 𝛽 = 𝑋, say, it is
clear that im𝛼 ⊗ 1 is the subgroup of 𝑈 ⊗ 𝑉 generated by all products 𝑥 ⊗ 𝑣
(𝑥 ∈ 𝑋, 𝑣 ∈ 𝑉). Further, each 𝑢′′ ∈ 𝑈 ′′ can be written as 𝑢

′′
= 𝛽𝑢 for some 𝑢 ∈ 𝑈,

which is unique mod𝑋, so we have a bilinear map 𝑈
′′ ×𝑉 → (𝑈 ⊗𝑉)/(im𝛼 ⊗ 1)

given by (𝑢′′ , 𝑣) ↦→ 𝑢 ⊗ 𝑣, where 𝑢 ∈ 𝑈 is such that 𝛽𝑢 = 𝑢
′′
. We thus obtain

a homomorphism 𝑓 : 𝑈
′′ ⊗ 𝑉 → (𝑈 ⊗ 𝑉)/(im𝛼 ⊗ 1) which maps 𝛽𝑢 ⊗ 𝑣 to the

residue class 𝑢 ⊗ 𝑣 mod im𝛼 ⊗ 1, and so has the form 𝑓 (𝛽 ⊗ 1) on 𝑈 ⊗ 𝑉 . Hence
it vanishes on ker 𝛽 ⊗ 1 and so im𝛼 ⊗ 1 = ker 𝛽 ⊗ 1, as claimed. □

The following description of the relations in a general tensor product is often
useful:

Proposition 3.133. Let 𝑅 be a ring and 𝑈 be a right 𝑅-module generated by
a family (𝑢𝜆, 𝜆 ∈ 𝐼 with de�ning relations

∑
𝑢𝜆𝑎𝜆𝜇 = 0, 𝜇 ∈ 𝐽. If 𝑉 is a left

𝑅-module with a family (𝑥𝜆) of elements indexed by 𝐼, almost all zero, such that∑︁
𝑢𝜆 ⊗ 𝑘𝜆 = 0 in 𝑈 ⊗ 𝑉, (3.134)

then there exist elements 𝑦𝜇 ∈ 𝑉 , almost all zero, such that

𝑥𝜆 =
∑︁

𝑎𝜆𝜇𝑦𝜇 . (3.135)

Proof. By hypothesis 𝑈 has a presentation

0→ 𝐿
𝛼−→ 𝐹

𝛽
−→ 𝑈 → 0,

where 𝐹 is free on a family ( 𝑓𝜆), 𝜆 ∈ 𝐼, and 𝐼 is the submodule generated by the
elements

∑
𝑓𝜆𝑎𝜆𝜇. Tensoring with 𝑉 and observing that this operation is right

exact, we obtain an exact sequence

𝐿 ⊗ 𝑉 𝛼
′

−−→ 𝐹 ⊗ 𝑉
𝛽
′

−−→ 𝑈 ⊗ 𝑉 → 0.

By hypothesis, 𝛽
′ (∑ 𝑓𝜆⊗𝑥𝜆) =

∑
𝜆 ⊗𝑥𝜆 = 0, hence by exactness, as 𝐿 is generated

by the elements 𝑓𝜆𝑎𝜆𝜇 ∑︁
𝑓𝜆 ⊗ 𝑥𝜆 = 𝛼

′ (
∑︁

𝑓𝜆𝑎𝜆𝜇 ⊗ 𝑦𝜇)
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for some elements 𝑦𝜇 ∈ 𝑉 , almost all zero. Now 𝛼
′
is the homomorphism induced

by the inclusion 𝐿 → 𝐹 and 𝐹 is free on the 𝑓𝜆. Equating coe�cients in 𝐹 ⊗ 𝑉 ,
we obtain (3.135). □

Here it is important to bear in mind the hypothesis that (𝑢𝜆) is a generating
set of 𝑈 and

∑
𝑢𝜆𝑎𝜆𝜇 = 0 is a family of de�ning relations. If (3.134) holds for

some elements in 𝑈 ⊗ 𝑉 we cannot conclude that (3.135) follows; in fact this
comes close to a criterion for 𝑈 to be �at (i.e. 𝑈 ⊗− to be exact). We note that
the result may be stated in matrix form as follows: Let 𝑈 be a right 𝑅-module
with presentation matrix 𝐴, relative to a generating family 𝑢 (written as a row),
so that 𝑢𝐴 = 0. If 𝑥 is a column vector over 𝑉 with almost all components 0,
such that 𝑢 ⊗ 𝑥 = 0, then there exists a column vector 𝑦 over 𝑉 with almost all
components 0 such that 𝑥 = 𝐴𝑦.

3.9.2 Homology with Arbitrary Coe�cients

First, recall that abelian groups are Z-modules. Let 𝐺 be an abelian group and
𝑋 a topological space. We de�ne the homology of 𝑋 with 𝐺-coe�cients, denoted
𝐻∗ (𝑋;𝐺), as the homology of the chain complex

𝐶𝑖 (𝑋;𝐺) = 𝐶𝑖 (𝑋) ⊗ 𝐺 (3.136)

consisting of �nite formal sums
∑
𝑖 𝜂𝑖 · 𝜎𝑖 (𝜎𝑖 : Δ𝑖 → 𝑋, 𝜂𝑖 ∈ 𝐺), and with

boundary maps given by
𝜕𝐺𝑖 := 𝜕𝑖 ⊗ id𝐺 .

Since 𝜕𝑖 satis�es 𝜕𝑖 ◦ 𝜕𝑖+1 = 0 it follows that 𝜕𝐺
𝑖
◦ 𝜕𝐺

𝑖+1 = 0, so (𝐶∗ (𝑋;𝐺), 𝜕𝐺𝑖 )
forms indeed a chain complex. We can construct versions of the usual modi�ed
homology groups (relative, reduced, etc.) in the natural way. De�ne relative
chains with 𝐺-coe�cients by 𝐶𝑖 (𝑋, 𝐴;𝐺) := 𝐶𝑖 (𝑋;𝐺)/𝐶𝑖(𝐴;𝐺), and reduced
homology with 𝐺-coe�cients via the augmented chain complex

· · ·
𝜕𝐺
𝑖+1−−−→ 𝐶𝑖 (𝑋;𝐺)

𝜕𝐺
𝑖−−→ · · ·

𝜕𝐺2−−→ 𝐶1 (𝑋;𝐺)
𝜕𝐺1−−→ 𝐶0 (𝑋;𝐺)

𝜖−→ 𝐺 → 0

where 𝜖 (∑𝑖 𝜂𝑖𝜎𝑖) = ∑
𝑖 𝜂𝑖 ∈ 𝐺. Notice that 𝐻𝑞 (𝑋) = 𝐻𝑞 (𝑋;Z) by de�nition.

By studying the chain complex with 𝐺-coe�cients, it follows that

𝐻𝑞 (pt;𝐺) =
{
𝐺 𝑞 = 0

0 𝑞 ≠ 0.

Nothing (other than coe�cients) needs to change in describing the relationships
between relative homology and reduced homology of coset spaces, so we can
compute the homology of a sphere as before by induction and using the long
exact sequence of the pair (D𝑛, S𝑛) to be

𝐻𝑞 (S𝑛;𝐺) =
{
𝐺 𝑞 = 0, 𝑛

0 otherwise.
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We can build cellular homology with 𝐺-coe�cients in the same way, de�ning

𝐶𝐺𝑖 (𝑋) := 𝐻𝑖 (𝑋𝑖 , 𝑋𝑖−1;𝐺) � 𝐺card 𝑖−cells

The cellular boundary maps are given by:

𝑑𝐺𝑖 (
∑︁
𝛼

𝜂𝛼𝑒
𝑖
𝛼) =

∑︁
𝛼,𝛽

𝜂𝛼𝑑𝛼𝛽𝑒
𝑖−1𝛽,

where 𝑑𝛼𝛽 is as before the degree of a map 𝛿𝛼𝛽 : S𝑖−1 → S𝑖−1. This follows
from the easy fact that if 𝑓 : S𝑘 → S𝑘 has degree 𝑚, then 𝑓∗ : 𝐻𝑘 (S𝑘 ;𝐺) � 𝐺 →
𝐻𝑘 (S𝑘 ;𝐺) � 𝐺 is the multiplication by 𝑚. As it is the case for integers, we get
an isomorphism

𝐻𝐶𝑊𝑖 (𝑋;𝐺) � 𝐻𝑖 (𝑋;𝐺)
for all 𝑖.

One of the great advantages in working with coe�cients in a �eld 𝐹 is that
homology are now vector spaces. This means for instance that short exact
sequences always split and this can simplify a lot of calculations.

Example 3.137. We compute 𝐻∗ (R𝑃𝑛;Z/2Z) using the cellular homology with
Z/2Z-coe�cients. Notice that over Z the cellular boundary maps are 𝑑𝑖 = 0 or
𝑑𝑖 = 2 depending on the parity of 𝑖,

0→ Z
0−→ Z

2−→ Z
0−→ · · · 2−→ Z

0−→ Z→ 0

0→ Z
2−→ Z

0−→ Z
2−→ · · · 2−→ Z

0−→ Z→ 0

and therefore with Z/2Z-coe�cients all of boundary maps vanish.

0→ Z/2Z 0=2−−−→ Z/2Z 0=2−−−→ Z/2Z 0=2−−−→ · · · 0=2−−−→ Z/2Z 0=2−−−→ Z/2→ 0.

Therefore,

𝐻𝑞 (R𝑃𝑛;Z/2Z) =
{
Z/2Z 𝑞 = 0, . . . , 𝑛

0 otherwise.

Example 3.138. Fix 𝑛 > 0 and let 𝑔 : S𝑛 → S𝑛 be a map of degree 𝑚. De�ne the
cellular space

𝑋 = S𝑛 ∪𝑔 𝑒𝑛+1,
where the (𝑛 + 1)-cell 𝑒𝑛+1 is attached to S𝑛 via the map 𝑔. Let 𝑓 be the coset
map 𝑓 : 𝑋 → 𝑋/S𝑛. De�ne 𝑌 = 𝑋/S𝑛 = S𝑛+1. The homology of 𝑋 can be easily
computed by using the cellular chain complex:

0
𝑑𝑛+2−−−→ Z

𝑑𝑛+1−−−→
𝑚

Z
𝑑𝑛−−→ · · · 𝑑1−−→ 0

𝑑1−−→ Z
𝑑0−−→ 0

Therefore,

𝐻𝑖 (𝑋;Z) =

Z 𝑖 = 0

Z/𝑚Z 𝑖 = 𝑛

0 otherwise.
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Moreover, as 𝑌 = S𝑛+1, we have

𝐻𝑖 (𝑌 ;Z) =
{
Z 𝑖 = 0, 𝑛 + 1
0 otherwise.

It follows that 𝑓 induces the trivial homomorphisms in homology with Z-coe�cients
(except in degree zero, where 𝑓∗ is the identity). So it is natural to ask if 𝑓 is
homotopic to the constant map. As we will see below, by considering Z/𝑚Z-
coe�cients we can show that this is not the case.

Let us now consider 𝐻∗ (𝑋;Z/𝑚Z) where 𝑚 is, as above, the degree of the
map 𝑔. We return to the cellular chain complex level and observe that we have

0
𝑑𝑛+2−−−→ Z/𝑚Z 𝑑𝑛+1−−−→

𝑚
Z/𝑚Z 𝑑𝑛−−→ · · · 𝑑1−−→ 0

𝑑1−−→ Z/𝑚Z 𝑑0−−→ 0

Multiplication by 𝑚 is now the zero map, so we get

𝐻𝑖 (𝑋;Z/𝑚Z) =
{
Z/𝑚Z 𝑖 = 0, 𝑛, 𝑛 + 1
0 otherwise.

Also, as already discussesd,

𝐻𝑖 (𝑌 ;Z/𝑚Z) =
{
Z/𝑚Z 𝑖 = 0, 𝑛 + 1
0 otherwise.

We next consider the induced homomorphism 𝑓∗ : 𝐻𝑛+1 (𝑋;Z/𝑚Z) → 𝐻𝑛+1 (𝑌 ;Z/𝑚Z).
The claim is that this map is injective, thus non-trivial, so 𝑓 cannot be homo-
topic to the constant map. As noted before, we have an isomorphism 𝐻𝑛+1 (𝑌 ;Z/𝑚Z) ≃
𝐻𝑛+1 (𝑋, S𝑛;Z/𝑚Z). This leads us to consider the long exact sequence of the pair
(𝑋, S𝑛) in dimension 𝑛 + 1. We have

· · · → 𝐻𝑛+1 (S𝑛;Z/𝑚Z) → 𝐻𝑛+1 (𝑋;Z/𝑚Z)
𝑓
−→ 𝐻𝑛+1 (𝑋, S𝑛;Z/𝑚Z) → · · ·

But, 𝐻𝑛+1 (S𝑛;Z/𝑚Z) = 0 and so 𝑓∗ is injective on 𝐻𝑛+1 (𝑋;Z/𝑚Z). Since 𝐻𝑛+1 (𝑋;Z/𝑚Z) =
Z/𝑚Z ≠ 0 and 𝐻𝑛+1 (𝑋, S𝑛; 𝑍𝑚) ≃ 𝐻𝑛+1 (𝑌 ;Z/𝑚Z) it follows that 𝑓∗ is not trivial
on 𝐻𝑛+1 (𝑋;Z/𝑚Z), which proves our claim.

3.9.3 The functor Tor and the Universal Coe�cient The-

orem

Suppose that we are given 𝐻∗ (𝑋;Z). Can we compute 𝐻∗ (𝑋;Z/2Z)? This is
non-obvious. Consider the map R𝑃2 → S2 that pinches R𝑃1 to a point. Now
𝐻2 (R𝑃2;Z) = 0, so in 𝐻2 this map is zero. But in Z/2Z-coe�cients, in dimension
2, this map gives an isomorphism. This shows that there is no functorial de-
termination of 𝐻∗ (𝑋;Z/2Z) in terms of 𝐻∗ (𝑋;Z); the e�ect of a map in integral
homology does not determine its e�ect in mod2 homology. So how do we go
between di�erent coe�cients?
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Let 𝑅 be a commutative ring and 𝑀 an 𝑅-module, and suppose we have a
chain complex 𝐶∗ of 𝑅-modules. It could be the singular complex of a space,
but it doesn't have to be. Let us compare 𝐻𝑛 (𝐶∗) ⊗ 𝑀 with 𝐻𝑛 (𝐶∗ ⊗ 𝑀). (Here
and below we will just write ⊗ for ⊗𝑅.) The latter thing gives homology with
coe�cients in 𝑀. How can we compare these two? Let us investigate, and build
up conditions on 𝑅 and 𝐶∗ as we go along.

First, there is a natural map

𝛼 : 𝐻𝑛 (𝐶∗) ⊗ 𝑀 → 𝐻𝑛 (𝐶∗ ⊗ 𝑀),

sending [𝑧] ⊗ 𝑚 to [𝑧 ⊗ 𝑚]. We propose to �nd conditions under which it is
injective. The map 𝛼 �ts into a commutative diagramme with exact columns
like this:

0 0

𝐻𝑛 (𝐶∗) ⊗ 𝑀
𝛼 //

OO

𝐻𝑛 (𝐶∗ ⊗ 𝑀)

OO

𝑍𝑛 (𝐶∗) ⊗ 𝑀 //

OO

𝑍𝑛 (𝐶∗ ⊗ 𝑀)

OO

𝐶𝑛+1 ⊗ 𝑀 =
//

OO

𝐶𝑛+1 ⊗ 𝑀

OO

Now, 𝑍𝑛 (𝐶∗ ⊗ 𝑀) is a submodule of 𝐶𝑛 ⊗ 𝑀, but the map 𝑍𝑛 (𝐶) ⊗ 𝑀 → 𝐶𝑛 ⊗ 𝑀
need not be injective (!) unless we impose more restrictions. If we can guarantee
that it is, then a diagramme chase shows that 𝛼 is a monomorphism.

So let us assume that 𝑅 is a PID and that 𝐶𝑛 is a free 𝑅-module for all 𝑛.
Then the submodule 𝐵𝑛−1(𝐶∗) ⊂ 𝐶𝑛−1 is again free, so the short exact sequence

0 // 𝑍𝑛(𝐶∗) // 𝐶𝑛 //

𝑑 $$

𝐵𝑛−1(𝐶∗) //

��

0

𝐶𝑛−1

splits. So 𝑍𝑛 (𝐶∗) → 𝐶𝑛 is a splitting monomorphism, and hence 𝑍𝑛(𝐶∗) ⊗ 𝑀 →
𝐶𝑛 ⊗ 𝑀 is too.

In fact, a little thought shows that this argument produces a splitting of the
map 𝛼.

Now, 𝛼 is not always an isomorphism. But it certainly is if 𝑀 = 𝑅, and it is
compatible with direct sums, so it certainly is if 𝑀 is free. The idea is now to
�resolve� 𝑀 by frees, and see where that idea takes us.

Following is a discussion on Tor functor required for understanding Universal
Coe�cient Theorem. Those readers who are familiar with the theorem can
directly jump to 3.151.
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De�nition 3.139. A free resolution of an abelian group 𝐻 is an exact sequence:

· · · → 𝐹2
𝑓2−−→ 𝐹1

𝑓1−−→ 𝐹0
𝑓0−−→ 𝐻 → 0,

with each 𝐹𝑛 a free abelian group.

Example 3.140. The following are free resolutions of Z/5Z.

· · · → 0→ 0→ Z
×5−−→ Z→ Z/Z→ 0

· · · ×1−−→ Z
×0−−→ Z

×1−−→ Z
×0−−→ Z

×5−−→ Z→ Z→ Z/Z→ 0

Theorem 3.141 (Existence of free resolutions). Every abelian group 𝐴 has a
free resolution

· · · → 0→ 𝑅 → 𝐹 → 𝐴→ 0

where 𝐹 and 𝑅 are free abelian.

Caveat : 𝐴 is not supposed to be �nitely generated!
Before proving Theorem 3.141 we recall

Theorem 3.142. Every subgroup of a free abelian group is a free abelian group.

Proof. (A sketch)
Given a real vector space 𝑉 , we can put the direct limit topology on it

(subsets are closed if and only if their intersection with any �nite dimensional
subspace is closed). This is a contractible topological group.

If 𝐴 is a free abelian group, then 𝐴 is a discrete subgroup of the associated
real vector space (R ⊗ 𝐴) and the coset space has fundamental group 𝐴. Any
covering space is a coset of (R ⊗ 𝐴) by a discrete subgroup 𝐵 of 𝐴.

So the question boils down to showing: Any discrete subgroup of a vector
space (with the direct limit topology) is free abelian.

Let us say that a partial basis is a set 𝑆 of elements of 𝐵 such that

� 𝑆 is linearly independent, and

� 𝑆 generates 𝐵 ∩ Span(𝑆).

Then partial bases are a partial order under containment, and Zorn's lemma
implies that there is a maximal element 𝑆. We show that 𝑆 is a basis of 𝐵 as a
free abelian group.

𝑆 is linearly independent by construction, so it generates a free abelian group,
and hence it su�ces to show that it generates all 𝐵. If 𝑏 in 𝐵 is not in 𝑆, then it
is not in Span(𝑆). Let 𝑆′ be (𝑆∪{𝑏}). Then Span(𝑆′ )/Span(𝑆) is a 1-dimensional
vector space and the image of 𝐵∩ Span(𝑆′ ) must be discrete, because otherwise
Span(𝑆′ ) would contain an element (𝑟𝑏 + 𝑣) for 𝑣 in Span(𝑆) that we could use
to generate a non-discrete subset of 𝐵. (If 𝑣 is a combination of 𝑤1 · · ·𝑤𝑛 in
𝑆, then it su�ces to check that any subgroup of the �nite-dimensional space
Span(𝑤1 · · ·𝑤𝑛, 𝑏) requiring more than 𝑛 generators is indiscrete.)

Thus any lift of a generator of 𝐵 ∩ Span(𝑆′ ) would extend to a larger gener-
ating set, contradicting maximality. □
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Proof. (of Theorem 3.141)
We have a surjection

Z[𝐴]
𝑝
−→ 𝐴

given by 𝑝(𝑎) = 𝑎. Let 𝐹 = Z[𝐴] and 𝑅 = ker 𝑝. Then

· · · → 0→ 𝑅 → 𝐹
𝑝
−→ 𝐴→ 0

is a free resolution of 𝐴. □

Before proceeding further, we need some de�nition and relevant properties
of Tor.

De�nition 3.143. Let 𝐴 and 𝐵 be abelian groups and

· · · 𝜕3−−→ 𝐹2
𝜕2−−→ 𝐹1

𝜕1−−→ 𝐹0 → 𝐴→ 0

be a free resolution of 𝐴. Let 𝜕0 : 𝐹0 → 0 be the 0 map so we have a chain
complex (𝐹, 𝜕)

· · · 𝜕3−−→ 𝐹2
𝜕2−−→ 𝐹1

𝜕1−−→ 𝐹0
𝜕0−−→ 0

Tensoring with 𝐵 we get the chain complex 𝐹 ⊗ 𝐵

· · · 𝜕3⊗id𝐵−−−−−−→ 𝐹2 ⊗ 𝐵
𝜕2⊗id𝐵−−−−−−→ 𝐹1 ⊗ 𝐵

𝜕1⊗id𝐵−−−−−−→ 𝐹0 ⊗ 𝐵
𝜕0⊗id𝐵−−−−−−→ 0

We de�ne Tor𝑛 (𝐴, 𝐵) = 𝐻𝑛 (𝐹 ⊗ 𝐵).

Theorem 3.144 (Tor is well-de�ned). Tor𝑛 (𝐴, 𝐵) is independent of the free
resolution 𝐹 of 𝐴.

Proof of Theorem 3.144 requires a substantial amount of preparation.

Lemma 3.145 (Free abelian groups are projectiv). Suppose we have commu-
tative

𝐹

∃𝜓

~~
𝜑

��

0

!!
𝑀
′

𝑖
// 𝑀

𝑗
// 𝑀

′′

with

1. 𝐹 is a free abelian group

2. 𝑀
′ 𝑖−→ 𝑀

𝑗
−→ 𝑀

′′
is exact

Then there is a homomorphism 𝜓 making the diagramme commute.

Proof. Let {𝑒𝛼} be a free basis for 𝐹. Then 𝑗𝜑(𝑒𝛼) = 0(𝑒𝛼) = 0 so 𝜑(𝑒𝛼) ∈
ker 𝑗 = im 𝑖. Thus there is 𝑚

′
𝛼 ∈ 𝑀

′
such that 𝑖(𝑚′𝛼) = 𝜑(𝑒𝛼). Let 𝜓(𝑒𝛼) =

𝑚
′
𝛼. □
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Lemma 3.146. If 𝐹 and 𝐹
′
are two free resolutions of 𝐴. Then there is a chain

map 𝑓 : 𝐹 → 𝐹
′
which is a chain homotopy equivalence.

Proof. We have

· · · 𝜕2 // 𝐹1
𝜕1 // 𝐹0

𝜀 // 𝐴
0 //

id𝐴

��

0

· · ·
𝜕
′
2

// 𝐹1
𝜕
′
1

// 𝐹0
𝜀
′
// 𝐴

0
// 0

By applying Lemma 3.145 with 𝜑 = id𝐴 ◦𝜀 we obtain 𝜓 : 𝐹0 → 𝐹
′
0 with 𝜀

′
𝜓 =

id𝐴 𝜀. Let 𝑓0 = 𝜓 and apply Lemma 3.145 with 𝜑 = 𝑓0𝜕1 to get 𝑓1 : 𝐹1 → 𝐹
′
1.

Continuing inductively, we obtain a chain map 𝑓 : 𝐹 → 𝐹
′
.

Now we will show that the chain homotopy type of 𝑓 is unique, i.e, if 𝑔 :
𝐹 → 𝐹0 is another chain map extending id𝐴 : 𝐴 → 𝐴 then there is a chain
homotopy 𝑇 between 𝑓 and 𝑔. Let 𝜏 = 𝑔 − 𝑓 and assume inductively that
𝜕
′
𝑛+1𝑇𝑛 + 𝑇𝑛−1𝜕𝑛 = 𝜏𝑛. Then we have the following (possibly non-commutative)
diagramme

𝐹𝑛+1
𝜕𝑛+1 //

𝜏𝑛+1
��

𝐹𝑛
𝜕𝑛 //

𝜏𝑛

��

𝑇𝑛

}}

𝐹𝑛−1

𝑇𝑛−1}}
𝐹
′
𝑛+2

𝜕
′
𝑛+2

// 𝐹
′
𝑛+1

𝜕
′
𝑛+1

// 𝐹
′
𝑛

Consider the map (𝜏𝑛+1 − 𝑇𝑛𝜕𝑛+1) : 𝐹𝑛+1 → 𝐹
′
𝑛+1. We have

𝜕
′
𝑛+1 (𝜏𝑛+1 − 𝑇𝑛𝜕𝑛+1) = 𝜕

′
𝑛+1𝜏𝑛+1 − 𝜕

′
𝑛+1𝑇𝑛𝜕𝑛+1

= 𝜕
′
𝑛+1𝜏𝑛+1 − (𝜏𝑛 − 𝑇𝑛−1𝜕𝑛)𝜕𝑛+1

= 𝜕
′
𝑛+1𝜏𝑛+1 − 𝜏𝑛𝜕𝑛+1 + 𝑇𝑛−1𝜕𝑛𝜕𝑛+1

= 0.

Applying Lemma 3.145 with 𝜑 = 𝜏𝑛+1 − 𝑇𝑛𝜕𝑛+1, let 𝑇𝑛+1 = 𝜓 : 𝐹𝑛+1 → 𝐹
′
𝑛+2.

Then 𝜕
′
𝑛+2𝑇𝑛+1 = 𝜑 = 𝜏𝑛+1 − 𝑇𝑛𝜕𝑛+1. Hence

𝜕
′
𝑛+2𝑇𝑛+1 + 𝑇𝑛𝜕𝑛+1 = 𝜏𝑛+1 = 𝑔𝑛+1 − 𝑓𝑛+1.

We may start the induction in degree −2 where all groups are 0. Thus the
chain homotopy class of 𝑓 : 𝐹 → 𝐹 is unique. Similarly we get 𝑓

′
: 𝐹

′ → 𝐹.
id𝐹 : 𝐹 → 𝐹 extends id𝐴 : 𝐴→ 𝐴, so 𝑓

′ ◦ 𝑓 is chain homotopic to id𝐹 . That is,
𝑓 is a chain homotopy equivalence. □

Proof. (of Theorem 3.144) Let 𝐹 and 𝐹
′
be two free resolutions of 𝐴. By Lemma

3.146 we have a chain homotopy equivalence

𝑓 : 𝐹 → 𝐹
′
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Hence there is a chain map 𝑓
′
: 𝐹

′ → 𝐹 such that 𝑓
′ ◦ 𝑓 is chain homotopic

to id𝐹 . Tensoring with 𝐵 we get ( 𝑓 ′ ⊗ id𝐵) ◦ ( 𝑓 ◦ id𝐵) is chain homotopic to
id𝐹 ⊗ id𝐵. Thus

( 𝑓 ⊗ id𝐵)∗ : 𝐻𝑛 (𝐹 ⊗ 𝐵) → 𝐻𝑛 (𝐹
′ ⊗ 𝐵)

is an isomorphism, which means Tor𝑛 (𝐴, 𝐵) = 𝐻𝑛 (𝐹 ⊗ 𝐵) � 𝐻𝑛 (𝐹
′ ⊗ 𝐵) is well-

de�ned. □

As we saw in Theorem 3.141 every abelian group 𝐴 has a free resolution

· · · → 0
𝜕2−−→ 𝐹1

𝜕1−−→ 𝐹0
𝜀−→ 𝐴→ 0

So we have the chain complexs 𝐹

· · · → 0
𝜕2−−→ 𝐹1

𝜕1−−→ 𝐹0
𝜕0−−→ 0

and 𝐹 ⊗ 𝐵
· · · → 0

𝜕2⊗id𝐵−−−−−−→ 𝐹1 ⊗ 𝐵
𝜕1⊗id𝐵−−−−−−→ 𝐹0 ⊗ 𝐵

𝜕0⊗id𝐵−−−−−−→ 0

Tor𝑛 (𝐴, 𝐵) = 𝐻𝑛 (𝐹 ⊗ 𝐵) =


𝐹0⊗𝐵
im(𝜕1⊗id𝐵 ) , 𝑛 = 0

ker(𝜕1 ⊗ id𝐵), 𝑛 = 1

0, 𝑛 ≠ 0, 1

We can say more about Tor0 (𝐴, , 𝐵).
We have the exact sequence

𝐹1
𝜕1−−→ 𝐹0

𝜀−→ 𝐴→ 0

Which remains exact after tensoring with 𝐵 so we get exact

𝐹1 ⊗ 𝐵
𝜕1⊗id𝐵−−−−−−→ 𝐹0 ⊗ 𝐵

𝜀⊗id𝐵−−−−−→ 𝐴 ⊗ 𝐵→ 0

Hence
Tor0 (𝐴, 𝐵) �

𝐹0 ⊗ 𝐵
im(𝜕1 ⊗ id𝐵)

� 𝐴 ⊗ 𝐵.

Since Tor1 (𝐴, 𝐵) is the only (possibly) new object we de�ne

De�nition 3.147. Tor(𝐴, 𝐵) = Tor1 (𝐴, 𝐵).

Remark 3.148. Note that if we have an exact sequence

0→ 𝐹1
𝜕1−−→ 𝐹0

𝜀−→ 𝐴→ 0

Then we have an(other) exact sequence

𝐹1 ⊗ 𝐵
𝜕1⊗id𝐵−−−−−−→ 𝐹0 ⊗ 𝐵

𝜀⊗id𝐵−−−−−→ 𝐴 ⊗ 𝐵→ 0

and hence still another exact one

0→ ker(𝜕1 ⊗ id𝐵) → 𝐹1 ⊗ 𝐵
𝜕1⊗id𝐵−−−−−−→ 𝐹0 ⊗ 𝐵

𝜀⊗id𝐵−−−−−→ 𝐴 ⊗ 𝐵→ 0
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and hence an exact sequece

0→ Tor(𝐴, 𝐵) → 𝐹1 ⊗ 𝐵
𝜕1⊗id𝐵−−−−−−→ 𝐹0 ⊗ 𝐵

𝜀⊗id𝐵−−−−−→ 𝐴 ⊗ 𝐵→ 0

In particular if Tor(𝐴, 𝐵) = 0 then tensoring with 𝐵 preserves exactness.

Example 3.149. Let us compute Tor(Z/60Z,Z/42Z). First, consider a free reso-
lution 𝐹 of Z/60Z

· · · → 0𝑡𝑜Z
×60−−−→ Z→ Z/60Z→ 0.

Then 𝐹 ⊗ Z/42Z is

0→ Z ⊗ (Z/42Z)
(×60)⊗1
−−−−−−−→ Z ⊗ (Z/42Z) → 0

Simplifying, we have

0→ Z/42Z
(×60)
−−−−−→ Z/42Z→ 0

Hence

Tor(Z/60Z,Z/42Z) � ker(×60) � 7Z/42Z � Z/6Z � Z
gcd(42, 60)Z

Proposition 3.150 (Properties of Tor). (1) Tor(𝐴, 𝐵) � Tor(𝐵, 𝐴).

(2) Tor(⊕𝛼𝐴𝛼, 𝐵) � ⊕𝛼 Tor(𝐴𝛼, 𝐵).

(3) Tor(𝐴, 𝐵) = 0 if 𝐴 or 𝐵 is free or torsion free.

(4) Tor(𝐴, 𝐵) � Tor(𝐴tor, 𝐵) where 𝐴tor is the torsion subgroup of 𝐴.

(5) Tor(Z/𝑛Z, 𝐴) � ker(𝐴 ×𝑛−−→ 𝐴)

(6) The short exact sequence

0→ 𝐵→ 𝐶 → 𝐷 → 0

yields a natural exact sequence

0→ Tor(𝐴, 𝐵) → Tor(𝐴,𝐶) → Tor(𝐴, 𝐷) → 𝐴 ⊗ 𝐵→ 𝐴 ⊗ 𝐶 → 𝐴 ⊗ 𝐷 → 0

Proof. (2): Tor(⊕𝛼𝐴𝛼, 𝐵) � ⊕𝛼 Tor(𝐴𝛼, 𝐵).
Let 𝐹𝛼 be a free resolution of 𝐴𝛼. Then ⊕𝛼𝐹𝛼 is a free resolution of 𝐴𝛼. Thus

Tor(⊕𝛼𝐴𝛼, 𝐵) � 𝐻1 ((⊕𝛼𝐹𝛼) ⊗ 𝐵)
� 𝐻1 (⊕𝛼 (𝐹𝛼 ⊗ 𝐵))
� ⊕𝛼𝐻1 (𝐹𝛼 ⊗ 𝐵)
� ⊕𝛼 Tor(𝐴𝛼, 𝐵).
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(5): Tor(Z/𝑛Z, 𝐴) � ker(𝐴 ×𝑛−−→ 𝐴).
Using the free resolution of Z/𝑛Z,

· · · → 0→ Z
×𝑛−−→ Z→ Z/𝑛Z→ 0

Tensoring with 𝐴 simpli�es to

· · · → 0→ 𝐴
×𝑛−−→ 𝐴→ 0

The result follows.

(3): Tor(𝐴, 𝐵) = 0 if 𝐴 or 𝐵 is free (we will address torsion free later.)
Suppose 𝐴 is free. Use the free resolution of 𝐴

· · · → 0→ 0→ 𝐴→ 𝐴→ 0

we have Tor(𝐴, 𝐵) = ker(0→ 𝐴 ⊗ 𝐵) = 0.
Suppose 𝐵 = Z. Then tensoring an exact free resolution 0→ 𝐹1 → 𝐹0 → 𝐴→ 0
with 𝐵 remains exact.
Suppose 𝐵 � ⊕𝛼Z. Then tensoring an exact free resolution 0 → 𝐹1 → 𝐹0 →
𝐴→ 0 with 𝐵 is a direct sum of exact sequences which is exact.

(6): The short exact sequence

0→ 𝐵→ 𝐶 → 𝐷 → 0

yields a natural exact sequence

0→ Tor(𝐴, 𝐵) → Tor(𝐴,𝐶) → Tor(𝐴, 𝐷) → 𝐴 ⊗ 𝐵→ 𝐴 ⊗ 𝐶 → 𝐴 ⊗ 𝐷 → 0.

Choose a free resolution 𝐹 of the form 0 → 𝐹1 → 𝐹0 → 𝐴 → 0. All the terms
of 𝐹 are free so tensoring 0→ 𝐵 → 𝐶 → 𝐷 → 0 with 𝐹𝑛 remains exact. So we
get a short exact sequence of chain complexes

0→ (𝐹 ⊗ 𝐵) → (𝐹 ⊗ 𝐶) → (𝐹 ⊗ 𝐷) → 0

Apply Snake Lemma (see the proof for Theorem 3.23) to get the natural exact
sequence above.

(1): Tor(𝐴, 𝐵) � Tor(𝐵, 𝐴). Consider the six term exact sequence from part
(6) coming from the short exact sequence:

0→ 𝐹1 → 𝐹0 → 𝐵→ 0

0→ Tor(𝐴, 𝐹1) → Tor(𝐴, 𝐹0) → Tor(𝐴, 𝐵) → 𝐴 ⊗ 𝐹1 → 𝐴 ⊗ 𝐹0 → 𝐴 ⊗ 𝐵→ 0.

𝐹0 and 𝐹1 are free so by part (3) Tor(𝐴, 𝐹1) � Tor(𝐴, 𝐹0) � 0. So we have

0→ Tor(𝐴, 𝐵) → 𝐴 ⊗ 𝐹1 → 𝐴 ⊗ 𝐹0 → 𝐴 ⊗ 𝐵→ 0.
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Together,

0 // Tor(𝐴, 𝐵) // 𝐴 ⊗ 𝐹1 //

�

��

𝐴 ⊗ 𝐹0 //

�

��

𝐴 ⊗ 𝐵 //

�

��

0

0 // Tor(𝐵, 𝐴) // 𝐹1 ⊗ 𝐴 // 𝐹0 ⊗ 𝐴 // 𝐵 ⊗ 𝐴 // 0

We will de�ne a homorphism 𝛾 : Tor(𝐴, 𝐵) → Tor(𝐵, 𝐴) preserving commuta-
tivity:

0 // Tor(𝐴, 𝐵) 𝛼 //

𝛾

��

𝐴 ⊗ 𝐹1
𝛽 //

�𝜏

��

𝐴 ⊗ 𝐹0 //

�𝜇

��

𝐴 ⊗ 𝐵 //

�

��

0

0 // Tor(𝐵, 𝐴)
𝛼
′
// 𝐹1 ⊗ 𝐴

𝛽
′
// 𝐹0 ⊗ 𝐴 // 𝐵 ⊗ 𝐴 // 0

Let 𝑥 ∈ Tor(𝐴, 𝐵) We claim that 𝜏𝛼(𝑥) ∈ im𝛼
′
.

By commutativity 𝛽
′
𝜏𝛼(𝑥) = 𝜇𝛽𝛼(𝑥) = 𝜇(0) = 0, so we have 𝜏𝛼(𝑥) ∈ ker 𝛽′ =

im𝛼
′
. By injectivity of 𝛼

′
there is a unique 𝑥

′ ∈ Tor(𝐵, 𝐴) with 𝛼′ (𝑥0) = 𝜏𝛼(𝑥).
Set 𝛾(𝑥) = 𝑥′ . As 𝛾 takes 0 to 0 and sums to sums so it is a homomorphism.

0 //

�

��

0 //

�

��

Tor(𝐴, 𝐵) //

𝛾

��

𝐴 ⊗ 𝐹1 //

�𝜏

��

𝐴 ⊗ 𝐹0
�𝜇

��
0 // 0 // Tor(𝐵, 𝐴) // 𝐹1 ⊗ 𝐴 // 𝐹0 ⊗ 𝐴

Add some trivial groups and homomorphisms to get

0 //

�

��

0 //

�

��

Tor(𝐴, 𝐵) //

𝛾

��

𝐴 ⊗ 𝐹1 //

�𝜏

��

𝐴 ⊗ 𝐹0
�𝜇

��
0 // 0 // Tor(𝐵, 𝐴) // 𝐹1 ⊗ 𝐴 // 𝐹0 ⊗ 𝐴

Now apply Five Lemma 3.27 to show 𝜏 : Tor(𝐴, 𝐵) → Tor(𝐵, 𝐴) is an isomor-
phism.

(3): Tor(𝐴, 𝐵) = 0 if 𝐴 or 𝐵 is torsion free.
Assume 𝐵 is torsion free applying part 1. Let

0→ 𝐹1
𝜕1−−→ 𝐹0 → 𝐴

be a free resolution of 𝐴. Then we get an exact sequence

0→ Tor(𝐴, 𝐵) → 𝐹1 ⊗ 𝐵
𝜕1⊗id𝐵−−−−−−→ 𝐹0 ⊗ 𝐵

We claim 𝜕1 ⊗ id𝐵 is injective: Suppose
∑
𝑖 𝑓𝑖 ⊗ 𝑏𝑖 ∈ ker 𝜕1 ⊗ id𝐵. Then∑

𝑖 (𝜕1 𝑓𝑖) ⊗ 𝑏𝑖 = 0 in 𝐹0 ⊗ 𝐵. Hence in Z[𝐹0 × 𝐵] we have∑︁
𝑖

(𝜕1 𝑓𝑖 , 𝑏𝑖) =
∑︁
𝑗

( 𝑓 0𝑗 , 𝑏1𝑗+𝑏2𝑗 )−( 𝑓 0𝑗 , 𝑏1𝑗 )−( 𝑓 0𝑗 , 𝑏2𝑗 )+
∑︁
𝑘

( 𝑓 1𝑘 + 𝑓
2
𝑘 , 𝑏

0
𝑘)−( 𝑓

1
𝑘 , 𝑏

0
𝑘)−( 𝑓

2
𝑘 , 𝑏

2
𝑘)
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Let 𝐵0 ⊂ 𝐵 be the subgroup generated by the �nite set {𝑏𝑖 , 𝑏0𝑘 , 𝑏
1
𝑗
, 𝑏2

𝑗
}. Then in

Z[𝐹0 × 𝐵] we have∑︁
𝑖

(𝜕1 𝑓𝑖 , 𝑏𝑖) =
∑︁
𝑗

( 𝑓 0𝑗 , 𝑏1𝑗+𝑏2𝑗 )−( 𝑓 0𝑗 , 𝑏1𝑗 )−( 𝑓 0𝑗 , 𝑏2𝑗 )+
∑︁
𝑘

( 𝑓 1𝑘 + 𝑓
2
𝑘 , 𝑏

0
𝑘)−( 𝑓

1
𝑘 , 𝑏

0
𝑘)−( 𝑓

2
𝑘 , 𝑏

2
𝑘)

Therefore in 𝐹0 ⊗ 𝐵0 ∑︁
𝑖

(𝜕1 𝑓𝑖) ⊗ 𝑏𝑖 = 0

Let 𝐵0 ⊂ 𝐵 is torsion free and �nitely generated so free abelian. Then

𝐹1 ⊗ 𝐵0

𝜕1⊗id𝐵0−−−−−−−→ 𝐹0 ⊗ 𝐵0

is injective. Thus in 𝐹1 ⊗ 𝐵0 ∑︁
𝑖

𝑓𝑖 × 𝑏𝑖 = 0.

Hence in Z[𝐹1 × 𝐵0] we have∑︁
𝑖

( 𝑓𝑖 , 𝑏𝑖) =
∑︁
𝑛

( 𝑓 3𝑛 , 𝑏4𝑛+𝑏5𝑛)−( 𝑓 3𝑛 , 𝑏4𝑛)−( 𝑓 3𝑛 , 𝑏5𝑛)+
∑︁
𝑘

( 𝑓 4𝑚+ 𝑓 5𝑘 , 𝑏
3
𝑚)−( 𝑓 4𝑚, 𝑏3𝑚)−( 𝑓 5𝑚, 𝑏3𝑚)

This equality holds in Z[𝐹1 × 𝐵], so in 𝐹1 ⊗ 𝐵∑︁
𝑖

𝑓𝑖 × 𝑏𝑖 = 0.

It follows that Tor(𝐴, 𝐵) = ker(𝜕1 ⊗ id𝐵) = 0. □

Having prepared to handle Tor, let us return to the discussion of Universal
Coe�cient Theorem. Let

0→ 𝐹1 → 𝐹0 → 𝑀 → 0

be a free resolution of 𝑀. Again, we are using the assumption that 𝑅 is a PID,
to guarantee that ker(𝐹0 → 𝑀) is free. Again using the assumption that each
𝐶𝑛 is free, we get a short exact sequence of chain complexes

0→ 𝐶∗ ⊗ 𝐹1 → 𝐶∗ ⊗ 𝐹0 → 𝐶∗ ⊗ 𝑀 → 0.

In homology, this gives a long exact sequence. Unsplicing it gives the left-
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hand column in the following diagramme.

0

��

0

��
coker(𝐻𝑛 (𝐶∗ ⊗ 𝐹1) → 𝐻𝑛 (𝐶∗ ⊗ 𝐹0))

� //

��

coker(𝐻𝑛 (𝐶∗) ⊗ 𝐹1 → 𝐻𝑛 (𝐶∗) ⊗ 𝐹0)

��
𝐻𝑛 (𝐶∗ ⊗ 𝑀) = //

𝜕

��

𝐻𝑛 (𝐶∗ ⊗ 𝑀)

��
ker(𝐻𝑛−1(𝐶∗ ⊗ 𝐹1) → 𝐻𝑛−1(𝐶∗ ⊗ 𝐹0)) � //

��

ker(𝐻𝑛−1(𝐶∗) ⊗ 𝐹1 → 𝐻𝑛−1(𝐶∗) ⊗ 𝐹0)

��
0 0

The right hand column occurs because 𝛼 is an isomorphism when the module
involved is free. But

coker(𝐻𝑛 (𝐶∗) ⊗ 𝐹1 → 𝐻𝑛 (𝐶∗) ⊗ 𝐹0) = 𝐻𝑛 (𝐶∗) ⊗ 𝑀

and
ker(𝐻𝑛−1(𝐶∗) ⊗ 𝐹1 → 𝐻𝑛−1(𝐶∗ ⊗ 𝐹0) = Tor𝑅1 (𝐻𝑛−1(𝐶∗, 𝑀).

We have proved the following theorem.

Theorem 3.151 (Universal Coe�cient Theorem). Let 𝑅 be a PID and 𝐶∗ a
chain complex of 𝑅-modules such that 𝐶𝑛 is free for all 𝑛. Then there is a natural
short exact sequence of 𝑅-modules

0→ 𝐻𝑛 (𝐶∗) ⊗ 𝑀
𝛼−→ 𝐻𝑛 (𝐶∗ ⊗ 𝑀)

𝜕−→ Tor𝑅1 (𝐻𝑛−1(𝐶∗), 𝑀) → 0

that splits (but not naturally).

Example 3.152. The pinch map R𝑃2 → S2 induces the following map of universal
coe�cient short exact sequences:

0 // 𝐻2 (R𝑃2) ⊗ (Z/2Z) //

0

��

𝐻2 (R𝑃2;Z/2Z) � //

�

��

Tor1 (𝐻1 (R𝑃2;Z/2Z) //

0

��

0

0 // 𝐻2 (S2) ⊗ (Z/2Z) �
// 𝐻2 (S2;Z/2Z) // 𝑇𝑜𝑟1 (𝐻1 (S2);Z/2Z) // 0

This shows that the splitting of the universal coe�cient short exact sequence
cannot be made natural, and it explains the mystery that we began with.





Lecture 4

Singular Cohomology

4.1 Cohomology

4.1.1 Dual moodules

Let 𝑅 be a commutative ring and let 𝑀 be an 𝑅-module. The dual module

𝑀∨ := Hom𝑅 (𝑀, 𝑅)

is the set of 𝑅-module homomorphisms from 𝑀 to 𝑅. 𝑀∨ is an 𝑅 module under
addition and scalar multiplication of functions. There is a natural isomorphism

(⊕𝑖𝑀𝑖)∨ �
∏
𝑖

𝑀∨𝑖 ,

de�ned by the rule (𝜙1, 𝜙2 . . . , ) (𝑚1 + 𝑚2 + · · · ) =
∑
𝑖 𝜙𝑖 (𝑚𝑖). In particular, for

free modules we have
(⊕𝑖𝑅)∨ =

∏
𝑖

𝑅∨ =
∏
𝑖

𝑅. (4.1)

More directly, (4.1) holds because a homomorphism out of a free module is
speci�ed by listing where the free generators are sent.

Given an 𝑅-module homomorphism 𝑓 : 𝑀 → 𝑁, de�ne the transpose

𝑓 ∨ : 𝑁∨ → 𝑀∨

which sends 𝜙 ∈ 𝑁∨ = Hom𝑅 (𝑁, 𝑅) to 𝑓 ∨ (𝜙) = 𝜙 ◦ 𝑓 .

𝑀
𝑓 //

𝑓 ∨ (𝜙)=𝜙◦ 𝑓   

𝑁

𝜙��
𝑅

Dualisation is a contravariant functor from 𝑅-modules to 𝑅-modules. This
means that id∨𝑀 = id𝑀∨ and (𝑔 ◦ 𝑓 )∨ = 𝑓 ∨ ◦ 𝑔∨. The �rst is obvious and the
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second follows from associativity of composition:

(𝑔 ◦ 𝑓 )∨ (𝜙) = 𝜙 ◦ (𝑔 ◦ 𝑓 ) = (𝜙 ◦ 𝑔) ◦ 𝑓 = 𝑓 ∨ (𝑔∨ (𝜙)) = ( 𝑓 ∨ ◦ 𝑔∨) (𝜙)

𝑀
𝑓 //

𝑓 ∨𝑔∨ (𝜙)   

𝑁
𝑔 //

��

𝑃

𝜙��
𝑅

4.1.2 Cohomology

Given a chain complex of 𝑅-modules

𝐶• : · · · → 𝐶𝑛+1
𝜕𝑛+1−−−→ 𝐶𝑛

𝜕𝑛−−→ 𝐶𝑛−1
𝜕𝑛−1−−−−→ · · ·

we form the dual chain complex (or cochain complex)

𝐶• : · · · ← 𝐶𝑛+1
𝛿𝑛+1←−−−− 𝐶𝑛 𝛿𝑛←−− 𝐶𝑛−1 𝛿𝑛−1←−−−− · · ·

where 𝐶𝑛 = 𝐶∨𝑛 and 𝛿𝑛 = 𝜕∨𝑛 . Thus cochain complexes are really huge sets.
Note that

𝛿𝑛 ◦ 𝛿𝑛+1 = 𝜕∨𝑛 ◦ 𝜕∨𝑛+1 = (𝜕𝑛+1 ◦ 𝜕𝑛)∨ = 0∨ = 0.

We can now de�ne cocycles 𝑍𝑛 := ker(𝛿𝑛+1), coboundaries 𝐵𝑛 := im(𝛿𝑛) and
cohomology

𝐻𝑛 := 𝑍𝑛/𝐵𝑛.
Let us calculate several examples. Take the coe�cient ring 𝑅 = Z.

Example 4.2. Let 𝐶• be the chain complex · · · → 0→ Z→ 0→ · · · where Z is
at the 𝑘-th position. Then the homology groups are

𝐻𝑛 (𝐶•) =
{
Z 𝑛 = 𝑘

0 𝑛 ≠ 𝑘.

The corresponding cochain complex 𝐶• is · · · ← 0← Z← 0← · · · where Z
is still at the 𝑘-th position. Then

𝐻𝑛 (𝐶•) =
{
Z 𝑛 = 𝑘

0 𝑛 ≠ 𝑘.

At �rst glance cohomology seems completely dual to homology, and therefore
seemingly redundant. But in fact the situation is more subtle.

Example 4.3. Let 𝐶• be the chain complex · · · → 0→ Z
𝑚−→ Z→ 0→ · · · where

Z are at the 𝑘-th and (𝑘 − 1)-th positions. Then the homology groups are

𝐻𝑛 (𝐶•) =
{
Z/𝑚Z 𝑛 = 𝑘 − 1
0 𝑛 ≠ 𝑘.
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The corresponding cochain complex 𝐶• is · · · ← 0 ← Z
𝑚←− Z ← 0 ← · · ·

where Z are still at the 𝑘-th and (𝑘 − 1)-th positions. But

𝐻𝑛 (𝐶•) =
{
Z/𝑚Z 𝑛 = 𝑘

0 𝑛 ≠ 𝑘 − 1.

These examples show the di�erence of the free part Z and torsion part Z/𝑚Z.
Actually suppose 𝐶𝑛 is free abelian for all 𝑛 and 𝐻𝑛 (𝐶) is �nitely generated for
all 𝑛. And suppose 𝐻𝑛 (𝐶) = 𝐹𝑛 ⊕ 𝑇𝑛 where 𝐹𝑛 is free abelian and 𝑇𝑛 is torsion.
Then 𝐻𝑛 (𝐶) = 𝐹𝑛 ⊕ 𝑇𝑛−1. This is the simplest form of Universal coe�cient
theorem which determines cohomology groups with arbitrary coe�cients from
homology with Z coe�cients.
Remark 4.4. For non-abelian group 𝐺, we could still de�ne (co)homology, but
the point is that usually 𝐻𝑛 (𝐶;𝐺) do not have a group structure when 𝑛 > 0,
since im 𝛿 need not be a normal subgroup of ker 𝛿.

4.1.3 Universal Coe�cient Theorem

Chain map and chain homotopy

Let us recall

De�nition 4.5. A map 𝑓 : 𝐶 → 𝐷 of chain complexes 𝐶 and 𝐷 is a sequence
of homomorphisms 𝑓 = { 𝑓𝑛 : 𝐶𝑛 → 𝐷𝑛} such that 𝜕𝑛 ◦ 𝑓𝑛 = 𝑓𝑛−1 ◦ 𝜕𝑛.

· · · // 𝐶𝑛
𝜕𝑛 //

𝑓𝑛

��

𝐶𝑛−1 //

𝑓𝑛−1
��

· · ·

· · · // 𝐷𝑛
𝜕𝑛

// 𝐷𝑛−1 // · · ·

Proposition 4.6. A chain map 𝑓 : 𝐶 → 𝐷 induces a homomorphism 𝐻 ( 𝑓 ) :
𝐻𝑛 (𝐶) → 𝐻𝑛 (𝐷) of homology groups.

Proof. By de�nition, 𝑓𝑛 takes cycles in 𝑍𝑛 (𝐶) to cycles in 𝑍𝑛 (𝐷) and takes
boundaries to boundaries. Hence it induces a homomorphism 𝐻 ( 𝑓 ) : 𝐻𝑛 (𝐶) →
𝐻𝑛 (𝐷). □

De�nition 4.7. Two maps of chain complexes 𝑓 , 𝑔 : 𝐶 → 𝐷 are chain homo-
topic (denoted by 𝑓 ≃ 𝑔) if there exists a sequence of maps 𝑇• = {𝑇𝑛 : 𝐶𝑛 →
𝐷𝑛+1} such that

𝜕𝑛+1 ◦ 𝑇𝑛 + 𝑇𝑛−1 ◦ 𝜕𝑛 = 𝑓𝑛 − 𝑔𝑛.
Note that 𝑇• is not a chain map in any sense. The de�nition just tells that

𝜕𝑛+1 ◦ 𝑇𝑛 + 𝑇𝑛−1 ◦ 𝜕𝑛 is a chain map, which is equal to 𝑓𝑛 − 𝑔𝑛.

· · · // 𝐶𝑛+1 //

��

𝐶𝑛
𝜕𝑛 //

𝑓𝑛 𝑔𝑛

��

𝑇𝑛

||

𝐶𝑛−1 //

��𝑇𝑛−1||

· · ·

· · · // 𝐷𝑛+1
𝜕𝑛+1

// 𝐷𝑛 // 𝐷𝑛−1 // · · ·
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We will drop the subscripts for boundary maps later on if no confusion is
likely.

Proposition 4.8. If 𝑓 and 𝑔 are chain homotopic, then their induced homo-
morphisms of homology are equal.

Proof. Let 𝑇 be a chain homotopy. For any 𝑧𝑛 ∈ 𝑍𝑛 (𝐶), we have

𝐻 ( 𝑓 ) [𝑧𝑛] −𝐻 (𝑔) [𝑧𝑛] = [ 𝑓𝑛 (𝑧𝑛) − 𝑔𝑛 (𝑧𝑛)] = [𝜕 ◦𝑇 (𝑧𝑛) +𝑇 ◦ 𝜕 (𝑧𝑛)] = [𝜕𝑇 (𝑧𝑛)] = 0.

□

So chain homotopy is an equivalence relation on chain complexes.

De�nition 4.9. Two chain complexes 𝐶 and 𝐷 are called chain homotopy
equivalent (𝐶 ≃ 𝐷), if there are chain maps 𝑓 : 𝐶 → 𝐷 and 𝑔 : 𝐷 → 𝐶 such that

𝑔 ◦ 𝑓 ≃ id𝐶 : 𝐶 → 𝐶, 𝑓 ◦ 𝑔 ≃ id𝐷 : 𝐷 → 𝐷.

Each of them is called a chain homotopy equivalence.

The next result follows from Proposition 4.8.

Proposition 4.10. Every chain homotopy equivalence induces an isomorphism
of homology groups. So if 𝐶 ≃ 𝐷, then 𝐻• (𝐶) = 𝐻• (𝐷).

The converse also holds if 𝐶 and 𝐷 are complexes of abelian groups.
All the above discussion works for cochain complexes mutatis mutandis.

Hom functor

Notice that the functor Hom(−, 𝐺) is the key for cohomology. By de�nition,
Hom(𝐻,𝐺) is the set of all homomorphisms from 𝐻 to 𝐺. It is an abelian
group as well, and called homomorphism group. Let us have a look in a more
abstract viewpoint. It is a contravariant functor, which means 𝑓 : 𝐴 → 𝐵

induces 𝑓 ∗ : Hom(𝐵, 𝐺) → Hom(𝐴, 𝐺) and if furthermore we have 𝑔 : 𝐵 → 𝐶

then (𝑔 ◦ 𝑓 )∗ = 𝑓 + ◦ 𝑔∗. The above discussion tells us that Hom(−, 𝐺) is also a
contravariant functor from Chain complexes to cochain complexes.

The functor Hom(−, 𝐺) has the following properties:

(a) Hom(⊕𝑖𝐴𝑖 , 𝐺) =
∏
𝑖 Hom(𝐴𝑖 , 𝐺);

(b) Left exactness: If 𝐴
𝑓
−→ 𝐵

𝑔
−→ 𝐶 → 0 is an exact sequence, then the induced

sequence

Hom(𝐴, 𝐺)
𝑓 ∗

←−− Hom(𝐵, 𝐺)
𝑔∗

←−− Hom(𝐶,𝐺) ← 0

is exact. In other words,

0→ Hom(𝐶,𝐺)
𝑔∗

−−→ Hom(𝐵, 𝐺)
𝑓 ∗

−−→ Hom(𝐴, 𝐺) (4.11)

is exact.
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We show the property (b).

Proof. We must show that Hom(𝐶,𝐺) → Hom(𝐵, 𝐺) is injective and that the
image of Hom(𝐶,𝐺) → Hom(𝐵, 𝐺) is the kernel of the map Hom(𝐵, 𝐺) →
Hom(𝐴, 𝐺).

Let 𝜙 ∈ Hom(𝐶,𝐺) such that 𝑔∗ (𝜙) = 0. Then 𝜙 ◦ 𝑔(𝑏) = 0 for all 𝑏 ∈ 𝐵.
However, 𝑔 is surjective so 𝜙(𝑐) = 0 for all 𝑐 ∈ 𝐶, and 𝜙 = 0. Thus 𝑔∗ is injective.

Since 𝑔◦ 𝑓 is zero 𝑓 ∗◦𝑔∗ is also zero, and im(𝑔∗) ⊂ ker( 𝑓 ∗). To show the other
inclusion, let 𝜓 ∈ Hom(𝐵, 𝐺) such that 𝑓 ∗𝜓 = 0. Then 𝜓( 𝑓 (𝑎)) = 0 for all 𝑎 ∈ 𝐴,
and we can de�ne a homomorphism 𝜓 : 𝐶 → 𝐺 by 𝜓(𝑐) = 𝜓(𝑏) for some 𝑏 ∈ 𝐵
with 𝑔(𝑏) = 𝑐. This is well de�ned since for two elements 𝑏 and 𝑏

′
such that

𝑔(𝑏) = 𝑔(𝑏′ ) there is an 𝑎 ∈ 𝐴 with 𝑏 = 𝑏
′ + 𝑎. Then 𝜓(𝑏) = 𝜓(𝑏′ + 𝑓 (𝑎)) = (𝑏′ ),

thus ker( 𝑓 ∗) ⊂ im(𝑔∗). Now we have shown im(𝑔∗) = ker( 𝑓 ∗), i.e., the sequence
4.11 is exact at Hom(𝐵, 𝐺). □

Example 4.12. Hom(Z/𝑚Z, 𝐺) = {𝑔 ∈ 𝐺 |𝑚𝑔 = 0}. In fact, take Hom for the
exact sequence 0→ Z

𝑚−→ Z→ Z/𝑚Z→ 0, we obtain

0← 𝐺
𝑚←− 𝐺 ← Hom(Z/𝑚Z, 𝐺) ← 0.

By (b), the sequence is exact except possibly at the leftmost term. SoHom(Z/𝑚Z, 𝐺) =
ker(𝐺 𝑚−→ 𝐺) = {𝑔 ∈ 𝐺 |𝑚𝑔 = 0}. And when 𝑚𝐺 ≠ 𝐺, the sequence is not exact.

Thus the functor Hom(−, 𝐺) is left exact, but not exact. (Functors that
preserve exact sequences are called exact functors.)

To state universal coe�cient theorem, we need to introduce the functor Ext,
which measures the failure of Hom to be an exact functor. It is de�ned from a
free resolution of the abelian group.

First, recall De�nition 3.139.

De�nition 4.13. A free resolution of an abelian group 𝐵 is a chain complex

· · · → 𝐹2 → 𝐹1 → 𝐹0 → 0

of free groups with a map 𝐹0 → 𝐵 such that

· · · → 𝐹2 → 𝐹1 → 𝐹0 → 𝐵→ 0

is exact.

Remark 4.14. If 0→ 𝐹
′ → 𝐹 → 𝐹

′′ → 0 is a short exact sequence of free abelian
groups then

0→ Hom(𝐴, 𝐹 ′′ ) → Hom(𝐴, 𝐹) → Hom(𝐴, 𝐹 ′ ) → 0

is also a short exact sequence for any abelian group 𝐴. So on free abelian groups
Hom(−, 𝐴) is an exact functor.
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A free resolution is a way of replacing a (possibly) very complicated abelian
group 𝐵 with much simpler groups where Hom(−, 𝐴) is an exact functor.

For a chain complex 𝐶, let 𝐻𝑛 (𝐶; 𝐴) be the cohomology of the chain complex

· · · → Hom(𝐶𝑖−1, 𝐴) → Hom(𝐶𝑖; 𝐴) → Hom(𝐶𝑖+1; 𝐴) → · · ·

Let us recall Lemma 3.146..

Lemma 4.15. Given free resolutions 𝐹 of 𝐵 and 𝐹
′
of 𝐵

′
, a homomorphism

𝛼 : 𝐵 → 𝐵
′
can be extended to a chain map from 𝐹 to 𝐹

′
. This chain map is

unique up to chain homotopy.

Ext(𝐻;𝐺), which measures the failure of Hom to be an exact functor is
de�ned from a free resolution of the abelian group 𝐻 : 0→ 𝐹1 → 𝐹0 → 𝐻 → 0.
Recall that we can assume 𝐹𝑖 = 0 for 𝑖 > 1 . This could be obtained in the
following way. Choose a set of generators for 𝐻 and let 𝐹0 be a free abelian
group with basis in one-to-one correspondence with these generators. Then we
have a surjective homomorphism 𝑓0 : 𝐹0 → 𝐻. The kernel of 𝑓0 is free as a
subgroup of a free abelian group. We let 𝐹1 be the kernel and the inclusion to
𝐹0 as 𝑓1. It is an exact chain complex sequence. In summary, constructing a
free resolution is equivalent to choosing a presentation for 𝐴.

Take its dual cochain complex by Hom(𝐹;𝐺), which may no longer exact,
so could have its cohomology group, temporarily denoted by 𝐻𝑛 (𝐹;𝐺). For the
above constructed resolution, 𝐻𝑛 (𝐹;𝐺) = 0 for 𝑛 > 1. So the only interesting
group is 𝐻1 (𝐹;𝐺). As we will show, it is independent of the resolution. There
is a standard notation for that: Ext(𝐻;𝐺). The element in this group could
also be interpreted as the isomorphism class of extensions of 𝐺 by 𝐻, i.e. 0→
𝐺 → 𝐽 → 𝐻 → 0.

Now, we are ready to state the universal coe�cient theorem.

Theorem 4.16. If a chain complex 𝐶 of free abelian groups has homology groups
𝐻𝑛 (𝐶), then for each 𝑛, there is a natural short exact sequence:

0→ Ext(𝐻𝑛−1(𝐶);𝐺) → 𝐻𝑛 (𝐶;𝐺) ℎ−→ Hom(𝐻𝑛 (𝐶);𝐺) → 0.

The sequence splits, so we have

𝐻𝑛 (𝐶;𝐺) = Ext(𝐻𝑛−1(𝐶);𝐺) ⊕ Hom(𝐻𝑛 (𝐶);𝐺).

But the splitting is not natural.

Proof of universal coe�cient theorem, step 1

There is a natural choice of free resolution of the homology group

0→ 𝐵𝑛 (𝐶)
𝑖𝑛−→ 𝑍𝑛 (𝐶)

𝑞
−→ 𝐻𝑛 (𝐶) → 0.

So the 𝐻1 (𝐹;𝐺) for this free resolution is exactly coker(𝑖∗𝑛 : Hom(𝑍𝑛;𝐺) →
Hom(𝐵𝑛;𝐺)) by de�nition. Now, let us prove universal coe�cient theorem in
two steps.
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Step 1 Derive the split short exact sequence

0→ coker 𝑖∗𝑛−1 → 𝐻𝑛 (𝐶;𝐺) ℎ−→ Hom(𝐻𝑛 (𝐶);𝐺) → 0.

Step 2 Prove 𝐻1 (𝐹;𝐺) depends only on 𝐻 and 𝐺, but not the resolution. So
coker 𝑖𝑛−1 = Ext(𝐻𝑛−1;𝐺).

We start with Step 1.

Lemma 4.17. There is a natural homomorphism

ℎ : 𝐻𝑛 (𝐶;𝐺) → Hom(𝐻𝑛 (𝐶);𝐺).

Proof. We �rst have the map in the cycle level.
For any cocycle 𝛼 ∈ 𝑍𝑛 and any cycle 𝑧 ∈ 2𝑍𝑛, we let ℎ(𝛼) (𝑧) = 𝛼(𝑧). 𝛼 ∈ 𝑍𝑛

means 𝛿𝛼 = 0, i.e 𝛼𝜕 = 0. In other words, 𝛼 vanishes on 𝐵𝑛. So ℎ descends to a
map from 𝑍𝑛 to Hom(𝐻𝑛;𝐺).

Next if 𝛼 ∈ 𝐵𝑛, then 𝛼 = 𝛿𝛽 = 𝛽𝜕. Hence 𝛼 is zero on 𝑍𝑛. Thus there is
a well de�ned coset map ℎ( [𝛼]) ( [𝑧]) = 𝛼(𝑧) from 𝐻𝑛 (𝐶;𝐺) to Hom(𝐻𝑛 (𝐶);𝐺).
This is a homomorphism since:

ℎ( [𝛼 + 𝛽]) ( [𝑧]) = (𝛼 + 𝛽) (𝑧) = 𝛼(𝑧) + 𝛽(𝑧) = ℎ[𝛼] ( [𝑧]) + ℎ[𝛽] ( [𝑧]).

□

Now there is a split short exact sequence

0→ 𝑍𝑛 → 𝐶𝑛
𝜕−→ 𝐵𝑛−1 → 0.

It splits since 𝐵𝑛−1 is free (for any generator of 𝐵𝑛−1, one could map it to
a preimage of 𝜕. So it is not canonically chosen.). Thus we have 𝑝 : 𝐶𝑛 → 𝑍𝑛
whose restriction to 𝑍𝑛 is the identity.

We have the commutative diagramme:

0 // 𝑍𝑛+1 //

0

��

𝐶𝑛+1
𝜕 //

𝜕

��

𝐵𝑛 //

0

��

0

0 // 𝑍𝑛 // 𝐶𝑛
𝜕

// 𝐵𝑛−1 // 0

Since the dual of a split short exact sequence is a split short exact sequence
(the splitting exactness of Hom), the following commutative diagramme has
exact rows:

0 𝑍𝑛oo

0
��

𝐶𝑛oo

𝛿

��

𝐵𝑛−1
𝛿oo

0

��

0oo

0 𝑍𝑛+1oo 𝐶𝑛+1oo 𝐵𝑛
𝛿

oo 0oo
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This is a part of a short exact sequence of chain complexes. From this, we
have a long exact sequence (because the di�erential of the complexes 𝐵 and 𝑍
are trivial)

𝐵𝑛
𝑖∗𝑛←− 𝑍𝑛 ← 𝐻𝑛 (𝐶;𝐺) ← 𝐵𝑛−1

𝑖∗𝑛−1←−−− 𝑍𝑛−1.

The connecting homomorphism is 𝑖∗𝑛 by de�nition: one takes an element of 𝑍𝑛,
pulls back to 𝐶𝑛, applies 𝛿 to get an element in 𝐶𝑛+1, then pulls back to 𝐵𝑛.
That is, we �rst extend a homomorphism 𝑓 : 𝑍𝑛 → 𝐺 to 𝑓

′
: 𝐶𝑛 → 𝐺, then

composes it with 𝜕, �nally view it as a map from 𝐵𝑛. So it is nothing but the
restriction of 𝑓 from 𝑍𝑛 to 𝐵𝑛.

Or we could also see from its dual operation: given 𝑏 ∈ 𝐵𝑛, so 𝑏 = 𝜕𝑐, then
the �rst step maps it to 𝑐, second takes 𝜕, thus gets 𝑏 back which is in 𝑍𝑛. The
composition is the inclusion 𝑖𝑛.

Hence we have

0← ker 𝑖∗𝑛 ← 𝐻𝑛 (𝐶;𝐺) ← coker 𝑖∗𝑛−1 ← 0.

The �nal step for Step 1 is

Lemma 4.18. ker(𝑖∗𝑛) = Hom(𝐻𝑛 (𝐶), 𝐺).

Proof. Since the elements of ker(𝑖𝑛∗) are homomorphisms 𝑍𝑛 → 𝐺 that vanish
on 𝐵𝑛, that is they are homomorphisms 𝐻𝑛 = 𝑍𝑛/𝐵𝑛 → 𝐺. □

Under this identi�cation, the natural map ℎ is the map 0 ← ker 𝑖∗𝑛 ←
𝐻𝑛 (𝐶;𝐺). And the short exact sequence splits because of the induced map
𝑝∗.

4.1.4 Ext functor

Recall that to complete Step 2, we only need to prove that for any two (2-step)
free resolutions of abelian group 𝐻, the homology groups are isomorphic. Then
the notation Ext(𝐻;𝐺) is well de�ned.

We have the following.

Lemma 4.19. Suppose given free resolutions 𝐹 and 𝐹
′
of abelian groups 𝐻 and

𝐻
′
. Then every homomorphism 𝛼 : 𝐻 → 𝐻

′
could be extended to a chain map

from 𝐹 to 𝐹
′
:

· · · // 𝐹2
𝑓2 //

𝛼2

��

𝐹1
𝑓1 //

𝛼1

��

𝐹0
𝑓0 //

𝛼0

��

𝐻 //

𝛼

��

0

· · · // 𝐹
′
2

𝑓
′
2

// 𝐹
′
1

𝑓
′
1

// 𝐹
′
0

𝑓
′
0

// 𝐻
′ // 0

Furthermore, any two such chain maps extending 𝛼 are chain homotopic.
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Proof. Since 𝐹𝑖's are free, it su�ces to de�ne 𝛼𝑖 on a basis of 𝐹𝑖. Given 𝑥 ∈ 𝐹0,
𝛼( 𝑓0 (𝑥)) ∈ 𝐻0. Since 𝑓

′
0 is surjective, we have 𝑥

′
0 ∈ 𝐹

′
0 such that 𝑓

′
0 (𝑥

′ ) =

𝛼( 𝑓0 (𝑥)). We de�ne 𝛼0 (𝑥) = 𝑥
′
.

Let us de�ne 𝛼1. For 𝑥 ∈ 𝐹1, 𝛼0 ( 𝑓1 (𝑥)) lies in im 𝑓
′
1 = ker 𝑓

′
0 since 𝑓

′
0𝛼0 𝑓1 =

𝛼 𝑓0 𝑓1 = 0. So de�ne 𝛼1 (𝑥) = 𝑥
′
such that 𝛼0 ( 𝑓1 (𝑥)) = 𝑓

′
1 (𝑥

′ ). Other 𝛼𝑖 could be
constructed inductively in a similar way.

To check any such chain maps are chain homotopic, we will only give a proof
for the case of 2-step free resolutions, i.e when 𝐹𝑖 = 𝐹

′
= 0 for 𝑛 > 1. This is the

case we need since we are dealing with abelian groups.
If 𝛽𝑖 is another extension of 𝛼, then we want to �nd a chain homotopy

between {𝛼𝑖} and {𝛽𝑖}, that is, maps 𝑇0 : 𝐹0 → 𝐹1
′
and 𝑇−1 : 𝐻 → 𝐹

′
0 such that

𝛼𝑖 − 𝛽𝑖 = 𝑓
′
𝑖+1𝑇𝑖 + 𝑇𝑖−1 𝑓𝑖 for 𝑖 = 0, 1. We let 𝑇−1 = 0. We let 𝑇0 (𝑥) = 𝑥

′
such that

𝑓
′
1 (𝑥

′ ) = 𝛼0 (𝑥) − 𝛽0 (𝑥). This can be done because 𝑓
′
0𝛽0 (𝑥) = 𝑓

′
0𝛼0 (𝑥) = 𝛼 𝑓0 (𝑥)

and im 𝑓
′
1 = ker 𝑓

′
0. Hence 𝛼0 − 𝛽0 = 𝑓

′
1𝑇0.

To check 𝛼1 − 𝛽1 = 𝑇0 𝑓1, we only need to check the relation after composing
𝑓
′
1 which is injective. It is nothing but 𝑓

′
1 (𝛼1 − 𝛽1) = (𝛼0 − 𝛽0) 𝑓1. □

Corollary 4.20. For any two free resolutions 𝐹 and 𝐹
′
of 𝐻, 𝐻𝑛 (𝐹;𝐺) =

𝐻𝑛 (𝐹 ′ ;𝐺).

Proof. It follows from above lemma and (cohomology version of) Proposition
4.10 by taking 𝛼 = id : 𝐻 → 𝐻 and by looking at the composition of two chain
maps, one from 𝐹 to 𝐹

′
and the other from 𝐹

′
to 𝐹. □

Hence we �nished Step 2 and thus the proof of Theorem 4.16 is complete.
Now the calculation of cohomology groups is reduced to that of Ext. So we

will list the properties of Ext.

Proposition 4.21. Ext has the following computational properties:

1. Ext(𝐻 ⊕ 𝐻 ′ , 𝐺) = Ext(𝐻,𝐺) ⊕ Ext(𝐻 ′ , 𝐺),

2. Ext(𝐻,𝐺) = 0 if 𝐻 is free abelian,

3. Ext(Z/𝑛Z, 𝐺) = 𝐺/𝑛𝐺.

Proof. 1. Take the direct sum of the free resolutions.
1. Use 0→ 𝐻 → 𝐻 → 0 as the resolution to calculate.
3. Use 0→ Z

𝑛−→ Z→ Z/𝑛Z→ 0 and the calculation in Example 4.12 □

Corollary 4.22. If the homology groups of chain complex 𝐶 of free abelian
groups are �nitely generated and 𝐻𝑛 (𝐶) = 𝐹𝑛 ⊕ 𝑇𝑛 where 𝐹𝑛 is free and 𝑇𝑛 is
torsion, then 𝐻𝑛 (𝐶;Z) = 𝐹𝑛 ⊕ 𝑇𝑛−1.

Proof. It follows from Theorem 4.16 and Proposition 4.21, and the factHom(Z/𝑚Z,Z) =
0, Hom(Z,Z) = Z. □

Next property shows how Ext functor remedies the left exactness of Hom
functor.
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Proposition 4.23. Let 0 → 𝐴 → 𝐵 → 𝐶 → 0 be a short exact sequence of
abelian groups. Then there is a six-term exact sequence

0→ Hom(𝐶,𝐺) → Hom(𝐵, 𝐺) → Hom(𝐴, 𝐺)
→ Ext(𝐶,𝐺) → Ext(𝐵, 𝐺) → Ext(𝐴, 𝐺) → 0

Proof. Any abelian group 𝐵 has a free resolution with only two terms.

0→ 𝐹1 → 𝐹0 → 𝐵→ 0.

The group 𝐹0 has a generator for each generator of 𝐵 and 𝐹1 has a generator
for each relation of 𝐵.

The short exact sequence

0→ 𝐴→ 𝐵→ 𝐶 → 0.

can be extended to a short exact sequence of chain complexes

0

��

0

��

0

��
0 // 𝐹𝐴1 //

��

𝐹𝐵1
//

��

𝐹𝐶1
//

��

0

0 // 𝐹𝐴0 //

��

𝐹𝐵0
//

��

𝐹𝐶0
//

��

0

0 0 0

Applying Hom(−, 𝐺) to the 𝐹𝑖 we get a short exact sequence of chain complexes,
and this short exact sequence gives a long exact sequence in cohomology

0→ 𝐻0 ( 𝑓 𝐶 , 𝐺) � Hom(𝐶,𝐺) → 𝐻0 (𝐹𝐵, 𝐺) � Hom(𝐵, 𝐺) → 𝐻0 (𝐹𝐴, 𝐺) � Hom(𝐴, 𝐺)
→ 𝐻1 (𝐹𝐶 , 𝐺) = Ext(𝐶,𝐺) → 𝐻1 (𝐹𝐵, 𝐺) = Ext(𝐵, 𝐺) → 𝐻1 (𝐹𝐴, 𝐺) = Ext(𝐴, 𝐺) → 0

□

Universal coe�cient theorem and Künneth formula for homology

Instead of Hom, we apply ⊗ to a free resolution 0 → 𝐹1 → 𝐹0 → 𝐻 → 0.
This operation is right exact. Recall that, by similar idea as Ext, we have used
Tor to measure its non-exactness, i.e. Tor is the �rst (and the only non-trivial)
homology of the new complex. For the reader's convenience we record Theorem
3.151 again:

Theorem 4.24 (Universal Coe�cient Theorem). If 𝐶 is a chain complex of
free abelian groups, then there are natural short exact sequences

0→ 𝐻𝑛 (𝐶) ⊗ 𝐺 → 𝐻𝑛 (𝐶,𝐺) → Tor(𝐻𝑛−1(𝐶), 𝐺) → 0

for all 𝑛. These sequences split, though not naturally.
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Finally, we want to remark that the universal coe�cient theorem in homology
is a special case of the Künneth theorem. We �rst introduce the tensor products
of chain complexes.

Let (𝐶, 𝜕) and (𝐷, 𝜕) be chain complexes, where 𝐶𝑖 and 𝐷𝑖 are zero for 𝑖 < 0.
The tensor product of chain complexes is

(𝐶 ⊗ 𝐷)𝑛 = ⊕𝑝+𝑞=𝑛𝐶𝑝 ⊗ 𝐷𝑞,

with di�erential

𝜕 (𝑐𝑝 ⊗ 𝑑𝑞) = (𝜕𝑐𝑝) ⊗ 𝑑𝑞 + (−1) 𝑝𝑐𝑝 ⊗ (𝜕𝑑𝑞).

This indeed de�nes a chain complex since

𝜕𝜕 (𝑐𝑝⊗𝑑𝑞) = 𝜕 ((𝜕𝑐𝑝)⊗𝑑𝑞+(−1) 𝑝𝑐𝑝⊗(𝜕𝑑𝑞)) = (−1) 𝑝−1𝜕𝑐𝑝⊗𝜕𝑑𝑞+(−1) 𝑝𝜕𝑐𝑝⊗𝜕𝑑𝑞 = 0.

Tensor product of chain maps is de�ned as ( 𝑓 ⊗𝑔) (𝑐𝑝 ⊗𝑑𝑞) = ( 𝑓𝑝𝑐𝑝 ⊗ (𝑔𝑞𝑑𝑞).
An easy checking shwos it commutes with 𝜕. We also know that chain homotopy
is compatible with tensor products.

Theorem 4.25 (Künneth formula). For a free chain complex 𝐶 and an arbi-
trary chain complex 𝐷, there is a natural short exact sequence

0→ ⊕𝑝+𝑞=𝑛𝐻𝑝 (𝐶) ⊗𝐻𝑞 (𝐷) → 𝐻𝑛 (𝐶 ⊗𝐷) → ⊕𝑝+𝑞=𝑛−1 Tor(𝐻𝑝 (𝐶), 𝐻𝑞 (𝐷)) → 0.

It splits but not canonically.

The proof of this theorem requires acyclic models theorem which is beyond
scope of this note: see the note �Acyclic Models� (in preparation.)

Note that we obtain Theorem 4.24 by taking 𝐷 as the complex 𝐷0 = 𝐺 and
𝐷𝑖 = 0 for 𝑖 ≠ 0 in Theorem 4.25.

4.1.5 Singular cohomolgy

This is an explicit example in geometry of choosing the chain complex and
cochain complex.

Recall that a standard 𝑛-simplex is the convex set Δ𝑛 ⊂ R𝑛+1 consisting of
all (𝑛 + 1)-tuples of real numbers (𝑣0, . . . , 𝑣𝑛) with 𝑣𝑖 ≥ 0, 𝑣0 + · · · + 𝑣𝑛 = 1.
A singular 𝑛-simplex in 𝑋 is a continuous map 𝜎 : Δ𝑛 → 𝑋. The singu-
lar chain group 𝑆𝑛 (𝑋) is the free abelian group generated by the singular 𝑛-
simplices. The boundary homomorphism 𝜕 : 𝑆𝑛 (𝑋) → 𝑆𝑛−1(𝑋) is de�ned as
𝜕 (𝜎) = ∑

𝑖 (−1)𝑖𝜎[𝑣0, · · · , 𝑣̂𝑖 , . . . , 𝑣𝑛] where 𝑣̂𝑖 implies to omit 𝑣𝑖. Then we were
able to de�ne the singular homology group of 𝑋, and denoted by 𝐻𝑛 (𝑋).

De�nition 4.26. The singular cohomology of a space 𝑋, denoted 𝐻𝑞 (𝑋;𝐺) 𝑞 ≥
0, is the cohomology of the singular cochain complex 𝑆𝑞 (𝑋) = Hom(𝑆𝑞 (𝑋), 𝐺)
with the coboundary 𝛿 : 𝑆𝑞 (𝑋;𝐺) → 𝑆𝑞+1 (𝑋;𝐺) being the dual of 𝜕, thus any

𝜙 ∈ 𝑆𝑞 (𝑋;𝐺), 𝛿𝜙 is the composition 𝑆𝑞+1 (𝑋)
𝜕−→ 𝑆𝑞 (𝑋)

𝜙
−→ 𝐺.
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Explicitly, for 𝜎 : Δ𝑛+1 → 𝑋,

𝛿𝜙(𝜎) =
∑︁
𝑖

(−1)𝑖𝜙(𝜎 | [𝑣0 ,...𝑣̂𝑖 ,...,𝑣𝑛+1 ]).

Geometrically, we can understand a singular cochain 𝜉 ∈ 𝑆𝑞 (𝑋, 𝐺) as a
function that assigns a scalar to every singular simplex 𝜎 : Δ𝑞 → 𝑋. The
pairing

𝑆𝑞 (𝑋;𝐺) × 𝑆𝑞 (𝑋;𝐺) → 𝐺

is sometimes called integration, because it is an algebraic analogue of integrating
a di�erential form over parametrised manifold.

For example,

� A 0-cochain is simply a function (of sets) 𝑓 : 𝑋 → 𝑅, since 0-simplices
correspond to points in 𝑋.

� A 1-cochain assigns a scalar to every continuous path 𝛾 : [0, 1] → 𝑋.

� A 2-cochain assigns a scalar to every map 𝜎 : Δ2 → 𝑋.

The analogue of Stoke's Theorem follows just by de�nition. If 𝛼 ∈ 𝑆𝑞 (𝑋;𝐺) and
𝜉 ∈ 𝑆𝑞−1(𝑋;𝐺) then

𝜉 (𝜕𝛼) = (𝛿𝜉) (𝛼).

or in integral notation ∫
𝜕𝛼

𝜉 =

∫
𝛼

𝛿𝜉.

For example, given a 1 simplex 𝛾 : [0, 1] → 𝑋 and 0-cochain 𝑓 : 𝑋 → 𝑅, we
have ∫

𝛾

𝛿 𝑓 =

∫
𝜕𝛾

𝑓 = 𝑓 (𝛾(1) − 𝛾(0)) = 𝑓 (𝛾(1)) − 𝑓 (𝛾(0)).

This example really illustrate why the boundary of a 1-simplex requires signs:
to recover the Fundamental Theorem of Calculus.

An easy consequence is that this integration pairing descends to homology
and cohomology: we will discuss this in 4.2.1.

Recall that in multivariate calculus, you multiply (wedge) di�erential forms
together, and cohomology becomes a ring. This is still true in more general
approaches such as singular cohomology. On the homology side, one has an
intersection pairing, but this is harder to describe and only available for really
�nice� spaces.

Perhaps another feature of cohomology worth mentioning is that is con-
travariant: cohomology classes pullback from the target to the source under a
map of spaces. This important in the theory of characteristic classes, where
such classes are pulled back from to maps to certain universal spaces. Such
classes measure the amount of �twisting� of bundles.
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For a pair (𝑋, 𝐴), we could also talk about relative groups. Let 𝑆𝑞 (𝑋, 𝐴) =
𝑆𝑞 (𝑋)/𝑆𝑞 (𝐴) and 𝑆𝑞 (𝑋, 𝐴;𝐺) = Hom(𝑆𝑞 (𝑋, 𝐴);𝐺). The elements of 𝑆𝑞 (𝑋, 𝐴;𝐺)
are 𝑛-cochains taking the value 0 on singular 𝑛-simplices in 𝐴. Thus

. . .→ 𝑆𝑞−1(𝑋, 𝐴;𝐺) → 𝑆𝑞 (𝑋, 𝐴;𝐺) → 𝑆𝑞+1 (𝑋, 𝐴;𝐺) → · · ·

is obtained by dualising the singular chain complex of 𝑋.
Hence we have relative groups 𝐻• (𝑋, 𝐴;𝐺) := 𝐻 (𝑆• (𝑋, 𝐴;𝐺)). A map of pairs

𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) induces homomorphisms 𝑓 • : 𝑆• (𝑌, 𝐵;𝐺) → 𝑆• (𝑋, 𝐴;𝐺) and
𝐻• ( 𝑓 ) : 𝐻• (𝑌, 𝐵;𝐺) → 𝐻• (𝑋, 𝐴;𝐺).

We could describe relative cohomology groups in terms of exact sequences.
Recall that the short exact sequence

0→ 𝑆𝑞 (𝐴)
𝑖−→ 𝑆𝑞 (𝑋)

𝑗
−→ 𝑆𝑞 (𝑋, 𝐴) → 0

splits. By the splitting exactness of Hom functor, the dual

0← 𝑆𝑞 (𝐴, 𝐺) 𝑖∗←− 𝑆𝑞 (𝑋, 𝐺)
𝑗∗

←− 𝑆𝑞 (𝑋, 𝐴;𝐺) ← 0

is a split exact sequence as well. Since 𝑖∗ and 𝑗∗ commute with 𝛿, it induces a
long exact sequence of cohomolgy groups

· · · → 𝐻𝑞 (𝑋, 𝐴;𝐺)
𝑗∗

−→ 𝐻𝑞 (𝑋;𝐺) 𝑖
∗
−→ 𝐻𝑞 (𝐴;𝐺) 𝛿−→ 𝐻𝑞+1 (𝑋, 𝐴;𝐺) → · · · .

Let us describe the connecting homomorphism 𝐻𝑛 (𝐴;𝐺) 𝛿−→ 𝐻𝑛+1 (𝑋, 𝐴;𝐺). For
𝜙 ∈ 𝑍𝑛 (𝐴;𝐺), we �rst extend it to a cochain 𝜙 ∈ 𝑆𝑛 (𝑋;𝐺), by assigning the
value 0 on singular simplices not in 𝐴. Then 𝛿𝑋 (𝜙) = 𝜙𝜕 ∈ 𝑆𝑛+1 (𝑋;𝐺). It
is 𝑆𝑛+1 (𝑋, 𝐴;𝐺) because the original 𝜙 is a cocycle in 𝐴, i.e taking the value
0 in 𝐵𝑛 (𝐴), which means 𝛿𝑋 (𝜙) = 𝜙𝜕 takes the value 0 on 𝑆𝑛+1 (𝐴). Fi-
nally it is 𝑍𝑛+1 (𝑋, 𝐴;𝐺) because 𝛿𝑋,𝐴(𝛿𝑋𝜙) = 𝛿𝑋 (𝛿𝑋𝜙) = 0. Its class [𝛿𝑋𝜙] ∈
𝐻𝑛+1 (𝑋, 𝐴;𝐺) is 𝛿[𝜙].

A more general long exact sequence is for a triple (𝑋, 𝐴, 𝐵), induced by

0← 𝑆𝑞 (𝐴, 𝐵;𝐺) 𝑖∗←− 𝑆𝑞 (𝑋, 𝐵;𝐺)
𝑗∗

←− 𝑆𝑞 (𝑋, 𝐴;𝐺) ← 0

When 𝐵 is a point, it induces the long exact sequence for reduced cohomology.

4.1.6 The Eilenberg-Steenrod Axioms for cohomology

For simplicity, we omit the coe�cient 𝐺 in our notation. A cohomology theory
consists of 3 functions:

1. For any integer 𝑛 ≥ 0 and any pair of spaces (𝑋, 𝐴), we have an abelian group
𝐻𝑛 (𝑋, 𝐴).

2. For any integer 𝑛 ≥ 0 and any map of pairs 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) ( 𝑓 maps 𝐴
to 𝐵), we obtain homomorphism 𝐻 ( 𝑓 )𝑛 : 𝐻𝑛 (𝑌, 𝐵) → 𝐻𝑛 (𝑋, 𝐴).
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3. For any integer 𝑛 ≥ 0 and any pair of spaces (𝑋, 𝐴), we have a connecting
homomorphism 𝛿 : 𝐻𝑛 (𝐴) → 𝐻𝑛+1 (𝑋, 𝐴).

These functions satisfy the following 7 axioms:

1. Unit : If id : (𝑋, 𝐴) → (𝑋, 𝐴) is the identity, 𝐻 (id) is the identity.

2. Composition: 𝐻 (𝑔 ◦ 𝑓 ) = 𝐻 ( 𝑓 ) ◦ 𝐻 (𝑔).

3. Naturality : Given 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵), the following diagramme commutes:

𝐻𝑛 (𝐴)

𝛿

��

𝐻𝑛 (𝐵)
𝐻 ( 𝑓 )𝑛 |𝐴oo

𝛿

��
𝐻𝑛+1 (𝑋, 𝐴) 𝐻𝑛+1 (𝑌, 𝐵)

𝐻 ( 𝑓 )𝑛+1
oo

4. Exactness: The following sequence is exact:

· · · → 𝐻𝑛 (𝑋, 𝐴)
𝐻 ( 𝑗 )
−−−−→ 𝐻𝑛 (𝑋)

𝐻 (𝑖)
−−−−→ 𝐻𝑛 (𝐴) 𝛿−→ 𝐻𝑛+1 (𝑋, 𝐴) → · · · ,

where 𝑖 : 𝐴→ 𝑋 and 𝑗 : (𝑋,∅) → (𝑋, 𝐴) are inclusions.

5. Homotopy : If 𝑓 ≃ 𝑔 are homotopic maps of pairs, then 𝐻 ( 𝑓 ) = 𝐻 (𝑔).

6. Excision: Given (𝑋, 𝐴) and 𝑈 ⊂ 𝑋 such that 𝑈 ⊂ int(𝐴). Then the inclusion
𝑖 : (𝑋 \𝑈, 𝐴 \𝑈) → (𝑋, 𝐴) induces isomorphisms in cohomology.

7. Dimension: Let 𝑃 be a one-point space, then

𝐻𝑛 (𝑃) =
{
𝐺 𝑛 = 0

0 𝑛 ≠ 0

There are many generalised cohomology theories which satisfy all the ax-
ioms except probably the dimension axiom. The Eilenberg-Steenrod uniqueness
theorem says that there is a unique cohomology theory satisfying all the axioms
in the category of �nite cellular spaces. Unfortunately the proof is beyond the
scope of the current note. But we could prove a weaker version.

Suppose 𝐻𝑛 (𝑋, 𝐴) and 𝐾𝑛 (𝑋, 𝐴) are cohomology theories, and 𝜙 : 𝐻• (𝑋, 𝐴) →
𝐾• (𝑋, 𝐴) is a natural transformation of cohomology theories, i.e. it commutes
with induced homomorphisms and with coboundary homomorphisms in long
exact sequence of pairs.

Theorem 4.27 (Weak form of Eilenberg-Steenrod Uniqueness). Suppose 𝜙 :
𝐻• (𝑋) → 𝐾• (𝑋) is an isomorphism when 𝑋 = {pt}. Then 𝜙 is an isomorphism
for any �nite cellular spaces.

We will give a proof in ��4.1.7.
A few more words about Eilenberg-Steenrod axioms. If we want to prove

uniqueness for a larger category, more conditions are needed for the uniqueness.
For the category of cellular spaces, an eighth axiom is added to guarantee its
uniqueness.
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Milnor's Additivity axiom in �On axiommatic homology theory� Let
𝑋 = ⊔𝑋𝛼 be disjoint union. Then the induced homomorphism

∏
𝛼 𝑖
∗
𝛼 : 𝐻𝑛 (𝑋) →∏

𝛼 𝐻
𝑛 (𝑋𝛼) is an isomorphism.

This axiom has force only if there are in�nitely many 𝑋𝛼. The �nite sum
case is a corollary of the following Mayer-Vietoris Sequence. There are also
examples of cohomology theories which are not additive (James and Whitehead:
�Homology with zero coe�ents� ).

4.1.7 Mayer-Vietoris Sequences

By using Eilenberg-Steenrod Axioms, we can form the Mayer-Vietoris Sequence
for cohoomoogy just as we did for homology. The model in our mind is 𝑋 = 𝐴∪𝐵
with 𝐴 and 𝐵 open in 𝑋. But for the ease of application, we use the following
setting.

De�nition 4.28. For 𝑈 ⊂ 𝐴 ⊂ 𝑋, the map (𝑋 \𝑈, 𝐴\𝑈) → (𝑋, 𝐴) is an excision
if the induced homomorhism 𝐻𝑛 (𝑋, 𝐴) → 𝐻𝑛 (𝑋 \ 𝑈, 𝐴 \ 𝑈) is an isomorphism
for all 𝑛.

Example 4.29. The inclusion (D𝑛+, S𝑛−1) → (S𝑛,D𝑛−) is an excision. We cannot
apply the Excision Axiom directly. But look at the exact sequences from exact-
ness axiom corresponding to the two pairs, we have 𝐻𝑖+1 (S𝑛,D𝑛−) = 𝐻𝑖+1 (S𝑛) =
𝐻𝑖 (S𝑛−) = 𝐻𝑖+1 (D𝑛+, S𝑛−1) when 𝑖 > 0 by noticing 𝐻𝑛 (D𝑛) = 𝐻𝑛 (pt). The rest
of two identities also follow from the exact sequence by knowing 𝐻0 (D𝑛) =

𝐻0 (S𝑛) = 𝐺.
De�nition 4.30. Suppose 𝐴, 𝐵 ⊂ 𝑋, such that

𝐴 ∪ 𝐵 = 𝑋

Both (𝐴, 𝐴 ∩ 𝐵) → (𝑋, 𝐵) and (𝐵, 𝐴 ∩ 𝐵) → (𝑋, 𝐴) are excisions.
Then (𝑋; 𝐴, 𝐵) is an excisive triad.

Example 4.31. Let 𝑋 = 𝐴 ∪ 𝐵 with 𝐴 and 𝐵 open in 𝑋. Then (𝐴, 𝐴 ∩ 𝐵) =
(𝑋 \ 𝑈, 𝐵 \ 𝑈) where 𝑈 = 𝐵 \ (𝐴 ∩ 𝐵). Since 𝑋 \ 𝑈 = 𝐴, 𝑈 is closed and
𝑈 ⊂ 𝐵 =

∫
(𝐵). Then the excision axiom shows this is an excision.

Example 4.32. (S𝑛;D𝑛+,D𝑛−) is an excisive triad.

Theorem 4.33. Suppose (𝑋; 𝐴, 𝐵) is an excisive triad. Then there is a long
exact sequence

· · · → 𝐻𝑛 (𝑋)
( 𝑗∗
𝐴
, 𝑗∗
𝐵
)

−−−−−−→ 𝐻𝑛 (𝐴) ⊕ 𝐻𝑛 (𝐵)
𝑖∗
𝐴
−𝑖∗
𝐵−−−−−→ 𝐻𝑛 (𝐴 ∩ 𝐵) 𝛿−→ 𝐻𝑛+1 (𝑋) → · · ·

Recall that a similar Mayer-Vietoris sequence was derived for homology as
the long exact sequence associated to the short exact sequence

0→ 𝐶∗ (𝐴 ∩ 𝐵) → 𝐶∗ (𝐴) ⊕ 𝐶∗ (𝐵) → 𝐶∗ (𝐴 + 𝐵) → 0.

We could prove it similarly for singular cohomology say, but not for a general
cohomology theory.

We need the following purely algebraic lemma:
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Lemma 4.34 (Barratt-Whitehead). Suppose we have the following commuta-
tive diagramme with exact rows

· · · // 𝐴𝑛
𝑓𝑛 //

𝛼𝑛

��

𝐵𝑛
𝑔𝑛 //

𝛽𝑛
��

𝐶𝑛
ℎ𝑛 //

𝛾𝑛

��

𝐴𝑛−1 //

𝛼𝑛−1
��

· · ·

· · · // 𝐴
′
𝑛

𝑓
′
𝑛

// 𝐵
′
𝑛

𝑔
′
𝑛

// 𝐶
′
𝑛

ℎ
′
𝑛

// 𝐴
′
𝑛−1

// · · ·

in which every third map 𝛾𝑖 : 𝐶𝑖 → 𝐶
′
𝑖
is an isomorphism. Then there exists a

long exact sequence

· · · → 𝐴𝑛
( 𝑓𝑛 ,𝛼𝑛 )−−−−−−→ 𝐵𝑛 ⊕ 𝐴𝑛

𝛽𝑛− 𝑓
′
𝑛−−−−−→ 𝐵

′
𝑛

ℎ𝑛𝛾
−1
𝑛 𝑔

′
𝑛−−−−−−−→ 𝐴𝑛−1 → · · ·

This is a standard diagramme chasing argument, and we only sketch the
proof. (See The First Non-Vanishing Group of an (n+l)-AD M. Barratt, J.
Whitehead Published 1 July 1956 Mathematics Proceedings of The London
Mathematical Society.)

Proof. That this is a chain complex is easy to check in terms of commutativity
of the diagramme. To check the exactness, we have 3 parts:

1. ker(𝛽𝑛 − 𝑓
′
𝑛) ⊂ im( 𝑓𝑛, 𝛼𝑛): Assume 𝛽𝑛 (𝑏) = 𝑓

′
𝑛 (𝑑).

2. ker(ℎ𝑛𝛾−1𝑛 𝑔
′
𝑛) ⊂ im(𝛽𝑛 − 𝑓

′
𝑛): Let 𝑒 ∈ ker(ℎ𝑛𝛾−1𝑛 𝑔

′
𝑛). By exactness at 𝐶𝑛, we

have 𝑏 ∈ 𝐵𝑛 such that 𝑔𝑛 (𝑏) = 𝛾−1𝑛 𝑔
′
𝑛 (𝑒). So 𝛽𝑛 (𝑏) − 𝑒 ∈ ker 𝑔

′
𝑛 = im 𝑓

′
𝑛.

Choose any element 𝑑 in it, we have 𝑒 = 𝛽𝑛 (𝑏) − 𝑓
′
𝑛 (𝑑).

3. ker( 𝑓𝑛−1, 𝛼𝑛−1) ⊂ im(ℎ𝑛𝛾−1𝑛 𝑔
′
𝑛): First �nd an element in 𝐶𝑛. Then an element

in 𝐵
′
𝑛.

□

Proof. (of Theorem 4.33) We have

· · · // 𝐻𝑛−1(𝑋)
𝑗∗
𝐵 //

𝑗∗
𝐴

��

𝐻𝑛−1(𝐵) 𝛿 //

𝑖∗
𝐵

��

𝐻𝑛 (𝑋, 𝐵) ℎ𝑛 //

𝛾𝑛

��

𝐻𝑛 (𝑋) //

𝑗∗
𝐴

��

· · ·

· · · // 𝐻𝑛−1(𝐴)
𝑖∗
𝐴

// 𝐻𝑛−1(𝐴 ∩ 𝐵)
𝛿
// 𝐻𝑛 (𝐴, 𝐴 ∩ 𝐵)

ℎ
′
𝑛

// 𝐻𝑛 (𝐴) // · · ·

where 𝛾𝑛 is an isomorphism since (𝑋; 𝐴, 𝐵) is an excisive triad. Hence we have
the Mayer-Vietoris sequence by Barratt-Whitehead lemma. □

Example 4.35. (Unreduced cones and unreduced suspensions) Given a space 𝑋,
the unreduced cone of 𝑋 is

𝐶 (𝑋) := 𝑋 × [0, 1]
(𝑥, 1) ∼ (𝑦, 1),∀𝑥, 𝑦 ∈ 𝑋
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and the unreduced suspension is

Σ(𝑋) := 𝑋 × [0, 1]
(𝑥, 0) ∼ (𝑦, 0), (𝑥, 1) ∼ (𝑦, 1),∀𝑥, 𝑦 ∈ 𝑋

Then (Σ(𝑋);𝐶+ (𝑋), 𝐶− (𝑋)) is an excisive triad. Use the Mayer-Vietoriis se-
quence and the fact 𝐶+ (𝑋) ≃ 𝐶− (𝑋) ≃ pt, we have 𝐻𝑘 (𝑋) = 𝐻𝑘+1(Σ𝑋). If 𝑋 is
connected, 𝐻1 (Σ𝑋) = 0 and 𝐻0 (Σ𝑋) = Z.

As a special case, ΣS𝑛 = S𝑛+1, so it can be used to calculate the cohomology
of S𝑛 inductively. The reader may wan to to complete the calculation.

Given a continuous map 𝑓 : S𝑛−1 → 𝐴 for 𝑛 ≥ 1. We have

𝑋 = 𝐶 ( 𝑓 ) := 𝐴 ∪ 𝑓 D𝑛 =
𝐴 ⊔ D𝑛

𝑓 (𝑥) ∼ 𝑥,∀𝑥 ∈ S𝑛−1 .

Notice that if 𝑓 ≃ 𝑔 : S𝑛−1 → 𝐴, then 𝐶 ( 𝑓 ) ≃ 𝐶 (𝑔). Also 𝑓 extends to a map
𝑓 : D𝑛 → 𝐶 ( 𝑓 ).

Proposition 4.36. 1. The inclusion 𝐴 → 𝑋 induces isomorphisms 𝐻𝑞 (𝐴) =
𝐻𝑞 (𝑋) for 𝑞 ≠ 𝑛, 𝑛 − 1.

2. There is an exact sequence

0→ 𝐻𝑛−1(𝑋) → 𝐻𝑛−1(𝐴)
𝑓 ∗

−−→ 𝐻𝑛−1(S𝑛−1) → 𝐻𝑛 (𝑋) → 𝐻𝑛 (𝐴) → 0

Proof. Use the cohomology sequence for pairs (or Mayer-Vietoris sequence). For
both items, use 𝐻𝑖 (𝑋, 𝐴) = 𝐻𝑖 (D𝑛, S𝑛−1) = 𝐻𝑖−1 (S𝑛−1) and previous calculation
for 𝐻∗ (S𝑛). □

Example 4.37. Recall C𝑃𝑛 = (C𝑛+1 \0)/∼ where 𝑥 ∼ 𝑦 if there exists 𝜆 ∈ C\ such
that 𝜆𝑥 = 𝑦. We write C𝑃𝑛 = C𝑃𝑛−1 ∪ 𝑓 D2𝑛, where 𝑓 : S2𝑛−1 → C𝑃𝑛−1 is the
natural factorisation map. The above sequence tells us hat for 0 < 𝑚 < 2𝑛,

0→ 𝐻2𝑛−1(S2𝑛−1) → 𝐻2𝑛 (C𝑃𝑛) → 0,

0→ 𝐻𝑚 (C𝑃𝑛) → 𝐻𝑚 (C𝑃𝑛−1) → 0.

𝐻0 (C𝑃𝑛) = Z since it is path connected. By induction we have

𝐻𝑚 (C𝑃𝑛) =
{
Z 𝑚 = 0, 2, . . . , 2𝑛

0 otherwise.

The proof of Theorem 4.27 Now we can �nish the proof as announced.

Proof. We use induction. The dimension axiom gives us the dimension 0 case.
Assume it is done for all complexes with dimension less than or equal to 𝑛 − 1,
and 𝑋 be a cellular space of diimension 𝑛. Note that 𝑋 is obtained by attaching
𝑛-cells to an (𝑛− 1) cellular space. So we could do these attachment one by one
(but 𝐴 will possibly have dimension 𝑛 then).
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Hence the statement is reduced to the following situaton: Suppose the result
is true for 𝐴, and prove the statement is true for 𝑋 = 𝐶 ( 𝑓 ) := 𝐴 ∪ 𝑓 D𝑛. Item
1 of Proposition 4.36 tells us that 𝜙 : 𝐻𝑞 (𝑋)𝑡𝑜𝐾𝑞 (𝑋) is an isomorphism for
𝑞 ≠ 𝑛 − 1, 𝑛. For the rest of 𝑞's, look at

0 // 𝐻𝑛−1(𝑋) //

��

𝐻𝑛−1(𝐴) //

�

��

𝐻𝑛−1(S𝑛−1) //

𝛼

��

𝐻𝑛 (𝑋) //

��

𝐻𝑛 (𝐴) //

�

��

0

0 // 𝐾𝑛−1(𝑋) // 𝐾𝑛−1(𝐴) // 𝐾𝑛−1(S𝑛−1) // 𝐾𝑛 (𝑋) // 𝐾𝑛 (𝐴) // 0

As we have shown in the suspension calculation, 𝛼 is also an isomorphism. So
the �ve Lemma completes the proof. □

The �ve lemma also shows that 𝐻• (𝑋, 𝐴) = 𝐾• (𝑋, 𝐴). Notice that for in�nite
cellular spaces, we need Milnor additivity in the above argument. A telescope
argument (i.e, taking colimits) could reduce an in�nite dimensional case to a
�nite dimensional case.

4.2 Products

In this section, we take the coe�cients in a commutative ring 𝑅 with a unit.
The most common choices are Z, Z/𝑛Z or Q.

4.2.1 Cup Product for Singular Cohomology

There is a product structure in cohomology. We start with singular cohomology.
Let 𝜎 : Δ𝑝+𝑞 → 𝑋 be a singular simplex. By the front 𝑝-face or 𝑝𝜎, we mean
𝜎 | [𝑣0 ,...,𝑣𝑝 ] . Similarly, by the back 𝑞-face or 𝜎𝑞, we mean 𝜎 | [𝑣𝑝 ,...,𝑣𝑝+𝑞 ] .

Then we de�ne the cup product at chain level:

De�nition 4.38. Given 𝜙 ∈ 𝑆𝑝 (𝑋) and 𝜓 ∈ 𝑆𝑞 (𝑋), the cup product 𝜙 ∪ 𝜓 ∈
𝑆𝑝+𝑞 (𝑋) is de�ned by

(𝜙 ∪ 𝜓) (𝜎) = 𝜙(𝜎 | [𝑣0 ,...,𝑣𝑝 ]) · (𝜓 | [𝑣𝑝 ,...,𝑣𝑝+𝑞 ]).

The reader may want to consider S1 ∨ S1 ∨ S2 and 𝑇2 = S1 × S1 and apply
the cup product on them to grasp the idea. (Note that their homology groups
are isomorphic, that is, homology can't distinguish these non-homeomorphic
spaces.)

Lemma 4.39. For 𝜎 : 𝑆𝑝 (𝑋) and 𝜓 ∈ 𝑆𝑞 (𝑋), we have

𝛿(𝜙 ∪ 𝜓) = 𝛿𝜙 ∪ 𝜓 + (−1) 𝑝𝜙 ∪ 𝛿𝜓.
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Proof. For 𝜎 : Δ𝑚+𝑛+1 → 𝑋, we have

𝛿𝜙 ∪ 𝜓(𝜎) =
𝑝+1∑︁
𝑖=0

(−1)𝑖𝜙(𝜎 | [𝑣0 ,...,𝑣̂𝑖 ,...,𝑣𝑝+1 ])𝜓(𝜎 | [𝑣𝑝+1 ,...,𝑣𝑝+𝑞+1 ])

(−1) 𝑝𝜙 ∪ 𝛿𝜓(𝜎) =
𝑝+𝑞+1∑︁
𝑖=𝑝

(−1)𝑖𝜙(𝜎 | [𝑣0 ,...,𝑣𝑝 ])𝜓(𝜎 | [𝑣𝑝 ,...,𝑣̂𝑖 ,...,𝑣𝑝+𝑞+1 ])

Add and cancel the last of the �rst sum and the �rst of the second sum, we have
𝛿(𝜙 ∪ 𝜓). □

Corollary 4.40. There is a well de�ned cup product

𝐻 𝑝 (𝑋) × 𝐻𝑞 (𝑋) ∪−→ 𝐻 𝑝+𝑞 (𝑋).

Proof. 𝑍 𝑝 (𝑋) × 𝑍𝑞 (𝑋) ∪−→ 𝑍 𝑝+𝑞 (𝑋). If 𝜙 ∈ 𝑍 𝑝 (𝑋), 𝜙 ∪ 𝛿𝜓 = (−1)𝑘𝛿(𝜙 ∪ 𝜓), thus
𝑍 𝑝 (𝑋) × 𝐵𝑞 (𝑋) ∪−→ 𝐵𝑝+𝑞 (𝑋). Similarly 𝐵𝑝 (𝑋) × 𝑍𝑞 (𝑋) ∪−→ 𝐵𝑝+𝑞 (𝑋) □

Relative cup products Let (𝑋, 𝐴) be a pair of spaces. The formula which
speci�es the cup product by its e�ect on a simplex

(𝜑 ∪ 𝜓) (𝜎) = 𝜑(𝜎 | [𝑒0 ,...,𝑒𝑝 ]) · (𝜓 |𝜎 [𝑒𝑝 ,...,𝑒𝑝+𝑞 ])

extends to relative cohomology.
For, if 𝜎 : Δ𝑝+𝑞 → 𝑋 has image in 𝐴, then so does any restriction of 𝜎.

Thus, if either 𝜑 or 𝜓 vanishes on chains with image in 𝐴, then so does 𝜑 ∪ 𝜓.
Hence we get relative cup product maps

𝐻 𝑝 (𝑋; 𝑅) × 𝐻𝑞 (𝑋, 𝐴; 𝑅) → 𝐻 𝑝+𝑞 (𝑋, 𝐴; 𝑅)
𝐻 𝑝 (𝑋, 𝐴; 𝑅) × 𝐻𝑞 (𝑋; 𝑅) → 𝐻 𝑝+𝑞 (𝑋, 𝐴; 𝑅)

𝐻 𝑝 (𝑋, 𝐴; 𝑅) × 𝐻𝑞 (𝑋, 𝐴; 𝑅) → 𝐻 𝑝+𝑞 (𝑋, 𝐴; 𝑅).

More generally, assume we have two open subsets 𝐴 and 𝐵 of 𝑋. Then the
formula for 𝜑 ∪ 𝜓 on cochains implies that the cup product yields a map

𝑆𝑝 (𝑋, 𝐴; 𝑅) × 𝑆𝑞 (𝑋, 𝐵; 𝑅) → 𝑆𝑝+𝑞 (𝑋, 𝐴 + 𝐵; 𝑅)

where 𝑆𝑝 (𝑋, 𝐴+𝐵; 𝑅) denotes the subgroup of 𝑆𝑝 (𝑋; 𝑅) of cochains which vanish
on sums of chains in 𝐴 and chains in 𝐵.

The natural inclusion

𝑆𝑝 (𝑋, 𝐴 ∪ 𝐵; 𝑅), ↩→ 𝑆𝑝 (𝑋, 𝐴 + 𝐵; 𝑅)

induces an isomorphism in cohomology. For we have a map of long exact coho-
mology sequences

𝐻 𝑝 (𝐴 ∪ 𝐵) //

��

𝐻 𝑝 (𝑋) //

��

𝐻 𝑝 (𝑋, 𝐴 ∪ 𝐵) //

��

𝐻 𝑝+1(𝐴 ∪ 𝐵) //

��

𝐻 𝑝+1(𝑋)

��
𝐻 𝑝 (𝐴 + 𝐵) // 𝐻 𝑝 (𝑋) // 𝐻 𝑝 (𝑋, 𝐴 + 𝐵) // 𝐻 𝑝+1(𝐴 + 𝐵) // 𝐻 𝑝+1(𝑋)
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where we omit the coe�cients. The subdivision argument 3.47 and our results
on cohomology of free chain complexes imply that 𝐻 𝑝 (𝐴∪𝐵; 𝑅) �−→ 𝐻 𝑝 (𝐴+𝐵; 𝑅)
is an isomorphism for every 𝑝. Thus, the Five-Lemma implies that

𝐻 𝑝 (𝑋, 𝐴 ∪ 𝐵; 𝑅) �−→ 𝐻 𝑝 (𝑋, 𝐴 + 𝐵; 𝑅)

is an isomorphism as well. Thus composition with this isomorphism gives a cup
product map

𝐻 𝑝 (𝑋, 𝐴; 𝑅) × 𝐻𝑞 (𝑋, 𝐵; 𝑅) → 𝐻 𝑝+𝑞 (𝑋, 𝐴 ∪ 𝐵; 𝑅).

Now one can check that all the formulae we proved for the cup product also
hold for the relative cup products.

Lemma 4.41. For a map 𝑓 : 𝑋 → 𝑌 , the induced maps 𝐻𝑛 ( 𝑓 ) : 𝐻𝑛 (𝑌 ; 𝑅) →
𝐻𝑛 (𝑋; 𝑅) satisfy 𝐻𝑛 ( 𝑓 ) (𝛼 ∪ 𝛽) = 𝐻𝑛 ( 𝑓 ) (𝛼) ∪ 𝐻𝑛 ( 𝑓 ) (𝛽), and similarly in the
relative case.

Proof. Let 𝛼 and 𝛽 represented by 𝜙 ∈ 𝑆𝑝 and 𝜓 ∈ 𝑆𝑞 respectively. Let 𝜎 :
Δ𝑝+𝑞 → 𝑋. Then 𝑓 (𝜎) is a (𝑝 + 𝑞)-simplex in 𝑌 . So

𝐻∗ ( 𝑓 ) (𝜙 ∪ 𝜓) (𝜎) = (𝜙 ∪ 𝜓) ( 𝑓 (𝜎))
= 𝜙( 𝑓 (𝜎 | [𝑣0 ,...,𝑣𝑝 ]) (𝜓(𝜎) | [𝑣𝑝 ,...,𝑣𝑝+𝑞 ])
= 𝐻∗ ( 𝑓 ) (𝜙) (𝜎 | [𝑣0 ,...,𝑣𝑝 ])𝐻∗ ( 𝑓 )𝜓(𝜎 | [𝑣𝑝 ,...,𝑣𝑝+𝑞 ])
= 𝐻∗ ( 𝑓 ) (𝜙) (𝜎) ∪ 𝐻∗ ( 𝑓 ) (𝜓) (𝜎).

□

It is easy to check that the cup product is associative (even at chain level):
(𝜙 ∪ 𝜓) ∪ 𝜏 = 𝜙 ∪ (𝜓 ∪ 𝜏). We also know there is a unit: Let 1 ∈ 𝑆0 (𝑋) be the
function taking value 1 on any point of 𝑋, then 1 ∪ 𝑎 = 𝑎.

Proposition 4.42. If 𝛼 ∈ 𝐻 𝑝 (𝑋; 𝑅) and 𝛽 ∈ 𝐻𝑞 (𝑋; 𝑅) then

𝛼 ∪ 𝛽 = (−1) 𝑝𝑞𝛽 ∪ 𝛼.

Proving this proposition requires a substantial e�ort.

Proof. For a singular 𝑝-simplex 𝜎 : [𝑣0, . . . , 𝑣𝑝] → 𝑋, let 𝜎 = 𝜎 ◦ 𝑟 where 𝑟 is
the linear map determined by 𝑟 (𝑣𝑖) = 𝑣𝑛−𝑖. Then we de�ne 𝜌 : 𝑆𝑝 (𝑋) → 𝑆𝑝 (𝑋)
by 𝜌(𝜎) = 𝜖𝑝𝜎 where 𝜖𝑝 = (−1)

𝑝 (𝑝+1)
2 .

We want to show that 𝜌 is a chain map which is chain homotopic to the
identity. Once we have that, the theorem follows:

(𝑆∗ (𝜌)𝜙 ∪ 𝑆∗ (𝜌)𝜓) (𝜎) = 𝜙(𝜖𝑝𝜎 | [𝑣𝑝 ,...,𝑣0] ) 𝜖𝑞𝜓𝜎 | [𝑣𝑝+𝑞 ,...,𝑣𝑝 ])
𝑆∗ (𝜌∗) (𝜓 ∪ 𝜙) (𝜎) = 𝜖𝑝+𝑞𝜓(𝜎 | [𝑣𝑝+𝑞 ,...,𝑣𝑝 ])𝜙(𝜎 | [𝑣𝑝 ,...,𝑣0 ])
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with 𝜖𝑝+𝑞 = (−1) 𝑝𝑞𝜖𝑝𝜖𝑞, showing that

𝑆∗ (𝜌)𝜙 ∪ 𝑆∗ (𝜌)𝜓 = (−1) 𝑝𝑞𝑆∗ (𝜌∗) (𝜓 ∪ 𝜙)

at chain level. Since 𝜌 induces identity in cohomology, we have 𝛼∪𝛽 = (−1) 𝑝𝑞𝛽∪
𝛼 when passing to the cohomology level. Now the proof reduces to the following
two lemmas. □

Lemma 4.43. 𝜌 is a chain map.

Proof. For an 𝑛-simplex 𝜎,

𝜕𝜌(𝜎) = 𝜖𝑛
∑︁
𝑖

(−1)𝑖𝜎 | [𝑣𝑛 ,...,𝑣̂𝑛−𝑖 ,...,𝑣0 ]

𝜌𝜕 (𝜎) = 𝜌(
∑︁
𝑖

(−1)𝑖𝜎[𝑣0 ,...,𝑣̂𝑖 ...,𝑣𝑛 ])

= 𝜖𝑛−1
∑︁
𝑖

(−1)𝑛−𝑖𝜎[𝑣𝑛 ,...,𝑣̂𝑛−𝑖 ,...𝑣0 ]

They are equal since 𝜖𝑛 = (−1)𝑛𝜖𝑛−1. □

Lemma 4.44. The chain map 𝜌 de�ned above is chain homotopic to the iden-
tity, and so it induces the identity homomorphism in cohomology.

Proof. We need the fact that there is a natural division of [𝑣0 . . . 𝑣𝑛] × 𝐼 into
𝑛 + 1 simplices. (Note that the product of two simplices is not a simplex in
general.) If we denote (𝑣𝑖 , 0) by 𝑣𝑖 and (𝑣𝑖 , 1) by 𝑤𝑖, then these simplices are

𝜎𝑖 = [𝑣0, . . . , 𝑣𝑖 , 𝑤𝑖 , . . . 𝑤𝑛] .

Thus tracing out along the bottom face until the position 𝑖, then jumping to
the top face, tracing out the rest starting with the position 𝑖.

We de�ne the prism operator 𝑃 : 𝑆𝑛 (𝑋) → 𝑆𝑛+1 (𝑋) by

𝑃(𝜎) =
∑︁
𝑖

(−1)𝑖𝜖𝑛−𝑖 (𝜎 ◦ 𝜋) | [𝑣0 ,...,𝑣𝑖 ,𝑤𝑛 ,...,𝑤𝑖 ] ,

where 𝜋 : Δ × 𝐼 → Δ is a projection. We will leave out 𝜎 ◦ 𝜋 for the sake of
notational simplicity in the remainder of this proof.

𝜕𝑃(𝜎) =
∑︁
𝑗≤𝑖
(−1)𝑖 (−1) 𝑗𝜖𝑛−𝑖 [𝑣0, . . . , 𝑣̂ 𝑗 , . . . , 𝑣𝑖 , 𝑤𝑛, . . . , 𝑤𝑖]

+
∑︁
𝑗≥𝑖
(−1)𝑖 (−1)𝑖+1+𝑛− 𝑗𝜖𝑛−𝑖 [𝑣0, . . . , 𝑣𝑖 , 𝑤𝑛, . . . , 𝑤 𝑗 , . . . , 𝑤𝑖]

𝑃𝜕 (𝜎) =
∑︁
𝑖≤ 𝑗
(−1)𝑖 (−1) 𝑗𝜖𝑛−𝑖−1 [𝑣0, . . . , 𝑣𝑖 , 𝑤𝑛, . . . , 𝑤 𝑗 , . . . , 𝑤𝑖]

+
∑︁
𝑖≥𝑖
(−1)𝑖−1 (−1) 𝑗𝜖𝑛−𝑖 [𝑣0, . . . , 𝑣̂ 𝑗 , . . . , 𝑣𝑖 , 𝑤𝑛, . . . , 𝑤𝑖]
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Figure 4.1: Prism decomposition for 𝑛 = 1 and 𝑛 = 2

Since 𝜖𝑛−𝑖 = (−1)𝑛−𝑖𝜖𝑛−𝑖−1, the terms with 𝑖 ≠ 𝑗 cancel in the two sums. The
terms with 𝑗 = 𝑖 give

𝜖𝑛 [𝑤𝑛, . . . , 𝑤0] +
∑︁
𝑖>0

𝜖𝑛−𝑖 [𝑣0, . . . , 𝑣𝑖−1, 𝑤𝑛, . . . , 𝑤𝑖]

+
∑︁
𝑖<𝑛

(−1)𝑛+𝑖−1𝜖𝑛−𝑖 [𝑣0, . . . , 𝑣𝑢, 𝑤𝑛, . . . , 𝑤𝑖+1] − [𝑣0, . . . , 𝑣𝑛]

The two summations cancel, as replacing 𝑖 by 𝑖 − 1 in the second sum produces
a new sign (−1)𝑛+𝑖𝜖𝑛−𝑖+1 = −𝜖𝑛−𝑖. Thus the remaining two terms are just

𝜕𝑃(𝜎) + 𝑃𝜕 (𝜎) = 𝜖𝑛 [𝑤𝑛, . . . , 𝑤0] − [𝑣0, . . . , 𝑣𝑛] = 𝜌(𝜎) − 𝜎.

Hence 𝑃 is the chain homotopy between 𝜌 and the identity. □

Remark 4.45. This proof should be read using picture like Figure 4.1. 𝑃 is
the map from a simplex to get an oriented cylinder with a simplicial division
compatible with the original simplex. Then 𝜕𝑃 is the oriented boundary of the
cylinder. 𝑃𝜕 is the part of the boundary without the top face and the bottom
face and with the opposite sign. Cancellations could also be interpreted: the
cancellation on 𝑖 ≠ 𝑗 is the cancellation on the boundary without the top face
and the bottom face. Then second cancellation above is the intersection face of
di�erent simplices in the division with di�erent orientation.

To summarise the above discussion, we have obtained

Theorem 4.46 (The cohomology ring). Let 𝑋 be a topological space and 𝑅 be
a commutative ring with unity. Then

𝐻• (𝑋; 𝑅) = ⊕𝑖𝐻𝑖 (𝑋; 𝑅)
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is a graded (skew) commutative ring with identity under the cup product, i.e.
if 𝛼 ∈ 𝐻𝑚 (𝑋; 𝑅) and 𝛽 ∈ 𝐻𝑛 (𝑋; 𝑅) then 𝛼 ∪ 𝛽 = (−1)𝑚𝑛𝛽 ∪ 𝛼 ∈ 𝐻𝑚+𝑛 (𝑋; 𝑅).
Moreover 𝐻• (𝑋; 𝑅) is a graded 𝑅-algebra.

Example 4.47. 𝐻• (S𝑛;Z) = Z[𝑎𝑛 ]
𝑎2𝑛

, where the generator of 𝐻0 corresponds to 1

and the generator of 𝐻𝑛 is 𝑎𝑛.

Actually, we are ready to calculate the cohomology ring of projective spaces
R𝑃𝑛 and C𝑃𝑛. But we would postpone these after we have studied Poincaré
duality. We remark that all the above results extend to relative case, i.e the
case where 𝐻• (𝑋; 𝑅) being replaced by 𝐻• (𝑋, 𝐴; 𝑅).

Cap product

For any space 𝑋, there is a bilinear pairing operation between cochains and
chains.

De�nition 4.48. Let 𝑎 ∈ 𝑆𝑞 (𝑋) and 𝜎 ∈ 𝑆𝑝+𝑞 (𝑋). Then the cap product
𝑎 ∩ 𝜎 ∈ 𝑆𝑝 (𝑋) is de�ned by

𝑎 ∩ 𝜎 = ⟨𝑎, 𝜎[𝑣𝑝 ,...,𝑣𝑝+𝑞 ]⟩ · 𝜎[𝑣0 ,...,𝑣𝑝 ] , or 𝑎 ∩ 𝜎 = ⟨𝑎, 𝜎𝑞⟩ · 𝑝𝜎.

The cap product at chain level has the following properties.

Proposition 4.49. 1. Duality: For 𝑎, 𝑏 ∈ 𝑆• (𝑋), 𝑐 ∈ 𝑆• (𝑋), we have

⟨𝑎 ∪ 𝑏, 𝑐⟩ = ⟨𝑎, 𝑏 ∩ 𝑐⟩.

2. Associativity: For 𝑎, 𝑏 ∈ 𝑆• (𝑋), 𝑐 ∈ 𝑆• (𝑋), we have

(𝑎 ∪ 𝑏) ∩ 𝑐 = 𝑎 ∩ (𝑏 ∩ 𝑐).

3. Existence of unit:
1 ∩ 𝑐 = 𝑐.

4. Naturality: Let 𝑓 : 𝑋 → 𝑌 be a map. For 𝑏 ∈ 𝑆• (𝑌 ) and 𝑐 ∈ 𝑆• (𝑋), we have

𝑏 ∩ (𝐻∗ ( 𝑓 )𝑐) = 𝐻∗ ( 𝑓 ) (𝐻∗ ( 𝑓 )𝑏 ∩ 𝑐).

All these are easy to derive from De�nition 4.48 and the properties of the
cup product.

To de�ne cap product on (co)homology, we need

Proposition 4.50. For 𝑎 ∈ 𝑆𝑞 (𝑋) and 𝜎 ∈ 𝑆𝑝+𝑞 (𝑋), we have

𝜕 (𝑎 ∩ 𝜎) = (−1) 𝑝 (𝛿𝑎) ∩ 𝜎 + 𝑎 ∩ (𝜕𝜎).
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Proof. For simplicity, we omit the notation 𝜎 in the calculation.

𝑎 ∩ 𝜕 [𝑣0, . . . , 𝑣𝑝+𝑞] =
𝑝+𝑞∑︁
𝑖=0

(−1)𝑖𝑎 ∩ [𝑣0, . . . , 𝑣̂𝑖 , . . . , 𝑣𝑝+𝑞]

=

𝑝∑︁
𝑖=0

(−1)𝑖 ⟨𝑎, [𝑣𝑝 , . . . , 𝑣𝑝+𝑞]⟩[𝑣0, . . . , 𝑣̂𝑖 , . . . 𝑣𝑝]

+ (−1) 𝑝−1
𝑝+𝑞∑︁
𝑖=𝑝−1

(−1)𝑖−𝑝+1⟨𝑎 ∩ [𝑣𝑝−1, . . . , 𝑣̂𝑖 , . . . , 𝑣𝑝+𝑞]⟩[𝑣0, . . . , 𝑣𝑝−1]

= 𝜕 (𝑎 ∩ 𝜎) + (−1) 𝑝−1⟨𝑎 ∩ 𝜕 [𝑣𝑝−1, . . . , 𝑣𝑝+𝑞]⟩[𝑣0, . . . , 𝑣𝑝−1]
= 𝜕 (𝑎 ∩ 𝜎) + (−1) 𝑝−1 (𝛿𝑎) ∩ 𝜎.

Hence it induces the cap product between homology and cohomology:

𝐻𝑞 (𝑋) × 𝐻𝑝+𝑞 (𝑋)
∩−→ 𝐻𝑝 (𝑋).

□

De Rham cohomology

Let 𝑀 be a smooth manifold of dimension 𝑛. Let Ω(𝑀) be the (real linear)
space of 𝑞-forms, 𝑑 : Ω𝑞 (𝑀) → Ω𝑞+1 (𝑀) be the exterior di�erential. Then we
have the de Rham cochain complex

0
𝑑−→ Ω0 (𝑀) 𝑑−→ Ω1 (𝑀) 𝑑−→ · · · 𝑑−→ Ω𝑛 (𝑀) 𝑑−→ 0.

We denote he space of closed (exact) 𝑘-forms, i.e 𝑘-forms 𝜔 with 𝑑𝜔 = 0 (𝜔 = 𝑑𝜂

respectively), by 𝑍 𝑘
𝑑𝑅
(𝑀) (and 𝐵𝑘

𝑑𝑅
(𝑀) respectively). We denote its cohomology

by 𝐻•
𝑑𝑅
(𝑀), which is called the de Rham cohomology of 𝑀.

The cup product for de Rham cohomology is just the wedge product 𝜔 ∧ 𝜂.
Since for 𝑘-forms 𝜔 and 𝜂 we have

𝑑 (𝜔 ∧ 𝜂) = 𝑑𝜔 ∧ 𝜂 + (−1)𝑘𝜔 ∧ 𝑑𝜂

we know it descends to a product on cohomology by the same argument as
Corollary 4.40. A notable fact for de Rham cohomology is that the cup product
is graded (skew) commutative even at the chain level: 𝑥 ∧ 𝑦 = (−1) |𝑥 | |𝑦 | 𝑦 ∧ 𝑥.

There are several reasons prevent us from exploiting the Eilenberg-Steenrod
uniqueness theorem to claim it is isomorphic to the singular cohomology 𝐻• (𝑋; 𝑅).
The main reason is that the de Rham cohomology is only de�ned for smooth
manifolds. The lack of relative version of de Rham theory could be compensated
by Thom isomorphism (4.4.6).

However, de Rham theorem does ensure this isomorphism.

Theorem 4.51 (de Rham). 𝐻•
𝑑𝑅
(𝑀) = 𝐻• (𝑀;R) as cohomology rings.
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More precisely, we need two facts for this theorem:

1. Let 𝑆𝑠𝑚𝑞 (𝑀;R) be the real space spanned by smooth singular 𝑞-simplices
𝜎 : Δ𝑞 → 𝑀, then the inclusion

𝑆𝑠𝑚• (𝑀;R) → 𝑆• (𝑀;R)

is a chain homotopy equivalence. Then its dual

𝑆• (𝑀;R) → 𝑆•𝑠𝑚 (𝑀;R)

is a cochain homotopy equivalence.

2. We could take integration of a 𝑞-form on a singular chain of dimension 𝑞,
this is a bilinear function

Ω𝑞 (𝑀) × 𝑆𝑠𝑚𝑞 (𝑀;R) → R, (𝜔, 𝜎) ↦→
∫
𝜎

𝜔.

Stokes' theorem tells us ∫
𝜕𝜎

=

∫
𝜎

𝑑𝜔..

In other words, exterior di�erentials are dual to boundary maps. This pro-
vides us a cochain map

Ω• (𝑀) → 𝑆•𝑠𝑚(𝑀;R).
If we show that this is a cochain homotopy equivalence, we will �nish the proof
of de Rham theorem. The proof proceeds as the same pattern as the proof of
Poincaré duality which we will provide in the next section.

4.2.2 Cross product and Künneth formula

We want to understand the cohomology ring of a product space. Let us �rst
de�ne the cross product in cohomology.

De�nition 4.52. Let 𝑝1 : 𝑋 × 𝑌 → 𝑋 and 𝑝2 : 𝑋 × 𝑌 → 𝑌 be projections. We
de�ne the cross product by

𝑥 × 𝑦 = 𝑝∗1 (𝑥) ∪ 𝑝∗2 (𝑦) ∈ 𝐻𝑚+𝑛 (𝑋 × 𝑌 ; 𝑅)

for 𝑥 ∈ 𝐻𝑚 (𝑋; 𝑅) and 𝑦 ∈ 𝐻𝑛 (𝑌 ; 𝑅).
To be more precise, for 𝜎 : Δ𝑚+𝑛 → ×𝑌 , let 𝜎1 = 𝑝1 ◦ 𝜎 : Δ𝑚+𝑛 → 𝑋 and

𝜎2 = 𝑝2 ◦ 𝜎 : Δ𝑚+𝑛 → 𝑌 . Then for 𝜙 ∈ 𝑆𝑚 (𝑋) and 𝜓 ∈ 𝑆𝑛 (𝑌 ), we have

(𝜙 × 𝜓) (𝜎) = 𝜙(𝜎1 | [𝑣0 ,...,𝑣𝑚 ])𝜓(𝜎2 | [𝑣𝑚 ,...,𝑣𝑚+𝑛 ])

We could also extend this to a relative version

𝐻𝑚 (𝑋; 𝐴) × 𝐻𝑛 (𝑌 ; 𝐵) → 𝐻𝑚+𝑛 (𝑋 × 𝑌 ; (𝑋 × 𝐵) ∪ (𝐴 × 𝑌 )).

Since × is bilinear, it factors through the tensor product (by the universal
property) to give a linear map (also denoted by ×)

𝐻• (𝑋; 𝑅) ⊗𝑅 𝐻• (𝑌 ; 𝑅) → 𝐻• (𝑋 × 𝑌 ; 𝑅).
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Proposition 4.53. For any 𝑎, 𝑐 ∈ 𝐻• (𝑋; 𝑅) and 𝑏, 𝑑 ∈ 𝐻• (𝑦; 𝑅) with 𝑐 ∈
𝐻𝑚 (𝑋; 𝑅) and 𝑐 ∈ 𝐻𝑛 (𝑌 ; 𝑅) we have

(𝑎 × 𝑏) ∪ (𝑐 × 𝑑) = (−1)𝑚𝑛 (𝑎 ∪ 𝑐) × (𝑏 ∪ 𝑑).

Proof. (𝑎× 𝑏) ∪ (𝑐× 𝑑) = (𝑝∗1𝑎∪ 𝑝∗2𝑏) ∪ (𝑝∗1𝑐∪ 𝑝∗2𝑑) = (−1)𝑚𝑛𝑝∗1 (𝑎∪ 𝑐)𝑝∗2 (𝑏∪ 𝑑) =
(−1)𝑚𝑛 (𝑎 ∪ 𝑐) × (𝑏 ∪ 𝑑). □

Example 4.54. Using Proposition 4.53 with induction on 𝑛, we can determine
the cohoomlogy ring 𝐻• (𝑇𝑛) where 𝑇 = S1. 𝑇𝑛 is the product of 𝑛 copies of
S1 whose cohomology as a ring is Z[𝑥]/𝑥2; there are no interesting cup prod-
ucts. By the Künneth formula, the cohomology of 𝑇𝑛 is the graded tensor
product, as algebras, of 𝑛 copies of Z[𝑥]/𝑥2 (note that all the cohomology
groups involved are free). This is precisely the exterior algebra ΛZ [𝑥1, . . . , 𝑥𝑛] =
Z[𝑥1, . . . , 𝑥𝑛]/(𝑥2𝑖 , 𝑥𝑖𝑥 𝑗 + 𝑥 𝑗𝑥𝑖), with each generator in degree 1. In particular,
𝐻𝑘 (𝑇𝑛) � Λ𝑘Z (𝐻

1 (𝑇𝑛) naturally, and under this isomorphism the cup product
corresponds to the wedge product.

Remark 4.55. The above example is a special case of

1. Hopf's theorem which asserts that the cohomology algebra of an H-space is
a Hopf algebra.

2. The structure theorem which asserts that a Hopf algebra over a �eld of
characteristic 0 is a free skew-commutative graded algebra.

The following Künneth formula (in a sense) generalises the previous example.

Theorem 4.56. The cross product 𝐻• (𝑋; 𝑅) ⊗𝑅 𝐻• (𝑌 ; 𝑅) → 𝐻• (𝑋 ×𝑌 ; 𝑅) is an
isomorphism of rings if 𝑋 and 𝑌 are cellular spaces and 𝐻𝑘 (𝑌 ; 𝑅) is a �nitely
generated free 𝑅-module for all 𝑘.

We would resort to Theorem 4.27. We show Theorem 4.56 for �nite cellular
spaces. (For general cellular spaces� we need Milnor additivity axiom as we
mentioned before.) Consider the following functors:

ℎ𝑛 (𝑋, 𝐴) = ⊕𝑖+ 𝑗=𝑛 (𝐻𝑖 (𝑋, 𝐴; 𝑅) ⊗𝑅 𝐻 𝑗 (𝑌 ; 𝑅)),
𝑘𝑛 (𝑋, 𝐴) = 𝐻𝑛 (𝑋 × 𝑇, 𝐴 × 𝑌 ; 𝑅).

We have 𝜙 : ℎ𝑛 (𝑋, 𝐴) → 𝑘𝑛 (𝑋, 𝐴) given by the cross product. So we need to
show

1. ℎ• and 𝑘• cohomology theories.

2. 𝜋 is a natural transformation.

Proof. (of Theorem 4.56) First we check that ℎ• and 𝑘• are cohomology theories.
All axioms are easy to verify. A few words for exactness axiom. The exactness
for 𝑘• is trivial. For ℎ•, it is where we use the freeness of 𝐻𝑘 (𝑌 ; 𝑅).

The naturality of 𝜙 with respect to maps between spaces is from the natu-
rality of cup products. To show the naturality with respect to the coboundary
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maps, we have to check the following diagramme commutes. Note that we omit
𝑅 in the diagramme.

𝐻𝑘 (𝐴) × 𝐻ℓ (𝑌 ) 𝛿×id //

×
��

𝐻𝑘+1 (𝑋, 𝐴) × 𝐻ℓ (𝑌 )

×
��

𝐻𝑘+ℓ (𝐴 × 𝑌 )
𝛿
// 𝐻𝑘+ℓ+1 (𝑋 × 𝑌, 𝐴 × 𝑌 )

To check this, start with an element (𝑎, 𝑏) represented by cocycles 𝜑 ∈ 𝑆𝑘 (𝐴) and
𝜓 ∈ 𝑆ℓ (𝑌 ). Extend 𝜑 to a cochain 𝜑 ∈ 𝑆𝑘 (𝑋; 𝑅). Then (𝜑, 𝜓) maps rightward to
(𝛿𝜑, 𝜓) and then downward to 𝑝∗

𝑋
(𝛿𝜑) ∪ 𝑝∗

𝑌
(𝜓). On the other direction, (𝜑, 𝜓)

maps downward to 𝑝∗
𝑋
(𝜑) ∪ 𝑝∗

𝑌
(𝜓) and then rightward to 𝛿(𝑝∗

𝑋
(𝜑) ∪ 𝑝∗

𝑌
(𝜓)) =

𝑝∗
𝑋
(𝛿𝜑) ∪ 𝑝∗

𝑌
(𝜓).

Note that the symbol 𝛿 stands for either the chain level and the connecting
homomorhism, which might be confusing. □

Example 4.57. Now it is more straightforward to show

𝐻• (𝑇𝑛) = ΛZ [𝑥1, . . . , 𝑥𝑛] .

Similarly, one could also show

𝐻• (S𝑛 × S𝑚) = [𝑎𝑛, 𝑎𝑚]
(𝑎2𝑛, 𝑎2𝑚)

.

An alternative way to de�ne cross and cup products

We outline a construction of cup products for cellular spaces. Note that by
Eilenberg-Steenrod uniqueness, this cup product is the same as that of singular
cohomology.

The cross product in this setting is quite natural. Start with that of chain
level. Take cells 𝑒𝑖 ∈ 𝑋 and 𝑒 𝑗 ∈ 𝑌 , then we could send it to the product
cell 𝑒𝑖 × 𝑒 𝑗 in 𝑋 × 𝑌 . (Note that, unlike simplices, products of cellular spaces
are again cellular spaces.) One could extend this map by tensor product from
𝐶• (𝑋) ⊗ 𝐶•𝑌 to 𝐶• (𝑋 ×𝑌 ). Then for a pair of cocycles 𝑧1, 𝑧2 of 𝑋 and 𝑌 , it thus
yields a cocycle 𝑧1 × 𝑧2. This de�nes

𝐻𝑖𝑖 (𝑋) × 𝐻 𝑗 (𝑌 ) → 𝐻𝑖+ 𝑗 (𝑋 × 𝑌 ).

One could check it is the same as our previous de�ned cross product.
Then by using the diagonal map Δ : 𝑋 → 𝑋 × 𝑋, 𝑥 ↦→ (𝑥, 𝑥), we can de�ne

the cup product as the composition

𝐻𝑘 (𝑋) × 𝐻ℓ (𝑋) ×−→ 𝐻𝑘+ℓ (𝑋) Δ•−−→ 𝐻𝑘+ℓ (𝑋).

This is our previous cup product since

Δ• (𝑎 × 𝑏) = Δ• (𝑝∗1 (𝑎) ∪ 𝑝∗2 (𝑏)) = 𝑎 ∪ 𝑏.
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But unfortunately, this cup product is not de�ned at the level of cellular cochains,
which prevents us to prove the properties. To resolve this issue, one need to
�nd a cellular map which is homotopic to Δ. This is in general true for maps
between cellular spaces. And for our case 𝑋 → 𝑋 × 𝑋, the map is actually a
slight modi�cation of 𝑃 (called Alexander-Whitney chain approximation) used
in the proof of graded commutativity of the cup product. We leave here and
will not go through the detail.

4.2.3 Ljusternik-Schnirelmann category

De�nition 4.58. The Ljusternik-Schnirelmann category cat(𝑋) of a topological
space 𝑋 is de�ned to be the smallest integer 𝑘 such that there is an open covering
{𝑈𝑖}1≤𝑖≤𝑘 of 𝑋 such that each inclusion 𝑈𝑖 ↩→ 𝑋 is null-homotopic (we say 𝑈𝑖 is
contractible in 𝑋), i.e homotopic to a constant map.

Example 4.59. Notice the subtly of the de�nition. S𝑛−1 is contractible in D𝑛,
although S𝑛−1 itself is not a contractible space.

Example 4.60. cat(S1) = 2. Actually, for any suspension Σ(𝑋), cat(Σ(𝑋)) ≤ 2
since it can be covered by two contractible sets 𝐶+ (𝑋) and 𝐶− (𝑋).

Notice that cat(𝑀) < ∞ if 𝑀 is a compact manifold since it can be covered
with �nitely many sets homeomorphic to open discs. And in fact cat(𝑀) ≤
dim𝑀 + 1. In general, there is no reason for cat(𝑋) to be �nite.

De�nition 4.61. The cup length Cl(𝑋) of a topological space 𝑋 is de�ned to
be

Cl(𝑋) := max{𝑛|∃𝛼𝑖 ∈ 𝐻𝑚 (𝑋) with 𝑚𝑖 > 0 such that 𝛼1 ∪ . . . 𝛼𝑛 ≠ 0}.

Proposition 4.62. For any space 𝑋, we have Cl(𝑋) < cat(𝑋).

Proof. Suppose cat(𝑋) = 𝑛, so 𝑋 = ∪𝑛
𝑗=1𝑈 𝑗 with each 𝑈𝑘 contractible in 𝑋. We

denote the inclusion by 𝑖𝑘 . Since 𝑖𝑘 is nullhomotopic, its induced homomorphism
𝑖𝑘• can be decomposed as 𝐻• (𝑋) → 𝐻• (pt) → 𝐻• (𝑈𝑘). So when 𝑞 > 0, 𝑖•

𝑘
= 0 :

𝐻𝑞 (𝑋) → 𝐻𝑞 (𝑈𝑘). By the cohomology exact sequence for the pair (𝑋,𝑈𝑘), we
know 𝑗•

𝑘
: 𝐻𝑞 (𝑋,𝑈𝑘) → 𝐻𝑞 (𝑋) is surjective. So for any 𝜉𝑘 ∈ 𝐻•] (𝑋), we have

𝜂𝑘 ∈ 𝐻• (𝑋,𝑈𝑘) such that 𝜉𝑘 = 𝑗•
𝑘
(𝜂𝑘).

Now look at the commutative diagramme

𝐻• (𝑋,𝑈1)

𝑗•1
��

× · · · × 𝐻• (𝑋,𝑈𝑛)
∪ //

𝑗•𝑛
��

𝐻• (𝑋,∪𝑛𝑘=1𝑈𝑘)

𝑗•

��
𝐻• (𝑋) × · · · × 𝐻• (𝑋) ∪

// 𝐻• (𝑋)

Hence 𝜉1 ∪ . . . 𝜉𝑛 = 𝑗•1 (𝜂1) ∪ . . .∪ 𝑗•𝑛 (𝜂𝑛) = 𝑗• (𝜂1 ∪ . . .∪𝜂𝑛) = 0. The last equality
is because of the fact that 𝐻• (𝑋,∪𝑛

𝑘=1
𝑈𝑘) = 𝐻• (𝑋, 𝑋) = 0. □

Example 4.63. An 𝑛-torus 𝑇𝑛 has cat(𝑇𝑛) = 𝑛 + 1.
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Example 4.64. So for any suspension, Cl(Σ(𝑋)) = 1 if 𝑋 is not weakly con-
tractible. This tells us that the cup product does not commute with the suspen-
sion and hence is not a stable property.

Ljusternik-Schnirelmann used the notion of cat to study critical points.
Their main theorem is the following

Theorem 4.65. Let 𝑀 be a smooth connected compact manifold and 𝑓 : 𝑀𝑡𝑜R
be a smooth function. Then 𝑓 has at least cat(𝑥) critical points.

Example 4.66. Any smooth function on 𝑇2 has at least 3 critical points. We can
construct a smooth function on 𝑇2 with exactly 3 critical points. In fact, using
the viewpoint in the proof of the following theorem, we can construct a vector
�eld on torus with 3 singular points.

Actually, Ljusternik-Schnirelmann category is an example of general cate-
gory (It has nothing to do with �category theory�). We assume 𝑋 to be a locally
contractible path connected space.

De�nition 4.67. A category is an assignment 𝜈 : 𝔓(𝑋) → N0 (where 𝔓(𝑋)
denotes the set of all subsets in 𝑋, i.e. the power set, and N0 = {0, 1, 2, . . . })
satisfying the following axioms:

� Continuity: for every 𝐴 ∈ 𝔓(𝑋) there exists an open set 𝑈 ⊃ 𝐴 such that
𝜈(𝐴) = 𝜈(𝑈).

� Monotonicity: if 𝐸𝐴, ∈ 𝔓(𝑋) with 𝐴 ⊂ 𝐵 then 𝜈(𝐴) ≤ 𝜈(𝐵).

� Subadditivity: for any 𝐴, 𝐵 ∈ 𝔓(𝑋) we have 𝜈(𝐴 ∪ 𝐵) ≤ 𝜈(𝐴) + 𝜈(𝐵).

� Naturality: if 𝜙 : 𝑋 → 𝑌 is a homeomorphism then for any 𝑎 ∈ 𝔓(𝑋),
𝜈𝑌 (𝜙(𝐴)) = 𝜈𝑋 (𝐴).

� Normalization: 𝜈(∅) =, and if 𝐴 = {𝑥0, . . . , 𝑥𝑛} is a �nite set then 𝜈(𝐴) =.

To prove Theorem 4.65, we prove the following more general proposition
�rst.

Proposition 4.68. Let 𝑋 be a locally contractible path connected compact met-
ric space, and 𝜙𝑡 be a global �ow on 𝑋. Suppose there exists a Lyapunov function
Φ : 𝑋 → R such that Φ strictly decreases along non-constant orbits of 𝜙𝑡 . Then
Φ has at least 𝜈(𝑋) critical points where 𝜈 is any category.

Proof. Let 𝑋𝑐 := Φ−1(−∞, 𝑐]. A critical value for Φ is a value such that Φ−1(𝑐)
contains a constant orbit. If 𝑐 is not critical, then for su�ciently small 𝛿 > 0,
we can �nd 𝑡 > 0 such that

𝜙𝑡 (𝑋𝑐+𝛿) ⊂ 𝑋𝑐−𝛿 ,

since Φ strictly decreases away from the constant orbits. If 𝑐 is a critical level
and 𝑈 is a neighbourhood of Φ−1(𝑐) then for small 𝛿 > 0, we have, for 𝑡 > 0

𝜙𝑡 (𝑋𝑐+𝛿 \𝑈) ⊂ 𝑋𝑐−𝛿 .
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By naturality and monotonicity, 𝜈(𝑋𝑐+𝛿 \𝑈) ≤ 𝜈(𝑋𝑐−𝛿).
For 𝑗 = 1, . . . , 𝑁 = 𝜈(𝑋), let

𝑐 𝑗 := sup{𝑐 |𝜈(𝑋𝑐) < 𝑗}.

Then 𝑐1 = min{Φ} and 𝑐𝑁 = max{Φ}. Note that 𝑐 𝑗 is a critical value of Φ for
each 𝑗 .

Now we want to prove either 𝑐 𝑗 < 𝑐 𝑗+1 or Φ−1(𝑐 𝑗 ) contains in�nitely many
critical points. If the latter happens, the theorem follows immediately, so we
assume the latter does not happen. Suppose Φ−1(𝑐 𝑗 ) = {𝑥0, . . . , 𝑥𝑛}. Then by
the continuity axiom, there exists a neighbourhood 𝑈 of {𝑥0, . . . , 𝑥𝑛} such that
𝜈(𝑈) = 1.

Then by the subadditivity axiom, we have

𝜈(𝑋𝑐 𝑗+𝛿) ≤ 𝜈(𝑋𝑐 𝑗+𝛿 \𝑈) + 1
≤ 𝜈(𝑋𝑐 𝑗−𝛿) + 1
≤ 𝑗 .

Hence 𝑐 𝑗+1 ≥ 𝑐 𝑗 + 𝛿 > 𝑐 𝑗 . Thus {𝑐1 < · · · < 𝑐𝑁 } are 𝑁 = 𝜈(𝑋) di�erent critical
points. This completes the proof. □

Now we can complete the proof of Theorem 4.65.

Proof. (of Theorem 4.65) Give 𝑀 a Riemannian metric and let ∇ 𝑓 denote the
gradient of 𝑓 with respect to this metric, i.e. the unique vector �eld determined
by

⟨(∇ 𝑓 )𝑝 , 𝑉𝑝⟩ = 𝑑𝑓𝑝 (𝑉𝑝)

for every vector �eld 𝑉 . The critical points of 𝑓 are precisely the zeros of ∇ 𝑓 .
Let 𝜙𝑡 be the associated �ow of ∇ 𝑓 , i.e.

𝑑𝜙𝑡 (𝑝)
𝑑𝑡

= −(∇ 𝑓 )𝜙𝑡 (𝑝) .

We claim that 𝑓 is a Lyapunov function for 𝜙𝑡 :

𝑑

𝑑𝑡
( 𝑓 ◦ 𝜙𝑡 (𝑝)) = 𝑑𝑓

(
𝑑𝜙𝑡 (𝑝)
𝑑𝑡

)
= ⟨(∇ 𝑓 )𝜙𝑡 (𝑝) ,

𝑑𝜙𝑡 (𝑝)
𝑑𝑡
⟩

= −⟨𝑑𝜙𝑡 (𝑝)
𝑑𝑡

,
𝑑𝜙𝑡 (𝑝)
𝑑𝑡
⟩

≤ 0

with equality holds if and only if 𝑑𝜙𝑡 (𝑝)
𝑑𝑡

= 0, i.e. 𝑝 is a critical point of 𝑓 , and
𝜙𝑡 (𝑝) is a constant orbit 𝑝. This completes the proof. □
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4.2.4 Higher products

Later we will see that the linking number of two spheres S𝑝 and S𝑞 in R𝑝+𝑞+1

will be understood as the cup product of the cohomolgy ring of the complement
𝐻• (R𝑝+𝑞+1\(S𝑝∪S𝑞)). There are links with 3 components with each two of them
are unlinked, but nonetheless all three are linked. The most famous example
is the Borromean rings. This rather complicated linking phenomenon for three

Figure 4.2: Borromean rings

or more spheres suggests the existence of a higher cup product: the Massey
product. We start with Massey triple product.

Assume [𝑢], [𝑣], [𝑤] are cohomology classes of dimension 𝑝, 𝑞 and 𝑟 re-
spectively, represented by 𝑢 ∈ 𝑍 𝑝 (𝑋), 𝑣 ∈ 𝑍𝑞 (𝑋) and 𝑤 ∈ 𝑍𝑟 (𝑋). If [𝑢] ∪ [𝑣] =
0 = [𝑣] ∪ [𝑤], then we introduce a (set of) new cohomology classes. For the
notation, we introduce 𝑢 = (−1)1+deg 𝑢𝑢.

Since [𝑢] [𝑣] = 0, we have 𝑠 ∈ 𝐶 𝑝+𝑞+1 (𝑋) such that 𝛿𝑠 = 𝑢 ∪ 𝑣. Similarly, we
have 𝑡 ∈ 𝐶𝑞+𝑟−1(𝑋) such that 𝛿𝑡 = 𝑦 ∪ 𝑤. The element 𝑠 ∪ 𝑤 + 𝑢 ∪ 𝑡 determines
a cocycle in 𝑋 𝑝+𝑞+𝑟−1 (𝑋):

𝛿(𝑠 ∪ 𝑤 + 𝑢 ∪ 𝑡) = (−1) 𝑝+𝑞𝛿𝑠 ∪ 𝑤 + (−1) 𝑝𝑢 ∪ 𝛿𝑡
= (−1) 𝑝+𝑞𝑢 ∪ 𝑣 ∪ 𝑤 + (−1) 𝑝+𝑞+1𝑢 ∪ 𝑣 ∪ 𝑤 = 0

We de�ne the Massey triple product as the set of all such cohomology classes

⟨[𝑢], [𝑣], [𝑤]⟩ = {[𝑠 ∪ 𝑤 + 𝑢 ∪ 𝑡] |𝛿𝑠 = 𝑢 ∪ 𝑣, 𝛿𝑡 = 𝑣 ∪ 𝑤}.

There are indeterminacy from the di�erent choices of representatives. But we
can identify them as the following.

Proposition 4.69. The Massey triple product ⟨[𝑢], [𝑣], [𝑤]⟩ is an element of
the factor group 𝐻 𝑝+𝑞+𝑟−1 (𝑋)/([𝑢] ∪ 𝐻𝑞+𝑟−1(𝑋) + 𝐻 𝑝+𝑞−1 (𝑋) ∪ [𝑤]).

Proof. We need to show di�erent choices of 𝑢, 𝑣, 𝑤, 𝑠, 𝑡 do not a�ect the coset
in 𝐻 𝑝+𝑞+𝑟−1 (𝑋) given above. We only check that of 𝑠, as other cases can be
done in a similar fashion.

If 𝑠 and 𝑠
′
are chosen such that 𝛿𝑠 = 𝑢 ∪ 𝑣 = 𝛿𝑠′ , then

(𝑠 ∪ 𝑤 + 𝑢 ∪ 𝑡) − (𝑠′ ∪ 𝑤 + 𝑢 ∪ 𝑡) = (𝑠 − 𝑠′ ∪ 𝑤,

which resides in 𝐻 𝑝+𝑞−1 (𝑋) ∪ [𝑤] as a cohomology class. □
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The Massey product was used to prove the Jacobi identity for Whitehead
product in homotopy groups.
Remark by the transcriber: A purely homotopy-theoretic argument not resorting
to cohomology is available: see �Cellular Homotopy�, M. M. Postnikov.

We can de�ne higher order Massey products. When two triple products
⟨[𝑢], [𝑣], [𝑤]⟩ and ⟨[𝑣], [𝑤], [𝑥]⟩ are de�ned, and if 0 ∈ ⟨[𝑢], [𝑣], [𝑤]⟩ and 0 ∈
⟨[𝑣], [𝑤], [𝑥]⟩, then we can �nd

𝛿𝑌1 = 𝑡0 ∪ 𝑤 + 𝑢 ∪ 𝑡1, 𝛿𝑌2 = 𝑡1 ∪ 𝑥 + 𝑣 ∪ 𝑡2

where 𝛿𝑡0 = 𝑢∪𝑣, 𝛿𝑡1 = 𝑣∪𝑤, 𝛿𝑡2 = 𝑤∪𝑥. Then we form a subset ⟨[𝑢], [𝑣], [𝑤], [𝑥]⟩
in 𝐻 |𝑢 |+|𝑣 |+|𝑤 |+|𝑥 |−2(𝑋) whose elements are

𝑢 ∪ 𝑌2 + 𝑡0 ∪ 𝑡2 + 𝑌1 ∪ 𝑥.

This is called a fourfold product.
It may be better to understand the whole picture by matrices


𝑢 𝑠

𝑣 𝑡

𝑤



𝑢 𝑡0 𝑌1

𝑣 𝑡1 𝑌2
𝑤 𝑡2

𝑥


We can inductively de�ne 𝑛-fold Massey product: ⟨[𝑎1,1, [𝑎2,2, . . . , [𝑎𝑛𝑛]⟩ to be
the set of elements of the forms

𝑎1,1𝑎2,𝑛 + 𝑎1,2𝑎3,𝑛 + . . . + 𝑎1,𝑛−1𝑎𝑛,𝑛

for all solutions of the equations

𝛿𝑎𝑖, 𝑗 = 𝑎𝑖,𝑖𝑎𝑖+1, 𝑗 + 𝑎𝑖,𝑖+1𝑎𝑖+2, 𝑗 + . . . + 𝑎𝑖, 𝑗−1𝑎 𝑗 , 𝑗 , 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, (𝑖, 𝑗) ≠ (1, 𝑛)

Hence, to ensure the set is non-empty, we need the vanishing of many lower
order Massey product.

We remark that the Massey products are de�ned for (homology) of a difer-
ential graded algebra (DGA) 𝐴. It is a graded algebra 𝐴 = ⊕𝑘≥0𝐴𝑘 with a
di�erential 𝑑 : 𝐴→ 𝐴→ 𝐴 of degree +1, such that

1. 𝐴 is graded commutative, i.e,

𝑥 · 𝑦 = (−1)𝑘ℓ 𝑦 · 𝑥, 𝑥 ∈ 𝐴𝑘 . 𝑦 ∈ 𝐴ℓ

2. 𝑑 is a derivation, i.e.

𝑑 (𝑥 · 𝑦) = 𝑑𝑥 · 𝑦 + (−1)𝑘𝑥 · 𝑦, 𝑥 ∈ 𝐴𝑘 ,

3. 𝑑2 = 0.
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Examples include cohomology ring with 0 as its di�erential and de Rham com-
plex (Ω•, 𝑑) on a manifold.

Rational homotopy theory of Quillen and Sullivan is built to understand
(real) homotopy groups by the structure of DGA. For example, a manifold on
which all Massey products vanish is a formal manifold : its real homotopy type
follows (�formally�) from its real cohomology ring. Deligne-Gri�ths-Morgan-
Sullivan proved that all Kähler manifolds are formal: see �Real Homotopy The-
ory of Kähler Manifolds�, Inventiones Mathematicae, Volume: 29, No. 3, Year:
1975, Pages: 245-274.

4.3 Poincaré Duality

We will prove the Poincaré duality in this section. For a compact 𝑛-manifold 𝑀
without boundary, this asserts that 𝐻 𝑝 (𝑀𝑛) is isomorphic to 𝐻𝑛−𝑝 (𝑀𝑛). It is
the most important result in this course, and has lots of important applications.
Poincaré's original proof used the idea of dual cell structures and rather intuitive
and geometrically intricate. Unfortunately, we will lose some generality if we
use this method.

Hence, we use the proof by Milnor. The basic idea of Milnor's proof is
very natural as explained bellow. We know that any 𝑛-manifold is a union of
open subsets, each of which is homeomorphic to R𝑛. It is natural to �rst prove
(certain version of) the theorem for R𝑛, and then use Mayer-Vietoris sequences
to prove the case of a �nite union of open subsets. Finally, it passes to the case
of an in�nite union by a direct limit argument. We will then state and prove
a more general version which is applicable to noncompact manifolds since we
have to �rst deal with R𝑛. For this reason, we need to introduce cohomology
with compact supports.

4.3.1 Cohomology with compact supports

Let 𝑀 be a topological space. The singular cochains with compact support on
𝑀 is de�ned as 𝛼 ∈ 𝑆𝑝 (𝑀) such that there is a compact set 𝐾 ⊂ 𝑀 such that
𝛼 ∈ 𝑆𝑝 (𝑀, 𝑀 \𝐾) ⊂ 𝑆𝑝 (𝑀), i.e. 𝛼 |𝑀\𝐾 = 0. Write 𝑆𝑝𝑐 (𝑀) for the set of all these
cochains. Note that 𝛿 preserves 𝑆•𝑐 (𝑀). Hence

De�nition 4.70. 𝐻
𝑝
𝑐 (𝑀) := 𝐻 𝑝 (𝑆•𝑐 (𝑀)) is the cohomology with compact sup-

port of 𝑀.

Observe that if 𝑀 is compact 𝐻•𝑐 (𝑀) = 𝐻• (𝑀). We will need to calculate
𝐻•𝑐 (𝑀) in general for the proof of Poincaré duality. We would like to understand
it by relative cohomology groups. So we introduce the de�nition of the direct
limit.

De�nition 4.71. A directed system of abelian groups {𝐺𝑎 |𝑎 ∈ 𝐴} is a collection
of abelian groups indexed by a partially ordered set 𝐴 satisfying

1. For all 𝑎, 𝑏 ∈ 𝐴 there exists 𝑐 ∈ 𝐴 such that 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑐.



124 LECTURE 4. SINGULAR COHOMOLOGY

2. For all 𝑎 ≤ 𝑏 there exists a homomorphism 𝑓𝑎𝑏 : 𝐺𝑎 → 𝐺𝑏 such that 𝑓𝑎𝑎 = id
and if 𝑎 ≤ 𝑏 ≤ 𝑐, 𝑓𝑎𝑐 = 𝑓𝑏𝑐 ◦ 𝑓𝑎𝑏.

Recall that a partially ordered set (or poset) is a set 𝐴 along with a binary
relation ≤ which is re�xive, antisymmetric and transitive:

1. Re�exive: 𝑎 ≤ 𝑎;

2. Antisymmetric: if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎, then 𝑎 = 𝑏;

3. Transitive: if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐, then 𝑎 ≤ 𝑐.

A partially ordered set with the property 1 in De�nition 4.71 is called a
directed set. The main example of directed sets in our mind is the set of compact
subsets (of a set) with partial ordering ⊂ and 𝑓 is the inclusion.

De�nition 4.72. Given a direct system {𝐺𝑎 |𝑎 ∈ 𝐴}, the direct Limit (or col-
imit) is de�ned to be

lim−−→
𝑎∈𝐴

𝐺𝑎 := (⊕𝑎∈𝐴𝐺𝑎)/𝑁

where 𝑁 ⊂ ⊕𝑎∈𝐴𝐺𝑎 is the subgroup generated by 𝑥 − 𝑓𝑎𝑏 (𝑥) where 𝑥 ∈ 𝐺𝑎 and
𝑎 ≤ 𝑏.

The direct limit has the following universal property which actually charac-
terises the direct limit.

Proposition 4.73 (The universal property of direct limits). Any homomor-
phisms 𝜙𝑎 : 𝐺𝑎 → 𝐻 such that 𝜙𝑎 = 𝜙𝑏 ◦ 𝑓𝑎𝑏 for any pair 𝑎 ≤ 𝑏 factor through
lim−−→𝑎∈𝐴

𝐺𝑎. That is, there exists a unique homomorphism 𝜙 : lim−−→𝑎∈𝐴
𝐺𝑎 → 𝐻

such that 𝜙 ◦ ℎ𝑎 = 𝜙𝑎 for all 𝑎 ∈ 𝐴. Here ℎ𝑎 : 𝐺𝑎 → lim−−→𝑎∈𝐴
𝐺𝑎 are the inclusion

maps.

𝐺𝑎
𝑓𝑎𝑏 //

ℎ𝑎

!!
𝜙𝑎

��

𝐺𝑏

ℎ𝑏

}}
𝜙𝑏

��

lim−−→
𝑎∈𝐴

𝐺𝑎

𝜙

��
𝐻

Proof. For any 𝑔 ∈ 𝐺𝑎, we denote its equivalence class in lim−−→𝑎∈𝐴
𝐺𝑎 as [𝑔]. So

ℎ𝑎 (𝑔) = [𝑔].
Let us �rst construct a 𝜙 : [𝑔] ↦→ 𝜙𝑎 (𝑔). It is easy to check that it makes

the diagramme commutes. Let us check it is well de�ned. Suppose there are
𝑔1 ∈ 𝐺𝑎, 𝑔2 ∈ 𝐺𝑏 such that [𝑔1] = [𝑔2]. Then by de�nition there is a 𝑐 such
that 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑐, and 𝑓𝑎𝑐 (𝑔1) = 𝑓𝑏𝑐 (𝑔2). Then we see that

𝜙𝑎 (𝑔1) = 𝜙𝑐 ◦ 𝑓𝑎𝑐 (𝑔1) = 𝜙𝑐 ◦ 𝑓𝑏𝑐 (𝑔2) = 𝜙𝑏 (𝑔2).
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Then we prove the uniqueness. Suppose there is another 𝜙
′
: lim−−→𝑎∈𝐴

𝐺𝑎 → 𝐻

such that 𝜙
′ ◦ ℎ𝑎 = 𝜙𝑎 for all 𝑎 ∈ 𝐴. Then

𝜙
′ ( [𝑔]) = 𝜙′ ◦ ℎ𝑎 (𝑔) = 𝜙𝑎 (𝑔) = 𝜙( [𝑔]).

In other words, 𝜙
′
= 𝜙. □

Now we can give an alternative de�nition of 𝐻•𝑐 in terms of direct limit.
The compact subsets 𝐾 ⊂ 𝑀 form a directed set under inclusion. For 𝐾 ⊂ 𝐿,
we have the inclusion (𝑀, 𝑀 \ 𝐿) → (𝑀, 𝑀 \ 𝐾), and thus the homomorphism
𝐻 𝑝 (𝑀, 𝑀 \ 𝐾) → 𝐻 𝑝 (𝑀, 𝑀 \ 𝐿). Hence we have the direct limit

lim−−→
𝐾⊂𝑀

𝐻 𝑝 (𝑀, 𝑀 \ 𝐾).

We sow that this is equal to 𝐻 𝑝
𝑐 (𝑀) we de�ned at beginning. It is easy to see

that 𝐻 𝑝
𝑐 (𝑀) ⊂ lim−−→𝐾⊂𝑀

𝐻 𝑝 (𝑀, 𝑀 \𝐾) by de�nition. To see the reverse inclusion,
note hat each element lim−−→𝐾⊂𝑀

𝐻 𝑝 (𝑀, 𝑀 \ 𝐾) is represented by a cocycle in
𝑆𝑝 (𝑀, 𝑀 \ 𝐾) for some compact 𝐾, hence the inclusion at cochain level. And
such a cocycle is zero in lim−−→𝐾⊂𝑀

𝐻 𝑝 (𝑀, 𝑀 \𝐾) if and only if it is in 𝐵𝑝 (𝑀, 𝑀 \𝐿)
for some compact 𝐿 ⊃ 𝐾, hence the inclusion passes to the cohomology level.

Example 4.74. We compute 𝐻•𝑐 (R𝑛). Since every compact subset of R𝑛 is con-
tained in a closed ball D𝑅 (0) of some radius 𝑅 ∈ N, we have

lim−−→
𝑅∈N

𝐻 𝑝 (R𝑛,R𝑛 \ D𝑅 (0)) = lim−−→
𝐾∈R𝑛

𝐻 𝑝 (R𝑛,R𝑛 \ 𝐾)

Now for any 𝑅 > 0, R𝑛 \D𝑅 (0) is homotopy equivalent to S𝑛−1. Hence the long
exact sequence for pairs (R𝑛,R𝑛 \ D𝑅 (0)) gives us

𝐻𝑚 (R𝑛,R𝑛 \ D𝑅 (0)) =
{
Z 𝑚 = 𝑛

0 𝑚 ≠ 𝑛

Since the map 𝐻𝑛 (R𝑛,R𝑛 \ D𝑅 (0)) → 𝐻𝑛 (R𝑛,R𝑛 \ D𝑅+1(0)) corresponds to the
inclusions are isomorphism, we conclude

𝐻𝑚𝑐 (R𝑛) =
{
Z 𝑚 = 𝑛

0 𝑚 ≠ 𝑛

This example tells us that 𝐻•𝑐 (𝑀) is not a cohomology theory in the sense of
Eilenberg-Steenrod. In fact it is not a homotopy invariant: a one-point space is
compact, so 𝐻•𝑐 (𝑝𝑡) = 𝐻• (pt), but 𝐻•𝑐 (R𝑛) ≠ 𝐻• (R𝑛). Actually, it is not even a
functor: the constant map R𝑛 → pt does not induce a map on cohomology with
compact support.



126 LECTURE 4. SINGULAR COHOMOLOGY

4.3.2 Orientations for Manifolds

Let 𝑀 be an 𝑛-manifold. For each 𝑥 ∈ 𝑀, choose an open ball 𝑈 with 𝑥 ∈ 𝑈.
Then by excision, we have

𝐻𝑛 (𝑀, 𝑀 \ 𝑥) ≃ 𝐻𝑛 (𝑈,𝑈 \ 𝑥) = Z.

De�nition 4.75. A local orientation 𝜇𝑥 for 𝑀 at 𝑥 is a choice of one of the
two possible generators for 𝐻𝑛 (𝑀, 𝑀 \ 𝑥).

If 𝑥, 𝑦 ∈ 𝑈 then we have homomorphisms 𝜌𝑥 and 𝜌𝑦 induced by the inclusion
of pairs

𝐻𝑛 (𝑀, 𝑀 \ 𝑥)
𝜌𝑥←−− 𝐻𝑛 (𝑀, 𝑀 \𝑈)

𝜌𝑦−−→ 𝐻𝑛 (𝑀, 𝑀 \ 𝑦).
So a generator for 𝐻𝑛 (𝑀, 𝑀 \𝑈) gives a local orientation at any point in 𝑈.

De�nition 4.76. An orientation of 𝑀 is a function 𝑥 ↦→ 𝜇𝑥 subject to the
following continuity condition: given any point 𝑥 ∈ 𝑀, there exists a neighbour-
hood 𝑈 of 𝑥 and an element 𝜇𝑢 ∈ 𝐻𝑛 (𝑀, 𝑀 \𝑈) such that 𝜌𝑦 (𝜇𝑈) = 𝜇𝑦 for each
𝑦 ∈ 𝑈.

We say 𝑀 is orientable if there exists an orientation. And if the orientation
is �xed, 𝑀 is oriented.

One could translate this into the connectedness of the double cover

𝑀 = {𝜇𝑥 |𝑥 ∈ 𝑀, 𝜇𝑥 is a local orientation of 𝑀 at 𝑥}.

We will not go through this construction, see �VI-7 of �Topology and Geometry�
by G. Bredon for details. For a �compensation� we summarise two useful criteria.

Proposition 4.77. 1. If 𝑀 is simply connected, then 𝑀 is orientable.

2. Suppose 𝐻1 (𝑀;Z/2Z) = 0, then 𝑀 is orientable.

Example 4.78. 1. R𝑛, S𝑛, C𝑃𝑛 are orientable.

2. If 𝑀 and 𝑁 are orientable, then 𝑀 × 𝑁 is orientable.

To determine which manifolds are not orientable, we have the following
lemma. For the proof, we need relative Mayer-Vietoris sequence:

· · · → 𝐻𝑛 (𝑋, 𝐴∩𝐵) → 𝐻𝑛 (𝑋, 𝐴)⊕𝐻𝑛 (𝑋, 𝐵) → 𝐻𝑛 (𝑋, 𝐴∪𝐵) → 𝐻𝑛−1(𝑋, 𝐴∩𝐵) → · · ·

Lemma 4.79. Let 𝑀 be a 𝑛-manifold, and 𝐾 ⊂ 𝑀 be a compact subset. Then

1. 𝐻𝑖 (𝑀, 𝑀 \ 𝐾 = 0 for 𝑖 > 𝑛;

2. Suppose 𝑥 ↦→ 𝑎𝑥 is an orientation of 𝑀. Then there is a unique class 𝑎𝐾 ∈
𝐻𝑛 (𝑀, 𝑀 \ 𝐾) whose image in 𝐻𝑛 (𝑀, 𝑀 \ 𝑥) is 𝑎𝑥 for all 𝑥 ∈ 𝐾.

Proof. We use the relative Mayer-Vietoris sequence for a triple (𝑋, 𝐴, 𝐵):

· · · → 𝐻𝑝 (𝑋, 𝐴 ∩ 𝐵) → 𝐻𝑝 (𝑋, 𝐴) ⊕ 𝐻𝑝 (𝑋, 𝐵) → 𝐻𝑝 (𝑋, 𝐴 ∪ 𝐵) → · · ·

We break down our proof in 4 steps:
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Step 1 Suppose the lemma holds for 𝐾1, 𝐾2 and 𝐾1 ∩ 𝐾2. We want to prove it
holds for 𝐾1 ∪ 𝐾2 as well. Then taking 𝑋 = 𝑀, 𝐴 = 𝑀 \ 𝐾1, 𝐵 = 𝑀 \ 𝐾2

we have

· · · → 𝐻𝑝+1 (𝑀, 𝑀\(𝐾1∩𝐾2)) → 𝐻𝑝 (𝑀, 𝑀\𝐾) → 𝐻𝑝 (𝑀, 𝑀\𝐾1)⊕𝐻𝑝 (𝑀, 𝑀\𝐾2) → · · ·

By assumption, if 𝑝 > 𝑛 the left side and right side terms are both zero,
so 𝐻𝑝 (𝑀, 𝑀 \ 𝐾) = 0. For the second statement, we know the map
𝐻𝑛 (𝑀, 𝑀 \𝐾1) ⊕𝐻𝑛 (𝑀, 𝑀 \𝐾2) → 𝐻𝑛 (𝑀, 𝑀 \ (𝐾1∩𝐾2)) is the di�erence
map 𝑎𝐾1

− 𝑎𝐾2
. By uniqueness, it has to be zero. So we have 𝑎𝐾 from

the exact sequence. This is unique because, 𝐻𝑛+1 (𝑀, 𝑀 \ (𝐾1 ∩𝐾2)) = 0.

Step 2 We reduce the problem to the case 𝑀 = R𝑛. Any compact set 𝐾 ⊂
𝑀 can be written as 𝐾1 ∪ · · · ∪ 𝐾𝑚 where each 𝐾𝑖 is contained in a
neighbourhood which is homeomorphic to a ball in R𝑛. Then applying
step 1 and induction on 𝐾1 ∪ · · · ∪ 𝐾𝑚−1, 𝐾𝑚 and their intersection.

Step 3 Suppose 𝑀 = R𝑛 and 𝐾 ⊂ R𝑛 is a compact convex subset. For any
point 𝑥 ∈ 𝐾, let 𝑆 be a large (𝑛 − 1)-sphere with centre 𝑥. Then 𝑆 is a
deformation retract of both R𝑛 \ 𝑥 and R𝑛 \ 𝐾. Hence the map

𝐻𝑖 (R𝑛,R𝑛 \ 𝐾) → 𝐻𝑖 (R𝑛,R𝑛 \ 𝑥)

is an isomorphism for each 𝑖.

Induction also shows that the lemma holds when 𝐾 is a �nite union of
compact convex sets.

Step 4 Now suppose 𝐾 ⊂ R𝑛 is an arbitrary compact subset and 𝛽 ∈ 𝐻𝑖 (R𝑛,R𝑛 \
𝐾). We choose a relative cycle 𝑧 with [𝑧] = 𝛽. Let 𝐶 ∈ R𝑛 \ 𝐾 be the
union of the images of the boundary of singular simplices in 𝑧. 𝐶 is
compact (since 𝑧 is closed in the absolute sense), the distance from 𝐾 to
𝐶 is some real number 𝛿 > 0.

Cover 𝐾 by �nitely many balls with centres in 𝐾 and radii < 𝛿. Let 𝑁
be the union of these balls and so 𝐾 ⊂ 𝑁 and 𝑧 de�nes a class 𝛽𝑁 ∈
𝐻𝑖 (R𝑛,R𝑛 \ 𝐾) such that the restriction 𝜌𝐾 (𝛽𝑁 ) = 𝛽.

If 𝑖 > 𝑛 then by step 3, 𝛽𝑁 = 0 so 𝛽 = 0. This, together with step 2,
�nishes the �rst part of the lemma.

If 𝑖 = 𝑛, 1 and step 3 also construct 𝑎𝑁 and then 𝑎𝐾 = 𝜌𝐾 (𝑎𝑁 ) such that
𝜌𝑥 (𝑎𝑁 ) = 𝑎𝑥 and 𝜌𝑥 (𝑎𝐾 ) = 𝑎𝑥 . We prove the uniqueness: if 𝑎

′
𝐾
is another

choice, let 𝛽 = 𝑎𝐾 − 𝑎
′
𝐾
. Then 𝜌𝑥 (𝛽) = 0 for any 𝑥 ∈ 𝐾, especially when

𝑥 is one of the centres of the balls to de�ne 𝑁. By step 3 again, 𝛽 is zero
on these balls and thus on 𝑁. Hence 𝑎𝐾 − 𝑎

′
𝐾
= 𝛽 = 0 ∈ 𝐻𝑛 (R𝑛,R𝑛 \ 𝐾).

□

When 𝑀 is closed (i.e. compact without boundary), taking 𝐾 = 𝑀 and we
have
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Corollary 4.80. Suppose 𝑀 is a connected closed 𝑛-manifold. Then

1. 𝐻𝑖 (𝑀) = 0 if 𝑖 > 𝑛;

2. 𝑀 is orientable if and only if 𝐻𝑛 (𝑀) = Z. If 𝑀 is not orientable, then
𝐻𝑛 (𝑀) = 0.

Proof. We need some remarks for non-orientable case. If 𝐻𝑛 (𝑀) ≠ 0, take a
cycle 𝑧 ≠ 0. We take a cell decomposition of 𝑀. Then at two sides of any
(𝑛 − 1)-dimensional cell, the coe�cient of 𝑧 is the same. Since 𝑀 is connected,
the coe�cient on all 𝑛-cells are the same. This gives us an orientation on 𝑀. □

Example 4.81. R𝑃2𝑛 is not orientable, since 𝐻2𝑛 (R𝑃2𝑛) = 0. R𝑃2𝑛+1 is orientable
since 𝐻2𝑛+1 (R𝑃2𝑛+1) = Z.

In particular, if 𝑀 itself is compact, then there is one and only one 𝜇𝑀 ∈
𝐻𝑛 (𝑀) with the required property. This class 𝜇 = 𝜇𝑀 is called the fundamental
homology class of 𝑀.

4.3.3 Poincaré duality theorem

The Poincaré duality for compact manifolds can be stated now.

Theorem 4.82. Let 𝑀 be a compact and oriented 𝑛-manifold, then the homo-
morphism

𝐷 : 𝐻 𝑝 (𝑀) → 𝐻𝑛−𝑝 (𝑀), 𝛼 ↦→ 𝛼 ∩ 𝜇𝑀
is an isomorphism.

It actually follows from a more general theorem (which we will prove), for any
oriented manifolds. Before stating the result, we need to explain the notations.

First observe that for any pair (𝑋, 𝐴), the cap product gives rise to a paring

𝑆𝑖 (𝑋, 𝐴) ⊗ 𝑆𝑛 (𝑋, 𝐴) → 𝑆𝑛−𝑖 (𝑋)

and hence to a pairing

𝐻𝑖 (𝑋, 𝐴) ⊗ 𝐻𝑛 (𝑋, 𝐴) → 𝐻𝑛−𝑖 (𝑋).

For oriented 𝑀, we de�ne the duality map

𝐷 : 𝐻 𝑝
𝑐 (𝑀) → 𝐻𝑛−𝑝 (𝑀)

as follows. For any 𝑎 ∈ 𝐻 𝑝
𝑐 (𝑀) = lim−−→𝐻 𝑝 (𝑀, 𝑀 \ 𝐾), choose a representative

𝑎
′ ∈ 𝐻 𝑝 (𝑀, 𝑀 \ 𝐾) and set

𝐷 (𝑎) = 𝑎′ ∩ 𝜇𝐾 .

This is well de�ned since for 𝐾 ⊂ 𝐿, we have the restriction

𝜌𝐾 : 𝐻𝑛 (𝑀, 𝑀 \ 𝐿) → 𝐻𝑛 (𝑀, 𝑀 \ 𝐾)
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with 𝜌𝐾 (𝜇𝐿) = 𝜇𝐾 . Then the naturality of the cap product tells us that the
following diagramme commutes:

𝐻𝑖 (𝑀, 𝑀 \ 𝐾) //

∩𝜇𝐾 ''

𝐻𝑖 (𝑀, 𝑀 \ 𝐿)

∩𝜇𝐿ww
𝐻𝑛−𝑖 (𝑀)

Theorem 4.83. Let 𝑀 be an oriented 𝑛-manifold, then the homomorphism

𝐷 : 𝐻 𝑝
𝑐 (𝑀) → 𝐻𝑛−𝑝 (𝑀)

is an isomorphism.

Proof. We break down our proof in 5 steps:

Step 1 We �rst prove the theorem for the case 𝑀 = R𝑛. Given a closed ball
𝐵 ⊂ R𝑛, we know that 𝐻𝑛 (R𝑛,R𝑛 \ 𝐵) = Z with generator 𝜇𝐵. Hence
𝐻𝑛 (R𝑛,R𝑛 \ 𝐵) = Z and by the universal coe�cient theorem, the homo-
morphism ℎ : 𝐻𝑛 (R𝑛,R𝑛 \ 𝐵;Z) → hom(𝐻𝑛 (R𝑛,R𝑛 \ 𝐵;Z) is an isomor-
phism. Then there exists a generator 𝑎 such that ⟨𝑎, 𝜇𝐵⟩ = 1. Now the
identity

⟨1 ∪ 𝑎, 𝜇𝐵⟩ = ⟨1, 𝑎 ∩ 𝜇𝐵⟩
shows that 𝑎 ∩ 𝜇𝐵 is a generator of 𝐻0 (R𝑛) = Z. Thus ∩𝜇𝐵 gives an
isomorphism 𝐻𝑛 (R𝑛,R𝑛 \ 𝐵) → 𝐻0 (R𝑛) for all 𝐵. Hence by the universal
property of direct limit, the map 𝐷 is an isomorphism in the case 𝑖 = 𝑛.
The cases 𝑖 ≠ 𝑛 is obvious since it maps 0 to 0.

Step 2 Suppose 𝑀 = 𝑈 ∪𝑉 and that the theorem holds for 𝑈, 𝑉 and 𝑈 ∩𝑉 . We
�rst construct Mayer-Vietoris sequence for 𝐻∗𝑐:

· · · → 𝐻
𝑝−1
𝑐 (𝑀) → 𝐻

𝑝
𝑐 (𝑈 ∩𝑉) → 𝐻

𝑝
𝑐 (𝑈) ⊕ 𝐻 𝑝

𝑐 (𝑉) → 𝐻
𝑝
𝑐 (𝑀) → · · ·

This is obtained from relative Mayer-Vietoris sequence

𝐻 𝑝 (𝑀, 𝑀\(𝐾∩𝐿)) → 𝐻 𝑝 (𝑀, 𝑀\𝐾)⊕𝐻 𝑝 (𝑀, 𝑀\𝐿) → 𝐻 𝑝 (𝑀, 𝑀\(𝐾∪𝐿))

and excisions

𝐻 𝑝 (𝑀, 𝑀 \ (𝐾 ∩ 𝐿)) = 𝐻 𝑝 (𝑈 ∩𝑉, (𝑈 ∩𝑉) \ (𝐾 ∩ 𝐿))
𝐻 𝑝 (𝑀, 𝑀 \ 𝐾) = 𝐻 𝑝 (𝑈,𝑈 \ 𝐾)
𝐻 𝑝 (𝑀, 𝑀 \ 𝐿) = 𝐻 𝑝 (𝑉,𝑉 \ 𝐿)

Now if we know the following diagramme of exact sequence is commu-
tative (up to sign), then Five lemma will �nish this step.

𝐻
𝑝
𝑐 (𝑈 ∩𝑉) //

𝐷

��

𝐻
𝑝
𝑐 (𝑈) ⊕ 𝐻 𝑝

𝑐 (𝑉) //

𝐷

��

𝐻
𝑝
𝑐 (𝑀)

𝛿 //

𝐷

��

𝐻
𝑝+1
𝑐 (𝑈 ∩𝑉)

𝐷

��
𝐻𝑛−𝑝 (𝑈 ∩𝑉) // 𝐻𝑛−𝑝 (𝑈) ⊕ 𝐻𝑛−𝑝 (𝑉) // 𝐻𝑛−𝑝 (𝑀)

𝜕

// 𝐻𝑛−𝑝−1 (𝑈 ∩𝑉)
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The left and the middle squares are easily seen to commute at the chain
level. Much less simple is the rightmost square, which we will show
commutes up to sign.

Notice we only need to show the following is commutative

𝐻 𝑝 (𝑀, 𝑀 \ (𝐾 ∪ 𝐿)) 𝛿 //

∩𝜇𝐾∪𝐿
��

𝐻 𝑝+1 (𝑈 ∩𝑉, (𝑈 ∩𝑉) \ (𝐾 ∩ 𝐿))

∩𝜇𝐾∪𝐿
��

𝐻𝑛−𝑝 (𝑀)
𝜕

// 𝐻𝑛−𝑝−1 (𝑈 ∩𝑉)

Let 𝐴 = 𝑀 \ 𝐾 and 𝐵 = 𝑀 \ 𝐿. Then the map 𝛿 is obtained from the
short exact sequence

0→ 𝑆∗ (𝑀, 𝐴) ∩ 𝑆∗ (𝑀, 𝐵) → 𝑆∗ (𝑀, 𝐴) ⊕ 𝑆∗ (𝑀, 𝐵) → 𝑆∗ (𝑀, 𝐴 ∩ 𝐵) → 0.

We use the fact 𝑆∗ (𝑀, 𝐴 ∪ 𝐵) → 𝑆∗ (𝑀, 𝐴) ∩ 𝑆∗ (𝑀, 𝐵) induces an iso-
morphism on cohomology. For a cocycle 𝜙 ∈ 𝑆∗ (𝑀, 𝐴 ∩ 𝐵), we write
𝜙 = 𝜙𝐴 − 𝜙𝐵 for 𝜙𝐴 ∈ 𝑆∗ (𝑀, 𝐴) and 𝜙𝐵 ∈ 𝑆∗ (𝑀, 𝐵). Then 𝛿[𝜙] is rep-
resented by the cocycle 𝛿𝜙𝐴 = 𝛿𝜙𝐵 ∈ 𝑆∗ (𝑀, 𝐴) ∩ 𝑆∗ (𝑀, 𝐵). Similarly
if 𝑧 ∈ 𝑆∗ (𝑀) represents a homology class then 𝜕 [𝑧] = [𝜕𝑧𝑈], where
𝑧 = 𝑧𝑈 − 𝑧𝑉 with 𝑧𝑈 ∈ 𝑆∗ (𝑈) and 𝑧𝑉 ∈ 𝑆∗ (𝑉).
Via barycentric subdivision, the class 𝜇𝐾 ∪ 𝐿 can be represented by a
chain 𝛼 which is the sum (𝛼 = 𝛼𝑈\𝐿 + 𝛼𝑈∩𝑉 + 𝛼𝑉\𝐾 ) of chains in three
open sets 𝑈 \ 𝐿, 𝑈 ∩ 𝑉 , and 𝑉 \ 𝐾 respectively. By uniqueness of 𝜇𝐾∩𝐿
the chain 𝛼𝑈∩𝑉 represents 𝜇𝐾∩𝐿, since the other two chains lie in the
complement of 𝐾 ∩ 𝐿. Similarly the chain 𝛼𝑈\𝐿 + 𝛼𝑈∩𝑉 represents 𝜇𝐾 .

Now let 𝜙 be a cocycle representing an element in 𝐻 𝑝 (𝑀, 𝑀 \ (𝐾 ∪ 𝐿)).
By 𝛿, it maps to 𝛿𝜙𝐴. Continuing downward to the bottom, we obtain
𝛿𝜙𝐴∩𝛼𝑈∩𝑉 , which represents the same homology class as (−1)𝑛−𝑝−1𝜙𝐴∩
𝜕𝛼𝑈∩𝑉 , since

𝜕 (𝜙𝐴 ∩ 𝛼𝑈∩𝑉 ) = (−1)𝑛−𝑝𝛿𝑝ℎ𝑖𝐴 ∩ 𝛼𝑈∩𝑉 + 𝜙𝐴 ∩ 𝜕𝛼𝑈∩𝑉 .

For the other way, 𝜙 is �rst mapped to 𝜙 ∩ 𝛼 ∈ 𝐻𝑛−𝑝 (𝑀). Write is as a
sum of a chain in 𝑈 and a chain in 𝑉 :

𝜙 ∩ 𝛼 = 𝜙 ∩ 𝛼𝑈\𝐿 + 𝜙 ∩ (𝛼𝑈∩𝑉 + 𝛼𝑉\𝐾 )

and by de�nition 𝜕 [𝜙 ∩ 𝛼] = [𝜕 (𝜙 ∩ 𝛼𝑈\𝐿)] ∈ 𝐻𝑛−𝑘−1 (𝑈 ∩ 𝑉). Now we
have

𝜕 (𝜙 ∩ 𝛼𝑈\𝐿) = 𝜙 ∩ 𝜕𝛼𝑈\𝐿 = 𝜙𝐴 ∩ 𝜕𝛼𝑈\𝐿 = −𝜙𝐴 ∩ 𝜕𝛼𝑈∩𝑉 .

The second equality is because 𝜙𝐵 is zero on 𝑀 \ 𝐿. The last equality
follows from 𝛼𝑈\𝐿 +𝛼𝑈∩𝑉 = 𝜇𝐾 which is a chain in 𝑈 \𝐾. This completes
step 2.
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Step 3 Suppose 𝑀 is the union of a direct system of open subsets {𝑈𝑖}𝑖∈𝐼 with
the property that if 𝐾 is a compact subset of 𝑀 then 𝐾 is contained in
some 𝑈𝑖. Then if we have

𝐻
𝑝
𝑐 (𝑀) = lim−−→

𝑖∈𝐼
𝐻
𝑝
𝑐 (𝑈𝑖), 𝐻𝑛−𝑝 (𝑀) = lim−−→

𝑖∈𝐼
𝐻𝑛−𝑝 (𝑈𝑖),

and know the theorem hodls for each 𝑈𝑖, then the theorem follows for
𝑀 since the direct limit preserves isomorphisms.

We prove 𝐻𝑝 (𝑀) = lim−−→𝑖∈𝐼
𝐻𝑝 (𝑈𝑖), as the other follows by the same

argument. By the universal property of directed limit, we have a homo-
morphism

lim−−→
𝑖∈𝐼

𝐻𝑝 (𝑈𝑖) → 𝐻𝑝 (𝑀).

We show it is surjective: if 𝑧 ∈ 𝑆𝑝 (𝑀) is a cycle, then there exists a
compact set such that [𝑧] ∈ im(𝐻𝑝 (𝐾) → 𝐻𝑝 (𝑋)). Assume 𝐾 ⊂ 𝑈𝑖.
Then [𝑧] ∈ im(𝐻𝑝 (𝑈𝑖) → 𝐻𝑝 (𝑀) and so [𝑧] ∈ im(lim−−→𝑖∈𝐼

𝐻𝑝 (𝑈𝑖) →
𝐻𝑝 (𝑀)).
T show the injectivity, take a cycle 𝑧 in 𝑈𝑖 and assume it is a boundary
of 𝐾 in 𝑋. Take 𝑗 such that 𝐾 ⊂ 𝑈 𝑗 , then its inclusion into lim−−→𝑖∈𝐼

𝐻𝑝 (𝑈𝑖)
is 0.

Step 4 Suppose 𝑀 is an open subset of R𝑛. If 𝑀 is convex, it follows from
step 1 since then 𝑀 is homeomorphic to R𝑛. We can �nd convex open
sets 𝑉1, 𝑉2, . . . such that 𝑀 = ∪∞

𝑖=1𝑉𝑖 (for example, take open discs whose
centres have rational coordinates). Then by step 2, the theorem holds for
𝑉1∪· · ·∪𝑉𝑟 for each 𝑟. And by step 3 the theorem holds for ∪𝑟 (∪𝑟𝑖=1𝑉𝑖) =
∪∞
𝑖=1𝑉𝑖 = 𝑀.

Step 5 𝑀 is arbitrary. Consider the family of all open subsets 𝑈 of 𝑀 such that
Poincaré duality holds for 𝑈. This family is nonempty. In view of step
3, we can apply Zorn's lemma to this family to choose a maximal open
set 𝑉 belonging to it. If 𝑉 ≠ 𝑀, then there is an open subset 𝐵 ⊂ 𝑀 such
that 𝐵 is homeomorphic to R𝑛, and 𝐵 is not contained in 𝑉 . We apply
step 2 and step 4 (for the intersection) to conclude Poincaré duality also
holds for 𝑉 ∪ 𝐵, contradicting the maximality of 𝑉 . Thus 𝑉 = 𝑀.

□

We also have Poncaré duality for non-orientable manifolds, but only for Z/2Z
coe�cient. Let 𝑀 be an arbitrary 𝑛-manifold. For each point 𝑥 ∈ 𝑀, 𝜇𝑥 denotes
the unique non-zero element of the local homology group 𝐻𝑛 (𝑀, 𝑀 \ 𝑥;Z/2Z).
And for each compact subset 𝐾, the same argument as Lemma 4.79 gives us the
unique element 𝜇𝐾 of 𝐻𝑛 (𝑀, 𝑀 \ 𝐾;Z/2Z) such that 𝜌𝑥 (𝜇𝐾 ) = 𝜇𝑥 for all 𝑥 ∈ 𝐾.
Now we de�ne a homomorphism

𝐻 𝑝 (𝑀, 𝑀 \ 𝐾;Z/2Z) → 𝐻𝑛−𝑝 (𝑀;Z/2Z), 𝑥 ↦→ 𝑥 ∩ 𝜇𝐾 .



132 LECTURE 4. SINGULAR COHOMOLOGY

This induces the homomorphism

𝐷2 : 𝐻 𝑝
𝑐 (𝑀;Z/2Z) → 𝐻𝑛−𝑝 (𝑀;Z/2Z).

Theorem 4.84. For any 𝑛-manifold 𝑀, the homomorphism

𝐷2 : 𝐻 𝑝
𝑐 (𝑀;Z/2Z) → 𝐻𝑛−𝑝 (𝑀;Z/2Z)

is an isomorphism.

4.4 Applications of Poincaré Duality

4.4.1 Intersection form, Euler characteristic

Intersection pairing

Let 𝑀 be a closed connected orientable 𝑛-manifold. We let 𝜇 ∈ 𝐻𝑛 (𝑀) be the
orientation, i.e. the unique element such that the image of 𝜇 in 𝐻𝑛 (𝑀, 𝑀 \ 𝑥) is
a generator.

Now we have a pairing on cohomology ring induced by cup product:

⟨, ⟩ : 𝐻𝑘 (𝑀) × 𝐻𝑛−𝑘 (𝑀) ∪−→ 𝐻𝑛 (𝑀)
∩𝜇
−−→ Z.

In other words, ⟨𝑎, 𝑏⟩ = (𝑎 ∪ 𝑏) (𝜇). This map is called the intersection form.
One could also de�ne the pairing on homology by taking Poincaré duality.

Poincaré duality simply tells us that the intersection form is non-singular
when we take the free part.

Corollary 4.85. Suppose we take coe�cients in a �eld 𝐹. Then the intersection
form

⟨, ⟩ : 𝐻𝑘 (𝑀; 𝐹) × 𝐻𝑛−𝑘 (𝑀; 𝐹) → 𝐹

is non-singular. We have the same conclusion if we look at the the pairing

𝐻𝑘 (𝑀;Z)
Tor

× 𝐻
𝑛−𝑘 (𝑀;Z)
Tor

→ Z.

Here �the intersection form is nonsingular� means both ⟨𝛼, ·⟩ and ⟨·, 𝛼⟩ are iso-
morphisms if 𝛼 is non-zero.

Proof. Consider the composition

𝐻𝑛−𝑘 (𝑀; 𝑅) ℎ−→ Hom𝑅 (𝐻𝑛−𝑘 (𝑀; 𝑅), 𝑅) 𝐷
∗
−−→ Hom𝑅 (𝐻𝑘 (𝑀; 𝑅), 𝑅)

Recall that ℎ is an isomorphism for the above two cases. And here 𝐷∗ is the
Hom-dual of the Poincaré duality map 𝐷 : 𝐻𝑘 → 𝐻𝑛−𝑘 . Note that

𝐷∗ (ℎ(𝛼)) (𝛽) = 𝛼 ∩ (𝛽 ∩ 𝜇) = (𝛼 ∪ 𝛽) (𝜇) = ⟨𝛼, 𝛽⟩.

Since both 𝐷∗ and ℎ are isomorphisms, their composition is an isomorphism
and hence the intersection form is non-singular. □
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Later we will just write 𝐻𝑚 (𝑀) for the free part if there will arise no confu-
sion.

Corollary 4.86. Let 𝑀 be an even dimensional (𝑛 = 2𝑚) orientable manifold.
Then the pairing

𝐻𝑚 (𝑀) × 𝐻𝑚 (𝑀) → Z

is unimodular: if we choose a basis 𝑢1, . . . , 𝑢𝑘 ∈ 𝐻𝑚 (𝑀), then the matrix 𝐴 =

(𝑎𝑖 𝑗 ) with 𝑎𝑖 𝑗 = ⟨𝑢𝑖 , 𝑢 𝑗⟩ has det 𝐴 = ±1.
And when 𝑚 is even, it is symmetric; 𝑚 is odd, it is anti-symmetric.

Proof. The second conclusion is easy, so we will prove only the �rst one. Take
a basis 𝑢1, . . . , 𝑢𝑘 ∈ 𝐻𝑚 (𝑀), then we know there is a dual basis 𝑣1, . . . , 𝑣𝑘 such
that ⟨𝑢𝑖 , 𝑣 𝑗⟩ = 𝛿𝑖 𝑗 . Let 𝐴 = (𝑎𝑖 𝑗 ) where 𝑎𝑖 𝑗 = ⟨𝑢𝑖 , 𝑢 𝑗⟩. Let 𝐵 be the matrix of
base change: 𝑣 𝑗 =

∑
𝑘 𝑏𝑘 𝑗𝑢𝑘 . Then

𝛿𝑖 𝑗 = ⟨𝑢𝑖 , 𝑣 𝑗⟩ =
∑︁
𝑘

𝑏𝑘 𝑗 ⟨𝑢𝑖 , 𝑢𝑘⟩ =
∑︁
𝑘

𝑎𝑖𝑘𝑏𝑘 𝑗 ,

i.e. 𝐴𝐵 = 𝐼. Since both 𝐴, 𝐵 are of Z coe�cients, det 𝐴 = ±1. □

Now, if an orientable 𝑀 has dimension 4𝑚, the intersection pairing is a
symmetric unimodular bilinear form. So the eigenvalues are all real numbers.
We will denote the numbers of its positive and negative eigenvalues by 𝑏+2𝑚 and
𝑏−2𝑚 respectively. Their sum is the Betti number 𝑏2𝑚. Their di�erence is an
important invariant called signature, denote by

𝜎(𝑀) = 𝑏+2𝑚 − 𝑏−−2𝑚.

For orientable manifolds of dimensions other than 4𝑚, we de�ne 𝜎(𝑀) = 0.
There is another viewpoint of the intersection pairing, from homology. If

𝑥, 𝑦 ∈ 𝐻∗ (𝑀), 𝜉, 𝜂 ∈ 𝐻∗ (𝑀) and 𝑥 = 𝐷𝜉, 𝑦 = 𝐷𝜂. Then we de�ne

𝑥 · 𝑦 = ⟨𝜉, 𝜂⟩ = (𝜉 ∪ 𝜂) (𝜇𝑀 )

which is also a non singular pairing by the above corollary.
Assume 𝑋, 𝑌 are closed oriented submanifold of dimensions 𝑖 and 𝑗 respec-

tively with 𝑖 + 𝑗 = 𝑛. We also assume they intersect transversally, i.e. at each
point 𝑥 ∈ 𝑋 ∩ 𝑌 ,

𝑇𝑥𝑋 + 𝑇𝑥𝑌 = 𝑇𝑥𝑀.

Then the intersection is also a submanifold of dimension 0, thus a �nite number
of points. Then each 𝑥 ∈ 𝑋 ∩ 𝑌 has a sign 𝜖 (𝑥) determined by comparing the
orientations of 𝑇𝑥𝑋 + 𝑇𝑥𝑌 and 𝑇𝑥𝑀. Let 𝑎 = 𝑖∗ (𝜇𝑋) and 𝑏 = 𝑖∗ (𝜇𝑌 ) where 𝑖 is
the inclusion. Then the intersection number can be calculated as

𝑎 · 𝑏 =
∑︁

𝑋∈𝑋∩𝑌
𝜖 (𝑥). (4.87)

Intuitively, this is very clear. We choose a singular decomposition of manifold 𝑀
such that it also induces singular decomposition of 𝑋 and 𝑌 . So each intersection



134 LECTURE 4. SINGULAR COHOMOLOGY

point will be a vertex of singular simplices. Since oriented means we have
𝜇𝑀 =

∑
𝑠𝑖 where 𝑠𝑖 are all simplices. And we also have similar formula for 𝜇𝑋

and 𝜇𝑌 comprising sub-simplices of 𝑠𝑖, but may have a sign. Then 𝑃𝐷−1(𝑎) ∪
𝑃𝐷−1(𝑏) (∑ 𝑠𝑖) is nonzero only when 𝑠𝑖 contains intersection points. And at
each intersection point, and any 𝑠𝑖 containing it, the evaluation is just a check
of whether the orientations are matched. To make this argument rigorous, we
need to make the de�nition of the cohomology class 𝑃𝐷−1(𝑎) clearer so that it
satis�es the property we want: restricting to each normal direction is just 1.
This needs the Thom isomorphism theorem.

Betti numbers and Euler characteristic

Let us introduce Betti numbers and Euler characteristic. For a cellular space
𝑀 with �nitely many cells in each dimension, let

𝑏𝑖 = rank(𝐻𝑖 (𝑀;Z)) = dim𝐻𝑖 (𝑀;Q) = rank(𝐻𝑖 (𝑀;Z)) = dim𝐻𝑖 (𝑀;Q).

𝑏𝑖 (𝑀) is called the 𝑖-th Betti number. The Euler characteristic of 𝑀 is

𝜒(𝑀) =
𝑛∑︁
𝑖=0

(−1)𝑖𝑏𝑖 (𝑀).

More generally, we have the Poincaré series 𝑃𝑀 (𝑡) =
∑∞
𝑖=0 𝑏𝑖 (𝑀)𝑡𝑖, and 𝜒(𝑀) =

𝑃𝑀 (−1).
Given a �nite cellular structure on 𝑀, let 𝛼𝑖 (𝑀) be the number of 𝑖-cells,

then we have 𝜒 =
∑
𝑖 (−1)𝑖𝛼𝑖 (𝑀). If we let 𝑄𝑀 (𝑡) =

∑
𝑖 𝛼𝑖𝑡

𝑖 (𝑀), this actually
follows from the following more general result

Theorem 4.88. Let 𝑀 be a �nite cellular space. Then

𝑄𝑀 (𝑡) − 𝑃𝑀 (𝑡) = (1 + 𝑡)𝑅(𝑡).

Proof. First if we have a short exact sequence for Abelian groups

0→ 𝐴→ 𝐵→ 𝐶 → 0

and 𝐴, 𝐵, and 𝐶 are �nitely generated, then 𝑟𝑎𝑛𝑘𝐵 = rank 𝐴 + rank𝐶.
Next we look at short exact sequences

0→ 𝑍𝑞 → 𝐶𝑞 → 𝐵𝑞−1 → 0

0→ 𝐵𝑞 → 𝑍𝑞 → 𝐻𝑞 → 0

We have ∑︁
𝑞

(rank𝐶𝑞)𝑡𝑞 =
∑︁
𝑞

(rank 𝑍𝑞)𝑡𝑞 + 𝑡
∑︁
𝑞

(rank 𝐵𝑞)𝑡𝑞∑︁
𝑞

(rank 𝑍𝑞)𝑡𝑞 =
∑︁
𝑞

(rank 𝐵𝑞)𝑡𝑞 +
∑︁
𝑞

(rank𝐻𝑞)𝑡𝑞
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Adding the both sides will yield

𝑄𝑀 (𝑡) = 𝑃𝑀 (𝑡) + (1 + 𝑡)
∑︁
𝑞

(rank 𝐵𝑞)𝑡𝑞 .

□

From this alternative de�nition of Euler characteristic, it is easy to see that
𝜒(𝑀) has some counting property:

Proposition 4.89. 1. If 𝐴 and 𝐵 are subspaces of a �nite cellular space 𝑀,
𝜒(𝐴 ∪ 𝐵) + 𝜒(𝐴 ∩ 𝐵) = 𝜒(𝐴) + 𝜒(𝐵).

2. If 𝑀 is a 𝑘-sheeted covering of 𝑀, then 𝜒(𝑀) = 𝑘 𝜒(𝑀).

Then we have the following restrictions on Euler characteristic of manifolds.

Proposition 4.90. 1. If 𝑀 is an odd dimensional closed manifold then 𝜒(𝑀) =
0.

2. If 𝑀 is an orientable 4𝑘 + 2-dimensional manifold, then 𝜒(𝑀) is even.

Proof. If 𝑀 is orientable and of odd dimension, then by Poincaré duality,
𝜒(𝑀) = 0. If 𝑀 is not orientable, we know its double covering 𝑀 we constructed
before is orientable and 𝜒(𝑀) = 1

2 𝜒(𝑀) = 0.
For the second statement, we know 𝑏𝑖 = 𝑏𝑛−𝑖 by Poincaré duality. So

𝜒(𝑀) ≡ 𝑏2𝑘+1 mod 2.

We want to prove 𝑏2𝑘+1 is even. Choose a basis of 𝐻2𝑘+1 (𝑀), and let 𝐴 be the
matrix of intersection form under this basis. 𝛼∪ 𝛽 = −𝛽∪𝛼 when both are 2𝑘+1
dimensional. So 𝐴 is antisymmetric: 𝐴 = −𝐴𝑡 . So

det 𝐴 = det 𝐴𝑡 = det(−𝐴) = (−1)𝑏2𝑘+1 det 𝐴.

Since the matrix is non-degenerate, 𝑏2𝑘+1 must be even. □

A non-orientable manifold need not satisfy the second statement. For exam-
ple, 𝜒(R𝑃2) = 1.

4.4.2 Calculation of cohomology rings

Cohomology ring of C𝑃𝑛

We have calculated the homology group

𝐻𝑚 (C𝑃𝑛) =
{
Z 𝑚 = 0, 2, . . . , 2𝑛

0 otherwise.

We claim the cohomology ring

𝐻∗ (C𝑃𝑛;Z) = Z[𝛼]
𝛼𝑛+1
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where 𝛼 has degree 2, i.e 𝛼 ∈ 𝐻2 (C𝑃𝑛;Z). Since the inclusion C𝑃𝑛−1 → C𝑃𝑛

induces an isomorphism on 𝐻𝑖 for 𝑖 ≤ 2𝑛 − 2, we can see by induction on 𝑛 that
𝐻2𝑖 (C𝑃𝑛;Z) is generated by 𝛼𝑖 for 𝑖 < 𝑛. By the corollary, there is an integer 𝑚
such that the product 𝛼∪𝑚𝛼𝑛−1 = 𝑚𝛼𝑛 = 1. Hence 𝑚 = ±1, and our conclusion
follows.

Wee see that the ring structure of cohomology can distinguish spaces with
the same (co)homology groups. S2 × S4 has the same cohomology groups as
C𝑃3. But by Künneth formula,

𝐻∗ (S2 × S4;Z) = Z[𝛼, 𝛽]
𝛼2, 𝛽2

.

This is not isomorphic to 𝐻∗ (C𝑃3;Z) = Z[𝛼]
𝛼4 .

A similar calculation of cohomology rings for complex projective spaces
works for Quaternionic projective space H𝑃𝑛 = (H𝑛+1 \ 0)/∼ where 𝑥 ∼ 𝑦 if
there exists 𝜆 ∈ H \ 0 such that 𝜆𝑥 = 𝑦. We conclude that

𝐻∗ (H𝑃𝑛;Z) = Z[𝛼]
𝛼𝑛+1

where 𝛼 has degree 4.
The situation for Cayley projective spaces is more restrictive. The division

algebra of Cayley numbers O is not associative. We can form O𝑃1 = S8 and
O𝑃2 and we have

𝐻∗ (O𝑃2;Z) = Z[𝛼]
𝛼3

.

Cohomology ring of R𝑃𝑛 and Borsuk-Ulam theorem

Recall that

𝐻𝑚 (R𝑃𝑛;Z) =

Z 𝑚 = 0 or 𝑚 = 𝑛 = 2𝑘 + 1
Z/2Z 𝑚 odd, 0 < 𝑚 < 𝑛

0 otherwise

Hence by universal coe�cient theorem, we know

𝐻𝑚 (R𝑃𝑛;Z/2Z) =
{
Z/2Z 0 ≤ 𝑚 ≤ 𝑛
0 otherwise

Using Theorem 4.84, and a similar argument for C𝑃𝑛 as above, we conclude
that

𝐻∗ (R𝑃𝑛;Z/2Z) = Z/2Z[𝑥]
𝑥𝑛+1

.

Now as an application of this calculation, we have

Lemma 4.91. Suppose we have a continuous map 𝑓 : R𝑃𝑚 → R𝑃𝑛 such that
𝑓∗ ≠ 0 : 𝐻1 (R𝑃𝑚;Z/2Z) → 𝐻1 (R𝑃𝑛;Z/2Z). Then 𝑚 ≤ 𝑛.
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Proof. Since 𝐻1 (𝑋;𝐺) = Hom(𝐻1 (𝑋);𝐺), we know 𝑓 ∗ ≠ 0 : 𝐻1 (R𝑃𝑛;Z/2Z) →
𝐻1 (R𝑃𝑚;Z/2Z).

Take 𝜉 ≠ 0 ∈ 𝐻1 (R𝑃𝑛;Z/2Z), then 𝜂 = 𝑓 ∗ (𝜉) ≠ 0 ∈ 𝐻1 (R𝑃𝑚;Z/2Z). By
the calculation of cohomology ring, we know 𝜂𝑚 = 𝑓 ∗ (𝜉𝑚) ≠ 0. So 𝜉𝑚 ≠ 0 ∈
𝐻𝑚 (R𝑃𝑛;Z/2Z), which means 𝑚 ≤ 𝑛. □

Lemma 4.92. Let 𝜎 be a path connecting a pair of antipodal points S𝑛. Then
under the factor map 𝜋 : S𝑛 → R𝑃𝑛, the 𝜎 becomes a singular cycle 𝜋∗ (𝜎)
representing a nonzero element in 𝐻1 (R𝑃𝑛;Z/2Z).

Proof. We use the cellular decomposition induced from the natural one of S0 ⊂
S1 ⊂ · · · ⊂ S𝑛. Let 𝜎 be the path connecting the two points of S0 (in S𝑖, 𝑖 ≤ 𝑛).
When 𝑛 = 1, 𝜋∗ (𝜎) rotates along R𝑃1 = S1 odd number of times. It is nontrivial
in 𝐻1 (R𝑃1;Z/2Z).

When 𝑛 > 1, take a path 𝜏 with the same end points of 𝜎 in S1 ⊂ S𝑛.
We proceed by induction: 𝜋∗ (𝜏) represents a nonzero element 𝐻1 (R𝑃1;Z/2Z).
Since the inclusion 𝐻1 (R𝑃1;Z/2Z) → 𝐻1 (R𝑃𝑛;Z/2Z) is an isomorphism, 𝜋∗ (𝜏) is
nonzero in 𝐻1 (R𝑃𝑛;Z/2Z) as well. On the other hand, 𝜎−𝜏 is a singular cycle in
S𝑛 with 𝑛 > 1, so it is a boundary. Hence 𝜋∗ (𝜎) is nonzero in 𝐻1 (R𝑃𝑛;Z/2Z). □

Theorem 4.93. There is no continuous map 𝑓 : S𝑛+1 → S𝑛 such that 𝑓 (−𝑥) =
− 𝑓 (𝑥).

Proof. If there is such a map, then it induces a map 𝑔 : R𝑃𝑛+1 → R𝑃𝑛. Take a
path 𝜎 connecting a pair of antipodal points in S𝑛+1. It is mapped to a path
𝑓 ∗(𝜎) connecting some antipodal pair of S𝑛. Hence by Lemma 4.92, 𝑔∗ ≠ 0 :
𝐻1 (R𝑃𝑛+1;Z/2Z) → 𝐻1 (R𝑃𝑛;Z/2Z). Then Lemma 4.91 �nishes the proof. □

Corollary 4.94 (Borsuk-Ulam). Let 𝑓 : S𝑛 → R𝑛 be a continuous map. Then
there exists 𝑥 ∈ S𝑛 such that 𝑓 (𝑥) = 𝑓 (−𝑥).

Proof. If not, 𝑔 de�ned as the following is well-de�ned since ∥ 𝑓 (𝑥) − 𝑓 (−𝑥)∥ is
non-zero.

𝑔 : S𝑛 → 𝑆𝑛−1, 𝑔(𝑥) = 𝑓 (𝑥) − 𝑓 (−𝑥)
∥ 𝑓 (𝑥) − 𝑓 (−𝑥)∥ .

Then we have 𝑔(−𝑥) = −𝑔(𝑥), contradicting with Theorem 4.93. □

Corollary 4.95 (Ham sandwich). Let 𝐴1, . . . , 𝐴𝑚 be m measurable sets in R𝑚.
Then we have a hyperplane 𝑃 which bisects each 𝐴𝑖.

Proof. Consider in R𝑚+1 �x 𝑥0 ∈ R𝑚+1 \ R𝑚. For any vector 𝑣 ∈ S𝑚 ⊂ R𝑚+1,
construct a hyperplane orthogonal to 𝑣 and passing through 𝑥0. It divides R𝑚+1

and hence R𝑚 into two parts. We record the volume of the 𝐴𝑖 ⊂ R𝑚 in the half
space determined by the direction of 𝑣, by 𝑓𝑖 (𝑣). Thus we have a continuous
map

𝑓 : S𝑚 → R𝑚, 𝑣 ↦→ ( 𝑓1 (𝑣), . . . , 𝑓𝑚 (𝑣)).

By corollary 4.94, there exists a 𝑣 such that 𝑓 (𝑣) = 𝑓 (−𝑣). This hyperplane
bisects each 𝐴𝑖. □
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Another application is the Ljusternik-Schnirelmann category cat(R𝑃𝑛) =

𝑛 + 1. This is because Cl(R𝑃𝑛) = 𝑛 (4.61), so cat(R𝑃𝑛) ≥ 𝑛 + 1. On the other
hand, it is not hard to construct a smooth function on R𝑃𝑛 with 𝑛 + 1 critical
points.

Cohomology ring of lens spaces

Given an integer 𝑚 > 1 and integers ℓ1, . . . , ℓ𝑛 relatively prime to 𝑚, we de�ne
the lens space 𝐿 = 𝐿𝑚 (ℓ1, . . . , ℓ𝑛) as the orbit space S2𝑛−1/(Z/𝑚Z) of the unit
sphere S2𝑛−1 ⊂ C𝑛 by the action 𝜌 of Z/𝑚Z, given by the following

𝜌(𝑧1, . . . , 𝑧𝑛) = (exp(2𝜋ℓ1/𝑚)𝑧1, . . . , exp(2𝜋ℓ𝑛/𝑚)𝑧𝑛).

Since ℓ𝑖 is coprime to 𝑚, the action of Z/𝑚Z over S2𝑛−1 is free. Thus the
projection S2𝑛−1 → 𝐿 is a covering map. Note that when 𝑚 = 2, 𝜌 is the
antipodal map and 𝐿2 = R𝑃2𝑛−1.

𝐿 has a CW structure with one cell 𝑒𝑘 for each 𝑘 ≤ 2𝑛 − 1 and the resulting
cellular chain complex is

0→ Z
0−→ Z

𝑚−→ Z
0−→ · · · 0−→ Z

𝑚−→ Z
0−→ Z→ 0

Therefore

𝐻𝑘 (𝐿𝑚 (ℓ1, . . . , ℓ𝑛)) =

Z 𝑘 = 0, 2𝑛 − 1
Z/𝑚Z 𝑘 odd, 0 < 𝑘 < 2𝑛 − 1
0 otherwise

By the universal coe�cient theorem,

𝐻𝑘 (𝐿𝑚 (ℓ1, . . . , ℓ𝑛);Z/𝑚Z) =
{
Z/𝑚Z 0 ≤ 𝑘 ≤ 2𝑛 − 1
0 otherwise

Since the cohomology group only depends on 𝑚 and 𝑛, later on we will denote
the lens space by 𝐿2𝑛−1

𝑚 or simply 𝐿2𝑛−1. To calculate the cup product, we let
𝛼 ∈ 𝐻1 (𝐿2𝑛−1;Z/𝑚Z) and 𝛽 ∈ 𝐻2 (𝐿2𝑛−1;Z/𝑚Z) be generators.

We claim that 𝐻2𝑖 (𝐿2𝑛−1;Z/𝑚Z) is generated by 𝛽𝑖 and 𝐻2𝑖+1(𝐿2𝑛−1;Z/𝑚Z)
is generated by 𝛼𝛽𝑖.

We proceed by induction, so we assume the claim holds for 𝐿2𝑛−1 and want
to show it holds for 𝐿2𝑛+1. Using the inclusion 𝐿2𝑛−1 → 𝐿2𝑛+1 which induces
isomorphisms in cohomology for 0 ≤ 𝑘 ≤ 2𝑛 − 1 by comparing the cellular chain
complexes, we may assume the claim holds for 𝐻𝑘 (𝐿2𝑛+1;Z/𝑚Z) with 𝑘 ≤ 2𝑛−1.
By corollary 4.85, there exists 𝜆 ∈ Z/𝑚Z such that 𝛽∪𝜆𝛼𝛽𝑛−1 = 𝜆𝛼𝛽𝑛 generates
𝐻2𝑛+1 (𝐿2𝑛+1;Z/𝑚Z). So 𝜆 has to be a generator of Z/𝑚Z and therefore 𝛼𝛽𝑛

is a generator of 𝐻2𝑛+1 (𝐿2𝑛+1;Z/𝑚Z). It also implies that 𝛽𝑛 is a generator of
𝐻2𝑛 (𝐿2𝑛;Z/𝑚Z), otherwise 𝛼𝛽𝑛 would have order less than 𝑚.

To complete the calculation of the ring 𝐻∗ (𝐿2𝑛−1;Z/𝑚Z), we need to compute
𝛼2. By graded commutativity, we have 𝛼 ∪ 𝛼 = −𝛼 ∪ 𝛼. So if 𝑚 is odd, 𝛼2 = 0.
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When 𝑚 = 2𝑘, we claim 𝛼2 = 𝑘𝛽. We use the fact that the 2-skeleton
S1 ∪ 𝑓𝑚 𝑒2 of 𝐿2𝑛−1 is the circle S1 attached by 𝑎 2-cell with a map of degree 𝑚.
We �rst get the 2-skeleton a cellular structure (in fact, a Δ-complex structure)
by subdivide an 𝑚-gon into 𝑚 triangles 𝑇𝑖 around a central vertex 𝑣, and identify
all the outer edges by rotations of the 𝑚-gon. We call the faces in a counter-
clockwise order 𝑇0, . . . , 𝑇𝑚−1 and the the rays from 𝑣 which bound 𝑇𝑖 by 𝑒𝑖 and
𝑒𝑖+1.

𝑤

𝑒𝑇0

��

𝑤𝑒
𝑇3

oo

𝑣

𝑒0

``

𝑒1

~~
𝑒2

  

𝑒3

>>

𝑤 𝑒
𝑇1 // 𝑤

𝑇2 𝑒

OO

Then we choose a representative 𝜙 for 𝛼 which assigns value 1 to the boundary
edge. The condition that 𝜙 is a cocycle means 𝜙(𝑒𝑖) + 𝜙𝑒) = 𝜙(𝑒𝑖+1), which
means we can take 𝜙(𝑒𝑖) = 𝑖 in Z/𝑚Z. Then by de�nition of the cup product,
(𝑝ℎ𝑖 ∪ 𝜙) (𝑇𝑖) = 𝜙(𝑒𝑖)𝜙(𝑒) = 𝑖. Since 0 + 1 + · · · + (𝑚 − 1) ≡ 𝑘 in Z/𝑚Z, we know
𝜙 ∪ 𝜙 evaluates as 𝑘 on Σ𝑇𝑖. This means 𝛼2 = 𝑘𝛽.

Hence we have

𝐻∗ (𝐿2𝑛−1;Z/(2𝑘 + 1)Z) = Z/(2𝑘 + 1)Z[𝛼, 𝛽]
𝛼2 = 0, 𝛽𝑛 = 0

𝐻∗ (𝐿2𝑛−1;Z/2𝑘Z) = Z/2𝑘Z[𝛼, 𝛽]
𝛼2 = 𝑘𝛽, 𝛽𝑛 = 0

4.4.3 Degree and Hopf invariant

Degree

We can de�ne degree of a map 𝑓 : 𝑀𝑛 → 𝑁𝑛 between closed oriented connected
manifolds. For orientable manifolds 𝐻𝑛 (𝑀) = 𝐻𝑛 (𝑁) = Z, so 𝑓∗ : 𝐻𝑛 (𝑀) →
𝐻𝑛 (𝑁) maps the generator 𝜇𝑀 to an integer multiple 𝑘 of 𝜇𝑁 . We call this 𝑘 :=
deg( 𝑓 ) the degree of the map 𝑓 . The degree has natural composition property:
deg( 𝑓 ) deg(𝑔) = deg( 𝑓 ◦ 𝑔). Since 𝐻𝑛 (𝑀) = 𝐻𝑛 (𝑁) = Z as well, we can de�ne
degree as the corresponding integer for the cohomology 𝑓 ∗ : 𝐻𝑛 (𝑁) → 𝐻𝑛 (𝑀).
Apparently, these two de�nitions yield the same number.

Example 4.96. A re�exion of S𝑛 along a great circle has degree −1, since it
changes the orientation. Hence the antipodal map 𝑎 sending 𝑥 ↦→ −𝑥 has degree
(−1)𝑛+1 since it is a composition of 𝑛 + 1 re�exions.

This example has lots of corollaries. We only show a few.

Corollary 4.97. 1. If 𝑓 , 𝑔 : S𝑛 → S𝑛 are maps such that 𝑓 (𝑥) ≠ 𝑔(𝑥) for all
𝑥 ∈ S𝑛 then 𝑓 is homotopic to 𝑎 ◦ 𝑔.

2. If 𝑓 : S𝑛 → S𝑛 has no �xed points then it is homotopic to the antipodal map,
and thus has degree (−1)𝑛+1.
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Proof. 1: By assumption

𝑥 ↦→ (1 − 𝑡) 𝑓 (𝑥) − 𝑡𝑔(𝑥)∥(1𝑡) 𝑓 (𝑥) − 𝑡𝑔(𝑥)∥

is a well de�ned homotopy from 𝑓 to 𝑎 ◦ 𝑔.
2: Set 𝑔 = id in 1. □

We can also get some information for group actions on S𝑛. First note that
S2𝑛−1 can be viewed as the unit sphere in C𝑛. Thus it admits a free action of
S1, e.g, 𝑧 ↦→ 𝑒𝑖 𝜃 𝑧. Especially, it tells us that any �nite subgroup Z/𝑚Z ⊂ S1 can
act on S2𝑛−1 freely. However, the situation for S2𝑛 is quite di�erent.

Corollary 4.98. Suppose a group 𝐺 acts freely on S2𝑛. Then 𝐺 ≤ Z/2Z.

Proof. By assumption, each non-trivial element 𝑔 ∈ 𝐺 has no �xed point, thus
has degree −1 by the above corollary. Hence there is at most one such element,
otherwise the composition would give a map of degree 1 which has to be trivial.

□

Proposition 4.99. Given 𝑓 : C𝑃𝑛 → C𝑃𝑛, there exists an integer 𝑘 such that
deg 𝑓 = 𝑘𝑛.

Proof. Let 𝑢 be a generator of 𝐻2 (C𝑃𝑛), then 𝑓 ∗(𝑢) = 𝑘𝑢 for some constant 𝑘.
Hence 𝑓 ∗ (𝑢𝑛) = 𝑓 ∗ (𝑢)𝑛 = 𝑘𝑛𝑢𝑛. By de�nition, deg 𝑓 = 𝑘𝑛. □

Proposition 4.100. If 𝑓 : S2𝑛 → C𝑃𝑛 with 𝑛 > 1 then deg( 𝑓 ) = 0.

Proof. 𝑓 ∗ (𝑢) = 0 since 𝐻2 (S2𝑛) = 0. So 𝑓 ∗ (𝑢𝑛) = 𝑓 ∗ (𝑢)𝑛 = 0. □

The last proposition suggests: if there is a map 𝑓 : 𝑀 → 𝑁 with deg( 𝑓 ) ≠ 0,
then 𝑀 may well be topologically more complicated than 𝑁.

Example 4.101. If 𝑓 : S𝑛 → S𝑛 is a continuous map, and Σ 𝑓 : S𝑛+1 → S𝑛+1 is
the suspension of 𝑓 then deg Σ 𝑓 = deg 𝑓 .

In fact, if 𝑋 → 𝑋 is a continuous map and

Σ𝑋 = 𝑋 × [−1, 1]/(𝑋 × {−1}, 𝑋 × {1})

denotes the suspension of 𝑋, then Σ 𝑓 := 𝑓 ×id[−1,1]/∼, with the same equivalence
as in Σ𝑋. Note that ΣS𝑛 = S𝑛+1.

The Suspension Theorem states that

𝐻𝑖 (𝑋) � 𝐻𝑖+1(Σ𝑋).

We show this fact by using the Mayer-Vietoris sequence for the decomposition

Σ𝑋 = 𝐶+𝑋 ∪𝑋 𝐶−𝑋,

where 𝐶+𝑋 and 𝐶−𝑋 are the upper and lower cones of the suspension joined
along their bases:

· · · → 𝐻𝑛+1 (𝐶+𝑋)⊕𝐻𝑛+1 (𝐶−𝑋) → 𝐻𝑛+1 (Σ𝑋) → 𝐻𝑛 (𝑋) → 𝐻𝑛 (𝐶+𝑋)⊕𝐻𝑛 (𝐶−𝑋) → · · ·
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Since 𝐶+𝑋 and 𝐶−𝑋 are both contractible, the end groups in the above sequence
are both zero. Thus, by exactness, we get 𝐻𝑖 (𝑋) � 𝐻𝑖+1 (Σ𝑋), as desired.

Let 𝐶+S𝑛 denote the upper cone of ΣS𝑛. Note that the base of 𝐶+S𝑛 is
S𝑛 × {0} ⊂ ΣS𝑛. Our map 𝑓 induces a map 𝐶+ 𝑓 : (𝐶+S𝑛, S𝑛) → (𝐶+S𝑛, S𝑛),
giving the factor map Σ 𝑓 . The long exact sequence of the pair (𝐶+S𝑛, S𝑛) in
homology gives the following commutative diagramme:

0 // 𝐻𝑖+1 (𝐶+S𝑛, S𝑛) � 𝐻𝑖+1 (𝐶+S𝑛/S𝑛)
𝜕

∼
//

(Σ 𝑓 )∗
��

𝐻𝑖 (S𝑛) //

𝑓∗
��

0

𝐻𝑖+1(S𝑛+1)
𝜕

∼
// 𝐻𝑖 (S𝑛)

Note that 𝐶+S𝑛/S𝑛 � S𝑛+1 so the boundary maps 𝜕 at the top and the bottom of
the diagramme are the same map. So by the commutativity of the diagramme,
since 𝑓∗ is de�ned by multiplication by some integer 𝑚, (Σ 𝑓 )∗ as well, is multi-
plication by the same integer 𝑚.

Hopf invariant

Hopf invariant is a kind of degree when studying the maps S2𝑛−1 → S𝑛.
Given a map 𝑓 : S𝑚 → S𝑛 with 𝑚 ≥ 𝑛, we can form a cellular space

𝐶 ( 𝑓 ) := S𝑛 ∪ 𝑓 D𝑚+1 =
S𝑛 ⊔ D𝑚+1

𝑓 (𝑥) ∼ 𝑥,∀𝑥 ∈ S𝑚

The homotopy type of 𝐶 ( 𝑓 ) depends only on the homotopy class of 𝑓 . We can
use Proposition 4.36 to calculate its (co)homology group. For example, if 𝑚 = 𝑛

and 𝑓 has degree 𝑑, then 𝐻𝑛 (𝐶 ( 𝑓 )) = Z/|𝑑 |Z, which detects degree up to sign.
When 𝑚 > 𝑛, we calculate that the cohomology of 𝐶 ( 𝑓 ) has Z in dimensions

0, 𝑛 and 𝑚 + 1. Especially when 𝑚 = 2𝑛 − 1, we have chance to use cup product
to detect something nontrivial. n this case, choose generators 𝛼 ∈ 𝐻𝑛 (𝐶 ( 𝑓 ))
and 𝛽 ∈ 𝐻2𝑛 (𝐶 ( 𝑓 )), then the ring structure of 𝐻∗ (𝐶 ( 𝑓 )) is determined by 𝛼2 =

𝐻 ( 𝑓 )𝛽 for an integer 𝐻 ( 𝑓 ) which is called the Hopf invariant of 𝑓 .
If 𝑓 is a constant map then 𝐶 ( 𝑓 ) = S𝑛 ∨ S2𝑛 and 𝐻 ( 𝑓 ) = 0. Also, 𝐻 ( 𝑓 ) is

always zero for odd 𝑛 since 𝛼2 = −𝛼2 in this case.

Example 4.102. Case 𝑛 = 1 In this case it is the covering map, viewed as a
�bration S0 → S1 → R𝑃1. It is measured by its degree, which is 2.

Case 𝑛 = 2 We use S2 = C𝑃1 and view S3 as the unit sphere in C2. The map
S3 → S2 is de�ned as

(𝑧0, 𝑧1) ↦→ [𝑧0 : 𝑧1] .

From the de�nition, this is a �bration S1 → S3 → S2, which is called the
Hopf �bration. It is easy to see that 𝐶 ( 𝑓 ) = C𝑃2. Thus 𝐻 ( 𝑓 ) = 1 since
𝐻∗ (C𝑃2) = Z[𝛼]

𝛼3 .
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Case 𝑛 = 4 Replacing the �eld C by Hamilton's quaternion H, with some con-
struction work yields the �bration S3 → S7 → S4. And 𝐶 ( 𝑓 ) = H𝑃2 and
𝐻 ( 𝑓 ) = 1.

Case 𝑛 = 8 Using Cayley octonion, we have Hopf �bration S7 → S15 → S8.
And 𝐶 ( 𝑓 ) = O𝑃2 and 𝐻 ( 𝑓 ) = 1.

It is a fundamental theorem of Adams that maps S2𝑛−1 → S𝑛 of Hopf invari-
ant 1 exists only when 𝑛 = 2, 4, and 8: the original proof, John F. Adams, On
the non-existence of elements of Hopf invariant one, Ann. Math. 72 1 (1960)
20-104, is not quite accessible. a much simpler proof using K-theory is given by,
J. F. Adams and M. F. Atiyah K-theory and the Hopf invarant, The Quarterly
Journal of Mathematics, Volume 17, Issue 1, 1966, Pages 31-38.

It has many interesting corollaries:

1. R𝑛 has a structure of division algebra (over R) only for 𝑛 = 1, 2, 4, and 8.

2. S𝑛 is �parallelisable� i.e, has 𝑛 linearly independent tangent vector �elds only
for 𝑛 = 0, 1, 3, and 7.

3. The �brations S𝑝 → S𝑞 → S𝑟 exist only for triples (𝑝, 𝑞, 𝑟) = (0, 1, 1), (1, 3, 2),
(3, 7, 4), and (7, 15, 8).

One can also de�ne the Hopf invariant in terms of degree. Let 𝑦, 𝑧 be two
di�erent regular values for a map 𝑓 : S2𝑛−1 → S𝑛, then the manifolds 𝑓 −1(𝑦)
and 𝑓 −1(𝑧) can be oriented and the linking number is de�ned as the degree of
a function: Let 𝑀 and N be two manifolds of dimension 𝑛 − 1 in S2𝑛−1. Choose
a point 𝑝 ∈ S2𝑛−1 which is not in 𝑀 or 𝑁, and think S2𝑛−1 \ 𝑝 as R2𝑛−1. Then
the linking number link(𝑀, 𝑁) of 𝑀 and 𝑁 is de�ned as the degree of the map

𝑔 : 𝑀 × 𝑁 → S2𝑛−2, (𝑥, 𝑦) ↦→ 𝑥 − 𝑦
∥𝑥 − 𝑦∥ .

Let us understand this de�nition in terms of low dimensional examples. First
is the toy example: the linking of two S0 in S1 or R1. Let the coordinate of S0

be {𝑎, 𝑏} and {𝑐, 𝑑} respectively. Then the map 𝑔 is determined by the order of
these numbers. For example, if 𝑎 < 𝑐 < 𝑏 < 𝑑, then two S0 are linked both from
our common sense and from the formula since 𝑔 maps to 1 once and −1 thrice,
so degree is one. If 𝑎 < 𝑏 < 𝑐 < 𝑑, then degree is zero since maps to −1 four
times. And if 𝑎 < 𝑐 < 𝑑 < 𝑏, it maps to 1 and −1 both twice. But the degree is 0
as well since 𝑔(𝑎, 𝑐) and 𝑔(𝑎, 𝑑) are considered as oppositely orientated because
that of 𝑐 and 𝑑 are.

A more realistic example is for two S1 in S3 or R3. So 𝑔 : 𝑇2 → S2. For
a point 𝒗 in the unit sphere, the orthogonal projection of the link to the plane
perpendicular to 𝒗 gives a link diagram on plane. A point in 𝑇2 sent to 𝒗 corre-
sponds to a crossing in the link diagramme where 𝛾1 is over 𝛾2. A neighbourhood
of it is mapped to a neighbourhood of 𝒗 preserving or reversing the orientation
depending on the sign of the crossing. Thus it is just a signed counting of the
number of times 𝑔 covers 𝒗.
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There is a more concrete formula (Gauss formula) which can be generalisd
to higher dimensions

link(𝛾1, 𝛾2) =
1

4𝜋

∫ 𝑇1

0

∫ 𝑇2

0

( ¤𝛾1, ¤𝛾2, 𝛾1 − 𝛾2)
|𝛾1 − 𝛾2∥3

𝑑𝑡1𝑑𝑡2.

This is an integration interpretation of degree.
Now, the Hopf invariant 𝐻 ( 𝑓 ) = link( 𝑓 −11(𝑦), 𝑓 −1(𝑧)) for any two regular

values 𝑦 and 𝑧. To understand the equivalence of these de�nitions, we under-
stand the cup product as the intersection of the Poincaré dual of cocycles. For
the toy model above, S1 bounds a D2. Pairs of two points in S1 are linked if
and only if two semi circle in D2 with the pairs as end points intersect. By
gluing the boundary S1 by a double covering to another S1, we get R𝑃2, and
two semi-circle above become two S1.

For two S1's, which are considered as the inverse image of a regular value
of map S3 → S2, we have a similar story. But now S3 bounds D4 where one
can consider the picture in C2, and S1 bounds an immersed disk. Then the
intersection number of these two surfaces in D4 is exactly the same as the linking
number of two S1's in S3. One can prove this fact by pulling two circles until
they touch. So the intersection is at the boundary and easy to look at. Finally,
since S1 are �bres of the map, after gluing they will become a point and the
original surfaces will become a closed one.

With an explicit example bearing in mind, one can consider the Hopf �bra-
tion S1 → S3 → S2 where the �bre is (𝑧1, 𝑧2) with a �xed ratio. For example,
S1 × 0, 0 × S1 ⊂ S3 ⊂ C × C are two of them.

4.4.4 Alexander duality

Let us remind the reduced homology and reduced cohomology. 𝐻𝑖 (𝑀) = 𝐻𝑖 (𝑀, 𝑥)
and 𝐻𝑖 (𝑀) = 𝐻𝑖 (𝑀, 𝑥). So reduced ones di�er from the originals only for 𝑖 = 0.

Theorem 4.103. If 𝐾 is a compact, locally contractible, non-empty, proper
subset of S𝑛, then 𝐻𝑖 (S𝑛 \ 𝐾;Z) = 𝐻𝑛−𝑖−1 (𝐾;Z) for all 𝑖.

Proof. We �rst handle the case 𝑖 ≠ 0. By Poincaré duality, we have

𝐻𝑖 (S𝑛 \ 𝐾;Z) = 𝐻𝑛−𝑖𝑐 (S𝑛 \ 𝐾).

And by the de�nition of cohomology with compact supports,

𝐻𝑛−𝑖𝑐 (S𝑛 \ 𝐾) = lim−−→𝐻𝑛−𝑖 (S𝑛 \ 𝐾,𝑈 \ 𝐾)

where𝑈 is taken as open neighbourhoods of 𝐾. By excision, 𝐻𝑛−𝑖 (S𝑛\𝐾,𝑈\𝐾) =
𝐻𝑛−𝑖 (S𝑛,𝑈). And by the long exact sequence for pairs, 𝐻𝑛−𝑖 (S𝑛,𝑈) = 𝐻𝑛−𝑖−1 (𝑈)
when 𝑖 ≠ 0. Now if we can show

lim−−→𝐻𝑛−𝑖−1 (𝑈) = 𝐻𝑛−𝑖−1 (𝐾),

the case for 𝑖 ≠ 0 is complete.
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To show this, we use the fact that 𝐾 is a retract of some neighbourhood
𝑈0 in S𝑛 since it is locally contractible. Thus in the direct limit we can only
choose those open neighbourhood 𝑈 ⊂ 𝑈0 that can be retracted to 𝐾. This
implies the surjectivity of the map lim−−→𝐻∗ (𝑈) → 𝐻∗ (𝐾) since we can pull back
the cohomology of 𝐾 to that of 𝑈. To prove the injectivity, note that any
𝑈 ⊂ 𝑈0 can be regarded as a subspace of R𝑛 ⊂ S𝑛. The linear homotopy
𝑈 × 𝐼 → R𝑛 from the identity to the retraction 𝑈 → 𝐾 takes 𝐾 × 𝐼 to 𝐾, hence
takes 𝑉 × 𝐼 to 𝑈 for some (small) neighbourhood 𝑉 of 𝐾 by compactness of 𝐼.
Hence the inclusion 𝑉 ↩→ 𝑈 is homotopic to the retraction 𝑉 → 𝐾 ⊂ 𝑈. Thus
the restriction 𝐻∗ (𝑈) → 𝐻∗ (𝑉) factors through 𝐻∗ (𝐾). Therefore if an element
of 𝐻∗ (𝑈) restricts to 0 in 𝐻∗ (𝐾), it will be zero in 𝐻∗ (𝑉) and thus in lim−−→𝐻∗ (𝑈).

For the case 𝑖 = 0, 𝐻𝑛 (S𝑛,𝑈) = 𝐻𝑛−1(𝑈) does not hold. Instead we have the
short exact sequence

0→ 𝐻𝑛−1(𝑈) → 𝐻𝑛 (S𝑛,𝑈) → 𝐻𝑛 (S𝑛) → 0.

By taking the direct limit, we see the �rst term becomes lim−−→𝐻𝑛−1(𝑈) = 𝐻𝑛−1(𝐾).
By Poincaré duality, the middle term is 𝐻0 (S𝑛 \𝐾) and the last term is 𝐻0 (S𝑛) =
Z. So this sequence tells us 𝐻0 (S𝑛 \ 𝐾) = 𝐻𝑛−1(𝐾). □

In the proof, the local contractibility is used to guarantee lim−−→𝐻𝑛−𝑖−1 (𝑈) =
𝐻𝑛−𝑖−1 (𝐾). Without this condition, a pathological phenomenon may occur:
look at the the following example.

Example 4.104. Let 𝐾 denote the subset of the graph of the function 𝑦 = sin( 1
𝑥
)

for 𝑥 ≠ 0 and 𝑦-axis with |𝑥 |, |𝑦 | ≤ 1. Since there are three path components,

Figure 4.3: Two topologist's sine curves juxtaposed back-to-back

𝐻0 (𝐾;Z) is free abelian of rank 3. However, for the direct limit lim−−→𝐻0 (𝑈), we
only need calculate it for open path connected neighbourhoods of 𝐾, and thus
lim−−→𝐻0 (𝑈) = Z. Notice that 𝐾 is not locally contractible at the origin. Hence,
it is not a cellular space, either. This is a juxtaposition of two topologist's sine
curves. Note that it is connected but not path connected. We also notice that
the Alexander duality fails for this space.

This theorem has many interesting applications. Let us start with the lowest
non-trivial dimension 𝑛 = 2.
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Corollary 4.105 (Jordan curve theorem). Let 𝐾 ⊂ S2 be a simple closed curve,
then S2 \ 𝐾 has two components.

Proof. Alexander duality says that 𝐻0 (S2 \ 𝐾) = 𝐻1 (S1) = Z. So 𝐻0 (S2 \ 𝐾) =
Z/2Z. □

For 𝑛 = 3, if we take 𝐾 as knots. The Alexander duality simply tells us
that we cannot distinguish di�erent knots by their homology groups. A result
of Gordon-Luecke tells us that the fundamental group of the knot complement
determines the knot (Knots are determined by their complements. J. Amer.
Math. Soc. 2 (1989), no. 2, 371-415.). Actually, if we choose 𝐾 ⊂ S𝑛 as a
space homeomorphic to S𝑚, we will have the Alexander duality as well and the
proof is a delightful use of Mayer-Vietoris sequence. Especially, this works for
the Alexander horned sphere. It is an example homeomorphic to D3 with its

Figure 4.4: Alexander horned sphere

boundary homeomorphic to S2, but its complement is not simply connected.
However, by Alexander duality, its complement has trivial �rst homology.
Example 4.106. A non-orientable closed surface 𝑁 cannot be embedded in S3

as a submanifold. This is because 𝐻2 (𝑁;Z) ≈ Z/2Z is not free.
For the convenience for readers, we want to add that if we work on �ech

cohomology instead of singular cohomology, then the local contractibility con-
straint can be removed. This is because, by de�niton of �ech cohomology,
we have 𝐻𝑞 (𝐾) = lim−−→𝐻𝑞 (𝑈) for all neighbourhoods 𝑈 of 𝐾. Especially, for

�ech cohomology 𝐻0 detects the connected components instead of path con-
nected components. Notice that it does not contradict to the Eilenberg-Steenrod
uniqueness axiom since all cellular spaces are locally contractible, hence they
are path connected if connected.

A remark on the de�nition of �ech cohomology. It is de�ned as follows: let
𝑋 be the space for which we would like to de�ne �cohomology�.

1. For each open cover 𝔘 = {𝑈𝛼} of 𝑋, associate a simplicial complex 𝑁 (𝔘)
called its nerve. This associates a vertex to each 𝑈𝛼 and a set of 𝑘 + 1
vertices are considered to span a 𝑘-simplex if the corresponding 𝑈𝛼's have a
non-empty intersection.

2. For a re�nement 𝔙 = {𝑉𝛽} of 𝔘 (i.e, each 𝑉𝛽 is contained in some 𝑈𝛼), the
inclusions induce a simplicial map 𝑁 (𝔙) → 𝑁 (𝔘).
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3. The �ech cohomology 𝐻𝑞 (𝑋) is de�ned as lim−−→𝐻𝑞 (𝑁 (𝔘)).

4.4.5 Manifolds with boundary

An 𝑛-manifold with boundary is a Hausdor� space 𝑀 in which each point has
an open neighbourhood homeomorphic either to R𝑛 (such a point is called an
interior point) or to the half space R𝑛+ = {(𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 |𝑥𝑛 ≥ 0} (resp. a
boundary point). An interior point 𝑥 ∈ 𝑀 has 𝐻𝑛 (𝑀, 𝑀 \ 𝑥) = Z. A boundary
point 𝑥 corresponds to a point (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛+ with 𝑥𝑛 = 0. By excision, we
have 𝐻𝑛 (𝑀, 𝑀 \ 𝑥) = 𝐻𝑛 (R𝑛+,R𝑛+ \ 0) = 0.

If 𝑀 is a compact manifold with boundary, then 𝜕𝑀 has a collar neighbour-
hood, i.e. an open neighouborhood homeomorphic to 𝜕𝑀 × [0, 1) by a homeo-
morphism sending 𝜕𝑀 to 𝜕𝑀 × 0. (Morton Brown, Locally �at imbeddings of
topological manifolds, Annals of Mathematics, Vol. 75 (1962), p. 331-341, or
Robert Connelly, A new proof of Brown's collaring theorem, Proceedings of the
American Mathematical Society 27 (1971), 180-182.)

A compact manifold 𝑀 with boundary is called orientable if 𝑀 := 𝑀 \ 𝜕𝑀
is orientable. If 𝜕𝑀 × [0, 1) is a collar neighbourhood of 𝜕𝑀, then 𝐻𝑖 (𝑀, 𝜕𝑀) =
𝐻𝑖 (𝑀 \ 𝜕𝑀, 𝜕𝑀 × (0, 12 )). So Lemma 4.79 gives a relative fundamental class,
denoted as [𝑀, 𝜕𝑀] restricting to a given orientation at each point of 𝑀 \ 𝜕𝑀.
The following tells how to relate a relative fundamental class to 𝜇𝜕𝑀 . Later, for
simplicity, we will write it as [𝜕𝑀].

Proposition 4.107. An orientation of 𝑀 determines an orientation of 𝜕𝑀.

Proof. Consider an open neighbourhood 𝑈 of a point 𝑥 ∈ 𝜕𝑀 which is homeo-
morphic to an open half disk in R𝑛+. Let 𝑉 = 𝜕𝑈 = 𝑈∩𝜕𝑀 and let 𝑦 ∈ 𝑈 = 𝑈 \𝑉 .
We have the following isomorphisms

𝐻𝑛 (𝑀;, 𝑀 \𝑈) = 𝐻𝑛 (𝑀, 𝑀 \ 𝑦)
= 𝐻𝑛 (𝑀, 𝑀 \ 𝑦)
= 𝐻𝑛 (𝑀, 𝑀 \𝑈)
𝜕−→ 𝐻𝑛−1(𝑀 \𝑈, 𝑀 \𝑈)
= 𝐻𝑛−1(𝑀 \𝑈, (𝑀 \𝑈) \ 𝑥)
= 𝐻𝑛−1(𝜕𝑀, 𝜕𝑀 \ 𝑥)
= 𝐻𝑛−1(𝜕𝑀, 𝜕𝑀 \𝑉)

The connecting homomorphism is that of the triple (𝑀, 𝑀 \𝑈, 𝑀 \𝑈) which is
an isomorphism since 𝐻∗ (𝑀, 𝑀 \ 𝑈) = 𝐻∗ (𝑀, 𝑀) = 0. The isomorphism that
follows comes from the observation that the inclusion (𝑀 \ 𝑈) \ 𝑥 → 𝑀 \ 𝑈 is
a homotopy equivalence. The next to last isomorphism is given by excision of
𝑀 \𝑈. □

In particular, 𝜕 [𝑀, 𝜕𝑀] restricts to a generator of 𝐻𝑛−1(𝜕𝑀, 𝜕𝑀 \ 𝑥) for all
𝑥 ∈ 𝜕𝑀 and thus is the fundamental class [𝜕𝑀] determined by the orientation
of 𝜕𝑀 which is induced from that of 𝑀.
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Theorem 4.108 (Lefschetz duality). Suppose 𝑀 is a compact oriented 𝑛-
manifold with boundary. Then the homomorphisms

𝐷 :𝐻 𝑝 (𝑀) → 𝐻𝑛−𝑝 (𝑀, 𝜕𝑀), 𝛼 ↦→ 𝛼 ∩ [𝑀, 𝜕𝑀]
𝐷 :𝐻 𝑝 (𝑀, 𝜕𝑀) → 𝐻𝑛−𝑝 (𝑀), 𝛼 ↦→ 𝛼 ∩ [𝑀, 𝜕𝑀]

are isomorphisms. And the following diagramme is commutative.

𝐻𝑞−1(𝑀) //

𝐷

��

𝐻𝑞−1(𝜕𝑀) 𝛿 //

𝐷

��

𝐻𝑞 (𝑀, 𝜕𝑀) //

𝐷

��

𝐻𝑞 (𝑀)

𝐷

��
𝐻𝑛−𝑞−1(𝑀, 𝜕𝑀)

𝜕

// 𝐻𝑛−𝑞 (𝜕𝑀) // 𝐻𝑛−𝑞 (𝑀) // 𝐻𝑛−𝑞 (𝑀, 𝜕𝑀)

Proof. We apply Theorem 4.83 to 𝑀 \𝜕𝑀. Via a collar neighbourhood, we have
𝐻 𝑝 (𝑀, 𝜕𝑀) = 𝐻

𝑝
𝑐 (𝑀 \ 𝑀). And obviously, 𝐻𝑛−𝑝 (𝑀) = 𝐻𝑛−𝑝 (𝑀 \ 𝑀). Hence

𝐷 : 𝐻 𝑝 (𝑀, 𝜕𝑀) → 𝐻𝑛−𝑝 (𝑀) is an isomorphism. The commutativity can be
checked by inspecting the de�nition and using the boundary formula for cap
product. (for details, see F. E. A. Johnson, Lefschetz duality and topological
tubular neighbourhoods, Transactions of the American Mathematical Society,
Volume 172, October 1972.)

Finally by Five lemma, 𝐷 : 𝐻 𝑝 (𝑀) → 𝐻𝑛−𝑝 (𝑀, 𝜕𝑀) is an isomorphism as
well. □

For general manifolds with boundary, we also have 𝐻 𝑝
𝑐 (𝑀) � 𝐻𝑛−𝑝 (𝑀, 𝜕𝑀),

and 𝐻
𝑝
𝑐 (𝑀, 𝜕𝑀) � 𝐻𝑛−𝑝 (𝑀) if we de�ne 𝐻 𝑝

𝑐 (𝑀, 𝜕𝑀) := lim−−→𝐻 𝑝 (𝑀, (𝑀 \ 𝐾) ∪
𝜕𝑀).

Next, we want to know what kind of 𝑛-manifolds can be the boundary of
an 𝑛 + 1-dimensional manifold with boundary. From the classi�cation of sur-
faces1, we know that each orientable closed surface is the boundary of certain
3-manifold. What about non-orientable ones?

Theorem 4.109. Let an 𝑛-manifold 𝑀𝑛 = 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑊𝑛+1. Then 𝜒(𝑀) is even.

Proof. When 𝑛 is odd, it follows from Proposition 4.90. When 𝑛 is even, take
the double of 𝑊 , which is obtained by take two copies 𝑊+ and 𝑊− of 𝑊 and
glue them along the boundary. We denote it by 2𝑊 . So 𝑊+ ∪𝑊− = 2𝑊 and
𝑊+ ∩𝑊− = 𝑀. Hence, we have

𝜒(2𝑊) + 𝜒(𝑀) = 𝜒(𝑊+) + 𝜒(𝑊−) = 2𝜒(𝑊)

Since 2𝑊 is an odd dimensional manifold, 𝜒(2𝑊) = 0. Hence 𝜒(𝑀) = 2𝜒(𝑊)
which is an even number. □

Example 4.110. The double of a Möbius band is a Klein bottle. See Figure 4.5.
The double of an annulus of dimension 2 is a torus. The double of a disk is a
sphere.

1For a simple proof, see E. C. Zeeman, An Introduction to Topology,
https://webhomes.maths.ed.ac.uk/ v1ranick/surgery/zeeman.pdf
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Figure 4.5: A Klein bottle cut into two Möbius bands

For non-orientable surfaces, R𝑃2 is not a boundary, but one can check that
the Klein bottle is a boundary. More generally, one can check that R𝑃2𝑘 and
C𝑃2𝑘 are not boundaries.

The next result relates the signature with the boundaries.

Theorem 4.111. Let 𝑀4𝑘 = 𝜕𝑊4𝑘+1 where 𝑊 is a compact oriented 4𝑘 + 1-
manifold, then 𝜎(𝑀) = 0.

Proof. We use R as coe�cient for (co)homology. We denote [𝑀] = 𝜇𝑀 .
The inclusion 𝑖 : 𝑀 → 𝑊 induces a homomorphism 𝑖∗ : 𝐻2𝑘 (𝑊) → 𝐻2𝑘 (𝑀).

Let 𝑈 = im 𝑖∗.
For 𝑢 = 𝑖∗ (𝑤) ∈ 𝑈, we have

⟨𝑢, 𝑢⟩ = ⟨𝑖∗ (𝑤) ∪ 𝑖∗ (𝑤), [𝑀]⟩ = ⟨𝑖∗ (𝑤 ∪ 𝑤), [𝑀]⟩ = ⟨𝑤 ∪ 𝑤, 𝑖∗ [𝑀]⟩ = 0

The last equality holds since 𝑖∗𝜕 = 0 in the long exact sequence of the pair (𝑊, 𝑀)
and [𝑀] = 𝜕 [𝑊, 𝑀]. We can see that the following diagramme is commutative.

𝐻2𝑘 (𝑊) 𝑖∗ //

𝐷

��

𝐻2𝑘 (𝑀) 𝛿 //

𝐷

��

𝐻2𝑘+1(𝑊, 𝑀)

𝐷

��
𝐻2𝑘+1 (𝑊, 𝑀)

𝜕

// 𝐻2𝑘 (𝑀)
𝑖∗

// 𝐻2𝑘 (𝑊)

So rank im 𝑖∗ = rank ker 𝛿 = rank ker 𝑖∗. Since 𝑖∗ and 𝑖∗ are dual homomor-
phisms of each other (this is why we use R as the coe�cient), so rank coker 𝑖∗ =
rank ker 𝑖∗. Hence

rank𝐻2𝑘 (𝑀) = rank im 𝑖∗ + rank coker 𝑖∗ = 2 rank𝑈.

Let 𝑉 = 𝐻2𝑘 (𝑀) and the positive/negative eigenspace of the intersection form
⟨𝑣, 𝑣⟩ would decompose it as 𝑉±. The intersection form is 0 on the linear sub-
space 𝑈, so 𝑉+ ∩𝑈 = 0. Hence rank𝑉+ + rank𝑈 ≤ rank𝑉 . Similarly rank𝑉− +
rank𝑈 ≤ rank𝑉 . However, the intersection is non-singular, so rank𝑉++rank𝑉− =

rank𝑉 . Thus rank𝑉± = rank𝑈 and hence 𝜎(𝑀) = 0. □



4.4. APPLICATIONS OF POINCARÉ DUALITY 149

This was proved by Thom, as a part of his cobordism theory (René Thom,
Quelques propriétés globales des variétés di�érentiables, Commentarii Mathe-
matici Helvetici 28, 17-86 (1954))

Linking number, Massey product

We can interpret the linking number of two cycles in Euclidean space by cup
product in the complementary space. For example, suppose that S𝑝 and S𝑞 are
disjoint spheres in S𝑛 where 𝑛 = 𝑝 + 𝑞 + 1, and 1 ≤ 𝑝 < 𝑞 ≤ 𝑛 − 2. By Alexander
duality theorem, the complementary space S𝑛 \ (S𝑝 ∪S𝑞) has cohomology group
Z in dimensions 𝑝, 𝑞 and 𝑝 + 𝑞. Therefore the cup product of the generators in
dimensions 𝑝 and 𝑞 will be a certain multiple of the generator of cohomology
class in dimension 𝑝 + 𝑞. It can be shown that this multiple is just the linking
number of S𝑝 and S𝑞.

Another slightly di�erent but easier to generalise de�nition is the following:
we consider open neighbourhood of the linked spheres and let them be 𝑈1,
𝑈2, and 𝑀 is the complement of 𝑈1, 𝑈2 in S𝑛 and let the boundary be 𝐵 =

𝐵1 ∪ 𝐵2. Let 𝑤 and 𝑣 be the generators of 𝐻 𝑝 and 𝐻𝑞 respectively. And let the
generators 𝜇 ∈ 𝐻𝑛 (𝑀, 𝐵), 𝜇𝑖 ∈ 𝐻𝑛−1(𝐵𝑖). These can be chosen compatible with
the orientations induced from S𝑛. Then there is an inclusion 𝑔 : 𝐵 → 𝑀. We
have the exact sequence

𝐻𝑛−1(𝑀)
𝑔∗

−−→ 𝐻𝑛−1(𝐵) 𝛿−→ 𝐻𝑛 (𝑀, 𝐵) → 0

Since 𝜇𝑖 are mapped to 𝜇, the linking number is just the number 𝑚 such that
𝑔∗ (𝑤 ∪ 𝑣) = 𝑚(𝜇1 − 𝜇2).

To understand the situation, let us consider the (simplest, hopefully) case
of intersections oof two S1 in S3. Then the generators 𝑤 and 𝑣 correspond
to singular discs D1 and D2 bounded by the two S1's. And the generator of
𝐻2 (S3 \ (S1 ∪ S1)) corresponds to a path connecting 𝐵1 and 𝐵2. Hence the
intersection, assuming that they are in a general position, is a signed count
of these paths. Hopefully the reader can see the second viewpoint from this
interpretation.

A similar idea can be applied to understand the Massey product. Let us have
three spheres in S𝑛, any two of them have linking number 0. The generators of
cohomology in dimensions between 0 and 𝑛 − 1 are denoted by 𝑤1, 𝑤2, 𝑤3. We
can similarly de�ne 𝜇𝑖 and the same exact sequence. Notice that 𝑔∗ is injective
since the 3 cohomology groups are free abelian groups of dimensions 2, 3 and 1.
Another way to see this is via the naturality of Alexander duality, namely, the
following commutative diagramme:

𝐻𝑞 (𝑋) //

𝐷

��

𝐻𝑞 (𝑌 )

𝐷

��
𝐻𝑛−𝑞−1(S𝑛 \ 𝑋) // 𝐻𝑛−𝑞−1(S𝑛 \ 𝑌 )
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Now triple product can be understood as a higher linking number of links, like
the ones for Borromean ring.

Theorem 4.112. There exists an integer 𝑚13 such that

𝑔∗⟨𝑤1, 𝑤2, 𝑤3⟩ = 𝑚13(𝜇1 − 𝜇3).

For Borromean ring, this integer is 1. Here is a sketch of the proof: If
𝑥 ∈ 𝐻𝑛−1(𝑀) and 𝑔∗ (𝑥) = 𝑎1𝜇1 + 𝑎2𝜇2 + 𝑎3𝜇3, it follows from the exactness
that 𝑎1 + 𝑎2 + 𝑎3 = 0. Hence we only need to prove the coe�cient of 𝜇2 in
𝑔∗⟨𝑤1, 𝑤2, 𝑤3⟩ is 0, or 𝑔∗2⟨𝑤1, 𝑤2, 𝑤3⟩ = 0 for 𝑔2 : 𝐵2 → 𝑀. Actually, we can
show that 𝑔∗2𝑤1 = 𝑔∗2𝑤3 = 0, which follows from the naturality of Alexander
duality and the fact that pairwise linking numbers are 0. Thus we understand
𝑔∗2 on the 𝑞1-th cohomology as

𝐻𝑝1 (𝑈1) ⊕ 𝐻𝑝1 (𝑈2) ⊕ 𝐻𝑝1 (𝑈3) → 𝐻𝑝1 (S𝑛 \ 𝐵2) = 𝐻𝑝1 (𝑈2) ⊕ 𝐻𝑝1 (S𝑛 \𝑈2)

Then 𝑤1 corresponds to the generator of 𝐻𝑝1 (𝑈1) where 𝑈1 ⊂ S𝑛 \𝑈2 and the
degree of

𝐻𝑝1 (𝑈1) → 𝐻𝑝1 (S𝑛 \𝑈2)

is just the linking number of S11 and S12.
We do not go into more details since Massey products can't distinguish

Brunnian links other than the simplest ones, namely the Borromean rings. For
this fact, see Truls Bakkejord Ræder, Massey products and Linking, Institutt
for matematiske fag, NTNU.

4.4.6 Thom isomorphism

Let 𝐵 be a manifold. A vector bundle 𝜋 : 𝐸 → 𝐵 of rank 𝑛 is a family of
𝑛-dimensional real vector spaces {𝐸𝑥}𝑥∈𝐵, with 𝐸 := ⊔𝑥∈𝐵𝐸𝑥 and 𝜋 : 𝐸 → 𝐵

mapping 𝐸𝑥 to 𝑥, equipped with a topology for 𝐸 such that 𝜋 is continuous and
the following local triviality condition holds:

For each 𝑥 ∈ 𝐵 there exists a neighbourhood 𝑈 of 𝑥 and a homeomorphism

𝑡 : 𝐸 |𝑈 := 𝜋−1(𝑈) → 𝑈 × R𝑛

which is �bre preserving in the sense that for all 𝑥 ∈ 𝐵 the restriction of 𝑡 on 𝐸𝑥
is a vector space isomorphism onto R𝑛.

The space 𝐸 is called the total space and 𝐵 is called the base space. The
map 𝜋 is called the projection. A continuous map 𝑠 : 𝐵→ 𝐸 such that 𝜋 ◦ 𝑠 = id
is called a section of 𝐸 . We can view 𝐵 as a subset of 𝐸 via the zero section
𝑥 ↦→ 0 ∈ 𝐸𝑥 . We denote 𝐸0 = 𝐸 \ 𝐵.

Typical examples of vector bundles include the trivial bundle 𝐵×R𝑛 and the
tangent bundle 𝑇𝑀 = ⊔𝑥∈𝑀𝑇𝑥𝑀 where 𝑀 is a smooth manifold.

Example 4.113. A vector bundle 𝜁 = (𝐸, 𝜋, 𝐵) of rank 𝑛 is trivial if and only if
it has 𝑛 sections which are linearly independent on 𝜋−1(𝑥) for all 𝑥 ∈ 𝐵.
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Indeed, if 𝜁 has 𝑛 sections 𝜎1, . . . , 𝜎𝑛 which are linearly independent, then
we can de�ne a bundle isomorphism Ψ : 𝐵 × R𝑛 → 𝐸 by

Ψ(𝑏, (𝑥1, . . . , 𝑥𝑛)) = 𝑥1𝜎1 (𝑏) + . . . 𝑥𝑛𝜎𝑛, (𝑏 ∈ 𝐵, (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛)

It is obvious that every trivial bundle has 𝑛 linearly independent sections.

A section of 𝑇𝑀 is called a vector �eld on 𝑀. Thus, 𝑇R𝑛 is trivial but, by
Hairly ball theorem, 𝑇S2 is not trivial.

Let us de�ne the normal bundle for a smooth manifold 𝑀 with an atlas
{(𝑈𝑖 , 𝜙𝑖)}. Each di�eomorphism 𝜙𝑖 → R𝑛 induces a map

(𝜙𝑖)∗ : 𝑇𝑈𝑖 → 𝑇R𝑛 = R𝑛 × R𝑛.

The normal bundle 𝑁 = 𝑁𝑆/𝑀 of a submanifold 𝑆 in 𝑀 is de�ned by the exact
sequence

0→ 𝑇𝑆 → (𝑇𝑀 ) |𝑆 → 𝑁 → 0.

As with the case of a manifold, a local orientation of a vector bundle at 𝑥 ∈ 𝐵
is a preferred generator 𝜇𝑥 ∈ 𝐻𝑛 (𝐸𝑥 , 𝐸𝑥 \0). A vector bundle is called orientable
if for every point 𝑥𝑖𝑛𝐵, there is a neighbourhood (𝑥 ∈)𝑈 ⊂ 𝐵 such that the there
is a cohomology class 𝜇𝑈 ∈ 𝐻𝑛 (𝜋−1(𝑈), 𝜋−1(𝑈)0) such that 𝜇𝑈 |𝐸𝑥 = 𝜇𝑥 .

Theorem 4.114. Let 𝜋 : 𝐸 → 𝐵 be an oriented vector bundle of rank 𝑛. Then

1. 𝐻𝑚 (𝐸, 𝐸0) = 0 for 𝑚 < 𝑛.

2. There exists a unique cohomology class 𝑢 ∈ 𝐻𝑛 (𝐸, 𝐸0), called the Thom class
such that for all 𝑥 ∈ 𝐵, the restriction of 𝑢 to 𝐻𝑛 (𝐸𝑥 , 𝐸𝑥 \ 0) = Z is the
preferred generator determined by the orientation.

3. The map 𝑇 : 𝐻𝑚 (𝐵) → 𝐻𝑚+𝑛 (𝐸, 𝐸0), 𝛼 ↦→ 𝜋∗𝛼 ∪ 𝑢 is an isomorphism.

Proof. For the sake of simplicity, we assume that 𝐵 is compact. Thus we can
choose a �nite covering {𝑈𝑖} such that on each 𝑈𝑖, 𝐸 is a trivial bundle.
1. First consider the case of trivial bundle 𝐸 = 𝐵 × R𝑛. By Künneth formula,
we have

𝐻∗ (𝐵) ⊗ 𝐻∗ (R𝑛,R𝑛 \ 0) = 𝐻∗ (𝐸, 𝐸0),
and hence

𝐻𝑚 (𝐸, 𝐸0) = 𝐻𝑚−𝑛 (𝐵) ⊗ Z = 𝐻𝑚−𝑛 (𝐵).
So 𝐻𝑛 (𝐸, 𝐸0) = Z, and we choose 𝑢 as the generator corresponding to the ori-
entation. Then the theorem is veri�ed to hold in this case.
2. We proceed by induction to construct 𝑢. Suppose 𝐵 = 𝑉 ∪ 𝑊 where the
assertions of the theorem hold for 𝐸 |𝑉 , 𝐸 |𝑊 and 𝐸 |𝑉∩𝑊 . Considering the long
exact sequence of the pair (𝐸, 𝐸0) we have

𝐻𝑚−1(𝐸 |𝑉∩𝑊 , 𝐸0 |𝑉∩𝑊 ) → 𝐻𝑚 (𝐸, 𝐸0) → 𝐻𝑚 (𝐸 |𝑉 , 𝐸0 |𝑉 ) ⊕ 𝐻𝑚 (𝐸 |𝑊 , 𝐸0 |𝑊 )

The �rs assertion follows from the assumption on 𝑉 and 𝑊 . For 𝑚 = 𝑛, we have

0→ 𝐻𝑛 (𝐸, 𝐸0) → 𝐻𝑛 (𝐸 |𝑉 , 𝐸0 |𝑉 )⊕𝐻𝑛 (𝐸 |𝑊 , 𝐸0 |𝑊 ) → 𝐻𝑛 (𝐸 |𝑉∩𝑊 , 𝐸0 |𝑉∩𝑊 ) → · · ·
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By assumption, the Thom classes 𝑢𝑉 and 𝑢𝑊 exist and are unique. By unique-
ness, they have the same image in 𝐸𝑉∩𝑊 , namely 𝑢𝑉∩𝑊 . Thus they form a
cohomology class 𝑢 ∈ 𝐻𝑛 (𝐸, 𝐸0) which is uniquely de�ned since 𝐻𝑛−1(𝐸, 𝐸0) = 0.

To show the last assertion, we consider the following diagramme

𝐻𝑚 (𝑉) ⊕ 𝐻𝑚 (𝑊) //

𝑇 ��

𝐻𝑚 (𝑉 ∩𝑊) 𝛿 //

𝑇��

𝐻𝑚+1 (𝐵)
𝑇��

𝐻𝑚+𝑛 (𝐸 |𝑉 , 𝐸0 |𝑉 ) ⊕ 𝐻𝑚+𝑛 (𝐸 |𝑊 , 𝐸0 |𝑊 ) // 𝐻𝑚+𝑛 (𝐸 |𝑉∩𝑊 , 𝐸0 |𝑉∩𝑊 )
𝛿 // 𝐻𝑚+𝑛+1 (𝐸, 𝐸0)

If we can show the diagamme commutes, then the 5-lemma will give the right
𝑇 which is also isomorphism. Again, the point is to show the second square
commutes. Choose a representative 𝜙 ∈ S𝑚+𝑛 (𝐸, 𝐸0) of 𝑢. Then the restrictions
𝜙𝑉 , 𝜙𝑊 and 𝜙𝑉∩𝑊 represent the Thom classes 𝑢𝑉 , 𝑢𝑊 and 𝑢𝑉∩𝑊 respectively.
Now take 𝑎 ∈ 𝐻𝑘 (𝑉∩𝑊) and a representative 𝜓. Suppose 𝛿𝑎 = 𝑏 and if we write
𝜓 = 𝜓𝑉 − 𝜓𝑊 where 𝜓𝑉 ∈ 𝑆𝑘 (𝑉) and 𝜓𝑊 ∈ 𝑆𝑘 (𝑊), we have [𝛿𝜓𝑉 ] = 𝑏. Hence

𝑇𝛿(𝑎) = 𝜋∗ (𝑏) ∪ 𝑢 = 𝜋∗ [𝛿𝜓𝑉 ] ∪ 𝑢.

Next
𝛿𝑇 (𝑎) = 𝛿(𝜋∗ (𝑎) ∪ 𝑢𝑉∩𝑊 ) = [𝛿𝜋∗ (𝜓𝑉) ∪ 𝜙𝑉] = 𝑇𝛿.

The second equality holds because 𝜙𝑉 is closed, the last because 𝜋∗ commutes
with 𝛿 since it is a cochain map.
3. Suppose 𝐵 is covered by �nitely many open sets 𝐵1, . . . , 𝐵𝑘 such that the
bundle 𝐸𝐵𝑖 is trivial for each 𝐵𝑖. We proceed by induction on 𝑘: suppose the
theorem holds for 𝐸 . The case 𝑘 = 1 being trivial, assume that the assertions
holds for 𝑘−1. Then the theorem holds for 𝐸 |𝐵1∪···∪𝐵𝑘−1 and for 𝐸 | (𝐵1∪···∪𝐵𝑘−1 )∩𝐵𝑘
a well. Hence by 2. the theorem holds for 𝑘. □

Now let 𝑀𝑛 be a closed smooth manifold and 𝑆 be a codimension 𝑘 closed
submanifold which is cooriented, i.e. the normal bundle 𝑁𝑆 is an oriented vector
bundle. Then a natural coorientation would be induced from orientations of 𝑇𝑆
and 𝑇𝑀. The tubular neighbourhood theorem states that every submanifold 𝑆
in 𝑀 has a tubular neighbourhood which is di�eomorphic to the normal bundle.
Then we can indentify such a tubular neighbourhood with our normal bundle
𝑁𝑆/𝑀 . And the Thom isomorphism applied to the normal bundle gives

𝐻∗ (𝑆) 𝑇−→ 𝐻∗+𝑘 (𝑁𝑆 , 𝑁𝑆 \ 𝑆) → 𝐻∗+𝑘 (𝑀, 𝑀 \ 𝑆) → 𝐻∗+𝑘 (𝑀).

Without confusion, we denote the image of 1 ∈ 𝐻0 (𝑆) in this sequence by Φ as
the image of 𝑢 ∈ 𝐻𝑘 (𝑀, 𝑀 \𝑆) in 𝐻𝑘 (𝑀), and call the Thom class of 𝑆. Actually,
this is the inverse of Poincaré with respect to 𝑆, i.e

Proposition 4.115. 𝑖∗ [𝑆] = Φ ∩ [𝑀].

Proof. We denote the inclusions 𝜅 : 𝑁𝑆 → 𝑀, 𝑖 : 𝑆 → 𝑀 and the retraction
𝑟 : 𝑁𝑆 → 𝑆. Then 𝑖∗ ◦ 𝑟∗ = 𝜅∗ on homology. We have

Φ ∩ [𝑀] = 𝑢 ∩ [𝑀, 𝑀 \ 𝑆] = 𝑢 ∩ 𝑘∗ [𝑁, 𝑁 \ 𝑆] = 𝑖∗ ◦ 𝑟∗ (𝑘∗𝑢 ∩ [𝑁, 𝑁 \ 𝑆]).
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Thus Φ ∩ [𝑀] is an image of some element of 𝐻𝑛−𝑘 (𝑆) by 𝑖∗. In other words,
Φ ∩ [𝑀] = 𝑡 · 𝑖∗ [𝑆]. We must show that 𝑡 = 1. We only need to prove it
in 𝑁. For any point 𝑝 ∈ 𝑆, we choose a neighbourhood 𝑈 ⊂ 𝑆, such that
(𝑉,𝑈) = (R𝑛,R𝑛−𝑘), where 𝑉 = 𝜋−1(𝑈) and 𝜋 : 𝑁 → 𝑆 is the normal bundle.
Then by de�nition of fundamental class, [𝑀] and [𝑆] restrict to fundamental
classes 𝜇0 and 𝜈0 of R𝑛 and R𝑛−𝑘 respectively. And 𝑢 is pulled back to the Thom
class 𝑢0 of R𝑛−𝑘 in R𝑛. Let 𝑔 : 𝑉 → 𝑁 be the inclusion. Then reading o� the
relation in 𝐻𝑛 (𝑁, 𝑁 \𝑄) where 𝑄 ⊂ 𝑉 is the set corresponding to R𝑘 , we have

𝑖∗ [𝑆] = 𝑔∗𝜈0 = 𝑔∗ (𝑔∗𝑢 ∩ 𝜇0) = 𝑢 ∩ 𝑔∗ (𝜇0) = 𝑢 ∩ [𝑀] = 𝑡 · 𝑖∗ [𝑆] .

The second inequality holds because of the elementary relation 𝑢0 ∩ 𝜇0 = 𝑛𝑢0
in the case of trivial bundles (see Step 1 of the proof of Thom isomorphism.)
Hence 𝑡 = 1. □

Now we can complete the proof of Equation (4.87) resorting to Proposition
4.115. Φ𝑥 ∩ [𝑀] is just 𝜖 (𝑥) for any 𝑥 ∈ 𝑋 ∩𝑌 where the coorientation is induced
from that of 𝑋 and 𝑌 . (Note that we use normal bundle for the �rst and use
tangent bundle for the second.) Hence the proof is reduced to that of

Proposition 4.116. Φ𝑋∩𝑌 = Φ𝑋 ∪Φ𝑌 . Equivalently, 𝑖∗ [𝑋 ∩ 𝑌 ] = 𝑖∗ [𝑋] · 𝑖∗ [𝑌 ].

Proof.

𝑃ℎ𝑖𝑋∩𝑌 ∪ [𝑀] = (𝑖𝑀𝑋∩𝑌 )∗ [𝑋 ∩ 𝑌 ]
= (𝑖𝑀𝑌 )∗ (𝑖𝑌𝑋∩𝑌 )∗ [𝑋 ∩ 𝑌 ]
= (𝑖𝑀𝑌 )∗ (𝑢𝑌𝑋∩𝑌 ∩ [𝑌 ])
= (𝑖𝑀𝑌 )∗ ((𝑖𝑀𝑌 )∗𝑢𝑀𝑋 ∩ [𝑌 ])
= Φ𝑋 ∩ (𝑖𝑀𝑌 )∗ [𝑌 ]
= Φ𝑋 ∩ (Φ𝑌 ∩ [𝑀])
= (Φ𝑋 ∪Φ𝑌 ) ∩ [𝑀]

□

Thom isomorphism has lots of interesting applications, e.g. the Lefschetz
�xed point theorem. Here, we mention another application, namely the Euler
class.

De�nition 4.117. Let 𝐸 → 𝑀 be a vector bundle and 𝑜 : 𝑀 → 𝐸 be the zero
section. Then the Euler class 𝑒(𝐸) is the image of Thom class 𝑢𝐸 under the
composition

𝐻𝑛 (𝐸, 𝐸0) → 𝐻𝑛 (𝐸) 𝑜
∗
−−→ 𝐻𝑛 (𝑀).

For the special case when 𝑆 is a submanifold of 𝑀 and 𝐸 is taken as its
normal bundle, the Euler class 𝑒(𝑆) is the pull back of the Thom class through

𝑖 : 𝑆 → (𝑀, 𝑀 \ 𝑆).
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In this case, Euler class can be viewed as the obstruction of deforming 𝑆 into
𝑀 \ 𝑆.

Proposition 4.118. If the inclusion 𝑆 ⊂ 𝑀 is homotopic to a map 𝑓 : 𝑆 → 𝑀

whose image is contained in 𝑀 \ 𝑆, then 𝑒(𝑆) = 0.

Proof. By assumption, the inclusion 𝑖 : 𝑆 → (𝑀, 𝑀 \ 𝑆) is homotopic to a map
𝜙 : 𝑆 → (𝑀, 𝑀\𝑆) which is factored through (𝑀\𝑆, 𝑀\𝑆). Hence in cohomology
𝑖∗ = 𝜙∗ factors through 𝐻∗ (𝑀 \ 𝑆, 𝑀 \ 𝑆) = 0. So 𝑖∗ = 0 and hence 𝑒(𝑁) = 0. □

Proposition 4.119. 𝑇 (𝑒(𝑆)) = 𝑢∪𝑢 where 𝑢 ∈ 𝐻𝑘 (𝑀, 𝑀 \𝑆) is the Thom class.

Proof. 𝑇 (𝑒) = 𝑇 (𝑖∗ (𝑢)) = 𝜋∗𝑖∗ (𝑢) ∪ 𝑢 = 𝑢 ∪ 𝑢. □

Corollary 4.120. If the codimension 𝑘 of 𝑆 in 𝑀 is odd, then 2𝑒(𝑆) = 0.

The name �Euler class� comes from the following

Theorem 4.121. Let 𝑀 be an oriented 𝑛-manifold, Δ : 𝑀 → 𝑀 × 𝑀 be the
diagonal map. Then

1. ⟨𝑒(𝑀), [Δ𝑀 ]⟩ = 𝜒(𝑀) where 𝜒 is the Euler characteristic.

2. The normal bundle of the diagonal (𝐷𝑒𝑙𝑡𝑎𝑀 ) is isomorphic to 𝑇𝑀.

The Euler class is a characteristic class in the following sense.

De�nition 4.122. A cohomology class 𝑐(𝐸) ∈ 𝐻∗ (𝑀) associated to any vector
bundle 𝐸 → 𝑀 is called a characteristic class if it is natural with respect to
pull-backs, that is, 𝑐( 𝑓 ∗𝐸) = 𝑓 ∗ (𝑐(𝐸)).


