Homotopy Theory

Tammo tom Dieck, Klaus Heiner Kamps, Dieter Puppe






Preface

A word from the transcriber

This is a study memo of “Homotopietheorie” by tom Dieck, Kamps and Puppe.

The preface by Puppe

This paper goes back to a lecture that I gave in the fall and winter of 1966,/67
at the University of Minnesota, Minneapolis, Minn. USA, and the aim of which
was to build up the basics of homotopy theory without gaps, without using
other parts of algebraic topology (such as homology theory) and to arrive at
interesting results (such as the suspension theorems and James’ theorem on the
loop space of a suspension). In the winter semester of 1967/68 I read about
the same topic again at the University of Saarland, Saarbriicken and tried to
improve the presentation. Two listeners of this lecture have written the present
paper: K.H. Kamps the §§0-7 and the appendix, T.tom Dieck the §§8-17.

In §§1-9, the theory of cofibrations and fibrations is discussed in detail. The
results and methods are mostly known, but are not found elsewhere in a sys-
tematic compilation and seem to me to be fundamental.

§10 on the operation of the fundamental groupoid on the homotopy sets was
expanded by tom Dieck based on his own ideas. (In the lecture only the case
K = pt space was discussed.)

In §§11-13, the homotopy groups are introduced in connection with the func-
tors “suspension”; “loop space” and "H-space”, “Co-H-space”.

§14 contains the fibre sequences from which the exact Homotopy sequences
for pairs and for fibrations result as corollaries. Dual to this is the “Cofibre
sequences”. We have omitted its description because it can be developed quite
analogously and because it is discussed in detail in [19] (under the name “map-
ping sequences”). (The representation in [19] is at some points more complicated
than is possible today by proceeding exactly dual to §14 with the help of the
results of §§1, 2.)

The §§15-17 bring the homotopy excision theorem of Blakers-Massey, suspen-
sion theorems and a generalisation of James on the theorem on the loop space of
a suspension. This theorem is proved using purely homotopy-theoretical means,
and one obtains a true homotopy equivalence, where the other methods used
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only yield a weak homotopy equivalence. After completion of this manuscript
have I realised that the proof given in §17 can still be simplifiiled somewhat while
maintaining the basic ideas [28].

Originally, I used James’ theorem to prove the suspension theorems. Only
later did I find the elementary proof of the homotopy excision theorem, which
is given here in §15. (I received an important idea about this through an oral
communication from J. M. Boardman.) It provides a simpler way to the suspen-
sion theorems and thus to the first interesting statements about the homotopy
groups of spheres (cf.16.3) than the theorem of James and than all other meth-
ods known to us. Therefore, we have changed it accordingly. What remains
of the previous structure is that the homotopy groups appear relatively late,
although this is no longer necessary. Only a small part of the previous §§1-12 is
needed for them. For James’ theorem, the theory of §§1-12 on the other hand,
is used decisively (see in particular 17.8 Auxiliary sentence 14).

I would like to thank my two co-authors for their cooperation. I would like
to thank Mr Ulrich Mayr for a critical review and Mrs Marianne Karl for writing
the manuscript.

Heidelberg, the 5th October, 1970 D. Puppe
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Chapter 0

Fundamentals

0.1 Category theoretical foundations

We adopt the point of view of Brinkmann-Puppe [4] and build the theory of
categories on a set theory with universes on (Brinkmann-Puppe [4], 1.1.5, 1.1.6).
We henceforth assume the basic concepts of category theory (category, functor,
natural transformation, dual category, diagramme, etc.), such as in Brinkmann-
Puppe [4], 0., 2. are defined as known.

If € is a category, then denote |€| the set of objects of €, €(X,Y) the set of
morphisms from X to ¥ (X,Y € |€|), idx the unit of €(X,Y) (X € €).

f + X — Y stands for f € €(X,Y). For the composition of two morphisms
f:X—>Yandg:Y — Z, we write gf or go f.

Notation 0.1. In the following, we will mainly deal with the top category of
topological spaces and continuous maps.

We assume the basics of set-theoretic topology to be known.

We use the following designations.

e N denotes the set of natural numbers: N = {0,1,2,... }.

e Let R be the topological space of real numbers. The following two subsets
of R will be encountered frequently: the closed unit interval [0, 1] of the
real numbers - we denote it by I - and the subspace of the non-negative
real numbers {x € R|x > 0} - we denote it by R*.

e Let R" be the n-dimensional Euclidean space (n € N, n > 1), E" be the
n-dimensional solid sphere of Radius 1 (rn € N, n > 1), $" be the n-sphere
(n e N).

o If X, Y are topological spaces, then let proj; : X XY — X be the projection

of the topological product X XY onto the first factor, proj, : X XY — Y
be the projection onto the second factor. Let X be a topological space, A

1



2 CHAPTER 0. FUNDAMENTALS

a subset of X, then let X/A be the topological space that arises from X
when A is identified to a point.'

Definition 0.2. Let € be a category.

e If f: X —>Y, g:Y — X are morphisms of € with gf = idy, then g is
called a left inverse to f, f a right inverse to g.

e A morphism of € is called a section if it has a left inverse, a morphism is
called a retraction if it has a right inverse.

e A morphism f of € is called an isomorphism if there exists a morphism
g which is inverse (i.e. left inverse and right inverse) to f. Such a g is
uniquely determined by f. We write g =: f~1.

Definition 0.3. Let € be the category Z¢z of topological spaces. Let X be
a topological space, A be a subspace of X, i : A ¢ X be the inclusion, then
especially interesting is a retraction r : X — A, for which ri = id4.

We call such a retraction a retraction from X to A.

The subspace A is called the retract of X if a retraction from X to A exists.

1k
~

Definition 0.4. A natural equivalence relation in a category € consists of
one equivalence relation each “~(x yy=: “~” in each set of morphisms €(X,Y)
(X,Y € |€]), so that for all f,g:X — Y, f,g :Y — Z the following applies:
(f~gand [ ~g) = (ff~gg)

If “~” is a natural equivalence relation in €, then one can form the factor
category €/(~) (Mitchell [17], 1.3). €/(~) has the same objects as €.
The morphisms of €/(~) are the equivalence classes [f] with respect to
of the morphisms f of €. The composition in €/(~) is given by the equation
(][] =[gf].
The units of €/(~) are the equivalence classes with respect to
of €.

“w_»
~
LLN”

of the units

Definition 0.5. Let € be a category. A diagramme in €
X1
7N
Xo X
X,
is called a cocartesian square if the conditions (1) and (2) are satisfied:

(1) j1i1 = joia (i-e., the diagramme is commutative),

IIf A is empty, then X/A is the topological sum of X and a space that has exactly one
point.
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(2) For every two morphisms f1 : X1 = Y, fo : Xo —» Y of € with fii1 = fais
there is exactly one morphism f : X — Y of € with fh, = f, (v =1,2).

In (2), the requirement of unambiguity is waived from f, one obtains the
term “weak cocartesian square” (Freyd).

Remark 0.7. In a cocartesian square (0.6)

is clearly determined by

1

2

N

Xo
up to isomorphism.
Definition 0.8. Dual® to the term “cocartesian square” is the term ‘cartesian
square”.
Let € be a category.
A diagramme in €

1 (0.9)
X Xo

X
X5

2Exactly: (*€|€) - dual in the sense of Brinkmann-Puppe [4], 2.2 (Transition from € to
the dual category *€)
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is called a cartesian square if (1) and (2) are satisfied:
(1) p1g1 = p2q2,

(2) For every two morphisms f; : ¥ — X, fo : ¥ — X5 of € with p1fi = pafe
there is exactly one morphism f :Y — X of € with ¢, f = f, (v =1,2).

J1 Xy
2N
vyt x Xo
f2 X2

In (2), the requirement of unambiguity is waived from f, one recovers the
term “weak cartesian square”.

Remark 0.10. In a cartesian square (0.9)

X
q1

7N

is clearly determined by

up to isomorphism.

Theorem 0.11. Let € be a category. Given the diagrammes (D1), (D2), and
the outer box (D3) in €:

U—2sV—>Ww (0.12)
uj (D1) jv (D2) w
Vv

’ ’
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Claim.

(a) If (D1) and (D2) are weakly cocartesian squares, (D3) is a weakly cocarte-
stan square, too.

(b) If (D1) and (D2) are cocartesian squares, (D3) is a cocartesian square, t0o.

(¢) If (D1) and (D2) are weakly cartesian squares, then (D3) is a weakly carte-
stan square.

(d) If (D1) and (D2) are cartesian squares, then (D3) is a cartesian square.

Proof. The proof of the theorem is simple and is left to the reader (see Brown
[5], 6.6.5, Kamps [15], 0.10).
Note: (c) is dual to (a), (d) is dual to (b). m]

Definition 0.13. In addition to the category of topological spaces, we will deal
with some other categories derived from the category I ¢ .

For this we carry out the following general category-theoretic constructions.
Let € be a category and let K, L be objects of €.

We define categories €%, €, €K.

Let the objects of €X be the morphisms of € that have K as the source, let
the objects of € be the morphisms of €, which have L as their target, let the
objects of Gf be the diagrammes ¢ in € of the form

KSxS L.
Let i, i (p, p’; &, &) be objects of €K (€, (if respectively).

The morphisms i —i (p — p, &€ — &) of €K (€, (S’]f resp.) be the commu-
tative diagrammes in € of the form

/\ \/ /\
\/

frimi, fipop, f:éE.

The composition of the morphisms in the new categories is induced by the
composition in €. Units are

We then write (abuse of language):

idy:i—i, idg:p—op, idx:&-—>¢&.

€K means the category of objects under K, £ the category of objects over L,
(if the category of objects under K and over L.
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We note: A morphism f of €K (€, (‘:Ilf) is an isomorphism of €K (€, (EIZ)
resp.) if and only if f is an isomorphism of €.

Remark 0.14. If K is a copoint of the category €, i.e. if €(K, X) has exactly one
element for all X € |€|, then €X can be canonically identified with € and (ﬁf
with €p. If L is a point of the category €, i.e. €(X, L) have exactly one element
for all X € |€|, then €, can be canonically identified with € and €f with €.

Definition 0.15. In the case € = T ¢, the objects of €X are called spaces
under K, the objects of € are called spaces over L, the objects of (Ef are called
spaces under K and over L, the morphisms of €X (€, Q:IL() the maps under K
(over L, under K and over L resp.).

Instead of map over L, one also says fibrewise map, since a map over L
f:p— p foreach b € L maps p~'b the fibre over b into p b the fibre over b.

The empty topological space @ is a copoint in the category I ¢ 2. Therefore,
the following applies: T on® = Ton, Ton? =T opnL (L €|T onl).
Each point space P, i.e., every topological space P whose underlying set has
exactly one element, is a point in the category I ¢ . Therefore, the following
applies: Topp =T op, Topk = T op® (K € |T opl).
We also use the term T on° := Tont. We also call 7oz the category of
pointed topological spaces.
We can consider the objects of T ¢ 2 as pairs (X, o) where X is a topological
space and o € X is the base point. The morphisms (X,0) — (X ,0) of T ¢n°
are the basepoint-preserving (pointed) continuous maps, i.e. the continuous
maps f: X — X with f(o)=o0.

Definition 0.16. If € is a category, we also have the category of pairs €(2).
The objects of €(2) are the morphisms of €.

Let u, u" be objects of €(2).

The morphisms u — u’ of €(2) are the commutative diagrams in € of the form

X

ul

Y
We write (f,g) :u — u'.
The composition in €(2)) is induced from the composition in €. Unit u — u is
the morphism (idy, idy).
A morphism (f, g) of €(2) is exactly then a isomorphism of €(2) if f and g are
isomorphisms of €.

f ,
—_—

’
u

’

N

_

At the end of 0.1 we ask the reader to familiarise himself with the concept
of adjoint functors (see Mitchell [17], V.).
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0.2 Fundamentals of homotopy theory

Definition 0.17. A continuous map of the form ¢ : X X I — Y where X and Y
are topological spaces is called homotopy.

A homotopy ¢ : X X I — Y gives, by ¢;(x) := ¢(x,1) for x € X, a family of
continuous maps ¢; : X - Y, t € I.
If j, : X — X X I is the continuous map x — (x,?), we obtain ¢; = ¢ o J;.
Definition 0.18. Let X, Y be topological spaces, f,g : X — Y be continuous
maps.
f is called homotopic to g if a homotopy ¢ : X X I — Y exists with ¢g = f and
@1 = g, so if there is a continuous map ¢ : X X I — Y, so that for all x € X

e(x,0) = f(x), @x1)=gx).

i

Figure 1:

Such a ¢ is called a homotopy from f to g.
We write: f =~ g, if f is homotopic to g, and ¢ : f ~ g, if ¢ is a homotopy from
f to g.

Theorem 0.19. “~” is a natural equivalence relation in T opn (see Definition

0.4).

Proof. 1. [Reflexivity] Let f : X — Y be a continuous mapping. By ¢(x,1) :=
f(x) for (x,1) € X x I we get a homotopy ¢ : X X I — Y from f to f.

2. [Symmetry] Let f,g € Ton(X,Y) and ¢ : f ~ g, then
0 (x,1) = p(x,1—1), for (x,1)eXxI
delivers a homotopy from g to f.

3. [Transitivity] Let f,g,h € Ton(X,Y), ¢: f~g, ¢ : g ~h,then y : XxI - Y
is a continuous (!) map (!), given by

(1) = p(x,2t), if 0
SR 7E TS S T

which is a homotopy from f to A.
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4. |Naturality| Let f,g: X — Y, f,g : Y — Z be continuous maps with f ~ g,
f=g. ) /
Assertion: f f~gg.

Proof. Let ¢ : f~g, ¢ : f ~g'. Then the following

fop:ff=fg ¢o(gxid):fg=gg thusff=glg,

19}

applies since , as already shown, is transitive. O

O

Remark 0.20. Since “~” is a natural equivalence relation in I ¢z, we can form
the factor (residue) category I v z2/(=) (cf. Definiton 0.4).

We note them T ¢ zh and call them the homotopy category associated to T o .
Thus, for X,Y € |Topnl(= |Toepnt|), Tonh(X,Y) consists of the homotopy
classes of the continuous maps from X to Y.

We shorten: T opnh(X,Y) =: [X,Y].

If f is a continuous mapping, then [ f] denote the homoopy class of f.

Definition 0.21. A continuous map f : X — Y is called a homotopy equivalence
(an h-equivalencefor short) if [ f] is an isomorphism in J ¢p#, that is, if there
exists a continuous map g : Y — X with gf ~idx and fg ~idy.

Such a g is called the homotopy inverse (h-inverse for short) to f.

If f: X—>Y,g:Y — X are continuous maps with gf ~ idx, then g is called a
homotopy left inverse (h-left inverse) to f, f a homotopy right inverse (h-right
inverse) to g.

Definition 0.22. The terms “null homotopic” and “contractible” are derived
from the homotopy concept.

(1) A continuous map y : X — Y is called constant if yg € Y exists with
X (X) = {yo}.

(2) A continuous map f : X — Y is called null homotopic if it is homotopic to
a constant map.

(3) A topological space X is called contractible if idx is null homotopic.

Remark 0.23. Let a, b be real numbers with a < b. If one replaces the interval
[0,1] with the interval [a,b] in the definition of the term “homotopy”, one
obtains, as one might easily think, an equivalent term.

A corresponding remark is always applicable when a definition is based on the
homotopy concept for example, in the definition of the homotopy extension
property (cf. Definition 1.5), the covering homotopy property (cf. Definition
2.21, Theorem 2.23) and the definition of the terms “cofibration” and “fibration”
(cf. Definition 1.6 and Definition 2.26).

In consistency with Definition 0.17 we call continuous maps ¢ : X X [a,b] = Y
(X,Y € |T opn|) homotopies and define for ¢ € [a,b] a continuous mapping
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Jr: X > X X [a,b] by j:(x) := (x,¢) for x € X.
If ¢ : XX [a,b] — Y is a homotopy, we assume for ¢ € [a, b], ¢; := poj; : X - Y.
So we have ¢;(x) = ¢(x,t) for x € X, t € [a, b],

Let K and L be topological spaces.
We define homotopy terms in the category I ¢zX of the topological spaces
under K, in the category ¢ sy, of the topological spaces over L, in the category
970725 and in the category of pairs 7 ¢ z2(2) (cf.(Definitions 0.13, 0.15 and 0.16.)

Definition 0.24. Let f,g:i — i be morphisms of 7 ¢ 2X:

K
/X
X— X
f.8

f is called a homotopy under K to g if a homotopy ¢ : X x I — X' exists with
¢: f=~gand @(ixid;) =i oproj,.

XxI—2-x

ixid,] {i'

KXl ——K

proj;

where ¢ is a homotopy under K from f to g. We write f K g if f is homotopic

under K to g, and ¢ : f K g if ¢ is a homotopy under K from f to G.
The condition ¢(i X id;) =i o proj, states: for all € I, ¢; oi =i holds, i.e. for
alltel, ¢ : X — X is a morphism of T ek, ¢, :i — 1.

Special cases.

(1) K is a subspace of X, i is the inclusion K ¢ X. In addition to “homotopic
under K” and “homotopy under K” are then also the terms “homotopic
relative to K”, and “homotopy relative to K” are common.

Then we also write

K
“f ~grelK” instead of “f=g” and
“o: f~grelK” instead of “p: f K g".

A homotopy ¢ relative to K has the property: for each a € K, ¢(a,t) is
independent of 1 € I.

(2) If K is a one-point space, i.e. T 02X = T0n° (cf. Definition 0.15), thus,
the terms “pointed homotopic” and “pointed homotopy” is common.
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Definition 0.25. Homotopies under K can be expressed as morphisms of 7 ¢ XK.
Let us first consider the situation in the category I ¢ .

If X is a topological space, then we have the cylinder on X IX := X x I° Ho-
motopies in I ¢z are now morphisms of 7 ¢z of the form IX — Y, where Y
is another topologlcal space. We are now transferring the cylinder construction
from T on to TonK

If i : K — X is a space under K, then let /XX be the topological space that
is created from X x I when (ia,t) € X X I for each (a,t) € K X I is identified with
(ia,0) € X x I.

Figure 2

If we connect the natural projection X x I — IXX to K Sx D xx I, we
get a space under K, IXi:K — IKX
Ifp:15i—i a morphlsm of T 07X, where i’ : K — X' is another space under
K, then one can obtain a homotopy under K, ¢ :: XxI — X by composing the
natural projection from X x I to IXX with .
The assignment ¢ — ¢ provides a bijection between the morphisms of T ¢z
of the form IXi — i’ and the homotopies under K.

K
Definition 0.26. Let f,g: p — p  be morphisms of T ¢y
E L E
L
[ is called a homotopy over L to g (fLg) if there exists a homotopy ¢ : EXI — E

with ¢ : f ~ g and p o ¢ = p o proj;.

ExI—*Y - F

Pop& /

3The transcriber believes Cyl X would be a better notation than IX.
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Where ¢ is a homotopy over L from f to g (¢: ng)

The condltlon p @ = p oproj, states: for all € I, p'o, =p,ie foraltel,
0, E—Eisa morphlsm of Tonr, ¢ : p top.

Further, the equation p’'¢ = p OprOJl means: the homotopy ¢ over L are exactly
the morphism ¢ : p o proh — p’ of T 0. The cylinder construction in I ¢
thus corresponds in I ¢z, to the transition from the space p : E — L over L
to the space Lyp := poproj; : EXI — L over L. If ¢ is a homotopy over L,
then for allr el and b € L

¢:(p~'b) c p' b,

that is, the fibre p~'b over b are mapped over b during the entire homotopy ¢ in
the fibre p'~'b over b. Therefore, in addition to “homotopic over L” and “homo-
topy over L” we also have useful designations “vertically homotopic”, “fibre-wise
homotopic”, “vertical homotopy”, “fibre-wise homotopy”.

Using the same formulae as in the proof of Theorem (0.19) show you:

K ) . )
Theorem 0.27. “~” and “i " are natural equivalence relations in ¢ nX and

T o py, respectively.

Definition 0.28. Thus one has factor categories
K ;K K
Top [(=2)==Topr"h and F/‘opL/(f) =: T opLh.

Leti:K — X, i : K—)X/bespacesunderK p:E—>L p :E — Lbe
spaces over L, so we write instead of 7 ¢2Xh(i,i") also (maccurately) (X, XK
instead of opLh(p,p ) also (inaccurately) [E,E']L.

If K is a one-point space, we use the designation [X, X']°.

If f is a morphism of 7 ¢ 2% or oy, then denote [ f]¥ resp. [f]L the equiv-

u’f,aa W

alence class of f with respect to resp.

If K is a one-point space, we use the designation [£]°. A morphism f of T ¢2K
or Topnyp, is called homotopy equivalence (h-equivalence) under K or homo-
topy equivalence over L if [f]X resp. [f]r is an isomorphism in T ¢2%h and
T o prh, respectively.

Remark 0.29. If a morphism f of 702X (or 70 ;) an h-equivalence under K
(over L), so is f, interpreted as morphlsm of T oz, an h-equivalence.

Definition 0. 30. (1) Let p and p’ be spaces over L. p is called h-equivalent
over L to p' if p and p’ are 1sorn0rph1(: objects of I ¢y h, that is, if there
exists an h-equivalence over L p — p’.

(2) Let i and i be spaces under K. i is called h-equivalent under K to i if i and
i’ are isomorphic objects of 7 ¢ 2% h.

The definition of a homotopy concept in I ¢ 725 is now clear.
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Definition 0.31. Let f,g : & — & be morphisms of 7 opL

K
/N
X /8 X
L

A homotopy under K and over L from f to g is a homotopy go XxI— X,
such that ¢ : f ~ g and ¢, for all ¢ € I is a morphism of I 072L & ¢

The homotopy relation defined in this way is a natural equivalence relation
T epf. One therefore has a factor category I ¢/ h.

Remark 0.32. In the special case K = @ (or L is a one-point space), the homotopy
concept of (0.31) coincides with the homotopy concept of (0.26) (or (0.24)) in
T opy (or Topk).

Remark 0.33. Homotopies under K and over L can be understood as morphisms
of T o 711{( .

Ifé=(K Sx L) is a space under K and over L, then first, by Definition
(0.25), we obtain a space under K IXi : K — IXX.

IXX is created from X x I by identifying (ia,t) € X x I for each (a,1) € K x I
with (ia,0) € X x I.

The continuous map p oproj; : X X I — L is compatible with the identifications
made in X x I, thus induces a continuous map /XX — L.

We thus obtain a space below K and above L

Ke= (K - IKX - L).
Let ¢ : IKf — & be a morphism of 90725, where & = (K x5 L) is
another obJect of To 72L , then one obtains a homotopy under K and above L
¢ : X xI — X' by composing the natural projection on X x I to IXX with .
The assignment ¢ — ¢ provides a bijection between the morphisms of I 072L
of the form Iff — ¢ and the homotopies under K and over L.

Finally, we have the following homotopy notion in 7 ¢ 2(2).

Definition 0.34. Let (f,g),(f,g): U — u’ be morphisms of 7 ¢2(2):

I

f.f
—_—

—
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A homotopy of pairs from (f,g) to (f,g) is a pair (¢,¥) of homotopies ¢ :
XxI— X, :YxI >Y suchthato: f~f,¢y:g~g andu op = yo(uxidy).

o f=f

Xx]——2- s X

uXid[j Lu/

YXI%—Y/
Yig=g

The last condition says: For all 7 € I, (¢;,,) is a morphism of 7 ¢2(2) u — u'.
The homotopy relation defined in this way is a natural equivalence relation in
T ¢72(2). We therefore have a factor category I ¢ 2(2)h.






Chapter 1

Cofibrations

1.1 Homotopy extensions and cofibrations

1.1.1 The extension problem

Leti:A— X, g:A—Y be continuous maps. We ask: Does a continuous map
f: X > Y exist with fi = g, i.e. is the diagramme

A
|
Y

completed by a continuous map f : X — Y to the commutative triangle below?

o x (1.1)

A—s X (1.2)
g
|7
Y
If i is specifically an inclusion A C X, the problem is whether a continuous
constant defined on the subspace A of X can be expanded to a continuous map

defined on X.
This problem is generally not soluble.

Ezample 1.3. let i be the inclusive of the n-Sphere $" in the (n + 1)-ball E™*!.
Since S" is not a retract of E"*! (Eilenberg-Steenrod [9], XI. Theorem 3.2,
Hurewicz-Wallman [13] , IT. 1. B)), g = idg» cannot be extended to E"*!.

However, it applies:

Theorem 1.4. If i is the inclusion S" c E"*', then Diagramme (1.1) always
becomes a commutative triangle (1.2) if there is a continuous map f : E™' — Y

15
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with f'i ~ g exists.
Sn i En+1
f
Y
Proof. Let ¢ :S"xI =Y, ¢: fi~g.
We define @ : (E"*! x {0}) U (S" xI) = Y by

(x,0) = f (x), x € Bl
(a,1) = @(a,1), (a,1) € S"x I.

The definition makes sense, since ¢ = f'i, and returns a continuous map, since
E™! x {0} and S" x I are completed in (E"*! x {0}) U (S" x I). By projecting
from the point (0,...,0,2) € R**2 we get a retraction'

roS"xI — (B x {0}) U (S"x ).

Then ® := ®'r : E"*! x] — Y is an extension of ® and for the continuous map

N

Figure 1.1:

fi=® B > Y (ie. f(x)=®(x,1) for x € B*!) satisfies fi = g. O

1.1.2 The homotopy extension property (HEP). Cofibra-
tions
The essential step in the proof of Theorem (1.4) was the extension of the homo-

topy ¢ : §" x I — Y to the homotopy ® : E"*! x I — Y, such that ®y is a given
extension (f) of ¢g. This leads us to the following definition.

LAn explicit formula for » can be found in Hilton [1], p.11.
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Definition 1.5. Let i : A — X be a continuous map, let ¥ be a topological
space.

We say i has the homotopy extension property (HEP for short) for Y, if for all
continuous maps f : X —» Y and ¢ : A X I — Y, such that ¢(a,0) = fia for
all a € A (i.e. @9 = fi), a continuous map ® : X X I — Y exists, such hat
®(i X idy) = ¢? and ®(x,0) = fx for all x € X (i.e. @y = f).

So i has the HEP for Y if and only if every commutative diagramme in 5 ¢ 2

of the form
X

can be supplemented by a continuous map ® : X X I — Y to the commutative

diagramme

XxI1-2 sy

We illustrate the definition for the special case an inclusion i : A ¢ X through a
sketch.

7N
/

~

/\
/

1 7>
//
I R
,/’/
A
0 R
A 7

Figure 1.2:

2We then say, even if i is not an inclusion, ® is an extension of ¢.
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Definition 1.6. A continuous map i : A — X is called a cofibration if i has the
HEP for all topological spaces.

So i is a cofibration if and only if the diagramme in I ¢z
X (1.7)

/ Jo
A X x1

AxI
is a weakly cocartesian square (cf. Definition (0.5)).
From the proof of Theorem (1.4) we see:
Ezample 1.8. i : S* ¢ E™*! is a cofibration.
Ezercise 1.9. Every homeomorphism is a cofibration.

Ezercise 1.10. Let i : A — B, j : B — C be continuous maps, Y be a topological
space. If i and j have the HEP for Y, then ji also has the HEP for Y.

From (1.10) it follows (see also Theorem (0.11) Claim (a)):

Corollary 1.11. The composition of two cofibrations is a cofibration.

1.1.3 The mapping cylinder of a continuous mapping

Let f: A — X be a continuous map.

Definition 1.12. The mapping cylinder Z; of f is the quotient space that
arises from the topological sum X + (A X I) if (a,0) € A x I for each a € A is
identified with fa € X.

Figure 1.3:
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Let p be the projection of X + (A x I) onto the quotient space Z.
Let j : X — Zg, k : AxI — Zy be the continuous maps obtained by taking
the injections of X respectively. A X I is composed into the topological sum
X + (A x1I) with p.
We use the following (inaccurate) abbreviations:

jx)=pkx):=x for xe€X,

k(a,t) = p(a,t) = (a,t) for (a,t) e AXI.

ki:A— Z; beacontinuous map a€ A k(a,1)=(a,1)eZs, Iie,
k1 =koj; (See Definitions 0.17 and 0.18.)

Theorem 1.13. j: X — Zy and ki : A — Zy are closed embeddings.

Proof. k is a cloesd embedding, since k; is the composition of homeomorphisms

a €A (a,1) € Ax {1} with the closed embedding(!) klax(1} : AX {1} = Zf

is just injective.

j is closed: if F is a closed subset of X, then it follows from the continuity of f:
“Lj(F) = F+ (f'F x{0}) is cloesed in X + (A x I), i. e., j(F) is closed in Z,

because p is an identification. O

Theorem 1.14. The following diagramme in T ¢ n

/\
N A

AXI

(1.15)

is a cocartesian square (See Definition(.5).

Proof. The diagramme (1.15) is commutative by definition of Z¢, j and k.
There are continuous maps g1 : X = Y, go : AxXI — Y with g1 f = go2jo.
We have to show that there is exactly one continuous map g : Zy — Y with

gJj = g1 and gk = go.

Uniqueness: g is uniquely determined by g; and g», since Zy = j(X) Uk(A X I).
Ezistence: g, and go together define a continuous map g : X + (Ax 1) — Y.



20 CHAPTER 1. COFIBRATIONS

Since g1 f = g2jo, & is contracted with the identifications we made in X + (A x 1)
when constructing the mapping cylinder of f:

¢ (a,0) = g2(a,0) = gojoa = g1 fa=g (fa)

for all a € A.
g therefore induces a continuous map g : Zy — Y, such that the diagramme

X+(AxD)i—sy

| A

Zy

is commutative, then g is the continuous map we are looking for. O

1.1.4 Different characterisations of the cofibration con-
cept

The following theorem characterises cofibrations with the help of the mapping
cylinder and shows that a continuous map i is already a cofibration if it has the
HEP for the mapping cylinder Z;.

Remark 1.16. Let i : A — X be a continuous map. Since jgi = (z X idy)jo and
since (1 15) is a cocartesian square, there exists a continuous map i 7 — XxI
with i’ j = jo and i’k =i x id;.

NN

Z; L XX

Axl/ld:/

Theorem 1.17. For a continuous map i : A — X, the following statements are
equivalent:

(a) i is a cofibration.
(b) i has the HEP for the mapping cylinder Z;.

(¢) i :Zi = X x1I is a section in the category of the topological spaces (i.e.
there exists a continuous map r : X X I — Z; with ri = idg, ).

Proof. (thm:1-1-16a) = (thm:1-1-16b) is trivial.
(thm:1-1-16b) = (thm:1-1-16¢) i have the HEP for Z;. Since Ji = kj0, then
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there exists a continuous map r : X X I — Z; with rjo = j and r(i X id;) = k.

We claim: ri’" = idz,. Since (1.15) is a cocartesian square, this follows from the
equations

(ri/)j = rjo = j = ile oj’
(rl")k = r(iX ldl) =k = idZ,' ok.

(thm:1-1-16¢) = (thm:1-1-16a) Let r : X X I — Z; be a continuous map with
Vl'/ = idzi.
Claim: i is a cofibration.

Proof. (of the claim) Given continuous maps g : X —» Y and ¢ : AXI — Y with
gi = ¢jo. Since (1.15) is a cocartesian square, there (exactly) exists a continuous
map ® :Z; » Y with @ j = g and ®'k = ¢.

Set ®:=@'r: XxI—Y.

Then the following holds:

Qjo=Drjo=0rij=0j =g,
Qi xid) =@ r(ixid)) =@ rik =k = ¢.

Corollary 1.18. If a continuous map i : A — X is a cofibration, then i is an
embedding.
Moreover, if X is Hausdorff, then i(A) is closed in X.

Proof. Since i : A — X is a cofibration, we can, according to Theorem (1.17)
select a continuous map r : X X I — Z; with ri = idg,.

For a € A we have

r(ia,1) = ri k(a,1) = k(a,1) = (a,1) e Ax 1C Z.
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i is thus injective and induces a bijective continuous map i : A — i(A).
. -1 . . . . . . .
The inverse i  :i(A) — A is continuous, since in the commutative diagramme

X i(A) 444444444444 > A
Lk
(x’ 1) XXIr—>Zl

the extended arrows are continuous maps and k; according to (1.13) is an em-
bedding.

i is also an embedding.

If we set 7 :=ir: X xI— X xI, then the following holds

i(A) = {x e X|r (x,1) = (x, D}

If X is Hausdorff, so is X x I Hausdorff and the diagonal of (X xI) X (X x I)
is therefore a closed subset of the product. Since i(A) is the preimage of this
diagonal in the continuous map

X— XxD)x(XxI), x (r(x1),(x1)),
then it follows that i(A) is closed in X. O

Remark 1.19. Corollary (1.18) shows in particular that one can limit oneself to
inclusions 7 : A € X in the definition of the term “cofibration”.

Remark 1.20. Let i : A € X be an inclusion. We compare the mapping cylinder
of i with the subspace (X x 0) U (A x I) of the product X x I.

Consider the diagramme
Zj e > (X x0)U(AXI)
//
A X K

where ;' is the map x € X — (x,0) € (X x0) U (A x ), and k" is the inclusion.
Since j'i = k'Jo and since (1.15) is a cocartesian square, exactly one continuous
map € : Z; — (X x0) U (A x I) is induced with ¢j = j and ¢k = k'. Thus ¢ is
bijective.

Y

~

Theorem 1.21. ell is a homeomorphism if one of the following conditions is
satisfied:

(a) A is closed in X.
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(b) (X x0)U(AXI) is a retract of X X I.

Proof. The proof for the condition (b) is given in Appendix A.
At this point we prove the theorem under the Prerequisite (a).
We show that the following diagramme is a cocartesian square.

/\
N

(1.22)
(X xX0)U(AXI)

x I

The assertion then follows from Theorem (1.14), since i and j, are, in a cocarte-
sian square, unique up to isomorphism. (see Definition (0.5)).

We have already established that (1.22) is commutative.

Given continuous maps g1 : X — Y, go: AXI — Y with g1i = gojo. Then there
is a uniquely determined map of sets g : (X x 0) U (A x I) — Y with gj’ = g1,
and gk’ = go.

The restrictions of g on X X 0 and A X I are continuus, since g; and go are
continuous.

Xx0 and, since A is closed in X, AXI are closed in XxI, that is, in (XxX0)U(AXI).
Therefore, g is continuous.

(1.22) is thus a cocartesian square. m]

Remark 1.23. If i : A C X is an inclusion, we can calculate the amount that the
mapping cylinder of i is based on the bijective map ¢ of (1.20) with (Xx0)U(AXI)
identified. The continuous map ¢ : Z; — (X x 0) U (A X I) is then the identity
on the underlying sets.

The topology of the mapping cylinder of i on the set (X x0)U(AXI) is thus finer
than the induced subspace topology defined by the product X x 1. According to
Theorem (1.21) the topologies coincide if A is closed in X or (X X0) U (A X 1) is
a retract of X x I.

In general, however, the topologies are different.

Ezample 1.24. Let X :=[0,1] =1, A :=]0,1].

In (X x0) U (A xI) consider the sequence an := (%% ,(n=1,23,...). This
sequence converges to (0, 0) if one takes (X x 0) U (A x I) the induced subspace
topology by the product X x I.

However, if (X X 0) U (A X I) has the topology of the mapping cylinder of i, the
sequence a, does not converge to (0, 0), since the point (0, 0) has neighbourhoods
with respect to the topology of the mapping cylinder that do not meet a point
of the diagonal of A x I.

Theorem 1.25. (see Strom [27], 2. Theorem 2) An inclusioni: A C X is a
cofibration if and only if the subspace (X X0)U (A XI) of X X1 is retract of X X I.
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Proof. We use the characterisation of the term “cofibration” of Theorem (1.17)
(c).

(=): Ifi : A c X is a cofibration, then there exists a continuous map r : X XI —
Z; with ri’ = idz,, where " Z; > Z; which is defined in (1.16) is a continuous
map. If we set r with the continuous map ¢ : Z; — (X x 0) U (A x I) of (1.20)
together, we get a retraction from X X I to (X x0) U (A X I).

(&): Conversely, if 7 is a retraction from X x I to (X x 0) U (A x I) then
ri=¢1" X xI— Z; is a map with ri’ =idy,. r is continuous, since £~ after
Theorem (1.21) (b) is continuous. o

Remark 1.26. The proof of Theorem (1.25) is based on the fact that a continuous
map € : Z; - (X x0) U (A x I) defined in (1.20) is a homeomorphism under
certain conditions. For this we have Theorem (1.21) (b), which we only prove
in the Appendix. However, if you put it in advance Theorem (1.25) assuming
that A is closed in X, one can refer to the already proved Theorem (1.21) (a).

Example 1.27. We give an example of a closed inclusion i : A C X, which is not

a cofibration, and an example of a cofibration i : A C X, where A is not closed

in X.

Example 1 Let X := {0} U {%|n =1,2,3,...} c R, A:={0}. A is a closed
subspace of X.

Claim: The inclusion i : A € X is not a cofibration.

Proof. If i : A c X were a cofibration, then according to Theorem (1.25)
a retraction r : X X I — (X x0) U (A xI) of X X I would exist on (X x0) U
(AxI). For n =1,2,3,... there is a path component of the point (%,0)

-

11
A z7 X
Figure 1.4:

in (X X 0) U (A X 1) just from this point.

Since r is continuous and fixes the point (%, 0), r must therefore map the
distance {%} x I to the point (%,O) (n=1,2,3,...).

On the other hand, r fixes the range {0} X I point-wise. But this is a
contradiction to the continuity of r at the point (0, 1). O

Example 2 Let X := {a, b}, where a # b. We give X the topology whose open
sets are @, {a}, X. Let A be the subspace {a} of X. A is not closed in X.

Claim: The inclusion i : A C X is a cofibration.
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Proof. We use the characterisation of Theorem (1.17) (c). We define r :
XxXI—Z; by

1) o (x,1), if x=a or =0,
X,
(a,1), if +>0.

The reader should convince himself that r is continuous. Since ri’ = id,,

(ait) e (b!t)

Figure 1.5:

(i as in (1.16)), the assertion follows. m]

1.1.5 Decomposition of a continuous map into a cofibra-
tion and a homotopy equivalence

With the help of the mapping cylinder we show that each continuous map can
replaced up to homotopy equivalence by a (closed) cofibration.

Remark 1.28. Let f : A — X be a continuous map and Z; be the mapping
cylinder of f.

Then continuous maps j : X — Zy, k: Ax1 — Zy, k1 : A — Z are defined as
in Definition (1.12).

Since f = f o proj; ojo : A — X and since (1.15) is a cocartesian square, there
exists exactly one continuous map g : Zy — X with ¢j = idx and gk = f oproj;.

93

gx=x for xe€X,
q(a,t) = fa for (a,t) e AXI.

A X

foproj,

q is described by the formulae
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I (a,t)

pid (a,0)

fa = q(a,t) X

Figure 1.6:

Theorem 1.29. (a) The diagramme

N

Zp——(——X

18 commutative.
(b) k1 and j are cofibrations.
(c)
qj = idx,
= idgz, rel j(X).

Since ky is a closed embedding by Theorem (1.13), from Theorem (1.29)
follows, :

Corollary 1.30. Every continuous map f can be factored into the form f = uov,
where v is a (closed) cofibration and u is a homotopy equivalence.

Proof. (of (1.29 (a)) gk1 = gkj1 = f o proj; oj1 = f. i
For the proof of parts (b) and (c) of Proposition (1.29) we need:

Theorem 1.31. Let f : A — B be a continuous map, C be a topological space.
If f is an identification and is C locally compact, then

fXxidc:AXC —- BxC
is an identification, too.

We prove (1.31) in (2.13) with the aid of mapping spaces (cf. also Schubert
[23], T, 7.9, Theorem 5)°.

3A direct proof for C = I can be found in Hilton [11], VII, Lemma 3.4.
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Proof. (of (1.29 (b)) We first identify (cf. (1.13)
A=ki(A)=Ax1,
X = j(X).
k1 and j are then the inclusions
Ax1cZy, XCZy.

To prove that these inclusions are cofibrations, let’s apply (1.25).
Note Remark (1.26) (A x 1 and X are closed in Z after (1.13)).
So we have to show:

(1) (ZFx0)U(Ax1x1I)is aretract of Z¢ X I,
(2) (Zfx0)U (X x1I)is aretract of Zy x I.
First, we show (1) holds:

Figure 1.7:

The projection from the point (0,2) € R X R provides a continuous map

A:IXI— (IX0)U((1xI)

By

(x,t) = (x,0) for xe€eX,
(a,s,t) > (a,A(s,1)) forae€ A, s,tel

one obtains a continuous map
Fi(X+(AxD)xI— (Zrx0)U(Ax1xI).
Since A(0,1) = (0,0) for all ¢ € I, the following holds for a € A and t € I

r(a,0,t) = (a,A(0,1)) = (a,0,0) = (fa,0) =7(fa,0).

27
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Figure 1.8:

There is therefore exactly one map

r:ZgxI— (ZyxO)U(Ax1xI)

with r(p xidy) = f.

(X+(AXD) XTI —L>(Z; x0) U (Ax1x1)

ledIl /

Zy X1

r is continuous since 7 is continuous and since p X id; after Theorem (1.31) is
an identification (I is locally compact.) Since A|xoyuaxry = iduxoyuxr), it
follows that

rl(zsxoyu(axixry = id(zpxo)u(Axixr) -

Thus (1) is proved.
Next, we show (2) holds:

Figure 1.9:

The projection from the point (1,2) € R X R gives a continuous map

A IxI— (IX0)U(0XI).
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Art(s,t) 1

Figure 1.10:

(x,t) — (x,t) for xeX,

(a,s,1) > (@, (s,1)) foraeA, s,tel
one obtains a continuous map
Fo(X+(AxXD) XTI — (Zpx0)U (X xT).
Since A'(0,7) = (0,7) for all 7 € I, for a € A and ¢ € I we have
7 (a,0,1) = (a,4(0,0) = (a,0,7) = (fa,t) =7 (fa,1).
There is therefore exactly one map
F i (ZpxI) = (Zyx0) U (X x1).

with 7' (p xid;) = 7o is continuous, since 7 is continuous and since p X idyis
an identification (1.31). Since A(s,0) = (s,0) for all s € I, it follows that

r/l(ZfXO)U(XXI) = id(z;x0)u(xxI) -
Thus (2) is proved. ]

Proof. (of (1.29 (c)) Note that ¢j = idx results from the definition of ¢.
We define ¢ : Xy x I — X by

o(x,t):=x for xeX, tel,
v(a,s,t) = (a,st) for aeA, s,tel

¢ is well-defined since

¢(a,0,t) = (a,0) = fa =¢(fa,t) for acA.
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(2,8)

(a,0)

fa X

Figure 1.11:

With the help of (1.31) it is easy to see that ¢ is continuous.
The following applies

¢(x,0) =x = jq(x) for xeX,
v(a,s,0) =(a,0) = fa=jq(a,s) for acA, sel,
thus  ¢o = jgq, ¢1=1idz,.

Since ¢(x,1) = x for all x € X, t € I, ¢ is a homotopy rel X (= j(X)), so

¢ jq=idz, rel X.

1.1.6 Mapping cylinder of a pair (Double Mapping cylin-
der)

We generalise the notion of the mapping cylinder of a continuous map.

Definition 1.32. Let f: A — X, g : A — Y be continuous maps.

The mapping cylinder Z(r 4) of the pair (f,g) is the coset space that results
from the topological sum X+ (AXI)+Y if (a,0) € AX[ is identified with fa € X
for each a € A and (a,1) € A X I is identified with ga € Y for each a € A.

By composing the injection of X or Y into the topological sum X+ (AX1)+Y
with the projection on Zy ,) one obtains injective continuous maps

jx:X—>Z(f’g), jy:Y—)Z(f,g).
Theorem 1.33. jx, jy are closed embeddings and cofibrations.

Proof. The proof is analogous to the proof of the corresponding parts of Theo-
rem (1.13) and Theorem (1.29).
We leave the exact implementation to the reader.
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ga ¥
; {a,1)
1 AXI
° (2,0)
fa X
Figure 1.12:

When proving that jx is a cofibration, one uses the fact that for the map intro-
duced in the proof of (1.29)

A IxI— (Ix0)U(OxI), A(1,1)=(1,0) forall tel.
O

In particular, Theorem (1.33) allows us to regard X and Y as (closed) sub-
spaces of Zy g:
XCZifg, YCZyg.

Ezample 1.34. 1. If g = ida , then Z(f 4) is (essentially) the mapping cylinder
Zf of f

2. If Y has exactly one point, i.e. g is the only map A — Y, then Z¢ o) is called
the mapping cone of f.

We then use the notation Cy := Z(r o).

fa X

Figure 1.13:

Remark 1.35. Cy is created from the mapping cylinder Z f of f, by identifying
AX1CZy to a point.



32 CHAPTER 1. COFIBRATIONS

From Theorem (1.33) follows:

Theorem 1.36. (1 .32) Theorem: If f : A — X is a continuous map, then the
inclusion X c Cy is a (closed) cofibration.

1.1.7 Transition to other categories

Let K, L be topological spaces. With the help of the homotopy term defined
in (0.32) in the category F/”ofzf, the definition of the term cofibration can be
transferred from 7 o2 to 7 oy .

Definition 1.37. Let a = (K > A > L), ¢ = (K — X — L) be spaces under K
and over L, let g : @ — ¢ be a map under K and over L.

g is called a cofibration in T ¢ 725, precisely if for all spaces under K and over
L, n=(K —>Y — L), for all maps under K and over L, f : & — n and all
homotopies under K and over L, ¢ : AXI — Y with ¢¢ = fg, a homotopy under
K and over L, ®: X X I — Y exists with ®(g xid;) = ¢ and @y = f.

|
/X
f
A X % o Sy
Jo gxidy
\ //
AxI

The theorems of this paragraph on cofibrations can be transferred from I ¢ 2
to I 0725. We leave the exact execution to the reader. Note in particular the
special cases K = @, L = pt and make clear the concept of cofibration in I ¢ 2°
(pointed cofibration).

At this point, only the construction in the category I ¢ 715 will be mentioned,
which corresponds to the construction of the mapping cylinder in 5 ¢ z.

Definition 1.38. Let £ = (K- X 2 L) and £ = (K = X 25 L) be objects
of Topk and f € TopK(£,&). We first have the topological space IKX (cf.
(0.25)).

Let Zjlf be the topological space that arises from the topological sum X + IKX

if for each x € X, fx € X is identified with the image of (x,0) € X x I under
the natural projection X x I — IXX. We put i : K — X  together with the
injection of X' into the topological sum X + I*XX and the natural projection

X +IXKX - Zjlf and obtain a continuous map K — ZX.

<
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p X —> Land po proj; : X X I — L induce a continuous map ZJIS — L) (1).
We thus obtain an object K — Zjlf — L of 9’0725, the mapping cylinder of f

n J o pf .
The reader may want to prove

Theorem 1.39. Let

be a commutative diagramme in T on. Then g : i — i is a cofibration in
TonX ifg: X — X is a cofibration in T on.

1.2 Homotopy cofibrations

1.2.1 The homotopy extension property up to homotopy.
h-cofibrations

We generalise the concept of cofibration.

Definition 1.40. Let i : A — X be a continuous map, Y a topological space.

i has the homotopy extension property (HEP) up to homotomy for Y if for all
continuous maps f : X — Y and all homotopies ¢ : A X1 — Y with ¢g = fi a
homotopy @ : X X I — Y exists with

(1) ®(i xidy) = ¢ and

(2) = f.

A—M s Ax]
/
i Y
f
@

X——— > Xx1I

ixidy

(We regard @y and f as morphisms of T op?, with @, f € Tor(, fi);
because of (1) ®gi = o = fi holds.)

Definition 1.41. A continuous map i : A — X is called a homotopy cofibration
(h-cofibration for short) if i has the HEP up to homotopy for all topological
spaces Y. In addition to the term “homotopy cofibration”, the term “weak cofi-
bration” is also used.
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Remark 1.42. Every cofibration is an h-cofibration. In particular, every home-
omorphism is an h-cofibration (cf. (1.9)).

Theorem 1.43. The composition of two h-cofibrations is an h-cofibration.
The proof of the theorem is left to the reader.

Definition 1.44. Let iA — X, i : A — X be spaces under A.
i is said to be dominated by i in T on* if one of the following equivalent (!)
statements is satisfied:

(a) there exist morphisms of Top?, g:i —i, g i —i with g'g = 1dx,

’

(b) there exists a section in Top?, g:i =i,
(c) there exists a retraction in T on?, g i —i.
Remark 1.45. In the case A = @, this notion goes back to J. H. C. Whitehead.

Theorem 1.46. Assumption: i : A —» X, i : A — X are spaces under A. Let
i be dominated by i in T op.
Assertion.

(a) If Y is a topological space and i" has the HEP up to homotopy for Y, then
S0 18 1.
(b) If i is an h-cofibration, then so is i .

Proof. (b) immediately follows from (a).

N , ;A
(a): By assumption there are g € T on?(i,i’), § € Top?(i',i) with g'g =
idy.
Given are continuous maps f: X =Y, ¢ : AX [ — Y with ¢y = fi.

A

N

X—>X —>X
\lf
Y

Since g'i’ =i, it follows that ¢ = fg'i'. Since i has the HEP up to homotopy for

Y, there exists a homotopy Phi’ : X' xI — Y with @ (i’ xid;) = ¢ and (I);) 4 fg'.
Set @ := cb’(gxid,) X><I — Y. Then <I>(i><id1) =@ (gixid;) =@ (i’ xid;) = ¢

and @( = 0g fg g= f, because g'g = 1dX
Therefore i has the HEP up to homotopy for Y. O

Specifically, theorem (1.46) yields:
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Corollary 1.47. “HEP up to homotopy” and “h-cofibration” are invariant under
isomorphism in T ¢’ h, i.e. under homotopy equivalence under A.

Remark 1.48. Theorem (1.46) becomes false if one replaces “HEP up to homo-
topy” by “HEP” in (a) or “h-cofibration” by “cofibration” in (b).
We give an example of this in (1.100) (cf. (1.103)).

Theorem 1.49. Let the diagramme in T op

A
/X
X X

be commutative up to homotopy, i.e. fi =i .

If i is an h-cofibration or has at least the HEP up to homotopy for X', then
there is a continuous map g : X — X with g~ f and gi =1 .
(Compare the problem in (1.1), (1.2) and Theorem (1.4).

Proof. Let ¢ : fi~i, o: AxI— X .

Since ¢y = fi and since i has the HEP up to homotopy for X  there exists a
homotopy ® : X x I — X with ®(i xid;) = ¢ and @, 2 I

Set g := Phi; : X — X. Then gi(a) = ®(ia,1) = ¢(a,1) =i (a) for all a € A, i.e.

it g
I ® &
fi f
A X
Figure 1.14:
gi=i.
Furthermore, we have g = ®; ~ @y = f. O

1.2.2 Different characterisations of the term “h-cofibration”

Theorem 1.50. Let & be a real number with 0 < &€ < 1, Y a topological space,
i:A— X a continuous map.
Then the following are equivalent:

(a) i has the HEP up to homotopy for Y.
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(b) For all continuous maps : X — Y and all homotopies ¢ : AX I — Y such
that ¢(a,t) = fi(a) for all € A and all t € [0,1] with t < &4, there exists a
homotopy @ : X X I — Y with ®(i Xidy) = ¢ and Oy = f.

i
¢
¢ £
0
A X
Figure 1.15:

As a corollary, Theorem (1.50) provides a characterisation of the concept of
“h-cofibration”.

Proof. (of Theorem 1.50) (a) = (b): Given f: X —» Y and ¢ : A X[ — Y with
¢(a,t) = fi(a) for all a € A and ¢ € [0,1] with ¢ < &.

Since ¢, = fi (Recall: ¢, = ¢j. (0.23)), and since i has the HEP up to homotopy
for Y, there exists @ X x [,1] — ¥ with ® (i Xid[+.1]) = ¢lax[e.1] and @, = f
(cf. (0.23)).

Let ®" : X x [0,£] — Y be a homotopy under A with @8 = fand ®) = (I)/g. ()
and @ together define the desired homotopy @ : X x I — Y.

’

o !
€
@li
0 - T
38 x
Figure 1.16:

(b) = (a): Given continuous maps f: X > Y, ¢ : Ax I — Y with ¢g = fi.
We extend ¢ to ¢ : A x [-1,+1] = Y by ¢ (a,1) := ¢(a, max(z,0)). Then
¢ (a,1) = fi(a) for a € A, — <t < 0. By assumption (we replace (0,&,1)

4We say: "¢ is somewhat constant ".



1.2. HOMOTOPY COFIBRATIONS 37

with (=1,0,1).) there exists a continuous map ® : X x [-1,1] — Y with
@ (i xid[-11]) =¢ and @ = f.

, P A
For @ := @ |xx7 : X X[ — Y then ®(i xid;) = ¢, and &g =P, = D_, = f. O

1

P $
0 &'

|
mt
-1 ]
A X
Figure 1.17:

Theorem 1.51. Let € be a real number with 0 < & <1, iA — X be a continuous
map.
Then the following are equivalent:

(a) i is a h-cofibration.

(b) There exists a continuous map r : X X I — Z with the following property

(E(i,e)):

r(x,0) =x for xinX

(E(i,&)) . (a,0), acA, 0<t<e,
r(ia,t) = .
(a,=£), acA, e<t<l.
1
€
0 ~r.='_l.d:.u:._'.
A X

Figure 1.18:
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Proof. We carry out the proof using Theorem (1.50

We can obviously restrict ourselves to the case € =
(a) = (b): We assume that i is an h-cofibration.

We considered the embedding j : X — Z; (cf. (1.12), (1.13)) and the homotopy

¢ : AxI — Z;, which is given by

(a’o)s
(@0 {(a, 2t — 1),

2.
5.

—_ NI

o= O
IA A
IA A

Then for 0 <t < % p(a,t) = (a,0) =ia = jia.
Since i has the HEP up to homotopy for Z;, according to (1.50) there exists a
homotopy @ : X X I — Z; with ®(i Xid;) = ¢ and g = j. r := ® is the sought
continuous map.

(b) = (a): We now assume the existence of r : X X I — Z; with r(x,0) = x

(x € X) and

<
(a,2t-1), acAi<r<l.

in advance.

Given are continuous maps f : X - Y, ¢ : AXI — Y with ¢(a,t) = fia for
0<r<3,a€A.

We define @' : Z; — Y by

x> f(x) for xeX,
1+1¢
2

(a,t)H¢(a, ) for (a,t) e AXI.

Since (a,0) — ¢(a, %) = fia, @ is a well-defined continuous map. Set ® :=
®r:XxI—Y. Then

@ (a,0) = ¢ (a,0) = ¢(a,1), a€eA 0<
@ (a,2t-1) = (a,x), a€eA, <

O(x,0) =@ (x) = f(x) for xeX, i e, ®(ixid)) =g, Oy = f.

D(ia,t) = {

According to Theorem (1.50), i is therefore an h-cofibration. mi

Remark 1.52. In “(a) = (b)” we have only used that I has the HEP up to
homotopy for the mapping cylinder Z;.

Addition to Theorem (1.51). From theorem (1.51) and Remark (1.52) it
follows:

Theorem 1.53. A continuous map i is an h-cofibration if and only if it has the
HEP up to homotopy for the mapping cylinder Z;.

Corollary 1.54. If a continuous map i : A — X is an h-cofibration, then i is
an embedding. Furthermore, if X is Hausdorff, then i(A) is closed in X.
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Proof. Corollary (1.54) follows from theorem (1.51) in a similar way as Corollary
(1.18) from theorem (1.17). The proof of (1.18) can be adopted almost word for
word. ]

Remark 1.55. Corollary (1.54) shows that the definition of the concept of “h-
cofibration” can be restricted to inclusions i : A € X. We now prove that in the
characterisation of the concept of “h-cofibration” of Theorem (1.51) the mapping
cylinder Z; can be replaced by (Xx0)U(AxI) c XxIifi: A c X is an inclusion.

Theorem 1.56. Let € be a real number with 0 <& <1. An inclusioni: A C X
is an h-cofibration if and only if there exists a continuous map r : X X I —
(X x0) U (A x I) with the following property (E'(i,€)):

r(x,0) =(x,0) for xeX

(E'(i,e) { . (a,0), acA, 0<r<e
r(a,t) = i
(a, =% acA, e<t<l.

Proof. (=) : We assume that i is an h-cofibration. According to Theorem (
refthm:1-2-11) there exists a continuous map r : X X I — Z; with the property
(E'(i.€)). If weset r' :=fr: XxI — (X x0)U(AxI), where ¢ is the continuous
map defined in (1.20), we obtain a continuous map with the property (E (i, £)).
(<) : We assume the existence of a continuous map r" : X xI — (X x0)U(AxT)
with the property (E (i, €)).

We choose a real number § with 0 < § < 1 and define a map s : (X X 0) U
(A X I) — Z; by

(x,0) »x for xe€X,

(a,0), ac€A, 0<t<é
(a,1) o> S
(a,=%) acA, 6<t<l1.

Lemma 1.57. s is continuous

Proof. (X x0)U (A % [0,6]) and, since § > 0, A X [§,1] are closed subsets of
(X x0)U (A x1I). It is therefore sufficient to show that the restrictions of s to
these subsets are continuous.

The restriction s|sx[s,1] is continuous, since it is the composition of the
continuous map

t—90
A X [5,1] —>AX[, (a,t) = (Cl,m),

with the injection of A X I into the direct sum X + (A X I) and the projection
onto Z;. If one combines the projection onto the first factor proj; : X xI — X
with the injection of X into the direct sum X + (A x I) and the projection onto
Z;, one obtains a continuous map X X I — Z;. s|(xx0)u(ax[0,s]) 1S continuous
as a restriction of a continuous map to (X X 0) U (A x [0,6]. This proves the
lemma. O
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According to the lemma just proved, we obtain a continuous map X X1 — Z;
by r:=sr'. Weset & := e+ (1-¢)6. Then 0 < & < 1. A simple calculation
shows that " satisfies the property (E(i,£)). According to Theorem (1.51), i is
therefore a cofibration. This proves Theorem (1.56). o

Remark 1.58. If A is closed in X , then Theorem (1.56) follows immediately
from (1.51) by Theorem (1.21) (a).

Theorem 1.59. Ifi: A — X is an h-cofibration and Y is an arbitrary topological
space, then idy xi : Y X A —» Y X X is also an h-cofibration.

Proof. According to (1.54), we can assume without significant restriction that i
is an inclusion, i : A € X. Let € be a real number with 0 < & < 1. By Theorem
(1.56), there exists a continuous map r : X x I — (X x 0) U (A x I) with the
property (E (i, &)). The continuous map idyxr : YxXxI — (YXXx0)U(YxAXI)
then has the property (E'(idy xi, €)). Thus, according to (1.56), idy xi is an h-
cofibration. |

Remark 1.60. If Y is locally compact, then Theorem (1.59) follows from Theorem
(1.51) using a similar inference as in the proof just presented.

If Y is locally compact, then the mapping cylinder Ziq, x; is homeomorphic
to Y x Z; by Theorem (1.31).

Corollary 1.61. Ifi: A — X is an h-cofibration and Y is an arbitrary topolog-
ical space, then i Xidy : AXY — X XY is also an h-cofibration.

Proof. Let 7: AxX - YxX and 7 : XxY — Y x X be the commutation of the
factors, 7 and fau’ are homeomorphisms that make the following diagramme
commutative.

AXY —=YxA

ixidyj Lidy Xi

XXY —=YxX

T

This means, however, that (r,7) is an isomorphism of T ¢n(2) i x idy —
idy xi. It is easy to see that the property of being an h-cofibration is invariant
under isomorphism in J ¢z2(2). According to Theorem (1.59), idY x i is an
h-cofibration, and so is i X idy. O

1.2.3 h-equivalences and h-equivalences under A

The following theorem plays a central role in the construction of homotopy
theory.

Theorem 1.62 (cf. Dold [7], 3.6). Let

A
/7/ \\;
X— X
f
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be a commutative diagramme in T on. Leti and i be h-cofibrations, f be a
homotopy equivalence.

Claim: f, conceived as a morphism of Ton®, f :— i, is a homotopy
equivalence under A.

Theorem (1.62) follows as a consequence of

N

X— X

f

Theorem 1.63. Let

be a commutative diagramme in T op. Leti and i be h-cofibrations.

Claim: If [f] has a left inverse in T onh, then [f]4 has a left inverse in
Topnh. (In the first case, we consider f as a morphism of Top onto (f €
T on(X,X')), in the second as a morphism of T op” onto (f € Top*(i,i’).)

Proof. ((1.63) = (1.62)) f is, by assumption, an h-equivalence, i.e., [f] is an
isomorphism in J ¢pzh. In particular, [f] has a left inverse in J oxh. By
Theorem (1.63), therefore, there exists f; € ¢ 2* such that

AL = [idx] ™. (1.64)

In particular, in T epnh, [fi][f] = [idx] holds. Since [f] is an isomorphism
in I onh, the last equation implies that [f1] is an isomorphism in T o zh.
Therefore, [f1] has a left inverse in I ozh. Applying Theorem (1.63) to the
commutative diagramme in 5 oz

A
N
X’—>-X
fi

so it follows: [fi]4 has a left inverse in J¢n%h. Furthermore, since [f;]4
according to (1.64) has a right inverse, [f;]? is an isomorphism in T ¢zh.
Therefore, according to (1.64), [f]4 is an isomorphism in T ¢24h, i.e., f is an
h-equivalence under A. O

Proof. (of Theorem (1.63)) Let f : X' — X be homotopy left inverse of f, i.e.,
f f ~idx. Then f'i' = f fi ~i, so the diagramme
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is commutative up to homotopy. Since i’ is an h-cofibration, we can assume, by
Theorem (1.49), that this diagramme is even commutative. If we set g := f f,
then the assumptions of the following Lemma are satisfied.

Lemma 1.65. If the following is a commutative diagramme in T opn, i is an
h-cofibration, and g ~ idy,

’ ’ A
then there exists a morphism g :i — i of Topn® such that g g = idx. Thus,
;A ;0 A
there exists a morphism g :i — i of Ton? with gg = idx , i.e., g f = idx.

But this means: g’ :i — i is a morphism of T on® such that [g f 1 is left
inverse to [f]14. Therefore, Lemma (1.65) remains to be proven.

Before proceeding to the proof (which is rather involved), we record a remark
required in the proof.

Remark 1.66. If o, : U — V are homotopic continuous maps and y : UxI — V
is a homotopy @ ~ @', then one obtains

(u,t) > y(u,max(2t —1,0)) for (u,t)eUxI (1.67)
a homotopy @ =~ o, which is somewhat constant.

Proof. (of 1.65) Let ¢ : g ~idy, ¢ : X XI — X. By Remark 1.66, we can choose
the homotopy ¢ such that it is somewhat constant, for example ¢(x,1) = g(x) for
xeXand0<r <3 Forg =p(ixid): AxI— X then ¢ :i=i (since gi =)
and ¢ (a,1) =iaforae Aand 0 <t < % Since i is an h-cofibration, according
to Theorem (1.50) there exists a homotopy ¥ : X X I — X with ¢ = idy and
Y(ixidy) = ¢ = @i xid;). Set g := ¢ : X —» X. Then g'i = i. We define
F:XxI— X by

{w(gx, 1-2s),
(x,5) —
e(x,2s — 1),

o= O
IA A
%)

IA A
— N
=
m
IS

The definition makes sense since
U(gx,0) =gx = ¢(x,0) forx € X,

and yields a homotopy F : g'g ~idx. Fora € Aand 0 < s < %, the following
holds:
v(gia,1—2s) =y (ia,1 - 2s) = p(ia,1 - 2s).

We have thus achieved that the points from A under F traverse null-homotopic
paths in X. We take advantage of this and define ®: A xIx I — X by

(@s..1) p(ia, 1 =2s(1-1)), 0
T o(ia,1-2(1-5)(1-1)),

s< i
21’ acAtel.

IA A
INIA

N

=
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3 i idX | i g
I ® I 4 ¥
i g i idy
0 A X 0 ; X
Figure 1.19:
iad
1 X
1 U
I o
B ¢ t(exidq)
0
A g'g X
Figure 1.20:

@ is a well-defined continuous map with the properties

®(a,s,0) = F(ia,s) ac€A,sel,

®(a,0,1) = ®(a,s,1) =®(a,1,t) =ia ac€ At sel.
These properties are retained if one modifies ® as in (1.67) to @ : AXIxI — X
such that @ (a, s, 1) is independent of ¢ for 0 < ¢ < % Since i is an h-cofibration,
ixid is an h-cofibration by Corollary (1.61). Therefore, there exists a continuous
map ® : X x I x I — X with ®(i xid; xid;) = ® and ®(x,s,0) = F(x,s) for
x € X, s € I. We're done with that, because if we define & ;) : X — X for
s,t € I by @ ;) (x) := @(x,s,1), x € X, then

, ~ A= A~ A~ .
88=Fy=®,0 =Po,1) =Pau1) =P, =F =idx.
Thus Lemma (1.65 is proven, O

hence also proven is Theorem (1.63). ]

Remark 1.68. Theorem (1.62) is essentially a formal theorem and also holds if
one replaces the category I ¢ z by the category I ¢ pf (K and L are topological
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@ P 8
Figure 1.21:
¥o,1) ¥1,1)
'8 =%0,0)  ¥(1,0) = 1%
Figure 1.22:

spaces), i.e., if one assumes a commutative triangle in 90725 (cf. Kamps [15],
6.2).

1.2.4 Applications

The following theorems contain applications of Theorem (1.49) and Theorem
(1.62). Let X be a topological space, A be a subspace of X, and i : A C X be
the inclusion. We have the following notions.

Definition 1.69. (a) A is a weak retract of X if and only if (a continuous map)
r: X — A with ri ~ id4 exists.

(b) Ais a retract of X if and only if there exists an r : X — A with ri = id4.

(c) A is a weak deformation retract of X, if and only if r : X — A with ri ~idg
and ir ~ idyx exists, i.e., if i is a homotopy equivalence.

(d) A is deformation retract of X if and only if r : X — A exists with ri = idg
and ir = idy.
(e) A is a strong deformation retract of X if and only if r : X — A exists with
A
ri =1id4 and ir ~idy.

Note that here we consider 7, idy, r as morphisms of T ¢4, i :idy — i,
idy :i —> i, r:i — ida. This is possible because ri = idy4.
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Remark 1.70. Then trivially:
A is a retract of X = A is a weak retract of X.
A is a strong deformation retract of X = A is a deformation retract of X.
A is a deformation retract of X = A is a weak deformation retract of X.

The converses of these statements are false in all three cases (cf. Spanier [24],
1.4.1,1.4.8, 1.4.7).

However, we have the following theorem (cf. Spanier [24], 1.4.10, 1.4.11):
Theorem 1.71. If i is an h-cofibration, then:
(1) If A is a weak retract of X, then A is a retract of X.

(2) If A is such a deformation retract of X, then A is a deformation retract of
X.

(3) If A is a deformation retract of X, then A is a strong deformation retract
of X.

Proof. (1) and (2) are consequences of Theorem (1.49). (3) is a consequence of
Theorem (1.62).

Regarding (1) Assuming that a continuous mapping exists r : X — A with
ri ~id4. Theorem (1), applied to the diagramme

yields a continuous map r : X — A with r'i = ida.

Regarding (2) By assumption, there exists r : X — A with ri =~ id4 and
ir ~idy. Since ri ~id, , the diagramme

A
/X
X—A
r

is commutative up to homotopy. Since i is an h-cofibration, by Theorem
(1.49) there exists a continuous map r : X — A with r" =~ r and " = ida.
Since ir ~ idy and ' =~ r, we have ir =~ idy. So A is the deformation
retract of X.

(1.72)

Regarding (3) We prove the further statement: If r : X — A is a continuous

map with ri =id4 and ir ~ idy, then ir = idy.
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Proof. The diagram (1.72) is commutative in our situation, r is a homo-
topy equivalence. Since i is an h-cofibration, r is a homotopy equivalence
under A according to Theorem (1.62). Therefore, there is a morphism from
T om? idy — i that is homotopy inverse under A to r. Since i : A — X is
the only continuous map that makes the diagramme

............................. > X

commutative, i is the only morphism from J ¢4 idy — i. So i is homo-

A
topy inverse under A to r. So ir = idy. O
Thus Theorem 1.71 is completely proved. O

Theorem 1.73. An inclusioni: A C X is an h-cofibration and an h-equivalence
if and only if A is a strong deformation retract of X.

Proof. =: follows as a consequence of Theorem (1.71) (2), (3) or directly from
Theorem (1.62), applied to the diagramme

VN

A—i>~X

<: Let A be a strong deformation retract of X. As one immediately sees, this
is equivalent to the inclusion i : A C X being h-equivalent under A to id4 (cf.
(0.30)). Since id4 is an h-cofibration, it follows from Theorem (1.46) i is an h-
cofibration. Furthermore, i is an h-equivalence, since every strong deformation
retract is a weak deformation retract (cf. (1.70)). o

Theorem 1.74. Let f : A — X be a continuous map. We considered the

commutative diagramme

Zp————X
of Theorem (1.29, (a). The following statements are equivalent:

(a) f is an h-cofibration.

(b) [q] is an isomorphism in T opn*h (i.e., q is a homotopy equivalence under
A ;4 € 90/2/4(](1,]“))
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(c) [q]? is a retraction in T opn*h.

Proof. (a) = (b): follows from Theorem (1.62), since g is a homotopy equiv-
alence according to Theorem (1.29) (¢) and k; is a cofibration according to
Theorem (1.29) (b).

(b) = (c): is trivial.

(c) = (a): The assumption is that [g] is a retraction in 7 ¢2%h. So f is dom-
inated by k; in ¢4, Since ki is a cofibration according to Theorem (1.29)
(b), i.e., an h-cofibration, (a) follows from Theorem (1.46). ]

Since ky is a closed cofibration (cf. (1.13)), we obtain:

Corollary 1.75 (cf. Puppe [21], 7. Corollary 2). For every h-cofibration i :
A — X there exists a closed cofibration i : A — X' that is h-equivalent under A

toi (cf. (0.30)).

1.2.5 h-equivalences and h-equivalences of pairs

From Theorem (1.62) we can derive a corresponding theorem for the category

of pairs 7 ¢(2) instead of T ¢ n?.

Theorem 1.76. Let

f
_—

Be<——

N=<=—W

_—
8

be a commutative diagram in T on. Let i and j be h-cofibrations. Let f and g
be h-equivalences.
Claim: The morphism (f,g) :i — j of T0(2) is an h-equivalence of pairs.

Proof. We prove:

Proposition 1.77. Claim: The morphism [(f,g)] of T on(2)h has a left in-
verse.

Applying (1.77) twice, it follows: [(f,g)] is an isomorphism of T ¢ 2(2)h,
i.e., (f,g) is an h-equivalence of pairs.

Proof. (of 1.77) Let f : B— A, g : YtoX be h-inverse to f and g, respectively.
Consider the following diagramme:

We have g'j =if , for g =~ jf (since ff =~idp) =g gif (since jf =gi) ~if
(since g' =~ idy). Since j is an h-cofibration, according to Theorem (1.49) there
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exists a continuous map g : Y — X with g’ ~g" and g”j = if. We note: g" is
h-inverse to g. We choose a homotopy ¢ : f f ~ida, ¢ : AxI — A, such that ¢
is somewhat constant (cf. (1.66)). Since i¢ =if f =g jf = g"gi and since i is
an h-cofibration, there exists a homotopy ¢ : X X I — X with ¢(i Xidy) = i¢ and
9o =2 g Set k=9, : X — X. Then the following diagramme is commutative,

since ki = @i =ip; = 1.
A
X— =X
k

k is an h-equivalence, since k = ¢, ~ ¢, = g g ~ idx. According to Theorem

(1 62) there exists a continuous map kKX — X with ki =i and &'k 2 idx. Set
" =k'g". Since g j=k'g j=k'if =if,(f,g" ) is a morphism of T ¢ z(2),
Ug)J*l
B
]
Y

f/
_—

M=

Proposition 1.78. Claim: [(f,g" )] is left inverse to [(f,g)] in T ¢n(2)h.

Proof. We first choose a homotopy ¥ : k'k 2 idy, ¥ : X X I — X, and define
xY:XXI—> Xby

kK@(x,2t)  for0<t
x(x, 1) =
U(x,2t—1) for— <t

1
<3
<1

The definition makes sense and yields a homotopy x : g g =~ idx. Since ¢ is a
homotopy under A and since k' @(i X id;) = iy, for (a,t) € A x 1 we have

x(ia,t) = ip(a, min(2¢,1)).

If we define ¢ : AXI—)Abygo(a t) = ¢(a, mln(2t 1) for (a,t) € A X I, we
obtain a homotopy ¢ ; f f ~idad with y(i x id;) = i¢’. O

This proves (1.78) and therefore (prop:1-2-33). i

Remark 1.79. Theorem (1. 76) is essentially a formal theorem and also holds
if one replaces the category oz by I opL, where K and L are topological
spaces (cf. Kamps [15], 6.4).

We conclude the section with a proposition.
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Theorem 1.80. Let i : A C X be an h-cofibration and let A be contractible.®
Then the natural projection p : X — X /A is an h-equivalence.

Proof. Since A is contractible, we can choose a homotopy ¢ : AXI — A between
id4 and a constant map ¢;. We can assume (cf. (1.66)) that ¢(a,r) = a for
ac€Aand0<1t< % Since i is an h-cofibration, according to Theorem (1.50),
there exists an extension of i¢ : A X I — X to a homotopy ® : X xI — X
with @y = idyx. Since ®1|4 is constant, ®; induces a uniquely determined
continuous map f : X/A — X with fp = ®;. We show that f is h-inverse to p.
Furthermore, idg = ®y ~ ®; = fp. Since ®(A X I) C A and therefore p®|ax;s is
constant, ® induces exactly one map @ : (X/A) x I — X/A, which makes the
following diagramme commutative.

(X/A) x T2 X/A

pXid]T T”

Yy ——X
[

D is continuous, since p x idy is an identification according to (1.31). Now
idxa = @¢ = @;. Since @1 0p = po®; = pfp and since p is surjective, we have
®; = pf and hence idx;a = pf. O

1.3 Local characterisations of cofibrations and h-
cofibrations

The following paragraph, which characterises cofibration and h-cofibration lo-
cally, is based on studies by D. Puppe (cf. [21]) and A. Strgm (cf. [27]).

1.3.1 Haloes

Definition 1.81. Let A, V be subspaces of a topological space X with A cV C
X. Vis called a halo of A in X5 if there exists a continuous map v : X — I such
that

Acvi(0) and X\Vcvl(1). (1.82)

A continuous v with (1.82) is called a halo function of V.

Remark 1.83. Let A c X. Then X is a halo of A in X, sincev=0:X —» [is a
halo function of X.

Lemma 1.84. Let AcCV c X.

(a) If V is a halo of A in X, then V is a neighbourhood of A in X.”

5Then in particular A # @.
6We briefly say: V is the halo of A if the context indicates which space X is meant.
TA denotes the closed hull of A in X.
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Figure 1.23:

(b) If X is normal and V is a neighbourhood of A, then V is a halo of A.

(c) Let R* be the subspace {x € Rlx > 0} of R. Ifu: X — R is a continuous
map such that A C u='[0, 1] for some real number ay > 0, then u='[0, as[
and u='[0, as] for every real number as > @y are haloes of A and even of
u 1[0, ay].

Proof. (a): Let v be a halo function of V. Then
Acvi0)cv o, 1[c V.

Since v=1(0) is closed in X, it follows that A c v~1(0) follows. Since v~1[0, 1] is
open in X, we obtain the claim.

(b): is a direct consequence of Urysohn’s theorem (cf. Sohubert [23], 1.8.4
Theorem 1).

(c): v: X — I, defined by

v(x) := min (1,max (0, m)) for xeX,
a2 — a7

is a halo function of u~1[0, az[ and u~'[0, as]. O
Lemma 1.85. Let A C X.

(a) Every superset of a halo of A is a halo of A.

(b) The intersection of finitely many haloes of A is a halo of A.

Proof. (a): Let AcV cV cX. If Vis ahaloof Aandv:X — Iis a halo
function of V, then v is also a halo function of V.

(b): It suffices to consider the intersection of two haloes. If V and W are haloes
of A,v:X — I and w: X — [ are halo functions of V and W, respectively, then
u: X — I, defined by

u(x) := max(v(x),w(x)) for xe€X,

is a halo function of VN W. O
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Corollary 1.86. Let AcV c X. IfV is a halo of A in X, then there exists a
closed subset U of X, A c U c V, such that U is a halo of A in X and 'V is a
halo of U in X. In particular, every halo V of A contains a closed halo U of A.

Proof. Let V be a halo of A in X, and v : X — I be a halo function of V. By
U :=v][0, %] we obtain a closed subset of X with A c U c V. U is a halo of A

by (1.84) (c), and V is a halo of U by (1.84) (c) and (1.85) (a). ]

Definition 1.87. Let A ¢ V ¢ X. V can be contracted in X to A rel A% if
and only if there exists a continuous map r : V — A such that r|4 = ids and

A
(VcX) =V LAc X). What is clear is that V can be contracted in X onto

Figure 1.24:

A if and only if a homotopy ¢ : ¥ X I — X exists such that ¢;(V) ¢ A and
p:(VcX) 2 ¢1. Such a ¢ is called a contraction of V in X onto A.

It is also clear:
Remark 1.88. If Ac V' c V c X and V can be contracted to A in X, then so
can V.
Theorem 1.89. Let A c X . Then the following statements are equivalent:

1. A has a halo V in X that can be contracted to A.

2. For every halo U of A in X, there exists a halo W of A in X with W c U
that can be contracted to A in U.

3. There exists a halo V of A in X and a homotopy ¢ : X X I — X such that
Ui(V) C A and o+ idx 2y,

Proof. (2) = (1): follows from Remark (1.83).

((1) = (3): Let V' be a halo contractible to A. By (1.86) and (1.88), we can
assume V' is closed in X. Let v’ : X — be a halo function of V' and ¢ : V' xI — X
be a contraction of V' in X to A. We set V :=v'"1[0,1]. By (1.84) (c¢), Vis a

8To avoid any misunderstandings, let us say briefly: V can be contracted to A.



52 CHAPTER 1. COFIBRATIONS

halo of A. Let u : X — I be given by u(x) := min(2 - 2v'(x), 1). We now define
W :XxI— X by

o(x,t-u(x)), if xeV

w(x’ t) = . /_1

X, if xev ™ (1).
¥ is well-defined. 7 is continuous since v'~'(1) and V' are closed in X. ¢ is a
homotopy rel A since ¢ is a homotopy rel A. ¥ = idyx, since ¢y = (V' c X).
Y1 (V) C A since V c V' since u(x) = 1 for x € V and since ¢1 (V') C A.

(3) = (2): Let U be a halo of A in X, u : X — I be a halo function of U. Let
V, ¥ be as in (3)), v: X — I be a halo function of V. We define

w X o1 by w,(x) = ntlalxu(lﬁ(x,t)),
€

w:X o1 by wx):=max(v(x),w (x)),
W =wt0,1].

Then W c U holds. W is a halo of A in X. A contraction of W in U onto A is
obtained by W X I — U, where (x,1) — ¢(x,1t). O

Remark 1.90. . The continuity of w' follows from the following lemma, the
proof of which we leave to the reader (cf. Brown [5], 7.3.8).

Lemma 1.91. Let X, C be topological spaces. Let C be compact. If y : XX C —
R is a continuous map, then the map g : X — R defined by

g(x) := maxy(x,c)
ceC

18 continuous.

Definition 1.92. We now discuss the connection between the concepts defined
so far in §3 and some other concepts of set-theoretic topology.

1: A topological space X is called completely regular if for every point x € X
and every neighbourhood U of x there exists a continuous map f : X — [0, 1]
with f(x) =0 and X\ U c f71(1).°

2: A topological space X is called locally point contractible in xo € X if for every
neighbourhood V of xg there exists a neighbourhood U of xy and a homotopy

@ :UXI—Vsuchthat UcCV, ¢1(U) ={xp} and ¢ : (U CV) {’2} 01
In a completely regular space X, for each xy € X, the concepts “neighbour-

hood of xp in X” and “halo of {xp} in X” coincide. The equivalence (1) & (2) of
Theorem (1.89) therefore yields:

Theorem 1.93. Let X be completely reqular, xo € X. Then X is locally point-
contractible at xo if and only if {xo} has a halo contractible on {xo}.

9n contrast to Schubert [23], 1.9.1, we do not require that X is Hausdorff.
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1.3.2 Local characterisations of h-cofibrations

We can now characterise h-cofibrations locally.

Theorem 1.94. Leti: A C X be an inclusion. Then the following statements
are equivalent:

(a) i is an h-cofibration.
(b) A has a contractible halo on A in X.

Proof. (a) = (b): Let i be an h-cofibration. Then, by the characterization of the
notion of “h-cofibration” in Theorem (1.56) (s = 1), there exists a continuous
map r: X XI — (X x0)U (A X I) with r(x,0) = x for x € X and

ra.t) = (a,0) aeA, 0
’ (a,2t - 1) acA, 3

We define v : X — I by v(x) := 1 — projyor(x,1). v is continuous, A C v(0).
Using V := v[0, 1], we therefore obtain a halo of A in X (cf. (1.84) (c)). We
define ¢ : X X I — X by

W (x,t) := proj; or(x,1).

Y is continuous and ¢ (a,t) =a forae A, t € I, Y (x,0) = x for x € X, thus

. A
!,l/:ldleﬂl.

Furthermore, ¥4 (V) c A holds: if v(x) < 1, i.e. projsr(x,1) > 0, then r(x,1) €
A X I and hence
U(x,1) € A.

¥|vxs therefore yields a contraction of V in X onto A. This proves (b).

(b) = (a): We assume (b. By Theorem (1.89) (3), there then exists a halo V of
A in X and a homotopy ¢ : X X I — X with ¢y (V) Cc A and ¢ : idyx 4 Y. Since
property (1.89) (3) is preserved when passing to a smaller halo, we can assume,
by (1.86), that V is closed in X. Let v be a halo function for V. We want to
prove that i is an h-cofibration. Let f: X —» Y, ¢ : AX I — Y be continuous
maps with ¢(a,0) = f(a) for a € A. We define @ : X X I — Y by

eW1(x),t(1-v(x)))  xeV

D(x,1) := {flh(X) x evl(1),

@ is well-defined. @ is continuous since V is closed in X. ®(a,t) = ¢(a,t) for
acA.

Dy = fuyy 2 foidy = f.

This proves (a). ]
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Ezample 1.95. Note by the transcriber: These are actually counterexamples.

Example 1. X := {0} U{i|n=1,2,3,...} e R, A := {0}.

In (1.27) we saw that i : A C X is not a cofibration. From Theorem (1.94)
it follows that i is not an h-cofibration either: since none of the points
%, (n=1,2,...) can be connected to 0 by a path, 0 has no contractible
halo in X.

Example 2. Let X, := {(x,y) € R?|(x — %)2 +y?2 = ”%} cR%n=1,23,...
X :=U> X, cREO A= {(0,0)}.

y

—_—

Figure 1.25:

Proposition 1.96. Claim: i : A C X is not an h-cofibration.

Proof. We prove this indirectly (= proceed by contradiction) and assume
that i is an h-cofibration. By Theorem (1.94), there is then a halo V in X
that is contractible to A. Let ¢ : VX I — X be a contraction of V in X to
A. V is a neighbourhood of (0,0) in X. Therefore, there exists a natural
number ng such that X,,, ¢ V. We define a retraction r : X — X,,, by

X, x € Xy,
r(x) = :
(0,0) otherwise.

The composition
Xpo X I CVXT = (0)X 5 Xy,

is then a contraction of X onto {(0,0)}. Since the 1l-sphere S! is not
contractible (Eilenberg-Steenrod [9], XI. Theorem 3.1), such a contraction
cannot exist. O

Example 3. X :=R! (or X :=1), A:= {0} U {rl;|" =1,2,3,...}.

Proposition 1.97. Claim: i : A C X is not an h-cofibration.

10Note by the transcriber: X is called a Hawaiian earring.
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Proof. Suppose (on the contrary) that i is an h-cofibration. Then there
exists a halo V of A in X and a contraction ¢ : VXI — X of V in X on
A. V is a neighbourhood of A in X, and thus contains, in particular, an
interval of the form [0,%] (n > 1). Since {%} C ¢1 ([0, %]) Cc A, ([0, rll])
would not be connected. But this contradicts the continuity of ¢ . O

1.3.3 Local characterisations of cofibrations

The next theorem characterises cofibrations (cf. Strgm [27], 2. Lemma 4).

Theorem 1.98. Leti: A C X be an inclusion. Then the following statements
are equivalent:

(a) i is a cofibration.
(b) There exists a continuous map
u:X —->R*
and a homotopy ¢ : X X I — X such that

(1) Acut(0),

(2) ¢(x,0) =x for all x € X,

(8) ¢(a,t) =a for all (a,t) € AX,

(4) ¢(x,t) € A for all (x,t) € X X I with t > u(x).

Figure 1.26:

Remark 1.99. If A is closed in X, then the conditions imposed on u# and ¢ in
(b) imply that:
px,u(x)) e A, if u(x)<1.

(Consider a sequence t,, € I with u(x) < t, that converges to u(x).) In particular,
if u(x) =0, then x = ¢(x,0) = ¢(x,u(x)) € A and therefore A = u=*(0).

Proof. (of 1.98) By Theorem (1.25) an inclusion i : A C X is a cofibration if and
only if (X X 0) U (A X I) is a retract of X X I.
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(a) = (b): If i is a cofibration, then there exists a retraction r : X x I —
(X)U(AXI) (from X X I to (X x0) U (A x1TI)). We define

u:X—-RY by u(x):= malx(t — proj, r(x, 1))
te
¢:XxXI—>X by ¢(,t):=proj r(x,t).

u is continuous since I is compact (cf. (1.91)). u and ¢ satisfy the conditions of

(b).

(If £ > u(x), then proj,r(x,7) > 0, therefore r(x,) € A x I and therefore
@(x,1) = proj; r(x,t) € A.)
(b) = (a): If continuous mappings u : X — R*, ¢ : X X I — X with the
properties of (b) are given, one obtains a retraction r' : X x I — (X) U (A x I)
(from X X I to (X x0) U (A %X 1)) by

oy ) (e, )),0), 1 < u(x)
r(x):=
(p(x,1),t = (x))  t>u(x).

Not every h-cofiberation is a cofibration:
Example 1.100. Let M be an uncountable set. We define X := I (product
topology), A := {0}M.
Proposition 1.101. Claim : i : A C X is an h-cofibration, but not a cofibration.

Proof. In the commutative diagramme

U

2N
IM
i

i is a homotopy equivalence under A, since {0} is a strong deformation retract
of I. id is an h-cofibration. i is therefore an h-cofibration by Theorem (1.46).
Assuming that i is a cofibration, then by (1.98) and (1.99) (A is closed in X)
there exists a continuous map u : I'M — R* such that

u=1(0) = {0}M. (1.102)

Since {0} = N2, [0, 1, it follows that u~*(0) = N ,u*[0,1[. [0,1[ is the
neighbourhood of 0 in R*. Therefore, u=1[0, %[ is the neighbourhood of 0 in
IM (u is continuous). By definition of the product topology, there exists a finite

set E,, C M such that

{oy™

1
u”'0, =[> {0}En x [M\En,
n
(We identify: IM = IF x [M\En ) So

1 / /
N> uto, ~[> {O}M x MM
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where M’ (= cup,_,E,) is a countable set. But this contradicts (1.102), because
M\ M # @, since M is uncountable. O

Remark 1.103. (Cf. (1.48)). Example (1.100) also shows that the concept of
“cofibration” is not invariant under homotopy equivalence under A:

idg and i are isomorphic objects of ,7072‘4.

While id, is a cofibration, i is not.

1.3.4 The product theorem for cofibrations

Theorem 1.104 (Product theorem for cofibrations). (cf. Strom [27], 2. The-
orem 6). Ifi: Ac X, j: BCY are cofibrations and A is closed in X, then

(XXB)U(AXY)Cc XXY

is a coftbration.

7
- T

Since @ C X is a closed cofibration (this follows from (1.25), since X X 0 is
retract of X x I), one obtains from (1.104):

Corollary 1.105. (Corollary 1 to 1.104.) If j : B CY is a cofibration and X is
an arbitrary topological space, then idx Xj : X X B — X XY is also a cofibration.

Corollary 1.106. (Corollary 2 to 1.104.) Ifi : AC X, j: B CY are cofibra-
tions, theni X j: AX B C X XY is also a cofibration.

Proof. (of 1.104) For the cofibration A c X, we choose continuous maps u :
X - R*, ¢ : X X I — X with the properties (b1)-(b4) of (1.98) (b). v:Y — R*,
Y 1 Y X I — Y be corresponding maps for the cofibration B c Y. We define
continuous maps

w:XxXY —>RY w(xy):=min(u(x),v(y)),
X XXYXI—>XXY, x(,y,1t):= (e, min(t,v(y))), ¥ (y, min(t, u(x)))).

For w and y we verify conditions (b1)-(b4) of (1.98) (b). We set C := (X X B) U
(AXxY). Then:
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(1) w(e) =0if c € C,
Then y(a,y,t) = (a,¥(y,0)) = (a,y).

(2) x(x,5,0) = (¢(x,0),¥(y,0)) = (x,y) for all (x,y) € X xY.
Then y(x,b,t) = (p(x,0),b) = (x,b).

(3) We claim: y(c,t) = c for all (¢,1) € C.

Casel : c=(a,y) withaeA,yeY.
Then x(a,y.1) = (a.¢(y,0)) = (a,y).

Case 2 : ¢ = (x,b) withx € X, b € B.
Then y(x,b,t) = (¢(x,0),b) = (x,b).

(4) We claim: y(x,y,t) € C for all (x,y,1) € X XY x I with t > w(x, y).

Case 1 : u(x) <v(y).
It follows u(x) = w(x,y) <t <1,s0 u(x) <1 and u(x) < min(z,v(y)).

Case min(z,v(y)) > u(x) :
then ¢(x, min(z,v(y))) € A holds because of (1.98) (b) (b4) for u
and ¢.

Case min(t,v(y)) = u(x) :
then from (1.99) it follows that ¢(x, min(z, v(y))) € A , since u(x) <
1 and since A is closed in X. So y(x,y,1) e AxY c C.

Case 2 : u(x) > v(y)
Then min(z, u(x)) > v(y) and hence ¥ (y, min(z,u(x))) € B because of
(1.98) (b) (b4) for u and and y. So y(x,y,1) € XxB c C.

So (X xB)U(AXxY) c X xY is a cofibration by Theorem (1.98). O

The following example shows that the assumption “A is closed in X” in
Theorem (1.104) cannot be omitted:

Ezample 1.107. Let M be an uncountable set. According to (1.100), {0} c IM
is a closed h-cofibration. {0} c I is a closed cofibration. (This follows from
(1.25), since (I x0) U (O x 1) is a retract of I X 1.)

Proposition 1.108. Claim : C := (IM x0) U (0M xI) ¢ (IM x I is not a h-
cofibration.

Proof. We set C := (IM x 0) U (0™ x I) and assume that C ¢ IM x I is an
h-cofibration. Then, by (1.92), there is a halo V of C in I™ x I and a retraction
r:V — C. Since 0 x I ¢ V and since I is compact, there is a neighbourhood
U of OM in IM with U x I c V. By the definition of the product topology, there
exists a finite set E ¢ M such that U > 0FxIM\E . (We identify IM = [ExIM\E )
We define @ : IM\E x T — IM x I by a(x,t) := (0F,x,1) for x e IM\E t € [. Then
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Figure 1.28:

a(IM\E x I) c V holds. Let B: IM x I — IM\E x [ be given by B(y,x,1) := (x,1)
for y e I¥, x e IM\E t € I. In the diagramme

M x| L (IM x0) U (OM\E x 1)

, ’

@ B
1% . C
N

™M x ]

let @ and B8 arise by restricting @ and 8, respectively. By r’ := 8 ra’ we obtain
a retraction
™M x T — (IMx0)u (0M\F x ).

According to (1.25), {0}M\E c IM\E would then be a cofibration. This contra-
dicts (1.100), since M \ E is still uncountable. m]

We note that (1.106) also holds for h-cofibrations.

Theorem 1.109. Ifi: A — X, j: B — Y are h-cofibrations, theniXj : AXB —
X XY is an h-cofibration.

Proof. Note that i X j = (i X idy)(ida Xj). i X idy and id4 Xj are h-cofibrations,
by (1.59) and (1.61). The composition of h-cofibrations is again an h-cofibration
(cf. (1.43)). ]

1.3.5 A characterisation of closed cofibrations
At the end of this section, we provide a characterisation of closed cofibrations.

Theorem 1.110 (Puppe [21], 7th Corollary 3). Leti: A c X be an inclusion.
Then the following statements are equivalent:

(a) i is a cofibration and A is closed in X.

(b) i is an h-cofibration and A is a set of zeros (i.e., there exists a continuous
map u : X — R* with A = u=1(0)).
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Proof. (a) = (b): follows from (1.98) and (1.99).

(b) = (a): Let f : X > Y, ¢ : AXI — Y be continuous maps with ¢(a,0) = f(a)
for all a € A. Since i is an h-cofibration by assumption, there exists an extension
® :Xx1— Y of gand a homotopy @ : XxI > Y : f 2® Letu: X — R*
be a continuous map with A = u~'(0). We can assume that u(X) c [O, %] (If
necessary, replace u(x) for x € X by min(u(x), %)) We define a map

O:XxI—>Y
by
O (x, ), i > u(x)
®(x,1) :={ D (x, ﬁ), if t <u(x) and u(x) >0

f(x), if t <u(x) and u(x) =0, i.e, (x,t) € AXO.

i is well-defined:

Figure 1.29:

Let u(x) = t. If u(x) > 0, then Phi’ (x,0) =

Phi” (x,1); if u(x) = 0, i.e., x € A, then @ (x,0) = ¢(x,0) = f(x). @ is an
extension of ¢, since ® is an extension of ¢. ®y = f, since

Phiy = f.

What remains to be proven is the continuity of ®. The inequalities ¢ > u(x) and
t < u(x) describe closed subsets F and G of X x I. ®|r is continuous since @ is
continuous. We are finished when we show that ®|s is continuous.

Since ®” is continuous, we first have to prove that ®|g is continuous at the
points of the open subset of G, which is described by u(x) > 0. It therefore
remains to verify the continuity of ®|g at the points of A x 0.

Let a € A. Then (®|g)(a,0) = f(a). Let V be a neighbourhood of f(a) in Y,
t € 1. Since @ is a homotopy under A, ®" (a,1) = ®" (a,0) = f(a). Since @ is
continuous in (a,t), there exist neighbourhoods U; of a in X, R, of ¢ in I such
that @ (U; xR;) c V. By the compactness of I, there exist finitely many points
10, -+ -ty such that I = U R, . Set U := N Uy, U is a neighbourhood of a in
X such that ®"(U x I) c V. But then (®"|g)((U x I) N G) c V holds. So ®|g
is continuous in (a, 0). O



Chapter 2

Fibrations

2.1 Mapping Spaces

2.1.1 The compact-open topology

Let X, Y be topological spaces. On the set T oz(X,Y) of continuous maps
X — Y we define a topology called the compact open topology. If K c X, Q CcY
are subsets, then T(K,Q) ¢ T ¢n(X,Y) is defined by

T(K,Q):={ueTonX,Y)ulK)cQ}.

Definition 2.1. Let the compact-open topology on T ¢ 2(X,Y) be the topology
generated by the sets of the form T(K, Q), where K is a compact subset of X
and Q is an open subset of Y.

The elements of the compact-open topology on I ¢ (X, Y) are thus precisely
those subsets of T ¢2(X,Y) that are arbitrary unions of finite intersections of
sets of the form T(K, Q) where K is a compact subset of X, O is an open subset
of Y.

Special case If X is a discrete topological space, then ¢ 2(X,Y) is the set of
all maps X — Y. Since the compact subsets of X are precisely the finite subsets
of X, it is easy to see that the compact-open topology on I ¢ 2(X,Y) coincides
with the product topology.

Convention If X, Y are topological spaces, we will, henceforth, always con-
sider the set T on(X,Y) to have the compact open topology We denote the
topological space thus obtained by YX.

We now summarise the most important properties of the compact open topol-
ogy. We will generally refrain from proofs, since these, if they are not already
very simple, are detailed in Bourbaki [3], §3, n°® 4 (p. 43 ff).

Remark 2.2. Bourbaki works with the following two concepts: A topological
space X is compact if X is Hausdorff and every open covering of X contains a

61
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finite subcover. A topological space X is locally compact if X is Hausdorff and
every point of X has a neighbourhood basis of compact sets. When studying
Bourbaki’s proofs, one finds that the following theorems are also true if one
abandons the “Hausdorff” requirement for both concepts.

2.1.2 The exponential law

Definition 2.3. If X, Y are sets, then let YX denote the set of all maps X — Y.
Let X, Y, Z be sets. Toamap f: X XY — Z we associate a map 7 X = ZY,
namely, for x € X let f(x) : Y — Z be the map that transforms y € Y into
f(x,y) € Z. f is characterised by the equation

(f(0))(y) = f(x.y) for xeX,yeY. (2.4)
f +— f yields a bijection ZX¥ 5 (Z¥)X (ewponential law). f and f are said to
be adjoint to each other.

Remark 2.5. Now let X, Y, Z be topological spaces, and let f: X XY — Z be a
map. For x € X, f induces a map f(x) : Y — Z by (2.4).

Theorem 2.6. Premise: f is continuous.

Claim 1 f(x) is continuous for all x € X. f therefore induces a map f : X —
Z¥ , where Z¥ again denotes the set of continuous maps Y — Z, provided
with the compact-open topology.

Claim 2 f is continuous.
Theorem (2.6) can be reversed if Y is locally compact.

Theorem 2.7. If f : X XY — Z is a map that induces a continuous map
f:X — ZY by (2.4), then f is continuous if Y is locally compact.

By Theorem (2.6), the map f > f defines a map
& 25 — (Z")X.
¥ is injective. Theorem (2.7) states:
Theorem 2.8. ¥ is surjective, hence bijective, if Y is locally compact.

Corollary 2.9. ¢ is topological if X and Y are Hausdorff and Y is locally com-
pact (exponential law for mapping spaces).

2.1.3 Composition of maps

Let X, Y, Z be topological spaces. Let » : YX x Z¥ — ZX be the composition
map, i.e., x(u,v) :=vouforue¥* veZz?,

Theorem 2.10. We have
(a) %(ug,v) is continuous in v for all ug € Y.
(b) #(u,vo) is continuous in u for all vy € ZY.

(¢) x is continuo if Y is locally compact.
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2.1.4 Applications
Definition 2.11. Let X, Y be topological spaces. Define f: YX x X — Y by

flu,x) :u(x) ueY¥X xeX.
f is called an evaluation map. (See Hu [12], p. 74).
Theorem 2.12. If X i locally compact, then the evaluation map is continuous.

Proof. According to (2.4) the map induced by the evaluation map is idyx. Since
this map is continuous and since X is locally compact, the assertion of the
theorem follows from Theorem (2.7). ]

Theorem 2.13 (See (1.31)). Let X, X’, Y be topological spaces. If p: X — X'
is an identification and Y is locally compact, then

pXidy:XXY—)XlXY
is an identification.

Proof. Let Z be another topological space. Let f : XxXY — Zand f : X xY — Z
be maps that make the following diagramme commutative.

Xfo—>-Z

pXidyl /
f

X xY
We assume that f is continuous and have to prove that f’ is continuous. It is
easy to see that (2.4) induces a commutative diagramme.

X _f> Al

|4

’

X

We use the continuity of f and Theorem (2.6), Claim 1. The continuity of f
implies, by Theorem (2.6), Claim 2, the continuity of f. Thus, f is continuous,
because p is an identification. Since Y is locally compact, the continuity of f’
follows from Theorem (2.7). m]

2.1.5 Mapping spaces and adjoint functors

We conclude this section with a category-theoretical consideration.
Let C be a fixed locally compact topological space. We define two covariant
functors S, 7 : T opn — T op.
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Definition 2.14 (of T). If Y is a topological space, then we set
TY :=YC.

If g: Y — Y is a continuous map, then let

Tg:Y¢ Y€
be the map g€ : u € Y€ - gou € Y'C. Note that g is continuous by Theorem
(2.10) (b).
Definition 2.15 (of S). If X is a topological space, then we set

SX :=XxC.
If g is a continuous map, then let

Sg:gXxide.

Remark 2.16. For the functor T of (2.14) we also use the notation =€ | and for
the functor S of (2.15) we use the notation — x C .

Remark 2.17. Since C is locally compact, for any two topological spaces X, Y
we have a bijective map
Ton(SX,Y) > Ton(X,TY),
namely the map
9:Ton(XxCY)—> Ton(X, Y0,

which transforms f: X x C — Y into f : X — Y€ (cf. (2.4), (2.8)).
¢ is natural. If g : X' — X and h : Y — Y are continuous maps, then, as
the reader immediately calculates, the following diagram is commutative:

f Top(XxC,Y) ——= T op(X,Y°) 7
[ 57072(g><idc,h)t lf/‘oﬂ(g,hc) l
ho fogxide Ton(X xCY)—=Top(X xCY) hCofog

But this means:

Theorem 2.18. S and T are adjoint functors, more precisely: T is adjoint to
S, S is coadjoint to T (cf. Mitchell [17], V.1).

2.2 Fibrations

In this section we introduce the concept of fibration, which is dual to the concept
of cofibration.
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2.2.1 The covering homotopy property (CHP). Fibrations

We first review the concept of homotopy. In (0.17) and (0.18), we defined the
concept of homotopy using the functor —x I (cf. (2.15), (2.16)) and the natural
transformations

Jviidge, = =xI (v=0,1)

given by the continuous maps
Jr: X > XXI, x- (x,v).

If f,g : X —> Y are continuous maps, then f is homotopic to g if and only if
there exists a homotopy ¢ : X X I — Y such that f = ¢o jyand g = ¢ o j;. The
following theorem shows that the concept of homotopy can also be introduced
using the functor —! (cf. (2.14), (2.16)) and two natural transformations

L :
qdo-4q1 * — _>1d.7072

defined as follows:

If Y is a topological space, then let gg : ¥/ — Y be the map that assigns a
(normalised) path u in Y, i.e., a continuous map u : I — Y, to the starting point,
i.e., the point ug € Y, and let ¢; : ¥/ — Y be the map that transforms a path
u in Y to the end point, i.e., the point u; € Y. Note that gg,q1 : Y/ — Y are
continuous since I is locally compact.

Theorem 2.19. Let f,g: X — Y be continuous maps. f is homotopic to g if
and only if there exists a continuous map ¢ : X — Y1 with qop = f and q1¢ = g

Proof. Since I is locally compact, the transition ¢ +— @ of (2.4) yields a bijection
between the homotopies X x I — Y and the continuous maps X — Y7 (- x I
and —! are adjoint functors). If ¢ : X x I — Y is a homotopy, then, as one
immediately calculates,

eiv=qy¢ (v=0,1). (2.20)
This, however, immediately leads to the assertion of the theorem. O
Theorem (2.19) shows that the morphisms j, : X - X X[ in T e and

gy : Y =Yl in *Topn , the category dual to I ¢, play a formally analogous
role. We take this opportunity to show in the diagramme
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with which we introduced the homotopy extension property (of a continuous
map i for a topological space Y), replacing X x I by X!, j, by qo, and reversing
the arrows:

We change the notations, write p : E — Bfori: X — A, X for Y, @, @ for ¢,
@ and are led to the following definition.

Definition 2.21. Let p : E — B be a continuous map and X a topological
space. We say p has the covering homotopy property (short CHP) for X if and
only if for all continuous maps f : X — E, go X — B! with gop = pf there
exists a continuous map @ : X — E! with p/ o ® = ¢ and ¢o® = f.

(2.22)

We take advantage of the fact that —x I and —! are adjoint functors, and as in
(2.4) we go from @ to ¢, from @ to ® and obtain, as one immediately confirms
(cf. also equation (2.20)):

Theorem 2.23. A continuous map p : E — B has the CHP for a topological
space X if and only if for all continuous maps f : X — E and all homotopies
¢ : X XI — B with ¢jg = pf there exists a homotopy ® : X X [l — E with
p® = ! and ®jy = f.

f

X—FE
o) 27
X X B

I—>

(2.24)

Remark 2.25. The fact that p : E — B has the CHP for X geometrically means
that one can raise homotopies ¢ : X X I — B to homotopies ® : X X I — E with
a given initial position f : X — E over ¢jj.

1'We then also say: ® is above ¢.
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Figure 2.1:

Definition 2.26. A continuous map p : E — B is called a fibration® if p has
the CHP for all topological spaces X.

Remark 2.27. E is called the total space, B is the base space of the fibration p.

Clearly wwe have:

Theorem 2.28. A continuous map p : E — B is a fibration if and only if the
following diagramme in T op is a weak Cartesian square (cf. (0.8)).

E

V\

E! B

N
BI

(2.29)

2.2.2 Examples

Definition 2.30. A continuous map p : E — B is called trivial if there exists
a topological space F and a homeomorphism ¢ : E — B X F that makes the
following diagramme commutative,

4

E— % .BxF
P\\ Al
B

2In the literature the term Hurewicz fibration is also common.
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i.e., a continuous map p : E — B is trivial if it is isomorphic to a projection in
the category I ¢ z2p of topological spaces over B.

Theorem 2.31. A trivial mapp : E — B is a fibration.

Proof. We can assume without significant restriction that p is a projection:
p =proj; : BXF — B. For f: X - BXF and ¢ : X X1 — B with
@jo = proj; of, one obtains ® : X x I — B X F with p® = ¢ and ®j, = f by the
definition

D(x,1) := (p(x,1),projoof(x)) for xe X,tel.

X—f>E=B><F

) @ )
Jjo j / lp=pr011

XxI——B

Definition 2.32. If p : E — B is a map, U C B a subset, then denote by
Py:p N U) - U
the restriction of p to the source p~'(U) and destination the U.

Definition 2.33. A continuous map p : E — B is called locally trivial if every
point b € B has a neighbourhood U such that py is trivial.

Ezample 2.34. The tangent bundle TM — M of a C"-manifold M (r > 1) is a
locally trivial map. (For the definition of the terms C”-manifold and tangent
bundle, see Lang [16], II. §1, 111.§2.)

In §9 we prove:

Theorem 2.35. If p : E — B is locally trivial and B is paracompact, then p
is a fibration. In particular, the tangent bundle TM — M of a paracompact
C"-manifold M (r =2 1) is a fibration.

Special locally trivial mappings are the coverings.

Definition 2.36. A continuous map p : E — B is called a covering if for every
point b € B there exists a neighbourhood U of b in B and a discrete topological
space D such that py in 5 ¢y is isomorphic to proj; : Ux D — U.

Theorem 2.37. Every covering is a fibration.

Proof. Spanier [24], 2.2 Theorem 3. m]

Remark 2.38. If p is a covering, then @ in (2.24) is even uniquely determined
by ¢ and f.
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E * %
P
B —_—
0 1
Figure 2.2:

Ezample 2.39. 1. Let E be a topological space that has exactly one point xg,
B:=1. Map p: E — B to the point 0. p is not a fibration because p does
not have the CHP for the space E: For f :=idg and ¢ := projy : E X I — I,
there does not even exist a (set) map @ : E X [ — E with p® = ¢.

The map p in Example 1 is not surjective. The next example presents a
surjective map that is not a fibration.

2. Let E be the topological sum {xq + 1, B := 1. Let p : E — B be given by
p(xg) :=0, p(t) :=tfort € I. pisnot a fibration because p does not have the

. xo

E
——
0 1

D

B p——

0 1
Figure 2.3:

CHP for X = {x¢}. For f : X — E with f(xg) := xp and ¢ := proj, : XxI — I,
there exists no continuous map @ : XxI — E with p® = ¢ and ®(xq, 0) = xp.

3. Let E be the factor space obtained from Ix1I by identifying (0, t) with (1,1-¢)
for each t € I. Let B be derived from I by identifying the points 0 and 1. B
is homeomorphic to S'. E is called a Mébius strip. Let p : E — B be the
continuous map induced by proj; : I X I — I. p is locally trivial because
PB\{b} is trivial for all b € B. Thus, by Theorem (2.35), p is a fibration (B
is compact!). However, p is not trivial because E is not homeomorphic to
Stx1.

(Justification: The boundary of S! x I is homeomorphic to S! x I, where
I := {0}U{1} c I, the boundary of E is homeomorphic to S'. S! is connected,
but S' x I is not. A point x of E or S' x I is called a boundary point if, for
every neighbourhood of x, there exists a smaller neighbourhood of x that is
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1
E
N 4
p
0
—_— B
0 1
Figure 2.4:

simply connected after removing x (For the term “simply connected”’; see
Schubert [23], I11.5.3.).)

We mention in passing that the following concept of fibration also plays an
important role in the literature.

Definition 2.40. A continuous map p is called a Serre fibration if p has the
CHP for I, n = 0,1,2,.... (Let I° be a topological space with exactly one
point.)

Remark 2.41. Spanier uses the term weak fibration instead of Serre fibration
([24], p- 374).

Proposition 2.42. A continuous map p is a Serre fibration if and only if p
satisfies the CHE for all CW complexes.

Proof. Puppe [20], Theorem 4.6. |

Remark 2.43. Like the notion of “fibration”, the notion of “cofibration” can be
characterised in terms of both —x I and —! due to the adjointness of the functors
—x I and /.

Theorem 2.44. A continuous map i : A — X is a cofibration if and only if for
all continuous maps ¢ : A — YI_and f X = Y with gop = fi there exists a
continuous map ® : X — Y with ®i =9 and qop = f.

oyl (2.45)

A
_
| @ -
Ll/ LQO
X - Y

_—

f

2.2.3 The mapping path space of a continuous map

The role played by the mapping cylinder of a continuous image in the area of
cofibrations is taken over by the mapping path space of a continuous image in
the case of fibrations.

Let p : E — B be a continuous map.
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Definition 2.46. The path space
W, := {(e,u) € Ex B'|p(e) = u(0)}
of the product E x B! is called the mapping path space of p.

The elements of W), are therefore the pairs (e, u) consisting of a point e of
E and a (normalized) path u in B that starts at p(e) (cf. (2.53)).

E

|
\ P
! 1
T

h B
ple u

Figure 2.5

Theorem 2.47. The diagram in T op

/\
\/

is a Cartesian square (cf. (0.8)). Let q(r) be the restriction to W, of the
projection of the product E X B onto the first (second) factor. We leave the
(simple) proof to the reader.

(2.48)

Consider the diagramme

4o E
7N
el x B
P’ B!

Since pgo = qoP! and since (2.48) is a Cartes1an square, there exists exactly one
continuous map p : E! — W with gop’ =¢gg and ro p’ = p'.

Theorem 2.49. The following statements are equivalent:
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(a) p is a fibration.
(b) p has the CHP for the mapping path space W.

(c) p’ is a retraction (i.e., there exists a continuous map s : W, — E with

p s =idw, 3
Proof. The proof of Theorem (2.49) is dual to the proof of Theorem (1.17) and
is left to the reader as an exercise. ]

2.2.4 Decomposition of a continuous map into a homotopy
equivalence and a fibration

We now prove the dual of theorem (1.29).

Definition 2.50. Let ¢ : Y — B be a continuous map. Let g : W, — 7,
r: W, — B! be the continuous maps that induce the projections of ¥ x B
onto the individual factors, as in (2.48). We set ry := gy or : Wy — B, ie.,
ri(y,u) = u(l) € B for (y,u) € W,, and define a continuous map j : ¥ — W, by
J) :=(y,g(y)) for y e Y. Let g(y) denote the constant path I — B that maps
each r € I into g(y) € B.

Theorem 2.51. We have

(a) The diagramme

18 commutative.
(b) r and q are fibrations.
(c) qj =idy.
(d) jq % idw, -
We consider jq and idw, as morphisms g — g of 7 ¢ zy. This is possible be-

cause by (c¢) ¢jq = q. In particular, Theorem (2.51) implies that any continuous
map up to homotopy equivalence can be replaced by a fibration:

Corollary 2.52. Fvery continuous map g can be factorised in the form g = vou,
where v is a fibration and u is a homotopy equivalence.

Before proving Theorem (2.51), we make some remarks about paths.

Definition 2.53. Let X be a topological space. A path in X is a continuous
map w : [0,a] — X, where a € [0,00[ . w(0) is called the starting point, and
w(a) the end point of w. If a = 1, we speak of a normalised path.

30ne then also says: p/ has a section.
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Definition 2.54. If wy : [0,a1] — X, wa : [0,a2] — X are paths with wy(ay) =
ws(0), then let wo + wy : [0,a1 + az] — X be the path defined by

w1 (1), 0<t<a;

wo(t—ay) a1 <t<aj+as

wo + wi(t) := {

Definition 2.55. If w: [0,a] — X is a path, then let (—w) : [0,a] — X be the
path defined by (-w)(¢) :=w(a—1t) for 0 <t < a.

Definition 2.56. If wy : [0,a1] — X, wa : [0,a2] — X are paths with wq(0) =
wo(0), then we set
Wo — W1 1= wo + (—wq).

Definition 2.57. If w : [0,a] — X is a path, then let w; : I — X be the
normalised path given by wr(t) := w(a —t) for t € I.

Definition 2.58. If ¢ : X X [0,a] — Y is a homotopy (a € [0, co[), then for
x € X let
¢*:[0,a] - Y

be the path defined by ¢*(t) := ¢(x,1).

Proof. (of Theorem 2.51) (a) and (c) are clear.
Regarding (b): We first show that ry is a fibration. If

x—L —w, (2.59)

j £

XxI—B

is a commutative diagramme in J ¢z, then we have to construct a continuous
map @ : X xI — W, with r{® = ¢ and ®jy, = f. Let x € X. f(x) € W, is a pair
(y,u) with y € Y, u : I — B, such that g(y) = u(0). Since (2.59) is commutative,
we have

¢*(0) = @(x,0) = r1 f(x) = u(1).

The last equation allows us to define for ¢t € 1

D (x, 1) := (v, ((¢*1[0,2]) + u)p) € We ().

One immediately verifies ®j, = f and r1® = ¢. The remaining proof of the
continuity of @ is left to the reader as an exercise.
Next, we want to prove that g is a fibration. To do so, we start with a
commutative diagramme in I ¢z of the form
f

X ———W,

L |
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Figure 2.6:

and have to construct ® : X x I — W, with ¢® = ¢ and ®j, = f. For x € X,
f(x) is a pair
(y,u), yeY,u:I— Bwith g(y) =u(0).

Since g f = ¢jo, it follows that ¢*(0) = ¢(x,0) = gf(x) = y and hence g¢*(0) =
g(y) = u(0). We can therefore define for r € 1

D(x,1) := (¢(x,1), (u — g [[0,1])1) € We(!).

The reader should verify that ® : X X I — W, is the desired continuous (!!)

Figure 2.7:
map.
Regarding (d): We define a homotopy ¢ : Wy x I — W, by @(y,u,t) :=
(v, (u][0,])1) for (y,u) € Wg, t € 1. Then

¢:Jq - idw,
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2.2.5 Transition to other categories

Let K, L be topological spaces. By Theorem (2.23), the definition of the notion
of fibration can be transferred from I ¢ 2 to 970725 using the homotopy notion
defined in (0.31) in the category T ez .

Definition 2.60. Let e = (K - E — L), B= (K — B — L) be spaces under K
and over L, and g : € —» 8 be a map under K and over L. g is called a fibration
in F/“OpE if and only if for all spaces under K and over L ¢ = (K —> X — L),
for all maps under K and over L f : ¢ — ¢ and for all homotopies under K and
over L ¢ : X X I — B with ¢g = gf there exists a homotopy under K and over
L®:XXI— E with g& =¢ and @y = f.

T
BN
o

L

Of particular importance in the following will be fibrations in 7 ¢ 2° (pointed
fibrations) and fibrations in I 62y (fibrations above L).

Definition 2.61. In (0.33) we transferred the construction of the cylinder from
T opm to Topnf. We now give the construction in 7 o[, which corresponds
to the construction of the path space Y! of a topological space Y in T op. If

n= (K—l> v 5 L) is a space under K and over L, then let YiL be the subspace
of Y! defined by
Y£ :={u € Y|pu constant}

To a point k € K we assign the constant path I —> Y that maps each ¢ € I into
i(k) € Y. This yields a continuous map K — Y}. By u € Y] — pu(0) € L we
obtain a continuous map ¥/ — L. We denote the object of T o2f K — Y]L
thus obtained by Wn.

If ¢ is another space under K and over L, then one has a bijection

Topf(IFEn) = T onf (E.5 1),
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where IF ¢ is defined as in (0.33). The definition of /X or WS can be extended
in an obvious way to morphisms of I ¢ pf . One then obtains adjoint functors

If,Wf :?70725 — 90pf.

2.2.6 A certain relative covering homotopy property

At the end of this section, we prove a proposition that deals with a certain
relative covering homotopy property. We will need this proposition in §2.6.

Theorem 2.62. Let p : E — B be a fibration, X a topological space, ACV C X
,Vahaloof AinX (c¢f. (1.81)), andlet f : X > E, ¢ : XX > B, ®y : VXI - E
be continuous maps such that

¢(x,0) =pf(x) for xeX,
Dy (x,0) = f(x) for x€V,
po®y = ¢lvxi.

Then there exists a homotopy ® : X X I — E such that p® = ¢, ®(x,0) = f(x)
forx € X and (D|A><I = q)V|A><I-

X

X x1 B

Proof. Since every halo of A contains a closed halo according to (1.86), we can
assume that V is closed in X. Since V is a halo of A in X, we can choose a
continuous map v : X — I such that

Acv (1), X\Vcv)
(cf. (1.81), (1.82)). We define g : Xx — B by

o(x, 1) = @(x,min(v(x) +1,1)) for (x,1) e X X1
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and @, : (Xx0)U(VxI) > E by

d)'v(x, 0) := f(x) forx € X,
@, (x,1) := Dy (x,1) for(x,1) € VxI.

Note that <I>'V is well-defined since ®y(x,0) = f(x) for x € V, and continuous
since V is closed in X. Since X \ V c v=1(0),

fx):= dD'V(x,v(x)) for xeX

provides a continuous map f : X — E. Verify pf(x) =@(x,0) for x € X. Since
p is a fibration, there exists a homotopy @ : X X I — E over ¢ (i.e., p® = @)
with ®(x,0) = f(x) for x € X. We define ®: X x I — E by

@y (x.1), if 0<r<v(x)
D(x,t —v(x), if v(x)<r<l1.

D(x,t) := {

The reader easily confirms that @ is a well-defined continuous map with the
desired properties. O

2.3 Homotopy Fibrations

2.3.1 The covering homotopy property (CHP) up to ho-
motopy. h-Fibrations

The concept of homotopy cofibration corresponds to the concept of homotopy
fibration.

Definition 2.63. Let p : E — B be a continuous map, X a topological space.
p has the covering homotopy property (CHP) up to homotopy for X if and only
if for all continuous maps f: X —» E, ¢ : X XI — B with ¢g = pf there exists a
homotopy @ : X x I — E over ¢ (i.e., p® = ¢) such that ®q 1:3 f (cf. diagramme

(2.24)). We consider ®y and f as morphisms pf — p of T o up.

Ezample 2.64. Let E := IX{0}U{0} xI cIXI, B:=1, p: E — B be the
projection onto the first factor. Let X be a topological space that has exactly
one point. p has the CHP up to homotopy for X, but p does not have the CHP
for X.

OFrom the adjointness of the functors — x I and -/ it follows that:
Theorem 2.65. A continuous map p : E — B has CHP up to homotopy for a

topological space X if and only if for all continuous maps f : X - E, ¢ : X — B!
there erxists a continuous map ® : X — E! with p'® = g and qo®¢ ; I (cf
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o> B

Figure 2.8:

_

Al 1

olg

B

Figure 2.9:

\/

Definition 2.66. A continuous map p : E —> B is called a homotopy fibration
(h-fibration for short) if p satisfies the CHP up to homotopy for all topological
spaces X. In addition to the term “homotopy fibration,” the term “weak fibra-
tion” is also commonly used.

Note: Every fibration is an h-fibration.

diagramme (2.22)).

%

Definition 2.67. Let p: E — B, p' : E — B be spaces over B. p is dominated
by p' (in T ¢np) if one of the following equivalent (!) statements holds:

(a) there exist morphisms of Topup g:p — p,g :p — psuchthat g'g = 1dE,
(b) there exists a section in Tough g:p — p’,

(c) there exists a retraction in T eugh g : p° — p.
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Theorem 2.68. Let p: E — B, p' : E' — B be spaces over B. p is dominated
by p’ in T onp.
Claim:

(a) If X is a topological space and p’ has CHP up to homotopy for X, then so
does p.

(b) If p’ is an h-fibration, then so is p.

Proof. (b) is a consequence of (a).
Regardlng (a): By assumptlon there exist morphisms of Toug g : p — p,
g :p —p Wlthg g idg. Given are continuous maps f : X - E, ¢ : XXI —» B

with ¢jo =pf. From p'g = p, it follows p'(gf) = @jo. Since p’ has the CHP up
to homotopy for X, there exists ® : X x I — E with p'® = ¢ and @ j é ef.

X—)E—>E

| N

Set @ := g'® : XxI — E. Then p® = pg® = p'® = ¢, since pg = p’, and
Djo=gd j ; gsf é f, because g’ ; idg. So p has the CHP up to homotopy

for X. |

Corollary 2.69. “CHP up to homotopy” and “h-fibration” are invariant under
homotopy equivalence over B.

Remark 2.70. The continuous map p of Example (2.64) is dominated by idg.
idp is a fibration, i.e., an h-fibration. By Theorem (2.68), p is therefore an
h-fibration. Since p is not a fibration, this example also shows that Theorem
(2.68) becomes false if one replaces “CHP up to homotopy” with “CHP” in (a)
or “h-fibration” with “fibration” in (2.68).

Theorem 2.71. Let the diagramme in I opn
E— 7 .
N
B
be commutative up to homotopy, i.e., p f ~ p. If p’ is an h-fibration or if p’

at least has the CHP up to homotopy for E, then there exists a continuous map
g:E—E withg=~fandpg=p.
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Proof. Since p’ has the CHP up to homotopy for E, there exists for ¢ : p' f ~ p
ExI — B ahomotopy @ : ExI — E over ¢ with @ ; f.Forg:=®j, : E—>E

then g = ®jy = ®jo ~ f,ie. g = f, and p'g = p'®j1 = ¢j1 = p. o

Corollary 2.72. If an h-fibration p : E — B has a section up to homotopy,
then it has a setion.

Proof. By assumption, s : B — E such that ps ~ idp exists. Theorem (2.71),

applied to the diagramme
B———= > E
N
B

proves the existence of a continuous map s : B — E such that ps = idg. O

L]
e =

Figure 2.10:

Remark 2.73. Corollary (2.72) states that an h-fibration that has no section also
has no section up to homotopy. This remark is important because not every
fibration has a section.

Example 2.74. Let p be the restriction of the tangent bundle T(S?) — S? of the
2-sphere to the tangent vectors that are nonzero. p is a fibration because p is
locally trivial and S? is compact. p has no section (cf. [25], II. Theorem 27.8),
and thus no section up to homotopy.

2.3.2 Different characterisations of the term “h-fibration”

We now provide various characterisations of the term “h-fibration.”

Theorem 2.75. Let € be a real number with 0 < &€ < 1, X a topological space,
and p : E — B a continuous map. Then the following two statements are
equivalent:

(a) p has the CHP up to homotopy for X.

(b) For all continuous maps f : X — E, ¢ : X X I — B such that ¢(x,t) =
pf(x) for all x € X and all t € [0,1] with t < &, there exists a homotopy
D : X X1 —> E over ¢ with ®y = f.
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Proof. (a) = (b): Given continuous maps f : X — E, ¢ : X X I — B with
w(x,t) = pf(x) for x € X and 0 <t < &. Then the following diagramme is

commutative.
X E
——B

X X [e,1]
Since p has the CHP up to homotopy for X ([0, 1] is replaced by [e&, 1]), there
exists a homotopy @ : X x [&,1] — E with p® = @lxx[s,1] and o, 2 f- Choose

a homotopy @ : X x [0,&] — E over B with (D,(; = f and (I); = <I>:9. @ and @”
together then define a continuous map @ : X X I — E with p® = ¢ and &y = f.
(b) = (a): Given continuous maps f: X - E, ¢ : X XI — B with ¢ = pf. We
define ¢ : X x [-1,1] — B by

é

‘p‘XX [£,1]

¢ (x,1) := o(x, max(t,0)).

Then ¢ (x,1) = pf(x) for x € X , =1 <t < 0. By assumption (we replace (0,&,1)
with (=1,0,1).) there exists a continuous map @ : X x [-1,1] — over ¢ with
= f. For @ := ®|yy; : XxI — E, then p® = ¢ and @) = @, ; @ =f O

Theorem 2.76. Let € be a real number with 0 < € < 1, X a topological space,
and p : E — B a continuous map. Then the following two statements are
equivalent:

(a) p is an h-firation.

(b) For all topological spaces X and all continuous maps ® : X x [0,&] — E,
¢: XxI— B with p<I> = ¢|xx[0,s], there exists a homotopy ® : X x I — E
over ¢ with ®y = d)o

’

X x[0,¢] i; E
o j
n r

X><I“—¢>B

Proof. (b) = (a): To prove that p is an h-fibration, we use the characterisation
of the notion of h-fibration given by Theorem (2.75). Given continuous maps
f:X > E, ¢: XxXI — B with ¢o(x,t) = pf(x) forx € X, 0 <t <e. We
define ® : X x [0,&] —» E by ® (x,1) := f(x) forx € X, 0 <t < &. Then
p® = ¢lxx[0.e]- We apply (b) and obtain a homotopy @ : X X I — E over ¢
with q)o = f

(a) = (b): We can assume & = 1 without loss of generality. By assumption, there
are continuous maps ® : X x [0, %] — E, ¢: XxI — B with p® = ‘P|X><[0,§]-
We define ¢ : X x [O,%] — B by ¢(x,s8,t) := p(x,1 = (1 =s)(1—1¢)) for x € X,
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0<s<% 0 << 1. Then @(x,s,0) = p® (x,s) for (x,s) € X x [0, 1] Since

p 1s an h-fibration by assumption and thus has the CHP up to homotopy for
[0, ] there exists a continuous map ® : X x [0, ] xI — E over ¢ with <I>0 .

Therefore, there exists a continuous map ¥ : X x [0 ,2] x I — E such that
p¥(x,s,1) is independent of t and ¥y = @', ¥; = ®;. We define ® : X xI — E
by

W(x,t,2t), xeX,0
O(x,%,21-1), =xex,?i

1
<t<3
X, 5, s <t<L

O(X,1) := {

It is easy to verify that ® is a continuous map with &y = d)z) and pd =¢p. O

E
P
¢
. B
. 5 1
Figure 2.11:

The following theorem characterises the property of a continuous map p to
be an h-fibration, using the mapping path space W,

Theorem 2.77. Let € be a real number with 0 < e <1, and p : E —> B a
continuous map. Then the following are equivalent:

(a) p is an h-fibration.

(b) There exists a continuous map s : W, — E such that s(e,u)(0) = e for
(e,u) e W,,

u(=%), e<r<l1

Proof. We can assume & = % without loss of generality. In the proof we make
several use of the adjointness of x/ and —! and go from a continuous map
¢ : X xI — according to (2.4) to g : X — Y! and vice versa reverts from @ to ¢.

(a) = (b): We assume that p is an h-fibration. We consider the projection
g : W, — E onto the first factor and the continuous (!) map ¢ : W, XxI — B,
which is given by

_Ju(0),

u(0), 0<t<e

p(s(e.u)(r)) = { (eou) €W,

(e,u) e W,

o= D

IN A
—_ N

IA A
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For0<r< %, then

w(e,u,t) =u(0) = p(e) = pqg(e,u).

Since p has the CHP up to homotopy for W,,, by Theorem (2.75) there exists a
homotopy ® : W,x — E with p® = ¢ and ®j, = g. We define s := D W, — E!
and obtain the desired continuous map.

Remark 2.78. In “(a) = (b)” we only used the fact that p has the CHP up to
homotopy for the mapping path space Wp,.

(b) = (a): We assume for & = 1 the existence of a continuous map s : W), —
E! as described in (b). Given continuous maps f : X — E, ¢ : X xI — B,
such that ¢p(x,7) = pf(x) forx € X, 0 <t < % We define ¢ : X xI — B
by ¢ (x,1) = ¢ (x, L) and proceed to ? X — Bl. We define @ : X — W,
by ® (x) := (f(x),x)) € W, (1). We set ® = s® : X — E! proceed to
® : X X I — E and obtain a continuous map with p® = ¢ and ®j, = f ().
Therefore, by Theorem (2.75), p is an h-fibration. O

Corollary to Theorem (2.77). From Theorem (2.77) and Remark (2.78) it
follows:

Theorem 2.79. A continuous map p is an h-fibration if and only if it satisfies
the CHP up to homotopy for the mapping path space W,.

Remark 2.80. There is no dual counterpart to Corollary (1.54).

1. Not every fibration is surjective, because for every topological space B, the
only mapping @ — B is a fibration (!). However, the following holds:

Theorem 2.81. If p : E — B is an h-fibration and p(E) meets every path
component of B, then p is surjective.

Proof. For b € B, by assumption, there exists a point by € p(E) that lies
in the same path component of B as b. We can therefore choose a path
w : I — B with w(0) = by, w(1) = b. Here, we can assume: w(z) = w(0)
for 0 <t < % Choose eg € E with p(eg) = bg. Since p is an h-fibration
and therefore the CHP has a homotopy for X = pt, by Theorem (2.75) there
exists a path v : I — E with pv = w and v(0) = ¢g. Then pv(1) = w(1) = b,
hence b € p(E). O

2. Not every surjective fibration is an identification.

Example 2.82. Let E be the set Q of rational numbers, endowed with the dis-
crete topology, B be the set of rational numbers, endowed with the subspace
topology induced by R, p :=idg. Then p is a bijective continuous map, but
p is not an identification.



84 CHAPTER 2. FIBRATIONS

Proof. Let f : X — E, ¢ : X X1 — B be continuous maps with ¢j, = pf.
Since B only admits constant paths, for x € X we have ¢*(1) = {pf(x)},
where ¢* : I — B is defined as in (2.58). ® := foproj; : XxI — E is
therefore a continuous map with p® = ¢ and ®jj = f. ]

However, the following applies:

Theorem 2.83. If p : E — B is a surjective fibration and B is locally path-
wise connected, i.e., every point of B has a neighbourhood basis of pathwise
connected subsets of B (cf. Schubert [23], III.1.2, Definition 2), then p is an
identification.

Proof. Strom [27] I. Theorem 1. i

Remark 2.84. Fibrations are generally not closed, as the example proj; :
R? — R shows. h-fibrations are generally not open, as can be seen from
example (2.64) (cf. also (2.70)). A fibration p is certainly open if p is locally
trivial (cf. (2.33)).

2.3.3 Homotopy equivalences and fibrewise homotopy equiv-
alences

The following fundamental theorem of homotopy theory is by A. Dold ([6],
Theorem 6.1). This theorem is dual to Theorem (1.62).

Theorem 2.85. Premise: Let

E—>E

N

be a commutative diagramme in T 0. Let p and p’ be h-fibrations, and f be
an h-equivalence.

Claim: f, conceived as a morphism of Tong, f:p — p , is an h-equivalence
over B.

Proof. We present the reader with the task of reducing the proof of Theorem
(2.85), dual to the proof of Theorem (1.62), to the following Lemma using
Theorem (2.71). i

E - & E
X /
is a commutative diagramme in T op, p is an h ﬁbmtwn and if g ~idg then
there exists a morphism g : p — p of T ¢pp with gg' E idg.

Lemma 2.86. If
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Proof. We choose a homotopy ¢ : g ~idg : E X I — E such that ¢(e,t) = g(e)
for e € E and 0 < 1 < 4. Since pg = g, then for pp : E x I — B we have
pe : p =~ p and po(e,t) = p(e) for e € E and 0 <t < % Since p is an h-
fibration, by Theorem (2.75) there exists a homotopy ¢ : E X I — E over pg
with ¢ = ¢ jo = idg. Set g :=n; : E — E. Then pg = p. We claim gg’ ; idg.

We define a homotopy F : E X I — E by

(e.5.1) 1o pe(e,12s(1 - 1)),
Y pe(e,1-2(1=s5)(1-1)),

Then (e,s,0) = pF(e,s) (e € E, s € I), ®(e,0,1) = ®(e,s,1) = (e, 1,1) = ple)
(e € E, t,s € I). We can modify @ (cf. (1.66)) so that additionally

S
eeE, rel,
S

o= D
IA A
IA A
—_ N

1
D(e,s,t) = pF(e,s) for 0<t< 3

Since p is an h-fibration, by Theorem (2.75) there exists a continuous map
o : E><1><1—>EW1thp<I> ® and ®@(e,s,0) = F(e,s) for e € E, s € I.
We define Dy, n : E — E for s,t € I by CD(”)(e) = ®(e,s,1) (e € E). Then

§ =Fy=®q0) = cI’(o 0 = (‘D<1 1) = ¢’(1 0) = F1 =idg. o

Remark 2.87. Theorem (refthm:2-6-21) is also essentially a formal theorem and
holds even if one replaces the category I ¢z with the category I ¢ pL (K and
L topological spaces), i.e., if one assumes a commutative triangle in 7 ¢« 725 (cf.
Kamps [15], 5.2).

The following notion is dual to the notion of “strong deformation retract”.

Definition 2.88 (Dold [6]). A continuous map p : E — B is called shrinkable
if there exists a continuous map s : B — E such that ps = idg and P~ = idg.

We consider p, idg, s as morphisms of T opg, p: p — idp, idg : p — p,
s :idp — p. This is possible because ps = idg. One immediately considers:

Lemma 2.89. A continuous map p : E — B is shrinkable if and only if p is
h-equivalent over B to idp.

Theorem 2.90. A continuous map p : E — B is an h-fibration and an h-
equivalence if and only if it is shrinkable.

Proof. (=): follows from Theorem (2.85) applied to the diagramme
E—FY F
B
(<): If p is shrinkable, then p is in particular an h-equivalence. If p is shrink-

able, then by Lemma (2.89) p is h-equivalent to idg over B. Since idg is an
h-fibration, it follows from Theorem (2.68) (b), p is an h-fibration. ]
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Theorem 2.91. Let g : Y — B be a continuous map. Consider the commutative
diagram of Theorem (2.51) (a).

Y —j> W
B
The following statements are equivalent:
(a) g is an h-fibration.
(b) j is an h-equivalence over B (i.e., [jlp is an isomorphism in T opnh).

(c) |jlB is a section in T o pnh.

Proof. (a) = (b: By Theorem (2.51), j is an h-equivalence and r; is a fibration.
If g is an h-fibration, then j is an h-equivalence over B by Theorem (2.85).

(b) = (c: Trivial.

(c) = (a: By assumption, g is dominated by r1 in I ¢ z2p. Since ry is a fibration,
i.e., hence an h-fibration, by Theorem (2.51), g is an h-fibration, by Theorem
(2.68) (b). |

Since rq is a fibration, we obtain:

Corollary 2.92. For every h-fibration p : E — B, there exists a fibration
p : E' — B that is h-equivalent over B to p.

Theorem 2.93. Let p : E — B be an h-fibration, X a topological space, A C
VcX,Vahalo of AinX (¢f (1.81)). Let € be a real number with 0 <& < 1
and let

(VxIU(Xx[0,e]) —2=E
N P

XxX|]——8B
@

be a commutative diagramme in T ¢ 2. Then there exists a homotopy @ : XXI —
E over ¢ (i.e., p® = ¢) such that

D[ axnu(xx0) = ®’|(A><1)U(X><O)s i.e, the following diagamme is commutative:

(AXTU(XX][0,¢&])

’
D |(axnu(xxo)

n
D|(Ax1)u(xx0)

(VXTU(Xx]0,¢e]

al

X xI
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Proof. Proof. Since V is a halo of A in X, there exists a continuous map v : X — [
with A cv™1(1) and X \ V c v~1(0). We define

0:XxI—>B by vt :=¢(x min(v(x) +11))
@ Xx[0,e] >E by @ (x,1):=® (x,min(v(x) +1z1).

The definition of ® makes sense since X \'V c v"1(0). It holds that pa =
@lxx[0,£]- Since p is an h-fibration, by Theorem (2.76) there exists a homotopy

<I>:X><I—>E0ver¢pwith5|xXo=a|xX0. We define @ : X x I — E by

@' (x,1), if 0<t<v(x)

D)= {a(x,t —v(x), if v <r<L

and obtain a homotopy with the desired properties(!). O

2.4 Induced Fibrations

2.4.1 Induced Fibrations
Definition 2.94. Let

E—~

E
|

B——B
(o7

(2.95)

be a diagramme in the category J ¢z of topological spaces. p is said to be
induced from p by a if (2.95) is a Cartesian square.

Theorem 2.96. For a diagram

n T opn there exists a diagram

|
-

ol

in T op that is unique up to isomorphism, such that (2.95) is a Cartesian
square.
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Proof. Uniqueness follows purely from category-theoretic reasons (cf. (0.8)).
Existence: One immediately realises that the following definition yields a Carte-
sian square (2.95). i

Definition 2.97. Let E be the subspace
E :={(b,e) € BX E|ab = pe}

of the product BXE. Let p: E — B be the projection onto the first factor, and
@ : E — E be the projection onto the second factor.?.

We have already encountered the construction of (2.97) in a special case,
namely in the definition of the path space W,, of a continuous map p.

Ezxample 2.98. If p : E — B is a continuous map, then we have the Cartesian
square (2.48)

Wp—>E
—>B

r: W, — B is thus induced from p by gy : B! — B.

Ezample 2.99. Let p : E — B be a continuous map, and @ : B C B be the
inclusion of a subspace B of B. Then one can define a special Cartesian square
(2.95) as follows:

E:=p '(B)CE.

Let a be the inclusion p~*(B) c E, and p be the restriction of p. Using the
notations of (2.32), we have p = p3.

Theorem 2.100. In the diagramme in I ¢ 2

E
|
B

let po be induced from p by a (c¢f. (2.94)). Let X be a topological space.
Claim:

a
_

=

(2.101)

a

Pa

| =—

_—

(a) If p has the CHP for X , then so does p,.
(b) If p has the CHP up to homotopy for X , then so does p -
Before proving Theorem (2.100), we note an immediate consequence.

Corollary 2.102. In (2.101), let po be induced from p by «. Then:

4Remark by the transcriber: this construction is called a pull-back.
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(a) If p is a fibration, then so is p,.
(b) If p is an h-fibration, then so is p,.
Da s then called “the” (h-)fibration induced from p by .

Proof. (of Theorem (2.100)) (a): We want to prove that p has the CHP for X.
Let f: X — Eg4, ¢ : X X1 — E be continuous maps with p,f = ¢Jo.
XxI——=B8 —

R

Set f = af, ¢ := ap. Then pf = ¢ jo. Since p has the CHP for X, there
exists a continuous map @ : X x I — E with p® = ¢ and

Phi' jo = f'. Since p® = ey and since (2.101) is a Cartesian square by assump-
tion, there exists exactly one continuous map ® : X x I — E, with a® = @’
and p,® = ¢. We are finished when we show ®j, = f. Since (2.101) is a
Cartesian square, this follows from the equations @(® jo) = ® jo = f = af and
Pa = (@jo) = ¢jo=paf-

(b): We use the characterisation of the “CHP up to homotopy for X” of Theorem

(2.75) with ¢ = % and assume a continuous map f : X — E, and a homotopy

¢ : X x1 — B such that ¢(x,7) = pof(x) forx € X and 0 <t < % Then

ap(x,t) =apaf(x) = paf(x) forx e X and 0 <t < % We can then construct

@ XXI— E, with p,® = ¢ and ®j, = f as in the proof of (a). O

E @

N

2.4.2 The homotopy theorem for h-fibrations

Remark 2.103. Let @ : A — B be a continuous map.
We want to define a covariant functor

a" T ong > T ona.

Definition 2.104. For each object p : E — B of 5 ¢ 2, we choose a Cartesian
square

Eo—2>E (2.105)
pal jp
B——B
a
and set @*(p) = pa, @ *(p) € Obj(T o 224).
Definition 2.106. Let p' : E' — B be another object of T ¢ 3,
—> (2.107)

E
p(ll L
A—(:—B
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let f:p — p be a Cartesian square chosen for p’, and let f : p — p be a
morphism of J ¢ zg. We therefore have a commutative diagramme in I ¢z

f ’

EFE——F

N

B

Consider

E
‘\ fa

’

a £
/
Pa ‘AEa L E p/
B
a

Since @ o py =poa =p o foa and since (2.107) is a Cartesian square, there
exists exactly one continuous map f, : Eq — EQ with @ o f, = foa and
p,a/ °fo=Pa-

The last equation allows us to consider f, as a morphism of T op4, fo :
Pa — p/a. We define a*(f) = fa, a*(f) : @*(p) — a*(p'). It is easy to see: a*
is a covariant functor 7 oup — I 0 p24.

A

Remark 2.108. (on (2.106)) If one chooses the Cartesian squares of p and p’ as
in (2.97), i.e.

E, ={(a,e)|laa = pe} C AXE,
E:y ={(a,)|aa = p'e/} CAXE,

then f,(a,e) = (a, fe) € E,, for (a,e) € E,.
Remark 2.109. (on (2.103)) The definition of @* depends on the choice of Carte-

sian squares (2.105). However, different choices yield equivalent functors (!).
Since for every continuous map p : E — B the diagramme

E
d
B

is a Cartesian square, the following remark follows:

idg
_—

=
idp

o<1
]

Conclusion 1 (idp) is equivalent to idg -
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If in the diagramme in T oz

(Ea)g > Eq —2~ E

(Pa)ﬁl (1) p(zl (2) lp

C A B
B a

the two squares (1) and (2) are Cartesian, then the outer rectangle is
Cartesian (cf. (0.12) (d)).

We therefore obtain from the remark:
Conclusion 2 (af)* is equivalent to S*a*.

We now consider the situation of (2.103) again. The following theorem shows
that the functor a* is compatible with fibrewise homotopies.

Theorem 2.110. If p: E — B, p' : E' — B are continuous maps, fo, fi : p —
p’ are morphisms of T o ng, then the following holds

(fo é f1) = (foe ; fia)-

Proof. We choose ¢ : fy é fi : ExI — E'. We can consider ¢ as a morphism of

T onp, ¢ :poproj; — p'. We apply @* and obtain a morphism of T ¢ 24
ax(¢) : @ (p o proj;) = @’ (p)) = -

However, we can identify a*(p o proj;) with p, o proj; : Eq X I — A. This is

immediately apparent if we choose the Cartesian squares (2.105) as in (2.97).
Then we have: a*(¢) : foa ; fia- O

Remark 2.111. The functor o : T opp — T ona defined in (2.103) for a
continuous map @ : A — B (after selecting Cartesian squares) thus induces, by
Theorem (2.110), a functor of the factor categories T ouph — T opah. We
also denote this functor by a”.

Proposition 2.112. In the diagram in I on

E,—2>F

paL jp
A B
let p be induced by p by a.
Claim: If p is shrinkable, then so is p (cf. (2.88)).

_
@
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Proof. Let p be shrinkable, i.e., p and idg are isomorphic objects of T ¢ ngh
(2.89). Since a* : T opuph — T o4 is a functor, p, = a*(p) and a*(idpg) are
isomorphic objects of T ¢z4. But a*(idg) is isomorphic to id4. Hence, p, is
isomorphic to id4 in I ¢4, i-e., pq is shrinkable. ]

Definition 2.113. If B is a topological space, then let F<&gh denote the full
subcategory (cf. Mitchell [17] 1.3) of T ¢ zph whose objects are the h-fibrations
p:E — B.

Remark 2.114. Let @ : A — B be a continuous map. « induces (after selecting
Cartesian squares) by (2.103) and (2.111) a functor

a : T onpph — T onah.
By Corollary (2.102) (b), this functor can be restricted to a functor
Fibgh —» Fiba.
We again denote the new functor by a*

Theorem 2.115 (Homotopy theorem for h-fibrations). Let @,8 : A — B be

continuous maps. If @ = B, there is a natural equivalence (cf. Mitchell [17],
11.9))
AN:a" > B : Filgh > Filah.

To prove the homotopy theorem for h-fibrations, we need a lemma.

Remark 2.116. For a continuous map p: E — Bx I and v = 0,1, we set
E,:=p Y (Bxv)CE.

Let i, : E, — E be the inclusion E, c E. Then the following diagramme is

commutative.
i
E,— s FE
proj, °(P|Ev\ A}jl °p
B

We can therefore regard i as a morphism of 7 ¢ g,
iy : proj, o(p|g,) — proj; op.
With these notations, we formulate:

Lemma 2.117. If p : E — B X I is an h-fibration, then i, is an h-equivalence
over B (v=0,1).

Proof. 1t suffices to prove (2.117) for v = 0. We define ¢ : BXI X1 — Bx I by

(b,s),
(b,s(2-21),

)

beB,sel

IN IA
—_ N

t
t .

@(b,s,t) := {

o= O
IN AN



2.4. INDUCED FIBRATIONS 93

For ¢ := 9o (p xid;) : EXI — B X I then ¥(e,t) = p(e) holds for e € E and
0<t< % Since p is an h-fibration, there exists a homotopy @ : E X1 — E with
p® =y and @y =idg. For e € E, proj, opo®(e,1) = 0, where proj2: BXI — I
is the projection onto the second factor, i.e., ®;(E) C Ey. ®; thus induces a
continuous map r : E — Ey. For e € E, proj; op or(e) = proj, op o ®(e, 1) =
proj; op(e). We can therefore regard r as a morphism of 5 ¢ zp, r : proj; op —
proj; o(plg,). One immediately verifies

idg = @ ; D =iyr.
Since ®(E x I) c E (!), ® induces a homotopy ® : Eg x I — Ey. Then we have
the folloing homotopy (!)
idg, = @ - @, = rig.
So [r]p is inverse to [ig]p in T o pph. This proves the claim. O
We are now in a position to prove the homotopy theorem for h-fibrations.

Proof. (of Theorem 2.115) We choose a homotopy ¢ : @« ~ 8: AXI — B. By
selecting Cartesian squares, we obtain functors

Jo : T opaxih = Topsh (v=0,1),
¢ T onpph > T onaxih.

We can assume that in the definition of o* = (¢jo)* and B* = (¢j1)*, a*, B :
T opuph — T opah, those Cartesian squares were selected that result from
juxtaposing the Cartesian squares selected in the definition of ¢* and jj or jj
(cf. (2.109)). If p : E — B is a continuous map, we have a commutative
diagramme with Cartesian squares (0), (1), (2):

% o
e W Jo
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We consider j, : A — A X[ as inclusion A = A X v c A xI. We can then
assume (cf. (2.99)): Eq = p,'(Ax0), Eg = p;'(Ax 1), jo, j1, are the inclusions
E, C E, and Eg C E,, respectively, p,, pp are restrictions of p,. We now
assume that p € Obj(F ¢#égh), i.e., p is an h-fibration. By Corollary (2.102)
(b), pyp : E, = A X1 is then an h-fibration. From Lemma (2.117), applied to
Py, now follows:

ﬁ) “Pa = Proji©py, Jj1:Ppp —> Projiopy

are h-equivalences over A , i.e., [}B]A and [71]A are isomorphisms of I ¢ z4h.
We set A, = [71];‘1 o [jola - Ap 1 pa — pp is an isomorphism of T ¢ zah.
The reader should convince himself that A := (A,|peonj(Fsazn)) is a natural
transformation. A : @® — 8% : Filigh — F<bah is thus a natural equivalence.

|

Remark 2.118. If we consider the just defined morphism of T ozah Ap 1 po —
pp as a morphism of T onh, A, : E, — Eg, then in T onh [B] o A, = [a].

So we have proven exactly the following:

Theorem 2.119. Ifa ~ B: A — B, there exists a natural equivalence A : a* —
B Febgh — Filah such that for all h-fibrations p : E — B the following
diagramme in I oph is commutative.

A
Ea—p>Eﬁ
[‘7\* /[5]
E

From the homotopy theorem for h-fbration we obtain two corollaries.

Definition 2.120. (1) If p : E — B is a space over B, U C B, then we have
the space over U py : p~t(U) — U (cf. (2.32)). We use the notation
Ey = p~1(U). If by € B, then we abbreviate Ej,, := E(py}-

(2) If p: E — B, p : E — B are spaces over B, and if f : p — p’ is a map
over B, U C B, then f(Ey) C Eij = p'"1(U). So f can be restricted to a
continuous map fy : Ey — E;] fu is a map over U, fy : pu — p'U. If
b € B, then we abbreviate fp,, := f(p,}-

Corollary 2.121 (The first corollary to Theorem 2.119). Assumption: Let
a : A — B be homotopic to x : A — B with x(A) = {by} for some by € B.
Claim:

(a) If p : E — B is an h-fibration and p, : Eo, — A is induced from p by
a, then po is h-equivalent over A to the projection onto the first factor
proj; : AX Ep, — A.
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(b) Let the following be a commutative diagramme in T o .

E ;— E
B
Let po and p;, be induced by p and p’, respectively, by a. If p and p’ are
h-fibrations and fp, : Ep, — Ebé, is an h-equivalence, then the morphism of

Topn fo:Da— D, defined in (2.106) is an h-equivalence over A.

Proof. (a): Let p, : E, — A be induced from p by ». By Theorem (2.115) p,
is h-equivalent over A to p,. The claim now follows, since one can make the
following special choice for p, according to (2.97):

E, ={(a,e)lbg =x(a) = p(e)} = AXEp,, pxla,e)=a for (a,e) € E,.

(b): If p, and p,, are induced from p and p’ by x, respectively, then by Theorem
(2.115) there re isomorphisms of T opah Ap @ pa = pu, A,y p., — p, such
that the following diagramme in ¢ n4h is commutative:

Ap
Pa > Px

[faJAl/ llf%JA

’ ’

Pa——77 Px

Ap

To show that [fy,]a is an isomorphism of Jomsh, we have to show that
[felalfela is an isomorphism of T ¢ zah. Let us choose p, and p,, as in (2.97),
i.e., px = proj; : Ax Ep, — A, p, = proj; : A ><E;90 — A, so (cf. (2.108))
fx = ida X fp,. By assumption, fbo is an h-equivalence. If g =: E;O — Ep, is
homotopy inverse to fp,, then, as one immediately sees, [ida Xg]a : Py = Dx
is inverse to [fx]a in T opah. [fr]a is therefore an isomorphism in J ¢ zah,
which was to be shown. O

Definition 2.122. A topological space X is called locally contractible if every
point x € X has a neighbourhood U C X such that the inclusion U C X is
null-homotopic (cf. (0.22)).

Corollary 2.123 (The second corollary to Theorem 2.119). Every h-fibration
p : E — B over a locally contractible space B is locally trivial up to fibrewise
homotopy equivalence.

Proof. By assumption, for b € B there exists a neighbourhood U c B and a point
bo € B such that (U c B) ~ x : U — B, where x(U) = {bg}. The restriction
of p pv : p~'U — U is induced from p by U c B. Thus, by (2.121) (a), py is
h-equivalent over U to proj, : U x E,, — U. O
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Theorem 2.124. Let

Ea—>E
Th
A——=B

be a Cartesian square in J op. Claim: If p is an h-fibration and « is an
h-equivalence, then a is an h-equivalence.

Proof. Let B: B — A be the h-inverse of @. We choose a Cartesian square

B
E(tﬁ I E(l

pal l””

B——A

and then we have the Cartesian squares

Since @B =~ idp, by Theorem (2.119) there exists an h-equivalence 4, : Eq — E
such that the diagramme

_—

>
idp

ar,B ~F

\/

is commutative up to homotopy: 1, = @p. Hence @ has an h-right inverse and 8
an h-left inverse. We exchange the roles of @ and 8 and an analogous conclusion
then yields: B has an h-right inverse. Therefore 8 is an h-equivalence, and
therefore a is an h-equivalence. O

2.4.3 Induced cofibrations

The definitions and theorems of §§2.4.1 and 2.4.2 can be dualised. We leave the
proofs to the reader.

A

X

Definition 2.125. Let

2 |

&
B

(2.126)

-
~1

>

—
&
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be a Cartesian square in T o. i is called induced from i by £ if (2.126) is a
co-Cartesian square.

Theorem 2.127. For a diagramme

A
X

in I op, there exists a diagramme

3

LA

~.1 >

>

X —
&

in T op that is unique up to isomorphism, such that (2.126) is a co-Cartesian
square.

Proof. Uniqueness: follows purely from category-theoretic reasons.
Existence: 1t is easy to see that the following definition yields a co-Cartesian
square (2.126). m]

Definition 2.128. Let X be the factor space resulting from the topological sum
X + A if, for each a € A, ia € X is identified with éa € A. Let i : A — X and
£ : X — X be the continuous maps obtained by combining the injection of A
and X into the topological sum X + A with the projection of X + A onto the
factor space X. If i is an inclusion A C X, then we use the notation A Ug X for

X.

We have already encountered the construction of (2.128) in a special case,
namely in the definition of the mapping cylinder of a continuous map.

Example 2.129. If f : A — X is a continuous map, then we have the co-Cartesian
square.

A—Ds AxT (Diagramme 1.15 reposted)
fl |
X——2;

k:AxI— Zy is thus induced from f by jo.

Theorem (2.100) corresponds to the following theorem:
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Theorem 2.130. In the diagramme in T o pn

A
X

let i be induced by i by &. Let Y be a topological space.
Claim:

3

_

2 |

(2.131)

S
~

>

_

£

(a) If i has the HEP for Y, then so does i.

(b) If i has the HEP up to homotopy for Y, then so does i.
Corollary 2.132. In (2.131), let i be induced by i by &. Then:
(a) If i is a cofibration, then so isi.

(b) If i is an h-cofibration, then so is i.

i is then called “the” (h-)cofibration induced from i by &.

Ezample 2.133 ((Attaching cells)). Let i be the inclusion $""! ¢ E" of the
(n — 1)-sphere §"~! into the n-ball E". Let & : $"~! — X be a continuous map.
The co-Cartesian square

3

sl o x

E"ﬁ-XUgE"
£

be defined as in (2.128). We say: X Ug E" arises from X by attaching the n-cell
e" = X Ug E"\ S"7! by means of ¢. Since S"7! ¢ E" is a cofibration (1.8), it
follows from Corollary (2.132) (a) i : X — X Ug E" is a cofibration.

Definition 2.134. Let { : A — A be a continuous map. We define a functor
£ Topt — Top?. For each object i : A — X of Top?, we choose a
co-Cartesian square (2.126) and set

£(i) =1, &(i) € Morg, ,a.

If g is a morphism of T ¢ 24,

A
X— X
8
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and the following diagramme

2 |

3
e

—

’
—_

E,

B

. . R’ . .
is the co-Cartesian square chosen for i , then there exists exactly one continuous
’ ’ 7

map g : X — Y//with goé =& ogandgoi =i. Weset £(g) = 8,
£.(8) - £.(0) = &),

Note: The definition of &, depends on the choice of co-Cartesian squares.
Different choices yield equivalent functors.
(ida)« is equivalent to idg, ,a.

(né). is equivalent to n.&, if n: A — A is another continuous map.

Definition 2.135. If A is a topological space, let ¢ £4h denote the full subcat-
egory of 7 o 2 h whose objects are the h-cofibrationsi : A —» X. If £ : A — A is

a continuous map, then the functor &, : Top? — T o /.?X, defined by choosing

co-Cartesian squares, first induces a functor 7 ¢ 24h — T ¢ 2% h. This functor,
in turn, induces a functor

Gofrh — Gofrh,
which we also denote by &..

Then we have:

Theorem 2.136 (Homotopy thorem for hhcofibrations). Let én : A — A be
continuous maps. If & ~n, a natural equivalence exists

E o Cofrh— Gofh.
Finally, we mention the theorem corresponding to (2.124).

Theorem 2.137. If (2.1261 is a co-Cartesian square, i is an h-cofibration, and
& 18 an h-equivalence, then & is also an h-equivalence.

2.5 Extension of sections

2.5.1 Numerable coverings

Definition 2.138. Let X be a topological space. A partition of unity is a family
U= (u; : X - I|j €J) of continuous maps u with the properties:

(a) For every x € X there exists a neighbourhood W such that u;(W) = {0}
except for finitely many j € J.
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(b) Forallx € X, ¥ ;e u;(x) =1.

Note that because of (a), (b) is essentially a finite sum.
Let B = (V;lj eJ), V; c X. B is called:

a cover of X if and only if U;c,;V; = X;
open if and only if every V; is open;

locally finite if and only if for every x € X there exists a neighbourhood W
such that W NV; = @ except for finitely many j € J.

A family (u; : X — [0,00[|j € J) is called locally finite if (uj_.l]0,00[|j € J)is
locally finite. Let u = (u;|j € J) be a partition of unity and B = (V;|j € J). We
say: B is numbered by u if for every j € J the inclusion uj‘.l]O, 1] c V holds. B
is called enumberable if there exists a partition of unity that numbers B (then
B is a cover, and we say it is a enumberable cover).

Numerable covers are a fundamental tool for many proofs below. The next
theorem tells us something about when numerable covers exist.

Theorem 2.139. Let X be a Hausdorff space.
(a) X is paracompact if and only if every open covering is enumberable.
(b) X is normal if and only if every locally finite open covering is enumberable.

For the proof, see Bourbaki [2], §4, n° 3, 4.
The following theorem is important for the application of numerable cover-
ings in homotopy theory.

Theorem 2.140. Let U = (U;|j € J) be an numerable cover of X x I. There
exists a numerable cover (Vilk € K) of X and a family (ex € K) of positive
real numbers such that for t1,to € I and |t1 — t3| < & there exists a j € J with
Vk X [ll,lg] C Uj.

Proof. We can assume that U is given by a partition of unity (u;|j € J), i.e.
U;. = uJ‘.l]O,l],j € J. For each r-tuple k = (j1,...,jr) € J° we define a
continuous map vi : X — I by

D.

o i-1 i+1

vi(x) = ;mm(uh(x,t)lt € [r T a1

Let K = U j". We show that B = (v,:l]O, 1]|k € K) is a numerable cover of X.
Every point (x,7) € XxI has an open product neighbourhood U (x, )XV (x, t) that
is contained in a suitable ; and only meets finitely many U;. V(x,t1),...,V(x,t,)
covers I, let % be a Lebesgue number of this cover, and let U be U(x,t1) N
N U(x,t,). Every set U x [=2, 1] is then contained in a suitable Uj;, so x

X X r+1°’ r+1
lies in v;']0,1], k = (j1,...,jr); B is therefore a cover.
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Furthermore, there are only finitely many j € J for which U; n (U x I) is
not empty. Since vi(x) # 0 implies the relation U;, N {x} X I # @, (vklk € K,),
K, = JUJ?U---UJ" is locally finite for every r. Therefore, a continuous function
w, is defined by

wr(x) = Z vi(x) for r>1

keK,_1

and wy(x) = 0. Let
7k (x) = max(0, vg (x) —rw,(x)) for k= (ji,...,jr) € K.

For x € X, we choose k" = (j1,...,j,) € K with minimal r such that v (x) > 0.
Then w,(x) = 0, zpr(x) = v (x), and we see that the z;l]O, 1] cover X. If
we choose m > r such that v (x) > L, then w,(x) > < and consequently
mwy,(y) > 1 for all y in a suitable neighbourhood of x. In this neighbourhood,

7k vanishes for all k = (j1,...,Js) with s > m. Therefore, (zx|k € K) is locally
finite; (zx/Xrek z2xlk € K) is numbered (v,;l]O, 11). Vi = v,;l]O, 1] and g, = %
for k = (j1, ..., Jr) satisfy the requirements of the theorem. O

2.5.2 The section extension property (SEP)

Definition 2.141. Let p : E — B be a continuous map and A C B. A section
of p over A is a continuous map s : A — E with ps(a) = a for all a € A. A
section of p over B is called a section of p for short.

7

A——=B

p has the section extension property (the SEP) if: for every A C B and every
section s over A that extends to a Halo V of A (in B), there exists a section

S:B — E of p with S|s =s.
E
s||p
A" c V < B

In particular, there is then a section of p; set A =V = @.

Theorem 2.142. If p : E — B is dominated by p’ : E’ — B and p’ has the
SEP, then so does p.

Proof. Since p is dominated by p’, there are maps over B f : E — E  and
g:El —>Eandah0mot0pygo:E><I—>EoverB,go:idEggf.

Let A C B, s be a cut of p over A, sy a section of p over a halo V of A such
that sy|a = s. Then fsy is a section of p’ over V. By Corollary (1.86), we can
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choose a closed halo U of A such that U ¢ V and V is a halo of U. Since p’ has
the SEP, there exists a section S’ : B — E of p’ with §'|y = fsy|y. We choose
a halo function u of U and define S : B — E by

S(b) - gS/(b)a b e u‘l(l)
o(sy(b),u(b)), bel.

S is well-defined, continuous, and a section of p that extends s. O

Corollary 2.143. If p : E — B is shrinkable, then p has the SEP (see (2.88),
(2.89).

Ezample 2.144. The SEP does not generally extend to induced objects.
The projection proj; : E? x St — E? is induced by the map p : S' — P, P a
one-point space. p clearly has the SEP, but proj; does not. Let A = S! c E?
and s : A — E? x S! be given by s(z) = (z,2). s can be extended to a halo of A
in E2, but not to E2.

If p : E — B is shrinkable, so is every induced object (see (2.112)). In this
case, the SEP is transferred to induced objects. For a converse, see Dold [6],
Proposition 3.1.

Theorem 2.145. If p : E — B has the SEP and A C B is an open subset for
which there exists a function v : B — I with v=1[0,1[= A, then the restriction
pa:p A —> A (see (2.82)) has the SEP.

Proof. Let u: A — [0,1] and a cut s of p over u=1[0,1[ be given. We have to
construct a section over A that coincides with s on #~!(0). For this purpose, we
construct a sequence S, : B— E ,n=2,3,... of sections with the properties:
(1) For v(b) <1-1,8,.1(b) = S, (b).

no

(2) For b € A with u(b) < 2, v(b) <1- -1 5,(b) = s(b).

n+1l?

First, we choose continuous functions
lun7 /ln : [0’ 1] - [0’ 1]

as follows:

1-1 for

Hn(x) = {1 ! for

n+2

S

A IV
|_

= =
3
T
-

and p,(x) > 1- % for all x € [0,1];

=1- -+ fi >
/ln(x){ n+l or i<

1
>1—m for

S-S

and 1 — ed,(x) > u,(x) for all x € [0,1] and for some ¢ > 0. By w(b) =
(I —u(b)/(1 —v(b)) for v(b) <1 and w(b) = 0 otherwise a continuous function
w : B — [ is described. w™']0,1] is a halo of w™'[§,1]. s is defined on
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w™1]0,1] c u~'[0, 1[. Because p has the SEP, there is a section S, : B — E that
coincides with s on w™'[}, 1], and therefore also on {b € B|v(b) < 2,u(b) < 3.

This provides the beginning of the induction. Pursuant to the step from n
to n + 1, we define a section s, over V,, = {b € A|v(b) < A,,(u(b))} by

() {510 or () <1- 7
Y5y for u(b) < L

By the induction hypothesis (2), s,(b) is well-defined. In V,,, one of the two
inequalities holds. V,, is a halo of A,, = {b € A|v(b) < u,(u(b))} in B.
A halo function #,, is given by

0 for v(b) < un(u(b)),be A
ha(b) 1= § eGPV for  p, (u(b)) < v(b) < Au(u(b)), b € A
1 for v(b) = A, (u(b)),be B\AorbeA

Note that the three parts of the domain are closed in B. From the SEP for p,
we conclude that there exists a section S,41 : B — E that coincides with s, on
A,.
Thus (1) and (2) hold. From v(b) < 1 -1 it follows: v(b) < ua(u(b)),
b€ Ap, Sps1(b) = 5,(b) = S, (b). From u(b) < ==, v(b) < 1 - -1, it follows :

n+l? n+2?

v(b) < pn(u(b)), b € Ap, Sp+1(b) = 5n(b) = 5(b). o

2.5.3 The section extension theorem

Let p: E > B and A C B be given. We say p has the SEP over) A if the
restriction p4 : p~'A — A has the SEP.

Theorem 2.146. Let p : E — B be a space over B. If there exists a numerable
covering (V;|j € J) of B such that p has the SEP over every set V;, then p has
the SEP.

Proof. Let V;|j € J) be a numerable covering of B such that p has the SEP over
every set V;. Let A C B, s be a section of p over A, and s4 be an extension of s
to a halo V of A with halo function u.

Let (uJ|] € J) be a numbering of (V;). We assume that 0 ¢ J and set

J =JU{0}. By up=1-u, uj=u- u; for j € J, a partition of unity (u;|j € J)
is defined. For K c J  we set
Ug = Z uj:B—1
JEK
and Uk = u,;l]O, 1] (up = 0, Uy = @). ug is continuous; A lies in Uk if 0 € K.
We consider the set of pairs

S ={(K,s)|0eK C J', s intersection over Uk, s|a = SA}.

S is not empty, since ({0}, sv|y,,,) lies in S. On & we introduce an ordering:
(K,s) < (K',s") if and only if



104 CHAPTER 2. FIBRATIONS

(1) K cK';
(2) from s(b) # s (b) follows b € Ug'\k-

We want to apply Zorn’s Lemma to the ordered set (S, <). Therefore, we show
that

Proposition 2.147. every chain in S has an upper bound.

Proof. Let T C & be a chain, T # @. We set L = Uk 5)exK and want to define
asection t : Uy — E. Let b € Ur. We choose a neighbourhood W of b such that

Py ={j € JIWnu;'10,1] # o}
is finite. We consider
Tw ={(K,s) € T|(L\K)NPw # @}.

Tw is not empty because Py is finite and T is a chain. For (K,s) € Tw, b €
UrNW C Ug; and by condition (2) in the definition of <, for (K, s), (K',s") € Tw

s(c)=s(c), ceU.NW.

By t(b) = s(b), (K,s) € Tw, t(b) is therefore uniquely defined, and because
tlupaw = Slupaw, t : Uy — E is also continuous; thus (L,?) lies in &. For
(K,s) e X, (K,s) <(L,t) : K C Lisclear; and from s(b) # t(b), (L\K)NPw # @
follows, i.e. there exists a j € L \ K with u;(b) > 0, hence b € Up\,. Thus we
have shown that Zorn’s theorem can be applied. O

Therefore, let (K,s) be maximal in (S,<). We show that K = J. Then
Uk = Uy = B and s is a section over B that extends s; thus, the theorem is
proven. Suppose K #=J . We then choose j € J \ K.

The continuous function

uk (b)
" uj(b)
provides a halo w=1]0, 1] of w!(1). Let w!(1) ¢ Uk and S|w-1(1) has an extension
s over u}]O, 1], since p has the SEP over u}]O, 1] ¢ V; by Theorem (2.145) and

5|w-1(1) can be extended to w=']0,1] by s|,,-1]0,1]. Let t : Ug U Ujp = E
defined by

:u7'0,1] > I, w(b) = min (1 ) . beu;'o,1],

(b = s(b) for u;(b) <uk(b)
TS (b))  for uj(b) > uk(b).

Then (K,s) < (KU{j},t) and this contradicts the maximality of (K, s). O

Remark 2.148. In the proof of the section extension theorem, Theorem (2.145)
can be avoided by making the following stricter assumption: There exists a
numerable cover (V) of B such that py : p~'U — U has the SEP for every open
subset U that lies in some V;. This property is easily seen in many applications
that we will make later.
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Finally, we mention an immediate consequence of the proven theorems.

Theorem 2.149. If p : E — B is numerable locally trivial with a contractible
fibre, then p has the SEP and hence also a section. The assumption on p
should explicitly state: there ewists a numerable cover (Vi|j € J) of B and a
family (F;|j € J) of contractible topological spaces F; such that for all j € J,
pv; :p’le — Vjin T o py; is isomorphic to proj, : V; X F; —'V;

For the proof, see Dold [6].

2.6 The “local-global” transition in the case of
fibrations

2.6.1 The "local-global" transition for fibrewise homotopy
equivalences

Theorem 2.150. Let p' : E — B and p : E — B be spaces over B, let
f:E — E be amap over B (i.e., pf =p’), and let (V(j)|j € J) be a numerable
covering of B. For every j € J, we have an induced map

Ji =G Py = Pvi
(cf. (2.120)).

If f; is a fibrewise homotopy equivalence for every j € J, then f is also a
fibreise homotopy equivalence.

Proof. We transfer the construction of the mapping path space (cf. 2.23) to the
category ¢ zp and consider the space

W =W p={(e,w)|f(e) =w(0), pw = const} C E xE!
together with the mappings
k:E > W, k()= (e f(e)
r:W—oE, r(e,w)=w(l)

(we identify points in E with the corresponding constant paths in ET ). W is
a space over B by the map (e,w) — p (e); k and r thus become maps over B.
Theorem (2.51) can be extended to the category J ¢ zp. Therefore:

(a) k is an h-equivalence over B.
(b) r is a fibration over B.

Because rk = f, it follows from (a) that r is an h-equivalence over B if and
only if f is an h-equivalence over B. The above construction can, of course, be
applied to any fibre-wise mapping. If we assume f;, V(j) instead of f, B, then
will resul the fibration over V()

rjWewvi = Wi = p (V) = UQ).
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The reader should convince himself that the fibration r; is equal to the fibration
induced by r over U(j)
rui)  Wui) = U3G)-

By assumption, f is an h-equivalence over V(j), hence r; is an h-equivalence
over V(j). By remark (b above and by Theorem (2.90), applied to the category
T ony(j), rj is shrinkable in 7 ¢ 2y (j), hence shrinkable in 7 ¢z. By (2.143),
r; therefore has the SEP. Since r; = ry(;) and (U(j)|j € J) is an enumberable
covering of E (if (v;|j € J) is a numbering of (V(j)|j € J then (vjplj € J) is
a numbering of (V(j)|j € J).), r has the SEP by Theorem (2.146). Therefore
there is a section s : E — W of r. s is itself a map over B. From the commutative

diagramme
E -k . w
A
f r
E

in 7 ¢2p, we see that f has an h-right inverse f over B. (We have a projection
proj : W — E’ and can choose f’ = proj os.) The proof now ends according
to the familiar pattern: f",(j) is h-right inverse over V(j) to f; , thus an h-

equivalence over V(j). Consequently, f has an h-right inverse over B and
therefore f* and hence f are h-equivalences over B. O

Definition 2.151. Let B = (V;|j € J) be a covering of the space B. We say
B is null-homotopic if and only if every inclusion V; c B is null-homotopic (cf.
(0.22)).

Theorem 2.152. Let p : E — B and p : E — B be h-fibrations and let
f:E — E be a map over B. Let B have a numerable, null-homotopic covering
V()HIj € J). If in every path component of B there is a point b for which
fo  Ep — E; 18 an h-equivalence, then f is an h-equivalence over B.

Proof. Let the inclusion V(j) ¢ B be homotopic to the constant map k;. By
assumption, we can assume that f ;) for k;(V(j)) = {b(j)} is an h-equivalence.
From Corollary (2.121) (b) we see that fy ;) is an h-equivalence over V(). The
claim follows from (2.150). o

2.6.2 The "local-global" transition for fibrations and h-
fibrations

Theorem 2.153. Let p : E — B be a continuous map and let (V(j)|j € J)
be a numerable covering of B. If py(;) is a fibration for all j € J, then p is a
fibration.

Corollary 2.154. If p is trivial over every set V(j), then p is a fibration.

Remark 2.155 (Additional). If (V(j)|j € J) is an open covering and py(;) is a
fibration for j € J, then p has the CHP for paracompact spaces X.
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Proof. (of Theorem 2.153) We prove the theorem and point out the changes
that are necessary to prove the additional remark. We assume the following

situation:
X E
X X B

The proof of the theorem now proceeds as follows: (U(j) = ¢ 'V(i)|j € J) is
a numerable cover of X x I (valid for theorem and the corollary). By Theorem
(2.140), there exists a numerable cover (Xy|k € K) of X and a family of positive
real numbers (ex|lk € K) such that for |t; — 3| < &g, there exists a j € J
with Xp X [t1,#2] € U(j). We show that for Z c X gz has the SEP. By the
section extension theorem (2.146), ¢ has a section corresponding to a homotopy
@ : X xI — E over ¢ with initial f.

Let Z c X;. We want to show that gz has the SEP. By the correspondence
between sections and homotopies explained above, we must show: Let V be
a halo of A in Z; let @y : VX I — E be a homotopy with ®y(x,0) = f(x),
pDy(x,1) = ¢(x,t) for x € V, t € I then there exists a homotopy ® : ZxI — E
with p® = ¢|zx7, Plaxsr = Py|axs and ®(z,0) = f(z) for z € Z. If p is a fibration
over ¢(Z x I), this follows from Theorem (2.62). We only know that for

I
_—
7

I—>

O=tg<ty <---<tp,=1 with 1, —t;_; <&

o(Z X [ti-1,1]) < V().

We can therefore apply Theorem (2.62) to ¢|zx[s;_,.;,]- More precisely: Let
w: Z — I be a function with A c w™(1), Z\V c w™1(0). Let W; = w™1[t;,1],
i=1,2,...,n. Then W;is ahaloof W;;1in Z,i=1,2,...,n—1, and V is a halo
of W;. Using Theorem (2.62), we construct in sequence

q)iZZX[li_l,[i]%E, i=1,2,...,n,
with
PP = @lzx[hi_1.0]
Di(z,ti—1) = Di_1(z,t;i-1) for ze€Z, i>1,

®1(z,0) = f(z) for zeZ,

Dilwix(ti.1 = PvIWix[t_1.1]-

All @; together yield @ : Z x I — E with p® = ¢|,zx1, ®(z,0) = f(z) for z € Z,
®@|axs = Py|axi- m

Theorem 2.156. Let p : E — B be a continuous map and let (V(j)|j € J) be
a numerable covering of p. If py(j) is an h-fibration for all j € J, then p is an
h-fibration.

Corollary 2.157. If p is trivial over every set V(j), then p is an h-fibration.
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Remark 2.158 (Additional). If (V(j)|j € J) is an open covering and py ;) is an
h-fibration for j € J, then p has the CHP up to homotopy for paracompact
spaces X.

Proof. (of Theorem 2.156) The proof is analogous to the proof of Theorem
(2.153). We again start from the situation
f

X ——

E
7
. o
Jo l ll’
- M

XX ——
©

only we now assume that ¢(x,7) = ¢(x,0) for r < 1/2, because we are dealing
with h-fibrations (see (2.75) (¢ = 1/2)).

As in the proof of Theorem (2.153), we consider the map ¢ : W — X and
have to show that ¢ has a section. As there, we choose the cover (X;) of X
and the family (&¢). It suffices again to show that for Z ¢ X, gz has the SEP.
Solet A c Z and V be a closed halo of A in Z. A section sy of gz over V
corresponds to a homotopy @y : VX I — E over ¢ with ®y(z,0) = f(z) for
z € V. We construct @y : VXIUZX[0,t1] = E over ¢ with ®g|ax; = Py|axs
and ®y(z,0) = f(z) for z € Z, if 11 < 1/2.

To this end, let w : Z — I be a function with A ¢ w=(1), Z\Y < w'(0).
Let 7 : I — I for t; > w(z) be the piecewise affine function that maps
(0,w(z),t1,1/2,1) in sequence to (0, w(z), w(z),w(z),1/2,1) and is affine in the
intermediate intervals; 77 : I — I is equal to id; for t; < w(z). 72(¢) depends
continuously on (z,t) € Z X I.

We define

{(CI)V,TZ(I), for zeV
D@o(z,1) = -1

f(2) for zew " (0),0<1<Hn.

@, has the desired properties; in particular, it lies above ¢ because for t < 1/2,
o(x,1) = p(x,0). Wenow choose 0 =1ty <t; <---<t, =1,suchthat r; < 1/2 and
tisi—ti <é&x, (i=1,...,n=1). Let Wy = w™[t;, 1] fori=1,...,nand let Wy = V.
Then, for 1 <i < n -1, we inductively construct maps ®; : Z X [t;_1,ti+1] — E
over ¢ with @;lw,x(s_1.1:01 = Polwix[ri_1.1.11 a0d @i(z,2i-1) = P;—1(z,%;-1) for
z € Z, by applying Theorem (2.93). (The theorem applies to: W; instead of A,
W;_1 instead of V, Z instead of X, [t;_1,t;+1] instead of I, [t;_1,¢;] instead of
[0,e].) We define @ : Zx I — E by ®(z,1) = ®;(z,¢) for t;.1 <t <t;,i<n-1
and ®(z,1) = ®,_1(z,1) for t,_o <t <t,. ® lies over ¢ and has the starting point
flz; the corresponding section of gz extends sy |4, because @|ax; = ®V|ax;. O

See Dold [6] for details.



Chapter 3

Homotopy sets and homotopy
groups

3.1 Action of fundamental groupoids

3.1.1 Fundamental groupoid

Let K and X be topological spaces. We define a category PXX as follows:
Objects are continuous maps f : K — X , also written as (X, f), since we want
to consider K as fixed. Morphisms from (X, f) to (X, g) are continuous maps

u:Kx[0,p,] > X, p,eR"
with

u(k,0) = f(k), u(k,pu)=g(k)
for all k € K. A composition, written (u,v) — v + u, is defined as
u(k9t)’ OStSpu»
v(k,t=pu),  Pu<1=Zpu+tpy,

(v+u))(k,1) :={ k eK.

(SO Putv = Pu t pv)-

PKX is called the category of paths of X under K and if K is a point space,
the category of paths in X. We now define a natural equivalence relation (cf.
(0.4)) in PKX (essentially the homotopy relative to the endpoints). Let u :
K x[0,p,] = X and v : K x [0, p,] — X be morphisms from %KX of (X, f)
to (X,g). u is called equivalent to v if there exist constant morphisms u and
v from (X, g) to (X,g) (i.e. u (k,t) =u (k,0) and correspondingly for v'), such
that «" +u and v + v have the same domain K x [0, p] and (considered as maps
K x [0, p] = X) are homotopic relative to K x {0, p}.

The reader confirms that this gives an equivalence relation on the morphism
sets that is compatible with “+”. We can therefore move on to the factor cat-
egory, which we denote by ITX¥X. In ITXX, every morphism is an isomorphism
(XX is a groupoid).

109
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XX is called the fundamental groupoid of X under K. The case where K
is a point space is particularly important. We then speak of the fundamental
groupoid T1X of X. The objects of I[1X “are” then simply the points of X. If we
pick a point x € X, then the morphisms in I1X from x to x form a group with
respect to composition, the fundamental group m1(X,x) of X at the point x.

3.1.2 Functoriality of fundamental groupoids

Let i : K — A be a space under K. We first assume that i is a closed cofibration;
later (3.1.7), we weaken to h-cofibration.
We want to assign a map

7 [A, (X, u0)]X = [A, (X, u,)]K

of the homotopy sets under K (= morphism sets in 7 ¢2Xh) to a morphism
u: K x[0,p] = X from (X,up) to (X,up) in PXX. (Let A denote the object
i:K—A)

Let f: A — X be given with fi = ug. A translation of f along u is a map
¢ : AX|[0, p] = X with po(ixid) = u and ¢g = f. There do exist translations of
f along u: This is clear for p = 0 and follows for p > 0, because i is a cofibration.
We want to set

alf1% = [op]¥.

Some preparations for this.

Proposition 3.1. Let ¢ : f S f'. Let xy : u =~ u relK x {0,p}. Let ¢ be a
translation of f along u’. Then [(,DP]K =[¢]¥

Proof. ¥, x, ¢, and ¢ together define a map from Kx[0, p]xIUUAX[0, p]x{0, p}
to X, which we want to extend to A X [0, p] X I. This is a homotopy extension
problem for

J:KxXITUAX{0,1} cAXxI

([0, p] is the homotopy interval); j is a cofibration by the product theorem
(1.104). The end of the extended homotopy yields a homotopy ¢, = ¢’ under
K. (Hlustrated by drawing!) o

In particular, we have shown with (3.1) that by setting u[ f]X = [¢,]X a
map u is induced.

Proposition 3.2. Let u be the constant homotopy. Then u is the identity
because a constant homotopy can be used to translate along u.

Proposition 3.3. Let u, v be in PXX and let v + u be defined. Then

—_— ~—

vV+u=vu.

Proof. If one shifts f with ¢ along u# and ¢, with ¢ along v, then ¢ + ¢ is a
shift of f along v + u. ]
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From (3.1) it follows that # depends only on the class [u] of u in TIKX. We
set [u] :=u. By (3.2) and (3.3) we obtain:

—_—

Theorem 3.4. The assignment (g : K — X) — [A,(X,2)]X and [u] — [u]
defines a covariant functor
KX - Sets

from TIXX into the category of sets.
Corollary 3.5. For every u, i is bijective since [u] is an isomorphism in ITKX.

Remark 3.6. If K is a one-point space, then [A, (X, g)] is canonically a ponted
set. u is a pointed map. As a proof, note that a constant map f : A — {u(0)}
X can be translated along a path

u:[0,p]=Kx[0,p] > X

by
@ (a,t) - u(r)

3.1.3 Action of m;

The functor just constructed measures the difference between “homotopic in
T ¢2%” and “homotopic in T ¢ 2"

Theorem 3.7. Let f : A — (X,g) and [ : Ato(X,g be morphisms in T on.
Then [f] = [f'] if and only if there exists a u € PXX from (X,g) to (X,g)
such that [f1% = u[ f1X.

Proof. If [f'1% = u[f]X, then [f']X = [¢,]K, where ¢ is a translation of f
along u. Thus [f] = [¢o] = [@,] = [f].

Conversely, if ¢ is a homotopy from f to f, then f” results from f by translation
along u = ¢ o (i X idy). O

In particular, if K is a one-point space and X € Obj(J ¢ ), then we consider
the map v : [A, X]° — [A, X], v[f]° = [f]. Then (3.1.2) specifically yields an
action of the fundamental group m1(X,0) on [A, X]°.

Recall that an action of a group G on aset M isamap a : GXM — M with
the properties a(id, m) = m, a(g,a(h,m)) = a(gh, m).

idg Xa

GxGlxM—>G>IM (g, h,m) ————— (g, a(h,m))
GXM—a>M (gh’m)'ﬁa(gh’m) :a(g’(a(h’m))

Theorem 3.8. v is

(a) injective & m1(X,0) acts trivially on [A, X]°.
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(b) surjective & X is path-connected.

Proof. (b): (&) Let X be path-connected, and let f : A — X be given. There
is a path u from f, to o. If we shift f along u, the result is a pointed map
f 1A - X with [f] = [f].

(=) Let v be surjective, f, : A = {x} ¢ X and v[f |° = [f]. If we restrict the
homotopy from f* to f, to o x I, we obtain a path from o to x.

(a): (=) Let v be injective. Then, by the previous theorem, for z € 7;(X, 0),
x € [A, X]°, v(zx) = v(x), hence zx = x; i.e., 7 acts trivially for every z € 1 (X, 0).
(&) Let vx = vy. Then there exists some z € m1(X,0) with zx = y. If 71(X,0)
acts trivially, then x = y; and hence v is injective. O

Definition 3.9. X is called n-simple if X is S"-simple. X is called simple if
X is A-simple for every well-pointed space A. Here, A € Obj(T 0 x?) is called
well-pointed if {o} € A is a closed cofiberation.

In this context, the following notion should also be mentioned: A € Obj(J ¢ 2?)
is called h-well-pointed if {0} € A is an h-cofibration.

3.1.4 Example

Every element of m1(X,0) can be represented by a map u : [0,1] — X with
u(0) = u(l) = o. If we combine maps S' — X with the map g : I — S!,
q(t) = (cos 2nt,sin 27t), this induces a bijective map

[Sl, (X,0)]° = n1(X,0)

If we identify with this map, the action of m1(X,0) on [S', (X, 0)]° takes the
form

ulf1=[ul + [f] - [u]

(Proof is left as an exercise). As a consequence we get: A space X is 1-simple if
and only if 71 (X, 0) is abelian and X is path-connected.

3.1.5 An h-equivalence induces a bijection.

Lemma 3.10. Let y : X X I — Y be a homotopy, ¢ : ¢é ~n, and let g : K — X
be an object in T on®. Then the following diagramme is commutative:

[4, (X, 9)]"
/ 17
[4, (¥, £0)1" Y [4, (¥, m)]*

Here, &, (corresponding to n.) is defined by £.[ f1X = [£f]K for f € [A, (X, g)]K.

Proof. Let [f]X € [A, (X,g)]X. Then ¢ o (f x id) is a translation of £f along
Yoo (g xid). O
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Theorem 3.11. Let £ : X — Y be an ordinary h-equivalence. Then &, :
[A, (X, 9)]K = [A, (Y,£9)]K is bijective.

Corollary 3.12. If A, X, Y and & are pointed and & is a (not necessarily
pointed) h-equivalence, then &, : [A, X]° — [A,Y]° is bijective.

Proof. Let & be h-inverse to & and let ¢ be a homotopy from & ¢ to idx. Then,
by the lemma, the following diagramme is commutative.

[A, (Y, é9)]F
(A, (X, )X [A, (X, € é9)]K
(A, (X, )X

So & has a right inverse. Similarly, we see that &, has a left inverse. Hence, &,
and &, are bijective. O

3.1.6 Naturality of induced maps

Theorem 3.13. Let K — B and K — A be closed cofibrations. Given « : BtoA
inTonpX, € : X > Y inTon, andu : K x [0,p] — X in PKX. Then the
following diagramme is commutative.

[A, (X, u0)]K —5 [A4, (X, u,)]¥

[d,fl"l L[a,‘f]"

[B, (Y, €uo)]® — [B, (Y, éu,)1*

Eu

Here [a, €15 : [f1X o [éfa]®

Proof. If f is translated along u with ¢, then £fa can be translated along &u
with £p(a X id[o’pJ). O

3.1.7 Casei: K — A s a h-cofibration.

We want to generalise §§(3.1.2) - (3.1.6) to this case. By Corollary (1.75) there
exists a closed cofibration j : K — B and an h-equivalence @ : B — A under K.
We define

u:[A, (X,Mo)]K — [A, (X, up)]K
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by stating that

[Bv (X’O )]K - [B’ (X9 up)]K
Eu

is commutative (a* is given by a*[f]1X := [fa]X.) By (3.1.6) it follows that this
definition is independent of the choice of j : K — B and a.

The propositions, theorems, and corollaries from (3.1.2) - (3.1.6) can now
be applied to the more general case. Similarly for the definition of A-simplicity:
if a space is A-simple for every well-pointed space, then it is also A-simple for
every h-well-pointed pace; thus, the definition of “simplicity” does not change
its content.

Remark 3.14. Theorem (1.62) can be viewed as a special case of the theory
presented here:
i.e, a comparison in 7 ¢nh and T ¢ 2% h between

isomorphisms in Theorem (1.62), vs

morphisms here.

3.1.8 Category of pairs

For a category € we have formed in (0.16) the category of pairs €(2). €(2) has
as objects the morphisms a : A - A’, g : X — X', ... of € and as morphisms
a — g for the pairs (f: A = X, f : A" = X) with gf = fa.

I x

Q
<

8

’ ’
_

f

b

We want to consider the category of pairs in particular for € = T 02X, In
T 02X (2) we have a notion of homotopy: A homotopy is a set (ft,f,/), tel,of
morphisms from 7 ¢ 2% (2) such that f, and f, are homotopies in 7 ¢ 2%,
These concepts can obviously be generalised. We will also use the category
T o2%(n) (n>1): objects are (f1,...,fn—1,i)
KSx Dox B oy,
and morphisms are commutative diagrammes

Vil f2 JSn-1

K i X1 Xo X
K Y; Yy Y,

J &1 82 o 8n-1
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The definition of a homotopy concept in T ¢ 2% (n) is clear.

3.1.9 Action of fundamental groupoids generalised

The action of the fundamental groupoid can be generalised to I 2% (2) or
T 0% (n). We sketch this for 725 (2).K

Let K5 AL A be closed cofibrations, let g : X — X and u : Kx[0, p] —» X
be continuous maps. We want to define a map

i[: [(]’ l)’ (g7 MO)]K - [(.]’ l)’ (g’ up)]K

between homotopy sets in 7 ¢ 2K (2).

Let [(f, f)]X be given (with gf = f'j, fi = up). Since i and j are cofi-
brations, one can first find a homotopy ¢ : A X [0, p] — X with ¢y = f and
@ o (i xid) = u and then a homotopy ¢ : A" x [0, p] — X’ with % = f and
@ o(jxid) = gog. (¢,¢) can be called a translation of (f, f) along u. We set

al(f, fO1F = [, )15

One can be convinced that this induces a well-defined map u. Earlier theorems
can also be transferred.

Theorem 3.15. The map (h: K — X) = [(j,i), (g, h)]X and [u] — & =: [u]
defines a functor
nkx — Sets.

Theorem 3.16. Let (fo,f(;) — (J,i0) - (g,up) am/i (fl,fl') :(j,i) > (g,uy) be
morphisms in T 025 (2). Then [(fo, f)] = [(f1, f)] in Ton(2)h if and only
if there exists some u € PXX from (X,ug to (X,u1) such that

[Cfrs FO1E = @l (fos f)]¥.

Specifically, if K is a one-point space and j and g are pointed maps, then we
are interested in

[j.gl” — [Jj.gl.

If this map is bijective, then g is called j-simple. If j is the inclusion $*! c E",
we say n-simple instead of j-simple.

(3.1.6) also has its counterpart here, which, as in (3.1.7), can be used to
replace “closed cofibration” in the assumptions with “h-cofibration” (see the fol-
lowing section).

3.1.10 (3.1.5) and (3.1.7) generalised

While (3.1.9) almost automatically regenerates what was said earlier and we
could therefore be brief, we need to go into more detail about generaliations of
(3.1.5) and (3.1.7).
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Theorem 3.17. Let

KDoA a2y Iy, (3.18)

be a sequence of h-cofibrations f <, regarded as an object in T on®X(n). Then
there exists an object

KB 5B, 5. 2B, (3.19)

in T o n% (n) with closed cofibrations g; that is h-equivalent to (3.18) in T o 2% (n).

Proof. We proceed by induction on n. For n =1, see 1.75.
Let the following diagramme represent an h-equivalence in 7 ¢ 2% (n—1), where
n>2:

K Jo Ay et Apq
H lhl Lhn_l
K——>B, . B,y

Let the following diagramme be a Cartesian square:

fh—l

Ap-1 — Ay

hnlj lh

B,_1 iﬁ-B

Then i is an h-cofibration and & is an h-equivalence (see (2.132) (b), (2.137)).
We replace i by a closed cofibration g,,—; such that k is an h-equivalence under
Bn_12

By ——B

|
8n-1

B,

Let h,, = kh. We show that (h1,...,h,) is the equivalence we are looking for.
Let (h'1 cee, h;z—1) be h-inverse in ¢ 2% (n - 1) to (hi,...,h,_1), and let ¢, _;
be a homotopy from h’n_lhn_l to ida,_,, which is somewhat constant. Then
there is &, : B, — A, and @, : h,h, ~ids, with

h,ngn—l = fn—lh,n_l

and
on(fu-1(a),t) = fu—10n-1(a, min(2t, 1)).

From this it easily follows that (h,1 ...,k has an h-right inverse (hy,...,h,)
(assume a constant homotopy at homotopies ¢1,...,¢,-1). The existence of hn
and ¢, with the properties mentioned can be seen from the proof of theorem
(1.76). o
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3.1.11 The category I on(n)
From the category I ¢ z(n), let the objects

. iy iz in-1
(iy): A > Ay = --- 15 A,

F): X hxd Iy,

(g) : Ylg_1>y2g_2>...§";l_>yn

be given and the morphism (&,) : (f,) — (g,)- Let i, be h-cofibrations, and
&, X, —> Y, be h-equivalences. (&,) induces a map between homotopy sets

(&v)s = [(y), ()] = [(Gy), (8)]-
Theorem 3.20. (&,). is bijective.

Proposition 3.21 (Addition). If f, and g, are h-cofibrations, then (£,) is an
h-equivalence in T o pn(n).

We prove the theorem by induction on n. The induction step is based on the
following Lemma 3.23 and 3.24. Because of (3.1.10), we can restrict ourselves
to the case that the i, are closed cofibrations.

Lemma 3.22. In the commutative digramme bellow let j be an h—cofibrartion
and & be an h-equivalence.
J
A ——

f

N=<=—W
o0

X ——

3
Then there is a map F : B — X with Fj = f and éF =~ g rel A.

Proof. We consider f: A — X and gj : A — Y as objects of T ¢n4. ¢ induces

& LB ), (X, N1 = (B, ), (Y, g)]™

By (3.1.5), &, is bijective. Hence, there exists F such that & F4 = [g]4, Q.E.D.
m}

Lemma 3.23. Given a commutative diagramme below in which i is a closed cofi-
bration, & and & are h-equivalences and (fao,fla;)) is homotopic to (fal,f'a'l)
by a homotopy (¢, ¢).

Ay Ly
i[\ f lg
A/ ’ ’

ror ’ Y

ag,a; &

Then
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(a) There ezists a homotopy ¥ : ap ~ a1 with £¥ ~ grel A X I.

(b) For every homotopy ¥ with the property mentioned in (a) there exists a
homotopy ¥ : a'O ~ a,l with &Y ~ ¢ rel A" x I and f¥ =¥ o (i xid;).
Proof. (a): We apply Lemma 3.22 to the diagramme below:

AX]——=AXI

ao,alt L‘P

X—Y

(b): Let ¥ : ap = a; be given and a homotopy ® : ¢ ~ £¥relA x I. By
assumption, furthermore, go = ¢ (i X id;). One sees that

g®, &ay Eay, ¢
together define a map from
AXIXTUA XOXTUA x1xTUA xIx0

to Y’ (to the middle summand independent of the I-coordinate), which can be
extended to A" x I x I. Restricting this extension to A" x I x 1 gives a homotopy
¢, & ay =& ay with o1|ax; = g€ and ¢, 4 rel A X 1.

We now determine, by Lemma 3.22, a ¥ in the following diagramme

AXTUA xI——= A x1I

X’%Y,

£

where T|axr = fU, T|y o = alo, Tl gy = a’1. Then ¥ has the claimed properties.
]

Lemma 3.24. Let the following commutative diagrame given:

u 3

— Y <X

Y
lg g

’ ’ ’

_— -
’ ’

u 3

-

b

Let i be a closed cofibration, & and & be h-equivalences, v : A — X be a map,
and ¢ : &v =~ u be a homotopy. Then there exists a map v : A" — X and a
homotopy ¢ : €V ~u' withv'i = fv and ¢ (ia,t) = ge(a, min(2t,1)).
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Proof. We have bijective maps
C E 8P 1 s .
[A’(X’fv)]A—>[A’(Y’ffv)]A—_)[A’(Y’ul)]A-
Let [v']4 be chosen such that gg&.[v']4 = [u'%]2. This means:

(1) v'i= fv.

(2) &€V can be translated along g¢ to a map that is homotopic to " under A;
this yields a ¢’

O

Proof. (of Theorem 3.20) We prove by Lemma 3.23 that (&,). is injective, and by
Lemma 3.24 that (£,). is surjective. For injectivity, we prove the sharper claim
by induction on n: If a homotopy (¢,) : (¢éya, = (&,b,) is given in T o n(n),
then there exists a homotopy (¥,) : (a,) =~ (b,) with &%, ~ ¢, rel X, x I.
Lemma 3.23 clearly provides the induction start and induction step. Lemma
3.24 provides the induction step for the proof of surjectivity. O

Proof. (of the additional proposition 3.21) Since (£,). : [(gv), (fv)] = [(gv), (g+)]
is bijective, there exists (nv) such that (£,7,) ~id. From (&,1,&,) ~ (idoé&),) =
(¢, oid) and the bijectivity of (£,)., it follows that (1,£,) = id. O

3.1.12 Suggestion for further studies

We mention extensions of the theory that the reader may carry out for their
own benefit.

First, the generalisation of (3.1.10) and (3.1.11) to infinite sequences.

Second, the dual situation: Let p : E — B be an h-fibration. Let u : f ~ g be a
homotopy from f: X — B to g: X — B. Define

u: [(X’f)’E]B - [(X»g)»E]B

Develop properties analogous to (3.1.1) - (3.1.11).

3.2 Suspension and loop space

3.2.1 Suspension

Definition 3.25. Let X € Obj(T ¢z). In X X I, we identify both X x 0 and
X x 1 as a point, respectively. Let £'X be the resulting factor space (intuitively:
a double cone over X). X'X is called a suspension of X. Let [x,] be the image of
(x,7) in X' X. If f: X — Y is a continuous map, then (X' f)[x,?] = [fx, ] induces
a well-defined continuous map ¥ f : £'X — X'Y. We thus have a functor

Z/:P/”op—uo/‘op, X 3X, fb—>2/f.
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¥ is compatible with homotopies and therefore induces a functor 7 ¢ph —
T ¢ zh, which will again be denoted by %'
Let X € Obj(TJ ¢ ). The factor space

EX=XXI/(Xx0UXXx1UoxI)

is called the (reduced) suspension of X. Let [x,t] be the image of (x,7) in XX.
The canonical projection p : £ X — X is an identification. We again have
functors

2:Ton° > Ton®, T:Top°h— Tonh

(The set identified to a point becomes the base point of £X.)

Theorem 3.26. Let X € Obj(T ¢2°) be well-pointed (i.e., 0 — X be a cofibra-
tion). Then p : Y'X — XX is an h-equivalence and X is well-pointed.

Proof. We consider the two cocartesian squares:

XXO0UXX1UoXT —>ox]——s0
a[ lb LC
XxI ¥ X —— XX

Since a is a cofibration, so also b and then ¢ (see (2.132) (a)). And since r is an
h-equivalence, so also p (see (2.137)). i

Ezample 3.27. (1) X'S" is homeomorphic to $"*!'. A homeomorphism is given
by [x,t] — (sinnat - x, cosnt).

(2) Let eq,...,e, be the canonical basis of R". Let e; be the base point of $"~1.
A pointed homeomorphism

hy : ZS" > 8"
is described by

e —x e —x

+ si 2t)1
S1N 27T 5

1
hylx,t] = §(e1 + Xx) + cos 2nt - €41

(We regard R" ¢ R™*! by e; > e;, i < n).
3.2.2 Loop space
Let X € Obj(TJ ¢2°). The space
QX :={w:I - X|w(0) =w(l) =0} c X!

with the topology induced by X! is called the loop space of X.
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Let PX = {w : [0,e,,] — X|0 < e, < o0} and R* = [0, 00[. w > (e, W :
R* — X), w(t) = w(min(z, e,y)) yields an injection PX — R* x X®". Let PX
preserve the induced topology. We consider the subspace

QX ={w:[0,en] = X|w(0) = w(e,) =0}

of PX. QX is also a kind of loop space of X; unlike QX, the parameter interval
of a loop in QX can have any length.

We define a “+” operation in QX as follows: if u : [0,e,] — X and v :
[0,e,] = X are in Q'X, then

v+u:[0,e,+e,] & X

is defined by
u(t) for t<e,
v(t —ey) for t>e,

(v+u)t:= {

Theorem 3.28. (Q X, +) is a topological monoid.

Proof. The operation “+” is associative, and k : [0,0] — X, k0 = o, is a neutral
element. It remains to prove the continuity of (u,v) — v + u. Q X was defined
as a subspace of R* x X®".

We therefore have to prove the continuity of the two component maps in

((euv ﬁ), (ev;‘;)) = (eu + ev’m)

This is clear for the first component, because ((e,, %) > e, is continuous. The
second component is continuous by Theorem (2.6) if the adjoint map

RYXQXXQX =X (1, (ew, ), (€0, V) = (VFu)(1)

is continuous. However, by definition of +, this is continuous on the closed parts
t <ey, (ort > e,) of the domain, since the evaluation map XB xR - X is
continuous because R* is locally compact (cf. (2.11), (2.12)). m]

3.2.3 Comparison of QX and Q' X

We compare QX and Q X. The inclusion QX ¢ Q X of the sets is a topological
embedding; for X! — R* x X*", w  (1,W), is an embedding because a left
inverse exists.

Theorem 3.29. QX is a deformation retract of Q' X.

Proof. We define a homotopy ¢ : @ XxI — Q' X by ep(w,t) = (1=1)e, +1 where

ew
(I=t)ewyt

(0. 1)(s) = w(

@(k,t)(s) =0 (k is the neutral element of Q'X).

s), ey >0,
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If ¢ is continuous, it is a homotopy with the desired properties. For the conti-
nuity of ¢, the continuity of

R XQXXxI—X (s,w,t) = @(w,1)(s)

is crucial (cf. the continuity consideration in (3.2.2)).

This map is certainly continuous for (s,w,t) # (0, k,0), since (s,e, 1)
se/((1 —t)e +t) is continuous for e > 0, ¢t > 0 or e > 0, t > 0. For the point
(0, k,0), we conclude as follows: Because of the continuity of b : Q' X x R*,
b(u,t) = u(t), for a neighbourhood W of o € X there exists a neighbourhood
U XV of (k,0) with b(U xV) c W. We can choose U so small that for w € U,
ey > 1, and we can assume that V has the form [0,a[. For (s,w,1) e VXU X I
then ¢(w,1)(1) e W. O

Remark 3.30. QX has as its base point the constant path I — {0} c X. QX C
Q'X is therefore not pointed. & : Q' X — QX, é&(w) = ¢(w,1), on the other
hand, is pointd and an ordinary h-equivalence. If X is h-well-punctured, ¢ is an
h-equivalence in J ¢z, as follows from the next theorem.

Theorem 3.31. If X is h-well-pointed, so are QX and Q'X.

Proof. We use the local characterisation of h-cofibrations (see (1.94)). Let V be
a halo of o that can be contracted to o in X. Then QV and Q'V are haloes of
0 in QX and Q'X, respectively, with the same property. (If v is a halo function
for V , then v', v'(w) = max,c; v(w(t)), is a halo function for QV.) O

3.2.4 Adjointness of functors ~ and Q
We recall the adjunction
Topn(XxLY)=Ton(X,Y),

where a map f : X x I — Y is associated with the map f defined by f(x)(r) =
f(x,1) (see (2.17)). If X and Y are pointed, then f(Xx{0,1}) = {0} is equivalent
to f(X) c QY and f({o} xI) = {0} is equivalent to f(0) = 0. Thus, canonical
bijections
Ton’(ZX,Y) =T on’(X,Q)
[ZX,Y]° = [X,QY]°

are induced. For Y = £X the identity of £X corresponds to amap k : X — Q¥X.
The following diagramme is commutative:

[A, X]° —=> [ZA, £X]°

Lk

[A, QZX]°

The study of X is thus reduced to the study of the map k.
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3.3 H-spaces and co-H-Spaces

3.3.1 H-spaces
Let Y be a topological space. A continuous map
pYXY—-Y

is called a connexion in Y. u is called h-associative if the following diagramme
is commutative up to homotopy:

id
Yxyxy 25 yxy

Let T : YXY — Y XY be the interchange of the factors, T (x,y) = (y,x). u is called
h-commutative if the following diagramme is commutative up to homotopy:

Y x

~

— T  syxy

RN

Let n € Y and v, : Y — Ybe the map with constant value n. n is called
an h-neutral element for u if the following diagramme is commutative up to

homotopy:
VV

Y x
by

~

\ /%

X

In the above diagramme, we denote [f.g] : A > B xC the map with the
components f: A — B, g: A—C.)
With n, every element of the path component of » is also h-neutral for u. If

n and m are h-neutral for u, then with v, v, = viu, v,vi = v, we have

Vm = /.l[Vn, id]v,, = ,u[Vana Vm] = ,U[Vm Vm] = ﬂ[vn, VmVn] = l’l[ida Vin] = Vs

So n and m lie in the same path component of Y.
Let u be a conjunction with h-neutral element n. A map ¢:Y — Y is called
an h-inverse for u if the following diagramme is commutative up to homotopy:

[¢,id] [id, ]
— > Y X -

N3
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If only the right (resp. left) triangle is h-commutative, then ¢ is called the h-right
(resp. h-left) inverse of u.

We can formulate analogous notions in the category I ¢ 2°. For a connexion,
u(o,0) = o holds, and an h-neutral element is necessarily the constant mapto
the base point 0. The above diagrammes must be commutative up to pointed
homotopy.

Definition 3.32. A pair (Y, u) consisting of Y € Obj(J ¢z) and a connexion
u in Y that has an h-neutral element is called an H-space. The term pointed
H-space is defined analogously.

Remark 3.33. For the category-theoretical aspect of these conceptual forma-
tions see Brinkmann-Puppe [4], 7. We are primarily concerned here with the
geometric side of the theory.

Ezample 3.34. (1) Topological groups.

(2) Topological monoids. In particular, Q' X with the connexion u(u,v) =v +u
(see (3.2.2)). (Q' X, u) is even a pointed H-space with a strictly associative
connexion. Furthermore, the pointed map

QX5 QX, w=-w, —w():=wlew—1),
is a pointed h-inverse for y. The homotopy
0 QXTI > QX ew.1) = ~(Wlose,1) + Wliose, -
for example, shows that ¢ is an h-right inverse.
(3) QX with the operation u(u,v) = (v +u) is an h-associative H-space with an

h-inverse (in 7 0 2°). Proof is left as an exercise.

3.3.2 Induced connexions

A connexion g in Y induces a connexion
s [A Y] X [AY] — [AY]

for every A : we set

w(Lf], [gD) = [uo [f,gll.

If u is h-associative (resp. h-commutative), then u. is associative (resp. com-
mutative).

If n is h-neutral for u, then the class of the constant map v4 : A — Y
with value n is a neutral element for u.. If ¢ is an h-inverse for u, then [c¢f]
is the inverse of [f] € [A,Y] with respect to u.. All of these statements are
easily verified (see Brinkmann-Puppe [4], 7.6). The same applies to pointed
connexions and homotopy sets.
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Examples (2) and (3) from (3.3.1 give the following conclusion: Let A €
Obj(T epn), Be Obj(T¢r?%), X € Obj(T ¢2°). Then

[A,QZ], [A,QX], [B.QX]°, [BQX]°

“are” groups.
The connexion . is natural, i.e., if @ : B — A is a continuous map, then

a* : [A,Y] — [B,Y]

is a homomorphism with respect to .. If 4 has an h-neutral element, then ax*
preserves the neutral elements, a*[va] = [vg].

3.3.3 Loop space morphisms

Let 1 be a connective in ¥ and g be a connexiion in Y. For £ : ¥ — Y’ let the
following diagramme be h-commutative.

Yyxy 2oy

M

Y xY ——=VY
u

We then say that & is a homomorphism up to homotopy from (Y, u) to (Y , ).
The induced morphism

£ ([A Y] ) = ([AY ], 1)

is a homomorphism. Neutral elements are not preserved without an additional
condition, but they are preserved in the pointed case.

Theorem 3.35. The map ¢ : Q X — QX, é&(w) = wy, defined in (3.2.3), is a
pointed homomorphism up to homotopy.

Proof. We have to show that the maps (u,v) — (v +u); and (u,v) — (v;+uj)s
are pointed homotopic. A homotopy

P AXXQX X > QX
is given by
@(u, v, 1) = (ve +up)s
where u; is the path

u;(s) = u(

sey

—— |, 0<s<1l—-t+te,:=ey.
1—t+teu) “ e

m|
Corollary 3.36. (1)) &, : [A,Q X] — [A,QX] is an isomorphism for every A.

(2)) & : [B,QX]° — [B,QX]° is an isomorphism if B or X is h-well-pointed.

Proof. ¢ is a homotopy equivalence. ¢ is a pointd h-equivalence if X is h-well-
pointed (see (3.2.3)). If B is h-well-pointed, (3.1.7) applies. m]
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3.3.4 Well-pointed H-spaces

Theorem 3.37. Let (Y, u) be an H-space with h-neutral element n. Let {n} —» Y
be an h-cofibration. Then there is a map u homotopic to u such that (Y, i) is
a pointed H-space. [u']° is uniquely determined by u. If u is associative (resp.
commutative) up to homotopy, then ,t/ is associative (resp. commutative) up to
pointed homotopy. If 1 : Y — Y is h-neutral for u', then there exists a pointed
{ 1Y =Y that is h-neutral for u'; [[']° is uniquely determined by [('] = [d].

Proposition 3.38. If, moreover, Y VY = Y X {n} U {n} XY Cc Y XY is an
h-cofibration, then there exists ' with

f(ny)=p(y.n)=y foral yev.

Then n is a (strictly) neutral element for i . The condition on Y VY C Y XY is
satisfied, for example, if {n} — Y is a closed cofibration (see (1.104)).

Proof. Let a,B :Y — Y be defined by a(y) = u(y,n), B(y) = u(n,y). Since n is
h-neutral for u, there exist homotopies cy : @ ~id, ¥ : B ~ id. We use the paths
u and v, which are defined by u(t) = ¢(n,t), v(t) = ¥ (n,1).

Using the notations from §3.1, then

[o]” = (=)™, [B]7 = (=»)!)

(It is clear which points are to be considered base points.). o

3.3.5 Action of 71 on pointed H-spaces

Theorem 3.39. Let (Y,u) be an H-space with neutral element n. Let Y be
pointed by a base point that lies in the path component of n. Let A be h-well-
pointed. Then n1(Y) acts trivially on [A,Y]°.

Proof. We choose a pointed map ¢ : Y1 — Y that is an ordinary h-equivalence
with inverse n and such that o — Y is a closed cofibration. Y7 is an H-space with
the cconnexion py = pomuo (¢ X¢) and the h-neutral element o. &, : [A,Y1]° —
[A,Y]° is bijective (3.1.7), in particular also for A = S*. Because of (3.1.7), it
suffices to prove the claim for [A, ¥;]°. By the additional proposition (3.38), we
can replace pq by a connexion ;1'1 that has a strictly neutral element 0. Now let
f:A—>Yand u: [0,p] = Y with u(0) = u(p) = o be given, tp=/l’10(fXﬂ) is
a translation of f along u, ¢, = f. O

Corollary 3.40. 71 (Y) is abelian. (See (3.1.4))
Corollary 3.41. The maps
[A,Qx]° = [A,QX], [A,QX]° — [AQX]

are injective (see (3.1.3)). For h-well-pointed A and path-connected QX, the
above four groups thus coincide.
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3.3.6 Proof of Theorem 3.37

Proof. (of Theorem (3.37)): We know from (3.3.5) that for an h-well-pointed
space A
[A.Y]? — [A.Y]

is injective. We apply this for A = ¥ x ¥ if u is h-commutative. Then [x'T]°

and [¢']° have the same image [uT] = [u], and are thus equal. We treat

h-associative y in a similar way. The uniqueness of [u']° also follows from this.
If ¢ is an h-inverse for y, then

wy = plid, vl 0wy = plevn, vl = pleid]vy = vy = vy,

Therefore, there is a path w in Y from «(n) to n. ¢ € w[t] is a map with ¢ (n) = n
and (] = [¢]. ¢ is a pointed inverse, since, for example, [u'[¢',1d]]? and [v,]°
have the same image [v,] in [Y,Y]. O

3.3.7 H-spaces with an h-inverse

The following theorem states, among other things, that H-spaces in many cases
have an h-inverse.

Theorem 3.42. (a) Let (Y, ) be an H-space and let Y have a numerable null-
homotopic cover. Then the following are equivalent:

(I) For every x € Y, { : Y = Y, {(y) = u(x,y) (resp. ri : Y > Y,
rv(y) = u(y,x)) is an h-equivalence.

(II) In ([A,Y], 1), for every a € [A,Y], the left translation (resp. right
translation) is bijective.

(b) If Y is path-connected, then €, and ry are h-equivalences.
(¢) If u is h-associative and ([pt, Y], i) s a group, then € and r are h-equivalences.

Remark 3.43 (Conclusive remarks). (a): If the left translation is bijective, then
there is, in particular, a right inverse. From (all) it follows that u has an h-right
inverse (resp. h-left inverse).

(b): If p is h-associative (resp. h-commutative and satisfies (all) and there
exists an h-right inverse ¢, and an h-left inverse ¢, for u, then ¢, ~ ¢, and u has
an h-inverse.

(c): If p is h-associative, [pt,Y] is a group, and if ¥ has a numerable null-
homotopic cover, then for every A, ([A,Y], u.) is a group.

Proof. (of the theorem) (a): Let f : Y XY — Y XY be the map f(x,y) =
(x, u(x,y)). Note that proj; : ¥ XY — Y is a fibration and f is a fibrewise map
proj; — proj;. The map f. induced by f

£ [AY xY] = [A,Y] X [A, Y] — [A, Y] X [A,Y]
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has the form (a, b) — (a, u.(a, b)).

(all) — (al): From the assumption it follows that f. is bijective. This holds
for every A. Hence f is an h-equivalence and then even an h-equivalence over
Y (see (2.85)); in particular, ¢, is an h-equivalence.

(al) — (all): From the assumption and theorem (2.152) it follows that f is an
h-equivalence, hence f, is bijective, hence b — u.(a, b) is bijective.

(b): Let w be a path from x to n. Let ¢, be a homotopy from & to £,. As nis
h-neutral, we have ¢, ~ id.

(¢): Since [pt,Y] is a group, for every x € ¥ there is an x” such that u(x’, x) lies
in the path component of n. Since y is h-associative, £, o £, = holds.
Taken together:

u(x'x

by ole =l =ty =id.

X

£y has an h-left inverse. Similarly, the existence of an h-right inverse follows.
Thus ¢, is an h-equivalence. O

3.3.8 A group structure in [XA, X]°

Let A and X be from Obj(F ¢2°). We have a canonical bijection (see (3.2.4))
[Z4, X]° = [A4,QX]°.

In (3.3.2), we introduced a group structure in [A, QX]°, which we can transfer
to [ZA, X]° using the bijection. This connexion in [ZA, X]° can be described
explicitly as follows:

Let f,g: XA — X be given. We define g+ f : XA — X by

fla,2t], t <

@+ﬂwﬂ={ﬂm%_u .

N D=

The connexion is given by [g]? + [f]° = [g + f]°. We give another description
of the connexion in [XA, X]°. If X,Y € Obj(J ¢ 1), we denote by X VY their
sum (= their coproduct) in T ¢ 2°.

Given f: X -5 Z,g:Y —» Z from Top°, let (f,g): XVY — Z be the map
that is equal to f on X and g on Y. Let i1,is : ZA — XA V ZA be the injections
of the summands. With the map

y:ZA > TAVIA,

defined by

fla,2t], t <

@+ﬁwﬂ={ﬂ%m_u .

N[ D=

we have [g]? + [f]° = [g+ 17 = [{f.g) o ¥]°.
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3.3.9 Co H-spaces

The relationships from (3.3.8) lead to the following definitions, which are dual to
those from (3.3.1). Let C be a pointed space. A continuous map (from T ¢ 2°)

y:C—>CvVvC

is called a co-connexion in C. v is called h-associative if the following diagramme
is commutative up to pointed homotopy.

c L4 cvC

CVC = (CVOVC=CV(CVO)

v has an h-neutral element if, with the constant map v : C — C, the following
diagram is commutative up to pointed homotopy.

cvce

P
c id c
x %1

cvce

The reader should formulate when vy is called h-commutative and when an h-
tnverse exists.

Definition 3.44. A pair (C, y) consisting of C € Obj(J ¢ 2?) and a co-connection
v in C with an h-neutral element is called a (pointed) co-H-space.

From (3.3.8) we see that (£A,y) is an h-associative co-H-space. y has an
h-inverse.

Other concepts that refer to H-spaces can also be transferred to Co-H-spaces.
Thus, a : BtoA from T ¢ 2° induces a homomorphism Za : B — XA of Co-H-
spacems, and Za induces a homomorphism for every X € Obj(J ¢ 2°)

(Za)" : [ZA, X]° — [2B,X]°,  (Za)'[f]° = [f o Za]°.

This homomorphism is “natural in X”. We further have a commutative dia-
gramme of homomorphisms

[A,QX]° —%~ [B,QX]°

[ZA, X]? —— [EB, X]°
Za)”
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Similarly, £ : X — Y from T on° yields a commutative diagramme of homo-
morphisms

[£4, X]° — > [2A,Y]°

[A,QX]O W [A,QY]O

Q¢ is a homomorphism of H-spaces.

3.3.10 Pointed co H-spaces

Theorem 3.45. Let (C,y) be a pointed co-H-space and (M, u) a pointed H-
space. Then the connectives induced by y and u in [C,M]° are identical and
are commutative and associative.

Proof. We will resort to the Eckmann-Hilton argument.

We write the connexions in [C, M]° as +, and +,. We workin T¢2°. 0:C —
M, represented by the constant map, is neutral for both connexions. We have
the projection py : MXM — M onto the factors and the injections iy : C - CVC
of the summands (k,£ =1,2). For f: CVC — M XM, we set fip = pro foig.
Itis uf = p1f +u pof and fy = fi1 +, fis. It follows that

(f11 +y f12) +u (fo1 +y fo2) = (uf)y = u(fy) = (f11 +u f21) +y (f12 +u f22)-

If we set fi2 = fo1 = 0, the coonnexions are equal. This yields commutativity if
we set fi1 = foo = 0. fi2 = 0 demonstrates associativity. O

Corollary 3.46. The two group structures in [ZA, QX]° are equal and abelian.

From this, we obtain, by the adjunction [ZA,QX]° = [Z24,X]° (224 =
(XZA)), that the two connexions in [22A, X]°, which we will describe shortly,
are equal. Namely: Given f,g:X2A — X, we can form

fla,2s,t], for s

(g +1 Nla,s.1] = {g[a,2s— 1,1] for s

IV IA
N|= D=

(comes from XA) and

fla,s,2t], for <
gla,s,2t —1] for t>

(g +22 f)[a’s’t] = {

N N

(comes from QX).
Corollary 3.47. X, : [ZA, X]° — [Z24,2X]° is a homomorphism.

Proof. X(g+1 f) = Xg +1 Zf. Following the previous remark, we can use +; as
a connexion. O
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Corollary 3.48. The two connections in Q2X are homotopic and h-commutative.
The same applies to the co-connections in TA.

A proof is based on the remark that a natural operation in [Y,Z]° “in Y”
induces an H-space structure in Z that is h-commutative (resp. h-associative,
resp. ...) if the connexion in [Y,Z]° is commutative (resp. associative, resp.
...). For a detailed treatment of these questions: see Brinkmann-Puppe [4], 7.8.

3.3.11 Well-pointed co H-spaces

Let (C,y) be a Co-H-space. Let C be h-wellpointed. Let X be a topological
space and u : [0, p] — X be a path.

Theorem 3.49. i : [C, X, (u(0))]° — [C,(X,u(p))]° is a homomorphism.

Proof. First, let {0} c C be a closed cofibration. Let f,g : C — (X,u(0)) be
given and let ¢ (resp. ¢) be a translation of f (resp. g) along u. Then (¢, y;)oy
defines a translation of g + f along u with the end ¢, + ,*.

If C is only assumed to be h-well-pointed, then we can find a co-H-space
(C',Y") and a pointed h-equivalence €' — C, which is a homomorphism of co-
H-spaces up to homotopy (cf. proof of (3.39), beginning) and where further
{o} c C is a closed cofibration. The claim in this case follows from (3.1.7). O

Reference Brinkmann-Puppe [4].

3.4 Homotopy groups

3.4.1 Definition of homotopy groups
In (3.2.1) we have specified a homeomorphism
hy ZS" > 8"
Thus, we define a homeomorphism
skgn—k » gn

by hy o (Zhy-1)o---0 (Zkilhn—k+1)-
With these fixed homeomorphisms, we have isomorphisms for X € Obj(J ¢ 2?)

[s".X]° = [£8"7", X]° = [Z*s" 7K, X]°.

More precisely:

For n > 1, we define a group structure on [S", X]? by the first bijection. By
(3.3.10), we can use any of the k “attachment coordinates” in [Z¥S"~%, X]° to
define addition. X#,_; induces a homomorphism for i > 1.

For n = 0, we can identify [S°, X]° with the set of path components of X; [S°, X]°
is a pointed set, with the component of the base point as the base point.
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Definition 3.50. We set n,(X) = [S", X]°. 7, (X) is called the n-th homotopy
group of the (pointed) space X.

m,(X) is a group for n > 1 and an abelian group for n > 2. The group

structure was initially defined with a fixed homeomorphism 4, : £S"~1 = §”".
We will see later to what extent this structure is independent of the choice of a
homeomorphism £§"71 = §" (cf. (3.7.3)).

71(X) is canonically isomorphic with the fundamental group 71 (X, 0) defined
in (3.1.1) (cf. (3.1.4)).

The chain of isomorphisms

[Sn,X]” ~ [ZkSn_k,X]o ~ [an—k—l,QkX]o ~ [Sn_k,QkX]o
yields an isomorphism for n > k (using (3.45))
7 (X) = M-k (QFX).

For n = k > 0, one can of course define a group structure in my(Q"X) using the
H-space structure of Q"X; then the latter isomorphism also holds for k = n.
It should be clear how, for n > 1, m, can be considered as a functor from

T ¢ 72°h into the category of groups.

3.4.2 A modified description for the homotopy groups

We now give a modified description for the homotopy groups of a space X.
For n > 1, let

I”l = {(t179tn)|t € I}
or* = {(t1,...,ty)|t; =0 or 1 for at least one i} c I".

We consider 19 as the one-point space {z}, dI° as the empty set, and 1°/61°
as {0,z}. By the rule 0 — 1, z — -1, we identify 1°/01° with S°. For n > 1,
let AI" be the base point of I"/dI". We apply the definition of suspension (see
(3.2.1)) and obtain canonical homeomorphisms

S(I"/OIY) = I" X I1/AI" x T U I" x I = "1 /o1,

Combining these homeomorphisms with those given at the beginning of the
paragraph, we get (canonically)

1"/01" = 3" (1°/91°%) = £"(s°) = s".
Elements of 7, (X) can be represented in this way by maps
[ o1") — (X, 0)
The group structure in 7, (X) is induced by the rule

f(t17' . ‘9ti*1’2ti’tl'+1’ .. -’tn), tl S %
glty, . utic1, 2t = Ltiga, . ty), 4 2

(g+ )t1,..oty) ={

N[

(for any i with 1 <i < n).
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3.4.3 Relative homotopy groups

Let g : X' — X be from T o° and A € Obj(T ¢2°). We set
CA=AXI/(Ax1UoxI)
and have an embedding (!)
i:A=Ax0cCCA.

We consider the homotopy set [i, g]°, i.e., in the category T ¢ 2°(2) (cf. (3.1.8)),
homotopy classes of pairs (f, f) that make the following diagramme commuta-
tive.

We look at the auxiliary space
Fy = {(x",u)|u(0) = g(x),u(1) =0} c X x X".

To a pair (f, f), we assign the map f : A — Fg, which is defined by f(a) =
(f (a),u), u(t) = fla,t]. It is confirmed that this induces a bijective map

[i.g]° = [A, F,]°

If A is a suspension, A = £A', then we can impose a group structure on these
sets. [a,t] — (1 —t)a + te; defines a homeomorphism CS"! = E" that makes
the following diagramme commutative.

Sn—l c En

|

CSn—l

14

We use this homeomorphism in the following definition.
Definition 3.51. We set
ma(g) = [S"~ CE,g]” = [S"71 5 B, g]” = mma (Fy).
Specifically, if g : X' c X, then we also write pi,(X,X for m,(g) and denote

7,(X,X') as the n-th (relative) homotopy group of the pair (X,X). m,(g) is
defined for n > 1 and “is” a group for n > 2 (abelian for n > 3).
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3.4.4 Another description for the relative homotopy groups

We now give another description for the relative homotopy groups of a pair
(X,X"). We have canonical homeomorphisms

Snfl ~ Infl/alnfl
CS" L "l /At x 1u Tt x 1).

We put
JL=arm T xTu T x 1.

Then we can represent elements of 7,,(X, X') by maps
fomar,J — (X,X',0)

The group structure is induced by the following rule:

flt, o tic, 2t o t), 1 S %
g(tl"'~7tl'*172ti_l’ti+1’~"’tn)a tlZ

(g+f)(t1’~--7tn)={

N[

for any i with 1 <i < n—1. The reader should follow the path from the definition
in (3.4.3) to this rule.

Proposition 3.52. The canonical projection
p:(I",01",0) — (I"}/J"" 1, 81" [J" 1, 0),
with any o € J""! on the left, is an h-equivalence of pointed pairs.

Proof. J"1 is pointedly contractible. Thus, by Theorem (1.80), applied to the
category I o n°, there are individual h-equivalences. Now apply the analogue
to Theorem (1.76) for T ¢ n°. i

From this, one derives an isomorphism induced by p

(X, X)) = [I",0; X, X 1°.

3.5 The fibre sequences

In this section let g : X — Y be a pointed map.

3.5.1

We have already considered the spaces

We = {(x,u)|u(0) = g(x)} c X x Y!
Fg = {(x,u)lu(1) = 0,u(0) = g(x)} ¢ W,
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previously ((2.46); (3.4.3)). They appear in the following diagram:
We

RN

Fg—>X——Y
g 8

In this equation, the maps are defined by

r(x,u) =u(l)
qg(x,u) =x
g' =qlr,

J(x) = (x,8(x))

g(x) being a constant path with image {g(x)}.
The following statements hold (Theorem (2.51), applied to the category
T on°):

g=rj, qj=idx, jg=idw,, Jisan h-equivalence, r isa fibration in 7 ¢2°.

3.5.2

Theorem 3.53. Let A € Obj(T ¢2°) and let g, g* be as in (3.5.1). Then the
sequence of pointed sets

[4, F]® 55 [A.X]° 55 [A,¥]°

is exact (i.e., ker g, = im gl, where ker g. = g;1(0)).

Proof. img! c ker g,: This holds because gg' is pointed null homotopic. A null
homotopy ¢; : Fy X II = Y is given by ¢, (x,u) = u(z).

img! o kerg,: Let f: A — X be given such that gf is pointed null homotopic.
Let ¢ : Ax I — Y be a pointed null homotopy of gf. We define f' : A — F by
£ (a) = (f(a), ), with the path ¢ given by ¢%(1) = ¢(a,t), f is continuous
and g' f = f. O

3.5.3

Let g : X — Y be a pointed h-fibration, let F = g71(0), and let i : F — X be the
inclusion. In the diagramme bellow, let k& be induced by j (note that j(F) C F,
since rj = g).

Fy ——W,
\
k g | Y
A
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Now glk =i. j is a pointed h-equivalence, so by Theorem (2.85), transferred to
T opn°, it is even a pointed h-equivalence over Y. Consequently, k is a pointed
h-equivalence.

Conclusion The sequence
[A.F]° 5 [4.X]° 55 (4]

is exact.

Remark 3.54. If one only assumes that g is an h-fibration in I ¢z, one can
only conclude that k is an ordinary h-equivalence.

However, according to (3.1.5 and (3.1.7), kx is bijective in the diagramme if
A is h-well-pointed.
(A, F]°

[A, Fg]°

For this A, the sequence from the above conclusion is exact.

3.5.4
Theorem 3.55. The map g' : F; — X (defned in 3.5.1) is a pointed fibration.

Proof. Let WY c Y! be the subspace of paths ending at the base point. Let
t : WY — Y be the projection tu = u(0). Then ¢ is a pointed fibration and g' is
induced from ¢t by g. O

The space
(g7 (0) = {(x,0)lx = 0,u(0) = g(x) = 0,u(1) = 0} = 0 X QY

can be identified with QY. Let i' : QY — F, be the embedding. Applying the
construction from (3.5.3) to g* instead of g and then the last theorem, we obtain
that

Corollary 3.56. In the following diagramme, k is a pointed h-equivalence.
Fg1 —_— ng

BIRN

2l 8 X

A

QY ——F,
il
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k' is formed analogously as k, and g2 is formed analogously as g'.

3.5.5

The fibre of g2 : Fg1 — Fg over the base point can be identified with QX; let
i? : QX — Fg be the embedding.

In general, we want to understand (-1) : QZ — QZ as the map that trans-
forms every path into its negative.

Theorem 3.57. The following diagramme is commutative up to pointed homo-
topy.

Qg
QX ——= QY

x Lklo(—l)
i

Fg

Proof. By definition we have
Fgl = {((.X, V),I/l)|(.x, V) € Fg,u € XI,M(O) = gl('x’ V),I/l(l) = 0}'

Now, g'(x,v) = x and, by definition of Fg, v(1) = 0 and v(0) = g(x). Therefore,
we can also identify F,1 with the space

{(v,u)|v(0) = g(u(0)),v(1) = 0,u(1) =0} c Y x X!

(by (v,u) = ((u(0),v),u)). The map i? then has the form i%(u) = (0,u) and the
map k' o (=1) o Qg has the form u — (—(gu),0). A pointed homotopy

@ QXX > Gg
with ¢o = i% and ¢1 = k' o (=1) o Qg can be defined by
(u, 1) = (=(guljo, 1> (ule 11

The lower index I here again means: normalisation of the parameter interval to
I O

3.5.6

We iterate the processes described so far and obtain the following large dia-
gramme which is h-commutative ((3.5.5), Theorem). Stage (II) follows from
stage (I) by applying the functor Q. The terms with F,QF,... only occur if g
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is an h-fibration.

(n Q(kl( NG ll)\

.QFl QY F

" \ \1:3 » el N\ i
i AN i
F

g% g g 8

The vertical maps are pointed h-equivalences (if g is a fibration in T ¢%; if g
is only a fibration in ¢z, then k, Qk, ... are pointed maps and h-equivalences
in 7 oz). The map A is chosen, perhaps by composing i*(—1) with an h-inverse
of k.

If g is only an h-fibrttion in 5 ¢z, A will in general not be pointed, but it
maps the base point back into the path component of the base point; i.e., one
can choose A to be pointed in any case if ¥ and thus QY is h-well-pointed (cf.
(3.1.2), (3.1.7), (3.2.3)).

The above discussion results in the following theorem.

Theorem 3.58. The sequence

2
vyExEF, EFp— o

s pointed h-equivalent to the sequence
vy ExEF, car &
and, if g is a pointed h-fibration with fibre F, also to
yExirlar ...

By h-equivalent we do not mean “h-equivalent in the category of sequences”
but only mean “equivalent in the category of sequences above T ¢ n°h”.

Corollary 3.59. For each A € Obj(T 0 n°), the following are exact:

[A,Y]° =—[A, X]° =— [A, F,]° [A,QY]° =— [A,QX]° =——

[ACCAF,]° <— [ZAY]° =<— [ZA, X]° =— - -
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Especially, for A=S° and g : X C Y we obtain the exact sequence
70(Y) — mo(X) — m (Y, X) « m(Y) «m1(X) «---

From the fourth position onwards, the sequences consist of groups and homo-
morphisms.

Corollary 3.60. Let either g be a pointed h-fibration or g be an h-fibration and
A be h-well-punctured. Then the following are ezxact:

[A, Y] =— [A, X]° =— [A,F]° =— [A, QY] =—— [A,QX]° =~—— - --

Especially for A = S° we obtain the exact sequence
mo(Y) « mo(X) — mo(F) « mi(¥Y) e mi(X) -

Remark 3.61. 0 : [A,Q"Y]° — [A, Q" 'F] is induced by the map Q" 'A if g is
assumed to be a pointed h-fibration. In general, however, we must define d by

[A,Q"Y]° — [A4, Q" F]° & [A, Q" 'F)°
Remark 3.62. If one only wants to have the exact sequence of homotopy groups,
one need not require that X — Y be an h-fibration. It suffices to assume that

X — Y has the CHP (= covering homotopy property) for all cubes I, n > 0,
i.e., that X — Y is a Serre fibration (cf. (2.40)).

3.5.7

Let p : E — B be a fibration and a pointed map, and let f : B — B be a
pointed map. We assume that the following diagramme is Cartesian.

E
|
B

E' and p’ are pointed, and p’ is a fibration. Let i : A — CA as in (3.4.3). The
pair (p, p) induces a map

’ g
_—

t

.w\
-

’
—_—

f

o

(p',p)s: 1i,81° = [i, f1°

Theorem 3.63. (p', p). is bijective if A is h-well-pointed.
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Proof. From (3.4.3) we see that it suffices to examine the map
qs [A’Fg]o - [A9Ff]o

Here, g : F; — Fy is the map (x,u) — (p'x, pu). The claim follows from the
following theorem.

Theorem 3.64. If p is a fibration, then q is shrinkable. In particular, q is an
h-equivalence.

Proof. The map p : E — B yields a map W, : WE — WB (see (3.5.4)). Let
fi: Fy — WB be defined by fi(y,w) =w and g; : F; = WE accordingly. Then
the following diagramme is Cartesian.

Fy —2~ WE

X J1

Since p is a fibration, we can construct a section s of W, as follows: The
homotopy ¢ : WB X I — B, ¢(w,t) = w(t) can be raised to a homotopy @ :
WBxI — E with ®(w, 1) = 0. Let the adjoint map to ® be s : WB — WE. sisa
section of W,,. Now, W, is a fibration. (To prove this, consider adjoint maps and
apply the following theorem of Strgm to the closed cofibration Xx1 c XxI.) O

Theorem 3.65 (Strgm [26], Theorem 4). Let p : E — B be a fibration and
A C X a closed cofibration. hen every commutative diagramme in I ¢p of the
form

(XxO)u(AxI)%;E

XXIT-B

can be supplemented by a homotopy ® : XxI — E such that p® = ® and
®|(xx0)u(AxI) = @-

Furthermore, s o W, is an h-equivalence because WE is contractible. By
Theorem (2.85), s oW, has an h-left inverse t over WB. In other words: ts is a
section of W, and ts o W), is homotopic to the identity in T owp; but this just
means: Wy is shrinkable. By (2.112), the shrinkability of the induced object q
follows.

(End of proof for Theorem 3.63)
We mention the following special case.
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Theorem 3.66. Let p : E — B be a fibration and pointed, let o € B C B and
let E' = p~'B’. Then p induces an isomorphism of homotopy groups

mu(E,E) = m,(B,B).

Remark 3.67. This property of the map p above essentially serves to define the
notion of “quasi-fibration.” See Dold-Thom [8].

3.5.8

The dual cofibre sequence is presented in detail in Puppe [19]. There, one also
finds statements about additional algebraic structures at the beginning of the
sequence. For relationships between cofibre and fibre sequences, see [18].

Reference Dold-Thom [8], Nomura [18], Puppe [19].

3.6 The Blakers-Massey excision theorem

Let Y be a topological space. Let Y; and Y5 be open subspaces of Y that cover
Y, Y=Y1 UYQ. We set Y0=Y1 ﬂYQ.
Let

m:(Y1,Y9) =0 for 0<i<p,p>1,
mi(Y2,Y9) =0 for 0<i<g,q21,

for every choice of the base point in Y.
Under these conditions, we have

Theorem 3.68 (Excision Theorem). The map induced by inclusion
t:n(Ya, Yo) = mu (Y, Y1)
is an isomorphism for 1 < n < p+q—2 and an epimorphism for 1 <n < p+q-2.

A theorem of this kind was proved by Blakers and Massey in [1]. See also
Spanier [24], p. 484.

We prove the theorem in (3.6.3). Sections (3.6.1) and (3.6.2) provide prepara-
tory lemmata.

3.6.1

Let pairs A" ¢ A and X' c X be given. A map f : (A,A) — (X, X) is called
compressible if f is homotopic relative to A" to a map g with g(A) c X'. f is
called null-homotopic (f ~ 0) if f is homotopic as a map of pairs to a constant
map k with k(A) c X'.

Lemma 3.69. (a) Let f be compressible and A contractible. Then f is null-
homotopic.
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(b) Let f be null-homotopic and A’ C A be a cofibration. Then f is compressible.

Proof. (a): Easy.

(b): By assumption, there exists a homotopy ¢ : (A xI,A" x I) = (X,X') from
f to a constant map k. Since A" C A is a cofibration, there exists a homotopy
W AxT — X with y(a,1) = ¢(a,1-1) fora € A" and ¢(a,0) = k(a) for a € A.
Let g =y1. We define F: AX I — X by

Fla.1) o(a,2t) for <
a,t) =
v(a,2t—1) for t>

NI N[

and apply the HEP to the pair (this is possible by the product theorem (1.104))
AXTUAXTCAXI

to obtain a deformation of F to F : f ~ grel A" (cf. proof of Theorem (1.62)). O

3.6.2

By an awis-parallel cube in R", n > 1, we mean in the following a point set of
the form

W(a,6,L) =W ={xeR"a; <x;<a;+6forieL,a; =x; fori¢lL}

for any a = (ay,...,a,) €R", 6 >0, L c {1,...,n} (L may be empty). A face
of W is a set of points of the form

W ={xeWl =a;forieLox;=a;+6forjeL}

for some Ly ¢ L, L; ¢ L (W may be empty).
By 0W we denote the union of all proper faces of W. The following subsets
of a cube W will be significant:

6

K,(W)={xeWlx; <a; + 3 for at least p values of i € L},
1)

G,(W)={xeW|X;>a; + 3 for at least p values of i € L},

where 1 < p < n. (Intuitively speaking, K, (W) is the subset of W of points for
which at least p coordinates are “small”.) For p > dim W, we understand K, (W)
and G, (W) to be the empty set.

Lemma 3.70. Given ACY, f:W —>Y, and p <dimW. Let
FHA)NW c K,(W) for all w' c dW.
Then there exists a map g homotopic to f relative to AW with
g7 (A) C K, (W).

(An analogous theorem holds with G, instead of K),.)
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o9(y)
% P(y)
b/
a(y) = By Hty~
“k
Figure 3.1:

Proof. We can assume W = 1", n > 1. Let h: I'" — I" be the following map: Let
x=(5,...,%). For a half-line y beginning at x, consider its intersection points
P(y) with the boundary of [0, %]" and Q(y) with the boundary of I". h maps
the segment from P(y) for Q(y) to the point Q(y), and the segment from x to
P(y) affinely to the segment from x to Q(y). (See Figure 3.1.)

Note that h =~ id;reldI". We set g = fh. Let x € I" and g(x) € A. If
x; < 3 for all i, then x € K,,(I") € K,(I"). If x; > & for at least one i, then
h(x) € OI" and thus h(x) € W with dimW = n — 1. Since h(x) € f~1(A)
also holds, by assumption h(x) € K p(W'). Thus, for at least p coordinates,
% > h(x); = i +t(x; — %). However, by definition of &, t > 1 (since there exists

an { with x; > %) It follows that h(x); > x; ; and for at least p coordinates,

%>xi. O

3.6.3 Proof of the Excision Theorem

We show the epimorphism for n < p + g — 2. First, we convince ourselves that it
suffices to deform a map

£ or,Jmt — (Y, Y1,0)
into a map g such that
projg ' (Y \ Y2) Nprojg (Y \ V1) = @. (3.71)

where proj : I — I"™Y, proj(x1, ..., %) = (X1,...,%n_1)-)

If a map g with this property is given, then we choose (by Urysohn’s theorem)
a continuous function 7 : "=t — [0, 1], which takes the value 1 on the closed set
projg~!(Y \ Y2) and the value zero on 81"t Uprojg=' (Y \ ¥1). (This is possible
because g7H(Y \ Y2) = g 1(Y; \ Yp) with J"~! has empty intersection.)

Let ¢ : I'" — I" be defined by

(X1, x0) = (X1, .0 Xp—1, T+ (1 = T)xp),

where 7 = 7(x1,...,x,-1), and go by go = g o . Then gg can be regarded as a
map
go: (I", 01", " 1) — (Ya,Yo,0)
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The reader may want to verify ¢[go] = [g].

We now show that there exists a map g homotopic to f with the above
property. We partition /" into subcubes W such that either f(W) C Y; or
f(W) C Yo holds. Let Wi, Ws,...,W, be those cubes W for which f(W) c 3
but f(W) ¢ Yo. Similarly, let Wi,W2’, . ,W(;, be those W with f(W) c Y, but
f(W) ¢ Y;. The indexing is chosen so that dim W; < dim W;;; and dim Wlf <
dim Wlf +1- We also set

U, = Uf(W)eYiWa i=0,1,2.

We now construct a family of maps fi : I" — Y, k = 0,1,...,r, with the
properties:

(a) f(W) Y — fi(W) Y.
(b) f71(¥1 \ Yo) N W, € K, (W) for all j < k.
(¢) frx = f as a map of triples.

We set fy = f. Let fr—1 be already constructed. For every proper side W of Wy,
we have f !, (Y1 \ Yo) N W c Kp(W) by the induction hypothesis (b).

Proposition 3.72 (Intermediate claim). There is a homotopy ¥ : Wi X I —
Yy rel OWy with Yo = fi—1lw, and

Yt (Y1 \ Yo) € Kp(Wy).

Proof. Case 1: dim Wy =0 We must connect fi_1(Wy) within ¥; to a point in
Yy (since K,(Wy) = @). Since n > 0, there is a path in /" from W to
a point in J""'. The image of this path at fi_, connects fi_1(Wi) to a
point in Yy; a suitable initial segment runs entirely in ¥; and ends in Y.

Case 2: 0 <dim Wy < p For every side W of Wy, K,(W) = 0 and consequently,
by induction hypothesis (b), fx—1(W) C ¥y. We therefore obtain from fj_1
a map
(Wi, 0W) — (Y1,Y0).

Since m;(Y1,Yp) = 0 for i = dim Wy (and any choice of the base point), the
lemma in (3.6.1) can be applied. It yields the desired homotopy .

Case 3: dim Wy > p We apply the lemma from (3.6.2). This proves the in-
termediate claim. We extend the obtained homotopy ¥ to a homotopy
¥ :I"xI — Y of fy_1, namely constant on UpUW; U --- U Wy_; (this
is possible because this set contains no interior points of Wy) and then
recursively on Wy,1,..., W, with values in ¥; (this is possible because
OW; c W; is a cofibration). Let ¥; = fr. ¥ is a homotopy rel Uz, and
since J"~! € Usyj, so is rel J*~1. W(AI" x I) c ;. Hence ¥ is a homotopy
in the category of space triples and (a), (b) and (c) are satisfied for f.

We set go = f and recursively construct a family gg, ..., gy of maps I —» Y
with the properties:



3.6. THE BLAKERS-MASSEY EXCISION THEOREM 145

’

(a) go(W) CY; = g1(W) CY;.
(b) &' (Y2 \Yo) "W, c G,(W)) forall j <1.

’

(c) g1 =gorelU;.

(Note that U; D 01" > J*1). We define g = g;. Then g ~ f is a map of
triples. It remains to prove the statement (3.71) for g.

Let y € projg='(¥; \ Yp) and say y = proj(x), x € g7'(Y1 \ Yo), x € W.
Then x € K,(W), y € K,_1(proj(W)), i.e., y has at least p — 1 small
coordinates. Similarly, y € projg~'(Ys \ Yy) implies that y has at least

q — 1 large coordinates. Since n —1 < p — 1+ g — 1, both relations cannot
exist simultaneously.

We show injectivity for n < p+g—2. Let f and g be two maps (I"*, 01", J"" 1) —
(Y2,Yy,0). Let their composition with the inclusion u : (Y»,Yp,0) —
(Y,Y1,0) be homotopic. We choose a homotopy

o:(I"X1,aI"x I,J" 1 xI) = (Y,Y1,0)

between ¢g = uf and ¢1 = ug. It suffices to deform w relative to J" into
a map ¥ that satisfies

P\ ) Nnt¥ i (Y \Y) =0

where ¢t = projxid : I" x I — I""' x I). If we choose a function 7 :
"1 x T — [0,1] that is zero on d(I""' x I) UtP~ (Y \ Y1) and equal to
one on ty~1(Y \ ¥2), then we can consider the composition of ¥ with

('x17 L ’xn7-xl’l+1) = ('xl’ ceesXpn-1,T + (1 - T)xn’xn+1)

as a homotopy from f to g. The deformation of ¢ into ¥ occurs as in the
proof of epimorphism. Here we must assume n+ 1< p +¢g — 2.
O

3.6.4

Let A c X be an h-cofibration, A # @. We choose a base point in A and consider
the map
p:(X,A) = (X/A,0)

that identifies A to a point, as a map of pointed space pairs.

Theorem 3.73. Let m;(A) =0 for 0 <i <m, m > 1. Let n;(X,A) = 0 for
0<i<n. Then
P« mi(X,A) —> m;(X/A,0)

is an isomorphism for i < n+m and an epimorphism fori=n+m+ 1.
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Proof. We denote by C'A the cone (A x I)/(A x 0) and by X UC A the factor
space (X + C'A/~, by a ~ (a,1). In the co-Cartesian diagram, let P be a point
space and ¢ be the canonical homeomorphism.

XUCA—L=(XuC'A)/C'A—=X/A

. |

CA—— P
b

a is an h-cofibration, b an h-equivalence, hence ¢’ an h-equivalence and hence
also g := ¢q’. (Cf. (2.137)). According to (3.20),

g. : m(XUC A),C) - mi(X/A,0)

is an isomorphism (for any choice of the base point in C'A). Weset Y = XUC' A,
Q the vertex of the cone, Yo = Y \ Q, A; the base of the cone, and ¥; = C'A.
Then we have the maps induced by inclusions as follows.

ﬂi(X’A) éni(YQ’Yl mYQ) Lni(ysyl)

A |

mi (Y2, Yo N (Yo \ A1) — = mi(Y, Y2\ Ay)

The isomorphisms shown arise from the fact that the inclusions are h-equivalences;
e is isomorphic for i < n+ m and epimorphic for i = n + m + 1 by the excision
theorem. (Since A is path-connected, one can choose any point of C'A as the
base point, in such a way that the inclusions are pointed maps.)

With the commutative diagramme below, the claim now follows.

(X, A) be (Y. C A)

m;(X/A,o0)

3.7 Sandwich theorem
In this section, let Y be an h-well-pointed space with

7 (Y)=0 for 0<i<n, nx0.
We investigate the suspension map (cf. (3.2.4))

T(X,Y) =X [X,Y]° - [ZX,ZY]°.
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3.7.1 Sphere bouquets

Let (Sj, k € K) be a family of pointed j-spheres and B = VkeKS{; be their sum
(coproduct) in T o n°.

Theorem 3.74. X(B,Y) is bijective for 0 < j < 2n and surjective for j = 2n+1.

Proof. We derive this theorem from the excision theorem in §3.6. First, we
can assume that B is a sphere, since ¥ and [—,Y]? are compatible with the
summation. Recall that £'Y was the double cone of ¥ (3.25). We consider the
subsets

CY ={[y.t]lt <1}
C.Y = {[y.7]lt > 0}

of 2'Y. Let p: 'Y — XY be the canonical projection (3.25).
We denote by o the composition

m;j(Y) ——n;(C_Y N C.Y) % 7j+1(C_Y,C_Y N C,Y)

(,l L

7l'j+1(ZY) + 7Tj+1(EIY) b;jl 7Tj+1(E,Y, C+Y)

where a and b are induced by inclusions, ¢ by the map y — [y, %]. From the
exact homotopy sequence (3.5.6) we see that a is an isomorphism since Cy and
Cy are contractible (with direct proof for j = 0).

b is an isomorphism since the inclusion (2'Y,0) — (XY, C,Y) consists in-
dividually of h-equivalences, p. is an isomorphism since p is an h-equivalence
((3.2.1), (3.1.5)). From the excision theorem, a is an isomorphism for j + 1 <
(n+2)+ (n+2)—2 and an epimorphism for j+1=(n+2) + (n+2) - 2.

It remains to show the equality o = 2(S/,¥). We have the spaces C'S/ =
(S/ xI)/(ST x0), CSI, CS//SI = £S/. We use the fact that we can describe
elements of the homotopy groups of (A, B) by maps

(C'S7,s87) - (A, B)

or
(Cs’,87) - (A, B)

(see §3.4). Let f: S/ — Y be given. The element c[f] is equal to A[g], where
g:C'S/ — C_Y is defined by g[s,1] = [f(s), £]. Further: a(g] is represented by
h, h[s,t] = [f(s),t]. Finally, p,b~'[h] is represented by ¢ : (CS/,S/) — (XY, 0),
where ¢ is the composition of X f with the projection (CS/, S/) —> (CS//S/, 0).
However, ¢ and X f represent the same element. O
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3.7.2 Cellular spaces

If (Yxlk € K) is a family of topological spaces, then we denote by @xcxYr the
topological sum (= “disjoint union”) of ¥;’s. We say: A space X arises from the
space A by attaching n-cells (n > 1) if there exists a cocartesian square of the

form

@kgKSZ_l —f> A

n J

@kEKEZ T‘ X

where SZ‘l is a (n — 1)-sphere and E} is a n-ball.
We say: The space X has a cellular decomposition of dimension n if there

exists a sequence
Xcxlc...cx"=X

of spaces such that
(a) X°is discrete, and
(b) Xi*! arises from X! by attaching (i + ) cells, 0 <i < n.

Theorem 3.75. Suppose X has a cellular decomposition of dimension j. Then
2(X,Y) is bijective for j < 2n and surjective for j < 2n + 1.

Proof. We can reduce the suspension to the map ¥ — QXY. Because of (3.7.1),
the theorem to be proved follows from the following. ]

Theorem 3.76. Let f: A — B be a pointed map such that f. : 7;(A) — n;(B)
is an isomorphism for 0 < j < n and an epimorphism for j = n. Then f. :
[X,A]° — [X,B]? is bijective if X has a cellular decomposition of dimension
< n, and surjective if X has a cellular decomposition of dimension n.

A simple proof can be found in Spanier [24], 7.6.23, p. 405.

3.7.3 Homotopy groups of spheres

The theorems proved so far yield the following statements about the homotopy
groups of spheres.

Theorem 3.77. (a) n;(S") =0 for 0 <i<n.
(b) T :mi(S") = ;g (S fori <2n-2.
(¢) pii(S") =Z, n > 1. The identity map idgn is a generator of m,(S").

Proof. (a): follows from (3.7.1) since mo(S™) = 0 for n > 0.
(b): follows from (3.7.1) and (a).
(¢): We see from (3.7.3) that in

1(Sh) D 1y(82) Sy (shH) S -
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the first map is surjective and all subsequent ones are bijective. For n = 1,
the statement (c) can be easily derived from the consideration of the covering
R — S! (see, for example, Spanier [24], 1.8.12, p. 54). For the case n = 2, we
consider the Hopf fibration H : S® — S? with fibre S! (see, for example, Steenrod
[25], 20.1, p. 105): We consider S? to be the set {(zo,z1)|lz0]® + |z1|> = 1} of
pairs (zg,z1) of complex numbers and S? = C U {o} to be the complex number
sphere. Then H is defined by H(zg,z1) = z0/z1. H is locally trivial with a fibre
homeomorphic to S'. From the piece of the exact fibre sequence

m2(S%) - 73(S?) - m1(Sh) - 71(S?)

and m2(S3) = 0, pi1(S?) = 0, we see that m5(S?) is isomorphic to Z. But then
% m(SY) — m2(S?) must be an isomorphism. With %[id] = [id], the claims
follow. This proves (c). O

The inverse isomorphism of Z — x,(S"), k +— k[id] is called degree, and
written deg. deg[f]-deg[g] = deg[f - g] holds. In other words: If f:S" — S"
has deg = k, then f. : 7,(S") — S" is a multiplication by k. Furthermore, the
following holds:

1 im[S", X1 — pin[S", X]°

is (in the additive group [S", X]°) the map f*z = kz if f has deg = k. It follows
that the group structure in [S", X]° defined in (3.4.1) is independent of the
chosen homeomorphism $” = £§"~! for n > 2.

Remark 3.78. Statement (b) of the last theorem is the suspension theorem
proved by H. Freudenthal in 1937 (see [10]). References: Spanier [24], Steenrod
[25].

3.8 The theorem of James

In this section, a space JX is constructed for a pointed space X, which (under
certain conditions on X) is h-equivalent to QXX. The space JX has the ad-
vantage over QXX that it can be easily and clearly constructed from X. For
example, a cell decomposition of X directly yields a cell decomposition of JX.

3.8.1 The James construction

Let X € Obj(F ¢2°). We consider the set of finite words x; ---x, of points
x; € X. On this set, we introduce the equivalence relation generated by

X1t Xjm1pOXj " Xp ~ X1 Xj—1Xj " Xp

(where x1 ---x, is arbitrary and o is the base point of X) and call the factor
set JX. Let X" be the n-fold Cartesian product of X with itself. We have a
surjective map

p:o, X" - JX,
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that assigns the class of the word x; - - - x,, to a point (x7 - - - x,,) of the topological
sum. Let JX be given the factor topology.

The set JX carries a connexion (multiplication) that is expressed on repre-
sentatives by writing the words one after the other. The connexion is associative
and has the class of the base point as its neutral element. JX thus becomes a
monoid.

If g : X — Y is a continuous punctured map and g" : X" — Y" is their n-fold
product, a continuous map

Jg:JX = JY

which makes the following diagramme commutative.

og"
oX" —% o gyn

|

JX ——=JY
Jg

Jg respects monoid structures. If ¢, : X — Y is a pointed homotopy from ¢q to
1, then J(¢;) is a pointed homotopy from J(¢g) to J(¢1).

Let ¢ : X — JX be the map that assigns the class of the word x to the
point x € X. Let M be a topological monoid, i.e., a pointed topological space
together with an associative continuous multiplication that has the base point
as a neutral element.

Theorem 3.79 (Universal property of J). If f : X — M is a pointed continuous
map, then there exists exactly one continuous map h : JX — M that makes the
following diagrame commutative and respects the monoid structures.

X— =X

N4

Proof. The uniqueness of h follows since JX is generated by image t. The
existence of h follows from the fact that the continuous map H : X" — M,
H(x1,...,%,) = fx1--- fxy, can be factored over p : @X" — JX. O

We now prove some topological properties of the construction J. Let J,,(X) =
p(X™). The map p induces p,, : X™ — J,,X. We first give JX the identification
topology by p.

Lemma 3.80. Let a = ay---ax € JuX. Let a; # o fori =1,...,k and let
Lo = {ila; ¢ {0}}. A neighbourhood basis of a is given by the sets Uy - -- U U™
defined immediately. Let U; be an open neighbourhood of a;, U be an open
neighbourhood of o, and let o ¢ U; forie L,. We set

Uy - UpU™ ™ = ppUp (U -+ x U,
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where
L,cLc{l,...,k},

and A : L — {1,...,m} is monotone increasing and

a_
Uj =

Ui for j=4()
U for j¢imaA.

Proof. Let a € Uy --- UpU™*. This set is open since
U (U x---x UL)

is open and saturated. Let W be an open neighbourhood of a in J,,X. Then
p W is open in X™ and saturated. Let us set

2 a;, for j=A(i)
aj = .
o, for j¢imaA,

2 2 -1
then ay---ap €p

' W. There are open neighbourhoods V¢ of a} such that

Vit x- x Vi cplw.

Let
U; = Vi
U= mj(iim/lvj/'l:
U - Ul N(xX\{o}) for ielL,
o\ for i¢L,.
Then a; € U;, 0o € U and Uy --- Uy U™k c W. o

Lemma 3.81. J,,X C JX is a topological embedding. It is closed if o is closed
mn X.

Proof. The following commutative diagramme shows that J,,X c JX is contin-
uous.
X" < e X"

I X c JX

Now let A be an open neighbourhood of @ in J,,X. We construct an open
neighbourhood B of a in JX such that

BNnJ,X c A.
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Let a = ay---ag, a; # o for i = 1,...,k. By Lemma 3.80, there exists a
neighbourhood of a contained in A of the form U --- U U™ . Let

" A A
B =@, UiUix-xU;

(where L, ¢ L c {1,...,k}, A : L — {1,...,n} is monotonically increasing,
|L,| is the number of elements of L,, and U}’ is defined as before). B’ is open

and saturated in &, , X". B = p(B') is an open neighbourhood of a in JX with
BNnJuX c A If £ <k and o is closed in X , then BN J,X # @. It follows that
in this case JX \ J¢ X is open. O

Lemma 3.82. JX is a topological direct limit of the subspaces J1X C JoX C - --.

Proof. p can be written as

[ n ®pn [
o X" — @ J,X — JX.

Since p is an identification, the second map &, ,J,X — JX is an identification.
|

Lemma 3.83. (a) For every topological space Y,
P,xidy : X"XY > J,X XY
is an identification.
(b) The monoid structure on JX induces a continuous map
I X InX = JpenX.

Proof. (a): Let B C J,,X XY and A = (p,, xid)"!B be open in X" xY. We need
to show that B is open. Let (a,y) € B and let a = ay ---ay with a; # o for i =
1,...,k. We define aj as in the proof of Lemma 3.80. Then (af,...,a},y) € A.

There are open neighbourhoods V//' of af} and W of y such that
Vitx.--xVicA.
We define U; and U as in the proof of Lemma 3.80 and set W = NW*. Then
(a,y) €Uy --- U U™ F x W c B.
(b): From (a) it follows that
(Pm X pn) = (pm xid) o (id Xpy)
is an identification. We have a commutative diagramme
X" x X" —— Xn
ﬂmXan mem
I X X Jp X oo > JenX

The continuity of the dotted map follows. O
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Remark 3.84. 1) JX — JX, x > xa, a € JX, is continuous.

2) X xJX — JX, (x,y) — xy, is not continuous if X is the space of rational
numbers.

Lemma 3.85. If Z is h-well-pointed, so is JZ.

Proof. Since J is compatible with pointed homotopies, we can assume without
significant restriction by (1.75) that {0} C Z is a closed cofibration. We have a
filtration of JZ

{o}=2JoZc W ZcCJZC---

We first show that J,-1Z c J,Z is a cofibration. Consider the following dia-

gramme where ¢ and g are restrictions of the map p from (3.8.1).

UL Z7 x oy x X" < Z"

Jn1Z c JnZ

The upper inclusion is (Z, {0o})", the n-fold product of the (closed) cofibration
{0} — Z with itself, thus, according to Theorem (1.104), it is a cofibration. By
returning to the definition of cofibration, one shows that the below inclusion is
also a cofibration, considering;:

(1) g is an identification;

(2) if two points at g have the same image, then so does the ones at q.

® JnZ — JZ is an identification (Lemma 3.82). We again return to the
definition of cofibration and conclude that {o} — JZ is a cofibration. O
3.8.2 The natural transformation J — QX

Let u : X — I be a continuous function with #~1(0) = {o}. Using u, we define a
pointed map
fu: X> QXX

by

fu(®) 2 [0,u(x)] = =X

Ju(x)(1) = {[xﬁ] x#o0,

o X = 0.

(See the definition of Q" and ¥ in (subsect:3-11-2), (3.2.1).) One has to convince
oneself that f, is continuous (see the proof of the next lemma). The universal
property of JX (3.8.1) provides us with a map

hy : JX > QTX,
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which makes the following diagramme commutative.

X : JX
N

Qrx

Lemma 3.86. Let g : X — Y be a pointed map. Letu : X — I (resp. v:Y — 1)
be a function with u(0) = {o} (resp. v(0) = {0}). Then the following diagramme
is commutative up to pointed homotopy (of homomorphisms).

Jg
JX ———=JY

Jd

QXX —=Q'3Y
QZXg

Proof. We first define a map
¢: XXI—> QY
by

@(x,8) : [0, (1 = 9)u(x) +sv(g(x)] = XY

{[gx, t/((1 = s)u(x) + sv(gx)], for gx # o,
e(x,8)(1) =
0 for gx =o.
Claim: ¢ is continuous. Let the reader repeat the definition of the topology of
QXY (see (3.2.2)), to realise that the important thing is to prove the continuity
of XX IXR* - XY, (x,s,1) — [gx,1/((1 —s)ux +s-vgx)]. The only question is
continuity at points (x, s, ) with gx = 0. Let U be a neighbourhood of the base
point of Y. Then there exists a neighbourhood V of o in Y such that [v,t] € U
for all (v,t) € Vx 1. Let W = g7'V. Then W x I x R* is a neighbourhood of
(x,s8,t) and (W x I xR*) c U.

For the adjoint map @ : X — (Q'2)! of ¢, we can find a map ¢ that makes
the following diagramme commutative.

(Qxzx!

We can give (Q XY) the structure of a topological monoid: the product of two
elements wq, wo is the path defined by ¢ — wa(z) + wi(#). (Show that the
multiplication is continuous.) The map ¢ adjoint to ¢ : JX x I — Q'Y is a
homotopy of the desired kind. O
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Now let U be the full subcategory of 7 ¢zh with the objects: X € Obj(U)
if and only if there exists an isomorphism i : X — X' in J ¢zh and a function
u:X — I exists with u~(0) = {o}.

For X € Obj(¥) we define a pointed homotopy class

nx i JX - QTX

by the commutative diagramme

nX ’
JX —= QXX

JiL lg’m

JX —=Q'vx
(h

Here we consider J and Q'Y as functors 7 ¢z°h — T ¢ n°h.

Lemma 3.87. nx does not depend on the choice of X', i, and u. The nx,
X € Obj(X), yield a natural transformation

n: Il — Q'
of functors W — T o n°h.

Proof. A formal consequence of Lemma 3.86. O

3.8.3 James’ theorem

We formulate James’ theorem.

Theorem 3.88. Let X € Obj(T o) be a space with the properties:
(a) X is path connected.

(b) X has a numerable null-homotopic cover (see (2.5.1), (2.6.2)).
(c) X is h-well-pointed (see (3.1.3), the last paragaph).

Then nx : JX — Q=X is an isomorphism in T ¢ n°h.

Remark 3.89. The theorem was originally proven by I. M. James in the following
form: Let X be a countable cellular space with exactly one zero cell. Then nx
induces an isomorphism of all homotopy groups. See James [14]. A detailed
comparison of our version of James’s theorem and the version in which James
proved it can be found in Puppe [22], pp. 52-53.

The proof of the theorem is long and is divided into several steps (3.8.3)
- (3.8.9). First (in (3.8.3)), we make preparations that facilitate the actual
proof: First, it suffices to show that ny is an isomorphism in I ¢ zh; second, we
replace X by a space with a “nice” neighbourhood of the base point; in (3.8.4),
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we construct a larger diagramme and formulate some lemmata about the objects
that appear. In (3.8.5), we prove James’s theorem, assuming the lemmata from
(3.8.4). These lemmata are then proved in (3.8.6) - (3.8.9).

Now for the announced preparations. With X, JX and Q =X are also h-
well-pointed. We proved this for JX in Lemma 3.85. For Q ZX, we conclude
as follows: first, with X, X is also h-well-pointed. (Replace X by a well-
pointed space that is isomorphic to X in ¢ 2°h and apply the theorem from
(3.2.1) (thm:3-11-1) and then QXX by a theorem in (3.2.3) (3.31). If nx is
an isomorphism in  0z°h, then by Theorem (1.62) it follows that nx is an
isomorphism in I ¢ 2°h.

Instead of X, we now consider the space

X =(I+X)/{1,0}.

(“X with a whisker at the base point”.) We choose 0 € I as the new base point.
If X has properties (a) to (c), as assumed in James’s theorem, then so does
X'. This is clear for (a) and (c). By (c), in particular, X and X are pointed
h-equivalent. Therefore, (b) for X" follows from the next Lemma.

Lemma 3.90. If X is dominated by Y (in T op) and Y has a numerable null-
homotopic cover, then so is X.

Proof. Let (V,;) be a numerable null-homotopic cover of Y. Let f : X — Y,
g:Y — X be maps with gf ~idy. Then U, = f~1(V,) form a numerable cover

of X. It is also null-homotopic. Since U, L Va Sy S Xisboth null-homotopic
and homotopic to the inclusion U, C X. O

The space X has a canonical function u : X' — I with 410 = {0}, defined
as the identity on the summand I and as a constant map on the summand X.
From now on, we will write X instead of X" and always understand the function
u: X — I to be the one just given.

3.8.4

We first define some objects that will later appear in a large diagramme. For
Z € Obj(T ¢ 2?), let the space

W'Z = {w|w(0) = 0} c PZ

(cf. (3.2.2)) be the space of paths with an arbitrary parameter interval and the
base point as the starting point. Let

rwz— Z, r(w)=w(ey),

be the map that assigns each path w its endpoint. Let C'X = X x I/((X X 0) U
(o x1)). For JX x C'X, we introduce the equivalence relation defined by

(z,x,1) ~ (zx,0)
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Let the resulting factor space be Y. We consider h = hy, : JX — Omega' =X and
k:C'X - W2X; k is defined by

k(x,1) : [0, tu(x)] — =X,  k(x,1)(s) = [x, L] .
u(x)

We define g by the commutative diagramme

JXXC X5 Q'yx xwex

j |s
Y ———— WX
Here, « is the identification just explained and 8 is the map
Bu,w) =w +u.

The proof of James’ theorem is based on the following diagrammr, the individual
parts of which will be explained immediately if not already done so.

7o) ————E
Il
JX ——~ ¢7Y0) < Y X

S [

QEXXxWEX —= WEX
Thus g =rg, so q[z,x,t] = [x,¢]. And i(z) = [z,0].
Lemma 3.91. r is a fibration. W X is contractible.
Lemma 3.92. The map i is an h-equivalence.
Lemma 3.93. Y is contractible.

Lemma 3.94. There exists an h-fibration n : E — XX , inclusions £ : Y C E,
£, : g~ (0) € n~Y(0) with pil = g, such that Y is a strong deformation retract
of E and q~'(0) is a strong deformation retract of n='(0).

In the large diagramme, let f be a mapping with f€ =idy, {f ~idgrelY.
We conclude this section with the

Proof. (of Lemma 3.91) Let Z = £X. In the diagramme, we define ® by

®(a,1) = ¢ljos + [ (@) (see(2.58)).
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a A——>WZ
L)
(a,O) AXIT-Z

A contraction ¢ : W x I — W'Z is described by

e(w, 1) = wljo,re,,]

3.8.5 Proof of James’ theorems
Proof. We return to the diagram in (3.8.4) and Lemmata 3.91 to 3.94. Since
{f ~idgrelY

we have

rgf =qf =nlf ~m:relY.
Let ¢ : EXI — XX be a homotopy rgf =~ nrelY. Since r is a fibration, we
can lift ¢ to @ : E x I — WX with ®; = gf. We have r®; = n. Since j
is an h-equivalence and Y is contractible (Lemma 3.93), E is also contractible.
Therefore, @, is an h-equivalence, as a map between contractible spaces, and
consequently, by Theorem (2.85), an h-equivalence over £X. Hence, ®; induces

an h-equivalence
Y o) - QEX.

Since ¢ was a homotopy relative to Y, in particular,
r®(g~" (o) x 1) = ¢(q~"(0) X I) = {0},
thus ®(¢~(0) x I) c Q'2X, i.e., ® induces a homotopy
@ g o) x> QTX.
Then @y = g, since @y = gf and f¢ = idy. Consequently,
g0 = @y = D) =yl

Since ¢ and ¢y are h-equivalences, gq is also an h-equivalence; and since i is also
an h-equivalence (Lemma 3.92), so is h. o

3.8.6 Proof of lemma 3.92
Proof. We consider the diagramme below where d is defined by d(z) = (z, 0).

’

JIX—oJxxx ¢ JxxCX

SNk

g o) < Y
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The map o induced by « is an identification since JX x X is closed and saturated

in JX x C'X. Because of the special shape of the space X, there is an open

neighbourhood U of 0 and a map p : XtoX with p ~idxrelo and p(U) = o.
The map

JIXXX = JX, j(z,x)=(Ip)zopx=(Jp)(zx)
is continuous since
Vin = {x1---x,lall x up to at most m are in U}

is open in JX because JX = U,,V,, and because J|y,,xx is continuous, as follows
from the following diagramme with Lemma 3.83 (b)

VoxX —1 o~ x

where 7 is the swapping of the factors. j induces j* with j = j' o @’. The map
j  is h-inverse to i. In fact,

ji=Jp=J(idx) = idsx
and from the diagramme below, we see that the homotopy p =~ id induces a

homotopy Jp X p =~ id and then ij" =~ id

IXxX 222 yx xx

Ak

g~ (0) 761_1(0)-

3.8.7 Proof of lemma 3.93

Proof. Let Z, = JuX X (C'X \ (X \ 0)) UJpn_1X x C'X. Here, we consider
X ~ Xx1 c C'X as a subspace of C'X (cf. (3.4.3)). We consider the diagramme
in which i, is injective and a,, is induced by «.

Zm < JXxCX
Y Y Y
|-
gm
w'EX
We give Y,, the identification topology by means of a,,. We define g,,, = giy,.
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Lemma 3.95. g, is an embedding.
Corollary 3.96. i,, is an embedding.

We first assume Lemma 3.95 and then prove Lemma 3.93.
For i,,, the contraction given in the proof of Lemma 3.91

0 WEIXXI > WEX
induces a contraction of g(¥) and consequently a (perhaps non-continuous) map
WiYXI—>Y

with gy (z,s) = ¢(gz,s) (g is injective).
Y (Y, xI) C Yy, and the map ¢, : Y,, X I — Y, induced by ¢ is continuous,
as follows from the diagramme

m Xid

Y X I 225 WX x 1

N

Yoy ——> W'sX

using Lemma 3.95. Let p : X — X be a map as in (3.8.6). The following
diagrame uniquely defines a continuous map rho’, and a homotopy p = idx
induces a homotopy p = idy.

’ JpXC/p ’
JXXCX——JXXxCX

Yy— >V
P
We show that ' = y(p xid;) : ¥ x I — Y is continuous. Let V,, c JX be as
defined in (3.8.6). Then the sets V,,, x C' X x I form an open cover 0£JX><C’X><I.
It suffices to show that in the following diagramme the map ¢, = ¥ o (a X

idy |y, «c’xxs 18 continuous.

VaxCXxI < JXxCXXI

Jm l l axidy

Y <~———V XI
W
a %X idj is an identification: this follows from the following commutative dia-
gramme.

, JpxC’ pxid
V1 XC XX ——mm 7, X1

Jm_lj laxid

YooY, m Y, x1
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It follows that
idy ~p =y, =psi; =0,
and thus Lemma 3.93 is proven. O

Proof. (of Lemma 3.95) Let y,, = gman,- We have to show: If (a,b,19) € Z and
A is an open saturated neighbourhood of (a, b, ty), then there exists an open set
B in W'2X such that (a,b,1y) € v, (B) C A.
To construct B, we distinguish between different cases.
Casel a=aj---ay,a; #ofori=1,...,n, (b,1y) € C'X\ X. Let apsq = b.
There are open neighbourhoods U; of a; in X and U of 0 in X and & with
0 < 4& < min(tg, 1 — t¢ such that U N U; = @ and

Up--- UnUm_n X Un+1><]l0 —&, 1+ 8[C A

(see Lemma 3.80). Let ¢ = 7o + 2. We define B ¢ W XX as the set of all
paths w with

(a) lew —u(a,b,t9)| <6

(b) wu(ay--+a;))) eUxIUXx(I\[e,1-¢]), i<n,

(c) w(u(ay---a;j—1) +tiu(a;)) e Uix]ty —e,t1 + €[, i <n,

(d) w(u(a,b,tg) +8) € Ups1X]to — €, 10 + €.
Note that: (a, b, 1) — u(a, b, to) = Xi=, u(a;) +tou(b) defines a continuous
function u : JX x C’X — R*. We understand a; ---a; for i = 0 to be the

base point. We extend w : [0, e,,] = ZX tow : R — ZX by w(z) = w(ey)
for t > e,,. Suppose ym(a,b,t0) € B and B is open in W' XX (see the

definition of the topology of W 2X in (3.8.4), (3.2.2) and the definition of
the compact-open topology in (2.1)).

Claim: For sufficiently small U;, & and 6, y,'B C A.

Proof. Let (x,y,t) € Zy, x =x1 Xy and y,(x,y,1) = w € B. Then by (a)
ew <u(a,b,tp) +6 and consequently by (d) (y,7) = w(ew) = w(u(a, b, to) +
0) € Upy1X]tg —&,t9 + £].

Because of (c), w meets the sets
Ui X]ti —e,t1 +€[,...,UX]t1 —g,t1 + €[

in this order, and because of (b), w must run from U;X]t; — &,1; + [ to
Uis1X]t1 —&, 11 + €| via the base point. (Note the special shape of the paths
in g¥!) Then there exist j;, 1 < j; <--- < j, <n, such that x;, € U;. Let
j#j1<...,jn.- Then

n

u(xy) <u(x,y,1) - Z“(xj,«) —tu(y)

i=1

n
<u(a,b,tg) — Z(ai) —tou(b) +& =€
i=1
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for given £ > 0, if only 6, U;, and & are sufficiently small. Let & be chosen
such that u'[0,& [c U. Then

(x,y,t) eUp--- UnUm_n X Un+1><]l0 - &, 1 +8[.

The above discussion also applies for n = 0, i.e., a = o. O

Case 2 (b,1y) € X. We have the equivalences

(a,b,ty) ~ (a,0), if tg=0o0r b =o,
(a,b,tg) ~ (ab,0), if t9=1.

We therefore only consider (a, o).

First, let a # 0, so n > 1. Then (a,0) ~ (a1 ---ay-1, (ay, 1)), where again
ay---ap-1 = o for n = 1. There are open neighbourhoods U; of a; in X
UofoinX,andV of oin C'X and an & with 0 < ¢ < %”, such that

UiNU=0, ZnnUp---UU" "XV CA, U - -UU""x]1-¢,1[Cc A

(use Lemma 3.80; for n =1, set Uy --- U, U™ = U™™").

In the following, we do not distinguish between subsets of X x I, C'X, and
> X. We can assume that V has the form V = U x I UV with

Xx0cVyc Xx[0,¢e]

Let )
Vi={(,0|x,1-1)eVy}, and V =V UV;.

Let B ¢ W £X be the set of path w with

(a)

(b)

(c)

(d) w(u(a)+6)eV'.

lew —u(a)l <o
w(u(ar---a;))) eV, i<n,

w(u(ay - aj-1) + %u(ai)) eU;X]e,1—¢[, i<n,

Then B is open in W X and y,,(a,0) € B. We verify: For sufficiently
small U;, €, 6, we have y,,}(B) C A.

Proof. Let (x,y,t) € Zyp, X = X1+ Xm, and y,,(x,y,t) = w be from B.
Then e,, < u(a) + ¢ because of (a) and consequently (y,7) = w(e,) € V
because of (d). Let xp4+1 = y. Similar to the first case, from (b) and (c)
it follows that there exist j;, 1 < j; <--- < j, <m+1, such that x; € U;
and either

(1) jn < m, or

(2) j=m+landt>e
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Case (1): Let j # ji,...,jn,m + 1. Then, for a given & > 0,

u(xy) < ulx,y,1) = i u(x;,) <u(a) - i u(a;) + g =,
i=1

i=1

if 6 and U; are small enough. We can choose & so small that x; € U

follows. Likewise, one can achieve: tu(y) < &. We choose & so small that
it follows: y € U or t < % and therefore (y,7) € V' \ Vi c V. Overall:

(x,y,t) eU;--- U, U™ " x V.
Case (2): Since UNU, = @ and > &, we have

(y,) eV \N((UXI)UVy) cVy

and hence even t > 1 —¢&. Let j # ji,..., jn. Then, for a given & > 0,
n n
u(xj) <u(x,y,t) - Zu(xji) —tu(y) <u(a) - Zu(ai) +e =¢,
i=1 i=1

if only ¢, U;, and & are small enough. One reaches x; € U and consequently
(x,y,0) €Uy - U, U " xU,X]1 - g,1].

Finally, let a = 0. Then there exist U and V as above with Z,,N(U™xV) C
A. We define B as the set of paths w with

(a) ey <6,

(b) w(s) eV'.
Then y,,(x,y,t) € B,x; e Uand y e Uort < % if ¢ is sufficiently small.

Furthermore, (y,1) = w(eyw) = w(8) € V', hence (y,t) € V and hence
(x,y,t) eU™ x V. O

[m]

3.8.8

The following lemma is used to prove Lemma 3.94 in the next subsection.

Lemma 3.97. Prerequisite: Let g : Y — B be a map, A C B, V be a halo of A
in B. Let the restrictions of g ga : Yo — A and qp\a : Yp\a — B\ A (cf. (2.120),
(2.32)) be h-fibrations. Let V\ A have a numerable null-homotopic covering. Let
there be a commutative diagramme

Yy ——=Yq
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In it, let p be a deformation retraction, r an h-equivalence, and ra = rly, an
h-equivalence. For b € V\ A, let rp, : Y, — Y, 1) be an h-equivalence.
Claim: There exists a commutative diagramme

N

B
such that:
(a) p is an h-fibration;
(b) Y is a strong deformation retract of E;
(c) Y4 is a strong deformation retract of Ex over A;
(d) Yp\a is a strong deformation retract of Eg\ s over B\ A.

Proof. We start with the following diagramme

where ¢ is the h-fibration induced by p of g4 and ' is determined by ¢'r = qv
and pr' = r. According to (2.124), p is an h-equivalence since p is an h-
equivalence and ¢, is an h-fibration. r’ is an h-equivalence because p and r are
h-equivalences.

Construction of E: In the topological sum Y + Yy x I + Y, we identify y
and (y,0) as well as (y,1) and 7 (y), for y € Yy. The maps g, gy o proj;, and
g on the three summands are consistent with these identifications and induce
p : E — B. We clearly have an embedding Y C E.

We prove (b), (c), (d) and (a), in that order.

(b): According to (1.29) and (1.73), Yy is a strong deformation retract of Ey,
because Ey is the mapping cylinder of ' and r is an h-equivalence. Conse-
quently, Y is a strong deformation retract of E.

(c): We can regard E4 as a mapping cylinder of r;x. We have a commutative
diagramme

pA is a homeomorphism because pla is the identity of A. Since ru is an h-

equivalence by assumption, r’ 4 18 also an h-equivalence, and even over A by
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(2.85), as ga and q'A are h-fibrations. But then, by (1.73), applied to the
category I ¢ 24 of spaces over A, Y4 is a strong deformatlon retract of E4 over
A since Y4 C E4 is a cofibration over A ((1.29) (b) applied to T v z4).

(d): We have a commutative diagramme

Yb ﬁ Yp(b)

N, A

in which py, is a homeomorphlsm Consequently, is an h-equivalence for every
b € V\ A. Since qV\A and qv\A are h-cover and V \ A has a numerable null-

homotopic cover, r.,, , is an h-equivalence over V'\ A (see (2.152)). Analogous to

V\A
(c), Yv\4 is then a strong deformation retract of Ey\4 over V'\ A. Consequently,
Yp\4 is a strong deformation retract of Eg 4 over B\.

(a): Since in the following diagramme

YB\A c EB\A

%‘\A

B\ A

by (d), the inclusion is an h-equivalence over B \ A, and since gp\a is an h-
fibration, then by (2.68) pp\ 4 is also an h-fibration. Y is a strong deformation
retract of Ey over V. Consequently, by (2.68), Py is an h-fibration because ¢’ is
an h-fibration. Finally, since (V, B\ A) is a numerable cover of B (if v is a halo
function of V, then (1 —v,v) is a numeration of (V, B\ A)), (2.156) tells us that
p is an h-fibration. O

3.8.9 Proof of lemma 3.94

We verify the assumptions of Lemma 3.97 for the map ¢ : Y — B, B = XX, from
(3.97) and A = {0}]. We recall that X has the special form X = X,, vV I given at
the end of (3.95). The map g4 is certainly an h-fibration.

The identification JX x C'X — Y induces the following commutative dia-
gramme

Ysx\ (0} JX X (C'X\ X)
qm %
X\ {o}

in which Q is a homeomorphism since JX x (C'X \ X) is open and saturated in
JX x C'X. Hence gsx\{o} is also an h-fibration (namely isomorphic to a trivial
fibration).
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Because of the special shape of X, we can describe a neighbourhood of o in
X by

V={[xxe [o,%[ or te [o,i[u]g,u}

V is a halo with halo function v(x,t) = min(1, 2u(x), 4t,4(1 —t)), with u as at
the end of (3.95).
V \ {0} has a numerable null-homotopic cover.

Proof. We write V' \ {0} = Vy U V; with

Voz{[x,t]|xe]0,%[ or te]O,}L[}
V1={[x,t]|xe]0,%[ or te]%,l[}.

(X \ o)X % is the deformation retract of V and (X \ o) X % is the deformation
retract of V;. Furthermore, X\ o is h-equivalent to Xy. From Lemma 3.90, we see
that Vg and V; have a numerable null-homotopic cover. (Vg, Vi) is a numerable
cover of V\ {o}: if vg is the map [x, ] — min(2 max(t— %L, 0),1), then (1-vg, vg)
is a numeration of (Vgy, V7). Our claim on V \ {0} now follows from the following
simple remark: Let (V) be a numerable cover of a space X. If every V, has a
numerable null-homotopic cover, then so does X.

We construct a homotopy ¢ : VX I — V from ¢y =idy to ¢ : V 2 Ac v,
as illustrated in the figure 3.2. In particular, ¢ shows that p is a deformation

S AW

~ —

_— F_V______J
I Xo
Figure 3.2:

retraction.

Let V c C" be the preimage of V under the canonical projection C'X — XX.
The homotopy ¢ is induced by the homotopy ¢ : V X I — V, as the figure 3.2
shows. We define a homotopy ¢ : Yy X I — Yy by the following commutative
diagramme

Xy,
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where ip(x) = (x,b), i(x) = (x,0), R;(x) = xz with an element z determined by
@(b,1) = (z,1) € C'X. ip is a homeomorphism. i is an h-equivaience (Lemma
3.92). The map R, is homotopic to idyx, since X is path-connected. This proves
Lemma 3.94. m|

3.8.10 Counterexamples to (3.8.3)

We show by examples that nx is in general not an h-equivalence if one of the
assumptions (a) - (c) on X in (3.8.3) is dropped.

(a) Path-connectedness: Let X be the topological sum of its path components.
A homomorphism A, : JX — Q=X induces a homomorphism

1o(JX) = 71o(Q TX).

7o(JX) is the free monoid over the pointed set 79X, while 79(Q 2X) = 79(QEX) =
pi1(£X) is a group.

(b) Numerable null-homotopic cover: Let X be the subspace of the plane R?,
illustrated by the following figure 3.3. Let A = {ag,a1,as,...}X, where ag =

b

Figure 3.3:

(0,0), an = (£,0 (n=1,2,3,...), and let Uy = X \ {bn, bps1,bps2,...}. Let h
be a pointed h-inverse of & = h,. Let i : Q XX — QXX be an h-inverse for the
connexion in the pointed H-space Q XX (see (3.3.1)). We set i’ = h'ih. The map
A — JX, aw— i (a)-a,is null-homotopic since

av h(i'(a)-a) = hi (a) - h(a)

is homotopic to
a v ih(a) - h(a),

which is null-homotopic. Let ¢ : A X I — JX be a null-homotopy. JU, is open
in JX\UJU,. Consequently, the compact set ¢(A X 1) is contained in some JU,,.
It follows that i'ay, is a left inverse of a, in 7o(JU,). On the other hand, a, # 0
in 7q(JU,), a contradiction.

(c) h-well-pointedness: Let X be the subspace of the plane R?, illustrated by
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\

N

i
77

g

Figure 3.4:

the following figure 3.4. Let A be declared as in the last example. JX is path-
connected since X is path-connected. QXX is not path-connected. We show
that 71 (ZX) # 0. We use singular homology. In the exact sequence

H>(2X,TA) — Hi(ZA) > H,(2X)

H;(ZA) =[] Zis uncountable, while Hy (XX, XA) = Ha(Z(X/A)) = H1(X/A) =
Ho(A) is countable. (Note: X/A is well-pointed.) Consequently, H;(ZX) is
uncountable and therefore so is 712X) (cf. Hu [12], Theorem 6.1).



Appendix A

In this appendix, we provide the proof of Theorem (1.21) (b).

Theorem A.1 (cf. Puppe [21], footnote 1) on p. 81, Strgm [27], 2. Lemma 3).
Let X be a topological space, A a subspace of X, and i : A C X the inclusion.
Claim: If (X x0) U (A X 1) is a retract of X X I, then the bijective continuous
map € : Z; > (X x0)U (A XI) defined in (1.20) is a homeomorphism.

Proof. We follow Strgm [27], 2. Lemma 3. We need to prove the continuity
of £=1. First, we identify the set underlying the mapping cylinder of i under
the bijective mapping £ with (X x 0) U (A x I). We then have to show that the
subspace topology induced by the product X X1 on (X x0)U (A xI) is finer than
the topology of the mapping cylinder.

So let C be a subset of (X x0)U (A XT) such that CN (X x0) is open in X X0
and CN (A XI)is openin A X I.
Claim: C is open in the subspace (X X 0) U (A X ) of X X I.

Proof. We define U ¢ X by
U:={xeX|(x,0) € C}.

U is open in X since CN (X x0) is open in X X 0. We further define open subsets
Ul,MQ,U,... of X by

1
U, := U{V|V is an open subset of X and (VN A) x [0,-[c C}.
n

We set )
B:=Ux0UU,_;((ANUy,) x [0, ;[).

Claim:
C=(Cn(Ax]0,1])) UB. (A.2)

Proof. (of A.2) LHS c RHS: Let ¢ € C.
Case 1 ¢ = (x,0) for some x € X. Then c € U x0 C B.

Case 2 ¢ = (a,t) for some a € A, t €]0,1]. Then ¢ € C N (Ax]0,1]).

169
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LHS > RHS: We show B c C. Let b € B.
Case 1 b € Ux0. Then b € C by definition of U.

Case 2 b e (AnU,)x|0, %[ for a natural number n > 1, i.e., b = (a,t) for some
a € ANnU, and some ¢ € [0, %[ Since a € A N U,, there exists an open
subset V of X witha € ANV and (VNA) X [0, %[C C. Hence b = (a,t) € C.

O

We consider the equation (A.2). By assumption, CN (A x ) is open in AX 1.
Therefore, CN(Ax]0, 1]) is open in Ax]0, 1]. Ax]0, 1] is open in (Xx0)U(AXI).
Therefore, C N (Ax]0,1]) is open in (X X 0) U (A X I).

If we show:

Bis open in (X x0) U (A X I), (A.3)

we have proven that C is open in (X X 0) U (A X I).
First, we prove

ANU=Anuy,_ U, (A.4)
If V is an open subset of X with VN A c U,, then V c U,. (A.5)

Proof. (of A.4) LHS > RHS: Let x € AN U, U,. Then there exists ny with
x € ANU,,. Therefore, there exists an open subset V of X with x € ANV and
(VN A)x [0, n—lo[c C. So (x,0) € C, i.e. x € U and therefore x € AN U.
LHS c RHS: Let x€e ANU. So (x,0) e Cand x € A, i.e. (x,00 € CN(AXI).
Since C N (A1) is open in A x I by assumption, there exists an open subset V'
of A and a natural number ng > 1 with (x,0) € V x [0, % [c C. Since V' is open
in A, there exists an open subset V of X with V' =V N A.

So (x,0) € V'x[0, ;5 [= (VNA)X[0, ;5 [C C, 50 x € Up,, 50 x € ANUY_ U, O

Proof. (of A.5) We show: (VN A) x [O,%[C C. Let v e VNA, then v € U,
since VN A c U,. Thus there is an open subset W of X with v € W N A and
(WnA)x[0,L[cC. So{v}x[0,i[ccC. O

In particular, from (A.5) it follows: an open subset of X that does not meet
A is a subset of U, for all n. This immediately yields:

X\ U, U, c A, where A denotes the closed closure of A in X. (A.6)
We now exploit the assumption “(X x0) U (A X I) is a retract of X X I” and prove
Ucu,  U,. (A7)

Let r : X X I — (X x0)U (A x1I) be a retraction. If ¢t €]0,1], then A X ¢ is the
closed closure of A Xt in (X x0) U (A x I). Since r is continuous and fixes the
points of A x I, for t €]0, 1], we have:

r(Axt) =AXt. (A.8)

We claim:
r((X\U,_ Uy xI) c (X\U,) xI for all n. (A.9)
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Proof. (of (A.9)) Let x € X\ U;”,U,, t € I. We assume: there exists a natural
number n > 1 with r(x,7) € U, X I. Since r is continuous and U, is open in X,
there would then be open neighbourhoods V and M of x and ¢, respectively, in
X and I, respectively, with r(V x M) c U,, x I. It would follow:

VnA)yxt=r((VNnA)xt) cU,XxI,

so VNA C U, , hence by (A.5) V ¢ U and thus x € U, c U, U,. Our
assumption therefore leads to a contradiction, i.e., (A.9) is proven. O

Proof. (of (A.7)) Now let x € X \ U” ,U,. From (A.6), (A.8), (A.9), and (A.4),
for all 7 €]0, 1], it follows:

r(x,1) e (AN (X\Up_ U)X I =(AN(X\U))xIc(X\U)xI
and therefore, since r is continuous and X \ U is closed in X:
(x,0) =r(x,0) e (X\U)xI, so xeX\U.
This shows: X\ U> U, € X\ U, i.e., (A.7) is proven. O
We now define: Vn:=UNU,,n=1,2,3,... Then we have:
U=U,_V,, (A.10)
since Uy V, = U (UNU,) =UNUY U, =U, and by (A.7) U C U;_, U,.
We claim:
ANU,=ANYV,. (A.11)

Proof. (of (A.11)) AnU, > ANV, since V,, c U,. Let x € ANU,. Siuce x € U,,
there exists an open subset W of X with x € W and (W n A) x [0, %[C C. Since
x € WNA, it follows that (x,0) € C,i.e.,x € U. Hencex € AnNU,NU = ANV,,. 0O

Using (A.10) and (A.11), it is easy to prove:
1
B=((Xx0)U(AxD)NU;_ (V,x[0,=]). (A.12)
n

Since V,, is open in X, it follows from (
refeq:a-9) that B is open in (X x 0) U (A X I). O

So we have proven (A.3) and are done. m]
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