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Preface

These notes are the authour’s attempt to make an accessible account on singular
homology theory:

e Singular homology theory is introduced and is shown to satisfy certain
axioms (of Eilenberg-Steenrod), and cellular spaces and their homology
are explained.

e Singular cohomology theory is introduced together with certain products,
and Poincaré duality and its application for manifolds are explained.

The authour has no claim for originality, possibly except for organisation. In
fact, these notes are a hodgepodge of materials from literally tens of textbooks
and lecture notes.

An excuse

There is made no special provision for category theory and homological algebra:
in fact no section is devoted to category theory, and homological algebra required
to understand universal coefficient theorems are given in an ad hoc fashion.

It is true that those two disciplines have originated from algebraic topology,
but, without much care, the former tends be “abstract nonsense” (an expression
coined by N. Steenrod) and the latter reduces to boredom as in the quotes bel-
low.

A recall by M. M. Postnikov

The assistant dean ... called me in to say, “Postnikov, you need to have an
advisor for your senior thesis. Who do you want, Lusternik or Alexandrov?”
At this point a very strange thing happened. Without a moment’s hesitation I
blurted out, “I want Lev Semenovich Pontryagin!” The reason why this was so
strange is that I did not know Pontryagin, and had only taken his very boring,
formalistic course of homological algebra.

An excerpt from “An Introduction to Homological Algebra” by J. J. Rotman

When I was a graduate student, Homological Algebra was an unpopular
subject. The general attitude was that it was a grotesque formalism, boring to
learn, and not very useful once one had learned it.

An excerpt from “Algebra: Chapter 0” by P. Aluffi

Proving the snake lemma is something that should not be done in public,
and it is notoriously useless to write down the details of the verification for
others to read: the details are all essentially obvious, but they lead quickly
to a notational quagmire. Such proofs are collectively known as the sport of
“diagram chase”, best executed by pointing several fingers at different parts of
a diagram on a blackboard, while enunciating the elements one is manipulating
and stating their fate.
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Lecture 1

Introduction

Topology is the study of topological spaces (e.g. subsets of R") and continuous
maps between them. The basic idea of algebraic topology is to study functors
F from topological spaces to groups (or some other type of algebraic category).
This means is that for every topological space X, we assign a group F(X),
and to each continuous map f : X — Y, we assign a group homomorphism
F(f):F(X)—> F(Y)

X ——Y

F(X) o F(Y)

such that for any pair of composable maps

x5yl oz
we have
Sfog
F(fog)=F(f)oF(s) X —*—syv—L 27
T T
FOO) 25 FO) 555 F@)
F(fog)

and also that identity maps are sent to identity maps:
F(idx) = idr(x) -

To see how this sort of thing may be useful, observe that if two spaces X and
Y are isomorphic (i.e. homeomorphic), then F(X) and F(Y) must be isomorphic
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2 LECTURE 1. INTRODUCTION

for every functor F. It turns out that the most powerful way to prove that two
spaces X, Y are not homeomorphic is to find a functor such that F(X) and F(Y)
are not isomorphic.

For another application, we begin with a definition. A subset A C X is called
a retract, if there exists a continuous map r : X — A such that f(a) = a for all
a € A: for example, the inclusion R < R? as the x-axis is a retract using the
map r(x,y) = (x,0). Inclusion of sets defines an injective mapi: A — X. If A
is a retract in X, then there exists r such that

roi=idya.
For any functor, this means that
F(I‘) OF(l) = F(rOl) = F(ldA) = ldF(A) .

In particular, this means that F(i) must be injective when A C X is a retract
(if not, F(r) o F(i) = idp(a) would not be injective, a contradiction). Using this
idea, we will prove that the unit circle S' is not a retract inside the unit disk
D2.

The kinds of functors we will learn about in this course are the (singular)
homology and cohomology functors. These functors come in families labelled by
non-negative integers called the degree (also called dimension): Hy, H1, Ho,. ..
for homology and HO HY H?, ... for cohomology. Both homology and cohomol-
ogy take values in abelian groups, though we will also study variations that take
values in vector spaces.

The historical motivation for homology theory came from vector calculus.
(The development of homology theory is usually attributed to the work of
Poincaré in the late 19th to the early 20th, though the subject didn’t really
come into it’s own until the 1930’s through the work of numerous other mathe-
maticians including S. Eilenberg and H. Whitney.) Recall that there are various
versions of the Fundamental Theorem of Calculus (Stokes’ Theorem, Green’s
Theorem, the Divergence Theorem) that equate an integral over a manifold
(curve, surface, solid, etc.) with an integral over its boundary (set of points, a
curve, surface, respectively). Homology emerged, from (more or less intuition-
driven) efforts of mathematicians including J. W. Alexander, S. Lefschetz and
O. Veblen, to understand how many “independent” submanifolds there are with
respect to a given domain. Roughly speaking, the 0-homology Hy(X) is gener-
ated by points in X, the 1-homology H;(X) is generated by (oriented) closed
curves in X, the 2-homology is generated by (oriented) closed surfaces, and so
on. The homology class is trivial if the curve, surface, etc. is the boundary of a
surface, solid, etc . ...

To see how this might work, consider the disconnected subset X c R? pic-
tured in Figure 1.1.

A point p in one component cannot be joined by a continuous path to a point
¢ in another component. It follows that p and ¢ determine different elements
[p] and [¢] in Ho(X). We will show that there is an isomorphism Hy(X) = Z"
where n is the number of path-components of X.



~e
e

Figure 1.1: A space X with two path components

Figure 1.2: Loop in an annulus

Consider now a annulus A in R? (Figure 1.2).

The closed loop C represents an element in Hy(A). It is intuitively clear that
S! is not the boundary of a surface in A, so C represents a non-trivial element
[C] in H1(A). Indeed, we will show that H,(A) = Z and that C represents one
of the generators (the other generator is obtained by reversing the orientation
on C). On the other hand, if we take a union of C with a curve D that winds
around the annulus in the opposite direction, we see that together they form
the boundary of a surface (Figure 1.3).

Figure 1.3: Two loop in an annulus bound a surface

There are many different kinds of homology that are defined in different ways.
The approach we will take in this course is called singular homology. Singular
homology has some great theoretical advantages over others (such as simplicial
homology and cellular homology), but has the drawback of being difficult to
calculate directly. Indeed, it will take some time before we establish the fact
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that oriented submanifolds determine homology classes which has been the ba-
sis of today’s lecture. (It is possible to define a kind of homology theory using
oriented manifolds directly, called bordism. One of the reasons that this ap-
proach is not standard in introductory courses is that the theory of manifolds
gets complicated in dimensions greater than two.) Instead, singular homology
is based on “singular simplices” which we will be introduced in Chapter 3.



Lecture 2

Review of Point-Set Topology

We collect some basic facts from general topology that will be required in this
course. Proofs of these results can be found in any introductory textbook on
general topology (e.g, Janich Topology, and Viro et al. Elementary Topology
Problem Textbook.)

Definition 2.1. A topological space (or simply space) (X,7) is a set X and
a collection 7 of subsets of X, called the open sets, satisfying the following
conditions:

i) @ and X are open,
ii) Any union of open sets is open,
iii) Any finite intersection of open sets is open.

A set is called closed if its complement is open. Usually, we will denote the
topological space (X, 7) simply by X.

Ezample 2.2 (Euclidean Topology). An open ball in R" is a set of the form
B =Be(p) :={x eR"|llx-pll <€}

for some p € R" and € > 0. A subset U c R" is called open if it is a union of
open balls. Equivalently, U is open if for every p € U, there exists an open ball
B such that p e BC U.

In the example above, we say that open balls form a basis for the Euclidean
topology. More generally, a collection of open sets B in a topological space X
is called a basis if every other open set in X is a union of sets in B.

Definition 2.3. A continuous map f : X — Y between topological spaces is a
map of sets for which pre-images of open sets are open. Le.

UcY isopen = f 1(U):={xeX|f(x)eU}cX isopen
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Definition 2.4. A homeomorphism is a continuous bijection f : X — Y such
that the inverse f~! is also continuous. This is the notion of isomorphism for
topological spaces.

We will only rarely need use the abstract Definition 2.3 explicitly. More
often, we will make use of certain properties of continuous functions, including
the following.

Proposition 2.5. Let X, Y and Z be topological spaces.
o The identity map idx : X — X is continuous.

e Iff:X—>Y and g : Y — Z are continuous, then the composition g o f :
X — Z 1s continuous.

o Any constant map f : X — Y is continuous.

The first two conditions above make (topological spaces + continuous maps)
into a category. We will speak more about categories later.

2.1 New spaces from old

Most of the topological spaces we encounter in this course are constructed from
R"™ using the operations below.

Definition 2.6. Let X be a topological space and A C X a subset. The subspace
topology on A is the topology for which V c A is open if and only if V=ANU
for some open set U in X.

Ezxample 2.7. Any subset of R" acquires a subspace Euclidean topology. Unless
otherwise stated, we will always assume subsets of R” to have this topology.

The inclusion map i : A — X is continuous (with respect to the subspace
topology). In fact, we have the following special property: A map f:¥Y — A
from a topological space Y is continuous if and only if the composition i o f :
Y — X is continuous.

Definition 2.8. The product space X XY of two spaces X and Y is the Cartesian
product of sets X XY, with a basis of open sets of the form U XV where U c X
and V C Y are both open.

The above definition iterates to define products of any finite number of

spaces (infinite products require a different definition).
n
—_—~—

Example 2.9. The n-fold product R X --- X R is homeomorphic to R" with the
Euclidean topology.

The key property of product spaces is that a map
F:7Z->XXY

is continuous if and only if the coordinate functions F = (F;, F3) are continuous
as maps from Z to X and to Y respectively.
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Definition 2.10. Let {X,} be a (possibly infinite) collection of spaces indexed
by @. The coproduct space or mphdisconnected union [[, X, is the disjoint
union of the sets X, with U c [[, X, is open if and only if U N X, is open for
all Xa.

The inclusions i, : Xo, < ], Xo are all continuous. A map F: [[, X, —
Y is continuous if and only if the composition F o i, : X, — Y are continuous
for all Xa.

Definition 2.11. An equivalence relation on a set X is a relation ~ satisfying,
for all x,y e X

(i) x ~x
(ii) x ~ y implies y ~ x
(iii) x ~y and y ~ z implies x ~ z.

Given any relation R on X, we can generate the “smallest” equivalence rela-
tion ~g such that xRy implies x ~g y. Explicitly, we define x ~x y if and only
if there exists a finite sequence {x; € X}!' | for n > 0 satisfying

-xO = ‘x’
X, =y and,

xini—l or Xi_lR)Ci forall i= 1, R (N
Given x € X, the equivalence class of x is

[x] :=={y € X|x ~ y}

Notice that [x] = [y] if and only if x ~ y. The equivalence classes determine
a partition of X into disjoint sets. Let E := {[x]|x € X} be the set of equivalence
classes (we will sometimes denote E = X/~). There is a canonical map

0:X—>E, x |[x]
called the coset map.

Definition 2.12. Let X be a topological space and let ~ be an equivalence
relation on the set underlying X. The coset topology or induced topology on E
is the topology for which U C E is open if and only if Q7! (U) is open in X.

Observe that Q : X — FE is continuous and that a map f : E — Y is
continuous if and only if foQ : X — Y is continuous.

Example 2.13. Suppose X and Y are topological spaces, A C X is a subspace,
and f : A —> Y is a continuous map. Define an equivalence relation on the
coproduct X [[Y generated by f(a) ~ a for all a € A. We say that the coset
space (X [[Y)/~ is obtained by attaching X to Y along A using f.
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Definition 2.14. Suppose G is a group, and X is a set. A left action of G on
X isamap G X X — X, written (g,x) — g - x, with the following properties:

(i) g1-(g2-x) = (g1g2) -x for all x € X and all g1,g2 € G.
(ii) 1-x =x for all x € X.

Similarly, a right action is a map X x G — X, written (x,g) + x - g, with the
same properties except that composition works in reverse: (x-g1)-g2 = x-(g1€2)-
Any right action determines a left action in a canonical way, and vice versa,
by the correspondence
g-x=x- g_l.

Definition 2.15. For any x € X, the set G-x = {g-x: g € G} C X is called the
orbit of x. The action is said to be transitive if for every pair of points x, y € X,
there is a group element g such that g-x =y, or equivalently if the orbit of each
point is the entire space X. The action is said to be free if the only element of
G that fixes any point in Xis the identity; that is, if g - x = x for some x implies
g=1

Ezample 2.16. Suppose X is a topological space, and G is a group that acts on
X via homeomorphisms, i.e. G C Aut(X). Define two points in X equivalent if
they lie in the same orbit of G. The coset space in this case is called the orbit
space and is denoted X/G.

2.2 Connectedness and Path-Connectedness

Let I denote the unit interval [0,1] € R with the Euclidean topology.

Definition 2.17. A space X is called path-connected if for any two points
p,q € X there exists a continuous map y : I — X such that y(0) = p and

y(1) =gq.

Definition 2.18. A space X is called connected if there is no proper subset
A c X which is both open and closed. (“Proper” means other than X or @,
which are always both open and closed).

Observe that if A ¢ X is both open and closed, then the complement A€
is also both open and closed, and there is a natural isomorphism A [][ A€ = X.
Thus spaces that are not connected can be decomposed into a disconnected
union of nonempty spaces.

Proposition 2.19. Path-connected spaces are connected.

The converse of Proposition 2.19 is not true in general. However all the
connected spaces we encounter in this course will also be path-connected, as
connected and not path-connected spaces are pathological.
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The famous “topologist’s sine curve” makes up a typical pathology: consider
subsets Ty and T, in R2.

To ={(x,y)lx=0and y € [-1,1]},
T, ={(x,y)|x € (0,2/x] and y = sin(1/x)}

Ty o

Figure 2.1: A topologist’s sine curve

Connectedness and path-connectedness are preserved under the following
operations

e A product of (path-)connected spaces is (path-)connected.
e The continuous image of a (path-)connected space is (path-)connected.

e Let {U,} be a covering of X such that each U, is (path-)connected and
the intersection NyU, is non-empty. Then X is (path-)connected.

2.3 Covers and Compactness

Definition 2.20. An open (closed) cover of a topological space X is a collection
of open (resp. closed) sets {U,} such that the union U,c = X.

Proposition 2.21. Let {U,} be either an open cover or a finite closed cover of
X. A map of sets
f:X—>Y

between topological spaces is continuous if and only if the restrictions fl|y, :
Uy, = Y are continuous for all @ (where Uy has the subspace topology).

The preceding proposition will be used in two ways: to test if a map f is
continuous by considering the restrictions, and also to construct a map f by
gluing together continuous maps defined on the U, that agree on overlaps.
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Definition 2.22. A space X is called compact if every open cover {U,} of X
contains a finite subcover. lLe., there exists a finite collection {Uy,...,U,} C
{Uq} such that U, U; = X.

Proposition 2.23. A subspace of R" is compact if and only if it is closed and
bounded.

Compactness is preserved under the following:

e A closed subspace of a compact space is compact.
e A finite union of compact spaces is compact.

e A product of compact spaces is compact.

o If f: X — Y is continuous and X is compact, then the image f(X) CY is
compact.

2.4 Metric spaces and the Lebesgue number lemma
Definition 2.24. Let X be a set. A metric on X is a function
d: XxX — Ry
called the distance or metric function, satisfying
1. d(x,x') =0 & x = x_ (d separates points)
2. d(x,x') =d(x,x) (d is symmetric)
3. d(x,x") <d(x,x") +d(x',x") (the triangle inequality)

A metric space (X, d) determines a metric topology on X, which is generated
by the basis of open balls B¢(p) = {x € X|d(x,p) < €}. If A is a subset of
a metric space X then A becomes a metric space by restriction. The metric
topology on A is the same as the subspace topology on A.

The following result will come up repeatedly.

Lemma 2.25 (Lebesgue number Lemma). Let & be an open covering of a
compact metric space X. There exists § > 0, called the Lebesgue number, such
that for all p € X, the open ball Bs(p) is contained in some U € .

2.5 Hausdorff spaces

Definition 2.26. A space X is called Hausdorff if for any pair of distinct points
D, q € X, there exist open sets U,V such that pe U, geVand UNV = 2.

Proposition 2.27. Any metric space is Hausdorff. In particular, any subset
of R" is Hausdorff.
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The Hausdorff property is preserved under the following;:
e Products of Hausdorff spaces are Hausdorff.
e Subspaces of Hausdorff spaces are Hausdorff.

e Coproducts of Hausdorff spaces are Hausdorff.

11






Lecture 3

Singular Homology

In this chapter we are going to quickly review the definition of singular homology,
mainly to introduce the reader to the notation used in this text. Afterwards we
are going to prove the so called “axioms for an ordinary homology theory” in
the case of singular homology.

3.1 Simplices

The standard g-simplex A, is the simplex spanned by the zero vector eg = 0
and the standard basis vectors e,...,e, in R? (Figure 3.1). Thus,

Ag:={(t1,...ta)|lt; 20 Vi=1,...,q, and Ztiﬁl}
i

[ ] o1 — @
) € €
0-simplex 1-simplex
eZ
e, e

2-simplex 3-simplex

Figure 3.1: The standard simplices
If X is a topological space, a singular g-simplex (or simply simplez) in X is

13



14 LECTURE 3. SINGULAR HOMOLOGY

a (continuous) map
oA, — X
Thus a singular 0-simplex in X is simply a point in X, a singular 1-simplex
in X is a continuous path in X, etc. We can think of singular simplices as probes
used to study the space X.
Ezample 3.1. Let vy, ..., v, be aset of g+1-vectors in R" for some n € N. Define
[Vo,...,Vq] SAq ﬁRn, ([1,...,tn) — (1—t1 —"‘—tq)V0+t1V1 +--+igvg.

We call [vo,...,vq] the affine simplex defined by vo,...,v,4. Slightly abusing
notation, define the face maps for 0 <i < ¢, define by

Fl:hgo1— Ay

by Fé = [eo, ..., @i,...,eq] where the ¢; means “omit e;”. More specifically, FC‘I
is the affine map that sends and therefore maps A,_; homeomorphically onto

() g ()

Ny

\4

Figure 3.2: Faces of the standard 2-simplex

The i-th face of a singular q-simplex o : A; — X is the g — 1-simplex
o@ Ay — X
defined by composition with the face map:

o i=go Fé.
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3.2 Chains, cycles, and boundaries

Define S,(X) to be the free Abelian group generated by singular g-simplices.
The elements of S,(X) are called singular chains and are formal linear combi-
nations of the form

Z aso

[on

where the coefficients a, € Z and the sum is over a finite number of singular
g-simplices . By convention, S,(X) = 0 for g < 0.
Caveat: Unless X is “small” (finite, say), Sq(X), g > 0 is huge as a set.

The boundary map d; : S4(X) — S;-1(X) is a homomorphism, defied on
singular simplices by

q q
8y(0) = Z(—l)ia“) = Z(—l)‘b‘ oF}
i=0 i=0

and extended linearly to all S,(X) by the rule

6q(z Tay0) = Z 04(0).

We will often drop the subscript and write d = d, when it is unlikely to cause
confusion.

We—2) e

e, 6,
X { ;) Ill
e e, 6 +1 €

Figure 3.3: Faces of the standard 2-simplex

Ezample 3.2. Let oy and o be singular 2-simplices in X. Then —207 + 305 €
S2(X) is a 2-chain and
0o(=207 + 302) = =205(01) + 302(02)
= —2(0'1(0) - 0'1(1) + 0'1(2)) + 3(0'2(0) - 0'2(1) + 0'2(2))
= —20'1<0) + 20'1(1) - 20'1(2) + 30'2(0) - 30’2(1) + 30'2(2)

is a 1-chain in S7(X).
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The boundary map can be understood schematically from Figure 3.3, but
be careful not to confuse singular simplices (which are maps) with their images
(which are sets).

Proposition 3.3. The composition 0;4_1 0 0y : Sq(X) — Sq_2(X) is the zero
map. Dropping subscripts, we write this

9% =0.

Caveat: A bare-hand brute-force approach will turn out to be a notational
nightmare. Note that 3.4 below circumvents difficulties in the proof.

Proof. Since S4(X) is generated by simplices, it suffices to check that d,_1 o
04(0) =0 for all g-simplices o .

First we note that the face maps satisfy the commutation relation

FioF!_ =FjoF,"} when i>j, (3.4)

as can be seen immediately by observing that the vertices of A,_o are mapped
according to the following chart: In other words, both F}, o F;_l and F} o Fé‘_ll

J i i-1 J
F)_ F} Fi7} F)
€o = €o — €o €o = €o — €o
ej—l (= ej—l (=g ej—l ej—l = ej—l = ej—l
€j = €j+1 i €j+1 ej i €j i €j+1
€i-2 = €i-1 = €i1 €i-2 = €i—2 = €i-1
€i-1 = € = iyl €i-1 = e = iyl
eq_2 = eq—l g eq eq_2 = eq—l i eq

are equal to the affine simplex [eq,...,ej,...,€;,...,eq4].
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Using this, we compute
q . .
dg-1009(0) = 041 (D (-1 ™)
i=0

q

= > (D61 ( o F))
i=0
q

L=O

4 4 )

ZZ( 1)/ (oo FloFl_)

i=0 j=0
= Z (-1 (oo FjoFl_)+ Z (-1 (oo FjoFl_)
0<i<j<qg-1 0<j<i<gqg

= Y (D)¥(ooFioFl_ )~ Y (-)T™(0oF]oF,

0<i<j<qg-1 0<j<i-1<g-1

=0

as these two sums cancel term by term by changing the index of the first sum
byi+—j,jr—i-1. O

A geometric illustration of 9% = 0 is provided for ¢ = 2 in Figure fig:3-4.

az( ):6(" )= = Zero

Figure 3.4: 6% = 0 for ¢ = 2

Definition 3.5. The group of g-cycles Z,(X) is the kernel of d,:

Zy(X) :={a € §4(X)|0(a) = 0}.

i-1
qg-1

)
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The group of g-boundaries B,(X) is the image of Jg41:
Bq(X) = {3(,3)|ﬂ € Sq+1(X)}-

By Proposition 3.3, B4 (X) is a subgroup of Z,(X): B,;(X) <Z,(X). The gth
degree singular homology of X is the coset group:

Hy(X) = Zg(X)/Bq(X).

Example 3.6. The homology of a point. If X = {pt} is a single point, then
there is only one singular simplex in each degree, which is the constant map
o4 : Ay — {pt}. The chain groups are!

Cy({pt}) = Zoy = Z.
The boundary map satisfies (for ¢ > 1)
q . .
dg(og) = Y (-D)icg"
i=0
q .
= Z(—l)‘aq -1

i=0

_Jog if g iseven
o if ¢ isodd

while 60(0'0) =0.
It follows that for g > 1

0 if g iseven

while Zy({pt}) = Z and Bo({pt}) = 0. Thus

if
Hy({pt}) = Z,({pt}) /B4 ({pt}) = {; if Z i (1)

Remark 3.7. A space X for which H,(X) = H,({pt}) for all ¢ is called acyclic,
meaning no cycles that are not also boundaries.

Proposition 3.8. Let {X;} be the set of path components of a space X (indezed
by k). Then
Hq(X) = &xHg(Xk)

for all g > 0.

IThe case of a point is highly unusual in this respect. For most spaces Y, C4(Y) is huge,
with an uncountable rank.
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Proof. Because the standard g-simplex is path connected (indeed convex), the
image of a singular g-simplex o : A; — X must be path connected and in
particular must lie within one of the path components of X. It follows that for
all ¢ we have a canonical decomposition,

Cq(X) = &1 Cy(Xp).

Moreover, it is clear that the boundary map 0 respects this decomposition, so
that
Zq(X) = @qu(Xk) and Bq(X) = @kBq(Xk)

and finally that
Hq(X) = Zq(X)/Bq(X)
= (@qzq(Xk))/(@qu(Xk))
= &k (Z4(Xk) /B4 (Xk))
= @qu(Xk).

We denote by my(X) the set of path components of a space X.
Proposition 3.9. There is a canonical isomorphism
Ho(X) = Zno(X).
Thus Hy(X) = Z" where n is the number of path components of X.

Proof. By Proposition 3.8, it suffices to show that if X is path connected, then
there is a canonical isomorphism

Ho(X) =Z.
Recall that a singular 0—simplex is the same thing as a point in X. Thus
So(X) = Zo(X) = ®pexZp.

The standard one simplex A; is equal to the unit interval [0, 1] C R, so a singular
1-simplex is a continuous path in o : [0,1] — X. Since X is path-connected, for
any two points p, g € X, there exists a path o such that o(0) = p and o(1) = g.
Consequently, the boundary satisfies

d(0) =0(1) =0 (0) = p - g € So(X).

and thus
Bo(X) = Spanz{p - qlp.q € X} C ®pexZp.
Observe that By(X) is equal to the kernel of the homomorphism

€:®pexZp > L
defined on generators by €(p) = 1. It follows that € descends to a homomorphism

Ho(X) = Zo(X)/Bo(X) = Z.
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3.2.1 Homology as a functor

Suppose that f : X — Y is a continuous map. If o is a g-simplex for X, then
the composition f oo is a g-simplex for Y. This defines a homomorphism

Sq(£) : Sq(X) = S4(¥),  Sq(N) agr) =Y agfoo.

o

Clearly S,(id X) = ids, (x) and S4(f o g) = S4(f) o S4(g) for composable con-
tinuous maps f and g. Thus S, is functor from topological spaces to abelian
groups. It allows commuting with the boundary map.

Lemma 3.10. J, 0 S,(f) = Sg-1(f) 0 dy.

Proof. 1t is enough to check for simplices.
9qSq(f)(0) =0(f o 0)
q
= > D (fom)()
i=0

—1)ifOO'OF(;

~1)ifoo®

lq
D
=0
q
X
i=0
q . .
=S4 (N (-Dic?)
i=0
= S4(f)(90)

using associativity of composition. O

It follows then S,(f)(Z;(X)) € Z,(Y) and S4(f)(B4(X) € B4(Y) and thus
induces a homomorphism between the coset groups

Hy(f) : Hy(X) — Hy(Y).

Now, it easily follows from the fact that S, is a functor that H, is a functor
from topological spaces to abelian groups. It is common to use short hand

fo = Hy(f)

[T
£

though we will try to avoid doing so, as is overused.

3.3 Homotopy Invariance

Recall that two continuous maps f,g : X — Y are said to be homotopic if there
exists a continuous map
h:XxXI—->Y
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where I = [0, 1] is the unit interval and both h(x,0) = f(x) and h(x,1) = g(x).
Intuitively, two maps are homotopic if one can be continuously deformed into
the other.

The goal of this section is to prove the following theorem.

Theorem 3.11. Let f and g be homotopic maps from X to Y. For all g > 0,
the induced maps on homology are equal: Hy(f) = Hy(g).

Recall that two spaces X and Y are called homotopy equivalent if there exist
maps f: X — Y and g : Y — X such that f o g is homotopic to idy and go f is
homotopic idx. That is,

O : X XTI - X, ®lxxg=gof, Plxx =idx,
H\PZYXI—>Y, lPly><0=f0g, lPlyX1=idy.
Corollary 3.12. If X and Y are homotopy equivalent, then Hy (X)(X) = Hy(Y)
for all g > 0.

Proof. By Theorem 3.11 and functoriality, we have

Hq(f) © Hq(g) = Hq(f og)= Hq(idY) = iqu(Y)

and similarly Hy(g) o Hy(f) = idn,(x). The Hy(f) and H,(g) are inverse iso-
morphisms between H,(X) and H,(Y). O

Recall that a space is called contractible if it is homotopy equivalent to
a point. Examples of contractible spaces include all convex subspaces of R".
By Corollary 3.12, a contractible space X satisfies H,(X) = 0 for ¢ > 1 and
Ho(X) =Z (i.e. contractible spaces are acyclic).

Before proving Theorem 3.11, it will be helpful to introduce some abstract
(= purely algebraic) ideas about chain complexes.

3.3.1 Chain complexes and chain homotopy
Definition 3.13. A chain complez (of abelian groups)

C:= (Cq, 8q)q€Z

is a sequence of abelian groups (C,)4ez and homomorphisms d; : C4 — C4-1
such that d;—1 09, = 0 for all g € Z.

Oy+3 Og+2 Og+1 % O4-1 Oy-2
Cq+2 Cq+1 Cq — Cq—l — Cq—2 —_>

Typically C; =0 for g < 0.
Ezample 3.14. The singular chain complex S(X) = (S4(X),04)gez is indeed a
chain complex.

We define Z,(C) = ker(dy), B4(C) = im(d4+1) and Hy(C) = Z4(C)/B,4(C),
called respectively the g-chains, g-boundaries, and g-homology groups of the
chain complex. If z € Z,(C), denote by [z] € H,(C) the coset represented by z.
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Definition 3.15. A morphism of chain complezes (or a chain map for short)
f:C — C'is a sequence of homomorphisms ( fq:Cq— C;I)qez that commutes

with boundary maps, i.e., that satisfies f,_19, = (’9;1fq for all g.

8‘7
Cy—>Cys

fql lfq—l

Cq — Cq—l
a

Ezample 3.16. Given a continuous map ¢ : X — Y, the morphisms S,(¢) :
Sq(X) — S4(Y) determine a chain morphism S(¢) : S(X) — S(¥).

A chain map f : C — C’ induces a homomorphism in homology H,(f) :
H,(C) — Hq(C’) for all ¢ € Z by the same reasoning as in §3.2.1 by the rule

Hy (f)([z]) = [f4(2)].

Thus each H, is a functor from chain complexes to abelian groups.
Let f,g: C — C  be two chain maps. A chain homotopy between f and g
is a sequence of homomorphism (P, : C;, — Cq+1),)qu such that

8,1 Pg + Pg-10g = fy — 84

C(’qr*fl 3{1
Cq+1 Cq Cq-1
fq —8q l
C C o)
q+1 ’ q ’ q
aq«%—l aq

The chain maps f and g are called chain homotopic if there exists a chain
homotopy between them.

Proposition 3.17. If chain maps f,g : C — C' are chain homotopic, then the
induced maps on homology are equal: H,(f) = Hq(g) as maps from H,(C) to
Hy(C').

Proof. Let [z] € H,(C) be represented by z € Z,(C). Then, since d,(z) = 0,
£4(2) = 84(2) = Pg-10q(2) + 8,41 Py (2) = 0,41 Py (2)

is a boundary. Thus

Hq(N)([2]) = Hg()([2]) = [f4 (D] = [84()] = [f(2) = 84(2)] = [0441P¢(2)] = 0

s0 Hy ()([2]) = Hy(2)([2])- o
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The prism operator

For t € I = [0,1], define
X > XxI, (x)=(x1). (3.18)

Lemma 3.19. The two maps tg,t1 : X — X X I, determine chain homotopic
chain morphisms S(ip) and S(t1).

Proof. The first step is to define a decomposition of A, x I ¢ R"*! into (g + 1)-

simplices. Denote the vertices lying in A, X {0} by vo,...,v4 and those lying in
A, x {1} by wo,...,w,. For each i, the image of the affine simplex
[vo,...,v,-,le,...,wq] :Aq — Aq x I

can be thought of as the graph of a map from A, to I, because composing the
projection A, X I — A, is the identity map. These graphs slice A, x I into the
images of affine (g + 1)-simplices

Vo, . s vis Wiy oo awgl t Ay = Ag x I, i€{0,...,q}.
d W, W, w, w,
= +

Figure 3.5: Prism decomposition

For arbitrary X, define the prism operator Py : Sq(X) — Sg+1(X X 1) on
simplices by

q
Py(0) = Z(—l)’(a xidy) o [vo,...,vi,Wi,...,wq].
i=0
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This will be our chain homotopy.

q
0g+1P4(0) = 0g1 Z(—l)’(o oidy) o [vo,...,vi, Wi, ..., wg]

i=0
q
=ZZ( 1)’+J(0'01d1)0[vo,..., e Vis Win oo Wl
i=0 j
q . .
ZZ( 1)’+J+1(O'Oid1)o[vo,...,...,vi,wi,...,W},...,wq]
i=0 j=i
On the other hand,
q N
Py184(0) = Pg_1 ) (=1 (70 0[ep, ..., &), eq])
i=0
q
=ZZ( 1)’+J+1(0'01d1)0[v0,..., G s Via Wiy, Wyl
=0 j
q
+Z (—1)i+j(0'01d1)o[vo,...,...,vi,wi,...,v/v;,...,wq]
i=0 j>

Adding together, we get

q
aq+1])q(0-) + qulaq(o-) = Z(a- ° id]) © [V07 LR ,’V\h Wi9 e ,Wq]
i=0

q
—Z(O’Oidl) o[vo,...,vi,Wi,...,wq]
i=0

=ooidjo[wy,...,wg] —ooidjo[ve,...,v4]

=100 —1oO0.

It follows that
6q+1Pq + Pq_lﬁq = Sq(Ll) - Sq(to).

Proof. (of Theorem 3.11) A homotopy between two maps f,g : X — Y is a map
h:XxI — Y such that f = hoi and g = ho;. By Lemma 3.19, S,(t1)
and S, (1) are chain homotopic, so Proposition 3.17 implies H, (o) = Hy(t1).
Finally we see that

Hq(f) = Hq(h) ° Hq(to) = Hq(h) o Hq(tl) = Hq(g)'
O

In fact, it is not hard to show that S(f) and S(g) are chain homotopic via
the chain homotopy Sg4+1(H) o P,,.
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3.4 Relative Homology and the long exact ho-
mology sequence

A topological pair (X, A) consists of a space X and a subspace A Cc X. A pair
(X, A) gives rise to an inclusion of chain groups S4(A4) < S,(X) (technically the
inclusion map i : A = X determines an injective homomorphism S, (7)). Define
the relative chain group of the pair to be the coset group

Sy(X,A) = S,(X)/S,(A).

The relative chain groups combine to form the relative chain complex

5q+1 5q 5q—l
"'Sq+1(XaA) — Sq(X’A) - Sqfl(X5A) —_—>

where the boundary map is defined by the following commutative diagramme

Sq(X) —2 o 5,1(X)

l |

Sq(X, A) —— Sq_l(X, A)
0,

q

where the vertical arrows are coset maps.
Note that d, is well defined because d, sends S,(A) to S,-1(A) and that

52 = 0 because 9% = 0. It follows that we can define relative cycles, relative
boundaries, and relative homology as described in 3.3.1, which are denoted

ZQ(X’A)’ Bq(X’A)’ Hq(X’A)

respectively. Geometrically, a relative cycle in Z, (X, A) is represented by a chain
in Z,(X) whose boundary lands in S,_1(A).

Remark 3.20. Observe that if A = @, then S,(A) = 0 for all g. It follows that
Sq(X,2) = §,(X) and that H,(X,2) = Hy(X). Thus it is possible to think of
homology as just a special case of relative homology.

A map of topological pairs
f:(X,A) - (x,A)

is a continuous map f : X — X such that f(A) c A". Such a map determines
a morphism of chain complexes S(f) : S(X,A) — S(X',A") and thus also a
homomorphism on homology

Hy(f): Hy(X,A) — Hy (X', A).

The following properties are proven similarly to their counterparts for H,(X).
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e H, is functor from topological pairs to Abelian groups. le. Hy(f) o
Hy(8) = Hy(f o g) and Hy(id(x,4)) = idpn, (x,4)-

o If {X,} is the set of path components of X and Ay = A N Xj, then there is
a canonical isomorphism H, (X, A) = & H, (X, Ax)-

e Let : XoI — X be a homotopy between maps such that &, (a) := h(a,t) €
A’ foralla € Aandr e I. Then H,(ho) = Hy(h1) as homomorphisms from
Hy(X,A) to Hy(X ,A").

The coset morphisms S,(X) — S§,(X,A) fit together into a morphism of
chain complexes j : S(X) — S(X, A). Combined with inclusion chain morphism
i@ S(A) — S(X) we get a commutative diagramme (Recall that S,(X,A) =
Sq(X)/S4(A).)

i ——> 8441 (A) Sq(A) Sy-1(A) — -+ (3.21)
S (X) Sq(X) Sq-1(X) —— -

R

=811 (X, A) —= S,(X,A) ——=S;1(X,A) —— - -+

By functoriality, these chain morphisms give rise to homology homomor-
phisms H,(A) — H,(X) — H, (X, A) for all ¢ > 0. The most important property
of relative homology is the existence of a connecting homomorphism

14]
H,(X,A) 5 H, 1 (A),

(denoted by 0 using abuse of notation). To show is, we need some homological
algebra as below.

3.4.1 Some homological algebra

For a space X we defined (see 3.14) the “singular chain complex” S(X) =
(84(X),04)gez of X. From that point, the definition of the homology groups
H,(X) and some simple properties were derived completely algebraically. Such
“chain complexes” can, and will, occur in other contexts. Accordingly, it is very
useful to abstract the algebraic part of the process, in order to apply it to future
situations.

Recall that (see 3.13) a chain complex (of abelian groups)

C:= (Cq, aq)qez

is a sequence of abelian groups (Cy)4ez and homomorphisms 9, : C; — C4-1
such that d;_1 09, = 0 for all g € Z.
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As defined in 3.5, the homology of a chain complex C = (Cy, 04)qez is
H(C) := (kerd; : (Cq = Cy—1)/imdg41 : (Cge1 — Cg))gez

Thus H,(X) = Hy(A(X)).

As defined in 3.15, a chain map f : A, — B, between two chain com-
plexes A, = {Ag}qez and B, = {Bg}gez is a collection of homomorphisms
fq + Ag — Bgsuch that fod = 0o f. In other words, a chain map is a
“ladder” of homomorphisms which commutes:

d d 9 3
A A, Agoy ==
Bgs1 B, By — -

a 17 17 9

A chain map f : A, — B induces a homomorphism of graded groups f; :
H.(A.) — H..B. by fla] = [f(a)], such that (fog),= fiog.and 1, = 1.

Definition 3.22. A sequence of groups A 5 B L Cis called ezact if im(j) =
ker(j).

Exact sequences are common and fundamental in algebraic topology. Note

that an exact sequence of the form 0 — A 5 B L € - 0 means that i is an
isomorphism of A onto a subgroup of B and j induces an isomorphism of B/i(A)
onto C. Also note that to say that k : A — B is an isomorphism (onto), is the

k
same as to say that 0 » A —» B — 0 is exact.

Theorem 3.23. A “short” exact sequence 0 — A, 5 B, EN C. — 0 of chain
complezes and chain maps induces a “long” exact sequence

B H(A) B HB) D HYC) B H(a) S (3.24)
where 8.[[c]] = [[i T oo j~1(c)]] and is called the “connecting homomorphism”.

Proof. The arguments in this proof are of a type called “diagramme chasing”
consisting, in this case, of carrying elements around in the diagramme

J

0——=Aps1 — By Cpi1 0
Pk b
0 Ap——B,——>cC, 0
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We will see this one through in detail, but later such arguments will be ab-
breviated, since they are almost always straightforward to one with previous
experience.

0. is well defined : We begin by checking that the definition given for 9.
really does define a unique homomorphism H,(C.) — Hp-1(A.). Suppose given
¢ € Cp such that dc = 0. Since j is onto there is a b € B, with ¢ = j(b). Then
Jj(0b) = 0(j(b)) = d(c) = 0. By exactness there is a unique element a € A,_;
such that i(a) = db. Then i(da) = d(i(a)) = 00b = 0. Thus da = 0 since i is a
monomorphism. Therefore [[a]] € H,_1(Ax) is defined. As indicated d.[[c]] is
defined to be [[a]].

We must show that this does not depend on the choices of b and of ¢ within
its homology class. First suppose ¢ = j(b'), so that j(b —b') = 0. Then
b-b =i(ag) for some ag € Ap. Thus 0b - b’ = 8(i(ap)) = i(da0). But the
left-hand side of this equation is db — db" = i(a) —i(a’) = i(a — a’). It follows
that a —a’ = 8ag and so a ~ a  as desired.

We now consider the effect of changing ¢ within its homology class. Let
¢ =c+dc”. Then we can set ¢ = j(b) and ¢ = j(b"). Let b = b +db". We
calculate j(b') = j(b) + j(8b") = c+dc” =c” But db" = db+99b" = db and so
db and db’, being equal, pull back to the same thing under i~'.

One also must show that 0. is a homomorphism. But for two classes ¢ and
¢', we can trace the definition back for both and, at any stage, the addition of
the elements going into the definition work for the sum ¢ + ¢’ which proves this
contention.

The “long” sequence 3.24 is exact : First, we show it is of “order two” (i.e.,
the composition of adjoining homomorphisms is zero). There are three cases.
First, ju. = (joi). =0.=0.

Second, consider . j.[[b]], where b = 0. By definition of ., this is obtained
by taking b, then applying 9 to it, giving db = 0, and pulling this back (to 0)
to A..

Third, consider id,. This is the result of taking an element of Cx, pulling it
back to B., taking 9 of it, pulling that back to A, (this being the d, part) and
then pushing this out to B, again. But this element of B, is, by construction, d
of something, which has homology class 0, as claimed.

Now we must show that an element in the kernel of one of the maps i., j. or
0. is in the image of the preceding one. Again the proof of this has three cases.

First, we show the exactness at H.(B.). Suppose that j.[[p]] = 0. This
means that j(b) = dc for some ¢ € C,. Let b’ € B, be such that j(b') = ¢. Then

j(b=8b") = jb)—j(db)=dc—-8(j(b)) =0dc—dc=0.

This shows that we could have taken the representative b of its homology class
to be such that j(b) = 0. For this choice, then, b = i(a) for some a € A, (and
da = 0 since it maps, by the monomorphism i, into b = 0). Thus [[b]] = i.[[a]]
as claimed.



3.4. RELATIVE HOMOLOGY AND THE LONG EXACT HOMOLOGY SEQUENCE29

Second, for the exactness at H.(A.), suppose that i.[[a]] = 0. Then i(a) =
0b for some b € B,. Then put ¢ = j(b). We have dc = 9j(b) = j(0b) =
j(i(a)) = 0. Thus c represents a homology class, and by construction of 9,
dillcl]l = [[a]].

Third, for the exactness at H.(C.), suppose that d.[[c]] = 0. Then for an
element b € B, for which j(b) = ¢, there is an a € Ax such that i(a) = db, by
the construction of d,, and @ must be a boundary since it represents d.[[c]] = 0.
Thus let a = da’. Then di(a’) = i(da’) = i(a) = db. Accordingly, d(b—i(a’)) =0
and j(b—i(a’)) =c—0=c. Therefore j,[[b—i(a)]] = [[c]] as required. O

The connecting homomorphism in the long exact homology sequence satisfies
an important naturality property.

Proposition 3.25 (Naturality of the Connecting Homomorphism). Suppose

0 C. D. E. 0 (3.26)
R
0 C,——>D,——>E, 0
F G

is a commutative diagramme of chain maps in which the horizontal rows are
exact. Then the following diagramme commutes for each p:

O
Hp(E.) — H,-1(C.)

Hp(E,) —5> Hp-1(C.).

Proof. Let [e,] € H,(E,) be arbitrary. Then d*[e,] = [cp-1], where Fcp_q =
dd,, for some d, such that Gdp, = e,,. Then by commutativity of (3.26),

F'(kcp-1) = 6Fcp_1 = 60d, = 3(8d,,);
G/((Sdp) = eGdp, = €ep.
By definition, this means that
O.elep] = 0:[€ecep] = [kep-1] = kx[cp_1] = kx0%[ep].
which was to be proved. O
The following lemma is helpful for calculations:

Lemma 3.27 (The 5-lemma). Consider a commutative diagramme of abelian
groups
Aq Ao As Ay As

T

By By B3 By Bs

1R
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where the rows are exact. If a, B, v and € are all isomorphisms, then vy is also
an isomorphism.

Proof. This is a fairly straightforward diagramme chase. First suppose as €
ker(y). Then az maps into ker(§) = 0, so that as comes from some as € 2 by
exactness. If we push as to by € B2 then that goes to 0 in B3 and thus comes
from some b1 € By, and in turn that can be lifted to a; € A;. But a; maps to
as, since the images of these in By are equal. But then a; maps to as and so
the latter is 0 by exactness. This shows that y is a monomorphism.

Now, forgetting the above notation, let b3 € B3. Map this to b, € B, and
pull it up to a4 € A4. This must map to 0 in As since it goes to 0 in B;. By
exactness, there is an a3 € A3 mapping to a4. If we map this to B3 and subtract
it from the original b3 (= b3 — y(a3)) we conclude that this goes to 0 in By.
Accordingly, we may as well assume that the original b3 maps to 0 in By, and
hence comes from some by € Bo. Pulling this up to A and pushing it into As
gives us an element that maps to b3, showing that vy is onto. O

Let’s get back to topology. Recall that if A ¢ X be a pair of spaces, then
S4(A) is a subgroup of S,(X) and the inclusion is a chain map. As we defined
Sq(X,A) =84(X)/S4(A), we have am exact sequence of chain complex

0—S(A) - S(X)—>S(X,A) >0 (3.28)

Since we defined H,(X,A) = H,(S(X,A)), by applying Theorem 3.23 to the
sequence 3.28 we obtain

Theorem 3.29. The following sequence is exact.

7] H, (i) Hq(j) 7]
- > Hys1 (X, A) 5 Hy(A) —— H,(X) ——5 H,(X,A) > Hy_1(A) — -~

It is called the long exact homology sequence associated to the pair (X, A).

Denote by mg(X, A) the set of path components of X that do not intersect
A.

Proposition 3.30. There is a canonical isomorphism
Ho(X, A) = Zﬂ'o(x, A)

In particular, Hy(X,A) = Z™ where m is the number of path components of X
that do not intersect A.

Proof. Let i : A — X denote the inclusion of A into X. Then we have an exact

sequence
Ho (i Ho (j
Ho(A) = Ho(x) 2225 Hy(X, 4) — 0.
Exactness implies that Ho(X,A) = Ho(X)/im(Hp(i)). We know (Proposition
3.9) that Ho(X) = Zro(X) and the image of Hy(i) is generated by those path
components of X that contain a path component of A. The result follows. O
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One of the great merits of the long exact homology sequence is that it is
functorial with respect to maps of pairs.
Proposition 3.31. Let f : (X,A) — (Y,B) be a map of pairs. This induces

homomorphisms on homology such that the following diagramme commutes.

——> Hyo1 (X, A) 2> H (A) — H, (X) — Hy(X, A) —2> H, 1 (A) —

S T T

— q+1(Y’ B) 6_> Hq(B) Hq(Y) Hq(Y’ B) _6) q—l(B) I

Proof. The commutativity of squares not involving d are evident, as all involved
homomorphisms are induced from commuting continuous maps. The commu-
tativity of squares involving d can be proven using Proposition 3.25. O

Proposition 3.32. If f : (X,A) — (Y, B) is a map of pairs such that two out
of three families of induced maps on homology

{Hq(A) - Hq(B)}qu’
{Hq(X) - Hq(Y)}qGZ’
{Hq(X’A) - Hq(Y’ B)}qGZ’

are isomorphisms in all degree, then the remaining family is isomorphisms in
all degrees.

Proof. Apply the 5-lemma 3.27 to the diagramme:

——> Hy1 (X, A) 2> H,y(A) — H, (X) — Hy(X, A) —2> H, 1 (A) —

jf* lf* lf* jf* jf*

— q+1(Y’ B) > Hq(B) Hq(Y) Hq(Ya B) 5 q—l(B) -

O

Example 3.33. If a map of pairs f : (X,A) — (¥, B) restricts to homotopy
equivalences between X and Y and between A and B, then f. : H,(X,A) —
H, (Y, B) is an isomorphism in all degrees.

3.4.2 Reduced Homology

It is sometimes convenient to use a modified version of singular homology called
reduced homology. For any space X, there exists a unique map to a point € :
X — {pt} called “augmentation”. Define the reduced homology

I-Iq(X) :=ker H, (e).
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It is an easy consequence of (3.6) that if X has n path components,

Hy(X) if g=1

H,y(X) = {zn—l if g=0

More canonically, Hy(X) is the kernel of the map Zno(X) — Z that sends each
generator to 1. For relative homology we define

Hy (X, A) = Hy(X, A)

if A # @. Basically, reduced homology is designed so that H,({pt}) = 0 for all
degrees without exception and this sometimes makes calculations less clumsy.

Functoriality, homotopy invariance, and the long exact sequence all work for
relative homology. In particular, if A is non-empty, then we have a long exact
sequence

o Hy (X, A) S Hy(A) = Hy(X) = Hy (X, A) S Hy_1(A) > -+ (3.34)

Remark 3.35. If X is a path-connected space and p € X, then the long exact
sequence defines a natural isomorphism

Hy(X,p) = Hy(X,p) = Hy(X)

in all degrees.

3.5 Excision

The last property we need before we can do practical calculations is called
excision. Given an ordered pair (X,A) we say a subspace of B ¢ A can be
excised if the inclusion (X \ B,A\ B) — (X, A) induces isomorphisms

H,(X\B,A\B) = H,(X,A)
in all degrees g.

Theorem 3.36. If the closure of B is contained in the interior of A: (B C int A),
then B can be excised.

Corollary 3.37. IfVc BcC A and
1. V can be excised, and

2. the inclusion (X\ B, A\ B) — (X\V,A\V) determine homotopy equivalences
X\B—> X\Vand A\B— A\V,

then B can be excised.
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Figure 3.6: Excisive pair (A, B)

Proof. We want to prove that H,(X \ B,A\ B) — H,(X, A) is an isomorphism.
By functoriality, it is enough to show that the homomorphisms H,(X\B, A\B) —
Hy(X\V,A\V)and Hy(X\V,A\ V) — H,(X, A)are isomorphisms. The fist is
an isomorphism by by homotopy invariance (Example 3.33) and the second is
an isomorphism because V can be excised. O

Before we give the proof for Theorem 3.36, we do some actual calculations.

Proposition 3.38. The homology groups of the unit sphere S™ for n > 1 satisfy

Z ifg=0o0rqg=n
0 otherwise

H,(S") = {
Proof. 1t will be more convenient to work with reduced homology, so our goal

is to prove that
~ 7 if g =
Hq(Sn) _ { Ig=n

0 otherwise

Let E} and E” denote the upper and lower closed hemispheres of S". Note that
forn>1, E" NE" = $" 1. We claim by an excision that

H,(S",E") = H,(E",S"™"), VgeZn>1.

Here we are excising the interior of the lower hemisphere E”. This does not
satisfy the hypotheses of Theorem 3.36, but a slightly smaller open disk does
and then we can apply Corollary 3.37. Now consider the long exact sequences
(LES) associated to these pairs. Because E” is contractible, the LES of the pair
(B, Ss™1) breaks into isomorphisms

0— H,(E",s" Y 5 Hy (S -0

for all n > 1 and all ¢ € Z. Likewise, the LES of (S",E" gives rise to isomor-
phisms

0 — Hy(S") = Hy(S",E") - 0
for all n > 1 and all g € Z. Combined, we obtain isomorphisms

ﬁq(sn) = ﬁq—l(sn_l)
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g
Figure 3.7: (S",E") vs (E,S" 1)

foralln>1 and all g € Z.
Since S° is a disconnected union of two points, it follows that

Hy (%) = {

The result now follows by induction. O

Z ifg=0

0 otherwise

Proposition 3.38 hints at the special role that spheres play in homology.
Later, in §3.7, we will consider a special class of spaces built out of spheres
called cellular spaces that are particularly well suited to algebraic topology.

Theorem 3.39 (Brouwer Fixed Point Theorem). Let f : E" — E" be a con-
tinuous map from a closed n-disk E" to itself. There exists p € E" such that

f(p) =p.

Proof. We resort to contradiction, so suppose that no such p exists. Then
f(x) # x for all x € E* and we can define a continuous map r : E* — S"! as
illustrated in Figure 3.8. Notice that for points x € S"~1, r(x) = x. This implies

X))

Figure 3.8: Brouwer retraction

that r is retract. In particular, this means » : H,(E") — H,(S""!) is surjective
which contradicts the fact that H,_1(S"™!) = Z and H,,(E") = 0. O
3.5.1 Subdivision

Caveat : This §3.5.1 is quite involved.
We wish to prove Theorem 3.36, i.e, that singular homology satisfies the Excision
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Axiom. First we will indicate the difficulty with doing this, and outline the
remedy, and finally we go into the detailed proof.

Suppose, for example, U ¢ A ¢ X with U c int(A) and we wish to “excise” U.
If all singular simplices which are not completely within A miss U completely,
then we could just discard any simplex in A. Thus the problem is with “large”
singular simplices, those touching both X\ A and U. These sets are “separated,”
i.e., their closures do not meet. Thus if we could somehow “subdivide” a singular
simplex into smaller simplices (a chain) which satisfy the above condition then
we might be able to make excision work.

We are going to define an operator Y called “subdivision” on A;(X) and a
chain homotopy T from Y to the identity.

Recall that the standard g-simplex A, c R™*!. Let Lx(A;) be the subcom-
plex of A,(A,) generated by the affine singular simplices, i.e., singular simplices
of the form o : A, — A, such that o(X; A;e;) = 2; A;v; where }; 4; = 1 and
vi = 0(e;). We denote such affine singular simplices by o = [vg,...,vp].

Now we define the “cone operator” which takes an affine simplex and forms
the “cone” on it from some point, producing a simplex of one higher dimension.
Let v € A, and let o = [vg,...,vp] : A, — A, be affine. The cone on o
from v is then defined to be vo = [v,vo,...,vp] : Apyr — A,. For a chain
c = Yonaly(Ay), let ve = Y ongvo € Lpyi(Ay). Taking ¢ — ve gives a
homomorphism

Lp(Ag) = Lp+1(Ay).

(By definition, vo = 0.) If p > 0 then we compute
alv,vo,...,vpl =[vo,...,vpl —Z(—l)i[v,vo,...,Vi,...,vp]
7

=[vo,...,vpl =v(0[vo,...,Vp]).

If p = 0 then dvo = o — [v]. Thus, for a O-chain ¢, dvc = ¢ — €(c)[v] where
€ is the augmentation, of Subsection 3.4.2, assigning to 0-chain the sum of its
coefficients. Thus we have that

d(ve) = ¢ —v(dc) if deg(c) >0,
ver= c—¢€(c)[v] if deg(c) =0.

We now define the “barycentric subdivision” operator Y : L,(A;) — L,(Ay)
inductively by

Y(o) = a(Y(dc)) for p>0,
7= o for p=0,

where o denotes the “barycentre” of the affine simplex o, i.e., o = (Zf’zo vi)/(p+
1) for o = [vo, ..., vp]. This defines Y on a basis of L,(A,) and thus we extend
it linearly to be a homomorphism. See Figure 3.9

Lemma 3.40. Y : L,(A;) = L,(A,) is a chain map.
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q=2:

Figure 3.9: Barycentric subdivision

Proof. We shall show that Y(do) = d(Y (o)) inductively on p where o is an
affine p-simplex.

Case: p=0

Y(do) = Y(0) =0, while (Y (o)) = do =0, since there are no (—I)-chains.
Case: p =1:

Y(d0) = do while d(Y (o)) = 0(a(Y(00))) = d(ag(do)) = do—€e(do)[o] = do.
Case: p > 1:

Assuming that the formula is true for chains of degree < p, we have d(Y (o)) =
0(cY(00)) = Y(0o) — ag(dYdo) = Y(do) since dYdo = Yddo = 0 by the
inductive assumption. O

Now we define T : L,(Ay) = Lp+1(Ag) by induction on the formula
To=0c(Yo—-0-T(30)),

and T =0 for p = 0.
We wish to show that T is a chain homotopy from id to Y, i.e, 0T+T9 = Y —id.
For p = 0 we compute

0To+Tdo =d(c(Yo—-0)) =0

since Yo = o for p = 0. For the same reason (Y —1)o = 0.
For p > 0 we compute

0To =Yoo -0 -Tdo) —c(0Yo —do — 0Tdo). (3.41)

The term dTdo = (Y —id -Td) (o) = (Yo — o) so that the entire right-hand
term of (3.41) vanishes, which yields the claimed formula. Thus T is a chain
homotopy from id to Y.

We are now done for affine chains in A,. We now transfer these results to
general singular chains of X.

We wish to define Y : A, (X) = Ap(X) and T : Ap(X) — Apy1(X) such that:

(1) (naturality) YS(f)(c) = S(f)(Yc) and T(S(f)(c)) = S(f)(T(c)) for f: X —
Y.

)
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(2) Y is a chain map and 0T + 79 =T —id;
(3) Y and T extend the previous definition on affine chains; and
(4) Yo and To are chains in im(o).

Note that (4) follows from (1): we list it for stress.
Thus let o : A, — X. Then we have o = S§(0)(ida,) and, of course,
ida, € Lp(Ap). We define

Yo =S8(0)(Yida,),
To =S8(o)(Tida,)-

Of course, one must check that these coincide with the previous definitions when
o is affine, but this is obvious because Y and T were defined on affine simplices
using only affine operations. Property (4) is also clear, so this settles (3) and
(4).

To show naturality (1) we compute YS(f)o = YS(f o 0)(ida,) = S(f o
o)(Yida,) = S(f)(S(0)(Yida,)) = S(f)(Yo), and similarly for 7.

It remains to prove property (2). To show that Y is a chain map, we compute

Ydo = Y(3(S(o)(ida,)

=Y(S(0)(dida,) (since S(o) is a chain map)
=5(0)(Y(01da,,)) (naturality)
= $(0)(4(Yida,)) (since idp, is affine)
= 0(S(0)(Yida,)) (since S(or) is a chain map)
=0(Yo) (by definition).

Similarly, for the formula involving T we compute
Tdo =T(S(0)(dida,) = S(o)(Tdida,)

and
0To = 9S(o)(To idAp) = S(o-)(aTidAp)

so that
(To+0T) (o) = S(o)((TI+0T) idAp) = S(o)((Y—=id) idAP) = (Y—id)S(a‘)(idAp) =Yo-o

Corollary 3.42. For k > 1, YF : Ap(X) — Ap(X) is chain homotopic to the
identity.
Proof. This follows from Y2 ~ Yoid ~ idoid ~ id, etc. Another way to show it,
which displays the chain homotopy explicitly is to note that
Y —id =Y YR YR e id = (YR YRk Y 4D (Y - i)
=G(Y -id) = G(Td + 0T) = (GT)d + I(GT).
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Let us denote this chain homotopy GT (in the second proof) by Ty and note
that it is natural.

Lemma 3.43. If o = [v0,...,v,] is an affine simplex of A, then any simplex
in the chain Yo has diameter at most (p/(p + 1)) diam(o).

Proof. A simplex in Yo has the form ot where 7 is a simplex of Y(do), i.e.,
7 is a simplex of Y(o?) for some i. Thus a simplex of Yo has the form
[0:T,T5,...] where o = 0g > 01 > 02..., using @ > B to mean that §is a
proper face of o-. Each barycentre ¢; is the average of some of the vy. If j > i
then o, is the average of some of these vi. Thus by reordering the vertices, the
lemma comes down to the following:

Ifwy,...,wr eR? with m <k < p+1 then
1< 1 & p
T ,-:51 wi = ,»:51 Wi b1 max||w; —wj||

Since x/(x+1) is an increasing function and m < k < p+1, it suffices to show
that the left-hand side of this inequality is at most ((k —1)/k) max|lw; — w;]|.
We calculate

1 k 1 m 1 m 1 m 1 k
M i = o i g s ) wi
i=1 i=1 i=1 i=1 i=m+1

k—m < 1 &
T X 2
i=1 i=m+1
k=ml|[1 & 1<
e PPN H
i= i=m+1

Both terms in the norm of the last expression are in the convex span of the
w; and so this entire expression is at most ((k —m)/k) max|w; —w;|| < ((k -
1)/k) max||w; —w;]|. O

Corollary 3.44. Each affine simplez in Yk(idAp) €€ Ly(Ay) has a diameter of
at most (p/(p + 1))* diam(Ay), which approaches 0 as k — oo.

Corollary 3.45. Let X be a space and U = {U,} be an open covering of X. Let
o be a singular p-simplex of X. Then 3k 3 Y*(o) is U-small. That is, each
simplez in Y*(o) has image in some U,.

Proof. This is an easy consequence of Corollary 3.44 and the Lebesque Lemma
(Lemma 2.25 of Chapter 2). o

Definition 3.46. Let U be a collection of subsets of X whose interiors cover
X. Let AY(X) c A.X) be the subcomplex generated by the U-small singular
simplices and let HY (X) = H,(AY (X)).
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Theorem 3.47. The map HY (X) — H.(X) generated by inclusion is an iso-
morphism.

Proof. First we show the map to be a monomorphism. Let ¢ € AV(X) with
dc = 0. Suppose that ¢ = de for some e € Ap11(X). We must show that ¢ = de’
for some ¢’ € AU, (X). There is a k such that Yk(e) € AU, (X) and

Y*(e) — e = T (8e) + 0Ty (e) = T (c) + 0Tk (e).

Thus
YK (e) — de = 0Tk (c),

so that
c=0de=03(Y"(e) - Tx(c)) € 3(AY (X))

by the naturality of Tj.
Now we shall show the map to be onto. Let ¢ € A,(X) with dc = 0. We
must show that there is a ¢’ € Ag(X) such that ¢ ~ ¢. There is a k such that

Y* € AY(X). Then
Y*(¢) — ¢ = T (dc) + ATy (c) = 0Tk (c).
Thus ¢ = Y¥(¢) works. O

We remark that it can be shown that the isomorphism of Theorem 3.47 is
induced by a chain equivalence.
To discuss the relative case of this result, put

AY(X,A) = AV (X)/AY™(A)

where U N A is the set of intersections of members of U with A. We have the
commutative diagramme

0 —— AV (A) —= AV (X) — AV (X, A) —=0

R

0 A, (A) A(X) —= A(X,A) —=0

This induces a commutative “ladder” in homology

—— HY™A(A) — HY (X) —= HY (X, A) — HU3A(4) — B, (X) —>

]

— H;(A) H;(X) Hi{(X,A) ——H; 1(A) ——H, 1(X) —

Thus HiU (X,A) 5 H;(X, A) follows from the 5-lemma.
Now we are prepared to prove the Excision Axiom. Note that the following
statement of it is slightly stronger than the axiom itself.
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Theorem 3.48 (Excision). If B ¢ A ¢ X with B C int(A) then the inclusion
(X\B,A\ B) — (X, A) induces an isomorphism H.(X \ B, A\ B) 5 H.(X,A).

Proof. Let U = {A, X \ B}. Then X = int(A) U (X \ B) = int(A) U int(X \ B).
Thus we have HY (X, A) — H.(X, A). Note that

AY(X) = A.(A) + A.(X \ B)
as a subgroup of A.(X). (The sum is not direct.) Also
A(A\ B) = A, (A)NA.(X\ B).

By one of the Noetherian isomorphisms it follows that inclusion induces the
isomorphism
AL(X\B)/A.(A\ B) = AV (X)/A.(A).

Thus the inclusion maps induce

A.(X \ B)/A.(A \ B) - AY(X)/A(A)

A(X)/A(A)

This diagramme of chain complexes and chain maps induces the following dia-
gramme in homology:

H.(X\ B,A\ B) = HY (X, A)

H.(X,A)

It follows that the map marked incl, is an isomorphism. O

3.5.2 Mapping cylinders and cones

A subspace A C X is called a deformation retract if there is a homotopy A :
X x I — A such that h(x,0) =x and h(x,1) € A for all x € X and h(a,t) = a for
all a € A and t € I. Note that the map r : X — A defined by r(x) = h(x,1) is a
retraction of X onto A, and h is a homotopy between idx and i o r, whence the
inclusion i : A — X is a homotopy equivalence.

A closed subspace A C X is called a meighbourhood deformation retract if
there exists an open neighbourhood A ¢ U c X such that A is a deformation
retract of U. In other words, there exist continuous functions u : X — I and
h: X xI — X such that:

(i) A=u""(0);
(ii) h(x,0) = x for all x € X;
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(iii) h(a,t)=aforallaec A,rel;
(iv) h(x,1) lies in A for all x € u~1([0, 1)).

Ezample 3.49. The inclusion of ' ¢ R? is a neighbourhood deformation retract
because it includes as a deformation retract into an open annulus.

Proposition 3.50. Let A € X be a neighbourhood deformation retract that
intersects every path component of X. Then there is a canonical isomorphism

Hy(X,A) = Hy(X/A)

where X /A is the coset space of X obtained by shrinking all A to a point by
identification.

Proof. Since A — U is a homotopy equivalence, we know by Example 3.33 that
H,(X,A) = H,(X,U)
for all ¢. By excision (Theorem 3.48)
Hy(X\A,U\A) = H,(X,U).

On the other hand, if we denote by A/A the point in X/A that A is collapsed
to, it is not hard to see that U/A deformation retracts onto A/A. Thus

Hy(X/A) = Hy(X/A,A/A) = Hy((X/A)\(A/A).(U/A)\(A]A)) = Hy(X\A,U\A)

where the first isomorphism follows from Remark 3.35 since X/A is path con-
nected. O

Example 3.51. The coset space D"/dD" is homeomorphic to the sphere S". It
follows that _

H,(D",0D") = H,(S")
which was basically what we used in the proof of Proposition 3.38.

Example 3.52. If X contains a contractible neighbourhood deformation retrac-
tion A, then H,(X) = H,(X/A) for all g. (Indeed, one may show that X — X/A
is a homotopy equivalence.)

The hypotheses of Proposition 3.50 hold in many situations, but not always,
so it is convenient to have a construction that works in general. Let f:Y — X
be a continuous map. The mapping cylinder associated to f is the coset space
(or adjunction)

Cyl(f) := (Y x ) Up X = (Y x ) U X)/~

where the relation is generated by (y,1) ~ f(y) for all y € Y. The inclusion
X — Cyl(f) is a homotopy equivalence with homotopy inverse Cyl(f) — X,
x> x and (y, 1) — f(x).

The mapping cone of f :Y — X is the cosetspace

Cone(f) := Cyl(f)/(¥ x{0})
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Proposition 3.53. Given any map of spaces f : YtoX such that the image of
f intersects every path component of X, we can define a long ezxact sequence in
homology

-+ = Hyi1(Cone(f)) = Hy(Y) = Hy(X) — Hy(Cone(f)) = Hy-1(Y) — ---

in case i :Y — X is a subspace inclusion, this is canonically isomorphic to the
long exact sequence of the pair

= Hye1(X,Y) = Hy(Y) = Hy(X) = Hy(X,Y) = Hy1 (Y) — -+

Proof. The subspace Y x {0} is a closed subset of Cyl(f) and is a deformation
retract of the open subset Y x [0, 1), so ¥ x {0} is a neighbourhood deformation
retract in Cyl(f). Thus we have a canonical isomorphisms

Hy(Cone(f)) = Hy (Cyl(f),Y x {0}).

Since Y x {0} is homotopy equivalent to ¥ and Cyl(f) is homotopy equivalent to
X, a long exact sequence can be obtained from the LES of the pair (Cyl(f);Y X
{0}) by replacing groups with isomorphic groups.

In case f : Y — X is a subspace inclusion, then the homotopy equivalence
Cyl(f) — X sending (y,t) € Y X I to f(y) restricts to a homeomorphism from
Y x {0}. The resulting morphism of long exact sequences

Hy (Y x{0}) = Hy (Cyl(f)) = Hq(Cyl(f),Y x{0}) = Hg1 (Y x {0}) = Hy-1(Cyl(f))

Hy (V) —— Hy(X) ——— Hy(X.Y) ———> Hy_y(Y.B) — Hy_(X)

which must be an isomorphism by the 5-Lemma. O

Ezample 3.54. (The wedge sum) Let Xy be a collection of spaces containing base
points px € Xi. The wedge product (or bouquet) is the space

ViXi = (Ue X))/~

where we identify basepoints p; ~ p; for all i, j. If the base points neighbourhood
deformation retracts (= well-pointed) then

H(ViXy) = & H(Xp)

by Proposition 3.50.

3.6 Applications to spheres: the degree of a map

Recall that our calculation of H,, (S") relied on the following sequence of isomor-
phisms

H,(S") = H,(S"E") & H, (Bl 8" ) 5 Hy(s"1)
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Figure 3.10: Constructing a cycle generating Hy (S')

We can use this to construct a cycle representing the generator of Hi(S')
by the Figure 3.10. Indeed, the cycle we have constructed is the barycentric
subdivision of a simplex o : A; — S! that winds once around the circle. It is
not hard to show that (exercise) that any “chain” of 1-simplices that wraps once
around the circle also represents the generator of H;(S').

Recall that H,(S") = Z. Given a continuous map f : " — S$", the induced
map f. : Hy(S") — H,(S") must be of the form f.() = da for some integer
d € Z. We call d = deg(f) the degree of the map f.

Since H,, is a functor, we see immediately that deg(ids») = 1, that deg(fog) =
deg(f) deg(g) for two maps f,g : " — S”, and that homotopic maps have the
same degree. (It is also true that two maps from S" to S" are homotopic if
and only if they have the same degree. The proof of this requires Hurewicz’s
theerem in homotopy theory.)

Proposition 3.55. A map f : S" — S" that is not surjective has degree zero.

Proof. Suppose p € S" is not in the image of f. Then f factors through the
inclusion map S" — S§" \ {p} — S" so by functoriality H,(f) factors through
H,(S"\ {p}) = 0 and thus must be zero. O

Given a space X, define the suspension SX := X X I/~ to be the coset of X X1
where ~ collapses X x {0} and X x {1} to distinct points. If f : X — Y is a map,
define the suspension of f

SF:SX = SY, Sfo1) = (f(x),0).

This defines the suspension functor from spaces to spaces.

Lemma 3.56. The suspension of a sphere satisfies SS* = S"™*1. Given a map

f:S" — S", the suspension Sf : S — S™ satisfies deg(f) = deg(Sf).

Proof. The homeomorphism SS" = $"*! is pretty clear; this is the picture where
S™ includes into $"*! as the equator. Because the long exact homology sequence
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Figure 3.11: §S" = §"*! forn =1

is functorial with respect to pairs and the excision isomorphism is canonical, we
obtain a commutative diagramme with horizontal arrows isomorphisms

H,(S") —— H,(S", E-") — H, (E+",S"") —— H, (5"}
(Sf)s l(Sf)* l(sf)* jf*

Hy(S") — H,(S",E-") — H, (E+",S"") —— H,(s" ")

so S(f) and f have the same degree. O

Proposition 3.57. Let r, : S" — S" be a restriction of a reflexion on R"! —
R™!, Then deg(f) = —1.

Proof. For n > 1, we can identify r, = Sr,_1, so by induction it suffices to prove
the case n = 0. In this case, S = {N, S} is a pair of points and r( transposes
them. The points represent O-simplices and Ho(SP) is generated by [N] — [S].
We have

(ro)« ([N] = [S]) = [ro(N)] = [ro(S)] = [S] = [N] = =([N] = [S])
so deg(rg) = —1. O
We define the antipodal map on S™ by x — —x.

Proposition 3.58. If f : S" — §" is a map with no fized points (i.e. there is
no point p € S" such that f(p) = p), then f is homotopic to the antipodal map.
In particular, deg(f) = (=1)"*1.

Proof. If f has no fixed points, then the path #f(x) — (1 — )x does not pass
through the origin. It follows that

1f(x) - (1-0)x
ltf(x) = (1 —1)x]
is a homotopy joining the antipodal map hg to f = h;. Finally, note that the

antipodal map is equal to a composition of (n + 1) reflexions on $" c R**! so it
has degree (=1)"*! by Proposition 3.57. o

h:STXT—S", h(x)=
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Theorem 3.59 (Hairy Ball Theorem). Every continuous vector field on an even
dimensional sphere has a zero.

Proof. A continuous vector field on S” is equivalent to amap V : S* — R**! such
that V(x) is orthogonal to x for all x € S". If a non-vanishing vector field V exists,
then we can define an associated map f : S" — S" by f(x) = V(x)/|V(x)| which
has no fixed points. By Proposition 3.58, this implies that deg(f) = (=1)"*!.
One the other hand, since f(x) and x are always orthogonal, we can build a
homotopy

h:S"xI—S", h(x)=cos(tn/2)x +sin(tn/2) f(x)

between the identity map and f, from with we conclude that deg(f) = 1. If n
is even, this leads to a contradiction. m]

Remark 3.60. In contrast with Theorem 3.59, if n is odd S" always admits a
non-vanishing vector field. This is because $2~! ¢ R?>" = C™ and we can
use complex scalar multication to rotate each vector by 90 degrees. Explicitly,

VXL y1, s Xn yn) = (=¥, X1, ..., =Y, Xn)-

Alternative approach For n > 0, the homology group H,(S") is isomorphic
to Z. There are two possible isomorphisms ﬁn(S”) = Z depending on a choice
of generator. A choice of this generator is called an (global) orientation of S".

Given a point p € S" and an open neighbourhood p € U c S", we have
canonical isomorphisms

Hy(S") S Hy(S",8"\ {p}) & Ha(U, U\ {p}). (3.61)

composing the long exact sequence of the pair (S",S" \ {p}) with excision. A
choice of orientation for H,(U,U \ {p}) = Z is called a local orientation of S™ at
p- Because the isomorphism (3.61) is natural, an orientation of $" determines
a local orientations at all points p € S", and vice versa.

Now suppose that f : S — S" is a map and for some point p € S" the
preimage f~!(p) is a finite set of points {gi,...,qx} € $".2 Suppose further
that for some open neighbourhood p € U the preimage f~'(U) is a disjoint
union of open sets Vi U ---U Vi for which ¢; € V;. For each i, the restriction of
f induces homomorphism

H,(Vi, Vi\ {p}) = Ha(U,U\ {p}).

Since both groups are isomorphic to Z, the homomorphism must be multiplica-
tion by an integer d; which we call the local degree.

Proposition 3.62. Under the conditions above, the degree of f is the sum of
the local degrees: deg(f) = Zle d;.

28uch a point always exists if f is differentiable (Sard’s Theorem)
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Proof. Fix an orientation Z = H, (S" and use this to impose local orientations
at all points. We have a commutative diagramme where natural and orientation
isomorphisms are indicated by double lines.

S

H, (5") H,(S")
Z/Hn(S", "\ F7H(p)) L Ha(87,57\ (p})

O H, (Vi, Vi \ {qi}) ———= H,(U.U \ {p})

Zk Z

In matrix notation, we have
A=[11---1]" B=[dy d2 --- di]
So the composition dy + - - - + di is the degree of f. ]

In the simplest case, p and U can be chosen so that f restricts to local
homemorphisms V; — U. In this case the local degrees are all +1, so the degree
is obtained by counting points ¢1, ..., gx with signs according to whether f is
locally orientation preserving or reversing.

Ezample 3.63. We can construct a map S — S” of degree d > 2 as follows. Let
A C S" be the complement of d disjoint open disks B; in S". Let
q:S" > S"=X/A=v,S"

be the quotient map. The orientation on S" induces local orientations and hence
global orientations on each sphere in the wedge sum. Let

p:VvgSt - §"

map each sphere by a degree 1 homeomorphism to S”.

The preimage (pg)~'(y) of a generic point y € S" consists of a single point in
each disk B; each with local degree is 1 because pq is a local homeomorphism.
Therefore deg(pgq) = d. By precomposing pg with a reflexion, we can construct
a map of degree —d.

Consider the map given d € Z

wg: ST — S, wd(eig) = ¢'d?

for d > 1 we can see by Figure 3.12 that deg(wy) = d.
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W,

Figure 3.12: The winding map wy

Note that w_g is equal to the composition of w, with a reflexion, so deg(w_g4) =
—d. By suspension, we construct maps

Sn(wd) . Sn+1 N Sn+1
of degree d for any integer.

Theorem 3.64 (Fundamental Theorem of Algebra). A complex polynomial
function f(z) of degree d > 1 has a complex root. Hence C is algebraically
closed.

Proof. The case d = 1 is obvious, so suppose that d > 2. We assume f is monic
for simplicity so f(z) = z¢ + O(z4~1). Assume that f(z) has no complex roots.
Then there is a well-defined, continuous map

f(2) (_ 2 +0(z% )
IF@] 129+ 041 )

Define a homotopy # : S x I — S! by

hi (') :g(ﬁei())'

g:C—os', g2)=

for t < 1 and extend by continuity for r = 1. We have hg(e'?) = g(0) is a constant
and thus deg(hg) = 0. On the other hand, for large values of z, g(z) becomes
dominated by the highest degree terms in the numerator and denominator, so
in the limit + — 1, we have

hl(eiG) — eidG

so deg(hy) = d, which contradicts degree being a homotopy invariant. O

3.7 Cellular homology

3.7.1 Cellular spaces

Let
D" := {x e R"||x| £ 1}
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denote the unit disk or closed n-cell with boundary
sl = 9D" := {x € R"||x| = 1}.

Given a topological space X and a continuous map f : $"°! — X, we may
construct a new space

Y= (X U D"/~
where we quotient by the equivalence relation generated by p ~ f(p) for all
p € S""1. We say that Y is obtained from X by attaching an n-cell; the map
f is called the attaching map. More generally, if we have a collection of maps
fo :S" ! — X, then we construct

v = x| [(| [oan/~

where p ~ fo(p) for all p € S*~! and a.
A cellular space (also called CW-complex) is a space that is constructed
inductively by attaching cells. For instance,

¢ A 0O-dimensional cellular space Xj is a discrete set of points (i.e. a discon-
nected union of 0-cells).

e A 1-dimensional cellular space X; is a space constructed by attaching a
collection of 1-cells to Xj.

e A 2-dimensional cellular space X, is constructed by attaching 2-cells to
Xi.

e andsoon...

In general, a cellular space X may have cells in arbitrarily high dimensions, in
which case it is called co-dimensional. Each n-cell determines a characteristic
map ¢o : D" — X. A subset S C X is open/closed if and only if ¢! (S) c D" is
open/closed for all cells.

Ezample 3.65. A wedge of n-spheres Vv;S" is constructed by attaching / many
n-cells onto point Xy = {p} by the only possible attaching map f: $* ! — {p}.

Ezample 3.66. The torus S! x S! can be constructed by attaching a 2-cell onto
a wedge of two circles X = S' v S'. If we denote by a and b the loops defined by
the two circles in X, then the attaching map f : S' — X is the loop a-b-a='-b71.
See the left side of Figure 3.13.

Ezample 3.67. More generally, the genus g surface %, is constructed by glu-
ing a 2-cell to a wedge of 2g circles. If the loops defined by the circles are
called ay, by, ...ag, bg, then the attaching map sends S' to the concatenation
H‘ig:l [a;, bi], where [a;, b;] = aibiai‘lbi‘l is the commutator. See the right side
of Figure 3.13 for g = 2.

A subset A C X is called a cellular subspace if it is a closed union of cells
(that is, of images of characteristic maps). Given a cellular subspace A c X, the
coset X /A defined by identifying all points in A with each other, is naturally a
cellular space called a coset cellular space of X.
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Figure 3.13:

3.7.2 Cofibration

One of the fundamental questions in topology is the “extension problem.” This
asks for criteria for being able to extend a map g : A — Y defined on a subspace
A of X to all of X. Of course, this cannot always be done as is shown by the
case A=Y =S§", X = D",

It is natural to ask whether or not this problem is in the scope of algebraic
topology. That is, does the answer depend only on the homotopy class of g?
The answer to this is “not generally” as is shown by the space X = [0,1],
A={0tu{l/nn=1,2,...}, and Y = CA, the cone on A. The map g which is
the canonical inclusion of A in Y cannot be extended to X, since the extension
would have to be discontinuous at {0}. However, g ~ g', where g’ is the constant
map of A to the vertex of the cone, and g obviously extends to X.

However, it turns out that some very mild conditions on the spaces will
ensure that this problem is homotopy theoretic, as we now discuss.

Definition 3.68. Let (X, A) and Y be given spaces. Then (X, A) is said to have
the homotopy extension property with respect to Y if the following diagramme
can always be completed to be commutative:

AxIUXx{O}—;Y

XxI
Note that one can also depict this with the following type of diagramme:

AX{0}—— s AXI

Y

Xx{0) — X xI
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If (X,A) has the homotopy extension property with respect to Y then ex-
tensibility of maps g : A — Y clearly depends only on the homotopy class of

8-

Definition 3.69. Let f : A — X be a map. Then f is called a cofibration if
one can always fill in the following commutative diagramime:

AX{0}—— s AXI

S

fxid Y fxid

Xx{0) — X xI
for any space Y.

Note that if f is an inclusion then this is the same as the homotopy extension
property for all Y. That attribute is sometimes referred to as the “absolute
homotopy extension property.”

Theorem 3.70. For an inclusion A — X the following are equivalent:
(1) The inclusion map A — X is a cofibration.
(2) AXIUX x{0} is a retract of X X I.

Proof. (1) = (2): consider the diagramme of Definition 3.69 with ¥ = A X T U
X x {0}. The filled-in map is the desired retraction.

(2) = (1): composing the retraction of (2) with a map AXIUXx{0} — Y gives
the homotopy extension property for all Y, which, as mentioned, is equivalent
to (1). i

Corollary 3.71. If A is a cellular subspace of a cellular space X, then the
inclusion A — X is a cofibration.

Proof. One constructs a retraction ((AUX(r))xI)U(Xx{0}) — (AxI)U(Xx{0})
by induction on r. If it has been defined for the (r — [)-skeleton then extending
it over an r-cell is simply a matter of extending a map on S"~! x TUD” x {0} over
D" x I, which can always be done because the pair (D" x I,S"~' x TUD" x {0})
is homeomorphic to (D" x I, D" x {0}), see Figure 3.14.

These maps for each cell fit together to give a map on the r-skeleton because
of the topology (See 3.7.1) on X x I. The union of these maps for all r gives a
map on X X I, again because of the topology of X x I. O

The main technical result for proving that particular inclusions are cofibra-
tions is the following rephrasing of 3.5.2. Note that conditions (1) and (2) always
hold if X is metric.
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Figure 3.14:

Theorem 3.72. Assume that A C X is closed and that there exists a neigh-
bourhood U of A and a map ¢ : X — I, such that:

(1) A=¢71(0);
(2) (X \U) ={0}; and

(8) U deforms to A through X with A fized. That is, there is a map H : UXI — X
such that H(a,t) = a for all a € A, H(u,0) = u, and H(u,1) € A for all
uel.

Then the inclusion A C X is a cofibration. The converse also holds.

Proof. We can assume that ¢ = 1 on a neighbourhood of (X \ U, by replacing ¢
with min(2¢, 1). It suffices to show that there exists a map

O:UxI—->Xx{0}UAXI

such that ®(x,0) = (x,0) for x € U and ®(a,t) = (a,t) for a € A and all ¢, since
then the map r(x,t) = ®(x,t(l — ¢(x))) for x € U and r(x,t) = (x,0) for x ¢ U
gives the desired retraction X X I — A X I U X x {0}.

We define @ by

O(u1) = H(u,t/¢(u)) x {0} for  ¢(u) > 1,
’ H(u,1) x {t — ¢(u)} for ¢(u) <t.

We need only show that @ is continuous at those points (i, 0) such that ¢(u) = 0,
i.e., at points (a,0) for a € A.

Note that H(a,t) = a for all r € I Thus, for W a neighbourhood of a, there
is a neighbourhood V c W of a such that H(V x I) ¢ W. Therefore, t < € and
u € V imply that ®(u,t) € W x [0, €], and hence that ® is continuous.

We will now prove the converse.

Let r : XX I — (AXxI)U (X x {0}) be a retraction, let s(x) = r(x,1) and
put U = s71(A x (0,1]). Let px, pr be the projections of X x I to its factors.
Then put H = px o f : UXx I — X. This satisfies (3). For (1) and (2), put
¢(x) = max;er|t — prr(x,t)] which makes sense since 7 is compact. That this
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satisfies (1) and (2) is clear and it remains to show that ¢ is continuous. Let
f(x,t) =t = pir(x,0)| and f;(x) = f(x,t), all of which are continuous. Then

¢~" (=00, b]) = {x|f(x,1) < b for all 1} = Nyer f; (=00, b])

is an intersection of closed sets and so is closed. Similarly

¢~ ([a,0)) = {x|f(x,1) > a for some 1} = px(f~"([a, )))

is closed since px is closed. Since the complements of the intervals of the
form [a,o0) and (—o0, b] give a subbase for the topology of R, the contention
follows. =

It can be shown that, in the situation of Theorem 3.72, X x {0} UA X [ is a
deformation retract of XxI. See May “A Concise Course in Algebraic Topology”,
pp. 43-44.

Suppose that f : X — Y is any map. Recall that the “mapping cylinder” My
of f is defined to be the coset space

= (XX +Y)/((x,0) ~ f(x)).

The inclusion i : X < M/ clearly satisfies Theorem 3.72 and hence is a cofibra-
tion. Also, the retraction r : My — Y is a homotopy equivalence with homotopy
inverse being the inclusion ¥ < M. The diagramme

X— My

NS

commutes. This shows that any map f is a cofibration, up to a homotopy
equivalence of spaces.
Also recall the definition of the “mapping cone” of f : X — Y as the coset
space
Cf = Mf/(XX {1}) ~ Mf uCX.

In the case of an inclusion i : A < X, we have C; = X U CA. There is the map
aoxa,

defined as the coset map X UCA — (X U CA)/CA composed with the inverse
of the homeomorphism X/A — (X UCA)/CA. It is natural to ask whether A is
a homotopy equivalence. This is not always the case, but the following gives a
sufficient condition for it to be so.

Theorem 3.73. If A C X is closed and the inclusion i : A — X is a cofibra-
tion then h : Ci — X/A is a homotopy equivalence. In fact, it is a homotopy
equivalence of pairs

(X/A, %) = (C;, CA) = (Cy,v),

where v is the vertex of the cone.
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Proof. The mapping cone C; = X UCA consists of three different types of points,
the vertex v = {A x {1}}, the rest of the cone {(a,#)|0 < ¢t < 1} where (a,0) =
a € A C X, and points in X itself, which we identify with X x {0} to simplify
definitions of maps.

Define f : AxIUX x {0} — C;, as the collapsing map and extend f to
f:Xx1— C, by the definition of cofibration. Then f(a,1) = v, f(a,t) = (a,t)
and f(x,0) = x.

Put ?, = 7|XX{,}. Since 71(A) = {v}, there is the factorisation 71 =goj,
where j : X — X/A is the coset map and g : X/A — C;. (g is continuous by
definition of the coset topology.)

We claim that g is a homotopy equivalence and a homotopy inverse to .

First we will prove that hg ~ id. There is the homotopy h71 : X - X/A.
For all ¢, this takes A into the point {A}. Thus it factors to give the homotopy

hg = {f1} = {hf,c={j} =id.

Next we will show that gh ~ id. For this, consider W = (X x I)/(A x {1})
and the maps illustrated in Figure 3.15. The map f is induced by f. The map

! «li- [ ]
Y iR

Figure 3.15: A homotopy equivalence and homotopy inverse

k is the “top face” map. We see that

’

f ol=id,
mok=1id (which we don’t need),
kom=~id,
7’ ok =g (definition of g),
mol=h.
HencegthfO(kon)OZ:?/01=id,asclaimed. O

A non-example of Theorem refthm:Br7-1-6 is A = {0} U {1/njn = 1,2,...},
and X = [0,1]. Here C;, is not homotopy equivalent to X/A, which is a one-
point union of an infinite sequence of circles with radii going to zero. (C; has
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homeomorphs of circles joined along edges, but the circles do not tend to a point
and so any prospective homotopy equivalence X/A — C; would be discontinuous
at the image of {0} in X/A.)

As a corollary we have

Proposition 3.74. If A c X is closed and the inclusion A — X is a cofibration
then the map j : (X,A) — (X/A, *) induces isomorphisms

H.(X,A) S H,(X/A, ) ~ H(X/A).
Hence we have a long exact sequence in homology
+ Hy1(X/A) — Hy(A) — Hy(X) — Hy(X/A) — Hy-1(A) — -

Proof. H.(X/A,*) ~ H.(C;,CA) ~ H.(X U (A x [0,1/2]),A x A x [0,1/2]) ~
H.(X,A). O

A nonexample is X = S? with A ¢ X the “sin(1/x)” subspace pictured in
Figure 3.16. Here X/A ~ S? v §2, so that Hy(X/A) ~ Z& Z. But H;(A) =0 =

Figure 3.16: A pseudo-circle

H5(A), so that Hy(X,A) ~ Hy(X) ~ Z. Tt follows that the inclusion A — S? is
not a cofibration.

Let us recall the notion of the pointed category and some notational items.
The pointed category has, as objects, spaces with a base point *, and, as maps,
those maps of spaces preserving the base point. There is also the category of
pairs of pointed spaces. There is also the notion of homotopies in this category,
those homotopies which preserve the base point.

If f: X — Y is apointed map then the reduced mapping cylinder of f is the
coset space My of (X x I) UY modulo the relations identifying (x,0) with f(x)
and identifying the set {*} X I to the base point of M.

The reduced mapping cone is the coset of the reduced mapping cylinder My
gotten by identifying the image of X X {1} to a point, the base point.

The one-point union of pointed spaces X and Y is the coset space X VY of
the disjoint union X + Y obtained by identifying the two base points.

The wedge, or smash, product is the pointed space X AY = (X XY)/(X VY).

The circle S' is defined as I/01 with base point {9I}.
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The reduced suspension of a pointed space X is SX = X AS'. It can also be
considered as the coset space (X X I)/[(X x dI) U ({x} x I)].

S™ A S™ is the one-point compactification of R” X R and hence is homeo-
morphic to §"*™. Thus we can, and will in this article, redefine S” inductively
by letting S"*! = §S". Also note that

SSX)=(SX)AS = (XASHASE=XAS?,  ete.

The preceding results of this section can all be rephrased in terms of the
pointed category. Extending the proofs is elementary, mostly a matter of seeing
that the unreduced versions become the reduced versions by taking the coset of
spaces by sets involving the base point. For example, Proposition 3.74 would say
that if A is a closed, pointed, subspace of the pointed space X and if the inclusion
i: A — X is a cofibration (same definition since the base point is automatically
taken care of) then X/A ~ C;, where the latter is now the reduced mapping one,
and the homotopies involved must preserve the base points.

Definition 3.75. A base point xo € X is said to be non-degenerate if the
inclusion {xo} < X is a cofibration. A pointed Hausdorff space X with non-
degenerate base point is said to be well-pointed.

Any pointed manifold or cellular space is clearly well-pointed. An example
of pointed space that is not well-pointed is {0} U {1/n|n > 1} with 0 as base
point. The reduced suspensions of this also fail to be well-pointed.

If A< X is a cofibration then X/A, with base point {A}, is well-pointed as
follows easily from Theorem 3.72.

If a whisker is appended at the base point of any pointed space X, then
changing the base point to the other end of the whisker provides a well-pointed
space. (This is, of course, just the mapping cylinder of the inclusion of the base
point into X.)

Theorem 3.76. If X is well-pointed then so are the reduced cone CX and
the reduced suspension SX. Moreover, the collapsing map 2X — SX, of the
unreduced suspension to the reduced suspension, is a homotopy equivalence.

Proof. Denote the base point of X by *. Consider a homeomorphism
h:[Ix1,(Ix{0})U(@IxD] = (IxIIx{0})
which clearly exists. Then the induced homeomorphism
idxh: XxIxI > XxIX]
carries (XXIx{0})U(XxAIXI) to XxIx{0}. Hence it takes A = (XXIx{0})U(X X
OIXDU({x}xIXTI) to (XxXIx{0})U({*}xIxI). Therefore, the pair (XxIXI, A) is
homeomorphic to the pair IX[XXI, (Xx{0})U({x}xI)]. Since (Xx{0})U({*}xI)

is a retract of X X I by the definition of “well-pointed,” it follows that A is a
retract of X X I x I. This implies that the inclusion (X X dI) U ({#} XI) — X x 1
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is a cofibration. Therefore, SX = (X X I)/[(X X dI) U ({x} x I)] is well-pointed.
A similar argument using a homeomorphism [I x I, (I x {0}) U ({1} x I)] 5
(I x 1,1 x{0}) shows that the inclusion [(X X {1}) U ({*} xI)] — X x [ is a
cofibration and so CX = (X x I)/[X x {1}) U ({*} x I)] is well-pointed.

The fact that (X X 0I) U ({*} X I) — X x I is a cofibration implies that the
induced inclusion I ~ {x} X I — (X xI)/{X x {0}, X x{1}} = ZX is a cofibration
by an easy application of Theorem 3.72. By Theorem 3.73, £X ~ XX U CI =~
XX/I = SX via the collapsing map. O

The cellular subspace X, C X consisting of all cells of dimension < n is called
the n-skeleton of X (by convention X_; = @). If X is infinite dimensional, the
topology on X satisfies S C X is open (resp. closed) if and only if SN X,, is open
(resp. closed) in X, for all n. In particular, a map f : X — Y is continuous if
and only if the restrictions f,, : Xn — Y are continuous for all n. We say X has
the direct limit topology with respect to X,.

Lemma 3.77. Let X be a cellular space and C C X a compact subspace. Then
C is contained within finitely many cells of X.

Proof. Choose a sequence of points x; € C lying in distinct cells. We will show
that the set S := {x;} is finite. We begin by showing § is closed.
First observe that

S c Xisclosed © SNX,is closed in X,Vn

We use induction on n.

Clearly SN Xy is closed in X hence in X, because every subset of Xj is closed.
Assume by induction that S N X,,_; is closed in X. Thus for any characteristic
map

da: D* — X

the pre-image ¢;'(S N X,_1) is closed in D¥. For k < n, the pre-image ¢;'(S N
X,) = ¢35 (SN X,_1) is closed in DX. For k = n, the pre-image ¢, (SN X,) c D"
equals ¢;'(S N X,_1) plus at most one point, thus it is a union of two closed
sets, hence is closed in D". We deduce that SN X, is closed in X,, hence also in
X. By induction, this holds for all n so § is closed in X.

The same argument shows that every subset of S is also closed, so S has
the discrete topology. But S is a closed subset of the compact set C, so it is
compact. We conclude that S is finite. O

3.7.3 The Compact-Open Topology

Let X be a locally compact Hausdorff space, and Y any Hausdorff space. By YX
we mean the set of continuous functions X — Y.

Definition 3.78. The compact-open topology on YX is the topology generated
by the sets M(K,U) = {f € YX|f(K) c U}, ] where K C X is compact and U C Y
is open.
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Recall that “generated” here means that these sets form a subbasis for the
open sets. Henceforth, unless otherwise noted, YX will always be given the
compact-open topology.

Lemma 3.79. Let K be a collection of compact subsets of X containing a neigh-
bourhood base at each point of X. Let B be a subbasis for the open sets of Y.
Then the sets M(K,U),for K € K and U € B,form a subbasis for the compact-
open topology.

Proof. Note that M(K,U)NM(K,V) = M(K,UNV), which implies that it suffices
to consider the case in which B is a basis. We need to show that the indicated
sets form a neighbourhood basis at each point f € ¥YX. Thus it suffices to show
that if K ¢ X is compact and U C Y is open, and f € M(K,U), then there exist
Ki,...,K, € K and Uy,...,U, € B such that f e n\M(K;,U;) c M(K,U).

For each x € K, there is an open set U, € B with f(x) € Uy Cc U, and there
exists a K, € K which is a neighbourhood of x such that f(K,) c U,. Thus
f e M(Ky, Uy).

By the compactness of K there exist points x,...,x, such that K c K, U
.--UK,,. Then f e nM(Ky,) ¢ M(K,U). o

Proposition 3.80. For X locally compact Hausdorff, the “evaluation map” e :
YXx X =Y, defined by e(f,x) = f(x), is continuous.

Proof. If f and x are given, let U be an open neighbourhood of f(x). Since f
is continuous, there is a compact neighbourhood K of x such that f(K) c U.
Thus f € M(K,U) and M(K,U) X K is taken into U by the evaluation e. Since
M(K,U) X K is a neighbourhood of (f,x) in YX, we are done. O

Theorem 3.81. Let X be locally compact Hausdorff and Y and T arbitrary
Hausdorff spaces. Given a function f : X XT — Y, define, for each t € T, the
function f; : X > Y by fi(x) = f(x,t). Then f is continuous < both of the
following conditions hold:

(a) each f; is continuous; and
(b) the function T — YX taking t to f; is continuous.

Proof. The implication < follows from the fact that f is the composition of the
map X xT — YX x X taking (x,1)to (f;,x), with the evaluation YX x X — Y.

For the implication =, (a) follows from the fact that f; is the composition
X — X XT — Y of the inclusion x — (x,¢) with f. To prove (b), let t € T be
given and let f; € M(K,U). It suffices to show that there exists a neighbourhood
W of t in T such that t € W — fr € M(K,U). (That is, it suffices to prove the
conditions for continuity for a subbasis only.)

For x € K, there are open neighbourhoods V, c X of x and W, c T of ¢ such
that f(Vy x Wy) c U. By compactness, K C Vy, U---UV, =V say. Put W =
Wy, N---NW,, . Then f(KxW) c f(Vxw) c U,sothatt e W= f, € M(K,U)
as claimed. O
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This theorem implies that a homotopy X X I — Y, with X locally compact,
is the same thing as a path I — YX in YX.

An often used consequence of Theorem 3.81 is that in order to show a func-
tion T — YX to be continuous, it suffices to show that the associated function
X X T — Y is continuous.

Theorem 3.82 (The Exponential Law). Let X and T be locally compact Haus-
dorff spaces and let Y be an arbitrary Hausdor[f space. Then there is the home-
omorphism

YXXT = (YX)T
taking f to f*, where f*(t)(x) = f(x,1) = f;(x).

Proof. Theorem 3.81 says that the assignment f +— f* is a bijection. We must
show it and its inverse to be continuous. Let U c ¥ be open, and K ¢ X, K c T
compact. Then

feM(KxK, U)o (teK,xeK= f,(x) = f(x,1) € U)
o (teK = f, e MK, U))
& ffe M(K ,M(K,U)).
Now the KxK' give a neighbourhood basis for X xT. Therefore the M(KxK', U)
form a subbasis for the topology of YX*T .
Also, the M(K,U) give a subbasis for YX and therefore the M(K', M(K,U))
give a subbasis for the topology of (YX)T.

Since these subbases correspond to one another under the exponential cor-
respondence, the theorem is proved. O

Proposition 3.83. If X is locally compact Hausdorff and Y and W are Haus-
dorff then there is the homeomorphism

Y¥XxwX S (¥ xw)X
given by (f,g) — fxg = (f xg)odiag, where diag : U — U x U is the diagonal
map.
Proof. This is clearly a bijection. If K,K c X are compact, and U C Y and
V c W are open then we have
(f.g) e M(K,U)XM(K,V) & (xe K= f(x) €U) and (x e K = g(x) € V)
S xeK=(fxg)(x) eUxW)
and (x € K = (fxg)(x) €Y xV)
o (fxg) e M(K,UXW)NM(K',Y xV).
Thus (f,g) — fXxg is open.

Also, (f,g) € M(K,U) x M(K,V) & (fxg) € M(K,U x V), which implies
that the function in question is continuous. O
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Proposition 3.84. If X and T are locally compact Hausdorff spaces and Y is
an arbitrary Hausdorff space then there is the homeomorphism

Y¥T S yXxyT

taking f to (f oix, f oiy).

Proof. Let
ix: X—>X+T, iv:T—>X+T

be the inclusions. Now define a function 6 : YX x YT — (Y + Y)X*T by 0(A, u) =
A+ u, where : X > Y and u: T — Y, and consider the composite functions

id,‘X X idiT

¢ yXHT i yXAT o yX+T X sy

and .
oYX S (v 4y X I e

where A is the diagonal map, and V : Y +Y — Y is the folding map. Given
v:X+T - Y, ¢(v) = (vix,vir), and given 4 : X - Y and pu : T — Y,
YA, u) = V(A + u). Thus ¢y and y¢ are identity functions, and the only
point that remains in showing that ¢ is a homeornorphism is to show that 6 is
continuous.

To do so, consider the set Mk 7, where K ¢ X +T is compact and U C Y +Y
is open. Now

0~ = {(A, w2+ p)(K) c U}
= {(L WK NX)cUN ¥ Xy) and (u)(KNT) cUN (yoxY)}

where yp is a non-degenerate point of ¥ (i.e., a point such that {yo} — Y is a
cofibration) and X and T are identified with their images in X + T. Certainly
Uy =UnNn (Y Xyg) and Uy = U N (yg X Y) are open, since U is the intersection
with Y +Y of an open set in Y XY. But since X and T are Hausdorff, so is X xT
and X + T: thus K, X and T are closed in X + T, so that KN X and KNT are
closed and hence compact. That is, 0 *Mk ) = Mgnx.u, X Mknr.u, SO 6 is
continuous. Hence ¢ is a homeomorphism. O

Theorem 3.85. For X locally compact and both X and Y Hausdorff, YX is a
covariant functor of Y and a contravariant functor of X.

Proof. A map ¢ :Y — Z induces ¢X : YX — ZX by ¢X = ¢ o f. We must show
that ¢%X is continuous. By Theorem 3.81 it suffices to show that YX x X — Z,
taking (f,x) to ¢(f(x)), is continuous. But this is the composition ¢ o e of ¢
with the evaluation, which is continuous.

Next, for ¢ : X — T, both spaces locally compact, we must show that
Y¥ : YT — YX taking f to f oy, is continuous. It suffices, by Theorem 3.81, to
show that Y7 x X — Y, taking (f,x) to f(¥(x), is continuous. But this is just
the composition e o (id Xy), which is continuous. O
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Corollary 3.86. For A C X both locally compact and X, Y Hausdorff, the
restriction YX — YA is continuous.

Theorem 3.87. For X, Y locally compact, and X, Y, Z Hausdorff, the function
7¥ xyX — zX
taking (f,g) to f o g, is continuous.

Proof. Tt suffices, by Theorem 3.81, to show that the function Z¥ x YX x X —
Z, taking (f,g,x) to (f o g)(x), is continuous. But this is the composition
e o (id xe). O

All of these things, and the ones following, have versions in the pointed
category, the verification of which is trivial.

We finish this section by showing that, for ¥ metric, the compact-open topol-
ogy is identical to a more familiar concept.

Lemma 3.88. Let Y be a metric space, let C be a compact subset of Y, and let
U > C be open. Then there is an € > 0 such that B¢(C) Cc U.

Proof. Cover C by a finite number of balls of the form B, (y,)(x;) such that
Bae(x;)(xi) € U. Put € = min(e(x;)). Suppose x € B(C). Then thereis a c e C
with dist(x,c) < € and an i such that dist(c,x;) < €(x;). Thus x € Bae(x,)(x;) C
U. m|

Theorem 3.89. If X is compact Hausdorff and Y is metric then the compact-
open topology is induced by the uniform metric on YX i.e., the metric given by

dist(f,g) = sup{dist(f(x), g(x))lx € X}.

Proof. For f € YX, it suffices to show that a basic neighbourhood of f in each
of these topologies contains a neighbourhood of f in the other topology.

Let € > 0 be given. Let N = B.(f) = {g € YX|dist(f(x),g(x)) < € for all x €
X}. Given x, there is a compact neighbourhood N, of x such that p € N, =
f(p) € B¢ja(f(x)). Cover X by Ny, U---Ny,. We claim that

V= M(Nx,;, Bej2(f(x1))) N+ N M(Nyy, Bepa(f(x))) C N.

To see this, let g € V, i.e., x € Ny, = g(x) € Beja(f(x:)). But f(x) € Bejo(f(x:))
and so it follows that g € V = dist(f(x), g(x)) < € for all x. That is, V C N.
Conversely, suppose that f € M(K1,U1)N---NM(K,,U,), i.e., f(K;) C U; for
i=1,...,r. By Lemma reflem:Br7-2-11, there is an € > 0 such that B (f(Ki)) C
U; for alli =1,...,r. If x € K; then B¢(f(x)) C Be(f(K;)) c U;. Therefore, if
g € Bc(f) and x € K; then g(x) € B¢(f(x)) c U;. Thus g € M(K;,U;) for all i
and so B¢ (f) c NM(K;,U;). O

Corollary 3.90. If X is locally compact Hausdorff and Y is metric then the
compact-open topology on YX is the topology of uniform convergence on compact
sets. That is, a net fo € YX converges to f € YX in the compact-open topology
S folk converges uniformly to f|x for each compact set K C X.
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Proof. For = recall from Corollary 3.86 that YX — YX is continuous. Thus
folk — flk in the compact-open topology. But YX has the topology of the
uniform metric and so f,|x converges to f|gx uniformly.

For <, suppose that f,|x converges uniformly to f|x for each compact
K c X. Let f € M(K,U). Then there exists an € > 0 such that B.(f(K)) c U.
There is an « such that g8 > a = dist(fg(x), f(x)) < € for all x € K. That is,
freta(x) € Be(f(K)) c U. Thus 8> @ = fpera € M(X,U). This implies that f,
converges to f in the compact-open topology. O

3.7.4 Cellular space propaganda

We present some results (without proof) showing that many interesting spaces
are either homeomorphic or homotopy equivalent to cellular spaces.

Definition 3.91. A real analytic function f : R"™ — R is a infinitely differen-
tiable function such that at every point p € R", f equals its Taylor series at p
on some positive radius. A real analytic set X C R" is the solution set of a finite
collection of equations fi(x) =--- = f,(x) =0, for f; real analytic.

Example 3.92. Polynomial functions, exponential functions, trigonometric func-
tions, etc. are real analytic.

Theorem 3.93 (Lojasiewicz 1964). Every real analytic set X ¢ R" is homeo-
morphic to a cellular space.

Let X and Y be two topological spaces. Let C(X,Y) be the set of all contin-
uous maps from X to Y with the compact-open topology.
Ezample 3.94. The space LY = C(S',Y) is called the free loop space of Y.

Theorem 3.95 (Milnor 1959). If X andY are cellular spaces and X is compact,
then C(X,Y) is homotopy equivalent to a cellular space.

Definition 3.96. A topological space X is called a (topological) n-manifold if
it is Hausdorff and if every point p € X is contained in an open neighbourhood
p € U c X that is homeomorphic to R".

e Every open set in R” is an n-manifold.

e The sphere S" is an n-manifold.

e Surfaces of any genus are 2-manifolds.

e The product of an m-manifold and an n-manifold is an m + n-manifold.

An example of a space that is locally Euclidean but is not a manifold is
constructed by taking two copies of the real line R[[R = R x {a, b} and forming
the coset by (t,a) ~ (¢, b) if t # 0. This space looks locally like R, but the points
(0,a) and (0, b) cannot be separated by open sets. See Figure 3.17.

Theorem 3.97. Every compact n-manifold is homotopy equivalent to a cellular
space. It remains an open question whether or not every compact n-manifold is
homeomorphic to a cellular space.
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Figure 3.17: The line with two origins

3.7.5 Cellular Homology

In this section, we introduce cellular homology, which is a homology theory “be-
spoke” for cellular spaces, and show that it is isomorphic to singular homology.
Cellular homology is often the most useful for computing. In fact computa-
tion is much easier than the standard singular homology (for cellular spaces).
Before giving a precise definition, we will give a rough sketch of the reasoning.
If X is a cellular space with n-skeleton X,,, the cellular-homology modules
are defined as the homology groups H, of the “cellular chain complex”

= Cn+1(Xn+1’ Xn) - Cn(Xn, Xn—l) - Cn—l(Xn—I» Xn—2) — o,

where X_; is taken to be the empty set.
The group
Cn (Xn, Xn—l)

is free abelian, with generators that can be identified with the n-cells of X. Let
e? be an n-cell of X, and let y2 : de? = S"! — X,_; be the attaching map.
Then consider the composition

5D ey 2 Xy D Xt/ (Xar V) S8

where the first map identifies S"~! with de? via the characteristic map ®2 of

ey, the object eﬁ_1 is an (n—1)-cell of X, the third map ¢ is the coset map that

n
collapses X,,—1 \ e/j_l to a point (thus wrapping e’f_l into a sphere $"°!), and

the last map identifies Xn_l/(Xn_l \ e’g_l) with S"~! via the characteristic map

(Df—l of 65—1'
The boundary map

On 2 Cu(Xn, Xp1) = Cuo1 (X1, Xno2)

is then given by the formula

On(et) = ) deg (Xffﬁ) P,
7
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where deg ()(ffﬁ) is the degree of y* and the sum is taken over all (n — 1)-cells
of X, considered as generators of Cy,—1(X;,-1, Xp—2).
Now we move on to the details:

Lemma 3.98. If X is a cellular space, then:

(a) Hy(Xn, Xn-1) is zero if ¢ # n and is an free abelian group with generators
corresponding to the n-cells when g = n.

(b) Hy(X,) =0 for g >n. Thus Hy(X) =0 for g > dim(X).

(¢) The inclusioni: X, — X induces an isomorphism H, (i) : Hy(X,) — Hy(X)
for g <n.

Proof. By Proposition 3.74, we have an isomorphism H, (X,, X,-1) = ﬁq (X /Xn-1)
and X,,/X,_1 is a wedge of spheres indexed by the n-cells of X. Property (a)
follows.

Property (b) is proven by induction. Clearly true for n = 0. Now suppose it
has been proven for n — 1. The long exact sequence of the pair contains

- Hq(anl) - Hq(Xn) - Hq(Xn, Xy-1) —

where both H;(X,-1) = Hy(Xpn, Xn-1) = 0 for ¢ > n by induction and property
(a). Thus H,(X,) =0 as well.

To prove property (c), consider the exact sequence
Hq+1(Xn+1’ Xn) — Hq(Xn) - Hq(Xn+1) — Hy(Xn+1, Xn).

By (a), the two groups on the end vanish if ¢ < n so Hy(X,) = Hy(Xn4+1)-
Repeating this argument, we get

Hq(Xn) = Hq(Xn+1) = Hq(Xn+2) E

which suffices if X is finite dimensional. To take care of the infinite dimensional
case, observe that Lemma 3.77 implies that every chain in S, (X) must be in the
image of S4(X,) for some n (since the union of images of simplices occurring
in the chain is a compact subset of X). Thus every cycle Z,(X) arises as the
image of a cycle in Z;(X,) for some n, and every boundary in B,(X,) arises as
the image of a boundary in B, (X,) for some n. The result follows. O

Define a homomorphism d,, : H,(X,, X,-1) = Hu-1(Xn-1, X,,—2) by the com-
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mutative diagramme

/O
0\ Hy(Xnt1) = Hy(Xn)
Hp(Xn)
/ \ .
n+1(Xn+1sX )ﬁ'H (Xn,Xn 1) Hn—l(Xn—l,Xn—Z)
X Jn-1
Hn—l(Xn—l)

/

where the diagonal maps occur in the long exact sequences of pairs. Notice that
dy o dyi1 = 0 because it factors through 9, o j, = 0. Thus (H,,(Xy, Xn-1),dn)nez
forms a chain complex, called the cellular chain complex. The homology of the
cellular chain complex is called the cellular homology.

0

Theorem 3.99. The cellular homology groups are naturally isomorphic to the
singular homology groups.

Proof. From the diagramme, we may identify H,(X) = H,(X,) = im(dy+1)-
Since j, is injective, this is isomorphic to im(j,) = im(d,+1)- By exactness,
this is the same as ker(d,) = im(d,+1)- Finally, because j,_1 is injective, this is
equal to ker(d,) = im(d,+1). O

Theorem 3.99 is very useful for calculations, because it allows us to replace
the usually uncountably infinite rank S,(X) by the - at most countable and
often finite rank - H, (Xn, X;,_1). Before getting started with examples, we want
a more direct understanding of the boundary maps d,. Denote by {e’}, the
set of n-cells of a cellular space X, so that H,(X},, X,—1) is the free abelian group
generated by {e},.

Proposition 3.100. For n > 1, the cellular boundary map satisfies
dn(ely) = Zdaﬁeﬁ

where do g is the degree of the map
S"la - X, — S[’}_l

defined by composing the attaching map of e, with the coset map X,—1 — SZ;_l =
Xt/ (Xnr \ €).
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Proof. The proof is based on the following commutative diagramme

n 7] (Aa,/i)*

H, (D}, D) ——=— H,_1(0D%) Hy 1 (S5

Dy L Sar l Tqﬂ*

n ot qx -~
Hn(Xn’ Xn—l) I Hn—l(Xn—l) LS n—l(Xn—l/Xn—Q)

S I L~

H, 1 (Xn—l/Xn—2) = H, 1 (Xn—l/Xn—Zs Xn—Q/Xn—2)

where
o @, is the characteristic map for e?, and f, the attaching map.
e ¢g:X,.1— X,_1/X,_o is the coset map.

® gg: Xn1/Xpo — Sg‘l is the coset map obtained by collapsing everything
belonging to the complement of the cell e[';_l to a point, the resulting coset
(sphere) being identified with S§~' = Di~!/dDj~! via the characteristic
map Og.

o Ayp =(qpoqo fqis, the attaching map of e, followed by the coset map
X1 — Sg‘l collapsing the complement of egl inn X,_1 to a point.

The map ®,- sends the generator [D’] € H,(D?,dD?) to a generator of the
Z summand of H,(X,, X,,-1) corresponding to e"@. Letting ¢"@ denote this
generator, commutativity of the left half of the diagramme then gives d, (" a =
Jn-1fa*0[D%]. In terms of the basis for H,_1(X,-1, X,,—2) corresponding to the
cells ez,_l, the map gg, is the projection of Hy-1(Xp-1/Xn_2) onto its Z summand
corresponding to eg’l. Commutativity of the diagramme then yields the formula
for d, given above. O

3.7.6 Examples

Ezample 3.101. A genus g surface oy is constructed by attaching a 2-cell to a
wedge of 2g circles using an attaching map Hle[a,-, b;]. The cellular complex
is:

052272 8,7

The boundary map d; is zero, because each 1-cell meets the 0-cell twice and
the attaching map S° — {pt} sends H(S°) to zero by definition. The boundary
map ds is also zero, because the attaching map winds around each loop twice,
but in opposite directions, giving total degree zero. It follows that

Z if ¢=0,2
H,(Z,) = {72 if g=1
0 otherwise



66 LECTURE 3. SINGULAR HOMOLOGY

_
N
B ()

Figure 3.18: X, with g =3

Ezample 3.102. The non-orientable surface Ng of genus g > 0 is constructed
by attaching a single 2-cell to a wedge sum of g + 1 circles ag,...,a, by the
attaching map ag e ag. The surface Ny in the real projective plane and N; is
the Klein bottle. The cellular chain complex is

Figure 3.19: Klein bottle N, with g =1

d d
727871 L 7.

As before, d; = 0. The attaching map for the 2-cell winds twice around each
circle in the same direction and thus has degree 2 for each 1-cell. Consequently,
do(n) = (2n,...,2,). If we do a change of basis for Z8*! using generators
(1,1,...,1),(0,1,0,...,0),...,(0,0,...,0,1) then with respect to the new basis,
da(n) = (2,0,...,0).

Z if ¢g=0
H,(Ng) =1Z/2Z & Z8 if g=1
0 otherwise

Ezxample 3.103. A emphproduct of spheres S™ x S with m,n > 1 has the struc-
ture of a cellulr space with four cells, in dimensions 0, m, n, and m + n. To see
this observe that D"*" = D™ x D" and

S"x §" = (D™ xD")/si = (D"/~) x (D"/~)
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where ~ is generated by the relations (x,y) ~ (x,y") if y,y" € D" and (x,y) ~
(x,y) if x,x" € AD™. Since the relations occur only in the boundary of D" x D",
this can be understood as attaching a (m + n)-cell to the coset of

(D™ xD") = (D™ xD") U (D™ x D™)

which is identified as the wedge sum S v §", which is a cellular space with cells
in dimension 0, m, and n (compare the case of a torus S* x St).

Suppose that n > m and n > 1. Then the (n + 1)-skeleton is equal to S v $"
so by Lemma 3.98, H,(S™ x S") = Hy(S™ v S") for ¢ < n. It follows that the
boundary map in the cellular chain complex is trivial and that

Hq(SmXSn): Z lf q:‘o,m,n’ orm+n
0 otherwise

Ezample 3.104. The complex projective space CP" is the set of one dimensional
vector subspaces of C**1. It may also be construct as the coset of the sphere
S2+1 by the relation v ~ Av where 1 € S! is a unit scalar (= a complex number
of norm 1.)

We can construct CP" inductively by attaching a 2n-dimensional cell to
CP"!. To see this, consider the embedding from D?" ¢ C" to C" x C by

w i (w, V1= |w|?).

The boundary of D?" is sent to the unit sphere in $?"~! ¢ C"x {0} and there is a
one-to-one correspondence between the interior of D" and the one-dimensional
subspaces of C"xC not contained in C"*x{0}. Thus CP" is obtained by attaching
D?" to CP"! by the coset map S?"~! — CP"~!.

Since CP" = eg U ey U --- U eq, only has cells in even dimension, this means
the boundary maps in the cellular chain complex are necessarily zero, and we
obtain
Z if 0<¢g<2n andiseven

0 otherwise

H,(CP") = {

Ezample 3.105. The real projective space needs more care compared with the
complex case. The space RP" is defined as the set of all lines in R**! through
he origin.

We claim that as a cellular space, RP" can be seen as the union of one k cell
for each k < n. We prove this by induction. First we notice that the statement
is trivially true for n = 0. Then consider that RP" = §" !/~ where v ~ —v
for all v € S". Note that this is the same as saying that RP" = D"/~ where
v ~ —y for all v € 9D" = §""!. In other words, RP" = RP""! Ue,. Thus
RP" =eyUe, U---Ue,. Notice that for each k, the k-skeleton of RP¥ is RP*~1.
Thus we analyse the following chain complex:

dn dnfl dl
0»Z—>Z— - ---—7Z—>0
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To understand the boundary maps, we must determine the degrees of the
composition of the attaching map ¢y : dex = S¥~1 — RP*~! and the coset map
g : RP*¥1 — RPK-1  RPk-1/RPk-2 = gk-1

Notice that the preimage of RP¥~2 under the map ¢y is clearly S¥=2 ¢ §k-1,
Moreover, we have that K71\ 52 = BA=1 yBA-1 two k — 1 open balls. These,
under ¢, are mapped homeomorphically to RP¥~1 \ RP*~2. One easily notices
that the image B’l“l under ¢y is the “top” part of RPX, i.e. ¢y restricted to B’l“l
is the identity map (which has degree 1).

On the other hand, ¢ restricted to B’Q“l is the antipodal map, as the second
open ball is mapped to the “lower part” of RP¥. As we saw in Proposition 3.58,
the degree of the antipodal map of S¥7! is (=1)k. Therefore the map ¢, o ¢
can be seen as the sum of the identity and the antipodal map, hence we can
conclude that its degree is 1+ (=1)k.

Thus we get that

2€)-1 if kiseven

d =
k(ex) {0 ik is odd.

Therefore, if k is even ker(dy) = {0} and im(dy) = Z; while when k is odd,
ker(dy) = Z and im(dy) = {0}.
The chain complex is

2 0

0-z3z%z2z%... 525250

le

if n is odd and s o0 s , o
0»Z>2Z—>2—> - ---—>Z—>Z—>0

if n is even. We obtain homology groups,

Z if g=0or g=nandnisodd
Hi(RP") =17Z/2Z if 0<k<(n-1)andis odd
0 otherwise

3.8 Mayer-Vietoris Sequence

The Mayer-Vietoris sequence is an alternative to the long exact sequence of a
pair (X, A) that sometimes more convenient to use.

Let X be a topological space and let A, B C X be a pair of subspaces such
that AU B = X. We consider the open covering % = {A, B}. We need the
following maps:
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Note that by definition, the sequence

(i1,i2)

0— S.(ANB) —25 S,(A) & S, (B) - SH(X) - 0
is exact. Here, the second map is
(@1, az) = ki(a1) — k2(az).

Theorem 3.106 (Mayer-Vietoris). There is a long exact sequence

% Hy (AN B) = Hy(A) @ Hy(B) — Hy(X) > Hy 1 (ANB) — - --
A similar sequence exists for reduced homology
- — Hy (AN B) — Hy(A) ® Hy(B) — Hy(X) = Hy-1 (ANB) — -+

Proof. The proof follows from Theorem 3.23 with Theorem 3.48 applied to
SE(X) ~ S.(X). O

Proposition 3.107. For a path connected space X, there is a canonical iso-
morphism B _
Hyur (SX) = Hy(X)

for all g € Z, where SX denotes the suspension of X.

Proof. Note that SX = (X x I)/(X x {0,1}) and regard A = (X xI)/(X x {0})
and B = (X xI)/(X x{1}). Then A and B form a covering of SX, AUB = SX
and ANB=Xx1I~X.

Since A and B are contractible, H,(A) = H,(B) = 0, and H.(ANB) = H.(X).
Apply Theorem 3.106 to the triad (AU B = SX, A, B) and the result follows. O

3.9 Homology with coefficients

So far we have developed singular homology theory for integer coefficients, mean-
ing that our chains are finite formal sums ), a,0 with coefficients a, € Z.
More generally, it is possible (and useful) to work with coefficients in any com-
mutative ring R with identity 1 € R; in particular, this means we have a canon-
ical ring homomorphism Z — R. The most interesting cases are when R = Z/nZ
is the ring of integers modulo n, or when R is a field, such as Q, R, C or Z/pZ
for prime p.
To that end, we need some preparations.

3.9.1 Tensor Products

The tensor product may be defined for any pair of bimodules, but we shall
examine the simpler case of modules over a commutative ring with unity. This
is enough for many applications like algebraic topology.
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Let R a commutative ring and U, V, W be any R-modules. We shall write
them as left modules, although it is only a matter of notation whether a module
over a commutative ring is regarded as a left or right module.

We want to consider bilinear mappings from U, V to W, i.e. maps

fiUXV oW, (3.108)

such that f is R-linear in each argument. Our object will be to construct a
K-module T and a bilinear map p : UXV — T which is universal for all bilinear
maps (3.108), in the sense that to any bilinear mapping f as in (3.108) there
corresponds a unique linear mapping f : T — W such that the accompanying

diagramme commutes.

UxV—2+

S

A module T with these properties is called a tensor product of U and V and is
denoted by U ®g V or simply U ® V. If it exists it is unique up to isomorphism,
as universal object and we shall speak of the tensor product.

To prove the existence of T we form the free R-module A on the set U x V
(without the module structure); in A we consider the submodule B generated
by all the elements

(u+ u',v) - (u,v) — (u,,v), (u, v+ v') — (u,v) = (u,v") (”,“, €Uy e V)
(eu,v) —a(u,v), (u,av)—a(u,v), «@€R. (3.109)

There is a map p : UXVA/B, obtained by taking the inclusion map UXV — A,
followed by the natural homomorphism A — A/B. This map p is bilinear,
for the elements (3.109) generating B were just chosen to ensure this. We set
T = A/B and claim that T, with the map p, is the required tensor product.
Let f: UxV — W be any bilinear mapp; regarded as a set map, i.e. ignoring
bilinearity, it may be extended to a unique homomorphism f; : A — W, because
A is free on the elements (u,v). We claim that ker f; > B; for we have

Al+u'v) = (v) = @' v)] = fly +v)] = fI9)] = f[.v)] =0,
Allau,v) = a(uv)] = fl(au,v) - fla(u,v)] =0,

by the bilinearity of f, and similarly for the other relations. Hence f; may
be taken via T, by the factor theorem, and this provides the required map
f:T — W. This map f is unique since its values are determined on the images
of (u,v) in T and these form a generating set. Our conclusions may be summed
up as follows:

Theorem 3.110. Let U, V be modules over a commutative ring R. Then there
exists an R-module U ®V together with a bilinear map p : UXV — U®V which
is universal for bilinear maps from U XV to R-modules.
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The image of (u,v) in U®YV is denoted by u®v. Thus U®YV is an R-module
with generating set {u ® vu ® vlu € U,v € V} and defining relations

(u+u/)®v=u®v+u,®v, u,u/EU,
u®(v+v/)=u®v+u®v/, v ev,
(au) @v=u® (av) =a(u®v), acRk.

There is another way of expressing Theorem 3.110 which is often useful. The-
orem 3.110 states in effect that for any R-modules U, V, W there is a natural
bijection between the set of bilinear maps U XV — W and the set of homomor-
phisms U®V — W. Now a map f: U XV — W is linear in the second variable
iff for each ug € U, the map V. — U XV — W given by v - (ug,v) — f(ug,v)
is linear. Further, f is bilinear iff in addition the map U — Homg(V, W) given
by u + f(u,-) is linear, i.e. f € Hom(U,Hom(V,W)). Hence there is a natural
bijection
Homg (U, Homg (V,W)) = Homg (U ®g V,W). (3.111)

This is easily verified to be an isomorphism of R-modules. The property ex-
pressed in (3.111) is known as adjoint associativity.

From the definition it is easy to check that tensor products satisfy the asso-
ciative and commutative laws:

Proposition 3.112. Let U, V, W be any R-modules, where R is a commutative
ring. Then

UeV=vVeU, (3.113)
U (VW)= (UaV)eW. (3.114)

Proof. The rule (u,v) — vQ®u is a bilinear map UXV — V@ U, and hence gives
rise to a homomorphism @ : U®V — V@U, in which u®v +— v®u. The general
element of U®V has the form ) u;®v;, and it follows that a : Y u;®v; — 3, v;®u;.
The same argument shows that 8 : >, v; ® u; — X u; ® v; is a homomorphism;
clearly it is inverse to @, hence «@ is an isomorphism and (3.113) follows.

The proof of (3.114) is quite similar. We consider the map a : UXV X W —
U® (Ve®W) given by (w,v,w) — u® (v®w). For fixed w this is bilinear in
u, v and hence gives rise toamap o : (U®V)®W — U® (V® W), in which
(u®v)®w > u® (v®w). The inverse map is constructed in the same way and
this shows a” to be an isomorphism, which proves (3.113). O

We observe that it is possible to define U @ V ® W directly by the universal
property for trilinear maps, and a similar proof will show that it is isomorphic
to either of the modules in (3.114). The same holds for more than three factors;
this is just the generalised associative law. We shall therefore omit brackets in
repeated tensor products.

Next we prove a ‘distributive law’:

Proposition 3.115. For any R-modules U, V', V"' we have
U (VaeV)=UsV)eUaV). (3.116)
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Proof. We show that the module on the right of (3.116) satisfies the universal
property of the tensor product. A bilinear map from U x (V' ® V") is given by
(v, vV ) ey, uev’). If f:Ux(V V") — W is any bilinear map, then

Fv' vy = fuv) + f(u,v"),

and the expression on the right can be regarded as a map from (U® V') ® (U ®
V"). Thus f is uniquely factored by the standard bilinear map, and the result
follows. O

The definition of the tensor product by a universal property is useful for
proving the existence of mappings from U ®V to an R-module, for we need only
find the appropriate bilinear map from U xV. It also has the merit of generality;
but the definition is not such that it allows the structure of U®YV to be read off.
For example, if r, s are coprime integers, then (Z/rZ) ® (Z/sZ) = 0. This is seen
as follows. Since r, s are coprime, there exist m,n € Z such that mr + ns = 1.
Now for any a € Z/rZ, b € Z/sZ we have

a®b=mr(a®b)+ns(a®b)=m(ra®b)+n(a®sb) =0z/,z2)82/s2)-

It follows that (Z/rZ) ® (Z/sZ) = 0, because the tensor product is generated by
elements of the form a ® b.

It is important to bear in mind that the general element of U ® V is not of
the form u ® v, but is a swm of such terms: > u; ® v;. For example, if V is a
free R-module, with basis e ..., e, then every element of U ® V can be written
uniquely in the form Y u; ® ¢; (u; € U), i.e. U® R" = U". To prove this fact, let
us first take the case n = 1:

UR=U. (3.117)

We have a bilinear map 6 : (u, 1) — ud from UXR to U, and if F : Ux — Wis any
bilinear mapping, then f(u, 1) = f(ud, 1), hence f = 6f', where f : u — f(u,1),
and clearly f  is the only map with this property. Thus U satisfies the universal
property of Theorem 3.110 and (3.117) follows. Now U ® R" = U" follows by
induction on n, using the distributive law (Proposition 3.115). Thus we obtain

Proposition 3.118. For any R-module U over a commutative ring R, the tensor
product with a free R-module of rank n is a direct sum of n copies of U:

U®R"=U". (3.119)

By symmetry a corresponding result holds for the first factor, and combining
the two, we obtain

Corollary 3.120. If U and V are free R-modules of finite rank over a com-
mutative ring R, say U = R™, V = R", then U®V = R™. In particular,
this applies to finite-dimensional vector spaces over a field, and we then have
dim(U®V)=dimU -dimV.
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Explicitly, if eq,..., e, is a basis for U and fi,..., f, is a basis for V, then
the elements ¢; ® f; (i=1,...,m,j=1,...,n) form a basis for U® V.

We record a property noted before (3.117), namely the independence prop-
erty of the tensor product:

Proposition 3.121. Let U be any R-module and V be a free R-module with
basis e1,...,e, over a commutative ring R. Then every element of U ®V is
unique of the form

Z u; ® e;, where u; €U. (3.122)

Caution is needed in applying this result. Thus if Y u; ® v = 0in U®V
and the v;, are linearly independent over R, then it does not follow that the u;
must vanish. If the submodule generated by the v;, is denoted by V' (so that
the v; form a basis for V') then all we can conclude is that the u; all vanish if
Su;®v; =0in U®V . Now the inclusion V' — V induces the homomorphism

UV -U®V. (3.123)

which however may not be injective. For example, the inclusion 2Z — Z is
injective, but it does not remain so on tensoring with Z/2Z. If Z/27Z, Z, 2Z
are generated by e, f, f respectively, then (Z/2Z) ® Z, (Z/2Z) ® 2Z are both
isomorphic to Z/2Z, by (3.117), with generators e ® f, e ® f  respectively. But
f mapsto2f and e® f +— ex2f =2e® f =0. Thus (3.123) is the zero map
in this case. A more precise analysis of this phenomenon will be undertaken in
homological algebra. For the moment we note that (3.123) is certainly injective
if V' is a direct summand in V, by Proposition 3.115; so in that case we can
identify U® V' with its image in U ® V. We note that this always holds when R
is a field.

Let us next consider the effect of the tensor product on homomorphisms.
Given any R-linear maps « : U — U, B : V — V', there is a unique R-linear
map a®B:U®V — U ®V such that the left-hand square of the diagramme
below commutes:

Uxv-2L u v 2y <y (3.124)

[

UV —=U oV —=U"oV"
asp o of

For the map (u,v) — au ® Bv from U xV to U ® V' is bilinear, and hence can
be taken via U ® V, by the universal property of U ® V.

Ifo :U - U",B :V — V" is another pair of homomorphisms, we obtain
a commutative diagramme (3.124). Since (@’ x 8)(a x B8)(u,v) = (a au, ' Bv)
for any u € U, v € V, we have (&' x 8 )(a xB) = a'a x B B, and it follows from
the diagramme (3.124) that

da’BB=(a ®B)a®p) (3.125)
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In the special case V' =V =V, g = ' =1, (3.125) reduces to
da®l=(d®)(a®l), (3.126)

and together with the obvious equation 1® 1 = 1 this shows that the assignment
U w— U®YV is a functor from R-modules to R-modules, for any given V. By
symmetry the assignment V +— U ® V is also a functor for fixed U. Thus the
tensor product is a bifunctor.

The above diagramme shows that there is a correspondence between pairs of
maps (a, 8) € Homg (U, V)xHom R(V, V) and maps ¢®8 € Homg(UQV,U QV').
So we have a map (a,) — a ® B which is clearly bilinear; by the universal
property of the tensor product it induces a linear map

Homg(U,U") ® Homg(V,V') - Homg(U® V,U @ V). (3.127)

We remark that for a pair of maps @ : U — U’, B:V — V' the expression a ® 8
is ambiguous: it may mean the element of the left of (3.127) or the induced
homomorphism from U®V to U ® V', and one of these is mapped to the other
in (3.127). It will usually be clear from the context which interpretation is
intended; in some important cases the mapping (3.127) is an isomorphism and
the ambiguity disappears. For example, when U and V are free of finite rank,
say U = R™, V = R", then (3.127) reduces to U ®V" = (U®V)™, by a double
application of Proposition 3.115, together with the relation

Homg(R",U) = U",

which follows by associating with (uy,...,u,) € U" the map e; — u;, where
e1,...,ey is the standard basis of R". In particular, when U = U, V' =V, we
obtain

Proposition 3.128. IfU, V are free modules of finite rank (over a commutative
ring R), then the map (
refeq:C4-8-14) induces the isomorphism

Endgr(U) ® Endg(V) = Endr(UQYV).

When we come to consider tensor products over a non-commutative ring, the
corresponding construction leads in the first instance to abelian groups rather
than modules. Thus let R be any ring, U be a right R-module and V be a left
R-module, and for any abelian group W consider maps f : U XV — W which
are biadditive, i.e. additive in each argument, and R-balanced, i.e.

f(ur,v) = f(u,rv) forall ueU,veV,reR.

A map which is biadditive and R-balanced will again be called R-bilineary or
simply bilinear, if the ring R is clear from the context. We can again construct
U ® V, now merely an abelian group, universal for R-balanced biadditive maps
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from U x V to abelian groups. The existence is proved as before, U XV = A/B,
where A is the free abelian group on U XV and B is the subgroup generated by

(w+u',v) = (uwv)—(',v), uu €U,
(u,v+v/)—(u,v)—(u,v/), V,VlGV,

(ur,v) = (u,rv), reR.

Suppose now that U is an (S, R)-bimodule and V is an (R, T)-bimodule, for
some rings S, T. Then the tensor product U ® V just defined may be regarded
as an (S,7)-bimodule in the following way. Take s € S and consider the map
As : U XV — U ®YV defined by

As: (U, v) > su®v.

Clearly this is biadditive and balanced; e.g. to prove the latter, we have s(ur) ®
v = (su)r®v = su®rv, by the bimodule property of U. It follows that A induces
a homomorphism U ® V — U ® V which is simply denoted by s; thus we have

S(Z u; @ v;) = Z su; @ v;. (3.129)

If we do this for each s € S we obtain a left S-module structure on U ® V, for we
have, for any s,s € S,

(ssl)(u ®V) = (ss/)u ®V = s(slu) Qv = s[/u ®v] = s[s/(u ®v)],

and of course 1(u®v) = u®v. Similarly we can define a right T—module structure
on U®YV such that (u®v)t =u®vt fort €T, and UQV is an (S, T)-bimodule,
because

sfuev)t] =su®@vt] =su®vt = (su®v)t = [s(u®v)]t.

Given any (S, T)-bimodule W, we can as before regard any homomorphism f :
U XV — W which is S-linear in the first, T-linear in the second argument and
R-balanced, as defining for each u € U a T-linear map f, : v — f(u,v). The
set of all these T-linear maps has a natural (S, R)-bimodule structure induced
from Homy(V, W) and the map u — f, is a homomorphism of (S, R)-bimodules;
ur — fur and f(wr,v) = f(u,rv) because f is R-balanced. Thus the natural
homomorphism (3.111) leads to an isomorphism of S-bimodules, again called
adjoint associativity:

Hom7(U®g, W) = Homg (U, Homy(V,W)) (sUg, Vr,sWr) (3.130)
By symmetry we likewise have an isomorphism of T-bimodules:
Homg (U®g, W) = Hompg (U, Homg(V, W)) (3.131)

Like the hom-functor, the tensor product is not an exact functor; however it is
right exact:
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Proposition 3.132. For any ring R, the tensor product U ®g V is right exact
in each variable.

Proof. By symmetry it will be enough to show that —® V is right exact. Given
an exact sequence of right R-modules:

U ->U->U -0,

we have to show that for any right R-module V, the sequence

Uevuev v ev—o
is exact. Clearly B®1 is surjective and (8®1)(e¢®1) =0, i.e. ima®1 C kerf®1
and it remains to show that equality holds. Since ima = ker 8 = X, say, it is
clear that ima ® 1 is the subgroup of U ® V generated by all products x ® v
(x € X, v € V). Further, each u” € U” can be written as u” = Bu for some u € U,
which is unique mod X, so we have a bilinear map U’ xV — (U®V)/(ima ® 1)
given by (u”,v) — u ® v, where u € U is such that Su = u”. We thus obtain
a homomorphism f : U @V — (U® V)/(ime ® 1) which maps Su ® v to the
residue class # ® v mod im @ ® 1, and so has the form f(8® 1) on UQ® V. Hence
it vanishes on ker f® 1 and so ima ® 1 = ker 8 ® 1, as claimed. O

The following description of the relations in a general tensor product is often
useful:

Proposition 3.133. Let R be a ring and U be a right R-module generated by
a family (ua, A € I with defining relations Y uar, =0, p € J. If V is a left
R-module with a family (x,) of elements indexed by I, almost all zero, such that

DYu@ki=0 in UV, (3.134)
then there exist elements y, € V, almost all zero, such that
X= ) Ay (3.135)
Proof. By hypothesis U has a presentation
05L5F LA U—Q0,

where F is free on a family (f;), 4 € I, and I is the submodule generated by the
elements ) faa,,. Tensoring with V and observing that this operation is right
exact, we obtain an exact sequence

LevSreviuev oo

By hypothesis, 8/ (3 f1®x1) = 3, ®x; = 0, hence by exactness, as L is generated
by the elements fiaa,

Z fa®xy = CV’(Z faaau ® yu)
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for some elements y, € V, almost all zero. Now @ is the homomorphism induced
by the inclusion L — F and F is free on the f;. Equating coefficients in F ® V,
we obtain (3.135). ]

Here it is important to bear in mind the hypothesis that (u,) is a generating
set of U and Y uaaa, = 0 is a family of defining relations. If (3.134) holds for
some elements in U ® V we cannot conclude that (3.135) follows; in fact this
comes close to a criterion for U to be flat (i.e. U® — to be exact). We note that
the result may be stated in matrix form as follows: Let U be a right R-module
with presentation matrix A, relative to a generating family u (written as a row),
so that uA = 0. If x is a column vector over V with almost all components 0,
such that u ® x = 0, then there exists a column vector y over V with almost all
components 0 such that x = Ay.

3.9.2 Homology with Arbitrary Coeflicients

First, recall that abelian groups are Z-modules. Let G be an abelian group and
X a topological space. We define the homology of X with G-coefficients, denoted
H.(X;G), as the homology of the chain complex

Ci(X;G)=Ci(X)®G (3136)

consisting of finite formal sums Y;n; - 07 (07 : Ay = X,n; € G), and with
boundary maps given by
0% 1= 9, ®idg .

Since §; satisfies ; o d;41 = 0 it follows that 9% 0 85, = 0, so (C.(X;G),d°)
forms indeed a chain complex. We can construct versions of the usual modified
homology groups (relative, reduced, etc.) in the natural way. Define relative
chains with G-coefficients by C;(X,A;G) := Ci(X;G)/Ci(A;G), and reduced
homology with G-coefficients via the augmented chain complex

9 o7 o5 o e

- Gi(X;6) — - — C1(X;6) — Co(X;6) > G — 0
where €(3; 7:07) = X; 7i € G. Notice that H,(X) = H,(X;Z) by definition.
By studying the chain complex with G-coefficients, it follows that

G qg=0
H,(pt;G) =
a(Pt: G) {0 q#0.

Nothing (other than coefficients) needs to change in describing the relationships
between relative homology and reduced homology of coset spaces, so we can
compute the homology of a sphere as before by induction and using the long
exact sequence of the pair (D", S") to be

G qg=0,n
0 otherwise.

Hq(sn§ G) = {
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We can build cellular homology with G-coeflicients in the same way, defining
CIG(X) = H;(X;, Xi_1:G) = Geardi—cells

The cellular boundary maps are given by:
le(Z Uaeia) = Z nadaﬁei_lﬁ,
a a,fB

where d,p is as before the degree of a map d4p : S""' — S71. This follows
from the easy fact that if f : S¥ — S¥ has degree m, then f, : Hi(S¥;G) = G —
Hi(S*;G) = G is the multiplication by m. As it is the case for integers, we get
an isomorphism

HEY(X;G) = Hi(X; G)
for all i.

One of the great advantages in working with coefficients in a field F is that
homology are now vector spaces. This means for instance that short exact
sequences always split and this can simplify a lot of calculations.

Ezample 3.137. We compute H.(RP";Z/2Z) using the cellular homology with
Z/2Z-coefficients. Notice that over Z the cellular boundary maps are d; = 0 or
d; = 2 depending on the parity of i,

0-z3z%5z% ...
0-z3z2%723% ...

and therefore with Z/2Z-coefficients all of boundary maps vanish.
0-2/22 % 72/92 22 792 22 .. 2222092 22, 770 S 0.

Therefore,
Z]27Z q=0,...,n

H,(RP";Z/2Z) =
a /22) {O otherwise.

Example 3.138. Fix n > 0 and let g : S" — S" be a map of degree m. Define the
cellular space

X = Sn Ug en+1,
where the (n + 1)-cell ¢! is attached to S" via the map g. Let f be the coset
map f: X — X/S". Define ¥ = X/S" = §"*1. The homology of X can be easily
computed by using the cellular chain complex:

02z, g dunt g Ay g g B
Therefore,
Z i=0
H;(X;Z) ={Z/mZ i=n

0 otherwise.
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Moreover, as Y = S™*!, we have

Hi(Y;Z)z{Z l—O,I’l.+1
0 otherwise.
It follows that f induces the trivial homomorphisms in homology with Z-coefficients
(except in degree zero, where f; is the identity). So it is natural to ask if f is
homotopic to the constant map. As we will see below, by considering Z/mZ-
coefficients we can show that this is not the case.

Let us now consider H.(X;Z/mZ) where m is, as above, the degree of the
map g. We return to the cellular chain complex level and observe that we have

dns dny dn d d d,
0 =5 Z/mZ 5 Z/mZ = - = 0 — Z/mZ —> 0

m

Multiplication by m is now the zero map, so we get

Z/mZ i=0,n,n+1

H;(X;Z/mZ) =
i /mZ) {0 otherwise.

Also, as already discussesd,

p— {Z/mZ i=0n+1

0 otherwise.
We next consider the induced homomorphism f, : Hy4+1(X;Z/mZ) — Hp1(Y;Z/mZ).
The claim is that this map is injective, thus non-trivial, so f cannot be homo-
topic to the constant map. As noted before, we have an isomorphism H,,.1(Y;Z/mZ) ~
H,+1(X,S";Z/mZ). This leads us to consider the long exact sequence of the pair
(X,S™) in dimension n + 1. We have

- Hypr (S ZJmZ) — Hyay (X:Z/mZ) L5 Hyer (X, S Z/mZ) — ---

But, Hy+1(S";Z/mZ) = 0 and so f; is injective on Hy1(X;Z/mZ). Since Hy.1(X;Z/mZ) =

Z/mZ # 0 and H,1+1(X,S";Zm) =~ H,.1(Y;Z/mZ) it follows that f. is not trivial
on H,.1(X;Z/mZ), which proves our claim.

3.9.3 The functor Tor and the Universal Coefficient The-
orem

Suppose that we are given H.(X;Z). Can we compute H.(X;Z/2Z)? This is
non-obvious. Consider the map RP? — S? that pinches RP! to a point. Now
Hy(RP?;Z) = 0, so in Hy this map is zero. But in Z/2Z-coefficients, in dimension
2, this map gives an isomorphism. This shows that there is no functorial de-
termination of H,(X;Z/27Z) in terms of H.(X;Z); the effect of a map in integral
homology does not determine its effect in mod2 homology. So how do we go
between different coefficients?
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Let R be a commutative ring and M an R-module, and suppose we have a
chain complex C, of R-modules. It could be the singular complex of a space,
but it doesn’t have to be. Let us compare H, (C.) ® M with H,(C. ® M). (Here
and below we will just write ® for ®g.) The latter thing gives homology with
coefficients in M. How can we compare these two? Let us investigate, and build
up conditions on R and C. as we go along.

First, there is a natural map

a: Hpy(C) ® M — H,(C.® M),
sending [z] ® m to [z ® m]. We propose to find conditions under which it is

injective. The map « fits into a commutative diagramme with exact columns
like this:

H,(C.) @ M —*> H,(C. ® M)

Z,(C.)®M ——Z,(C.® M)

Cor1®M ——C,11®M

Now, Z,(C, ® M) is a submodule of C,, ® M, but the map Z,(C)®M — C,®M
need not be injective (!) unless we impose more restrictions. If we can guarantee
that it is, then a diagramme chase shows that @ is a monomorphism.

So let us assume that R is a PID and that C, is a free R-module for all n.
Then the submodule B,_1(C,) c C,_1 is again free, so the short exact sequence

0——Zn(C,) —C, —— B,,_1(C,) ——=0

RN

Cnfl

splits. So Z,,(C,) — Cj, is a splitting monomorphism, and hence Zn(C,) @ M —
C, ® M is too.

In fact, a little thought shows that this argument produces a splitting of the
map a.

Now, « is not always an isomorphism. But it certainly is if M = R, and it is
compatible with direct sums, so it certainly is if M is free. The idea is now to
“resolve” M by frees, and see where that idea takes us.

Following is a discussion on Tor functor required for understanding Universal
Coefficient Theorem. Those readers who are familiar with the theorem can
directly jump to 3.151.
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Definition 3.139. A free resolution of an abelian group H is an exact sequence:

/i Ji

RN R Ny LNy NECNy SN
with each F, a free abelian group.

Example 3.140. The following are free resolutions of Z/5Z.

5050522272 52/250

7 X7 X7 X g 7 7/7 0

Theorem 3.141 (Existence of free resolutions). Every abelian group A has a
free resolution
>0 —>R—->F—->A—>0

where F and R are free abelian.

Caveat: A is not supposed to be finitely generated!
Before proving Theorem 3.141 we recall

Theorem 3.142. Every subgroup of a free abelian group is a free abelian group.

Proof. (A sketch)

Given a real vector space V, we can put the direct limit topology on it
(subsets are closed if and only if their intersection with any finite dimensional
subspace is closed). This is a contractible topological group.

If A is a free abelian group, then A is a discrete subgroup of the associated
real vector space (R ® A) and the coset space has fundamental group A. Any
covering space is a coset of (R ® A) by a discrete subgroup B of A.

So the question boils down to showing: Any discrete subgroup of a vector
space (with the direct limit topology) is free abelian.

Let us say that a partial basis is a set S of elements of B such that

e § is linearly independent, and
e S generates B N Span(S).

Then partial bases are a partial order under containment, and Zorn’s lemma
implies that there is a maximal element S. We show that S is a basis of B as a
free abelian group.

S is linearly independent by construction, so it generates a free abelian group,
and hence it suffices to show that it generates all B. If b in B is not in S, then it
is not in Span(S). Let S be (SU{h}). Then Span(S’)/Span(S) is a 1-dimensional
vector space and the image of BN Span(S’) must be discrete, because otherwise
Span(S’) would contain an element (rb + v) for v in Span(S) that we could use
to generate a non-discrete subset of B. (If v is a combination of wy ---w, in
S, then it suffices to check that any subgroup of the finite-dimensional space
Span(wy - - - wy, b) requiring more than n generators is indiscrete.)

Thus any lift of a generator of BN Span(S’) would extend to a larger gener-
ating set, contradicting maximality. O
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Proof. (of Theorem 3.141)
We have a surjection

Z[A] 5 A
given by p(a) = a. Let F =Z[A] and R = ker p. Then

~~—>O—>R—>F£>A—>O

is a free resolution of A. O

Before proceeding further, we need some definition and relevant properties
of Tor.

Definition 3.143. Let A and B be abelian groups and

R M A0

be a free resolution of A. Let dy : Fy — 0 be the 0 map so we have a chain

complex (F,d)

o o 7] 7]
S By F = Fy =0

Tensoring with B we get the chain complex F ® B

d3®id do®id 01 ®id dp®id
2 RRB— 5 F 9B —5 Fy® B —25 0

We define Tor, (A, B) = H,(F ® B).

Theorem 3.144 (Tor is well-defined). Tor, (A, B) is independent of the free
resolution F of A.

Proof of Theorem 3.144 requires a substantial amount of preparation.

Lemma 3.145 (Free abelian groups are projectiv). Suppose we have commu-

tative
F
3y l\«
¢
’ // ’”
with

1. F is a free abelian group
2. M 5 ML M s exact
Then there is a homomorphism ¥ making the diagramme commute.

Proof. Let {ey} be a free basis for F. Then jp(eq) = 0(eq) = 0 so p(eq)
ker j = imi. Thus there is m, € M such that i(m,) = ¢(eq). Let ¥(eq)
m

O I m

a-
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Lemma 3.146. If F and F are two free resolutions of A. Then there is a chain
map f: F — F which is a chain homotopy equivalence.

Proof. We have

o a1l
2 ]ﬁr Pb &

A
lidA
F, A

3, , £ 0 0
By applying Lemma 3.145 with ¢ = id4 o we obtain y : Fy — F(/) with &'y =
idge. Let fy = ¢ and apply Lemma 3.145 with ¢ = fy0, to get f1 : F; — Fi
Continuing inductively, we obtain a chain map f: F — F .

Now we will show that the chain homotopy type of f is unique, i.e, if g :
F — Fjy is another chain map extending idg : A — A then there is a chain
homotopy T between f and g. Let 7 = g — f and assume inductively that
a,’l +1Tn + T4-10, = 7,. Then we have the following (possibly non-commutative)
diagramme

On On
Fn+1—+1>Fn—>Fn71

T
Tn+1 Tn
Ty

’ ’ ’
n+2 5 n+l s Fn

n+2 n+1

Consider the map (141 — T.0n+1) : Fre1 — F;Hl. We have

6n+1(7'n+1 —Tn0ns1) = (9n+17'n+1 - (9n+1Tnl9n+1
=01 Tn+1 — (Tn = T-100)Op11
= a;1.;.17-n+1 = TpOnt1 + T-10, 041
=0.

Applying Lemma 3.145 with ¢ = 1,41 — Tp0ns1, let Tpy1 = ¢ @ Fyupp — F;HQ.
Then 8 Tps1 = ¢ = Tps1 — TnOn+1. Hence

n+2

’

an+2Tn+1 + T,0n+1 = Tna1 = 8n+1 — fn+1'

We may start the induction in degree —2 where all groups are 0. Thus the
chain homotopy class of f : F — F is unique. Similarly we get f : F* — F.
idp : F — F extends id4 : A — A, so f o f is chain homotopic to idg. That is,
f is a chain homotopy equivalence. O

Proof. (of Theorem 3.144) Let F and F’ be two free resolutions of A. By Lemma
3.146 we have a chain homotopy equivalence

f:F—)F/
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Hence there is a chain map f : F — F such that f o f is chain homotopic
to idr. Tensoring with B we get (f ® idg) o (f oidp) is chain homotopic to
idp ®idg. Thus

(f ®idg). : Hy(F ® B) — H,(F ® B)
is an isomorphism, which means Tor,(A, B) = H,(F ® B) = H,(F ® B) is well-
defined. ]

As we saw in Theorem 3.141 every abelian group A has a free resolution

So we have the chain complexs F

Y SRy RN RN
and F® B . ' '
R 0 0>®idp Fl ®B 0, ®idg FO ® B do®idp O
Fo®B _
(9, e1d5) n=0
Tor, (A, B) = H,(F ® B) = {ker(d; ® idg), n=1
0, n+0,1

We can say more about Torg(A,, B).
We have the exact sequence
61 &
F1 —> FO —A—-0
Which remains exact after tensoring with B so we get exact

0, ®id id
FLoB 22 peoB 2% AeB -0

Hence Fo®B
0 =~ A®B.

Torg(A,B) = —0%2
oro(4, B) = e idn)

Since Tor; (A, B) is the only (possibly) new object we define

Definition 3.147. Tor(A, B) = Tor;(A, B).

Remark 3.148. Note that if we have an exact sequence

8
05F 5 F5A-0
Then we have an(other) exact sequence

01 ®id c®id
FLoBl2% feB 2% A9 B —0

and hence still another exact one

01 ®id c®id
0 - ker(d ®idg) — FL © B 22 o B 22 A@B — 0
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and hence an exact sequece

01 ®id id
0 — Tor(A,B) » F,® B 22, FLe B 2%, A9 B — 0

In particular if Tor(A, B) = 0 then tensoring with B preserves exactness.

Ezample 3.149. Let us compute Tor(Z/60Z,Z/42Z). First, consider a free reso-
lution F of Z/60Z

50002 2% 7 5 7/60Z — 0.
Then F ® Z/42Z is

0 Z® (2/422) 2% 7.6 (2/422) — 0
Simplifying, we have

(x60)
0> Z/42Z —> Z/42Z — 0

Hence

Z
ged(42,60)Z

Tor(Z/60Z, Z/42Z) = ker(x60) = TZ/42Z = Z/6Z =
Proposition 3.150 (Properties of Tor). (1) Tor(A, B) = Tor(B, A).
(2) Tor(®4Aq, B) = @4 Tor(Ag, B).

(8) Tor(A,B) =0 if A or B is free or torsion free.
(4) Tor(A, B) = Tor(Ator, B) where Aoy is the torsion subgroup of A.
(5) Tor(Z/nZ, A) = ker(A RN A)
(6) The short exact sequence
0—-B—-C—-D-—0
yields a natural exact sequence

0 — Tor(A, B) — Tor(A,C) — Tor(A,D) > AQB—>A®C - AQD — 0

Proof. (2): Tor(®,Aq,B) = &, Tor(A,, B).
Let F, be a free resolution of A,. Then ®&,F, is a free resolution of A,. Thus

Tor(®qAq,B) = Hi ((&4F4) ® B)
= H1(®q(Fo ® B))
= ®,H,(F, ® B)
= @, Tor(Ag, B).
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(5): Tor(Z/nZ, A) = ker(A = A).
Using the free resolution of Z/nZ,

02257 72/ — 0
Tensoring with A simplifies to
50— AS A0
The result follows.

(3): Tor(A,B) =0if A or B is free (we will address torsion free later.)
Suppose A is free. Use the free resolution of A

o> 0->50-2A->-A->0

we have Tor(A, B) = ker(0 - A® B) = 0.

Suppose B = Z. Then tensoring an exact free resolution 0 —» F; — Fp —» A — 0
with B remains exact.

Suppose B = &,Z. Then tensoring an exact free resolution 0 —» F; — Fy —
A — 0 with B is a direct sum of exact sequences which is exact.

(6): The short exact sequence
0—-B—-C—->D—0
yields a natural exact sequence
0 — Tor(A, B) — Tor(A,C) — Tor(A,D) > AQB—>A®C - AQ®D — 0.

Choose a free resolution F of the form 0 — F; — F; —» A — 0. All the terms
of F are free so tensoring 0 —» B — C — D — 0 with F,, remains exact. So we
get a short exact sequence of chain complexes

0> (F®B)—> (F®C)—> (F®D)—0

Apply Snake Lemma (see the proof for Theorem 3.23) to get the natural exact
sequence above.

(1): Tor(A, B) = Tor(B, A). Consider the six term exact sequence from part
(6) coming from the short exact sequence:

O—)Fl—)Fo—)B—>0

0 — Tor(A, F1) — Tor(A, Fy) — Tor(A,B) > A®F, > A®Fy, > A®B — 0.
Fy and F; are free so by part (3) Tor(A, F1) = Tor(A, Fy) = 0. So we have

0— Tor(A,B) > A®F, > A®Fy—> A®B — 0.
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Together,
0—— Tor(A,B) —= AQ F; A®Fy A®B——0
0—— Tor(B,A) ——=F; ® A Fo®A B®A——0

We will define a homorphism vy : Tor(A, B) — Tor(B, A) preserving commuta-
tivity:

0—— Tor(A,B) %> A®F, —> A® F, A®B——>0
7 TLE ,ujg lg
v
0——Tor(B,A) —F1 @ A——=Fy®A B®A——0
a B

Let x € Tor(A, B) We claim that ta(x) € ima’.

By commutativity 5’ Ta(x) = upa(x) = (O) 0, so we have Ta(x) ckerf =
ima . By 1nJect1v1ty of @ there is a unique x* € Tor(B, A) with @ (xo) = Ta(x).
Set y(x) = x'. As y takes 0 to 0 and sums to sums so it is a homomorphism.

0——=0——=Tor(A,B)—=A®F, —=AQ®KF,
TR
0——=0——="Tor(B,A) —=F1 @ A——=FyQA
Add some trivial groups and homomorphisms to get
0——=0——=Tor(A,B) —=A®F, —=AQ®F,
0——=0——=Tor(B,A) —=F1®A——=F;® A

Now apply Five Lemma 3.27 to show 7 : Tor(A, B) — Tor(B, A) is an isomor-
phism.

(3): Tor(A,B) =0 if A or B is torsion free.
Assume B is torsion free applying part 1. Let

17
0—>F1—1>F0—>A

be a free resolution of A. Then we get an exact sequence

& ®id
0 — Tor(A,B) > F;® B——— Si%dB, Fh®B

We claim 0, ® idp is injective: Suppose }); f; ® b; € kerdy ® idg. Then
2. (01f;) ® b; =0 in Fy ® B. Hence in Z[Fy X B] we have

DO fbi) = D (f iD= (7, b))~ (f], ,)+Z(fk+fk,b2) (ft. b= (f2.b})
i J
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Let By C B be the subgroup generated by the finite set {b;, bg, b}, b?}. Then in
Z[Fy x B] we have ‘

DO fbi) = D (iD= (P, b= (7, b+ ) (fe+ 12 B~ (fL b~ (£, bY)
i Jj k

Therefore in Fy ® By
D01f) @b =0

Let By C B is torsion free and finitely generated so free abelian. Then

51®id30
Fi1® B — Fy ® By

is injective. Thus in F; ® By

Zﬁxbizo.

Hence in Z[F; X B0O] we have
D i) = D byt b) = b= (s b+ D Font £ bis)=(fons )= (s bin)
i n k

This equality holds in Z[F; X B], so in F; ® B
Z £ x b; = 0.

It follows that Tor(A, B) = ker(d, ® idg) = 0. O

Having prepared to handle Tor, let us return to the discussion of Universal
Coefficient Theorem. Let

0—)F1—)F0—)M—>0

be a free resolution of M. Again, we are using the assumption that R is a PID,
to guarantee that ker(Fy — M) is free. Again using the assumption that each
C, is free, we get a short exact sequence of chain complexes

0-C,®F, —-C.Fy—>C.,®M — 0.

In homology, this gives a long exact sequence. Unsplicing it gives the left-
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hand column in the following diagramme.

0 0

coker(H, (C, ® F1) — H,(C, ® Fy)) —— coker(H,(C,) ® F; — H,(C,) ® Fy)

Ho(C. ® M) Ho(C. ® M)
o

ker(Hp_1(C, ® F1) = Hy_1(Cs ® Fy)) — ker(H,_1(C,) ® F1 — Hp_1(C.) ® Fy)

0 0

The right hand column occurs because « is an isomorphism when the module
involved is free. But

coker(H,(C,) ® F; — H,(C.) ® Fy) = H,(C,) @ M

and
ker(H,_1(C.) ® F; — H,_1(C. ® Fy) = TorX (H,_1(C., M).

We have proved the following theorem.

Theorem 3.151 (Universal Coefficient Theorem). Let R be a PID and C, a
chain complex of R-modules such that C, is free for alln. Then there is a natural
short exact sequence of R-modules

0= Ho(C) ® M % Hy(C, ® M) S Tork (H,_1(C.), M) = 0
that splits (but not naturally).

Ezample 3.152. The pinch map RP? — $2 induces the following map of universal
coefficient short exact sequences:

0 — Hy(RP?) ® (Z/2Z) — Hy(RP?;Z/27) — Tor (H,(RP%;Z/2Z) — 0
| : |
0 —— Hx(S?) ® (Z/2Z) —— Hy(S* Z/2Z) — Tor1 (H1(5%); Z/2Z) — 0

This shows that the splitting of the universal coefficient short exact sequence
cannot be made natural, and it explains the mystery that we began with.






Lecture 4

Singular Cohomology

4.1 Cohomology

4.1.1 Dual moodules

Let R be a commutative ring and let M be an R-module. The dual module
MY := Homg(M, R)

is the set of R-module homomorphisms from M to R. MY is an R module under
addition and scalar multiplication of functions. There is a natural isomorphism

(@iM;)" = I—[Mlv
i
defined by the rule (¢1,¢2...,)(m1 +mg +---) = 3; ¢;(m;). In particular, for

free modules we have
@R =R =]]r (4.1)

More directly, (4.1) holds because a homomorphism out of a free module is
specified by listing where the free generators are sent.
Given an R-module homomorphism f : M — N, define the transpose

YN - MY

which sends ¢ € N¥ = Homg(N,R) to f¥(¢) = ¢ o f.

M— N
fv(¢)—A %
R

Dualisation is a contravariant functor from R-modules to R-modules. This
means that idy, = idyv and (go f)¥ = fY o g¥. The first is obvious and the

91
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second follows from associativity of composition:
(8o f)'(@)=¢o(gof)=(pog)of=f"(g"(9)=(f"0g")(¢)

M—sN——P

RN

R
4.1.2 Cohomology
Given a chain complex of R-modules
Co: o> Cpiq hCna—%Cn,l O

we form the dual chain complex (or cochain complex)

C.:-"(—Cn+1 Sn+1 cn On Cn—l Sn-1

where C" = C,/ and 6, = d,/. Thus cochain complexes are really huge sets.
Note that

0p 00p41 = ay\,/ Oar\l/ 1= (On+1 Oan)v =0 =0.

+

We can now define cocycles Z" := ker(6,+1), coboundaries B" := im(d,) and
cohomology
H" := 7"/ B".

Let us calculate several examples. Take the coefficient ring R = Z.

Ezample 4.2. Let C. be the chain complex --- -0 —>7Z — 0 — --- where Z is
at the k-th position. Then the homology groups are

Z n=k
H,(C,) =
n(C) {0 n#k.
The corresponding cochain complex C®is --- 0 « Z < 0 « --- where Z
is still at the k-th position. Then
Z =k
Hn(C.) = "
0 n#k.

At first glance cohomology seems completely dual to homology, and therefore
seemingly redundant. But in fact the situation is more subtle.

Ezample 4.3. Let C, be the chain complex --- -0 — Z 27 —>0— - where
Z are at the k-th and (k — 1)-th positions. Then the homology groups are

Z/mZ n=k-1

Ha(C*) = {0 n+k
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The corresponding cochain complex C*®is -+ «— 0 « Z EZ 0
where Z are still at the k-th and (k — 1)-th positions. But

Z/mZ n=k

H(C) = {0 n#k—1.

These examples show the difference of the free part Z and torsion part Z/mZ.
Actually suppose C,, is free abelian for all n and H,,(C) is finitely generated for
all n. And suppose H, (C) = F,, ® T,, where F,, is free abelian and T,, is torsion.
Then H"(C) = F,, @ T,,-1. This is the simplest form of Universal coefficient
theorem which determines cohomology groups with arbitrary coefficients from
homology with Z coefficients.

Remark 4.4. For non-abelian group G, we could still define (co)homology, but
the point is that usually H"(C; G) do not have a group structure when n > 0,
since im § need not be a normal subgroup of keré.

4.1.3 TUniversal Coefficient Theorem
Chain map and chain homotopy

Let us recall

Definition 4.5. A map f : C — D of chain complexes C and D is a sequence
of homomorphisms f = {f, : C,, = Dy} such that 9, o f,, = f,—1 © d,.

6}1
e ——=Cp——Cppog ———> -

q |5

..._>.Dn7.Dn_1ﬁ....
Proposition 4.6. A chain map f : C — D induces a homomorphism H(f) :
H,(C) - H,(D) of homology groups.

Proof. By definition, f, takes cycles in Z,(C) to cycles in Z,(D) and takes
boundaries to boundaries. Hence it induces a homomorphism H(f) : H,(C) —
H,(D). O

Definition 4.7. Two maps of chain complexes f,g : C — D are chain homo-
topic (denoted by f =~ g) if there exists a sequence of maps T, = {T,, : C,, —
D,.+1} such that
6n+1 o Tn + Tn—l o an = fn —8n-
Note that T. is not a chain map in any sense. The definition just tells that
Op+1 0T, + T,—1 0 8, is a chain map, which is equal to f,, — g,.

a’l
Cui1 Cn Chop——---

| b A

.“—>D”+16—>Dn_>D"71—>”'
n+1
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We will drop the subscripts for boundary maps later on if no confusion is
likely.

Proposition 4.8. If f and g are chain homotopic, then their induced homo-
morphisms of homology are equal.

Proof. Let T be a chain homotopy. For any z,, € Z,(C), we have

H(f)[zn]l = H(g)[zn] = [fu(zn) = gn(zn)] = [0 0T (z0) + T 08(z4)] = [0T (z4)] = 0.
m|
So chain homotopy is an equivalence relation on chain complexes.

Definition 4.9. Two chain complexes C and D are called chain homotopy
equivalent (C =~ D), if there are chain maps f : C — D and g : D — C such that

gof=id¢:C—C, fog=~idp:D — D.
Each of them is called a chain homotopy equivalence.
The next result follows from Proposition 4.8.

Proposition 4.10. FEvery chain homotopy equivalence induces an isomorphism
of homology groups. So if C ~ D, then Ho(C) = Ho(D).

The converse also holds if C and D are complexes of abelian groups.
All the above discussion works for cochain complexes mutatis mutandis.

Hom functor

Notice that the functor Hom(—, G) is the key for cohomology. By definition,
Hom(H, G) is the set of all homomorphisms from H to G. It is an abelian
group as well, and called homomorphism group. Let us have a look in a more
abstract viewpoint. It is a contravariant functor, which means f : A — B
induces f* : Hom(B,G) — Hom(A, G) and if furthermore we have g : B — C
then (g o f)* = f* o g*. The above discussion tells us that Hom(—, G) is also a
contravariant functor from Chain complexes to cochain complexes.
The functor Hom(—, G) has the following properties:

(a) HOHI(@,‘A,’, G) = H,’ HOHI(Ai, G);

(b) Left exactness: If A ER B C > 0is an exact sequence, then the induced
sequence

Hom(A, G) &= Hom(B, G) & Hom(C,G) — 0
is exact. In other words,
0 — Hom(C, G) 55 Hom(B, G) 1> Hom(A, G) (4.11)

is exact.
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We show the property (b).

Proof. We must show that Hom(C,G) — Hom(B, G) is injective and that the
image of Hom(C,G) — Hom(B,G) is the kernel of the map Hom(B,G) —
Hom(A, G).

Let ¢ € Hom(C, G) such that g*(¢) = 0. Then ¢ o g(b) = 0 for all b € B.
However, g is surjective so ¢(c) = 0 for all ¢ € C, and ¢ = 0. Thus g* is injective.

Since go f is zero f*og* is also zero, and im(g*) C ker(f*). To show the other
inclusion, let v € Hom(B, G) such that f*¥ = 0. Then ¢/(f(a)) =0for all a € A,
and we can define a homomorphism ¢ : C — G by ¥/(c) = y(b) for some b € B
with g(b) = c¢. This is well defined since for two elements b and b such that
g(b) = g(b') thereis an a € A with b = b" +a. Then ¢/(b) = (b + f(a)) = (b),
thus ker(f*) c im(g*). Now we have shown im(g*) = ker(f*), i.e., the sequence
4.11 is exact at Hom(B, G). O

Example 4.12. Hom(Z/mZ,G) = {g € G|mg = 0}. In fact, take Hom for the
exact sequence 0 — Z N7 Z/mZ — 0, we obtain

0« G <& G« Hom(Z/mZ,G) « 0.

By (b), the sequence is exact ezcept possibly at the leftmost term. So Hom(Z/mZ, G) =

ker(G RN G) = {g € G|lmg = 0}. And when mG # G, the sequence is not exact.
Thus the functor Hom(—, G) is left ezact, but not exact. (Functors that
preserve exact sequences are called ezact functors.)

To state universal coefficient theorem, we need to introduce the functor Ext,
which measures the failure of Hom to be an exact functor. It is defined from a
free resolution of the abelian group.

First, recall Definition 3.139.

Definition 4.13. A free resolution of an abelian group B is a chain complex
> Fo > F1 > Fy—0
of free groups with a map Fy — B such that
o> Fy > F, - Fy—>B—0
is exact.

Remark 4.14. If0 - F' — F — F" — 0 is a short exact sequence of free abelian
groups then

0 — Hom(A, F') — Hom(A, F) — Hom(A,F) — 0

is also a short exact sequence for any abelian group A. So on free abelian groups
Hom(—, A) is an exact functor.
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A free resolution is a way of replacing a (possibly) very complicated abelian
group B with much simpler groups where Hom(—, A) is an exact functor.
For a chain complex C, let H"(C; A) be the cohomology of the chain complex

- — Hom(C;-1,A) — Hom(C;; A) - Hom(C;41; A) — - -
Let us recall Lemma 3.146..

Lemma 4.15. Given free resolutions F of B and F of B', a homomorphism
@ : B — B can be extended to a chain map from F to F'. This chain map is
unique up to chain homotopy.

Ext(H;G), which measures the failure of Hom to be an exact functor is
defined from a free resolution of the abelian group H:0 — F; —» Fy —» H — 0.
Recall that we can assume F; = 0 for i > 1 . This could be obtained in the
following way. Choose a set of generators for H and let F be a free abelian
group with basis in one-to-one correspondence with these generators. Then we
have a surjective homomorphism fy : Fp — H. The kernel of f; is free as a
subgroup of a free abelian group. We let F; be the kernel and the inclusion to
Fy as fi. It is an exact chain complex sequence. In summary, constructing a
free resolution is equivalent to choosing a presentation for A.

Take its dual cochain complex by Hom(F;G), which may no longer exact,
so could have its cohomology group, temporarily denoted by H"(F; G). For the
above constructed resolution, H"(F;G) = 0 for n > 1. So the only interesting
group is H'(F;G). As we will show, it is independent of the resolution. There
is a standard notation for that: Ext(H;G). The element in this group could
also be interpreted as the isomorphism class of extensions of G by H, i.e. 0 —
G—-J—>H->0.

Now, we are ready to state the universal coefficient theorem.

Theorem 4.16. If a chain complex C of free abelian groups has homology groups
H,(C), then for each n, there is a natural short exact sequence:

0 = Ext(Hn_1(C); G) — H"(C;G) L5 Hom(H,(C); G) — 0.
The sequence splits, so we have
H"(C;G) = Ext(H,-1(C); G) ® Hom(H, (C); G).

But the splitting is not natural.

Proof of universal coefficient theorem, step 1

There is a natural choice of free resolution of the homology group

0= B,(C) 2 7,(C) L H,(C) - 0.

So the H'(F;G) for this free resolution is exactly coker(i} : Hom(Z,;G) —
Hom(B,,; G)) by definition. Now, let us prove universal coefficient theorem in
two steps.
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Step 1 Derive the split short exact sequence
0 — cokeri,_; — H"(C;G) LA Hom(H,(C);G) — 0.
Step 2 Prove Hy(F;G) depends only on H and G, but not the resolution. So
cokeri,_1 = Ext(H,-1;G).
We start with Step 1.

Lemma 4.17. There is a natural homomorphism
h:H"(C;G) » Hom(H,(C);G).

Proof. We first have the map in the cycle level.

For any cocycle @ € Z" and any cycle z € 2Z,,, we let h(a)(z) = a(z). a € Z"
means da = 0, i.e @d = 0. In other words, @ vanishes on B,,. So h descends to a
map from Z" to Hom(H,;G).

Next if @ € B", then @ = 68 = Bd. Hence « is zero on Z,. Thus there is
a well defined coset map h([a])([z]) = a(z) from H"(C;G) to Hom(H,(C);G).
This is a homomorphism since:

h([a + B ([z]) = (o + B)(2) = a(z) + B(z) = hla]([z]) + A[B]([z]).

Now there is a split short exact sequence
a
0—-272,—>C,—> B,-1—0.

It splits since B,_; is free (for any generator of B,_1, one could map it to
a preimage of d. So it is not canonically chosen.). Thus we have p : C, — Z,
whose restriction to Z, is the identity.

We have the commutative diagramme:

0—>Zn+1 Cn+1 Bn 0
Pl
0 Zn Cn P Bn—l 0

Since the dual of a split short exact sequence is a split short exact sequence
(the splitting exactness of Hom), the following commutative diagramme has
exact rows:

0 zZ" cr <2 pn-l 0
LO lé LO
0 - Zn+1 Cn+1 Bn O
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This is a part of a short exact sequence of chain complexes. From this, we
have a long exact sequence (because the differential of the complexes B and Z
are trivial)

B" & 7" « H'(C;G) « B"! &k zn-l

The connecting homomorphism is i}, by definition: one takes an element of Z",
pulls back to C", applies § to get an element in C"*!, then pulls back to B".
That is, we first extend a homomorphism f : Z, — G to f : C, — G, then
composes it with a4, finally view it as a map from B,,. So it is nothing but the
restriction of f from Z, to B,.

Or we could also see from its dual operation: given b € B,, so b = dc, then
the first step maps it to ¢, second takes 9, thus gets b back which is in Z,,. The
composition is the inclusion i,.

Hence we have

0 « keri;, « H,(C;G) « cokeri,_; « 0.
The final step for Step 1 is
Lemma 4.18. ker(i},) = Hom(H,(C), G).

Proof. Since the elements of ker(in*) are homomorphisms Z, — G that vanish
on By, that is they are homomorphisms H, = Z,,/B, — G. O

Under this identification, the natural map & is the map 0 « keri) «
H"(C;G). And the short exact sequence splits because of the induced map

*

p -

4.1.4 Ext functor

Recall that to complete Step 2, we only need to prove that for any two (2-step)
free resolutions of abelian group H, the homology groups are isomorphic. Then
the notation Ext(H; G) is well defined.

We have the following.

Lemma 4.19. Suppose given free resolutions F and F' of abelian groups H and
H'. Then every homomorphism « : H — H could be extended to a chain map
from F to F':

f2 S fo

F2 F1 Fo H 0
N
F, F, F, H 0
A

Furthermore, any two such chain maps extending a are chain homotopic.
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Proof. Since F;’s are free, it suffices to define @; on a basis of F;. Given x € Fy,
a(fo(x)) € Hp. Since f(; is surjective, we have xb € F(') such that f(; (x) =
a(fo(x)). We define ag(x) = x'.

Let us define ay. For x € Fy, a¢(f1(x)) lies in im f1' = ker fol since f(;aofl =
afofi = 0. So define a1 (x) = x" such that ao(fi(x)) = fl/ (x'). Other @; could be
constructed inductively in a similar way.

To check any such chain maps are chain homotopic, we will only give a proof
for the case of 2-step free resolutions, i.e when F; = F' = 0 for n > 1. This is the
case we need since we are dealing with abelian groups.

If B; is another extension of @, then we want to find a chain homotopy
between {a;} and {B;}, that is, maps T : Fy — F1 and T_, : H — F,, such that
a;i—Bi = fi/ﬂTi + T f; fori =0,1. Welet T_y = 0. We let Ty(x) = x such that
f1(x") = ap(x) = Bo(x). This can be done because f,Bo(x) = frao(x) = afo(x)
and im fl/ = ker f(;. Hence ag — Bo = fl/To.

To check a; — 81 = Ty f1, we only need to check the relation after composing
f, which is injective. It is nothing but f; (a1 = B1) = (@0 — Bo) f1- O

Corollary 4.20. For any two free resolutions F and F of H, H"(F;G) =
H"(F';G).

Proof. Tt follows from above lemma and (cohomology version of) Proposition
4.10 by taking @ = id : H — H and by looking at the composition of two chain
maps, one from F to F' and the other from F to F. O

Hence we finished Step 2 and thus the proof of Theorem 4.16 is complete.
Now the calculation of cohomology groups is reduced to that of Ext. So we
will list the properties of Ext.

Proposition 4.21. Ext has the following computational properties:
1. Ext(H® H ,G) = Ext(H,G) ® Ext(H , G),

2. Ext(H,G) =0 if H is free abelian,

3. Ext(Z/nzZ,G) = G/nG.

Proof. 1. Take the direct sum of the free resolutions.
1. Use 0 » H —» H — 0 as the resolution to calculate.
3. Use 0 > Z 57 — Z/nZ — 0 and the calculation in Example 4.12 O

Corollary 4.22. If the homology groups of chain complex C of free abelian
groups are finitely generated and H,(C) = F,, & T, where F,, is free and T, is
torsion, then H"(C;Z) = F,, ® T;,—1 .

Proof. 1t follows from Theorem 4.16 and Proposition 4.21, and the fact Hom(Z/mZ,Z) =
0, Hom(Z,Z) = Z. O

Next property shows how Ext functor remedies the left exactness of Hom
functor.
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Proposition 4.23. Let 0 > A — B — C — 0 be a short exact sequence of
abelian groups. Then there is a siz-term exact sequence

0 - Hom(C,G) —» Hom(B, G) — Hom(A, G)
— Ext(C,G) — Ext(B,G) — Ext(A,G) — 0

Proof. Any abelian group B has a free resolution with only two terms.
0—>F1—)F0—)B—>0

The group Fj has a generator for each generator of B and F; has a generator
for each relation of B.
The short exact sequence

0—-A—>B—->C—0.

can be extended to a short exact sequence of chain complexes

0 0 0
0 FA FB FE 0
0 F FB FE 0
0 0 0

Applying Hom(—, G) to the F; we get a short exact sequence of chain complexes,
and this short exact sequence gives a long exact sequence in cohomology

0 — H°(f€,G) = Hom(C, G) — H°(F2,G) = Hom(B, G) — H°(F*,G) = Hom(A, G)
— HY(F€,G) = Ext(C,G) — H(F8,G) = Ext(B,G) — H' (FA,G) = Ext(A,G) — 0

O

Universal coefficient theorem and Kiinneth formula for homology

Instead of Hom, we apply ® to a free resolution 0 — F; — Fy —» H — 0.
This operation is right exact. Recall that, by similar idea as Ext, we have used
Tor to measure its non-exactness, i.e. Tor is the first (and the only non-trivial)
homology of the new complex. For the reader’s convenience we record Theorem
3.151 again:

Theorem 4.24 (Universal Coefficient Theorem). If C is a chain complex of
free abelian groups, then there are natural short exact sequences

0 — Hp(C)® G — Hy(C,G) — Tor(Hp_1(C),G) — 0

for all n. These sequences split, though not naturally.
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Finally, we want to remark that the universal coefficient theorem in homology
is a special case of the Kiinneth theorem. We first introduce the tensor products
of chain complexes.

Let (C,0) and (D, d) be chain complexes, where C; and D; are zero for i < 0.
The tensor product of chain complexes is

(C® D)y =®prq=nCp ® Dq,
with differential
d(cp®dy) =(0cp) ®dyg + (=1)Pc, ® (0dy).
This indeed defines a chain complex since
39(cp®d,) = d((dcp)®dy+(~1)Pc,®(0d,)) = (-1)P " dc,®ddg+(~1)" dc ,®dd, = 0.

Tensor product of chain maps is defined as (f®g)(c,®dy) = (fpcp®(8qdy)-
An easy checking shwos it commutes with 9. We also know that chain homotopy
is compatible with tensor products.

Theorem 4.25 (Kiinneth formula). For a free chain complex C and an arbi-
trary chain complex D, there is a natural short exact sequence

0= ®prg=nHp(C)®H, (D) = H,(C®D) = &p1g=n-1 Tor(H,(C),H,(D)) — 0.
1t splits but not canonically.

The proof of this theorem requires acyclic models theorem which is beyond
scope of this note: see the note “Acyclic Models” (in preparation.)

Note that we obtain Theorem 4.24 by taking D as the complex Dy = G and
D; =0 for i # 0 in Theorem 4.25.

4.1.5 Singular cohomolgy

This is an explicit example in geometry of choosing the chain complex and
cochain complex.

Recall that a standard n-simplex is the convex set A, ¢ R™! consisting of
all (n + 1)-tuples of real numbers (vg,...,v,) with v; > 0, vo +---+v, = 1.
A singular n-simplex in X is a continuous map o : A" — X. The singu-
lar chain group S,(X) is the free abelian group generated by the singular n-
simplices. The boundary homomorphism 4 : S,(X) — S,-1(X) is defined as
(o) = Y; (=i [vo, -,V ...,v,] where v; implies to omit v;. Then we were
able to define the singular homology group of X, and denoted by H, (X).

Definition 4.26. The singular cohomology of a space X, denoted H?(X;G) q >
0, is the cohomology of the singular cochain complex $9(X) = Hom(S,(X),G)
with the coboundary ¢ : $9(X;G) — S9*!1(X;G) being the dual of 9, thus any

¢ € S9(X;G), 6¢ is the composition Sq11(X) 9, Sq(X) i> G.
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Explicitly, for o : A1 — X,

50(0) = D (=1 Gl (v v )

Geometrically, we can understand a singular cochain & € S9(X,G) as a
function that assigns a scalar to every singular simplex o : A; — X. The
pairing

SUX;G)x Sq(X;G) = G

is sometimes called integration, because it is an algebraic analogue of integrating
a differential form over parametrised manifold.
For example,

e A 0-cochain is simply a function (of sets) f : X — R, since O-simplices
correspond to points in X.

e A 1l-cochain assigns a scalar to every continuous path y : [0,1] — X.
e A 2-cochain assigns a scalar to every map o : As — X.

The analogue of Stoke’s Theorem follows just by definition. If a € §,(X; G) and
£ €84-1(X;G) then
£(0a) = (6¢)(a).

L]

For example, given a 1 simplex y : [0,1] — X and 0-cochain f: X — R, we
have

or in integral notation

/5f = [ f=ry@)=y(0) = f(y(1) = f(¥(0)).
Y Ay

This example really illustrate why the boundary of a 1-simplex requires signs:
to recover the Fundamental Theorem of Calculus.

An easy consequence is that this integration pairing descends to homology
and cohomology: we will discuss this in 4.2.1.

Recall that in multivariate calculus, you multiply (wedge) differential forms
together, and cohomology becomes a ring. This is still true in more general
approaches such as singular cohomology. On the homology side, one has an
intersection pairing, but this is harder to describe and only available for really
“nice” spaces.

Perhaps another feature of cohomology worth mentioning is that is con-
travariant: cohomology classes pullback from the target to the source under a
map of spaces. This important in the theory of characteristic classes, where
such classes are pulled back from to maps to certain universal spaces. Such
classes measure the amount of “twisting” of bundles.
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For a pair (X, A), we could also talk about relative groups. Let S,(X,A) =
Sq(X)/S4(A) and S, (X, A; G) = Hom(S, (X, A); G). The elements of (X, A; G)
are n-cochains taking the value 0 on singular n-simplices in A. Thus

.o STTHX,A:G) - S9(X,A;G) = STTHX,A;G) — -

is obtained by dualising the singular chain complex of X.

Hence we have relative groups H*(X, A; G) := H(S*(X, A; G)). A map of pairs
f:(X,A) - (Y, B) induces homomorphisms f*: S*(Y,B;G) — S*(X,A;G) and
H*(f):H*(Y,B;G) > H*(X,A;G).

We could describe relative cohomology groups in terms of exact sequences.
Recall that the short exact sequence

05 S4(A) 5 S,(X) D S,(X,A) >0

splits. By the splitting exactness of Hom functor, the dual

0« S9(A,G) <= $9(X,G) &= $9(X, A:G) — 0

is a split exact sequence as well. Since i* and j* commute with ¢, it induces a
long exact sequence of cohomolgy groups

S HI(X, A;G) L HI(X;G) S HI(A;G) S HTY (X, A:G) — --- .

Let us describe the connecting homomorphism H"(A; G) 2, H™1(X,A;G). For
¢ € Z"(A;G), we first extend it to a cochain ¢ € S"(X;G), by assigning the
value 0 on singular simplices not in A. Then 6X(¢) = ¢d € ™ (X;G). It
is §"*1(X, A; G) because the original ¢ is a cocycle in A, i.e taking the value
0 in B"(A), which means 6%X(¢) = ¢ takes the value 0 on S"*'(A). Fi-
nally it is Z"*1(X, A; G) because 654(6%¢) = 6X(6%¢) = 0. Its class [6%X¢] €
H™L(X, A; G) is 6[].
A more general long exact sequence is for a triple (X, A, B), induced by

0« S9(A, B:G) <= S9(X,B:G) &= S9(X,A: G) — 0

When B is a point, it induces the long exact sequence for reduced cohomology.

4.1.6 The Eilenberg-Steenrod Axioms for cohomology

For simplicity, we omit the coefficient G in our notation. A cohomology theory
consists of 3 functions:

1. For any integer n > 0 and any pair of spaces (X, A), we have an abelian group
H"(X,A).

2. For any integer n > 0 and any map of pairs f : (X,A) — (Y,B) (f maps A
to B), we obtain homomorphism H(f)" : H*(Y,B) — H"(X, A).
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3. For any integer n > 0 and any pair of spaces (X, A), we have a connecting
homomorphism 6 : H"(A) — H™(X, A).

These functions satisfy the following 7 axioms:

1. Unit: Ifid : (X, A) — (X, A) is the identity, H(id) is the identity.

2. Composition: H(go f) = H(f) o H(g).

3. Naturality : Given f : (X, A) — (Y, B), the following diagramme commutes:

H(A) <A gy

(f)n+1

4. FEzxactness: The following sequence is exact:

-— H"(X, A) H”(X) H"(A) 2 H™U(X, A) —
where i : A — X and j : (X,2) — (X, A) are inclusions.
5. Homotopy: If f ~ g are homotopic maps of pairs, then H(f) = H(g).

6. Ezcision: Given (X,A) and U c X such that U C int(A). Then the inclusion
i:(X\U,A\U) — (X, A) induces isomorphisms in cohomology.

7. Dimension: Let P be a one-point space, then

Py = {G n=0
0 n#0

There are many generalised cohomology theories which satisfy all the ax-
ioms except probably the dimension axiom. The Eilenberg-Steenrod uniqueness
theorem says that there is a unique cohomology theory satisfying all the axioms
in the category of finite cellular spaces. Unfortunately the proof is beyond the
scope of the current note. But we could prove a weaker version.

Suppose H" (X, A) and K" (X, A) are cohomology theories, and ¢ : H*(X,A) —
K*(X,A) is a natural transformation of cohomology theories, i.e. it commutes
with induced homomorphisms and with coboundary homomorphisms in long
exact sequence of pairs.

Theorem 4.27 (Weak form of Eilenberg-Steenrod Uniqueness). Suppose ¢ :
H*(X) — K*(X) is an isomorphism when X = {pt}. Then ¢ is an isomorphism
for any finite cellular spaces.

We will give a proof in §§4.1.7.

A few more words about Eilenberg-Steenrod axioms. If we want to prove
uniqueness for a larger category, more conditions are needed for the uniqueness.
For the category of cellular spaces, an eighth axiom is added to guarantee its
uniqueness.
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Milnor’s Additivity axiom in “On axiommatic homology theory” Let
X = UXa be disjoint union. Then the induced homomorphism [, i}, : H"(X) —
[T, H*(X4) is an isomorphism.

This axiom has force only if there are infinitely many X,. The finite sum
case is a corollary of the following Mayer-Vietoris Sequence. There are also
examples of cohomology theories which are not additive (James and Whitehead:
“Homology with zero coeflients” ).

4.1.7 Mayer-Vietoris Sequences

By using Eilenberg-Steenrod Axioms, we can form the Mayer-Vietoris Sequence
for cohoomoogy just as we did for homology. The model in our mind is X = AUB
with A and B open in X. But for the ease of application, we use the following
setting.

Definition 4.28. For U c A c X, the map (X\U,A\U) — (X, A) is an excision
if the induced homomorhism H"(X,A) —» H"(X \ U,A \ U) is an isomorphism
for all n.
Example 4.29. The inclusion (D?,S"71) — (S",D") is an excision. We cannot
apply the Excision Axiom directly. But look at the exact sequences from exact-
ness axiom corresponding to the two pairs, we have H*1(S",D") = H*(S") =
H(S"") = H* (D", 8" 1) when i > 0 by noticing H"(D") = H"(pt). The rest
of two identities also follow from the exact sequence by knowing H(D") =
HO(S™") = G.
Definition 4.30. Suppose A, B C X, such that

AUB=X

Both (A,ANB) — (X,B) and (B,AN B) — (X, A) are excisions.
Then (X; A, B) is an excisive triad.
Ezample 4.31. Let X = AU B with A and B open in X. Then (A,ANB) =
(X\U,B\U) where U = B\ (AN B). Since X\ U = A, U is closed and
UcB-= f (B). Then the excision axiom shows this is an excision.
Ezample 4.32. (S";D},D") is an excisive triad.

Theorem 4.33. Suppose (X; A, B) is an excisive triad. Then there is a long
exact sequence

(i) -
o HYX) AL Ay @ HY(B) 2B HY (AN B) S HYU(X) — -

Recall that a similar Mayer-Vietoris sequence was derived for homology as
the long exact sequence associated to the short exact sequence

0—>C.(ANB) > C.(A)®C.(B) > C.,(A+B) — 0.

We could prove it similarly for singular cohomology say, but not for a general
cohomology theory.
We need the following purely algebraic lemma:
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Lemma 4.34 (Barratt-Whitehead). Suppose we have the following commuta-
tive diagramme with exact rows

Jfn 8n hy
An Bn Cn An—l
lan lﬁn lyn la’n—l
T T T e

in which every third map y; : C; — C; is an isomorphism. Then there exists a
long ezxact sequence

n>%n n‘r’, ’hn;ll;
-—>An(fa)Bn€BAnﬂ J B, Yn' 8

An_l_)...

This is a standard diagramme chasing argument, and we only sketch the
proof. (See The First Non-Vanishing Group of an (n+l)-AD M. Barratt, J.
Whitehead Published 1 July 1956 Mathematics Proceedings of The London
Mathematical Society.)

Proof. That this is a chain complex is easy to check in terms of commutativity
of the diagramme. To check the exactness, we have 3 parts:

1. ker(B, — f,) € im(fy, @n): Assume B, (b) = £, (d).

2. ker(h,y;'g,) C im(B, — f,): Let e € ker(h,y;'g,). By exactness at C,, we
have b € B, such that g,(b) = y;'g,(e). So B.(b) —e € kerg, = im f,.
Choose any element d in it, we have e = 8,(b) — £, (d).

3. ker(fu-1,an-1) C im(hny,jlg'n): First find an element in C,,. Then an element
in B;l.
Proof. (of Theorem 4.33) We have

. .
e —= H"N(X) Lynfl(lg) —6>H"(X,B) — S HY(X) — -

Lff« lf’é Lvn ljZ

~--—>H”‘1(A)T>H"‘1(AHB)—6>H"(A,AOB) H"(A)
A

’
n

where 7y, is an isomorphism since (X; A, B) is an excisive triad. Hence we have
the Mayer-Vietoris sequence by Barratt-Whitehead lemma. O

Ezample 4.35. (Unreduced cones and unreduced suspensions) Given a space X,
the unreduced cone of X is

X x [0,1]
('x’ 1) ~ (y’ 1)7\7/)5»)7 S X

C(X) :=
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and the unreduced suspension is

X x [0,1]
(x,0) ~ (3,0), (x, 1) ~ (y,1),¥x,y € X

Then (Z(X);C+(X),C-(X)) is an excisive triad. Use the Mayer-Vietoriis se-
quence and the fact C(X) =~ C_(X) ~ pt, we have H*(X) = HF1(ZX). If X is
connected, H'(Z£X) =0 and H°(ZX) = Z.

As a special case, £S" = §"*1, 50 it can be used to calculate the cohomology

of $" inductively. The reader may wan to to complete the calculation.
Given a continuous map f : "' — A for n > 1. We have

2(X) =

AuD”
X=C =AU;D" = .
(f) I f(x) ~x,¥x € Sn-1

Notice that if f ~ g : S"! — A, then C(f) = C(g). Also f extends to a map
f:D" - C(f).
Proposition 4.36. 1. The inclusion A — X induces isomorphisms H1(A) =

H4(X) for q # n,n—1.

2. There is an exact sequence

0 — H™ 1 (X) - B 1(4) L5 B 1(8"1) = H'(X) = H"(A) — 0

Proof. Use the cohomology sequence for pairs (or Mayer-Vietoris sequence). For
both items, use H (X, A) = H (D", S""') = H'~'(S""!) and previous calculation
for H*(S™). O

Ezample 4.37. Recall CP* = (C"*1\0)/~ where x ~ y if there exists 1 € C\ such
that Ax = y. We write CP" = CP"~! Uy D*", where f : $*""! — CP""! is the
natural factorisation map. The above sequence tells us hat for 0 < m < 2n,

0— H2n—1(82n—1) — H2n(CPn) — O,
0 — H™(CP") - H™(CP" 1) - 0.

HY(CP™) = Z since it is path connected. By induction we have

Z m=0,2,...,2n
0 otherwise.

H™(CP") = {

The proof of Theorem 4.27 Now we can finish the proof as announced.

Proof. We use induction. The dimension axiom gives us the dimension 0 case.
Assume it is done for all complexes with dimension less than or equal to n — 1,
and X be a cellular space of diimension n. Note that X is obtained by attaching
n-cells to an (n—1) cellular space. So we could do these attachment one by one
(but A will possibly have dimension n then).
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Hence the statement is reduced to the following situaton: Suppose the result
is true for A, and prove the statement is true for X = C(f) := AUy D". Item
1 of Proposition 4.36 tells us that ¢ : H?(X)toK?(X) is an isomorphism for
q #n—1,n. For the rest of ¢’s, look at

0 —— H" Y(X) — H" Y(A) — H" }(s"}) ——= H"(X) H"(A)
0 —— K" 1(X) —= K" }(A) —= K" }(§"!) ——= K" (X) K"(A)

As we have shown in the suspension calculation, « is also an isomorphism. So
the five Lemma completes the proof. O

The five lemma, also shows that H*(X, A) = K*(X, A). Notice that for infinite
cellular spaces, we need Milnor additivity in the above argument. A telescope
argument (i.e, taking colimits) could reduce an infinite dimensional case to a
finite dimensional case.

4.2 Products

In this section, we take the coefficients in a commutative ring R with a unit.
The most common choices are Z, Z/nZ or Q.

4.2.1 Cup Product for Singular Cohomology

There is a product structure in cohomology. We start with singular cohomology.
Let o : AP*? — X be a singular simplex. By the front p-face or ,o, we mean

vp1- Similarly, by the back g-face or oy, we mean |y, . v,.,1-

.....

Then we define the cup product at chain level:

Definition 4.38. Given ¢ € SP(X) and ¥ € S7(X), the cup product ¢ Uy €
SP*4(X) is defined by

(pUY)(0) = (Tl [vgvp]) * Wlivpevpig])-

The reader may want to consider S' v S' v §2 and 72 = S' x S! and apply
the cup product on them to grasp the idea. (Note that their homology groups
are isomorphic, that is, homology can’t distinguish these non-homeomorphic
spaces.)

Lemma 4.39. For o : SP(X) and ¢ € S9(X), we have

6(pUY) =69 Uy + ()PP U by.
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Proof. For o : A" 5 X we have

p+1

5o UP (@) = D (1) (v Firroiper DT s vpagin])
=0
ptg+1

Add and cancel the last of the first sum and the first of the second sum, we have

S(@UY). O
Corollary 4.40. There is a well defined cup product

HP(X) x HY(X) 5 HP*9(X).

Proof. ZP(X) x Z9(X) = zP*4(X). If ¢ € ZP(X), ¢ Uy = (=1)%8(¢ U ), thus
ZP(X) x B4(X) 2 BP*4(X). Similarly B?(X) x Z4(X) < BP*4(X) O

Relative cup products Let (X, A) be a pair of spaces. The formula which
specifies the cup product by its effect on a simplex

(‘P U lﬁ)(O’) = 90(0-|[eo ..... e,,]) . (‘mo‘[ep ..... e,,+q])
extends to relative cohomology.

For, if o : AP*% — X has image in A, then so does any restriction of o.
Thus, if either ¢ or ¢ vanishes on chains with image in A, then so does ¢ U .
Hence we get relative cup product maps

HP(X;R)x H1(X,A;R) — HP*1(X,A;R)
HP (X, A;R) x H1(X;R) — HP* (X, A; R)
HP (X, A; R) x H4(X, A; R) — HP*4(X, A; R).

More generally, assume we have two open subsets A and B of X. Then the

formula for ¢ Uy on cochains implies that the cup product yields a map
SP(X,A;R) x S%(X,B;R) — SP*4(X,A + B;R)

where SP (X, A+ B; R) denotes the subgroup of S” (X; R) of cochains which vanish
on sums of chains in A and chains in B.
The natural inclusion

SP(X,AUB;R),— SP(X,A+B;R)

induces an isomorphism in cohomology. For we have a map of long exact coho-
mology sequences

HP(AUB) — HP(X) — HP(X,AU B) —— HP*1(AU B) —— HP*1(X)

L | | |

HP(A + B) —— HP(X) — H” (X, A + B) —— HP*'(A + B) —— H"*'(X)
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where we omit the coefficients. The subdivision argument 3.47 and our results

on cohomology of free chain complexes imply that HP (AU B; R) = HP (A+B;R)
is an isomorphism for every p. Thus, the Five-Lemma implies that

HP(X,AUB;R) = H”(X,A + B; R)

is an isomorphism as well. Thus composition with this isomorphism gives a cup
product map

HP(X,A;R) x H1(X,B;R) — HP*9(X, AU B;R).

Now one can check that all the formulae we proved for the cup product also
hold for the relative cup products.

Lemma 4.41. For a map f : X — Y, the induced maps H"(f) : H*(Y;R) —
H"(X;R) satisfy H'(f)(a U B) = H"(f)(a) U H'(f)(B), and similarly in the
relative case.

Proof. Let a and B represented by ¢ € SP and ¢y € S7 respectively. Let o :
AP*4 — X. Then f(o) is a (p + g)-simplex in Y. So

H*(f)(pUy)(o) = (¢ Uy)(f(0))
= ¢(f (oo D W) vpvpig])
= H () @) (o, VH (DY (T vp. o vpig])
=H"(f)(¢)(c) UH (f)(¥)(0).

O

It is easy to check that the cup product is associative (even at chain level):
(UY)UT = ¢ U (¢ Ut). We also know there is a unit: Let 1 € S°(X) be the
function taking value 1 on any point of X, then 1Ua = a.

Proposition 4.42. If « € H?(X;R) and B € HY(X;R) then
aUB=(-1)P1pUa.
Proving this proposition requires a substantial effort.

Proof. For a singular p-simplex o : [vo,...,vp] = X, let & = o or where r is
the linear map determined by r(v;) = v,—;. Then we define p : SP(X) — SP(X)
by p(o) = €,0 where €, = (—l)w.

We want to show that p is a chain map which is chain homotopic to the
identity. Once we have that, the theorem follows:
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with €p4q = (=1)P9€p€,, showing that

S (p)¢ U S (o) = (-1)P1S"(p") (¥ U ¢)

at chain level. Since p induces identity in cohomology, we have aUB = (-1)P4BU
a when passing to the cohomology level. Now the proof reduces to the following
two lemmas. O

Lemma 4.43. p is a chain map.

Proof. For an n-simplex o,

They are equal since €, = (—1)"€,_1. O

Lemma 4.44. The chain map p defined above is chain homotopic to the iden-
tity, and so it induces the identity homomorphism in cohomology.

Proof. We need the fact that there is a natural division of [vqg...v,] X I into
n + 1 simplices. (Note that the product of two simplices is not a simplex in
general.) If we denote (v;,0) by v; and (v;,1) by w;, then these simplices are

0 = [voy .o s Vis Wiy Wy

Thus tracing out along the bottom face until the position i, then jumping to
the top face, tracing out the rest starting with the position i.
We define the prism operator P : S, (X) — Su+1(X) by

where 7 : AX I — A is a projection. We will leave out o o & for the sake of
notational simplicity in the remainder of this proof.

AP (o) = Z(—1)f(—1)fe,,_i [V0s e Ve s Vi Wi oo s W]

j<i
+ DD D) G Vo i W Wi
j=i
PO@) = ) (~) (- €nmia[Von oo Vi W i)
i<j

+ Z(—l)i_l(—l)jén_i [Vo, . ,’1;]', e s ViaWhy oo ny Wi]

>
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Figure 4.1: Prism decomposition for n =1 and n = 2

Since €,—; = (=1)"fe,_;_1, the terms with i # j cancel in the two sums. The
terms with j =i give

enlWns . wol + >~ € ilVo, s Vi1, Was il
i>0

D i Vo Vi W Wit ] = [Vo vl

i<n

The two summations cancel, as replacing i by i — 1 in the second sum produces
a new sign (-1)"*'¢,_;+1 = —€,—;. Thus the remaining two terms are just

OP(0) + PO(0) = €x[Wn,...,wol = [vo,...,vn] = p(0) — 0.
Hence P is the chain homotopy between p and the identity. O

Remark 4.45. This proof should be read using picture like Figure 4.1. P is
the map from a simplex to get an oriented cylinder with a simplicial division
compatible with the original simplex. Then dP is the oriented boundary of the
cylinder. P9 is the part of the boundary without the top face and the bottom
face and with the opposite sign. Cancellations could also be interpreted: the
cancellation on i # j is the cancellation on the boundary without the top face
and the bottom face. Then second cancellation above is the intersection face of
different simplices in the division with different orientation.

To summarise the above discussion, we have obtained

Theorem 4.46 (The cohomology ring). Let X be a topological space and R be
a commutative Ting with unity. Then

H*(X;R) = ®H'(X;R)
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is a graded (skew) commutative ring with identity under the cup product, i.e.
if « € H"(X;R) and B € H"(X;R) then a U B = (-1)"BUa € H""(X;R).
Moreover H*(X; R) is a graded R-algebra.

Ezample 4.47. H*(S™,Z) = %, where the generator of H% corresponds to 1
and the generator of H" is a,,.

Actually, we are ready to calculate the cohomology ring of projective spaces
RP" and CP". But we would postpone these after we have studied Poincaré
duality. We remark that all the above results extend to relative case, i.e the
case where H*(X; R) being replaced by H*(X, A; R).

Cap product

For any space X, there is a bilinear pairing operation between cochains and
chains.

Definition 4.48. Let a € S9(X) and o € S,.4(X). Then the cap product
ano € S,(X) is defined by

anNo ={a,0,....vpgl)  Olvo.vpls O aN0T =(a,04) po.
The cap product at chain level has the following properties.
Proposition 4.49. 1. Duality: For a,b € S*(X), ¢ € S.(X), we have

{aUb,c)={a,bnc).

2. Associativity: For a,b € §*(X), ¢ € S.(X), we have

(aub)ync=an(bnc).

3. Existence of unit:
l1Nnc=c.

4. Naturality: Let f: X — Y be a map. For b € S*(Y) and ¢ € S¢(X), we have

b (H.(f)e) = H (f)(H (f)b o).

All these are easy to derive from Definition 4.48 and the properties of the
cup product.
To define cap product on (co)homology, we need

Proposition 4.50. For a € S4(X) and o € Sp+q(X), we have

Olano)=(-1)P(ba)Nno +an (00).
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Proof. For simplicity, we omit the notation o in the calculation.

p+q
andvl,...,vpegl = Z(—l)’aﬂ [Vo,. s Vise vty Vpugl

i=0
p .

- Z(—l)’(a, Voo Vpag D [V0s o5 Vis oo V]
i=0

Pty

+ (_l)p_l Z (_l)l_p+1<a m [fol, e ”"}\ia LR Vp+q]>[‘}05 R Vp*l]
i=p-1

=d(ano)+ (-1)P Yan Ovp-1,.- s Vprg) Vo, ..., vp-il

=d(ano)+ (-1)P"Ha)No.
Hence it induces the cap product between homology and cohomology:

HY(X) X Hpiq(X) = Hp(X).

De Rham cohomology

Let M be a smooth manifold of dimension n. Let Q(M) be the (real linear)
space of g-forms, d : Q7(M) — QI+ (M) be the exterior differential. Then we
have the de Rham cochain complex

0L Lot L. Loy Lo

We denote he space of closed (exact) k-forms, i.e k-forms w with dw = 0 (w = dn
respectively), by ZSR (M) (and BZR(M) respectively). We denote its cohomology
by H} (M), which is called the de Rham cohomology of M.

The cup product for de Rham cohomology is just the wedge product w A 5.
Since for k-forms w and n we have

dlwAn) =dwAn+(-1)*w Ady

we know it descends to a product on cohomology by the same argument as
Corollary 4.40. A notable fact for de Rham cohomology is that the cup product
is graded (skew) commutative even at the chain level: x A y = (=1)*IVly A x.

There are several reasons prevent us from exploiting the Eilenberg-Steenrod
uniqueness theorem to claim it is isomorphic to the singular cohomology H*(X; R).
The main reason is that the de Rham cohomology is only defined for smooth
manifolds. The lack of relative version of de Rham theory could be compensated
by Thom isomorphism (4.4.6).

However, de Rham theorem does ensure this isomorphism.

Theorem 4.51 (de Rham). H} (M) = H*(M;R) as cohomology rings.
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More precisely, we need two facts for this theorem:

1. Let S3™(M;R) be the real space spanned by smooth singular g-simplices
o : A1 — M, then the inclusion

S (M;R) — So(M;R)
is a chain homotopy equivalence. Then its dual

S*(M;R) — S5,,(M;R)
is a cochain homotopy equivalence.

2. We could take integration of a g-form on a singular chain of dimension g,
this is a bilinear function

QM) x S"(M;R) — R, (w,a)»—)/a).

[ - [ do.

In other words, exterior differentials are dual to boundary maps. This pro-
vides us a cochain map

Stokes’ theorem tells us

Q* (M) — S;,,(M;R).

If we show that this is a cochain homotopy equivalence, we will finish the proof
of de Rham theorem. The proof proceeds as the same pattern as the proof of
Poincaré duality which we will provide in the next section.

4.2.2 Cross product and Kiinneth formula

We want to understand the cohomology ring of a product space. Let us first
define the cross product in cohomology.

Definition 4.52. Let p; : X XY — X and ps : X XY — Y be projections. We
define the cross product by

xxy=pi(x)Ups(y) € H""(X XY;R)
for x e H™"(X;R) and y € H"(Y; R).
y

To be more precise, for o : A" — XY, let oy = py oo : A" — X and
09 =pg oo : A" — Y. Then for ¢ € S"(X) and ¢ € S"(Y), we have

(o x¥) (o) = ¢l verccvm DY (T2 (v vimin])
We could also extend this to a relative version
H™(X;A)x H'"(Y;B) —» H™"(X xY; (X x B) U (A XY)).

Since X is bilinear, it factors through the tensor product (by the universal
property) to give a linear map (also denoted by X)

H*(X;R) ®g H*(Y;R) — H*(X XY; R).
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Proposition 4.53. For any a,c € H*(X;R) and b,d € H*(y;R) with ¢ €
H™(X;R) and ¢ € H*(Y; R) we have

(axb)U(cxd)=(-1)"(aUc)x (bUd).

Proof. (axb)U(cxd) = (pjaUpib)U(picUpid) = (-1)""pi(aUc)ps(bud) =
(=)™ (aUc)x (bUd). O

Ezample 4.54. Using Proposition 4.53 with induction on n, we can determine
the cohoomlogy ring H®(T™") where T = S'. T" is the product of n copies of
S! whose cohomology as a ring is Z[x]/x?; there are no interesting cup prod-
ucts. By the Kiinneth formula, the cohomology of T" is the graded tensor
product, as algebras, of n copies of Z[x]/x? (note that all the cohomology
groups involved are free). This is precisely the exterior algebra Az[x1,...,x,] =
Z|x1, ... ,x,,]/(x?,x,-xj + x;x;), with each generator in degree 1. In particular,
HK(T™) = AZ(H1 (T™) naturally, and under this isomorphism the cup product
corresponds to the wedge product.

Remark 4.55. The above example is a special case of

1. Hopf’s theorem which asserts that the cohomology algebra of an H-space is
a Hopf algebra.

2. The structure theorem which asserts that a Hopf algebra over a field of
characteristic 0 is a free skew-commutative graded algebra.

The following Kiinneth formula (in a sense) generalises the previous example.

Theorem 4.56. The cross product H*(X;R) ®g H*(Y;R) — H*(X XY;R) is an
isomorphism of rings if X and Y are cellular spaces and H*(Y;R) is a finitely
generated free R-module for all k.

We would resort to Theorem 4.27. We show Theorem 4.56 for finite cellular
spaces. (For general cellular spaces,, we need Milnor additivity axiom as we
mentioned before.) Consider the following functors:

R (X,A) = @1 j-n(H' (X, A; R) @8 H' (Y} R)),
K" (X,A) =H" (X xT,AXY;R).

We have ¢ : h"(X,A) — k" (X, A) given by the cross product. So we need to
show

1. h* and k° cohomology theories.
2. 7 is a natural transformation.

Proof. (of Theorem 4.56) First we check that 2* and k* are cohomology theories.
All axioms are easy to verify. A few words for exactness axiom. The exactness
for k® is trivial. For A*, it is where we use the freeness of H*(Y; R).

The naturality of ¢ with respect to maps between spaces is from the natu-
rality of cup products. To show the naturality with respect to the coboundary
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maps, we have to check the following diagramme commutes. Note that we omit
R in the diagramme.

H*(A) x H (v) -2 gkl (x, A) x H ()

X X

H**“(AxY) — HM Y (X xY,AXY)

To check this, start with an element (a, b) represented by cocycles ¢ € S¥(A) and
W € SE(Y). Extend ¢ to a cochain g € SK(X;R). Then (¢, ) maps rightward to
(69,¢) and then downward to p}(69) U py(¥). On the other direction, (¢, )
maps downward to py(¢) U py(¢) and then rightward to 6(p3(9) U py(¥)) =
px(09) U py (¢).

Note that the symbol ¢ stands for either the chain level and the connecting
homomorhism, which might be confusing. O

Ezample 4.57. Now it is more straightforward to show
H*(T") = Az[x1,...,%.].
Similarly, one could also show

[an7 am]
H*(S" x §™) = ~—2md
ag,am)

An alternative way to define cross and cup products

We outline a construction of cup products for cellular spaces. Note that by
Eilenberg-Steenrod uniqueness, this cup product is the same as that of singular
cohomology.

The cross product in this setting is quite natural. Start with that of chain
level. Take cells ¢! € X and e/ € Y, then we could send it to the product
cell e/ x e/ in X x Y. (Note that, unlike simplices, products of cellular spaces
are again cellular spaces.) One could extend this map by tensor product from
Co(X) ® CY to Co(X xY). Then for a pair of cocycles z1,z2 of X and Y, it thus
yields a cocycle 71 X zo. This defines

H(X)x H/ (Y) » HT (X x Y).

One could check it is the same as our previous defined cross product.
Then by using the diagonal map A : X — X X X, x — (x,x), we can define
the cup product as the composition

H(X) x HE (X) 5 B (X) 25 HR(X).
This is our previous cup product since

A*(ax b) = A (p}(a) U p3(b)) = a Ub.
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But unfortunately, this cup product is not defined at the level of cellular cochains,
which prevents us to prove the properties. To resolve this issue, one need to
find a cellular map which is homotopic to A. This is in general true for maps
between cellular spaces. And for our case X — X X X, the map is actually a
slight modification of P (called Alezander-Whitney chain approzimation) used
in the proof of graded commutativity of the cup product. We leave here and
will not go through the detail.

4.2.3 Ljusternik-Schnirelmann category

Definition 4.58. The Ljusternik-Schnirelmann category cat(X) of a topological
space X is defined to be the smallest integer k such that there is an open covering
{U;}1<i<k of X such that each inclusion U; < X is null-homotopic (we say U; is
contractible in X), i.e homotopic to a constant map.

Ezample 4.59. Notice the subtly of the definition. S"~! is contractible in D",
although S"~! itself is not a contractible space.
Ezample 4.60. cat(S') = 2. Actually, for any suspension X(X), cat(Z(X)) < 2
since it can be covered by two contractible sets C;(X) and C_(X).

Notice that cat(M) < oo if M is a compact manifold since it can be covered
with finitely many sets homeomorphic to open discs. And in fact cat(M) <
dim M + 1. In general, there is no reason for cat(X) to be finite.

Definition 4.61. The cup length C1(X) of a topological space X is defined to
be

Cl(X) := max{n|3a; € H™(X) with m; > 0 such that ay U ...a, # 0}.
Proposition 4.62. For any space X, we have Cl(X) < cat(X).

Proof. Suppose cat(X) =n, so X = U;leUj with each Uy contractible in X. We
denote the inclusion by ig. Since iy is nullhomotopic, its induced homomorphism
ik® can be decomposed as H*(X) — H*(pt) — H*(Ux). So when g >0, i; =0:
H(X) — H%(Uy). By the cohomology exact sequence for the pair (X, Uy), we
know jp : HY(X,Ux) — HI(X) is surjective. So for any & € H*](X), we have
nk € H*(X, Uy) such that & = jp (k).

Now look at the commutative diagramme

H*(X,Uy) XX H*(X,Uy,) —> H*(X,U!'_,Uy)
| | k
H*(X) XX H*(X) —U>H'(X)

Hence é1U...& = ji(m)U...Ujr(n,) = j*(m V... Un,) = 0. The last equality
is because of the fact that H*(X,U]_,Ux) = H*(X, X) = 0. |

Example 4.63. An n-torus T" has cat(T") = n + 1.
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Example 4.64. So for any suspension, CI(X£(X)) = 1 if X is not weakly con-
tractible. This tells us that the cup product does not commute with the suspen-
siton and hence is not a stable property.

Ljusternik-Schnirelmann used the notion of cat to study critical points.
Their main theorem is the following

Theorem 4.65. Let M be a smooth connected compact manifold and f : MtoR
be a smooth function. Then f has at least cat(x) critical points.

Ezample 4.66. Any smooth function on T? has at least 3 critical points. We can
construct a smooth function on 72 with exactly 3 critical points. In fact, using
the viewpoint in the proof of the following theorem, we can construct a vector
field on torus with 3 singular points.

Actually, Ljusternik-Schnirelmann category is an example of general cate-
gory (It has nothing to do with “category theory”). We assume X to be a locally
contractible path connected space.

Definition 4.67. A category is an assignment v : B(X) — Ny (where B(X)
denotes the set of all subsets in X, i.e. the power set, and Ny = {0,1,2,...})
satisfying the following axioms:

e Continuity: for every A € P(X) there exists an open set U D A such that
v(A) = v(U).

e Monotonicity: if EA, € P(X) with A C B then v(A) < v(B).
o Subadditivity: for any A, B € B(X) we have v(AU B) < v(A) + v(B).

e Naturality: if ¢ : X — Y is a homeomorphism then for any a € B(X),
vy (6(A)) = vx(A).

e Normalization: v(@) =, and if A = {x0,...,x,} is a finite set then v(A) =.

To prove Theorem 4.65, we prove the following more general proposition
first.

Proposition 4.68. Let X be a locally contractible path connected compact met-
ric space, and ¢; be a global flow on X. Suppose there exists a Lyapunov function
@ : X — R such that ® strictly decreases along non-constant orbits of ¢,. Then
@ has at least v(X) critical points where v is any category.

Proof. Let X¢ := ®!(-o00,c]. A critical value for @ is a value such that ®~1(c)
contains a constant orbit. If ¢ is not critical, then for sufficiently small § > 0,
we can find ¢ > 0 such that

¢t(Xc+6) C XC*(S’

since ® strictly decreases away from the constant orbits. If ¢ is a critical level
and U is a neighbourhood of ®~1(c¢) then for small § > 0, we have, for ¢ > 0

¢t(Xc+6 \ U) c XC_(S.
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By naturality and monotonicity, v(X<*® \ U) < v(X°¢9).
For j=1,...,N =v(X), let

cj :=sup{c[v(X°) < j}.

Then ¢; = min{®} and cy = max{®}. Note that c; is a critical value of ® for
each j.

Now we want to prove either ¢; < ¢;+1 or @ '(c;) contains infinitely many
critical points. If the latter happens, the theorem follows immediately, so we
assume the latter does not happen. Suppose ®*(c;) = {xo,...,x,}. Then by
the continuity axiom, there exists a neighbourhood U of {xg,...,x,} such that
v(U) =1.

Then by the subadditivity axiom, we have

V(X0 < v(X9TO\U) + 1
<v(X97%) +1
<jJ.
Hence cji1 > ¢cj+ 6 > cj. Thus {c1 <--- <cn} are N = v(X) different critical
points. This completes the proof. O

Now we can complete the proof of Theorem 4.65.

Proof. (of Theorem 4.65) Give M a Riemannian metric and let Vf denote the
gradient of f with respect to this metric, i.e. the unique vector field determined
by

<(Vf)pv Vp> = dfp(vp)
for every vector field V. The critical points of f are precisely the zeros of Vf.
Let ¢, be the associated flow of V£, i.e.

de:(p)

7 = Vs

We claim that f is a Lyapunov function for ¢,:

d¢t(P))

—(f ¢:(p)) = df(

deo;
={(V ), (p)> %

d¢:(p) d¢:(p)
dt ’ dt

)

=~
<0

)

with equality holds if and only if %) = j.e. p is a critical point of f, and

¢, (p) is a constant orbit p. This completes the proof. O
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4.2.4 Higher products

Later we will see that the linking number of two spheres SP and S9 in RP*9+!
will be understood as the cup product of the cohomolgy ring of the complement
H*(RP+a+1\ (SPUSY)). There are links with 3 components with each two of them
are unlinked, but nonetheless all three are linked. The most famous example
is the Borromean rings. This rather complicated linking phenomenon for three

Figure 4.2: Borromean rings

or more spheres suggests the existence of a higher cup product: the Massey
product. We start with Massey triple product.

Assume [u], [v], [w] are cohomology classes of dimension p, ¢ and r re-
spectively, represented by u € ZP(X), v € Z49(X) and w € Z"(X). If [u] U [v] =
0 = [v] U [w], then we introduce a (set of) new cohomology classes. For the
notation, we introduce u = (—1)*deguy,

Since [u][v] = 0, we have s € CPT9*1(X) such that 6s = w U v. Similarly, we
have t € C9*"~1(X) such that 6t =y Uw. The element sUw + % U ¢t determines
a cocycle in XPT4+7=1(X):

SEUwW+uUr) = (=1)PTssUw + (=1)Pu U 6t
= (-)PMuUvUw+ (-1)PTH g uvuw =0
We define the Massey triple product as the set of all such cohomology classes
([u], [v], WD) ={[SUw+uUt]|6s =uUv,6t =vUw}.

There are indeterminacy from the different choices of representatives. But we
can identify them as the following.

Proposition 4.69. The Massey triple product ([u], [v], [w]) is an element of
the factor group HP*4*" =1(X)/([u] U HI*"~1(X) + HP*4~1(X) U [w]).

Proof. We need to show different choices of u, v, w, s, t do not affect the coset
in HP*4+7=1(X) given above. We only check that of s, as other cases can be
done in a similar fashion.
If s and s are chosen such that 6s =% Uv = &s, then
SUw+aUn)-( Uw+uuUr) =(-5 Uw,

which resides in HP*4~1(X) U [w] as a cohomology class. O
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The Massey product was used to prove the Jacobi identity for Whitehead
product in homotopy groups.
Remark by the transcriber: A purely homotopy-theoretic argument not resorting
to cohomology is available: see “Cellular Homotopy”, M. M. Postnikov.

We can define higher order Massey products. When two triple products
([u], [v], [w]) and ([v], [w], [x]) are defined, and if 0 € {[u], [v],[w]) and O €
{[v], [w], [x]), then we can find

6Y1=;oUW+ﬂUI1, 6Y2=;1UX+VUIQ

where 6ty = uUv, 6t; = vUw, 6to = wUx. Then we form a subset ([u], [v], [w], [x])
in HuFVHWIHXI=2(X) whose elements are

uuYs +20Ul‘2 +?1 Ux.

This is called a fourfold product.
It may be better to understand the whole picture by matrices

u ty Yl
u S
¢ v 11 Yo
w  t9

X

We can inductively define n-fold Massey product: ([a1,1, [a2,2,..., [ana]) to be
the set of elements of the forms

ay1as, +ai2azny+ ...+ a1 p-1a,
for all solutions of the equations
0a;j =a;iaiv1,; + Qi ie10is2,j + ...+ a; j1aj;, 1<i<j<n, (i,j)# (1,n)

Hence, to ensure the set is non-empty, we need the vanishing of many lower
order Massey product.

We remark that the Massey products are defined for (homology) of a difer-
ential graded algebra (DGA) A. It is a graded algebra A = @;>0A* with a
differential d : A - A — A of degree +1, such that

1. A is graded commutative, i.e,

x-y=(-Dy.x, xeAr yeAl

2. d is a derivation, i.e.

d(x-y):dx~y+(—1)kx-y, x € A,
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Examples include cohomology ring with 0 as its differential and de Rham com-
plex (Q°,d) on a manifold.

Rational homotopy theory of Quillen and Sullivan is built to understand
(real) homotopy groups by the structure of DGA. For example, a manifold on
which all Massey products vanish is a formal manifold: its real homotopy type
follows (“formally”) from its real cohomology ring. Deligne-Griffiths-Morgan-
Sullivan proved that all Kidhler manifolds are formal: see “Real Homotopy The-
ory of K&hler Manifolds”, Inventiones Mathematicae, Volume: 29, No. 3, Year:
1975, Pages: 245-274.

4.3 Poincaré Duality

We will prove the Poincaré duality in this section. For a compact n-manifold M
without boundary, this asserts that H”(M"™) is isomorphic to H,—,(M"). It is
the most important result in this course, and has lots of important applications.
Poincaré’s original proof used the idea of dual cell structures and rather intuitive
and geometrically intricate. Unfortunately, we will lose some generality if we
use this method.

Hence, we use the proof by Milnor. The basic idea of Milnor’s proof is
very natural as explained bellow. We know that any n-manifold is a union of
open subsets, each of which is homeomorphic to R”. It is natural to first prove
(certain version of) the theorem for R”, and then use Mayer-Vietoris sequences
to prove the case of a finite union of open subsets. Finally, it passes to the case
of an infinite union by a direct limit argument. We will then state and prove
a more general version which is applicable to noncompact manifolds since we
have to first deal with R". For this reason, we need to introduce cohomology
with compact supports.

4.3.1 Cohomology with compact supports

Let M be a topological space. The singular cochains with compact support on
M is defined as @ € SP(M) such that there is a compact set K ¢ M such that
a € SP(M,M\K) C SP(M), i.e. aly\k =0. Write S¥ (M) for the set of all these
cochains. Note that ¢ preserves S?(M). Hence

Definition 4.70. HY (M) := HP (S:(M)) is the cohomology with compact sup-
port of M.

Observe that if M is compact HX(M) = H®*(M). We will need to calculate
H? (M) in general for the proof of Poincaré duality. We would like to understand
it by relative cohomology groups. So we introduce the definition of the direct
limit.
Definition 4.71. A directed system of abelian groups {G,|la € A} is a collection
of abelian groups indexed by a partially ordered set A satisfying

1. For all a,b € A there exists ¢ € A such that a <c and b < c.
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2. For all a < b there exists a homomorphism f,; : G, — G such that f,, =id
and if a <b < ¢, fac = foc © fab-

Recall that a partially ordered set (or poset) is a set A along with a binary
relation < which is reflxive, antisymmetric and transitive:

1. Reflexive: a < a;
2. Antisymmetric: if « < b and b < a, then a = b;
3. Transitive: if a < b and b < ¢, then a < c.

A partially ordered set with the property 1 in Definition 4.71 is called a
directed set. The main example of directed sets in our mind is the set of compact
subsets (of a set) with partial ordering c and f is the inclusion.

Definition 4.72. Given a direct system {G,la € A}, the direct Limit (or col-
imit) is defined to be

h_r)nGa = (®qeaGa)/N

acA
where N C @,c4G, is the subgroup generated by x — fu,(x) where x € G, and
a<b.

The direct limit has the following universal property which actually charac-
terises the direct limit.

Proposition 4.73 (The universal property of direct limits). Any homomor-
phisms ¢, : G, — H such that ¢4 = ¢p © fap for any pair a < b factor through
lim G,. That is, there exists a unique homomorphism ¢ : lim G, — H
—>ae . —acA | .
such that ¢pohy, = ¢4 for alla € A. Here h, : G, — h_n)laeA G, are the inclusion
maps.

Proof. For any g € G, we denote its equivalence class in H_I)naeA G, as [g]- So
ha(g) = [g].

Let us first construct a ¢ : [g] — ¢,(g). It is easy to check that it makes
the diagramme commutes. Let us check it is well defined. Suppose there are
g1 € G4, g2 € Gp such that [g1] = [g2]- Then by definition there is a ¢ such
that a < c and b < ¢, and fu(g1) = frc(g2). Then we see that

0a(g1) = bc © fuc(g1) = bc © foc(g2) = dip(g2).
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Then we prove the uniqueness. Suppose there is another ¢ : lim A G,—H
—>a
such that ¢ o hy = ¢, for all a € A. Then

¢ ([g]) = ¢ o halg) = palg) = ¢([2])-

In other words, ¢ = ¢. O

Now we can give an alternative definition of HY in terms of direct limit.
The compact subsets K ¢ M form a directed set under inclusion. For K C L,
we have the inclusion (M,M \ L) —» (M, M \ K), and thus the homomorphism
HP(M,M\ K) — HP(M,M \ L). Hence we have the direct limit

lim H” (M, M \ K).
—
KcM

We sow that this is equal to HY (M) we defined at beginning. It is easy to see
that H? (M) c li_r)anM HP (M, M\ K) by definition. To see the reverse inclusion,
note hat each element h_I)anM HP(M,M \ K) is represented by a cocycle in
SP(M,M \ K) for some compact K, hence the inclusion at cochain level. And
such a cocycle is zero in li_n)chM HP (M, M\K) if and only if it is in BP (M, M\ L)
for some compact L D K, hence the inclusion passes to the cohomology level.

Ezample 4.74. We compute H.(R"). Since every compact subset of R" is con-
tained in a closed ball Dg(0) of some radius R € N, we have

lim H” (R, K" \ D(0)) = lim H”(R", K"\ K)
ReN KeR"

Now for any R > 0, R" \ Dg(0) is homotopy equivalent to S"~!. Hence the long
exact sequence for pairs (R",R" \ Dg(0)) gives us

YA =
H™(R",R" \ D(0)) = {0 e
Since the map H"(R",R" \ Dg(0)) —» H"(R",R" \ Dg4+1(0)) corresponds to the
inclusions are isomorphism, we conclude

moony |2 m=n
HRT) = {O m#n
This example tells us that H? (M) is not a cohomology theory in the sense of
Eilenberg-Steenrod. In fact it is not a homotopy invariant: a one-point space is
compact, so HX(pt) = H*(pt), but H2(R") # H*(R"). Actually, it is not even a
functor: the constant map R"” — pt does not induce a map on cohomology with
compact support.
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4.3.2 Orientations for Manifolds

Let M be an n-manifold. For each x € M, choose an open ball U with x € U.
Then by excision, we have

Ho(M, M\ x) ~ H,(U,U\ x) = Z.

Definition 4.75. A local orientation u, for M at x is a choice of one of the
two possible generators for H, (M, M \ x).

If x, y € U then we have homomorphisms p, and p,, induced by the inclusion
of pairs

Ho(M, M\ x) & Hy (M. M\ U) 25 Hy (M M\ y).
So a generator for H,(M, M \ U) gives a local orientation at any point in U.

Definition 4.76. An orientation of M is a function x +— u, subject to the
following continuity condition: given any point x € M, there exists a neighbour-
hood U of x and an element u, € H,(M, M \ U) such that p,(uy) = p, for each
yeU.

We say M is orientable if there exists an orientation. And if the orientation
is fixed, M is oriented.
One could translate this into the connectedness of the double cover

M = {ux|x € M, u, is a local orientation of M at x}.

We will not go through this construction, see §VI-7 of “Topology and Geometry”
by G. Bredon for details. For a “compensation” we summarise two useful criteria.

Proposition 4.77. 1. If M is simply connected, then M is orientable.
2. Suppose H'(M;Z/2Z) = 0, then M is orientable.

Ezample 4.78. 1. R", S", CP" are orientable.

2. If M and N are orientable, then M x N is orientable.

To determine which manifolds are not orientable, we have the following
lemma. For the proof, we need relative Mayer-Vietoris sequence:

o= Ho(X, ANB) — Hy(X, A)®H, (X, B) — H,(X,AUB) — H,_1(X, ANB) — - -~
Lemma 4.79. Let M be a n-manifold, and K C M be a compact subset. Then
1. HHIM,M\ K =0 fori> n;

2. Suppose x +— ay is an orientation of M. Then there is a unique class ag €
H,(M,M \ K) whose image in H,(M,M \ x) is ay for all x € K.

Proof. We use the relative Mayer-Vietoris sequence for a triple (X, A, B):
-~ = H,(X,ANB) - H,(X,A) ® H,(X,B) = H,(X,AUB) — ---

We break down our proof in 4 steps:
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Step 1 Suppose the lemma holds for K3, Ko and K3 N K3. We want to prove it
holds for K; U K3 as well. Then taking X =M, A=M\ Ky, B=M\ K>
we have

«—= Hp (M, M\(K1NK3)) — H,(M,M\K) — H,(M, M\K,)®H,(M,M\K3) — ---

By assumption, if p > n the left side and right side terms are both zero,
so H,(M,M \ K) = 0. For the second statement, we know the map
H,(M,M\K\)®H,(M,M\K3) —> H,(M,M\ (K;NK>)) is the difference
map ak, — dg,. By uniqueness, it has to be zero. So we have ag from
the exact sequence. This is unique because, H,+1 (M, M \ (K1 NK3)) = 0.

Step 2 We reduce the problem to the case M = R". Any compact set K C
M can be written as K; U --- U K,,, where each K; is contained in a
neighbourhood which is homeomorphic to a ball in R*. Then applying
step 1 and induction on K; U---U K,,,_1, K,, and their intersection.

Step 3 Suppose M = R" and K Cc R" is a compact convex subset. For any
point x € K, let S be a large (n — 1)-sphere with centre x. Then S is a
deformation retract of both R” \ x and Rn \ K. Hence the map

Hi(Rn,Rn \K) g Hi(Rn,Rn \x)

is an isomorphism for each i.

Induction also shows that the lemma holds when K is a finite union of
compact convex sets.

Step 4 Now suppose K C R” is an arbitrary compact subset and 8 € H; (R, R\
K). We choose a relative cycle z with [z] = 8. Let C € R" \ K be the
union of the images of the boundary of singular simplices in z. C is
compact (since z is closed in the absolute sense), the distance from K to
C is some real number § > 0.

Cover K by finitely many balls with centres in K and radii < 6. Let N
be the union of these balls and so K ¢ N and z defines a class By €
H;(R",R" \ K) such that the restriction px(Bn) = B.

If i > n then by step 3, By = 0 so 8 = 0. This, together with step 2,
finishes the first part of the lemma.

If i = n, 1 and step 3 also construct ay and then ax = pg(ay) such that
px(an) = ay and py(ak) = ax. We prove the uniqueness: if a'K is another
choice, let B8 = ag — a'K. Then p,(B) = 0 for any x € K, especially when
x is one of the centres of the balls to define N. By step 3 again, S is zero
on these balls and thus on N. Hence ag — a'K =pB=0¢€ H,(R",R" \ K).

O

When M is closed (i.e. compact without boundary), taking K = M and we
have
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Corollary 4.80. Suppose M is a connected closed n-manifold. Then
1. Hi(M) =0 if i > n;

2. M is orientable if and only if H,(M) = Z. If M is not orientable, then
H,(M) =0.

Proof. We need some remarks for non-orientable case. If H,(M) # 0, take a
cycle z # 0. We take a cell decomposition of M. Then at two sides of any
(n — 1)-dimensional cell, the coefficient of z is the same. Since M is connected,
the coefficient on all n-cells are the same. This gives us an orientation on M. O

Example 4.81. RP?" is not orientable, since Hy, (RP?") = 0. RP?"*1 is orientable
since Hony1 (RP21) = Z,

In particular, if M itself is compact, then there is one and only one uy, €
H, (M) with the required property. This class u = uys is called the fundamental
homology class of M.

4.3.3 Poincaré duality theorem

The Poincaré duality for compact manifolds can be stated now.

Theorem 4.82. Let M be a compact and oriented n-manifold, then the homo-
morphism
D:HP(M) - H,_p,(M), a—anuy

s an isomorphism.

It actually follows from a more general theorem (which we will prove), for any
oriented manifolds. Before stating the result, we need to explain the notations.
First observe that for any pair (X, A), the cap product gives rise to a paring

S'(X, A) ® Su(X, A) = Sp-i(X)
and hence to a pairing
H'(X,A) ® H,(X,A) = H,_;(X).
For oriented M, we define the duality map
D : HY (M) — Hy_p(M)

as follows. For any a € HY (M) = h_I)an(M,M \ K), choose a representative
a € HP(M,M \ K) and set
D(a) =a Nug.

This is well defined since for K c L, we have the restriction

px - Hy(M,M\ L) » H,(M,M \ K)
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with px(ur) = ug. Then the naturality of the cap product tells us that the
following diagramme commutes:

H (M, M\ K) H (M,M\ L)

NpK nuL

Hy—i (M)
Theorem 4.83. Let M be an oriented n-manifold, then the homomorphism
D - HY (M) — H,_ (M)
s an isomorphism.

Proof. We break down our proof in 5 steps:

Step 1 We first prove the theorem for the case M = R". Given a closed ball
B c R", we know that H,(R",R" \ B) = Z with generator ug. Hence
H"(R™",R" \ B) = Z and by the universal coefficient theorem, the homo-
morphism & : H*(R",R" \ B;Z) — hom(H,(R",R" \ B;Z) is an isomor-
phism. Then there exists a generator a such that (a,ug) = 1. Now the
identity

(1 > a’ﬂB> = <1’a N HB)
shows that a N up is a generator of Hy(R") = Z. Thus Nup gives an
isomorphism H"(R",R"\ B) — Hy(R") for all B. Hence by the universal
property of direct limit, the map D is an isomorphism in the case i = n.
The cases i # n is obvious since it maps 0 to 0.

Step 2 Suppose M = U UV and that the theorem holds for U, V and UNV. We
first construct Mayer-Vietoris sequence for H:

= HI™H(M) — HI(UNV) — HZ(U) @ HE (V) — HE (M) — -+
This is obtained from relative Mayer-Vietoris sequence
H? (M, M\(KNL)) — H? (M, M\K)®H” (M, M\L) — H” (M, M\(KUL))
and excisions
HP (M,M\ (KNL)=HP(UNV,(UNV)\(KNL))
HP(M,M\ K) = H?(U,U \ K)
HP(M,M\ L) =HP(V,V\L)

Now if we know the following diagramme of exact sequence is commu-
tative (up to sign), then Five lemma will finish this step.

HP(UNV) —— HP(U) ® HP (V) —— HP (M) —2 > HP*Y (U n V)

Dj ju ju lD

Hn—p(UmV)_> n—p(U)@Hn—p(V)_> n—p(M)_6> n—p—l(Unv)
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The left and the middle squares are easily seen to commute at the chain
level. Much less simple is the rightmost square, which we will show
commutes up to sign.

Notice we only need to show the following is commutative

HP (M, M\ (KUL)) —2=HP'(UNV,(UNV)\ (KNL))

ﬁ/_lKuLL lmﬂKuL

Hn—p(M) Hn—p—l(UnV)

a

Let A= M\ K and B =M\ L. Then the map ¢ is obtained from the
short exact sequence

0— S*(M,A)nS*(M,B) - S*(M,A) & S*(M,B) — S*(M,ANB) — 0.

We use the fact S*(M,A U B) — S*(M,A) N $*(M, B) induces an iso-
morphism on cohomology. For a cocycle ¢ € S*(M,A N B), we write
¢ =¢a— ¢p for p4 € S*(M,A) and ¢p € S*(M,B). Then 6[¢] is rep-
resented by the cocycle §¢p4 = §¢p € S*(M,A) N S*(M,B). Similarly
if z € S.(M) represents a homology class then d[z] = [dzy], where
z=zy —zv with zy € S.(U) and zy € S. (V).

Via barycentric subdivision, the class ux U L can be represented by a
chain o which is the sum (& = ay\r + @ynv + @y\k) of chains in three
open sets U\ L, UNV, and V \ K respectively. By uniqueness of ugnr
the chain ayny represents ugnr, since the other two chains lie in the
complement of K N L. Similarly the chain ay\1 + @ynv represents g .

Now let ¢ be a cocycle representing an element in H? (M, M \ (K U L)).
By 6, it maps to d¢4. Continuing downward to the bottom, we obtain
8¢ Nayny, which represents the same homology class as (=1)" P~ tgoN
daynv, since

(oA Nayny) = (=1)""PSphis N ayny + ¢a N dayny.

For the other way, ¢ is first mapped to ¢ Na € H,_,(M). Write is as a
sum of a chain in U and a chain in V:

dNa=¢nNapr +¢N(auny + av\k)

and by definition d[¢ Na] = [0(¢ Nay\r)] € Hy—k-1(UNV). Now we
have

dpNay\L) =¢Ndapnr = daNday\r = —da N dayny.

The second equality is because ¢p is zero on M \ L. The last equality
follows from a1 +@yny = ug which is a chain in U\ K. This completes
step 2.
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Step 3

Step 4

Step 5

Suppose M is the union of a direct system of open subsets {U;};e; with
the property that if K is a compact subset of M then K is contained in
some U;. Then if we have

H?(M) =li_n>1Hf(U,»), Hn—p(M) =h_n)1Hn—p(Ui)’

iel iel

and know the theorem hodls for each U;, then the theorem follows for
M since the direct limit preserves isomorphisms.

We prove H,(M) = h_r)n.el H,(U;), as the other follows by the same
argument. By the universal property of directed limit, we have a homo-
morphism

h_r)an(Ui) — H,(M).

iel
We show it is surjective: if z € §,(M) is a cycle, then there exists a
compact set such that [z] € im(H,(K) — H,(X)). Assume K C U,.
Then [z] € im(H,(U;) — Hp(M) and so [z] € im(li_r)nieIHp(Ui) -
Hp(M)).

T show the injectivity, take a cycle z in U; and assume it is a boundary
of K in X. Take j such that K c U}, then its inclusion into lim_ H,(U;)
s 0 —iel

is 0.

Suppose M is an open subset of R". If M is convex, it follows from
step 1 since then M is homeomorphic to R". We can find convex open
sets V1, Va, ... such that M = U2, V; (for example, take open discs whose
centres have rational coordinates). Then by step 2, the theorem holds for
ViU---UV, for each r. And by step 3 the theorem holds for U, (UI_,V;) =
U2,V = M.

M is arbitrary. Consider the family of all open subsets U of M such that
Poincaré duality holds for U. This family is nonempty. In view of step
3, we can apply Zorn’s lemma to this family to choose a maximal open
set V belonging to it. If V # M, then there is an open subset B ¢ M such
that B is homeomorphic to R", and B is not contained in V. We apply
step 2 and step 4 (for the intersection) to conclude Poincaré duality also
holds for V U B, contradicting the maximality of V. Thus V = M.

[m]

We also have Poncaré duality for non-orientable manifolds, but only for Z/2Z
coefficient. Let M be an arbitrary n-manifold. For each point x € M, u, denotes
the unique non-zero element of the local homology group H,(M,M \ x;Z/2Z).
And for each compact subset K, the same argument as Lemma 4.79 gives us the
unique element ug of H,(M,M \ K;Z/2Z) such that p,(ug) = p, for all x € K.
Now we define a homomorphism

HP (M, M\ K;Z/2Z) = H,_,(M;Z/2Z), x+— x0Nug.
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This induces the homomorphism
Dy : HY (M;Z2/2Z) — H,-,(M;Z/2Z).
Theorem 4.84. For any n-manifold M, the homomorphism
Dy : H?(M;Z/2Z) — H,_,(M;Z/2Z)

is an isomorphism.

4.4 Applications of Poincaré Duality

4.4.1 Intersection form, Euler characteristic
Intersection pairing

Let M be a closed connected orientable n-manifold. We let u € H,(M) be the
orientation, i.e. the unique element such that the image of u in H,(M, M \ x) is
a generator.

Now we have a pairing on cohomology ring induced by cup product:

Gy HY M) x H 5 () S mnomy 2 2,

In other words, {(a,b) = (a U b)(u). This map is called the intersection form.
One could also define the pairing on homology by taking Poincaré duality.

Poincaré duality simply tells us that the intersection form is non-singular
when we take the free part.

Corollary 4.85. Suppose we take coefficients in a field F. Then the intersection
form
(Y :HY(M; F)yx H" *(M;F) > F

is non-singular. We have the same conclusion if we look at the the pairing
HY(M;Z) H"*(M;Z)
X —
Tor Tor

Here “the intersection form is nonsingular” means both {a,-) and {-,a) are iso-
morphisms if a is non-zero.

Z.

Proof. Consider the composition

H"5(M; R) & Homp (H,_(M; R), R) 2> Hompg (H*(M; R). R)

Recall that h is an isomorphism for the above two cases. And here D* is the
Hom-dual of the Poincaré duality map D : H* — H,_j. Note that

D*(h(a))(B) =an (BN p) = (aUB)(u) = (a.p).

Since both D* and h are isomorphisms, their composition is an isomorphism
and hence the intersection form is non-singular. ]
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Later we will just write H™ (M) for the free part if there will arise no confu-
sion.

Corollary 4.86. Let M be an even dimensional (n = 2m) orientable manifold.
Then the pairing
H"(M)xH"™(M) - Z

is unimodular: if we choose a basis uy,...,ur € H™(M), then the matriz A =
(aij) with a;j = (u;,u;) has det A = +1.
And when m is even, it is symmetric; m is odd, it is anti-symmetric.

Proof. The second conclusion is easy, so we will prove only the first one. Take
a basis uy,...,u;r € H"(M), then we know there is a dual basis vq,...,vg such
that (u;,v;) = 6;j. Let A = (a;;) where a;; = (u;,u;). Let B be the matrix of
base change: v; = > bgjur. Then

0ij = ui,vj) = Zbkj<ui,uk> = Zaikbkj,
%

k

i.e. AB = 1. Since both A, B are of Z coefficients, det A = +1. O

Now, if an orientable M has dimension 4m, the intersection pairing is a
symmetric unimodular bilinear form. So the eigenvalues are all real numbers.
We will denote the numbers of its positive and negative eigenvalues by b3 and
b, respectively. Their sum is the Betti number bj,,. Their difference is an
important invariant called signature, denote by

(M) = bh, ~ b,

For orientable manifolds of dimensions other than 4m, we define (M) = 0.
There is another viewpoint of the intersection pairing, from homology. If
x,y € H.(M), é,nm e H* (M) and x = D¢, y = Dn. Then we define

x-y=(&n) = (EUn)(um)

which is also a non singular pairing by the above corollary.

Assume X, Y are closed oriented submanifold of dimensions i and j respec-
tively with i + j = n. We also assume they intersect transversally, i.e. at each
point x e XNY,

T X +T.Y =T M.
Then the intersection is also a submanifold of dimension 0, thus a finite number
of points. Then each x € X NY has a sign €(x) determined by comparing the

orientations of Ty X + TyY and TyM. Let a = i.(ux) and b = i.(uy) where i is
the inclusion. Then the intersection number can be calculated as

a-b= Z €(x). (4.87)
XexXny

Intuitively, this is very clear. We choose a singular decomposition of manifold M
such that it also induces singular decomposition of X and Y. So each intersection
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point will be a vertex of singular simplices. Since oriented means we have
Uy = 2. s; where s; are all simplices. And we also have similar formula for uy
and py comprising sub-simplices of s;, but may have a sign. Then PD~'(a) U
PD~Y(b)(3 s;) is nonzero only when s; contains intersection points. And at
each intersection point, and any s; containing it, the evaluation is just a check
of whether the orientations are matched. To make this argument rigorous, we
need to make the definition of the cohomology class PD~!(a) clearer so that it
satisfies the property we want: restricting to each normal direction is just 1.
This needs the Thom isomorphism theorem.

Betti numbers and Euler characteristic

Let us introduce Betti numbers and Euler characteristic. For a cellular space
M with finitely many cells in each dimension, let

b; = rank(H;(M;Z)) = dim H;(M; Q) = rank(H (M:Z)) = dim H (M Q).

b;(M) is called the i-th Betti number. The Euler characteristic of M is
n .
X(M) = " (=1)'bi(M).
i=0

More generally, we have the Poincaré series Py (1) = X220 bi(M)t', and x (M) =
PM(-1).

Given a finite cellular structure on M, let @;(M) be the number of i-cells,
then we have y = Y, (=1)'a;(M). If we let Qp () = 3, a;t' (M), this actually
follows from the following more general result

Theorem 4.88. Let M be a finite cellular space. Then
Om (1) = Py (1) = (1 +DR(1).
Proof. First if we have a short exact sequence for Abelian groups
0>A—>B—>C—0

and A, B, and C are finitely generated, then rankB = rank A + rank C.
Next we look at short exact sequences

O—>Zq—>Cq—>Bq,1—>O
O—>Bq—>Zq—>Hq—>O
We have

Z(rankC )9 = Z(rankZ ) + tZ(rankB )t

q

Z(rank Zt! = Z(rank Bt + Z(rank H)td
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Adding the both sides will yield

Om (1) = Par(t) + (1+1) ) (vank By)e?.
q

]

From this alternative definition of Euler characteristic, it is easy to see that
x (M) has some counting property:

Proposition 4.89. 1. If A and B are subspaces of a finite cellular space M,
X(AUB) + x(ANB) = x(A) + x(B).

2. Ifﬂ is a k-sheeted covering of M, then )((M) =kx(M).
Then we have the following restrictions on Euler characteristic of manifolds.

Proposition 4.90. 1. If M is an odd dimensional closed manifold then y (M) =
0.

2. If M is an orientable 4k + 2-dimensional manifold, then y (M) is even.

Proof. If M is orientable and of odd dimension, then by Poincaré duality,
x(M) = 0. If M is not orientable, we know its double covering M we constructed
before is orientable and y (M) = %X(M) =0.

For the second statement, we know b; = b,_; by Poincaré duality. So

X (M) = bogy1 mod 2.

We want to prove bogy; is even. Choose a basis of H?**1(M), and let A be the
matrix of intersection form under this basis. ¢ UB = —BUa when both are 2k +1
dimensional. So A is antisymmetric: A = —A’. So

det A = det A" = det(—A) = (=1)P2+1 det A.
Since the matrix is non-degenerate, bog1 must be even. |
A non-orientable manifold need not satisfy the second statement. For exam-

ple, y(RP?) = 1.

4.4.2 Calculation of cohomology rings
Cohomology ring of CP"
We have calculated the homology group

Z m=0,2,...,2n
H,(CP") = T
m( ) {O otherwise.
We claim the cohomology ring
(mpn Zla]
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where a has degree 2, i.e @« € H?>(CP";Z). Since the inclusion CP*~! — CP"
induces an isomorphism on H’ for i < 2n -2, we can see by induction on n that
H? (CP™,Z) is generated by o' for i < n. By the corollary, there is an integer m
such that the product a Uma"™ ! = ma™ = 1. Hence m = +1, and our conclusion
follows.

Wee see that the ring structure of cohomology can distinguish spaces with
the same (co)homology groups. S$2 x S* has the same cohomology groups as
CP3. But by Kiinneth formula,

Zla,p]

* 2 4, _
(S x852) =5

This is not isomorphic to H*(CP3;Z) = Z([Y‘Z].

A similar calculation of cohomology rings for complex projective spaces
works for Quaternionic projective space HP" = (H"™' \ 0)/~ where x ~ y if
there exists A € H\ 0 such that Ax = y. We conclude that

Zla]

an+1

H*(HP";Z) =

where @ has degree 4.
The situation for Cayley projective spaces is more restrictive. The division
algebra of Cayley numbers O is not associative. We can form OP' = S® and

OP? and we have
Z[a]

ad

H*(0P*Z) =

Cohomology ring of RP" and Borsuk-Ulam theorem
Recall that

Z m=0orm=n=2k+1
H, (RP":Z) =3Z/2Z modd, 0 <m<n
0 otherwise

Hence by universal coefficient theorem, we know

Z]2Z 0<m<n

H™(RP",Z/2Z) = )
0 otherwise
Using Theorem 4.84, and a similar argument for CP" as above, we conclude

that
Z]27Z[x]

H*(RP":Z/2Z) = —
xn
Now as an application of this calculation, we have

Lemma 4.91. Suppose we have a continuous map f : RP™ — RP" such that
f« #0: H(RP™;Z/2Z) — H{(RP";Z/2Z). Then m < n.
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Proof. Since H'(X; G) = Hom(H,(X); G), we know f* # 0 : HY(RP";Z/2Z) —
HY(RP™;Z/27).

Take ¢ # 0 € H'(RP";Z/2Z), then 5 = f*(¢) # 0 € H'(RP™,Z/2Z). By
the calculation of cohomology ring, we know n™ = f*(&™) # 0. So &™ # 0 €
H™(RP™;Z/2Z), which means m < n. O

Lemma 4.92. Let o be a path connecting a pair of antipodal points S™. Then
under the factor map nm : S* — RP", the o becomes a singular cycle n.(o)
representing a nonzero element in Hy(RP";Z/2Z).

Proof. We use the cellular decomposition induced from the natural one of S° c
St c--- c §" Let o be the path connecting the two points of S° (in S%, i < n).
When 7 = 1, m.(0) rotates along RP! = S odd number of times. It is nontrivial
in H(RP';Z/27).

When n > 1, take a path T with the same end points of o in S! c S".
We proceed by induction: x.(t) represents a nonzero element Hy(RP';Z/2Z).
Since the inclusion H, (RP';Z/2Z) — H;(RP";Z/2Z) is an isomorphism, r.(7) is
nonzero in Hy (RP";Z/2Z) as well. On the other hand, o —7 is a singular cycle in
S™ with n > 1, so it is a boundary. Hence n.(0) is nonzero in Hy(RP"*;Z/2Z). O

Theorem 4.93. There is no continuous map f : S**!' — S" such that f(—x) =

—f(x).

Proof. If there is such a map, then it induces a map g : RP"*' — RP". Take a
path o connecting a pair of antipodal points in S$"*!. It is mapped to a path
f*(0) connecting some antipodal pair of S". Hence by Lemma 4.92, g, # 0 :
H,(RP"":7/27) — H(RP";Z/2Z). Then Lemma 4.91 finishes the proof. O

Corollary 4.94 (Borsuk-Ulam). Let f : S — R" be a continuous map. Then
there exists x € S" such that f(x) = f(—x).

Proof. If not, g defined as the following is well-defined since || f(x) — f(—x)|| is

non-zero. £ — F(e)
x) — f(—x
g:S" = 8" g(x) = T
I (x) = f(=0)l
Then we have g(—x) = —g(x), contradicting with Theorem 4.93. O

Corollary 4.95 (Ham sandwich). Let Ay,..., A, be m measurable sets in R™.
Then we have a hyperplane P which bisects each A;.

Proof. Consider in R fix xo € R™*! \ R™, For any vector v € §" < R™*!,
construct a hyperplane orthogonal to v and passing through xg. It divides R™+!
and hence R™ into two parts. We record the volume of the A; ¢ R™ in the half
space determined by the direction of v, by f;(v). Thus we have a continuous
map

f:Sm_)Rm’ V}_)(fl(v)’”"fm(v))-

By corollary 4.94, there exists a v such that f(v) = f(-v). This hyperplane
bisects each A;. O
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Another application is the Ljusternik-Schnirelmann category cat(RP") =
n+ 1. This is because CI(RP") = n (4.61), so cat(RP™) > n+ 1. On the other
hand, it is not hard to construct a smooth function on RP" with n + 1 critical
points.

Cohomology ring of lens spaces

Given an integer m > 1 and integers {1, ..., ¢, relatively prime to m, we define
the lens space L = L,,({1,...,¢,) as the orbit space $?"~'/(Z/mZ) of the unit
sphere $2"~1 ¢ C" by the action p of Z/mZ, given by the following

(21, .52n) = (exp(2nly/m)zy, ..., exp(2nl, /m)z,).

Since {; is coprime to m, the action of Z/mZ over S$?"~! is free. Thus the
projection $2"~! — L is a covering map. Note that when m = 2, p is the
antipodal map and Ly = RP?"1,

L has a CW structure with one cell e; for each k < 2n — 1 and the resulting
cellular chain complex is

0-2%522%72% ... 525257 50

Therefore
Z k=0,2n-1
Hi(Ly(t1,...,8)) =3Z/mZ kodd,0<k<2n-1
0 otherwise

By the universal coefficient theorem,

H (Ln(6r. . £): 2/ mZ) = {Z/mz Osks2n—1

0 otherwise
Since the cohomology group only depends on m and n, later on we will denote
the lens space by L2"~! or simply L?"~!. To calculate the cup product, we let
@ € H' (L?" 1, Z/mZ) and B € H>(L?>"~';Z/mZ) be generators.

We claim that H? (L?>*~1;Z/mZ) is generated by 8 and H**'(L?>*~1.Z/mZ)
is generated by o8'.

We proceed by induction, so we assume the claim holds for L?"~! and want
to show it holds for L?"*!. Using the inclusion L?*~! — L?"*! which induces
isomorphisms in cohomology for 0 < k < 2n — 1 by comparing the cellular chain
complexes, we may assume the claim holds for H*(L?"*';Z/mZ) with k < 2n—1.
By corollary 4.85, there exists A € Z/mZ such that SUAaB" ! = 1aB" generates
H? (L2 7/mZ). So A has to be a generator of Z/mZ and therefore af"
is a generator of H>"*1(L?"*1;Z/mZ). Tt also implies that " is a generator of
H?"(L?";Z/mZ), otherwise a" would have order less than m.

To complete the calculation of the ring H*(L?"~!; Z/mZ), we need to compute
a?. By graded commutativity, we have @ Ua = —a U . So if m is odd, a? = 0.



4.4. APPLICATIONS OF POINCARE DUALITY 139

When m = 2k, we claim a? = kB. We use the fact that the 2-skeleton

St Uy, €2 of L2~ is the circle S attached by a 2-cell with a map of degree m.

We first get the 2-skeleton a cellular structure (in fact, a A-complex structure)

by subdivide an m-gon into m triangles 7; around a central vertex v, and identify

all the outer edges by rotations of the m-gon. We call the faces in a counter-

clockwise order Ty, ..., T,;-1 and the the rays from v which bound 7; by e; and
€i+l-

W—x

3

\(\ /e 3/

To )% T>

o N

/ T 2\

wWw———=e——- W

w

Then we choose a representative ¢ for @ which assigns value 1 to the boundary
edge. The condition that ¢ is a cocycle means ¢(e;) + ¢e) = ¢(e;+1), which
means we can take ¢(e;) =i in Z/mZ. Then by definition of the cup product,
(phiV @)(T;) = ¢p(e;)p(e) =i. Since 0+ 1+---+(m—1) =k in Z/mZ, we know
# U ¢ evaluates as k on XT;. This means a? = kf3.

Hence we have

H*(L2n_1,Z/(2k + 1)2) — Z/(2k + 1)Z[a,’:B]

@ =0,p"=0
H* (LY, 2/2kZ) = —a?i 2’;?;;’2 ;

4.4.3 Degree and Hopf invariant
Degree

We can define degree of a map f : M" — N between closed oriented connected
manifolds. For orientable manifolds H*(M) = H*(N) = Z, so f. : H,(M) —
H,(N) maps the generator uys to an integer multiple k of uy. We call this k :=
deg(f) the degree of the map f. The degree has natural composition property:
deg(f)deg(g) = deg(f o g). Since H"(M) = H"(N) = Z as well, we can define
degree as the corresponding integer for the cohomology f* : H*(N) — H"(M).
Apparently, these two definitions yield the same number.

Example 4.96. A reflexion of S" along a great circle has degree —1, since it
changes the orientation. Hence the antipodal map a sending x +— —x has degree
(=1)"*! since it is a composition of n + 1 reflexions.

This example has lots of corollaries. We only show a few.

Corollary 4.97. 1. If f,g : S" — S" are maps such that f(x) # g(x) for all
x € S" then f is homotopic to aog.

2. If f :S"™ — S" has no fized points then it is homotopic to the antipodal map,
and thus has degree (=1)"+!.
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Proof. 1. By assumption
L U=0f @ - 18
1(12) f (x) = 18 (x|

is a well defined homotopy from f to a o g.
2: Set g =id in 1. O

We can also get some information for group actions on S”. First note that
$27=1 can be viewed as the unit sphere in C". Thus it admits a free action of
St, e.g, 7+ e'?z. Especially, it tells us that any finite subgroup Z/mZ c S' can
act on $?"~! freely. However, the situation for $2* is quite different.

Corollary 4.98. Suppose a group G acts freely on S**. Then G < Z/2Z.

Proof. By assumption, each non-trivial element g € G has no fixed point, thus
has degree —1 by the above corollary. Hence there is at most one such element,
otherwise the composition would give a map of degree 1 which has to be trivial.

|

Proposition 4.99. Given f : CP" — CP", there exists an integer k such that
deg f = k".

Proof. Let u be a generator of H?>(CP"), then f*(u) = ku for some constant k.
Hence f*(u") = f*(u)" = k"u". By definition, deg f = k". O

Proposition 4.100. If f : S — CP" with n > 1 then deg(f) = 0.
Proof. f*(u) =0 since H2(S*") = 0. So f*(u") = f*(u)" = 0. O

The last proposition suggests: if there is a map f : M — N with deg(f) # 0,
then M may well be topologically more complicated than N.

Ezample 4.101. If £ : S" — S" is a continuous map, and Zf : $"! — §**1 is
the suspension of f then degXf = deg f.
In fact, if X — X is a continuous map and

X = X x [-1,1]/(X x {=1}, X x {1})

denotes the suspension of X, then X f := fxid[_1,1]/~, with the same equivalence
as in £X. Note that ©S" = §"+1,
The Suspension Theorem states that

H;(X) = Hi1 (2X).
We show this fact by using the Mayer-Vietoris sequence for the decomposition
2X =C; X Ux C_X,

where C.X and C_X are the upper and lower cones of the suspension joined
along their bases:

oo = Hpy1 (Co X)@Hyp41 (C-X) — Hpy1 (2X) — Hp(X) — Hp(C1X)®H,(C_X) — -
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Since C4 X and C_X are both contractible, the end groups in the above sequence
are both zero. Thus, by exactness, we get H;(X) = H;41(2X), as desired.

Let C,.S" denote the upper cone of XS". Note that the base of C,S" is
S" x {0} c £S". Our map f induces a map Cif : (C.S",S") — (C.S",S"),
giving the factor map X£f. The long exact sequence of the pair (C,.S",S") in
homology gives the following commutative diagramme:

I

Hi1 (Co8™/8") —2= Hi(S") —=0

(Ef)*l lf*

Hiy (8" —2— Hi(s")

0 —— H;y1(CS",S™)

Note that C,.S"/S" = $"*! so the boundary maps 8 at the top and the bottom of
the diagramme are the same map. So by the commutativity of the diagramme,
since f is defined by multiplication by some integer m, (X f). as well, is multi-
plication by the same integer m.

Hopf invariant

Hopf invariant is a kind of degree when studying the maps $2"~! — §".
Given a map f : S — §" with m > n, we can form a cellular space

shy Dm+1
f(x) ~x,Vx e S™

C(f) :=8"uy; D" =

The homotopy type of C(f) depends only on the homotopy class of f. We can
use Proposition 4.36 to calculate its (co)homology group. For example, if m = n
and f has degree d, then H"(C(f)) = Z/|d|Z, which detects degree up to sign.

When m > n, we calculate that the cohomology of C(f) has Z in dimensions
0, n and m + 1. Especially when m = 2n — 1, we have chance to use cup product
to detect something nontrivial. n this case, choose generators @ € H"(C(f))
and B € H**(C(f)), then the ring structure of H*(C(f)) is determined by o? =
H(f)B for an integer H(f) which is called the Hopf invariant of f.

If fis a constant map then C(f) = $" v $?" and H(f) = 0. Also, H(f) is
always zero for odd n since @? = —a? in this case.

Ezample 4.102. Case n =1 In this case it is the covering map, viewed as a
fibration S° — S' — RP!. It is measured by its degree, which is 2.

Case n =2 We use S? = CP! and view S? as the unit sphere in C2. The map
S3 — §? is defined as

(z0,71) = [z0 @ z1].

From the definition, this is a fibration S! — S3 — S2, which is called the
Hopf fibration. Tt is easy to see that C(f) = CP2. Thus H(f) = 1 since

H*(cp?) = 2l

ad
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Case n = 4 Replacing the field C by Hamilton’s quaternion H, with some con-
struction work yields the fibration $® — §7 — S%. And C(f) = HP? and

H(f) = 1.

Case n = 8 Using Cayley octonion, we have Hopf fibration §7 — $!° — §8.
And C(f) = OP? and H(f) = 1.

It is a fundamental theorem of Adams that maps $?"~! — S" of Hopf invari-
ant 1 exists only when n = 2, 4, and &: the original proof, John F. Adams, On
the non-existence of elements of Hopf invariant one, Ann. Math. 72 1 (1960)
20-104, is not quite accessible. a much simpler proof using K-theory is given by,
J. F. Adams and M. F. Atiyah K-theory and the Hopf invarant, The Quarterly
Journal of Mathematics, Volume 17, Issue 1, 1966, Pages 31-38.

It has many interesting corollaries:

1. R" has a structure of division algebra (over R) only for n =1, 2, 4, and 8.

2. S" is “parallelisable” i.e, has n linearly independent tangent vector fields only
forn=0,1, 3, and 7.

3. The fibrations S — S9 — §" exist only for triples (p, ¢,7) = (0,1,1), (1, 3, 2),
(3,7,4), and (7,15, 8).

One can also define the Hopf invariant in terms of degree. Let y, z be two
different regular values for a map f : S?*~! — §", then the manifolds f~!(y)
and f~1(z) can be oriented and the linking number is defined as the degree of
a function: Let M and N be two manifolds of dimension n—1 in $?"~1. Choose
a point p € $?"~! which is not in M or N, and think $?*~! \ p as R?"~!. Then
the linking number link(M, N) of M and N is defined as the degree of the map

X-y
Il =yl

Let us understand this definition in terms of low dimensional examples. First
is the toy example: the linking of two S in S! or R!. Let the coordinate of S°
be {a, b} and {c, d} respectively. Then the map g is determined by the order of
these numbers. For example, if a < ¢ < b < d, then two S° are linked both from
our common sense and from the formula since g maps to 1 once and -1 thrice,
so degree is one. If a < b < ¢ < d, then degree is zero since maps to —1 four
times. And if a < ¢ < d < b, it maps to 1 and —1 both twice. But the degree is 0
as well since g(a, ¢) and g(a, d) are considered as oppositely orientated because
that of ¢ and d are.

A more realistic example is for two S' in §% or R3. So g : T? — S2. For
a point v in the unit sphere, the orthogonal projection of the link to the plane
perpendicular to v gives a link diagram on plane. A point in 72 sent to v corre-
sponds to a crossing in the link diagramme where y; is over ys. A neighbourhood
of it is mapped to a neighbourhood of v preserving or reversing the orientation
depending on the sign of the crossing. Thus it is just a signed counting of the
number of times g covers v.

g:MXN — S22 (x,9)
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There is a more concrete formula (Gauss formula) which can be generalisd
to higher dimensions

T: T>
hnk()’l, 72) = / / (71|i}/);2’—7’;2 ”372) dtdts.

This is an integration interpretation of degree.

Now, the Hopf invariant H(f) = link(f~'1(y), f~'(z)) for any two regular
values y and z. To understand the equivalence of these definitions, we under-
stand the cup product as the intersection of the Poincaré dual of cocycles. For
the toy model above, S' bounds a D?. Pairs of two points in S' are linked if
and only if two semi circle in D? with the pairs as end points intersect. By
gluing the boundary S' by a double covering to another S!, we get RP?, and
two semi-circle above become two S*.

For two S'’s, which are considered as the inverse image of a regular value
of map S? — $2, we have a similar story. But now S bounds D* where one
can consider the picture in C2, and S' bounds an immersed disk. Then the
intersection number of these two surfaces in D is exactly the same as the linking
number of two S'’s in S3. One can prove this fact by pulling two circles until
they touch. So the intersection is at the boundary and easy to look at. Finally,
since S' are fibres of the map, after gluing they will become a point and the
original surfaces will become a closed one.

With an explicit example bearing in mind, one can consider the Hopf fibra-
tion S' — $% — S? where the fibre is (z1, z2) with a fixed ratio. For example,
S'x0,0xS' c$3cCxC are two of them.

4.4.4 Alexander duality

Let us remind the reduced homology and reduced cohomology. H;(M) = H;(M,x)
and H' (M) = H (M, x). So reduced ones differ from the originals only for i = 0.

Theorem 4.103. If K is a compact, locally contractible, non-empty, proper
subset of S, then H;(S*\ K;Z) = H" "1 (K;Z) for all i.

Proof. We first handle the case i # 0. By Poincaré duality, we have
H;(S"\ K;Z) = H!7'(8" \ K).
And by the definition of cohomology with compact supports,
n—i/gn _ 1 n—i/gn
H!7'(S"\ K) —l£>nH (S"\ K, U\ K)

where U is taken as open neighbourhoods of K. By excision, H”“(S"\Ig, U\K) =
H"7(S",U). And by the long exact sequence for pairs, H"7(S",U) = H""'=Y(U)
when i # 0. Now if we can show

. rn—i—1 _ gn-i-1
lim 7" (U) = A" (K),

the case for i # 0 is complete.
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To show this, we use the fact that K is a retract of some neighbourhood
Up in S" since it is locally contractible. Thus in the direct limit we can only
choose those open neighbourhood U c U, that can be retracted to K. This
implies the surjectivity of the map li_n}H*(U) — H*(K) since we can pull back
the cohomology of K to that of U. To prove the injectivity, note that any
U c Uy can be regarded as a subspace of R" c S". The linear homotopy
U x I — R" from the identity to the retraction U — K takes K X I to K, hence
takes V x I to U for some (small) neighbourhood V of K by compactness of 1.
Hence the inclusion V < U is homotopic to the retraction V — K c U. Thus
the restriction H*(U) — H*(V) factors through H*(K). Therefore if an element
of H*(U) restricts to 0 in H*(K), it will be zero in H*(V) and thus in li_rr)lH*(U).

For the case i = 0, H"(S",U) = H" }(U) does not hold. Instead we have the
short exact sequence

0— H" Y(U) » H"(S",U) - H"(S") - 0.

By taking the direct limit, we see the first term becomes lim H"Y(U) = H" 1 (K).
By Poincaré duality, the middle term is Ho(S" \ K) and the last term is Ho(S") =
Z. So this sequence tells us Ho(S" \ K) = H*"}(K). O

In the proof, the local contractibility is used to guarantee h_r)nﬁ”‘i‘l(U) =

H"""1(K). Without this condition, a pathological phenomenon may occur:
look at the the following example.

Example 4.104. Let K denote the subset of the graph of the function y = sin(%)
for x # 0 and y-axis with |x|,|y| < 1. Since there are three path components,

Figure 4.3: Two topologist’s sine curves juxtaposed back-to-back

HY(K;Z) is free abelian of rank 3. However, for the direct limit lim H°(U), we
only need calculate it for open path connected neighbourhoods oﬁ{, and thus
li_r}nHo(U) = Z. Notice that K is not locally contractible at the origin. Hence,
it 1s not a cellular space, either. This is a juxtaposition of two topologist’s sine
curves. Note that it is connected but not path connected. We also notice that
the Alexander duality fails for this space.

This theorem has many interesting applications. Let us start with the lowest
non-trivial dimension n = 2.
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Corollary 4.105 (Jordan curve theorem). Let K € S? be a simple closed curve,
then S\ K has two components.

Proof. Alexander duality says that H°(S2\ K) = H'(S!) = Z. So Ho(S%\ K) =
Z/27. O

For n = 3, if we take K as knots. The Alexander duality simply tells us
that we cannot distinguish different knots by their homology groups. A result
of Gordon-Luecke tells us that the fundamental group of the knot complement
determines the knot (Knots are determined by their complements. J. Amer.
Math. Soc. 2 (1989), no. 2, 371-415.). Actually, if we choose K c S" as a
space homeomorphic to $™, we will have the Alexander duality as well and the
proof is a delightful use of Mayer-Vietoris sequence. Especially, this works for
the Alexander horned sphere. It is an example homeomorphic to D3 with its

Figure 4.4: Alexander horned sphere

boundary homeomorphic to S2, but its complement is not simply connected.
However, by Alexander duality, its complement has trivial first homology.

Ezample 4.106. A non-orientable closed surface N cannot be embedded in $3
as a submanifold. This is because H?(N;Z) ~ Z/2Z is not free.

For the convenience for readers, we want to add that if we work on Cech
cohomology instead of singular cohomology, then the local contractibility con-
straint can be removed. This is because, by definiton of Cech cohomology,
we have HY(K) = li_rr)lHq (U) for all neighbourhoods U of K. Especially, for

Cech cohomology H° detects the connected components instead of path con-
nected components. Notice that it does not contradict to the Eilenberg-Steenrod
uniqueness axiom since all cellular spaces are locally contractible, hence they
are path connected if connected.

A remark on the definition of Cech cohomology. It is defined as follows: let
X be the space for which we would like to define “cohomology”.

1. For each open cover U = {U,} of X, associate a simplicial complex N (2I)
called its merve. This associates a vertex to each U, and a set of k + 1
vertices are considered to span a k-simplex if the corresponding U, ’s have a
non-empty intersection.

2. For a refinement B = {Vz} of U (i.e, each Vp is contained in some U, ), the
inclusions induce a simplicial map N(B) —» N(U).
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3. The Cech cohomology H?(X) is defined as h_r)an (N(U)).

4.4.5 Manifolds with boundary

An n-manifold with boundary is a Hausdorff space M in which each point has
an open neighbourhood homeomorphic either to R" (such a point is called an

interior point) or to the half space R? = {(x1,...,x,) € R"|x, > 0} (resp. a
boundary point). An interior point x € M has H,(M,M \ x) = Z. A boundary
point x corresponds to a point (xi,...,x,) € R} with x, = 0. By excision, we

have H,(M,M \ x) = H,(R}, R} \ 0) = 0.

If M is a compact manifold with boundary, then dM has a collar neighbour-
hood, i.e. an open neighouborhood homeomorphic to M x [0,1) by a homeo-
morphism sending dM to M x 0. (Morton Brown, Locally flat imbeddings of
topological manifolds, Annals of Mathematics, Vol. 75 (1962), p. 331-341, or
Robert Connelly, A new proof of Brown’s collaring theorem, Proceedings of the
American Mathematical Society 27 (1971), 180-182.)

A compact manifold M with boundary is called orientable if M :=M\ oM
is orientable. If M x [0, 1) is a collar neighbourhood of M, then H;(M,0M) =
H;(M\ oM,oM x (0, %)) So Lemma 4.79 gives a relative fundamental class,
denoted as [M, dM] restricting to a given orientation at each point of M \ IM.
The following tells how to relate a relative fundamental class to ugps- Later, for
simplicity, we will write it as [0M].

Proposition 4.107. An orientation of M determines an orientation of M.
Proof. Consider an open neighbourhood U of a point x € dM which is homeo-
morphic to an open half disk in R?}. Let V=0U =UNAIM andlet y e U = U\ V.
We have the following isomorphisms
H,(M;, M\ U) = H,(M,M \ y)

=H,(M, M\ y)

= H,(M, M\ U)

s Hy (M\ U, M\ D)

= Hyt (M\ U, (M\U) \ )

=H,-1(0M,dM \ x)

=H,_1(O0M,0M \'V)

The connecting homomorphism is that of the triple (M, M \ U, M \ U) which is
an isomorphism since H,(M,M \ U) = H.(M,M) = 0. The isomorphism that
follows comes from the observation that the inclusion (M \ U) \x — M \ U is
a homotopy equivalence. The next to last isomorphism is given by excision of
M\ U. O

In particular, [ M, dM] restricts to a generator of H,_1(dM,0M \ x) for all
x € OM and thus is the fundamental class [dM] determined by the orientation
of M which is induced from that of M.
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Theorem 4.108 (Lefschetz duality). Suppose M is a compact oriented n-
manifold with boundary. Then the homomorphisms

D :HP (M) — H,_p,(M,dM), a+ an[M,dM]
D :HP(M,0M) —» H,_,(M), aw— an[M,IM]

are isomorphisms. And the following diagramme is commutative.

HI Y (M) ———= HT Y (OM) —>= HY (M, M) ——— H9 (M)

DL lD LD LD

Hn—q—l(MsaM)_a> n-q(OM) Hy—q(M) —— Hy_q(M,0M)

Proof. We apply Theorem 4.83 to M \dM. Via a collar neighbourhood, we have
HP(M,0M) = HZ(M \ M). And obviously, H,_,(M) = H,_,(M \ M). Hence
D : H?(M,0M) — H,_,(M) is an isomorphism. The commutativity can be
checked by inspecting the definition and using the boundary formula for cap
product. (for details, see F. E. A. Johnson, Lefschetz duality and topological
tubular neighbourhoods, Transactions of the American Mathematical Society,
Volume 172, October 1972.)

Finally by Five lemma, D : H?(M) — H,_,(M,dM) is an isomorphism as
well. O

For general manifolds with boundary, we also have HY (M) = H,_,(M,dM),
and H? (M,0M) = H,_,(M) if we define HY (M,0M) := lim H? (M., (M \ K) U
oM).

Next, we want to know what kind of n-manifolds can be the boundary of
an n + 1-dimensional manifold with boundary. From the classification of sur-
faces!, we know that each orientable closed surface is the boundary of certain
3-manifold. What about non-orientable ones?

Theorem 4.109. Let an n-manifold M"™ = partialW"*'. Then y(M) is even.

Proof. When n is odd, it follows from Proposition 4.90. When n is even, take
the double of W, which is obtained by take two copies W* and W~ of W and
glue them along the boundary. We denote it by 2W. So W* U W~ = 2W and
W* N W~ = M. Hence, we have

X(2W) + x (M) = x (W*) + x (W) = 2x (W)
Since 2W is an odd dimensional manifold, y(2W) = 0. Hence y(M) = 2y (W)

which is an even number. O

Example 4.110. The double of a Mobius band is a Klein bottle. See Figure 4.5.
The double of an annulus of dimension 2 is a torus. The double of a disk is a
sphere.

1For a simple proof, see E. C. Zeeman, An Introduction to Topology,
https://webhomes.maths.ed.ac.uk/ vlranick/surgery/zeeman.pdf
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Figure 4.5: A Klein bottle cut into two M&bius bands

For non-orientable surfaces, RP? is not a boundary, but one can check that
the Klein bottle is a boundary. More generally, one can check that RP?* and
CP?* are not boundaries.

The next result relates the signature with the boundaries.

Theorem 4.111. Let M** = dW**1 where W is a compact oriented 4k + 1-
manifold, then o (M) = 0.

Proof. We use R as coefficient for (co)homology. We denote [M] = pp.

The inclusion i : M — W induces a homomorphism i* : H**(W) — H?**(M).
Let U =imi*.

For u = i*(w) € U, we have

(u,uy = @ (w) Uit (w), [M]) = " (w Uw), [M]) = (wUw,i.[M]) =0

The last equality holds since i.d = 0 in the long exact sequence of the pair (W, M)
and [M] = 0[W, M]. We can see that the following diagramme is commutative.

Dl lD lD

Hap1 (W, M) — Hoy (M) — Hyp (W)

So rankimi* = rankkerd = rankkeri.. Since i* and i, are dual homomor-
phisms of each other (this is why we use R as the coefficient), so rank cokeri* =
rank ker i,. Hence

rank H?K(M) = rank im i* + rank cokeri* = 2rank U.

Let V = H?*(M) and the positive/negative eigenspace of the intersection form
(v,v) would decompose it as V*. The intersection form is 0 on the linear sub-
space U, so V* N U = 0. Hence rank V* + rank U < rank V. Similarly rankV~ +
rank U < rank V. However, the intersection is non-singular, so rank V*+rank V- =
rank V. Thus rank V* = rank U and hence o(M) = 0. |
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This was proved by Thom, as a part of his cobordism theory (René Thom,
Quelques propriétés globales des variétés différentiables, Commentarii Mathe-
matici Helvetici 28, 17-86 (1954))

Linking number, Massey product

We can interpret the linking number of two cycles in Euclidean space by cup
product in the complementary space. For example, suppose that SP and S9 are
disjoint spheres in S” where n = p+¢+1,and 1 < p < g <n-2. By Alexander
duality theorem, the complementary space S" \ (S” US?) has cohomology group
Z in dimensions p, ¢ and p + q. Therefore the cup product of the generators in
dimensions p and ¢ will be a certain multiple of the generator of cohomology
class in dimension p + ¢g. It can be shown that this multiple is just the linking
number of SP and S9.

Another slightly different but easier to generalise definition is the following:
we consider open neighbourhood of the linked spheres and let them be Uy,
Us, and M is the complement of Uy, Us in S" and let the boundary be B =
B1UB;. Let w and v be the generators of HP? and HY respectively. And let the
generators u € H*(M, B), u; € H""'(B;). These can be chosen compatible with
the orientations induced from S". Then there is an inclusion g : B - M. We
have the exact sequence

BN (M) s HY(B) S BN (M, B) — 0

Since y; are mapped to u, the linking number is just the number m such that
g (wuUv) =m(ur — p2).

To understand the situation, let us consider the (simplest, hopefully) case
of intersections oof two S' in S3. Then the generators w and v correspond
to singular discs D; and Dy bounded by the two S'’s. And the generator of
H?(S3\ (S' U SY)) corresponds to a path connecting B; and B,. Hence the
intersection, assuming that they are in a general position, is a signed count
of these paths. Hopefully the reader can see the second viewpoint from this
interpretation.

A similar idea can be applied to understand the Massey product. Let us have
three spheres in $", any two of them have linking number 0. The generators of
cohomology in dimensions between 0 and n — 1 are denoted by wi, wa, ws. We
can similarly define y; and the same exact sequence. Notice that g* is injective
since the 3 cohomology groups are free abelian groups of dimensions 2, 3 and 1.
Another way to see this is via the naturality of Alexander duality, namely, the
following commutative diagramme:

HI(X) ——— = HY(Y)

0| |»

Hyg-1(8"\ X) ——> Hy—q-1(8"\Y)
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Now triple product can be understood as a higher linking number of links, like
the ones for Borromean ring.

Theorem 4.112. There exists an integer my3 such that

g (w1, wa, w3) = mi3(py — us).

For Borromean ring, this integer is 1. Here is a sketch of the proof: If
x € H" 1Y (M) and g*(x) = aiu1 + asus + asus, it follows from the exactness
that a; + as + a3 = 0. Hence we only need to prove the coefficient of us in
g" (w1, wa,ws) is 0, or gi(wq,wa,wz) = 0 for g2 : By — M. Actually, we can
show that giw; = giws = 0, which follows from the naturality of Alexander
duality and the fact that pairwise linking numbers are 0. Thus we understand
g5 on the gi-th cohomology as

Hp, (U) ® Hpy (U2) ® Hp, (Us) — Hp, (S"\ Bo) = Hp, (Uz) ® Hp, (S" \ Us)

Then wy corresponds to the generator of H,, (U;) where U; C S" \ Us and the
degree of _
le(Ul) - le (Sn \ U2)

is just the linking number of S} and S%.

We do not go into more details since Massey products can’t distinguish
Brunnian links other than the simplest ones, namely the Borromean rings. For
this fact, see Truls Bakkejord Raeder, Massey products and Linking, Institutt
for matematiske fag, NTNU.

4.4.6 Thom isomorphism

Let B be a manifold. A wvector bundle n : E — B of rank n is a family of
n-dimensional real vector spaces {Ex}xep, wWith E := UycgEx and 7 : E —» B
mapping E, to x, equipped with a topology for E such that r is continuous and
the following local triviality condition holds:

For each x € B there exists a neighbourhood U of x and a homeomorphism

t:Ely =nYU) - UxR"

which is fibre preserving in the sense that for all x € B the restriction of # on E
is a vector space isomorphism onto R”.

The space E is called the total space and B is called the base space. The
map 7 is called the projection. A continuous map s : B — E such that ros =id
is called a section of E. We can view B as a subset of E via the zero section
x+— 0 € E,. We denote Eg = E \ B.

Typical examples of vector bundles include the trivial bundle BxR" and the
tangent bundle Ty = UyepTxM where M is a smooth manifold.

Exzample 4.113. A vector bundle ¢ = (E,n, B) of rank n is trivial if and only if
it has n sections which are linearly independent on 7~ (x) for all x € B.
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Indeed, if ¢ has n sections o, ...,0, which are linearly independent, then
we can define a bundle isomorphism ¥ : B X R"” — E by

Y(b,(x1,...,x,)) =x101(b) +...x,0, (be€B,(x1,...,xn) € Rn)

It is obvious that every trivial bundle has n linearly independent sections.

A section of Ty, is called a wector field on M. Thus, Tgn is trivial but, by
Hairly ball theorem, Ts2 is not trivial.

Let us define the normal bundle for a smooth manifold M with an atlas
{(U;, ¢;)}. Each diffeomorphism ¢; — R” induces a map

(¢i)« : Ty, = Tren =R" X R".

The normal bundle N = Ng/p of a submanifold § in M is defined by the exact
sequence
0—>Ts — (Ty)|ls > N — 0.

As with the case of a manifold, a local orientation of a vector bundle at x € B
is a preferred generator u, € H*(E,, Ex\0). A vector bundle is called orientable
if for every point xinB, there is a neighbourhood (x €)U c B such that the there
is a cohomology class uy € H"(z~1(U), 71 (U)p) such that uy|g, = px-

Theorem 4.114. Let n : E — B be an oriented vector bundle of rank n. Then
1. H™(E,Ey) =0 for m <n.

2. There exists a unique cohomology class u € H"(E, Ey), called the Thom class
such that for all x € B, the restriction of u to H*(Ex,Ex \ 0) = Z is the
preferred generator determined by the orientation.

3. The map T : H"(B) —» H™"(E, Ey), @ — n*a Uu is an isomorphism.

Proof. For the sake of simplicity, we assume that B is compact. Thus we can
choose a finite covering {U;} such that on each U;, E is a trivial bundle.

1. First consider the case of trivial bundle E = B x R". By Kiinneth formula,
we have

H*(B) ® H*(R",R"\ 0) = H*(E, Ey),

and hence
H™(E,Eo) = H" "(B) ® Z = H" " (B).

So H"(E,Ey) = Z, and we choose u as the generator corresponding to the ori-
entation. Then the theorem is verified to hold in this case.

2. We proceed by induction to construct u. Suppose B = VU W where the
assertions of the theorem hold for E|y, E|lw and E|ynw. Considering the long
exact sequence of the pair (E, Ey) we have

H" Y (Elvaw. Eolvaw) = H™(E, Eg) — H™(E|yv, Eolv) ® H" (E|w., Eolw)
The firs assertion follows from the assumption on V and W. For m = n, we have

0 — H"(E,Ey) — H"(E|v, Eolv)®H" (Elw, Eolw) — H"(Elvaw, Eolvaw) — -+
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By assumption, the Thom classes uy and uw exist and are unique. By unique-
ness, they have the same image in Eynw, namely uynw. Thus they form a
cohomology class u € H"(E, Ey) which is uniquely defined since H"~'(E, Ey) = 0.

To show the last assertion, we consider the following diagramme
H™(V) ® H™(W) H"(VAW) —2—~ g™1(B)

r| VT VT

5
H™"(E|y,Eolv) ® H"™(E|w, Eolw) = H™"(E|vow, Eolvaw) — H™ " (E, Eq)

If we can show the diagamme commutes, then the 5-lemma will give the right
T which is also isomorphism. Again, the point is to show the second square
commutes. Choose a representative ¢ € S"*"(E, Ey) of u. Then the restrictions
ov, ¢w and ¢yaw represent the Thom classes uy, uw and uynw respectively.
Now take a € H*(VNW) and a representative . Suppose da = b and if we write
¥ =Yy — Yw where gy € SK(V) and yw € S¥(W), we have [6yy] = b. Hence

T6(a) =n*(b) Uu =" [6¢v] Uu.

Next
6T (a) = 6(n*(a) Yuyaw) = [67"(WV) U @V] = T6.

The second equality holds because ¢y is closed, the last because 7* commutes
with ¢ since it is a cochain map.

3. Suppose B is covered by finitely many open sets Bi,..., By such that the
bundle Ep, is trivial for each B;. We proceed by induction on k: suppose the
theorem holds for E. The case k = 1 being trivial, assume that the assertions
holds for k—1. Then the theorem holds for E|g,u...us,_, and for E|(g,u...uB,_,)nBx
a well. Hence by 2. the theorem holds for k. O

Now let M™ be a closed smooth manifold and S be a codimension k closed
submanifold which is cooriented, i.e. the normal bundle Ny is an oriented vector
bundle. Then a natural coorientation would be induced from orientations of T'S
and TM. The tubular neighbourhood theorem states that every submanifold S
in M has a tubular neighbourhood which is diffeomorphic to the normal bundle.
Then we can indentify such a tubular neighbourhood with our normal bundle
Ns/m. And the Thom isomorphism applied to the normal bundle gives

H*(S)LH*+k(NS,NS\S)—)H*+k(M,M\S)—>H*+k(M)

Without confusion, we denote the image of 1 € HY(S) in this sequence by ® as
the image of u € H*(M, M\ S) in H*(M), and call the Thom class of S. Actually,
this is the inverse of Poincaré with respect to S, i.e

Proposition 4.115. i, [S] = ® N [M].

Proof. We denote the inclusions « : Ny — M, i : § — M and the retraction
r: Ns — S. Then i, o r, = k, on homology. We have

ON[M]=un[M,M\S] =unkN,N\S] =i,or.(k'un[N,N\S]).
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Thus ® N [M] is an image of some element of H,_;(S) by i.. In other words,
N [M] =1t-i[S]. We must show that + = 1. We only need to prove it
in N. For any point p € §, we choose a neighbourhood U c §, such that
(V,U) = (R",R" %), where V = 7~'(U) and 7 : N — S is the normal bundle.
Then by definition of fundamental class, [M] and [S] restrict to fundamental
classes o and vo of R" and R"* respectively. And u is pulled back to the Thom
class ug of R*7% in R". Let g : V — N be the inclusion. Then reading off the
relation in H,(N,N \ Q) where Q c V is the set corresponding to R¥, we have

i.[S] = g«vo = g« (g'u N o) = u N gupo) =un [M] =1t-i.[S].

The second inequality holds because of the elementary relation ug N ug = nug
in the case of trivial bundles (see Step 1 of the proof of Thom isomorphism.)
Hence ¢ = 1. O

Now we can complete the proof of Equation (4.87) resorting to Proposition
4.115. @, N[M] is just e(x) for any x € X NY where the coorientation is induced
from that of X and Y. (Note that we use normal bundle for the first and use
tangent bundle for the second.) Hence the proof is reduced to that of

Proposition 4.116. ®xny = Ox U DY. Equivalently, i.[X NY] = i.[X] - i.[Y].
Proof.

Phixny U [M] = (iyy):[X NY]
= (iy ) (ixey): [X N Y]
= (iy ) (uxny N [Y])
= (iy)) () uy N [Y])
= ®x N (iy).[Y]
= Ox N (Py N [M])
= (Ox Udy) N [M]
O
Thom isomorphism has lots of interesting applications, e.g. the Lefschetz

fixed point theorem. Here, we mention another application, namely the Euler
class.

Definition 4.117. Let E — M be a vector bundle and o : M — E be the zero
section. Then the Euler class e(E) is the image of Thom class ug under the
composition

H'(E, Eo) — H"(E) %> H"(M).

For the special case when § is a submanifold of M and E is taken as its
normal bundle, the Euler class e(S) is the pull back of the Thom class through

iiS— (M,M\YS).
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In this case, Euler class can be viewed as the obstruction of deforming S into
M\S.

Proposition 4.118. If the inclusion S € M is homotopic to a map f:S —> M
whose image is contained in M \ S, then e(S) = 0.

Proof. By assumption, the inclusion i : § — (M, M \ S) is homotopic to a map
¢ : S — (M, M\S) which is factored through (M\S, M\S). Hence in cohomology
i* = ¢* factors through H*(M \ S,M \ S§) =0. So i* =0 and hence e(N) =0. O

Proposition 4.119. T(e(S)) = uUu where u € H*(M, M\ S) is the Thom class.
Proof. T(e) =T (u)) =" i*(u) Uu = uUu. O
Corollary 4.120. If the codimension k of S in M is odd, then 2¢(S) = 0.

The name “Euler class” comes from the following

Theorem 4.121. Let M be an oriented n-manifold, A : M — M X M be the
diagonal map. Then

1. (e(M), [Apm]) = x(M) where y is the Euler characteristic.
2. The normal bundle of the diagonal (Deltayy) is isomorphic to TM.
The Euler class is a characteristic class in the following sense.

Definition 4.122. A cohomology class ¢(E) € H*(M) associated to any vector
bundle E — M is called a characteristic class if it is natural with respect to
pull-backs, that is, ¢(f*E) = f*(c(E)).



