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Preface

A word from the transcriber

This is a study memo of �Homotopietheorie� by tom Dieck, Kamps and Puppe.

The preface by Puppe

This paper goes back to a lecture that I gave in the fall and winter of 1966/67
at the University of Minnesota, Minneapolis, Minn. USA, and the aim of which
was to build up the basics of homotopy theory without gaps, without using
other parts of algebraic topology (such as homology theory) and to arrive at
interesting results (such as the suspension theorems and James' theorem on the
loop space of a suspension). In the winter semester of 1967/68 I read about
the same topic again at the University of Saarland, Saarbrücken and tried to
improve the presentation. Two listeners of this lecture have written the present
paper: K.H. Kamps the ��0-7 and the appendix, T.tom Dieck the ��8-17.

In ��1-9, the theory of co�brations and �brations is discussed in detail. The
results and methods are mostly known, but are not found elsewhere in a sys-
tematic compilation and seem to me to be fundamental.

�10 on the operation of the fundamental groupoid on the homotopy sets was
expanded by tom Dieck based on his own ideas. (In the lecture only the case
𝐾 = pt space was discussed.)

In ��11-13, the homotopy groups are introduced in connection with the func-
tors �suspension�, �loop space� and �H-space�, �Co-H-space�.

�14 contains the �bre sequences from which the exact Homotopy sequences
for pairs and for �brations result as corollaries. Dual to this is the �Co�bre
sequences�. We have omitted its description because it can be developed quite
analogously and because it is discussed in detail in [19] (under the name �map-
ping sequences�). (The representation in [19] is at some points more complicated
than is possible today by proceeding exactly dual to �14 with the help of the
results of ��1, 2.)

The ��15-17 bring the homotopy excision theorem of Blakers-Massey, suspen-
sion theorems and a generalisation of James on the theorem on the loop space of
a suspension. This theorem is proved using purely homotopy-theoretical means,
and one obtains a true homotopy equivalence, where the other methods used
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only yield a weak homotopy equivalence. After completion of this manuscript
have I realised that the proof given in �17 can still be simpli�ied somewhat while
maintaining the basic ideas [28].

Originally, I used James' theorem to prove the suspension theorems. Only
later did I �nd the elementary proof of the homotopy excision theorem, which
is given here in �15. (I received an important idea about this through an oral
communication from J. M. Boardman.) It provides a simpler way to the suspen-
sion theorems and thus to the �rst interesting statements about the homotopy
groups of spheres (cf.16.3) than the theorem of James and than all other meth-
ods known to us. Therefore, we have changed it accordingly. What remains
of the previous structure is that the homotopy groups appear relatively late,
although this is no longer necessary. Only a small part of the previous ��1-12 is
needed for them. For James' theorem, the theory of ��1-12 on the other hand,
is used decisively (see in particular 17.8 Auxiliary sentence 14).

I would like to thank my two co-authors for their cooperation. I would like
to thank Mr Ulrich Mayr for a critical review and Mrs Marianne Karl for writing
the manuscript.

Heidelberg, the 5th October, 1970 D. Puppe
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Chapter 0

Fundamentals

0.1 Category theoretical foundations

We adopt the point of view of Brinkmann-Puppe [4] and build the theory of
categories on a set theory with universes on (Brinkmann-Puppe [4], 1.1.5, 1.1.6).
We henceforth assume the basic concepts of category theory (category, functor,
natural transformation, dual category, diagramme, etc.), such as in Brinkmann-
Puppe [4], 0., 2. are de�ned as known.
If ℭ is a category, then denote |ℭ | the set of objects of ℭ, ℭ(𝑋,𝑌 ) the set of
morphisms from 𝑋 to 𝑌 (𝑋,𝑌 ∈ |ℭ |), id𝑋 the unit of ℭ(𝑋,𝑌 ) (𝑋 ∈ ℭ).
𝑓 : 𝑋 → 𝑌 stands for 𝑓 ∈ ℭ(𝑋,𝑌 ). For the composition of two morphisms
𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍, we write 𝑔 𝑓 or 𝑔 ◦ 𝑓 .

Notation 0.1. In the following, we will mainly deal with the top category of
topological spaces and continuous maps.
We assume the basics of set-theoretic topology to be known.
We use the following designations.

� N denotes the set of natural numbers: N = {0, 1, 2, . . . }.

� Let R be the topological space of real numbers. The following two subsets
of R will be encountered frequently: the closed unit interval [0, 1] of the
real numbers - we denote it by I - and the subspace of the non-negative
real numbers {𝑥 ∈ R|𝑥 > 0} - we denote it by R+.

� Let R𝑛 be the 𝑛-dimensional Euclidean space (𝑛 ∈ N, 𝑛 ≥ 1), E𝑛 be the
𝑛-dimensional solid sphere of Radius 1 (𝑛 ∈ N, 𝑛 ≥ 1), S𝑛 be the 𝑛-sphere
(𝑛 ∈ N).

� If 𝑋, 𝑌 are topological spaces, then let proj1 : 𝑋 ×𝑌 → 𝑋 be the projection
of the topological product 𝑋 × 𝑌 onto the �rst factor, proj2 : 𝑋 × 𝑌 → 𝑌

be the projection onto the second factor. Let 𝑋 be a topological space, 𝐴

1



2 CHAPTER 0. FUNDAMENTALS

a subset of 𝑋, then let 𝑋/𝐴 be the topological space that arises from 𝑋

when 𝐴 is identi�ed to a point.1

De�nition 0.2. Let ℭ be a category.

� If 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑌 → 𝑋 are morphisms of ℭ with 𝑔 𝑓 = id𝑋, then 𝑔 is
called a left inverse to 𝑓 , 𝑓 a right inverse to 𝑔.

� A morphism of ℭ is called a section if it has a left inverse, a morphism is
called a retraction if it has a right inverse.

� A morphism 𝑓 of ℭ is called an isomorphism if there exists a morphism
𝑔 which is inverse (i.e. left inverse and right inverse) to 𝑓 . Such a 𝑔 is
uniquely determined by 𝑓 . We write 𝑔 =: 𝑓 −1.

De�nition 0.3. Let ℭ be the category 𝓉ℴ𝓅 of topological spaces. Let 𝑋 be
a topological space, 𝐴 be a subspace of 𝑋, 𝑖 : 𝐴 ⊂ 𝑋 be the inclusion, then
especially interesting is a retraction 𝑟 : 𝑋 → 𝐴, for which 𝑟𝑖 = id𝐴.
We call such a retraction a retraction from 𝑋 to 𝐴.
The subspace 𝐴 is called the retract of 𝑋 if a retraction from 𝑋 to 𝐴 exists.

De�nition 0.4. A natural equivalence relation �∼� in a category ℭ consists of
one equivalence relation each �∼(𝑋,𝑌 )=: �∼� in each set of morphisms ℭ(𝑋,𝑌 )
(𝑋,𝑌 ∈ |ℭ |), so that for all 𝑓 , 𝑔 : 𝑋 → 𝑌 , 𝑓

′
, 𝑔
′
: 𝑌 → 𝑍 the following applies:

( 𝑓 ∼ 𝑔 and 𝑓
′ ∼ 𝑔′) ⇒ ( 𝑓

′
𝑓 ∼ 𝑔′𝑔).

If �∼� is a natural equivalence relation in ℭ, then one can form the factor
category ℭ/(∼) (Mitchell [17], 1.3). ℭ/(∼) has the same objects as ℭ.
The morphisms of ℭ/(∼) are the equivalence classes [ 𝑓 ] with respect to �∼�
of the morphisms 𝑓 of ℭ. The composition in ℭ/(∼) is given by the equation
[𝑔] [ 𝑓 ] = [𝑔 𝑓 ].
The units of ℭ/(∼) are the equivalence classes with respect to �∼� of the units
of ℭ.

De�nition 0.5. Let ℭ be a category. A diagramme in ℭ

𝑋1

𝑗1

  
𝑋0

𝑖1

>>

𝑖2   

𝑋

𝑋2

𝑗2

>>

(0.6)

is called a cocartesian square if the conditions (1) and (2) are satis�ed:

(1) 𝑗1𝑖1 = 𝑗2𝑖2 (i.e., the diagramme is commutative),

1If 𝐴 is empty, then 𝑋/𝐴 is the topological sum of 𝑋 and a space that has exactly one
point.



0.1. CATEGORY THEORETICAL FOUNDATIONS 3

(2) For every two morphisms 𝑓1 : 𝑋1 → 𝑌 , 𝑓2 : 𝑋2 → 𝑌 of ℭ with 𝑓1𝑖1 = 𝑓2𝑖2
there is exactly one morphism 𝑓 : 𝑋 → 𝑌 of ℭ with 𝑓 ℎ𝜈 = 𝑓𝜈 (𝜈 = 1, 2).

𝑋1

𝑗1

  

𝑓1

��
𝑋0

𝑖1

>>

𝑖2   

𝑋
𝑓 // 𝑌

𝑋2

𝑗2

>>

𝑓2

CC

In (2), the requirement of unambiguity is waived from 𝑓 , one obtains the
term �weak cocartesian square� (Freyd).

Remark 0.7. In a cocartesian square (0.6)

𝑋1

𝑗1

  
𝑋

𝑋2

𝑗2

>>

is clearly determined by
𝑋1

𝑋0

𝑖1

>>

𝑖2   
𝑋2

up to isomorphism.

De�nition 0.8. Dual2 to the term �cocartesian square� is the term `cartesian
square�.
Let ℭ be a category.
A diagramme in ℭ

𝑋1

𝑝1

  
𝑋

𝑞1

>>

𝑞2   

𝑋0

𝑋2

𝑝2

>>

(0.9)

2Exactly: (∗ℭ |ℭ) - dual in the sense of Brinkmann-Puppe [4], 2.2 (Transition from ℭ to
the dual category ∗ℭ)
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is called a cartesian square if (1) and (2) are satis�ed:

(1) 𝑝1𝑞1 = 𝑝2𝑞2,

(2) For every two morphisms 𝑓1 : 𝑌 → 𝑋1, 𝑓2 : 𝑌 → 𝑋2 of ℭ with 𝑝1 𝑓1 = 𝑝2 𝑓2
there is exactly one morphism 𝑓 : 𝑌 → 𝑋 of ℭ with 𝑞𝜈 𝑓 = 𝑓𝜈 (𝜈 = 1, 2).

𝑋1

𝑝1

  
𝑌

𝑓 //

𝑓1
//

𝑓2 //

𝑋

𝑞1

>>

𝑞2   

𝑋0

𝑋2

𝑝2

>>

In (2), the requirement of unambiguity is waived from 𝑓 , one recovers the
term �weak cartesian square�.

Remark 0.10. In a cartesian square (0.9)

𝑋1

𝑋

𝑞1

>>

𝑞2   
𝑋2

is clearly determined by
𝑋1

𝑝1

  
𝑋0

𝑋2

𝑝2

>>

up to isomorphism.

Theorem 0.11. Let ℭ be a category. Given the diagrammes (D1), (D2), and
the outer box (D3) in ℭ:

𝑈
𝛼 //

𝑢
��
(𝐷1)

𝛽𝛼

$$
𝑉

𝛽 //

𝑣
��
(𝐷2)

𝑊

𝑤
��

𝑈
′

𝛼
′
//

𝛽
′
𝛼
′

::𝑉
′

𝛽
′
// 𝑊

′

(0.12)
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Claim.

(a) If (D1) and (D2) are weakly cocartesian squares, (D3) is a weakly cocarte-
sian square, too.

(b) If (D1) and (D2) are cocartesian squares, (D3) is a cocartesian square, too.

(c) If (D1) and (D2) are weakly cartesian squares, then (D3) is a weakly carte-
sian square.

(d) If (D1) and (D2) are cartesian squares, then (D3) is a cartesian square.

Proof. The proof of the theorem is simple and is left to the reader (see Brown
[5], 6.6.5, Kamps [15], 0.10).
Note: (c) is dual to (a), (d) is dual to (b). □

De�nition 0.13. In addition to the category of topological spaces, we will deal
with some other categories derived from the category 𝒯ℴ𝓅.
For this we carry out the following general category-theoretic constructions.
Let ℭ be a category and let 𝐾, 𝐿 be objects of ℭ.
We de�ne categories ℭ𝐾 , ℭ𝐿, ℭ

𝐾
𝐿
.

Let the objects of ℭ𝐾 be the morphisms of ℭ that have 𝐾 as the source, let
the objects of ℭ𝐿 be the morphisms of ℭ, which have 𝐿 as their target, let the
objects of ℭ𝐾

𝐿
be the diagrammes 𝜉 in ℭ of the form

𝐾
𝑖−→ 𝑋

𝑝
−→ 𝐿.

Let 𝑖, 𝑖
′
(𝑝, 𝑝

′
; 𝜉, 𝜉

′
) be objects of ℭ𝐾 (ℭ𝐿, ℭ

𝐾
𝐿
respectively).

The morphisms 𝑖 → 𝑖
′
(𝑝 → 𝑝

′
, 𝜉 → 𝜉

′
) of ℭ𝐾 (ℭ𝐿, ℭ

𝐾
𝐿
resp.) be the commu-

tative diagrammes in ℭ of the form

𝐾

𝑖
′

��

𝑖

��
𝑋

𝑓
// 𝑋
′

𝐸
𝑓 //

𝑝
��

𝐸
′

𝑝
′

��
𝐿

𝐾

𝑖
′

��

𝑖

��
𝑋

𝑓
//

𝑝
��

𝑋
′

𝑝
′

��
𝐿

We then write (abuse of language):

𝑓 : 𝑖 → 𝑖
′
, 𝑓 : 𝑝 → 𝑝

′
, 𝑓 : 𝜉 → 𝜉

′
.

The composition of the morphisms in the new categories is induced by the
composition in ℭ. Units are

id𝑋 : 𝑖 → 𝑖, id𝐸 : 𝑝 → 𝑝, id𝑋 : 𝜉 → 𝜉.

ℭ𝐾 means the category of objects under 𝐾, 𝔏 the category of objects over 𝐿,
ℭ𝐾
𝐿
the category of objects under 𝐾 and over 𝐿.
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We note: A morphism 𝑓 of ℭ𝐾 (ℭ𝐿, ℭ
𝐾
𝐿
) is an isomorphism of ℭ𝐾 (ℭ𝐿, ℭ

𝐾
𝐿
)

resp.) if and only if 𝑓 is an isomorphism of ℭ.

Remark 0.14. If 𝐾 is a copoint of the category ℭ, i.e. if ℭ(𝐾, 𝑋) has exactly one
element for all 𝑋 ∈ |ℭ |, then ℭ𝐾 can be canonically identi�ed with ℭ and ℭ𝐾

𝐿

with ℭ𝐿. If L is a point of the category ℭ, i.e. ℭ(𝑋, 𝐿) have exactly one element
for all 𝑋 ∈ |ℭ |, then ℭ𝐿 can be canonically identi�ed with ℭ and ℭ𝐾

𝐿
with ℭ𝐾 .

De�nition 0.15. In the case ℭ = 𝒯ℴ𝓅, the objects of ℭ𝐾 are called spaces
under 𝐾, the objects of ℭ𝐿 are called spaces over 𝐿, the objects of ℭ𝐾

𝐿
are called

spaces under 𝐾 and over 𝐿, the morphisms of ℭ𝐾 (ℭ𝐿, ℭ
𝐾
𝐿
) the maps under 𝐾

(over 𝐿, under 𝐾 and over 𝐿 resp.).

Instead of map over 𝐿, one also says �brewise map, since a map over 𝐿
𝑓 : 𝑝 → 𝑝

′
for each 𝑏 ∈ 𝐿 maps 𝑝−1𝑏 the �bre over 𝑏 into 𝑝

′
𝑏 the �bre over 𝑏.

The empty topological space ∅ is a copoint in the category𝒯ℴ𝓅. Therefore,
the following applies: 𝒯ℴ𝓅

∅ = 𝒯ℴ𝓅, 𝒯ℴ𝓅
∅
𝐿
= 𝒯ℴ𝓅𝐿 (𝐿 ∈ |𝒯ℴ𝓅|).

Each point space 𝑃, i.e., every topological space 𝑃 whose underlying set has
exactly one element, is a point in the category 𝒯ℴ𝓅. Therefore, the following
applies: 𝒯ℴ𝓅𝑃 = 𝒯ℴ𝓅, 𝒯ℴ𝓅

𝐾
𝑃
= 𝒯ℴ𝓅

𝐾 (𝐾 ∈ |𝒯ℴ𝓅|).
We also use the term 𝒯ℴ𝓅

𝑜 := 𝒯ℴ𝓅
𝑃. We also call 𝒯ℴ𝓅

𝑜 the category of
pointed topological spaces.
We can consider the objects of 𝒯ℴ𝓅

𝑜 as pairs (X, o) where 𝑋 is a topological
space and 𝑜 ∈ 𝑋 is the base point. The morphisms (𝑋, 𝑜) → (𝑋 ′ , 𝑜′ ) of 𝒯ℴ𝓅

𝑜

are the basepoint-preserving (pointed) continuous maps, i.e. the continuous
maps 𝑓 : 𝑋 → 𝑋

′
with 𝑓 (𝑜) = 𝑜′ .

De�nition 0.16. If ℭ is a category, we also have the category of pairs ℭ(2).
The objects of ℭ(2) are the morphisms of ℭ.
Let 𝑢, 𝑢

′
be objects of ℭ(2).

The morphisms 𝑢 → 𝑢
′
of ℭ(2) are the commutative diagrams in ℭ of the form

𝑋
𝑓 //

𝑢

��

𝑋
′

𝑢
′

��
𝑌

𝑔
// 𝑌
′

We write ( 𝑓 , 𝑔) : 𝑢 → 𝑢
′
.

The composition in ℭ(2)) is induced from the composition in ℭ. Unit 𝑢 → 𝑢 is
the morphism (id𝑋, id𝑌 ).
A morphism ( 𝑓 , 𝑔) of ℭ(2) is exactly then a isomorphism of ℭ(2) if 𝑓 and 𝑔 are
isomorphisms of ℭ.

At the end of 0.1 we ask the reader to familiarise himself with the concept
of adjoint functors (see Mitchell [17], V.).
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0.2 Fundamentals of homotopy theory

De�nition 0.17. A continuous map of the form 𝜑 : 𝑋 × 𝐼 → 𝑌 where 𝑋 and 𝑌
are topological spaces is called homotopy.

A homotopy 𝜑 : 𝑋 × 𝐼 → 𝑌 gives, by 𝜑𝑡 (𝑥) := 𝜑(𝑥, 𝑡) for 𝑥 ∈ 𝑋, a family of
continuous maps 𝜑𝑡 : 𝑋 → 𝑌 , 𝑡 ∈ 𝐼.
If 𝑗𝑡 : 𝑋 → 𝑋 × 𝐼 is the continuous map 𝑥 ↦→ (𝑥, 𝑡), we obtain 𝜑𝑡 = 𝜑 ◦ 𝑗𝑡 .
De�nition 0.18. Let 𝑋, 𝑌 be topological spaces, 𝑓 , 𝑔 : 𝑋 → 𝑌 be continuous
maps.
𝑓 is called homotopic to 𝑔 if a homotopy 𝜑 : 𝑋 × 𝐼 → 𝑌 exists with 𝜑0 = 𝑓 and
𝜑1 = 𝑔, so if there is a continuous map 𝜑 : 𝑋 × 𝐼 → 𝑌 , so that for all 𝑥 ∈ 𝑋

𝜑(𝑥, 0) = 𝑓 (𝑥), 𝜑(𝑥, 1) = 𝑔(𝑥).

Figure 1:

Such a 𝜑 is called a homotopy from 𝑓 to 𝑔.
We write: 𝑓 ≃ 𝑔, if 𝑓 is homotopic to 𝑔, and 𝜑 : 𝑓 ≃ 𝑔, if 𝜑 is a homotopy from
𝑓 to 𝑔.

Theorem 0.19. �≃� is a natural equivalence relation in 𝒯ℴ𝓅 (see De�nition
0.4).

Proof. 1. [Re�exivity] Let 𝑓 : 𝑋 → 𝑌 be a continuous mapping. By 𝜑(𝑥, 𝑡) :=
𝑓 (𝑥) for (𝑥, 𝑡) ∈ 𝑋 × 𝐼 we get a homotopy 𝜑 : 𝑋 × 𝐼 → 𝑌 from 𝑓 to 𝑓 .

2. [Symmetry] Let 𝑓 , 𝑔 ∈ 𝒯ℴ𝓅(𝑋,𝑌 ) and 𝜑 : 𝑓 ≃ 𝑔, then

𝜑
′ (𝑥, 𝑡) := 𝜑(𝑥, 1 − 𝑡), for (𝑥, 𝑡) ∈ 𝑋 × 𝐼

delivers a homotopy from 𝑔 to 𝑓 .

3. [Transitivity] Let 𝑓 , 𝑔, ℎ ∈ 𝒯ℴ𝓅(𝑋,𝑌 ), 𝜑 : 𝑓 ≃ 𝑔, 𝜓 : 𝑔 ≃ ℎ, then 𝜒 : 𝑋×𝐼 → 𝑌

is a continuous (!) map (!), given by

𝜒(𝑥, 𝑡) =
{
𝜑(𝑥, 2𝑡), if 0 ≤ 𝑡 ≤ 1

2 , 𝑥 ∈ 𝑋,
𝜓(𝑥, 2𝑡 − 1), if 1

2 ≤ 𝑡 ≤ 1, 𝑥 ∈ 𝑋,

which is a homotopy from 𝑓 to ℎ.
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4. [Naturality] Let 𝑓 , 𝑔 : 𝑋 → 𝑌 , 𝑓
′
, 𝑔
′
: 𝑌 → 𝑍 be continuous maps with 𝑓 ≃ 𝑔,

𝑓
′ ≃ 𝑔′ .

Assertion: 𝑓
′
𝑓 ≃ 𝑔′𝑔.

Proof. Let 𝜑 : 𝑓 ≃ 𝑔, 𝜑′ : 𝑓 ′ ≃ 𝑔′ . Then the following

𝑓
′ ◦ 𝜑 : 𝑓

′
𝑓 ≃ 𝑓 ′𝑔, 𝜑

′ ◦ (𝑔 × id𝐼 ) : 𝑓
′
𝑔 ≃ 𝑔′𝑔, thus 𝑓

′
𝑓 ≃ 𝑔′𝑔,

applies since �≃�, as already shown, is transitive. □

□

Remark 0.20. Since �≃� is a natural equivalence relation in 𝒯ℴ𝓅, we can form
the factor (residue) category 𝒯ℴ𝓅/(≃) (cf. De�niton 0.4).
We note them 𝒯ℴ𝓅ℎ and call them the homotopy category associated to 𝒯ℴ𝓅.
Thus, for 𝑋,𝑌 ∈ |𝒯ℴ𝓅| (= |𝒯ℴ𝓅𝒽|), 𝒯ℴ𝓅ℎ(𝑋,𝑌 ) consists of the homotopy
classes of the continuous maps from 𝑋 to 𝑌 .
We shorten: 𝒯ℴ𝓅ℎ(𝑋,𝑌 ) =: [𝑋,𝑌 ].
If 𝑓 is a continuous mapping, then [ 𝑓 ] denote the homoopy class of 𝑓 .

De�nition 0.21. A continuous map 𝑓 : 𝑋 → 𝑌 is called a homotopy equivalence
(an h-equivalencefor short) if [ 𝑓 ] is an isomorphism in 𝒯ℴ𝓅𝒽, that is, if there
exists a continuous map 𝑔 : 𝑌 → 𝑋 with 𝑔 𝑓 ≃ id𝑋 and 𝑓 𝑔 ≃ id𝑌 .
Such a 𝑔 is called the homotopy inverse (h-inverse for short) to 𝑓 .
If 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑌 → 𝑋 are continuous maps with 𝑔 𝑓 ≃ id𝑋, then 𝑔 is called a
homotopy left inverse (h-left inverse) to 𝑓 , 𝑓 a homotopy right inverse (h-right
inverse) to 𝑔.

De�nition 0.22. The terms �null homotopic� and �contractible� are derived
from the homotopy concept.

(1) A continuous map 𝜒 : 𝑋 → 𝑌 is called constant if 𝑦0 ∈ 𝑌 exists with
𝜒(𝑋) = {𝑦0}.

(2) A continuous map 𝑓 : 𝑋 → 𝑌 is called null homotopic if it is homotopic to
a constant map.

(3) A topological space 𝑋 is called contractible if id𝑋 is null homotopic.

Remark 0.23. Let 𝑎, 𝑏 be real numbers with 𝑎 < 𝑏. If one replaces the interval
[0, 1] with the interval [𝑎, 𝑏] in the de�nition of the term �homotopy�, one
obtains, as one might easily think, an equivalent term.
A corresponding remark is always applicable when a de�nition is based on the
homotopy concept for example, in the de�nition of the homotopy extension
property (cf. De�nition 1.5), the covering homotopy property (cf. De�nition
2.21, Theorem 2.23) and the de�nition of the terms �co�bration� and ��bration�
(cf. De�nition 1.6 and De�nition 2.26).
In consistency with De�nition 0.17 we call continuous maps 𝜑 : 𝑋 × [𝑎, 𝑏] → 𝑌

(𝑋,𝑌 ∈ |𝒯ℴ𝓅|) homotopies and de�ne for 𝑡 ∈ [𝑎, 𝑏] a continuous mapping
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𝑗𝑡 : 𝑋 → 𝑋 × [𝑎, 𝑏] by 𝑗𝑡 (𝑥) := (𝑥, 𝑡) for 𝑥 ∈ 𝑋.
If 𝜑 : 𝑋× [𝑎, 𝑏] → 𝑌 is a homotopy, we assume for 𝑡 ∈ [𝑎, 𝑏], 𝜑𝑡 := 𝜑◦ 𝑗𝑡 : 𝑋 → 𝑌 .
So we have 𝜑𝑡 (𝑥) = 𝜑(𝑥, 𝑡) for 𝑥 ∈ 𝑋, 𝑡 ∈ [𝑎, 𝑏],

Let 𝐾 and 𝐿 be topological spaces.
We de�ne homotopy terms in the category 𝒯ℴ𝓅

𝐾 of the topological spaces
under 𝐾, in the category 𝒯ℴ𝓅𝐿 of the topological spaces over 𝐿, in the category
𝒯ℴ𝓅

𝐾
𝐿
and in the category of pairs𝒯ℴ𝓅(2) (cf.(De�nitions 0.13, 0.15 and 0.16.)

De�nition 0.24. Let 𝑓 , 𝑔 : 𝑖 → 𝑖
′
be morphisms of 𝒯ℴ𝓅

𝐾 :

𝐾

𝑖

��

𝑖
′

��
𝑋

𝑓 ,𝑔
// 𝑋
′

𝑓 is called a homotopy under 𝐾 to 𝑔 if a homotopy 𝜑 : 𝑋 × 𝐼 → 𝑋
′
exists with

𝜑 : 𝑓 ≃ 𝑔 and 𝜑(𝑖 × id𝐼 ) = 𝑖
′ ◦ proj1.

𝑋 × 𝐼
𝜑 // 𝑋

′

𝐾 × 𝐼
proj1

//

𝑖×id𝐼

OO

𝐾

𝑖
′

OO

where 𝜑 is a homotopy under 𝐾 from 𝑓 to 𝑔. We write 𝑓
𝐾∼ 𝑔 if 𝑓 is homotopic

under 𝐾 to 𝑔, and 𝜑 : 𝑓
𝐾∼ 𝑔 if 𝜑 is a homotopy under 𝐾 from 𝑓 to 𝐺.

The condition 𝜑(𝑖 × id𝐼 ) = 𝑖
′ ◦ proj1 states: for all 𝑡 ∈ 𝐼, 𝜑𝑡 ◦ 𝑖 = 𝑖

′
holds, i.e. for

all 𝑡 ∈ 𝐼, 𝜑 : 𝑋 → 𝑋
′
is a morphism of 𝒯ℴ𝓅

𝐾 , 𝜑𝑡 : 𝑖 → 𝑖
′
.

Special cases.

(1) 𝐾 is a subspace of 𝑋, 𝑖 is the inclusion 𝐾 ⊂ 𝑋. In addition to �homotopic
under 𝐾� and �homotopy under 𝐾� are then also the terms �homotopic
relative to 𝐾�, and �homotopy relative to 𝐾� are common.
Then we also write

“ 𝑓 ≃ 𝑔 rel𝐾 ′′ instead of “ 𝑓
𝐾≃ 𝑔′′ and

“𝜑 : 𝑓 ≃ 𝑔 rel𝐾 ′′ instead of “𝜑 : 𝑓
𝐾≃ 𝑔′′.

A homotopy 𝜑 relative to 𝐾 has the property: for each 𝑎 ∈ 𝐾, 𝜑(𝑎, 𝑡) is
independent of 𝑡 ∈ 𝐼.

(2) If 𝐾 is a one-point space, i.e. 𝒯ℴ𝓅
𝐾 = 𝒯ℴ𝓅

𝑜 (cf. De�nition 0.15), thus,
the terms �pointed homotopic� and �pointed homotopy� is common.
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De�nition 0.25. Homotopies under 𝐾 can be expressed as morphisms of𝒯ℴ𝓅
𝐾 .

Let us �rst consider the situation in the category 𝒯ℴ𝓅.
If 𝑋 is a topological space, then we have the cylinder on 𝑋 𝐼𝑋 := 𝑋 × 𝐼3 Ho-
motopies in 𝒯ℴ𝓅 are now morphisms of 𝒯ℴ𝓅 of the form 𝐼𝑋 → 𝑌 , where 𝑌
is another topological space. We are now transferring the cylinder construction
from 𝒯ℴ𝓅 to 𝒯ℴ𝓅

𝐾 .

If 𝑖 : 𝐾 → 𝑋 is a space under 𝐾, then let 𝐼𝐾𝑋 be the topological space that
is created from 𝑋 × 𝐼 when (𝑖𝑎, 𝑡) ∈ 𝑋 × 𝐼 for each (𝑎, 𝑡) ∈ 𝐾 × 𝐼 is identi�ed with
(𝑖𝑎, 0) ∈ 𝑋 × 𝐼.

Figure 2:

If we connect the natural projection 𝑋 × 𝐼 → 𝐼𝐾𝑋 to 𝐾
𝑖−→ 𝑋

𝑗0−→ 𝑋 × 𝐼, we
get a space under 𝐾, 𝐼𝐾 𝑖 : 𝐾 → 𝐼𝐾𝑋.
If 𝜑 : 𝐼𝐾 𝑖 → 𝑖

′
a morphism of 𝒯ℴ𝓅

𝐾 , where 𝑖
′
: 𝐾 → 𝑋

′
is another space under

𝐾, then one can obtain a homotopy under 𝐾, 𝜑 :: 𝑋 × 𝐼 → 𝑋
′
by composing the

natural projection from 𝑋 × 𝐼 to 𝐼𝐾𝑋 with 𝜑.
The assignment 𝜑 → 𝜑 provides a bijection between the morphisms of 𝒯ℴ𝓅

𝐾

of the form 𝐼𝐾 𝑖 → 𝑖
′
and the homotopies under 𝐾.

De�nition 0.26. Let 𝑓 , 𝑔 : 𝑝 → 𝑝
′
be morphisms of 𝒯ℴ𝓅𝐿:

𝐸
𝑓 ,𝑔 //

𝑝
��

𝐸
′

𝑝
′

��
𝐿

𝑓 is called a homotopy over 𝐿 to 𝑔 ( 𝑓 𝐿
≃
𝑔) if there exists a homotopy 𝜑 : 𝐸×𝐼 → 𝐸

′

with 𝜑 : 𝑓 ≃ 𝑔 and 𝑝
′ ◦ 𝜑 = 𝑝 ◦ proj1.

𝐸 × 𝐼
𝜑 //

𝑝◦proj1 !!

𝐸
′

𝑝
′

��
𝐿

3The transcriber believes Cyl𝑋 would be a better notation than 𝐼𝑋.
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Where 𝜑 is a homotopy over 𝐿 from 𝑓 to 𝑔 (𝜑 : 𝑓 𝐿
≃
𝑔).

The condition 𝑝
′
𝜑 = 𝑝 ◦ proj1 states: for all 𝑡 ∈ 𝐼, 𝑝′𝜑+ = 𝑝, i.e. for all 𝑡 ∈ 𝐼,

𝜑+ : 𝐸 → 𝐸
′
is a morphism of 𝒯ℴ𝓅𝐿, 𝜑𝑡 : 𝑝 𝑡𝑜𝑝

′
.

Further, the equation 𝑝
′
𝜑 = 𝑝 ◦proj1 means: the homotopy 𝜑 over 𝐿 are exactly

the morphism 𝜑 : 𝑝 ◦ proj1 → 𝑝
′
of 𝒯ℴ𝓅𝐿. The cylinder construction in 𝒯ℴ𝓅

thus corresponds in 𝒯ℴ𝓅𝐿 to the transition from the space 𝑝 : 𝐸 → 𝐿 over 𝐿
to the space 𝐿𝐿 𝑝 := 𝑝 ◦ proj1 : 𝐸 × 𝐼 → 𝐿 over 𝐿. If 𝜑 is a homotopy over 𝐿,
then for all 𝑡 ∈ 𝐼 and 𝑏 ∈ 𝐿

𝜑𝑡 (𝑝−1𝑏) ⊂ 𝑝
′−1𝑏,

that is, the �bre 𝑝−1𝑏 over 𝑏 are mapped over 𝑏 during the entire homotopy 𝜑 in
the �bre 𝑝

′−1𝑏 over 𝑏. Therefore, in addition to �homotopic over 𝐿� and �homo-
topy over 𝐿� we also have useful designations �vertically homotopic�, ��bre-wise
homotopic�, �vertical homotopy�, ��bre-wise homotopy�.

Using the same formulae as in the proof of Theorem (0.19) show you:

Theorem 0.27. �
𝐾≃� and �≃

𝐿
� are natural equivalence relations in 𝒯ℴ𝓅

𝐾 and

𝒯ℴ𝓅𝐿 respectively.

De�nition 0.28. Thus one has factor categories

𝒯ℴ𝓅
𝐾/(𝐾≃) =: 𝒯ℴ𝓅

𝐾 ℎ and 𝒯ℴ𝓅𝐿/(≃
𝐿
) =: 𝒯ℴ𝓅𝐿ℎ.

Let 𝑖 : 𝐾 → 𝑋, 𝑖
′
: 𝐾 → 𝑋

′
be spaces under 𝐾, 𝑝 : 𝐸 → 𝐿, 𝑝

′
: 𝐸

′ → 𝐿 be
spaces over 𝐿, so we write instead of 𝒯ℴ𝓅

𝐾 ℎ(𝑖, 𝑖′ ) also (inaccurately) [𝑋, 𝑋 ′ ]𝐾 ,
instead of 𝒯ℴ𝓅𝐿ℎ(𝑝, 𝑝

′ ) also (inaccurately) [𝐸, 𝐸 ′ ]𝐿.
If 𝐾 is a one-point space, we use the designation [𝑋, 𝑋 ′ ]𝑜.
If 𝑓 is a morphism of 𝒯ℴ𝓅

𝐾 or 𝒯ℴ𝓅𝐿, then denote [ 𝑓 ]𝐾 resp. [ 𝑓 ]𝐿 the equiv-

alence class of 𝑓 with respect to �
𝐾≃� resp. �≃

𝐿
�.

If 𝐾 is a one-point space, we use the designation [ 𝑓 ]0. A morphism 𝑓 of 𝒯ℴ𝓅
𝐾

or 𝒯ℴ𝓅𝐿, is called homotopy equivalence (h-equivalence) under 𝐾 or homo-
topy equivalence over 𝐿 if [ 𝑓 ]𝐾 resp. [ 𝑓 ]𝐿 is an isomorphism in 𝒯ℴ𝓅

𝐾 ℎ and
𝒯ℴ𝓅𝐿ℎ, respectively.

Remark 0.29. If a morphism 𝑓 of 𝒯ℴ𝓅
𝐾 (or 𝒯ℴ𝓅𝐿) an h-equivalence under 𝐾

(over 𝐿), so is 𝑓 , interpreted as morphism of 𝒯ℴ𝓅, an h-equivalence.

De�nition 0.30. (1) Let 𝑝 and 𝑝
′
be spaces over 𝐿. 𝑝 is called h-equivalent

over 𝐿 to 𝑝
′
if 𝑝 and 𝑝

′
are isomorphic objects of 𝒯ℴ𝓅𝐿ℎ, that is, if there

exists an h-equivalence over 𝐿 𝑝 → 𝑝
′
.

(2) Let 𝑖 and 𝑖
′
be spaces under 𝐾. 𝑖 is called h-equivalent under 𝐾 to 𝑖

′
if 𝑖 and

𝑖
′
are isomorphic objects of 𝒯ℴ𝓅

𝐾 ℎ.

The de�nition of a homotopy concept in 𝒯ℴ𝓅
𝐾
𝐿
is now clear.
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De�nition 0.31. Let 𝑓 , 𝑔 : 𝜉 → 𝜉
′
be morphisms of 𝒯ℴ𝓅

𝐾
𝐿
:

𝐾

𝑖
′

��

𝑖

��
𝑋

𝑓 ,𝑔 //

𝑝
��

𝑋
′

𝑝
′

��
𝐿

A homotopy under 𝐾 and over 𝐿 from 𝑓 to 𝑔 is a homotopy 𝜑 : 𝑋 × 𝐼 → 𝑋
′
,

such that 𝜑 : 𝑓 ≃ 𝑔 and 𝜑𝑡 for all 𝑡 ∈ 𝐼 is a morphism of 𝒯ℴ𝓅
𝐾
𝐿
𝜉 → 𝜉

′
.

The homotopy relation de�ned in this way is a natural equivalence relation
in 𝒯ℴ𝓅

𝐾
𝐿
. One therefore has a factor category 𝒯ℴ𝓅

𝐾
𝐿
ℎ.

Remark 0.32. In the special case 𝐾 = ∅ (or 𝐿 is a one-point space), the homotopy
concept of (0.31) coincides with the homotopy concept of (0.26) (or (0.24)) in
𝒯ℴ𝓅𝐿 (or 𝒯ℴ𝓅

𝐾 ).

Remark 0.33. Homotopies under 𝐾 and over 𝐿 can be understood as morphisms
of 𝒯ℴ𝓅

𝐾
𝐿
.

If 𝜉 = (𝐾 𝑖−→ 𝑋
𝑝
−→ 𝐿) is a space under 𝐾 and over 𝐿, then �rst, by De�nition

(0.25), we obtain a space under 𝐾 𝐼𝐾 𝑖 : 𝐾 → 𝐼𝐾𝑋.
𝐼𝐾𝑋 is created from 𝑋 × 𝐼 by identifying (𝑖𝑎, 𝑡) ∈ 𝑋 × 𝐼 for each (𝑎, 𝑡) ∈ 𝐾 × 𝐼
with (𝑖𝑎, 0) ∈ 𝑋 × 𝐼.
The continuous map 𝑝 ◦proj1 : 𝑋 × 𝐼 → 𝐿 is compatible with the identi�cations
made in 𝑋 × 𝐼, thus induces a continuous map 𝐼𝐾𝑋 → 𝐿.
We thus obtain a space below 𝐾 and above 𝐿

𝐼𝐾𝐿 𝜉 = (𝐾 → 𝐼𝐾𝑋 → 𝐿).

Let 𝜑 : 𝐼𝐾
𝐿
𝜉 → 𝜉

′
be a morphism of 𝒯ℴ𝓅

𝐾
𝐿
, where 𝜉

′
= (𝐾 𝑖

′

−→ 𝑋
′ 𝑝

′

−−→ 𝐿) is
another object of 𝒯ℴ𝓅

𝐾
𝐿
, then one obtains a homotopy under 𝐾 and above 𝐿

𝜑 : 𝑋 × 𝐼 → 𝑋
′
by composing the natural projection on 𝑋 × 𝐼 to 𝐼𝐾𝑋 with 𝜑.

The assignment 𝜑 → 𝜑 provides a bijection between the morphisms of 𝒯ℴ𝓅
𝐾
𝐿

of the form 𝐼𝐾
𝐿
𝜉 → 𝜉

′
and the homotopies under 𝐾 and over 𝐿.

Finally, we have the following homotopy notion in 𝒯ℴ𝓅(2).

De�nition 0.34. Let ( 𝑓 , 𝑔), ( 𝑓 ′ , 𝑔′ ) : 𝑈 → 𝑢
′
be morphisms of 𝒯ℴ𝓅(2):

𝑋
𝑓 , 𝑓
′
//

𝑢

��

𝑋
′

𝑢
′

��
𝑌

𝑔,𝑔
′
// 𝑌
′
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A homotopy of pairs from ( 𝑓 , 𝑔) to ( 𝑓 ′ , 𝑔′ ) is a pair (𝜑, 𝜓) of homotopies 𝜑 :
𝑋× 𝐼 → 𝑋

′
, 𝜓 : 𝑌× 𝐼 → 𝑌

′
such that 𝜑 : 𝑓 ≃ 𝑓 ′ , 𝜓 : 𝑔 ≃ 𝑔′ and 𝑢′ ◦𝜑 = 𝜓◦(𝑢×id𝐼 ).

𝑋 × 𝐼
𝜑: 𝑓≃ 𝑓 ′ //

𝑢×id𝐼
��

𝑋
′

𝑢
′

��
𝑌 × 𝐼

𝜓:𝑔≃𝑔′
// 𝑌
′

The last condition says: For all 𝑡 ∈ 𝐼, (𝜑𝑡 , 𝜓𝑟 ) is a morphism of 𝒯ℴ𝓅(2) 𝑢 → 𝑢
′
.

The homotopy relation de�ned in this way is a natural equivalence relation in
𝒯ℴ𝓅(2). We therefore have a factor category 𝒯ℴ𝓅(2)ℎ.





Chapter 1

Co�brations

1.1 Homotopy extensions and co�brations

1.1.1 The extension problem

Let 𝑖 : 𝐴→ 𝑋, 𝑔 : 𝐴→ 𝑌 be continuous maps. We ask: Does a continuous map
𝑓 : 𝑋 → 𝑌 exist with 𝑓 𝑖 = 𝑔, i.e. is the diagramme

𝐴
𝑖 //

𝑔

��

𝑋

𝑌

(1.1)

completed by a continuous map 𝑓 : 𝑋 → 𝑌 to the commutative triangle below?

𝐴
𝑖 //

𝑔

��

𝑋

𝑓��
𝑌

(1.2)

If 𝑖 is speci�cally an inclusion 𝐴 ⊂ 𝑋, the problem is whether a continuous
constant de�ned on the subspace 𝐴 of 𝑋 can be expanded to a continuous map
de�ned on 𝑋.
This problem is generally not soluble.

Example 1.3. let 𝑖 be the inclusive of the 𝑛-Sphere S𝑛 in the (𝑛 + 1)-ball E𝑛+1.
Since S𝑛 is not a retract of E𝑛+1 (Eilenberg-Steenrod [9], XI. Theorem 3.2,
Hurewicz-Wallman [13] , IT. 1 . B)), 𝑔 = idS𝑛 cannot be extended to E𝑛+1.

However, it applies:

Theorem 1.4. If 𝑖 is the inclusion S𝑛 ⊂ E𝑛+1, then Diagramme (1.1) always
becomes a commutative triangle (1.2) if there is a continuous map 𝑓

′
: E𝑛+1 → 𝑌

15
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with 𝑓
′
𝑖 ≃ 𝑔 exists.

S𝑛 𝑖 //

𝑔

��

E𝑛+1

𝑓
′

||
𝑌

Proof. Let 𝜑 : S𝑛 × 𝐼 → 𝑌 , 𝜑 : 𝑓
′
𝑖 ≃ 𝑔.

We de�ne Φ
′
: (E𝑛+1 × {0}) ∪ (S𝑛 × 𝐼) → 𝑌 by{

(𝑥, 0) ↦→ 𝑓
′ (𝑥), 𝑥 ∈ E𝑛+1,

(𝑎, 𝑡) ↦→ 𝜑(𝑎, 𝑡), (𝑎, 𝑡) ∈ S𝑛 × 𝐼 .

The de�nition makes sense, since 𝜑0 = 𝑓
′
𝑖, and returns a continuous map, since

E𝑛+1 × {0} and S𝑛 × 𝐼 are completed in (E𝑛+1 × {0}) ∪ (S𝑛 × 𝐼). By projecting
from the point (0, . . . , 0, 2) ∈ R𝑛+2 we get a retraction1

𝑟 : S𝑛 × 𝐼 → (E𝑛+1 × {0}) ∪ (S𝑛 × 𝐼).

Then Φ := Φ
′
𝑟 : 𝐸𝑛+1 × 𝐼 → 𝑌 is an extension of Φ

′
and for the continuous map

Figure 1.1:

𝑓 := Φ1 : E𝑛+1 → 𝑌 (i.e. 𝑓 (𝑥) = Φ(𝑥, 1) for 𝑥 ∈ E𝑛+1) satis�es 𝑓 𝑖 = 𝑔. □

1.1.2 The homotopy extension property (HEP). Co�bra-
tions

The essential step in the proof of Theorem (1.4) was the extension of the homo-
topy 𝜑 : S𝑛 × 𝐼 → 𝑌 to the homotopy Φ : E𝑛+1 × 𝐼 → 𝑌 , such that Φ0 is a given
extension ( 𝑓

′
) of 𝜑0. This leads us to the following de�nition.

1An explicit formula for 𝑟 can be found in Hilton [ll], p.11.
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De�nition 1.5. Let 𝑖 : 𝐴 → 𝑋 be a continuous map, let 𝑌 be a topological
space.
We say 𝑖 has the homotopy extension property (HEP for short) for 𝑌 , if for all
continuous maps 𝑓 : 𝑋 → 𝑌 and 𝜑 : 𝐴 × 𝐼 → 𝑌 , such that 𝜑(𝑎, 0) = 𝑓 𝑖𝑎 for
all 𝑎 ∈ 𝐴 (i.e. 𝜑0 = 𝑓 𝑖), a continuous map Φ : 𝑋 × 𝐼 → 𝑌 exists, such hat
Φ(𝑖 × id𝐼 ) = 𝜑2 and Φ(𝑥, 0) = 𝑓 𝑥 for all 𝑥 ∈ 𝑋 (i.e. Φ0 = 𝑓 ).

So 𝑖 has the HEP for 𝑌 if and only if every commutative diagramme in 𝒯ℴ𝓅

of the form

𝑋

𝑗0

$$

𝑓

  
𝐴

𝑖

<<

𝑗0 ""

𝑋 × 𝐼 𝑌

𝐴 × 𝐼
𝑖×id𝐼

::

𝜑

??

can be supplemented by a continuous map Φ : 𝑋 × 𝐼 → 𝑌 to the commutative
diagramme

𝑋

𝑗0

$$

𝑓

  
𝐴

𝑖

<<

𝑗0 ""

𝑋 × 𝐼 Φ // 𝑌

𝐴 × 𝐼
𝑖×id𝐼

::

𝜑

??

We illustrate the de�nition for the special case an inclusion 𝑖 : 𝐴 ⊂ 𝑋 through a
sketch.

Figure 1.2:

2We then say, even if 𝑖 is not an inclusion, Φ is an extension of 𝜑.
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De�nition 1.6. A continuous map 𝑖 : 𝐴→ 𝑋 is called a co�bration if 𝑖 has the
HEP for all topological spaces.

So 𝑖 is a co�bration if and only if the diagramme in 𝒯ℴ𝓅

𝑋

𝑗0

$$
𝐴

𝑖

<<

𝑗0 ""

𝑋 × 𝐼

𝐴 × 𝐼
𝑖×id𝐼

::

(1.7)

is a weakly cocartesian square (cf. De�nition (0.5)).
From the proof of Theorem (1.4) we see:

Example 1.8. 𝑖 : S𝑛 ⊂ E𝑛+1 is a co�bration.

Exercise 1.9. Every homeomorphism is a co�bration.

Exercise 1.10. Let 𝑖 : 𝐴→ 𝐵, 𝑗 : 𝐵→ 𝐶 be continuous maps, 𝑌 be a topological
space. If 𝑖 and 𝑗 have the HEP for 𝑌 , then 𝑗𝑖 also has the HEP for 𝑌 .

From (1.10) it follows (see also Theorem (0.11) Claim (a)):

Corollary 1.11. The composition of two co�brations is a co�bration.

1.1.3 The mapping cylinder of a continuous mapping

Let 𝑓 : 𝐴→ 𝑋 be a continuous map.

De�nition 1.12. The mapping cylinder 𝑍 𝑓 of 𝑓 is the quotient space that
arises from the topological sum 𝑋 + (𝐴 × 𝐼) if (𝑎, 0) ∈ 𝐴 × 𝐼 for each 𝑎 ∈ 𝐴 is
identi�ed with 𝑓 𝑎 ∈ 𝑋.

Figure 1.3:
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Let 𝑝 be the projection of 𝑋 + (𝐴 × 𝐼) onto the quotient space 𝑍 𝑓 .
Let 𝑗 : 𝑋 → 𝑍 𝑓 , 𝑘 : 𝐴 × 𝐼 → 𝑍 𝑓 be the continuous maps obtained by taking
the injections of 𝑋 respectively. 𝐴 × 𝐼 is composed into the topological sum
𝑋 + (𝐴 × 𝐼) with 𝑝.
We use the following (inaccurate) abbreviations:

𝑗 (𝑥) = 𝑝(𝑥) := 𝑥 for 𝑥 ∈ 𝑋,
𝑘 (𝑎, 𝑡) = 𝑝(𝑎, 𝑡) := (𝑎, 𝑡) for (𝑎, 𝑡) ∈ 𝐴 × 𝐼 .
𝑘1 : 𝐴→ 𝑍 𝑓 be a continuous map 𝑎 ∈ 𝐴 ↦→ 𝑘 (𝑎, 1) = (𝑎, 1) ∈ 𝑍 𝑓 , i.e.,

𝑘1 = 𝑘 ◦ 𝑗1 (See De�nitions 0.17 and 0.18.)

Theorem 1.13. 𝑗 : 𝑋 → 𝑍 𝑓 and 𝑘1 : 𝐴→ 𝑍 𝑓 are closed embeddings.

Proof. 𝑘1 is a cloesd embedding, since 𝑘1 is the composition of homeomorphisms
𝑎 ∈ 𝐴 ↦→ (𝑎, 1) ∈ 𝐴 × {1} with the closed embedding(!) 𝑘 |𝐴×{1} : 𝐴 × {1} → 𝑍 𝑓
is just injective.
𝑗 is closed: if 𝐹 is a closed subset of 𝑋, then it follows from the continuity of 𝑓 :
𝑝−1 𝑗 (𝐹) = 𝐹 + ( 𝑓 −1𝐹 × {0}) is cloesed in 𝑋 + (𝐴 × 𝐼), i. e., 𝑗 (𝐹) is closed in 𝑍 𝑓 ,
because 𝑝 is an identi�cation. □

Theorem 1.14. The following diagramme in 𝒯ℴ𝓅

𝑋

𝑗

""
𝐴

𝑓

==

𝑗0 !!

𝑍 𝑓

𝐴 × 𝐼
𝑘

<<

(1.15)

is a cocartesian square (See De�nition0.5).

Proof. The diagramme (1.15) is commutative by de�nition of 𝑍 𝑓 , 𝑗 and 𝑘.
There are continuous maps 𝑔1 : 𝑋 → 𝑌 , 𝑔2 : 𝐴 × 𝐼 → 𝑌 with 𝑔1 𝑓 = 𝑔2 𝑗0.
We have to show that there is exactly one continuous map 𝑔 : 𝑍 𝑓 → 𝑌 with
𝑔 𝑗 = 𝑔1 and 𝑔𝑘 = 𝑔2.

𝑋

𝑗

""

𝑔1

��
𝐴

𝑓

==

𝑗0 !!

𝑍 𝑓
𝑔 // 𝑌

𝐴 × 𝐼
𝑘

<<

𝑔2

AA

Uniqueness: 𝑔 is uniquely determined by 𝑔1 and 𝑔2, since 𝑍 𝑓 = 𝑗 (𝑋) ∪ 𝑘 (𝐴× 𝐼).
Existence: 𝑔1 and 𝑔2 together de�ne a continuous map 𝑔

′
: 𝑋 + (𝐴 × 𝐼) → 𝑌 .
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Since 𝑔1 𝑓 = 𝑔2 𝑗0, 𝑔
′
is contracted with the identi�cations we made in 𝑋 + (𝐴× 𝐼)

when constructing the mapping cylinder of 𝑓 :

𝑔
′ (𝑎, 0) = 𝑔2 (𝑎, 0) = 𝑔2 𝑗0𝑎 = 𝑔1 𝑓 𝑎 = 𝑔

′ ( 𝑓 𝑎)

for all 𝑎 ∈ 𝐴.
𝑔
′
therefore induces a continuous map 𝑔 : 𝑍 𝑓 → 𝑌 , such that the diagramme

𝑋 + (𝐴 × 𝐼)
𝑔
′

//

𝑝

��

𝑌

𝑍 𝑓

𝑔

::

is commutative, then 𝑔 is the continuous map we are looking for. □

1.1.4 Di�erent characterisations of the co�bration con-
cept

The following theorem characterises co�brations with the help of the mapping
cylinder and shows that a continuous map 𝑖 is already a co�bration if it has the
HEP for the mapping cylinder 𝑍𝑖.

Remark 1.16. Let 𝑖 : 𝐴 → 𝑋 be a continuous map. Since 𝑗0𝑖 = (𝑖 × id𝐼 ) 𝑗0 and
since (1.15) is a cocartesian square, there exists a continuous map 𝑖

′
: 𝑍𝑖 → 𝑋× 𝐼

with 𝑖
′
𝑗 = 𝑗0 and 𝑖

′
𝑘 = 𝑖 × id𝐼 .

𝑋

𝑗

""

𝑗0

��
𝐴

𝑖

<<

𝑗0 ""

𝑍𝑖
𝑖
′
// 𝑋 × 𝐼

𝐴 × 𝐼
𝑘

<<

𝑖×id𝐼

@@

Theorem 1.17. For a continuous map 𝑖 : 𝐴→ 𝑋, the following statements are
equivalent:

(a) 𝑖 is a co�bration.

(b) 𝑖 has the HEP for the mapping cylinder 𝑍𝑖.

(c) 𝑖
′
: 𝑍𝑖 → 𝑋 × 𝐼 is a section in the category of the topological spaces (i.e.

there exists a continuous map 𝑟 : 𝑋 × 𝐼 → 𝑍𝑖 with 𝑟𝑖
′
= id𝑍𝑖).

Proof. (thm:1-1-16a) ⇒ (thm:1-1-16b) is trivial.
(thm:1-1-16b) ⇒ (thm:1-1-16c) 𝑖 have the HEP for 𝑍𝑖. Since 𝐽𝑖 = 𝑘 𝑗0, then
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there exists a continuous map 𝑟 : 𝑋 × 𝐼 → 𝑍𝑖 with 𝑟 𝑗0 = 𝑗 and 𝑟 (𝑖 × id𝐼 ) = 𝑘.

𝑋

𝑗0

$$

𝑗

  
𝐴

𝑖

<<

𝑗0 ""

𝑋 × 𝐼 𝑟 // 𝑍𝑖

𝐴 × 𝐼
𝑖×id𝐼

::

𝑘

>>

We claim: 𝑟𝑖
′
= id𝑍𝑖 . Since (1.15) is a cocartesian square, this follows from the

equations

(𝑟𝑖′ ) 𝑗 = 𝑟 𝑗0 = 𝑗 = id𝑍𝑖 ◦ 𝑗 ,
(𝑟𝑖′ )𝑘 = 𝑟 (𝑖 × id𝐼 ) = 𝑘 = id𝑍𝑖 ◦𝑘.

(thm:1-1-16c) ⇒ (thm:1-1-16a) Let 𝑟 : 𝑋 × 𝐼 → 𝑍𝑖 be a continuous map with
𝑟𝑖
′
= id𝑍𝑖 .

Claim: 𝑖 is a co�bration.

Proof. (of the claim) Given continuous maps 𝑔 : 𝑋 → 𝑌 and 𝜑 : 𝐴 × 𝐼 → 𝑌 with
𝑔𝑖 = 𝜑 𝑗0. Since (1.15) is a cocartesian square, there (exactly) exists a continuous
map Φ

′
: 𝑍𝑖 → 𝑌 with Φ

′
𝑗 = 𝑔 and Φ

′
𝑘 = 𝜑.

Set Φ := Φ
′
𝑟 : 𝑋 × 𝐼 → 𝑌 .

Then the following holds:

Φ 𝑗0 = Φ
′
𝑟 𝑗0 = Φ

′
𝑟𝑖
′
𝑗 = Φ

′
𝑗 = 𝑔,

Φ(𝑖 × id𝐼 ) = Φ
′
𝑟 (𝑖 × id𝐼 ) = Φ

′
𝑟𝑖
′
𝑘 = Φ

′
𝑘 = 𝜑.

□

□

Corollary 1.18. If a continuous map 𝑖 : 𝐴 → 𝑋 is a co�bration, then 𝑖 is an
embedding.
Moreover, if 𝑋 is Hausdor�, then 𝑖(𝐴) is closed in 𝑋.

Proof. Since 𝑖 : 𝐴 → 𝑋 is a co�bration, we can, according to Theorem (1.17)
select a continuous map 𝑟 : 𝑋 × 𝐼 → 𝑍𝑖 with 𝑟𝑖

′
= id𝑍𝑖 .

For 𝑎 ∈ 𝐴 we have

𝑟 (𝑖𝑎, 1) = 𝑟𝑖′ 𝑘 (𝑎, 1) = 𝑘 (𝑎, 1) = (𝑎, 1) ∈ 𝐴 × 1 ⊂ 𝑍𝑖 .
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𝑖 is thus injective and induces a bijective continuous map 𝑖 : 𝐴→ 𝑖(𝐴).
The inverse 𝑖

−1
: 𝑖(𝐴) → 𝐴 is continuous, since in the commutative diagramme

𝑥_

��

𝑖(𝐴) 𝑖
−1
//

��

𝐴

𝑘1

��
(𝑥, 1) 𝑋 × 𝐼

𝑟
// 𝑍𝑖

the extended arrows are continuous maps and 𝑘1 according to (1.13) is an em-
bedding.
𝑖 is also an embedding.
If we set 𝑟

′
:= 𝑖

′
𝑟 : 𝑋 × 𝐼 → 𝑋 × 𝐼, then the following holds

𝑖(𝐴) = {𝑥 ∈ 𝑋 |𝑟 ′ (𝑥, 1) = (𝑥, 1)}.

If 𝑋 is Hausdor�, so is 𝑋 × 𝐼 Hausdor� and the diagonal of (𝑋 × 𝐼) × (𝑋 × 𝐼)
is therefore a closed subset of the product. Since 𝑖(𝐴) is the preimage of this
diagonal in the continuous map

𝑋 → (𝑋 × 𝐼) × (𝑋 × 𝐼), 𝑥 ↦→ (𝑟 ′ (𝑥, 1), (𝑥, 1)),

then it follows that 𝑖(𝐴) is closed in 𝑋. □

Remark 1.19. Corollary (1.18) shows in particular that one can limit oneself to
inclusions 𝑖 : 𝐴 ⊂ 𝑋 in the de�nition of the term �co�bration�.

Remark 1.20. Let 𝑖 : 𝐴 ⊂ 𝑋 be an inclusion. We compare the mapping cylinder
of 𝑖 with the subspace (𝑋 × 0) ∪ (𝐴 × 𝐼) of the product 𝑋 × 𝐼.
Consider the diagramme

𝑋

𝑗

""

𝑗
′

##
𝐴

𝑖

==

𝑗0 !!

𝑍𝑖
ℓ // (𝑋 × 0) ∪ (𝐴 × 𝐼)

𝐴 × 𝐼
𝑘

<<

𝑘
′

;;

where 𝑗
′
is the map 𝑥 ∈ 𝑋 ↦→ (𝑥, 0) ∈ (𝑋 × 0) ∪ (𝐴 × 𝐼), and 𝑘 ′ is the inclusion.

Since 𝑗
′
𝑖 = 𝑘

′
𝐽0 and since (1.15) is a cocartesian square, exactly one continuous

map ℓ : 𝑍𝑖 → (𝑋 × 0) ∪ (𝐴 × 𝐼) is induced with ℓ 𝑗 = 𝑗
′
and ℓ𝑘 = 𝑘

′
. Thus ℓ is

bijective.

Theorem 1.21. 𝑒𝑙𝑙 is a homeomorphism if one of the following conditions is
satis�ed:

(a) 𝐴 is closed in 𝑋.
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(b) (𝑋 × 0) ∪ (𝐴 × 𝐼) is a retract of 𝑋 × 𝐼.

Proof. The proof for the condition (b) is given in Appendix A.
At this point we prove the theorem under the Prerequisite (a).
We show that the following diagramme is a cocartesian square.

𝑋

𝑗
′

''
𝐴

𝑖

==

𝑗0 !!

(𝑋 × 0) ∪ (𝐴 × 𝐼)

𝐴 × 𝐼
𝑘
′

77

(1.22)

The assertion then follows from Theorem (1.14), since 𝑖 and 𝑗0 are, in a cocarte-
sian square, unique up to isomorphism. (see De�nition (0.5)).
We have already established that (1.22) is commutative.
Given continuous maps 𝑔1 : 𝑋 → 𝑌 , 𝑔2 : 𝐴 × 𝐼 → 𝑌 with 𝑔1𝑖 = 𝑔2 𝑗0. Then there
is a uniquely determined map of sets 𝑔 : (𝑋 × 0) ∪ (𝐴 × 𝐼) → 𝑌 with 𝑔 𝑗

′
= 𝑔1,

and 𝑔𝑘
′
= 𝑔2.

The restrictions of 𝑔 on 𝑋 × 0 and 𝐴 × 𝐼 are continuus, since 𝑔1 and 𝑔2 are
continuous.
𝑋×0 and, since 𝐴 is closed in 𝑋, 𝐴×𝐼 are closed in 𝑋×𝐼, that is, in (𝑋×0)∪(𝐴×𝐼).
Therefore, 𝑔 is continuous.
(1.22) is thus a cocartesian square. □

Remark 1.23. If 𝑖 : 𝐴 ⊂ 𝑋 is an inclusion, we can calculate the amount that the
mapping cylinder of 𝑖 is based on the bijective map ℓ of (1.20) with (𝑋×0)∪(𝐴×𝐼)
identi�ed. The continuous map ℓ : 𝑍𝑖 → (𝑋 × 0) ∪ (𝐴 × 𝐼) is then the identity
on the underlying sets.
The topology of the mapping cylinder of i on the set (𝑋×0) ∪ (𝐴× 𝐼) is thus �ner
than the induced subspace topology de�ned by the product 𝑋 × 𝐼. According to
Theorem (1.21) the topologies coincide if 𝐴 is closed in 𝑋 or (𝑋 × 0) ∪ (𝐴 × 𝐼) is
a retract of 𝑋 × 𝐼.

In general, however, the topologies are di�erent.

Example 1.24. Let 𝑋 := [0, 1] = 𝐼, 𝐴 :=]0, 1].
In (𝑋 × 0) ∪ (𝐴 × 𝐼) consider the sequence 𝑎𝑛 := ( 1

𝑛
, 1
𝑛
), (𝑛 = 1, 2, 3, . . . ). This

sequence converges to (0, 0) if one takes (𝑋 × 0) ∪ (𝐴 × 𝐼) the induced subspace
topology by the product 𝑋 × 𝐼.
However, if (𝑋 × 0) ∪ (𝐴 × 𝐼) has the topology of the mapping cylinder of 𝑖, the
sequence 𝑎𝑛 does not converge to (0, 0), since the point (0, 0) has neighbourhoods
with respect to the topology of the mapping cylinder that do not meet a point
of the diagonal of 𝐴 × 𝐼.

Theorem 1.25. (see Strøm [27], 2. Theorem 2) An inclusion 𝑖 : 𝐴 ⊂ 𝑋 is a
co�bration if and only if the subspace (𝑋 ×0) ∪ (𝐴× 𝐼) of 𝑋 × 𝐼 is retract of 𝑋 × 𝐼.
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Proof. We use the characterisation of the term �co�bration� of Theorem (1.17)
(c).
(⇒): If 𝑖 : 𝐴 ⊂ 𝑋 is a co�bration, then there exists a continuous map 𝑟 : 𝑋 × 𝐼 →
𝑍𝑖 with 𝑟𝑖

′
= id𝑍𝑖 , where

′
: 𝑍𝑖 → 𝑍𝑖 which is de�ned in (1.16) is a continuous

map. If we set 𝑟 with the continuous map ℓ : 𝑍𝑖 → (𝑋 × 0) ∪ (𝐴 × 𝐼) of (1.20)
together, we get a retraction from 𝑋 × 𝐼 to (𝑋 × 0) ∪ (𝐴 × 𝐼).
(⇐): Conversely, if 𝑟

′
is a retraction from 𝑋 × 𝐼 to (𝑋 × 0) ∪ (𝐴 × 𝐼) then

𝑟 := ℓ−1𝑟
′
: 𝑋 × 𝐼 → 𝑍𝑖 is a map with 𝑟𝑖

′
= id𝑍𝑖 . 𝑟 is continuous, since ℓ

−1 after
Theorem (1.21) (b) is continuous. □

Remark 1.26. The proof of Theorem (1.25) is based on the fact that a continuous
map ℓ : 𝑍𝑖 → (𝑋 × 0) ∪ (𝐴 × 𝐼) de�ned in (1.20) is a homeomorphism under
certain conditions. For this we have Theorem (1.21) (b), which we only prove
in the Appendix. However, if you put it in advance Theorem (1.25) assuming
that 𝐴 is closed in 𝑋, one can refer to the already proved Theorem (1.21) (a).

Example 1.27. We give an example of a closed inclusion 𝑖 : 𝐴 ⊂ 𝑋, which is not
a co�bration, and an example of a co�bration 𝑖 : 𝐴 ⊂ 𝑋, where 𝐴 is not closed
in 𝑋.

Example 1 Let 𝑋 := {0} ∪ { 1
𝑛
|𝑛 = 1, 2, 3, . . . } ⊂ R, 𝐴 := {0}. 𝐴 is a closed

subspace of 𝑋.

Claim: The inclusion 𝑖 : 𝐴 ⊂ 𝑋 is not a co�bration.

Proof. If 𝑖 : 𝐴 ⊂ 𝑋 were a co�bration, then according to Theorem (1.25)
a retraction 𝑟 : 𝑋 × 𝐼 → (𝑋 × 0) ∪ (𝐴 × 𝐼) of 𝑋 × 𝐼 would exist on (𝑋 × 0) ∪
(𝐴 × 𝐼). For 𝑛 = 1, 2, 3, . . . there is a path component of the point ( 1

𝑛
, 0)

Figure 1.4:

in (𝑋 × 0) ∪ (𝐴 × 𝐼) just from this point.
Since 𝑟 is continuous and �xes the point ( 1

𝑛
, 0), 𝑟 must therefore map the

distance { 1
𝑛
} × 𝐼 to the point ( 1

𝑛
, 0) (𝑛 = 1, 2, 3, . . . ).

On the other hand, 𝑟 �xes the range {0} × 𝐼 point-wise. But this is a
contradiction to the continuity of 𝑟 at the point (0, 1). □

Example 2 Let 𝑋 := {𝑎, 𝑏}, where 𝑎 ≠ 𝑏. We give 𝑋 the topology whose open
sets are ∅, {𝑎}, 𝑋. Let 𝐴 be the subspace {𝑎} of 𝑋. 𝐴 is not closed in 𝑋.

Claim: The inclusion 𝑖 : 𝐴 ⊂ 𝑋 is a co�bration.



1.1. HOMOTOPY EXTENSIONS AND COFIBRATIONS 25

Proof. We use the characterisation of Theorem (1.17) (c). We de�ne 𝑟 :
𝑋 × 𝐼 → 𝑍𝑖 by

(𝑥, 𝑡) ↦→
{
(𝑥, 𝑡), if x = a or 𝑡 = 0,

(𝑎, 𝑡), if 𝑡 > 0.

The reader should convince himself that 𝑟 is continuous. Since 𝑟𝑖
′
= id𝑧𝑖

Figure 1.5:

(𝑖
′
as in (1.16)), the assertion follows. □

1.1.5 Decomposition of a continuous map into a co�bra-
tion and a homotopy equivalence

With the help of the mapping cylinder we show that each continuous map can
replaced up to homotopy equivalence by a (closed) co�bration.

Remark 1.28. Let 𝑓 : 𝐴 → 𝑋 be a continuous map and 𝑍 𝑓 be the mapping
cylinder of 𝑓 .
Then continuous maps 𝑗 : 𝑋 → 𝑍 𝑓 , 𝑘 : 𝐴 × 𝐼 → 𝑍 𝑓 , 𝑘1 : 𝐴 → 𝑍 are de�ned as
in De�nition (1.12).
Since 𝑓 = 𝑓 ◦ proj1 ◦ 𝑗0 : 𝐴 → 𝑋 and since (1.15) is a cocartesian square, there
exists exactly one continuous map 𝑞 : 𝑍 𝑓 → 𝑋 with 𝑞 𝑗 = id𝑋 and 𝑞𝑘 = 𝑓 ◦proj1.

𝑋

𝑗

""

id𝑋

��
𝐴

𝑓

==

𝑗0 !!

𝑍 𝑓
𝑞 // 𝑋

𝐴 × 𝐼
𝑘

<<

𝑓 ◦proj1

AA

𝑞 is described by the formulae

𝑞𝑥 = 𝑥 for 𝑥 ∈ 𝑋,
𝑞(𝑎, 𝑡) = 𝑓 𝑎 for (𝑎, 𝑡) ∈ 𝐴 × 𝐼 .
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Figure 1.6:

Theorem 1.29. (a) The diagramme

𝐴

𝑘1

��

𝑓

��
𝑍 𝑓 𝑞

// 𝑋

is commutative.

(b) 𝑘1 and 𝑗 are co�brations.

(c)

𝑞 𝑗 = id𝑋,

𝑗𝑞 ≃ id𝑍 𝑓 rel 𝑗 (𝑋).

Since 𝑘1 is a closed embedding by Theorem (1.13), from Theorem (1.29)
follows, :

Corollary 1.30. Every continuous map 𝑓 can be factored into the form 𝑓 = 𝑢◦𝑣,
where 𝑣 is a (closed) co�bration and 𝑢 is a homotopy equivalence.

Proof. (of (1.29 (a)) 𝑞𝑘1 = 𝑞𝑘 𝑗1 = 𝑓 ◦ proj1 ◦ 𝑗1 = 𝑓 . □

For the proof of parts (b) and (c) of Proposition (1.29) we need:

Theorem 1.31. Let 𝑓 : 𝐴→ 𝐵 be a continuous map, 𝐶 be a topological space.
If 𝑓 is an identi�cation and is 𝐶 locally compact, then

𝑓 × id𝐶 : 𝐴 × 𝐶 → 𝐵 × 𝐶

is an identi�cation, too.

We prove (1.31) in (2.13) with the aid of mapping spaces (cf. also Schubert
[23], I, 7.9, Theorem 5)3.

3A direct proof for 𝐶 = 𝐼 can be found in Hilton [11], VII, Lemma 3.4.
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Proof. (of (1.29 (b)) We �rst identify (cf. (1.13)

𝐴 = 𝑘1 (𝐴) = 𝐴 × 1,
𝑋 = 𝑗 (𝑋).

𝑘1 and 𝑗 are then the inclusions

𝐴 × 1 ⊂ 𝑍 𝑓 , 𝑋 ⊂ 𝑍 𝑓 .

To prove that these inclusions are co�brations, let's apply (1.25).
Note Remark (1.26) (𝐴 × 1 and 𝑋 are closed in 𝑍 𝑓 after (1.13)).

So we have to show:

(1) (𝑍 𝑓 × 0) ∪ (𝐴 × 1 × 𝐼) is a retract of 𝑍 𝑓 × 𝐼,

(2) (𝑍 𝑓 × 0) ∪ (𝑋 × 𝐼) is a retract of 𝑍 𝑓 × 𝐼.

First, we show (1) holds:

Figure 1.7:

The projection from the point (0, 2) ∈ R × R provides a continuous map

𝜆 : 𝐼 × 𝐼 → (𝐼 × 0) ∪ (1 × 𝐼)

By

(𝑥, 𝑡) ↦→ (𝑥, 0) for 𝑥 ∈ 𝑋,
(𝑎, 𝑠, 𝑡) ↦→ (𝑎, 𝜆(𝑠, 𝑡)) for𝑎 ∈ 𝐴, 𝑠, 𝑡 ∈ 𝐼

one obtains a continuous map

𝑟 : (𝑋 + (𝐴 × 𝐼)) × 𝐼 → (𝑍 𝑓 ×𝑂) ∪ (𝐴 × 1 × 𝐼).

Since 𝜆(0, 𝑡) = (0, 0) for all 𝑡 ∈ 𝐼, the following holds for 𝑎 ∈ 𝐴 and 𝑡 ∈ 𝐼

𝑟 (𝑎, 0, 𝑡) = (𝑎, 𝜆(0, 𝑡)) = (𝑎, 0, 0) = ( 𝑓 𝑎, 0) = 𝑟 ( 𝑓 𝑎, 0).
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Figure 1.8:

There is therefore exactly one map

𝑟 : 𝑍 𝑓 × 𝐼 → (𝑍 𝑓 ×𝑂) ∪ (𝐴 × 1 × 𝐼)

with 𝑟 (𝑝 × id𝐼 ) = 𝑓 .

(𝑋 + (𝐴 × 𝐼)) × 𝐼 𝑟 //

𝑝×id𝐼
��

(𝑍 𝑓 ×𝑂) ∪ (𝐴 × 1 × 𝐼)

𝑍 𝑓 × 𝐼
𝑟

55

𝑟 is continuous since 𝑟 is continuous and since 𝑝 × id𝐼 after Theorem (1.31) is
an identi�cation (𝐼 is locally compact.) Since 𝜆 | (𝐼×0)∪(1×𝐼 ) = id(𝐼×0)∪(1×𝐼 ) , it
follows that

𝑟 | (𝑍 𝑓 ×0)∪(𝐴×1×𝐼 ) = id(𝑍 𝑓 ×0)∪(𝐴×1×𝐼 ) .

Thus (1) is proved.

Next, we show (2) holds:

Figure 1.9:

The projection from the point (1, 2) ∈ R × R gives a continuous map

𝜆
′
: 𝐼 × 𝐼 → (𝐼 × 0) ∪ (0 × 𝐼).
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Figure 1.10:

By

(𝑥, 𝑡) ↦→ (𝑥, 𝑡) for 𝑥 ∈ 𝑋,
(𝑎, 𝑠, 𝑡) ↦→ (𝑎, 𝜆′ (𝑠, 𝑡)) for𝑎 ∈ 𝐴, 𝑠, 𝑡 ∈ 𝐼

one obtains a continuous map

𝑟
′
: (𝑋 + (𝐴 × 𝐼)) × 𝐼 → (𝑍 𝑓 × 0) ∪ (𝑋 × 𝐼).

Since 𝜆
′ (0, 𝑡) = (0, 𝑡) for all 𝑡 ∈ 𝐼, for 𝑎 ∈ 𝐴 and 𝑡 ∈ 𝐼 we have

𝑟
′ (𝑎, 0, 𝑡) = (𝑎, 𝜆′ (0, 𝑡)) = (𝑎, 0, 𝑡) = ( 𝑓 𝑎, 𝑡) = 𝑟 ′ ( 𝑓 𝑎, 𝑡).

There is therefore exactly one map

𝑟
′
: (𝑍 𝑓 × 𝐼) → (𝑍 𝑓 × 0) ∪ (𝑋 × 𝐼).

with 𝑟
′ (𝑝 × id𝐼 ) = 𝑟

′
. 𝑟

′
is continuous, since 𝑟

′
is continuous and since 𝑝 × id𝐼 is

an identi�cation (1.31). Since 𝜆(𝑠, 0) = (𝑠, 0) for all 𝑠 ∈ 𝐼, it follows that

𝑟
′ | (𝑍 𝑓 ×0)∪(𝑋×𝐼 ) = id(𝑍 𝑓 ×0)∪(𝑋×𝐼 ) .

Thus (2) is proved. □

Proof. (of (1.29 (c)) Note that 𝑞 𝑗 = id𝑋 results from the de�nition of 𝑞.
We de�ne 𝜑 : 𝑋 𝑓 × 𝐼 → 𝑋 𝑓 by

𝜑(𝑥, 𝑡) := 𝑥 for 𝑥 ∈ 𝑋, 𝑡 ∈ 𝐼,
𝜑(𝑎, 𝑠, 𝑡) := (𝑎, 𝑠𝑡) for 𝑎 ∈ 𝐴, 𝑠, 𝑡 ∈ 𝐼

𝜑 is well-de�ned since

𝜑(𝑎, 0, 𝑡) = (𝑎, 0) = 𝑓 𝑎 = 𝜑( 𝑓 𝑎, 𝑡) for 𝑎 ∈ 𝐴.
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Figure 1.11:

With the help of (1.31) it is easy to see that 𝜑 is continuous.
The following applies

𝜑(𝑥, 0) = 𝑥 = 𝑗𝑞(𝑥) for 𝑥 ∈ 𝑋,
𝜑(𝑎, 𝑠, 0) = (𝑎, 0) = 𝑓 𝑎 = 𝑗𝑞(𝑎, 𝑠) for 𝑎 ∈ 𝐴, 𝑠 ∈ 𝐼,

thus 𝜑0 = 𝑗𝑞, 𝜑1 = id𝑍 𝑓 .

Since 𝜑(𝑥, 𝑡) = 𝑥 for all 𝑥 ∈ 𝑋, 𝑡 ∈ 𝐼, 𝜑 is a homotopy rel 𝑋 (= 𝑗 (𝑋)), so

𝜑 : 𝑗𝑞 ≃ id𝑍 𝑓 rel 𝑋.

□

1.1.6 Mapping cylinder of a pair (Double Mapping cylin-
der)

We generalise the notion of the mapping cylinder of a continuous map.

De�nition 1.32. Let 𝑓 : 𝐴→ 𝑋, 𝑔 : 𝐴→ 𝑌 be continuous maps.
The mapping cylinder 𝑍 ( 𝑓 ,𝑔) of the pair ( 𝑓 , 𝑔) is the coset space that results
from the topological sum 𝑋 + (𝐴× 𝐼) +𝑌 if (𝑎, 0) ∈ 𝐴× 𝐼 is identi�ed with 𝑓 𝑎 ∈ 𝑋
for each 𝑎 ∈ 𝐴 and (𝑎, 1) ∈ 𝐴 × 𝐼 is identi�ed with 𝑔𝑎 ∈ 𝑌 for each 𝑎 ∈ 𝐴.

By composing the injection of 𝑋 or 𝑌 into the topological sum 𝑋 + (𝐴× 𝐼) +𝑌
with the projection on 𝑍 ( 𝑓 ,𝑔) one obtains injective continuous maps

𝑗𝑋 : 𝑋 → 𝑍 ( 𝑓 ,𝑔) , 𝑗𝑌 : 𝑌 → 𝑍 ( 𝑓 ,𝑔) .

Theorem 1.33. 𝑗𝑋, 𝑗𝑌 are closed embeddings and co�brations.

Proof. The proof is analogous to the proof of the corresponding parts of Theo-
rem (1.13) and Theorem (1.29).
We leave the exact implementation to the reader.
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Figure 1.12:

When proving that 𝑗𝑋 is a co�bration, one uses the fact that for the map intro-
duced in the proof of (1.29)

𝜆
′
: 𝐼 × 𝐼 → (𝐼 × 0) ∪ (0 × 𝐼), 𝜆

′ (1, 𝑡) = (1, 0) for all 𝑡 ∈ 𝐼 .

□

In particular, Theorem (1.33) allows us to regard 𝑋 and 𝑌 as (closed) sub-
spaces of 𝑍 ( 𝑓 ,𝑔) :

𝑋 ⊂ 𝑍 ( 𝑓 ,𝑔) , 𝑌 ⊂ 𝑍 ( 𝑓 ,𝑔) .

Example 1.34. 1. If 𝑔 = id𝐴 , then 𝑍 ( 𝑓 ,𝑔) is (essentially) the mapping cylinder
𝑍 𝑓 of 𝑓 .

2. If 𝑌 has exactly one point, i.e. 𝑔 is the only map 𝐴→ 𝑌 , then 𝑍 ( 𝑓 ,𝑔) is called
the mapping cone of 𝑓 .

We then use the notation 𝐶 𝑓 := 𝑍 ( 𝑓 ,𝑔) .

Figure 1.13:

Remark 1.35. 𝐶 𝑓 is created from the mapping cylinder 𝑍 𝑓 of 𝑓 , by identifying
𝐴 × 1 ⊂ 𝑍 𝑓 to a point.
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From Theorem (1.33) follows:

Theorem 1.36. (1 .32) Theorem: If 𝑓 : 𝐴→ 𝑋 is a continuous map, then the
inclusion 𝑋 ⊂ 𝐶 𝑓 is a (closed) co�bration.

1.1.7 Transition to other categories

Let 𝐾, 𝐿 be topological spaces. With the help of the homotopy term de�ned
in (0.32) in the category 𝒯ℴ𝓅

𝐾
𝐿
, the de�nition of the term co�bration can be

transferred from 𝒯ℴ𝓅 to 𝒯ℴ𝓅
𝐾
𝐿
.

De�nition 1.37. Let 𝛼 = (𝐾 → 𝐴→ 𝐿), 𝜉 = (𝐾 → 𝑋 → 𝐿) be spaces under 𝐾
and over 𝐿, let 𝑔 : 𝛼→ 𝜉 be a map under 𝐾 and over 𝐿.
𝑔 is called a co�bration in 𝒯ℴ𝓅

𝐾
𝐿
, precisely if for all spaces under 𝐾 and over

𝐿, 𝜂 = (𝐾 → 𝑌 → 𝐿), for all maps under 𝐾 and over 𝐿, 𝑓 : 𝜉 → 𝜂 and all
homotopies under 𝐾 and over 𝐿, 𝜑 : 𝐴× 𝐼 → 𝑌 with 𝜑0 = 𝑓 𝑔, a homotopy under
𝐾 and over 𝐿, Φ : 𝑋 × 𝐼 → 𝑌 exists with Φ(𝑔 × id𝐼 ) = 𝜑 and Φ0 = 𝑓 .

𝐾

��

##��

𝑋

𝑗0 $$

𝑓

))
𝐴

𝑔

<<

𝑗0

""

��

𝑋 × 𝐼 Φ // 𝑌

{{

𝐴 × 𝐼

��

𝑔×id𝐼
::

𝜑

55

𝐿

The theorems of this paragraph on co�brations can be transferred from𝒯ℴ𝓅

to 𝒯ℴ𝓅
𝐾
𝐿
. We leave the exact execution to the reader. Note in particular the

special cases 𝐾 = ∅, 𝐿 = pt and make clear the concept of co�bration in 𝒯ℴ𝓅
0

(pointed co�bration).
At this point, only the construction in the category 𝒯ℴ𝓅

𝐾
𝐿
will be mentioned,

which corresponds to the construction of the mapping cylinder in 𝒯ℴ𝓅.

De�nition 1.38. Let 𝜉 = (𝐾 𝑖−→ 𝑋
𝑝
−→ 𝐿) and 𝜉 ′ = (𝐾 𝑖

′

−→ 𝑋
𝑝
′

−−→ 𝐿) be objects
of 𝒯ℴ𝓅

𝐾
𝐿

and 𝑓 ∈ 𝒯ℴ𝓅
𝐾
𝐿
(𝜉, 𝜉 ′ ). We �rst have the topological space 𝐼𝐾𝑋 (cf.

(0.25)).
Let 𝑍𝐾

𝑓
be the topological space that arises from the topological sum 𝑋

′ + 𝐼𝐾𝑋
if for each 𝑥 ∈ 𝑋, 𝑓 𝑥 ∈ 𝑋 ′ is identi�ed with the image of (𝑥, 0) ∈ 𝑋 × 𝐼 under
the natural projection 𝑋 × 𝐼 → 𝐼𝐾𝑋. We put 𝑖

′
: 𝐾 → 𝑋

′
together with the

injection of 𝑋
′
into the topological sum 𝑋

′ + 𝐼𝐾𝑋 and the natural projection
𝑋
′ + 𝐼𝐾𝑋 → 𝑍𝐾

𝑓
and obtain a continuous map 𝐾 → 𝑍𝐾

𝑓
.
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𝑝
′
: 𝑋

′ → 𝐿 and 𝑝 ◦ proj1 : 𝑋 × 𝐼 → 𝐿 induce a continuous map 𝑍𝐾
𝑓
→ 𝐿) (!).

We thus obtain an object 𝐾 → 𝑍𝐾
𝑓
→ 𝐿 of 𝒯ℴ𝓅

𝐾
𝐿
, the mapping cylinder of 𝑓

in 𝒯ℴ𝓅
𝐾
𝐿
.

The reader may want to prove

Theorem 1.39. Let

𝐾

𝑖

��

𝑖
′

��
𝑋

𝑔
// 𝑋
′

be a commutative diagramme in 𝒯ℴ𝓅. Then 𝑔 : 𝑖 → 𝑖
′
is a co�bration in

𝒯ℴ𝓅
𝐾 if 𝑔 : 𝑋 → 𝑋

′
is a co�bration in 𝒯ℴ𝓅.

1.2 Homotopy co�brations

1.2.1 The homotopy extension property up to homotopy.
h-co�brations

We generalise the concept of co�bration.

De�nition 1.40. Let 𝑖 : 𝐴→ 𝑋 be a continuous map, 𝑌 a topological space.
𝑖 has the homotopy extension property (HEP) up to homotomy for 𝑌 if for all
continuous maps 𝑓 : 𝑋 → 𝑌 and all homotopies 𝜑 : 𝐴 × 𝐼 → 𝑌 with 𝜑0 = 𝑓 𝑖 a
homotopy Φ : 𝑋 × 𝐼 → 𝑌 exists with

(1) Φ(𝑖 × id𝐼 ) = 𝜑 and

(2) Φ0
𝐴≃ 𝑓 .

𝐴
� � //

𝑖

��

𝐴 × 𝐼
𝜑

||
𝑖×id𝐼

��

𝑌

𝑋
� � //

𝑓

??

𝑋 × 𝐼
Φ

bb

(We regard Φ0 and 𝑓 as morphisms of 𝒯ℴ𝓅
𝐴, with Φ0, 𝑓 ∈ 𝒯ℴ𝓅

𝐴(𝑖, 𝑓 𝑖);
because of (1) Φ0𝑖 = 𝜑0 = 𝑓 𝑖 holds.)

De�nition 1.41. A continuous map 𝑖 : 𝐴→ 𝑋 is called a homotopy co�bration
(h-co�bration for short) if 𝑖 has the HEP up to homotopy for all topological
spaces 𝑌 . In addition to the term �homotopy co�bration�, the term �weak co�-
bration� is also used.
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Remark 1.42. Every co�bration is an h-co�bration. In particular, every home-
omorphism is an h-co�bration (cf. (1.9)).

Theorem 1.43. The composition of two h-co�brations is an h-co�bration.

The proof of the theorem is left to the reader.

De�nition 1.44. Let 𝑖𝐴→ 𝑋, 𝑖
′
: 𝐴→ 𝑋

′
be spaces under 𝐴.

𝑖 is said to be dominated by 𝑖
′
in 𝒯ℴ𝓅

𝐴 if one of the following equivalent (!)
statements is satis�ed:

(a) there exist morphisms of 𝒯ℴ𝓅
𝐴, 𝑔 : 𝑖 → 𝑖

′
, 𝑔

′
: 𝑖
′ → 𝑖 with 𝑔

′
𝑔
𝐴≃ id𝑋,

(b) there exists a section in 𝒯ℴ𝓅
𝐴, 𝑔 : 𝑖 → 𝑖

′
,

(c) there exists a retraction in 𝒯ℴ𝓅
𝐴, 𝑔

′
: 𝑖
′ → 𝑖.

Remark 1.45. In the case 𝐴 = ∅, this notion goes back to J. H. C. Whitehead.

Theorem 1.46. Assumption: 𝑖 : 𝐴 → 𝑋, 𝑖
′
: 𝐴 → 𝑋

′
are spaces under 𝐴. Let

𝑖 be dominated by 𝑖
′
in 𝒯ℴ𝓅

𝐴.
Assertion.

(a) If 𝑌 is a topological space and 𝑖
′
has the HEP up to homotopy for 𝑌 , then

so is 𝑖.

(b) If 𝑖
′
is an h-co�bration, then so is 𝑖 .

Proof. (b) immediately follows from (a).

(a): By assumption there are 𝑔 ∈ 𝒯ℴ𝓅
𝐴(𝑖, 𝑖′ ), 𝑔′ ∈ 𝒯ℴ𝓅

𝐴(𝑖′ , 𝑖) with 𝑔′𝑔 𝐴≃
id𝑋.
Given are continuous maps 𝑓 : 𝑋 → 𝑌 , 𝜑 : 𝐴 × 𝐼 → 𝑌 with 𝜑0 = 𝑓 𝑖.

𝐴

𝑖

��
𝑖
′

��
𝑖

��
𝑋

𝑔
// 𝑋
′ 𝑔

′
//

𝑓 𝑔
′
��

𝑋

𝑓

��
𝑌

Since 𝑔
′
𝑖
′
= 𝑖, it follows that 𝜑0 = 𝑓 𝑔

′
𝑖
′
. Since 𝑖

′
has the HEP up to homotopy for

𝑌 , there exists a homotopy 𝑃ℎ𝑖
′
: 𝑋

′ × 𝐼 → 𝑌 with Φ
′ (𝑖′ × id𝐼 ) = 𝜑 and Φ

′
0

𝐴≃ 𝑓 𝑔′ .
Set Φ := Φ

′ (𝑔× id𝐼 ) : 𝑋 × 𝐼 → 𝑌 . Then Φ(𝑖× id𝐼 ) = Φ
′ (𝑔𝑖× id𝐼 ) = Φ

′ (𝑖′ × id𝐼 ) = 𝜑
and Φ0 = Φ

′
0𝑔

𝐴≃ 𝑓 𝑔′𝑔 𝐴≃ 𝑓 , because 𝑔′𝑔 𝐴≃ id𝑋.
Therefore 𝑖 has the HEP up to homotopy for 𝑌 . □

Speci�cally, theorem (1.46) yields:
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Corollary 1.47. �HEP up to homotopy� and �h-co�bration� are invariant under
isomorphism in 𝒯ℴ𝓅

𝐴ℎ, i.e. under homotopy equivalence under 𝐴.

Remark 1.48. Theorem (1.46) becomes false if one replaces �HEP up to homo-
topy� by �HEP� in (a) or �h-co�bration� by �co�bration� in (b).
We give an example of this in (1.100) (cf. (1.103)).

Theorem 1.49. Let the diagramme in 𝒯ℴ𝓅

𝐴

𝑖

��

𝑖
′

��
𝑋

𝑓
// 𝑋
′

be commutative up to homotopy, i.e. 𝑓 𝑖 ≃ 𝑖′ .
If 𝑖 is an h-co�bration or has at least the HEP up to homotopy for 𝑋

′
, then

there is a continuous map 𝑔 : 𝑋 → 𝑋
′
with 𝑔 ≃ 𝑓 and 𝑔𝑖 = 𝑖′ .

(Compare the problem in (1.1), (1.2) and Theorem (1.4).

Proof. Let 𝜑 : 𝑓 𝑖 ≃ 𝑖′ , 𝜑 : 𝐴 × 𝐼 → 𝑋
′
.

Since 𝜑0 = 𝑓 𝑖 and since 𝑖 has the HEP up to homotopy for 𝑋
′
there exists a

homotopy Φ : 𝑋 × 𝐼 → 𝑋
′
with Φ(𝑖 × id𝐼 ) = 𝜑 and Φ0

𝐴≃ 𝑓 .
Set 𝑔 := 𝑃ℎ𝑖1 : 𝑋 → 𝑋

′
. Then 𝑔𝑖(𝑎) = Φ(𝑖𝑎, 1) = 𝜑(𝑎, 1) = 𝑖′ (𝑎) for all 𝑎 ∈ 𝐴, i.e.

Figure 1.14:

𝑔𝑖 = 𝑖
′
.

Furthermore, we have 𝑔 = Φ1 ≃ Φ0 ≃ 𝑓 . □

1.2.2 Di�erent characterisations of the term �h-co�bration�

Theorem 1.50. Let 𝜀 be a real number with 0 < 𝜀 < 1, 𝑌 a topological space,
𝑖 : 𝐴→ 𝑋 a continuous map.
Then the following are equivalent:

(a) 𝑖 has the HEP up to homotopy for 𝑌 .
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(b) For all continuous maps : 𝑋 → 𝑌 and all homotopies 𝜑 : 𝐴 × 𝐼 → 𝑌 such
that 𝜑(𝑎, 𝑡) = 𝑓 𝑖(𝑎) for all ∈ 𝐴 and all 𝑡 ∈ [0, 1] with 𝑡 ≤ 𝜀4, there exists a
homotopy Φ : 𝑋 × 𝐼 → 𝑌 with Φ(𝑖 × id𝐼 ) = 𝜑 and Φ0 = 𝑓 .

Figure 1.15:

As a corollary, Theorem (1.50) provides a characterisation of the concept of
�h-co�bration�.

Proof. (of Theorem 1.50) (a) ⇒ (b): Given 𝑓 : 𝑋 → 𝑌 and 𝜑 : 𝐴 × 𝐼 → 𝑌 with
𝜑(𝑎, 𝑡) = 𝑓 𝑖(𝑎) for all 𝑎 ∈ 𝐴 and 𝑡 ∈ [0, 1] with 𝑡 < 𝜀.
Since 𝜑𝜀 = 𝑓 𝑖 (Recall: 𝜑𝜀 = 𝜑 𝑗𝜀 (0.23)), and since 𝑖 has the HEP up to homotopy
for 𝑌 , there exists Φ

′
𝑋 × [𝜀, 1] → 𝑌 with Φ

′ (𝑖 × id[𝜀,1]) = 𝜑|𝐴×[𝜀,1] and Φ
′
𝜀 ≃ 𝑓

(cf. (0.23)).
Let Φ

′′
: 𝑋 × [0, 𝜀] → 𝑌 be a homotopy under 𝐴 with Φ

′′
0 = 𝑓 and Φ

′′
𝜀 = Φ

′
𝜀. Φ

′

and Φ
′′
together de�ne the desired homotopy Φ : 𝑋 × 𝐼 → 𝑌 .

Figure 1.16:

(b) ⇒ (a): Given continuous maps 𝑓 : 𝑋 → 𝑌 , 𝜑 : 𝐴 × 𝐼 → 𝑌 with 𝜑0 = 𝑓 𝑖.
We extend 𝜑 to 𝜑

′
: 𝐴 × [−1,+1] → 𝑌 by 𝜑

′ (𝑎, 𝑡) := 𝜑(𝑎,max(𝑡, 0)). Then
𝜑
′ (𝑎, 𝑡) = 𝑓 𝑖(𝑎) for 𝑎 ∈ 𝐴, − ≤ 𝑡 ≤ 0. By assumption (we replace (0, 𝜀, 1)
4We say: "𝜑 is somewhat constant ".
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with (−1, 0, 1).) there exists a continuous map Φ
′
: 𝑋 × [−1, 1] → 𝑌 with

Φ
′ (𝑖 × id[−1,1]) = 𝜑

′
and Φ

′
−1 = 𝑓 .

For Φ := Φ
′ |𝑋×𝐼 : 𝑋 × 𝐼 → 𝑌 then Φ(𝑖 × 𝑖𝑑𝐼 ) = 𝜑, and Φ0 = Φ

′
0

𝐴≃ Φ
′
−1 = 𝑓 . □

Figure 1.17:

Theorem 1.51. Let 𝜀 be a real number with 0 < 𝜀 < 1, 𝑖𝐴→ 𝑋 be a continuous
map.
Then the following are equivalent:

(a) 𝑖 is a h-co�bration.

(b) There exists a continuous map 𝑟 : 𝑋 × 𝐼 → 𝑍 with the following property
(𝐸 (𝑖, 𝜀)):

(𝐸 (𝑖, 𝜀))

𝑟 (𝑥, 0) = 𝑥 for 𝑥𝑖𝑛𝑋

𝑟 (𝑖𝑎, 𝑡) =

{
(𝑎, 0), 𝑎 ∈ 𝐴, 0 ≤ 𝑡 ≤ 𝜀,(
𝑎, 𝑡−𝜀1−𝜀

)
, 𝑎 ∈ 𝐴, 𝜀 ≤ 𝑡 ≤ 1.

Figure 1.18:
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Proof. We carry out the proof using Theorem (1.50).
We can obviously restrict ourselves to the case 𝜀 = 1

2 .
(a) ⇒ (b): We assume that 𝑖 is an h-co�bration.

We considered the embedding 𝑗 : 𝑋 → 𝑍𝑖 (cf. (1.12), (1.13)) and the homotopy
𝜑 : 𝐴 × 𝐼 → 𝑍𝑖, which is given by

(𝑎, 𝑡) ↦→
{
(𝑎, 0), 0 ≤ 𝑡 ≤ 1

2 ,

(𝑎, 2𝑡 − 1), 1
2 ≤ 𝑡 ≤ 1.

Then for 0 ≤ 𝑡 ≤ 1
2 𝜑(𝑎, 𝑡) = (𝑎, 0) = 𝑖𝑎 = 𝑗𝑖𝑎.

Since 𝑖 has the HEP up to homotopy for 𝑍𝑖, according to (1.50) there exists a
homotopy Φ : 𝑋 × 𝐼 → 𝑍𝑖 with Φ(𝑖 × 𝑖𝑑𝐼 ) = 𝜑 and Φ0 = 𝑗 . 𝑟 := Φ is the sought
continuous map.

(b) ⇒ (a): We now assume the existence of 𝑟 : 𝑋 × 𝐼 → 𝑍𝑖 with 𝑟 (𝑥, 0) = 𝑥
(𝑥 ∈ 𝑋) and

𝑟 (𝑖𝑎, 𝑡) =
{
(𝑎, 0), 𝑎 ∈ 𝐴, 0 ≤ 𝑡 ≤ 1

2 ,

(𝑎, 2𝑡 − 1), 𝑎 ∈ 𝐴, 12 ≤ 𝑡 ≤ 1.

in advance.
Given are continuous maps 𝑓 : 𝑋 → 𝑌 , 𝜑 : 𝐴 × 𝐼 → 𝑌 with 𝜑(𝑎, 𝑡) = 𝑓 𝑖𝑎 for
0 ≤ 𝑡 ≤ 1

2 , 𝑎 ∈ 𝐴.
We de�ne Φ

′
: 𝑍𝑖 → 𝑌 by

𝑥 ↦→ 𝑓 (𝑥) for 𝑥 ∈ 𝑋,

(𝑎, 𝑡) ↦→ 𝜑

(
𝑎,

1 + 𝑡
2

)
for (𝑎, 𝑡) ∈ 𝐴 × 𝐼 .

Since (𝑎, 0) ↦→ 𝜑(𝑎, 1+𝑡2 ) = 𝑓 𝑖𝑎, Φ
′
is a well-de�ned continuous map. Set Φ :=

Φ
′
𝑟 : 𝑋 × 𝐼 → 𝑌 . Then

Φ(𝑖𝑎, 𝑡) =
{
Φ
′ (𝑎, 0) = 𝜑 (𝑎, 0) = 𝜑(𝑎, 𝑡), 𝑎 ∈ 𝐴, 0 ≤ 𝑡 ≤ 1

2 ,

Φ
′ (𝑎, 2𝑡 − 1) = 𝜑(𝑎, 𝑥), 𝑎 ∈ 𝐴, 12 ≤ 𝑡 ≤ 1.

Φ(𝑥, 0) = Φ
′ (𝑥) = 𝑓 (𝑥) for 𝑥 ∈ 𝑋, i. e, Φ(𝑖 × id𝐼 ) = 𝜑, Φ0 = 𝑓 .

According to Theorem (1.50), 𝑖 is therefore an h-co�bration. □

Remark 1.52. In �(a) ⇒ (b)� we have only used that 𝐼 has the HEP up to
homotopy for the mapping cylinder 𝑍𝑖.

Addition to Theorem (1.51). From theorem (1.51) and Remark (1.52) it
follows:

Theorem 1.53. A continuous map 𝑖 is an h-co�bration if and only if it has the
HEP up to homotopy for the mapping cylinder 𝑍𝑖.

Corollary 1.54. If a continuous map 𝑖 : 𝐴 → 𝑋 is an h-co�bration, then 𝑖 is
an embedding. Furthermore, if 𝑋 is Hausdor�, then 𝑖(𝐴) is closed in 𝑋.
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Proof. Corollary (1.54) follows from theorem (1.51) in a similar way as Corollary
(1.18) from theorem (1.17). The proof of (1.18) can be adopted almost word for
word. □

Remark 1.55. Corollary (1.54) shows that the de�nition of the concept of �h-
co�bration� can be restricted to inclusions 𝑖 : 𝐴 ⊂ 𝑋. We now prove that in the
characterisation of the concept of �h-co�bration� of Theorem (1.51) the mapping
cylinder 𝑍𝑖 can be replaced by (𝑋×0)∪ (𝐴× 𝐼) ⊂ 𝑋× 𝐼 if 𝑖 : 𝐴 ⊂ 𝑋 is an inclusion.

Theorem 1.56. Let 𝜀 be a real number with 0 < 𝜀 < 1. An inclusion 𝑖 : 𝐴 ⊂ 𝑋
is an h-co�bration if and only if there exists a continuous map 𝑟

′
: 𝑋 × 𝐼 →

(𝑋 × 0) ∪ (𝐴 × 𝐼) with the following property (𝐸 ′ (𝑖, 𝜀)):

(𝐸 ′ (𝑖, 𝜀))

𝑟
′ (𝑥, 0) = (𝑥, 0) for 𝑥 ∈ 𝑋

𝑟
′ (𝑎, 𝑡) =

{
(𝑎, 0), 𝑎 ∈ 𝐴, 0 ≤ 𝑡 ≤ 𝜀
(𝑎, 𝑡−𝜀1−𝜀 ) 𝑎 ∈ 𝐴, 𝜀 ≤ 𝑡 ≤ 1.

Proof. (⇒) : We assume that 𝑖 is an h-co�bration. According to Theorem (
refthm:1-2-11) there exists a continuous map 𝑟 : 𝑋 × 𝐼 → 𝑍𝑖 with the property
(𝐸 ′ (𝑖.𝜀)). If we set 𝑟 ′ := ℓ𝑟 : 𝑋 × 𝐼 → (𝑋 × 0) ∪ (𝐴× 𝐼), where ℓ is the continuous
map de�ned in (1.20), we obtain a continuous map with the property (𝐸 ′ (𝑖, 𝜀)).
(⇐) : We assume the existence of a continuous map 𝑟

′
: 𝑋× 𝐼 → (𝑋×0) ∪ (𝐴× 𝐼)

with the property (𝐸 ′ (𝑖, 𝜀)).
We choose a real number 𝛿 with 0 < 𝛿 < 1 and de�ne a map 𝑠 : (𝑋 × 0) ∪

(𝐴 × 𝐼) → 𝑍𝑖 by

(𝑥, 0) ↦→ 𝑥 for 𝑥 ∈ 𝑋,

(𝑎, 𝑡) ↦→
{
(𝑎, 0), 𝑎 ∈ 𝐴, 0 ≤ 𝑡 ≤ 𝛿
(𝑎, 𝑡−𝛿1−𝛿 ) 𝑎 ∈ 𝐴, 𝛿 ≤ 𝑡 ≤ 1.

Lemma 1.57. 𝑠 is continuous

Proof. (𝑋 × 0) ∪ (𝐴 × [0, 𝛿]) and, since 𝛿 > 0, 𝐴 × [𝛿, 1] are closed subsets of
(𝑋 × 0) ∪ (𝐴 × 𝐼). It is therefore su�cient to show that the restrictions of s to
these subsets are continuous.

The restriction 𝑠 |𝐴×[ 𝛿,1] is continuous, since it is the composition of the
continuous map

𝐴 × [𝛿, 1] → 𝐴 × 𝐼, (𝑎, 𝑡) ↦→ (𝑎, 𝑡 − 𝛿
1 − 𝛿 ),

with the injection of 𝐴 × 𝐼 into the direct sum 𝑋 + (𝐴 × 𝐼) and the projection
onto 𝑍𝑖. If one combines the projection onto the �rst factor proj1 : 𝑋 × 𝐼 → 𝑋

with the injection of 𝑋 into the direct sum 𝑋 + (𝐴 × 𝐼) and the projection onto
𝑍𝑖, one obtains a continuous map 𝑋 × 𝐼 → 𝑍𝑖. 𝑠 | (𝑋×0)∪(𝐴×[0, 𝛿 ] ) is continuous
as a restriction of a continuous map to (𝑋 × 0) ∪ (𝐴 × [0, 𝛿]. This proves the
lemma. □
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According to the lemma just proved, we obtain a continuous map 𝑋× 𝐼 → 𝑍𝑖
by 𝑟 := 𝑠𝑟

′
. We set 𝜀

′
:= 𝜀 + (1 − 𝜀)𝛿. Then 0 < 𝜀

′
< 1. A simple calculation

shows that 𝑟
′
satis�es the property (𝐸 (𝑖, 𝜀′ )). According to Theorem (1.51), 𝑖 is

therefore a co�bration. This proves Theorem (1.56). □

Remark 1.58. If 𝐴 is closed in 𝑋 , then Theorem (1.56) follows immediately
from (1.51) by Theorem (1.21) (a).

Theorem 1.59. If 𝑖 : 𝐴→ 𝑋 is an h-co�bration and 𝑌 is an arbitrary topological
space, then id𝑌 ×𝑖 : 𝑌 × 𝐴→ 𝑌 × 𝑋 is also an h-co�bration.

Proof. According to (1.54), we can assume without signi�cant restriction that 𝑖
is an inclusion, 𝑖 : 𝐴 ⊂ 𝑋. Let 𝜀 be a real number with 0 < 𝜀 < 1. By Theorem
(1.56), there exists a continuous map 𝑟

′
: 𝑋 × 𝐼 → (𝑋 × 0) ∪ (𝐴 × 𝐼) with the

property (𝐸 ′ (𝑖, 𝜀)). The continuous map 𝑖𝑑𝑌×𝑟
′
: 𝑌×𝑋×𝐼 → (𝑌×𝑋×0)∪(𝑌×𝐴×𝐼)

then has the property (𝐸 ′ (id𝑌 ×𝑖, 𝜀)). Thus, according to (1.56), id𝑌 ×𝑖 is an h-
co�bration. □

Remark 1.60. If 𝑌 is locally compact, then Theorem (1.59) follows from Theorem
(1.51) using a similar inference as in the proof just presented.

If 𝑌 is locally compact, then the mapping cylinder 𝑍id𝑌 ×𝑖 is homeomorphic
to 𝑌 × 𝑍𝑖 by Theorem (1.31).

Corollary 1.61. If 𝑖 : 𝐴→ 𝑋 is an h-co�bration and 𝑌 is an arbitrary topolog-
ical space, then 𝑖 × id𝑌 : 𝐴 × 𝑌 → 𝑋 × 𝑌 is also an h-co�bration.

Proof. Let 𝜏 : 𝐴× 𝑋 → 𝑌 × 𝑋 and 𝜏
′
: 𝑋 ×𝑌 → 𝑌 × 𝑋 be the commutation of the

factors, 𝜏 and 𝑡𝑎𝑢
′
are homeomorphisms that make the following diagramme

commutative.
𝐴 × 𝑌 𝜏 //

𝑖×id𝑌
��

𝑌 × 𝐴
id𝑌 ×𝑖
��

𝑋 × 𝑌
𝜏
′
// 𝑌 × 𝑋

This means, however, that (𝜏, 𝜏′ ) is an isomorphism of 𝒯ℴ𝓅(2) 𝑖 × id𝑌 →
id𝑌 ×𝑖. It is easy to see that the property of being an h-co�bration is invariant
under isomorphism in 𝒯ℴ𝓅(2). According to Theorem (1.59), id𝑌 × 𝑖 is an
h-co�bration, and so is 𝑖 × id𝑌 . □

1.2.3 h-equivalences and h-equivalences under 𝐴

The following theorem plays a central role in the construction of homotopy
theory.

Theorem 1.62 (cf. Dold [7], 3.6). Let

𝐴

𝑖

��

𝑖
′

��
𝑋

𝑓
// 𝑋
′
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be a commutative diagramme in 𝒯ℴ𝓅. Let 𝑖 and 𝑖
′
be h-co�brations, 𝑓 be a

homotopy equivalence.
Claim: 𝑓 , conceived as a morphism of 𝒯ℴ𝓅

𝐴, 𝑓 :→ 𝑖
′
, is a homotopy

equivalence under 𝐴.

Theorem (1.62) follows as a consequence of

Theorem 1.63. Let
𝐴

𝑖

��

𝑖
′

��
𝑋

𝑓
// 𝑋
′

be a commutative diagramme in 𝒯ℴ𝓅. Let 𝑖 and 𝑖
′
be h-co�brations.

Claim: If [ 𝑓 ] has a left inverse in 𝒯ℴ𝓅ℎ, then [ 𝑓 ]𝐴 has a left inverse in
𝒯ℴ𝓅

𝐴ℎ. (In the �rst case, we consider 𝑓 as a morphism of 𝒯ℴ𝓅 onto ( 𝑓 ∈
𝒯ℴ𝓅(𝑋, 𝑋 ′ )), in the second as a morphism of 𝒯ℴ𝓅

𝐴 onto ( 𝑓 ∈ 𝒯ℴ𝓅
𝐴(𝑖, 𝑖′ ).)

Proof. ((1.63) ⇒ (1.62)) 𝑓 is, by assumption, an h-equivalence, i.e., [ 𝑓 ] is an
isomorphism in 𝒯ℴ𝓅ℎ. In particular, [ 𝑓 ] has a left inverse in 𝒯ℴ𝓅ℎ. By
Theorem (1.63), therefore, there exists 𝑓1 ∈ 𝒯ℴ𝓅

𝐴 such that

[ 𝑓1]𝐴[ 𝑓 ]𝐴 = [id𝑋]𝐴. (1.64)

In particular, in 𝒯ℴ𝓅ℎ, [ 𝑓1] [ 𝑓 ] = [id𝑋] holds. Since [ 𝑓 ] is an isomorphism
in 𝒯ℴ𝓅ℎ, the last equation implies that [ 𝑓1] is an isomorphism in 𝒯ℴ𝓅ℎ.
Therefore, [ 𝑓1] has a left inverse in 𝒯ℴ𝓅ℎ. Applying Theorem (1.63) to the
commutative diagramme in 𝒯ℴ𝓅

𝐴

𝑖
′

��

𝑖

��
𝑋
′

𝑓1

// 𝑋

so it follows: [ 𝑓1]𝐴 has a left inverse in 𝒯ℴ𝓅
𝐴ℎ. Furthermore, since [ 𝑓1]𝐴

according to (1.64) has a right inverse, [ 𝑓1]𝐴 is an isomorphism in 𝒯ℴ𝓅ℎ.
Therefore, according to (1.64), [ 𝑓 ]𝐴 is an isomorphism in 𝒯ℴ𝓅

𝐴ℎ, i.e., 𝑓 is an
h-equivalence under 𝐴. □

Proof. (of Theorem (1.63)) Let 𝑓
′
: 𝑋

′ → 𝑋 be homotopy left inverse of 𝑓 , i.e.,
𝑓
′
𝑓 ≃ id𝑋. Then 𝑓

′
𝑖
′
= 𝑓

′
𝑓 𝑖 ≃ 𝑖, so the diagramme

𝐴

𝑖
′

��

𝑖

��
𝑋
′

𝑓
′

// 𝑋
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is commutative up to homotopy. Since 𝑖
′
is an h-co�bration, we can assume, by

Theorem (1.49), that this diagramme is even commutative. If we set 𝑔 := 𝑓
′
𝑓 ,

then the assumptions of the following Lemma are satis�ed.

Lemma 1.65. If the following is a commutative diagramme in 𝒯ℴ𝓅, 𝑖 is an
h-co�bration, and 𝑔 ≃ id𝑋,

𝐴

𝑖

��

𝑖

��
𝑋

𝑔
// 𝑋

then there exists a morphism 𝑔
′
: 𝑖 → 𝑖 of 𝒯ℴ𝓅

𝐴 such that 𝑔
′
𝑔
𝐴≃ id𝑋. Thus,

there exists a morphism 𝑔 : 𝑖 → 𝑖 of 𝒯ℴ𝓅
𝐴 with 𝑔𝑔

′ 𝐴≃ id𝑋 , i.e., 𝑔
′
𝑓
′ 𝐴≃ id𝑋.

But this means: 𝑔
′ ′ : 𝑖

′ → 𝑖 is a morphism of 𝒯ℴ𝓅
𝐴 such that [𝑔′ 𝑓 ′ ]𝐴 is left

inverse to [ 𝑓 ]𝐴. Therefore, Lemma (1.65) remains to be proven.

Before proceeding to the proof (which is rather involved), we record a remark
required in the proof.

Remark 1.66. If 𝛼, 𝛼
′
: 𝑈 → 𝑉 are homotopic continuous maps and 𝜒 : 𝑈×𝐼 → 𝑉

is a homotopy 𝛼 ≃ 𝛼′ , then one obtains

(𝑢, 𝑡) ↦→ 𝜒(𝑢,max(2𝑡 − 1, 0)) for (𝑢, 𝑡) ∈ 𝑈 × 𝐼 (1.67)

a homotopy 𝛼 ≃ 𝛼′ , which is somewhat constant.

Proof. (of 1.65) Let 𝜑 : 𝑔 ≃ id𝑋, 𝜑 : 𝑋 × 𝐼 → 𝑋. By Remark 1.66, we can choose
the homotopy 𝜑 such that it is somewhat constant, for example 𝜑(𝑥, 𝑡) = 𝑔(𝑥) for
𝑥 ∈ 𝑋 and 0 ≤ 𝑡 ≤ 1

2 . For 𝜑
′
= 𝜑(𝑖 × id𝐼 ) : 𝐴 × 𝐼 → 𝑋 then 𝜑

′
: 𝑖 ≃ 𝑖 (since 𝑔𝑖 = 𝑖)

and 𝜑
′ (𝑎, 𝑡) = 𝑖𝑎 for 𝑎 ∈ 𝐴 and 0 ≤ 𝑡 ≤ 1

2 . Since 𝑖 is an h-co�bration, according
to Theorem (1.50) there exists a homotopy 𝜓 : 𝑋 × 𝐼 → 𝑋 with 𝜓0 = id𝑋 and
𝜓(𝑖 × id𝐼 ) = 𝜑

′
= 𝜑(𝑖 × id𝐼 ). Set 𝑔

′
:= 𝜓1 : 𝑋 → 𝑋. Then 𝑔

′
𝑖 = 𝑖. We de�ne

𝐹 : 𝑋 × 𝐼 → 𝑋 by

(𝑥, 𝑠) ↦→
{
𝜓(𝑔𝑥, 1 − 2𝑠), 0 ≤ 𝑠 ≤ 1

2 ,

𝜑(𝑥, 2𝑠 − 1), 1
2 ≤ 𝑠 ≤ 1,

𝑥 ∈ 𝑋.

The de�nition makes sense since

𝜓(𝑔𝑥, 0) = 𝑔𝑥 = 𝜑(𝑥, 0) for𝑥 ∈ 𝑋,

and yields a homotopy 𝐹 : 𝑔
′
𝑔 ≃ id𝑋. For 𝑎 ∈ 𝐴 and 0 ≤ 𝑠 ≤ 1

2 , the following
holds:

𝜓(𝑔𝑖𝑎, 1 − 2𝑠) = 𝜓(𝑖𝑎, 1 − 2𝑠) = 𝜑(𝑖𝑎, 1 − 2𝑠).
We have thus achieved that the points from 𝐴 under 𝐹 traverse null-homotopic
paths in 𝑋. We take advantage of this and de�ne Φ : 𝐴 × 𝐼 × 𝐼 → 𝑋 by

(𝑎, 𝑠, , 𝑡) ↦→
{
𝜑(𝑖𝑎, 1 − 2𝑠(1 − 𝑡)), 0 ≤ 𝑠 ≤ 1

2 ,

𝜑(𝑖𝑎, 1 − 2(1 − 𝑠) (1 − 𝑡)), 1
2 ≤ 𝑠 ≤ 1,

𝑎 ∈ 𝐴, 𝑡 ∈ 𝐼 .
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Figure 1.19:

Figure 1.20:

Φ is a well-de�ned continuous map with the properties

Φ(𝑎, 𝑠, 0) = 𝐹 (𝑖𝑎, 𝑠) 𝑎 ∈ 𝐴, 𝑠 ∈ 𝐼,
Φ(𝑎, 0, 𝑡) = Φ(𝑎, 𝑠, 1) = Φ(𝑎, 1, 𝑡) = 𝑖𝑎 𝑎 ∈ 𝐴, 𝑡, 𝑠 ∈ 𝐼 .

These properties are retained if one modi�es Φ as in (1.67) to Φ
′
: 𝐴× 𝐼 × 𝐼 → 𝑋

such that Φ
′ (𝑎, 𝑠, 𝑡) is independent of 𝑡 for 0 ≤ 𝑡 ≤ 1

2 . Since 𝑖 is an h-co�bration,
𝑖×id is an h-co�bration by Corollary (1.61). Therefore, there exists a continuous
map Φ̃ : 𝑋 × 𝐼 × 𝐼 → 𝑋 with Φ̃(𝑖 × id𝐼 × id𝐼 ) = Φ

′
and Φ̃(𝑥, 𝑠, 0) = 𝐹 (𝑥, 𝑠) for

𝑥 ∈ 𝑋, 𝑠 ∈ 𝐼. We're done with that, because if we de�ne Φ̃(𝑠,𝑡 ) : 𝑋 → 𝑋 for

𝑠, 𝑡 ∈ 𝐼 by Φ̃(𝑠,𝑡 ) (𝑥) := Φ̃(𝑥, 𝑠, 𝑡), 𝑥 ∈ 𝑋, then

𝑔
′
𝑔 = 𝐹0 = Φ̃(0,0)

𝐴≃ Φ̃(0,1)
𝐴≃ Φ̃(1,1)

𝐴≃ Φ̃(1,0) = 𝐹1 = id𝑋 .

Thus Lemma (1.65 is proven, □

hence also proven is Theorem (1.63). □

Remark 1.68. Theorem (1.62) is essentially a formal theorem and also holds if
one replaces the category𝒯ℴ𝓅 by the category𝒯ℴ𝓅

𝐾
𝐿
(𝐾 and 𝐿 are topological



44 CHAPTER 1. COFIBRATIONS

Figure 1.21:

Figure 1.22:

spaces), i.e., if one assumes a commutative triangle in 𝒯ℴ𝓅
𝐾
𝐿
(cf. Kamps [15],

6.2).

1.2.4 Applications

The following theorems contain applications of Theorem (1.49) and Theorem
(1.62). Let 𝑋 be a topological space, 𝐴 be a subspace of 𝑋, and 𝑖 : 𝐴 ⊂ 𝑋 be
the inclusion. We have the following notions.

De�nition 1.69. (a) 𝐴 is a weak retract of 𝑋 if and only if (a continuous map)
𝑟 : 𝑋 → 𝐴 with 𝑟𝑖 ≃ id𝐴 exists.

(b) 𝐴 is a retract of 𝑋 if and only if there exists an 𝑟 : 𝑋 → 𝐴 with 𝑟𝑖 = id𝐴.

(c) 𝐴 is a weak deformation retract of 𝑋, if and only if 𝑟 : 𝑋 → 𝐴 with 𝑟𝑖 ≃ id𝐴
and 𝑖𝑟 ≃ id𝑋 exists, i.e., if 𝑖 is a homotopy equivalence.

(d) 𝐴 is deformation retract of 𝑋 if and only if 𝑟 : 𝑋 → 𝐴 exists with 𝑟𝑖 = id𝐴
and 𝑖𝑟 = id𝑋.

(e) 𝐴 is a strong deformation retract of 𝑋 if and only if 𝑟 : 𝑋 → 𝐴 exists with

𝑟𝑖 = id𝐴 and 𝑖𝑟
𝐴≃ id𝑋.

Note that here we consider 𝑖, id𝑋, 𝑟 as morphisms of 𝒯ℴ𝓅
𝐴, 𝑖 : id𝐴 → 𝑖,

id𝑋 : 𝑖 → 𝑖, 𝑟 : 𝑖 → id𝐴. This is possible because 𝑟𝑖 = id𝐴.
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Remark 1.70. Then trivially:

𝐴 is a retract of 𝑋 ⇒ 𝐴 is a weak retract of 𝑋.

𝐴 is a strong deformation retract of 𝑋 ⇒ 𝐴 is a deformation retract of 𝑋.

𝐴 is a deformation retract of 𝑋 ⇒ 𝐴 is a weak deformation retract of 𝑋.

The converses of these statements are false in all three cases (cf. Spanier [24],
1.4.1, 1.4.8, 1.4.7).

However, we have the following theorem (cf. Spanier [24], 1.4.10, 1.4.11):

Theorem 1.71. If 𝑖 is an h-co�bration, then:

(1) If 𝐴 is a weak retract of 𝑋, then 𝐴 is a retract of 𝑋.

(2) If 𝐴 is such a deformation retract of 𝑋, then 𝐴 is a deformation retract of
𝑋.

(3) If 𝐴 is a deformation retract of 𝑋, then 𝐴 is a strong deformation retract
of 𝑋.

Proof. (1) and (2) are consequences of Theorem (1.49). (3) is a consequence of
Theorem (1.62).

Regarding (1) Assuming that a continuous mapping exists 𝑟 : 𝑋 → 𝐴 with
𝑟𝑖 ≃ id𝐴. Theorem (1), applied to the diagramme

𝐴

𝑖

��

id𝐴

��
𝑋

𝑟
// 𝐴

yields a continuous map 𝑟
′
: 𝑋 → 𝐴 with 𝑟

′
𝑖 = id𝐴.

Regarding (2) By assumption, there exists 𝑟 : 𝑋 → 𝐴 with 𝑟𝑖 ≃ id𝐴 and
𝑖𝑟 ≃ id𝑋. Since 𝑟𝑖 ≃ id𝐴 , the diagramme

𝐴

𝑖

��

id𝐴

��
𝑋

𝑟
// 𝐴

(1.72)

is commutative up to homotopy. Since 𝑖 is an h-co�bration, by Theorem
(1.49) there exists a continuous map 𝑟

′
: 𝑋 → 𝐴 with 𝑟

′ ≃ 𝑟 and ′
= id𝐴.

Since 𝑖𝑟 ≃ id𝑋 and 𝑟
′ ≃ 𝑟, we have 𝑖𝑟

′ ≃ id𝑋. So 𝐴 is the deformation
retract of 𝑋.

Regarding (3) We prove the further statement: If 𝑟 : 𝑋 → 𝐴 is a continuous

map with 𝑟𝑖 = id𝐴 and 𝑖𝑟 ≃ id𝑋, then 𝑖𝑟
𝐴≃ id𝑋.



46 CHAPTER 1. COFIBRATIONS

Proof. The diagram (1.72) is commutative in our situation, 𝑟 is a homo-
topy equivalence. Since 𝑖 is an h-co�bration, 𝑟 is a homotopy equivalence
under 𝐴 according to Theorem (1.62). Therefore, there is a morphism from
𝒯ℴ𝓅

𝐴 id𝐴→ 𝑖 that is homotopy inverse under 𝐴 to 𝑟. Since 𝑖 : 𝐴→ 𝑋 is
the only continuous map that makes the diagramme

𝐴

id𝐴

��

𝑖

��
𝐴 // 𝑋

commutative, 𝑖 is the only morphism from 𝒯ℴ𝓅
𝐴 id𝐴→ 𝑖. So 𝑖 is homo-

topy inverse under 𝐴 to 𝑟. So 𝑖𝑟
𝐴≃ id𝑋. □

Thus Theorem 1.71 is completely proved. □

Theorem 1.73. An inclusion 𝑖 : 𝐴 ⊂ 𝑋 is an h-co�bration and an h-equivalence
if and only if 𝐴 is a strong deformation retract of 𝑋.

Proof. ⇒: follows as a consequence of Theorem (1.71) (2), (3) or directly from
Theorem (1.62), applied to the diagramme

𝐴

id𝐴

��

𝑖

��
𝐴

𝑖
// 𝑋

⇐: Let 𝐴 be a strong deformation retract of 𝑋. As one immediately sees, this
is equivalent to the inclusion 𝑖 : 𝐴 ⊂ 𝑋 being h-equivalent under 𝐴 to id𝐴 (cf.
(0.30)). Since id𝐴 is an h-co�bration, it follows from Theorem (1.46) 𝑖 is an h-
co�bration. Furthermore, 𝑖 is an h-equivalence, since every strong deformation
retract is a weak deformation retract (cf. (1.70)). □

Theorem 1.74. Let 𝑓 : 𝐴 → 𝑋 be a continuous map. We considered the
commutative diagramme

𝐴

𝑘1

��

𝑓

��
𝑍 𝑓 𝑞

// 𝑋

of Theorem (1.29, (a). The following statements are equivalent:

(a) 𝑓 is an h-co�bration.

(b) [𝑞] is an isomorphism in 𝒯ℴ𝓅
𝐴ℎ (i.e., 𝑞 is a homotopy equivalence under

𝐴 , 𝑞 ∈ 𝒯ℴ𝓅
𝐴(𝑘1, 𝑓 ))
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(c) [𝑞]𝐴 is a retraction in 𝒯ℴ𝓅
𝐴ℎ.

Proof. (a) ⇒ (b): follows from Theorem (1.62), since 𝑞 is a homotopy equiv-
alence according to Theorem (1.29) (c) and 𝑘1 is a co�bration according to
Theorem (1.29) (b).
(b) ⇒ (c): is trivial.
(c) ⇒ (a): The assumption is that [𝑞] is a retraction in 𝒯ℴ𝓅

𝐴ℎ. So 𝑓 is dom-
inated by 𝑘1 in 𝒯ℴ𝓅

𝐴. Since 𝑘1 is a co�bration according to Theorem (1.29)
(b), i.e., an h-co�bration, (a) follows from Theorem (1.46). □

Since 𝑘1 is a closed co�bration (cf. (1.13)), we obtain:

Corollary 1.75 (cf. Puppe [21], 7. Corollary 2). For every h-co�bration 𝑖 :
𝐴→ 𝑋 there exists a closed co�bration 𝑖

′
: 𝐴→ 𝑋

′
that is h-equivalent under 𝐴

to 𝑖 (cf. (0.30)).

1.2.5 h-equivalences and h-equivalences of pairs

From Theorem (1.62) we can derive a corresponding theorem for the category
of pairs 𝒯ℴ𝓅(2) instead of 𝒯ℴ𝓅

𝐴.

Theorem 1.76. Let

𝐴
𝑓 //

𝑖

��

𝐵

𝑗

��
𝑋

𝑔
// 𝑌

be a commutative diagram in 𝒯ℴ𝓅. Let 𝑖 and 𝑗 be h-co�brations. Let 𝑓 and 𝑔
be h-equivalences.

Claim: The morphism ( 𝑓 , 𝑔) : 𝑖 → 𝑗 of 𝒯ℴ𝓅(2) is an h-equivalence of pairs.

Proof. We prove:

Proposition 1.77. Claim: The morphism [( 𝑓 , 𝑔)] of 𝒯ℴ𝓅(2)ℎ has a left in-
verse.

Applying (1.77) twice, it follows: [( 𝑓 , 𝑔)] is an isomorphism of 𝒯ℴ𝓅(2)ℎ,
i.e., ( 𝑓 , 𝑔) is an h-equivalence of pairs.

Proof. (of 1.77) Let 𝑓
′
: 𝐵→ 𝐴 , 𝑔

′
: 𝑌𝑡𝑜𝑋 be h-inverse to 𝑓 and 𝑔, respectively.

Consider the following diagramme:

𝐵

𝑗

��

𝑖 𝑓
′

��
𝑌

𝑔
′

// 𝑋

We have 𝑔
′
𝑗 = 𝑖 𝑓

′
, for 𝑔

′ ≃′ 𝑗 𝑓 ′ (since 𝑓 𝑓 ′ ≃ id𝐵) = 𝑔
′
𝑔𝑖 𝑓

′
(since 𝑗 𝑓 = 𝑔𝑖) ≃ 𝑖 𝑓 ′

(since 𝑔
′ ≃ id𝑋). Since 𝑗 is an h-co�bration, according to Theorem (1.49) there
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exists a continuous map 𝑔
′′
: 𝑌 → 𝑋 with 𝑔

′ ≃ 𝑔′′ and 𝑔′′ 𝑗 = 𝑖 𝑓 . We note: 𝑔
′′
is

h-inverse to 𝑔. We choose a homotopy 𝜑 : 𝑓
′
𝑓 ≃ id𝐴, 𝜑 : 𝐴× 𝐼 → 𝐴, such that 𝜑

is somewhat constant (cf. (1.66)). Since 𝑖𝜑 = 𝑖 𝑓
′
𝑓 = 𝑔

′′
𝑗 𝑓 = 𝑔

′′
𝑔𝑖 and since 𝑖 is

an h-co�bration, there exists a homotopy 𝜑 : 𝑋 × 𝐼 → 𝑋 with 𝜑(𝑖× id𝐼 ) = 𝑖𝜑 and
𝜑0 = 𝑔

′′
𝑔. Set 𝑘 := 𝜑1 : 𝑋 → 𝑋. Then the following diagramme is commutative,

since 𝑘𝑖 = 𝜑1𝑖 = 𝑖𝜑1 = 𝑖.

𝐴

𝑖

��

𝑖

��
𝑋

𝑘
// 𝑋

𝑘 is an h-equivalence, since 𝑘 = 𝜑1 ≃ 𝜑0 = 𝑔
′′
𝑔 ≃ id𝑋. According to Theorem

(1.62) there exists a continuous map 𝑘
′
: 𝑋 → 𝑋 with 𝑘

′
𝑖 = 𝑖 and 𝑘

′
𝑘
𝐴≃ id𝑋. Set

𝑔
′′′
:= 𝑘

′
𝑔
′′
. Since 𝑔

′′′
𝑗 = 𝑘

′
𝑔
′′
𝑗 = 𝑘

′
𝑖 𝑓
′
= 𝑖 𝑓

′
, ( 𝑓 ′ , 𝑔′′′ ) is a morphism of 𝒯ℴ𝓅(2),

( 𝑓 ′𝑔′′′ ) : 𝑗 → 𝑖.

𝐵
𝑓
′
//

𝑗

��

𝐴

𝑖

��
𝑌

𝑔
′′′
// 𝑋

□

Proposition 1.78. Claim: [( 𝑓 , 𝑔′′′ )] is left inverse to [( 𝑓 , 𝑔)] in 𝒯ℴ𝓅(2)ℎ.

Proof. We �rst choose a homotopy 𝜓 : 𝑘
′
𝑘
𝐴≃ id𝑋, 𝜓 : 𝑋 × 𝐼 → 𝑋, and de�ne

𝜒 : 𝑋 × 𝐼 → 𝑋 by

𝜒(𝑥, 𝑡) =
{
𝑘
′
𝜑(𝑥, 2𝑡) for0 ≤ 𝑡 ≤ 1

2

𝜓(𝑥, 2𝑡 − 1) for 12 ≤ 𝑡 ≤ 1.

The de�nition makes sense and yields a homotopy 𝜒 : 𝑔
′′′
𝑔 ≃ id𝑋. Since 𝜓 is a

homotopy under 𝐴 and since 𝑘
′
𝜑(𝑖 × id𝐼 ) = 𝑖𝜑, for (𝑎, 𝑡) ∈ 𝐴 × 𝐼 we have

𝜒(𝑖𝑎, 𝑡) = 𝑖𝜑(𝑎,min(2𝑡, 1)).

If we de�ne 𝜑
′
: 𝐴 × 𝐼 → 𝐴 by 𝜑

′ (𝑎, 𝑡) := 𝜑(𝑎,min(2𝑡, 1) for (𝑎, 𝑡) ∈ 𝐴 × 𝐼, we
obtain a homotopy 𝜑

′
; 𝑓
′
𝑓 ≃ id𝐴 𝑑 with 𝜒(𝑖 × id𝐼 ) = 𝑖𝜑

′
. □

This proves (1.78) and therefore (prop:1-2-33). □

Remark 1.79. Theorem (1.76) is essentially a formal theorem and also holds
if one replaces the category 𝒯ℴ𝓅 by 𝒯ℴ𝓅

𝐾
𝐿
, where 𝐾 and 𝐿 are topological

spaces (cf. Kamps [15], 6.4).

We conclude the section with a proposition.
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Theorem 1.80. Let 𝑖 : 𝐴 ⊂ 𝑋 be an h-co�bration and let 𝐴 be contractible.5

Then the natural projection 𝑝 : 𝑋 → 𝑋/𝐴 is an h-equivalence.

Proof. Since 𝐴 is contractible, we can choose a homotopy 𝜑 : 𝐴× 𝐼 → 𝐴 between
id𝐴 and a constant map 𝜑1. We can assume (cf. (1.66)) that 𝜑(𝑎, 𝑡) = 𝑎 for
𝑎 ∈ 𝐴 and 0 ≤ 𝑡 ≤ 1

2 . Since 𝑖 is an h-co�bration, according to Theorem (1.50),
there exists an extension of 𝑖𝜑 : 𝐴 × 𝐼 → 𝑋 to a homotopy Φ : 𝑋 × 𝐼 → 𝑋

with Φ0 = id𝑋. Since Φ1 |𝐴 is constant, Φ1 induces a uniquely determined
continuous map 𝑓 : 𝑋/𝐴→ 𝑋 with 𝑓 𝑝 = Φ1. We show that 𝑓 is h-inverse to 𝑝.
Furthermore, id𝐴 = Φ0 ≃ Φ1 = 𝑓 𝑝. Since Φ(𝐴 × 𝐼) ⊂ 𝐴 and therefore 𝑝Φ|𝐴×𝐼 is
constant, Φ induces exactly one map Φ : (𝑋/𝐴) × 𝐼 → 𝑋/𝐴, which makes the
following diagramme commutative.

(𝑋/𝐴) × 𝐼 Φ // 𝑋/𝐴

𝑌
Φ

//

𝑝×id𝐼

OO

𝑋

𝑝

OO

Φ is continuous, since 𝑝 × id𝐼 is an identi�cation according to (1.31). Now
id𝑋𝐴 = Φ0 ≃ Φ1. Since Φ1 ◦ 𝑝 = 𝑝 ◦Φ1 = 𝑝 𝑓 𝑝 and since 𝑝 is surjective, we have
Φ1 = 𝑝 𝑓 and hence id𝑋/𝐴 ≃ 𝑝 𝑓 . □

1.3 Local characterisations of co�brations and h-

co�brations

The following paragraph, which characterises co�bration and h-co�bration lo-
cally, is based on studies by D. Puppe (cf. [21]) and A. Strøm (cf. [27]).

1.3.1 Haloes

De�nition 1.81. Let 𝐴, 𝑉 be subspaces of a topological space 𝑋 with 𝐴 ⊂ 𝑉 ⊂
𝑋. 𝑉 is called a halo of 𝐴 in 𝑋6 if there exists a continuous map 𝑣 : 𝑋 → 𝐼 such
that

𝐴 ⊂ 𝑣1 (0) and 𝑋 \𝑉 ⊂ 𝑣−1(1). (1.82)

A continuous 𝑣 with (1.82) is called a halo function of 𝑉 .

Remark 1.83. Let 𝐴 ⊂ 𝑋. Then 𝑋 is a halo of 𝐴 in 𝑋, since 𝑣 = 0 : 𝑋 → 𝐼 is a
halo function of 𝑋.

Lemma 1.84. Let 𝐴 ⊂ 𝑉 ⊂ 𝑋.

(a) If 𝑉 is a halo of 𝐴 in 𝑋, then 𝑉 is a neighbourhood of 𝐴 in 𝑋.7

5Then in particular 𝐴 ≠ ∅.
6We brie�y say: 𝑉 is the halo of 𝐴 if the context indicates which space 𝑋 is meant.
7𝐴 denotes the closed hull of 𝐴 in 𝑋.
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Figure 1.23:

(b) If 𝑋 is normal and 𝑉 is a neighbourhood of 𝐴, then 𝑉 is a halo of 𝐴.

(c) Let R+ be the subspace {𝑥 ∈ R|𝑥 ≥ 0} of R. If 𝑢 : 𝑋 → R+ is a continuous
map such that 𝐴 ⊂ 𝑢−1 [0, 𝛼1] for some real number 𝛼1 ≥ 0, then 𝑢−1 [0, 𝛼2 [
and 𝑢−1 [0, 𝛼2] for every real number 𝛼2 > 𝛼1 are haloes of 𝐴 and even of
𝑢−1 [0, 𝛼1].

Proof. (a): Let 𝑣 be a halo function of 𝑉 . Then

𝐴 ⊂ 𝑣−1(0) ⊂ 𝑣−1 [0, 1[⊂ 𝑉.

Since 𝑣−1(0) is closed in 𝑋, it follows that 𝐴 ⊂ 𝑣−1(0) follows. Since 𝑣−1 [0, 1[ is
open in 𝑋, we obtain the claim.
(b): is a direct consequence of Urysohn's theorem (cf. Sohubert [23], 1.8.4
Theorem 1).
(c): 𝑣 : 𝑋 → 𝐼, de�ned by

𝑣(𝑥) := min

(
1,max

(
0,
𝑢(𝑥) − 𝛼1
𝛼2 − 𝛼1

))
for 𝑥 ∈ 𝑋,

is a halo function of 𝑢−1 [0, 𝛼2 [ and 𝑢−1 [0, 𝛼2]. □

Lemma 1.85. Let 𝐴 ⊂ 𝑋.

(a) Every superset of a halo of 𝐴 is a halo of 𝐴.

(b) The intersection of �nitely many haloes of 𝐴 is a halo of 𝐴.

Proof. (a): Let 𝐴 ⊂ 𝑉 ⊂ 𝑉 ′ ⊂ 𝑋. If 𝑉 is a halo of 𝐴 and 𝑣 : 𝑋 → 𝐼 is a halo
function of 𝑉 , then 𝑣 is also a halo function of 𝑉 .
(b): It su�ces to consider the intersection of two haloes. If 𝑉 and 𝑊 are haloes
of 𝐴, 𝑣 : 𝑋 → 𝐼 and 𝑤 : 𝑋 → 𝐼 are halo functions of 𝑉 and 𝑊 , respectively, then
𝑢 : 𝑋 → 𝐼, de�ned by

𝑢(𝑥) := max(𝑣(𝑥), 𝑤(𝑥)) for 𝑥 ∈ 𝑋,

is a halo function of 𝑉 ∩𝑊 . □
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Corollary 1.86. Let 𝐴 ⊂ 𝑉 ⊂ 𝑋. If 𝑉 is a halo of 𝐴 in 𝑋, then there exists a
closed subset 𝑈 of 𝑋, 𝐴 ⊂ 𝑈 ⊂ 𝑉 , such that 𝑈 is a halo of 𝐴 in 𝑋 and 𝑉 is a
halo of 𝑈 in 𝑋. In particular, every halo 𝑉 of 𝐴 contains a closed halo 𝑈 of 𝐴.

Proof. Let 𝑉 be a halo of 𝐴 in 𝑋, and 𝑣 : 𝑋 → 𝐼 be a halo function of 𝑉 . By
𝑈 := 𝑣 [0, 12 ] we obtain a closed subset of 𝑋 with 𝐴 ⊂ 𝑈 ⊂ 𝑉 . 𝑈 is a halo of 𝐴
by (1.84) (c), and 𝑉 is a halo of 𝑈 by (1.84) (c) and (1.85) (a). □

De�nition 1.87. Let 𝐴 ⊂ 𝑉 ⊂ 𝑋. 𝑉 can be contracted in 𝑋 to 𝐴 rel 𝐴8 if
and only if there exists a continuous map 𝑟 : 𝑉 → 𝐴 such that 𝑟 |𝐴 = id𝐴 and

(𝑉 ⊂ 𝑋) 𝐴≃ (𝑉 𝑟−→ 𝐴 ⊂ 𝑋). What is clear is that 𝑉 can be contracted in 𝑋 onto

Figure 1.24:

𝐴 if and only if a homotopy 𝜑 : 𝑌 × 𝐼 → 𝑋 exists such that 𝜑1 (𝑉) ⊂ 𝐴 and

𝜑 : (𝑉 ⊂ 𝑋) 𝐴≃ 𝜑1. Such a 𝜑 is called a contraction of 𝑉 in 𝑋 onto 𝐴.

It is also clear:

Remark 1.88. If 𝐴 ⊂ 𝑉 ′ ⊂ 𝑉 ⊂ 𝑋 and 𝑉 can be contracted to 𝐴 in 𝑋, then so
can 𝑉

′
.

Theorem 1.89. Let 𝐴 ⊂ 𝑋 . Then the following statements are equivalent:

1. 𝐴 has a halo 𝑉 in 𝑋 that can be contracted to 𝐴.

2. For every halo 𝑈 of 𝐴 in 𝑋, there exists a halo 𝑊 of 𝐴 in 𝑋 with 𝑊 ⊂ 𝑈
that can be contracted to 𝐴 in 𝑈.

3. There exists a halo 𝑉 of 𝐴 in 𝑋 and a homotopy 𝜓 : 𝑋 × 𝐼 → 𝑋 such that

𝜓1 (𝑉) ⊂ 𝐴 and 𝜓 : id𝑋
𝐴≃ 𝜓1.

Proof. (2) ⇒ (1): follows from Remark (1.83).
((1) ⇒ (3): Let 𝑉

′
be a halo contractible to 𝐴. By (1.86) and (1.88), we can

assume 𝑉
′
is closed in 𝑋. Let 𝑣

′
: 𝑋 → be a halo function of 𝑉

′
and 𝜑 : 𝑉

′×𝐼 → 𝑋

be a contraction of 𝑉
′
in 𝑋 to 𝐴. We set 𝑉 := 𝑣

′−1 [0, 12 ]. By (1.84) (c), 𝑉 is a

8To avoid any misunderstandings, let us say brie�y: 𝑉 can be contracted to 𝐴.
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halo of 𝐴. Let 𝑢 : 𝑋 → 𝐼 be given by 𝑢(𝑥) := min(2 − 2𝑣′ (𝑥), 1). We now de�ne
𝜓 : 𝑋 × 𝐼 → 𝑋 by

𝜓(𝑥, 𝑡) :=
{
𝜑(𝑥, 𝑡 · 𝑢(𝑥)), if 𝑥 ∈ 𝑉 ′

𝑥, if 𝑥 ∈ 𝑣′−1(1).

𝜓 is well-de�ned. 𝜋 is continuous since 𝑣
′−1(1) and 𝑉 ′ are closed in 𝑋. 𝜓 is a

homotopy rel 𝐴 since 𝜑 is a homotopy rel 𝐴. 𝜓0 = id𝑋, since 𝜑0 = (𝑉 ′ ⊂ 𝑋).
𝜓1 (𝑉) ⊂ 𝐴 since 𝑉 ⊂ 𝑉 ′ since 𝑢(𝑥) = 1 for 𝑥 ∈ 𝑉 and since 𝜑1 (𝑉

′ ) ⊂ 𝐴.
(3) ⇒ (2): Let 𝑈 be a halo of 𝐴 in 𝑋, 𝑢 : 𝑋 → 𝐼 be a halo function of 𝑈. Let
𝑉 , 𝜓 be as in (3)), 𝑣 : 𝑋 → 𝐼 be a halo function of 𝑉 . We de�ne

𝑤
′
: 𝑋 → 𝐼 by 𝑤

′ (𝑥) := max
𝑡∈𝐼

𝑢(𝜓(𝑥, 𝑡)),

𝑤 : 𝑋 → 𝐼 by 𝑤(𝑥) := max(𝑣(𝑥), 𝑤′ (𝑥)),
𝑊 := 𝑤−1 [0, 1[.

Then 𝑊 ⊂ 𝑈 holds. 𝑊 is a halo of 𝐴 in 𝑋. A contraction of 𝑊 in 𝑈 onto 𝐴 is
obtained by 𝑊 × 𝐼 → 𝑈, where (𝑥, 𝑡) ↦→ 𝜓(𝑥, 𝑡). □

Remark 1.90. . The continuity of 𝑤
′
follows from the following lemma, the

proof of which we leave to the reader (cf. Brown [5], 7.3.8).

Lemma 1.91. Let 𝑋, 𝐶 be topological spaces. Let 𝐶 be compact. If 𝛾 : 𝑋 ×𝐶 →
R is a continuous map, then the map 𝑔 : 𝑋 → R de�ned by

𝑔(𝑥) := max
𝑐∈𝐶

𝛾(𝑥, 𝑐)

is continuous.

De�nition 1.92. We now discuss the connection between the concepts de�ned
so far in �3 and some other concepts of set-theoretic topology.
1 : A topological space 𝑋 is called completely regular if for every point 𝑥 ∈ 𝑋
and every neighbourhood 𝑈 of 𝑥 there exists a continuous map 𝑓 : 𝑋 → [0, 1]
with 𝑓 (𝑥) = 0 and 𝑋 \𝑈 ⊂ 𝑓 −1(1).9
2 : A topological space 𝑋 is called locally point contractible in 𝑥0 ∈ 𝑋 if for every
neighbourhood 𝑉 of 𝑥0 there exists a neighbourhood 𝑈 of 𝑥0 and a homotopy

𝜑 : 𝑈 × 𝐼 → 𝑉 such that 𝑈 ⊂ 𝑉 , 𝜑1 (𝑈) = {𝑥0} and 𝜑 : (𝑈 ⊂ 𝑉)
{𝑥0 }≃ 𝜑1.

In a completely regular space 𝑋, for each 𝑥0 ∈ 𝑋, the concepts �neighbour-
hood of 𝑥0 in 𝑋� and �halo of {𝑥0} in 𝑋� coincide. The equivalence (1)⇔ (2) of
Theorem (1.89) therefore yields:

Theorem 1.93. Let 𝑋 be completely regular, 𝑥0 ∈ 𝑋. Then 𝑋 is locally point-
contractible at 𝑥0 if and only if {𝑥0} has a halo contractible on {𝑥0}.

9In contrast to Schubert [23], 1.9.1, we do not require that 𝑋 is Hausdor�.
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1.3.2 Local characterisations of h-co�brations

We can now characterise h-co�brations locally.

Theorem 1.94. Let 𝑖 : 𝐴 ⊂ 𝑋 be an inclusion. Then the following statements
are equivalent:

(a) 𝑖 is an h-co�bration.

(b) 𝐴 has a contractible halo on 𝐴 in 𝑋.

Proof. (a)⇒ (b): Let 𝑖 be an h-co�bration. Then, by the characterization of the
notion of �h-co�bration� in Theorem (1.56) (𝜀 = 1

2 ), there exists a continuous
map 𝑟 : 𝑋 × 𝐼 → (𝑋 × 0) ∪ (𝐴 × 𝐼) with 𝑟 (𝑥, 0) = 𝑥 for 𝑥 ∈ 𝑋 and

𝑟 (𝑎, 𝑡) =
{
(𝑎, 0) 𝑎 ∈ 𝐴, 0 ≤ 𝑡 ≤ 1

2

(𝑎, 2𝑡 − 1) 𝑎 ∈ 𝐴, 1
2 ≤ 𝑡 ≤ 1.

We de�ne 𝑣 : 𝑋 → 𝐼 by 𝑣(𝑥) := 1 − proj2 ◦𝑟 (𝑥, 1). 𝑣 is continuous, 𝐴 ⊂ 𝑣(0).
Using 𝑉 := 𝑣 [0, 1[, we therefore obtain a halo of 𝐴 in 𝑋 (cf. (1.84) (c)). We
de�ne 𝜓 : 𝑋 × 𝐼 → 𝑋 by

𝜓(𝑥, 𝑡) := proj1 ◦𝑟 (𝑥, 𝑡).

𝜓 is continuous and 𝜓(𝑎, 𝑡) = 𝑎 for 𝑎 ∈ 𝐴, 𝑡 ∈ 𝐼, 𝜓(𝑥, 0) = 𝑥 for 𝑥 ∈ 𝑋, thus

𝜓 : id𝑋
𝐴≃ 𝜓1.

Furthermore, 𝜓1 (𝑉) ⊂ 𝐴 holds: if 𝑣(𝑥) < 1, i.e. proj2 𝑟 (𝑥, 1) > 0, then 𝑟 (𝑥, 1) ∈
𝐴 × 𝐼 and hence

𝜓(𝑥, 1) ∈ 𝐴.

𝜓 |𝑉×𝐼 therefore yields a contraction of 𝑉 in 𝑋 onto 𝐴. This proves (b).
(b) ⇒ (a): We assume (b. By Theorem (1.89) (3), there then exists a halo 𝑉 of

𝐴 in 𝑋 and a homotopy 𝜓 : 𝑋 × 𝐼 → 𝑋 with 𝜓1 (𝑉) ⊂ 𝐴 and 𝜓 : id𝑋
𝐴≃ 𝜓1. Since

property (1.89) (3) is preserved when passing to a smaller halo, we can assume,
by (1.86), that 𝑉 is closed in 𝑋. Let 𝑣 be a halo function for 𝑉 . We want to
prove that 𝑖 is an h-co�bration. Let 𝑓 : 𝑋 → 𝑌 , 𝜑 : 𝐴 × 𝐼 → 𝑌 be continuous
maps with 𝜑(𝑎, 0) = 𝑓 (𝑎) for 𝑎 ∈ 𝐴. We de�ne Φ : 𝑋 × 𝐼 → 𝑌 by

Φ(𝑥, 𝑡) :=
{
𝜑(𝜓1 (𝑥), 𝑡 (1 − 𝑣(𝑥))) 𝑥 ∈ 𝑉
𝑓 𝜓1 (𝑥) 𝑥 ∈ 𝑣−1(1).

Φ is well-de�ned. Φ is continuous since 𝑉 is closed in 𝑋. Φ(𝑎, 𝑡) = 𝜑(𝑎, 𝑡) for
𝑎 ∈ 𝐴.

Φ0 = 𝑓 𝜓1
𝐴≃ 𝑓 ◦ id𝑋 = 𝑓 .

This proves (a). □
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Example 1.95. Note by the transcriber : These are actually counterexamples.

Example 1. 𝑋 := {0} ∪ { 1
𝑛
|𝑛 = 1, 2, 3, . . . } ∈ R, 𝐴 := {0}.

In (1.27) we saw that 𝑖 : 𝐴 ⊂ 𝑋 is not a co�bration. From Theorem (1.94)
it follows that 𝑖 is not an h-co�bration either: since none of the points
1
𝑛
, (𝑛 = 1, 2, . . . ) can be connected to 0 by a path, 0 has no contractible

halo in 𝑋.

Example 2. Let 𝑋𝑛 := {(𝑥, 𝑦) ∈ R2 | (𝑥 − 1
𝑛
)2 + 𝑦2 = 1

𝑛2
} ⊂ R2, 𝑛 = 1, 2, 3, . . .

𝑋 := ∪∞𝑛=1𝑋𝑛 ⊂ R2,10 𝐴 := {(0, 0)}.

Figure 1.25:

Proposition 1.96. Claim: 𝑖 : 𝐴 ⊂ 𝑋 is not an h-co�bration.

Proof. We prove this indirectly (= proceed by contradiction) and assume
that 𝑖 is an h-co�bration. By Theorem (1.94), there is then a halo 𝑉 in 𝑋
that is contractible to 𝐴. Let 𝜑 : 𝑉 × 𝐼 → 𝑋 be a contraction of 𝑉 in 𝑋 to
𝐴. 𝑉 is a neighbourhood of (0, 0) in 𝑋. Therefore, there exists a natural
number 𝑛0 such that 𝑋𝑛0 ⊂ 𝑉 . We de�ne a retraction 𝑟 : 𝑋 → 𝑋𝑛0 by

𝑟 (𝑥) :=
{
𝑥, 𝑥 ∈ 𝑋𝑛0
(0, 0) otherwise.

The composition

𝑋𝑛0 × 𝐼 ⊂ 𝑉 × 𝐼 → (𝜑)𝑋
𝑟−→ 𝑋𝑛0

is then a contraction of 𝑋 onto {(0, 0)}. Since the 1-sphere S1 is not
contractible (Eilenberg-Steenrod [9], XI. Theorem 3.1), such a contraction
cannot exist. □

Example 3. 𝑋 := R1 (or 𝑋 := 𝐼), 𝐴 := {0} ∪ { 1
𝑛
|𝑛 = 1, 2, 3, . . . }.

Proposition 1.97. Claim: 𝑖 : 𝐴 ⊂ 𝑋 is not an h-co�bration.

10Note by the transcriber: 𝑋 is called a Hawaiian earring.
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Proof. Suppose (on the contrary) that 𝑖 is an h-co�bration. Then there
exists a halo 𝑉 of 𝐴 in 𝑋 and a contraction 𝜑 : 𝑉 × 𝐼 → 𝑋 of 𝑉 in 𝑋 on
𝐴. 𝑉 is a neighbourhood of 𝐴 in 𝑋, and thus contains, in particular, an
interval of the form [0, 1𝑛 ] (𝑛 ≥ 1). Since { 1

𝑛
} ⊂ 𝜑1 ( [0, 1𝑛 ]) ⊂ 𝐴 , 𝜑1 ( [0, 1𝑛 ])

would not be connected. But this contradicts the continuity of 𝜑1. □

1.3.3 Local characterisations of co�brations

The next theorem characterises co�brations (cf. Strøm [27], 2. Lemma 4).

Theorem 1.98. Let 𝑖 : 𝐴 ⊂ 𝑋 be an inclusion. Then the following statements
are equivalent:

(a) 𝑖 is a co�bration.

(b) There exists a continuous map

𝑢 : 𝑋 → R+

and a homotopy 𝜑 : 𝑋 × 𝐼 → 𝑋 such that

(1) 𝐴 ⊂ 𝑢−1(0),
(2) 𝜑(𝑥, 0) = 𝑥 for all 𝑥 ∈ 𝑋,
(3) 𝜑(𝑎, 𝑡) = 𝑎 for all (𝑎, 𝑡) ∈ 𝐴×,
(4) 𝜑(𝑥, 𝑡) ∈ 𝐴 for all (𝑥, 𝑡) ∈ 𝑋 × 𝐼 with 𝑡 > 𝑢(𝑥).

Figure 1.26:

Remark 1.99. If 𝐴 is closed in 𝑋, then the conditions imposed on 𝑢 and 𝜑 in
(b) imply that:

𝜑(𝑥, 𝑢(𝑥)) ∈ 𝐴, if 𝑢(𝑥) < 1.

(Consider a sequence 𝑡𝑛 ∈ 𝐼 with 𝑢(𝑥) < 𝑡𝑛 that converges to 𝑢(𝑥).) In particular,
if 𝑢(𝑥) = 0, then 𝑥 = 𝜑(𝑥, 0) = 𝜑(𝑥, 𝑢(𝑥)) ∈ 𝐴 and therefore 𝐴 = 𝑢−1(0).

Proof. (of 1.98) By Theorem (1.25) an inclusion 𝑖 : 𝐴 ⊂ 𝑋 is a co�bration if and
only if (𝑋 × 0) ∪ (𝐴 × 𝐼) is a retract of 𝑋 × 𝐼.
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(a) ⇒ (b): If 𝑖 is a co�bration, then there exists a retraction 𝑟 : 𝑋 × 𝐼 →
(𝑋) ∪ (𝐴 × 𝐼) (from 𝑋 × 𝐼 to (𝑋 × 0) ∪ (𝐴 × 𝐼)). We de�ne

𝑢 : 𝑋 → R+ by 𝑢(𝑥) := max
𝑡∈𝐼
(𝑡 − proj2 𝑟 (𝑥, 𝑡))

𝜑 : 𝑋 × 𝐼 → 𝑋 by 𝜑(𝑥, 𝑡) := proj1 𝑟 (𝑥, 𝑡).

𝑢 is continuous since 𝐼 is compact (cf. (1.91)). 𝑢 and 𝜑 satisfy the conditions of
(b).

(If 𝑡 > 𝑢(𝑥), then proj2 𝑟 (𝑥, 𝑡) > 0, therefore 𝑟 (𝑥, 𝑡) ∈ 𝐴 × 𝐼 and therefore
𝜑(𝑥, 𝑡) = proj1 𝑟 (𝑥, 𝑡) ∈ 𝐴.)
(b) ⇒ (a): If continuous mappings 𝑢 : 𝑋 → R+, 𝜑 : 𝑋 × 𝐼 → 𝑋 with the
properties of (b) are given, one obtains a retraction 𝑟

′
: 𝑋 × 𝐼 → (𝑋) ∪ (𝐴 × 𝐼)

(from 𝑋 × 𝐼 to (𝑋 × 0) ∪ (𝐴 × 𝐼)) by

𝑟
′ (𝑥) :=

{
(𝜑(𝑥, 𝑡)), 0), 𝑡 ≤ 𝑢(𝑥)
(𝜑(𝑥, 𝑡), 𝑡 − (𝑥)) 𝑡 ≥ 𝑢(𝑥).

□

Not every h-co�beration is a co�bration:

Example 1.100. Let 𝑀 be an uncountable set. We de�ne 𝑋 := 𝐼𝑀 (product
topology), 𝐴 := {0}𝑀 .

Proposition 1.101. Claim : 𝑖 : 𝐴 ⊂ 𝑋 is an h-co�bration, but not a co�bration.

Proof. In the commutative diagramme

{0}𝑀

id𝐴

{{

𝑖

!!
{0}𝑀

𝑖
// 𝐼𝑀

𝑖 is a homotopy equivalence under 𝐴, since {0} is a strong deformation retract
of 𝐼. 𝑖𝑑 is an h-co�bration. 𝑖 is therefore an h-co�bration by Theorem (1.46).
Assuming that 𝑖 is a co�bration, then by (1.98) and (1.99) (𝐴 is closed in 𝑋)
there exists a continuous map 𝑢 : 𝐼𝑀 → R+ such that

𝑢−1(0) = {0}𝑀 . (1.102)

Since {0} = ∩∞𝑛=1 [0, 1𝑛 [, it follows that 𝑢−1(0) = ∩∞𝑛=1𝑢−1 [0, 1𝑛 [. [0,
1
𝑛
[ is the

neighbourhood of 0 in R+. Therefore, 𝑢−1 [0, 1
𝑛
[ is the neighbourhood of 0𝑀 in

𝐼𝑀 (𝑢 is continuous). By de�nition of the product topology, there exists a �nite
set 𝐸𝑛 ⊂ 𝑀 such that

𝑢−1 [0, 1
𝑛
[⊃ {0}𝐸𝑛 × 𝐼𝑀\𝐸𝑛 .

(We identify: 𝐼𝑀 = 𝐼𝐸𝑛 × 𝐼𝑀\𝐸𝑛 .) So

∩∞𝑛=1𝑢−1 [0,
1

𝑛
[⊃ {0}𝑀

′
× 𝐼𝑀\𝑀

′
.
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where 𝑀
′ (= 𝑐𝑢𝑝∞𝑛=1𝐸𝑛) is a countable set. But this contradicts (1.102), because

𝑀 \ 𝑀 ′
≠ ∅, since 𝑀 is uncountable. □

Remark 1.103. (Cf. (1.48)). Example (1.100) also shows that the concept of
�co�bration� is not invariant under homotopy equivalence under 𝐴:

id𝐴 and 𝑖 are isomorphic objects of 𝒯ℴ𝓅
𝐴.

While id𝐴 is a co�bration, 𝑖 is not.

1.3.4 The product theorem for co�brations

Theorem 1.104 (Product theorem for co�brations). (cf. Strøm [27], 2. The-
orem 6). If 𝑖 : 𝐴 ⊂ 𝑋, 𝑗 : 𝐵 ⊂ 𝑌 are co�brations and 𝐴 is closed in 𝑋, then

(𝑋 × 𝐵) ∪ (𝐴 × 𝑌 ) ⊂ 𝑋 × 𝑌

is a co�bration.

Figure 1.27:

Since ∅ ⊂ 𝑋 is a closed co�bration (this follows from (1.25), since 𝑋 × 0 is
retract of 𝑋 × 𝐼), one obtains from (1.104):

Corollary 1.105. (Corollary 1 to 1.104.) If 𝑗 : 𝐵 ⊂ 𝑌 is a co�bration and 𝑋 is
an arbitrary topological space, then id𝑋 × 𝑗 : 𝑋 × 𝐵→ 𝑋 ×𝑌 is also a co�bration.

Corollary 1.106. (Corollary 2 to 1.104.) If 𝑖 : 𝐴 ⊂ 𝑋, 𝑗 : 𝐵 ⊂ 𝑌 are co�bra-
tions, then 𝑖 × 𝑗 : 𝐴 × 𝐵 ⊂ 𝑋 × 𝑌 is also a co�bration.

Proof. (of 1.104) For the co�bration 𝐴 ⊂ 𝑋, we choose continuous maps 𝑢 :
𝑋 → R+, 𝜑 : 𝑋 × 𝐼 → 𝑋 with the properties (b1)-(b4) of (1.98) (b). 𝑣 : 𝑌 → R+,
𝜓 : 𝑌 × 𝐼 → 𝑌 be corresponding maps for the co�bration 𝐵 ⊂ 𝑌 . We de�ne
continuous maps

𝑤 : 𝑋 × 𝑌 → R+, 𝑤(𝑥, 𝑦) := min(𝑢(𝑥), 𝑣(𝑦)),
𝜒 : 𝑋 × 𝑌 × 𝐼 → 𝑋 × 𝑌, 𝜒(𝑥, 𝑦, 𝑡) := (𝜑(𝑥,min(𝑡, 𝑣(𝑦))), 𝜓(𝑦,min(𝑡, 𝑢(𝑥)))).

For 𝑤 and 𝜒 we verify conditions (b1)-(b4) of (1.98) (b). We set 𝐶 := (𝑋 × 𝐵) ∪
(𝐴 × 𝑌 ). Then:
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(1) 𝑤(𝑐) = 0 if 𝑐 ∈ 𝐶,
Then 𝜒(𝑎, 𝑦, 𝑡) = (𝑎, 𝜓(𝑦, 0)) = (𝑎, 𝑦).

(2) 𝜒(𝑥, 𝑦, 0) = (𝜑(𝑥, 0), 𝜓(𝑦, 0)) = (𝑥, 𝑦) for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 .
Then 𝜒(𝑥, 𝑏, 𝑡) = (𝜑(𝑥, 0), 𝑏) = (𝑥, 𝑏).

(3) We claim: 𝜒(𝑐, 𝑡) = 𝑐 for all (𝑐, 𝑡) ∈ 𝐶.

Case 1 : 𝑐 = (𝑎, 𝑦) with 𝑎 ∈ 𝐴, 𝑦 ∈ 𝑌 .
Then 𝜒(𝑎, 𝑦, 𝑡) = (𝑎, 𝜓(𝑦, 0)) = (𝑎, 𝑦).

Case 2 : 𝑐 = (𝑥, 𝑏) with 𝑥 ∈ 𝑋, 𝑏 ∈ 𝐵.
Then 𝜒(𝑥, 𝑏, 𝑡) = (𝜑(𝑥, 0), 𝑏) = (𝑥, 𝑏).

(4) We claim: 𝜒(𝑥, 𝑦, 𝑡) ∈ 𝐶 for all (𝑥, 𝑦, 𝑡) ∈ 𝑋 × 𝑌 × 𝐼 with 𝑡 > 𝑤(𝑥, 𝑦).

Case 1 : 𝑢(𝑥) ≤ 𝑣(𝑦).
It follows 𝑢(𝑥) = 𝑤(𝑥, 𝑦) < 𝑡 ≤ 1 , so 𝑢(𝑥) < 1 and 𝑢(𝑥) ≤ min(𝑡, 𝑣(𝑦)).

Case min(𝑡, 𝑣(𝑦)) > 𝑢(𝑥) :
then 𝜑(𝑥,min(𝑡, 𝑣(𝑦))) ∈ 𝐴 holds because of (1.98) (b) (b4) for 𝑢
and 𝜑.

Case min(𝑡, 𝑣(𝑦)) = 𝑢(𝑥) :
then from (1.99) it follows that 𝜑(𝑥,min(𝑡, 𝑣(𝑦))) ∈ 𝐴 , since 𝑢(𝑥) <
1 and since 𝐴 is closed in 𝑋. So 𝜒(𝑥, 𝑦, 𝑡) ∈ 𝐴 × 𝑌 ⊂ 𝐶.

Case 2 : 𝑢(𝑥) > 𝑣(𝑦)
Then min(𝑡, 𝑢(𝑥)) > 𝑣(𝑦) and hence 𝜓(𝑦,min(𝑡, 𝑢(𝑥))) ∈ 𝐵 because of
(1.98) (b) (b4) for 𝑢 and and 𝜓. So 𝜒(𝑥, 𝑦, 𝑡) ∈ 𝑋 × 𝐵 ⊂ 𝐶.

So (𝑋 × 𝐵) ∪ (𝐴 × 𝑌 ) ⊂ 𝑋 × 𝑌 is a co�bration by Theorem (1.98). □

The following example shows that the assumption �𝐴 is closed in 𝑋� in
Theorem (1.104) cannot be omitted:

Example 1.107. Let 𝑀 be an uncountable set. According to (1.100), {0}𝑀 ⊂ 𝐼𝑀
is a closed h-co�bration. {0} ⊂ 𝐼 is a closed co�bration. (This follows from
(1.25), since (𝐼 × 0) ∪ (𝑂 × 𝐼) is a retract of 𝐼 × 𝐼.)

Proposition 1.108. Claim : 𝐶 := (𝐼𝑀 × 0) ∪ (0𝑀 × 𝐼) ⊂ (𝐼𝑀 × 𝐼 is not a h-
co�bration.

Proof. We set 𝐶 := (𝐼𝑀 × 0) ∪ (0𝑀 × 𝐼) and assume that 𝐶 ⊂ 𝐼𝑀 × 𝐼 is an
h-co�bration. Then, by (1.92), there is a halo 𝑉 of 𝐶 in 𝐼𝑀 × 𝐼 and a retraction
𝑟 : 𝑉 → 𝐶. Since 0𝑀 × 𝐼 ⊂ 𝑉 and since 𝐼 is compact, there is a neighbourhood
𝑈 of 0𝑀 in 𝐼𝑀 with 𝑈 × 𝐼 ⊂ 𝑉 . By the de�nition of the product topology, there
exists a �nite set 𝐸 ⊂ 𝑀 such that𝑈 ⊃ 0𝐸×𝐼𝑀\𝐸 . (We identify 𝐼𝑀 = 𝐼𝐸×𝐼𝑀\𝐸 .)
We de�ne 𝛼 : 𝐼𝑀\𝐸 × 𝐼 → 𝐼𝑀 × 𝐼 by 𝛼(𝑥, 𝑡) := (0𝐸 , 𝑥, 𝑡) for 𝑥 ∈ 𝐼𝑀\𝐸 , 𝑡 ∈ 𝐼. Then
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Figure 1.28:

𝛼(𝐼𝑀\𝐸 × 𝐼) ⊂ 𝑉 holds. Let 𝛽 : 𝐼𝑀 × 𝐼 → 𝐼𝑀\𝐸 × 𝐼 be given by 𝛽(𝑦, 𝑥, 𝑡) := (𝑥, 𝑡)
for 𝑦 ∈ 𝐼𝐸 , 𝑥 ∈ 𝐼𝑀\𝐸 , 𝑡 ∈ 𝐼. In the diagramme

𝐼𝑀 × 𝐼 𝑟
′
//

𝛼
′

��

(𝐼𝑀 × 0) ∪ (0𝑀\𝐸 × 𝐼)

𝑉
𝑟

//

∩

𝐶

𝛽
′

OO

𝐼𝑀 × 𝐼

let 𝛼
′
and 𝛽

′
arise by restricting 𝛼 and 𝛽, respectively. By 𝑟

′
:= 𝛽

′
𝑟𝛼
′
we obtain

a retraction
𝐼𝑀 × 𝐼 → (𝐼𝑀 × 0) ∪ (0𝑀\𝐸 × 𝐼).

According to (1.25), {0}𝑀\𝐸 ⊂ 𝐼𝑀\𝐸 would then be a co�bration. This contra-
dicts (1.100), since 𝑀 \ 𝐸 is still uncountable. □

We note that (1.106) also holds for h-co�brations.

Theorem 1.109. If 𝑖 : 𝐴→ 𝑋, 𝑗 : 𝐵→ 𝑌 are h-co�brations, then 𝑖× 𝑗 : 𝐴×𝐵→
𝑋 × 𝑌 is an h-co�bration.

Proof. Note that 𝑖 × 𝑗 = (𝑖 × id𝑌 ) (id𝐴× 𝑗). 𝑖 × id𝑌 and id𝐴× 𝑗 are h-co�brations,
by (1.59) and (1.61). The composition of h-co�brations is again an h-co�bration
(cf. (1.43)). □

1.3.5 A characterisation of closed co�brations

At the end of this section, we provide a characterisation of closed co�brations.

Theorem 1.110 (Puppe [21], 7th Corollary 3). Let 𝑖 : 𝐴 ⊂ 𝑋 be an inclusion.
Then the following statements are equivalent:

(a) 𝑖 is a co�bration and 𝐴 is closed in 𝑋.

(b) 𝑖 is an h-co�bration and 𝐴 is a set of zeros (i.e., there exists a continuous
map 𝑢 : 𝑋 → R+ with 𝐴 = 𝑢−1(0)).
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Proof. (a) ⇒ (b): follows from (1.98) and (1.99).
(b)⇒ (a): Let 𝑓 : 𝑋 → 𝑌 , 𝜑 : 𝐴× 𝐼 → 𝑌 be continuous maps with 𝜑(𝑎, 0) = 𝑓 (𝑎)
for all 𝑎 ∈ 𝐴. Since 𝑖 is an h-co�bration by assumption, there exists an extension

Φ
′
: 𝑋 × 𝐼 → 𝑌 of 𝜑 and a homotopy Φ

′′
: 𝑋 × 𝐼 → 𝑌 : 𝑓

𝐴≃ Φ
′
0. Let 𝑢 : 𝑋 → R+

be a continuous map with 𝐴 = 𝑢−1(0). We can assume that 𝑢(𝑋) ⊂ [𝑂, 12 ] (If
necessary, replace 𝑢(𝑥) for 𝑥 ∈ 𝑋 by min(𝑢(𝑥), 12 )). We de�ne a map

Φ : 𝑋 × 𝐼 → 𝑌

by

Φ(𝑥, 𝑡) :=

Φ
′ (𝑥, 𝑡−𝑢(𝑥 )1−𝑢(𝑥 ) ), if 𝑡 ≥ 𝑢(𝑥)

Φ
′′ (𝑥, 𝑡

𝑢(𝑥 ) ), if 𝑡 ≤ 𝑢(𝑥) and 𝑢(𝑥) > 0

𝑓 (𝑥), if 𝑡 ≤ 𝑢(𝑥) and 𝑢(𝑥) = 0, i.e, (𝑥, 𝑡) ∈ 𝐴 × 0.

𝑖 is well-de�ned:

Figure 1.29:

Let 𝑢(𝑥) = 𝑡. If 𝑢(𝑥) > 0, then 𝑃ℎ𝑖
′ (𝑥, 0) =

𝑃ℎ𝑖
′′ (𝑥, 1); if 𝑢(𝑥) = 0, i.e., 𝑥 ∈ 𝐴, then Φ

′ (𝑥, 0) = 𝜑(𝑥, 0) = 𝑓 (𝑥). Φ is an
extension of 𝜑, since Φ

′
is an extension of 𝜑. Φ0 = 𝑓 , since

𝑃ℎ𝑖
′′
0 = 𝑓 .

What remains to be proven is the continuity of Φ. The inequalities 𝑡 ≥ 𝑢(𝑥) and
𝑡 ≤ 𝑢(𝑥) describe closed subsets 𝐹 and 𝐺 of 𝑋 × 𝐼. Φ|𝐹 is continuous since Φ

′
is

continuous. We are �nished when we show that Φ|𝐺 is continuous.
Since Φ

′′
is continuous, we �rst have to prove that Φ|𝐺 is continuous at the

points of the open subset of 𝐺, which is described by 𝑢(𝑥) > 0. It therefore
remains to verify the continuity of Φ|𝐺 at the points of 𝐴 × 0.
Let 𝑎 ∈ 𝐴. Then (Φ|𝐺) (𝑎, 0) = 𝑓 (𝑎). Let 𝑉 be a neighbourhood of 𝑓 (𝑎) in 𝑌 ,
𝑡 ∈ 𝐼. Since Φ

′′
is a homotopy under 𝐴, Φ

′′ (𝑎, 𝑡) = Φ
′′ (𝑎, 0) = 𝑓 (𝑎). Since Φ

′′
is

continuous in (𝑎, 𝑡), there exist neighbourhoods 𝑈𝑡 of 𝑎 in 𝑋, 𝑅𝑡 of 𝑡 in 𝐼 such
that Φ

′′ (𝑈𝑡 × 𝑅𝑡 ) ⊂ 𝑉 . By the compactness of 𝐼, there exist �nitely many points
𝑡0, . . . , 𝑡𝑚 such that 𝐼 = ∪𝑚

𝑘=0
𝑅𝑡𝑘 . Set 𝑈 := ∩𝑚

𝑘0
𝑈𝑡𝑘 . 𝑈 is a neighbourhood of 𝑎 in

𝑋 such that Φ
′′ (𝑈 × 𝐼) ⊂ 𝑉 . But then (Φ′′ |𝐺) ((𝑈 × 𝐼) ∩ 𝐺) ⊂ 𝑉 holds. So Φ|𝐺

is continuous in (𝑎, 0). □



Chapter 2

Fibrations

2.1 Mapping Spaces

2.1.1 The compact-open topology

Let 𝑋, 𝑌 be topological spaces. On the set 𝒯ℴ𝓅(𝑋,𝑌 ) of continuous maps
𝑋 → 𝑌 we de�ne a topology called the compact open topology. If 𝐾 ⊂ 𝑋, 𝑄 ⊂ 𝑌
are subsets, then 𝑇 (𝐾,𝑄) ⊂ 𝒯ℴ𝓅(𝑋,𝑌 ) is de�ned by

𝑇 (𝐾,𝑄) := {𝑢 ∈ 𝒯ℴ𝓅(𝑋,𝑌 ) |𝑢(𝐾) ⊂ 𝑄}.

De�nition 2.1. Let the compact-open topology on 𝒯ℴ𝓅(𝑋,𝑌 ) be the topology
generated by the sets of the form 𝑇 (𝐾,𝑄), where 𝐾 is a compact subset of 𝑋
and 𝑄 is an open subset of 𝑌 .

The elements of the compact-open topology on𝒯ℴ𝓅(𝑋,𝑌 ) are thus precisely
those subsets of 𝒯ℴ𝓅(𝑋,𝑌 ) that are arbitrary unions of �nite intersections of
sets of the form 𝑇 (𝐾,𝑄) where 𝐾 is a compact subset of 𝑋, 𝑄 is an open subset
of 𝑌 .

Special case If 𝑋 is a discrete topological space, then 𝒯ℴ𝓅(𝑋,𝑌 ) is the set of
all maps 𝑋 → 𝑌 . Since the compact subsets of 𝑋 are precisely the �nite subsets
of 𝑋, it is easy to see that the compact-open topology on 𝒯ℴ𝓅(𝑋,𝑌 ) coincides
with the product topology.

Convention If 𝑋, 𝑌 are topological spaces, we will, henceforth, always con-
sider the set 𝒯ℴ𝓅(𝑋,𝑌 ) to have the compact open topology We denote the
topological space thus obtained by 𝑌𝑋.

We now summarise the most important properties of the compact open topol-
ogy. We will generally refrain from proofs, since these, if they are not already
very simple, are detailed in Bourbaki [3], �3, n◦ 4 (p. 43 �).

Remark 2.2. Bourbaki works with the following two concepts: A topological
space 𝑋 is compact if 𝑋 is Hausdor� and every open covering of 𝑋 contains a
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�nite subcover. A topological space 𝑋 is locally compact if 𝑋 is Hausdor� and
every point of 𝑋 has a neighbourhood basis of compact sets. When studying
Bourbaki's proofs, one �nds that the following theorems are also true if one
abandons the �Hausdor�� requirement for both concepts.

2.1.2 The exponential law

De�nition 2.3. If 𝑋, 𝑌 are sets, then let 𝑌𝑋 denote the set of all maps 𝑋 → 𝑌 .
Let 𝑋, 𝑌 , 𝑍 be sets. To a map 𝑓 : 𝑋 × 𝑌 → 𝑍 we associate a map 𝑓 : 𝑋 → 𝑍𝑌 ,
namely, for 𝑥 ∈ 𝑋 let 𝑓 (𝑥) : 𝑌 → 𝑍 be the map that transforms 𝑦 ∈ 𝑌 into
𝑓 (𝑥, 𝑦) ∈ 𝑍. 𝑓 is characterised by the equation

( 𝑓 (𝑥)) (𝑦) = 𝑓 (𝑥, 𝑦) for 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 . (2.4)

𝑓 ↦→ 𝑓 yields a bijection 𝑍𝑋×𝑌
�−→ (𝑍𝑌 )𝑋 (exponential law). 𝑓 and 𝑓 are said to

be adjoint to each other.

Remark 2.5. Now let 𝑋, 𝑌 , 𝑍 be topological spaces, and let 𝑓 : 𝑋 ×𝑌 → 𝑍 be a
map. For 𝑥 ∈ 𝑋, 𝑓 induces a map 𝑓 (𝑥) : 𝑌 → 𝑍 by (2.4).

Theorem 2.6. Premise: 𝑓 is continuous.

Claim 1 𝑓 (𝑥) is continuous for all 𝑥 ∈ 𝑋. 𝑓 therefore induces a map 𝑓 : 𝑋 →
𝑍𝑌 , where 𝑍𝑌 again denotes the set of continuous maps 𝑌 → 𝑍, provided
with the compact-open topology.

Claim 2 𝑓 is continuous.

Theorem (2.6) can be reversed if 𝑌 is locally compact.

Theorem 2.7. If 𝑓 : 𝑋 × 𝑌 → 𝑍 is a map that induces a continuous map
𝑓 : 𝑋 → 𝑍𝑌 by (2.4), then 𝑓 is continuous if 𝑌 is locally compact.

By Theorem (2.6), the map 𝑓 ↦→ 𝑓 de�nes a map

𝜗 : 𝑍𝑋×𝑌 → (𝑍𝑌 )𝑋 .
𝜗 is injective. Theorem (2.7) states:

Theorem 2.8. 𝜗 is surjective, hence bijective, if 𝑌 is locally compact.

Corollary 2.9. 𝜗 is topological if 𝑋 and 𝑌 are Hausdor� and 𝑌 is locally com-
pact ( exponential law for mapping spaces).

2.1.3 Composition of maps

Let 𝑋, 𝑌 , 𝑍 be topological spaces. Let 𝜘 : 𝑌𝑋 × 𝑍𝑌 → 𝑍𝑋 be the composition
map, i.e., 𝜘(𝑢, 𝑣) := 𝑣 ◦ 𝑢 for 𝑢 ∈ 𝑌𝑋, 𝑣 ∈ 𝑍𝑌 .
Theorem 2.10. We have

(a) 𝜘(𝑢0, 𝑣) is continuous in 𝑣 for all 𝑢0 ∈ 𝑌𝑋.

(b) 𝜘(𝑢, 𝑣0) is continuous in 𝑢 for all 𝑣0 ∈ 𝑍𝑌 .

(c) 𝜘 is continuo if 𝑌 is locally compact.



2.1. MAPPING SPACES 63

2.1.4 Applications

De�nition 2.11. Let 𝑋, 𝑌 be topological spaces. De�ne 𝑓 : 𝑌𝑋 × 𝑋 → 𝑌 by

𝑓 (𝑢, 𝑥) : 𝑢(𝑥) 𝑢 ∈ 𝑌𝑋, 𝑥 ∈ 𝑋.

𝑓 is called an evaluation map. (See Hu [12], p. 74).

Theorem 2.12. If 𝑋 i locally compact, then the evaluation map is continuous.

Proof. According to (2.4) the map induced by the evaluation map is id𝑌𝑋 . Since
this map is continuous and since 𝑋 is locally compact, the assertion of the
theorem follows from Theorem (2.7). □

Theorem 2.13 (See (1.31)). Let 𝑋, 𝑋 ′, 𝑌 be topological spaces. If 𝑝 : 𝑋 → 𝑋
′

is an identi�cation and 𝑌 is locally compact, then

𝑝 × id𝑌 : 𝑋 × 𝑌 → 𝑋
′ × 𝑌

is an identi�cation.

Proof. Let 𝑍 be another topological space. Let 𝑓 : 𝑋×𝑌 → 𝑍 and 𝑓
′
: 𝑋

′×𝑌 → 𝑍

be maps that make the following diagramme commutative.

𝑋 × 𝑌
𝑓 //

𝑝×id𝑌
��

𝑍

𝑋
′ × 𝑌

𝑓
′

<<

We assume that 𝑓 is continuous and have to prove that 𝑓 ′ is continuous. It is
easy to see that (2.4) induces a commutative diagramme.

𝑋
𝑓 //

𝑝

��

𝑍𝑌

𝑋
′

𝑓
′

>>

We use the continuity of 𝑓 and Theorem (2.6), Claim 1. The continuity of 𝑓

implies, by Theorem (2.6), Claim 2, the continuity of 𝑓 . Thus, 𝑓
′
is continuous,

because 𝑝 is an identi�cation. Since 𝑌 is locally compact, the continuity of 𝑓
′

follows from Theorem (2.7). □

2.1.5 Mapping spaces and adjoint functors

We conclude this section with a category-theoretical consideration.
Let 𝐶 be a �xed locally compact topological space. We de�ne two covariant

functors 𝑆, 𝑇 : 𝒯ℴ𝓅→ 𝒯ℴ𝓅.
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De�nition 2.14 (of 𝑇). If 𝑌 is a topological space, then we set

𝑇𝑌 := 𝑌𝐶 .

If 𝑔 : 𝑌 → 𝑌
′
is a continuous map, then let

𝑇𝑔 : 𝑌𝐶 → 𝑌
′𝐶

be the map 𝑔𝐶 : 𝑢 ∈ 𝑌𝐶 ↦→ 𝑔 ◦ 𝑢 ∈ 𝑌 ′𝐶 . Note that 𝑔 is continuous by Theorem
(2.10) (b).

De�nition 2.15 (of 𝑆). If 𝑋 is a topological space, then we set

𝑆𝑋 := 𝑋 × 𝐶.

If 𝑔 is a continuous map, then let

𝑆𝑔 : 𝑔 × id𝐶 .

Remark 2.16. For the functor 𝑇 of (2.14) we also use the notation −𝐶 , and for
the functor 𝑆 of (2.15) we use the notation − × 𝐶 .

Remark 2.17. Since 𝐶 is locally compact, for any two topological spaces 𝑋, 𝑌
we have a bijective map

𝒯ℴ𝓅(𝑆𝑋,𝑌 ) → 𝒯ℴ𝓅(𝑋,𝑇𝑌 ),

namely the map
𝜗 : 𝒯ℴ𝓅(𝑋 × 𝐶,𝑌 ) → 𝒯ℴ𝓅(𝑋,𝑌𝐶 ),

which transforms 𝑓 : 𝑋 × 𝐶 → 𝑌 into 𝑓 : 𝑋 → 𝑌𝐶 (cf. (2.4), (2.8)).
𝜗 is natural. If 𝑔 : 𝑋

′ → 𝑋 and ℎ : 𝑌 → 𝑌
′
are continuous maps, then, as

the reader immediately calculates, the following diagram is commutative:

𝑓_

��

𝒯ℴ𝓅(𝑋 × 𝐶,𝑌 ) 𝜗 //

𝒯ℴ𝓅(𝑔×id𝐶 ,ℎ)
��

𝒯ℴ𝓅(𝑋,𝑌𝐶 )

𝒯ℴ𝓅(𝑔,ℎ𝐶 )
��

𝑓

��
ℎ ◦ 𝑓 ◦ 𝑔 × id𝐶 𝒯ℴ𝓅(𝑋 ′ × 𝐶,𝑌 ′ )

𝜗
// 𝒯ℴ𝓅(𝑋 ′ × 𝐶,𝑌 ′ ) ℎ𝐶 ◦ 𝑓 ◦ 𝑔

But this means:

Theorem 2.18. 𝑆 and 𝑇 are adjoint functors, more precisely: 𝑇 is adjoint to
𝑆 , 𝑆 is coadjoint to 𝑇 (cf. Mitchell [17], V.1).

2.2 Fibrations

In this section we introduce the concept of �bration, which is dual to the concept
of co�bration.



2.2. FIBRATIONS 65

2.2.1 The covering homotopy property (CHP). Fibrations

We �rst review the concept of homotopy. In (0.17) and (0.18), we de�ned the
concept of homotopy using the functor −× 𝐼 (cf. (2.15), (2.16)) and the natural
transformations

𝑗𝜈 : id𝒯ℴ𝓅 → − × 𝐼 (𝜈 = 0, 1)

given by the continuous maps

𝑗𝜈 : 𝑋 → 𝑋 × 𝐼, 𝑥 ↦→ (𝑥, 𝜈).

If 𝑓 , 𝑔 : 𝑋 → 𝑌 are continuous maps, then 𝑓 is homotopic to 𝑔 if and only if
there exists a homotopy 𝜑 : 𝑋 × 𝐼 → 𝑌 such that 𝑓 = 𝜑 ◦ 𝑗0 and 𝑔 = 𝜑 ◦ 𝑗1. The
following theorem shows that the concept of homotopy can also be introduced
using the functor −𝐼 (cf. (2.14), (2.16)) and two natural transformations

𝑞0, 𝑞1 : −𝐼 → id𝒯ℴ𝓅

de�ned as follows:
If 𝑌 is a topological space, then let 𝑞0 : 𝑌 𝐼 → 𝑌 be the map that assigns a

(normalised) path 𝑢 in 𝑌 , i.e., a continuous map 𝑢 : 𝐼 → 𝑌 , to the starting point,
i.e., the point 𝑢0 ∈ 𝑌 , and let 𝑞1 : 𝑌 𝐼 → 𝑌 be the map that transforms a path
𝑢 in 𝑌 to the end point, i.e., the point 𝑢1 ∈ 𝑌 . Note that 𝑞0, 𝑞1 : 𝑌 𝐼 → 𝑌 are
continuous since 𝐼 is locally compact.

Theorem 2.19. Let 𝑓 , 𝑔 : 𝑋 → 𝑌 be continuous maps. 𝑓 is homotopic to 𝑔 if
and only if there exists a continuous map 𝜑 : 𝑋 → 𝑌 𝐼 with 𝑞0𝜑 = 𝑓 and 𝑞1𝜑 = 𝑔

.

Proof. Since 𝐼 is locally compact, the transition 𝜑 ↦→ 𝜑 of (2.4) yields a bijection
between the homotopies 𝑋 × 𝐼 → 𝑌 and the continuous maps 𝑋 → 𝑌 𝐼 (− × 𝐼
and −𝐼 are adjoint functors). If 𝜑 : 𝑋 × 𝐼 → 𝑌 is a homotopy, then, as one
immediately calculates,

𝜑 𝑗𝜈 = 𝑞𝜈𝜑 (𝜈 = 0, 1). (2.20)

This, however, immediately leads to the assertion of the theorem. □

Theorem (2.19) shows that the morphisms 𝑗𝜈 : 𝑋 → 𝑋 × 𝐼 in 𝒯ℴ𝓅 and
𝑞𝜈 : 𝑌 → 𝑌 𝐼 in ∗𝒯ℴ𝓅 , the category dual to 𝒯ℴ𝓅, play a formally analogous
role. We take this opportunity to show in the diagramme

𝑋

𝑗0

$$

𝑓

  
𝐴

𝑖

<<

𝑗0 ""

𝑋 × 𝐼 Φ // 𝑌

𝐴 × 𝐼
𝑖×id𝐼

::

𝜑

??
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with which we introduced the homotopy extension property (of a continuous
map 𝑖 for a topological space 𝑌), replacing 𝑋 × 𝐼 by 𝑋 𝐼 , 𝑗0 by 𝑞0, and reversing
the arrows:

𝑋

𝑖

~~
𝐴 𝑋 𝐼

𝑞0

``

𝑖𝐼~~

𝑌
Φoo

𝑓oo

𝜑oo𝐴𝐼

𝑞0

__

We change the notations, write 𝑝 : 𝐸 → 𝐵 for 𝑖 : 𝑋 → 𝐴 , 𝑋 for 𝑌 , 𝜑, Φ for 𝜑,
Φ and are led to the following de�nition.

De�nition 2.21. Let 𝑝 : 𝐸 → 𝐵 be a continuous map and 𝑋 a topological
space. We say 𝑝 has the covering homotopy property (short: CHP) for 𝑋 if and
only if for all continuous maps 𝑓 : 𝑋 → 𝐸 , 𝜑 : 𝑋 → 𝐵𝐼 with 𝑞0𝜑 = 𝑝 𝑓 there
exists a continuous map Φ : 𝑋 → 𝐸 𝐼 with 𝑝𝐼 ◦Φ = 𝜑 and 𝑞0Φ = 𝑓 .

𝐸

𝑝

��
𝑋

Φ //

𝑓 //

𝜑 //

𝐸 𝐼

𝑞0

>>

𝑝𝐼   

𝑌

𝐵𝐼

𝑞0

??

(2.22)

We take advantage of the fact that − × 𝐼 and −𝐼 are adjoint functors, and as in
(2.4) we go from 𝜑 to 𝜑, from Φ to Φ and obtain, as one immediately con�rms
(cf. also equation (2.20)):

Theorem 2.23. A continuous map 𝑝 : 𝐸 → 𝐵 has the CHP for a topological
space 𝑋 if and only if for all continuous maps 𝑓 : 𝑋 → 𝐸 and all homotopies
𝜑 : 𝑋 × 𝐼 → 𝐵 with 𝜑 𝑗0 = 𝑝 𝑓 there exists a homotopy Φ : 𝑋 × 𝐼 𝐼 → 𝐸 with
𝑝Φ = 𝜑1 and Φ 𝑗0 = 𝑓 .

𝑋
𝑓 //

𝑗0

��

𝐸

𝑝

��
𝑋 × 𝐼

𝜑
//

Φ

<<

𝐵

(2.24)

Remark 2.25. The fact that 𝑝 : 𝐸 → 𝐵 has the CHP for 𝑋 geometrically means
that one can raise homotopies 𝜑 : 𝑋 × 𝐼 → 𝐵 to homotopies Φ : 𝑋 × 𝐼 → 𝐸 with
a given initial position 𝑓 : 𝑋 → 𝐸 over 𝜑 𝑗0.

1We then also say: Φ is above 𝜑.
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Figure 2.1:

De�nition 2.26. A continuous map 𝑝 : 𝐸 → 𝐵 is called a �bration2 if 𝑝 has
the CHP for all topological spaces 𝑋.

Remark 2.27. 𝐸 is called the total space, 𝐵 is the base space of the �bration 𝑝.

Clearly wwe have:

Theorem 2.28. A continuous map 𝑝 : 𝐸 → 𝐵 is a �bration if and only if the
following diagramme in 𝒯ℴ𝓅 is a weak Cartesian square (cf. (0.8)).

𝐸

𝑝

��
𝐸 𝐼

𝑞0

>>

𝑝𝐼   

𝐵

𝐵𝐼

𝑞0

??

(2.29)

2.2.2 Examples

De�nition 2.30. A continuous map 𝑝 : 𝐸 → 𝐵 is called trivial if there exists
a topological space 𝐹 and a homeomorphism 𝜓 : 𝐸 → 𝐵 × 𝐹 that makes the
following diagramme commutative,

𝐸
𝜓 //

𝑝
��

𝐵 × 𝐹

proj1||
𝐵

2In the literature the term Hurewicz �bration is also common.
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i.e., a continuous map 𝑝 : 𝐸 → 𝐵 is trivial if it is isomorphic to a projection in
the category 𝒯ℴ𝓅𝐵 of topological spaces over 𝐵.

Theorem 2.31. A trivial map𝑝 : 𝐸 → 𝐵 is a �bration.

Proof. We can assume without signi�cant restriction that 𝑝 is a projection:
𝑝 = proj1 : 𝐵 × 𝐹 → 𝐵. For 𝑓 : 𝑋 → 𝐵 × 𝐹 and 𝜑 : 𝑋 × 𝐼 → 𝐵 with
𝜑 𝑗0 = proj1 ◦ 𝑓 , one obtains Φ : 𝑋 × 𝐼 → 𝐵 × 𝐹 with 𝑝Φ = 𝜙 and Φ 𝑗0 = 𝑓 by the
de�nition

Φ(𝑥, 𝑡) := (𝜑(𝑥, 𝑡), proj2 ◦ 𝑓 (𝑥)) for 𝑥 ∈ 𝑋, 𝑡 ∈ 𝐼 .

𝑋
𝑓 //

𝑗0

��

𝐸 = 𝐵 × 𝐹
𝑝=proj1
��

𝑋 × 𝐼
𝜑

//

Φ

88

𝐵

□

De�nition 2.32. If 𝑝 : 𝐸 → 𝐵 is a map, 𝑈 ⊂ 𝐵 a subset, then denote by

𝑃𝑈 : 𝑝−1(𝑈) → 𝑈

the restriction of 𝑝 to the source 𝑝−1(𝑈) and destination the 𝑈.

De�nition 2.33. A continuous map 𝑝 : 𝐸 → 𝐵 is called locally trivial if every
point 𝑏 ∈ 𝐵 has a neighbourhood 𝑈 such that 𝑝𝑈 is trivial.

Example 2.34. The tangent bundle 𝑇𝑀 → 𝑀 of a 𝐶𝑟 -manifold 𝑀 (𝑟 ≥ 1) is a
locally trivial map. (For the de�nition of the terms 𝐶𝑟 -manifold and tangent
bundle, see Lang [16], II. �1, 111.�2.)

In �9 we prove:

Theorem 2.35. If 𝑝 : 𝐸 → 𝐵 is locally trivial and 𝐵 is paracompact, then 𝑝

is a �bration. In particular, the tangent bundle 𝑇𝑀 → 𝑀 of a paracompact
𝐶𝑟 -manifold 𝑀 (𝑟 ≥ 1) is a �bration.

Special locally trivial mappings are the coverings.

De�nition 2.36. A continuous map 𝑝 : 𝐸 → 𝐵 is called a covering if for every
point 𝑏 ∈ 𝐵 there exists a neighbourhood 𝑈 of 𝑏 in 𝐵 and a discrete topological
space 𝐷 such that 𝑝𝑈 in 𝒯ℴ𝓅𝑈 is isomorphic to proj1 : 𝑈 × 𝐷 → 𝑈.

Theorem 2.37. Every covering is a �bration.

Proof. Spanier [24], 2.2 Theorem 3. □

Remark 2.38. If 𝑝 is a covering, then Φ in (2.24) is even uniquely determined
by 𝜑 and 𝑓 .
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Figure 2.2:

Example 2.39. 1. Let 𝐸 be a topological space that has exactly one point 𝑥0,
𝐵 := 𝐼. Map 𝑝 : 𝐸 → 𝐵 to the point 0. 𝑝 is not a �bration because 𝑝 does
not have the CHP for the space 𝐸 : For 𝑓 := id𝐸 and 𝜑 := proj2 : 𝐸 × 𝐼 → 𝐼,
there does not even exist a (set) map Φ : 𝐸 × 𝐼 → 𝐸 with 𝑝Φ = 𝜑.

The map 𝑝 in Example 1 is not surjective. The next example presents a
surjective map that is not a �bration.

2. Let 𝐸 be the topological sum {𝑥0 + 𝐼, 𝐵 := 𝐼. Let 𝑝 : 𝐸 → 𝐵 be given by
𝑝(𝑥0) := 0, 𝑝(𝑡) := 𝑡 for 𝑡 ∈ 𝐼. 𝑝 is not a �bration because 𝑝 does not have the

Figure 2.3:

CHP for 𝑋 = {𝑥0}. For 𝑓 : 𝑋 → 𝐸 with 𝑓 (𝑥0) := 𝑥0 and 𝜑 := proj2 : 𝑋×𝐼 → 𝐼,
there exists no continuous map Φ : 𝑋× 𝐼 → 𝐸 with 𝑝Φ = 𝜑 and Φ(𝑥0, 0) = 𝑥0.

3. Let 𝐸 be the factor space obtained from 𝐼× 𝐼 by identifying (0, 𝑡) with (1, 1−𝑡)
for each 𝑡 ∈ 𝐼. Let 𝐵 be derived from 𝐼 by identifying the points 0 and 1. 𝐵
is homeomorphic to S1. 𝐸 is called a Möbius strip. Let 𝑝 : 𝐸 → 𝐵 be the
continuous map induced by proj1 : 𝐼 × 𝐼 → 𝐼. 𝑝 is locally trivial because
𝑝𝐵\{𝑏} is trivial for all 𝑏 ∈ 𝐵. Thus, by Theorem (2.35), 𝑝 is a �bration (𝐵
is compact!). However, 𝑝 is not trivial because 𝐸 is not homeomorphic to
S1 × 𝐼.
(Justi�cation: The boundary of S1 × 𝐼 is homeomorphic to S1 × ¤𝐼, where
¤𝐼 := {0}∪{1} ⊂ 𝐼, the boundary of 𝐸 is homeomorphic to S1. S1 is connected,
but S1 × ¤𝐼 is not. A point 𝑥 of 𝐸 or S1 × ¤𝐼 is called a boundary point if, for
every neighbourhood of 𝑥, there exists a smaller neighbourhood of 𝑥 that is
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Figure 2.4:

simply connected after removing 𝑥 (For the term �simply connected� ', see
Schubert [23], III.5.3.).)

We mention in passing that the following concept of �bration also plays an
important role in the literature.

De�nition 2.40. A continuous map 𝑝 is called a Serre �bration if 𝑝 has the
CHP for 𝐼𝑛, 𝑛 = 0, 1, 2, . . . . (Let 𝐼0 be a topological space with exactly one
point.)

Remark 2.41. Spanier uses the term weak �bration instead of Serre �bration
([24], p. 374).

Proposition 2.42. A continuous map 𝑝 is a Serre �bration if and only if 𝑝
satis�es the CHE for all CW complexes.

Proof. Puppe [20], Theorem 4.6. □

Remark 2.43. Like the notion of ��bration�, the notion of �co�bration� can be
characterised in terms of both −× 𝐼 and −𝐼 due to the adjointness of the functors
− × 𝐼 and −𝐼 .

Theorem 2.44. A continuous map 𝑖 : 𝐴→ 𝑋 is a co�bration if and only if for
all continuous maps 𝜑 : 𝐴 → 𝑌 𝐼 and 𝑓 : 𝑋 → 𝑌 with 𝑞0𝜑 = 𝑓 𝑖 there exists a
continuous map Φ : 𝑋 → 𝑌 with Φ𝑖 = 𝜑 and 𝑞0𝜑 = 𝑓 .

𝐴
𝜑 //

𝑖

��

𝑌 𝐼

𝑞0

��
𝑋

𝑓
//

Φ

??

𝑌

(2.45)

2.2.3 The mapping path space of a continuous map

The role played by the mapping cylinder of a continuous image in the area of
co�brations is taken over by the mapping path space of a continuous image in
the case of �brations.

Let 𝑝 : 𝐸 → 𝐵 be a continuous map.
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De�nition 2.46. The path space

𝑊𝑝 := {(𝑒, 𝑢) ∈ 𝐸 × 𝐵𝐼 |𝑝(𝑒) = 𝑢(0)}

of the product 𝐸 × 𝐵𝐼 is called the mapping path space of 𝑝.

The elements of 𝑊𝑝 are therefore the pairs (𝑒, 𝑢) consisting of a point 𝑒 of
𝐸 and a (normalized) path 𝑢 in 𝐵 that starts at 𝑝(𝑒) (cf. (2.53)).

Figure 2.5:

Theorem 2.47. The diagram in 𝒯ℴ𝓅

𝐸

𝑝

��
𝑊𝑝

𝑞

==

𝑟
  

𝐵

𝐵𝐼

𝑞0

??

(2.48)

is a Cartesian square (cf. (0.8)). Let 𝑞(𝑟) be the restriction to 𝑊𝑝 of the
projection of the product 𝐸 × 𝐵 onto the �rst (second) factor. We leave the
(simple) proof to the reader.

Consider the diagramme

𝐸

𝑝

��
𝐸 𝐼

𝑝
′
//

𝑞0
//

𝑝𝐼 //

𝑋

𝑞

>>

𝑟 ��

𝐵

𝐵𝐼

𝑞0

??

Since 𝑝𝑞0 = 𝑞0𝑃
𝐼 and since (2.48) is a Cartesian square, there exists exactly one

continuous map 𝑝
′
: 𝐸 𝐼 → 𝑊 with 𝑞 ◦ 𝑝′ = 𝑞0 and 𝑟 ◦ 𝑝′ = 𝑝𝐼 .

Theorem 2.49. The following statements are equivalent:
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(a) 𝑝 is a �bration.

(b) 𝑝 has the CHP for the mapping path space 𝑊.

(c) 𝑝
′
is a retraction (i.e., there exists a continuous map 𝑠 : 𝑊𝑝 → 𝐸 with

𝑝
′
𝑠 = id𝑊𝑝 .

3

Proof. The proof of Theorem (2.49) is dual to the proof of Theorem (1.17) and
is left to the reader as an exercise. □

2.2.4 Decomposition of a continuous map into a homotopy
equivalence and a �bration

We now prove the dual of theorem (1.29).

De�nition 2.50. Let 𝑔 : 𝑌 → 𝐵 be a continuous map. Let 𝑞 : 𝑊𝑔 → 𝑌 ,
𝑟 : 𝑊𝑔 → 𝐵𝐼 be the continuous maps that induce the projections of 𝑌 × 𝐵
onto the individual factors, as in (2.48). We set 𝑟1 := 𝑞1 ◦ 𝑟 : 𝑊𝑔 → 𝐵, i.e.,
𝑟1 (𝑦, 𝑢) = 𝑢(1) ∈ 𝐵 for (𝑦, 𝑢) ∈ 𝑊𝑔, and de�ne a continuous map 𝑗 : 𝑌 → 𝑊𝑔 by
𝑗 (𝑦) := (𝑦, 𝑔(𝑦)) for 𝑦 ∈ 𝑌 . Let 𝑔(𝑦) denote the constant path 𝐼 → 𝐵 that maps
each 𝑡 ∈ 𝐼 into 𝑔(𝑦) ∈ 𝐵.

Theorem 2.51. We have

(a) The diagramme

𝑌
𝑗 //

𝑔
��

𝑊𝑔

𝑟1
~~

𝐵

is commutative.

(b) 𝑟 and 𝑞 are �brations.

(c) 𝑞 𝑗 = id𝑌 .

(d) 𝑗𝑞
∼−
𝑌
id𝑊𝑔 .

We consider 𝑗𝑞 and id𝑊𝑔 as morphisms 𝑞 → 𝑞 of 𝒯ℴ𝓅𝑌 . This is possible be-
cause by (c) 𝑞 𝑗𝑞 = 𝑞. In particular, Theorem (2.51) implies that any continuous
map up to homotopy equivalence can be replaced by a �bration:

Corollary 2.52. Every continuous map 𝑔 can be factorised in the form 𝑔 = 𝑣◦𝑢,
where 𝑣 is a �bration and 𝑢 is a homotopy equivalence.

Before proving Theorem (2.51), we make some remarks about paths.

De�nition 2.53. Let 𝑋 be a topological space. A path in 𝑋 is a continuous
map 𝑤 : [0, 𝑎] → 𝑋, where 𝑎 ∈ [0,∞[ . 𝑤(0) is called the starting point, and
𝑤(𝑎) the end point of 𝑤. If 𝑎 = 1, we speak of a normalised path.

3One then also says: 𝑝
′
has a section.
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De�nition 2.54. If 𝑤1 : [0, 𝑎1] → 𝑋, 𝑤2 : [0, 𝑎2] → 𝑋 are paths with 𝑤1 (𝑎1) =
𝑤2 (0), then let 𝑤2 + 𝑤1 : [0, 𝑎1 + 𝑎2] → 𝑋 be the path de�ned by

𝑤2 + 𝑤1 (𝑡) :=
{
𝑤1 (𝑡), 0 ≤ 𝑡 ≤ 𝑎1
𝑤2 (𝑡 − 𝑎1) 𝑎1 ≤ 𝑡 ≤ 𝑎1 + 𝑎2

De�nition 2.55. If 𝑤 : [0, 𝑎] → 𝑋 is a path, then let (−𝑤) : [0, 𝑎] → 𝑋 be the
path de�ned by (−𝑤) (𝑡) := 𝑤(𝑎 − 𝑡) for 0 ≤ 𝑡 ≤ 𝑎.

De�nition 2.56. If 𝑤1 : [0, 𝑎1] → 𝑋, 𝑤2 : [0, 𝑎2] → 𝑋 are paths with 𝑤1 (0) =
𝑤2 (0), then we set

𝑤2 − 𝑤1 := 𝑤2 + (−𝑤1).

De�nition 2.57. If 𝑤 : [0, 𝑎] → 𝑋 is a path, then let 𝑤𝐼 : 𝐼 → 𝑋 be the
normalised path given by 𝑤𝑇 (𝑡) := 𝑤(𝑎 − 𝑡) for 𝑡 ∈ 𝐼.

De�nition 2.58. If 𝜑 : 𝑋 × [0, 𝑎] → 𝑌 is a homotopy (𝑎 ∈ [0,∞[), then for
𝑥 ∈ 𝑋 let

𝜑𝑥 : [0, 𝑎] → 𝑌

be the path de�ned by 𝜑𝑥 (𝑡) := 𝜑(𝑥, 𝑡).

Proof. (of Theorem 2.51) (a) and (c) are clear.
Regarding (b): We �rst show that 𝑟1 is a �bration. If

𝑋
𝑓 //

𝑗0

��

𝑊𝑔

𝑟1

��
𝑋 × 𝐼

𝜑
// 𝐵

(2.59)

is a commutative diagramme in 𝒯ℴ𝓅, then we have to construct a continuous
map Φ : 𝑋 × 𝐼 → 𝑊𝑔 with 𝑟1Φ = 𝜑 and Φ 𝑗0 = 𝑓 . Let 𝑥 ∈ 𝑋. 𝑓 (𝑥) ∈ 𝑊𝑔 is a pair
(𝑦, 𝑢) with 𝑦 ∈ 𝑌 , 𝑢 : 𝐼 → 𝐵, such that 𝑔(𝑦) = 𝑢(0). Since (2.59) is commutative,
we have

𝜑𝑥 (0) = 𝜑(𝑥, 0) = 𝑟1 𝑓 (𝑥) = 𝑢(1).
The last equation allows us to de�ne for 𝑡 ∈ 𝐼

Φ(𝑥, 𝑡) := (𝑦, ((𝜑𝑥 | [0, 𝑡]) + 𝑢)𝐼 ) ∈ 𝑊𝑔 (!).

One immediately veri�es Φ 𝑗0 = 𝑓 and 𝑟1Φ = 𝜑. The remaining proof of the
continuity of Φ is left to the reader as an exercise.

Next, we want to prove that 𝑞 is a �bration. To do so, we start with a
commutative diagramme in 𝒯ℴ𝓅 of the form

𝑋
𝑓 //

𝑗0

��

𝑊𝑔

𝑞

��
𝑋 × 𝐼

𝜑
// 𝑌
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Figure 2.6:

and have to construct Φ : 𝑋 × 𝐼 → 𝑊𝑔 with 𝑞Φ = 𝜑 and Φ 𝑗0 = 𝑓 . For 𝑥 ∈ 𝑋,
𝑓 (𝑥) is a pair

(𝑦, 𝑢), 𝑦 ∈ 𝑌, 𝑢 : 𝐼 → 𝐵 with 𝑔(𝑦) = 𝑢(0).

Since 𝑞 𝑓 = 𝜑 𝑗0, it follows that 𝜑
𝑥 (0) = 𝜑(𝑥, 0) = 𝑞 𝑓 (𝑥) = 𝑦 and hence 𝑔𝜑𝑥 (0) =

𝑔(𝑦) = 𝑢(0). We can therefore de�ne for 𝑡 ∈ 𝐼

Φ(𝑥, 𝑡) := (𝜑(𝑥, 𝑡), (𝑢 − 𝑔𝜑𝑥 | [0, 𝑡])𝐼 ) ∈ 𝑊𝑔 (!).

The reader should verify that Φ : 𝑋 × 𝐼 → 𝑊𝑔 is the desired continuous (!!)

Figure 2.7:

map.

Regarding (d): We de�ne a homotopy 𝜑 : 𝑊𝑔 × 𝐼 → 𝑊𝑔 by 𝜑(𝑦, 𝑢, 𝑡) :=
(𝑦, (𝑢 | [0, 𝑡])𝐼 ) for (𝑦, 𝑢) ∈ 𝑊𝑔, 𝑡 ∈ 𝐼. Then

𝜑 : 𝑗𝑞
∼−
𝑌
id𝑊𝑔

□
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2.2.5 Transition to other categories

Let 𝐾, 𝐿 be topological spaces. By Theorem (2.23), the de�nition of the notion
of �bration can be transferred from 𝒯ℴ𝓅 to 𝒯ℴ𝓅

𝐾
𝐿
using the homotopy notion

de�ned in (0.31) in the category 𝒯ℴ𝓅
𝐾
𝐿
.

De�nition 2.60. Let 𝜀 = (𝐾 → 𝐸 → 𝐿), 𝛽 = (𝐾 → 𝐵→ 𝐿) be spaces under 𝐾
and over 𝐿, and 𝑔 : 𝜀 → 𝛽 be a map under 𝐾 and over 𝐿. 𝑔 is called a �bration
in 𝒯ℴ𝓅

𝐾
𝐿

if and only if for all spaces under 𝐾 and over 𝐿 𝜉 = (𝐾 → 𝑋 → 𝐿),
for all maps under 𝐾 and over 𝐿 𝑓 : 𝜉 → 𝜀 and for all homotopies under 𝐾 and
over 𝐿 𝜑 : 𝑋 × 𝐼 → 𝐵 with 𝜑0 = 𝑔 𝑓 there exists a homotopy under 𝐾 and over
𝐿 Φ : 𝑋 × 𝐼 → 𝐸 with 𝑔Φ = 𝜑 and Φ0 = 𝑓 .

𝐾

""

𝐾

��
𝑋

𝑓 //

""

∩

��

𝐸

��

𝑔

��

𝐿 𝐿

𝐾

��
𝑋 × 𝐼

Φ

>>

𝜑
// 𝐵

��
𝐿

Of particular importance in the following will be �brations in𝒯ℴ𝓅
0 (pointed

�brations) and �brations in 𝒯ℴ𝓅𝐿 (�brations above 𝐿).

De�nition 2.61. In (0.33) we transferred the construction of the cylinder from
𝒯ℴ𝓅 to 𝒯ℴ𝓅

𝐾
𝐿
. We now give the construction in 𝒯ℴ𝓅

𝐾
𝐿
, which corresponds

to the construction of the path space 𝑌 𝐼 of a topological space 𝑌 in 𝒯ℴ𝓅. If

𝜂 = (𝐾 𝑖−→ 𝑌
𝑝
−→ 𝐿) is a space under 𝐾 and over 𝐿, then let 𝑌 𝐼

𝐿
𝐿 be the subspace

of 𝑌 𝐼 de�ned by

𝑌 𝐼𝐿 := {𝑢 ∈ 𝑌 |𝑝𝑢 constant}

To a point 𝑘 ∈ 𝐾 we assign the constant path 𝐼 →> 𝑌 that maps each 𝑡 ∈ 𝐼 into
𝑖(𝑘) ∈ 𝑌 . This yields a continuous map 𝐾 → 𝑌 𝐼

𝐿
. By 𝑢 ∈ 𝑌 𝐼

𝐿
↦→ 𝑝𝑢(0) ∈ 𝐿 we

obtain a continuous map 𝑌 𝐼
𝐿
→ 𝐿. We denote the object of 𝒯ℴ𝓅

𝐾
𝐿
𝐾 → 𝑌 𝐼

𝐿
𝐿

thus obtained by 𝑊
𝐾
𝜂.

If 𝜉 is another space under 𝐾 and over 𝐿, then one has a bijection

𝒯ℴ𝓅
𝐾
𝐿 (𝐼𝐾𝐿 𝜉, 𝜂) � 𝒯ℴ𝓅

𝐾
𝐿 (𝜉,𝐾𝐿 𝜂),
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where 𝐼𝐾
𝐿
𝜉 is de�ned as in (0.33). The de�nition of 𝐼𝐾

𝐿
or 𝑊𝐾

𝐿
can be extended

in an obvious way to morphisms of 𝒯ℴ𝓅
𝐾
𝐿
. One then obtains adjoint functors

𝐼𝐾𝐿 ,𝑊
𝐾
𝐿 : 𝒯ℴ𝓅

𝐾
𝐿 → 𝒯ℴ𝓅

𝐾
𝐿 .

2.2.6 A certain relative covering homotopy property

At the end of this section, we prove a proposition that deals with a certain
relative covering homotopy property. We will need this proposition in �2.6.

Theorem 2.62. Let 𝑝 : 𝐸 → 𝐵 be a �bration, 𝑋 a topological space, 𝐴 ⊂ 𝑉 ⊂ 𝑋
, 𝑉 a halo of 𝐴 in 𝑋 (cf. (1.81)), and let 𝑓 : 𝑋 → 𝐸, 𝜑 : 𝑋× → 𝐵, Φ𝑉 : 𝑉×𝐼 → 𝐸

be continuous maps such that

𝜑(𝑥, 0) = 𝑝 𝑓 (𝑥) for 𝑥 ∈ 𝑋,
Φ𝑉 (𝑥, 0) = 𝑓 (𝑥) for 𝑥 ∈ 𝑉,
𝑝 ◦Φ𝑉 = 𝜑|𝑉×𝐼 .

Then there exists a homotopy Φ : 𝑋 × 𝐼 → 𝐸 such that 𝑝Φ = 𝜑, Φ(𝑥, 0) = 𝑓 (𝑥)
for 𝑥 ∈ 𝑋 and Φ|𝐴×𝐼 = Φ𝑉 |𝐴×𝐼 .

𝑋
𝑓 //

∩
$$

∩

��

𝐸

𝑝

��

𝑉

∩
$$

∩

��

𝐴

∩
��

𝐴 × 𝐼
∩

zz

Φ |𝐴×𝐼=Φ𝑉 |𝐴×𝐼

DD

𝑉 × 𝐼
∩

zz

Φ𝑉

MM

𝑋 × 𝐼
𝜑

//

Φ

MM

𝐵

Proof. Since every halo of 𝐴 contains a closed halo according to (1.86), we can
assume that 𝑉 is closed in 𝑋. Since 𝑉 is a halo of 𝐴 in 𝑋, we can choose a
continuous map 𝑣 : 𝑋 → 𝐼 such that

𝐴 ⊂ 𝑣−1(1), 𝑋 \𝑉 ⊂ 𝑣−1(0)

(cf. (1.81), (1.82)). We de�ne 𝜑 : 𝑋× → 𝐵 by

𝜑(𝑥, 𝑡) := 𝜑(𝑥,min(𝑣(𝑥) + 𝑡, 1)) for (𝑥, 𝑡) ∈ 𝑋 × 𝐼
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and Φ
′
𝑉
: (𝑋 × 0) ∪ (𝑉 × 𝐼) → 𝐸 by

Φ
′
𝑉 (𝑥, 0) := 𝑓 (𝑥) for𝑥 ∈ 𝑋,

Φ
′
𝑉 (𝑥, 𝑡) := Φ𝑉 (𝑥, 𝑡) for(𝑥, 𝑡) ∈ 𝑉 × 𝐼 .

Note that Φ
′
𝑉
is well-de�ned since Φ𝑉 (𝑥, 0) = 𝑓 (𝑥) for 𝑥 ∈ 𝑉 , and continuous

since 𝑉 is closed in 𝑋. Since 𝑋 \𝑉 ⊂ 𝑣−1(0),

𝑓 (𝑥) := Φ
′
𝑉 (𝑥, 𝑣(𝑥)) for 𝑥 ∈ 𝑋

provides a continuous map 𝑓 : 𝑋 → 𝐸 . Verify 𝑝 𝑓 (𝑥) = 𝜑(𝑥, 0) for 𝑥 ∈ 𝑋. Since
𝑝 is a �bration, there exists a homotopy Φ : 𝑋 × 𝐼 → 𝐸 over 𝜑 (i.e., 𝑝Φ = 𝜑)

with Φ(𝑥, 0) = 𝑓 (𝑥) for 𝑥 ∈ 𝑋. We de�ne Φ : 𝑋 × 𝐼 → 𝐸 by

Φ(𝑥, 𝑡) :=
{
Φ
′
𝑉
(𝑥, 𝑡), if 0 ≤ 𝑡 ≤ 𝑣(𝑥)

Φ(𝑥, 𝑡 − 𝑣(𝑥), if 𝑣(𝑥) ≤ 𝑡 ≤ 1.

The reader easily con�rms that Φ is a well-de�ned continuous map with the
desired properties. □

2.3 Homotopy Fibrations

2.3.1 The covering homotopy property (CHP) up to ho-
motopy. h-Fibrations

The concept of homotopy co�bration corresponds to the concept of homotopy
�bration.

De�nition 2.63. Let 𝑝 : 𝐸 → 𝐵 be a continuous map, 𝑋 a topological space.
𝑝 has the covering homotopy property (CHP) up to homotopy for 𝑋 if and only
if for all continuous maps 𝑓 : 𝑋 → 𝐸 , 𝜑 : 𝑋 × 𝐼 → 𝐵 with 𝜑0 = 𝑝 𝑓 there exists a
homotopy Φ : 𝑋 × 𝐼 → 𝐸 over 𝜑 (i.e., 𝑝Φ = 𝜑) such that Φ0

∼−
𝐵
𝑓 (cf. diagramme

(2.24)). We consider Φ0 and 𝑓 as morphisms 𝑝 𝑓 → 𝑝 of 𝒯ℴ𝓅𝐵.

Example 2.64. Let 𝐸 := 𝐼 × {0} ∪ {0} × 𝐼 ⊂ 𝐼 × 𝐼, 𝐵 := 𝐼, 𝑝 : 𝐸 → 𝐵 be the
projection onto the �rst factor. Let 𝑋 be a topological space that has exactly
one point. 𝑝 has the CHP up to homotopy for 𝑋, but 𝑝 does not have the CHP
for 𝑋.

0From the adjointness of the functors − × 𝐼 and −𝐼 it follows that:

Theorem 2.65. A continuous map 𝑝 : 𝐸 → 𝐵 has CHP up to homotopy for a
topological space 𝑋 if and only if for all continuous maps 𝑓 : 𝑋 → 𝐸, 𝜑 : 𝑋 → 𝐵𝐼

there exists a continuous map Φ : 𝑋 → 𝐸 𝐼 with 𝑝𝐼Φ = 𝜑 and 𝑞0Φ𝜑
∼−
𝐵
𝑓 (cf.
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Figure 2.8:

Figure 2.9:

diagramme (2.22)).

𝐸

𝑝

��
𝑋

Φ //

𝑓 //

𝜑 //

𝐸 𝐼

𝑞0

>>

𝑝𝐼   

𝐵

𝐵𝐼

𝑞0

??

De�nition 2.66. A continuous map 𝑝 : 𝐸 →> 𝐵 is called a homotopy �bration
(h-�bration for short) if 𝑝 satis�es the CHP up to homotopy for all topological
spaces 𝑋. In addition to the term �homotopy �bration,� the term �weak �bra-
tion� is also commonly used.
Note: Every �bration is an h-�bration.

De�nition 2.67. Let 𝑝 : 𝐸 → 𝐵, 𝑝
′
: 𝐸

′ → 𝐵 be spaces over 𝐵. 𝑝 is dominated
by 𝑝

′
(in 𝒯ℴ𝓅𝐵) if one of the following equivalent (!) statements holds:

(a) there exist morphisms of 𝒯ℴ𝓅𝐵 𝑔 : 𝑝 → 𝑝
′
, 𝑔
′
: 𝑝

′ → 𝑝 such that 𝑔
′
𝑔
∼−
𝐵
id𝐸 ,

(b) there exists a section in 𝒯ℴ𝓅𝐵ℎ 𝑔 : 𝑝 → 𝑝
′
,

(c) there exists a retraction in 𝒯ℴ𝓅𝐵ℎ 𝑔
′
: 𝑝

′ → 𝑝.
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Theorem 2.68. Let 𝑝 : 𝐸 → 𝐵, 𝑝
′
: 𝐸

′ → 𝐵 be spaces over 𝐵. 𝑝 is dominated
by 𝑝

′
in 𝒯ℴ𝓅𝐵.

Claim:

(a) If 𝑋 is a topological space and 𝑝
′
has CHP up to homotopy for 𝑋, then so

does 𝑝.

(b) If 𝑝
′
is an h-�bration, then so is 𝑝.

Proof. (b) is a consequence of (a).
Regarding (a): By assumption, there exist morphisms of 𝒯ℴ𝓅𝐵 𝑔 : 𝑝 → 𝑝

′
,

𝑔
′
: 𝑝

′ → 𝑝 with 𝑔
′
𝑔
∼−
𝐵
id𝐸 . Given are continuous maps 𝑓 : 𝑋 → 𝐸 , 𝜑 : 𝑋× 𝐼 → 𝐵

with 𝜑 𝑗0 = 𝑝 𝑓 . From 𝑝
′
𝑔 = 𝑝, it follows 𝑝

′ (𝑔 𝑓 ) = 𝜑 𝑗0. Since 𝑝
′
has the CHP up

to homotopy for 𝑋, there exists Φ
′
: 𝑋 × 𝐼 → 𝐸

′
with 𝑝

′
Φ
′
= 𝜑 and Φ

′
𝑗0
∼−
𝐵
𝑔 𝑓 .

𝑋
𝑓 //

𝑗0

��

𝐸
𝑔 //

𝑝
��

𝐸
′

𝑔
′

oo
𝑝
′

��
𝑋 × 𝐼

𝜑 //

Φ
′

GG
Φ

==

𝐵

Set Φ := 𝑔
′
Φ
′
: 𝑋 × 𝐼 → 𝐸 . Then 𝑝Φ = 𝑝𝑔

′
Φ
′
= 𝑝

′
Φ
′
= 𝜑, since 𝑝𝑔

′
= 𝑝

′
, and

Φ 𝑗0 = 𝑔
′
Φ
′
𝑗0
∼−
𝐵
𝑔
′
𝑔 𝑓

∼−
𝐵
𝑓 , because 𝑔

′ ∼−
𝐵
id𝐸 . So 𝑝 has the CHP up to homotopy

for 𝑋. □

Corollary 2.69. �CHP up to homotopy� and �h-�bration� are invariant under
homotopy equivalence over 𝐵.

Remark 2.70. The continuous map 𝑝 of Example (2.64) is dominated by id𝐵.
id𝐵 is a �bration, i.e., an h-�bration. By Theorem (2.68), 𝑝 is therefore an
h-�bration. Since 𝑝 is not a �bration, this example also shows that Theorem
(2.68) becomes false if one replaces �CHP up to homotopy� with �CHP� in (a)
or �h-�bration� with ��bration� in (2.68).

Theorem 2.71. Let the diagramme in 𝒯ℴ𝓅

𝐸
𝑓 //

𝑝
��

𝐸
′

𝑝
′

��
𝐵

be commutative up to homotopy, i.e., 𝑝
′
𝑓 ≃ 𝑝. If 𝑝

′
is an h-�bration or if 𝑝

′

at least has the CHP up to homotopy for 𝐸, then there exists a continuous map
𝑔 : 𝐸 → 𝐸

′
with 𝑔 ≃ 𝑓 and 𝑝′𝑔 = 𝑝.
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Proof. Since 𝑝
′
has the CHP up to homotopy for 𝐸 , there exists for 𝜑 : 𝑝

′
𝑓 ≃ 𝑝 :

𝐸×𝐼 → 𝐵 a homotopyΦ : 𝐸×𝐼 → 𝐸
′
over 𝜑 withΦ 𝑗0

∼−
𝐵
𝑓 . For 𝑔 := Φ 𝑗1 : 𝐸 → 𝐸

′

then 𝑔 = Φ 𝑗1 ≃ Φ 𝑗0
∼−
𝐵
𝑓 , i.e. 𝑔 ≃ 𝑓 , and 𝑝′𝑔 = 𝑝

′
Φ 𝑗1 = 𝜑 𝑗1 = 𝑝. □

Corollary 2.72. If an h-�bration 𝑝 : 𝐸 → 𝐵 has a section up to homotopy,
then it has a setion.

Proof. By assumption, 𝑠 : 𝐵 → 𝐸 such that 𝑝𝑠 ≃ id𝐵 exists. Theorem (2.71),
applied to the diagramme

𝐵
𝑠 //

id𝐵 ��

𝐸

𝑝
��

𝐵

proves the existence of a continuous map 𝑠
′
: 𝐵→ 𝐸 such that 𝑝𝑠

′
= id𝐵. □

Figure 2.10:

Remark 2.73. Corollary (2.72) states that an h-�bration that has no section also
has no section up to homotopy. This remark is important because not every
�bration has a section.

Example 2.74. Let 𝑝 be the restriction of the tangent bundle 𝑇 (S2) → S2 of the
2-sphere to the tangent vectors that are nonzero. 𝑝 is a �bration because 𝑝 is
locally trivial and S2 is compact. 𝑝 has no section (cf. [25], II. Theorem 27.8),
and thus no section up to homotopy.

2.3.2 Di�erent characterisations of the term �h-�bration�

We now provide various characterisations of the term �h-�bration.�

Theorem 2.75. Let 𝜀 be a real number with 0 < 𝜀 < 1, 𝑋 a topological space,
and 𝑝 : 𝐸 → 𝐵 a continuous map. Then the following two statements are
equivalent:

(a) 𝑝 has the CHP up to homotopy for 𝑋.

(b) For all continuous maps 𝑓 : 𝑋 → 𝐸, 𝜑 : 𝑋 × 𝐼 → 𝐵 such that 𝜑(𝑥, 𝑡) =
𝑝 𝑓 (𝑥) for all 𝑥 ∈ 𝑋 and all 𝑡 ∈ [0, 1] with 𝑡 ≤ 𝜀, there exists a homotopy
Φ : 𝑋 × 𝐼 → 𝐸 over 𝜑 with Φ0 = 𝑓 .
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Proof. (a) ⇒ (b): Given continuous maps 𝑓 : 𝑋 → 𝐸 , 𝜑 : 𝑋 × 𝐼 → 𝐵 with
𝜑(𝑥, 𝑡) = 𝑝 𝑓 (𝑥) for 𝑥 ∈ 𝑋 and 0 ≤ 𝑡 ≤ 𝜀. Then the following diagramme is
commutative.

𝑋
𝑓 //

𝑗𝜀

��

𝐸

𝑝

��
𝑋 × [𝜀, 1]

𝜑 |𝑋×[𝜀,1]
// 𝐵

Since 𝑝 has the CHP up to homotopy for 𝑋 ([0, 1] is replaced by [𝜀, 1]), there
exists a homotopy Φ

′
: 𝑋× [𝜀, 1] → 𝐸 with 𝑝Φ

′
= 𝜑|𝑋×[𝜀,1] and Φ

′
𝜀
∼−
𝐵
𝑓 . Choose

a homotopy Φ
′′
: 𝑋 × [0, 𝜀] → 𝐸 over 𝐵 with Φ

′′
0 = 𝑓 and Φ

′′
𝜀 = Φ

′
𝜀. Φ

′
and Φ

′′

together then de�ne a continuous map Φ : 𝑋 × 𝐼 → 𝐸 with 𝑝Φ = 𝜑 and Φ0 = 𝑓 .
(b)⇒ (a): Given continuous maps 𝑓 : 𝑋 → 𝐸 , 𝜑 : 𝑋 × 𝐼 → 𝐵 with 𝜑0 = 𝑝 𝑓 . We
de�ne 𝜑

′
: 𝑋 × [−1, 1] → 𝐵 by

𝜑
′ (𝑥, 𝑡) := 𝜑(𝑥,max(𝑡, 0)).

Then 𝜑
′ (𝑥, 𝑡) = 𝑝 𝑓 (𝑥) for 𝑥 ∈ 𝑋 , −1 ≤ 𝑡 ≤ 0. By assumption (we replace (0, 𝜀, 1)

with (−1, 0, 1).) there exists a continuous map Φ
′
: 𝑋 × [−1, 1] → over 𝜑

′
with

Φ
′
−1 = 𝑓 . For Φ := Φ

′ |𝑋×𝐼 : 𝑋× 𝐼 → 𝐸 , then 𝑝Φ = 𝜑 and Φ0 = Φ
′
0
∼−
𝐵
Φ
′
−1 = 𝑓 . □

Theorem 2.76. Let 𝜀 be a real number with 0 < 𝜀 < 1, 𝑋 a topological space,
and 𝑝 : 𝐸 → 𝐵 a continuous map. Then the following two statements are
equivalent:

(a) 𝑝 is an h-�ration.

(b) For all topological spaces 𝑋 and all continuous maps Φ
′
: 𝑋 × [0, 𝜀] → 𝐸,

𝜑 : 𝑋 × 𝐼 → 𝐵 with 𝑝Φ
′
= 𝜑|𝑋×[0, 𝜀 ] , there exists a homotopy Φ : 𝑋 × 𝐼 → 𝐸

over 𝜑 with Φ0 = Φ
′
0.

𝑋 × [0, 𝜀] Φ
′
//

∩

𝐸

𝑝

��
𝑋 × 𝐼

𝜑
//

Φ

::

𝐵

Proof. (b)⇒ (a): To prove that 𝑝 is an h-�bration, we use the characterisation
of the notion of h-�bration given by Theorem (2.75). Given continuous maps
𝑓 : 𝑋 → 𝐸 , 𝜑 : 𝑋 × 𝐼 → 𝐵 with 𝜑(𝑥, 𝑡) = 𝑝 𝑓 (𝑥) for 𝑥 ∈ 𝑋, 0 ≤ 𝑡 ≤ 𝜀. We
de�ne Φ

′
: 𝑋 × [0, 𝜀] → 𝐸 by Φ

′ (𝑥, 𝑡) := 𝑓 (𝑥) for 𝑥 ∈ 𝑋, 0 ≤ 𝑡 ≤ 𝜀. Then
𝑝Φ

′
= 𝜑|𝑋×[0, 𝜀 ] . We apply (b) and obtain a homotopy Φ : 𝑋 × 𝐼 → 𝐸 over 𝜑

with Φ0 = 𝑓 .
(a)⇒ (b): We can assume 𝜀 = 1

2 without loss of generality. By assumption, there

are continuous maps Φ
′
: 𝑋 × [0, 12 ] → 𝐸 , 𝜑 : 𝑋 × 𝐼 → 𝐵 with 𝑝Φ

′
= 𝜑|𝑋×[0, 1

2
] .

We de�ne 𝜑 : 𝑋 × [0, 12 ] → 𝐵 by 𝜑(𝑥, 𝑠, 𝑡) := 𝜑(𝑥, 1 − (1 − 𝑠) (1 − 𝑡)) for 𝑥 ∈ 𝑋,
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0 ≤ 𝑠 ≤ 1
2 , 0 ≤ 𝑡 ≤ 1. Then 𝜑(𝑥, 𝑠, 0) = 𝑝Φ

′ (𝑥, 𝑠) for (𝑥, 𝑠) ∈ 𝑋 × [0, 12 ]. Since
𝑝 is an h-�bration by assumption and thus has the CHP up to homotopy for
[0, 12 ], there exists a continuous map Φ̃ : 𝑋 × [0, 12 ] × 𝐼 → 𝐸 over 𝜑 with Φ̃0

∼−
𝐵
Φ
′
.

Therefore, there exists a continuous map Ψ : 𝑋 × [0, 12 ] × 𝐼 → 𝐸 such that

𝑝Ψ(𝑥, 𝑠, 𝑡) is independent of 𝑡 and Ψ0 = Φ
′
, Ψ1 = Φ̃0. We de�ne Φ : 𝑋 × 𝐼 → 𝐸

by

Φ(𝑋, 𝑡) :=
{
Ψ(𝑥, 𝑡, 2𝑡), 𝑥 ∈ 𝑋, 0 ≤ 𝑡 ≤ 1

2

Φ̃(𝑥, 12 , 2𝑡 − 1), 𝑥 ∈ 𝑋, 12 ≤ 𝑡 ≤ 1.

It is easy to verify that Φ is a continuous map with Φ0 = Φ
′
0 and 𝑝Φ = 𝜑. □

Figure 2.11:

The following theorem characterises the property of a continuous map 𝑝 to
be an h-�bration, using the mapping path space 𝑊𝑝 .

Theorem 2.77. Let 𝜀 be a real number with 0 < 𝜀 < 1, and 𝑝 : 𝐸 → 𝐵 a
continuous map. Then the following are equivalent:

(a) 𝑝 is an h-�bration.

(b) There exists a continuous map 𝑠 : 𝑊𝑝 → 𝐸 such that 𝑠(𝑒, 𝑢) (0) = 𝑒 for
(𝑒, 𝑢) ∈ 𝑊𝑝,

𝑝(𝑠(𝑒, 𝑢) (𝑡)) =
{
𝑢(0), 0 ≤ 𝑡 ≤ 𝜀
𝑢
(
𝑡−𝜀
1−𝜀

)
, 𝜀 ≤ 𝑡 ≤ 1.

(𝑒, 𝑢) ∈ 𝑊𝑝

Proof. We can assume 𝜀 = 1
2 without loss of generality. In the proof we make

several use of the adjointness of ×𝐼 and −𝐼 and go from a continuous map
𝜑 : 𝑋 × 𝐼 → according to (2.4) to 𝜑 : 𝑋 → 𝑌 𝐼 and vice versa reverts from 𝜑 to 𝜑.

(a) ⇒ (b): We assume that 𝑝 is an h-�bration. We consider the projection
𝑞 : 𝑊𝑝 → 𝐸 onto the �rst factor and the continuous (!) map 𝜑 : 𝑊𝑝 × 𝐼 → 𝐵,
which is given by

𝜑(𝑒, 𝑢, 𝑡) :=
{
𝑢(0), 0 ≤ 𝑡 ≤ 1

2

𝑢(2𝑡 − 1), 1
2 ≤ 𝑡 ≤ 1.

(𝑒, 𝑢) ∈ 𝑊𝑝
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For 0 ≤ 𝑡 ≤ 1
2 , then

𝜑(𝑒, 𝑢, 𝑡) = 𝑢(0) = 𝑝(𝑒) = 𝑝𝑞(𝑒, 𝑢).

Since 𝑝 has the CHP up to homotopy for 𝑊𝑝, by Theorem (2.75) there exists a

homotopy Φ : 𝑊𝑝× → 𝐸 with 𝑝Φ = 𝜑 and Φ 𝑗0 = 𝑞. We de�ne 𝑠 := Φ : 𝑊𝑝 → 𝐸 𝐼

and obtain the desired continuous map.

Remark 2.78. In �(a) ⇒ (b)� we only used the fact that 𝑝 has the CHP up to
homotopy for the mapping path space 𝑊𝑝.

(b)⇒ (a): We assume for 𝜀 = 1
2 the existence of a continuous map 𝑠 : 𝑊𝑝 →

𝐸 𝐼 as described in (b). Given continuous maps 𝑓 : 𝑋 → 𝐸 , 𝜑 : 𝑋 × 𝐼 → 𝐵,
such that 𝜑𝑝(𝑥, 𝑡) = 𝑝 𝑓 (𝑥) for 𝑥 ∈ 𝑋, 0 ≤ 𝑡 ≤ 1

2 . We de�ne 𝜑
′
: 𝑋 × 𝐼 → 𝐵

by 𝜑
′ (𝑥, 𝑡) := 𝜑

(
𝑥, 1+𝑡2

)
and proceed to 𝜑

′
: 𝑋 → 𝐵𝐼 . We de�ne Φ

′
: 𝑋 → 𝑊𝑝

by Φ
′ (𝑥) := ( 𝑓 (𝑥), 𝜑′𝑥)) ∈ 𝑊𝑝 (!). We set Φ := 𝑠Φ

′
: 𝑋 → 𝐸 𝐼 , proceed to

Φ : 𝑋 × 𝐼 → 𝐸 and obtain a continuous map with 𝑝Φ = 𝜑 and Φ 𝑗0 = 𝑓 (!).
Therefore, by Theorem (2.75), 𝑝 is an h-�bration. □

Corollary to Theorem (2.77). From Theorem (2.77) and Remark (2.78) it
follows:

Theorem 2.79. A continuous map 𝑝 is an h-�bration if and only if it satis�es
the CHP up to homotopy for the mapping path space 𝑊𝑝.

Remark 2.80. There is no dual counterpart to Corollary (1.54).

1. Not every �bration is surjective, because for every topological space 𝐵, the
only mapping ∅ → 𝐵 is a �bration (!). However, the following holds:

Theorem 2.81. If 𝑝 : 𝐸 → 𝐵 is an h-�bration and 𝑝(𝐸) meets every path
component of 𝐵, then 𝑝 is surjective.

Proof. For 𝑏 ∈ 𝐵, by assumption, there exists a point 𝑏0 ∈ 𝑝(𝐸) that lies
in the same path component of 𝐵 as 𝑏. We can therefore choose a path
𝑤 : 𝐼 → 𝐵 with 𝑤(0) = 𝑏0, 𝑤(1) = 𝑏. Here, we can assume: 𝑤(𝑡) = 𝑤(0)
for 0 ≤ 𝑡 ≤ 1

2 . Choose 𝑒0 ∈ 𝐸 with 𝑝(𝑒0) = 𝑏0. Since 𝑝 is an h-�bration
and therefore the CHP has a homotopy for 𝑋 = pt, by Theorem (2.75) there
exists a path 𝑣 : 𝐼 → 𝐸 with 𝑝𝑣 = 𝑤 and 𝑣(0) = 𝑒0. Then 𝑝𝑣(1) = 𝑤(1) = 𝑏,
hence 𝑏 ∈ 𝑝(𝐸). □

2. Not every surjective �bration is an identi�cation.

Example 2.82. Let 𝐸 be the set Q of rational numbers, endowed with the dis-
crete topology, 𝐵 be the set of rational numbers, endowed with the subspace
topology induced by R, 𝑝 := idQ. Then 𝑝 is a bijective continuous map, but
𝑝 is not an identi�cation.



84 CHAPTER 2. FIBRATIONS

Proof. Let 𝑓 : 𝑋 → 𝐸 , 𝜑 : 𝑋 × 𝐼 → 𝐵 be continuous maps with 𝜑 𝑗0 = 𝑝 𝑓 .
Since 𝐵 only admits constant paths, for 𝑥 ∈ 𝑋 we have 𝜑𝑥 (1) = {𝑝 𝑓 (𝑥)},
where 𝜑𝑥 : 𝐼 → 𝐵 is de�ned as in (2.58). Φ := 𝑓 ◦ proj1 : 𝑋 × 𝐼 → 𝐸 is
therefore a continuous map with 𝑝Φ = 𝜑 and Φ 𝑗0 = 𝑓 . □

However, the following applies:

Theorem 2.83. If 𝑝 : 𝐸 → 𝐵 is a surjective �bration and 𝐵 is locally path-
wise connected, i.e., every point of 𝐵 has a neighbourhood basis of pathwise
connected subsets of 𝐵 (cf. Schubert [23], III.1.2, De�nition 2), then 𝑝 is an
identi�cation.

Proof. Strøm [27] I. Theorem 1. □

Remark 2.84. Fibrations are generally not closed, as the example proj1 :
R2 → R shows. h-�brations are generally not open, as can be seen from
example (2.64) (cf. also (2.70)). A �bration 𝑝 is certainly open if 𝑝 is locally
trivial (cf. (2.33)).

2.3.3 Homotopy equivalences and �brewise homotopy equiv-
alences

The following fundamental theorem of homotopy theory is by A. Dold ([6],
Theorem 6.1). This theorem is dual to Theorem (1.62).

Theorem 2.85. Premise: Let

𝐸
𝑓 //

𝑝
��

𝐸
′

𝑝
′

��
𝐵

be a commutative diagramme in 𝒯ℴ𝓅. Let 𝑝 and 𝑝
′
be h-�brations, and 𝑓 be

an h-equivalence.
Claim: 𝑓 , conceived as a morphism of 𝒯ℴ𝓅𝐵, 𝑓 : 𝑝 → 𝑝

′
, is an h-equivalence

over 𝐵.

Proof. We present the reader with the task of reducing the proof of Theorem
(2.85), dual to the proof of Theorem (1.62), to the following Lemma using
Theorem (2.71). □

Lemma 2.86. If

𝐸
𝑔 //

𝑝
��

𝐸

𝑝
��

𝐵

is a commutative diagramme in 𝒯ℴ𝓅, 𝑝 is an h-�bration, and if 𝑔 ≃ id𝐸 then
there exists a morphism 𝑔

′
: 𝑝 → 𝑝 of 𝒯ℴ𝓅𝐵 with 𝑔𝑔

′ ∼−
𝐵
id𝐸 .



2.3. HOMOTOPY FIBRATIONS 85

Proof. We choose a homotopy 𝜑 : 𝑔 ≃ id𝐸 : 𝐸 × 𝐼 → 𝐸 such that 𝜑(𝑒, 𝑡) = 𝑔(𝑒)
for 𝑒 ∈ 𝐸 and 0 ≤ 𝑡 ≤ 1

2 . Since 𝑝𝑔 = 𝑔, then for 𝑝𝜑 : 𝐸 × 𝐼 → 𝐵 we have
𝑝𝜑 : 𝑝 ≃ 𝑝 and 𝑝𝜑(𝑒, 𝑡) = 𝑝(𝑒) for 𝑒 ∈ 𝐸 and 0 ≤ 𝑡 ≤ 1

2 . Since 𝑝 is an h-
�bration, by Theorem (2.75) there exists a homotopy 𝜓 : 𝐸 × 𝐼 → 𝐸 over 𝑝𝜑
with 𝜓0 = 𝜓 𝑗0 = id𝐸 . Set 𝑔

′
:= 𝜋1 : 𝐸 → 𝐸 . Then 𝑝𝑔

′
= 𝑝. We claim 𝑔𝑔

′ ∼−
𝐵
id𝐸 .

We de�ne a homotopy 𝐹 : 𝐸 × 𝐼 → 𝐸 by

(𝑒, 𝑠, 𝑡) ↦→
{
𝑝𝜑(𝑒, 12𝑠(1 − 𝑡)), 0 ≤ 𝑠 ≤ 1

2

𝑝𝜑(𝑒, 1 − 2(1 − 𝑠) (1 − 𝑡)), 1
2 ≤ 𝑠 ≤ 1.

𝑒 ∈ 𝐸, 𝑡 ∈ 𝐼,

Then (𝑒, 𝑠, 0) = 𝑝𝐹 (𝑒, 𝑠) (𝑒 ∈ 𝐸 , 𝑠 ∈ 𝐼), Φ(𝑒, 0, 𝑡) = Φ(𝑒, 𝑠, 1) = Φ(𝑒, 1, 𝑡) = 𝑝(𝑒)
(𝑒 ∈ 𝐸 , 𝑡, 𝑠 ∈ 𝐼). We can modify Φ (cf. (1.66)) so that additionally

Φ(𝑒, 𝑠, 𝑡) = 𝑝𝐹 (𝑒, 𝑠) for 0 ≤ 𝑡 ≤ 1

2
.

Since 𝑝 is an h-�bration, by Theorem (2.75) there exists a continuous map
Φ̃ : 𝐸 × 𝐼 × 𝐼 → 𝐸 with 𝑝Φ̃ = Φ and Φ̃(𝑒, 𝑠, 0) = 𝐹 (𝑒, 𝑠) for 𝑒 ∈ 𝐸 , 𝑠 ∈ 𝐼.
We de�ne Φ̃(𝑠,𝑡 ) : 𝐸 → 𝐸 for 𝑠, 𝑡 ∈ 𝐼 by Φ̃(𝑠,𝑡 ) (𝑒) := Φ̃(𝑒, 𝑠, 𝑡) (𝑒 ∈ 𝐸). Then

𝑔
′
= 𝐹0 = Φ̃(0,0)

∼−
𝐵
Φ̃(0,0)

∼−
𝐵
(Φ̃(1,1) ∼−

𝐵
Φ̃(1,0) = 𝐹1 = id𝐸 . □

Remark 2.87. Theorem (refthm:2-6-21) is also essentially a formal theorem and
holds even if one replaces the category 𝒯ℴ𝓅 with the category 𝒯ℴ𝓅

𝐾
𝐿
(𝐾 and

𝐿 topological spaces), i.e., if one assumes a commutative triangle in 𝒯ℴ𝓅
𝐾
𝐿
(cf.

Kamps [15], 5.2).

The following notion is dual to the notion of �strong deformation retract�.

De�nition 2.88 (Dold [6]). A continuous map 𝑝 : 𝐸 → 𝐵 is called shrinkable
if there exists a continuous map 𝑠 : 𝐵→ 𝐸 such that 𝑝𝑠 = id𝐵 and 𝑠𝑝

∼−
𝐵
id𝐸 .

We consider 𝑝, id𝐸 , 𝑠 as morphisms of 𝒯ℴ𝓅𝐵, 𝑝 : 𝑝 → id𝐵, 𝑖𝑑𝐸 : 𝑝 → 𝑝,
𝑠 : id𝐵 → 𝑝. This is possible because 𝑝𝑠 = id𝐵. One immediately considers:

Lemma 2.89. A continuous map 𝑝 : 𝐸 → 𝐵 is shrinkable if and only if 𝑝 is
h-equivalent over 𝐵 to id𝐵.

Theorem 2.90. A continuous map 𝑝 : 𝐸 → 𝐵 is an h-�bration and an h-
equivalence if and only if it is shrinkable.

Proof. (⇒): follows from Theorem (2.85) applied to the diagramme

𝐸
𝑝 //

𝑝
��

𝐸

id𝐵��
𝐵

(⇐): If 𝑝 is shrinkable, then 𝑝 is in particular an h-equivalence. If 𝑝 is shrink-
able, then by Lemma (2.89) 𝑝 is h-equivalent to id𝐵 over 𝐵. Since id𝐵 is an
h-�bration, it follows from Theorem (2.68) (b), 𝑝 is an h-�bration. □
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Theorem 2.91. Let 𝑔 : 𝑌 → 𝐵 be a continuous map. Consider the commutative
diagram of Theorem (2.51) (a).

𝑌
𝑗 //

𝑔
��

𝑊𝑔

𝑟1
~~

𝐵

The following statements are equivalent:

(a) 𝑔 is an h-�bration.

(b) 𝑗 is an h-equivalence over 𝐵 (i.e., [ 𝑗]𝐵 is an isomorphism in 𝒯ℴ𝓅ℎ).

(c) [ 𝑗]𝐵 is a section in 𝒯ℴ𝓅ℎ.

Proof. (a)⇒ (b: By Theorem (2.51), 𝑗 is an h-equivalence and 𝑟1 is a �bration.
If 𝑔 is an h-�bration, then 𝑗 is an h-equivalence over 𝐵 by Theorem (2.85).
(b) ⇒ (c: Trivial.
(c)⇒ (a: By assumption, 𝑔 is dominated by 𝑟1 in𝒯ℴ𝓅𝐵. Since 𝑟1 is a �bration,
i.e., hence an h-�bration, by Theorem (2.51), 𝑔 is an h-�bration, by Theorem
(2.68) (b). □

Since 𝑟1 is a �bration, we obtain:

Corollary 2.92. For every h-�bration 𝑝 : 𝐸 → 𝐵, there exists a �bration
𝑝
′
: 𝐸

′ → 𝐵 that is h-equivalent over 𝐵 to 𝑝.

Theorem 2.93. Let 𝑝 : 𝐸 → 𝐵 be an h-�bration, 𝑋 a topological space, 𝐴 ⊂
𝑉 ⊂ 𝑋 , 𝑉 a halo of 𝐴 in 𝑋 (cf. (1.81)). Let 𝜀 be a real number with 0 < 𝜀 < 1
and let

(𝑉 × 𝐼 ∪ (𝑋 × [0, 𝜀]) Φ
′
//

∩

𝐸

𝑝

��
𝑋 × 𝐼

𝜑
// 𝐵

be a commutative diagramme in 𝒯ℴ𝓅. Then there exists a homotopy Φ : 𝑋×𝐼 →
𝐸 over 𝜑 (i.e., 𝑝Φ = 𝜑) such that

Φ| (𝐴×𝐼 )∪(𝑋×0) = Φ
′ | (𝐴×𝐼 )∪(𝑋×0) , i.e, the following diagamme is commutative:

(𝐴 × 𝐼 ∪ (𝑋 × [0, 𝜀])

Φ | (𝐴×𝐼)∪(𝑋×0)

Φ
′ | (𝐴×𝐼)∪(𝑋×0)

,,

∩

(𝑉 × 𝐼 ∪ (𝑋 × [0, 𝜀]
Φ
′

//

∩

𝐸

𝑝

��
𝑋 × 𝐼

𝜑
//

Φ

22

𝐵
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Proof. Proof. Since 𝑉 is a halo of 𝐴 in 𝑋, there exists a continuous map 𝑣 : 𝑋 → 𝐼

with 𝐴 ⊂ 𝑣−1(1) and 𝑋 \𝑉 ⊂ 𝑣−1(0). We de�ne

𝜑 : 𝑋 × 𝐼 → 𝐵 by 𝜑(𝑥, 𝑡) := 𝜑(𝑥,min(𝑣(𝑥) + 𝑡, 1))

Φ
′ : 𝑋 × [0, 𝜀] → 𝐸 by Φ

′ (𝑥, 𝑡) := Φ
′ (𝑥,min(𝑣(𝑥) + 𝑡, 1).

The de�nition of Φ
′
makes sense since 𝑋 \ 𝑉 ⊂ 𝑣−1(0). It holds that 𝑝Φ

′
=

𝜑|𝑋×[0, 𝜀 ] . Since 𝑝 is an h-�bration, by Theorem (2.76) there exists a homotopy

Φ : 𝑋 × 𝐼 → 𝐸 over 𝜑 with Φ|𝑋×0 = Φ
′ |𝑋×0. We de�ne Φ : 𝑋 × 𝐼 → E by

Φ(𝑥, 𝑡) :=
{
Φ
′ (𝑥, 𝑡), if 0 ≤ 𝑡 ≤ 𝑣(𝑥)

Φ(𝑥, 𝑡 − 𝑣(𝑥)), if 𝑣(𝑥) ≤ 𝑡 ≤ 1.

and obtain a homotopy with the desired properties(!). □

2.4 Induced Fibrations

2.4.1 Induced Fibrations

De�nition 2.94. Let

𝐸
𝛼 //

𝑝

��

𝐸

𝑝

��
𝐵

𝛼
// 𝐵

(2.95)

be a diagramme in the category 𝒯ℴ𝓅 of topological spaces. 𝑝 is said to be
induced from 𝑝 by 𝛼 if (2.95) is a Cartesian square.

Theorem 2.96. For a diagram

𝐸

𝑝

��
𝐵

𝛼
// 𝐵

in 𝒯ℴ𝓅 there exists a diagram

𝐸
𝛼 //

𝑝

��

𝐸

𝐵

in 𝒯ℴ𝓅 that is unique up to isomorphism, such that (2.95) is a Cartesian
square.
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Proof. Uniqueness follows purely from category-theoretic reasons (cf. (0.8)).
Existence: One immediately realises that the following de�nition yields a Carte-
sian square (2.95). □

De�nition 2.97. Let 𝐸 be the subspace

𝐸 := {(𝑏, 𝑒) ∈ 𝐵 × 𝐸 |𝛼𝑏 = 𝑝𝑒}

of the product 𝐵× 𝐸 . Let 𝑝 : 𝐸 → 𝐵 be the projection onto the �rst factor, and
𝛼 : 𝐸 → 𝐸 be the projection onto the second factor.4.

We have already encountered the construction of (2.97) in a special case,
namely in the de�nition of the path space 𝑊𝑝 of a continuous map 𝑝.

Example 2.98. If 𝑝 : 𝐸 → 𝐵 is a continuous map, then we have the Cartesian
square (2.48)

𝑊𝑝

𝑞 //

𝑟

��

𝐸

𝑝

��
𝐵𝐼

𝑞0
// 𝐵

𝑟 : 𝑊𝑝 → 𝐵 is thus induced from 𝑝 by 𝑞0 : 𝐵𝐼 → 𝐵.

Example 2.99. Let 𝑝 : 𝐸 → 𝐵 be a continuous map, and 𝛼 : 𝐵 ⊂ 𝐵 be the
inclusion of a subspace 𝐵 of 𝐵. Then one can de�ne a special Cartesian square
(2.95) as follows:

𝐸 := 𝑝−1(𝐵) ⊂ 𝐸.

Let 𝛼 be the inclusion 𝑝−1(𝐵) ⊂ 𝐸 , and 𝑝 be the restriction of 𝑝. Using the
notations of (2.32), we have 𝑝 = 𝑝

𝐵
.

Theorem 2.100. In the diagramme in 𝒯ℴ𝓅

𝐸𝛼
𝛼 //

𝑝𝛼
��

𝐸

𝑝

��
𝐵

𝛼
// 𝐵

(2.101)

let 𝑝𝛼 be induced from 𝑝 by 𝛼 (cf. (2.94)). Let 𝑋 be a topological space.
Claim:

(a) If 𝑝 has the CHP for 𝑋 , then so does 𝑝𝛼.

(b) If 𝑝 has the CHP up to homotopy for 𝑋 , then so does 𝑝𝛼.

Before proving Theorem (2.100), we note an immediate consequence.

Corollary 2.102. In (2.101), let 𝑝𝛼 be induced from 𝑝 by 𝛼. Then:

4Remark by the transcriber: this construction is called a pull-back.
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(a) If 𝑝 is a �bration, then so is 𝑝𝛼.

(b) If 𝑝 is an h-�bration, then so is 𝑝𝛼.

𝑝𝛼 is then called �the� (h-)�bration induced from 𝑝 by 𝛼.

Proof. (of Theorem (2.100)) (a): We want to prove that 𝑝 has the CHP for 𝑋.
Let 𝑓 : 𝑋 → 𝐸𝛼, 𝜑 : 𝑋 × 𝐼 → 𝐸 be continuous maps with 𝑝𝛼 𝑓 = 𝜑 𝑗0.

𝑋
𝑓 //

𝑗0

��

𝐸𝛼
𝛼 //

𝑝𝛼
��

𝐸

𝑝

��
𝑋 × 𝐼

𝜑
//

Φ

<<
Φ
′

66

𝐵
𝛼
// 𝐵

Set 𝑓
′
:= 𝛼̃ 𝑓 , 𝜑

′
:= 𝛼𝜑. Then 𝑝 𝑓

′
= 𝜑

′
𝑗0. Since 𝑝 has the CHP for 𝑋, there

exists a continuous map Φ
′
: 𝑋 × 𝐼 → 𝐸 with 𝑝Φ

′
= 𝜑

′
and

𝑃ℎ𝑖
′
𝑗0 = 𝑓

′
. Since 𝑝Φ

′
= 𝛼𝜑 and since (2.101) is a Cartesian square by assump-

tion, there exists exactly one continuous map Φ : 𝑋 × 𝐼 → 𝐸𝛼 with 𝛼Φ = Φ
′

and 𝑝𝛼Φ = 𝜑. We are �nished when we show Φ 𝑗0 = 𝑓 . Since (2.101) is a
Cartesian square, this follows from the equations 𝛼̃(Φ′ 𝑗0) = Φ

′
𝑗0 = 𝑓

′
= 𝛼̃ 𝑓 and

𝑝𝛼 = (Φ 𝑗0) = 𝜑 𝑗0 = 𝑝𝛼 𝑓 .
(b): We use the characterisation of the �CHP up to homotopy for 𝑋� of Theorem
(2.75) with 𝜀 = 1

2 and assume a continuous map 𝑓 : 𝑋 → 𝐸𝛼 and a homotopy

𝜑 : 𝑋 × 𝐼 → 𝐵 such that 𝜑(𝑥, 𝑡) = 𝑝𝛼 𝑓 (𝑥) for 𝑥 ∈ 𝑋 and 0 ≤ 𝑡 ≤ 1
2 . Then

𝛼𝜑(𝑥, 𝑡) = 𝛼𝑝𝛼 𝑓 (𝑥) = 𝑝𝛼 𝑓 (𝑥) for 𝑥 ∈ 𝑋 and 0 ≤ 𝑡 ≤ 1
2 . We can then construct

Φ′ : 𝑋 × 𝐼 → 𝐸𝛼 with 𝑝𝛼Φ = 𝜑 and Φ 𝑗0 = 𝑓 as in the proof of (a). □

2.4.2 The homotopy theorem for h-�brations

Remark 2.103. Let 𝛼 : 𝐴→ 𝐵 be a continuous map.
We want to de�ne a covariant functor

𝛼∗ : 𝒯ℴ𝓅𝐵 → 𝒯ℴ𝓅𝐴.

De�nition 2.104. For each object 𝑝 : 𝐸 → 𝐵 of 𝒯ℴ𝓅𝐵, we choose a Cartesian
square

𝐸𝛼
𝛼 //

𝑝𝛼
��

𝐸

𝑝

��
𝐵

𝛼
// 𝐵

(2.105)

and set 𝛼∗ (𝑝) := 𝑝𝛼, 𝛼
∗ (𝑝) ∈ Obj(𝒯ℴ𝓅𝐴).

De�nition 2.106. Let 𝑝
′
: 𝐸

′ → 𝐵 be another object of 𝒯ℴ𝓅𝐵,

𝐸
′
𝛼

𝛼
′
//

𝑝
′
𝛼

��

𝐸
′

𝑝
′

��
𝐴

𝛼
// 𝐵

(2.107)
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let 𝑓 : 𝑝 → 𝑝
′
be a Cartesian square chosen for 𝑝

′
, and let 𝑓 : 𝑝 → 𝑝

′
be a

morphism of 𝒯ℴ𝓅𝐵. We therefore have a commutative diagramme in 𝒯ℴ𝓅

𝐸
𝑓 //

𝑝
��

𝐸
′

𝑝
′

��
𝐵

Consider

𝐸
′
𝛼

𝛼
′

//

𝑝
′
𝛼

��

𝐸
′

𝑝
′

��

𝐸𝛼
𝛼 //

𝑓𝛼

``

𝑝𝛼
}}

𝐸

𝑓

@@

𝑝
  

𝐴
𝛼

// 𝐵

Since 𝛼 ◦ 𝑝𝛼 = 𝑝 ◦ 𝛼̃ = 𝑝
′ ◦ 𝑓 ◦ 𝛼̃ and since (2.107) is a Cartesian square, there

exists exactly one continuous map 𝑓𝛼 : 𝐸𝛼 → 𝐸
′
𝛼 with 𝛼̃

′ ◦ 𝑓𝛼 = 𝑓 ◦ 𝛼̃ and
𝑝
′
𝛼 ◦ 𝑓𝛼 = 𝑝𝛼.

The last equation allows us to consider 𝑓𝛼 as a morphism of 𝒯ℴ𝓅𝐴, 𝑓𝛼 :
𝑝𝛼 → 𝑝

′
𝛼. We de�ne 𝛼∗ ( 𝑓 ) := 𝑓𝛼, 𝛼

∗ ( 𝑓 ) : 𝛼∗ (𝑝) → 𝛼∗ (𝑝′ ). It is easy to see: 𝛼∗

is a covariant functor 𝒯ℴ𝓅𝐵 → 𝒯ℴ𝓅𝐴.

Remark 2.108. (on (2.106)) If one chooses the Cartesian squares of 𝑝 and 𝑝
′
as

in (2.97), i.e.

𝐸𝛼 = {(𝑎, 𝑒) |𝛼𝑎 = 𝑝𝑒} ⊂ 𝐴 × 𝐸,
𝐸
′
𝛼 = {(𝑎, 𝑒′ ) |𝛼𝑎 = 𝑝′𝑒

′ } ⊂ 𝐴 × 𝐸 ′ ,

then 𝑓𝛼 (𝑎, 𝑒) = (𝑎, 𝑓 𝑒) ∈ 𝐸
′
𝛼 for (𝑎, 𝑒) ∈ 𝐸𝛼.

Remark 2.109. (on (2.103)) The de�nition of 𝛼∗ depends on the choice of Carte-
sian squares (2.105). However, di�erent choices yield equivalent functors (!).

Since for every continuous map 𝑝 : 𝐸 → 𝐵 the diagramme

𝐸
id𝐸 //

𝑝

��

𝐸

𝑝

��
𝐵

id𝐵

// 𝐵

is a Cartesian square, the following remark follows:

Conclusion 1 (id𝐵) is equivalent to id𝒯ℴ𝓅𝐵
.
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If in the diagramme in 𝒯ℴ𝓅

(𝐸𝛼)𝛽
𝛽 //

(𝑝𝛼 )𝛽
��

(1)

𝐸𝛼
𝛼 //

𝑝𝛼

��
(2)

𝐸

𝑝

��
𝐶

𝛽
// 𝐴

𝛼
// 𝐵

the two squares (1) and (2) are Cartesian, then the outer rectangle is
Cartesian (cf. (0.12) (d)).

We therefore obtain from the remark:

Conclusion 2 (𝛼𝛽)∗ is equivalent to 𝛽∗𝛼∗.

We now consider the situation of (2.103) again. The following theorem shows
that the functor 𝛼∗ is compatible with �brewise homotopies.

Theorem 2.110. If 𝑝 : 𝐸 → 𝐵, 𝑝
′
: 𝐸

′ → 𝐵 are continuous maps, 𝑓0, 𝑓1 : 𝑝 →
𝑝
′
are morphisms of 𝒯ℴ𝓅𝐵, then the following holds

( 𝑓0 ∼−
𝐵
𝑓1) ⇒ ( 𝑓0𝛼 ∼−

𝐵
𝑓1𝛼).

Proof. We choose 𝜑 : 𝑓0
∼−
𝐵
𝑓1 : 𝐸 × 𝐼 → 𝐸

′
. We can consider 𝜑 as a morphism of

𝒯ℴ𝓅𝐵, 𝜑 : 𝑝 ◦ proj1 → 𝑝
′
. We apply 𝛼∗ and obtain a morphism of 𝒯ℴ𝓅𝐴

𝛼∗(𝜑) : 𝛼∗ (𝑝 ◦ proj1) → 𝛼∗ (𝑝′ ) = 𝑝
′
𝛼 .

However, we can identify 𝛼∗ (𝑝 ◦ proj1) with 𝑝𝛼 ◦ proj1 : 𝐸𝛼 × 𝐼 → 𝐴. This is
immediately apparent if we choose the Cartesian squares (2.105) as in (2.97).
Then we have: 𝛼∗ (𝜑) : 𝑓0𝛼 ∼−

𝐵
𝑓1𝛼. □

Remark 2.111. The functor 𝛼∗ : 𝒯ℴ𝓅𝐵 → 𝒯ℴ𝓅𝐴 de�ned in (2.103) for a
continuous map 𝛼 : 𝐴 → 𝐵 (after selecting Cartesian squares) thus induces, by
Theorem (2.110), a functor of the factor categories 𝒯ℴ𝓅𝐵ℎ → 𝒯ℴ𝓅𝐴ℎ. We
also denote this functor by 𝛼∗.

Proposition 2.112. In the diagram in 𝒯ℴ𝓅

𝐸𝛼
𝛼 //

𝑝𝛼

��

𝐸

𝑝

��
𝐴

𝛼
// 𝐵

let 𝑝 be induced by 𝑝 by 𝑎.
Claim: If 𝑝 is shrinkable, then so is 𝑝 (cf. (2.88)).



92 CHAPTER 2. FIBRATIONS

Proof. Let 𝑝 be shrinkable, i.e., 𝑝 and id𝐵 are isomorphic objects of 𝒯ℴ𝓅𝐵ℎ

(2.89). Since 𝛼∗ : 𝒯ℴ𝓅𝐵ℎ → 𝒯ℴ𝓅𝐴 is a functor, 𝑝𝛼 = 𝛼∗ (𝑝) and 𝛼∗ (id𝐵) are
isomorphic objects of 𝒯ℴ𝓅𝐴. But 𝛼∗ (id𝐵) is isomorphic to id𝐴. Hence, 𝑝𝛼 is
isomorphic to id𝐴 in 𝒯ℴ𝓅𝐴, i.e., 𝑝𝛼 is shrinkable. □

De�nition 2.113. If 𝐵 is a topological space, then let ℱ𝒾𝒷𝐵ℎ denote the full
subcategory (cf. Mitchell [17] I.3) of 𝒯ℴ𝓅𝐵ℎ whose objects are the h-�brations
𝑝 : 𝐸 → 𝐵.

Remark 2.114. Let 𝛼 : 𝐴 → 𝐵 be a continuous map. 𝛼 induces (after selecting
Cartesian squares) by (2.103) and (2.111) a functor

𝛼∗ : 𝒯ℴ𝓅𝐵ℎ→ 𝒯ℴ𝓅𝐴ℎ.

By Corollary (2.102) (b), this functor can be restricted to a functor

ℱ𝒾𝒷𝐵ℎ→ ℱ𝒾𝒷𝐴.

We again denote the new functor by 𝛼∗

Theorem 2.115 (Homotopy theorem for h-�brations). Let 𝛼, 𝛽 : 𝐴 → 𝐵 be
continuous maps. If 𝛼 ≃ 𝛽, there is a natural equivalence (cf. Mitchell [17],
II.9))

Λ : 𝛼∗ → 𝛽∗ : ℱ𝒾𝒷𝐵ℎ→ ℱ𝒾𝒷𝐴ℎ.

To prove the homotopy theorem for h-�brations, we need a lemma.

Remark 2.116. For a continuous map 𝑝 : 𝐸 → 𝐵 × 𝐼 and 𝜈 = 0, 1, we set

𝐸𝜈 := 𝑝−1(𝐵 × 𝜈) ⊂ 𝐸.

Let 𝑖𝜈 : 𝐸𝜈 → 𝐸 be the inclusion 𝐸𝜈 ⊂ 𝐸 . Then the following diagramme is
commutative.

𝐸𝜈
𝑖𝜈 //

proj1 ◦(𝑝 |𝐸𝜈 )   

𝐸

proj1 ◦𝑝��
𝐵

We can therefore regard 𝑖 as a morphism of 𝒯ℴ𝓅𝐵,

𝑖𝜈 : proj1 ◦(𝑝 |𝐸𝜈 ) → proj1 ◦𝑝.

With these notations, we formulate:

Lemma 2.117. If 𝑝 : 𝐸 → 𝐵 × 𝐼 is an h-�bration, then 𝑖𝜈 is an h-equivalence
over 𝐵 (𝜈 = 0, 1).

Proof. It su�ces to prove (2.117) for 𝜈 = 0. We de�ne 𝜑 : 𝐵 × 𝐼 × 𝐼 → 𝐵 × 𝐼 by

𝜑(𝑏, 𝑠, 𝑡) :=
{
(𝑏, 𝑠), 0 ≤ 𝑡 ≤ 1

2 ,

(𝑏, 𝑠(2 − 2𝑡), 1
2 ≤ 𝑡 ≤ 1.

𝑏 ∈ 𝐵, 𝑠 ∈ 𝐼
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For 𝜓 := 𝜑 ◦ (𝑝 × id𝐼 ) : 𝐸 × 𝐼 → 𝐵 × 𝐼 then 𝜓(𝑒, 𝑡) = 𝑝(𝑒) holds for 𝑒 ∈ 𝐸 and
0 ≤ 𝑡 ≤ 1

2 . Since 𝑝 is an h-�bration, there exists a homotopy Φ : 𝐸 × 𝐼 → 𝐸 with
𝑝Φ = 𝜓 and Φ0 = id𝐸 . For 𝑒 ∈ 𝐸 , proj2 ◦𝑝 ◦Φ(𝑒, 1) = 0, where proj 2 : 𝐵× 𝐼 → 𝐼

is the projection onto the second factor, i.e., Φ1 (𝐸) ⊂ 𝐸0. Φ1 thus induces a
continuous map 𝑟 : 𝐸 → 𝐸0. For 𝑒 ∈ 𝐸 , proj1 ◦𝑝 ◦ 𝑟 (𝑒) = proj1 ◦𝑝 ◦ Φ(𝑒, 1) =
proj1 ◦𝑝(𝑒). We can therefore regard 𝑟 as a morphism of 𝒯ℴ𝓅𝐵, 𝑟 : proj1 ◦𝑝 →
proj1 ◦(𝑝 |𝐸0

). One immediately veri�es

id𝐸 = Φ0
∼−
𝐵
Φ1 = 𝑖0𝑟.

Since Φ(𝐸 × 𝐼) ⊂ 𝐸 (!), Φ induces a homotopy Φ : 𝐸0 × 𝐼 → 𝐸0. Then we have
the folloing homotopy (!)

id𝐸0
= Φ0

∼−
𝐵
Φ1 = 𝑟𝑖0.

So [𝑟]𝐵 is inverse to [𝑖0]𝐵 in 𝒯ℴ𝓅𝐵ℎ. This proves the claim. □

We are now in a position to prove the homotopy theorem for h-�brations.

Proof. (of Theorem 2.115) We choose a homotopy 𝜑 : 𝛼 ≃ 𝛽 : 𝐴 × 𝐼 → 𝐵. By
selecting Cartesian squares, we obtain functors

𝑗∗𝜈 :𝒯ℴ𝓅𝐴×𝐼ℎ→ 𝒯ℴ𝓅𝐴ℎ (𝜈 = 0, 1),
𝜑∗ :𝒯ℴ𝓅𝐵ℎ→ 𝒯ℴ𝓅𝐴×𝐼ℎ.

We can assume that in the de�nition of 𝛼∗ = (𝜑 𝑗0)∗ and 𝛽∗ = (𝜑 𝑗1)∗, 𝛼∗, 𝛽∗ :
𝒯ℴ𝓅𝐵ℎ → 𝒯ℴ𝓅𝐴ℎ, those Cartesian squares were selected that result from
juxtaposing the Cartesian squares selected in the de�nition of 𝜑∗ and 𝑗∗0 or 𝑗∗1
(cf. (2.109)). If 𝑝 : 𝐸 → 𝐵 is a continuous map, we have a commutative
diagramme with Cartesian squares (0), (1), (2):

𝐸𝛼

𝑗̃0 ""

𝛼

**

𝑝𝛼

��

𝐸𝜑
𝜑 //

𝑝𝜑

��

𝐸

𝑝

��

𝐸𝛽

𝛽

22

𝑗̃1

44

𝑝𝛽

��

𝐴

(0)

𝑗0 ##

𝛼

**
𝐴 × 𝐼

𝜑
//

(2)

𝐵

𝐴

(1)

𝑗1

44

𝛽

22
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We consider 𝑗𝜈 : 𝐴 → 𝐴 × 𝐼 as inclusion 𝐴 = 𝐴 × 𝜈 ⊂ 𝐴 × 𝐼. We can then
assume (cf. (2.99)): 𝐸𝛼 = 𝑝−1𝜑 (𝐴× 0), 𝐸𝛽 = 𝑝−1𝜑 (𝐴× 1), 𝑗̃0, 𝑗̃1, are the inclusions
𝐸𝛼 ⊂ 𝐸𝜑 and 𝐸𝛽 ⊂ 𝐸𝜑, respectively, 𝑝𝛼, 𝑝𝛽 are restrictions of 𝑝𝜑. We now
assume that 𝑝 ∈ Obj(ℱ𝒾𝒷𝐵ℎ), i.e., 𝑝 is an h-�bration. By Corollary (2.102)
(b), 𝑝𝜑 : 𝐸𝜑 → 𝐴 × 𝐼 is then an h-�bration. From Lemma (2.117), applied to
𝑝𝜑, now follows:

𝑗̃0 : 𝑝𝛼 → proj1 ◦𝑝𝜑 , 𝑗̃1 : 𝑝𝛽 → proj1 ◦𝑝𝜑

are h-equivalences over 𝐴 , i.e., [ 𝑗̃0]𝐴 and [ 𝑗̃1]𝐴 are isomorphisms of 𝒯ℴ𝓅𝐴ℎ.
We set Λ𝑝 := [ 𝑗̃1]−1𝐴 ◦ [ 𝑗̃0]𝐴 . Λ𝑝 : 𝑝𝛼 → 𝑝𝛽 is an isomorphism of 𝒯ℴ𝓅𝐴ℎ.
The reader should convince himself that Λ := (Λ𝑝 |𝑝∈Obj(ℱ𝒾𝒷𝐵ℎ) ) is a natural
transformation. Λ : 𝛼∗ → 𝛽∗ : ℱ𝒾𝒷𝐵ℎ → ℱ𝒾𝒷𝐴ℎ is thus a natural equivalence.

□

Remark 2.118. If we consider the just de�ned morphism of 𝒯ℴ𝓅𝐴ℎ Λ𝑝 : 𝑝𝛼 →
𝑝𝛽 as a morphism of 𝒯ℴ𝓅ℎ, Λ𝑝 : 𝐸𝛼 → 𝐸𝛽, then in 𝒯ℴ𝓅ℎ [𝛽] ◦ Λ𝑝 = [𝛼̃].

So we have proven exactly the following:

Theorem 2.119. If 𝛼 ≃ 𝛽 : 𝐴→ 𝐵, there exists a natural equivalence Λ : 𝛼∗ →
𝛽∗ : ℱ𝒾𝒷𝐵ℎ → ℱ𝒾𝒷𝐴ℎ such that for all h-�brations 𝑝 : 𝐸 → 𝐵 the following
diagramme in 𝒯ℴ𝓅ℎ is commutative.

𝐸𝛼

[𝛼]   

Λ𝑝 // 𝐸𝛽

[𝛽 ]~~
𝐸

From the homotopy theorem for h-fbration we obtain two corollaries.

De�nition 2.120. (1) If 𝑝 : 𝐸 → 𝐵 is a space over 𝐵, 𝑈 ⊂ 𝐵, then we have
the space over 𝑈 𝑝𝑈 : 𝑝−1(𝑈) → 𝑈 (cf. (2.32)). We use the notation
𝐸𝑈 := 𝑝−1(𝑈). If 𝑏0 ∈ 𝐵, then we abbreviate 𝐸𝑏0 := 𝐸{𝑏0 } .

(2) If 𝑝 : 𝐸 → 𝐵, 𝑝
′
: 𝐸

′ → 𝐵 are spaces over 𝐵, and if 𝑓 : 𝑝 → 𝑝
′
is a map

over 𝐵, 𝑈 ⊂ 𝐵, then 𝑓 (𝐸𝑈) ⊂ 𝐸
′
𝑈

= 𝑝
′−1(𝑈). So 𝑓 can be restricted to a

continuous map 𝑓𝑈 : 𝐸𝑈 → 𝐸
′
𝑈
. 𝑓𝑈 is a map over 𝑈, 𝑓𝑈 : 𝑝𝑈 → 𝑝

′
𝑈
. If

𝑏 ∈ 𝐵, then we abbreviate 𝑓𝑏0 := 𝑓{𝑏0 } .

Corollary 2.121 (The �rst corollary to Theorem 2.119). Assumption: Let
𝛼 : 𝐴→ 𝐵 be homotopic to 𝜘 : 𝐴→ 𝐵 with 𝜘(𝐴) = {𝑏0} for some 𝑏0 ∈ 𝐵.
Claim:

(a) If 𝑝 : 𝐸 → 𝐵 is an h-�bration and 𝑝𝛼 : 𝐸𝛼 → 𝐴 is induced from 𝑝 by
𝑎, then 𝑝𝛼 is h-equivalent over 𝐴 to the projection onto the �rst factor
proj1 : 𝐴 × 𝐸𝑏0 → 𝐴.
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(b) Let the following be a commutative diagramme in 𝒯ℴ𝓅.

𝐸

𝑝
��

𝑓 // 𝐸
′

𝑝
′

��
𝐵

Let 𝑝𝛼 and 𝑝
′
𝛼 be induced by 𝑝 and 𝑝

′
, respectively, by 𝛼. If 𝑝 and 𝑝

′
are

h-�brations and 𝑓𝑏0 : 𝐸𝑏0 → 𝐸𝑏′0
, is an h-equivalence, then the morphism of

𝒯ℴ𝓅 𝑓𝛼 : 𝑝𝛼 → 𝑝
′
𝛼 de�ned in (2.106) is an h-equivalence over 𝐴.

Proof. (a): Let 𝑝𝜘 : 𝐸𝜘 → 𝐴 be induced from 𝑝 by 𝜘. By Theorem (2.115) 𝑝𝛼
is h-equivalent over 𝐴 to 𝑝𝜘. The claim now follows, since one can make the
following special choice for 𝑝𝜘 according to (2.97):

𝐸𝜘 = {(𝑎, 𝑒) |𝑏0 = 𝜘(𝑎) = 𝑝(𝑒)} = 𝐴 × 𝐸𝑏0 , 𝑝𝜘 (𝑎, 𝑒) = 𝑎 for (𝑎, 𝑒) ∈ 𝐸𝜘.

(b): If 𝑝𝜘 and 𝑝
′
𝜘 are induced from 𝑝 and 𝑝

′
by 𝜘, respectively, then by Theorem

(2.115) there re isomorphisms of 𝒯ℴ𝓅𝐴ℎ Λ𝑝 : 𝑝𝛼 → 𝑝𝜘, Λ𝑝′ : 𝑝
′
𝛼 → 𝑝

′
𝜘 such

that the following diagramme in 𝒯ℴ𝓅𝐴ℎ is commutative:

𝑝𝛼
Λ𝑝 //

[ 𝑓𝛼 ]𝐴
��

𝑝𝜘

[ 𝑓𝜘 ]𝐴
��

𝑝
′
𝛼

Λ
′
𝑝

// 𝑝
′
𝜘

To show that [ 𝑓𝛼]𝐴 is an isomorphism of 𝒯ℴ𝓅𝐴ℎ, we have to show that
[ 𝑓𝜘]𝐴[ 𝑓𝜘]𝐴 is an isomorphism of 𝒯ℴ𝓅𝐴ℎ. Let us choose 𝑝𝜘 and 𝑝

′
𝜘 as in (2.97),

i.e., 𝑝𝜘 = proj1 : 𝐴 × 𝐸𝑏0 → 𝐴, 𝑝
′
𝜘 = proj1 : 𝐴 × 𝐸 ′

𝑏0
→ 𝐴, so (cf. (2.108))

𝑓𝜘 = id𝐴× 𝑓𝑏0 . By assumption, 𝑓 𝑏0 is an h-equivalence. If 𝑔 =: 𝐸
′

𝑏0
→ 𝐸𝑏0 is

homotopy inverse to 𝑓𝑏0 , then, as one immediately sees, [id𝐴×𝑔]𝐴 : 𝑝
′
𝜘 → 𝑝𝜘

is inverse to [ 𝑓𝜘]𝐴 in 𝒯ℴ𝓅𝐴ℎ. [ 𝑓𝜘]𝐴 is therefore an isomorphism in 𝒯ℴ𝓅𝐴ℎ,
which was to be shown. □

De�nition 2.122. A topological space 𝑋 is called locally contractible if every
point 𝑥 ∈ 𝑋 has a neighbourhood 𝑈 ⊂ 𝑋 such that the inclusion 𝑈 ⊂ 𝑋 is
null-homotopic (cf. (0.22)).

Corollary 2.123 (The second corollary to Theorem 2.119). Every h-�bration
𝑝 : 𝐸 → 𝐵 over a locally contractible space 𝐵 is locally trivial up to �brewise
homotopy equivalence.

Proof. By assumption, for 𝑏 ∈ 𝐵 there exists a neighbourhood𝑈 ⊂ 𝐵 and a point
𝑏0 ∈ 𝐵 such that (𝑈 ⊂ 𝐵) ≃ 𝜘 : 𝑈 → 𝐵, where 𝜘(𝑈) = {𝑏0}. The restriction
of 𝑝 𝑝𝑈 : 𝑝−1𝑈 → 𝑈 is induced from 𝑝 by 𝑈 ⊂ 𝐵. Thus, by (2.121) (a), 𝑝𝑈 is
h-equivalent over 𝑈 to proj1 : 𝑈 × 𝐸𝑏0 → 𝑈. □
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Theorem 2.124. Let

𝐸𝛼
𝛼 //

𝑝𝛼

��

𝐸

𝑝

��
𝐴

𝛼
// 𝐵

be a Cartesian square in 𝒯ℴ𝓅. Claim: If 𝑝 is an h-�bration and 𝛼 is an
h-equivalence, then 𝛼̃ is an h-equivalence.

Proof. Let 𝛽 : 𝐵→ 𝐴 be the h-inverse of 𝛼. We choose a Cartesian square

𝐸𝛼𝛽
𝛽 //

𝑝𝛼

��

𝐸𝛼

𝑝𝛼

��
𝐵

𝛽
// 𝐴

and then we have the Cartesian squares

𝐸𝛼𝛽
𝛼𝛽 //

𝑝𝛼𝛽

��

𝐸

𝑝

��
𝐵

𝛼𝛽
// 𝐵

𝐸
id𝐸 //

𝑝

��

𝐸

𝑝

��
𝐵

id𝐵

// 𝐵

Since 𝛼𝛽 ≃ id𝐵, by Theorem (2.119) there exists an h-equivalence 𝜆𝑝 : 𝐸𝛼𝛽 → 𝐸

such that the diagramme

𝐸𝛼𝛽
𝜆𝑝 //

𝛼𝛽 !!

𝐸

id𝐸��
𝐸

is commutative up to homotopy: 𝜆𝑝 ≃ 𝛼̃𝛽. Hence 𝛼̃ has an h-right inverse and 𝛽
an h-left inverse. We exchange the roles of 𝛼 and 𝛽 and an analogous conclusion
then yields: 𝛽 has an h-right inverse. Therefore 𝛽 is an h-equivalence, and
therefore 𝛼̃ is an h-equivalence. □

2.4.3 Induced co�brations

The de�nitions and theorems of ��2.4.1 and 2.4.2 can be dualised. We leave the
proofs to the reader.

De�nition 2.125. Let

𝐴
𝜉 //

𝑖

��

𝐴

𝑖
��

𝑋
𝜉

// 𝑋

(2.126)
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be a Cartesian square in 𝒯ℴ𝓅. 𝑖 is called induced from 𝑖 by 𝜉 if (2.126) is a
co-Cartesian square.

Theorem 2.127. For a diagramme

𝐴
𝜉 //

𝑖

��

𝐴

𝑋

in 𝒯ℴ𝓅, there exists a diagramme

𝐴

𝑖
��

𝑋
𝜉

// 𝑋

in 𝒯ℴ𝓅 that is unique up to isomorphism, such that (2.126) is a co-Cartesian
square.

Proof. Uniqueness: follows purely from category-theoretic reasons.
Existence: It is easy to see that the following de�nition yields a co-Cartesian
square (2.126). □

De�nition 2.128. Let 𝑋 be the factor space resulting from the topological sum
𝑋 + 𝐴 if, for each 𝑎 ∈ 𝐴, 𝑖𝑎 ∈ 𝑋 is identi�ed with 𝜉𝑎 ∈ 𝐴. Let 𝑖 : 𝐴 → 𝑋 and
𝜉 : 𝑋 → 𝑋 be the continuous maps obtained by combining the injection of 𝐴
and 𝑋 into the topological sum 𝑋 + 𝐴 with the projection of 𝑋 + 𝐴 onto the
factor space 𝑋. If 𝑖 is an inclusion 𝐴 ⊂ 𝑋, then we use the notation 𝐴 ∪𝜉 𝑋 for

𝑋.

We have already encountered the construction of (2.128) in a special case,
namely in the de�nition of the mapping cylinder of a continuous map.

Example 2.129. If 𝑓 : 𝐴→ 𝑋 is a continuous map, then we have the co-Cartesian
square.

𝐴
𝑗0 //

𝑓

��

𝐴 × 𝐼

𝑘

��
𝑋

𝑗
// 𝑍 𝑓

(Diagramme 1.15 reposted)

𝑘 : 𝐴 × 𝐼 → 𝑍 𝑓 is thus induced from 𝑓 by 𝑗0.

Theorem (2.100) corresponds to the following theorem:
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Theorem 2.130. In the diagramme in 𝒯ℴ𝓅

𝐴
𝜉 //

𝑖

��

𝐴

𝑖
��

𝑋
𝜉

// 𝑋

(2.131)

let 𝑖 be induced by 𝑖 by 𝜉. Let 𝑌 be a topological space.
Claim:

(a) If 𝑖 has the HEP for 𝑌 , then so does 𝑖.

(b) If 𝑖 has the HEP up to homotopy for 𝑌 , then so does 𝑖.

Corollary 2.132. In (2.131), let 𝑖 be induced by 𝑖 by 𝜉. Then:

(a) If 𝑖 is a co�bration, then so is 𝑖.

(b) If 𝑖 is an h-co�bration, then so is 𝑖.

𝑖 is then called �the� (h-)co�bration induced from 𝑖 by 𝜉.

Example 2.133 ((Attaching cells)). Let 𝑖 be the inclusion S𝑛−1 ⊂ E𝑛 of the
(𝑛 − 1)-sphere S𝑛−1 into the 𝑛-ball E𝑛. Let 𝜉 : S𝑛−1 → 𝑋 be a continuous map.
The co-Cartesian square

S𝑛−1
𝜉 //� _

𝑖

��

𝑋

𝑖

��
E𝑛

𝜉

// 𝑋 ∪𝜉 E𝑛

be de�ned as in (2.128). We say: 𝑋 ∪𝜉 E𝑛 arises from 𝑋 by attaching the 𝑛-cell
𝑒𝑛 = 𝑋 ∪𝜉 E𝑛 \ S𝑛−1 by means of 𝜉. Since S𝑛−1 ⊂ E𝑛 is a co�bration (1.8), it

follows from Corollary (2.132) (a) 𝑖 : 𝑋 → 𝑋 ∪𝜉 E𝑛 is a co�bration.

De�nition 2.134. Let 𝜉 : 𝐴 → 𝐴 be a continuous map. We de�ne a functor

𝜉∗ : 𝒯ℴ𝓅
𝐴 → 𝒯ℴ𝓅

𝐴. For each object 𝑖 : 𝐴 → 𝑋 of 𝒯ℴ𝓅
𝐴, we choose a

co-Cartesian square (2.126) and set

𝜉∗ (𝑖) := 𝑖, 𝜉∗ (𝑖) ∈ Mor𝒯ℴ𝓅𝐴 .

If 𝑔 is a morphism of 𝒯ℴ𝓅
𝐴,

𝐴

𝑖
′

��

𝑖

��
𝑋

𝑔
// 𝑋
′
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and the following diagramme

𝐴
𝜉 //

𝑖
′

��

𝐴

𝑖
′

��

𝑋
′

𝜉
′
// 𝑋
′

is the co-Cartesian square chosen for 𝑖
′
, then there exists exactly one continuous

map 𝑔 : 𝑋 → 𝑋
′
with 𝑔 ◦ 𝜉

′
= 𝜉

′
◦ 𝑔 and 𝑔 ◦ 𝑖 = 𝑖

′
. We set 𝜉∗ (𝑔) := 𝑔,

𝜉∗ (𝑔) : 𝜉∗ (𝑖) → 𝜉∗ (𝑖
′ ).

Note: The de�nition of 𝜉∗ depends on the choice of co-Cartesian squares.
Di�erent choices yield equivalent functors.
(id𝐴)∗ is equivalent to id𝒯ℴ𝓅𝐴.

(𝜂𝜉)∗ is equivalent to 𝜂∗𝜉∗ if 𝜂 : 𝐴→ 𝐴 is another continuous map.

De�nition 2.135. If 𝐴 is a topological space, let𝒞ℴ𝒻
𝐴ℎ denote the full subcat-

egory of 𝒯ℴ𝓅
𝐴ℎ whose objects are the h-co�brations 𝑖 : 𝐴→ 𝑋. If 𝜉 : 𝐴→ 𝐴 is

a continuous map, then the functor 𝜉∗ : 𝒯ℴ𝓅
𝐴 → 𝒯ℴ𝓅

𝐴, de�ned by choosing

co-Cartesian squares, �rst induces a functor 𝒯ℴ𝓅
𝐴ℎ→ 𝒯ℴ𝓅

𝐴ℎ. This functor,
in turn, induces a functor

𝒞ℴ𝒻
𝐴ℎ→ 𝒞ℴ𝒻

𝐴ℎ,

which we also denote by 𝜉∗.

Then we have:

Theorem 2.136 (Homotopy thorem for hhco�brations). Let 𝜉𝜂 : 𝐴 → 𝐴 be
continuous maps. If 𝜉 ≃ 𝜂, a natural equivalence exists

𝜉∗ → 𝜂∗ : 𝒞ℴ𝒻
𝐴ℎ→ 𝒞ℴ𝒻

𝐴ℎ.

Finally, we mention the theorem corresponding to (2.124).

Theorem 2.137. If (2.126) is a co-Cartesian square, 𝑖 is an h-co�bration, and
𝜉 is an h-equivalence, then 𝜉 is also an h-equivalence.

2.5 Extension of sections

2.5.1 Numerable coverings

De�nition 2.138. Let 𝑋 be a topological space. A partition of unity is a family
𝔘 = (𝑢 𝑗 : 𝑋 → 𝐼 | 𝑗 ∈ 𝐽) of continuous maps 𝑢 with the properties:

(a) For every 𝑥 ∈ 𝑋 there exists a neighbourhood 𝑊 such that 𝑢 𝑗 (𝑊) = {0}
except for �nitely many 𝑗 ∈ 𝐽.
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(b) For all 𝑥 ∈ 𝑋, ∑ 𝑗∈𝐽 𝑢 𝑗 (𝑥) = 1.

Note that because of (a), (b) is essentially a �nite sum.
Let 𝔙 = (𝑉 𝑗 | 𝑗 ∈ 𝐽), 𝑉 𝑗 ⊂ 𝑋. 𝔙 is called:

a cover of 𝑋 if and only if ∪ 𝑗∈𝐽𝑉 𝑗 = 𝑋;

open if and only if every 𝑉 𝑗 is open;

locally �nite if and only if for every 𝑥 ∈ 𝑋 there exists a neighbourhood 𝑊
such that 𝑊 ∩𝑉 𝑗 = ∅ except for �nitely many 𝑗 ∈ 𝐽.

A family (𝑢 𝑗 : 𝑋 → [0,∞[| 𝑗 ∈ 𝐽) is called locally �nite if (𝑢−1
𝑗
]0,∞[| 𝑗 ∈ 𝐽) is

locally �nite. Let 𝑢 = (𝑢 𝑗 | 𝑗 ∈ 𝐽) be a partition of unity and 𝔙 = (𝑉 𝑗 | 𝑗 ∈ 𝐽). We
say: 𝔙 is numbered by 𝑢 if for every 𝑗 ∈ 𝐽 the inclusion 𝑢−1

𝑗
]0, 1] ⊂ 𝑉 holds. 𝔙

is called enumberable if there exists a partition of unity that numbers 𝔙 (then
𝔙 is a cover, and we say it is a enumberable cover).

Numerable covers are a fundamental tool for many proofs below. The next
theorem tells us something about when numerable covers exist.

Theorem 2.139. Let 𝑋 be a Hausdor� space.

(a) 𝑋 is paracompact if and only if every open covering is enumberable.

(b) 𝑋 is normal if and only if every locally �nite open covering is enumberable.

For the proof, see Bourbaki [2], �4, n◦ 3, 4.
The following theorem is important for the application of numerable cover-

ings in homotopy theory.

Theorem 2.140. Let 𝔘 = (𝑈 𝑗 | 𝑗 ∈ 𝐽) be an numerable cover of 𝑋 × 𝐼. There
exists a numerable cover (𝑉𝑘 |𝑘 ∈ 𝐾) of 𝑋 and a family (𝜀𝑘 ∈ 𝐾) of positive
real numbers such that for 𝑡1, 𝑡2 ∈ 𝐼 and |𝑡1 − 𝑡2 | < 𝜀𝑘 there exists a 𝑗 ∈ 𝐽 with
𝑉𝐾 × [𝑡1, 𝑡2] ⊂ 𝑈 𝑗 .

Proof. We can assume that 𝔘 is given by a partition of unity (𝑢 𝑗 | 𝑗 ∈ 𝐽), i.e.
𝑈 𝑗 . = 𝑢−1

𝑗
]0, 1], 𝑗 ∈ 𝐽. For each 𝑟-tuple 𝑘 = ( 𝑗1, . . . , 𝑗𝑟 ) ∈ 𝐽𝑟 we de�ne a

continuous map 𝑣𝑘 : 𝑋 → 𝐼 by

𝑣𝑘 (𝑥) :=
𝑟∑︁
𝑖=1

min(𝑢 𝑗𝑖 (𝑥, 𝑡) |𝑡 ∈ [
𝑖 − 1
𝑟 + 1 ,

𝑖 + 1
𝑟 + 1 ]).

Let 𝐾 = ∪∞𝑟1 𝑗𝑟 . We show that 𝔙 = (𝑣−1
𝑘
]0, 1] |𝑘 ∈ 𝐾) is a numerable cover of 𝑋.

Every point (𝑥, 𝑡) ∈ 𝑋×𝐼 has an open product neighbourhood𝑈 (𝑥, 𝑡)×𝑉 (𝑥, 𝑡) that
is contained in a suitable 𝑖 and only meets �nitely many 𝑈𝑖. 𝑉 (𝑥, 𝑡1), . . . , 𝑉 (𝑥, 𝑡𝑛)
covers 𝐼, let 2

𝑟+1 be a Lebesgue number of this cover, and let 𝑈 be 𝑈 (𝑥, 𝑡1) ∩
· · · ∩𝑈 (𝑥, 𝑡𝑛). Every set 𝑈 × [ 𝑖−1

𝑟+1 ,
𝑖+1
𝑟+1 ] is then contained in a suitable 𝑈 𝑗𝑖, so 𝑥

lies in 𝑣−1
𝑘
]0, 1], 𝑘 = ( 𝑗1, . . . , 𝑗𝑟 ); 𝔙 is therefore a cover.
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Furthermore, there are only �nitely many 𝑗 ∈ 𝐽 for which 𝑈 𝑗 ∩ (𝑈 × 𝐼) is
not empty. Since 𝑣𝑘 (𝑥) ≠ 0 implies the relation 𝑈 𝑗𝑖 ∩ {𝑥} × 𝐼 ≠ ∅, (𝑣𝑘 |𝑘 ∈ 𝐾𝑟 ),
𝐾𝑟 = 𝐽∪𝐽2∪· · ·∪𝐽𝑟 is locally �nite for every 𝑟. Therefore, a continuous function
𝑤𝑟 is de�ned by

𝑤𝑟 (𝑥) =
∑︁

𝑘∈𝐾𝑟−1
𝑣𝑘 (𝑥) for 𝑟 > 1

and 𝑤1 (𝑥) = 0. Let

𝑧𝑘 (𝑥) = max(0, 𝑣𝑘 (𝑥) − 𝑟𝑤𝑟 (𝑥)) for 𝑘 = ( 𝑗1, . . . , 𝑗𝑟 ) ∈ 𝐾.

For 𝑥 ∈ 𝑋, we choose 𝑘 ′ = ( 𝑗1, . . . , 𝑗𝑟 ) ∈ 𝐾 with minimal 𝑟 such that 𝑣𝑘′ (𝑥) > 0.
Then 𝑤𝑟 (𝑥) = 0, 𝑧𝑘′ (𝑥) = 𝑣𝑘′ (𝑥), and we see that the 𝑧−1

𝑘
]0, 1] cover 𝑋. If

we choose 𝑚 > 𝑟 such that 𝑣𝑘′ (𝑥) > 1
𝑚
, then 𝑤𝑚 (𝑥) > 1

𝑚
and consequently

𝑚𝑤𝑚 (𝑦) > 1 for all 𝑦 in a suitable neighbourhood of 𝑥. In this neighbourhood,
𝑧𝑘 vanishes for all 𝑘 = ( 𝑗1, . . . , 𝑗𝑠) with 𝑠 ≥ 𝑚. Therefore, (𝑧𝑘 |𝑘 ∈ 𝐾) is locally
�nite; (𝑧𝑘/

∑
𝑘∈𝐾 𝑧𝑘 |𝑘 ∈ 𝐾) is numbered (𝑣−1

𝑘
]0, 1]). 𝑉𝑘 = 𝑣−1

𝑘
]0, 1] and 𝜀𝑘 = 1

2𝑟
for 𝑘 = ( 𝑗1, . . . , 𝑗𝑟 ) satisfy the requirements of the theorem. □

2.5.2 The section extension property (SEP)

De�nition 2.141. Let 𝑝 : 𝐸 → 𝐵 be a continuous map and 𝐴 ⊂ 𝐵. A section
of 𝑝 over 𝐴 is a continuous map 𝑠 : 𝐴 → 𝐸 with 𝑝𝑠(𝑎) = 𝑎 for all 𝑎 ∈ 𝐴. A
section of 𝑝 over 𝐵 is called a section of 𝑝 for short.

𝐸

𝑝

��
𝐴
� � //

𝑠

??

𝐵

𝑝 has the section extension property (the SEP) if: for every 𝐴 ⊂ 𝐵 and every
section 𝑠 over 𝐴 that extends to a Halo 𝑉 of 𝐴 (in 𝐵), there exists a section
𝑆 : 𝐵→ 𝐸 of 𝑝 with 𝑆 |𝐴 = 𝑠.

𝐸

𝑝

��
𝐴 ⊂

𝑠

77

𝑉 ⊂

??

𝐵

𝑆

OO

In particular, there is then a section of 𝑝; set 𝐴 = 𝑉 = ∅.

Theorem 2.142. If 𝑝 : 𝐸 → 𝐵 is dominated by 𝑝′ : 𝐸 ′ → 𝐵 and 𝑝′ has the
𝑆𝐸𝑃, then so does 𝑝.

Proof. Since 𝑝 is dominated by 𝑝
′
, there are maps over 𝐵 𝑓 : 𝐸 → 𝐸

′
and

𝑔 : 𝐸
′ → 𝐸 and a homotopy 𝜑 : 𝐸 × 𝐼 → 𝐸 over 𝐵, 𝜑 : id𝐸

∼−
𝐵
𝑔 𝑓 .

Let 𝐴 ⊂ 𝐵, 𝑠 be a cut of 𝑝 over 𝐴, 𝑠𝑉 a section of 𝑝 over a halo 𝑉 of 𝐴 such
that 𝑠𝑉 |𝐴 = 𝑠. Then 𝑓 𝑠𝑉 is a section of 𝑝

′
over 𝑉 . By Corollary (1.86), we can
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choose a closed halo 𝑈 of 𝐴 such that 𝑈 ⊂ 𝑉 and 𝑉 is a halo of 𝑈. Since 𝑝
′
has

the SEP, there exists a section 𝑆
′
: 𝐵→ 𝐸

′
of 𝑝

′
with 𝑆

′ |𝑈 = 𝑓 𝑠𝑉 |𝑈 . We choose
a halo function 𝑢 of 𝑈 and de�ne 𝑆 : 𝐵→ 𝐸 by

𝑆(𝑏) :=
{
𝑔𝑆
′ (𝑏), 𝑏 ∈ 𝑢−1(1)

𝜑(𝑠𝑉 (𝑏), 𝑢(𝑏)), 𝑏 ∈ 𝑈.

S is well-de�ned, continuous, and a section of 𝑝 that extends 𝑠. □

Corollary 2.143. If 𝑝 : 𝐸 → 𝐵 is shrinkable, then 𝑝 has the SEP (see (2.88),
(2.89).

Example 2.144. The SEP does not generally extend to induced objects.
The projection proj1 : E2 × S1 → E2 is induced by the map 𝑝 : S1 → 𝑃, 𝑃 a
one-point space. 𝑝 clearly has the SEP, but proj1 does not. Let 𝐴 = S1 ⊂ 𝐸2

and 𝑠 : 𝐴→ E2 × S1 be given by 𝑠(𝑧) = (𝑧, 𝑧). 𝑠 can be extended to a halo of 𝐴
in E2, but not to E2.

If 𝑝 : 𝐸 → 𝐵 is shrinkable, so is every induced object (see (2.112)). In this
case, the SEP is transferred to induced objects. For a converse, see Dold [6],
Proposition 3.1.

Theorem 2.145. If 𝑝 : 𝐸 → 𝐵 has the SEP and 𝐴 ⊂ 𝐵 is an open subset for
which there exists a function 𝑣 : 𝐵 → 𝐼 with 𝑣−1 [0, 1[= 𝐴, then the restriction
𝑝𝐴 : 𝑝−1𝐴→ 𝐴 (see (2.32)) has the SEP.

Proof. Let 𝑢 : 𝐴 → [0, 1] and a cut 𝑠 of 𝑝 over 𝑢−1 [0, 1[ be given. We have to
construct a section over 𝐴 that coincides with 𝑠 on 𝑢−1(0). For this purpose, we
construct a sequence 𝑆𝑛 : 𝐵→ 𝐸 , 𝑛 = 2, 3, . . . of sections with the properties:

(1) For 𝑣(𝑏) < 1 − 1
𝑛
, 𝑆𝑛+1 (𝑏) = 𝑆𝑛 (𝑏).

(2) For 𝑏 ∈ 𝐴 with 𝑢(𝑏) < 1
𝑛
, 𝑣(𝑏) < 1 − 1

𝑛+1 , 𝑆𝑛 (𝑏) = 𝑠(𝑏).

First, we choose continuous functions

𝜇𝑛, 𝜆𝑛 : [0, 1] → [0, 1]

as follows:

𝜇𝑛 (𝑥) :=
{
1 − 1

𝑛
for 𝑥 ≥ 1

𝑛

1 − 1
𝑛+2 for 𝑥 ≤ 1

𝑛+1

and 𝜇𝑛 (𝑥) ≥ 1 − 1
𝑛
for all 𝑥 ∈ [0, 1];

𝜆𝑛 (𝑥)
{
:= 1 − 1

𝑛+1 for 𝑥 ≥ 1
𝑛

> 1 − 1
𝑛+1 for 𝑥 ≤ 1

𝑛

and 1 − 𝜀𝜆𝑛 (𝑥) > 𝜇𝑛 (𝑥) for all 𝑥 ∈ [0, 1] and for some 𝜀 > 0. By 𝑤(𝑏) =

(1 − 𝑢(𝑏)/(1 − 𝑣(𝑏)) for 𝑣(𝑏) < 1 and 𝑤(𝑏) = 0 otherwise a continuous function
𝑤 : 𝐵 → 𝐼 is described. 𝑤−1]0, 1] is a halo of 𝑤−1 [ 16 , 1]. 𝑠 is de�ned on
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𝑤−1]0, 1] ⊂ 𝑢−1 [0, 1[. Because 𝑝 has the SEP, there is a section 𝑆2 : 𝐵→ 𝐸 that
coincides with 𝑠 on 𝑤−1 [ 16 , 1], and therefore also on {𝑏 ∈ 𝐵|𝑣(𝑏) < 2

3 , 𝑢(𝑏) <
1
2 .

This provides the beginning of the induction. Pursuant to the step from 𝑛

to 𝑛 + 1, we de�ne a section 𝑠𝑛 over 𝑉𝑛 = {𝑏 ∈ 𝐴|𝑣(𝑏) < 𝜆𝑛 (𝑢(𝑏))} by

𝑠𝑛 (𝑏) :=
{
𝑆𝑛 (𝑏) for 𝑣(𝑏) < 1 − 1

𝑛+1
𝑠(𝑏) for 𝑢(𝑏) < 1

𝑛
.

By the induction hypothesis (2), 𝑠𝑛 (𝑏) is well-de�ned. In 𝑉𝑛, one of the two
inequalities holds. 𝑉𝑛 is a halo of 𝐴𝑛 = {𝑏 ∈ 𝐴|𝑣(𝑏) < 𝜇𝑛 (𝑢(𝑏))} in 𝐵.

A halo function ℎ𝑛 is given by

ℎ𝑛 (𝑏) :=

0 for 𝑣(𝑏) ≤ 𝜇𝑛 (𝑢(𝑏)), 𝑏 ∈ 𝐴
𝜇𝑛 (𝑢(𝑏)−𝑣 (𝑏)

𝜇𝑛 (𝑢(𝑏)−𝜆𝑛 (𝑢(𝑏) ) for 𝜇𝑛 (𝑢(𝑏)) ≤ 𝑣(𝑏) ≤ 𝜆𝑛 (𝑢(𝑏)), 𝑏 ∈ 𝐴
1 for 𝑣(𝑏) ≥ 𝜆𝑛 (𝑢(𝑏)), 𝑏 ∈ 𝐵 \ 𝐴 or 𝑏 ∈ 𝐴

Note that the three parts of the domain are closed in 𝐵. From the SEP for 𝑝,
we conclude that there exists a section 𝑆𝑛+1 : 𝐵 → 𝐸 that coincides with 𝑠𝑛 on
𝐴𝑛.

Thus (1) and (2) hold. From 𝑣(𝑏) < 1 − 1
𝑛
it follows: 𝑣(𝑏) < 𝜇𝑛 (𝑢(𝑏)),

𝑏 ∈ 𝐴𝑛, 𝑆𝑛+1 (𝑏) = 𝑠𝑛 (𝑏) = 𝑆𝑛 (𝑏). From 𝑢(𝑏) < 1
𝑛+1 , 𝑣(𝑏) < 1 − 1

𝑛+2 , it follows :
𝑣(𝑏) < 𝜇𝑛 (𝑢(𝑏)), 𝑏 ∈ 𝐴𝑛, 𝑆𝑛+1 (𝑏) = 𝑠𝑛 (𝑏) = 𝑠(𝑏). □

2.5.3 The section extension theorem

Let 𝑝 : 𝐸 → 𝐵 and 𝐴 ⊂ 𝐵 be given. We say 𝑝 has the SEP over) 𝐴 if the
restriction 𝑝𝐴 : 𝑝−1𝐴→ 𝐴 has the SEP.

Theorem 2.146. Let 𝑝 : 𝐸 → 𝐵 be a space over 𝐵. If there exists a numerable
covering (𝑉 𝑗 | 𝑗 ∈ 𝐽) of 𝐵 such that 𝑝 has the SEP over every set 𝑉 𝑗 , then 𝑝 has
the SEP.

Proof. Let 𝑉 𝑗 | 𝑗 ∈ 𝐽) be a numerable covering of 𝐵 such that 𝑝 has the SEP over
every set 𝑉 𝑗 . Let 𝐴 ⊂ 𝐵, 𝑠 be a section of 𝑝 over 𝐴, and 𝑠𝐴 be an extension of 𝑠
to a halo 𝑉 of 𝐴 with halo function 𝑢.

Let (𝑢′
𝑗
| 𝑗 ∈ 𝐽) be a numbering of (𝑉 𝑗 ). We assume that 0 ∉ 𝐽 and set

𝐽
′
= 𝐽 ∪ {0}. By 𝑢0 = 1 − 𝑢, 𝑢 𝑗 = 𝑢 · 𝑢

′
𝑗
for 𝑗 ∈ 𝐽, a partition of unity (𝑢 𝑗 | 𝑗 ∈ 𝐽

′ )
is de�ned. For 𝐾 ⊂ 𝐽 ′ we set

𝑢𝐾 =
∑︁
𝑗∈𝐾

𝑢 𝑗 : 𝐵→ 𝐼

and 𝑈𝐾 = 𝑢−1
𝑘
]0, 1] (𝑢∅ = 0, 𝑈∅ = ∅). 𝑢𝐾 is continuous; 𝐴 lies in 𝑈𝐾 if 0 ∈ 𝐾.

We consider the set of pairs

𝔖 = {(𝐾, 𝑠) |0 ∈ 𝐾 ⊂ 𝐽 ′ , 𝑠 intersection over 𝑈𝐾 , 𝑠 |𝐴 = 𝑠𝐴}.

𝔖 is not empty, since ({0}, 𝑠𝑉 |𝑈{0} ) lies in 𝔖. On 𝔖 we introduce an ordering:

(𝐾, 𝑠) ≤ (𝐾 ′ , 𝑠′ ) if and only if
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(1) 𝐾 ⊂ 𝐾 ′ ;

(2) from 𝑠(𝑏) ≠ 𝑠′ (𝑏) follows 𝑏 ∈ 𝑈𝐾 ′ \𝐾 .

We want to apply Zorn's Lemma to the ordered set (𝔖,≤). Therefore, we show
that

Proposition 2.147. every chain in 𝔖 has an upper bound.

Proof. Let 𝔗 ⊂ 𝔖 be a chain, 𝔗 ≠ ∅. We set 𝐿 = ∪(𝐾,𝑠) ∈𝔗𝐾 and want to de�ne
a section 𝑡 : 𝑈𝐿 → 𝐸 . Let 𝑏 ∈ 𝑈𝐿. We choose a neighbourhood 𝑊 of 𝑏 such that

𝑃𝑊 = { 𝑗 ∈ 𝐽 ′ |𝑊 ∩ 𝑢−1𝑗 ]0, 1] ≠ ∅}

is �nite. We consider

𝔗𝑊 = {(𝐾, 𝑠) ∈ 𝔗 | (𝐿 \ 𝐾) ∩ 𝑃𝑊 ≠ ∅}.

𝔗𝑊 is not empty because 𝑃𝑊 is �nite and 𝔗 is a chain. For (𝐾, 𝑠) ∈ 𝔗𝑊 , 𝑏 ∈
𝑈𝐿∩𝑊 ⊂ 𝑈𝐾 ; and by condition (2) in the de�nition of ≤, for (𝐾, 𝑠), (𝐾 ′ , 𝑠′ ) ∈ 𝔗𝑊

𝑠(𝑐) = 𝑠′ (𝑐), 𝑐 ∈ 𝑈𝐿 ∩𝑊.

By 𝑡 (𝑏) = 𝑠(𝑏), (𝐾, 𝑠) ∈ 𝔗𝑊 , 𝑡 (𝑏) is therefore uniquely de�ned, and because
𝑡 |𝑈𝐿∩𝑊 = 𝑠 |𝑈𝐿∩𝑊 , 𝑡 : 𝑈𝐿 → 𝐸 is also continuous; thus (𝐿, 𝑡) lies in 𝔖. For
(𝐾, 𝑠) ∈ 𝔗, (𝐾, 𝑠) ≤ (𝐿, 𝑡) : 𝐾 ⊂ 𝐿 is clear; and from 𝑠(𝑏) ≠ 𝑡 (𝑏), (𝐿\𝐾)∩𝑃𝑊 ≠ ∅
follows, i.e. there exists a 𝑗 ∈ 𝐿 \ 𝐾 with 𝑢 𝑗 (𝑏) > 0, hence 𝑏 ∈ 𝑈𝐿\𝐾 . Thus we
have shown that Zorn's theorem can be applied. □

Therefore, let (𝐾, 𝑠) be maximal in (𝔖,≤). We show that 𝐾 = 𝐽
′
. Then

𝑈𝐾 = 𝑈𝐽 ′ = 𝐵 and 𝑠 is a section over 𝐵 that extends 𝑠; thus, the theorem is
proven. Suppose 𝐾 ≠= 𝐽

′
. We then choose 𝑗 ∈ 𝐽 ′ \ 𝐾.

The continuous function

: 𝑢−1𝑗 ]0, 1] → 𝐼, 𝑤(𝑏) = min

(
1,
𝑢𝐾 (𝑏)
𝑢 𝑗 (𝑏)

)
, 𝑏 ∈ 𝑢−1𝑗 ]0, 1],

provides a halo 𝑤−1]0, 1] of 𝑤1 (1). Let 𝑤1 (1) ⊂ 𝑈𝐾 and 𝑠 |𝑤−1 (1) has an extension
𝑠
′
over 𝑢1

𝑗
]0, 1], since 𝑝 has the SEP over 𝑢1

𝑗
]0, 1] ⊂ 𝑉 𝑗 by Theorem (2.145) and

𝑠 |𝑤−1 (1) can be extended to 𝑤−1]0, 1] by 𝑠 |𝑤−1 ]0, 1]. Let 𝑡 : 𝑈𝐾 ∪ 𝑈{ 𝑗 } → 𝐸

de�ned by

𝑡 (𝑏) :=
{
𝑠(𝑏) for 𝑢 𝑗 (𝑏) ≤ 𝑢𝐾 (𝑏)
𝑠
′ (𝑏) for 𝑢 𝑗 (𝑏) ≥ 𝑢𝐾 (𝑏).

Then (𝐾, 𝑠) ≤ (𝐾 ∪ { 𝑗}, 𝑡) and this contradicts the maximality of (𝐾, 𝑠). □

Remark 2.148. In the proof of the section extension theorem, Theorem (2.145)
can be avoided by making the following stricter assumption: There exists a
numerable cover (𝑉 𝑗 ) of 𝐵 such that 𝑝𝑈 : 𝑝−1𝑈 → 𝑈 has the SEP for every open
subset 𝑈 that lies in some 𝑉 𝑗 . This property is easily seen in many applications
that we will make later.
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Finally, we mention an immediate consequence of the proven theorems.

Theorem 2.149. If 𝑝 : 𝐸 → 𝐵 is numerable locally trivial with a contractible
�bre, then 𝑝 has the SEP and hence also a section. The assumption on 𝑝

should explicitly state: there exists a numerable cover (𝑉 𝑗 | 𝑗 ∈ 𝐽) of 𝐵 and a
family (𝐹𝑗 | 𝑗 ∈ 𝐽) of contractible topological spaces 𝐹𝑗 such that for all 𝑗 ∈ 𝐽,
𝑝𝑉𝑗 : 𝑝

−1𝑉 𝑗 → 𝑉 𝑗 in 𝒯ℴ𝓅𝑉𝑗 is isomorphic to proj1 : 𝑉 𝑗 × 𝐹𝑗 → 𝑉 𝑗

For the proof, see Dold [6].

2.6 The �local-global� transition in the case of

�brations

2.6.1 The "local-global" transition for �brewise homotopy
equivalences

Theorem 2.150. Let 𝑝
′
: 𝐸

′ → 𝐵 and 𝑝 : 𝐸 → 𝐵 be spaces over 𝐵, let
𝑓 : 𝐸

′ → 𝐸 be a map over 𝐵 (i.e., 𝑝 𝑓 = 𝑝
′
), and let (𝑉 ( 𝑗) | 𝑗 ∈ 𝐽) be a numerable

covering of 𝐵. For every 𝑗 ∈ 𝐽, we have an induced map

𝑓 𝑗 := 𝑓𝑉 ( 𝑗 ) : 𝑝
′

𝑉 ( 𝑗 ) → 𝑝𝑉 ( 𝑗 )

(cf. (2.120)).
If 𝑓 𝑗 is a �brewise homotopy equivalence for every 𝑗 ∈ 𝐽, then 𝑓 is also a

�breise homotopy equivalence.

Proof. We transfer the construction of the mapping path space (cf. 2.23) to the
category 𝒯ℴ𝓅𝐵 and consider the space

𝑊 = 𝑊 𝑓 ,𝐵 = {(𝑒, 𝑤) | 𝑓 (𝑒) = 𝑤(0), 𝑝𝑤 = const} ⊂ 𝐸 ′ × 𝐸 𝐼

together with the mappings

𝑘 : 𝐸
′ → 𝑊, 𝑘 (𝑒) = (𝑒, 𝑓 (𝑒))

𝑟 : 𝑊 → 𝐸, 𝑟 (𝑒, 𝑤) = 𝑤(1)

(we identify points in 𝐸 with the corresponding constant paths in 𝐸 𝐼 ). 𝑊 is
a space over 𝐵 by the map (𝑒, 𝑤) ↦→ 𝑝

′ (𝑒); 𝑘 and 𝑟 thus become maps over 𝐵.
Theorem (2.51) can be extended to the category 𝒯ℴ𝓅𝐵. Therefore:

(a) 𝑘 is an h-equivalence over 𝐵.

(b) 𝑟 is a �bration over 𝐵.

Because 𝑟𝑘 = 𝑓 , it follows from (a) that 𝑟 is an h-equivalence over 𝐵 if and
only if 𝑓 is an h-equivalence over 𝐵. The above construction can, of course, be
applied to any �bre-wise mapping. If we assume 𝑓 𝑗 , 𝑉 ( 𝑗) instead of 𝑓 , 𝐵, then
will resul the �bration over 𝑉 ( 𝑗)

𝑟 𝑗 : 𝑊 𝑓 𝑗 ,𝑉 ( 𝑗 ) := 𝑊 𝑗 → 𝑝−1(𝑉 ( 𝑗)) =: 𝑈 ( 𝑗).
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The reader should convince himself that the �bration 𝑟 𝑗 is equal to the �bration
induced by 𝑟 over 𝑈 ( 𝑗)

𝑟𝑈 ( 𝑗 ) : 𝑊𝑈 ( 𝑗 ) → 𝑈 ( 𝑗).
By assumption, 𝑓 is an h-equivalence over 𝑉 ( 𝑗), hence 𝑟 𝑗 is an h-equivalence
over 𝑉 ( 𝑗). By remark (b above and by Theorem (2.90), applied to the category
𝒯ℴ𝓅𝑉 ( 𝑗), 𝑟 𝑗 is shrinkable in 𝒯ℴ𝓅𝑉 ( 𝑗), hence shrinkable in 𝒯ℴ𝓅. By (2.143),
𝑟 𝑗 therefore has the SEP. Since 𝑟 𝑗 = 𝑟𝑈 ( 𝑗 ) and (𝑈 ( 𝑗) | 𝑗 ∈ 𝐽) is an enumberable
covering of 𝐸 (if (𝑣 𝑗 | 𝑗 ∈ 𝐽) is a numbering of (𝑉 ( 𝑗) | 𝑗 ∈ 𝐽 then (𝑣 𝑗 𝑝 | 𝑗 ∈ 𝐽) is
a numbering of (𝑉 ( 𝑗) | 𝑗 ∈ 𝐽).), 𝑟 has the SEP by Theorem (2.146). Therefore
there is a section 𝑠 : 𝐸 → 𝑊 of 𝑟. 𝑠 is itself a map over 𝐵. From the commutative
diagramme

𝐸
′ 𝑘 //

𝑓 ��

𝑊

𝑟
��

𝐸

𝑠

??

in 𝒯ℴ𝓅𝐵, we see that 𝑓 has an h-right inverse 𝑓
′
over 𝐵. (We have a projection

proj : 𝑊 → 𝐸
′
and can choose 𝑓 ′ = proj ◦𝑠.) The proof now ends according

to the familiar pattern: 𝑓
′

𝑉 ( 𝑗 ) is h-right inverse over 𝑉 ( 𝑗) to 𝑓 𝑗 , thus an h-

equivalence over 𝑉 ( 𝑗). Consequently, 𝑓
′
has an h-right inverse over 𝐵 and

therefore 𝑓
′
and hence 𝑓 are h-equivalences over 𝐵. □

De�nition 2.151. Let 𝔙 = (𝑉 𝑗 | 𝑗 ∈ 𝐽) be a covering of the space 𝐵. We say
𝔙 is null-homotopic if and only if every inclusion 𝑉 𝑗 ⊂ 𝐵 is null-homotopic (cf.
(0.22)).

Theorem 2.152. Let 𝑝 : 𝐸 → 𝐵 and 𝑝
′
: 𝐸

′ → 𝐵 be h-�brations and let
𝑓 : 𝐸 → 𝐸

′
be a map over 𝐵. Let 𝐵 have a numerable, null-homotopic covering

(𝑉 ( 𝑗) | 𝑗 ∈ 𝐽). If in every path component of 𝐵 there is a point 𝑏 for which
𝑓𝑏 : 𝐸𝑏 → 𝐸

′

𝑏
is an h-equivalence, then 𝑓 is an h-equivalence over 𝐵.

Proof. Let the inclusion 𝑉 ( 𝑗) ⊂ 𝐵 be homotopic to the constant map 𝑘 𝑗 . By
assumption, we can assume that 𝑓𝑏 ( 𝑗 ) for 𝑘 𝑗 (𝑉 ( 𝑗)) = {𝑏( 𝑗)} is an h-equivalence.
From Corollary (2.121) (b) we see that 𝑓𝑉 ( 𝑗 ) is an h-equivalence over 𝑉 ( 𝑗). The
claim follows from (2.150). □

2.6.2 The "local-global" transition for �brations and h-
�brations

Theorem 2.153. Let 𝑝 : 𝐸 → 𝐵 be a continuous map and let (𝑉 ( 𝑗) | 𝑗 ∈ 𝐽)
be a numerable covering of 𝐵. If 𝑝𝑉 ( 𝑗 ) is a �bration for all 𝑗 ∈ 𝐽, then 𝑝 is a
�bration.

Corollary 2.154. If 𝑝 is trivial over every set 𝑉 ( 𝑗), then 𝑝 is a �bration.

Remark 2.155 (Additional). If (𝑉 ( 𝑗) | 𝑗 ∈ 𝐽) is an open covering and 𝑝𝑉 (𝑖) is a
�bration for 𝑗 ∈ 𝐽, then 𝑝 has the CHP for paracompact spaces 𝑋.
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Proof. (of Theorem 2.153) We prove the theorem and point out the changes
that are necessary to prove the additional remark. We assume the following
situation:

𝑋
𝑓 //

𝑗0

��

𝐸

𝑝

��
𝑋 × 𝐼

𝜑
//

Φ

<<

𝐵

The proof of the theorem now proceeds as follows: (𝑈 ( 𝑗) = 𝜑−1𝑉 (𝑖) | 𝑗 ∈ 𝐽) is
a numerable cover of 𝑋 × 𝐼 (valid for theorem and the corollary). By Theorem
(2.140), there exists a numerable cover (𝑋𝑘 |𝑘 ∈ 𝐾) of 𝑋 and a family of positive
real numbers (𝜀𝑘 |𝑘 ∈ 𝐾) such that for |𝑡1 − 𝑡2 | < 𝜀𝑘 , there exists a 𝑗 ∈ 𝐽

with 𝑋𝑘 × [𝑡1, 𝑡2] ⊂ 𝑈 ( 𝑗). We show that for 𝑍 ⊂ 𝑋𝑘 𝑞𝑍 has the SEP. By the
section extension theorem (2.146), 𝑞 has a section corresponding to a homotopy
Φ : 𝑋 × 𝐼 → 𝐸 over 𝜑 with initial 𝑓 .

Let 𝑍 ⊂ 𝑋𝑘 . We want to show that 𝑞𝑍 has the SEP. By the correspondence
between sections and homotopies explained above, we must show: Let 𝑉 be
a halo of 𝐴 in 𝑍; let Φ𝑉 : 𝑉 × 𝐼 → 𝐸 be a homotopy with Φ𝑉 (𝑥, 0) = 𝑓 (𝑥),
𝑝Φ𝑉 (𝑥, 𝑡) = 𝜑(𝑥, 𝑡) for 𝑥 ∈ 𝑉 , 𝑡 ∈ 𝐼; then there exists a homotopy Φ : 𝑍 × 𝐼 → 𝐸

with 𝑝Φ = 𝜑|𝑍×𝐼 , Φ|𝐴×𝐼 = Φ𝑉 |𝐴×𝐼 and Φ(𝑧, 0) = 𝑓 (𝑧) for 𝑧 ∈ 𝑍. If 𝑝 is a �bration
over 𝜑(𝑍 × 𝐼), this follows from Theorem (2.62). We only know that for

0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 1 with 𝑡𝑖 − 𝑡𝑖−𝑖 < 𝜀𝑘

𝜑(𝑍 × [𝑡𝑖−1, 𝑡𝑖]) ⊂ 𝑉 ( 𝑗).
We can therefore apply Theorem (2.62) to 𝜑|𝑍×[𝑡𝑖−1 ,𝑡𝑖 ] . More precisely: Let

𝑤 : 𝑍 → 𝐼 be a function with 𝐴 ⊂ 𝑤−1(1), 𝑍 \ 𝑉 ⊂ 𝑤−1(0). Let 𝑊𝑖 = 𝑤−1 [𝑡𝑖 , 1],
𝑖 = 1, 2, . . . , 𝑛. Then 𝑊𝑖 is a halo of 𝑊𝑖+1 in 𝑍, 𝑖 = 1, 2, . . . , 𝑛 − 1, and 𝑉 is a halo
of 𝑊1. Using Theorem (2.62), we construct in sequence

Φ𝑖 : 𝑍 × [𝑡𝑖−1, 𝑡𝑖] → 𝐸, 𝑖 = 1, 2, . . . , 𝑛,

with

𝑝Φ = 𝜑|𝑍×[𝑡𝑖−1 ,𝑡𝑖 ] ,
Φ𝑖 (𝑧, 𝑡𝑖−1) = Φ𝑖−1 (𝑧, 𝑡𝑖−1) for 𝑧 ∈ 𝑍, 𝑖 > 1,

Φ1 (𝑧, 0) = 𝑓 (𝑧) for 𝑧 ∈ 𝑍,
Φ𝑖 |𝑊𝑖×[𝑡𝑖−1 ,𝑡𝑖 ] = Φ𝑉 |𝑊𝑖×[𝑡𝑖−1 ,𝑡𝑖 ] .

All Φ𝑖 together yield Φ : 𝑍 × 𝐼 → 𝐸 with 𝑝Φ = 𝜑|𝑧𝑍×𝐼 , Φ(𝑧, 0) = 𝑓 (𝑧) for 𝑧 ∈ 𝑍,
Φ|𝐴×𝐼 = Φ𝑉 |𝐴×𝐼 . □

Theorem 2.156. Let 𝑝 : 𝐸 → 𝐵 be a continuous map and let (𝑉 ( 𝑗) | 𝑗 ∈ 𝐽) be
a numerable covering of 𝑝. If 𝑝𝑉 ( 𝑗 ) is an h-�bration for all 𝑗 ∈ 𝐽, then 𝑝 is an
h-�bration.

Corollary 2.157. If 𝑝 is trivial over every set 𝑉 ( 𝑗), then 𝑝 is an h-�bration.
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Remark 2.158 (Additional). If (𝑉 ( 𝑗) | 𝑗 ∈ 𝐽) is an open covering and 𝑝𝑉 (𝑖) is an
h-�bration for 𝑗 ∈ 𝐽, then 𝑝 has the CHP up to homotopy for paracompact
spaces 𝑋.

Proof. (of Theorem 2.156) The proof is analogous to the proof of Theorem
(2.153). We again start from the situation

𝑋
𝑓 //

𝑗0

��

𝐸

𝑝

��
𝑋 × 𝐼

𝜑
//

Φ

<<

𝐵

only we now assume that 𝜑(𝑥, 𝑡) = 𝜑(𝑥, 0) for 𝑡 ≤ 1/2, because we are dealing
with h-�brations (see (2.75) (𝜀 = 1/2)).

As in the proof of Theorem (2.153), we consider the map 𝑞 : 𝑊 → 𝑋 and
have to show that 𝑞 has a section. As there, we choose the cover (𝑋𝑘) of 𝑋
and the family (𝜀𝑘). It su�ces again to show that for 𝑍 ⊂ 𝑋𝑘 , 𝑞𝑍 has the SEP.
So let 𝐴 ⊂ 𝑍 and 𝑉 be a closed halo of 𝐴 in 𝑍. A section 𝑠𝑉 of 𝑞𝑍 over 𝑉
corresponds to a homotopy Φ𝑉 : 𝑉 × 𝐼 → 𝐸 over 𝜑 with Φ𝑉 (𝑧, 0) = 𝑓 (𝑧) for
𝑧 ∈ 𝑉 . We construct Φ0 : 𝑉 × 𝐼 ∪ 𝑍 × [0, 𝑡1] → 𝐸 over 𝜑 with Φ0 |𝐴×𝐼 = Φ𝑉 |𝐴×𝐼
and Φ0 (𝑧, 0) = 𝑓 (𝑧) for 𝑧 ∈ 𝑍, if 𝑡1 < 1/2.

To this end, let 𝑤 : 𝑍 → 𝐼 be a function with 𝐴 ⊂ 𝑤−1(1), 𝑍 \ 𝑌 ⊂ 𝑤1 (0).
Let 𝜏𝑍 : 𝐼 → 𝐼 for 𝑡1 > 𝑤(𝑧) be the piecewise a�ne function that maps
(0, 𝑤(𝑧), 𝑡1, 1/2, 1) in sequence to (0, 𝑤(𝑧), 𝑤(𝑧), 𝑤(𝑧), 1/2, 1) and is a�ne in the
intermediate intervals; 𝜏𝑍 : 𝐼 → 𝐼 is equal to id𝐼 for 𝑡1 < 𝑤(𝑧). 𝜏𝑍 (𝑡) depends
continuously on (𝑧, 𝑡) ∈ 𝑍 × 𝐼.

We de�ne

Φ0 (𝑧, 𝑡) :=
{
(Φ𝑉 , 𝜏𝑍 (𝑡), for 𝑧 ∈ 𝑉
𝑓 (𝑧) for 𝑧 ∈ 𝑤−1(0), 0 ≤ 𝑡 ≤ 𝑡1.

Φ0 has the desired properties; in particular, it lies above 𝜑 because for 𝑡 < 1/2,
𝜑(𝑥, 𝑡) = 𝜑(𝑥, 0). We now choose 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 1, such that 𝑡1 < 1/2 and
𝑡𝑖+1−𝑡𝑖 < 𝜀𝑘 , (𝑖 = 1, . . . , 𝑛−1). Let𝑊𝑖 = 𝑤−1 [𝑡𝑖 , 1] for 𝑖 = 1, . . . , 𝑛 and let𝑊0 = 𝑉 .
Then, for 1 ≤ 𝑖 ≤ 𝑛 − 1, we inductively construct maps Φ𝑖 : 𝑍 × [𝑡𝑖−1, 𝑡𝑖+1] → 𝐸

over 𝜑 with Φ𝑖 |𝑊𝑖×[𝑡𝑖−1 ,𝑡𝑖+1 ] = Φ0 |𝑊𝑖×[𝑡𝑖−1 ,𝑡𝑖+1 ] and Φ𝑖 (𝑧, 𝑡𝑖−1) = Φ𝑖−1 (𝑧, 𝑡𝑖−1) for
𝑧 ∈ 𝑍, by applying Theorem (2.93). (The theorem applies to: 𝑊𝑖 instead of 𝐴,
𝑊𝑖−1 instead of 𝑉 , 𝑍 instead of 𝑋, [𝑡𝑖−1, 𝑡𝑖+1] instead of 𝐼, [𝑡𝑖−1, 𝑡𝑖] instead of
[0, 𝜀].) We de�ne Φ : 𝑍 × 𝐼 → 𝐸 by Φ(𝑧, 𝑡) = Φ𝑖 (𝑧, 𝑡) for 𝑡𝑖−1 ≤ 𝑡 ≤ 𝑡𝑖, 𝑖 < 𝑛 − 1
and Φ(𝑧, 𝑡) = Φ𝑛−1(𝑧, 𝑡) for 𝑡𝑛−2 ≤ 𝑡 ≤ 𝑡𝑛. Φ lies over 𝜑 and has the starting point
𝑓 |𝑍 ; the corresponding section of 𝑞𝑍 extends 𝑠𝑉 |𝐴, because Φ|𝐴×𝐼 = Φ𝑉 |𝐴×𝐼 . □

See Dold [6] for details.



Chapter 3

Homotopy sets and homotopy

groups

3.1 Action of fundamental groupoids

3.1.1 Fundamental groupoid

Let 𝐾 and 𝑋 be topological spaces. We de�ne a category 𝒫
𝐾𝑋 as follows:

Objects are continuous maps 𝑓 : 𝐾 → 𝑋 , also written as (𝑋, 𝑓 ), since we want
to consider 𝐾 as �xed. Morphisms from (𝑋, 𝑓 ) to (𝑋, 𝑔) are continuous maps

𝑢 : 𝐾 × [0, 𝑝𝑢] → 𝑋, 𝑝𝑢 ∈ R+

with
𝑢(𝑘, 0) = 𝑓 (𝑘), 𝑢(𝑘, 𝑝𝑢) = 𝑔(𝑘)

for all 𝑘 ∈ 𝐾. A composition, written (𝑢, 𝑣) ↦→ 𝑣 + 𝑢, is de�ned as

(𝑣 + 𝑢)) (𝑘, 𝑡) :=
{
𝑢(𝑘, 𝑡), 0 ≤ 𝑡 ≤ 𝑝𝑢,
𝑣(𝑘, 𝑡 − 𝑝𝑢), 𝑝𝑢 ≤ 𝑡 ≤ 𝑝𝑢 + 𝑝𝑣 ,

𝑘 ∈ 𝐾.

(so 𝑝𝑢+𝑣 = 𝑝𝑢 + 𝑝𝑣).
𝒫
𝐾𝑋 is called the category of paths of 𝑋 under 𝐾 and if 𝐾 is a point space,

the category of paths in 𝑋. We now de�ne a natural equivalence relation (cf.
(0.4)) in 𝒫

𝐾𝑋 (essentially the homotopy relative to the endpoints). Let 𝑢 :
𝐾 × [0, 𝑝𝑢] → 𝑋 and 𝑣 : 𝐾 × [0, 𝑝𝑣] → 𝑋 be morphisms from 𝒫

𝐾𝑋 of (𝑋, 𝑓 )
to (𝑋, 𝑔). 𝑢 is called equivalent to 𝑣 if there exist constant morphisms 𝑢

′
and

𝑣
′
from (𝑋, 𝑔) to (𝑋, 𝑔) (i.e. 𝑢′ (𝑘, 𝑡) = 𝑢′ (𝑘, 0) and correspondingly for 𝑣

′
), such

that 𝑢
′ + 𝑢 and 𝑣

′ + 𝑣 have the same domain 𝐾 × [0, 𝑝] and (considered as maps
𝐾 × [0, 𝑝] → 𝑋) are homotopic relative to 𝐾 × {0, 𝑝}.

The reader con�rms that this gives an equivalence relation on the morphism
sets that is compatible with �+�. We can therefore move on to the factor cat-
egory, which we denote by Π𝐾𝑋. In Π𝐾𝑋, every morphism is an isomorphism
(Π𝐾𝑋 is a groupoid).

109
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Π𝐾𝑋 is called the fundamental groupoid of 𝑋 under 𝐾. The case where 𝐾
is a point space is particularly important. We then speak of the fundamental
groupoid Π𝑋 of 𝑋. The objects of Π𝑋 �are� then simply the points of 𝑋. If we
pick a point 𝑥 ∈ 𝑋, then the morphisms in Π𝑋 from 𝑥 to 𝑥 form a group with
respect to composition, the fundamental group 𝜋1 (𝑋, 𝑥) of 𝑋 at the point 𝑥.

3.1.2 Functoriality of fundamental groupoids

Let 𝑖 : 𝐾 ↩→ 𝐴 be a space under 𝐾. We �rst assume that 𝑖 is a closed co�bration;
later (3.1.7), we weaken to h-co�bration.

We want to assign a map

𝑢̂ : [𝐴, (𝑋, 𝑢0)]𝐾 → [𝐴, (𝑋, 𝑢𝑝)]𝐾

of the homotopy sets under 𝐾 (= morphism sets in 𝒯ℴ𝓅
𝐾 ℎ) to a morphism

𝑢 : 𝐾 × [0, 𝑝] → 𝑋 from (𝑋, 𝑢0) to (𝑋, 𝑢𝑝) in 𝒫
𝐾𝑋. (Let 𝐴 denote the object

𝑖 : 𝐾 → 𝐴.)
Let 𝑓 : 𝐴 → 𝑋 be given with 𝑓 𝑖 = 𝑢0. A translation of 𝑓 along 𝑢 is a map

𝜑 : 𝐴× [0, 𝑝] → 𝑋 with 𝜑◦ (𝑖× id) = 𝑢 and 𝜑0 = 𝑓 . There do exist translations of
𝑓 along 𝑢: This is clear for 𝑝 = 0 and follows for 𝑝 > 0, because 𝑖 is a co�bration.
We want to set

𝑢̂[ 𝑓 ]𝐾 = [𝜑𝑝]𝐾 .

Some preparations for this.

Proposition 3.1. Let 𝜓 : 𝑓
𝐾≃ 𝑓

′
. Let 𝜒 : 𝑢 ≃ 𝑢′ rel𝐾 × {0, 𝑝}. Let 𝜑

′
be a

translation of 𝑓
′
along 𝑢′. Then [𝜑𝑝]𝐾 = [𝜑′ ]𝐾

Proof. 𝜓, 𝜒, 𝜑, and 𝜑
′
together de�ne a map from 𝐾×[0, 𝑝]×𝐼∪𝑈𝐴×[0, 𝑝]×{0, 𝑝}

to 𝑋, which we want to extend to 𝐴 × [0, 𝑝] × 𝐼. This is a homotopy extension
problem for

𝑗 : 𝐾 × 𝐼 ∪ 𝐴 × {0, 1} ⊂ 𝐴 × 𝐼

([0, 𝑝] is the homotopy interval); 𝑗 is a co�bration by the product theorem
(1.104). The end of the extended homotopy yields a homotopy 𝜑𝑝 ≃ 𝜑

′
under

𝐾. (Illustrated by drawing!) □

In particular, we have shown with (3.1) that by setting 𝑢̂[ 𝑓 ]𝐾 = [𝜑𝑝]𝐾 a
map 𝑢̂ is induced.

Proposition 3.2. Let 𝑢 be the constant homotopy. Then 𝑢̂ is the identity
because a constant homotopy can be used to translate along 𝑢.

Proposition 3.3. Let 𝑢, 𝑣 be in 𝒫
𝐾𝑋 and let 𝑣 + 𝑢 be de�ned. Then�𝑣 + 𝑢 = 𝑣̂𝑢̂.

Proof. If one shifts 𝑓 with 𝜑 along 𝑢 and 𝜑𝑝 with 𝜓 along 𝑣, then 𝜓 + 𝜑 is a
shift of 𝑓 along 𝑣 + 𝑢. □
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From (3.1) it follows that 𝑢̂ depends only on the class [𝑢] of 𝑢 in Π𝐾𝑋. We

set [̂𝑢] := 𝑢̂. By (3.2) and (3.3) we obtain:

Theorem 3.4. The assignment (𝑔 : 𝐾 → 𝑋) ↦→ [𝐴, (𝑋, 𝑔)]𝐾 and [𝑢] ↦→ [̂𝑢]
de�nes a covariant functor

Π𝐾𝑋 → 𝒮ℯ𝓉𝓈

from Π𝐾𝑋 into the category of sets.

Corollary 3.5. For every 𝑢, 𝑢̂ is bijective since [𝑢] is an isomorphism in Π𝐾𝑋.

Remark 3.6. If 𝐾 is a one-point space, then [𝐴, (𝑋, 𝑔)] is canonically a ponted
set. 𝑢̂ is a pointed map. As a proof, note that a constant map 𝑓 : 𝐴→ {𝑢(0)} ⊂
𝑋 can be translated along a path

𝑢 : [0, 𝑝] = 𝐾 × [0, 𝑝] → 𝑋

by
𝜑 : (𝑎, 𝑡) ↦→ 𝑢(𝑡)

3.1.3 Action of 𝜋1

The functor just constructed measures the di�erence between �homotopic in
𝒯ℴ𝓅

𝐾 � and �homotopic in 𝒯ℴ𝓅�.

Theorem 3.7. Let 𝑓 : 𝐴 → (𝑋, 𝑔) and 𝑓
′
: 𝐴𝑡𝑜(𝑋, 𝑔′ be morphisms in 𝒯ℴ𝓅.

Then [ 𝑓 ] = [ 𝑓 ′ ] if and only if there exists a 𝑢 ∈ 𝒫
𝐾𝑋 from (𝑋, 𝑔) to (𝑋, 𝑔′ )

such that [ 𝑓 ′ ]𝐾 = 𝑢̂[ 𝑓 ]𝐾 .

Proof. If [ 𝑓 ′ ]𝐾 = 𝑢̂[ 𝑓 ]𝐾 , then [ 𝑓 ′ ]𝐾 = [𝜑𝑝]𝐾 , where 𝜑 is a translation of 𝑓
along 𝑢. Thus [ 𝑓 ] = [𝜑𝑜] = [𝜑𝑝] = [ 𝑓

′ ].
Conversely, if 𝜑 is a homotopy from 𝑓 to 𝑓

′
, then 𝑓 ′ results from 𝑓 by translation

along 𝑢 = 𝜑 ◦ (𝑖 × id𝐼 ). □

In particular, if 𝐾 is a one-point space and 𝑋 ∈ Obj(𝒯ℴ𝓅), then we consider
the map 𝑣 : [𝐴, 𝑋]𝑜 → [𝐴, 𝑋], 𝑣 [ 𝑓 ]𝑜 = [ 𝑓 ]. Then (3.1.2) speci�cally yields an
action of the fundamental group 𝜋1 (𝑋, 0) on [𝐴, 𝑋]𝑜.

Recall that an action of a group 𝐺 on a set 𝑀 is a map 𝑎 : 𝐺 ×𝑀 → 𝑀 with
the properties 𝑎(id, 𝑚) = 𝑚, 𝑎(𝑔, 𝑎(ℎ, 𝑚)) = 𝑎(𝑔ℎ, 𝑚).

𝐺 × 𝐺 × 𝑀 id𝐺 ×𝑎 //

��

𝐺 × 𝑀
𝑎

��
𝐺 × 𝑀

𝑎
// 𝑀

(𝑔, ℎ, 𝑚) � //
_

��

(𝑔, 𝑎(ℎ, 𝑚))_

��
(𝑔ℎ, 𝑚) � // 𝑎(𝑔ℎ, 𝑚) = 𝑎(𝑔, (𝑎(ℎ, 𝑚))

Theorem 3.8. 𝑣 is

(a) injective ⇔ 𝜋1 (𝑋, 𝑜) acts trivially on [𝐴, 𝑋]𝑜.
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(b) surjective ⇔ 𝑋 is path-connected.

Proof. (b): (⇐) Let 𝑋 be path-connected, and let 𝑓 : 𝐴 → 𝑋 be given. There
is a path 𝑢 from 𝑓𝑜 to 𝑜. If we shift 𝑓 along 𝑢, the result is a pointed map
𝑓
′
: 𝐴→ 𝑋 with [ 𝑓 ] = [ 𝑓 ′ ].

(⇒) Let 𝑣 be surjective, 𝑓𝑥 : 𝐴→ {𝑥} ⊂ 𝑋 and 𝑣 [ 𝑓 ′ ]𝑜 = [ 𝑓𝑥]. If we restrict the
homotopy from 𝑓

′
to 𝑓𝑥 to 𝑜 × 𝐼, we obtain a path from 𝑜 to 𝑥.

(a): (⇒) Let 𝑣 be injective. Then, by the previous theorem, for 𝑧 ∈ 𝜋1 (𝑋, 𝑜),
𝑥 ∈ [𝐴, 𝑋]𝑜, 𝑣( 𝑧̂𝑥) = 𝑣(𝑥), hence 𝑧̂𝑥 = 𝑥; i.e., 𝑧̂ acts trivially for every 𝑧 ∈ 𝜋1 (𝑋, 𝑜).
(⇐) Let 𝑣𝑥 = 𝑣𝑦. Then there exists some 𝑧 ∈ 𝜋1 (𝑋, 𝑜) with 𝑧̂𝑥 = 𝑦. If 𝜋1 (𝑋, 𝑜)
acts trivially, then 𝑥 = 𝑦; and hence 𝑣 is injective. □

De�nition 3.9. 𝑋 is called 𝑛-simple if 𝑋 is S𝑛-simple. 𝑋 is called simple if
𝑋 is 𝐴-simple for every well-pointed space 𝐴. Here, 𝐴 ∈ Obj(𝒯ℴ𝓅

𝑜) is called
well-pointed if {𝑜} ∈ 𝐴 is a closed co�beration.

In this context, the following notion should also be mentioned: 𝐴 ∈ Obj(𝒯ℴ𝓅
𝑜)

is called h-well-pointed if {𝑜} ∈ 𝐴 is an h-co�bration.

3.1.4 Example

Every element of 𝜋1 (𝑋, 𝑜) can be represented by a map 𝑢 : [0, 1] → 𝑋 with
𝑢(0) = 𝑢(1) = 𝑜. If we combine maps S1 → 𝑋 with the map 𝑞 : 𝐼 → S1,
𝑞(𝑡) = (cos 2𝜋𝑡, sin 2𝜋𝑡), this induces a bijective map

[S1, (𝑋, 𝑜)]𝑜 � 𝜋1 (𝑋, 𝑜)

If we identify with this map, the action of 𝜋1 (𝑋, 𝑜) on [S1, (𝑋, 𝑜)]𝑜 takes the
form

𝑢̂[ 𝑓 ] = [𝑢] + [ 𝑓 ] − [𝑢]
(Proof is left as an exercise). As a consequence we get: A space 𝑋 is 1-simple if
and only if 𝜋1 (𝑋, 𝑜) is abelian and 𝑋 is path-connected.

3.1.5 An h-equivalence induces a bijection.

Lemma 3.10. Let 𝜓 : 𝑋 × 𝐼 → 𝑌 be a homotopy, 𝜓 : 𝜉 ≃ 𝜂, and let 𝑔 : 𝐾 → 𝑋

be an object in 𝒯ℴ𝓅
𝐾 . Then the following diagramme is commutative:

[𝐴, (𝑋, 𝑔)]𝐾
𝜉∗

ww

𝜂∗

''
[𝐴, (𝑌, 𝜉𝑔)]𝐾

𝜓◦(𝑔×id)
// [𝐴, (𝑌, 𝜂𝑔)]𝐾

Here, 𝜉∗ (corresponding to 𝜂∗) is de�ned by 𝜉∗ [ 𝑓 ]𝐾 := [𝜉 𝑓 ]𝐾 for 𝑓 ∈ [𝐴, (𝑋, 𝑔)]𝐾 .

Proof. Let [ 𝑓 ]𝐾 ∈ [𝐴, (𝑋, 𝑔)]𝐾 . Then 𝜓 ◦ ( 𝑓 × id) is a translation of 𝜉 𝑓 along
𝜓 ◦ (𝑔 × id). □
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Theorem 3.11. Let 𝜉 : 𝑋 → 𝑌 be an ordinary h-equivalence. Then 𝜉∗ :
[𝐴, (𝑋, 𝑔)]𝐾 → [𝐴, (𝑌, 𝜉𝑔)]𝐾 is bijective.

Corollary 3.12. If 𝐴, 𝑋, 𝑌 and 𝜉 are pointed and 𝜉 is a (not necessarily
pointed) h-equivalence, then 𝜉∗ : [𝐴, 𝑋]𝑜 → [𝐴,𝑌 ]𝑜 is bijective.

Proof. Let 𝜉
′
be h-inverse to 𝜉 and let 𝜓 be a homotopy from 𝜉

′
𝜉 to id𝑋. Then,

by the lemma, the following diagramme is commutative.

[𝐴, (𝑌, 𝜉𝑔)]𝐾
𝜉
′
∗

((
[𝐴, (𝑋, 𝑔)]𝐾

𝜉∗
77

�

id∗ ''

[𝐴, (𝑋, 𝜉 ′𝜉𝑔)]𝐾

𝜓◦(𝑔×𝑖𝑑∗ )
�

vv
[𝐴, (𝑋, 𝑔)]𝐾

So 𝜉
′
∗ has a right inverse. Similarly, we see that 𝜉

′
∗ has a left inverse. Hence, 𝜉

′
∗

and 𝜉∗ are bijective. □

3.1.6 Naturality of induced maps

Theorem 3.13. Let 𝐾 → 𝐵 and 𝐾 → 𝐴 be closed co�brations. Given 𝛼 : 𝐵𝑡𝑜𝐴
in 𝒯ℴ𝓅

𝐾 , 𝜉 : 𝑋 → 𝑌 in 𝒯ℴ𝓅, and 𝑢 : 𝐾 × [0, 𝑝] → 𝑋 in 𝒫
𝐾𝑋. Then the

following diagramme is commutative.

[𝐴, (𝑋, 𝑢0)]𝐾
𝑢 //

[𝛼, 𝜉 ]𝐾
��

[𝐴, (𝑋, 𝑢𝑝)]𝐾

[𝛼, 𝜉 ]𝐾
��

[𝐵, (𝑌, 𝜉𝑢0)]𝐾
𝜉𝑢

// [𝐵, (𝑌, 𝜉𝑢𝑝)]𝐾

Here [𝛼, 𝜉]𝐾 : [ 𝑓 ]𝐾 ↦→ [𝜉 𝑓 𝛼]𝐾

Proof. If 𝑓 is translated along 𝑢 with 𝜑, then 𝜉 𝑓 𝛼 can be translated along 𝜉𝑢
with 𝜉𝜑(𝛼 × id[0, 𝑝]). □

3.1.7 Case 𝑖 : 𝐾 → 𝐴 s a h-co�bration.

We want to generalise ��(3.1.2) - (3.1.6) to this case. By Corollary (1.75) there
exists a closed co�bration 𝑗 : 𝐾 → 𝐵 and an h-equivalence 𝛼 : 𝐵 → 𝐴 under 𝐾.
We de�ne

𝑢̂ : [𝐴, (𝑋, 𝑢0)]𝐾 → [𝐴, (𝑋, 𝑢𝑝)]𝐾
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by stating that

[𝐴, (𝑋, 𝑢0)]𝐾
𝑢 //

� 𝛼∗

��

[𝐴, (𝑋, 𝑢𝑝)]𝐾

𝛼∗�

��
[𝐵, (𝑋,0 )]𝐾

𝜉𝑢

// [𝐵, (𝑋, 𝑢𝑝)]𝐾

is commutative (𝛼∗ is given by 𝛼∗ [ 𝑓 ]𝐾 := [ 𝑓 𝛼]𝐾 .) By (3.1.6) it follows that this
de�nition is independent of the choice of 𝑗 : 𝐾 → 𝐵 and 𝛼.

The propositions, theorems, and corollaries from (3.1.2) - (3.1.6) can now
be applied to the more general case. Similarly for the de�nition of 𝐴-simplicity:
if a space is 𝐴-simple for every well-pointed space, then it is also 𝐴-simple for
every h-well-pointed pace; thus, the de�nition of �simplicity� does not change
its content.

Remark 3.14. Theorem (1.62) can be viewed as a special case of the theory
presented here:
i.e, a comparison in 𝒯ℴ𝓅ℎ and 𝒯ℴ𝓅

𝐾 ℎ between

isomorphisms in Theorem (1.62), vs

morphisms here.

3.1.8 Category of pairs

For a category ℭ we have formed in (0.16) the category of pairs ℭ(2). ℭ(2) has
as objects the morphisms 𝑎 : 𝐴 → 𝐴

′
, 𝑔 : 𝑋 → 𝑋

′
, . . . of ℭ and as morphisms

𝑎 → 𝑔 for the pairs ( 𝑓 : 𝐴→ 𝑋, 𝑓
′
: 𝐴

′ → 𝑋
′
) with 𝑔 𝑓 = 𝑓

′
𝑎.

𝐴
𝑓 //

𝑎
��

𝑋

𝑔

��
𝐴
′

𝑓
′
// 𝑋
′

We want to consider the category of pairs in particular for ℭ = 𝒯ℴ𝓅
𝐾 . In

𝒯ℴ𝓅
𝐾 (2) we have a notion of homotopy: A homotopy is a set ( 𝑓𝑡 , 𝑓

′
𝑡 ), 𝑡 ∈ 𝐼, of

morphisms from 𝒯ℴ𝓅
𝐾 (2) such that 𝑓𝑡 and 𝑓

′
𝑡 are homotopies in 𝒯ℴ𝓅

𝐾 .
These concepts can obviously be generalised. We will also use the category

𝒯ℴ𝓅
𝐾 (𝑛) (𝑛 ≥ 1): objects are ( 𝑓1, . . . , 𝑓 𝑛 − 1, 𝑖)

𝐾
𝑖−→ 𝑋1

𝑓1−−→ 𝑋2
𝑓2−−→ · · ·

𝑓𝑛−1−−−→ 𝑋𝑛

and morphisms are commutative diagrammes

𝐾
𝑖 // 𝑋1

𝑓1 //

��

𝑋2
𝑓2 //

��

· · ·
𝑓𝑛−1 // 𝑋𝑛

��
𝐾

𝑗
// 𝑌1 𝑔1

// 𝑌2 𝑔2
// · · ·

𝑔𝑛−1
// 𝑌𝑛
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The de�nition of a homotopy concept in 𝒯ℴ𝓅
𝐾 (𝑛) is clear.

3.1.9 Action of fundamental groupoids generalised

The action of the fundamental groupoid can be generalised to 𝒯ℴ𝓅
𝐾 (2) or

𝒯ℴ𝓅
𝐾 (𝑛). We sketch this for 𝒯ℴ𝓅

𝐾 (2).K
Let 𝐾

𝑖−→ 𝐴
𝑗
−→ 𝐴

′
be closed co�brations, let 𝑔 : 𝑋 → 𝑋

′
and 𝑢 : 𝐾×[0, 𝑝] → 𝑋

be continuous maps. We want to de�ne a map

𝑢̂ : [( 𝑗 , 𝑖), (𝑔, 𝑢0)]𝐾 → [( 𝑗 , 𝑖), (𝑔, 𝑢𝑝)]𝐾

between homotopy sets in 𝒯ℴ𝓅
𝐾 (2).

Let [( 𝑓 , 𝑓 ′ )]𝐾 be given (with 𝑔 𝑓 = 𝑓
′
𝑗 , 𝑓 𝑖 = 𝑢0). Since 𝑖 and 𝑗 are co�-

brations, one can �rst �nd a homotopy 𝜑 : 𝐴 × [0, 𝑝] → 𝑋 with 𝜑0 = 𝑓 and
𝜑 ◦ (𝑖 × id) = 𝑢 and then a homotopy 𝜑

′
: 𝐴

′ × [0, 𝑝] → 𝑋 ′ with 𝜑
′
0 = 𝑓

′
and

𝜑
′ ◦ ( 𝑗 × id) = 𝑔 ◦ 𝜑. (𝜑, 𝜑′ ) can be called a translation of ( 𝑓 , 𝑓 ′ ) along 𝑢. We set

𝑢̂[( 𝑓 , 𝑓 ′ )]𝐾 = [(𝜑, 𝜑′ )]𝐾 .

One can be convinced that this induces a well-de�ned map 𝑢̂. Earlier theorems
can also be transferred.

Theorem 3.15. The map (ℎ : 𝐾 → 𝑋) ↦→ [( 𝑗 , 𝑖), (𝑔, ℎ)]𝐾 and [𝑢] ↦→ 𝑢̂ =: [̂𝑢]
de�nes a functor

Π𝐾𝑋 → 𝒮ℯ𝓉𝓈.

Theorem 3.16. Let ( 𝑓0, 𝑓
′
0) → ( 𝑗 , 𝑖) → (𝑔, 𝑢0) and ( 𝑓1, 𝑓

′
1) : ( 𝑗 , 𝑖) → (𝑔, 𝑢1) be

morphisms in 𝒯ℴ𝓅
𝐾 (2). Then [( 𝑓0, 𝑓

′
0)] = [( 𝑓1, 𝑓

′
1)] in 𝒯ℴ𝓅(2)ℎ if and only

if there exists some 𝑢 ∈ 𝒫𝐾𝑋 from (𝑋, 𝑢0 to (𝑋, 𝑢1) such that

[( 𝑓1, 𝑓
′
1)]𝐾 = 𝑢̂[( 𝑓0, 𝑓

′
0)]𝐾 .

Speci�cally, if 𝐾 is a one-point space and 𝑗 and 𝑔 are pointed maps, then we
are interested in

[ 𝑗 , 𝑔]𝑜 → [ 𝑗 , 𝑔] .

If this map is bijective, then 𝑔 is called 𝑗-simple. If 𝑗 is the inclusion S𝑛−1 ⊂ E𝑛,
we say 𝑛-simple instead of 𝑗-simple.

(3.1.6) also has its counterpart here, which, as in (3.1.7), can be used to
replace �closed co�bration� in the assumptions with �h-co�bration� (see the fol-
lowing section).

3.1.10 (3.1.5) and (3.1.7) generalised

While (3.1.9) almost automatically regenerates what was said earlier and we
could therefore be brief, we need to go into more detail about generaliations of
(3.1.5) and (3.1.7).
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Theorem 3.17. Let

𝐾
𝑓0−−→ 𝐴1

𝑓1−−→ 𝐴2
𝑓2−−→ · · ·

𝑓𝑛−1−−−→ 𝐴𝑛 (3.18)

be a sequence of h-co�brations 𝑓 <, regarded as an object in 𝒯ℴ𝓅
𝐾 (𝑛). Then

there exists an object

𝐾
𝑔0−−→ 𝐵1

𝑔1−−→ 𝐵2
𝑔2−−→ · · ·

𝑔𝑛−1−−−−→ 𝐵𝑛 (3.19)

in 𝒯ℴ𝓅
𝐾 (𝑛) with closed co�brations 𝑔𝑖 that is h-equivalent to (3.18) in𝒯ℴ𝓅

𝐾 (𝑛).

Proof. We proceed by induction on 𝑛. For 𝑛 = 1, see 1.75.
Let the following diagramme represent an h-equivalence in 𝒯ℴ𝓅

𝐾 (𝑛−1), where
𝑛 ≥ 2:

𝐾
𝑓0 // 𝐴1

//

ℎ1

��

· · · // 𝐴𝑛−1

ℎ𝑛−1
��

𝐾
𝑔0
// 𝐵2

// · · · // 𝐵𝑛−1

Let the following diagramme be a Cartesian square:

𝐴𝑛−1
𝑓𝑛−1 //

ℎ𝑛−1
��

𝐴𝑛

ℎ

��
𝐵𝑛−1

𝑖
// 𝐵

Then 𝑖 is an h-co�bration and ℎ is an h-equivalence (see (2.132) (b), (2.137)).
We replace 𝑖 by a closed co�bration 𝑔𝑛−1 such that 𝑘 is an h-equivalence under
𝐵𝑛−1:

𝐵𝑛−1
𝑖 //

𝑔𝑛−1 ""

𝐵

𝑘

��
𝐵𝑛

Let ℎ𝑛 = 𝑘ℎ. We show that (ℎ1, . . . , ℎ𝑛) is the equivalence we are looking for.
Let (ℎ′1, . . . , ℎ

′
𝑛−1) be h-inverse in 𝒯ℴ𝓅

𝐾 (𝑛 − 1) to (ℎ1, . . . , ℎ𝑛−1), and let 𝜑𝑛−1
be a homotopy from ℎ

′
𝑛−1ℎ𝑛−1 to id𝐴𝑛−1 , which is somewhat constant. Then

there is ℎ
′
𝑛 : 𝐵𝑛 → 𝐴𝑛 and 𝜑𝑛 : ℎ

′
𝑛ℎ𝑛 ≃ id𝐴𝑛 with

ℎ
′
𝑛𝑔𝑛−1 = 𝑓𝑛−1ℎ

′
𝑛−1

and
𝜑𝑛 ( 𝑓𝑛−1(𝑎), 𝑡) = 𝑓𝑛−1𝜑𝑛−1(𝑎,min(2𝑡, 1)).

From this it easily follows that (ℎ′1, . . . , ℎ
′
𝑛) has an h-right inverse (ℎ1, . . . , ℎ𝑛)

(assume a constant homotopy at homotopies 𝜑1, . . . , 𝜑𝑛−1). The existence of ℎ
′
𝑛

and 𝜑𝑛 with the properties mentioned can be seen from the proof of theorem
(1.76). □
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3.1.11 The category 𝒯ℴ𝓅(𝑛)
From the category 𝒯ℴ𝓅(𝑛), let the objects

(𝑖𝜈) : 𝐴1
𝑖1−→ 𝐴2

𝑖2−→ · · · 𝑖𝑛−1−−−→ 𝐴𝑛

( 𝑓𝜈) : 𝑋1
𝑓1−−→ 𝑋2

𝑓2−−→ · · ·
𝑓𝑛−1−−−→ 𝑋𝑛

(𝑔𝜈) : 𝑌1
𝑔1−−→ 𝑌2

𝑔2−−→ · · ·
𝑔𝑛−1−−−−→ 𝑌𝑛

be given and the morphism (𝜉𝜈) : ( 𝑓𝜈) → (𝑔𝜈). Let 𝑖𝜈 be h-co�brations, and
𝜉𝜈 : 𝑋𝜈 → 𝑌𝜈 be h-equivalences. (𝜉𝜈) induces a map between homotopy sets

(𝜉𝜈)∗ : [(𝑖𝜈), ( 𝑓𝜈)] → [(𝑖𝜈), (𝑔𝜈)] .

Theorem 3.20. (𝜉𝜈)∗ is bijective.

Proposition 3.21 (Addition). If 𝑓𝜈 and 𝑔𝜈 are h-co�brations, then (𝜉𝜈) is an
h-equivalence in 𝒯ℴ𝓅(𝑛).

We prove the theorem by induction on 𝑛. The induction step is based on the
following Lemma 3.23 and 3.24. Because of (3.1.10), we can restrict ourselves
to the case that the 𝑖𝜈 are closed co�brations.

Lemma 3.22. In the commutative digramme bellow let 𝑗 be an h�co�brartion
and 𝜉 be an h-equivalence.

𝐴
𝑗 //

𝑓

��

𝐵

𝑔

��
𝑋

𝜉
// 𝑌

Then there is a map 𝐹 : 𝐵→ 𝑋 with 𝐹 𝑗 = 𝑓 and 𝜉𝐹 ≃ 𝑔 rel 𝐴.

Proof. We consider 𝑓 : 𝐴→ 𝑋 and 𝑔 𝑗 : 𝐴→ 𝑌 as objects of 𝒯ℴ𝓅
𝐴. 𝜉 induces

𝜉∗ : [(𝐵, 𝑗), (𝑋, 𝑓 )]𝐴→ [(𝐵, 𝑗), (𝑌, 𝑔 𝑗)]𝐴.

By (3.1.5), 𝜉∗ is bijective. Hence, there exists 𝐹 such that 𝜉∗𝐹𝐴 = [𝑔]𝐴, Q.E.D.
□

Lemma 3.23. Given a commutative diagramme below in which 𝑖 is a closed co�-
bration, 𝜉 and 𝜉

′
are h-equivalences and (𝜉𝑎0, 𝜉

′
𝑎
′
0) is homotopic to (𝜉𝑎1, 𝜉

′
𝑎
′
1)

by a homotopy (𝜑, 𝜑′ ).

𝐴
𝑎0 ,𝑎1 //� _

𝑖
��

𝑋
𝜉 //

𝑓
��

𝑌

𝑔

��
𝐴
′

𝑎
′
0 ,𝑎
′
1

// 𝑋
′

𝜉
′
// 𝑌
′

Then
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(a) There exists a homotopy Ψ : 𝑎0 ≃ 𝑎1 with 𝜉Ψ ≃ 𝜑 rel 𝐴 × 𝐼.

(b) For every homotopy Ψ with the property mentioned in (a) there exists a
homotopy Ψ

′
: 𝑎
′
0 ≃ 𝑎

′
1 with 𝜉

′
Ψ
′ ≃ 𝜑′ rel 𝐴′ × ¤𝐼 and 𝑓Ψ = Ψ

′ ◦ (𝑖 × id𝐼 ).

Proof. (a): We apply Lemma 3.22 to the diagramme below:

𝐴 × ¤𝐼 //

𝑎0 ,𝑎1

��

𝐴 × 𝐼
𝜑

��
𝑋

𝜉
// 𝑌

(b): Let Ψ : 𝑎0 ≃ 𝑎1 be given and a homotopy Φ : 𝜑 ≃ 𝜉Ψ rel 𝐴 × ¤𝐼. By
assumption, furthermore, 𝑔𝜑 = 𝜑

′ (𝑖 × id𝐼 ). One sees that

𝑔Φ, 𝜉
′
𝑎
′
0, 𝜉

′
𝑎
′
1, 𝜑

′

together de�ne a map from

𝐴 × 𝐼 × 𝐼 ∪ 𝐴′ × 0 × 𝐼 ∪ 𝐴′ × 1 × 𝐼 ∪ 𝐴′ × 𝐼 × 0

to 𝑌 ' (to the middle summand independent of the 𝐼-coordinate), which can be
extended to 𝐴

′ × 𝐼 × 𝐼. Restricting this extension to 𝐴
′ × 𝐼 × 1 gives a homotopy

𝜑
′
1 : 𝜉

′
𝑎
′
0 ≃ 𝜉

′
𝑎
′
1 with 𝜑1 |𝐴×𝐼 = 𝑔𝜉Ψ and 𝜑

′
1 ≃ 𝜑

′
rel 𝐴

′ × 𝐼.
We now determine, by Lemma 3.22, a Ψ

′
in the following diagramme

𝐴 × 𝐼 ∪ 𝐴′ × ¤𝐼 //

𝜏

��

𝐴
′ × 𝐼

𝜑
′
1��Ψ

′
xx

𝑋
′

𝜉
′

// 𝑌
′

where 𝜏 |𝐴×𝐼 = 𝑓Ψ, 𝜏 |𝐴′×0 = 𝑎
′
0, 𝜏 |𝐴′×1 = 𝑎

′
1. Then Ψ

′
has the claimed properties.

□

Lemma 3.24. Let the following commutative diagrame given:

𝐴
𝑢 //

𝑖
��

𝑌

𝑔

��

𝑋
𝜉oo

𝑔

��
𝐴
′

𝑢
′
// 𝑌
′

𝑋
′

𝜉
′

oo

Let 𝑖 be a closed co�bration, 𝜉 and 𝜉
′
be h-equivalences, 𝑣 : 𝐴 → 𝑋 be a map,

and 𝜑 : 𝜉𝑣 ≃ 𝑢 be a homotopy. Then there exists a map 𝑣
′
: 𝐴

′ → 𝑋
′
and a

homotopy 𝜑
′
: 𝜉
′
𝑣
′ ≃ 𝑢′ with 𝑣′𝑖 = 𝑓 𝑣 and 𝜑

′ (𝑖𝑎, 𝑡) = 𝑔𝜑(𝑎,min(2𝑡, 1)).
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Proof. We have bijective maps

[𝐴′ , (𝑋 ′ , 𝑓 𝑣)]𝐴
𝜉
′
∗−−→ [𝐴′ , (𝑌 ′ , 𝜉 ′ 𝑓 𝑣)]𝐴

𝑔𝜑
−−→ [𝐴′ , (𝑌 ′ , 𝑢′𝑖)]𝐴.

Let [𝑣′ ]𝐴 be chosen such that 𝑔𝜑𝜉
′
∗ [𝑣

′ ]𝐴 = [𝑢′∗]𝐴. This means:

(1) 𝑣
′
𝑖 = 𝑓 𝑣.

(2) 𝜉
′
𝑣
′
can be translated along 𝑔𝜑 to a map that is homotopic to 𝑢

′
under 𝐴;

this yields a 𝜑
′
.

□

Proof. (of Theorem 3.20) We prove by Lemma 3.23 that (𝜉𝜈)∗ is injective, and by
Lemma 3.24 that (𝜉𝜈)∗ is surjective. For injectivity, we prove the sharper claim
by induction on 𝑛: If a homotopy (𝜑𝜈) : (𝜉𝜈𝑎𝜈 ≃ (𝜉𝜈𝑏𝜈) is given in 𝒯ℴ𝓅(𝑛),
then there exists a homotopy (Ψ𝜈) : (𝑎𝜈) ≃ (𝑏𝜈) with 𝜉𝜈Ψ𝜈 ≃ 𝜑𝜈 rel 𝑋𝜈 × ¤𝐼.
Lemma 3.23 clearly provides the induction start and induction step. Lemma
3.24 provides the induction step for the proof of surjectivity. □

Proof. (of the additional proposition 3.21) Since (𝜉𝜈)∗ : [(𝑔𝜈), ( 𝑓𝜈)] → [(𝑔𝜈), (𝑔𝜈)]
is bijective, there exists (𝜂𝜈) such that (𝜉𝜈𝜂𝜈) ≃ id. From (𝜉𝜈𝜂𝜈𝜉𝜈) ≃ (id ◦𝜉𝜈) =
(𝜉𝜈 ◦ id) and the bijectivity of (𝜉𝜈)∗, it follows that (𝜂𝜈𝜉𝜈) ≃ id. □

3.1.12 Suggestion for further studies

We mention extensions of the theory that the reader may carry out for their
own bene�t.
First, the generalisation of (3.1.10) and (3.1.11) to in�nite sequences.
Second, the dual situation: Let 𝑝 : 𝐸 → 𝐵 be an h-�bration. Let 𝑢 : 𝑓 ≃ 𝑔 be a
homotopy from 𝑓 : 𝑋 → 𝐵 to 𝑔 : 𝑋 → 𝐵. De�ne

𝑢̂ : [(𝑋, 𝑓 ), 𝐸]𝐵 → [(𝑋, 𝑔), 𝐸]𝐵.

Develop properties analogous to (3.1.1) - (3.1.11).

3.2 Suspension and loop space

3.2.1 Suspension

De�nition 3.25. Let 𝑋 ∈ Obj(𝒯ℴ𝓅). In 𝑋 × 𝐼, we identify both 𝑋 × 0 and
𝑋 × 1 as a point, respectively. Let Σ

′
𝑋 be the resulting factor space (intuitively:

a double cone over 𝑋). Σ
′
𝑋 is called a suspension of 𝑋. Let [𝑥, 𝑡] be the image of

(𝑥, 𝑡) in Σ
′
𝑋. If 𝑓 : 𝑋 → 𝑌 is a continuous map, then (Σ′ 𝑓 ) [𝑥, 𝑡] = [ 𝑓 𝑥, 𝑡] induces

a well-de�ned continuous map Σ
′
𝑓 : Σ

′
𝑋 → Σ

′
𝑌 . We thus have a functor

Σ
′
: 𝒯ℴ𝓅→ 𝒯ℴ𝓅, 𝑋 ↦→ Σ

′
𝑋, 𝑓 ↦→ Σ

′
𝑓 .



120 CHAPTER 3. HOMOTOPY SETS AND HOMOTOPY GROUPS

Σ
′
is compatible with homotopies and therefore induces a functor 𝒯ℴ𝓅ℎ →

𝒯ℴ𝓅ℎ, which will again be denoted by Σ
′
.

Let 𝑋 ∈ Obj(𝒯ℴ𝓅
𝑜). The factor space

Σ𝑋 = 𝑋 × 𝐼/(𝑋 × 0 ∪ 𝑋 × 1 ∪ 𝑜 × 𝐼)

is called the (reduced) suspension of 𝑋. Let [𝑥, 𝑡] be the image of (𝑥, 𝑡) in Σ𝑋.
The canonical projection 𝑝 : Σ

′
𝑋 → Σ𝑋 is an identi�cation. We again have

functors

Σ : 𝒯ℴ𝓅
𝑜 → 𝒯ℴ𝓅

𝑜, Σ : 𝒯ℴ𝓅
𝑜ℎ→ 𝒯ℴ𝓅

𝑜ℎ.

(The set identi�ed to a point becomes the base point of Σ𝑋.)

Theorem 3.26. Let 𝑋 ∈ Obj(𝒯ℴ𝓅
𝑜) be well-pointed (i.e., 𝑜 → 𝑋 be a co�bra-

tion). Then 𝑝 : Σ
′
𝑋 → Σ𝑋 is an h-equivalence and Σ𝑋 is well-pointed.

Proof. We consider the two cocartesian squares:

𝑋 × 0 ∪ 𝑋 × 1 ∪ 𝑜 × 𝐼 𝑞 //� _

𝑎

��

𝑜 × 𝐼 𝑟 //

𝑏
��

𝑜

𝑐

��
𝑋 × 𝐼 // Σ

′
𝑋

𝑝
// Σ𝑋

Since 𝑎 is a co�bration, so also 𝑏 and then 𝑐 (see (2.132) (a)). And since 𝑟 is an
h-equivalence, so also 𝑝 (see (2.137)). □

Example 3.27. (1) Σ
′
S𝑛 is homeomorphic to S𝑛+1. A homeomorphism is given

by [𝒙, 𝑡] ↦→ (sin 𝜋𝑡 · 𝒙, cos 𝜋𝑡).

(2) Let 𝒆1, . . . , 𝒆𝑛 be the canonical basis of R𝑛. Let 𝒆1 be the base point of S𝑛−1.
A pointed homeomorphism

ℎ𝑛 : ΣS𝑛−1 → S𝑛

is described by

ℎ𝑛 [𝑥, 𝑡] =
1

2
(𝒆1 + 𝒙) + cos 2𝜋𝑡 ·

𝒆1 − 𝒙
2
+ sin 2𝜋𝑡

��� 𝒆1 − 𝒙
2

��� 𝒆𝑛+1
(We regard R𝑛 ⊂ R𝑛+1 by 𝒆𝑖 ↦→ 𝒆𝑖, 𝑖 ≤ 𝑛).

3.2.2 Loop space

Let 𝑋 ∈ Obj(𝒯ℴ𝓅
𝑜). The space

Ω𝑋 := {𝑤 : 𝐼 → 𝑋 |𝑤(0) = 𝑤(1) = 𝑜} ⊂ 𝑋 𝐼

with the topology induced by 𝑋 𝐼 is called the loop space of 𝑋.
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Let 𝑃𝑋 = {𝑤 : [0, 𝑒𝑤] → 𝑋 |0 ≤ 𝑒𝑤 < ∞} and R+ = [0,∞[. 𝑤 ↦→ (𝑒𝑤 , 𝑤 :
R+ → 𝑋), 𝑤(𝑡) = 𝑤(min(𝑡, 𝑒𝑤)) yields an injection 𝑃𝑋 → R+ × 𝑋R+ . Let 𝑃𝑋
preserve the induced topology. We consider the subspace

Ω
′
𝑋 = {𝑤 : [0, 𝑒𝑤] → 𝑋 |𝑤(0) = 𝑤(𝑒𝑤) = 0}

of 𝑃𝑋. Ω
′
𝑋 is also a kind of loop space of 𝑋; unlike Ω𝑋, the parameter interval

of a loop in Ω
′
𝑋 can have any length.

We de�ne a �+� operation in Ω
′
𝑋 as follows: if 𝑢 : [0, 𝑒𝑢] → 𝑋 and 𝑣 :

[0, 𝑒𝑣] → 𝑋 are in Ω
′
𝑋, then

𝑣 + 𝑢 : [0, 𝑒𝑢 + 𝑒𝑣] → 𝑋

is de�ned by

(𝑣 + 𝑢)𝑡 :=
{
𝑢(𝑡) for 𝑡 ≤ 𝑒𝑢
𝑣(𝑡 − 𝑒𝑢) for 𝑡 ≥ 𝑒𝑢

Theorem 3.28. (Ω′𝑋,+) is a topological monoid.

Proof. The operation �+� is associative, and 𝑘 : [0, 0] → 𝑋, 𝑘0 = 𝑜, is a neutral
element. It remains to prove the continuity of (𝑢, 𝑣) ↦→ 𝑣 + 𝑢. Ω

′
𝑋 was de�ned

as a subspace of R+ × 𝑋R+ .
We therefore have to prove the continuity of the two component maps in

((𝑒𝑢, 𝑢̃), (𝑒𝑣 , 𝑣̃)) ↦→ (𝑒𝑢 + 𝑒𝑣 ,�𝑣 + 𝑢)
This is clear for the �rst component, because ((𝑒𝑢, 𝑢̃) ↦→ 𝑒𝑢 is continuous. The
second component is continuous by Theorem (2.6) if the adjoint map

R+ ×Ω′𝑋 ×Ω′𝑋 → 𝑋 (𝑡, (𝑒𝑢, 𝑢̃), (𝑒𝑣 , 𝑣̃)) ↦→ (�𝑣 + 𝑢) (𝑡)
is continuous. However, by de�nition of +, this is continuous on the closed parts
𝑡 ≤ 𝑒𝑢 (or 𝑡 ≥ 𝑒𝑢) of the domain, since the evaluation map 𝑋R+ × R+ → 𝑋 is
continuous because R+ is locally compact (cf. (2.11), (2.12)). □

3.2.3 Comparison of Ω𝑋 and Ω
′
𝑋

We compare Ω𝑋 and Ω
′
𝑋. The inclusion Ω𝑋 ⊂ Ω

′
𝑋 of the sets is a topological

embedding; for 𝑋 𝐼 → R+ × 𝑋R+ , 𝑤 ↦→ (1, 𝑤), is an embedding because a left
inverse exists.

Theorem 3.29. Ω𝑋 is a deformation retract of Ω
′
𝑋.

Proof. We de�ne a homotopy 𝜑 : Ω
′
𝑋 × 𝐼 → Ω

′
𝑋 by 𝑒𝜑 (𝑤,𝑡 ) = (1− 𝑡)𝑒𝑤 + 𝑡 where

𝜑(𝑤, 𝑡) (𝑠) = 𝑤
(

𝑒𝑤

(1 − 𝑡)𝑒 [𝑤+𝑡
· 𝑠
)
, 𝑒𝑤 > 0,

𝜑(𝑘, 𝑡) (𝑠) = 𝑜 (𝑘 is the neutral element of Ω
′
𝑋).
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If 𝜑 is continuous, it is a homotopy with the desired properties. For the conti-
nuity of 𝜑, the continuity of

R+ ×Ω′𝑋 × 𝐼 → 𝑋 (𝑠, 𝑤, 𝑡) ↦→ 𝜑(𝑤, 𝑡) (𝑠)

is crucial (cf. the continuity consideration in (3.2.2)).
This map is certainly continuous for (𝑠, 𝑤, 𝑡) ≠ (0, 𝑘, 0), since (𝑠, 𝑒, 𝑡) ↦→

𝑠𝑒/((1 − 𝑡)𝑒 + 𝑡) is continuous for 𝑒 > 0, 𝑡 ≥ 0 or 𝑒 ≥ 0, 𝑡 > 0. For the point
(0, 𝑘, 0), we conclude as follows: Because of the continuity of 𝑏 : Ω

′
𝑋 × R+,

𝑏(𝑢, 𝑡) = 𝑢̃(𝑡), for a neighbourhood 𝑊 of 𝑜 ∈ 𝑋 there exists a neighbourhood
𝑈 × 𝑉 of (𝑘, 0) with 𝑏(𝑈 × 𝑉) ⊂ 𝑊 . We can choose 𝑈 so small that for 𝑤 ∈ 𝑈,
𝑒𝑤 ≥ 1, and we can assume that 𝑉 has the form [0, 𝑎[. For (𝑠, 𝑤, 𝑡) ∈ 𝑉 ×𝑈 × 𝐼
then 𝜑(𝑤, 𝑡) (1) ∈ 𝑊 . □

Remark 3.30. Ω𝑋 has as its base point the constant path 𝐼 → {𝑜} ⊂ 𝑋. Ω𝑋 ⊂
Ω
′
𝑋 is therefore not pointed. 𝜉 : Ω

′
𝑋 → Ω𝑋, 𝜉 (𝑤) = 𝜑(𝑤, 1), on the other

hand, is pointd and an ordinary h-equivalence. If 𝑋 is h-well-punctured, 𝜉 is an
h-equivalence in 𝒯ℴ𝓅

𝑜, as follows from the next theorem.

Theorem 3.31. If 𝑋 is h-well-pointed, so are Ω𝑋 and Ω
′
𝑋.

Proof. We use the local characterisation of h-co�brations (see (1.94)). Let 𝑉 be
a halo of 𝑜 that can be contracted to 𝑜 in 𝑋. Then Ω𝑉 and Ω

′
𝑉 are haloes of

𝑜 in Ω𝑋 and Ω
′
𝑋, respectively, with the same property. (If 𝑣 is a halo function

for 𝑉 , then 𝑣
′
, 𝑣
′ (𝑤) = max𝑡∈𝐼 𝑣(𝑤(𝑡)), is a halo function for Ω𝑉 .) □

3.2.4 Adjointness of functors Σ and Ω

We recall the adjunction

𝒯ℴ𝓅(𝑋 × 𝐼,𝑌 ) � 𝒯ℴ𝓅(𝑋,𝑌 𝐼 ),

where a map 𝑓 : 𝑋 × 𝐼 → 𝑌 is associated with the map 𝑓 de�ned by 𝑓 (𝑥) (𝑡) =
𝑓 (𝑥, 𝑡) (see (2.17)). If 𝑋 and 𝑌 are pointed, then 𝑓 (𝑋×{0, 1}) = {𝑜} is equivalent
to 𝑓 (𝑋) ⊂ Ω𝑌 and 𝑓 ({𝑜} × 𝐼) = {𝑜} is equivalent to 𝑓 (𝑜) = 𝑜. Thus, canonical
bijections

𝒯ℴ𝓅
𝑜 (Σ𝑋,𝑌 ) � 𝒯ℴ𝓅

𝑜 (𝑋,Ω𝑌 )
[Σ𝑋,𝑌 ]𝑜 � [𝑋,Ω𝑌 ]𝑜

are induced. For 𝑌 = Σ𝑋 the identity of Σ𝑋 corresponds to a map 𝑘 : 𝑋 → ΩΣ𝑋.
The following diagramme is commutative:

[𝐴, 𝑋]𝑜 Σ //

𝑘∗ &&

[Σ𝐴, Σ𝑋]𝑜

�

��
[𝐴,ΩΣ𝑋]𝑜

The study of Σ is thus reduced to the study of the map 𝑘.
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3.3 H-spaces and co-H-Spaces

3.3.1 H-spaces

Let 𝑌 be a topological space. A continuous map

𝜇 : 𝑌 × 𝑌 → 𝑌

is called a connexion in 𝑌 . 𝜇 is called h-associative if the following diagramme
is commutative up to homotopy:

𝑌 × 𝑌 × 𝑌
𝜇×id //

id ×𝜇
��

𝑌 × 𝑌
𝜇

��
𝑌 × 𝑌

𝜇
// 𝑌

Let 𝑇 : 𝑌×𝑌 → 𝑌×𝑌 be the interchange of the factors, 𝑇 (𝑥, 𝑦) = (𝑦, 𝑥). 𝜇 is called
h-commutative if the following diagramme is commutative up to homotopy:

𝑌 × 𝑌 𝑇 //

𝜇
""

𝑌 × 𝑌

𝜇
||

𝑌

Let 𝑛 ∈ 𝑌 and 𝜈𝑛 : 𝑌 → 𝑌be the map with constant value 𝑛. 𝑛 is called
an h-neutral element for 𝜇 if the following diagramme is commutative up to
homotopy:

𝑌 × 𝑌
𝜇

""
𝑌

id //

[𝜈𝑛 ,id]
<<

[id,𝜈𝑛 ] ""

𝑌

𝑌 × 𝑌
𝜇

<<

In the above diagramme, we denote by [ 𝑓 , 𝑔] : 𝐴 → 𝐵 × 𝐶 the map with the
components 𝑓 : 𝐴→ 𝐵, 𝑔 : 𝐴→ 𝐶.)

With 𝑛, every element of the path component of 𝑛 is also h-neutral for 𝜇. If
𝑛 and 𝑚 are h-neutral for 𝜇, then with 𝜈𝑚𝜈𝑛 = 𝜈𝑚, 𝜈𝑛𝜈𝑚 = 𝜈𝑛 we have

𝜈𝑚 ≃ 𝜇[𝜈𝑛, id]𝜈𝑚 = 𝜇[𝜈𝑛𝜈𝑚, 𝜈𝑚] = 𝜇[𝜈𝑛, 𝜈𝑚] = 𝜇[𝜈𝑛, 𝜈𝑚𝜈𝑛] = 𝜇[id, 𝜈𝑚] ≃ 𝜈𝑛;

So 𝑛 and 𝑚 lie in the same path component of 𝑌 .
Let 𝜇 be a conjunction with h-neutral element 𝑛. A map 𝜄 : 𝑌 → 𝑌 is called

an h-inverse for 𝜇 if the following diagramme is commutative up to homotopy:

𝑌
[ 𝜄,id]//

𝜈𝑛
""

𝑌 × 𝑌
𝜇

��

𝑌
[id, 𝜄]oo

𝜈𝑛
||

𝑌
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If only the right (resp. left) triangle is h-commutative, then 𝜄 is called the h-right
(resp. h-left) inverse of 𝜇.

We can formulate analogous notions in the category𝒯ℴ𝓅
𝑜. For a connexion,

𝜇(𝑜, 𝑜) = 𝑜 holds, and an h-neutral element is necessarily the constant mapto
the base point 𝑜. The above diagrammes must be commutative up to pointed
homotopy.

De�nition 3.32. A pair (𝑌, 𝜇) consisting of 𝑌 ∈ Obj(𝒯ℴ𝓅) and a connexion
𝜇 in 𝑌 that has an h-neutral element is called an H-space. The term pointed
H-space is de�ned analogously.

Remark 3.33. For the category-theoretical aspect of these conceptual forma-
tions see Brinkmann-Puppe [4], 7. We are primarily concerned here with the
geometric side of the theory.

Example 3.34. (1) Topological groups.

(2) Topological monoids. In particular, Ω
′
𝑋 with the connexion 𝜇(𝑢, 𝑣) = 𝑣 + 𝑢

(see (3.2.2)). (Ω′𝑋, 𝜇) is even a pointed H-space with a strictly associative
connexion. Furthermore, the pointed map

𝜄 : Ω
′
𝑋 → Ω

′
𝑋, 𝜄𝑤 = −𝑤, −𝑤(𝑡) := 𝑤(𝑒𝑤 − 𝑡),

is a pointed h-inverse for 𝜇. The homotopy

𝜑 : Ω
′
𝑋 × 𝐼 → Ω

′
𝑋, 𝜑(𝑤, 𝑡) = −(𝑤 | [0,𝑡𝑒𝑤 ]) + 𝑤 | [0,𝑡𝑒𝑤 ] ,

for example, shows that 𝜄 is an h-right inverse.

(3) Ω𝑋 with the operation 𝜇(𝑢, 𝑣) = (𝑣 + 𝑢) is an h-associative H-space with an
h-inverse (in 𝒯ℴ𝓅

𝑜). Proof is left as an exercise.

3.3.2 Induced connexions

A connexion 𝜇 in 𝑌 induces a connexion

𝜇∗ : [𝐴,𝑌 ] × [𝐴,𝑌 ] → [𝐴,𝑌 ]

for every 𝐴 : we set

𝜇∗ ( [ 𝑓 ], [𝑔]) = [𝜇 ◦ [ 𝑓 , 𝑔]] .

If 𝜇 is h-associative (resp. h-commutative), then 𝜇∗ is associative (resp. com-
mutative).

If 𝑛 is h-neutral for 𝜇, then the class of the constant map 𝜈𝐴 : 𝐴 → 𝑌

with value 𝑛 is a neutral element for 𝜇∗. If 𝜄 is an h-inverse for 𝜇, then [𝜄 𝑓 ]
is the inverse of [ 𝑓 ] ∈ [𝐴,𝑌 ] with respect to 𝜇∗. All of these statements are
easily veri�ed (see Brinkmann-Puppe [4], 7.6). The same applies to pointed
connexions and homotopy sets.
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Examples (2) and (3) from (3.3.1 give the following conclusion: Let 𝐴 ∈
Obj(𝒯ℴ𝓅), 𝐵 ∈ Obj(𝒯ℴ𝓅

𝑜), 𝑋 ∈ Obj(𝒯ℴ𝓅
𝑜). Then

[𝐴,Ω𝑍], [𝐴,Ω′𝑋], [𝐵,Ω𝑋]𝑜, [𝐵,Ω′𝑋]𝑜

�are� groups.
The connexion 𝜇∗ is natural, i.e., if 𝛼 : 𝐵→ 𝐴 is a continuous map, then

𝛼∗ : [𝐴,𝑌 ] → [𝐵,𝑌 ]
is a homomorphism with respect to 𝜇∗. If 𝜇 has an h-neutral element, then 𝛼∗
preserves the neutral elements, 𝛼∗ [𝜈𝐴] = [𝜈𝐵].

3.3.3 Loop space morphisms

Let 𝜇 be a connective in 𝑌 and 𝜇
′
be a connexiion in 𝑌

′
. For 𝜉 : 𝑌 → 𝑌

′
let the

following diagramme be h-commutative.

𝑌 × 𝑌
𝜇 //

𝜉×𝜉
��

𝑌

𝜉
��

𝑌
′ × 𝑌 ′

𝜇
′
// 𝑌
′

We then say that 𝜉 is a homomorphism up to homotopy from (𝑌, 𝜇) to (𝑌 ′ , 𝜇′ ).
The induced morphism

𝜉∗ : ( [𝐴,𝑌 ], 𝜇∗) → ([𝐴,𝑌
′ ], 𝜇′∗)

is a homomorphism. Neutral elements are not preserved without an additional
condition, but they are preserved in the pointed case.

Theorem 3.35. The map 𝜉 : Ω
′
𝑋 → Ω𝑋, 𝜉 (𝑤) = 𝑤𝐼 , de�ned in (3.2.3), is a

pointed homomorphism up to homotopy.

Proof. We have to show that the maps (𝑢, 𝑣) ↦→ (𝑣 + 𝑢)𝐼 and (𝑢, 𝑣) ↦→ (𝑣𝐼 + 𝑢𝐼 )𝐼
are pointed homotopic. A homotopy

𝜑 : Ω′𝑋 ×Ω′𝑋 × 𝐼 → Ω𝑋

is given by
𝜑(𝑢, 𝑣, 𝑡) = (𝑣𝑡 + 𝑢𝑡 )𝐼

where 𝑢𝑡 is the path

𝑢𝑡 (𝑠) = 𝑢
(

𝑠𝑒𝑢

1 − 𝑡 + 𝑡𝑒𝑢

)
, 0 ≤ 𝑠 ≤ 1 − 𝑡 + 𝑡𝑒𝑢 := 𝑒𝑢𝑡 .

□

Corollary 3.36. (1)) 𝜉∗ : [𝐴,Ω
′
𝑋] → [𝐴,Ω𝑋] is an isomorphism for every 𝐴.

(2)) 𝜉∗ : [𝐵,Ω
′
𝑋]𝑜 → [𝐵,Ω𝑋]𝑜 is an isomorphism if 𝐵 or 𝑋 is h-well-pointed.

Proof. 𝜉 is a homotopy equivalence. 𝜉 is a pointd h-equivalence if 𝑋 is h-well-
pointed (see (3.2.3)). If 𝐵 is h-well-pointed, (3.1.7) applies. □



126 CHAPTER 3. HOMOTOPY SETS AND HOMOTOPY GROUPS

3.3.4 Well-pointed H-spaces

Theorem 3.37. Let (𝑌, 𝜇) be an H-space with h-neutral element 𝑛. Let {𝑛} → 𝑌

be an h-co�bration. Then there is a map 𝜇
′
homotopic to 𝜇 such that (𝑌, 𝜇′ ) is

a pointed H-space. [𝜇′ ]𝑜 is uniquely determined by 𝜇. If 𝜇 is associative (resp.
commutative) up to homotopy, then 𝜇

′
is associative (resp. commutative) up to

pointed homotopy. If 𝜄 : 𝑌 → 𝑌 is h-neutral for 𝜇
′
, then there exists a pointed

𝜄
′
: 𝑌 → 𝑌 that is h-neutral for 𝜇

′
; [𝜄′ ]𝑜 is uniquely determined by [𝜄′ ] = [𝜄].

Proposition 3.38. If, moreover, 𝑌 ∨ 𝑌 := 𝑌 × {𝑛} ∪ {𝑛} × 𝑌 ⊂ 𝑌 × 𝑌 is an
h-co�bration, then there exists 𝜇

′
with

𝜇
′ (𝑛, 𝑦) = 𝜇

′ (𝑦, 𝑛) = 𝑦 for all 𝑦 ∈ 𝑌 .

Then 𝑛 is a (strictly) neutral element for 𝜇
′
. The condition on 𝑌 ∨𝑌 ⊂ 𝑌 ×𝑌 is

satis�ed, for example, if {𝑛} → 𝑌 is a closed co�bration (see (1.104)).

Proof. Let 𝛼, 𝛽 : 𝑌 → 𝑌 be de�ned by 𝛼(𝑦) = 𝑢(𝑦, 𝑛), 𝛽(𝑦) = 𝑢(𝑛, 𝑦). Since 𝑛 is
h-neutral for 𝜇, there exist homotopies 𝑐𝜑 : 𝛼 ≃ id, 𝜓 : 𝛽 ≃ id. We use the paths
𝑢 and 𝑣, which are de�ned by 𝑢(𝑡) = 𝜑(𝑛, 𝑡), 𝑣(𝑡) = 𝜓(𝑛, 𝑡).

Using the notations from �3.1, then

[𝛼]𝑜 = (−𝑢) [id]𝑜 , [𝛽]𝑜 = (−𝑣) [id]𝑜

(It is clear which points are to be considered base points.). □

3.3.5 Action of 𝜋1 on pointed H-spaces

Theorem 3.39. Let (𝑌, 𝜇) be an H-space with neutral element 𝑛. Let 𝑌 be
pointed by a base point that lies in the path component of 𝑛. Let 𝐴 be h-well-
pointed. Then 𝜋1 (𝑌 ) acts trivially on [𝐴,𝑌 ]𝑜.

Proof. We choose a pointed map 𝜉 : 𝑌1 → 𝑌 that is an ordinary h-equivalence
with inverse 𝑛 and such that 𝑜 → 𝑌 is a closed co�bration. 𝑌1 is an H-space with
the cconnexion 𝜇1 = 𝜂 ◦𝑚𝑢 ◦ (𝜉 × 𝜉) and the h-neutral element 𝑜. 𝜉∗ : [𝐴,𝑌1]𝑜 →
[𝐴,𝑌 ]𝑜 is bijective (3.1.7), in particular also for 𝐴 = S1. Because of (3.1.7), it
su�ces to prove the claim for [𝐴,𝑌1]𝑜. By the additional proposition (3.38), we
can replace 𝜇1 by a connexion 𝜇

′
1 that has a strictly neutral element 𝑜. Now let

𝑓 : 𝐴→ 𝑌1 and 𝑢 : [0, 𝑝] → 𝑌 with 𝑢(0) = 𝑢(𝑝) = 𝑜 be given, 𝜑 = 𝜇
′
1 ◦ ( 𝑓 × 𝜇) is

a translation of 𝑓 along 𝑢, 𝜑𝑝 = 𝑓 . □

Corollary 3.40. 𝜋1 (𝑌 ) is abelian. (See (3.1.4))

Corollary 3.41. The maps

[𝐴,Ω𝑥]𝑜 → [𝐴,Ω𝑋], [𝐴,Ω′𝑋]𝑜 → [𝐴,Ω′𝑋]

are injective (see (3.1.3)). For h-well-pointed 𝐴 and path-connected Ω𝑋, the
above four groups thus coincide.
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3.3.6 Proof of Theorem 3.37

Proof. (of Theorem (3.37)): We know from (3.3.5) that for an h-well-pointed
space 𝐴

[𝐴,𝑌 ]𝑜 → [𝐴,𝑌 ]

is injective. We apply this for 𝐴 = 𝑌 × 𝑌 if 𝜇 is h-commutative. Then [𝜇′𝑇]𝑜
and [𝜇′ ]𝑜 have the same image [𝜇𝑇] = [𝜇], and are thus equal. We treat
h-associative 𝜇 in a similar way. The uniqueness of [𝜇′ ]𝑜 also follows from this.

If 𝜄 is an h-inverse for 𝜇, then

𝜄𝜈𝑛 ≃ 𝜇[id, 𝜈𝑛] ◦ 𝜄𝜈𝑛 = 𝜇[𝜄𝜈𝑛, 𝜈𝑛] = 𝜇[𝜄, id]𝜈𝑛 ≃ 𝜈𝑛𝜈𝑛 = 𝜈𝑛.

Therefore, there is a path 𝑤 in 𝑌 from 𝜄(𝑛) to 𝑛. 𝜄′ ∈ 𝑤 [𝜄] is a map with 𝜄
′ (𝑛) = 𝑛

and 𝜄
′ ] = [𝜄]. 𝜄′ is a pointed inverse, since, for example, [𝜇′ [𝜄′ , id]]𝑜 and [𝜈𝑛]𝑜

have the same image [𝜈𝑛] in [𝑌,𝑌 ]. □

3.3.7 H-spaces with an h-inverse

The following theorem states, among other things, that H-spaces in many cases
have an h-inverse.

Theorem 3.42. (a) Let (𝑌, 𝜇) be an H-space and let 𝑌 have a numerable null-
homotopic cover. Then the following are equivalent:

(I) For every 𝑥 ∈ 𝑌 , ℓ𝑥 : 𝑌 → 𝑌 , ℓ𝑥 (𝑦) = 𝜇(𝑥, 𝑦) (resp. 𝑟𝑥 : 𝑌 → 𝑌 ,
𝑟𝑥 (𝑦) = 𝜇(𝑦, 𝑥)) is an h-equivalence.

(II) In ( [𝐴,𝑌 ], 𝜇∗), for every 𝑎 ∈ [𝐴,𝑌 ], the left translation (resp. right
translation) is bijective.

(b) If 𝑌 is path-connected, then ℓ𝑥 and 𝑟𝑥 are h-equivalences.

(c) If 𝜇 is h-associative and ( [pt, 𝑌 ], 𝜇∗) is a group, then ℓ and 𝑟 are h-equivalences.

Remark 3.43 (Conclusive remarks). (a): If the left translation is bijective, then
there is, in particular, a right inverse. From (aII) it follows that 𝜇 has an h-right
inverse (resp. h-left inverse).
(b): If 𝜇 is h-associative (resp. h-commutative and satis�es (aII) and there
exists an h-right inverse 𝜄𝑟 and an h-left inverse 𝜄ℓ for 𝜇, then 𝜄ℓ ≃ 𝜄𝑟 and 𝜇 has
an h-inverse.
(c): If 𝜇 is h-associative, [pt, 𝑌 ] is a group, and if 𝑌 has a numerable null-
homotopic cover, then for every 𝐴, ( [𝐴,𝑌 ], 𝜇∗) is a group.

Proof. (of the theorem) (a): Let 𝑓 : 𝑌 × 𝑌 → 𝑌 × 𝑌 be the map 𝑓 (𝑥, 𝑦) =

(𝑥, 𝜇(𝑥, 𝑦)). Note that proj1 : 𝑌 × 𝑌 → 𝑌 is a �bration and 𝑓 is a �brewise map
proj1 → proj1. The map 𝑓∗ induced by 𝑓

𝑓∗ : [𝐴,𝑌 × 𝑌 ] = [𝐴,𝑌 ] × [𝐴,𝑌 ] → [𝐴,𝑌 ] × [𝐴,𝑌 ]
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has the form (𝑎, 𝑏) ↦→ (𝑎, 𝜇∗ (𝑎, 𝑏)).
(aII) → (aI): From the assumption it follows that 𝑓∗ is bijective. This holds
for every 𝐴. Hence 𝑓 is an h-equivalence and then even an h-equivalence over
𝑌 (see (2.85)); in particular, ℓ𝑥 is an h-equivalence.
(aI) → (aII): From the assumption and theorem (2.152) it follows that 𝑓 is an
h-equivalence, hence 𝑓∗ is bijective, hence 𝑏 ↦→ 𝜇∗ (𝑎, 𝑏) is bijective.
(b): Let 𝑤 be a path from 𝑥 to 𝑛. Let ℓ𝑤𝑡 be a homotopy from ℓ𝑥 to ℓ𝑛. As 𝑛 is
h-neutral, we have ℓ𝑛 ≃ id.
(c): Since [pt, 𝑌 ] is a group, for every 𝑥 ∈ 𝑌 there is an 𝑥′ such that 𝜇(𝑥′ , 𝑥) lies
in the path component of 𝑛. Since 𝜇 is h-associative, ℓ𝑥′ ◦ ℓ𝑥 ≃ ℓ𝜇 (𝑥′ ,𝑥 holds.
Taken together:

ℓ𝑥′ ◦ ℓ𝑥 ≃ ℓ𝜇 (𝑥′ ,𝑥 ≃ ℓ𝑛 ≃ id .

ℓ𝑥 has an h-left inverse. Similarly, the existence of an h-right inverse follows.
Thus ℓ𝑥 is an h-equivalence. □

3.3.8 A group structure in [Σ𝐴, 𝑋]𝑜

Let 𝐴 and 𝑋 be from Obj(𝒯ℴ𝓅
𝑜). We have a canonical bijection (see (3.2.4))

[Σ𝐴, 𝑋]𝑜 � [𝐴,Ω𝑋]𝑜 .

In (3.3.2), we introduced a group structure in [𝐴,Ω𝑋]𝑜, which we can transfer
to [Σ𝐴, 𝑋]𝑜 using the bijection. This connexion in [Σ𝐴, 𝑋]𝑜 can be described
explicitly as follows:
Let 𝑓 , 𝑔 : Σ𝐴→ 𝑋 be given. We de�ne 𝑔 + 𝑓 : Σ𝐴→ 𝑋 by

(𝑔 + 𝑓 ) [𝑎, 𝑡] =
{
𝑓 [𝑎, 2𝑡], 𝑡 ≤ 1

2

𝑔[𝑎, 2𝑡 − 1] 𝑡 ≥ 1
2 .

The connexion is given by [𝑔]𝑜 + [ 𝑓 ]𝑜 = [𝑔 + 𝑓 ]𝑜. We give another description
of the connexion in [Σ𝐴, 𝑋]𝑜. If 𝑋,𝑌 ∈ Obj(𝒯ℴ𝓅

𝑜), we denote by 𝑋 ∨ 𝑌 their
sum (= their coproduct) in 𝒯ℴ𝓅

𝑜.

Given 𝑓 : 𝑋 → 𝑍, 𝑔 : 𝑌 → 𝑍 from 𝒯ℴ𝓅
𝑜, let ⟨ 𝑓 , 𝑔⟩ : 𝑋 ∨𝑌 → 𝑍 be the map

that is equal to 𝑓 on 𝑋 and 𝑔 on 𝑌 . Let 𝑖1, 𝑖2 : Σ𝐴→ Σ𝐴 ∨ Σ𝐴 be the injections
of the summands. With the map

𝛾 : Σ𝐴→ Σ𝐴 ∨ Σ𝐴,

de�ned by

(𝑔 + 𝑓 ) [𝑎, 𝑡] =
{
𝑓 [𝑎, 2𝑡], 𝑡 ≤ 1

2

𝑔[𝑎, 2𝑡 − 1] 𝑡 ≥ 1
2 .

we have [𝑔]𝑜 + [ 𝑓 ]𝑜 = [𝑔 + 𝑓 ]𝑜 = [⟨ 𝑓 , 𝑔⟩ ◦ 𝛾]𝑜.
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3.3.9 Co H-spaces

The relationships from (3.3.8) lead to the following de�nitions, which are dual to
those from (3.3.1). Let 𝐶 be a pointed space. A continuous map (from 𝒯ℴ𝓅

𝑜)

𝛾 : 𝐶 → 𝐶 ∨ 𝐶

is called a co-connexion in 𝐶. 𝛾 is called h-associative if the following diagramme
is commutative up to pointed homotopy.

𝐶
𝛾 //

𝛾

��

𝐶 ∨ 𝐶

𝛾∨id
��

𝐶 ∨ 𝐶
𝑖𝑑∨𝛾

// (𝐶 ∨ 𝐶) ∨ 𝐶 = 𝐶 ∨ (𝐶 ∨ 𝐶)

𝛾 has an h-neutral element if, with the constant map 𝜈 : 𝐶 → 𝐶, the following
diagram is commutative up to pointed homotopy.

𝐶 ∨ 𝐶
⟨𝜈,id⟩

""
𝐶

id //

𝛾

<<

𝛾 ""

𝐶

𝐶 ∨ 𝐶
⟨id,𝜈⟩

<<

The reader should formulate when 𝛾 is called h-commutative and when an h-
inverse exists.

De�nition 3.44. A pair (𝐶, 𝛾) consisting of 𝐶 ∈ Obj(𝒯ℴ𝓅
𝑜) and a co-connection

𝛾 in 𝐶 with an h-neutral element is called a (pointed) co-H-space.

From (3.3.8) we see that (Σ𝐴, 𝛾) is an h-associative co-H-space. 𝛾 has an
h-inverse.

Other concepts that refer to H-spaces can also be transferred to Co-H-spaces.
Thus, 𝛼 : 𝐵𝑡𝑜𝐴 from 𝒯ℴ𝓅

𝑜 induces a homomorphism Σ𝛼 : Σ𝐵→ Σ𝐴 of Co-H-
spacems, and Σ𝛼 induces a homomorphism for every 𝑋 ∈ Obj(𝒯ℴ𝓅

𝑜)

(Σ𝛼)∗ : [Σ𝐴, 𝑋]𝑜 → [Σ𝐵, 𝑋]𝑜, (Σ𝛼)∗ [ 𝑓 ]𝑜 = [ 𝑓 ◦ Σ𝛼]𝑜 .

This homomorphism is �natural in 𝑋�. We further have a commutative dia-
gramme of homomorphisms

[𝐴,Ω𝑋]𝑜 𝛼∗ //

�

��

[𝐵,Ω𝑋]𝑜

�

��
[Σ𝐴, 𝑋]𝑜

(Σ𝛼)∗
// [Σ𝐵, 𝑋]𝑜
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Similarly, 𝜉 : 𝑋 → 𝑌 from 𝒯ℴ𝓅
𝑜 yields a commutative diagramme of homo-

morphisms

[Σ𝐴, 𝑋]𝑜
𝜉∗ //

�

��

[Σ𝐴,𝑌 ]𝑜

�

��
[𝐴,Ω𝑋]𝑜

(Ω𝜉 )∗
// [𝐴,Ω𝑌 ]𝑜

Ω𝜉 is a homomorphism of H-spaces.

3.3.10 Pointed co H-spaces

Theorem 3.45. Let (𝐶, 𝛾) be a pointed co-H-space and (𝑀, 𝜇) a pointed H-
space. Then the connectives induced by 𝛾 and 𝜇 in [𝐶, 𝑀]𝑜 are identical and
are commutative and associative.

Proof. We will resort to the Eckmann-Hilton argument.
We write the connexions in [𝐶, 𝑀]𝑜 as +𝛾 and +𝜇. We work in 𝒯ℴ𝓅

𝑜. 0 : 𝐶 →
𝑀, represented by the constant map, is neutral for both connexions. We have
the projection 𝑝𝑘 : 𝑀×𝑀 → 𝑀 onto the factors and the injections 𝑖ℓ : 𝐶 → 𝐶∨𝐶
of the summands (𝑘, ℓ = 1, 2). For 𝑓 : 𝐶 ∨ 𝐶 → 𝑀 × 𝑀, we set 𝑓𝑘ℓ = 𝑝𝑘 ◦ 𝑓 ◦ 𝑖ℓ .
It is 𝜇 𝑓 = 𝑝1 𝑓 +𝜇 𝑝2 𝑓 and 𝑓 𝛾 = 𝑓 𝑖1 +𝛾 𝑓 𝑖2. It follows that

( 𝑓11 +𝛾 𝑓12) +𝜇 ( 𝑓21 +𝛾 𝑓22) = (𝜇 𝑓 )𝛾 = 𝜇( 𝑓 𝛾) = ( 𝑓11 +𝜇 𝑓21) +𝛾 ( 𝑓12 +𝜇 𝑓22).

If we set 𝑓12 = 𝑓21 = 0, the coonnexions are equal. This yields commutativity if
we set 𝑓11 = 𝑓22 = 0. 𝑓12 = 0 demonstrates associativity. □

Corollary 3.46. The two group structures in [Σ𝐴,Ω𝑋]𝑜 are equal and abelian.

From this, we obtain, by the adjunction [Σ𝐴,Ω𝑋]𝑜 � [Σ2𝐴, 𝑋]𝑜 (Σ2𝐴 =

Σ(Σ𝐴)), that the two connexions in [Σ2𝐴, 𝑋]𝑜, which we will describe shortly,
are equal. Namely: Given 𝑓 , 𝑔 : Σ2𝐴→ 𝑋, we can form

(𝑔 +1 𝑓 ) [𝑎, 𝑠, 𝑡] =
{
𝑓 [𝑎, 2𝑠, 𝑡], for 𝑠 ≤ 1

2

𝑔[𝑎, 2𝑠 − 1, 𝑡] for 𝑠 ≥ 1
2

(comes from Σ𝐴) and

(𝑔 +22 𝑓 ) [𝑎, 𝑠, 𝑡] =
{
𝑓 [𝑎, 𝑠, 2𝑡], for 𝑡 ≤ 1

2

𝑔[𝑎, 𝑠, 2𝑡 − 1] for 𝑡 ≥ 1
2

(comes from Ω𝑋).

Corollary 3.47. Σ∗ : [Σ𝐴, 𝑋]𝑜 → [Σ2𝐴, Σ𝑋]𝑜 is a homomorphism.

Proof. Σ(𝑔 +1 𝑓 ) = Σ𝑔 +1 Σ 𝑓 . Following the previous remark, we can use +1 as
a connexion. □
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Corollary 3.48. The two connections in Ω2𝑋 are homotopic and h-commutative.
The same applies to the co-connections in Σ2𝐴.

A proof is based on the remark that a natural operation in [𝑌, 𝑍]𝑜 �in 𝑌 �
induces an H-space structure in 𝑍 that is h-commutative (resp. h-associative,
resp. ...) if the connexion in [𝑌, 𝑍]𝑜 is commutative (resp. associative, resp.
...). For a detailed treatment of these questions: see Brinkmann-Puppe [4], 7.8.

3.3.11 Well-pointed co H-spaces

Let (𝐶, 𝛾) be a Co-H-space. Let 𝐶 be h-wellpointed. Let 𝑋 be a topological
space and 𝑢 : [0, 𝑝] → 𝑋 be a path.

Theorem 3.49. 𝑢̂ : [𝐶, 𝑋, (𝑢(0))]𝑜 → [𝐶, (𝑋, 𝑢(𝑝))]𝑜 is a homomorphism.

Proof. First, let {𝑜} ⊂ 𝐶 be a closed co�bration. Let 𝑓 , 𝑔 : 𝐶 → (𝑋, 𝑢(0)) be
given and let 𝜑 (resp. 𝜓) be a translation of 𝑓 (resp. 𝑔) along 𝑢. Then ⟨𝜑𝑡 , 𝜓𝑡 ⟩◦𝛾
de�nes a translation of 𝑔 + 𝑓 along 𝑢 with the end 𝜑𝑝 + 𝜓𝑝∗.

If 𝐶 is only assumed to be h-well-pointed, then we can �nd a co-H-space
(𝐶 ′ , 𝑌 ′ ) and a pointed h-equivalence 𝐶

′ → 𝐶, which is a homomorphism of co-
H-spaces up to homotopy (cf. proof of (3.39), beginning) and where further
{𝑜} ⊂ 𝐶 is a closed co�bration. The claim in this case follows from (3.1.7). □

Reference Brinkmann-Puppe [4].

3.4 Homotopy groups

3.4.1 De�nition of homotopy groups

In (3.2.1) we have speci�ed a homeomorphism

ℎ𝑛 : ΣS𝑛−1 → S𝑛

Thus, we de�ne a homeomorphism

Σ𝑘S𝑛−𝑘 � S𝑛

by ℎ𝑛 ◦ (Σℎ𝑛−1) ◦ · · · ◦ (Σ𝑘−1ℎ𝑛−𝑘+1).
With these �xed homeomorphisms, we have isomorphisms for 𝑋 ∈ Obj(𝒯ℴ𝓅

𝑜)

[S𝑛, 𝑋]𝑜 � [ΣS𝑛−1, 𝑋]𝑜 � [Σ𝑘S𝑛−𝑘 , 𝑋]𝑜 .

More precisely:
For 𝑛 > 1, we de�ne a group structure on [S𝑛, 𝑋]𝑜 by the �rst bijection. By
(3.3.10), we can use any of the 𝑘 �attachment coordinates� in [Σ𝑘S𝑛−𝑘 , 𝑋]𝑜 to
de�ne addition. Σ𝑖ℎ𝑛−𝑖 induces a homomorphism for 𝑖 ≥ 1.
For 𝑛 = 0, we can identify [S0, 𝑋]𝑜 with the set of path components of 𝑋; [S0, 𝑋]𝑜
is a pointed set, with the component of the base point as the base point.
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De�nition 3.50. We set 𝜋𝑛 (𝑋) = [S𝑛, 𝑋]𝑜. 𝜋𝑛 (𝑋) is called the 𝑛-th homotopy
group of the (pointed) space 𝑋.

𝜋𝑛 (𝑋) is a group for 𝑛 ≥ 1 and an abelian group for 𝑛 ≥ 2. The group
structure was initially de�ned with a �xed homeomorphism ℎ𝑛 : ΣS𝑛−1 � S𝑛.
We will see later to what extent this structure is independent of the choice of a
homeomorphism ΣS𝑛−1 � S𝑛 (cf. (3.7.3)).

𝜋1 (𝑋) is canonically isomorphic with the fundamental group 𝜋1 (𝑋, 𝑜) de�ned
in (3.1.1) (cf. (3.1.4)).

The chain of isomorphisms

[S𝑛, 𝑋]𝑜 � [Σ𝑘S𝑛−𝑘 , 𝑋]𝑜 � [ΣS𝑛−𝑘−1,Ω𝑘𝑋]𝑜 � [S𝑛−𝑘 ,Ω𝑘𝑋]𝑜

yields an isomorphism for 𝑛 > 𝑘 (using (3.45))

𝜋𝑛 (𝑋) � 𝜋𝑛−𝑘 (Ω𝑘𝑋).

For 𝑛 = 𝑘 > 0, one can of course de�ne a group structure in 𝜋0 (Ω𝑛𝑋) using the
H-space structure of Ω𝑛𝑋; then the latter isomorphism also holds for 𝑘 = 𝑛.

It should be clear how, for 𝑛 ≥ 1, 𝜋𝑛 can be considered as a functor from
𝒯ℴ𝓅

𝑜ℎ into the category of groups.

3.4.2 A modi�ed description for the homotopy groups

We now give a modi�ed description for the homotopy groups of a space 𝑋.
For 𝑛 ≥ 1, let

𝐼𝑛 = {(𝑡1, . . . , 𝑡𝑛) |𝑡 ∈ 𝐼}
𝜕𝐼𝑛 = {(𝑡1, . . . , 𝑡𝑛) |𝑡𝑖 = 0 or 1 for at least one 𝑖} ⊂ 𝐼𝑛.

We consider 𝐼0 as the one-point space {𝑧}, 𝜕𝐼0 as the empty set, and 𝐼0/𝜕𝐼0
as {𝑜, 𝑧}. By the rule 𝑜 ↦→ 1, 𝑧 ↦→ −1, we identify 𝐼0/𝜕𝐼0 with S0. For 𝑛 ≥ 1,
let 𝜕𝐼𝑛 be the base point of 𝐼𝑛/𝜕𝐼𝑛. We apply the de�nition of suspension (see
(3.2.1)) and obtain canonical homeomorphisms

Σ(𝐼𝑛/𝜕𝐼𝑛) � 𝐼𝑛 × 𝐼/𝜕𝐼𝑛 × 𝐼 ∪ 𝐼𝑛 × 𝜕𝐼 � 𝐼𝑛+1/𝜕𝐼𝑛+1.

Combining these homeomorphisms with those given at the beginning of the
paragraph, we get (canonically)

𝐼𝑛/𝜕𝐼𝑛 � Σ𝑛 (𝐼0/𝜕𝐼0) � Σ𝑛 (S0) � S𝑛.

Elements of 𝜋𝑛 (𝑋) can be represented in this way by maps

𝑓 : (𝐼𝑛, 𝜕𝐼𝑛) → (𝑋, 𝑜)

The group structure in 𝜋𝑛 (𝑋) is induced by the rule

(𝑔 + 𝑓 ) (𝑡1, . . . , 𝑡𝑛) =
{
𝑓 (𝑡1, . . . , 𝑡𝑖−1, 2𝑡𝑖 , 𝑡𝑖+1, . . . , 𝑡𝑛), 𝑡𝑖 ≤ 1

2

𝑔(𝑡1, . . . , 𝑡𝑖−1, 2𝑡𝑖 − 1, 𝑡𝑖+1, . . . , 𝑡𝑛), 𝑡𝑖 ≥ 1
2

(for any 𝑖 with 1 ≤ 𝑖 ≤ 𝑛).
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3.4.3 Relative homotopy groups

Let 𝑔 : 𝑋
′ → 𝑋 be from 𝒯ℴ𝓅

𝑜 and 𝐴 ∈ Obj(𝒯ℴ𝓅
𝑜). We set

𝐶𝐴 = 𝐴 × 𝐼/(𝐴 × 1 ∪ 𝑜 × 𝐼)

and have an embedding (!)

𝑖 : 𝐴 � 𝐴 × 0 ⊂ 𝐶𝐴.

We consider the homotopy set [𝑖, 𝑔]𝑜, i.e., in the category𝒯ℴ𝓅
𝑜 (2) (cf. (3.1.8)),

homotopy classes of pairs ( 𝑓 ′ , 𝑓 ) that make the following diagramme commuta-
tive.

𝐴
𝑓
′
//

𝑖

��

𝑋
′

𝑔

��
𝐶𝐴

𝑓
// 𝑋

We look at the auxiliary space

𝐹𝑔 = {(𝑥
′
, 𝑢) |𝑢(0) = 𝑔(𝑥′ ), 𝑢(1) = 𝑜} ⊂ 𝑋 ′ × 𝑋 𝐼 .

To a pair ( 𝑓 ′ , 𝑓 ), we assign the map 𝑓 : 𝐴 → 𝐹𝑔, which is de�ned by 𝑓 (𝑎) =
( 𝑓 ′ (𝑎), 𝑢), 𝑢(𝑡) = 𝑓 [𝑎, 𝑡]. It is con�rmed that this induces a bijective map

[𝑖, 𝑔]𝑜 � [𝐴, 𝐹𝑔]𝑜

If 𝐴 is a suspension, 𝐴 = Σ𝐴
′
, then we can impose a group structure on these

sets. [𝑎, 𝑡] ↦→ (1 − 𝑡)𝑎 + 𝑡𝑒1 de�nes a homeomorphism 𝐶S𝑛−1 � E𝑛 that makes
the following diagramme commutative.

S𝑛−1 ⊂ //

𝑖

��

E𝑛

�||
𝐶S𝑛−1

We use this homeomorphism in the following de�nition.

De�nition 3.51. We set

𝜋𝑛 (𝑔) = [S𝑛−1 ⊂ E𝑛, 𝑔]𝑜 � [S𝑛−1 𝑖−→ E𝑛, 𝑔]𝑜 � 𝜋𝑛−1(𝐹𝑔).

Speci�cally, if 𝑔 : 𝑋
′ ⊂ 𝑋, then we also write 𝑝𝑖𝑛 (𝑋, 𝑋

′
for 𝜋𝑛 (𝑔) and denote

𝜋𝑛 (𝑋, 𝑋
′ ) as the 𝑛-th (relative) homotopy group of the pair (𝑋, 𝑋 ′ ). 𝜋𝑛 (𝑔) is

de�ned for 𝑛 ≥ 1 and �is� a group for 𝑛 ≥ 2 (abelian for 𝑛 ≥ 3).
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3.4.4 Another description for the relative homotopy groups

We now give another description for the relative homotopy groups of a pair
(𝑋, 𝑋 ′ ). We have canonical homeomorphisms

S𝑛−1 � 𝐼𝑛−1/𝜕𝐼𝑛−1

𝐶S𝑛−1 � 𝐼𝑛−1 × 𝐼/(𝜕𝐼𝑛−1 × 𝐼 ∪ 𝐼𝑛−1 × 1).

We put

𝐽𝑛−1 = 𝜕𝐼𝑛−1 × 𝐼 ∪ 𝐼𝑛−1 × 1.

Then we can represent elements of 𝜋𝑛 (𝑋, 𝑋
′ ) by maps

𝑓 : (𝐼𝑛, 𝜕𝐼𝑛, 𝐽𝑛−1) → (𝑋, 𝑋 ′ , 𝑜)

The group structure is induced by the following rule:

(𝑔 + 𝑓 ) (𝑡1, . . . , 𝑡𝑛) =
{
𝑓 (𝑡1, . . . , 𝑡𝑖−1, 2𝑡𝑖 , 𝑡𝑖+1, . . . , 𝑡𝑛), 𝑡𝑖 ≤ 1

2

𝑔(𝑡1, . . . , 𝑡𝑖−1, 2𝑡𝑖 − 1, 𝑡𝑖+1, . . . , 𝑡𝑛), 𝑡𝑖 ≥ 1
2

for any 𝑖 with 1 ≤ 𝑖 ≤ 𝑛−1. The reader should follow the path from the de�nition
in (3.4.3) to this rule.

Proposition 3.52. The canonical projection

𝑝 : (𝐼𝑛, 𝜕𝐼𝑛, 𝑜) → (𝐼𝑛/𝐽𝑛−1, 𝜕𝐼𝑛/𝐽𝑛−1, 𝑜),

with any 𝑜 ∈ 𝐽𝑛−1 on the left, is an h-equivalence of pointed pairs.

Proof. 𝐽𝑛−1 is pointedly contractible. Thus, by Theorem (1.80), applied to the
category 𝒯ℴ𝓅

𝑜, there are individual h-equivalences. Now apply the analogue
to Theorem (1.76) for 𝒯ℴ𝓅

𝑜. □

From this, one derives an isomorphism induced by 𝑝

𝜋𝑛 (𝑋, 𝑋
′ ) � [𝐼𝑛, 𝜕𝐼𝑛; 𝑋, 𝑋 ′ ]𝑜 .

3.5 The �bre sequences

In this section let 𝑔 : 𝑋 → 𝑌 be a pointed map.

3.5.1

We have already considered the spaces

𝑊𝑔 = {(𝑥, 𝑢) |𝑢(0) = 𝑔(𝑥)} ⊂ 𝑋 × 𝑌 𝐼

𝐹𝑔 = {(𝑥, 𝑢) |𝑢(1) = 𝑜, 𝑢(0) = 𝑔(𝑥)} ⊂ 𝑊𝑔
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previously ((2.46); (3.4.3)). They appear in the following diagram:

𝑊𝑔

𝑟

��
𝑞

��
𝐹𝑔

𝑔1
//

⊂
>>

𝑋
𝑔
//

𝑗

OO

𝑌

In this equation, the maps are de�ned by

𝑟 (𝑥, 𝑢) = 𝑢(1)
𝑞(𝑥, 𝑢) = 𝑥

𝑔1 = 𝑞 |𝐹𝑔
𝑗 (𝑥) = (𝑥, 𝑔(𝑥))

𝑔(𝑥) being a constant path with image {𝑔(𝑥)}.
The following statements hold (Theorem (2.51), applied to the category

𝒯ℴ𝓅
𝑜):

𝑔 = 𝑟 𝑗 , 𝑞 𝑗 = id𝑋, 𝑗𝑞 ≃ id𝑊𝑔 , 𝑗 is an h-equivalence, 𝑟 is a �bration in 𝒯ℴ𝓅
𝑜 .

3.5.2

Theorem 3.53. Let 𝐴 ∈ Obj(𝒯ℴ𝓅
𝑜) and let 𝑔, 𝑔1 be as in (3.5.1). Then the

sequence of pointed sets

[𝐴, 𝐹𝑔]𝑜
𝑔1∗−−→ [𝐴, 𝑋]𝑜

𝑔∗−→ [𝐴,𝑌 ]𝑜

is exact (i.e., ker 𝑔∗ = im 𝑔1∗ , where ker 𝑔∗ = 𝑔−1∗ (𝑜)).
Proof. im 𝑔1∗ ⊂ ker 𝑔∗: This holds because 𝑔𝑔1 is pointed null homotopic. A null
homotopy 𝜑𝑡 : 𝐹𝑔 × 𝐼 𝐼 → 𝑌 is given by 𝜑𝑡 (𝑥, 𝑢) = 𝑢(𝑡).
im 𝑔1∗ ⊃ ker 𝑔∗: Let 𝑓 : 𝐴→ 𝑋 be given such that 𝑔 𝑓 is pointed null homotopic.
Let 𝜑 : 𝐴 × 𝐼 → 𝑌 be a pointed null homotopy of 𝑔 𝑓 . We de�ne 𝑓

′
: 𝐴 → 𝐹 by

𝑓
′ (𝑎) = ( 𝑓 (𝑎), 𝜑𝑎), with the path 𝜑𝑎 given by 𝜑𝑎 (𝑡) = 𝜑(𝑎, 𝑡), 𝑓 ′ is continuous

and 𝑔1 𝑓
′
= 𝑓 . □

3.5.3

Let 𝑔 : 𝑋 → 𝑌 be a pointed h-�bration, let 𝐹 = 𝑔−1(𝑜), and let 𝑖 : 𝐹 → 𝑋 be the
inclusion. In the diagramme bellow, let 𝑘 be induced by 𝑗 (note that 𝑗 (𝐹) ⊂ 𝐹𝑔
since 𝑟 𝑗 = 𝑔).

𝐹𝑔
⊂ //

𝑔1

��

𝑊𝑔

𝑟

  
𝑌

𝐹
𝑖
//

𝑘

OO

𝑋

𝑔

>>𝑗

OO
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Now 𝑔1𝑘 = 𝑖. 𝑗 is a pointed h-equivalence, so by Theorem (2.85), transferred to
𝒯ℴ𝓅

𝑜, it is even a pointed h-equivalence over 𝑌 . Consequently, 𝑘 is a pointed
h-equivalence.

Conclusion The sequence

[𝐴, 𝐹]𝑜 𝑖∗−→ [𝐴, 𝑋]𝑜
𝑔∗−→ [𝐴,𝑌 ]𝑜

is exact.

Remark 3.54. If one only assumes that 𝑔 is an h-�bration in 𝒯ℴ𝓅, one can
only conclude that 𝑘 is an ordinary h-equivalence.

However, according to (3.1.5 and (3.1.7), 𝑘∗ is bijective in the diagramme if
𝐴 is h-well-pointed.

[𝐴, 𝐹]𝑜

𝑘∗

��

𝑖∗

%%
[𝐴, 𝑋]𝑜

[𝐴, 𝐹𝑔]𝑜
𝑔1∗

99

For this 𝐴, the sequence from the above conclusion is exact.

3.5.4

Theorem 3.55. The map 𝑔1 : 𝐹𝑔 → 𝑋 (defned in 3.5.1) is a pointed �bration.

Proof. Let 𝑊𝑌 ⊂ 𝑌 𝐼 be the subspace of paths ending at the base point. Let
𝑡 : 𝑊𝑌 → 𝑌 be the projection 𝑡𝑢 = 𝑢(0). Then 𝑡 is a pointed �bration and 𝑔1 is
induced from 𝑡 by 𝑔. □

The space

(𝑔1)−1(𝑜) = {(𝑥, 𝑢) |𝑥 = 𝑜, 𝑢(0) = 𝑔(𝑥) = 𝑜, 𝑢(1) = 𝑜} = 𝑜 ×Ω𝑌

can be identi�ed with Ω𝑌 . Let 𝑖1 : Ω𝑌 → 𝐹𝑔 be the embedding. Applying the
construction from (3.5.3) to 𝑔1 instead of 𝑔 and then the last theorem, we obtain
that

Corollary 3.56. In the following diagramme, 𝑘 is a pointed h-equivalence.

𝐹𝑔1 //

𝑔2

��

𝑊𝑔1

!!
𝑋

Ω𝑌
𝑖1
//

𝑘1

OO

𝐹𝑔

𝑔1

==

OO
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𝑘1 is formed analogously as 𝑘, and 𝑔2 is formed analogously as 𝑔1.

3.5.5

The �bre of 𝑔2 : 𝐹𝑔1 → 𝐹𝑔 over the base point can be identi�ed with Ω𝑋; let
𝑖2 : Ω𝑋 → 𝐹𝑔1 be the embedding.

In general, we want to understand (−1) : Ω𝑍 → Ω𝑍 as the map that trans-
forms every path into its negative.

Theorem 3.57. The following diagramme is commutative up to pointed homo-
topy.

Ω𝑋
Ω𝑔 //

𝑖2 !!

Ω𝑌

𝑘1◦(−1)
��

𝐹𝑔1

Proof. By de�nition we have

𝐹𝑔1 = {((𝑥, 𝑣), 𝑢) | (𝑥, 𝑣) ∈ 𝐹𝑔, 𝑢 ∈ 𝑋 𝐼 , 𝑢(0) = 𝑔1 (𝑥, 𝑣), 𝑢(1) = 𝑜}.

Now, 𝑔1 (𝑥, 𝑣) = 𝑥 and, by de�nition of 𝐹𝑔, 𝑣(1) = 𝑜 and 𝑣(0) = 𝑔(𝑥). Therefore,
we can also identify 𝐹𝑔1 with the space

{(𝑣, 𝑢) |𝑣(0) = 𝑔(𝑢(0)), 𝑣(1) = 𝑜, 𝑢(1) = 𝑜} ⊂ 𝑌 𝐼 × 𝑋 𝐼

(by (𝑣, 𝑢) ↦→ ((𝑢(0), 𝑣), 𝑢)). The map 𝑖2 then has the form 𝑖2 (𝑢) = (𝑜, 𝑢) and the
map 𝑘1 ◦ (−1) ◦Ω𝑔 has the form 𝑢 ↦→ (−(𝑔𝑢), 𝑜). A pointed homotopy

𝜑 : Ω𝑋 × 𝐼 → 𝐺𝑔1

with 𝜑0 = 𝑖2 and 𝜑1 = 𝑘1 ◦ (−1) ◦Ω𝑔 can be de�ned by

(𝑢, 𝑡) ↦→ (−(𝑔𝑢 | [0,𝑡 ])𝐼 , (𝑢 | [𝑡 ,1])𝐼

The lower index 𝐼 here again means: normalisation of the parameter interval to
𝐼. □

3.5.6

We iterate the processes described so far and obtain the following large dia-
gramme which is h-commutative ((3.5.5), Theorem). Stage (II) follows from
stage (I) by applying the functor Ω. The terms with 𝐹,Ω𝐹, . . . only occur if 𝑔
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is an h-�bration.

· · ·

...

· · · //

(𝐼 𝐼 )

Ω2𝑌
ΩΔ //

Ω(𝑘1 (−1) )

��

Ω(𝑖1 (−1) )

""

Ω𝐹

Ω𝑘

��

Ω𝑖

!!
· · · //

(𝐼 )

Ω𝐹𝑔1
Ω𝑔2 //

""
𝑘4

��

Ω𝐹𝑔
Ω𝑔1 //

𝑖3 (−1)

!!

𝑘3 (−1)

��

Ω𝑋
Ω𝑔 //

𝑘2

��
𝑖2

!!

Ω𝑌
Δ //

𝑘1 (−1)

��

𝑖1 (−1)

  

𝐹

𝑘

��

𝑖

��
· · · // 𝐹𝑔4

𝑔5
// 𝐹𝑔3

𝑔4
// 𝐹𝑔2

𝑔3
// 𝐹𝑔1

𝑔2
// 𝐹𝑔

𝑔1
// 𝑋

𝑔
// 𝑌

The vertical maps are pointed h-equivalences (if 𝑔 is a �bration in 𝒯ℴ𝓅
𝑜; if 𝑔

is only a �bration in 𝒯ℴ𝓅, then 𝑘,Ω𝑘, . . . are pointed maps and h-equivalences
in 𝒯ℴ𝓅). The map Δ is chosen, perhaps by composing 𝑖1 (−1) with an h-inverse
of 𝑘.

If 𝑔 is only an h-�brttion in 𝒯ℴ𝓅, Δ will in general not be pointed, but it
maps the base point back into the path component of the base point; i.e., one
can choose Δ to be pointed in any case if 𝑌 and thus Ω𝑌 is h-well-pointed (cf.
(3.1.2), (3.1.7), (3.2.3)).

The above discussion results in the following theorem.

Theorem 3.58. The sequence

𝑌
𝑔
←− 𝑋

𝑔1

←−− 𝐹𝑔
𝑔2

←−− 𝐹𝑔1 ← · · ·

is pointed h-equivalent to the sequence

𝑌
𝑔
←− 𝑋

𝑔1

←−− 𝐹𝑔 ← Ω𝑌
Ω𝑔
←−− · · ·

and, if 𝑔 is a pointed h-�bration with �bre 𝐹, also to

𝑌
𝑔
←− 𝑋 𝑖←− 𝐹 Δ←− Ω𝑌

Ω𝑔
←−− · · ·

By h-equivalent we do not mean �h-equivalent in the category of sequences�
but only mean �equivalent in the category of sequences above 𝒯ℴ𝓅

𝑜ℎ�.

Corollary 3.59. For each 𝐴 ∈ Obj(𝒯ℴ𝓅
𝑜), the following are exact:

[𝐴,𝑌 ]𝑜 [𝐴, 𝑋]𝑜oo [𝐴, 𝐹𝑔]𝑜oo

�

��

[𝐴,Ω𝑌 ]𝑜oo

�

��

[𝐴,Ω𝑋]𝑜oo

�

��

· · ·oo

[𝐴 ⊂ 𝐶𝐴, 𝐹𝑔]𝑜 [Σ𝐴,𝑌 ]𝑜oo [Σ𝐴, 𝑋]𝑜oo · · ·oo
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Especially, for 𝐴 = S0 and 𝑔 : 𝑋 ⊂ 𝑌 we obtain the exact sequence

𝜋0 (𝑌 ) ← 𝜋0 (𝑋) ← 𝜋1 (𝑌, 𝑋) ← 𝜋1 (𝑌 ) ← 𝜋1 (𝑋) ← · · ·

From the fourth position onwards, the sequences consist of groups and homo-
morphisms.

Corollary 3.60. Let either 𝑔 be a pointed h-�bration or 𝑔 be an h-�bration and
𝐴 be h-well-punctured. Then the following are exact:

[𝐴,𝑌 ]𝑜 [𝐴, 𝑋]𝑜oo [𝐴, 𝐹]𝑜oo [𝐴,Ω𝑌 ]𝑜oo

�

��

[𝐴,Ω𝑋]𝑜oo

�

��

· · ·oo

[Σ𝐴,𝑌 ]𝑜 [Σ𝐴, 𝑋]𝑜oo · · ·oo

Especially for 𝐴 = S𝑜 we obtain the exact sequence

𝜋0 (𝑌 ) ← 𝜋0 (𝑋) ← 𝜋0 (𝐹) ← 𝜋1 (𝑌 ) ← 𝜋1 (𝑋) ← · · ·

Remark 3.61. 𝜕 : [𝐴,Ω𝑛𝑌 ]𝑜 → [𝐴,Ω𝑛−1𝐹] is induced by the map Ω𝑛−1Δ if 𝑔 is
assumed to be a pointed h-�bration. In general, however, we must de�ne 𝜕 by

[𝐴,Ω𝑛𝑌 ]𝑜 → [𝐴,Ω𝑛−1𝐹𝑔]𝑜
�←− [𝐴,Ω𝑛−1𝐹]𝑜

Remark 3.62. If one only wants to have the exact sequence of homotopy groups,
one need not require that 𝑋 → 𝑌 be an h-�bration. It su�ces to assume that
𝑋 → 𝑌 has the CHP (= covering homotopy property) for all cubes 𝐼𝑛, 𝑛 ≥ 0,
i.e., that 𝑋 → 𝑌 is a Serre �bration (cf. (2.40)).

3.5.7

Let 𝑝 : 𝐸 → 𝐵 be a �bration and a pointed map, and let 𝑓 : 𝐵
′ → 𝐵 be a

pointed map. We assume that the following diagramme is Cartesian.

𝐸
′ 𝑔 //

𝑝
′

��

𝐸

𝑝

��
𝐵
′

𝑓
// 𝐵

𝐸
′
and 𝑝

′
are pointed, and 𝑝

′
is a �bration. Let 𝑖 : 𝐴 → 𝐶𝐴 as in (3.4.3). The

pair (𝑝′ , 𝑝) induces a map

(𝑝′ , 𝑝)∗ : [𝑖, 𝑔]𝑜 → [𝑖, 𝑓 ]𝑜

Theorem 3.63. (𝑝′ , 𝑝)∗ is bijective if 𝐴 is h-well-pointed.



140 CHAPTER 3. HOMOTOPY SETS AND HOMOTOPY GROUPS

Proof. From (3.4.3) we see that it su�ces to examine the map

𝑞∗ : [𝐴, 𝐹𝑔]𝑜 → [𝐴, 𝐹 𝑓 ]𝑜

Here, 𝑞 : 𝐹𝑔 → 𝐹 𝑓 is the map (𝑥, 𝑢) ↦→ (𝑝′𝑥, 𝑝𝑢). The claim follows from the
following theorem.

Theorem 3.64. If 𝑝 is a �bration, then 𝑞 is shrinkable. In particular, 𝑞 is an
h-equivalence.

Proof. The map 𝑝 : 𝐸 → 𝐵 yields a map 𝑊𝑝 : 𝑊𝐸 → 𝑊𝐵 (see (3.5.4)). Let
𝑓1 : 𝐹 𝑓 → 𝑊𝐵 be de�ned by 𝑓1 (𝑦, 𝑤) = 𝑤 and 𝑔1 : 𝐹𝑔 → 𝑊𝐸 accordingly. Then
the following diagramme is Cartesian.

𝐹𝑔
𝑔1 //

𝑞

��

𝑊𝐸

𝑊𝑝

��
𝐹 𝑓

𝑓1

// 𝑊𝐵

Since 𝑝 is a �bration, we can construct a section 𝑠 of 𝑊𝑝 as follows: The
homotopy 𝜑 : 𝑊𝐵 × 𝐼 → 𝐵, 𝜑(𝑤, 𝑡) = 𝑤(𝑡) can be raised to a homotopy Φ :
𝑊𝐵× 𝐼 → 𝐸 with Φ(𝑤, 1) = 𝑜. Let the adjoint map to Φ be 𝑠 : 𝑊𝐵→ 𝑊𝐸 . 𝑠 is a
section of𝑊𝑝. Now,𝑊𝑝 is a �bration. (To prove this, consider adjoint maps and
apply the following theorem of Strøm to the closed co�bration 𝑋×1 ⊂ 𝑋× 𝐼.) □

Theorem 3.65 (Strøm [26], Theorem 4). Let 𝑝 : 𝐸 → 𝐵 be a �bration and
𝐴 ⊂ 𝑋 a closed co�bration. hen every commutative diagramme in 𝒯ℴ𝓅 of the
form

(𝑋 × 0) ∪ (𝐴 × 𝐼)
𝜑 //

⊂
��

𝐸

𝑝

��
𝑋 × 𝐼

Φ
//

Φ

88

𝐵

can be supplemented by a homotopy Φ : 𝑋 × 𝐼 → 𝐸 such that 𝑝Φ = Φ and
Φ| (𝑋×0)∪(𝐴×𝐼 ) = 𝜑.

Furthermore, 𝑠 ◦ 𝑊𝑝 is an h-equivalence because 𝑊𝐸 is contractible. By
Theorem (2.85), 𝑠 ◦𝑊𝑝 has an h-left inverse 𝑡 over 𝑊𝐵. In other words: 𝑡𝑠 is a
section of 𝑊𝑝 and 𝑡𝑠 ◦𝑊𝑝 is homotopic to the identity in 𝒯ℴ𝓅𝑊𝐵; but this just
means: 𝑊𝑝 is shrinkable. By (2.112), the shrinkability of the induced object 𝑞
follows.

□

(End of proof for Theorem 3.63)
We mention the following special case.
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Theorem 3.66. Let 𝑝 : 𝐸 → 𝐵 be a �bration and pointed, let 𝑜 ∈ 𝐵′ ⊂ 𝐵 and
let 𝐸

′
= 𝑝−1𝐵

′
. Then 𝑝 induces an isomorphism of homotopy groups

𝜋𝑛 (𝐸, 𝐸
′ ) � 𝜋𝑛 (𝐵, 𝐵

′ ).

Remark 3.67. This property of the map 𝑝 above essentially serves to de�ne the
notion of �quasi-�bration.� See Dold-Thom [8].

3.5.8

The dual co�bre sequence is presented in detail in Puppe [19]. There, one also
�nds statements about additional algebraic structures at the beginning of the
sequence. For relationships between co�bre and �bre sequences, see [18].

Reference Dold-Thom [8], Nomura [18], Puppe [19].

3.6 The Blakers-Massey excision theorem

Let 𝑌 be a topological space. Let 𝑌1 and 𝑌2 be open subspaces of 𝑌 that cover
𝑌 , 𝑌 = 𝑌1 ∪ 𝑌2. We set 𝑌0 = 𝑌1 ∩ 𝑌2.

Let

𝜋𝑖 (𝑌1, 𝑌0) = 0 for 0 < 𝑖 < 𝑝, 𝑝 ≥ 1,

𝜋𝑖 (𝑌2, 𝑌0) = 0 for 0 < 𝑖 < 𝑞, 𝑞 ≥ 1,

for every choice of the base point in 𝑌0.
Under these conditions, we have

Theorem 3.68 (Excision Theorem). The map induced by inclusion

𝜄 : 𝜋𝑛 (𝑌2, 𝑌0) → 𝜋𝑛 (𝑌,𝑌1)

is an isomorphism for 1 ≤ 𝑛 < 𝑝+𝑞−2 and an epimorphism for 1 ≤ 𝑛 ≤ 𝑝+𝑞−2.

A theorem of this kind was proved by Blakers and Massey in [1]. See also
Spanier [24], p. 484.

We prove the theorem in (3.6.3). Sections (3.6.1) and (3.6.2) provide prepara-
tory lemmata.

3.6.1

Let pairs 𝐴
′ ⊂ 𝐴 and 𝑋

′ ⊂ 𝑋 be given. A map 𝑓 : (𝐴, 𝐴′ ) → (𝑋, 𝑋 ′ ) is called
compressible if 𝑓 is homotopic relative to 𝐴

′
to a map 𝑔 with 𝑔(𝐴) ⊂ 𝑋 ′ . 𝑓 is

called null-homotopic ( 𝑓 ≃ 0) if 𝑓 is homotopic as a map of pairs to a constant
map 𝑘 with 𝑘 (𝐴) ⊂ 𝑋 ′ .

Lemma 3.69. (a) Let 𝑓 be compressible and 𝐴 contractible. Then 𝑓 is null-
homotopic.
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(b) Let 𝑓 be null-homotopic and 𝐴
′ ⊂ 𝐴 be a co�bration. Then 𝑓 is compressible.

Proof. (a): Easy.
(b): By assumption, there exists a homotopy 𝜑 : (𝐴 × 𝐼, 𝐴′ × 𝐼) → (𝑋, 𝑋 ′ ) from
𝑓 to a constant map 𝑘. Since 𝐴

′ ⊂ 𝐴 is a co�bration, there exists a homotopy
𝜓 : 𝐴 × 𝐼 → 𝑋

′
with 𝜓(𝑎, 𝑡) = 𝜑(𝑎, 1 − 𝑡) for 𝑎 ∈ 𝐴′ and 𝜓(𝑎, 0) = 𝑘 (𝑎) for 𝑎 ∈ 𝐴.

Let 𝑔 = 𝜓1. We de�ne 𝐹 : 𝐴 × 𝐼 → 𝑋 by

𝐹 (𝑎, 𝑡) =
{
𝜑(𝑎, 2𝑡) for 𝑡 ≤ 1

2

𝜓(𝑎, 2𝑡 − 1) for 𝑡 ≥ 1
2

and apply the HEP to the pair (this is possible by the product theorem (1.104))

𝐴
′ × 𝐼 ∪ 𝐴 × ¤𝐼 ⊂ 𝐴 × 𝐼

to obtain a deformation of 𝐹 to 𝐹 : 𝑓 ≃ 𝑔 rel 𝐴′ (cf. proof of Theorem (1.62)). □

3.6.2

By an axis-parallel cube in R𝑛, 𝑛 ≥ 1, we mean in the following a point set of
the form

𝑊 (𝑎, 𝛿, 𝐿) = 𝑊 = {𝑥 ∈ R𝑛 |𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑎𝑖 + 𝛿 for 𝑖 ∈ 𝐿, 𝑎𝑖 = 𝑥𝑖 for 𝑖 ∉ 𝐿}

for any 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ R𝑛, 𝛿 > 0, 𝐿 ⊂ {1, . . . , 𝑛} (𝐿 may be empty). A face
of 𝑊 is a set of points of the form

𝑊
′
= {𝑥 ∈ 𝑊 |𝑥𝑖 = 𝑎𝑖 for 𝑖 ∈ 𝐿0, 𝑥 𝑗 = 𝑎 𝑗 + 𝛿 for 𝑗 ∈ 𝐿1}

for some 𝐿0 ⊂ 𝐿, 𝐿1 ⊂ 𝐿 (𝑊
′
may be empty).

By 𝜕𝑊 we denote the union of all proper faces of 𝑊 . The following subsets
of a cube 𝑊 will be signi�cant:

𝐾𝑝 (𝑊) = {𝑥 ∈ 𝑊 |𝑥𝑖 < 𝑎𝑖 +
𝛿

2
for at least 𝑝 values of 𝑖 ∈ 𝐿},

𝐺 𝑝 (𝑊) = {𝑥 ∈ 𝑊 |𝑋𝑖 > 𝑎𝑖 +
𝛿

2
for at least 𝑝 values of 𝑖 ∈ 𝐿},

where 1 ≤ 𝑝 ≤ 𝑛. (Intuitively speaking, 𝐾𝑝 (𝑊) is the subset of 𝑊 of points for
which at least 𝑝 coordinates are �small�.) For 𝑝 > dim𝑊 , we understand 𝐾𝑝 (𝑊)
and 𝐺 𝑝 (𝑊) to be the empty set.

Lemma 3.70. Given 𝐴 ⊂ 𝑌 , 𝑓 : 𝑊 → 𝑌 , and 𝑝 ≤ dim𝑊. Let

𝑓 −1(𝐴) ∩𝑊 ′ ⊂ 𝐾𝑝 (𝑊
′ ) for all 𝑤′ ⊂ 𝜕𝑊.

Then there exists a map 𝑔 homotopic to 𝑓 relative to 𝜕𝑊 with

𝑔−1(𝐴) ⊂ 𝐾𝑝 (𝑊).

(An analogous theorem holds with 𝐺 𝑝 instead of 𝐾𝑝.)



3.6. THE BLAKERS-MASSEY EXCISION THEOREM 143

Figure 3.1:

Proof. We can assume 𝑊 = 𝐼𝑛, 𝑛 ≥ 1. Let ℎ : 𝐼𝑛 → 𝐼𝑛 be the following map: Let
𝑥 = ( 14 , . . . ,

1
4 ). For a half-line 𝑦 beginning at 𝑥, consider its intersection points

𝑃(𝑦) with the boundary of [0, 12 ]
𝑛 and 𝑄(𝑦) with the boundary of 𝐼𝑛. ℎ maps

the segment from 𝑃(𝑦) for 𝑄(𝑦) to the point 𝑄(𝑦), and the segment from 𝑥 to
𝑃(𝑦) a�nely to the segment from 𝑥 to 𝑄(𝑦). (See Figure 3.1.)

Note that ℎ ≃ id𝐼 rel 𝜕𝐼
𝑛. We set 𝑔 = 𝑓 ℎ. Let 𝑥 ∈ 𝐼𝑛 and 𝑔(𝑥) ∈ 𝐴. If

𝑥𝑖 <
1
2 for all 𝑖 , then 𝑥 ∈ 𝐾𝑛 (𝐼𝑛) ⊂ 𝐾𝑝 (𝐼𝑛). If 𝑥1 ≥ 1

2 for at least one 𝑖, then

ℎ(𝑥) ∈ 𝜕𝐼𝑛 and thus ℎ(𝑥) ∈ 𝑊 ′
with dim𝑊

′
= 𝑛 − 1. Since ℎ(𝑥) ∈ 𝑓 −1(𝐴)

also holds, by assumption ℎ(𝑥) ∈ 𝐾𝑝 (𝑊
′ ). Thus, for at least 𝑝 coordinates,

1
2 > ℎ(𝑥)𝑖 =

1
4 + 𝑡 (𝑥𝑖 −

1
4 ). However, by de�nition of ℎ, 𝑡 ≥ 1 (since there exists

an 𝑖 with 𝑥𝑖 ≥ 1
2 ). It follows that ℎ(𝑥)𝑖 ≥ 𝑥𝑖 ; and for at least 𝑝 coordinates,

1
2 > 𝑥𝑖. □

3.6.3 Proof of the Excision Theorem

We show the epimorphism for 𝑛 ≤ 𝑝 + 𝑞 − 2. First, we convince ourselves that it
su�ces to deform a map

𝑓 : (𝐼𝑛, 𝜕𝐼𝑛, 𝐽𝑛−1) → (𝑌,𝑌1, 𝑜)

into a map 𝑔 such that

proj 𝑔−1(𝑌 \ 𝑌2) ∩ proj 𝑔−1(𝑌 \ 𝑌1) = ∅. (3.71)

where proj : 𝐼𝑛 → 𝐼𝑛−1, proj(𝑥1, . . . , 𝑥𝑛) = (𝑥1, . . . , 𝑥𝑛−1).)
If a map 𝑔 with this property is given, then we choose (by Urysohn's theorem)

a continuous function 𝜏 : 𝐼𝑛−1 → [0, 1], which takes the value 1 on the closed set
proj 𝑔−1(𝑌 \𝑌2) and the value zero on 𝜕𝐼𝑛−1 ∪ proj 𝑔−1(𝑌 \𝑌1). (This is possible
because 𝑔−1(𝑌 \ 𝑌2) = 𝑔−1(𝑌1 \ 𝑌0) with 𝐽𝑛−1 has empty intersection.)

Let 𝜑 : 𝐼𝑛 → 𝐼𝑛 be de�ned by

𝜑(𝑥1, . . . , 𝑥𝑛) = (𝑥1, . . . , 𝑥𝑛−1, 𝜏 + (1 − 𝜏)𝑥𝑛),

where 𝜏 = 𝜏(𝑥1, . . . , 𝑥𝑛−1), and 𝑔0 by 𝑔0 = 𝑔 ◦ 𝜑. Then 𝑔0 can be regarded as a
map

𝑔0 : (𝐼𝑛, 𝜕𝐼𝑛, 𝐽𝑛−1) → (𝑌2, 𝑌0, 𝑜)
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The reader may want to verify 𝜄[𝑔0] = [𝑔].
We now show that there exists a map 𝑔 homotopic to 𝑓 with the above

property. We partition 𝐼𝑛 into subcubes 𝑊 such that either 𝑓 (𝑊) ⊂ 𝑌1 or
𝑓 (𝑊) ⊂ 𝑌2 holds. Let 𝑊1,𝑊2, . . . ,𝑊𝑟 be those cubes 𝑊 for which 𝑓 (𝑊) ⊂ 𝑌1
but 𝑓 (𝑊) ⊄ 𝑌2. Similarly, let 𝑊

′
1,𝑊2

′
, . . . ,𝑊

′
𝑔 be those 𝑊 with 𝑓 (𝑊) ⊂ 𝑌2 but

𝑓 (𝑊) ⊄ 𝑌1. The indexing is chosen so that dim𝑊𝑖 ≤ dim𝑊𝑖+1 and dim𝑊
′
𝑖
≤

dim𝑊
′
𝑖+1. We also set

𝑈𝑖 = ∪ 𝑓 (𝑊 ) ∈𝑌𝑖𝑊, 𝑖 = 0, 1, 2.

We now construct a family of maps 𝑓𝑘 : 𝐼𝑛 → 𝑌 , 𝑘 = 0, 1, . . . , 𝑟, with the
properties:

(a) 𝑓 (𝑊) ⊂ 𝑌𝑖 → 𝑓𝑘 (𝑊) ⊂ 𝑌𝑖.

(b) 𝑓 −1
𝑘
(𝑌1 \ 𝑌0) ∩𝑊 𝑗 ⊂ 𝐾𝑝 (𝑊 𝑗 ) for all 𝑗 ≤ 𝑘.

(c) 𝑓𝑘 ≃ 𝑓 as a map of triples.

We set 𝑓0 = 𝑓 . Let 𝑓𝑘−1 be already constructed. For every proper side 𝑊 of 𝑊𝑘 ,
we have 𝑓 −1

𝑘−1 (𝑌1 \ 𝑌0) ∩𝑊 ⊂ 𝐾𝑝(𝑊) by the induction hypothesis (b).

Proposition 3.72 (Intermediate claim). There is a homotopy 𝜓 : 𝑊𝑘 × 𝐼 →
𝑌1 rel 𝜕𝑊𝑘 with 𝜓0 = 𝑓𝑘−1 |𝑊𝑘 and

𝜓−11 (𝑌1 \ 𝑌0) ⊂ 𝐾𝑝 (𝑊𝑘).

Proof. Case 1: dim𝑊𝑘 = 0 We must connect 𝑓𝑘−1 (𝑊𝑘) within 𝑌1 to a point in
𝑌0 (since 𝐾𝑝 (𝑊𝑘) = ∅). Since 𝑛 > 0, there is a path in 𝐼𝑛 from 𝑊𝑘 to
a point in 𝐽𝑛−1. The image of this path at 𝑓𝑘−1 connects 𝑓𝑘−1 (𝑊𝑘) to a
point in 𝑌0; a suitable initial segment runs entirely in 𝑌1 and ends in 𝑌0.

Case 2: 0 < dim𝑊𝑘 < 𝑝 For every side 𝑊 of 𝑊𝑘 , 𝐾𝑝 (𝑊) = 0 and consequently,
by induction hypothesis (b), 𝑓𝑘−1 (𝑊) ⊂ 𝑌0. We therefore obtain from 𝑓𝑘−1
a map

(𝑊𝑘 , 𝜕𝑊𝑘) → (𝑌1, 𝑌0).
Since 𝜋𝑖 (𝑌1, 𝑌0) = 0 for 𝑖 = dim𝑊𝑘 (and any choice of the base point), the
lemma in (3.6.1) can be applied. It yields the desired homotopy 𝜓.

Case 3: dim𝑊𝑘 ≥ 𝑝 We apply the lemma from (3.6.2). This proves the in-
termediate claim. We extend the obtained homotopy 𝜓 to a homotopy
Ψ : 𝐼𝑛 × 𝐼 → 𝑌 of 𝑓𝑘−1, namely constant on 𝑈2𝑈𝑊1 ∪ · · · ∪ 𝑊𝑘−1 (this
is possible because this set contains no interior points of 𝑊𝑘) and then
recursively on 𝑊𝑘+1, . . . ,𝑊𝑟 with values in 𝑌1 (this is possible because
𝜕𝑊 𝑗 ⊂ 𝑊 𝑗 is a co�bration). Let Ψ1 = 𝑓𝑘 . Ψ is a homotopy rel𝑈2, and
since 𝐽𝑛−1 ⊂ 𝑈2 𝑗 , so is rel 𝐽𝑛−1. Ψ(𝜕𝐼𝑛 × 𝐼) ⊂ 𝑌1. Hence Ψ is a homotopy
in the category of space triples and (a), (b) and (c) are satis�ed for 𝑓𝑘 .

We set 𝑔0 = 𝑓𝑟 and recursively construct a family 𝑔0, . . . , 𝑔𝑠 of maps 𝐼𝑛 → 𝑌

with the properties:
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(a
′
) 𝑔0 (𝑊) ⊂ 𝑌𝑖 → 𝑔1 (𝑊) ⊂ 𝑌𝑖.

(b
′
) 𝑔−11 (𝑌2 \ 𝑌0) ∩𝑊

′
𝑗
⊂ 𝐺 𝑝 (𝑊

′
𝑗
) for all 𝑗 ≤ 1.

(c
′
) 𝑔1 ≃ 𝑔0 rel𝑈1.

(Note that 𝑈1 ⊃ 𝜕𝐼𝑛 ⊃ 𝐽𝑛−1). We de�ne 𝑔 = 𝑔𝑠. Then 𝑔 ≃ 𝑓 is a map of
triples. It remains to prove the statement (3.71) for 𝑔.

Let 𝑦 ∈ proj 𝑔−1(𝑌1 \ 𝑌0) and say 𝑦 = proj(𝑥), 𝑥 ∈ 𝑔−1(𝑌1 \ 𝑌0), 𝑥 ∈ 𝑊 .
Then 𝑥 ∈ 𝐾𝑝 (𝑊), 𝑦 ∈ 𝐾𝑝−1 (proj(𝑊)), i.e., 𝑦 has at least 𝑝 − 1 small
coordinates. Similarly, 𝑦 ∈ proj 𝑔−1(𝑌2 \ 𝑌0) implies that 𝑦 has at least
𝑞 − 1 large coordinates. Since 𝑛 − 1 < 𝑝 − 1 + 𝑞 − 1, both relations cannot
exist simultaneously.

We show injectivity for 𝑛 < 𝑝+𝑞−2. Let 𝑓 and 𝑔 be two maps (𝐼𝑛, 𝜕𝐼𝑛, 𝐽𝑛−1) →
(𝑌2, 𝑌0, 𝑜). Let their composition with the inclusion 𝑢 : (𝑌2, 𝑌0, 𝑜) →
(𝑌,𝑌1, 𝑜) be homotopic. We choose a homotopy

𝜑 : (𝐼𝑛 × 𝐼, 𝜕𝐼𝑛 × 𝐼, 𝐽𝑛−1 × 𝐼) → (𝑌,𝑌1, 𝑜)

between 𝜑0 = 𝑢 𝑓 and 𝜑1 = 𝑢𝑔. It su�ces to deform 𝜛 relative to 𝐽𝑛 into
a map Ψ that satis�es

𝑡Ψ−1(𝑌 \ 𝑌2) ∩ 𝑡Ψ−1(𝑌 \ 𝑌1) = ∅

where 𝑡 = proj× id : 𝐼𝑛 × 𝐼 → 𝐼𝑛−1 × 𝐼). If we choose a function 𝜏 :
𝐼𝑛−1 × 𝐼 → [0, 1] that is zero on 𝜕 (𝐼𝑛−1 × 𝐼) ∪ 𝑡Ψ−1(𝑌 \ 𝑌1) and equal to
one on 𝑡𝜓−1(𝑌 \ 𝑌2), then we can consider the composition of Ψ with

(𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1) ↦→ (𝑥1, . . . , 𝑥𝑛−1, 𝜏 + (1 − 𝜏)𝑥𝑛, 𝑥𝑛+1)

as a homotopy from 𝑓 to 𝑔. The deformation of 𝜑 into Ψ occurs as in the
proof of epimorphism. Here we must assume 𝑛 + 1 ≤ 𝑝 + 𝑞 − 2.

□

3.6.4

Let 𝐴 ⊂ 𝑋 be an h-co�bration, 𝐴 ≠ ∅. We choose a base point in 𝐴 and consider
the map

𝑝 : (𝑋, 𝐴) → (𝑋/𝐴, 𝑜)

that identi�es 𝐴 to a point, as a map of pointed space pairs.

Theorem 3.73. Let 𝜋𝑖 (𝐴) = 0 for 0 ≤ 𝑖 ≤ 𝑚, 𝑚 ≥ 1. Let 𝜋𝑖 (𝑋, 𝐴) = 0 for
0 < 𝑖 ≤ 𝑛. Then

𝑝∗ : 𝜋𝑖 (𝑋, 𝐴) → 𝜋𝑖 (𝑋/𝐴, 𝑜)

is an isomorphism for 𝑖 ≤ 𝑛 + 𝑚 and an epimorphism for 𝑖 = 𝑛 + 𝑚 + 1.



146 CHAPTER 3. HOMOTOPY SETS AND HOMOTOPY GROUPS

Proof. We denote by 𝐶
′
𝐴 the cone (𝐴 × 𝐼)/(𝐴 × 0) and by 𝑋 ∪ 𝐶 ′𝐴 the factor

space (𝑋 + 𝐶 ′𝐴/∼, by 𝑎 ∼ (𝑎, 1). In the co-Cartesian diagram, let 𝑃 be a point
space and 𝑐 be the canonical homeomorphism.

𝑋 ∪ 𝐶 ′𝐴 𝑞
′
// (𝑋 ∪ 𝐶 ′𝐴)/𝐶 ′𝐴 �

𝑐
// 𝑋/𝐴

𝐶
′
𝐴

𝑏
//

∪ 𝑎

OO

𝑃

OO

𝑎 is an h-co�bration, 𝑏 an h-equivalence, hence 𝑞′ an h-equivalence and hence
also 𝑞 := 𝑐𝑞′. (Cf. (2.137)). According to (3.20),

𝑞∗ : 𝜋𝑖 (𝑋 ∪ 𝐶
′
𝐴), 𝐶 ′ ) → 𝜋𝑖 (𝑋/𝐴, 𝑜)

is an isomorphism (for any choice of the base point in 𝐶
′
𝐴). We set 𝑌 = 𝑋∪𝐶 ′𝐴,

𝑄 the vertex of the cone, 𝑌2 = 𝑌 \ 𝑄, 𝐴1 the base of the cone, and 𝑌1 = 𝐶
′
𝐴.

Then we have the maps induced by inclusions as follows.

𝜋𝑖 (𝑋, 𝐴)
𝛼

�
// 𝜋𝑖 (𝑌2, 𝑌1 ∩ 𝑌2)

𝛽 // 𝜋𝑖 (𝑌,𝑌1)

𝜋𝑖 (𝑌2, 𝑌2 ∩ (𝑌2 \ 𝐴1)) 𝑒
//

�

OO

𝜋𝑖 (𝑌,𝑌2 \ 𝐴1)

�

OO

The isomorphisms shown arise from the fact that the inclusions are h-equivalences;
𝑒 is isomorphic for 𝑖 ≤ 𝑛 + 𝑚 and epimorphic for 𝑖 = 𝑛 + 𝑚 + 1 by the excision
theorem. (Since 𝐴 is path-connected, one can choose any point of 𝐶

′
𝐴 as the

base point, in such a way that the inclusions are pointed maps.)
With the commutative diagramme below, the claim now follows.

𝜋𝑖 (𝑋, 𝐴)
𝛽𝛼 //

𝑝∗ &&

𝜋𝑖 (𝑌, 𝐶
′
𝐴)

𝑞∗xx
𝜋𝑖 (𝑋/𝐴, 𝑜)

□

3.7 Sandwich theorem

In this section, let 𝑌 be an h-well-pointed space with

𝜋𝑖 (𝑌 ) = 0 for 0 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 0.

We investigate the suspension map (cf. (3.2.4))

Σ(𝑋,𝑌 ) = Σ : [𝑋,𝑌 ]𝑜 → [Σ𝑋, Σ𝑌 ]𝑜 .
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3.7.1 Sphere bouquets

Let (S 𝑗
𝑘
, 𝑘 ∈ 𝐾) be a family of pointed 𝑗-spheres and 𝐵 = ∨𝑘∈𝐾S 𝑗𝑘 be their sum

(coproduct) in 𝒯ℴ𝓅
𝑜.

Theorem 3.74. Σ(𝐵,𝑌 ) is bijective for 0 ≤ 𝑗 ≤ 2𝑛 and surjective for 𝑗 = 2𝑛+1.

Proof. We derive this theorem from the excision theorem in �3.6. First, we
can assume that 𝐵 is a sphere, since Σ and [−, 𝑌 ]𝑜 are compatible with the
summation. Recall that Σ

′
𝑌 was the double cone of 𝑌 (3.25). We consider the

subsets

𝐶−𝑌 = {[𝑦, 𝑡] |𝑡 < 1}
𝐶+𝑌 = {[𝑦, 𝑡] |𝑡 > 0}

of Σ
′
𝑌 . Let 𝑝 : Σ

′
𝑌 → Σ𝑌 be the canonical projection (3.25).

We denote by 𝜎 the composition

𝜋 𝑗 (𝑌 )
�

𝑐
//

𝜎

��

𝜋 𝑗 (𝐶−𝑌 ∩ 𝐶+𝑌 )
�

Δ−1
// 𝜋 𝑗+1 (𝐶−𝑌, 𝐶−𝑌 ∩ 𝐶+𝑌 )

𝑎

��
𝜋 𝑗+1 (Σ𝑌 ) 𝜋 𝑗+1 (Σ

′
𝑌 )

𝑝∗

�oo 𝜋 𝑗+1 (Σ
′
𝑌, 𝐶+𝑌 )

𝑏−1
�oo

where 𝑎 and 𝑏 are induced by inclusions, 𝑐 by the map 𝑦 ↦→ [𝑦, 12 ]. From the
exact homotopy sequence (3.5.6) we see that 𝑎 is an isomorphism since 𝐶𝑌 and
𝐶𝑌 are contractible (with direct proof for 𝑗 = 0).

𝑏 is an isomorphism since the inclusion (Σ′𝑌, 𝑜) → (Σ′𝑌, 𝐶+𝑌 ) consists in-
dividually of h-equivalences, 𝑝∗ is an isomorphism since 𝑝 is an h-equivalence
((3.2.1), (3.1.5)). From the excision theorem, 𝑎 is an isomorphism for 𝑗 + 1 <
(𝑛 + 2) + (𝑛 + 2) − 2 and an epimorphism for 𝑗 + 1 = (𝑛 + 2) + (𝑛 + 2) − 2.

It remains to show the equality 𝜎 = Σ(S 𝑗 , 𝑌 ). We have the spaces 𝐶
′
S 𝑗 =

(S 𝑗 × 𝐼)/(S 𝑗 × 0), 𝐶S 𝑗 , 𝐶S 𝑗/S 𝑗 = ΣS 𝑗 . We use the fact that we can describe
elements of the homotopy groups of (𝐴, 𝐵) by maps

(𝐶 ′S 𝑗 , S 𝑗 ) → (𝐴, 𝐵)

or

(𝐶S 𝑗 , S 𝑗 ) → (𝐴, 𝐵)

(see �3.4). Let 𝑓 : S 𝑗 → 𝑌 be given. The element 𝑐[ 𝑓 ] is equal to Δ[𝑔], where
𝑔 : 𝐶

′
S 𝑗 → 𝐶−𝑌 is de�ned by 𝑔[𝑠, 𝑡] = [ 𝑓 (𝑠), 𝑡2 ]. Further: 𝑎[𝑔] is represented by

ℎ, ℎ[𝑠, 𝑡] = [ 𝑓 (𝑠), 𝑡]. Finally, 𝑝∗𝑏−1 [ℎ] is represented by ℓ : (𝐶S 𝑗 , S 𝑗 ) → (Σ𝑌, 𝑜),
where ℓ is the composition of Σ 𝑓 with the projection (𝐶S 𝑗 , S 𝑗 ) →> (𝐶S 𝑗/S 𝑗 , 𝑜).
However, ℓ and Σ 𝑓 represent the same element. □
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3.7.2 Cellular spaces

If (𝑌𝑘 |𝑘 ∈ 𝐾) is a family of topological spaces, then we denote by ⊕𝑘∈𝐾𝑌𝑘 the
topological sum (= �disjoint union�) of 𝑌𝑘 's. We say: A space 𝑋 arises from the
space 𝐴 by attaching 𝑛-cells (𝑛 > 1) if there exists a cocartesian square of the
form

⊕𝑘∈𝐾S𝑛−1𝑘

𝑓 //

∩

𝐴

𝑗

��
⊕𝑘∈𝐾E𝑛𝑘 𝑔

// 𝑋

where S𝑛−1
𝑘

is a (𝑛 − 1)-sphere and E𝑛
𝑘
is a 𝑛-ball.

We say: The space 𝑋 has a cellular decomposition of dimension 𝑛 if there
exists a sequence

𝑋0 ⊂ 𝑋1 ⊂ · · · ⊂ 𝑋𝑛 = 𝑋

of spaces such that

(a) 𝑋0 is discrete, and

(b) 𝑋 𝑖+1 arises from 𝑋 𝑖 by attaching (𝑖 + 𝑙) cells, 0 ≤ 𝑖 < 𝑛.

Theorem 3.75. Suppose 𝑋 has a cellular decomposition of dimension 𝑗 . Then
Σ(𝑋,𝑌 ) is bijective for 𝑗 ≤ 2𝑛 and surjective for 𝑗 < 2𝑛 + 1.

Proof. We can reduce the suspension to the map 𝑌 → ΩΣ𝑌 . Because of (3.7.1),
the theorem to be proved follows from the following. □

Theorem 3.76. Let 𝑓 : 𝐴→ 𝐵 be a pointed map such that 𝑓∗ : 𝜋 𝑗 (𝐴) → 𝜋 𝑗 (𝐵)
is an isomorphism for 0 ≤ 𝑗 < 𝑛 and an epimorphism for 𝑗 = 𝑛. Then 𝑓∗ :
[𝑋, 𝐴]𝑜 → [𝑋, 𝐵]𝑜 is bijective if 𝑋 has a cellular decomposition of dimension
< 𝑛, and surjective if 𝑋 has a cellular decomposition of dimension 𝑛.

A simple proof can be found in Spanier [24], 7.6.23, p. 405.

3.7.3 Homotopy groups of spheres

The theorems proved so far yield the following statements about the homotopy
groups of spheres.

Theorem 3.77. (a) 𝜋𝑖 (S𝑛) = 0 for 0 ≤ 𝑖 < 𝑛.

(b) Σ : 𝜋𝑖 (S𝑛) � 𝜋𝑖+1(S𝑛+1) for 𝑖 ≤ 2𝑛 − 2.

(c) 𝑝𝑖𝑖 (S𝑛) � Z, 𝑛 ≥ 1. The identity map idS𝑛 is a generator of 𝜋𝑛 (S𝑛).

Proof. (a): follows from (3.7.1) since 𝜋0 (S𝑛) = 0 for 𝑛 > 0.
(b): follows from (3.7.1) and (a).
(c): We see from (3.7.3) that in

𝜋1 (S1)
Σ−→ 𝜋2 (S2)

Σ−→ 𝜋3 (S3)
Σ−→ · · ·
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the �rst map is surjective and all subsequent ones are bijective. For 𝑛 = 1,
the statement (c) can be easily derived from the consideration of the covering
R → S1 (see, for example, Spanier [24], 1.8.12, p. 54). For the case 𝑛 = 2, we
consider the Hopf �bration 𝐻 : S3 → S2 with �bre S1 (see, for example, Steenrod
[25], 20.1, p. 105): We consider S3 to be the set {(𝑧0, 𝑧1) | |𝑧0 |2 + |𝑧1 |2 = 1} of
pairs (𝑧0, 𝑧1) of complex numbers and S2 = C ∪ {∞} to be the complex number
sphere. Then 𝐻 is de�ned by 𝐻 (𝑧0, 𝑧1) = 𝑧0/𝑧1. 𝐻 is locally trivial with a �bre
homeomorphic to S1. From the piece of the exact �bre sequence

𝜋2 (S3) → 𝜋2 (S2) → 𝜋1 (S1) → 𝜋1 (S3)

and 𝜋2 (S3) = 0, 𝑝𝑖1 (S3) = 0, we see that 𝜋2 (S2) is isomorphic to Z. But then
Σ : 𝜋1 (S1) → 𝜋2 (S2) must be an isomorphism. With Σ[id] = [id], the claims
follow. This proves (c). □

The inverse isomorphism of Z → 𝜋𝑛 (S𝑛), 𝑘 ↦→ 𝑘 [id] is called degree, and
written deg. deg[ 𝑓 ] · deg[𝑔] = deg[ 𝑓 · 𝑔] holds. In other words: If 𝑓 : S𝑛 → S𝑛

has deg = 𝑘, then 𝑓∗ : 𝜋𝑛 (S𝑛) → S𝑛 is a multiplication by 𝑘. Furthermore, the
following holds:

𝑓 ∗ : 𝜋𝑛 [S𝑛, 𝑋]𝑜 → 𝑝𝑖𝑛 [S𝑛, 𝑋]𝑜

is (in the additive group [S𝑛, 𝑋]𝑜) the map 𝑓 ∗𝑧 = 𝑘𝑧 if 𝑓 has deg = 𝑘. It follows
that the group structure in [S𝑛, 𝑋]𝑜 de�ned in (3.4.1) is independent of the
chosen homeomorphism S𝑛 � ΣS𝑛−1 for 𝑛 ≥ 2.

Remark 3.78. Statement (b) of the last theorem is the suspension theorem
proved by H. Freudenthal in 1937 (see [10]). References: Spanier [24], Steenrod
[25].

3.8 The theorem of James

In this section, a space 𝐽𝑋 is constructed for a pointed space 𝑋, which (under
certain conditions on 𝑋) is h-equivalent to ΩΣ𝑋. The space 𝐽𝑋 has the ad-
vantage over ΩΣ𝑋 that it can be easily and clearly constructed from 𝑋. For
example, a cell decomposition of 𝑋 directly yields a cell decomposition of 𝐽𝑋.

3.8.1 The James construction

Let 𝑋 ∈ Obj(𝒯ℴ𝓅
𝑜). We consider the set of �nite words 𝑥1 · · · 𝑥𝑛 of points

𝑥𝑖 ∈ 𝑋. On this set, we introduce the equivalence relation generated by

𝑥1 · · · 𝑥𝑖−1𝑛𝑜𝑥𝑖 · · · 𝑥𝑛 ∼ 𝑥1 · · · 𝑥𝑖−1𝑥𝑖 · · · 𝑥𝑛

(where 𝑥1 · · · 𝑥𝑛 is arbitrary and 𝑜 is the base point of 𝑋) and call the factor
set 𝐽𝑋. Let 𝑋𝑛 be the 𝑛-fold Cartesian product of 𝑋 with itself. We have a
surjective map

𝑝 : ⊕∞𝑛=1𝑋𝑛 → 𝐽𝑋,
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that assigns the class of the word 𝑥1 · · · 𝑥𝑛 to a point (𝑥1 · · · 𝑥𝑛) of the topological
sum. Let 𝐽𝑋 be given the factor topology.

The set 𝐽𝑋 carries a connexion (multiplication) that is expressed on repre-
sentatives by writing the words one after the other. The connexion is associative
and has the class of the base point as its neutral element. 𝐽𝑋 thus becomes a
monoid.

If 𝑔 : 𝑋 → 𝑌 is a continuous punctured map and 𝑔𝑛 : 𝑋𝑛 → 𝑌𝑛 is their 𝑛-fold
product, a continuous map

𝐽𝑔 : 𝐽𝑋 → 𝐽𝑌

which makes the following diagramme commutative.

⊕𝑋𝑛
⊕𝑔𝑛 //

𝑝

��

⊕𝑌𝑛

𝑝

��
𝐽𝑋

𝐽𝑔
// 𝐽𝑌

𝐽𝑔 respects monoid structures. If 𝜑𝑡 : 𝑋 → 𝑌 is a pointed homotopy from 𝜑0 to
𝜑1, then 𝐽 (𝜑𝑡 ) is a pointed homotopy from 𝐽 (𝜑0) to 𝐽 (𝜑1).

Let 𝜄 : 𝑋 → 𝐽𝑋 be the map that assigns the class of the word 𝑥 to the
point 𝑥 ∈ 𝑋. Let 𝑀 be a topological monoid, i.e., a pointed topological space
together with an associative continuous multiplication that has the base point
as a neutral element.

Theorem 3.79 (Universal property of 𝐽). If 𝑓 : 𝑋 → 𝑀 is a pointed continuous
map, then there exists exactly one continuous map ℎ : 𝐽𝑋 → 𝑀 that makes the
following diagrame commutative and respects the monoid structures.

𝑋
𝜄 //

𝑓   

𝐽𝑋

ℎ}}
𝑀

Proof. The uniqueness of ℎ follows since 𝐽𝑋 is generated by image 𝜄. The
existence of ℎ follows from the fact that the continuous map 𝐻 : ⊕𝑋𝑛 → 𝑀,
𝐻 (𝑥1, . . . , 𝑥𝑛) = 𝑓 𝑥1 · · · 𝑓 𝑥𝑛, can be factored over 𝑝 : ⊕𝑋𝑛 → 𝐽𝑋. □

We now prove some topological properties of the construction 𝐽. Let 𝐽𝑚 (𝑋) =
𝑝(𝑋𝑚). The map 𝑝 induces 𝑝𝑚 : 𝑋𝑚 → 𝐽𝑚𝑋. We �rst give 𝐽𝑋 the identi�cation
topology by 𝑝.

Lemma 3.80. Let 𝑎 = 𝑎1 · · · 𝑎𝑘 ∈ 𝐽𝑚𝑋. Let 𝑎𝑖 ≠ 𝑜 for 𝑖 = 1, . . . , 𝑘 and let
𝐿𝑜 = {𝑖 |𝑎𝑖 ∉ {𝑜}}. A neighbourhood basis of 𝑎 is given by the sets 𝑈1 · · ·𝑈𝑘𝑈𝑚−𝑘
de�ned immediately. Let 𝑈𝑖 be an open neighbourhood of 𝑎𝑖, 𝑈 be an open
neighbourhood of 𝑜, and let 𝑜 ∉ 𝑈𝑖 for 𝑖 ∈ 𝐿𝑜. We set

𝑈1 · · ·𝑈𝑘𝑈𝑚−𝑘 = 𝑝𝑚 ∪𝜆 (𝑈𝜆1 × · · · ×𝑈𝜆1 ),
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where

𝐿𝑜 ⊂ 𝐿 ⊂ {1, . . . , 𝑘},

and 𝜆 : 𝐿 → {1, . . . , 𝑚} is monotone increasing and

𝑈𝜆𝑗 =

{
𝑈𝑖 for 𝑗 = 𝜆(𝑖)
𝑈 for 𝑗 ∉ im𝜆.

Proof. Let 𝑎 ∈ 𝑈1 · · ·𝑈𝑘𝑈𝑚−𝑘 . This set is open since

∪𝜆 (𝑈𝜆1 × · · · ×𝑈𝜆𝑚)

is open and saturated. Let 𝑊 be an open neighbourhood of 𝑎 in 𝐽𝑚𝑋. Then
𝑝−1𝑚 𝑊 is open in 𝑋𝑚 and saturated. Let us set

𝑎 𝑗𝜆 =

{
𝑎𝑖 , for 𝑗 = 𝜆(𝑖)
𝑜, for 𝑗 ∉ im𝜆,

then 𝑎𝜆1 · · · 𝑎𝜆𝑚 ∈ 𝑝−1𝑚 𝑊 . There are open neighbourhoods 𝑉𝜆
𝑗
of 𝑎𝜆

𝑗
such that

𝑉𝜆1 × · · · ×𝑉𝜆𝑚 ⊂ 𝑝−1𝑚 𝑊.

Let

𝑈
′
𝑖 = ∩𝜆𝑉𝜆𝜆(𝑖) ,
𝑈 = ∩ 𝑗∉im𝜆𝑉

𝜆
𝑗 ,

𝑈𝑖 =

{
𝑈
′
𝑖
∩ (𝑋 \ {𝑜}) for 𝑖 ∈ 𝐿𝑜

𝑈
′
𝑖

for 𝑖 ∉ 𝐿𝑜 .

Then 𝑎𝑖 ∈ 𝑈𝑖, 𝑜 ∈ 𝑈 and 𝑈1 · · ·𝑈𝑘𝑈𝑚−𝑘 ⊂ 𝑊 . □

Lemma 3.81. 𝐽𝑚𝑋 ⊂ 𝐽𝑋 is a topological embedding. It is closed if 𝑜 is closed
in 𝑋.

Proof. The following commutative diagramme shows that 𝐽𝑚𝑋 ⊂ 𝐽𝑋 is contin-
uous.

𝑋𝑚 ⊂

𝑝𝑚

��

⊕∞𝑛=1𝑋𝑛

𝑝

��
𝐽𝑚𝑋 ⊂ 𝐽𝑋

Now let 𝐴 be an open neighbourhood of 𝑎 in 𝐽𝑚𝑋. We construct an open
neighbourhood 𝐵 of 𝑎 in 𝐽𝑋 such that

𝐵 ∩ 𝐽𝑚𝑋 ⊂ 𝐴.
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Let 𝑎 = 𝑎1 · · · 𝑎𝑘 , 𝑎𝑖 ≠ 𝑜 for 𝑖 = 1, . . . , 𝑘. By Lemma 3.80, there exists a
neighbourhood of 𝑎 contained in 𝐴 of the form 𝑈1 · · ·𝑈𝑘𝑈𝑚−𝑘 . Let

𝐵
′
= ⊕∞

𝑛= |𝐿𝑜 | ∪𝜆 𝑈
𝜆
1 × · · · ×𝑈𝜆𝑛

(where 𝐿𝑜 ⊂ 𝐿 ⊂ {1, . . . , 𝑘}, 𝜆 : 𝐿 → {1, . . . , 𝑛} is monotonically increasing,
|𝐿𝑜 | is the number of elements of 𝐿𝑜, and 𝑈

𝜆
𝑗
is de�ned as before). 𝐵

′
is open

and saturated in ⊕∞𝑛=1𝑋𝑛. 𝐵 = 𝑝(𝐵′ ) is an open neighbourhood of 𝑎 in 𝐽𝑋 with
𝐵 ∩ 𝐽𝑚𝑋 ⊂ 𝐴. If ℓ < 𝑘 and 𝑜 is closed in 𝑋 , then 𝐵 ∩ 𝐽ℓ𝑋 ≠ ∅. It follows that
in this case 𝐽𝑋 \ 𝐽ℓ𝑋 is open. □

Lemma 3.82. 𝐽𝑋 is a topological direct limit of the subspaces 𝐽1𝑋 ⊂ 𝐽2𝑋 ⊂ · · · .
Proof. 𝑝 can be written as

⊕∞𝑛=1𝑋𝑛
⊕𝑝𝑛−−−→ ⊕∞𝑛=1𝐽𝑛𝑋 → 𝐽𝑋.

Since 𝑝 is an identi�cation, the second map ⊕∞𝑛=1𝐽𝑛𝑋 → 𝐽𝑋 is an identi�cation.
□

Lemma 3.83. (a) For every topological space 𝑌 ,

𝑃𝑚 × id𝑌 : 𝑋𝑚 × 𝑌 → 𝐽𝑚𝑋 × 𝑌

is an identi�cation.

(b) The monoid structure on 𝐽𝑋 induces a continuous map

𝜇 : 𝐽𝑚 × 𝐽𝑛𝑋 → 𝐽𝑚+𝑛𝑋.

Proof. (a): Let 𝐵 ⊂ 𝐽𝑚𝑋 ×𝑌 and 𝐴 = (𝑝𝑚 × id)−1𝐵 be open in 𝑋𝑚 ×𝑌 . We need
to show that 𝐵 is open. Let (𝑎, 𝑦) ∈ 𝐵 and let 𝑎 = 𝑎1 · · · 𝑎𝑘 with 𝑎𝑖 ≠ 𝑜 for 𝑖 =
1, . . . , 𝑘. We de�ne 𝑎𝜆

𝑗
as in the proof of Lemma 3.80. Then (𝑎𝜆1 , . . . , 𝑎𝜆𝑚, 𝑦) ∈ 𝐴.

There are open neighbourhoods 𝑉𝜆
𝑗
of 𝑎𝜆

𝑗
and 𝑊 of 𝑦 such that

𝑉𝜆1 × · · · ×𝑉𝜆𝑚 ⊂ 𝐴.

We de�ne 𝑈𝑖 and 𝑈 as in the proof of Lemma 3.80 and set 𝑊 = ∩𝑊𝜆. Then

(𝑎, 𝑦) ∈ 𝑈1 · · ·𝑈𝑘𝑈𝑚−𝑘 ×𝑊 ⊂ 𝐵.

(b): From (a) it follows that

(𝑝𝑚 × 𝑝𝑛) = (𝑝𝑚 × id) ◦ (id×𝑝𝑛)

is an identi�cation. We have a commutative diagramme

𝑋𝑚 × 𝑋𝑛 //

𝑝𝑚×𝑝𝑛
��

𝑋𝑚+𝑛

𝑝𝑚+𝑛

��
𝐽𝑚𝑋 × 𝐽𝑛𝑋 // 𝐽𝑚+𝑛𝑋

The continuity of the dotted map follows. □
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Remark 3.84. 1) 𝐽𝑋 → 𝐽𝑋, 𝑥 ↦→ 𝑥𝑎, 𝑎 ∈ 𝐽𝑋, is continuous.

2) 𝑋 × 𝐽𝑋 → 𝐽𝑋, (𝑥, 𝑦) ↦→ 𝑥𝑦, is not continuous if 𝑋 is the space of rational
numbers.

Lemma 3.85. If 𝑍 is h-well-pointed, so is 𝐽𝑍.

Proof. Since 𝐽 is compatible with pointed homotopies, we can assume without
signi�cant restriction by (1.75) that {𝑜} ⊂ 𝑍 is a closed co�bration. We have a
�ltration of 𝐽𝑍

{𝑜} =: 𝐽0𝑍 ⊂ 𝐽1𝑍 ⊂ 𝐽2𝑍 ⊂ · · ·
We �rst show that 𝐽𝑛−1𝑍 ⊂ 𝐽𝑛𝑍 is a co�bration. Consider the following dia-
gramme where 𝑞

′
and 𝑞 are restrictions of the map 𝑝 from (3.8.1).

∪𝑛𝑖=1𝑍 𝑖−1 × {𝑜} × 𝑋𝑛−𝑖 ⊂

𝑞
′

��

𝑍𝑛

𝑞

��
𝐽𝑛−1𝑍 ⊂ 𝐽𝑛𝑍

The upper inclusion is (𝑍, {𝑜})𝑛, the 𝑛-fold product of the (closed) co�bration
{0} → 𝑍 with itself, thus, according to Theorem (1.104), it is a co�bration. By
returning to the de�nition of co�bration, one shows that the below inclusion is
also a co�bration, considering:

(1) 𝑞 is an identi�cation;

(2) if two points at 𝑞 have the same image, then so does the ones at 𝑞
′
.

⊕∞𝑛=1𝐽𝑛𝑍 → 𝐽𝑍 is an identi�cation (Lemma 3.82). We again return to the
de�nition of co�bration and conclude that {𝑜} → 𝐽𝑍 is a co�bration. □

3.8.2 The natural transformation 𝐽 → Ω
′
Σ

Let 𝑢 : 𝑋 → 𝐼 be a continuous function with 𝑢−1(0) = {𝑜}. Using 𝑢, we de�ne a
pointed map

𝑓𝑢 : 𝑋 → Ω
′
Σ𝑋

by

𝑓𝑢 (𝑥) : [0, 𝑢(𝑥)] → Σ𝑋

𝑓𝑢 (𝑥) (𝑡) =
{[
𝑥, 𝑡
𝑢(𝑥 )

]
, 𝑥 ≠ 𝑜,

𝑜 𝑥 = 𝑜.

(See the de�nition of Ω
′
and Σ in (subsect:3-11-2), (3.2.1).) One has to convince

oneself that 𝑓𝑢 is continuous (see the proof of the next lemma). The universal
property of 𝐽𝑋 (3.8.1) provides us with a map

ℎ𝑢 : 𝐽𝑋 → Ω
′
Σ𝑋,
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which makes the following diagramme commutative.

𝑋
𝜄 //

𝑓𝑢 ""

𝐽𝑋

ℎ𝑢||
Ω
′
Σ𝑋

Lemma 3.86. Let 𝑔 : 𝑋 → 𝑌 be a pointed map. Let 𝑢 : 𝑋 → 𝐼 (resp. 𝑣 : 𝑌 → 𝐼)
be a function with 𝑢(0) = {𝑜} (resp. 𝑣(0) = {𝑜}). Then the following diagramme
is commutative up to pointed homotopy (of homomorphisms).

𝐽𝑋
𝐽𝑔 //

ℎ𝑢
��

𝐽𝑌

ℎ𝑢
��

Ω
′
Σ𝑋

Ω
′
Σ𝑔

// Ω
′
Σ𝑌

Proof. We �rst de�ne a map

𝜑 : 𝑋 × 𝐼 → Ω
′
Σ𝑌

by

𝜑(𝑥, 𝑠) : [0, (1 − 𝑠)𝑢(𝑥) + 𝑠𝑣(𝑔(𝑥))] → Σ𝑌

𝜑(𝑥, 𝑠) (𝑡) =
{
[𝑔𝑥, 𝑡/((1 − 𝑠)𝑢(𝑥) + 𝑠𝑣(𝑔(𝑥))], for 𝑔𝑥 ≠ 𝑜,

𝑜 for 𝑔𝑥 = 𝑜.

Claim: 𝜑 is continuous. Let the reader repeat the de�nition of the topology of
Ω
′
Σ𝑌 (see (3.2.2)), to realise that the important thing is to prove the continuity

of 𝑋 × 𝐼 × R+ → Σ𝑌 , (𝑥, 𝑠, 𝑡) ↦→ [𝑔𝑥, 𝑡/((1 − 𝑠)𝑢𝑥 + 𝑠 · 𝑣𝑔𝑥)]. The only question is
continuity at points (𝑥, 𝑠, 𝑡) with 𝑔𝑥 = 𝑜. Let 𝑈 be a neighbourhood of the base
point of Σ𝑌 . Then there exists a neighbourhood 𝑉 of 𝑜 in 𝑌 such that [𝑣, 𝑡] ∈ 𝑈
for all (𝑣, 𝑡) ∈ 𝑉 × 𝐼. Let 𝑊 = 𝑔−1𝑉 . Then 𝑊 × 𝐼 × R+ is a neighbourhood of
(𝑥, 𝑠, 𝑡) and 𝜑(𝑊 × 𝐼 × R+) ⊂ 𝑈.

For the adjoint map 𝜑 : 𝑋 → (Ω′Σ)𝐼 of 𝜑, we can �nd a map 𝜓 that makes
the following diagramme commutative.

𝑋
𝜄 //

𝜑 ##

𝐽𝑋

𝜓{{
(Ω′Σ𝑋 𝐼

We can give (Ω′Σ𝑌 ) the structure of a topological monoid: the product of two
elements 𝑤1, 𝑤2 is the path de�ned by 𝑡 ↦→ 𝑤2 (𝑡) + 𝑤1 (𝑡). (Show that the
multiplication is continuous.) The map 𝜓 adjoint to 𝜓 : 𝐽𝑋 × 𝐼 → Ω

′
Σ𝑌 is a

homotopy of the desired kind. □
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Now let 𝔘 be the full subcategory of 𝒯ℴ𝓅ℎ with the objects: 𝑋 ∈ Obj(𝔘)
if and only if there exists an isomorphism 𝑖 : 𝑋 → 𝑋

′
in 𝒯ℴ𝓅ℎ and a function

𝑢 : 𝑋
′ → 𝐼 exists with 𝑢−1(0) = {𝑜}.

For 𝑋 ∈ Obj(𝔘) we de�ne a pointed homotopy class

𝜂𝑋 : 𝐽𝑋 → Ω
′
Σ𝑋

by the commutative diagramme

𝐽𝑋
𝜂𝑋 //

𝐽𝑖
��

Ω
′
Σ𝑋

Ω
′
Σ𝑖

��
𝐽𝑋

′

[ℎ𝑢 ]𝑜
// Ω
′
Σ𝑋

′

Here we consider 𝐽 and Ω
′
Σ as functors 𝒯ℴ𝓅

𝑜ℎ→ 𝒯ℴ𝓅
𝑜ℎ.

Lemma 3.87. 𝜂𝑋 does not depend on the choice of 𝑋‘′, 𝑖, and 𝑢. The 𝜂𝑋,
𝑋 ∈ Obj(𝔘), yield a natural transformation

𝜂 : 𝐽 |𝔘 → Ω
′
Σ |𝔘

of functors 𝔘 → 𝒯ℴ𝓅
𝑜ℎ.

Proof. A formal consequence of Lemma 3.86. □

3.8.3 James' theorem

We formulate James' theorem.

Theorem 3.88. Let 𝑋 ∈ Obj(𝒯ℴ𝓅
𝑜) be a space with the properties:

(a) 𝑋 is path connected.

(b) 𝑋 has a numerable null-homotopic cover (see (2.5.1), (2.6.2)).

(c) 𝑋 is h-well-pointed (see (3.1.3), the last paragaph).

Then 𝜂𝑋 : 𝐽𝑋 → Ω
′
Σ𝑋 is an isomorphism in 𝒯ℴ𝓅

𝑜ℎ.

Remark 3.89. The theorem was originally proven by I. M. James in the following
form: Let 𝑋 be a countable cellular space with exactly one zero cell. Then 𝜂𝑋
induces an isomorphism of all homotopy groups. See James [14]. A detailed
comparison of our version of James's theorem and the version in which James
proved it can be found in Puppe [22], pp. 52-53.

The proof of the theorem is long and is divided into several steps (3.8.3)
- (3.8.9). First (in (3.8.3)), we make preparations that facilitate the actual
proof: First, it su�ces to show that 𝜂𝑋 is an isomorphism in 𝒯ℴ𝓅ℎ; second, we
replace 𝑋 by a space with a �nice� neighbourhood of the base point; in (3.8.4),
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we construct a larger diagramme and formulate some lemmata about the objects
that appear. In (3.8.5), we prove James's theorem, assuming the lemmata from
(3.8.4). These lemmata are then proved in (3.8.6) - (3.8.9).

Now for the announced preparations. With 𝑋, 𝐽𝑋 and Ω
′
Σ𝑋 are also h-

well-pointed. We proved this for 𝐽𝑋 in Lemma 3.85. For Ω
′
Σ𝑋, we conclude

as follows: �rst, with 𝑋, Σ𝑋 is also h-well-pointed. (Replace 𝑋 by a well-
pointed space that is isomorphic to 𝑋 in 𝒯ℴ𝓅

𝑜ℎ and apply the theorem from
(3.2.1) (thm:3-11-1) and then Ω

′
Σ𝑋 by a theorem in (3.2.3) (3.31). If 𝜂𝑋 is

an isomorphism in 𝒯ℴ𝓅
𝑜ℎ, then by Theorem (1.62) it follows that 𝜂𝑋 is an

isomorphism in 𝒯ℴ𝓅
𝑜ℎ.

Instead of 𝑋, we now consider the space

𝑋
′
= (𝐼 + 𝑋)/{1, 𝑜}.

(�𝑋 with a whisker at the base point�.) We choose 0 ∈ 𝐼 as the new base point.
If 𝑋 has properties (a) to (c), as assumed in James's theorem, then so does
𝑋
′
. This is clear for (a) and (c). By (c), in particular, 𝑋 and 𝑋

′
are pointed

h-equivalent. Therefore, (b) for 𝑋
′
follows from the next Lemma.

Lemma 3.90. If 𝑋 is dominated by 𝑌 (in 𝒯ℴ𝓅) and 𝑌 has a numerable null-
homotopic cover, then so is 𝑋.

Proof. Let (𝑉𝜆) be a numerable null-homotopic cover of 𝑌 . Let 𝑓 : 𝑋 → 𝑌 ,
𝑔 : 𝑌 → 𝑋 be maps with 𝑔 𝑓 ≃ id𝑋. Then 𝑈𝜆 = 𝑓 −1(𝑉𝜆) form a numerable cover

of 𝑋. It is also null-homotopic. Since 𝑈𝜆
𝑓
−→ 𝑉𝜆

⊂−→ 𝑌
𝑔
−→ 𝑋 is both null-homotopic

and homotopic to the inclusion 𝑈𝜆 ⊂ 𝑋. □

The space 𝑋
′
has a canonical function 𝑢 : 𝑋

′ → 𝐼 with 𝑢−10 = {𝑜}, de�ned
as the identity on the summand 𝐼 and as a constant map on the summand 𝑋.
From now on, we will write 𝑋 instead of 𝑋

′′
and always understand the function

𝑢 : 𝑋 → 𝐼 to be the one just given.

3.8.4

We �rst de�ne some objects that will later appear in a large diagramme. For
𝑍 ∈ Obj(𝒯ℴ𝓅

𝑜), let the space

𝑊
′
𝑍 = {𝑤 |𝑤(0) = 𝑜} ⊂ 𝑃𝑍

(cf. (3.2.2)) be the space of paths with an arbitrary parameter interval and the
base point as the starting point. Let

𝑟 : 𝑊
′
𝑍 → 𝑍, 𝑟 (𝑤) = 𝑤(𝑒𝑤),

be the map that assigns each path 𝑤 its endpoint. Let 𝐶
′
𝑋 = 𝑋 × 𝐼/((𝑋 × 0) ∪

(𝑜 × 𝐼)). For 𝐽𝑋 × 𝐶 ′𝑋, we introduce the equivalence relation de�ned by

(𝑧, 𝑥, 1) ∼ (𝑧𝑥, 𝑜)
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Let the resulting factor space be 𝑌 . We consider ℎ = ℎ𝑢 : 𝐽𝑋 → 𝑂𝑚𝑒𝑔𝑎
′
Σ𝑋 and

𝑘 : 𝐶
′
𝑋 → 𝑊

′
Σ𝑋; 𝑘 is de�ned by

𝑘 (𝑥, 𝑡) : [0, 𝑡𝑢(𝑥)] → Σ𝑋, 𝑘 (𝑥, 𝑡) (𝑠) =
[
𝑥,

𝑠

𝑢(𝑥)

]
.

We de�ne 𝑔 by the commutative diagramme

𝐽𝑋 × 𝐶 ′𝑋 ℎ×𝑘 //

𝛼

��

Ω
′
Σ𝑋 ×𝑊 ′

Σ𝑋

𝛽

��
𝑌

𝑔
// 𝑊

′
Σ𝑋

Here, 𝛼 is the identi�cation just explained and 𝛽 is the map

𝛽(𝑢, 𝑤) = 𝑤 + 𝑢.

The proof of James' theorem is based on the following diagrammr, the individual
parts of which will be explained immediately if not already done so.

𝜋−1(𝑜) ⊂ // 𝐸

𝜋

""
𝑓

��
𝐽𝑋

𝑖 //

ℎ %%

𝑞−1(𝑜) ⊂ //

ℓ𝑜

OO

𝑔𝑜

��

𝑌
𝑞
//

ℓ

OO

𝑔

��

Σ𝑋

Ω
′
Σ𝑋 ×𝑊 ′

Σ𝑋 ⊂
// 𝑊

′
Σ𝑋

𝑟

<<

Thus 𝑞 = 𝑟𝑔, so 𝑞 [𝑧, 𝑥, 𝑡] = [𝑥, 𝑡]. And 𝑖(𝑧) = [𝑧, 𝑜].

Lemma 3.91. 𝑟 is a �bration. 𝑊
′
Σ𝑋 is contractible.

Lemma 3.92. The map 𝑖 is an h-equivalence.

Lemma 3.93. 𝑌 is contractible.

Lemma 3.94. There exists an h-�bration 𝜋 : 𝐸 → Σ𝑋 , inclusions ℓ : 𝑌 ⊂ 𝐸,
ℓ𝑜 : 𝑞−1(𝑜) ⊂ 𝜋−1(𝑜) with 𝑝𝑖ℓ = 𝑞, such that 𝑌 is a strong deformation retract
of 𝐸 and 𝑞−1(𝑜) is a strong deformation retract of 𝜋−1(𝑜).

In the large diagramme, let 𝑓 be a mapping with 𝑓 ℓ = id𝑌 , ℓ 𝑓 ≃ id𝐸 rel𝑌 .
We conclude this section with the

Proof. (of Lemma 3.91) Let 𝑍 = Σ𝑋. In the diagramme, we de�ne Φ by

Φ(𝑎, 𝑡) = 𝜑𝑎 | [0,𝑡 ] + 𝑓
′ (𝑎) (𝑠𝑒𝑒(2.58)).
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𝑎_

��

𝐴
𝑓
′
//

��

𝑊
′
𝑍

𝑟

��
(𝑎, 0) 𝐴 × 𝐼

𝜑
//

Φ

;;

𝑍

A contraction 𝜑 : 𝑊
′ × 𝐼 → 𝑊

′
𝑍 is described by

𝜑(𝑤, 𝑡) = 𝑤 | [0,𝑡𝑒𝑤 ]
□

3.8.5 Proof of James' theorems

Proof. We return to the diagram in (3.8.4) and Lemmata 3.91 to 3.94. Since

ℓ 𝑓 ≃ id𝐸 rel𝑌

we have
𝑟𝑔 𝑓 = 𝑞 𝑓 = 𝜋ℓ 𝑓 ≃ 𝜋 : rel𝑌 .

Let 𝜑 : 𝐸 × 𝐼 → Σ𝑋 be a homotopy 𝑟𝑔 𝑓 ≃ 𝜋 rel𝑌 . Since 𝑟 is a �bration, we
can lift 𝜑 to Φ : 𝐸 × 𝐼 → 𝑊

′
Σ𝑋 with Φ0 = 𝑔 𝑓 . We have 𝑟Φ1 = 𝜋. Since 𝑗

is an h-equivalence and 𝑌 is contractible (Lemma 3.93), 𝐸 is also contractible.
Therefore, Φ1 is an h-equivalence, as a map between contractible spaces, and
consequently, by Theorem (2.85), an h-equivalence over Σ𝑋. Hence, Φ1 induces
an h-equivalence

𝜓 : 𝜋−1(𝑜) → Ω
′
Σ𝑋.

Since 𝜑 was a homotopy relative to 𝑌 , in particular,

𝑟Φ(𝑞−1(𝑜) × 𝐼) = 𝜑(𝑞−1(𝑜) × 𝐼) = {𝑜},

thus Φ(𝑞−1(𝑜) × 𝐼) ⊂ Ω
′
Σ𝑋, i.e., Φ induces a homotopy

Φ
′
: 𝑞−1(𝑜) × 𝐼 → Ω

′
Σ𝑋.

Then Φ0 = 𝑔0, since Φ0 = 𝑔 𝑓 and 𝑓 ℓ = id𝑌 . Consequently,

𝑔0 = Φ
′
0 ≃ Φ

′
1 = 𝜓ℓ0.

Since 𝜓 and ℓ0 are h-equivalences, 𝑔0 is also an h-equivalence; and since 𝑖 is also
an h-equivalence (Lemma 3.92), so is ℎ. □

3.8.6 Proof of lemma 3.92

Proof. We consider the diagramme below where 𝑑 is de�ned by 𝑑 (𝑧) = (𝑧, 𝑜).

𝐽𝑋

𝑖 ##

𝑑 // 𝐽𝑋 × 𝑋 ⊂

𝛼
′

��

𝐽𝑋 × 𝐶 ′𝑋

𝛼

��
𝑞−1(𝑜) ⊂ 𝑌
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The map 𝛼
′
induced by 𝛼 is an identi�cation since 𝐽𝑋×𝑋 is closed and saturated

in 𝐽𝑋 × 𝐶 ′𝑋. Because of the special shape of the space 𝑋, there is an open
neighbourhood 𝑈 of 𝑜 and a map 𝜌 : 𝑋𝑡𝑜𝑋 with 𝜌 ≃ id𝑋 rel 𝑜 and 𝜌(𝑈) = 𝑜.

The map

𝑗 : 𝐽𝑋 × 𝑋 → 𝐽𝑋, 𝑗 (𝑧, 𝑥) = (𝐽𝜌)𝑧 ◦ 𝜌𝑥 = (𝐽𝜌) (𝑧𝑥)

is continuous since

𝑉𝑚 = {𝑥1 · · · 𝑥𝑛 |all 𝑥 up to at most 𝑚 are in 𝑈}

is open in 𝐽𝑋 because 𝐽𝑋 = ∪𝑚𝑉𝑚 and because 𝐽 |𝑉𝑚×𝑋 is continuous, as follows
from the following diagramme with Lemma 3.83 (b)

𝑉𝑚 × 𝑋
𝑗 //

𝐽𝜌×𝜌
��

𝐽𝑋

𝐽𝑚𝑋 × 𝑋 𝜏
// 𝑋 × 𝐽𝑚𝑋

𝜇

OO

where 𝜏 is the swapping of the factors. 𝑗 induces 𝑗
′
with 𝑗 = 𝑗

′ ◦ 𝛼′ . The map
𝑗
′
is h-inverse to 𝑖. In fact,

𝑗
′
𝑖 = 𝐽𝜌 ≃ 𝐽 (id𝑋) = id𝐽𝑋

and from the diagramme below, we see that the homotopy 𝜌 ≃ id induces a
homotopy 𝐽𝜌 × 𝜌 ≃ id and then 𝑖 𝑗

′ ≃ id

𝐽𝑋 × 𝑋
𝐽𝜌×𝜌 //

𝛼
′

��

𝐽𝑋 × 𝑋

𝛼
′

��
𝑞−1(𝑜)

𝑖 𝑗
′
// 𝑞−1(𝑜).

□

3.8.7 Proof of lemma 3.93

Proof. Let 𝑍𝑚 = 𝐽𝑚𝑋 × (𝐶
′
𝑋 \ (𝑋 \ 𝑜)) ∪ 𝐽𝑚−1𝑋 × 𝐶

′
𝑋. Here, we consider

𝑋 ≃ 𝑋 ×1 ⊂ 𝐶 ′𝑋 as a subspace of 𝐶
′
𝑋 (cf. (3.4.3)). We consider the diagramme

in which 𝑖𝑚 is injective and 𝛼𝑚 is induced by 𝛼.

𝑍𝑚 ⊂

𝛼𝑚

��

𝐽𝑋 × 𝐶 ′𝑋

𝛼

��
𝑌𝑚

𝑖𝑚

//

𝑔𝑚 $$

𝑌

𝑔

��
𝑊
′
Σ𝑋

We give 𝑌𝑚 the identi�cation topology by means of 𝛼𝑚. We de�ne 𝑔𝑚 = 𝑔𝑖𝑚.
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Lemma 3.95. 𝑔𝑚 is an embedding.

Corollary 3.96. 𝑖𝑚 is an embedding.

We �rst assume Lemma 3.95 and then prove Lemma 3.93.
For 𝑖𝑚, the contraction given in the proof of Lemma 3.91

𝜑 : 𝑊
′
Σ𝑋 × 𝐼 → 𝑊

′
Σ𝑋

induces a contraction of 𝑔(𝑌 ) and consequently a (perhaps non-continuous) map

𝜓 : 𝑌 × 𝐼 → 𝑌

with 𝑔𝜓(𝑧, 𝑠) = 𝜑(𝑔𝑧, 𝑠) (𝑔 is injective).
𝜓(𝑌𝑚 × 𝐼) ⊂ 𝑌𝑚 and the map 𝜓𝑚 : 𝑌𝑚 × 𝐼 → 𝑌𝑚 induced by 𝜓 is continuous,

as follows from the diagramme

𝑌𝑚 × 𝐼
𝑟𝑚×id //

𝜓𝑚

��

𝑊
′
Σ𝑋 × 𝐼

𝜑

��
𝑌𝑚 𝑔𝑚

// 𝑊
′
Σ𝑋

using Lemma 3.95. Let 𝜌 : 𝑋 → 𝑋 be a map as in (3.8.6). The following
diagrame uniquely de�nes a continuous map 𝑟ℎ𝑜

′
, and a homotopy 𝜌 ≃ id𝑋

induces a homotopy 𝜌
′ ≃ id𝑌 .

𝐽𝑋 × 𝐶 ′𝑋
𝐽𝜌×𝐶′𝜌//

𝛼

��

𝐽𝑋 × 𝐶 ′𝑋

𝛼

��
𝑌

𝜌
′

// 𝑌

We show that 𝜓
′
= 𝜓(𝜌′ × id𝐼 ) : 𝑌 × 𝐼 → 𝑌 is continuous. Let 𝑉𝑚 ⊂ 𝐽𝑋 be as

de�ned in (3.8.6). Then the sets 𝑉𝑚×𝐶
′
𝑋× 𝐼 form an open cover of 𝐽𝑋×𝐶 ′𝑋× 𝐼.

It su�ces to show that in the following diagramme the map 𝜓𝑚 = 𝜓 ◦ (𝛼 ×
id𝐼 |𝑉𝑚×𝐶′𝑋×𝐼 is continuous.

𝑉𝑚 × 𝐶
′
𝑋 × 𝐼 ⊂

𝜓𝑚

��

𝐽𝑋 × 𝐶 ′𝑋 × 𝐼

𝛼×id𝐼
��vv

𝑌 𝑌 × 𝐼
𝜓
′

oo

𝛼 × id𝐼 is an identi�cation: this follows from the following commutative dia-
gramme.

𝑉𝑚−1 × 𝐶
′
𝑋 × 𝐼

𝐽𝜌×𝐶′𝜌×id //

𝜓𝑚−1
��

𝑍𝑚 × 𝐼

𝛼×id
��

𝑌 ⊃ 𝑌𝑚 𝑌𝑚 × 𝐼
𝜓𝑚

oo
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It follows that
id𝑌 ≃ 𝜌

′
= 𝜓

′
0 ≃ 𝑝𝑠𝑖

′
1 = 0,

and thus Lemma 3.93 is proven. □

Proof. (of Lemma 3.95) Let 𝛾𝑚 = 𝑔𝑚𝛼𝑚. We have to show: If (𝑎, 𝑏, 𝑡0) ∈ 𝑍 and
𝐴 is an open saturated neighbourhood of (𝑎, 𝑏, 𝑡0), then there exists an open set
𝐵 in 𝑊

′
Σ𝑋 such that (𝑎, 𝑏, 𝑡0) ∈ 𝛾−1𝑚 (𝐵) ⊂ 𝐴.

To construct 𝐵, we distinguish between di�erent cases.

Case 1 𝑎 = 𝑎1 · · · 𝑎𝑛, 𝑎𝑖 ≠ 𝑜 for 𝑖 = 1, . . . , 𝑛, (𝑏, 𝑡0) ∈ 𝐶
′
𝑋 \ 𝑋. Let 𝑎𝑛+1 = 𝑏.

There are open neighbourhoods 𝑈𝑖 of 𝑎𝑖 in 𝑋 and 𝑈 of 𝑜 in 𝑋 and 𝜀 with
0 < 4𝜀 < min(𝑡0, 1 − 𝑡0 such that 𝑈 ∩𝑈𝑖 = ∅ and

𝑈1 · · ·𝑈𝑛𝑈𝑚−𝑛 ×𝑈𝑛+1×]𝑡0 − 𝜀, 𝑡0 + 𝜀[⊂ 𝐴

(see Lemma 3.80). Let 𝑡1 = 𝑡0 + 2𝜀. We de�ne 𝐵 ⊂ 𝑊 ′
Σ𝑋 as the set of all

paths 𝑤 with

(a) |𝑒𝑤 − 𝑢(𝑎, 𝑏, 𝑡0) | < 𝛿
(b) 𝑤(𝑢(𝑎1 · · · 𝑎𝑖)) ∈ 𝑈 × 𝐼 ∪ 𝑋 × (𝐼 \ [𝜀, 1 − 𝜀]), 𝑖 ≤ 𝑛,
(c) 𝑤(𝑢(𝑎1 · · · 𝑎𝑖−1) + 𝑡1𝑢(𝑎𝑖)) ∈ 𝑈𝑖×]𝑡1 − 𝜀, 𝑡1 + 𝜀[, 𝑖 ≤ 𝑛,
(d) 𝑤(𝑢(𝑎, 𝑏, 𝑡0) + 𝛿) ∈ 𝑈𝑛+1×]𝑡0 − 𝜀, 𝑡0 + 𝜀[.

Note that: (𝑎, 𝑏, 𝑡0) ↦→ 𝑢(𝑎, 𝑏, 𝑡0) =
∑𝑛
𝑖=1 𝑢(𝑎𝑖) + 𝑡0𝑢(𝑏) de�nes a continuous

function 𝑢 : 𝐽𝑋 × 𝐶′𝑋 → R+. We understand 𝑎1 · · · 𝑎𝑖 for 𝑖 = 0 to be the
base point. We extend 𝑤 : [0, 𝑒𝑤] → Σ𝑋 to 𝑤 : R+ → Σ𝑋 by 𝑤(𝑡) = 𝑤(𝑒𝑤)
for 𝑡 ≥ 𝑒𝑤. Suppose 𝛾𝑚 (𝑎, 𝑏, 𝑡0) ∈ 𝐵 and 𝐵 is open in 𝑊

′
Σ𝑋 (see the

de�nition of the topology of 𝑊
′
Σ𝑋 in (3.8.4), (3.2.2) and the de�nition of

the compact-open topology in (2.1)).

Claim: For su�ciently small 𝑈𝑖, 𝜀 and 𝛿, 𝛾−1𝑚 𝐵 ⊂ 𝐴.

Proof. Let (𝑥, 𝑦, 𝑡) ∈ 𝑍𝑚, 𝑥 = 𝑥1 · · · 𝑥𝑚 and 𝛾𝑚 (𝑥, 𝑦, 𝑡) = 𝑤 ∈ 𝐵. Then by (a)
𝑒𝑤 < 𝑢(𝑎, 𝑏, 𝑡0) + 𝛿 and consequently by (d) (𝑦, 𝑡) = 𝑤(𝑒𝑤) = 𝑤(𝑢(𝑎, 𝑏, 𝑡0) +
𝛿) ∈ 𝑈𝑛+1×]𝑡0 − 𝜀, 𝑡0 + 𝜀[.
Because of (c), 𝑤 meets the sets

𝑈1×]𝑡1 − 𝜀, 𝑡1 + 𝜀[, . . . ,𝑈𝑛×]𝑡1 − 𝜀, 𝑡1 + 𝜀[

in this order, and because of (b), 𝑤 must run from 𝑈𝑖×]𝑡1 − 𝜀, 𝑡1 + 𝜀[ to
𝑈𝑖+1×]𝑡1−𝜀, 𝑡1+𝜀[ via the base point. (Note the special shape of the paths
in 𝑔𝑌 !) Then there exist 𝑗𝑖, 1 ≤ 𝑗1 < · · · < 𝑗𝑛 ≤ 𝑛, such that 𝑥 𝑗𝑖 ∈ 𝑈𝑖. Let
𝑗 ≠ 𝑗1 < . . . , 𝑗𝑛. Then

𝑢(𝑥 𝑗 ) ≤ 𝑢(𝑥, 𝑦, 𝑡) −
𝑛∑︁
𝑖=1

𝑢(𝑥 𝑗𝑖 ) − 𝑡𝑢(𝑦)

≤ 𝑢(𝑎, 𝑏, 𝑡0) −
𝑛∑︁
𝑖=1

(𝑎𝑖) − 𝑡0𝑢(𝑏) + 𝜀
′
= 𝜀

′
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for given 𝜀
′
> 0, if only 𝛿, 𝑈𝑖, and 𝜀 are su�ciently small. Let 𝜀

′
be chosen

such that 𝑢−1 [0, 𝜀′ [⊂ 𝑈. Then

(𝑥, 𝑦, 𝑡) ∈ 𝑈1 · · ·𝑈𝑛𝑈𝑚−𝑛 ×𝑈𝑛+1×]𝑡0 − 𝜀, 𝑡0 + 𝜀[.

The above discussion also applies for 𝑛 = 0, i.e., 𝑎 = 𝑜. □

Case 2 (𝑏, 𝑡0) ∈ 𝑋. We have the equivalences

(𝑎, 𝑏, 𝑡0) ∼ (𝑎, 𝑜), if 𝑡0 = 0 or 𝑏 = 𝑜,

(𝑎, 𝑏, 𝑡0) ∼ (𝑎𝑏, 𝑜), if 𝑡0 = 1.

We therefore only consider (𝑎, 𝑜).
First, let 𝑎 ≠ 𝑜, so 𝑛 ≥ 1. Then (𝑎, 𝑜) ∼ (𝑎1 · · · 𝑎𝑛−1, (𝑎𝑛, 1)), where again
𝑎1 · · · 𝑎𝑛−1 = 𝑜 for 𝑛 = 1. There are open neighbourhoods 𝑈𝑖 of 𝑎𝑖 in 𝑋 ,
𝑈 of 𝑜 in 𝑋, and 𝑉 of 𝑜 in 𝐶

′
𝑋 and an 𝜀 with 0 < 𝜀 < 1

2”, such that

𝑈𝑖 ∩𝑈 = ∅, 𝑍𝑚 ∩𝑈1 · · ·𝑈𝑛𝑈𝑚−𝑛 ×𝑉 ⊂ 𝐴, 𝑈1 · · ·𝑈𝑛𝑈𝑚−𝑛×]1 − 𝜀, 1[⊂ 𝐴

(use Lemma 3.80; for 𝑛 = 1, set 𝑈1 · · ·𝑈𝑛𝑈𝑚−𝑛 = 𝑈𝑚−𝑛).
In the following, we do not distinguish between subsets of 𝑋 × 𝐼, 𝐶 ′𝑋, and
Σ𝑋. We can assume that 𝑉 has the form 𝑉 = 𝑈 × 𝐼 ∪𝑉0 with

𝑋 × 0 ⊂ 𝑉0 ⊂ 𝑋 × [0, 𝜀[

Let
𝑉1 = {(𝑥, 𝑡) | (𝑥, 1 − 𝑡) ∈ 𝑉0}, and 𝑉

′
= 𝑉 ∪𝑉1.

Let 𝐵 ⊂ 𝑊 ′
Σ𝑋 be the set of path 𝑤 with

(a) |𝑒𝑤 − 𝑢(𝑎) | < 𝛿
(b) 𝑤(𝑢(𝑎1 · · · 𝑎𝑖)) ∈ 𝑉

′
, 𝑖 ≤ 𝑛,

(c) 𝑤(𝑢(𝑎1 · · · 𝑎𝑖−1) + 1
2𝑢(𝑎𝑖)) ∈ 𝑈𝑖×]𝜀, 1 − 𝜀[, 𝑖 ≤ 𝑛,

(d) 𝑤(𝑢(𝑎) + 𝛿) ∈ 𝑉 ′ .

Then 𝐵 is open in 𝑊
′
𝜎𝑋 and 𝛾𝑚 (𝑎, 𝑜) ∈ 𝐵. We verify: For su�ciently

small 𝑈𝑖, 𝜀, 𝛿, we have 𝛾
−1
𝑚 (𝐵) ⊂ 𝐴.

Proof. Let (𝑥, 𝑦, 𝑡) ∈ 𝑍𝑚, 𝑥 = 𝑥1 · · · 𝑥𝑚, and 𝛾𝑚 (𝑥, 𝑦, 𝑡) = 𝑤 be from 𝐵.
Then 𝑒𝑤 < 𝑢(𝑎) + 𝛿 because of (a) and consequently (𝑦, 𝑡) = 𝑤(𝑒𝑤) ∈ 𝑉
because of (d). Let 𝑥𝑚+1 = 𝑦. Similar to the �rst case, from (b) and (c)
it follows that there exist 𝑗𝑖, 1 ≤ 𝑗1 < · · · < 𝑗𝑛 ≤ 𝑚 + 1, such that 𝑥 𝑗𝑖 ∈ 𝑈𝑖
and either

(1) 𝑗𝑛 ≤ 𝑚, or
(2) 𝑗 = 𝑚 + 1 and 𝑡 > 𝜀
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Case (1): Let 𝑗 ≠ 𝑗1, . . . , 𝑗𝑛, 𝑚 + 1. Then, for a given 𝜀
′
> 0,

𝑢(𝑥 𝑗 ) ≤ 𝑢(𝑥, 𝑦, 𝑡) −
𝑛∑︁
𝑖=1

𝑢(𝑥 𝑗𝑖 ) ≤ 𝑢(𝑎) −
𝑛∑︁
𝑖=1

𝑢(𝑎𝑖) + 𝜀
′
= 𝜀

′
,

if 𝛿 and 𝑈𝑖 are small enough. We can choose 𝜀
′
so small that 𝑥 𝑗 ∈ 𝑈

follows. Likewise, one can achieve: 𝑡𝑢(𝑦) ≤ 𝜀′ . We choose 𝜀
′
so small that

it follows: 𝑦 ∈ 𝑈 or 𝑡 < 1
2 and therefore (𝑦, 𝑡) ∈ 𝑉 ′ \ 𝑉1 ⊂ 𝑉 . Overall:

(𝑥, 𝑦, 𝑡) ∈ 𝑈1 · · ·𝑈𝑛𝑈𝑚−𝑛 ×𝑉 .
Case (2): Since 𝑈 ∩𝑈𝑛 = ∅ and 𝑡 > 𝜀, we have

(𝑦, 𝑡) ∈ 𝑉 ′ \ ((𝑈 × 𝐼) ∪𝑉0) ⊂ 𝑉1

and hence even 𝑡 > 1 − 𝜀. Let 𝑗 ≠ 𝑗1, . . . , 𝑗𝑛. Then, for a given 𝜀
′
> 0,

𝑢(𝑥 𝑗 ) ≤ 𝑢(𝑥, 𝑦, 𝑡) −
𝑛∑︁
𝑖=1

𝑢(𝑥 𝑗𝑖 ) − 𝑡𝑢(𝑦) ≤ 𝑢(𝑎) −
𝑛∑︁
𝑖=1

𝑢(𝑎𝑖) + 𝜀
′
= 𝜀

′
,

if only 𝛿, 𝑈𝑖, and 𝜀 are small enough. One reaches 𝑥 𝑗 ∈ 𝑈 and consequently

(𝑥, 𝑦, 𝑡) ∈ 𝑈1 · · ·𝑈𝑛−1𝑈𝑚−𝑛 ×𝑈𝑛×]1 − 𝜀, 1] .

Finally, let 𝑎 = 𝑜. Then there exist 𝑈 and 𝑉 as above with 𝑍𝑚∩(𝑈𝑚×𝑉) ⊂
𝐴. We de�ne 𝐵 as the set of paths 𝑤 with

(a) 𝑒𝑤 < 𝛿,

(b) 𝑤(𝛿) ∈ 𝑉 ′ .

Then 𝛾𝑚 (𝑥, 𝑦, 𝑡) ∈ 𝐵, 𝑥𝑖 ∈ 𝑈 and 𝑦 ∈ 𝑈 or 𝑡 < 1
2 if 𝛿 is su�ciently small.

Furthermore, (𝑦, 𝑡) = 𝑤(𝑒𝑤) = 𝑤(𝛿) ∈ 𝑉 ′ , hence (𝑦, 𝑡) ∈ 𝑉 and hence
(𝑥, 𝑦, 𝑡) ∈ 𝑈𝑚 ×𝑉 . □

□

3.8.8

The following lemma is used to prove Lemma 3.94 in the next subsection.

Lemma 3.97. Prerequisite: Let 𝑞 : 𝑌 → 𝐵 be a map, 𝐴 ⊂ 𝐵, 𝑉 be a halo of 𝐴
in 𝐵. Let the restrictions of 𝑞 𝑞𝐴 : 𝑌𝐴→ 𝐴 and 𝑞𝐵\𝐴 : 𝑌𝐵\𝐴→ 𝐵\𝐴 (cf. (2.120),
(2.32)) be h-�brations. Let 𝑉 \𝐴 have a numerable null-homotopic covering. Let
there be a commutative diagramme

𝑌𝑉
𝑟 //

𝑞𝑉

��

𝑌𝐴

𝑞𝐴

��
𝑉

𝜌
// 𝐴
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In it, let 𝜌 be a deformation retraction, 𝑟 an h-equivalence, and 𝑟𝐴 = 𝑟 |𝑌𝐴 an
h-equivalence. For 𝑏 ∈ 𝑉 \ 𝐴, let 𝑟𝑏 : 𝑌𝑏 → 𝑌𝜌(𝑏) be an h-equivalence.
Claim: There exists a commutative diagramme

𝑌 ⊂

𝑞
��

𝐸

𝑝
��

𝐵

such that:

(a) 𝜌 is an h-�bration;

(b) 𝑌 is a strong deformation retract of 𝐸;

(c) 𝑌𝐴 is a strong deformation retract of 𝐸𝐴 over 𝐴;

(d) 𝑌𝐵\𝐴 is a strong deformation retract of 𝐸𝐵\𝐴 over 𝐵 \ 𝐴.

Proof. We start with the following diagramme

𝑌𝑉
𝑟 //

𝑞𝑉
��

𝑌
′ 𝜌 //

𝑞
′

��

𝑌𝐴

𝑞𝐴

��
𝑉

𝜌
// 𝐴

where 𝑞
′
is the h-�bration induced by 𝜌 of 𝑞𝐴 and 𝑟

′
is determined by 𝑞

′
𝑟
′
= 𝑞𝑉

and 𝜌̃𝑟
′
= 𝑟. According to (2.124), 𝜌̃ is an h-equivalence since 𝜌 is an h-

equivalence and 𝑞𝐴 is an h-�bration. 𝑟
′
is an h-equivalence because 𝜌̃ and 𝑟 are

h-equivalences.
Construction of 𝐸 : In the topological sum 𝑌 + 𝑌𝑉 × 𝐼 + 𝑌

′
, we identify 𝑦

and (𝑦, 0) as well as (𝑦, 1) and 𝑟 ′ (𝑦), for 𝑦 ∈ 𝑌𝑉 . The maps 𝑞, 𝑞𝑉 ◦ proj1, and
𝑞
′
on the three summands are consistent with these identi�cations and induce

𝑝 : 𝐸 → 𝐵. We clearly have an embedding 𝑌 ⊂ 𝐸 .
We prove (b), (c), (d) and (a), in that order.

(b): According to (1.29) and (1.73), 𝑌𝑉 is a strong deformation retract of 𝐸𝑉 ,
because 𝐸𝑉 is the mapping cylinder of 𝑟

′
and 𝑟

′
is an h-equivalence. Conse-

quently, 𝑌 is a strong deformation retract of 𝐸 .
(c): We can regard 𝐸𝐴 as a mapping cylinder of 𝑟

′

𝐴
. We have a commutative

diagramme

𝑌𝐴
𝑟𝐴 //

𝑟
′
𝐴 ��

𝑌𝐴

𝑌
′

𝐴

𝜌𝐴

??

𝜌̃𝐴 is a homeomorphism because 𝜌 |𝐴 is the identity of 𝐴. Since 𝑟𝐴 is an h-
equivalence by assumption, 𝑟

′

𝐴
is also an h-equivalence, and even over 𝐴 by
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(2.85), as 𝑞𝐴 and 𝑞
′

𝐴
are h-�brations. But then, by (1.73), applied to the

category 𝒯ℴ𝓅𝐴 of spaces over 𝐴, 𝑌𝐴 is a strong deformation retract of 𝐸𝐴 over
𝐴 since 𝑌𝐴 ⊂ 𝐸𝐴 is a co�bration over 𝐴 ((1.29) (b) applied to 𝒯ℴ𝓅𝐴).
(d): We have a commutative diagramme

𝑌𝑏
𝑟𝑏 //

𝑟
′
𝑏 ��

𝑌𝜌(𝑏)

𝑌
′

𝑏

𝜌𝑏

==

in which 𝜌̃𝑏 is a homeomorphism. Consequently, 𝑟
′

𝑏
is an h-equivalence for every

𝑏 ∈ 𝑉 \ 𝐴. Since 𝑞𝑉\𝐴 and 𝑞
′

𝑉\𝐴 are h-cover and 𝑉 \ 𝐴 has a numerable null-

homotopic cover, 𝑟
′

𝑉\𝐴 is an h-equivalence over 𝑉 \ 𝐴 (see (2.152)). Analogous to

(c), 𝑌𝑉\𝐴 is then a strong deformation retract of 𝐸𝑉\𝐴 over 𝑉 \ 𝐴. Consequently,
𝑌𝐵\𝐴 is a strong deformation retract of 𝐸𝐵\𝐴 over 𝐵\.
(a): Since in the following diagramme

𝑌𝐵\𝐴 ⊂

𝑞𝐵\𝐴 ##

𝐸𝐵\𝐴

𝑝𝐵\𝐴{{
𝐵 \ 𝐴

by (d), the inclusion is an h-equivalence over 𝐵 \ 𝐴, and since 𝑞𝐵\𝐴 is an h-
�bration, then by (2.68) 𝑝𝐵\𝐴 is also an h-�bration. 𝑌

′
is a strong deformation

retract of 𝐸𝑉 over 𝑉 . Consequently, by (2.68), 𝑃𝑉 is an h-�bration because 𝑞
′
is

an h-�bration. Finally, since (𝑉, 𝐵 \ 𝐴) is a numerable cover of 𝐵 (if 𝑣 is a halo
function of 𝑉 , then (1 − 𝑣, 𝑣) is a numeration of (𝑉, 𝐵 \ 𝐴)), (2.156) tells us that
𝑝 is an h-�bration. □

3.8.9 Proof of lemma 3.94

We verify the assumptions of Lemma 3.97 for the map 𝑞 : 𝑌 → 𝐵, 𝐵 = Σ𝑋, from
(3.97) and 𝐴 = {𝑜}]. We recall that 𝑋 has the special form 𝑋 = 𝑋𝑜 ∨ 𝐼 given at
the end of (3.95). The map 𝑞𝐴 is certainly an h-�bration.

The identi�cation 𝐽𝑋 × 𝐶 ′𝑋 → 𝑌 induces the following commutative dia-
gramme

𝑌Σ𝑋\{𝑜}

𝑞Σ𝑋\{𝑜} %%

𝐽𝑋 × (𝐶 ′𝑋 \ 𝑋)

proj2ww
Σ𝑋 \ {𝑜}

in which 𝑄 is a homeomorphism since 𝐽𝑋 × (𝐶 ′𝑋 \ 𝑋) is open and saturated in
𝐽𝑋 × 𝐶 ′𝑋. Hence 𝑞Σ𝑋\{𝑜} is also an h-�bration (namely isomorphic to a trivial
�bration).
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Because of the special shape of 𝑋, we can describe a neighbourhood of 𝑜 in
Σ𝑋 by

𝑉 = {[𝑥, 𝑡] |𝑥 ∈ [0, 1
2
[ or 𝑡 ∈ [0, 1

4
[∪] 3

4
, 1]}

𝑉 is a halo with halo function 𝑣(𝑥, 𝑡) = min(1, 2𝑢(𝑥), 4𝑡, 4(1 − 𝑡)), with 𝑢 as at
the end of (3.95).

𝑉 \ {𝑜} has a numerable null-homotopic cover.

Proof. We write 𝑉 \ {𝑜} = 𝑉0 ∪𝑉1 with

𝑉0 = {[𝑥, 𝑡] |𝑥 ∈]0, 1
2
[ or 𝑡 ∈]0, 1

4
[}

𝑉1 = {[𝑥, 𝑡] |𝑥 ∈]0, 1
2
[ or 𝑡 ∈] 3

4
, 1[}.

(𝑋 \ 𝑜) × 1
8 is the deformation retract of 𝑉0 and (𝑋 \ 𝑜) × 7

8 is the deformation
retract of 𝑉1. Furthermore, 𝑋\𝑜 is h-equivalent to 𝑋0. From Lemma 3.90, we see
that 𝑉0 and 𝑉1 have a numerable null-homotopic cover. (𝑉0, 𝑉1) is a numerable
cover of 𝑉 \ {𝑜}: if 𝑣0 is the map [𝑥, 𝑡] ↦→ min(2max(𝑡− 1

4 , 0), 1), then (1−𝑣0, 𝑣0)
is a numeration of (𝑉0, 𝑉1). Our claim on 𝑉 \ {𝑜} now follows from the following
simple remark: Let (𝑉𝜆) be a numerable cover of a space 𝑋. If every 𝑉𝜆 has a
numerable null-homotopic cover, then so does 𝑋.

We construct a homotopy 𝜑 : 𝑉 × 𝐼 → 𝑉 from 𝜑0 = id𝑉 to 𝜑1 : 𝑉
𝜌
−→ 𝐴 ⊂ 𝑉 ,

as illustrated in the �gure 3.2. In particular, 𝜑 shows that 𝜌 is a deformation

Figure 3.2:

retraction.
Let 𝑉 ⊂ 𝐶 ′ be the preimage of 𝑉 under the canonical projection 𝐶

′
𝑋 → Σ𝑋.

The homotopy 𝜑 is induced by the homotopy 𝜑 : 𝑉 × 𝐼 → 𝑉 , as the �gure 3.2
shows. We de�ne a homotopy 𝜑

′
: 𝑌𝑉 × 𝐼 → 𝑌𝑉 by the following commutative

diagramme

𝐽𝑋
𝑖𝑏 //

𝑅𝑧

��

𝑌𝑏

𝑟𝑏

��
𝐽𝑋

𝑖
// 𝑌0
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where 𝑖𝑏 (𝑥) = (𝑥, 𝑏), 𝑖(𝑥) = (𝑥, 0), 𝑅𝑧 (𝑥) = 𝑥𝑧 with an element 𝑧 determined by
𝜑(𝑏, 1) = (𝑧, 1) ∈ 𝐶 ′𝑋. 𝑖𝑏 is a homeomorphism. 𝑖 is an h-equivaience (Lemma
3.92). The map 𝑅𝑧 is homotopic to id𝐽𝑋, since 𝑋 is path-connected. This proves
Lemma 3.94. □

3.8.10 Counterexamples to (3.8.3)

We show by examples that 𝜂𝑋 is in general not an h-equivalence if one of the
assumptions (a) - (c) on 𝑋 in (3.8.3) is dropped.
(a) Path-connectedness: Let 𝑋 be the topological sum of its path components.
A homomorphism ℎ𝑢 : 𝐽𝑋 → Ω

′
Σ𝑋 induces a homomorphism

𝜋0 (𝐽𝑋) → 𝜋0 (Ω
′
Σ𝑋).

𝜋0 (𝐽𝑋) is the free monoid over the pointed set 𝜋0𝑋, while 𝜋0 (Ω
′
Σ𝑋) � 𝜋0 (ΩΣ𝑋) �

𝑝𝑖1 (Σ𝑋) is a group.
(b) Numerable null-homotopic cover : Let 𝑋 be the subspace of the plane R2,
illustrated by the following �gure 3.3. Let 𝐴 = {𝑎0, 𝑎1, 𝑎2, . . . }𝑋, where 𝑎0 =

Figure 3.3:

(0, 0), 𝑎𝑛 = ( 1
𝑛
, 0 (𝑛 = 1, 2, 3, . . . ), and let 𝑈𝑛 = 𝑋 \ {𝑏𝑛, 𝑏𝑛+1, 𝑏𝑛+2, . . . }. Let ℎ

be a pointed h-inverse of ℎ = ℎ𝑢. Let 𝑖 : Ω
′
Σ𝑋 → Ω

′
Σ𝑋 be an h-inverse for the

connexion in the pointed H-space Ω
′
Σ𝑋 (see (3.3.1)). We set 𝑖

′
= ℎ

′
𝑖ℎ. The map

𝐴→ 𝐽𝑋, 𝑎 ↦→ 𝑖
′ (𝑎) · 𝑎, is null-homotopic since

𝑎 ↦→ ℎ(𝑖′ (𝑎) · 𝑎) = ℎ𝑖′ (𝑎) · ℎ(𝑎)

is homotopic to
𝑎 ↦→ 𝑖ℎ(𝑎) · ℎ(𝑎),

which is null-homotopic. Let 𝜑 : 𝐴 × 𝐼 → 𝐽𝑋 be a null-homotopy. 𝐽𝑈𝑛 is open
in 𝐽𝑋 \∪𝐽𝑈𝑛. Consequently, the compact set 𝜑(𝐴× 𝐼) is contained in some 𝐽𝑈𝑛.
It follows that 𝑖

′
𝑎𝑛 is a left inverse of 𝑎𝑛 in 𝜋0 (𝐽𝑈𝑛). On the other hand, 𝑎𝑛 ≠ 0

in 𝜋0 (𝐽𝑈𝑛), a contradiction.
(c) h-well-pointedness: Let 𝑋 be the subspace of the plane R2, illustrated by
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Figure 3.4:

the following �gure 3.4. Let 𝐴 be declared as in the last example. 𝐽𝑋 is path-
connected since 𝑋 is path-connected. Ω

′
Σ𝑋 is not path-connected. We show

that 𝜋1 (Σ𝑋) ≠ 0. We use singular homology. In the exact sequence

𝐻2 (Σ𝑋,Σ𝐴) → 𝐻1 (Σ𝐴) → 𝐻1 (Σ𝑋)

𝐻1 (Σ𝐴) �
∏∞

1 Z is uncountable, while 𝐻2 (Σ𝑋,Σ𝐴) � 𝐻2 (Σ(𝑋/𝐴)) � 𝐻1 (𝑋/𝐴) �
𝐻0 (𝐴) is countable. (Note: 𝑋/𝐴 is well-pointed.) Consequently, 𝐻1 (Σ𝑋) is
uncountable and therefore so is 𝜋1Σ𝑋) (cf. Hu [12], Theorem 6.1).



Appendix A

In this appendix, we provide the proof of Theorem (1.21) (b).

Theorem A.1 (cf. Puppe [21], footnote 1) on p. 81, Strøm [27], 2. Lemma 3).
Let 𝑋 be a topological space, 𝐴 a subspace of 𝑋, and 𝑖 : 𝐴 ⊂ 𝑋 the inclusion.
Claim: If (𝑋 × 0) ∪ (𝐴 × 𝐼) is a retract of 𝑋 × 𝐼, then the bijective continuous
map ℓ : 𝑍𝑖 → (𝑋 × 0) ∪ (𝐴 × 𝐼) de�ned in (1.20) is a homeomorphism.

Proof. We follow Strøm [27], 2. Lemma 3. We need to prove the continuity
of ℓ−1. First, we identify the set underlying the mapping cylinder of 𝑖 under
the bijective mapping ℓ with (𝑋 × 0) ∪ (𝐴 × 𝐼). We then have to show that the
subspace topology induced by the product 𝑋 × 𝐼 on (𝑋 ×0) ∪ (𝐴× 𝐼) is �ner than
the topology of the mapping cylinder.

So let 𝐶 be a subset of (𝑋 ×0) ∪ (𝐴× 𝐼) such that 𝐶 ∩ (𝑋 ×0) is open in 𝑋 ×0
and 𝐶 ∩ (𝐴 × 𝐼) is open in 𝐴 × 𝐼.
Claim: 𝐶 is open in the subspace (𝑋 × 0) ∪ (𝐴 × 𝐼) of 𝑋 × 𝐼.

Proof. We de�ne 𝑈 ⊂ 𝑋 by

𝑈 := {𝑥 ∈ 𝑋 | (𝑥, 0) ∈ 𝐶}.

𝑈 is open in 𝑋 since 𝐶 ∩ (𝑋 ×0) is open in 𝑋 ×0. We further de�ne open subsets
𝑈1, 𝑢2,𝑈, . . . of 𝑋 by

𝑈𝑛 := ∪{𝑉 |𝑉 is an open subset of 𝑋 and (𝑉 ∩ 𝐴) × [0, 1
𝑛
[⊂ 𝐶}.

We set

𝐵 := 𝑈 × 0 ∪ ∪∞𝑛=1 ((𝐴 ∩𝑈𝑛) × [0,
1

𝑛
[).

Claim:
𝐶 = (𝐶 ∩ (𝐴×]0, 1])) ∪ 𝐵. (A.2)

Proof. (of A.2) LHS ⊂ RHS : Let 𝑐 ∈ 𝐶.

Case 1 𝑐 = (𝑥, 0) for some 𝑥 ∈ 𝑋. Then 𝑐 ∈ 𝑈 × 0 ⊂ 𝐵.

Case 2 𝑐 = (𝑎, 𝑡) for some 𝑎 ∈ 𝐴, 𝑡 ∈]0, 1]. Then 𝑐 ∈ 𝐶 ∩ (𝐴×]0, 1]).
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LHS ⊃ RHS : We show 𝐵 ⊂ 𝐶. Let 𝑏 ∈ 𝐵.
Case 1 𝑏 ∈ 𝑈 × 0. Then 𝑏 ∈ 𝐶 by de�nition of 𝑈.

Case 2 𝑏 ∈ (𝐴∩𝑈𝑛) × [0, 1𝑛 [ for a natural number 𝑛 > 1, i.e., 𝑏 = (𝑎, 𝑡) for some
𝑎 ∈ 𝐴 ∩ 𝑈𝑛 and some 𝑡 ∈ [0, 1

𝑛
[. Since 𝑎 ∈ 𝐴 ∩ 𝑈𝑛, there exists an open

subset 𝑉 of 𝑋 with 𝑎 ∈ 𝐴∩𝑉 and (𝑉 ∩ 𝐴) × [0, 1
𝑛
[⊂ 𝐶. Hence 𝑏 = (𝑎, 𝑡) ∈ 𝐶.

□

We consider the equation (A.2). By assumption, 𝐶 ∩ (𝐴× 𝐼) is open in 𝐴× 𝐼.
Therefore, 𝐶∩(𝐴×]0, 1]) is open in 𝐴×]0, 1]. 𝐴×]0, 1] is open in (𝑋×0)∪ (𝐴× 𝐼).
Therefore, 𝐶 ∩ (𝐴×]0, 1]) is open in (𝑋 × 0) ∪ (𝐴 × 𝐼).

If we show:
𝐵 is open in (𝑋 × 0) ∪ (𝐴 × 𝐼), (A.3)

we have proven that 𝐶 is open in (𝑋 × 0) ∪ (𝐴 × 𝐼).
First, we prove

𝐴 ∩𝑈 = 𝐴 ∩ ∪∞𝑛=1𝑈𝑛 (A.4)

If 𝑉 is an open subset of 𝑋 with 𝑉 ∩ 𝐴 ⊂ 𝑈𝑛, then 𝑉 ⊂ 𝑈𝑛. (A.5)

Proof. (of A.4) LHS ⊃ RHS : Let 𝑥 ∈ 𝐴 ∩ ∪∞𝑛=1𝑈𝑛. Then there exists 𝑛0 with
𝑥 ∈ 𝐴 ∩𝑈𝑛0 . Therefore, there exists an open subset 𝑉 of 𝑋 with 𝑥 ∈ 𝐴 ∩ 𝑉 and
(𝑉 ∩ 𝐴) × [0, 1

𝑛0
[⊂ 𝐶. So (𝑥, 0) ∈ 𝐶, i.e. 𝑥 ∈ 𝑈 and therefore 𝑥 ∈ 𝐴 ∩𝑈.

LHS ⊂ RHS : Let 𝑥 ∈ 𝐴 ∩𝑈. So (𝑥, 0) ∈ 𝐶 and 𝑥 ∈ 𝐴, i.e. (𝑥, 0) ∈ 𝐶 ∩ (𝐴 × 𝐼).
Since 𝐶 ∩ (𝐴 × 𝐼) is open in 𝐴 × 𝐼 by assumption, there exists an open subset 𝑉

′

of 𝐴 and a natural number 𝑛0 ≥ 1 with (𝑥, 0) ∈ 𝑉 × [0, 1
𝑛0
[⊂ 𝐶. Since 𝑉 ′ is open

in 𝐴, there exists an open subset 𝑉 of 𝑋 with 𝑉
′
= 𝑉 ∩ 𝐴.

So (𝑥, 0) ∈ 𝑉 ′×[0, 1
𝑛0
[= (𝑉∩𝐴)×[0, 1

𝑛0
[⊂ 𝐶, so 𝑥 ∈ 𝑈𝑛0 , so 𝑥 ∈ 𝐴∩∪∞𝑛=1𝑈𝑛. □

Proof. (of A.5) We show: (𝑉 ∩ 𝐴) × [0, 1
𝑛
[⊂ 𝐶. Let 𝑣 ∈ 𝑉 ∩ 𝐴, then 𝑣 ∈ 𝑈𝑛

since 𝑉 ∩ 𝐴 ⊂ 𝑈𝑛. Thus there is an open subset 𝑊 of 𝑋 with 𝑣 ∈ 𝑊 ∩ 𝐴 and
(𝑊 ∩ 𝐴) × [0, 1

𝑛
[⊂ 𝐶. So {𝑣} × [0, 1

𝑛
[⊂ 𝐶. □

In particular, from (A.5) it follows: an open subset of 𝑋 that does not meet
𝐴 is a subset of 𝑈𝑛 for all 𝑛. This immediately yields:

𝑋 \ ∪∞𝑛=1𝑈𝑛 ⊂ 𝐴, where 𝐴 denotes the closed closure of 𝐴 in 𝑋. (A.6)

We now exploit the assumption � (𝑋 ×0) ∪ (𝐴× 𝐼) is a retract of 𝑋 × 𝐼� and prove

𝑈 ⊂ ∪∞𝑛=1𝑈𝑛. (A.7)

Let 𝑟 : 𝑋 × 𝐼 → (𝑋 × 0) ∪ (𝐴 × 𝐼) be a retraction. If 𝑡 ∈]0, 1], then 𝐴 × 𝑡 is the
closed closure of 𝐴 × 𝑡 in (𝑋 × 0) ∪ (𝐴 × 𝐼). Since 𝑟 is continuous and �xes the
points of 𝐴 × 𝐼, for 𝑡 ∈]0, 1], we have:

𝑟 (𝐴 × 𝑡) = 𝐴 × 𝑡. (A.8)

We claim:
𝑟 ((𝑋 \ ∪∞𝑛=1𝑈𝑛) × 𝐼) ⊂ (𝑋 \𝑈𝑛) × 𝐼 for all 𝑛. (A.9)
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Proof. (of (A.9)) Let 𝑥 ∈ 𝑋 \ ∪∞𝑛=1𝑈𝑛, 𝑡 ∈ 𝐼. We assume: there exists a natural
number 𝑛 ≥ 1 with 𝑟 (𝑥, 𝑡) ∈ 𝑈𝑛 × 𝐼. Since 𝑟 is continuous and 𝑈𝑛 is open in 𝑋,
there would then be open neighbourhoods 𝑉 and 𝑀 of 𝑥 and 𝑡, respectively, in
𝑋 and 𝐼, respectively, with 𝑟 (𝑉 × 𝑀) ⊂ 𝑈𝑛 × 𝐼. It would follow:

(𝑉 ∩ 𝐴) × 𝑡 = 𝑟 ((𝑉 ∩ 𝐴) × 𝑡) ⊂ 𝑈𝑛 × 𝐼,

so 𝑉 ∩ 𝐴 ⊂ 𝑈𝑛 , hence by (A.5) 𝑉 ⊂ 𝑈 and thus 𝑥 ∈ 𝑈𝑛 ⊂ ∪∞𝑛=1𝑈𝑛. Our
assumption therefore leads to a contradiction, i.e., (A.9) is proven. □

Proof. (of (A.7)) Now let 𝑥 ∈ 𝑋 \ ∪∞𝑛=1𝑈𝑛. From (A.6), (A.8), (A.9), and (A.4),
for all 𝑡 ∈]0, 1], it follows:

𝑟 (𝑥, 𝑡) ∈ (𝐴 ∩ (𝑋 \ ∪∞𝑛=1𝑈𝑛)) × 𝐼 = (𝐴 ∩ (𝑋 \𝑈)) × 𝐼 ⊂ (𝑋 \𝑈) × 𝐼

and therefore, since 𝑟 is continuous and 𝑋 \𝑈 is closed in 𝑋:

(𝑥, 0) = 𝑟 (𝑥, 0) ∈ (𝑋 \𝑈) × 𝐼, so 𝑥 ∈ 𝑋 \𝑈.

This shows: 𝑋 \ ∪∞𝑛=1𝑈𝑛 ⊂ 𝑋 \𝑈, i.e., (A.7) is proven. □

We now de�ne: 𝑉𝑛 := 𝑈 ∩𝑈𝑛, 𝑛 = 1, 2, 3, . . . Then we have:

𝑈 = ∪∞𝑛=1𝑉𝑛, (A.10)

since ∪∞𝑛=1𝑉𝑛 = ∪∞𝑛=1 (𝑈 ∩𝑈𝑛) = 𝑈 ∩ ∪∞𝑛=1𝑈𝑛 = 𝑈, and by (A.7) 𝑈 ⊂ ∪∞𝑛=1𝑈𝑛.
We claim:

𝐴 ∩𝑈𝑛 = 𝐴 ∩𝑉𝑛. (A.11)

Proof. (of (A.11)) 𝐴∩𝑈𝑛 ⊃ 𝐴∩𝑉𝑛, since 𝑉𝑛 ⊂ 𝑈𝑛. Let 𝑥 ∈ 𝐴∩𝑈𝑛. Since 𝑥 ∈ 𝑈𝑛,
there exists an open subset 𝑊 of 𝑋 with 𝑥 ∈ 𝑊 and (𝑊 ∩ 𝐴) × [0, 1

𝑛
[⊂ 𝐶. Since

𝑥 ∈ 𝑊∩𝐴, it follows that (𝑥, 0) ∈ 𝐶, i.e., 𝑥 ∈ 𝑈. Hence 𝑥 ∈ 𝐴∩𝑈𝑛∩𝑈 = 𝐴∩𝑉𝑛. □

Using (A.10) and (A.11), it is easy to prove:

𝐵 = ((𝑋 × 0) ∪ (𝐴 × 𝐼)) ∩ ∪∞𝑛=1 (𝑉𝑛 × [0,
1

𝑛
[). (A.12)

Since 𝑉𝑛 is open in 𝑋, it follows from (
refeq:a-9) that 𝐵 is open in (𝑋 × 0) ∪ (𝐴 × 𝐼). □

So we have proven (A.3) and are done. □
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