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Preface

A word from the transcriber

This is an English translation of �Morse Theory� by M. M. Postnikov originally
written in Russian.

The preface by the original authour

When studying Morse theory, the main di�culty for beginners is the �synthetic�
nature of this theory, i.e. the fact that it is located at the junction of at least
three areas of mathematics (topology, analysis and geometry). The purpose
of this book is to help the beginner overcome this di�culty. Actually, only a
smaller part of the book is devoted to Morse theory: most of it is occupied with
presenting the necessary information from topology and geometry.

The �rst three chapters are devoted to topology.
Since general topology is described in many Russian textbooks, the �rst

chapter (general methodological issues) is written rather concisely and with
special emphasis on facts that are usually not covered in textbooks. Some of
the issues discussed in this chapter may also be of interest to a specialist.

The second chapter is entirely devoted to homotopy equivalence of topolog-
ical spaces. As far as the author knows, this material (which is well known to
specialists) has not been put together by anyone yet.

The third chapter discusses cellular decompositions. It seems surprising that,
despite the main role that cellular decompositions play in modern topology, a
coherent presentation of their theory has not yet been published anywhere.

The next two chapters are devoted to the theory of smooth manifolds. Al-
though there are a number of expositions of this theory in Russian, none of
them is suitable for our purposes. We construct a theory of smooth manifolds,
following Chevalley, in a non-coordinate form; local coordinates are used only
when it seems appropriate. With great regret, the author had to limit him-
self to �nite-dimensional manifolds only - the coverage of in�nite-dimensional
manifolds would violate the elementary nature of the presentation. This is all
the more regrettable because (as it has become clear recently) it is in�nite-
dimensional manifolds that represent the natural �eld of construction of Morse
theory.
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The sixth chapter, devoted to the theory of critical points of smooth func-
tions, also belongs to the theory of smooth manifolds. The novelty here is the
systematic consideration of not only non-degenerate critical points, but also
non-degenerate critical manifolds. Morse numbers connecting the numbers of
critical points of a given index with the Betti numbers of the manifold. This is
the only place in the book (except for the directly related �rst half of paragraph
6 of Chapter 9) where we go beyond the topological material described in the
�rst three chapters. However, all the necessary properties of Betty numbers in
this supplement are clearly formulated.

The seventh chapter is devoted to the geometry of a�ne connectivity spaces-
and Riemannian geometry. The presentation here is conducted mainly in the
�classical� spirit, but in compliance with all modern requirements of rigour and
from a global point of view. We are dealing here only with the very basics
of Riemannian geometry, so much that is usually given in geometry courses
remains outside the scope of our presentation. On the other hand, we had to
include here some essential facts of Riemannian geometry (Whitehead's theorem
on the existence of neighbourhoods normal with respect to any point, and the
Hopf-Rinov theorem on complete Riemannian spaces), which are usually not
considered in standard Riemannian geometry courses. Although we conduct
the entire presentation of Riemannian geometry in the spirit of Cartan's ideas,
nevertheless, due to the limitations of the tasks set, we managed to do without
external di�erentiation (although in one place, namely, when deriving Cartan's
basic equations, the concept of the external di�erential, although implicitly, still
essentially appears).

The eighth chapter outlines the theory of the so-called �index form�. We
present here, adhering mainly to the original Morse construction, and only in
the last paragraph we turn to a more modern interpretation related to the
replacement of the length functional with the action functional. This, of course,
somewhat lengthens and complicates the construction, but at the same time it
is possible to preserve both the historical perspective and geometric clarity. In
Appendix to this chapter, the �moving end� problem is treated in a similar way.
Here, Morse's initial reasoning was signi�cantly simpli�ed.

In the ninth and �nal chapter, the main theorem of Morse theory is proved,
describing the structure of the space of curves connecting two given points of
the complete Riemannian space. In essence, this theorem is a fairly simple
reworking of the main results of the previous chapter, with the aim of giving
these results a more invariant appearance. In conclusion of this chapter, we
give the simplest applications of Morse theory to the topology and geometry of
Riemannian spaces.

A more detailed understanding of the contents of the book can be obtained
from the table of contents and short summaries given to each chapter.

Formally, the reader is not required to have any knowledge beyond the �rst-
year program of mathematical departments of universities and pedagogical col-
leges, although, of course, a certain level of mathematical culture and the ability
to work with the book is assumed.

When working on the manuscript of this book, the author allowed himself
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to make extensive use of his previous book (see the list of references of Post-
nikov [9]). In particular, chapters seven and eight reproduce the corresponding
chapters of this book almost verbatim.

The list of references at the end of the book is provided with a �Historical
and literary commentary� aimed at helping the reader to navigate the literature
more easily. The list of references does not claim to be complete.

Addition during proofreading. The manuscript of this book was completed in
1965, and its printing was delayed. At present, the author would present many
things in a completely di�erent way, from a more modern perspective. But this
would have postponed the publication of the book inde�nitely, and therefore it
was decided to leave it in its original form.

The Authour





Chapter 1

Necessary information from

general topology

In this introductory chapter we present the information we need based on gen-
eral set-theoretic topology. As a rule, we do not seek to exhaust a particular
issue raised. Only questions for which there is no coherent presentation in the
literature known to the authour are considered in detail.

�1.1 sets out the de�nition of topological spaces, introducing the classes
of spaces distinguished by the axioms of countability and separability are de-
�ned, and the most important operations on topological spaces (free associa-
tions, topological sums and topological products) are described.

In �1.2, compact and closed spaces are considered (paracompact, �nally
compact, locally compact, etc.). The results of this point are mostly known,
but so far were not collected together anywhere.

�1.3 presents classical theorems on continuous functions (the theorems of
Urysohn and Tietze and the theorem on the existence of a partition of unity).

In �1.4, the presentation is concentrated mainly around Stone's theorem
on the paracompactness of metric spaces. As a consequence of this theorem,
in particular, we prove (based on the general results of �1.2 the well-known
theorem of P. S. Aleksandrov on the separability of connected locally compact
metric spaces.

In �1.5, the main attention is paid to the issue of constructing continuous
maps. In this regard, identi�cation maps and, in particular, their topological
products are considered in detail.

�1.6 contains rather heterogeneous material, grouped around the concept of
topology of identi�cation. In particular, this section describes the construction
of a cylinder of an arbitrary continuous map.

1



2CHAPTER 1. NECESSARY INFORMATION FROMGENERAL TOPOLOGY

1.1 Topological spaces

Since the basic facts of general topology are widely known, in this chapter we
only recall some concepts and clarify terminology.

A set 𝑋 is said to be de�ned as a topological space or to have a topology
introduced if some of its subsets are declared open and the following axioms
hold:

1) the set 𝑋 itself is open;

2) the empty set ∅ is open;

3) the union of any number of open sets is open;

4) the intersection of any �nite number of open sets is open.

Let 𝐴 be an arbitrary subset of the topological space 𝑋. Every open set 𝑈
containing 𝐴 is called its neighbourhood. A point 𝑎 of a set 𝐴 is called its inner
point if some of its neighbourhood is contained in the set 𝐴. The set int 𝐴 of all
interior points of a set 𝐴 is called its interior. The interior of int 𝐴 is the largest
open set contained in the set 𝐴. Therefore int(int 𝐴) = int 𝐴. A set 𝐴 is open
if and only if int 𝐴 = 𝐴, that is, when any of its points is its interior point. If
𝐴 ⊂ 𝐵, then int 𝐴 ⊂ int 𝐵. For any family {𝐴𝛼} of subsets of the space 𝑋 the
following inclusions occur

int∪𝛼𝐴𝛼 ⊃ ∪𝛼 int 𝐴𝛼, int∩𝛼𝐴𝛼 ⊂ ∩𝛼 int 𝐴𝛼,

and for a �nite family {𝐴𝛼} equality takes place in the second of these relations.
A point 𝑥 of a topological space 𝑋 is called isolated if it, considered as a

subset of the space 𝑋, is its open subset. A topological space in which all points
are isolated is called discrete. The space 𝑋 is discrete if and only if each of its
subsets is open.

A family {𝑈𝛼} of neighbourhoods 𝑈𝛼 of a set 𝐴 is called its fundamental
system of neighbourhoods if for an arbitrary neighbourhood 𝑈 of the set 𝐴 there
exists an 𝛼 such that 𝑈𝛼 ⊂ 𝑈. A topological space 𝑋 is called a space of
countable local weight1 if any of its points has a countable fundamental system
of neighbourhoods. In this case we also say that the space 𝑋 satis�es the �rst
axiom of countability.

A base (or a base of open sets) of a topological space 𝑋 is any family of
its open sets that has the property that the unions of the sets of this family
exhaust all the open sets of the space 𝑋. In order for some family of open sets
of the space 𝑋 to be a base, it is necessary and su�cient that for any point of
the space 𝑋 from this family it is possible to choose a fundamental system of
neighbourhoods of this point. A family of open sets of a space 𝑋 that has the
property that all their possible �nite intersections form a base of the space 𝑋 is
called its prebase. The assignment of some pre-base completely determines the

1Comment by the transcriber: The weight of a topological space is the smallest cardinality
of an open base.
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topology of the space 𝑋, and any family of subsets of the set 𝑋 can be taken
as a pre-base of some topology de�ned on this set. A space 𝑋 is called a space
with a countable base (or a space of countable weight) if it has at least one base
(or, equivalently, a pre-base) containing at most a countable number of sets. In
this case, we also say that the space 𝑋 satis�es the second axiom of countability.
Every space with a countable base has a countable local weight.

An example of a topological space with a countable base is the number line
R, considered in the usual Euclidean topology. By de�nition, the base of this
topology is the family of all possible open intervals (𝑎, 𝑏), 𝑎 < 𝑏. To obtain
a countable base, it is su�cient to restrict ourselves to intervals (𝑎, 𝑏) with
rational 𝑎 and 𝑏.

The complements (in 𝑋) of open sets of a topological space 𝑋 are called
its closed subsets. A set 𝑋 is completely de�ned as a topological space if it is
speci�ed which of its subsets are closed. Closed sets have the following basic
properties, dual properties of open sets

1) the empty set ∅ is closed;

2) the entire set 𝑋 is closed;

3) the intersection of any number of closed sets is closed;

4) the union of any �nite number of closed sets is closed.

A point 𝑥 ∈ 𝑋 is called a contact point (or an adherent point) of the set 𝑎 ⊂ 𝑋

if any of its neighbourhoods intersects with 𝐴. The set 𝐴 of all contact points
of the set 𝐴 is called its closure. It coincides with 𝑋 ⊂ int(𝑋 ⊂ 𝐴) and therefore
is the smallest closed set of the space 𝑋 containing the set 𝐴. In particular,
the set 𝐴 is closed if and only if 𝐴 = 𝐴, that is, when it contains all its contact

points. In addition, 𝐴 = 𝐴 and 𝐴 ⊂ 𝐵 if 𝐴 ⊂ 𝐵. For any family {𝐴𝛼} of subsets
of the space 𝑋 there are inclusions

∪𝛼𝐴𝛼 ⊃ ∪𝛼𝐴𝛼; ∩𝛼𝐴𝛼 ⊂ ∩𝛼𝐴𝛼,

and for a �nite family {𝐴𝛼} the �rst of these relations holds equality.
If 𝐴 = 𝑋 then the set 𝐴 is called everywhere dense (in 𝑋). A space 𝑋 is called

separable (or countable dense) if there exists a countable everywhere dense set
in it. Any space with a countable base is separable.

The set 𝐴 ⊂ 𝑋 is called nowhere dense (in 𝑋) if int 𝐴 = ∅, i.e. if the

complement of its closure is everywhere dense (𝑋 \ 𝐴 = 𝑋). A set 𝐴 ⊂ 𝑋 is
nowhere dense if and only if any non-empty open set 𝑈 ⊂ 𝑋 contains a non-
empty open subset disjoint from 𝐴 (or, in other words, when any non-empty
open subset 𝑋 the closed set 𝐹 ⊂ 𝑋 is contained in a closed set di�erent from 𝑋

that contains the set 𝐴). The closure of a nowhere dense set is nowhere dense,
and an arbitrary subset of a nowhere dense set is also nowhere dense. The union
of a �nite number of nowhere dense sets is nowhere dense. A space 𝑋 is called a
space of the �rst category (in the sense of Baire-Hausdor�) if it is decomposable
into the union of a countable number of nowhere dense sets (here, as elsewhere
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in the future, by a countable set we mean a �nite or countable set). Otherwise,
the space 𝑋 is called a space of the second category.

A point 𝑎 of a space 𝑋 is called the limit of the sequence {𝑥𝑛} of points
𝑥𝑛 ∈ 𝑋, 𝑖 = 1, 2, . . . if for each its neighbourhood 𝑈 there is an integer 𝑁 such
that 𝑥𝑛 ∈ 𝑈 for any 𝑛 ≥ 𝑁. In this case, the sequence {𝑥𝑛} is called convergent.
Generally speaking, a convergent sequence can have several di�erent limits. If
all points 𝑥𝑛 of the convergent sequence {𝑥𝑛} belong to the set 𝐴 ⊂ 𝑋, then each
limit 𝑎 of this sequence belongs to the closure 𝐴 of the set 𝐴. If the space 𝑋 has
a countable local weight, then the converse is also true, i.e.,

Proposition 1.1. for an arbitrary subset 𝐴 ⊂ 𝑋, each point 𝑎 ∈ 𝐴 is the limit
of a certain sequence {𝑥𝑛} of points from 𝐴.

Proof. Indeed, let {𝑈𝑛}, 𝑛 ≥ 1 be a countable fundamental system of neigh-
bourhoods of a point 𝑎. Let us construct the sequence {𝑥𝑛}, taking as a point
𝑥𝑛, 𝑖 = 1, 2, . . . an arbitrary point of the set 𝐴 belonging to he intersection
𝑉𝑛 = ∩𝑛𝑛=1𝑈𝑖 (such a point necessarily exists, because 𝑎 ∈ 𝐴, and the intersec-
tion 𝑉𝑛 is a neighbourhood of the point 𝑎). It is clear that the sequence {𝑥𝑛}
constructed in this way converges to the point 𝑎. □

Each subset 𝐴 of the topological space 𝑋 is de�ned as a topological space if
its open sets are taken to be intersections with 𝐴 of the open sets of the space
𝑋. This topology of the set 𝐴 is called the induced topology, and the set 𝐴
itself, equipped with an induced topology, is a subspace of the space 𝑋. Any
subspace 𝐵 of the subspace 𝐴 is a subspace of the space 𝑋. The closed sets of
the subspace 𝐴 are the intersections with 𝐴 of the closed sets of the space 𝑋. A
subspace 𝐴 is open (resp. closed) in the space 𝑋 if and only if any open (resp.
closed) subset of it is open (resp. closed) in the space 𝑋. Each open subspace
of a space of the �rst category is itself a space of the �rst category. Therefore,
if the space 𝑋 contains an open subspace that is a space of the second category,
then it is itself a space of the second category. Each subspace of a space with a
countable base (or a space of countable local weight) is a space with a countable
base (or, respectively, a space of countable local weight). Every open subspace
of a separable space is separable.

In particular, each subset of the number line R, for example the unit segment
𝐼 = [0, 1], is a topological space with a countable base.

A topological space 𝑋 is called Hausdor� if any two of its di�erent points
have disjoint neighbourhoods, and completely Hausdor� if any two of its di�er-
ent points have neighbourhoods with disjoint closures. Thus, every completely
Hausdor� space is Hausdor�. Any point of a Hausdor� space is closed, i.e. it is
a closed subset of it. Each convergent sequence of points in a Hausdor� space
has a single limit. Any subspace of a Hausdor� (completely Hausdor�) space is
Hausdor� (completely Hausdor�).

A Hausdor� space is called regular if any of its closed subsets and any point
not belonging to this subset have disjoint neighbourhoods, and normal if any
of its two disjoint closed subsets have disjoint neighbourhoods. Formally, a
stronger condition for the existence of neighbourhoods with disjoint closures
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leads - in contrast to the case of Hausdor� property- to the same class of spaces.
Thus, for example, in normal space, any two disjoint closed sets have neighbour-
hoods with disjoint closures. Any normal space is regular. Any regular space is
completely Hausdor�. A Hausdor� space is regular (respectively normal) if and
only if for any neighbourhood 𝑈 of its arbitrary point (an arbitrary closed sub-
set) there exists a neighbourhood 𝑉 such that 𝑉 ⊂ 𝑈. Any subspace of a regular
space is regular and any closed subspace of a normal space is normal. Every
discrete space is normal. Any subspace of the number line R, in particular, the
unit segment 𝐼, is a normal space.

Let {𝑋𝛼;𝛼 ∈ 𝐴} be a family of subspaces 𝑋𝛼 of the topological space 𝑋 such
that

𝑋 = ∪𝛼∈𝐴𝑋𝛼 .

According to the de�nition of a subspace, for every closed (open) set 𝐴 ⊂ 𝑋 and
any 𝛼 ∈ 𝐴, the intersection 𝐴 ∩ 𝑋𝛼 is closed (open) in the subspace 𝑋𝛼. In the
case when the converse is true, i.e., when any set 𝐴 ⊂ 𝑋 for which all sets 𝐴∩𝑋𝛼
are closed (open) in the corresponding subspaces 𝑋𝛼, is itself closed (open) in
the space 𝑋, we will say that the space 𝑥 is a free union of subspace 𝑋𝛼. As is
easy to see,

Proposition 1.2. any closed or open subspace 𝐴 of a free union 𝑋 of subspaces
𝑋𝛼 is a free union of subspaces 𝐴 ∩ 𝑋𝛼.

In addition,

Proposition 1.3. the space 𝑋 = ∪𝛼∈𝐴𝑋𝛼 is a free union of its subspaces 𝑋𝛼,
𝛼 ∈ 𝐴 if

1) all subspaces 𝑋𝛼 are open; or

2) all subspaces 𝑋𝛼 are closed and their number is �nite.

Proof. Indeed, if all subspaces 𝑋𝛼 are open (closed), then every set that is open
(closed) in one or another of the subspaces 𝑋𝛼 is open (closed) throughout the
space 𝑋. In particular, if for a set 𝐴 ⊂ 𝑋 any of the intersections 𝐴 ∩ 𝑋𝛼) is
open (closed) in the corresponding subspace 𝑋𝛼, then all these intersections are
open (closed) in 𝑋, and therefore the set

𝐴 = ∪𝛼∈𝐴(𝐴 ∩ 𝑋𝛼)

is the union of open closed sets 𝐴 ∩ 𝑋𝛼 in 𝑋. Consequently, 𝐴 itself is open
(closed, because the number of terms, by condition, is �nite). □

A family {𝐴𝛼;𝛼 ∈ 𝐴} of subsets 𝐴𝛼 of a space 𝑋 will be called locally �nite
if any point 𝑥 ∈ 𝑋 has a neighbourhood intersecting only with a �nite number
of subsets 𝐴𝛼. It turns out that in condition 2) of the previous proposition,
the requirement of �niteness of the family {𝑋𝛼;𝛼 ∈ 𝐴} can be weakened to the
requirement of local �niteness, i.e.
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Proposition 1.4. the space 𝑋 = ∪𝛼𝑋𝛼 is a free union of its subspaces 𝑋𝛼,
𝛼 ∈ 𝐴 if all these subspaces are closed and the family {𝑋𝛼;𝛼 ∈ 𝐴} is locally
�nite.

Since the family of {𝐴 ∩ 𝑋𝛼;𝛼 ∈ 𝐴} is locally �nite together with the family
{𝑋𝛼;𝛼 ∈ 𝐴}, it immediately follows from the above reasoning that it is enough
for us to prove only the following (which has an independent interest) proposi-
tion:

Proposition 1.5. The union 𝐹 = ∪𝛼𝐹𝛼 of any locally �nite family {𝐹𝛼;𝛼 ∈ 𝐴}
of closed sets 𝐹𝛼 ⊂ 𝑋 is closed.

We will prove even more, namely that

Proposition 1.6. for any locally �nite family {𝐴𝛼;𝛼 ∈ 𝐴} of subsets of an
arbitrary space 𝑋 the foollowing equality holds

∪𝛼𝐴𝛼 = ∪𝛼𝐴𝛼 .

Proof. Indeed, since ∪𝛼𝐴𝛼 ⊃ ∪𝛼𝐴𝛼, proof requires only the reverse inclusion

∪𝛼𝐴𝛼 ⊂ ∪𝛼𝐴𝛼 . (1.7)

Let 𝐴 = ∪𝛼𝐴𝛼 and let 𝑥/𝑖𝑛𝐴. Due to the local �niteness of the family {𝐴𝛼,
the point 𝑥 has a neighbourhood 𝑈0 intersecting only with a �nite number of
sets 𝐴𝛼1

, . . . , 𝐴𝛼𝑛 of this family. Therefore, for any neighbourhood 𝑈 of the
point 𝑥, its neighbourhood 𝑉 = 𝑈 ∩𝑈0 does not intersect with the sets 𝐴𝛼 for
𝛼 ≠ 𝛼1, . . . , 𝛼𝑛. But 𝑥 ∈ 𝐴 and therefore 𝑉 ∩ 𝐴 ≠ ∅. Therefore, 𝑉 ∩∪𝑛

𝑖=1𝐴𝛼𝑖 ≠ ∅,
i.e, 𝑈∩∪𝑛

𝑖=1𝐴𝛼𝑖 ≠ ∅. Due to the arbitrariness of the neighbourhood 𝑈, it follows
that 𝑥 ∈ ∪𝑖𝐴𝛼𝑖 = ∪𝑛

𝑖=0𝐴𝛼𝑖 ⊂ ∪𝛼𝐴𝛼. Thus, the inclusion (1.7) is proved. □

In connection with the proven proposition, it is useful to note that

Proposition 1.8. a family {𝐴𝛼} of arbitrary sets is locally �nite if and only if
the family {𝐴𝛼} consisting of the closures 𝐴𝛼 of sets 𝐴𝛼 is locally �nite.

Proof. Indeed, it is clear that an open set 𝑈 intersects some set 𝐴 if and only if
it intersects the closure 𝐴 of this set. □

The concept of free union that we have considered had, so to speak, an �inter-
nal� character: it related to subspaces of a given, �already existing,� topological
space 𝑋. It can also be considered when the space 𝑋 is not given in advance.

Let an arbitrary set 𝑋 be represented as a union

𝑋 = ∪𝛼∈𝐴𝑋𝛼

of sets 𝑋𝛼, each of which is a topological space. It is easy to see that, by
declaring closed (open) sets those and only those sets 𝐴 ⊂ 𝑋 for which, for any
𝛼 ∈ 𝐴, the intersection 𝐴 ∩ 𝑋𝛼 is closed (open) in the space 𝑋𝛼, we de�ne the
set 𝑋 as a topological space. However, generally speaking, the spaces 𝑋𝛼 will
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not be subspaces of this space. (To get an appropriate example, it is enough
to consider the case when all the spaces 𝑋𝛼 coincide as sets with the space 𝑋,
but are equipped with di�erent topologies.) In the case when each space 𝑋𝛼 is
a subspace of the constructed space 𝑋, we will say that the spaces 𝑋𝛼 are freely
united, and we will call the space 𝑋 a free union of the spaces 𝑋𝛼. It will be a
free union in the previously de�ned sense of its subspaces 𝑋𝛼.

It is clear that

Proposition 1.9. if all intersections 𝑋𝛼1
∩ 𝑋𝛼2

, 𝛼1, 𝛼2 ∈ 𝐴, are closed (open)
spaces of each spaces 𝑋𝛼1

and 𝑋𝛼2
, then the spaces 𝑋𝛼 are freely united and are

closed (respectively, open) spaces of their free union 𝑋.

In particular, the spaces 𝑋𝛼 are freely combined if they do not intersect in
pairs. We will call the free union of disjoint topological spaces a topological sum.
Each term 𝑋𝛼 of the topological sum 𝑋 is closed and simultaneously open in
this sum. Conversely, if

𝑋 = ∪𝛼∈𝐴𝑋𝛼

and if each subspace of 𝑋𝛼 is both closed and open in 𝑋, then the space 𝑋 is
the topological sum of the subspaces of 𝑋𝛼. If each term of a topological sum
is Hausdor�, completely Hausdor�, regular or normal, then the topological sum
also has the same property. The same remark applies to topological sums, the
terms of which have a countable local weight. For spaces with a countable base
and separable, a similar statement is true only when the number of terms of the
topological sum is countable.

Along with the topological sum, we will also consider the topological product
𝑋 × 𝑌 of any two (not necessarily disjoint) topological spaces 𝑋 and 𝑌 . The
points of this product are, by de�nition, all possible pairs of the form (𝑥, 𝑦),
where 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 , and the base of its open sets is the collection of all subsets
of the form 𝑈 ×𝑉 , where 𝑈 is an arbitrary open subset of the space 𝑋, and 𝑉 is
an arbitrary open subset of the space 𝑌 (the subset 𝑈×𝑉 consists, as its notation
suggests, of all pairs (𝑥, 𝑦), where 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉). The topological product of any
(possibly in�nite) number of topological spaces 𝑋𝛼, 𝑎 ∈ 𝐴 is de�ned similarly
(in this case, in the case of an in�nite number of factors, when constructing
open sets of the base of the product, one should choose open sets that coincide
with the entire space in all but a �nite number of factors). The topological
product of any number of Hausdor�, completely Hausdor�, or regular spaces
is, respectively, Hausdor�, completely Hausdor�, and regular. For spaces of
countable local weight of spaces with a countable base or separable spaces,
the corresponding statement holds if the number of factors is countable. The
topological product of normal spaces is not, generally speaking, a normal space.

For example, there is a normal space 𝑋 whose topological product 𝑋 × 𝐼 on
the segment 𝐼 = [0, 1] of the number line R is no longer a normal space. The
normal space 𝑋, for which the product 𝑋 × 𝐼 is also normal, we will call it stably
normal.
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1.2 Compact and some other similar spaces

A family {𝐴𝛼;𝛼 ∈ 𝐴} of subsets 𝐴𝛼 of a topological space 𝑋 is called a covering
of the set 𝐵 ⊂ 𝑋 if

𝐵 ⊂ ∪𝛼∈𝐴𝐴𝛼 .

In particular (for 𝐵 = 𝑋), a family {𝐴𝛼} is called a covering of the space 𝑋 if

𝑋 = ∪𝛼∈𝐴𝐴𝛼 .

A covering {𝐴𝛼;𝛼 ∈ 𝐴} is called open if all sets 𝐴𝛼 are open, and closed if all
sets 𝐴𝛼 are closed. In the future, we usually consider only open coverings.

The covering {𝐴𝛼;𝛼 ∈ 𝐴} of the space 𝑋 is called point �nite if any point
𝑥 ∈ 𝑋 belongs to only a �nite number of sets 𝐴𝛼, locally �nite if any point
𝑥 ∈ 𝑋 has a neighbourhood intersecting only with a �nite number of sets 𝐴𝛼 (cf.
�refsect:1-1), and is stellar �nite if any set 𝐴𝛼 intersects only a �nite number
of other sets of covering. Any locally �nite cover is point �nite and any open
stellar-�nite cover is locally �nite.

We will call the covering {𝐵𝛽; 𝛽 ∈ 𝐵} a subcovering of the covering {𝐴𝛼;𝛼 ∈
𝐴} if 𝐵 ⊂ 𝐴 and 𝐵𝛽 = 𝐴𝛽 for any 𝛽 ∈ 𝐵. We will say that the cover {𝐵𝛽; 𝛽 ∈ 𝐵}
is a re�nement of the cover {𝐴𝛼;𝛼 ∈ 𝐴} if for any 𝛽 ∈ 𝐵 there exists an 𝛼 ∈ 𝐴
such that 𝐵𝛽 ⊂ 𝐴𝛼. It is clear that any subcovering of the covering {𝐴𝛼;𝛼 ∈ 𝐴}
is a re�nement of this covering.

A space 𝑋 is called paracompact if any of its open coverings can be re�ned
into a locally �nite open covering. Every closed subspace of a paracompact space
is paracompact. The topological sum of any number of paracompact spaces is
paracompact. Each discrete space is paracompact.

To prove deeper properties of paracompact spaces, it is useful to �rst prove
that:

Proposition 1.10. for a subset 𝐴 and a closed subset 𝐹 of a paracompact
space 𝑋 that does not intersect with it to have disjoint open neighbourhoods, it
is su�cient that the set 𝐹 have an open cover {𝑈𝛼;𝛼 ∈ 𝐴} such that 𝑈𝛼∩ 𝐴 = ∅
for each 𝛼 ∈ 𝐴.

Proof. Indeed, let us consider the covering {𝑋 \𝐹,𝑈𝛼} of the entire space 𝑋. Let
{𝑊𝛽; 𝛽 ∈ 𝐵} be a locally �nite covering re�ning the covering {𝑋 \ 𝐹,𝑈𝛼}, and
let 𝐵

′
be the set of all indices 𝛽 ∈ 𝐵 for which 𝑊𝛽 ∩ 𝐹 ≠ ∅. Since 𝑊𝛽 ⊄ 𝑋 \ 𝐹,

for each index 𝛽 ∈ 𝐵
′
there exists an index 𝛼 ∈ 𝐴 such that 𝑊𝛽 ⊂ 𝑈𝛼 and

therefore 𝑊𝛽 ∩ 𝐴 = ∅ (since 𝑊𝛽 ⊂ 𝑈𝛼). Therefore, the set ∪𝛽∈𝐵′𝑊𝛽 does not

intersect with the set 𝐴. But ∪𝛽∈𝐵′𝑊𝛽 = ∪𝛽∈𝐵′𝑊𝛽 due to the local �niteness of

the family {𝑊𝛽}. Therefore, the set 𝑈 = 𝑋 \ ∪𝛽∈𝐵′𝑊𝛽 is open and contains the
set 𝐴, i.e. it is an open neighbourhood of the set 𝐴. To complete the proof, it
remains to note that the set 𝑊 = ∪𝛽∈𝐵′𝑊𝛽 is open, contains the set 𝐹 and does
not intersect with the set 𝑈. □

It follows easily from this proposition, in particular, that
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Proposition 1.11. any Hausdor� paracompact space 𝑋 is normal.

Proof. Indeed, let 𝐹1 and 𝐹2 be disjoint closed subsets of the space 𝑋. Since
the space 𝑋 is Hausdor�, for any two points 𝑥1 ∈ 𝐹1 and 𝑥2 ∈ 𝐹2 there are
disjoint neighbourhoods 𝑈 (𝑥1) and 𝑈 (𝑥2). In particular, the point 𝑥2 will not
belong to the closure 𝑈 (𝑥1) of the neighbourhood 𝑈 (𝑥1) of thee point 𝑥1. In
other words, the covering of the set 𝐹1, consisting of the neighbourhoods 𝑈 (𝑥1,
𝑥1 ∈ 𝐹1, satis�es the conditions of the proposition just proved (for 𝐹 = 𝐹1 and
𝐴 consisting of the point 𝑥2). Consequently, there are disjoint open sets 𝑉 and
𝑉 (𝑥2, respectively containing the set 𝐹1 and the point 𝑥2. In particular, the
closure 𝑉 (𝑥2) of the set 𝑉 (𝑥2) does not intersect with the set 𝐹1. Therefore, the
covering of the set 𝐹2, consisting of the sets 𝑉 (𝑋2), 𝑥2 ∈ 𝐹2, also satis�es the
conditions of our proposition (for 𝐹 = 𝐹2 and 𝐴 = 𝐹1). Consequently, the sets
𝐹1 and 𝐹2 can be separated by disjoint neighbourhoods. □

A space 𝑋 (or, more generally, some subset of it) is called compact (respec-
tively, Lindelöf ) if any of its open covers can be re�ned with a �nite (respec-
tively, countable) open cover, or, equivalently, if any of its open covers can be
subdivided with a �nite (respectively, countable) cover.

Each compact space is Lindelöf. Any discrete compact (Lindelöf) space
is �nite (countable). Any �nite (countable) space is compact (Lindelöf). A
subset of an arbitrary space is compact (Lindelöf) if and only if it is compact
(Lindelöf) in the induced topology. In a Hausdor� space 𝑋, the set of points of
some convergent sequence together with the limit of this sequence constitutes a
compact subset of the space 𝑋. The closed subspace 𝐴 of a compact (Lindelöf)
space 𝑋 is compact (Lindelöf). In particular, the intersection of a compact set
with a closed one is compact.

The classical Heine-Borel lemma states that any closed bounded subset of
the real line R is compact. In particular, the interval 𝐼 = [0, 1] is compact.

Below we prove that in regular (and even Hausdor�) spaces all compact sets
are closed. In this regard, it is useful to note that compact sets of regular spaces
have a property that any closed sets have in a normal space, namely, for any
neighbourhood 𝑈 of a compact subset 𝐶 of a regular space 𝑋, there exists a
neighbourhood 𝑉 such that 𝑉 ⊂ 𝑈.

Proof. Indeed, since the space 𝑋 is regular, each point 𝑥 ∈ 𝐶 has a neighbour-
hood 𝑉𝑥 such that 𝑉 𝑥 ⊂ 𝑈. Since the set 𝐶 is compact, from its covering
{𝑉𝑥 , 𝑥 ∈ 𝐶} one can choose a �nite subcovering 𝑉𝑥1 , . . . , 𝑉𝑥𝑛 . The set

𝑉 = ∪𝑛𝑖=1𝑉𝑥𝑖

is open and its closure 𝑉 (which is the union of the closures 𝑉 𝑥𝑖 of the sets 𝑉𝑥𝑖 )
is contained in the neighbourhood 𝑈. □

A topological space 𝑋 will be called sequentially compact if each sequence of
its points contains a convergent subsequence. It is easy to see that
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Proposition 1.12. any Hausdor� compact space of countable weight is sequen-
tially compact.

Proof. Indeed, let this not be so, i.e. let there exist a compact space of count-
able local weight, containing a sequence {𝑥𝑛}, with no subsequence of which
converges. It is easy to see that the set of points of this sequence is, �rstly,
in�nite, secondly, discrete, and, thirdly, closed. On the other hand, any closed
discrete subset of a compact space is necessarily �nite. □

It is equally easy to prove that

Proposition 1.13. any Lindelöf and sequentially compact space is compact.

Proof. To prove this statement, it su�ces to show that from any countable
open covering {𝑈𝑖} of a sequentially compact space 𝑋 one can choose a �nite
subcovering. Consider the sets 𝑉𝑛 = 𝑈1∪· · ·∪𝑈𝑛, 𝑛 = 1, 2, . . . . If it is impossible
to choose a �nite subcovering from the covering {𝑈𝑖}, then we can obviously
assume that all sets 𝑉𝑛 are distinct. Let 𝑥𝑛 ∈ 𝑉𝑉𝑛+1 \ 𝑉𝑛, 𝑛 = 1, 2, . . . . Since
the point 𝑥𝑛 can belong to the set 𝑈𝑖 only when 𝑛 < 𝑖, then none of the sets 𝑈𝑖
contains the limit of any convergent subsequence of the sequence {𝑥𝑛}. But this
is impossible, because the sets 𝑈𝑖 cover, according to the condition, the entire
space 𝑋. The resulting contradiction shows that from the covering {𝑈𝑖} one can
choose a �nite subcovering. □

In connection with this statement, it is useful to keep in mind that

Proposition 1.14. any space 𝑋 with a countable base is Lindelöf.

Proof. Indeed, by selecting for an arbitrary open covering Γ of the space 𝑋 in
a countable base of this space a subfamily of all its elements contained in the
elements of the covering Γ, we obviously obtain a countable covering of the space
𝑋 as a re�nement in the covering Γ. □

The compactness of sequentially compact spaces follows not only from Lin-
delöf property, but also from paracompactness, i.e.

Proposition 1.15. a paracompact and sequentially compact space is compact.

To prove this statement it su�ces to show that

Proposition 1.16. any locally �nite covering {𝑈𝛼} of a sequentially compact
space 𝑋 is �nite.

Proof. Assume the contrary, i.e. assume that the covering {𝑈𝛼} is in�nite, and
consider some of its countable subfamily {𝑈𝑖}. Let, as above, 𝑉𝑛 = 𝑈1∪ · · · ∪𝑈𝑛.
From the local �niteness of the covering {𝑈𝛼} it follows directly that the family
{𝑉𝑛} contains in�nitely many di�erent sets Therefore, passing to some of its
subfamily if necessary, we can assume that all sets 𝑉𝑛 are distinct. Let 𝑥𝑛 ∈
𝑉𝑛 \𝑉𝑛−1 and let 𝑥 be the limit of some convergent subsequence of the sequence
{𝑥𝑛}. By de�nition, any neighbourhood of a point 𝑥 contains in�nitely many
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points of the sequence {𝑥𝑛} and therefore intersects with an in�nite number of
elements of the covering {𝑈𝛼}. Since this contradicts the local �niteness of the
covering {𝑈𝛼}, the assumption that the covering {𝑈𝛼} is in�nite is false. □

The union of a �nite (countable) number of compact (Lindelöf) subspaces of
an arbitrary space is compact (Lindelöf). In particular, the union of countably
many compact sets is Lindelöf. The topological sum of a �nite (countable) num-
ber of compact (Lindelöf) spaces is a compact (Lindelöf) space. The topological
product of any number of compact spaces is compact.

For two (and therefore any �nite number of factors) this statement is obvious,
since in each open covering of the product 𝑋 × 𝑌 of factors one can inscribe a
covering consisting of �rectangles� 𝑈𝛼 × 𝑉𝛽, where 𝑈𝛼 and 𝑉𝛽 are elements of
some coverings of the spaces 𝑋 and 𝑌 , respectively.

For paracompact and Lindelöf spaces, the corresponding statement is gen-
erally false (even for the case of two factors). However, it can be shown that

Proposition 1.17. the topological product of a paracompact and a compact
space is paracompact.

Proof. Indeed, let Γ be an arbitrary open covering of the product 𝑋 × 𝑌 of a
paracompact space 𝑋 and a compact space 𝑌 . Without loss of generality, we can
assume that the elements of the covering Γ have the form 𝑈𝛼 ×𝑉𝛽 where 𝑢𝛼 and
𝑉𝛽 are some open coverings of the spaces 𝑋 and 𝑌 , respectively. Since for each
point 𝑥 ∈ 𝑋 the �layer� 𝑥 × 𝑌 of the product 𝑋 × 𝑌 is obviously compact, from
the covering Γ one can choose a �nite subfamily {𝑈𝛼𝑖 ,𝑥 × 𝑉𝛽𝑖 ,𝑥 |𝑖 = 1, 2, . . . , 𝑛𝑥}
such that

𝑥 × 𝑌 ⊂ ∪𝑛𝑥
𝑖=1 (𝑈𝛼𝑖 ,𝑥 ×𝑉𝛽𝑖 ,𝑥).

In this case, we can obviously assume that 𝑥 ∈ 𝑈𝛼𝑖 ,𝑥 for all 𝑖 = 1, 2, . . . , 𝑛𝑥. Let

𝑈𝑥 = ∩𝑛𝑥
𝑖=1𝑈𝛼𝑖 ,𝑥 .

It is clear that the sets 𝑈𝑥 × 𝑉𝛽𝑖 ,𝑥 , 𝑖 = 1, 2, . . . , 𝑛𝑥 , are open in 𝑋 × 𝑌 and still
cover the layer 𝑥 × 𝑌 :

𝑥 × 𝑌 ⊂ ∪𝑛𝑥
𝑖=1(𝑈𝑥 ×𝑉𝛽𝑖 ,𝑥).

Moreover, 𝑥 ∈ 𝑈𝑥 , so that the family {𝑈𝑥 |𝑥 ∈ 𝑋} is an open covering of the
space 𝑋. Let {𝑊𝛿 |𝛿 ∈ Δ} be a re�ned locally �nite open covering of the covering
{𝑈𝑥 |𝑥 ∈ 𝑋}. Having chosen for each 𝛿 ∈ Δ a point 𝑥𝛿 ∈ 𝑋 such that 𝑊𝛿 ∈ 𝑈𝑥𝛿 ,
we consider the sets 𝑊𝛿×𝑉𝛽𝑖 ,𝑥𝛿 , 𝑖 = 1, 2, . . . , 𝑛𝑥𝛿 . It is clear that

𝑊𝛿 × 𝑌 ⊂ ∪𝑛𝑥𝛿
𝑖=1 (𝑊𝛿 ×𝑉𝛽𝑖 ,𝑥𝛿 ).

Consequently, the family {𝑊𝛿×𝑉𝛽𝑖 ,𝑥𝛿 |𝛿 ∈ Δ, 𝑖 = 1, 2, . . . , 𝑛𝑥𝛿 } is an open covering
of the space 𝑋×𝑌 , obviously a re�nement the covering Γ. Therefore, to complete
the proof, it only remains to show that this covering is locally �nite. Let (𝑥, 𝑦)
be an arbitrary point of the space 𝑋 ×𝑌 . By the paracompactness of the space
𝑋, the point 𝑥 has a neighbourhood 𝑈 (𝑥) in 𝑋 that intersects only a �nite
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number of open sets 𝑊𝛿 . Consider a neighbourhood 𝑈 (𝑥) × 𝑉𝛽𝑖0 ,𝑥𝛿0 of a point
(𝑥, 𝑦) in the space 𝑋 × 𝑌 , where 𝑉𝛽𝑖0 ,𝑥𝛿0 is one of the sets of the form 𝑉𝛽𝑖 ,𝑥𝛿 ,
containing the point 𝑦. If this neighbourhood intersects some set𝑊𝛿×𝑉𝛽𝑖 ,𝑥𝛿 then
𝑈 (𝑥) ∩𝑊𝛿 ≠ ∅ and therefore the number of such sets is �nite. Consequently,
the covering 𝑊𝛿 ×𝑉𝛽𝑖0 ,𝑥𝛿0 , 𝑖 = 1, 2, . . . , 𝑛𝑥𝛿 is locally �nite. □

It immediately follows from the proved proposition that the topological prod-
uct of a Hausdor� paracompact and a Hausdor� compact space is a Hausdor�
paracompact and therefore a normal space. Since the segment 𝐼 = [0, 1] is a
Hausdor� compact space, it follows, in particular, that

Proposition 1.18. any Hausdor� paracompact space is stably normal.

It is clear that any compact space is paracompact. Therefore,

Proposition 1.19. any Hausdor� compact space is stably normal,

Unlike compactness, Lindelöf-ness, generally speaking, does not ensure para-
compactness. However,

Proposition 1.20. any regular Lindelöf space 𝑋 is paracompact (and hence
normal).

Proof. We will begin the proof of this statement by considering two disjoint
closed sets 𝐹1 and 𝐹2 of the space 𝑋. Since the space 𝑋 is regular, for any
point 𝑥 ∈ 𝑋, there exists a neighbourhood 𝑈 (𝑥) such that 𝑈 (𝑥) ∩ 𝐹𝑖 ≠ ∅ if
𝑥 ∉ 𝐹𝑖. Since the set 𝐹𝑖, 𝑖 = 1, 2, is a closed subset of the Lindelöf space 𝑋, it
itself is Lindelöf and therefore from its covering {𝑈 (𝑥) |𝑥 ∈ 𝐹𝑖} one can choose
a countable subcovering, i.e. in the set 𝐹𝑖 there exists a countable system of
points 𝑥𝑖,1, . . . , 𝑥𝑖,𝑛, . . . such that

𝐹 ⊂ ∪∞
𝑛=1𝑈 (𝑥𝑖,𝑛), 𝑖 = 1, 2.

In this case 𝑈 (𝑥1,𝑛) ∩ 𝐹2 = ∅ and similarly 𝑈 (𝑥22,𝑛) ∩ 𝐹1 = ∅. Now we de�ne by
induction for any 𝑛 ≥ 1 the sets 𝑉1,𝑛 and 𝑉2,𝑛, setting

𝑉1,𝑛 = 𝑈 (𝑥1,𝑛) \ ∪𝑛𝑘=1𝑈 (𝑥2,𝑘),
𝑉2,𝑛 = 𝑈 (𝑥2,𝑛) \ ∪𝑛𝑘=1𝑈 (𝑥1,𝑘).

It is easy to see that 𝑉1,𝑛 and 𝑉2,𝑚 do not intersect. Indeed, if 𝑛 ≤ 𝑚, then

𝑉1,𝑛 ∩𝑉2,𝑚 ⊂ 𝑈 (𝑋1,𝑛) ∩ (𝑈 (𝑥2,𝑚) \𝑈 (𝑥1,𝑛) = ∅,

and if 𝑛 > 𝑚, then

𝑉1,𝑛 ∩𝑉2,𝑚 ⊂ (𝑈 (𝑋1,𝑛) \𝑈 (𝑥2,𝑚) ∩ (𝑈 (𝑥2,𝑚) = ∅.,

Consequently, the sets

𝑉1 = ∪∞
𝑛=1𝑉1,𝑛, 𝑉2 = ∪∞

𝑛=1𝑉2,𝑛
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also do not intersect. On the other hand, they obviously contain the sets 𝐹1
and 𝐹2, respectively. Thus, we have proved that any two disjoint closed sets 𝐹1
and 𝐹2 of the space 𝑋 can be enclosed in disjoint open sets 𝑉1 and 𝑣2. In other
words, we have proved that the space 𝑋 is normal. □

Now let Γ be an arbitrary open covering of 𝑋. Since 𝑋 is regular by as-
sumption, each point 𝑥 ∈ 𝑋 has a neighbourhood 𝑈 (𝑥) whose closure 𝑈 (𝑥) is
contained in some element of Γ. Since 𝑋 is also Lindelöf, there exists a countable
system of points 𝑥1, . . . , 𝑥𝑘 , . . . in it such that

𝑋 = ∪∞
𝑛=1𝑈 (𝑥𝑘).

Let 𝑈𝑘 be an element of the covering Γ containing the set 𝑈 (𝑥𝑘). Using the
already proven normality of the space 𝑋, for any 𝑛 ≥ 1 we can construct by
induction an open set 𝑈𝑛

𝑘
such that

𝑈 (𝑥𝑘) ⊂ 𝑈𝑛𝑘 ⊂ 𝑈𝑘 and 𝑈
𝑛

𝑘 ⊂ 𝑈𝑛+1𝑘 , 𝑛, 𝑘 = 1, 2, . . .

For each 𝑛 ≥ 1 we now put
𝑉𝑛 = ∪𝑛𝑘=1𝑈

𝑛
𝑘 .

It is clear that 𝑉
𝑛 ⊂ 𝑉𝑛+1 and that the sets 𝑉𝑛 form an open covering of the

space 𝑋. Consider the sets

𝐻𝑛 = 𝑉𝑛 \𝑉𝑛−2, 𝑛 = 1, 2, . . .

(for 𝑚 ≤ 0 we conditionally assume that 𝑉𝑚 = ∅). It is easy to see that the
(obviously open) sets 𝐻𝑛 form a covering of the space 𝑋. (Indeed, for any point

𝑥 ∈ 𝑋 there exists an 𝑛 such that 𝑥 ∈ 𝑉𝑛 and 𝑥 ∉ 𝑉𝑛−1. But then 𝑥 ∉ 𝑉
𝑛−2

and
therefore 𝑥 ∈ 𝐻𝑛.) In addition, it is clear that this covering is star-�nite (since
𝐻𝑛1 ∩ 𝐻𝑛2 = ∅ for 𝑛2 ≥ 𝑛1 + 2).

Let 𝑘 = 1, . . . , 𝑛. Put

𝑊𝑛
𝑘 = 𝐻𝑛 ∩𝑈𝑛𝑘 = 𝑈𝑛𝑘 \𝑉

𝑛−2
, 𝑛 = 1, 2, . . .

Since 𝐻𝑛 ⊂ 𝑉𝑛 = ∪𝑛
𝑘=1
𝑈𝑛
𝑘
, then ∪𝑛

𝑘=1
𝑊𝑛
𝑘

= 𝐻𝑛. Consequently, the sets 𝑊𝑛
𝑘

constitute an (open) covering of the space 𝑋. This covering is a re�nement of
the covering Γ (since 𝑊𝑛

𝑘
⊂ 𝑈𝑛

𝑘
⊂ 𝑈𝑘) and is star-�nite (since it is obtained from

the star-�nite covering {𝐻𝑛} by decomposing each of its elements into a �nite
number of sets). Since any star-�nite open covering is locally �nite, it is thus
proved that any open covering of 𝑋 can be re�ned into a locally �nite open
covering, i.e., that 𝑋 is paracompact.

Let us now prove the fact mentioned above, namely, that

Proposition 1.21. any compact subset 𝐶 of a Hausdor� space 𝑋 is closed,

Proof. To this end, for any point 𝑥 ∈ 𝑋 \𝐶 and any point 𝑐 ∈ 𝐶, we choose some
disjoint neighbourhoods 𝑈𝑐 (𝑥) and 𝑈𝑥 (𝑐). For each �xed point 𝑥 ∈ 𝑋 \ 𝐶, the
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sets 𝑈𝑥 (𝑐) 𝑐 ∈ 𝐶 obviously form an open covering of the subset 𝐶. Therefore,
there exists a �nite system of points 𝑐1, . . . , 𝑐𝑛 ∈ 𝐶 such that

𝐶 ⊂ ∪𝑛𝑖=1𝑈𝑥 (𝑐𝑖).

Let

𝑈 (𝑥) = ∪𝑛𝑖=1𝑈𝑐𝑖 (𝑥).

The set 𝑈 (𝑥) is open, contains the point 𝑥 and does not intersect the set 𝐶.
Thus, each point 𝑥 of the set 𝑋 \ 𝐶 is its interior point, i.e., this set is open.
Therefore, the set 𝐶 itself is closed. □

A subset 𝐴 of a topological space 𝑋 will be called compactly closed if its in-
tersection with any compact subset 𝐶 ⊂ 𝑋 is closed (in 𝑋). From the proposition
just proved it follows immediately that

Proposition 1.22. any closed subset of a Hausdor� space 𝑋 is compactly
closed.

Thus, for Hausdor� spaces, the classes of compact, closed, and compact-
closed subsets are related by a simple inclusion relation: each of these classes is
wider than the previous one.

We will call a space 𝑋 a compactly generated2 space if it is a free union of all
its compact subspaces, i.e. if its subset 𝐴 is closed if and only if for any compact
subset 𝐶 ⊂ 𝑋 the intersection 𝐴 ∩ 𝐶 is closed in 𝐶. In a compactly generated
space, any compactly closed set is closed. According to what was said above, if
𝑋 is a Hausdor� space, then the converse is also true. Thus,

Proposition 1.23. A Hausdor� space 𝑋 is said to be a compactly generated
space if and only if any of its compactly closed subsets is closed.

Further, it is easy to see that

Proposition 1.24. any closed (resp. open) subspace 𝑌 of a compactly generated
(resp. compactly generated and regular) space 𝑋 is also a compactly generated
space.

Proof. Indeed, let the set 𝐴 ⊂ 𝑌 have the property that for any compact set
𝐶 ⊂ 𝑌 the intersection 𝐴 ∩ 𝐶 is closed in 𝐶. We need to prove that then 𝐴 is
closed in 𝑌 . If 𝑌 is closed, then instead we will prove that 𝐴 is closed in 𝑋. Since
𝑋 is a compactly generated space, it su�ces to prove that for any compact set
𝐶 ⊂ 𝑋 the intersection 𝐴 ∩𝐶 is still closed in 𝐶. But this intersection coincides
with the intersection 𝐴 ∩ (𝑌 ∩𝐶), and the set 𝑌 ∩𝐶, being the intersection of a
compact and closed set, is compact. Therefore, by hypothesis, the intersection
𝐴 ∩ (𝑌 ∩ 𝐶) is closed in 𝐶. □

2Transcriber's note: Postnikov has coined the word �kaonic.�
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Now let the subspace 𝑌 be open. Let us consider an arbitrary contact point
𝑎 of the set 𝐴 belonging to the subspace 𝑌 . Since the space 𝑋 is, by assumption,
regular, then this point has a neighbourhood 𝑈 such that 𝑈 ⊂ 𝑌 . Since for
any compact set 𝐶 ⊂ 𝑋 the intersection 𝑈 ∩ 𝐶 ⊂ 𝑌 is compact, the intersection
𝑈 ∩𝐶 ∩ 𝐴 is closed in 𝑈 ∩𝐶 and therefore in 𝐶. Consequently, the intersection

𝑈 ∩ 𝐴 is closed in the space 𝑋. But it is clear that 𝑎 ∈ 𝑈 ∩ 𝐴. Thus, 𝑎 ∈ 𝑈 ∩ 𝐴
and, therefore, 𝑎 ∈ 𝐴. We have thus proved that each contact point of the set 𝐴
belonging to the subspace 𝑌 lies in 𝐴. But this means that the set 𝐴 is closed
in the subspace 𝑌 .

It is clear that all compact spaces are compactly generated spaces. Moreover,
it is easy to see that

Proposition 1.25. any Hausdor� space 𝑋 with countable local weight is com-
pactly generated.

Proof. Indeed, let 𝑎 be an arbitrary contact point of some compactly closed
subset 𝐴 of the space 𝑋 and let {𝑎𝑛} be an arbitrary sequence of points of the
set 𝐴 converging to the point 𝑎. Since this sequence together with its limit 𝑎
forms a compact set, the intersection of this set with the set 𝐴 is closed. But
for 𝑎 ∉ 𝐴 this intersection would coincide with the sequence {𝑎𝑛} and would be
obviously not closed (since the limit of this sequence 𝑎 ∉ 𝐴 would not belong to

it). Consequently, 𝑎 ∈ 𝐴. Thus, 𝐴 = 𝐴, i.e. the set 𝐴 is closed. □

We will call a space 𝑋 countably compact if it is a free union of some countable
family {𝑋𝑛, 𝑛 ≥ 0} of its compact subspaces 𝑋𝑛. Without loss of generality, we
can assume that 𝑋𝑛 ⊂ 𝑋𝑛+1 for all 𝑛 ≥ 0. Every countably compact space
is a compactly generated space and Lindelöf space. Any closed subspace of
a countably compact space is countably compact. The topological sum of a
countable number of countably compact spaces is a countably compact space.
Moreover,

Proposition 1.26. any Hausdor� countably compact space 𝑋 is paracompact
and, in particular, normal.

Since the space 𝑋 is Lindelöf, it su�ces to establish its regularity. However,
it will be more convenient for us to immediately prove its normality.

Let 𝐹 (1) and 𝐹 (2) be arbitrary disjoint closed subsets of 𝑋. Let us consider
compact (and therefore closed and normal) subspaces

𝑋0 ⊂ 𝑋1 ⊂ · · · ⊂ 𝑋𝑛 ⊂ 𝑋𝑛+1 ⊂ · · · ,

whose free union is the space 𝑋. It turns out that for any 𝑛 ≥ 0 there exist open

(in 𝑋𝑛) sets 𝑈
(𝑖)
𝑛 , 𝑖 = 1, 2 such that

𝑋𝑛 ∩ 𝐹 (𝑖) ⊂ 𝑈 (𝑖)
𝑛 , 𝑖 = 1, 2,

𝑈
(1)
𝑛 ∩𝑈 (2)

𝑛 = ∅ and (for 𝑛 > 0) 𝑈
(𝑖)
𝑛 ∩ 𝑋𝑛−1 = 𝑈

(𝑖)
𝑛−1.
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For 𝑛 = 0, the existence of such sets is ensured by the normality of the space

𝑋0. Let for some 𝑛 ≥ 0 the sets 𝑈 (𝑖)
𝑛 , 𝑖 = 1, 2 have already been constructed. Let

us consider in the subspace 𝑋𝑛+1 the sets (𝑋𝑛 ∩ 𝐹 (𝑖) ) ∪𝑈 (𝑖)
𝑛 𝑖 = 1, 2. These sets

are closed and their intersection is empty. Therefore, they have neighbourhoods

𝑉 (1) and 𝑉 (2) with disjoint closures 𝑉
(1)

and 𝑉
(2)
. On the other hand, since the

sets 𝑈 (1)
𝑛 and 𝑈 (2)

𝑛 are open in the subspace 𝑋𝑛 of the space 𝑋𝑛+1, then in the
space 𝑋𝑛+1 there exist open sets 𝑊 (1) and 𝑊 (2) such that

𝑊 (𝑖) ∩ 𝑋𝑛 = 𝑈 (𝑖)
𝑛 , 𝑖 = 1, 2.

We will put

𝑈
(𝑖)
𝑛+1 = 𝑉 (𝑖) ∩ (𝑊 (𝑖) ∪ (𝑋𝑛+1 \ 𝑋𝑛)), 𝑖 = 1, 2.

The sets𝑈 (𝑖)
𝑛+1, 𝑖 = 1, 2 constructed in this way obviously possess all the necessary

properties.
Let us now consider the sets

𝑈 (𝑖) ) = ∪∞
𝑛=0𝑈

(𝑖)
𝑛 , 𝑖 = 1, 2.

Since for any 𝑛 ≥ 0 the sets 𝑈 (𝑖)
𝑛 = 𝑈 (𝑖) ∩ 𝑋𝑛 are open in the subspace 𝑋𝑛, the

sets 𝑈 (𝑖) , 𝑖 = 1, 2 are open in the space 𝑋. In addition, they do not intersect
and contain the sets 𝐹 (1) and 𝐹 (2) , respectively. Thus, any two non-intersecting
closed sets 𝐹 (1) and 𝐹 (2) of the space 𝑋 have non-intersecting neighbourhoods
𝑈 (1) and 𝑈 (2) . But this means that the space 𝑋 is normal.

Remark 1.27. In the above proof we used only the normality and closedness of
the subspaces 𝑋𝑛.

Therefore,

Proposition 1.28. any space that is a free union of a skeletal increasing se-
quence of closed normal subspaces is itself a normal space.

A space 𝑋 is called locally compact (resp. emphlocally countably compact)
if each of its points has a neighbourhood whose closure is compact (resp. count-
ably compact). Any compact (resp. countably compact) space is locally com-
pact (resp. locally countably compact). Any discrete space is locally compact.
For each compact subset of a locally compact (resp. locally countably compact)
space, there exists a neighbourhood whose closure is compact (resp. countably
compact). Every Hausdor� locally countably compact and, in particular, lo-
cally compact space is regular (since a Hausdor� countably compact space is
normal). Any closed subspace of a locally compact (resp. locally countably
compact) space 𝑋 is locally compact (resp. locally countably compact). The
corresponding assertion for open subspaces is also true only if 𝑋 is Hausdor�. In
particular, any open subspace of a Hausdor� compact space is locally compact.

Theorem 1.29. Conversely, any Hausdor� locally compact space 𝑋 is an open
subspace of some Hausdor� compact space 𝑋

′
and the space 𝑋

′
can be constructed

so that the �growth� of 𝑋 \ 𝑋 ′
consists of only one point (P. S. Alexandrov's

theorem on one-point compacti�cation).
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Proof. Indeed, let 𝜔 be an arbitrary point not belonging to the space 𝑋. Let us
introduce a topology into the set 𝑋

′
= 𝑋∪𝜔, considering its open sets to be those

and only those sets 𝐴
′ ⊂ 𝑋

′
, for which the set 𝐴 = 𝐴

′ \ 𝜔 is open in the space
𝑋 and - in the case when to 𝜔 ∈ 𝐴′

- is, in addition, the complement (in 𝑋) of
some compact set. It is easy to verify that the space 𝑋

′
is compact, Hausdor�,

and the topology induced on 𝑋 by the topology of the space 𝑋
′
coincides with

the original topology of the space 𝑋. □

From the theorem on one-point compacti�cation, in particular, it follows
directly that

Proposition 1.30. any Hausdor� locally compact space 𝑋 is a compactly gen-
erated space.

This statement can easily be proved directly. Indeed, let 𝐴 be an arbitrary
compactly closed subset of a locally compact space 𝑋. Let us prove that 𝐴 is
closed.

Proof. Let 𝑥 ∈ 𝑋 \ 𝐴. Since 𝑋 is locally compact, 𝑥 has a neighbourhood 𝑈
whose closure 𝑈 is compact. Since 𝐴 is compactly closed, 𝐴 ∩𝑈 is closed, and
hence its complement 𝑉 = 𝑋 \ (𝐴 ∩ 𝑈) is open. Thus, 𝑥 has a neighbourhood
𝑉 that does not intersect 𝐴 ∩ 𝑈. But then 𝑥 ∈ 𝑈 ∩ 𝑉 ⊂ 𝑈 ∩ 𝑉 ⊂ 𝑋 \ 𝐴, i.e.
𝑥 ∈ int(𝑋 \ 𝐴). Thus, 𝑋 \ 𝐴 is open, and hence 𝐴 is closed. □

The last argument is almost literally preserved for locally countable com-
pactly generated spaces. (The closedness of the set 𝐴 ∩ 𝑈 follows in this case
from the easily proven fact that the intersection of a compactly closed set with
an arbitrary countably compact subspace is closed in this subspace.) Thus,

Proposition 1.31. any Hausdor� locally countable compact space is a com-
pactly generated space.

Let us now deal exclusively with locally compact spaces (mainly Hausdor�).
First of all, we will prove that

Proposition 1.32. any Hausdor� locally compact space 𝑋 is a space of the
second category.

Moreover,

Proposition 1.33. any subspace of the �rst category of a Hausdor� locally
compact space 𝑋 has the property that its complement is everywhere dense in
the space 𝑋.

Proof. Indeed, let {𝐴𝑛; 𝑛 ≥ 1} be an arbitrary countable family of nowhere dense
subsets of 𝑋. We must prove that in any neighbourhood 𝑈 of an arbitrary point
𝑥 of 𝑋 there exist points that do not belong to any of the sets 𝐴𝑛. For this
purpose, we construct in 𝑋 a family {𝑈𝑛; 𝑛 ≥ 0} of nonempty open sets 𝑈𝑛 such
that
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1) the closure of the set 𝑈0 is compact and is contained in a neighbourhood of
𝑈;

2) for any 𝑛 ≥ 1 the relations

𝑈𝑛 ⊂ 𝑈𝑛−1, 𝑈𝑛 ∩ 𝐴𝑛 = ∅

hold.

The existence of the set 𝑈0 follows directly from the local compactness and
regularity of the space 𝑋. Let for some 𝑛 ≥ 1 the set 𝑈𝑛−1 has already been
constructed. Since the set 𝐴𝑛 is nowhere dense, in the open set 𝑈𝑛−1 there exists
a non-empty open set 𝑉𝑛 such that 𝑉𝑛 ∩ 𝐴𝑛 = ∅. Since the space 𝑋 is regular,
there exists a non-empty open set 𝑈𝑛 ⊂ 𝑉𝑛 such that 𝑈𝑛 ⊂ 𝑉𝑛. It is clear that
𝑈𝑛 ⊂ 𝑈𝑛−1 and 𝑈𝑛 ∩ 𝐴𝑛 = ∅. Thus, the sets 𝑈𝑛 have been constructed by
induction for all 𝑛 ≥ 0.

Let us now consider the sets open in the subspace 𝑈0

𝑊𝑛 = 𝑈0 \𝑈𝑛, 𝑛 ≥ 1.

If the intersection of the sets 𝑈𝑛, 𝑛 ≥ 1, is empty, then the sets 𝑊𝑛 form a
covering of the subspace 𝑈0. Since this subspace is compact by construction, a
�nite subcovering {𝑊𝑛1 , . . . ,𝑊𝑛𝑘 } can be chosen from this covering. The corre-

sponding sets 𝑈𝑛1 , . . . ,𝑈𝑛𝑘 will then have an empty intersection. The latter is

impossible, since this intersection is equal to 𝑈𝑚, where 𝑚 = max(𝑛1, . . . , 𝑛𝑘).
Consequently, the intersection of sets 𝑈𝑛, 𝑛 ≥ 1 is not empty. Since each point of
the last intersection does not belong to any of the sets 𝐴𝑛, the above proposition
is completely proved. □

Now recall that any Hausdor� locally compact space is regular. Therefore,
if it is also Lindelöf, then it is also paracompact. Since the topological sum of
paracompact spaces is a paracompact space, it follows immediately that

Proposition 1.34. any Hausdor� locally compact space that is a topological
sum of Linelöf subspaces is paracompact.

It turns out that the converse is also true (and even without the Hausdor�
proposition), i.e.

Proposition 1.35. any locally compact paracompact space 𝑋 is a topological
sum of Lindelöf subspaces.

Proof. Indeed, due to the local compactness of the space 𝑋, any point of it has a
neighbourhood with compact closure. All these neighbourhoods form a certain
covering Σ of the space 𝑋. Since the space 𝑋 is paracompact, a locally �nite
covering Γ can be inscribed in the covering Σ. This covering (like the covering
Σ) has the property that the closure of each of its elements 𝑈 is compact. On
the other hand, due to the local �niteness of the covering Γ, each point 𝑥 ∈ 𝑈
has a neighbourhood 𝑉 (𝑥) that intersects only a �nite number of elements of
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this covering. But, since the set 𝑈 is compact, there exists a �nite system of
points 𝑥1, . . . , 𝑥𝑛 ∈ 𝑈 such that

𝑈 ⊂ ∪𝑛𝑖=1𝑉 (𝑥𝑖).

Consequently, the set 𝑈, and therefore the set 𝑈, intersects only a �nite number
of elements of the covering Γ, i.e. the covering Γ is star-�nite.

Having now chosen some element 𝑈0 of the covering Γ, we consider for any
𝑛 ≥ 1 the subset 𝑋𝑛 of 𝑋 consisting of all points 𝑥𝑖𝑛𝑋 for which there exist 𝑛
sets 𝑈1, . . . ,𝑈𝑛 ∈ Γ such that 𝑥 ∈ 𝑈𝑛 and

𝑈0 ∩𝑈1 ≠ ∅, 𝑈1 ∩𝑈2 ≠ ∅, . . . ,𝑈𝑛−1 ∩𝑈𝑛 ≠ ∅.

It is clear that the subset 𝑋𝑛 is not empty, open and - by the star-like �niteness
of the covering Γ - is the union of some �nite number of elements of this covering.
Therefore, the set

𝑋∞ = ∪∞
𝑛=1𝑋𝑛

is also open and is the union of a countable number of elements of the covering
Γ. The union 𝑋∗

∞ of their closures is obviously contained in the closure 𝑋∞ of
the subspace 𝑋∞ (in fact, it coincides with this closure). Being the union of a
countable number of compact sets, the subspace 𝑋∗

∞ is Lindelöf.
Since any element of the covering Γ is either contained in 𝑋∞ or does not

intersect 𝑋∞, the complement 𝑋 \𝑋∞ is a union of some elements of 𝑈 ∈ Γ and is
therefore open. Consequently, the subspace 𝑋∞ is not only open but also closed,
and therefore 𝑋∗

∞ = 𝑋∞. Thus, the subspace 𝑋∞ is Lindeöf.
To complete the proof, it remains to note that the subspaces 𝑋∞ correspond-

ing to di�erent elements 𝑈0 of the covering Γ either coincide or do not intersect
and that the union of 𝑋 is the entire space 𝑋. □

Connectedness

A topological space 𝑋 is called connected if each of its non-empty closed and
simultaneously open subspaces coincides with the entire space 𝑋. In other words,
a space X is connected if it cannot be decomposed into a union of two (or more)
non-empty disjoint open (or closed) sets. Any space 𝑋 is a union, generally
speaking, not free, of disjoint closed maximal connected subspaces, called the
connected components of 𝑋. A connected Hausdor� space has no isolated points.
In particular, a discrete space is connected if and only if it consists of a single
point.

A set obtained from a connected set by adding some of its points of contact
is connected. In particular, the closure of a connected set is connected. The
union of connected sets with non-empty intersection is connected. For example,
a space 𝑋 is connected if any two of its points belong to a connected set. Any
interval (𝑎, 𝑏) or segment [𝑎, 𝑏] of the number line R is connected. In particular,
the unit segment 𝐼 = [0, 1] is connected.

From the de�nition of a connected space and the theorem proved above it
immediately follows that
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Proposition 1.36. any connected paracompact locally compact space is Lin-
delöf.

1.3 Continuous functions

A numerical function 𝑓 de�ned on a topological space 𝑋 is called continuous if
for any point 𝑥0 ∈ 𝑋 and any 𝜀 > 0 there exists a neighbourhood 𝑈 of the point
𝑥0 that

| 𝑓 (𝑥) − 𝑓 (𝑥0) | < 𝜀

for all points 𝑥 ∈ 𝑈. Such functions have many properties of continuous functions
of a numerical argument. For example, any continuous function de�ned on a
compact space 𝑋 is bounded and takes its largest and smallest values. Any
continuous function de�ned on a connected space 𝑋 takes all intermediate values.
The restriction 𝑓 |𝐴 to an arbitrary subspace 𝐴 ⊂ 𝑋 of any continuous function
𝑓 on 𝑋 is a function continuous on 𝐴.

For a numerical function 𝑓 de�ned on a space 𝑋 and an arbitrary number
𝑎, we will denote by the symbol [ 𝑓 ≤ 𝑎] the set of all points 𝑥 ∈ 𝑋 for which
𝑓 (𝑥) ≤ 𝑎. The notations [ 𝑓 < 𝑎], [ 𝑓 = 𝑎], [𝑎 < 𝑓 ≤ 𝑏], etc. have a similar
meaning. A function 𝑓 is continuous if and only if for any 𝑎 ∈ R the set [ 𝑓 ≤ 𝑎]
is closed or, equivalently, if for any 𝑎 ∈ R the set [ 𝑓 < 𝑎] is open. From this,
in particular, it follows that for any continuous function 𝑓 and any number 𝑎
the set [ 𝑓 = 𝑎] is closed and the set [ 𝑓 ≠ 𝑎] is open. We will call the closure
[ 𝑓 ≠ 0] of the set [ 𝑓 ≠ 0] the support of the function 𝑓 .

The sets [ 𝑓 = 𝑎] are a special case of the coincidence sets [ 𝑓 = 𝑔], de�ned
for any pair of continuous (on the space 𝑋) functions 𝑓 and 𝑔 and consisting,
by de�nition, of all points 𝑥 ∈ 𝑋 for which 𝑓 (𝑥) = 𝑔(𝑥). It is easy to see that

Proposition 1.37. for any two continuous functions 𝑓 and 𝑔 the set [ 𝑓 = 𝑔]
is closed.

Proof. Indeed, if 𝑥 ∉ [ 𝑓 = 𝑔] then 𝑓 (𝑥) ≠ 𝑔(𝑥) and therefore the points 𝑓 (𝑥) and
𝑔(𝑥) have disjoint neighbourhoods 𝑈 and 𝑉 . The set 𝑓 −1(𝑈) ∩ 𝑔−1(𝑉) is open,
contains the point 𝑥 and does not intersect the set [ 𝑓 = 𝑔]. It is thus proved
that the complement 𝑋 \ [ 𝑓 = 𝑔] of the set [ 𝑓 = 𝑔] is open. Consequently, the
set [ 𝑓 = 𝑔] itself is closed. □

Continuous functions exist on any topological space 𝑋. Indeed, any constant
function, i.e. a function that takes the same value at all points 𝑥 ∈ 𝑋, is
obviously continuous. However, non-constant continuous functions, generally
speaking, may not exist. For their existence, it is su�cient that the space 𝑋 be
normal (and contain more than one point). Namely, it can be shown that for
any two distinct points 𝑥0 and 𝑥1 of a normal space 𝑋, there exists a continuous
function 𝑓 on 𝑋 such that 𝑓 (𝑥0) = 0 and 𝑓 (𝑥1) = 1. Moreover, as P. S. Uryson
�rst proved,
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Proposition 1.38. for any closed set 𝐴 of a normal space 𝑋 and any of its
neighbourhoods 𝑈, there exists on the space 𝑋 a continuous function 𝑓 that takes
values from the interval [0, 1], is equal to one on 𝐴 and zero outside 𝑈, i.e. such
that

𝐴 ⊂ [ 𝑓 = 1], 𝑈 ⊃ [ 𝑓 ≠ 0] .

This statement is known as Urysohn's lemma. Note that here we do not
exclude cases when 𝐴 = ∅ or 𝑈 = 𝑋 (however, in these cases the lemma is
trivial). We will call each function 𝑓 satisfying the conditions of the Urysohn
lemma a Urysohn function of the pair (𝑈, 𝐴).

Proof. To prove Urysohn's lemma, we construct in the space 𝑋 a family {𝑉𝑟 }
of neighbourhoods 𝑉𝑟 of the set 𝐴 contained in a neighbourhood 𝑈, numbered
by binary-rational numbers 𝑟 ∈ (0, 1) (i.e., numbers of the form 𝑚

2𝑛 , where
𝑛 = 1, 2, . . . and 𝑚 = 1, 2, . . . , 2𝑛 − 1) and possessing the property that

𝑉𝑟 ⊂ 𝑉𝑟 ′ , if 𝑟 < 𝑟
′
.

Such neighbourhoods 𝑉𝑟 are easily constructed by induction on 𝑛. For 𝑛 = 1,
for the neighbourhood 𝑉1/2 we should take an arbitrary neighbourhood 𝑉 of

the set 𝐴 for which 𝑉 ⊂ 𝑈 (such a neighbourhood exists by the normality of
the space 𝑋). Let for some 𝑛 ≥ 1 the neighbourhoods 𝑉𝑚/2𝑛 have already been
constructed (𝑚 = 1, 2, . . . , 2𝑛−1). Let us take for each number 𝑟 = (2𝑠+1)/2𝑛+1,
𝑠 = 0, 1, . . . , 2𝑛 − 1, the neighbourhood of 𝑉𝑟 to be an open set 𝑉 (existing due
to the normality of the space 𝑋) for which 𝑉 𝑠/2𝑛 ⊂ 𝑉 and 𝑉 ⊂ 𝑉 (𝑠+1)/2𝑛 (for

𝑠 = 0, the set 𝑉 𝑠/2𝑛 means the set 𝐴, and for 𝑠 = 2𝑛 − 1, the neighbourhood of
𝑉(𝑠+1)/2𝑛 means the neighbourhood of 𝑈). Thus, we obtain neighbourhoods of
𝑉𝑟 for 𝑛 + 1 as well.

Having constructed the neighbourhoods of 𝑉𝑟 , we de�ne the function 𝑔 on
the space 𝑋 by the formula

𝑔(𝑥) = sup
𝑥∉𝑉𝑟

𝑟, 𝑥 ∈ 𝑋.

In other words, the value 𝑔(𝑥) of the function 𝑔 at a point of 𝑥 ∈ 𝑋 is equal to the
upper line of all numbers 𝑟, for which 𝑥 ∉ 𝑉𝑟 . The function 𝑔 is unequivocally
de�ned and continuous (for for any 𝑎 ∈ R there are a lot of [𝑔 < 𝑎] coincides
with the many ∪𝑟<𝑎𝑉𝑟 and therefore open). Its values belong to a segment of
[0, 1] and it is equal to zero on a lot of 𝐴 and to unity outside the vicinity of 𝑈.
Therefore, the function 𝑓 = 1 − 𝑔 is the desired function of Uryson. □

Remark 1.39. Urysohn's lemma does not assert that 𝐴 = [ 𝑓 = 1] or that 𝑈 =

[ 𝑓 ≠ 0]. Generally speaking, a function 𝑓 for which at least one of these
equalities holds may not exist. Closed sets of the form [ 𝑓 = const] are sometimes
called functionally closed. Similarly, open sets of the form [ 𝑓 ≠ const] are called
functionally open. It can be proved that a closed (resp. open) set of a normal
space is functionally closed (resp. open) if and only if it can be represented as
the intersection (resp. union) of a countable family of open (resp. closed) sets.

We will not need this fact and will leave it without proof.



22CHAPTER 1. NECESSARY INFORMATION FROMGENERAL TOPOLOGY

Let us now show that

Proposition 1.40. for any continuous function 𝑔 de�ned on a closed subspace
𝐴 of a normal space 𝑋, there exists on the space 𝑋 a continuous function 𝑓 such
that

𝑓 (𝑥) = 𝑔(𝑥)

for each point 𝑥 ∈ 𝐴.

This statement is known as Tietze's theorem (sometimes it is also called the
Brouwer-Urysohn theorem). The function 𝑓 provided by this theorem we will
call the extension of the function 𝑔 (from the subspace 𝐴 to the entire space 𝑋).

Proof. First, we prove Tietze's theorem under the additional assumption that

|𝑔(𝑥) | ≤ 1 (1.41)

for all 𝑥 ∈ 𝐴. We de�ne by induction on the set 𝐴 the sequence {𝑔𝑛} of continuous
functions, setting

𝑔0 = 𝑔,

𝑔𝑛+1 = 𝑔𝑛 +
2𝑛

3𝑛+1
(2ℎ𝑛 − 1), 𝑛 ≥ 0,

where ℎ𝑛 is the Urysohn function on the space 𝑋, constructed for the closed (in
𝐴 and therefore in 𝑋) set [𝑔𝑛 ≤ − 2𝑛

3𝑛+1 ] and its neighbourhood 𝑋 \ [𝑔𝑛 ≥ 2𝑛

3𝑛+1 ].
By induction, for any point 𝑥 ∈ 𝐴, the estimate

|𝑔𝑛 (𝑥) | ≤
(
2

3

)𝑛
(it should be borne in mind that 𝑔𝑛+1 (𝑥) = 𝑔𝑛 (𝑥) + 2𝑛

3𝑛+1 when 𝑔𝑛 (𝑥) ≤ − 2𝑛

3𝑛+1 and

𝑔𝑛+1 (𝑥) = 𝑔𝑛 (𝑥) − 2𝑛

3𝑛+1 for 𝑔𝑛 (𝑥) ≥ 2𝑛

3𝑛+1 .) Therefore

lim
𝑛→∞

𝑔𝑛𝑥) = 0

for any point 𝑥 ∈ 𝐴.
Now we compose from functions continuous on the space 𝑋

𝑓𝑛 (𝑥) = − 2𝑛

3𝑛+1
(2ℎ𝑛 (𝑥) − 1)

an in�nite series

𝑓0 (𝑥) + 𝑓1 (𝑥) + · · · + 𝑓𝑛 (𝑥) + · · · (1.42)

Since for any point 𝑥 ∈ 𝑋 the inequality | 𝑓𝑛 (𝑥) | ≤ 2𝑛

3𝑛+1 holds and the numerical
series

1

3
+ 2

9
+ · · · + 2𝑛

3𝑛+1
+ · · · (1.43)
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converges, the functional series (1.42) also converges (at all points 𝑥 ∈ 𝑋 and
its sum 𝑓 (𝑥) is continuous on 𝑋. Moreover, for 𝑥 ∈ 𝐴, for the 𝑛-th partial sum
𝑠𝑛 (𝑥) = 𝑓0 (𝑥) + · · · ; 𝑓𝑛 (𝑥) of Series (1.42), the equality

𝑠𝑛 (𝑥) = 𝑔0 (𝑥) − 𝑔𝑛+1 (𝑥)

holds. Passing to the limit in this relation (for 𝑛→ ∞), we immediately obtain
that for any point 𝑥 ∈ 𝐴, the equality

𝑓 (𝑥) = 𝑔(𝑥)

holds. Thus, Tietze's theorem under the additional assumption (1.41) is com-
pletely proved. In this case, the constructed function 𝑓 satis�es the inequality

| 𝑓 (𝑥) | ≤ 1, 𝑥 ∈ 𝑋

(since the sum of series (1.43) is equal to unity).
Let us now consider the case when for all points 𝑥 ∈ 𝐴 the strict inequality

|𝑔(𝑥) | < 1, (1.44)

is satis�ed and we will show that then there exists an extension 𝑓 of the function
𝑔 for which a similar strict inequality

| 𝑓 (𝑥) | < 1, (1.45)

is satis�ed at all points 𝑥 ∈ 𝑋.
Indeed, as has been proved, there exists an extension 𝑓0 of the function 𝑔

that satis�es the inequality | 𝑓0 (𝑥) | ≤ 1 at any point 𝑥 ∈ 𝑋. Let 𝐴1 = 𝐴 ∪ [ 𝑓0 =

1] ∪ [ 𝑓0 = 1]. Let us de�ne a numerical function 𝑔1 on the set 𝐴1, assuming

𝑔1 (𝑥) =

𝑔(𝑥), if 𝑥 ∈ 𝐴,
1, if 𝑥 ∈ [ 𝑓0 = −1],
−1, if 𝑥 ∈ [ 𝑓0 = 1] .

Since the sets 𝐴, [ 𝑓0 = −1] and [ 𝑓0 = 1] are closed and pairwise disjoint, the
function 𝑔1 is uniquely de�ned and continuous. Moreover,

|𝑔1 (𝑥) | ≤ 1

for any point 𝑥 ∈ 𝐴. Consequently, as proved above, on the space 𝑋 there exists
an extension 𝑓1 of the function 𝑔1 such that

| 𝑓1 (𝑥) | ≤ 1

for any point 𝑥 ∈ 𝑋. But then the function

𝑓 (𝑥) = 𝑓0 (𝑥) + 𝑓1 (𝑥)
2
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will be an extension on 𝑋 of the function 𝑔1 satisfying the condition (1.45).
To prove Tietze's theorem in the general case, it is now su�cient to note

that for any function 𝑔(𝑥) continuous on 𝐴, the function 𝑔∗(𝑥) = 2
𝜋
arctan 𝑔(𝑥)

is continuous on 𝐴 and satis�es the condition (1.44). Let 𝑓∗ (𝑥) be its extension
satisfying condition (1.45). It is clear that the function 𝑓 (𝑥) = tan{ 𝜋2 𝑓 (𝑥)} is
continuous on 𝑋 and is an extension of the function 𝑔(𝑥).

Thus, Tietze's theorem is completely proven. □

In addition to Tietze's theorem, it is useful to note that

Proposition 1.46. if for any point 𝑥 ∈ 𝐴 the inequalities

𝑎 ≤ 𝑔(𝑥) ≤ 𝑏

(resp. the inequalities 𝑎 < 𝑔(𝑥) < 𝑏) hold, then the extension 𝑓 of the function
𝑔 can be constructed so that for any point 𝑥 ∈ 𝑋 the inequalities

𝑎 ≤ 𝑓 (𝑥) ≤ 𝑏

(resp. the inequalities 𝑎 < 𝑓 (𝑥) < 𝑏) hold.

Proof. Indeed, for 𝑎 = −1, 𝑏 = 1 this statement has in fact already been proven
above. The general case is reduced to this special one by an obvious linear
transformation. □

Now let Γ = {𝑈𝛼;𝛼 ∈ 𝐴} be an arbitrary open locally �nite covering of 𝑋.
A family { 𝑓𝛼;𝛼 ∈ 𝐴} of continuous functions 𝑓𝛼 on 𝑋 will be called a partition
of unity subordinate to the covering Γ if

1) for any 𝛼 ∈ 𝐴 the function 𝑓𝛼 is non-negative and its support [ 𝑓𝛼 ≠ 0] is
contained in the element 𝑈𝛼 of the covering Γ;

2) for any point 𝑥 ∈ 𝑋 the equality∑︁
𝛼∈𝐴

𝑓𝛼 (𝑥) = 1

holds.

(due to the local, and therefore point, �niteness of the covering Γ, in the last
sum for any point 𝑥 ∈ 𝑋 only a �nite number of terms are non-zero).

It turns out that

Proposition 1.47. for any locally �nite covering Γ = {𝑈𝛼;𝛼 ∈ 𝐴} of a normal
space 𝑋 there exists a subordinate partition of unity { 𝑓𝛼;𝛼 ∈ 𝐴}.

To prove this statement, it su�ces to prove that

Proposition 1.48. for any locally �nite covering Γ = {𝑈𝛼;𝛼 ∈ 𝐴} of a normal
space 𝑋, there exists a covering Δ = {𝑉𝛼;𝛼 ∈ 𝐴} such that

𝑉 𝛼 ⊂ 𝑈𝛼

for any 𝛼 ∈ 𝐴.
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Proof. Indeed, since the space 𝑋 is normal, for any element 𝑉𝛼 of the covering
Δ there exists an open set 𝑊𝛼 such that

𝑉 𝛼 ⊂ 𝑊𝛼, 𝑊 𝛼 ⊂ 𝑈𝛼

But then, as is easy to see, the functions

𝑓𝛼 (𝑥) =
𝑔𝛼 (𝑥)∑
𝛼∈𝐴 𝑔𝛼 (𝑥)

, 𝛼 ∈ 𝐴, 𝑥 ∈ 𝑋,

where 𝑔𝛼 is the Urysohn function of the pair (𝑊𝛼, 𝑉 𝛼), are uniquely de�ned,
continuous (due to the local �niteness of the covering Γ) and constitute a par-
tition of unity subordinate to the covering Γ.

All that remains for us, therefore, is to construct the covering Δ. For this
purpose, we consider the set 𝔊 of all (open) coverings {𝐺𝛼;𝛼 ∈ 𝐴} of the space 𝑋
for which for any 𝛼 ∈ 𝐴 either 𝐺𝛼 ⊂ 𝑈𝛼 or 𝐺𝛼 = 𝑈𝛼. This set is not empty (for
example, it contains the given covering Γ). For any such covering {𝐺𝛼;𝛼 ∈ 𝐴}
we will denote by the symbol 𝐴0 the set of all 𝛼 ∈ 𝐴 for which 𝐺𝛼 ⊂ 𝑈𝛼.

Let us introduce a partial ordering into the set 𝔊, assuming that {𝐺𝛼} <
{𝐺 ′

𝛼} if 𝐴0 ⊂ 𝐴
′
0 and if 𝐺𝛼 = 𝐺

′
𝛼 for any 𝛼 ∈ 𝐴. Roughly speaking, to obtain a

�larger� covering {𝐺 ′
𝛼} from a covering {𝐺𝛼}𝑂𝑎, we need, without touching the

already constructed sets 𝐺𝛼, to replace some 𝑈𝛼 with smaller sets 𝐺𝛼.
It is clear that this relation is indeed a partial ordering relation (i.e. it has

the property of transitivity).
Let us now consider an arbitrary chain (= linearly ordered subset) in the

set 𝔊. Denoting the elements of this subset by the symbols Γ𝛽, where 𝛽 runs
through some set of indices 𝐵, and setting Γ𝛽 = {𝐺𝛽𝛼;𝛼 ∈ 𝐴}, we de�ne for each
𝛼 ∈ 𝐴 the set 𝐺𝛼 ⊂ 𝑋 by the formula

𝐺𝛼 = ∩𝛽∈𝐵𝐺𝛽𝛼 .

It is clear that for any 𝛼 ∈ 𝐴 all sets 𝐺
𝛽
𝛼 ≠ 𝑈𝛼 (if such sets exist) coincide

with each other. Therefore, there exists an index 𝛽𝛼 ∈ 𝐵 such that 𝐺𝛼 = 𝐺
𝛽𝛼
𝛼 .

Consequently, the set 𝐺𝛼 is open and has the property that either 𝐺𝛼 = 𝑈𝛼 or
𝐺𝛼 ⊂ 𝑈𝛼. We will show that the family {𝐺𝛼;𝛼 ∈ 𝐴} is a covering of the space
𝑋.

Let 𝑥 be an arbitrary point in 𝑋 and let 𝐴𝑥 be a subset of 𝐴 consisting of
all indices 𝛼 ∈ 𝐴 for which 𝑥 ∈ 𝑈𝛼. Since the set 𝐴𝑥 is �nite due to the local
�niteness of the covering Γ, among the indices 𝛽𝛼, 𝛼 ∈ 𝐴𝑥 , there exists the
largest (with respect to the ordering of the set 𝐵 induced by the ordering of

the set 𝔊) index 𝛽𝛼0
. Since the family Γ

𝛽
𝛼0

= {𝐺𝛽𝛼0𝛼 𝛼 ∈ 𝐴} is a covering, there

exists an index 𝛼∗ ∈ 𝐴 such that 𝑥 ∈ Γ
𝛽𝛼0
𝛼∗ . Since 𝐺

𝛽𝛼0
𝛼∗ ⊂ 𝑈𝛼∗ , the index 𝛼∗

belongs to the subset 𝐴𝑥 . But it is clear that for any index 𝛼 ∈ 𝐴𝑥 the equality
𝐺
𝛽𝛼0
𝛼 = 𝐺

𝛽𝛼
𝛼 = 𝐺𝛼 holds. Consequently, 𝑥 ∈ 𝐺𝛼∗ .

The constructed covering {𝐺𝛼;𝛼 ∈ 𝐴} belongs, according to what was said
above, to the set 𝔊 and is, as is easy to see, its smallest element, following all
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the elements of Γ𝛽, i.e., it represents the upper bound of the considered chain
(= linearly ordered subset.)

Thus, we have proved that any chain (= linearly ordered subset) of the set
𝔊 has an upper bound. Consequently, according to Zorn's lemma3, this set
contains at least one maximal element {𝑉𝛼;𝛼 ∈ 𝐴}.

To complete the proof, it remains to show that the covering Δ = {𝑉𝛼;𝛼 ∈ 𝐴}
has the property that for any of its elements 𝑉𝛼 the inclusion holds

𝑉 𝛼 ⊂ 𝑈𝛼 .

Suppose not. Then there exists an index 𝛼0 ∈ 𝐴 such that 𝑉𝛼0
= 𝑈𝛼0

. Consider
the closed set

𝐹 = 𝑋 \ ∪𝛼≠𝛼0
𝑈𝛼 .

It is clear that 𝐹 ⊂ 𝑈𝛼0
. Therefore, since the space 𝑋 is normal, there exists an

open set 𝑉 such that

𝐹 ⊂ 𝑉, 𝑉 ⊂ 𝑈𝛼0
.

It is easy to see that the family Δ
′
= {𝑉,𝑉𝛼;𝛼 ∈ 𝐴 \ 𝛼0} is a covering of the

space 𝑋, belongs to the set 𝔊, and is distinct from the covering Δ and has the
property that Δ < Δ

′
. But in view of the maximality of the covering Δ this is

impossible. □

Thus, the theorem formulated above is completely proven.

Remark 1.49. We needed the local �niteness of the covering Γ to ensure that
all sets 𝐴𝑥 were �nite. Consequently, the covering Δ also exists for point-�nite
coverings Γ.

1.4 Metric spaces

A set 𝑋 is said to be de�ned as a metric space or to have a metric introduced
into it if any two of its points 𝑥, 𝑦 ∈ 𝑋 are assigned a non-negative real number
𝜌(𝑥, 𝑦) (called the distance between these points), and the following axioms are
satis�ed:

1) the equality 𝜌(𝑥, 𝑦) = 0 holds if and only if 𝑥 = 𝑦;

2) for any two points 𝑥, 𝑦 ∈ 𝑋 the equality holds

𝜌(𝑥, 𝑦) = 𝜌(𝑦, 𝑥);

3) for any three points 𝑥, 𝑦, 𝑧 ∈ 𝑋 the inequality holds

𝜌(𝑥, 𝑧) ≤ 𝜌(𝑥, 𝑦) + 𝜌(𝑦, 𝑧).
3This lemma states that a partially ordered set in which every chain (= linearly ordered

subset) has an upper bound contains a maximal element.
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Axiom 1) is called the axiom of non-degeneracy of the metric, axiom 2) is
called the axiom of symmetry, and axiom 3) is called the triangle axiom.

An example of a metric space is the 𝑛-dimensional arithmetic space R𝑛 with
the usual Euclidean metric (in this metric, the distance 𝜌(𝒖, 𝒗) between the
points 𝒖 = (𝑢1, . . . , 𝑢𝑛) ∈ R𝑛 and 𝒗 = (𝑣1, . . . , 𝑣𝑛) ∈ R𝑛 is taken to be the length

|𝒖 − 𝒗 | =
√︁
(𝑢1 − 𝑣1)2 + · · · + (𝑢𝑛 − 𝑣𝑛)2 of the vector 𝒖 − 𝒗).

The distance 𝜌(𝐴, 𝐵) between two subsets 𝐴 and 𝐵 of a metric space 𝑋 is
the greatest lower bound inf 𝜌(𝑥, 𝑦 of the distances 𝜌(𝑥, 𝑦), where 𝑥 and 𝑦 are
arbitrary points of the subsets 𝐴 and 𝐵, respectively. This distance can be equal
to zero even without the sets 𝐴 and 𝐵 intersecting. For any 𝜀 > 0, the set 𝑆𝜀 (𝐴)
of all points 𝑥 ∈ 𝑋 for which 𝜌(𝑥, 𝐴) < 𝜀 is called a spherical 𝜀-neighbourhood
of the subset 𝐴 ⊂ 𝑋. In any metric space, one can introduce one and only one
topology in which all spherical neighbourhoods of each of its points are open
and constitute a fundamental system of its neighbourhoods. In this topology,
a set 𝐴 ⊂ 𝑋 is closed if and only if any point 𝑥 ∈ 𝑋 for which 𝜌(𝑥, 𝐴) = 0
belongs to this set. We will call this topology the natural topology of the metric
space 𝑋 and in what follows we will consider each metric space (for example,
the Euclidean space R𝑛) as a topological space with this natural topology.

The topology of the space R𝑛 can be described in another way, noting that
it is a topological product of 𝑛 copies of the number line R. Therefore, the base
of this space is, for example, the family of all parallelepipeds

𝑎1 < 𝑡1 < 𝑏1, . . . , 𝑎𝑛 < 𝑡𝑛 < 𝑏𝑛, (𝑡1, . . . , 𝑡𝑛) ∈ R𝑛,

where 𝑎𝑖 and 𝑏𝑖 > 𝑎𝑖, 𝑖 = 1, . . . , 𝑛 are arbitrary real numbers. The parallelepipeds
for which the weight of the number 𝑎𝑖 and 𝑏𝑖 are rational obviously also form
the base of the space R𝑛.

By de�nition, the natural topology of a metric space 𝑋 has the property
that for any point 𝑥 ∈ 𝑋, the system of all possible spherical neighbourhoods
𝑆𝜀 (𝑥) is a fundamental system of neighbourhoods of the point 𝑥. A similar
statement also holds for compact subsets, i.e., for any compact subset 𝐶 ⊂ 𝑋, the
neighbourhoods 𝑆𝜀 (𝐶) constitute a fundamental system of its neighbourhoods.
In other words, for any open set 𝑈 ⊃ 𝐶, there exists 𝜀 > 0 such that 𝑆𝜀 (𝑐) ⊂ 𝑈.
For arbitrary closed subsets, the corresponding statement is, generally speaking,
false.

In the natural topology of 𝑋, the metric 𝜌(𝑥, 𝑦) is a continuous function on
the product 𝑋 × 𝑋. Moreover, for any point 𝑥 ∈ 𝑋 and any closed set 𝐴 ⊂ 𝑋,
the function 𝜌(𝑥, 𝐴) is continuous on 𝑋. For any closed set 𝐴 ⊂ 𝑋 and any
neighbourhood 𝑈, the function

𝑓 (𝑥) = 𝜌(𝑥, 𝑋 \𝑈)
𝜌(𝑥, 𝐴) + 𝜌(𝑥, 𝑋 \𝑈)

is the Urysohn function of the pair (𝑈, 𝐴). For this function, the set [ 𝑓 = 1]
exactly coincides with the set 𝐴 (and the set [ 𝑓 ≠ 0] with the set 𝑈). The set
[ 𝑓 > 1

2 ] is a neighbourhood of the set 𝐴 whose closure [ 𝑓 ≥ 1
2 ] is contained in

the neighbourhood of 𝑈. Thus, any metric space, being obviously Hausdor�, is
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normal. Moreover, unlike arbitrary normal spaces, in the metric space 𝑋 any
closed set is functionally closed and any open set is functionally open.

A topological space 𝑋 is called metrisable if there exists on it (generally
speaking, not a unique) metric that is consistent with the topology of the space
𝑋, i.e. such that the natural topology de�ned by it coincides with the topology
of the space 𝑋.

Proposition 1.50. This metric can always be chosen so that the resulting met-
ric space is bounded, i.e. so that the distance between any two of its points does
not exceed some �xed number 𝐾 > 0.

Proof. Indeed, any metric 𝜌 can be transformed into a bounded (by a number
𝐾) metric 𝜌

′
, de�ning the same topology, by setting

𝜌
′ (𝑥, 𝑦) = 𝐾 𝜌(𝑥, 𝑦)

1 + 𝜌(𝑥, 𝑦)

for any points 𝑥, 𝑦 ∈ 𝑋. □

Proposition 1.51. Every discrete space is metrisable. The topological sum
of any number and the topological product of a countable number of metrisable
spaces are metrisable.

Proof. The metric in the topological product of a countable number of metris-
able spaces is introduced by means of an obvious in�nite series. In order for this
series to converge, it is su�cient to choose a metric in the 𝑛-th factor, bounded,
say, by the number 1/𝑛2. Verifying that the metric constructed in this way is
consistent with the topology of the product does not present any di�culties,
and we will omit it. □

From the metrisability of the product of metric spaces it immediately follows,
in particular, that any metric space is stably normal.

Each subset 𝐴 of a metric space 𝑋 is naturally de�ned as a metric space,
and the metric of the subset 𝐴 is consistent with its topology induced by the
natural topology of the entire space 𝑋.

In particular, any subset of the Euclidean space R𝑛 is a metric space. Among
these subsets, the unit ball E𝑛 of the space R𝑛, consisting of all points 𝒗 ∈ R𝑛 for
which |𝒗 | ≤ 1, will play a special role for us in what follows (here and below we
identify points of the space R𝑛 with their radius vectors). The ball E𝑛 is closed
in the space R𝑛 and is the closure of the open unit ball 𝐸𝑛 consisting of points
𝒗 ∈ R𝑛 for which |𝒗 | < 1. The boundary of the ball E𝑛 is the unit sphere S𝑛−1

consisting of points 𝒖 ∈ R𝑛 for which |𝒖 | = 1. Each point of the ball E𝑛 has the
form 𝑣𝒖, where 0 ≤ 𝑣 ≤ 1 and 𝒖 ∈ S𝑛−1, and for 𝑣 ≠ 0 this representation is
unambiguous.

In the de�nitions presented it was assumed that 𝑛 > 0. Sometimes it will
be convenient for us to extend them to the case 𝑛 = 0, assuming that the ball
E0 consists of one point. In this case we will assume that 𝐸0 = E0 and that
S−1 = ∅.
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It is easy to show that the ball E𝑛 (and also the open ball 𝐸𝑛) and the sphere
S𝑛−1 (for 𝑛 > 1) are connected. Moreover, the ball E𝑛 and the sphere S𝑛−1 are
compact, and the open ball 𝐸𝑛 is locally compact. Finally, the space R𝑛 (and
therefore all its subspaces) is a space with a countable base and, therefore, has
countable local weight, is separable and Lindelöf.

It is easy, however, to see that

Proposition 1.52. any metric space 𝑋 is a space of countable local weight.

Proof. Indeed, for each point 𝑥 ∈ 𝑋 the neighbourhoods 𝑆1/𝑛 (𝑥) obviously con-
stitute a fundamental system of neighbourhoods. □

In particular,

Proposition 1.53. every metric space is a compactly generated space.

Moreover,

Proposition 1.54. for any metric space 𝑋 the following properties are equiva-
lent:

1) the space 𝑋 has a countable base;

2) the space 𝑋 is separable;

3) the space 𝑋 is Lindelöf.

Proof. Indeed, implications 1)⇒ 2) and 1)⇒ 3) hold for any topological spaces.
To prove implication 2)⇒ 1) it su�ces to note that for any countable everywhere
dense set {𝑥𝑛} the open sets of the form 𝑆1/𝑚 (𝑥𝑛), where 𝑛, 𝑚 = 1, 2, . . . , form a
base of the space 𝑋.
To prove implication 3 ⇒ 2), we, having chosen an arbitrary 𝑛 > 0, consider
the family of all subsets of the space 𝑋, each of which has the property that
the pairwise distances between any two of its points are not less than 1/𝑛. It is
clear that this family (partially ordered by inclusion) satis�es the conditions of
Zorn's lemma and, therefore, it contains a maximal subset 𝐶1/𝑛. This subset is
discrete and therefore (by the Lindelöf property) countable. Consequently, the
set

𝐶 = ∪∞
𝑛=1𝐶1/𝑛

is also countable. To complete the proof, it remains to note that the set 𝐶 is
everywhere dense (since for any point 𝑥 ∈ 𝑋 and any 𝑛 > 0 in the set 𝐶1/𝑛 , and
- due to its maximality - therefore in the set 𝐶, there exists a point 𝑦 such that
𝜌(𝑥, 𝑦) < 1/𝑛). □

Since every compact space is �nally compact, this theorem implies that

Proposition 1.55. every compact metric space is separable.

Local compactness, however, is no longer su�cient for separability of a metric
space. Nevertheless,
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Proposition 1.56. any connected locally compact metric space is separable.

This theorem is due to P. S. Alexandrov. It follows immediately from the
result of 2) above and the fact that

Proposition 1.57. any metric space 𝑋 is paracompact.

The last proposition was �rst proven by Stone.

Proof. To prove it, we must establish that any covering {𝑈𝛼;𝛼 ∈ 𝐴} of 𝑋 can
be re�ned into a locally �nite covering. For this purpose, we assume that the
set of indices 𝐴 of the covering under consideration is well-ordered. Let 𝛼0 be
its �rst element. Denoting for any set 𝐴 ⊂ 𝑋 and any 𝑛 > 0, by the symbol
[𝐴]𝑛, the set (obviously closed) of all points 𝑥 ∈ 𝑋 for which 𝑆2−𝑛 (𝑥) ⊂ 𝐴, we
construct by induction for each 𝛼 ∈ 𝐴 and any 𝑛 > 0 the closed set 𝐹𝑛𝛼, by

𝐹𝑛𝛼0
= [𝑈𝛼0

]𝑛, 𝐹𝑛𝛼 = [𝑈𝛼 \ ∪𝛽<𝛼𝐹𝑛𝛽 ]𝑛.

Let 𝑥 be an arbitrary point in 𝑋 and let 𝛼 be the smallest index in 𝐴 for
which 𝑥 ∈ 𝑈𝛼, and 𝑛 be a number such that 𝑆2−𝑛 (𝑥)) ⊂ 𝑈𝛼. If 𝑥 ∉ 𝐹𝑛𝛼, then
𝑆2−𝑛 (𝑥) ⊄ 𝑈𝛼 \ ∪𝛽<𝛼𝐹𝑛𝛽 , and therefore there exists an index 𝛼1 < 𝛼 such that

𝑆2−𝑛 (𝑥) ∩ 𝐹𝑛𝛼1
≠ ∅. But then

𝑥 ∈ 𝑆2−𝑛 (𝐹𝑛𝛼1
) = 𝑆2−𝑛 ( [𝑈𝛼1

\ ∪𝛽<𝛼𝐹𝑛𝛽 ]𝑛) ⊂ 𝑈𝛼1
\ ∪𝛽<𝛼𝐹𝑛𝛽 ⊂ 𝑈𝛼1

,

which is impossible due to the choice of index 𝛼. Consequently, 𝑥 ∈ 𝐹𝑛𝛼. It is
thus proved that

𝑋 = ∪𝑛,𝛼𝐹𝑛𝛼 .
Let us further consider the sets

Φ𝑛𝛼 = 𝑆2−(𝑛+3 (𝐹𝑛𝛼), 𝐺𝑛𝛼𝑆2−(𝑛+2) (𝐹𝑛𝛼).

It is clear that the closed set Φ𝑛𝛼 is contained in the open set 𝐺𝑛𝛼. Further, since

𝑆2−𝑛 (𝐹𝑛𝛼) ⊂ 𝑈𝛼 \ ∪𝛽<𝛼𝐹𝑛𝛼,

then for any 𝛽 < 𝛼 the intersection 𝑆2−𝑛 (𝐹𝑛𝛼) ∩ 𝐹𝑛𝛽 is empty because 𝜌(𝐹𝑛𝛼, 𝐹𝑛𝛽 ) ≥
2−𝑛. Therefore, 𝜌(𝐺𝑛𝛼, 𝐺𝑛𝛽) ≥ 2−(𝑛+1) . Since Φ𝑛𝛼 ⊂ 𝐺𝑛𝛼, it follows that for any
𝑛 > 0 the set

Φ𝑛 = ∪𝛼Φ𝑛𝛼
is closed.

Now we de�ne by induction the open sets 𝑉𝑛𝛼, setting

𝑉1
𝛼 = 𝐺1

𝛼, 𝑉𝑛𝛼 = 𝐺𝑛𝛼 \ ∪𝑚<𝑛Φ𝑚.

Let 𝑥 ∈ 𝑋. Since ∪𝑛,𝛼𝐹𝑛𝛼 = 𝑋 and, therefore, ∪𝑛,𝛼Φ𝑛𝛼 = 𝑋, there exist 𝑛 ≥ 0
and 𝛼 ∈ 𝐴 such that 𝑥 ∈ Φ𝑛𝛼. If 𝑛 is chosen (for a given 𝛼) to be the smallest
possible, then

𝑥 ∈ Φ𝑛𝛼 \ ∪𝑚<𝑛Φ𝑚𝛼 = Φ𝑛𝛼 \ ∪𝑚<𝑛Φ𝑚
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(as we know, Φ𝑛𝛼 ⊂ 𝐺𝑛𝛼 and therefore Φ𝑚𝛼 ∩Φ𝑚
𝛽
≠ ∅, if 𝛼 ≠ 𝛽). Hence

𝑥 ∈ 𝐺𝑛𝛼 \𝑚<𝑛 Φ𝑚 = 𝑉𝑛𝛼 .

This shows that the sets 𝑉𝑛𝛼 form a covering of the space 𝑋.
Since

𝑉𝑛𝛼 ⊂ 𝐺𝑛𝛼 ⊂ 𝑆2−𝑛 (𝐹𝑛𝛼) ⊂ 𝑈𝛼 \ ∩𝛽<𝛼𝐹𝑛𝛽 ⊂ 𝑈𝛼
then the covering {𝑉𝑛𝛼} is a re�nement of the covering {𝑈𝛼}.

Finally, let 𝑥 ∈ 𝑋 and let 𝑥 ∈ 𝐹𝑛
𝛼
′ . Since

𝑆2−(𝑛+3) (𝑥) ⊂ Φ𝑛
𝛼
′ ⊂ Φ𝑛

then
𝑆2−(𝑛+3) (𝑥) ∩𝑉𝑚𝛼 = ∅

for any 𝛼 ∈ 𝐴 and any 𝑚 > 𝑛. On the other hand, since 𝜌(𝐺𝑚𝛼 , 𝐺𝑚𝛽 ) ≥ 2−(𝑚+1)

for 𝛼 ≠ 𝛽, and 2 · 2−(𝑚+3) < 2−(𝑛+1) for 𝑚 ≤ 𝑛, then for each 𝑚 ≤ 𝑛 there is at
most one index 𝛼 ∈ 𝐴 for which 𝑆2−(𝑛+3) (𝑥) ∩ 𝐺𝑚𝛼 ≠ ∅, and hence at most one
index 𝛼 ∈ 𝐴 for which 𝑆2−(𝑛+3) (𝑥) ∩𝑉𝑚𝛼 = ∅. Thus, the neighbourhood 𝑆2−(𝑛+3) (𝑥)
of the point 𝑥 intersects at most 𝑛 elements of the covering {𝑉𝑛𝛼}. Consequently,
this covering is locally �nite.

Thus, Stone's theorem is completely proved. □

From Stone's theorem and the results of �1.2 it immediately follows, in par-
ticular, that

Proposition 1.58. a metric space is compact if and only if it is sequentially
compact.

All the properties of metric spaces considered above are related not so much
to metric spaces as to metrisable spaces and therefore had, in essence, a topo-
logical character. Let us now consider some �metric� properties of metric spaces,
i.e. properties that essentially depend on the metric given in the space.

A sequence {𝑥𝑛} of points of a metric space 𝑋 is called fundamental if for
any 𝜀 > 0 there exists 𝑁 > 0 such that 𝜌(𝑥𝑛, 𝑥𝑚) < 𝜀 when 𝑛, 𝑚 > 𝑁. It is
clear that any convergent sequence is fundamental. If the converse is true, i.e.
if any fundamental sequence of points of 𝑋 converges, then this space is called
a complete space. Obviously, every closed subspace of a complete space is itself
a complete space.

Proposition 1.59. If any closed bounded subspace of a metric space 𝑋 is com-
pact, then 𝑋 is complete.

Proof. Indeed, let {𝑥𝑛} be an arbitrary fundamental sequence of points in 𝑋.
If among its points there are only a �nite number of distinct ones, then this
sequence obviously converges. Let among the points 𝑥𝑛 there be in�nitely many
distinct ones. The set of these points, being obviously discrete and bounded,
cannot be closed (for otherwise it would be compact, and any discrete compact
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set is �nite). Therefore, for this set there exists an adherent point 𝑎, that does
not belong to it. This point is the limit of some convergent subsequence of the
sequence {𝑥𝑛}, and therefore of the entire sequence {𝑥𝑛} (since this sequence,
by assumption, is fundamental). □

The conditions of this theorem are satis�ed, in particular, by the Euclidean
space R𝑛. Therefore, the space R𝑛 (and consequently any of its closed subspaces)
is complete.

On the other hand, every compact metric space also satis�es these conditions.
Consequently,

Proposition 1.60. any compact metric space is complete.

The requirement of local compactness for completeness is no longer su�cient,
even if we additionally assume the existence of a countable base. However, in any
locally compact topological space 𝑋 with a countable base, one can introduce
a metric consistent with the topology of this space, with respect to which the
space 𝑋 is a complete metric space. We will not need this result, and therefore
we will leave it without proof.

It can be shown that any complete metric space is a space of the second
category. The proof of this statement essentially repeats the proof of a similar
proposition for Hausdor� locally compact spaces (see �1.2). It is only necessary
to require that instead of the compactness of the sets 𝑈𝑛, their diameters tend
to zero. Since we will not need this statement either, we will not give this proof
in detail.

1.5 Continuous maps

Let 𝑋 and 𝑌 be arbitrary topological spaces. It is easy to see that

Proposition 1.61. for any single-valued map

𝑓 : 𝑋 → 𝑌

of 𝑋 into 𝑌 the following properties are equivalent:

1) the complete preimage 𝑓 −1(𝐵) under the map 𝑓 of an arbitrary closed set
𝐵 ⊂ 𝑌 is closed in 𝑋;

2) the complete preimage 𝑓 −1(𝑉) under the map 𝑓 of an arbitrary open set
𝑉 ⊂ 𝑌 is open in 𝑋;

2') the complete preimage 𝑓 −1(𝑉) under the map 𝑓 of an arbitrary element 𝑉
of some prebase of open sets of 𝑌 is open in 𝑋;

3) for any point 𝑥 ∈ 𝑋 and any neighbourhood 𝑉 of 𝑓 (𝑥)) in 𝑌 there exists in 𝑋
a neighbourhood 𝑈 of 𝑥 such that 𝑓 (𝑈) ⊂ 𝑉 ;
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3') for any point 𝑥 ∈ 𝑥 and any neighbourhood 𝑉 of 𝑓 (𝑥) in the space 𝑌 , be-
longing to some fundamental system of neighbourhoods of this point, there
exists in the space 𝑋 a neighbourhood 𝑈 of the point 𝑥 such that 𝑓 (𝑈) ∈ 𝑉 ;

4) for any set 𝐴 ⊂ 𝑋 the inclusion holds

𝑓 (𝐴) ⊂ 𝑓 (𝐴)

Maps 𝑓 : 𝑋 → 𝑌 that have these properties are called continuous. These
include, in particular, all constant maps, i.e. maps that take the entire space 𝑋
to some �xed point 𝑦0 of the space 𝑌 .

The continuous functions considered in �1.3 are nothing more than continu-
ous maps of the space 𝑋 into the real numbers R.

The de�nition of the coincidence set [ 𝑓 = 𝑔] is literally transferred from
continuous functions to any continuous maps 𝑓 , 𝑔 : 𝑋 → 𝑌 . However, unlike the
case of numerical functions, this set may not be closed. We can only assert that

Proposition 1.62. if the space 𝑌 is Hausdor�, then for any two continuous
maps 𝑓 , 𝑔 : 𝑋 → 𝑌 the set [ 𝑓 = 𝑔] is closed.

Indeed, in the proof for continuous functions given in �1.3, only the Hausdor�
property of the real line was used.

A special case of a coincidence set is the set [ 𝑓 = id𝑋] of all �xed points of
the map 𝑓 : 𝑋 → 𝑋 (i.e., the points 𝑥 ∈ 𝑋 for which 𝑓 (𝑥) = 𝑥). According to
what has just been said,

Proposition 1.63. the set of �xed points of an arbitrary continuous map 𝑓 :
𝑋 → 𝑋 of a Hausdor� space 𝑋 is closed in itself in this space.

The composition4

𝑔 ◦ 𝑓 : 𝑋 → 𝑍

of any two continuous maps 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑌 → 𝑍 is also a continuous map.
Moreover, for any space 𝑋 the identity map

id𝑋 : 𝑋 → 𝑋

(de�ned by the formula id𝑋 (𝑥) = 𝑥) is continuous. In the language of category
theory, these statements mean that the totality 𝒳 of all topological spaces and
all their continuous maps forms a category. Isomorphisms of this category, i.e.
bijective5 continuous maps 𝑓 : 𝑋 → 𝑌 for which the inverse map 𝑓 −1 : 𝑌 → 𝑋

is also continuous, are called homeomorphisms. Spaces 𝑋 and 𝑌 for which there
exists at least one homeomorphism 𝑋 → 𝑌 are called homeomorphic. As a rule,
we will further consider homeomorphic spaces as identical.

4A map ℎ : 𝑋 → 𝑍 is called the composition of the maps 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 if
ℎ (𝑥 ) = 𝑔 ( 𝑓 (𝑥 ) ) for any point 𝑥 ∈ 𝑋. The composition of the maps 𝑓 and 𝑔 is denoted by the
symbol 𝑔 ◦ 𝑓 .

5A map 𝑓 : 𝑋 → 𝑌 is called injective if 𝑓 (𝑥1 ) ≠ 𝑓 (𝑥2 ) when 𝑥1 ≠ 𝑥2, sujective if 𝑓 (𝑋) = 𝑌 ,
and bijective if it is both injective and surjective.
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Remark 1.64. In �1.1 we de�ned the concept of the topological sum of any
non-intersecting spaces. The convention just introduced allows us to de�ne the
topological sum of arbitrary spaces, including intersecting ones, as the topologi-
cal sum of spaces homeomorphic to them, but non-intersecting. The topological
sum constructed in this way is de�ned up to homeomorphism.

A space 𝑌 is called a continuous image of a space 𝑋 if there exists at least
one continuous surjective map 𝑋 → 𝑌 . It is easy to see that a continuous image
of any compact (resp. Lindelöf or countably compact) space is compact (resp.
Lindelöf or countably compact). Similarly, a continuous image of a connected
space is connected.

Continuous mappings
𝑢 : 𝐼 → 𝑋

into the space 𝑋 of the unit segment 𝐼 = [0, 1] we will call paths of the space 𝑋.
We will call the points 𝑥0 = 𝑢(0) and 𝑥1 = 𝑢(1) respectively the beginning and
end of the path 𝑢 and we will say that the path 𝑢 connects the point 𝑥0 with
the point 𝑥1. We will call the space 𝑋 path-connected if any two of its points
can be connected by at least one path.

Proposition 1.65. Any path-connected space 𝑋 is connected.

Proof. Indeed, for each path 𝑢 : 𝐼 → 𝑋 the set 𝑢(𝐼 𝐼) ⊂ 𝑋 is connected (since the
segment 𝐼 is connected). Thus, any two points of a linearly connected space 𝑋
belong to a connected set. Therefore, the space 𝑋 is connected. □

An arbitrary topological space 𝑋 decomposes into a union of disjoint linearly
connected subspaces, called the components of linear connectivity of the space
𝑋. We will denote the set of all components of linear connectivity of the space
𝑋 by the symbol 𝜋0 (𝑋).

Let the space 𝑋 be represented as the union of some family {𝑋𝜇;
𝑚𝑢 ∈ 𝑀} of its subspaces:

𝑋 = ∪𝜇∈𝑀𝑋𝜇
Then for any continuous map

𝑓 : 𝑋 → 𝑌

and each 𝜇 ∈ 𝑀 the partial map

𝑓 |𝑋𝜇
: 𝑋𝜇 → 𝑌,

as we know, is continuous. The converse, generally speaking, is not true, i.e.
the continuity of the partial mappings 𝑓 |𝑋𝜇

does not imply the continuity of the
map 𝑓 . However, it is easy to see that

Proposition 1.66. if the space 𝑋 is a free union of its subspaces 𝑋𝜇, 𝜇 ∈ 𝑀,
then for any space 𝑌 the map

𝑓 : 𝑋 → 𝑌

is continuous if and only if all partial maps

𝑓 |𝑋𝜇
: 𝑋𝜇 → 𝑌,
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are continuous.

This proposition allows us to construct continuous maps 𝑋 → 𝑌 from con-
tinuous maps

𝑓𝜇 : 𝑋𝜇 → 𝑌

of subspaces 𝑋𝜇, 𝑥 ∈ 𝑀, of the space 𝑋, of which it is a free union. In this case,
it is only required that the maps 𝑓𝜇 be
emphconsistent, i.e. that

𝑓𝜇1 |𝑋𝜇1∩𝑋𝜇2
= 𝑓𝜇2 |𝑋𝜇1∩𝑋𝜇2

for any 𝜇1, 𝜇2 ∈ 𝑀. Indeed, by putting

𝑓 (𝑥) = 𝑓𝜇 (𝑥), if 𝑥 ∈ 𝑋𝜇,

where 𝑋 is an arbitrary point in the space 𝑋, we obtain a single-valued map

𝑓 : 𝑋 → 𝑌

for which
𝑓 |𝑋𝜇

= 𝑓𝜇

for any 𝜇 ∈ 𝑀. According to the previous proposition, the map 𝑓 constructed
in this way is continuous.

As a rule, we will use this construction only in the case when the number of
subspaces 𝑋𝜇 is �nite and each of them is closed. As we know, in this case the
space 𝑋 is automatically a free union of subspaces 𝑋𝜇.

Another (even more important) method of constructing continuous maps
uses the map 𝛼−1 (generally speaking, multi-valued), the inverse of a given
surjective continuous map

𝛼 : 𝑃 → 𝑋.

Let 𝑔 : 𝑃 → 𝑌 be a continuous map such that the composite map

𝑓 = 𝑔 ◦ 𝛼−1 : 𝑋 → 𝑌

is single-valued. Under what conditions is the map 𝑓 continuous?
In order to give (even if only an incomplete) answer to this question, we shall

call a continuous surjective map 𝛼 : 𝑃 → 𝑋 an identi�cation map if each subset
𝐴 ⊂ 𝑋 whose complete preimage 𝛼−1(𝐴) under the map 𝛼 is closed (resp. open)
in 𝑃 is itself closed (resp. open) in 𝑋. It is clear that

Proposition 1.67. if the map 𝛼 is an identi�cation map, then the map 𝑓 =

𝑔◦𝛼−1 (assumed to be single-valued) is continuous if and only if the map 𝑔 = 𝑓 ◦𝛼
is contnuous.

We will call a subset 𝑆 ⊂ 𝑃 saturated with respect to the map 𝛼 :→ 𝑋 if it
is a complete preimage of its image, i.e. if

𝑆 = 𝛼−1(𝛼(𝑆)).
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For the set 𝑆 to be saturated, it is su�cient to require that 𝑆 ⊃ 𝛼−1(𝛼(𝑆)),
since always 𝑆 ⊂ 𝛼−1(𝛼(𝑆)). The union and intersection of saturated sets are
saturated. In addition, the complete preimage 𝛼−1(𝐴) of an arbitrary set 𝐴 ⊂ 𝑋

is saturated with respect to the map 𝛼 : 𝑃 → 𝑋.
For any continuous surjective map 𝛼 : 𝑃 → 𝑋, each closed (esp. open) set

𝐴 ⊂ 𝑋 is the image of some closed (resp. open) saturated set 𝑆 ⊂ 𝑃 (for exam-
ple, the set 𝑆 = 𝛼−1(𝐴)). It turns out that the inverse property characterises
identi�cation maps, i.e.

Proposition 1.68. a continuous surjective map 𝛼 : 𝑃 → 𝑋 is an identi�cation
map if and only if for any closed (resp. open) saturated set 𝑆 ⊂ 𝑃 the set 𝛼(𝑆)
is closed (resp. open) in 𝑋.

Proof. Indeed, if 𝛼 is an identi�cation map, then for any saturated closed (resp.
open) set 𝑆 the set 𝛼(𝑆) is closed (resp. open), since the set 𝛼−1(𝛼(𝑆)) = 𝑆 is
closed (open). Conversely, let for any closed (resp. open) saturated set 𝑆 the
set 𝛼(𝑆) be closed (resp. open). Consider an arbitrary set 𝑆 ⊂ 𝑋 for which the
set 𝑆 = 𝛼−1(𝐴) is closed (resp. open) in 𝑃. Then, since the set 𝑆 is saturated,
the set 𝐴 = 𝛼(𝑆) will, by assumption, be closed (resp. open), and therefore the
map 𝛼 will be an identi�cation map. □

It follows directly from the proved statement that

Proposition 1.69. any continuous map 𝛼 of a compact space 𝑃 onto a Haus-
dor� space 𝑋 is an identi�cation map.

Proof. Indeed, let the closed saturated set 𝑆 ⊂ 𝑃 be the complete preimage of
the subset 𝐴 ⊂ 𝑥. Being a closed subset of the compact space 𝑃, the set 𝑆 is
compact and therefore its image 𝛼(𝑆) = 𝐴 is also compact, and therefore closed
(since the space 𝑋 is Hausdor�). □

In general, a continuous bijective map may not be a homeomorphism. How-
ever,

Proposition 1.70. any bijective identi�cation map 𝛼 → 𝑋 is a homeomor-
phism.

Proof. Indeed, any set 𝑇 ⊂ 𝑃 is saturated with respect to the bijective map 𝛼
and therefore, if it is closed (in 𝑃), then the set (𝛼−1)−1𝑇 = 𝛼(𝑇) is also closed
(in 𝑋). But this also means that the inverse map 𝛼−1 : 𝑋 → 𝑃 is continuous. □

In particular,

Proposition 1.71. any bijective continuous map 𝛼 of a compact space 𝑃 onto
a Hausdor� space 𝑋 is a homeomorphism.

Let, for example, 𝑃 be an arbitrary bounded convex body lying in the Eu-
clidean space R𝑛, i.e., an arbitrary bounded closed (and therefore compact)
convex subset of the space R𝑛 containing interior points. It is easy to see that
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any such body is stellar with respect to any of its internal points 𝒙0, i.e., each
ray

𝒙0 + 𝒖𝑡, 𝒖 ∈ S𝑛−1, 0 ≤ 𝑡 < ∞

starting from the point 𝒙0 intersects the boundary of the body 𝑃 at one point.
In other words, for any vector 𝒖 ∈ S𝑛−1 there exists a number 𝜑(𝒖) > 0 such that
𝒙0 + 𝒖𝑡 ∈ 𝑃 for 0 ≤ 𝑡 ≤ 𝜑(𝒖) and 𝒙0 + 𝒖𝑡 ∉ 𝑃 for 𝑡 > 𝜑(𝒖). Moreover, elementary
geometric considerations show that the function 𝜑(𝒖) of the vector 𝒖 ∈ S𝑛−1 is
continuous on the sphere S𝑛−1. Since, in addition, any point 𝒙 ∈ 𝑃 has the form
𝒙0 + 𝒖𝑡, where 𝒖 ∈ S𝑛−1, 0 ≤ 𝑡 ≤ 𝜑(𝒖), and for 𝒙 ≠ 𝒙0 this representation is
single-valued, then the formula

𝛼(𝒙0 + 𝒖𝑡) = 𝑡

𝜑(𝒖) 𝒖

de�nes a bijective continuous map

𝛼 : 𝑃 → E𝑛

of the body 𝑃 onto the unit ball E𝑛. Since the body 𝑃 is compact and the ball
E𝑛 is Hausdor�, this map is homeomorphic. Thus, we have proved that

Proposition 1.72. any bounded convex body 𝑃 ⊂ R𝑛 is homeomorphic to the
ball E𝑛.

From this, in particular, it follows that

Proposition 1.73. for any 𝑛 ≥ 0 and 𝑚 ≥ 0 the product E𝑛 × E𝑚 of the balls
E𝑛 and E𝑚 is homeomorphic to the ball E𝑛+𝑚.

Proof. Indeed, the product E𝑛 × E𝑚 is obviously a bounded convex body of the
space R𝑛+𝑚 = R𝑛 × R𝑚. □

Note, by the way, that

Proposition 1.74. for 𝑛 ≠ 𝑚 the balls E𝑛 and E𝑚 are not homeomorphic.

The proof of this statement, despite its obvious �obviousness�, is not at all
simple and requires a deep study of the topology of Euclidean spaces. Since we
essentially do not need this statement, we will not prove it here.

We will call a continuous map 𝑓 : 𝑃 → 𝑋 a map of compact character if the
preimage 𝑓 −1(𝐶) of any compact set 𝐶 ⊂ 𝑋 is a compact subset of the space 𝑃.
It turns out that

Proposition 1.75. if the space 𝑋 is Hausdor� and compactly generated, then
for any map 𝑓 : 𝑃 → 𝑋 of compact character the subset 𝑓 (𝑃) is closed in the
space 𝑋, and if, in addition, the space 𝑃 is also Hausdor�, then the map 𝑓 ,
considered as a map onto the subset 𝑓 (𝑃), is an identi�cation map.
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Proof. Indeed, let 𝐶 be an arbitrary compact subset of 𝑋. Since the set 𝑓 −1(𝐶)
is compact by assumption, the set 𝑓 ( 𝑓 −1(𝐶)) is also compact and therefore
closed. On the other hand, since

𝑓 −1(𝐶) = 𝑓 −1(𝐶 ∩ 𝑓 (𝑃)),

then 𝑓 ( 𝑓 −1(𝐶)) = 𝐶 ∩ 𝑓 (𝑃). Thus, the subset 𝑓 (𝑃) is compactly closed. Conse-
quently, it is closed. □

Similarly, if for some subset 𝐴 ⊂ 𝑓 (𝑃) the subset 𝑓 −1(𝐴) ⊂ 𝑃 is closed, then
for any compact set 𝐶 ⊂ 𝑆 the set 𝑓 𝑓 −1(𝐴 ∩ 𝐶) = 𝑓 −1(𝐴) ∩ 𝑓 −1(𝐶) is compact,
and therefore the set 𝐴 ∩ 𝐶 = 𝑓 ( 𝑓 −1(𝐴 ∩ 𝐶)) is also compact. Thus, the set 𝐴
is compactly closed and, therefore, closed.

In particular, we see that

Proposition 1.76. an injective map of a compact character of a Hausdor�
space to a Hausdor� compactly generated space is a homeomorphism onto a
closed subspace.

Let 𝑃, 𝑄, 𝑋, 𝑌 be arbitrary topological spaces and

𝛼 : 𝑃 → 𝑋, 𝛽 : 𝑄 → 𝑌

be arbitrary continuous maps. It is easy to see that the formula

(𝛼 × 𝛽) (𝑝, 𝑞) = (𝛼(𝑝), 𝛽(𝑞)), 𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄,

uniquely determines some continuous map

𝛼 × 𝛽 : 𝑃 ×𝑄 → 𝑋 × 𝑌 .

We will call this map the topological product of maps 𝛼 and 𝛽. It is surjective
(esp. injective) if maps 𝛼 and 𝛽 are surjective (resp. injective).

Along with the product 𝛼 × 𝛽, we will also consider the topological sum

𝛼 ∪ 𝛽 : 𝑃 ∪𝑄 → 𝑋 ∪ 𝑌

of the mappings 𝛼 and 𝛽. This sum is de�ned when the spaces 𝑃 ∪ 𝑄 and
𝑋 ∪ 𝑌 are de�ned (i.e. when 𝑃 ∩ 𝑄 = ∅ and 𝑋 ∩ 𝑌 = ∅), and, by de�nition,
is a map that coincides on 𝑃 with the map 𝛼, and on 𝑄 with the map 𝛽. It
is also surjective (resp. injective) when the maps 𝛼 and 𝛽 are surjective (resp.
injective). Furthermore, if the maps 𝛼 and 𝛽 are identi�cation maps, then their
sum 𝛼 ∪ 𝛽 is also an identi�cation map.

For the map 𝛼 × 𝛽 the analogue of the last statement, generally speaking,
does not apply. Having in mind to indicate su�cient conditions under which the
product 𝛼×𝛽 of two identi�cation maps is also an identi�cation map, we will call
a continuous surjective map 𝛼 : 𝑃 → 𝑋 locally compact (resp. locally countably
compact) if any point 𝑝 ∈ 𝑃 has a neighbourhood saturated with respect to the
map 𝛼, the closure of which is contained in a closed, saturated and compact
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(resp. countably compact) set 𝐶 ⊂ 𝑃. If the space 𝑋 is locally compact, then
any surjective map 𝑃 → 𝑋 of compact character is locally compact. If a locally
compact (resp. locally countable-compact) map𝑃 → 𝑋 exists, then the space 𝑃
is necessarily locally compact (resp. locally countable-compact). On the other
hand, if the space 𝑃 is compact (resp. countably compact), then for every
space 𝑋 any continuous sujective map 𝑃 → 𝑋 is locally compact (resp. locally
countably compact).

It is easy to see that

Proposition 1.77. if the space 𝑋 is regular and the map 𝛼 : 𝑃 → 𝑋 is locally
compact (resp. locally countably compact), then for any point 𝑝 ∈ 𝑃 and any of
its neighbourhoods 𝑆∗ saturated with respect to the map 𝛼, there exists a saturated
neighbourhood 𝑆 of the point 𝑝 whose closure 𝑆 is compact (resp. countably
compact) and is contained in the neighbourhood 𝑆∗.

Proof. Indeed, by hypothesis, the point 𝑝 has a saturated neighbourhood 𝑇 ,
whose closure 𝑇 is contained in a compact (resp. countably compact) set and
is therefore itself compact (resp. countably compact). Let us consider the set
𝑈 = 𝛼(𝑇∩𝑆∗). Since the set 𝑇∩𝑆∗ is saturated with respect to the map 𝛼, the set
𝑈 is open, i.e. it is a neighbourhood of the point 𝛼(𝑝) in the space 𝑋. But then,
due to the regularity of the space 𝑋, the point 𝛼(𝑝) has a neighbourhood 𝑉 such
that 𝑉 ⊂ 𝑈. Let 𝑆 = 𝛼−1(𝑉). The set 𝑆 is saturated and is a neighbourhood of
the point 𝑝. Moreover, since 𝑆 ⊂ 𝛼−1(𝑉) ⊂ 𝛼−1(𝑈) = 𝑇 ∩ 𝑆∗, then, �rstly, 𝑆 ⊂ 𝑆∗

and, secondly, 𝑆 ⊂ 𝑇 , so that the set 𝑆 is compact (resp. countably compact)
and is contained in 𝑆∗. □

Let us now show that

Proposition 1.78. if the identi�cation map 𝛼 : 𝑃 → 𝑋 is locally compact and
the space 𝑋 is regular, then for any identi�cation map 𝛽 : 𝑄 → 𝑌 the map

𝛼 × 𝛽 : 𝑃 ×𝑄 → 𝑋 × 𝑌

is also an identi�cation map.

Proof. Indeed, let𝑊 be an arbitrary subset of the product 𝑋×𝑌 whose preimage
(𝛼 × 𝛽)−1(𝑊) under the map 𝛼 × 𝛽 is open in the space 𝑃 × 𝑄. We must prove
that each such set 𝑊 is open in the space 𝑋 × 𝑌 , i.e., that any of its points
(𝑥0, 𝑦0) is its interior point. In other words, we must prove that in the spaces 𝑋
and 𝑌 there exist neighbourhoods 𝑈 and 𝑉 of the points 𝑥0 and 𝑦0, respectively,
such that

(𝑥0, 𝑦0) ∈ 𝑈 ×𝑉 ⊂ 𝑊.
Let 𝑝0 and 𝑞0 be points in the spaces 𝑃 and 𝑄, respectively, such that 𝛼(𝑝0) = 𝑥0,
𝛽(𝑞0) = 𝑦0. It is clear that to prove the existence of neighbourhoods 𝑈 and 𝑉
it is su�cient to prove that the points 𝑝0 and 𝑞0 have (in the spaces 𝑃 and
𝑄, respectively) saturated (with respect to the maps 𝛼 and 𝛽, respectively)
neighbourhoods 𝑆 and 𝑇 such that

(𝑝0, 𝑞0) ∈ 𝑆 × 𝑇 ⊂ (𝛼 × 𝛽)−1𝑊.
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For this purpose, we consider the set 𝑆∗ of all points 𝑝 ∈ 𝑃 for which the
following holds

(𝑝, 𝑞0) ∈ (𝛼 × 𝛽))−1(𝑊).

It is clear that the set 𝑆∗ contains the point 𝑝0, is open in the space 𝑃 and
is saturated with respect to the map 𝛼. Therefore, by the proposition proved
above, the point 𝑝0 has a neighbourhood 𝑆 that is saturated with respect to the
map 𝛼, whose closure 𝑆 is compact and is contained in the neighbourhood 𝑆∗.

Let, further, 𝑇 be the set of all points 𝑞 ∈ 𝑄 with the property that for any
point 𝑝 ∈ 𝑆 the following inclusion holds

(𝑝, 𝑞) ∈ (𝛼 × 𝛽)−1(𝑊).

In other words, 𝑇 is the maximal subset of the space 𝑄 for which the following
inclusion holds

𝑆 × 𝑇 ⊂ (𝛼 × 𝛽)−1(𝑊).

In particular, we have
𝑆 × 𝑇 ⊂ (𝛼 × 𝛽)−1(𝑊).

Moreover, 𝑞0 ∈ 𝑇 (since 𝑆 ⊂ 𝑆∗). Further,

𝑆× 𝛽−1(𝛽(𝑇)) ⊂ 𝛼−1(𝛼(𝑆)) × 𝛽−1(𝛽(𝑇)) = (𝛼× 𝛽)−1(𝛼× 𝛽) (𝑆×𝑇) ⊂ (𝛼× 𝛽)−1(𝑊),

whence, in view of the maximality of the set 𝑇 , it follows that 𝛽−1(𝛽(𝑇)) ⊂ 𝑇 ,
i.e., that the set 𝑇 is saturated with respect to the map 𝛽.

Therefore, to complete the proof, we only need to prove that the set 𝑇 is
open in the space 𝑄.

To this end, we note that since the set (𝛼× 𝛽)−1(𝑊) is, by assumption, open,
each of its points is its interior point and therefore for points 𝑝 and 𝑞 there exist
(in the spaces 𝑃 and 𝑄, respectively) neighbourhoods 𝑆𝑞 (𝑝) and 𝑇𝑝 (𝑞) such that

(𝑝, 𝑞) ∈ 𝑆𝑞 (𝑝) × 𝑇𝑝 (𝑞) ⊂ (𝛼 × 𝛽)−1(𝑊).

For each point 𝑞 ∈ 𝑇 , all possible sets of the form 𝑆𝑞 (𝑃)∩𝑆, 𝑝 ∈ 𝑆, obviously con-
stitute an open covering of the subspace 𝑆 ⊂ 𝑃. Therefore, since this subspace is,
by construction, compact, there exists a �nite system of points 𝑝1, . . . , 𝑝𝑛 ∈ 𝑆,
such that

𝑆 ⊂ ∪𝑛𝑖=1𝑆𝑞 (𝑝𝑖).

Let
𝑇 (𝑞) = ∩𝑛𝑖=1𝑇𝑝𝑖 (𝑞).

It is clear that the set 𝑇 (𝑞) is open (in 𝑄), contains the point 𝑞 and has the
property

𝑝 × 𝑇 (𝑞) ⊂ (𝛼 × 𝛽)−1(𝑊)

for any point 𝑝 ∈ ∪𝑛
𝑖1𝑆𝑞 (𝑝𝑖), and therefore, in particular, for any point 𝑝 ∈ 𝑆.

Therefore, 𝑇 (𝑞) ⊂ 𝑇 , i.e. 𝑞 ∈ int𝑇 . Thus, the set 𝑇 , as stated, is open. Thus,
the above statement is completely proven. □
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It is possible to specify other conditions under which the product of identi-
�cation maps is an identi�cation map. For example,

Proposition 1.79. if the identi�cation maps 𝛼 : 𝑃 → 𝑋 and 𝛽 : 𝑄 → 𝑌 are
locally countably compact, the spaces 𝑃 and 𝑄 are Hausdor�, and the spaces 𝑋
and 𝑌 are regular, then the map

𝛼 × 𝛽 : 𝑃 ×𝑄 → 𝑋 × 𝑌

is an identi�cation map.

Proof. Indeed, in this case the points 𝑝0 and 𝑞0 have (in the spaces 𝑃 and 𝑄,
respectively) saturated neighbourhoods 𝑆∗ and 𝑇∗ with respect to the maps 𝛼

and 𝛽, whose closures 𝑆
∗
and 𝑇

∗
are contained in the closed saturated countably

compact sets 𝐶 ⊂ 𝑃 and 𝐷 ⊂ 𝑄. Let

𝐶0 ⊂ 𝐶1 ⊂ · · · ⊂ 𝐶𝑛 ⊂ · · · .
𝐷0 ⊂ 𝐷1 ⊂ · · · ⊂ 𝐷𝑛 ⊂ · · ·

be increasing sequences of compact subsets 𝐶𝑛 ⊂ 𝑃 and 𝐷𝑛 ⊂ 𝑄, whose free
unions are the sets 𝐶 and 𝐷, respectively. Without loss of generality we can
assume that

𝑝0 ∈ 𝐶0, 𝑞0 ∈ 𝐷0.

Note also that, since the spaces 𝑃 and 𝑄 are, by assumption, Hausdor�, all sets
𝐶𝑛 and 𝐷𝑛 are closed.

First of all, for any 𝑛 ≥ 0 we will construct open sets 𝑆𝑛 ⊂ 𝐶𝑛 and 𝑇𝑛 ⊂ 𝐷𝑛
saturated with respect to the maps 𝛼 |𝐶𝑛

and 𝛽 |𝐷𝑛
(in the spaces 𝐶𝑛 and 𝐷𝑛,

respectively) such that

𝑝0 ∈ 𝑆𝑛, 𝑞0 ∈ 𝑇𝑛, 𝑆𝑛 ⊂ 𝑆𝑛+1, 𝑇𝑛 ⊂ 𝑇𝑛+1

and
𝑆𝑛 × 𝑇𝑛 ⊂ 𝑊𝑛, (1.80)

where
𝑊𝑛 = (𝛼 |𝐶𝑛

× 𝛽 |𝐷𝑛
)−1 = (𝐶𝑛 × 𝐷𝑛) ∩ (𝛼 × 𝛽)−1(𝑊).

To this end, we note that since the space 𝐶𝑛 is compact, the map 𝛼 |𝐶𝑛
is

locally compact. Therefore, the maps 𝛼 |𝐶𝑛
: 𝐶𝑛 → 𝑋 and 𝛽 |𝐷𝑛

: 𝐷𝑛 → 𝑌 satisfy
the conditions of the previous proposition. Therefore, for any point (𝑝, 𝑞) ∈ 𝑊𝑛
in the spaces 𝐶𝑛 and 𝐷𝑛 there exist saturated (with respect to the maps 𝛼 |𝐶𝑛

and 𝛽 |𝐷𝑛
) neighbourhoods 𝑆∗𝑞,𝑛 (𝑝) and 𝑇∗

𝑝,𝑛 (𝑞) of the points 𝑝 and 𝑞 such that

(𝑝, 𝑞) ∈ 𝑆∗𝑞,𝑛 (𝑝) × 𝑇∗
𝑝,𝑛 (𝑞) ⊂ 𝑊𝑛.

Furthermore, since the spaces 𝑋 and 𝑌 are regular by assumption, the points
𝑝 and 𝑞 have in the spaces 𝐶𝑛 and 𝐷𝑛 saturated neighbourhoods 𝑆𝑞,𝑛 (𝑝) and
𝑇𝑝,𝑛 (𝑞) such that 𝑆𝑞,𝑛 (𝑝) ⊂ 𝑆∗𝑞,𝑛 (𝑝) and 𝑇 𝑝,𝑛 (𝑞) ⊂ 𝑇∗

𝑝,𝑛 (𝑞) (here we mean clo-
sures in the spaces 𝐶𝑛 and 𝐷𝑛; however, since the subspaces 𝐶𝑛 and 𝐷𝑛 are
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closed, these closures coincide with the closures in the spaces 𝑃 and 𝑄). Thus,
for any point (𝑝, 𝑞) ∈ 𝑊𝑛 we have constructed in the spaces 𝐶𝑛 and 𝐷𝑛 saturated
neighbourhoods 𝑆𝑞,𝑛 (𝑝) and 𝑇𝑝,𝑛 (𝑞) of the points 𝑝 and 𝑞 with respect to the
maps 𝛼 |𝐶𝑛

and 𝛽 |𝐷𝑛
such that

(𝑝, 𝑞) ∈ 𝑆𝑞,𝑛 (𝑝) × 𝑇 𝑝,𝑛 (𝑞) ⊂ 𝑊𝑛.

In particular, for 𝑛 = 0, 𝑝 = 𝑝0, 𝑞 = 𝑞0 we obtain neighbourhoods

𝑆0 = 𝑆𝑞,0(𝑝), 𝑇0 = 𝑇𝑝,0 (𝑞)

of the points 𝑝0 and 𝑞0 (in the spaces 𝐶0 and 𝐷0) that have property (1.80).
Reasoning by induction, we assume that for some 𝑛 > 0 neighbourhoods 𝑆𝑛−1

and 𝑇𝑛−1 possessing property (1.80) have already been constructed. It is clear

that for any point 𝑞 ∈ 𝑇𝑛−1 all sets of the form 𝑆𝑛−1 ∩ 𝑆𝑞,𝑛 (𝑝), 𝑝 ∈ 𝑆𝑛−1, form
an open covering of the space 𝑆𝑛−1. Since this space, being a closed subspace
of the compact space 𝐶𝑛−1, is compact, there exists a �nite system of points
𝑝1, . . . , 𝑝𝑛 ∈ 𝑆𝑛−1 such that

𝑆𝑛−1 ⊂ 𝑆𝑞,𝑛,

where

𝑆𝑞,𝑛,= ∪𝑠𝑖=1𝑆𝑞,𝑛 (𝑝𝑖).

Let

𝑇𝑛 (𝑞) = ∩𝑠𝑖=1𝑇𝑝𝑖 ,𝑛 (𝑞).

It is clear that the sets 𝑆𝑞,𝑛 and 𝑇𝑛 (𝑞) are saturated (with respect to the maps
𝛼 |𝐶𝑛

and 𝛽 |𝐷𝑛
), open (in the spaces 𝐶𝑛 and 𝐷𝑛) and have the property that

𝑆𝑞,𝑛 × 𝑇𝑛 (𝑞) ⊂ 𝑊𝑛.

Moreover, 𝑞 ∈ 𝑇𝑛 (𝑞), so that all possible sets of the form 𝑇𝑛−1 ∩𝑇𝑛 (𝑞), 𝑞 ∈ 𝑇𝑛−1
form an open covering of the space 𝑇𝑛−1. Since the space 𝑇𝑛−1 (similar to the

space 𝑆𝑛−1) is compact, there exists a �nite system of points 𝑞1, . . . , 𝑞𝑛 ∈ 𝑇𝑛−1
such that

𝑇𝑛−1 ⊂ 𝑇𝑛,

where

𝑇𝑛 = ∪𝑡𝑖=1𝑇𝑛 (𝑞𝑖).

It is clear that the set 𝑇𝑛 together with the set

𝑆𝑛 = ∩𝑛𝑖=1𝑆𝑞𝑖 ,

satis�es all the conditions imposed on the neighbourhoods of 𝑆𝑛 and 𝑇𝑛.
Thus, the neighbourhoods 𝑆𝑛 and 𝑇𝑛 are constructed for all 𝑛 ≥ 0.
Now let

𝑆∞ = ∪∞
𝑖=1𝑆𝑛, 𝑇∞ = ∪∞

𝑖=1𝑇𝑛.
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It is obvious that the sets 𝑆∞ and 𝑇∞ are saturated (with respect to the maps
𝛼 and 𝛽, respectively), since the sets 𝐶 and 𝐷 are saturated by assumption. In
addition, 𝑝0 ∈ 𝑆∞, 𝑞0 ∈ 𝑇∞, and 𝑆∞ × 𝑇∞ ⊂ (𝛼 × 𝛽)−1(𝑊). Therefore, the sets

𝑆 = 𝑆∗ ∩ 𝑆∞, 𝑇 = 𝑇∗ ∩ 𝑇∞

are also saturated and have the property that

(𝑝0, 𝑞0) ∈ 𝑆 × 𝑇 ⊂ (𝛼 × 𝛽)−1𝑊𝑛.

Therefore, to complete the proof, it remains only for us to show that the sets 𝑆
and 𝑇 are open (in the spaces 𝑃 and 𝑄, respectively).

mLet us �rst consider the set 𝑆∞. Since the set 𝑆𝑛 is open in the subspace
𝐶𝑛, then for any 𝑚 ≤ 𝑛 the set 𝑆𝑛 ∩ 𝐶𝑚 is open in the subspace 𝐶𝑚 ⊂ 𝐶𝑛. On
the other hand, 𝑆𝑛 ∩ 𝐶𝑚 = 𝑆𝑛 ⊂ 𝑆𝑚 ∩ 𝐶𝑚 for 𝑚 > 𝑛. Therefore,

𝑆∞ ∩ 𝐶𝑚 = ∪∞
𝑛=𝑚 (𝑆𝑛 ∩ 𝐶𝑚)

for any 𝑚 ≥ 0 and this set is open in the subspace 𝐶𝑚. Since the space 𝐶 is a
free union of subspaces 𝐶𝑚, it follows that the set 𝑆∞ is open in the space 𝐶
and, therefore, the set 𝑆 = 𝑆∗ ∩ 𝑆∞ is open in the subspace 𝑆∗ ⊂ 𝐶. But the
last subspace is open in the space 𝑃. Consequently, the set 𝑆 is also open in the
space 𝑃.

The fact that the set 𝑇 is open in the space 𝑄 is proved similarly.
Thus, the statement formulated above is completely proven. □

1.6 Topologies of identi�cation, glued spaces, rel-

ative homeomorphisms

Let 𝑃 be an arbitrary topological space and let

𝛼 : 𝑃 → 𝑋

be an arbitrary map of the space 𝑃 onto some set 𝑋. We introduce a topology
into the set 𝑋, considering a subset 𝐴 ⊂ 𝑋 to be open (resp. closed) if and
only if its complete preimage 𝛼−1(𝐴) is open (resp. closed). We will call this
topology the identi�cation topology (de�ned by the map 𝛼). It is the weakest
(i.e. containing the largest number of closed sets) topology of the space 𝑋 in
which the map 𝛼 is continuous.

It is clear that

Proposition 1.81. if the space 𝑋 is equipped with the identi�cation topology,
then the map 𝛼 is an identi�cation map in the sense of �1.5.

Conversely,

Proposition 1.82. if a topological space 𝑋 has the property that a given sur-
jective map 𝛼 : 𝑃 → 𝑋 is an identi�cation map then the topology of this space
is the identi�cation topology de�ned by the map 𝛼.
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In other words, the identi�cation topology of the space 𝑋 is uniquely deter-
mined by the requirement that the given map 𝛼 be an identi�cation map.

In most applications, the set 𝑋 is the set of all classes under some equivalence
relation de�ned in the space 𝑃, and the map 𝛼 : 𝑃 → 𝑋 is the natural projection
that associates with each point 𝑝 ∈ 𝑃 its equivalence class. In this case, the
set 𝑥, equipped with the identi�cation topology, is called the factor space of the
space 𝑃 with respect to the given equivalence relation. However, the di�erence
between factor spaces and any spaces equipped with the identi�cation topology
is essentially purely formal, since for any identi�cation map 𝛼 : 𝑃 → 𝑋 there
exists on 𝑃 an equivalence relation such that the corresponding factor space is
naturally homeomorphic to the space 𝑋. In this equivalence relation, the points
𝑝1, 𝑝2 ∈ 𝑃 are equivalent if and only if

𝛼(𝑝1) = 𝛼(𝑝2).

An important example of a factor space arises when considering an arbitrary
continuous map

𝑓 : 𝐴→ 𝑌

of a closed subspace 𝐴 of some topological space 𝑍 into a given space 𝑌 . Assum-
ing that the spaces 𝑋 and 𝑌 do not intersect, we introduce in their topological
sum

𝑃 = 𝑋 ∪ 𝑌

an equivalence relation, considering that

1) points 𝑥1, 𝑥2 ∈ 𝑋 are equivalent if and only if either 𝑥1 = 𝑥2 or 𝑥1, 𝑥2 ∈ 𝐴 and
𝑓 (𝑥1) = 𝑓 (𝑥2);

2) points 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 are equivalent if and only if 𝑦 = 𝑓 (𝑥);

3) points 𝑦1, 𝑦2 ∈ 𝑌 are equivalent if and only if 𝑦1 = 𝑦2.

We will denote the corresponding factor space of the space 𝑃 by the symbol
𝑋∪ 𝑓 𝑌 and we will say that it is obtained by gluing the space 𝑋 along the subspace
𝐴 to the space 𝑌 by means of the map 𝐹.

The natural projection
𝛼 : 𝑃 → 𝑋 ∪ 𝑓 𝑌

is a homeomorphism on the subspace 𝑌 ⊂ 𝑃. Therefore, in the future we will, as
a rule, identify the space 𝑌 with its image 𝛼(𝑌 ), i.e. we will consider the space
𝑌 as a subspace of the space 𝑋 ∪ 𝑓 𝑌 :

𝑌 ⊂ 𝑋 ∪ 𝑓 𝑌 .

It is easy to verify that the space 𝑌 is closed in the space 𝑋 ∪ 𝑓 𝑌 .
Further, as is easy to see, the natural projection a is a homeomorphism on

the open set 𝑋 \ 𝐴. Therefore, we can also assume that

𝑋 \ 𝐴 ⊂ 𝑋 ∪ 𝑓 𝑌 .
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In this case
𝑋 \ 𝐴 = (𝑋 ∪ 𝑓 𝑌 ) \ 𝑌,

so that the space 𝑋 \ 𝐴 is open in the space 𝑋 ∪ 𝑓 𝑌 .
Thus, the space 𝑋 ∪ 𝑓 𝑌 can be considered as the union

𝑋 ∪ 𝑓 𝑌 = (𝑋 \ 𝐴) ∪ 𝑌

of two mutually complementary spaces 𝑋 \ 𝐴 and 𝑌 , the �rst of which is open
and the second is closed. In this connection, we will sometimes say that the
space 𝑋 ∪ 𝑓 𝑌 is obtained by gluing the spaces 𝑋 \ 𝐴 and 𝑌 .

On the subspace 𝐴 the natural projection 𝛼 coincides with the map 𝑓 .
It is customary to call a pair of spaces (or simply a pair) an arbitrary pair

(𝑋, 𝐴) consisting of some topological space 𝑋 and some of its subspace 𝐴. We
will call a pair (𝑋, 𝐴) Hausdor� if the space 𝑋 is Hausdor�, and compact if the
space 𝑋 is compact and its subspace 𝐴 is closed.

Let (𝑋, 𝐴) and (𝑍,𝑌 ) be arbitrary pairs. By a map

𝑔 : (𝑋, 𝐴) → (𝑍,𝑌 ) (1.83)

of a pair (𝑋, 𝐴) into a pair (𝑍,𝑌 ) we mean an arbitrary continuous map 𝑔 of
the space 𝑋 into the space 𝑌 for which 𝑔(𝐴) ⊂ 𝑌 . We will call the map (1.83) a
relative homeomorphism if it homeomorphically maps the subspace 𝑋 \ 𝐴 onto
the subspace 𝑍 \ 𝑌 . From the above properties of the natural projection

𝛼 : 𝑃 → 𝑋 ∪ 𝑓𝑌

it immediately follows that

Proposition 1.84. the restriction

𝛼 |𝑋 : 𝑋 → 𝑋 ∪ 𝑓 𝑌

of the projection 𝛼 on the space 𝑋 is a relative homeomorphism of the pair (𝑋, 𝐴)
onto the pair (𝑋 ∪ 𝑓 𝑌,𝑌 ).

Relative homeomorphisms of the form 𝛼 |𝑋 are identi�cation maps, and the
subspace 𝑌 is closed for them. It turns out that in the class of all relative
homeomorphisms, maps of the form 𝛼 |𝑋 are uniquely characterised by these
properties up to homeomorphism, i.e.

Proposition 1.85. for every relative homeomorphism

𝑔 : (𝑋, 𝐴)− → (𝑍,𝑌 ),

for which the subspace 𝑌 is closed in the space 𝑍 and the map 𝑔 : 𝑋 → 𝑍 is an
identi�cation map, there exists a homeomorphism

ℎ : 𝑋 ∪ 𝑓 𝑌 → 𝑍, 𝑓 = 𝑔 |𝐴,

identical on the subspace 𝑌 such that

𝑔 = ℎ ◦ 𝛼 |𝑋 .
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Thus, if the speci�ed conditions are met, the space 𝑍 can be considered as
the result of gluing the space 𝑋 to the space 𝑌 along the subspace 𝐴 by means
of the map 𝑓 = 𝑔 |𝐴.
Remark 1.86. This formulation implies that 𝑋 ∩𝑌 = ∅. Otherwise, the space 𝑋
should be replaced by a homeomorphic space that already has this property.

To prove the formulated proposition, we �rst note that the subspace 𝐴, being
the prreimae under a continuous map of the closed subspace 𝑌 , is itself closed.
Therefore (in view of the remark made above), the space 𝑋∪ 𝑓 𝑌 is de�ned. Let's
consider the map

ℎ : 𝑋 ∪ 𝑓 𝑌 → 𝑍,

coinciding on 𝑋 \ 𝐴 with the map 𝑔 and identical on 𝑌 . It is clear that this
map is bijective and has the property that the map ℎ ◦ 𝛼 coincides on 𝑋 with
the map 𝑔 (and is the identity map on 𝑌). From this, �rstly, it follows that
the map ℎ is continuous (since the map ℎ ◦ 𝛼 is continuous, and the projection
𝛼 is an identi�cation map). Secondly, since for any closed set 𝐶 ⊂ 𝑋 ∪ 𝑓 𝑌 the
intersection of the closed set (ℎ ◦ 𝛼)−1(ℎ(𝐶)) = 𝛼−1(𝐶) ⊂ 𝐶 ∪ 𝑌 with the space
𝑋 coincides with the set 𝑔−1(ℎ(𝐶), then, since the map 𝑔 is an identi�cation
map, the set 𝑔(𝐶) is closed in 𝑍. Consequently, the map ℎ−1 is also continuous.
Thus, the map ℎ, as stated, is homeomorphic.

As we know, the condition on the map 𝑔 is automatically satis�ed if the
space 𝑋 is compact and the space 𝑍 is Hausdor�. Moreover, it is clear that in
this case, for the space 𝑌 to be closed, it is su�cient that the space 𝐴 is closed.
Thus,

Proposition 1.87. for any Hausdor� pair (𝑍,𝑌 ) relatively homeomorphic to
a compact pair (𝑋, 𝐴), the space 𝑍 is homeomorphic to the space obtained by
gluing the space 𝑋 to the space 𝑌 along the subspace 𝐴.

Generally speaking, the space 𝑋 ∪ 𝑓 𝑌 may not be Hausdor�, even if the
spaces 𝑋 and 𝑌 are Hausdor�. However,

Proposition 1.88. the space 𝑋 ∪ 𝑓 𝑌 is Hausdor� if

1) the space 𝑋 \ 𝐴 is Hausdor�;

2) each point of the subspace 𝑋 \ 𝐴 has a neighbourhood whose closure does not
intersect the subspace 𝐴;
and either

3) the space 𝑌 is Hausdor� and any two disjoint open (in 𝐴) subsets of the
subspace 𝐴 that are saturated with respect to the map 𝑓 are cut out on 𝐴 by
disjoint open subsets of the space 𝑋;
or

4) the space 𝑌 is completely Hausdor� and any two disjoint closed subsets of
the subspace 𝐴 have disjoint neighbourhoods in 𝑋.
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Proof. Indeed, condition 1) obviously ensures the Hausdor� property (the ex-
istence of disjoint neighbourhoods) for any pair of distinct points of the space
𝑋 ∪ 𝑓 𝑌 belonging to the subspace 𝑋 \ 𝐴, and condition 2) ensures the Hausdor�
property for any two points 𝑥 ∈ 𝑋 \ 𝐴 and 𝑦 ∈ 𝑌 . Therefore, we need to check
the Hausdor� property only for (distinct) points 𝑦1, 𝑦2 ∈ 𝑌 .

Let condition 3) be satis�ed. Then the points 𝑦1 and 𝑦2 have in 𝑌 non-
intersecting neighbourhoods 𝑉1 and 𝑉2. The preimages 𝑓 −1(𝑉1) and 𝑓 −1(𝑉2)
(possibly empty) of these neighbourhoods also do not intersect and are open
sets in 𝐴, saturated with respect to the map 𝑓 . Therefore, according to the
condition, in 𝑋 there exist open disjoint sets 𝑈1 and 𝑈2 such that

𝑈1 ∩ 𝐴 = 𝑓 −1(𝑉1), 𝑈2 ∩ 𝐴 = 𝑓 −1(𝑉2).

It is clear that the sets

(𝑈1 \ 𝐴) ∪𝑉1, (𝑈2 \ 𝐴) ∪𝑉2

are open in the space 𝑋 ∪ 𝑓 𝑌 and do not intersect (since they serve as images
under the natural projection 𝛼 : 𝑋 ∪𝑌 → 𝑋 ∪ 𝑓 𝑌 of non-intersecting, open, and
saturated sets with respect to the map 𝛼 of 𝑈1 ∪ 𝑉1 and 𝑈2 ∪ 𝑉2). Since these
sets contain the points 𝑦1 and 𝑦2, the Hausdor� property for these points is thus
completely proved.

Let condition 4) be satis�ed. Then the points 𝑦1 and 𝑦2 have neighbourhoods
𝑉1 and 𝑉2 in 𝑌 , the closures of which 𝑉1 and 𝑉2 do not intersect. Let us consider

the sets 𝑉
′
1 = 𝑓 −1(𝑉1) and 𝑉

′
2 = 𝑓 −1(𝑉2). Since 𝑉

′

1 ⊂ 𝑓 −1(𝑉1), 𝑉
′

2 ⊂ 𝑓 −1(𝑉2) and
𝑓 −1(𝑉1) ∩ 𝑓 −1(𝑉2 = ∅, then we have

𝑉
′

1 ∩𝑉
′

2 = ∅.

Thus, the sets 𝑉
′

1 and 𝑉
′

2 are disjoint closed subsets of the subspace 𝐴 (recall
that 𝐴 is assumed to be closed). Therefore, according to the condition, these
sets have disjoint neighbourhoods 𝑈1 and 𝑈2 in 𝑋. It is clear that the sets

(𝑈1 \ 𝐴) ∪𝑉1, (𝑈2 \ 𝐴) ∪𝑉2

are open in the space 𝑋 ∪ 𝑓 𝑌 and do not intersect (since they serve as images
under the natural projection 𝛼 of non-intersecting, open and saturated sets
(𝑈1 \ 𝐴) ∪𝑉

′
1 ∪𝑉1 and (𝑈2 \ 𝐴) ∪𝑉

′
2 ∪𝑉2 with respect to the map 𝛼.) Since these

sets contain the points 𝑦1 and 𝑦2, the Hausdor� property is thus proved in this
case as well. □

It is clear that conditions 1), 2) and 4) (in the part concerning the subspace
𝐴) are automatically satis�ed if the space 𝑋 is normal. Therefore,

Proposition 1.89. if the space 𝑋 is normal and the space 𝑌 is completely
Hausdor�, then the space 𝑋 ∪ 𝑓 𝑌 is Hausdor�.

Remark 1.90. It can be shown that if the spaces 𝑋 and 𝑌 are normal, then the
space 𝑋 ∪ 𝑓 𝑌 is also normal. We will not need this fact.
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In the special case when the space 𝑌 consists of only one point 𝑦0 (and,
consequently, the map 𝑓 : 𝐴 → 𝑌 automatically turns out to be constant),
the space 𝑋 ∪ 𝑓 𝑌 is denoted by the symbol 𝑋/𝐴 and is called the result of
the contraction of the subspace 𝐴 to the point 𝑦0. In this case, condition 4) is
obviously satis�ed. As for conditions 1) and 2), they are certainly satis�ed if
the space 𝑋 is regular. Thus,

Proposition 1.91. if the space 𝑋 is regular, then for any of its closed subspaces
𝐴 the space 𝑋/𝐴 is Hausdor�.

Another important special case of gluing arises when considering an arbitrary
continuous map

𝑓 : 𝑋 → 𝑌 .

Let 𝑋 × 1 be a subspace of the product 𝑋 × 𝐼, where 𝐼 is the unit segment [0, 1]
consisting of all points of the form (𝑥, 1), 𝑥 ∈ 𝑋, and let

𝑓1 : 𝑋 × 1 → 𝑌

be the map into the space 𝑌 , de�ned by the formula

𝑓1 (𝑥, 1) = 𝑓 (𝑥).

Let us consider the space
𝑍 𝑓 = (𝑋 × 𝐼) ∪ 𝑓1 𝑌 .

This space is called the mapping cylinder by 𝑓 and, as we shall see later, plays
a fundamental role in the study of the homotopy properties of this map. Each
of its points either has the form (𝑥, 𝑡), where 𝑥 ∈ 𝑋, 0 ≤ 𝑡 < 1, or is a point 𝑦 of
the space 𝑌 .

It is clear that condition 2) for the space 𝑍 𝑓 is always satis�ed (a neighbour-
hood of the point (𝑥, 𝑡), 𝑥 ∈ 𝑋, 0 ≤ 𝑡 < 1, the closure of which does not intersect
the subspace 𝑋 × 1 is, for example, any neighbourhood of the form 𝑋 × [0, 𝑡 + 𝜀),
where 𝜀 is any positive number less than 1 − 𝑡), and condition 1) is satis�ed if
the space 𝑋 is Hausdor�. Moreover, condition 4) (in the part not related to the
space 𝑌) is also obviously always satis�ed (open sets of the subspace 𝑋 × 1 have
the form 𝐺 × 1, where 𝐺 are open sets of the space 𝑋; they are cut out from
𝑋 × 1 by open sets 𝐺 × 𝐼 in 𝑋 × 𝐼; if the sets 𝐺1 × 1 and 𝐺2 × 1 do not intersect,
then the sets 𝐺1 × 1 and 𝐺2 × 𝐼 also do not intersect). Consequently,

Proposition 1.92. if the spaces 𝑋 and 𝑌 are Hausdor�, then for any map
𝑓 : 𝑋 → 𝑌 the space 𝑍 𝑓 is also Hausdor�.



Chapter 2

Homotopy equivalences

This chapter mainly sets out various criteria that allow, in some cases, to judge
whether a given continuous map will be a homotopy equivalence.

In the introductory �2.1, the basic concepts of the homotopy theory of contin-
uous maps are presented and the simplest connections between these concepts
are established. In particular, a simple but useful lemma is proved here, es-
tablishing conditions under which two homotopic maps that coincide on some
subspace are homotopic relattive to this subspace. At the end of this section, the
concept of a 𝑚-connected space is considered and some elementary properties
of such spaces are proved.

In �2.2, after a number of simple remarks on homotopy equivalences, a well-
known characteristic property of their cylinders is proved.

In �2.3 it is proved that (under certain conditions) the homotopy type of the
glued space 𝑋 ∪ 𝑓 𝑌 depends only on the homotopy type of the space 𝑌 and the
homotopy equivalence class of the map 𝑓 .

In �2.4 the concept of weak homotopy equivalence is introduced and in con-
nection with this a number of properties of homotopy groups are presented.
However, the detailed theory of homotopy groups remains almost completely
outside the scope of our exposition (it is enough to say that we do not even use
their group operation here).

In �2.5 the concept of homotopy limit is considered (in both the �weak� and
�strong� versions) and it is proved that the limit of homotopy equivalences is
also a homotopy equivalence.

2.1 Homotopies and extensions of continuous maps

Each family
𝑓𝑡 : 𝑋 → 𝑌, 0 ≤ 𝑡 ≤ 1, (2.1)

of continuous maps of a topological space 𝑋 into a topological space 𝑌 de�nes
by the formula

𝐹 (𝑥, 𝑡) = 𝑓𝑡 (𝑥), 𝑥 ∈ 𝑋, 𝑡 ∈ 𝐼,
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a certain map
𝐹 : 𝑋 × 𝐼 → 𝑌 (2.2)

into the space 𝑌 of the product 𝑋 × 𝐼 of the space 𝑋 and the unit segment
𝐼 = [0, 1]. We will call the family (2.1) a homotopy of maps of the space 𝑋
into the space 𝑌 if the corresponding map (2.2) is continuous. It is clear that,
conversely, any continuous map (2.2) de�nes some homotopy (2.1).

We will call the map 𝑓0 the initial map, and the map 𝑓1 the �nal map of
homotopy (2.1).

In what follows, we will often have to consider not separate spaces 𝑋 and 𝑌 ,
but pairs (𝑋, 𝐴) and (𝑌, 𝐵), where 𝐴 and 𝐵 are some subspaces of the spaces
𝑋 and 𝑌 respectively. In this case, we will be interested, as a rule, only in
homotopies of the form

𝑓𝑡 : (𝑋, 𝐴) → (𝑌, 𝐵),

i.e., homotopies (2.1) for which

𝑓𝑡 (𝐴) ⊂ 𝐵

for any 𝑡 ∈ 𝐼. We will call such homotopies homotopies of pair maps.
Maps

𝑓 , 𝑔 : 𝑋 → 𝑌

(or maps 𝑓 , 𝑔 : (𝑋, 𝐴) → (𝑌, 𝐵)) we will call homotopic (notation, 𝑓 ∼ 𝑔) if there
exists a homotopy

𝑓𝑡 : 𝑋 → 𝑌, 0 ≤ 𝑡 ≤ 1,

(or, correspondingly, a homotopy 𝑓𝑡 : (𝑋, 𝐴) → (𝑌, 𝐵) such that

𝑓0 = 𝑓 , 𝑓1 = 𝑔

i.e., that the map 𝑓 is its initial, and the map 𝑔 is its �nal map. In this case
we will also say that the maps 𝑓 and 𝑔 are related by a homotopy 𝑓𝑡 (notation
𝑓𝑡 : 𝑓 ∼ 𝑔).

Each continuous map
𝑓 : 𝑋 → 𝑌

de�nes a certain homotopy

(1 𝑓 )𝑡 : 𝑋 → 𝑌, 0 ≤ 𝑡 ≤ 1,

for which
(1 𝑓 )𝑡 (𝑥) = 𝑓 (𝑥)

for any 𝑥 ∈ 𝑋 and 𝑡 ∈ 𝐼. We will call this homotopy a stationary homotopy of
the map 𝑓 .

The homotopy relation is, as is easy to see, an equivalence relation, i.e. it is

re�exive since (1 𝑓 )𝑡 : 𝑓 ∼ 𝑓 ,

symmetric if 𝑓𝑡 𝑓 ∼ 𝑔, then 𝑓1−𝑡 : 𝑔 ∼ 𝑓 ,
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transitive if 𝑓𝑡 : 𝑓 ∼ 𝑔 and 𝑔𝑡 : 𝑔 ∼ ℎ, then ℎ𝑡 : 𝑓 ∼ ℎ, where

ℎ𝑡 =

{
𝑓2𝑡 for 0 ≤ 𝑡 ≤ 1/2,
𝑔2𝑡−1 for 1/2 ≤ 𝑡 ≤ 1.

Therefore, the set of all continuous maps 𝑋 → 𝑌 (respectively, the set of all
continuous maps (𝑋, 𝐴) → (𝑌, 𝐵)) splits into disjoint homotopy classes consist-
ing of pairwise homotopic maps. We will denote the set of all homotopy classes
of maps 𝑋 → 𝑌 by the symbol [𝑋,𝑌 ], and maps (𝑋, 𝐴) → (𝑌, 𝐵) by the sym-
bol [(𝑋, 𝐴), (𝑌, 𝐵)]. We will denote the class containing a given map 𝑓 by the
symbol [ 𝑓 ].

For any two homotopies

𝑓𝑡 : 𝑋 → 𝑌, 𝑔𝑡 : 𝑌 → 𝑍, 0 ≤ 𝑡 ≤ 1,

the family of maps
ℎ𝑡 = 𝑔𝑡 ◦ 𝑓𝑡 : 𝑋 → 𝑍, 0 ≤ 𝑡 ≤ 1,

is also, obviously, a homotopy. It follows that

Proposition 2.3. if the maps 𝑓0 : 𝑋 → 𝑌 and 𝑔0 : 𝑌 → 𝑍 are homotopic,
respectively, to the maps 𝑓1 : 𝑋 → 𝑌 and 𝑔1 : 𝑌 → 𝑍, then the map 𝑔0 ◦ 𝑓0 :
𝑋 → 𝑍 is homotopic to the map 𝑔1 : 𝑋 → 𝑍.

In other words,

Proposition 2.4. for any maps

𝑓 : 𝑋 → 𝑌, 𝑔 : 𝑌 → 𝑍

the homotopy class [𝑔 ◦ 𝑓 ] ∈ [𝑋, 𝑍] of the map

𝑔 ◦ 𝑓 : 𝑋 → 𝑍

depends only on the homotopy classes [ 𝑓 ] ∈ [𝑋,𝑌 ] and [𝑔] ∈ [𝑌, 𝑍] of the maps
𝑓 and 𝑔, respectively.

In particular, for any space 𝑍 and any continuous map

𝑓 : 𝑋 → 𝑌

the formula
𝑓∗ [𝜑] = [ 𝑓 ◦ 𝜑], 𝜑 : 𝑍 → 𝑋,

uniquely determines some map of sets

𝑓∗ : [𝑍, 𝑋] → [𝑍,𝑌 ] .

We will say that the map 𝑓∗ is induced by the continuous map 𝑓 .
Similar statements hold, of course, for maps of pairs.
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Recall that the map
𝑓 : 𝑋 → 𝑌

is called the extension of the map

𝑔 : 𝐴→ 𝑌,

where 𝐴 is some subspace of the space 𝑋, if

𝑓 (𝑎) = 𝑔(𝑎)

for any point 𝑎 ∈ 𝐴. In this case, we also say that the map 𝑔 is a restriction of
the map 𝑓 on the subspace 𝐴 and write

𝑔 = 𝑓 |𝐴.

Otherwise, we can say that
𝑔 = 𝑓 ◦ 𝑖,

where
𝑖 : 𝐴→ 𝑋

is an inclusion map, i.e. a map de�ned by the formula

𝑖(𝑎) = 𝑎

for any point 𝑎 ∈ 𝐴. In what follows, we will indicate that some map 𝑖 : 𝐴→ 𝑋 is
an inlusion map by replacing the symbol �→� with the symbol �⊂�, i.e. instead
of 𝑖 : 𝐴→ 𝑋 we will write

𝑖 : 𝐴 ⊂ 𝑋.

A map
𝑟 : 𝑋 → 𝐴

of a space 𝑋 onto its subspace 𝐴 is called retractive if it is an extension of the
identity map

1𝐴 : 𝐴→ 𝐴,

i.e., if
𝑟 ◦ 𝑖 = 1𝐴,

or, in other words, if
𝑟 (𝑎) = 𝑎

for any point 𝑎 ∈ 𝐴. In this case, we will write

𝑟 : 𝑋 ⊃ 𝐴.

Subspaces 𝐴 of 𝑋 for which retractive map 𝑟 : 𝑋 ⊃ 𝐴 exist are called its
retracts. For a retractive map (or retraction, for short) 𝑟 : 𝑋 → 𝐴 the set 𝐴
coincides with the set of all �xed points of the map 𝑖 ◦ 𝑟. Therefore,

Proposition 2.5. every retract 𝐴 of a Hausdor� space 𝑋 is closed in 𝑋.
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It is easy to see that

Proposition 2.6. a space 𝐴 of a space 𝑋 is a retract of it if and only if for any
space 𝑌 each map 𝑔 : 𝐴→ 𝑌 admits an extension 𝑓 : 𝑋 → 𝑌 .

Proof. Indeed, if any map 𝑔 : 𝐴 → 𝑌 can be extended, then, in particular, the
identity map 1𝐴 : 𝐴 → 𝐴 can also be extended. Conversely, if there exists
a retractive map 𝑟 : 𝑋 → 𝐴, then for any map 𝑔 : 𝐴 → 𝑌 the composition
𝑔 ◦ 𝑟 : 𝑋 → 𝑌 will be an extension of the map 𝑔. □

The concept of the extension of maps is closely related to the concept of
a homotopy of maps, since for any homotopy 𝑓𝑡 : 𝑋 → 𝑌 connecting the map
𝑓 : 𝑋 → 𝑌 with the map 𝑔 : 𝑋 → 𝑌 , the corresponding map 𝐹 : 𝑋 × 𝐼 → 𝑌 is
an extension to the space 𝑋 × 𝐼 of the map (𝑋 × 0) ∪ (𝑋 × 1) → 𝑌 , which maps
each point (𝑥, 0), 𝑠 ∈ 𝑋, to the point 𝑓 (𝑥), and each point (𝑥, 1), 𝑥 ∈ 𝑋, to the
point 𝑔(𝑥).

A pair (𝑋, 𝐴) is said to satisfy the axiom of homotopy extension if for any
space 𝑌 , any map 𝑓 : 𝑋 → 𝑌 and any homotopy 𝑔𝑡 : 𝐴 → 𝑌 of the map 𝑔 = 𝑓 |𝐴
there exists a homotopy 𝑓𝑡 : 𝑋 → 𝑌 such that 𝑓0 = 𝑓 and 𝑓𝑡 |𝐴 = 𝑔𝑡 for any 𝑡 ∈ 𝐼.
The signi�cance of this axiom is primarily that for pairs (𝑋, 𝐴) subject to it,
the property of the map 𝑔 : 𝐴 → 𝑌 to allow the extension 𝑓 : 𝑋 → 𝑌 depends
only on the homotopy class of the map 𝑔, i.e., together with the map 𝑔, each
homotopic map 𝑔

′
: 𝐴→ 𝑌 can be extended to the entire space 𝑋.

Examples of pairs satisfying the axiom of homotopy extension are given
below.

It is clear that

Proposition 2.7. if the pair (𝑋, 𝐴) satis�es the axiom of homotopy extension,
then the subspace (𝑋 × 0) ∪ (𝐴 × 𝐼) of the product 𝑋 × 𝐼 is its retract.

Proof. Indeed, the homotopy 𝑓𝑡 constructed for the identity map 1𝑋 : 𝑋 → 𝑋

and the stationary homotopy (1𝑖)𝑡 : 𝑆 → 𝑋 of the inclusion map 𝑖 : 𝐴 ⊂ 𝑋

obviously de�nes a retracting map 𝑋 × 𝐼 → (𝑋 × 0) ∪ (𝐴 × 𝐼). □

If the subspace 𝐴 is closed in the space 𝑋, then the converse is also true, i.e.

Proposition 2.8. if the subspace (𝑋 × 0) ∪ (𝐴 × 𝐼) of the product 𝑋 × 𝐼 is its
retract, and the subspace 𝐴 is closed in the space 𝑋, then the pair (𝑋, 𝐴) satis�es
the axiom of homotopy extension.

Proof. Indeed, the problem of constructing a homotopy 𝑓𝑡 is equivalent to the
problem of extending to the entire space 𝑋 × 𝐼 the map

𝐺 : (𝑋 × 0) ∪ (𝐴 × 𝐼) → 𝑌,

de�ned by the formula

𝐺 (𝑥, 𝑡) =
{
𝑓 (𝑥), if 𝑡 = 0,

𝑔𝑡 (𝑥), if 𝑥 ∈ 𝐴
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(for closed 𝐴 the space (𝑋 × 0) ∪ (𝐴 × 𝐼) is obviously a free union of the spaces
𝑋 × 0 and 𝐴 × 𝐼 and therefore this map is continuous). Therefore, if the space
(𝑋 × 0) ∪ (𝐴× 𝐼) is a retract of the space 𝑋 × 𝐼, then the homotopy 𝑓𝑡 exists. □

In connection with the last statement, it is useful to keep in mind that

Proposition 2.9. if the space 𝑋 is Hausdor� and the subspace (𝑋 ×0) ∪ (𝐴× 𝐼)
of the product 𝑋 × 𝐼 is its retract, then the subspace 𝑆 is closed in the space 𝑋.

Proof. Indeed, then the subspace (𝑋 × 0) ∪ (𝐴× 𝐼) is closed in the product 𝑋 × 𝐼
and therefore the set

𝐴 × 1 = [(𝑋 × 0) ∪ (𝐴 × 𝐼)] ∩ (𝑋 × 1)

is closed in the space 𝑋 × 1. □

Thus,

Proposition 2.10. if the space 𝑋 is Hausdor� or if the subspace 𝐴 is closed,
then the pair (𝑋, 𝐴) satis�es the axiom of homotopy extension if and only if the
subspace (𝑋 × 0) ∪ (𝐴 × 𝐼) is a retract of the product 𝑋 × 𝐼.

Remark 2.11. The property of a pair (𝑋, 𝐴) to satisfy the axiom of homotopy
propagation is mainly local in nature, i.e., it is essentially determined by the
structure of the space 𝑋 in some neighborhood of the subspace 𝐴. The precise
meaning of this statement can be given in many di�erent ways. For example, it
is easy to prove that

Proposition 2.12. a pair (𝑋, 𝐴) (with closed 𝐴) satis�es the axiom of homotopy
extension if and only if the subspace 𝐴 is functionally closed and there exists a
homotopy 𝑓𝑡 : 𝑋 → 𝑌 and a function 𝜑 : 𝑋 → 𝐼 equal to zero on the subspace 𝐴
such that

𝑓0 (𝑥) = 𝑥, 𝑥 ∈ 𝑋,
𝑓𝑡 (𝑎) = 𝑎, (𝑎, 𝑡) ∈ 𝐴 × 𝐼,
𝑓1 (𝑥) ∈ 𝐴, if 𝜑(𝑥) < 1.

It can also be shown that

Proposition 2.13. a pair (𝑋, 𝐴) (with closed 𝐴) satis�es the axiom of homotopy
extension if and only if there exists on the space 𝑋 a continuous non-negative
function 𝜑 equal to zero on the subspace 𝐴, and a map 𝐹 into the space 𝑋 of
the subspace of the product 𝑋 × 𝐼 consisting of all points (𝑥, 𝑡) for which

0 ≤ 𝑡 ≤ 𝜑(𝑥),

having the following properties:

𝐹 (𝑥, 0) = 𝑥, for any point 𝑥 ∈ 𝑋,
𝐹 (𝑥, 𝜑(𝑥)) ∈ 𝐴, if 𝜑(𝑥) ≤ 1.
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We will not need these statements and therefore we will not prove them here.
A homotopy

𝑓𝑡 : 𝑋 → 𝑌, 0 ≤ 𝑡 ≤ 1,

will be called a homotopy relative to a subspace 𝐴 ⊂ 𝑋 if this homotopy is
stationary on 𝐴, i.e. if

𝑓𝑡 (𝑎) = 𝑓0 (𝑎)
for any point 𝑎 ∈ 𝐴 and any 𝑡 ∈ 𝐼. Accordingly, we will call the two maps

𝑓 , 𝑔 : 𝑋 → 𝑌

homotopic relative to 𝐴 (notation 𝑓 ∼ 𝑔 rel 𝐴) if they are related by some ho-
motopy relative to 𝐴. Of course, for this it is necessary that

𝑓 |𝐴 = 𝑔 |𝐴,

i.e. that the maps 𝑓 and 𝑔 coincide on 𝐴. It is clear that homotopy relative to
𝐴 is also an equivalence relation, and therefore the set of all continuous maps
𝑋 → 𝑌 that coincide on 𝐴 splits into disjoint homotopy classes relative to 𝐴.
The class containing the given map 𝑓 : 𝑋 → 𝑌 we will denote by the symbol
[ 𝑓 ] rel 𝐴, and the set of all such classes - by the symbol [𝑋,𝑌 ] rel 𝐴.

The properties of relative homotopy classes are similar to the properties
of the �absolute� classes discussed above. For example, any continuous map
𝑓 : 𝑌 → 𝑍 de�nes by the formula

𝑓∗ ( [𝜑] rel 𝐴) = [ 𝑓 ◦ 𝜑] rel 𝐴, 𝜑 : 𝑋 → 𝑌,

some map
𝑓∗ : [𝑋,𝑌 ] rel 𝐴→ [𝑋, 𝑍] rel 𝐴.

If the space 𝑌 is Hausdor�, then any homotopy 𝑓𝑡 : 𝑋 → 𝑌 that is stationary on
𝐴 will obviously also be stationary on the closure 𝐴 of the subspace 𝐴. Conse-
quently, in this case we can, without loss of generality, consider the subspace 𝐴
to be closed.

The problem of constructing a homotopy relative to a closed subspace 𝐴 is
equivalent to the problem of extending to the entire space 𝑋 × 𝐼 the map

𝐹 : (𝑋 × 0) ∪ (𝐴 × 𝐼) → (𝑋 × 1) → 𝑌,

de�ned by the formula

𝐹 (𝑥, 𝑡) =
{
𝑓 (𝑥), if 𝑡 = 0 for 𝑥 ∈ 𝐴,
𝑔(𝑥), if 𝑡 = 1.

In what follows, to simplify the formulae, for any pair (𝑋, 𝐴) we will denote
the subspace (𝑋 × 0) ∪ (𝐴 × 𝐼) ∪ (𝑋 × 1) of the space 𝑋 × 𝐼 (see Fig. 2.1) by the
symbol 𝐼 (𝑋, 𝐴). When 𝐴 is closed, it is closed.

Note that if 𝑓 |𝐴 = 𝑔 |𝐴 and 𝑓 ∼ 𝑔, then, generally speaking, it cannot be
asserted that 𝑓 ∼ rel 𝐴. However,
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Figure 2.1:

Proposition 2.14. if the pair (𝑋 × 𝐼, 𝐼 (𝑋, 𝐴)) satis�es the axiom of homotopy
extension and if

𝐻𝐴×𝐼 ∼ 𝐹 rel(𝐴 × ∪𝐴 × 1),

where 𝐻 is the map 𝑋 × 𝐼 → 𝑌 corresponding to the homotopy ℎ𝑡 : 𝑋 × 𝐼 → 𝑌 ,
connecting the maps 𝑓 and 𝑔, and 𝐹 is the map 𝐴 × 𝐼 → 𝑌 corresponding to the
stationary homotopy (1 𝑓 )𝑡 : 𝐴→ 𝑌 , then

𝑓 ∼ 𝑔 rel 𝐴

Proof. Indeed, we can extend the homotopy relative to 𝐴× 0∪ 𝐴× 1 connecting
the maps 𝐻 |𝐴×𝐼 and 𝐹 to some homotopy

𝐻𝑡 : 𝐼 (𝑋, 𝐴) → 𝑌 0 ≤ 𝑡 ≤ 1,

assuming that
𝐻𝑡 (𝑥, 0) = 𝑓 (𝑥), 𝐻𝑡 (𝑥, 1) = 𝑔(𝑥)

for all 𝑡 ∈ 𝐼. It is clear that

𝐻0 |𝐴×𝐼 = 𝐻 |𝐴×𝐼 .

Therefore, since the pair 𝑋 × 𝐼, 𝐼 (𝑋, 𝐴)) satis�es, by condition, the axiom of
homotopy extension, there exists a homotopy

𝐹𝑡 : 𝑋 × 𝐼 → 𝑌, 0 ≤ 𝑡 ≤ 1,

such that
𝐹0 = 𝐻, 𝐹𝑡 |𝐼 (𝑋,𝐴) = 𝐻𝑡 , 0 ≤ 𝑡 ≤ 1.

Therefore, the map
𝐹1 : 𝑋 × 𝐼 → 𝑌,

de�nes (by the formula 𝑓𝑡 (𝑥) = 𝐹1 (𝑥, 𝑡)) a homotopy

𝑓𝑡 : 𝑋 → 𝑌, 0 ≤ 𝑡 ≤ 1,

relative to 𝐴, such that 𝑓0 = 𝑓 and 𝑓1 = 𝑔. Consequently, 𝑓 ∼ 𝑔 rel 𝐴. □
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In what follows, continuous maps into a given space 𝑋 of the unit 𝑛-dimensional
sphere S𝑛, 𝑛 ≥ 0 will be of great importance. In particular, we will be interested
in the conditions under which any such map is homotopic to a constant map,
i.e., a map to one point. In this connection, we �rst note that

Proposition 2.15. a map 𝑓 : S𝑛 → 𝑥 is homotopic to a constant map if and
only if the map 𝑓 can be extended to some map E𝑛+1 → 𝑋.

Proof. Indeed, any homotopy

𝑓𝑡 : S𝑛 → 𝑋,

for which 𝑓0 = 𝑓 and 𝑓1 (𝒖) = 𝑥0 for any point 𝒖 ∈ S𝑛, where 𝑥0 is some �xed
point of the space 𝑋 de�nes by the formula

𝐹 (𝑣𝒖) = 𝑓1−𝑣 (𝒖), 0 ≤ 𝑣 ≤ 1, 𝒖 ∈ S𝑛,

a continuous map 𝐹 : E𝑛+1 → 𝑋, for which

𝐹 |S𝑛 = 𝑓 .

Conversely, any such map 𝐹 : E𝑛+1 → 𝑋 de�nes by the formula

𝑓𝑡 (𝒖)𝐹 ((1 − 𝑡)𝒖), 0 ≤ 𝑡 ≤ 1, 𝒖 ∈ S𝑛,

a homotopy 𝑓𝑡 : S𝑛 → 𝑋 for which 𝑓0 = 𝑓 and 𝑓1 (𝒖) = 𝑥0, where 𝑥0 = 𝐹 (0). □

Thus,

Proposition 2.16. for any space 𝑋 the following properties are equivalent:

1) any map 𝑓 : S𝑛 → 𝑋 is homotopic to a constant map;

2) any map 𝑓 : S𝑛 → 𝑋 can be extended to some map 𝐹 : E𝑛+1 → 𝑋.

Spaces with these properties we will call 𝑛-aspherical. Property 2) for 𝑛 = 0
is obviously equivalent to the path-connectedness. Thus,

Proposition 2.17. a space 𝑋 is 0-aspherical if and only if it is path-connected.

Spaces that are 𝑛-aspherical for all non-negative 𝑛 ≤ 𝑚 will be called 𝑚-
connected.

It is easy to see that

Proposition 2.18. the open unit interval (0, 1) (as well as the closed segment
𝐼 = [0, 1]) is an 𝑚-connected space for any 𝑚 ≥ 0.

This statement follows immediately from Tietze's theorem (see �1.3), since
the ball E𝑛+1 is a normal space. However, it is easy to see that for each 𝑛 ≥ 0 the
extension 𝐹 : E𝑛+1 → (0, 1) of an arbitrary map 𝑓 : S𝑛 → (0, 1) can be de�ned
by the formula

𝐹 (𝑣𝒖) = 1 + (2 𝑓 (𝒖) − 1)𝑣
2

, 0 ≤ 𝑣 ≤ 1, 𝒖 ∈ S𝑛.

It is equally easy to see that
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Proposition 2.19. the topological product 𝑋 × 𝑌 of two 𝑚-connected spaces 𝑋
and 𝑌 is also an 𝑚-connected space.

Proof. Indeed, let
𝑓 : S𝑛 → 𝑋 × 𝑌

be an arbitrary map of the 𝑛-dimensional (𝑛 ≤ 𝑚) sphere S𝑛 into the product
𝑋 × 𝑌 . Assuming for any point 𝒖 ∈ S𝑛,

𝑓 (𝒖) = ( 𝑓1 (𝒖), 𝑓2 (𝒖), 𝑓1 (𝒖) ∈ 𝑋, 𝑓2 (𝒖) ∈ 𝑌,

we obtain two (obviously continuous) maps

𝑓1 : S𝑛 → 𝑋, 𝑓2 : S𝑛 → 𝑌 .

By the condition, these maps can be extended to maps

𝐹1 : E𝑛+1 → 𝑋, 𝐹2 : E𝑛+1 → 𝑌 .

It is clear that the formula

𝐹 (𝒗) = (𝐹1 (𝒗), 𝐹2 (𝒗)), 𝒗 ∈ E𝑛+1,

then de�nes a continuous map

𝐹 : E𝑛+1 → 𝑋 × 𝑌,

which is an extension of the map 𝑓 . □

Comparing the proved statements, we obtain, in particular, that

Proposition 2.20. for any 𝑚-connected space 𝑋 the space 𝑋 × (0, 1) is also
𝑚-connected.

2.2 Homotopy equivalences and deformation re-

tracts

Let 𝑋 be an arbitrary space. Each homotopy

𝜉𝑡 : 𝑋 → 𝑋, 0 ≤ 𝑡 ≤ 1,

for which 𝜉0 = 1𝑋, we will call the deformation of the space 𝑋. A continuous
map

ℎ : 𝑋 → 𝑋

we will call homotopically identical if it is homotopic to the identity map 1𝑋 of
the space 𝑋, i.e. if there exists a deformation 𝜉𝑡 : 𝑋 → 𝑋 of the space 𝑋 such
that 𝜉1 = ℎ. A continuous map

𝑓 : 𝑋 → 𝑌
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will be called a homotopy equivalence if there exists a continuous map

𝑔 : 𝑌 → 𝑋,

such that both maps

𝑔 ◦ 𝑓 : 𝑋 → 𝑋, 𝑓 ◦ 𝑔 : 𝑌 → 𝑌

are homotopically identical. In this case, the map 𝑔 is also a homotopy equiv-
alence. We will call it the homotopy equivalence inverse to the equivalence 𝑓 .
Since the equivalence 𝑓 is in turn inverse to the equivalence 𝑔, we will some-
times call the equivalences 𝑓 and 𝑔 mutually inverse. It is clear that any map
that is homotopic to a homotopy equivalence is also a homotopy equivalence.
We will call spaces 𝑋 and 𝑌 homotopically equivalent if there exists at least one
homotopy equivalence 𝑓 : 𝑋 → 𝑌 .

It is obvious that the composition

𝑓2 ◦ 𝑓1 : 𝑋 → 𝑍

of two homotopy equivalences 𝑓1 : 𝑋 → 𝑌 and 𝑓2 : 𝑌 → 𝑍 is also a homotopy
equivalence. Therefore, the relation of homotopy equivalence of spaces is transi-
tive. Since it is obviously re�exive and symmetric, the totality of all topological
spaces decomposes into homotopy types of pairwise homotopy equivalent spaces.

A continuous map
𝑓 : 𝑋 → 𝑌

we will call homotopically injective (resp. homotopically surjective) if there ex-
ists a continuous map such that the composition 𝑔 ◦ 𝑓 : 𝑋 → 𝑋 (resp. the
composition 𝑓 ◦ : 𝑌 → 𝑌) is homotopically identical. It is clear that any ho-
motopy equivalence is a map that is both homotopy injective and homotopy
surjective. It turns out that the converse is also true, i.e.

Proposition 2.21. a map 𝑓 : 𝑋 → 𝑌 is a homotopy equivalence if and only if
it is homotopy injective and homotopy surjective.

Proof. Indeed, let the map 𝑓 be homotopically injective and simultaneously
homotopically surjective, i.e. let there exist maps

𝑔1 : 𝑌 → 𝑋, 𝑔2 : 𝑌 → 𝑋,

such that
𝑔1 ◦ 𝑓 ∼ 1𝑋, 𝑓 ◦ 𝑔2 ∼ 1𝑌 .

Then
𝑓 ◦ 𝑔1 ∼ ( 𝑓 ◦ 𝑔1) ◦ ( 𝑓 ◦ 𝑔2) = 𝑓 ◦ (𝑔1 ◦ 𝑓 ) ◦ 𝑔2 ∼ 𝑓 ◦ 𝑔2 ∼ 1𝑌

and similarly
𝑔2 ◦ 𝑓 ∼ 1𝑋 .

Therefore, the map 𝑓 is a homotopy equivalence and each of the maps 𝑔1 and
𝑔2 is a homotopy equivalence inverse to the equivalence 𝑓 . □
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Note that the above argument has a general, �purely categorical� character.
Similar general considerations show that if for the map 𝑓 : 𝑋 → 𝑌 there exist a
space 𝑍 and a map ℎ : 𝑍 → 𝑋 such that the composition 𝑓 ◦ ℎ is a homotopy
equivalence, then the map 𝑓 is homotopy surjective. Similarly, if there exist a
space 𝑍1 and a map ℎ1 : 𝑌 → 𝑍1 such that the composition ℎ1 ◦ 𝑓 is a homotopy
equivalence, then the map 𝑓 is homotopy injective. Thus,

Proof. if for the map 𝑓 : 𝑋 → 𝑌 there exist maps ℎ : 𝑍 → 𝑋 and ℎ1 : 𝑌 → 𝑍1
such that the compositions 𝑓 ◦ ℎ and ℎ1 ◦ 𝑓 are homotopy equivalences, then
the map 𝑓 is also a homotopy equivalence. □

Let the spaces 𝑋 and 𝑌 be homotopically equivalent to the spaces 𝑋
′
and 𝑌

′
,

respectively. Continuous maps

𝑓 : 𝑋 → 𝑌, 𝑓
′
: 𝑋

′ → 𝑌
′

we will call homotopically equivalent if there exist homotopic equivalences

𝜑 : 𝑋 → 𝑋
′
, 𝜓 : 𝑌 → 𝑌

′
,

such that
𝜓 ◦ 𝑓 ∼ 𝑓

′ ◦ 𝜑
i.e. if the diagramme

𝑋
𝑓 //

𝜑

��

𝑌

𝜓
��

𝑋
′

𝑓
′
// 𝑌

′

is homotopically commutative. Denoting by

𝜑
′
: 𝑋

′ → 𝑋, 𝜓
′
: 𝑌

′ → 𝑌

the homotopy equivalences inverse to the equivalences 𝜑 and 𝜓, respectively, we
immediately obtain that this condition is equivalent to both the condition

𝑓 ∼ 𝜓′ ◦ 𝑓 ′ ◦ 𝜑

and the condition
𝜓 ◦ 𝑓 ◦ 𝜑′ ∼ 𝑓

′

It is clear that a map that is homotopically equivalent to a homotopically
injective (resp. surjective) map is also homotopically injective (resp. surjective).

A trivial example of homotopy equivalence is an arbitrary homeomorphic
map 𝑓 : 𝑋 → 𝑌 . This shows that all the concepts introduced above are topo-
logically invariant.

Less trivial make-ups of homotopy equivalences arise when considering re-
tractive maps

𝑓 : 𝑋 ⊃ 𝐴.
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A subspace 𝐴 is called a deformation retract of the space 𝑋 if there exists a
retractive map 𝑟 : 𝑋 ⊃ 𝐴 that is a homotopy equivalence. Since, by de�nition,
𝑟 ◦ 𝑖 = 1𝐴, the retractive map 𝑟 is necessarily homotopy injective. Therefore, it is
a homotopy equivalence if and only if it is homotopy injective, i.e., when there
exists a map 𝑘 : 𝐴→ 𝑋 such that 𝑘 ◦ 𝑟 ∼ 1𝑋. As we have seen, in this case both
maps 𝑖 and 𝑘 are necessarily homotopy equivalences, inverse to the homotopy
equivalence 𝑟. In particular, the condition 𝑖 ◦ 𝑟 ∼ 1𝑋 will be satis�ed. Thus,

Proposition 2.22. for a retracting map 𝑟 to be a homotopy equivalence, it is
necessary and su�cient that the composite map

𝑖 ◦ 𝑟 : 𝑋 → 𝑋

be homotopy identical.

Moreover,

Proposition 2.23. for any deformation retract 𝐴 the inclusion map 𝑖 : 𝐴 ⊂ 𝑋

is a homotopy equivalence.

Note that the converse is generally not true.
We obtain an important example of a deformation retract by considering

(see �1.6) the cylinder 𝑍 𝑓 of an arbitrary continuous map

𝑓 : 𝑋 → 𝑌 .

Namely, as we will now show,

Proposition 2.24. the subspace 𝑌 of the space 𝑍 𝑓 is its deformation retract.

Proof. To this end, for any 𝜏 ∈ 𝐼 we de�ne the map

𝑝𝜏 : 𝑍 𝑓 → 𝑍 𝑓 , 0 ≤ 𝜏 ≤ 1,

of the space 𝑍 𝑓 into itself, putting

𝑝𝜏 (𝑥, 𝑡) = (𝑥, 𝑡 + 𝜏 − 𝜏𝑡), 𝑥 ∈ 𝑋, 0 ≤ 𝑡 ≤ 1,

𝑝𝜏 (𝑦) = 𝑦, 𝑦 ∈ 𝑌 .

(In the �rst of these formulae, as in similar cases below, the symbol (𝑥, 1) is
understood to mean the point 𝑓 (𝑥) ∈ 𝑌 .) The maps 𝑝𝜏 constructed in this
way obviously constitute a homotopy (i.e. the corresponding map 𝑍 𝑓 × 𝐼 → 𝑍 𝑓
is unique and continuous). In addition, 𝑝0 = 1𝑍 𝑓

, i.e. this homotopy is a
deformation of the space 𝑍 𝑓 . Finally, for the map

𝑝1 : 𝑍 𝑓 → 𝑍 𝑓

the formula
𝑝1 = 𝑗 ◦ 𝑝,
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holds, where
𝑗 : 𝑌 ⊂ 𝑍 𝑓 ,

is the inclusion map, and
𝑝 : 𝑍 𝑓 ⊃ 𝑌

is the retracting map of the space 𝑍 𝑓 onto its subspace 𝑌 , de�ned by the formulae

𝑝(𝑥, 𝑡) = 𝑓 (𝑥), 𝑥 ∈ 𝑋, 0 ≤ 𝑡 ≤ 1,

𝑝(𝑦) = 𝑦, 𝑦 ∈ 𝑌 .

Since 𝑝 ◦ 𝑗 = 1𝑌 , the above statement is thus completely proven. □

Another remarkable property of the space 𝑍 𝑓 is that

Proposition 2.25. the map

𝑗 ◦ 𝑓 : 𝑋 → 𝑍 𝑓

is homotopic to the map
𝑖 : 𝑋 → 𝑍 𝑓 ,

de�ned by the formula
𝑖(𝑥) = (𝑥, 0), 𝑥 ∈ 𝑋.

Proof. Indeed, the formula

𝑖𝑡 (𝑥) = (𝑥, 0), 𝑥 ∈ 𝑋, 0 ≤ 𝑡 ≤ 1,

de�nes, as is easy to see, a homotopy

𝑖𝑡 : 𝑋 → 𝑍 𝑓 ,

connecting the map 𝑓 with the map 𝑗 ◦ 𝑓 . □

Since the inclusion map 𝑗 is, as proved, a homotopy equivalence, this propo-
sition means that the maps 𝑖 and 𝑓 are homotopy equivalent. On the other hand,
identifying each point 𝑥 ∈ 𝑋 with the corresponding point 𝑖(𝑥) = (𝑥, 0) ∈ 𝑍 𝑓 , we
can assume that

𝑖 : 𝑋 ⊂ 𝑍 𝑓 .

Thus, it is proved that

Proposition 2.26. for any map 𝑓 : 𝑋 → 𝑌 there exists a space 𝑍 𝑓 homotopi-
cally equivalent to the space 𝑌 and containing the space 𝑋 such that the map
𝑓 : 𝑋 → 𝑌 is homotopically equivalent to the inlclusion map 𝑖 : 𝑋 ⊂ 𝑍 𝑓 .

Since a map homotopically equivalent to a homotopy equivalence is itself a
homotopy equivalence, it follows from this statement that

Proposition 2.27. if a subspace 𝑋 of 𝑍 𝑓 is its deformation retract, then the
map 𝑓 is a homotopy equivalence.
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It turns out that the converse is also true, i.e.

Proposition 2.28. for any homotopy equivalence 𝑓 : 𝑋 → 𝑌 the space 𝑋 is a
deformation retract of the space 𝑍 𝑓 .

Proof. Indeed, let
𝑔 : 𝑌 → 𝑋

be a homotopy equivalence inverse to the homotopy equivalence 𝑓 , and let

𝜉𝑡 : 𝑋 → 𝑋, 𝜂𝑡 : 𝑌 → 𝑌

be deformations of the spaces 𝑋 and 𝑌 , respectively, such that

𝜉1 = 𝑔 ◦ 𝑓 , 𝜂1 = 𝑓 ◦ 𝑔.

For any point 𝑧 ∈ 𝑍 𝑓 and any 𝜏 ∈ 𝐼 we set

𝑞𝜏 (𝑧) =


(𝑥, 𝑡 + 4𝜏(1 − 𝑡)) for 0 ≤ 𝜏 ≤ 1/4,
𝜂4𝜏−1( 𝑓 (𝑥)) for 1/4 ≤ 𝜏 ≤ 1/2,
(𝑔( 𝑓 (𝑥)), 3 − 4𝜏) for 1/2 ≤ 𝜏 ≤ 3/4,
𝜉1+(1−𝑡 ) (3−4𝜏 ) for 3/4 ≤ 𝜏 ≤ 1,

if 𝑧 = (𝑥, 𝑡), 𝑥𝑖𝑛𝑋, 0 ≤ 𝑡 ≤ 1, and

𝑞𝜏 (𝑧) =


𝑦 for 0 ≤ 𝜏 ≤ 1/4,
𝜂4𝜏−1(𝑦) for 1/4 ≤ 𝜏 ≤ 1/2,
(𝑔(𝑦), 3 − 4𝜏) for 1/2 ≤ 𝜏 ≤ 3/4,
𝑔(𝑦) for 3/4 ≤ 𝜏 ≤ 1,

if 𝑧 = 𝑦 ∈ 𝑌 .
It is easy to verify that the family

𝑞𝜏 ; 𝑍 𝑓 → 𝑍 𝑓 , 0 ≤ 𝜏 ≤ 1,

de�ned in this way is a homotopy (recall that according to the results of �1.6,
the map 𝛼 × 1𝐼 : [(𝑋 × 𝐼 ∪ 𝑌 ] × 𝐼 → 𝑍 𝑓 × 𝐼, where 𝛼 : (𝑋 × 𝐼) ∪ 𝑌 → 𝑍 𝑓 is the
natural projection, is an identi�cation map). Since, in addition,

𝑞0 = 1𝑍 𝑓
,

thus the homotopy 𝑞𝜏 is a deformation of the space 𝑍 𝑓 .
On the other hand, the map

𝑞1 : 𝑍 𝑓 → 𝑍 𝑓

obviously has the form
𝑞1 = 𝑖 ◦ 𝑞,

where 𝑞 is the map 𝑍 𝑓 → 𝑋 de�ned by the formulae

𝑞(𝑥, 𝑡) = 𝜉𝑡 (𝑥), 𝑥 ∈ 𝑋, 0 ≤ 𝑡 ≤ 1,

𝑞(𝑦) = 𝑔(𝑦), 𝑦 ∈ 𝑌 .

Since 𝑞 ◦ 𝑖 = 1𝑋 the above statement is thus completely proven. □
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2.3 Homotopy type of glued spaces

Let 𝑋 and 𝑌 be topological spaces, 𝐴 be a closed subspace of 𝑋 and 𝑓 : 𝐴 → 𝑌

be a continuous map of the subspace 𝐴 into the space 𝑌 . Then (see �1.6) the
space 𝑋 ∪ 𝑓 𝑌 is de�ned, obtained by gluing the space 𝑋 along the subspace
𝐴 to the space 𝑌 by means of the map 𝑓 . In this section we will show that
for a su�ciently �good� pair (𝑋, 𝐴) the homotopy type of the space 𝑋 ∪ 𝑓 𝑌
depends only on the homotopy class of the map 𝑓 and the homotopy type of
the space 𝑌 . In other words, for any map 𝑔 : 𝐴 → 𝑌 homotopic to the map 𝑓 ,
the space 𝑋 ∪𝑔 𝑌 is homotopically equivalent to the space 𝑋 ∪ 𝑓 𝑌 , and for ny
space 𝑍 homotopically equivalent to the space 𝑌 , the space 𝑋 ∪ℎ◦ 𝑓 𝑍, where ℎ is
an arbitrary homotopy equivalence 𝑌 → 𝑍, is homotopically equivalent to the
space 𝑋 ∪ 𝑓 𝑌 .

First of all, we will show that

Proposition 2.29. if a pair (𝑋, 𝐴) has the property that both it and the pair (𝑋×
𝐼, 𝐼 (𝑋, 𝐴)) satisfy the axiom of homotopy extension, then for any two homotopic
maps

𝑓 , 𝑔 : 𝐴→ 𝑌

the spaces 𝑋 ∪ 𝑓 𝑌 and 𝑋 ∪𝑔𝑌 are homotopy equivalent, and the homotopy equiv-
alence 𝑋 ∪ 𝑓 𝑌 → 𝑋 ∪𝑔 𝑌 can be chosen in such a way that on the space 𝑌 it is
the identity map.

Proof. Let
𝑓𝑡 : 𝐴→ 𝑌, 0 ≤ 𝑡 ≤ 1,

be an arbitrary homotopy connecting the map 𝑓 with the map 𝑔. First, we
extend this homotopy to some homotopy of the space ∪𝑌 into the space 𝑋 ∪ 𝑓 𝑌 .
Since the natural projection

𝛼 : 𝑋 ∪ 𝑌 → 𝑋 ∪ 𝑓 𝑌

on the subspace 𝐴 ⊂ 𝑌 coincides with the map 𝑓 : 𝐴 → 𝑌 and since the pair
(𝑋, 𝐴) satis�es, by hypothesis, the axiom of homotopy extension, then there
exists a homotopy

𝛼∗𝑡 : 𝑋 → 𝑋 ∪ 𝑓 𝑌, 0 ≤ 𝑡 ≤ 1,

such that
𝛼∗0 = 𝛼 |𝑋, 𝛼∗𝑡 = 𝑓𝑡 .

Putting

𝛼𝑡 =

{
𝛼𝑡 on 𝑋,

1𝑌 on 𝑌,
0 ≤ 𝑡 ≤ 1,

we obviously obtain a homotopy

𝛼𝑡 : 𝑋 ∪ 𝑌 → 𝑋 ∪ 𝑓 𝑌, 0 ≤ 𝑡 ≤ 1,

for which
𝛼0 = 𝛼, 𝛼𝑡 |𝐴 = 𝑓𝑡 .
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Since the homotopy 𝛼𝑡 has the property that

𝛼1 |𝐴 = 𝑔,

the map

𝜂 = 𝛼1 ◦ 𝛽−1 : 𝑋 ∪𝑔 𝑌 → 𝑋 ∪ 𝑓 𝑌,

where

𝛽 : 𝑋 ∪ 𝑌 → 𝑋 ∪𝑔 𝑌

is the natural projection, is a single-valued map. Moreover, since the map

𝛼1 = 𝜂 ◦ 𝛽

is continuous, and the map 𝛽 is an identi�cation map, the map 𝜂 is continuous
(see �1.5). On the space 𝑌 this map is identical:

𝜂 |𝑌 = 1𝑌 .

Let us now construct the �inverse� map 𝑋 ∪𝑔 𝑌 → 𝑋 ∪ 𝑓 𝑌 . By the same consid-
erations as above, there exists a homotopy

𝛽𝑡 : 𝑋 ∪ 𝑌 → 𝑋 ∪𝑔 𝑌, 0 ≤ 𝑡 ≤ 1,

such that

𝛽0 = 𝛽, 𝛽𝑡 |𝐴 = 𝑓1−𝑡 ,

and

𝛽𝑡 |𝑌 = 1𝑌 .

Since 𝛽1 |𝐴 = 𝑓 , then, setting

𝜉 = 𝛽1 ◦ 𝛼−1,

we obtain a single-valued continuous map

𝜉 : 𝑋 ∪ 𝑓 𝑌 → 𝑋 ∪𝑔 𝑌,

for which, as for 𝜂,

𝜉 |𝑌 = 1𝑌 .

The above statement will obviously be proved if we show that the maps 𝜉
and 𝜂 are mutually inverse homotopy equivalences. With this in mind, for any
number 𝑡 ∈ 𝐼 we set

𝛾𝑡 =

{
𝛼2𝑡 , if 0 ≤ 𝑡 ≤ 1/2,
𝜂 ◦ 𝛽2𝑡−1, if 1/2 ≤ 𝑡 ≤ 1.

Since 𝛼1 = 𝜂 ◦ 𝛽0, then we thereby obtain some homotopy

𝛾𝑡 : 𝑋 ∪ 𝑌 → 𝑋 ∪ 𝑓 𝑌, 0 ≤ 𝑡 ≤ 1,
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for which
𝛾0 = 𝛼, 𝛾1 = 𝜂 ◦ 𝜉 ◦ 𝛼.

The homotopy 𝛾𝑡 is not, generally speaking, a homotopy relative to 𝐴, be-
cause

𝛾𝑡 |𝐴 =

{
𝑓2𝑡 , if 0 ≤ 𝑡 ≤ 1/2,
𝑓2𝑡−1, if 1/2 ≤ 𝑡 ≤ 1.

Nevertheless, the map 𝐴 × 𝐼 → 𝑋 ∪ 𝑓 𝑌 corresponding to the homotopy 𝛾𝑡 |𝐴, as
is easy to see, is homotopic relative to 𝐴× 0∪ 𝐴× 1 to the map 𝐴× 𝐼 → 𝑋 ∪ 𝑓 𝑌 ,
which maps each point (𝑎, 𝑡) ∈ 𝐴 × 𝐼 to the point 𝛼(𝑎) ∈ 𝑋 ∪ 𝑓 𝑌 , i.e., which
de�nes a stationary homotopy of the map 𝛼 |𝐴. The corresponding homotopy

𝐻𝜏 : 𝐴 × 𝐼 → 𝑋 ∪ 𝑓 𝑌, 0 ≤ 𝜏 ≤ 1,

can, for example, be de�ned by the formula

𝐻𝜏 (𝑎, 𝑡) =
{
𝑓2𝑡 (1−𝜏 ) (𝑎), if 0 ≤ 𝑡 ≤ 1/2,
𝑓2(1−𝑡 ) (1−𝜏 ) (𝑎), if 1/2 ≤ 𝑡 ≤ 1.

where (𝑎, 𝑡) is an arbitrary point in space 𝐴 × 𝐼. Therefore, according to the
statement proved in 2.14 (the conditions of applicability of which are ful�lled),
the maps 𝛼 and 𝜂 ◦ 𝜉𝛼 are also homotopic relative to 𝐴. The corresponding
homotopy

𝛾∗𝑡 : 𝑋 ∪ 𝑌 → 𝑋 ∪ 𝑓 𝑌, 0 ≤ 𝑡 ≤ 1,

relative to 𝐴 has the property that

𝛾∗𝑡 |𝐴 = 𝑓

for any 𝑡 ∈ 𝐼. Therefore, the formula

ℎ𝑡 = 𝛾
∗
𝑡 ◦ 𝛼−1, 0 ≤ 𝑡 ≤ 1,

uniquely de�nes a certain homotopy

ℎ𝑡 : 𝑋 ∪ 𝑓 𝑌 → 𝑋 ∪ 𝑓 𝑌

(recall that by the results of �1.5 the map

𝛼 × 1𝐼 : (𝑋 ∪ 𝑌 ) × 𝐼 → (𝑋 ∪ 𝑓 𝑌 ) × 𝐼

is an identi�cation map), which, obviously, has the property that

ℎ0 = 1𝑋∪ 𝑓𝑌 , ℎ1 = 𝜂 ◦ 𝜉.

Therefore, the map
𝜂 ◦ 𝜉 : 𝑋 ∪ 𝑓 𝑌 → 𝑋 ∪ 𝑓 𝑌

is homotopy identical.



2.3. HOMOTOPY TYPE OF GLUED SPACES 67

Since the maps 𝑓 and 𝑔 are completely equivalent, then, by symmetry con-
siderations, the map

𝜉 ◦ 𝜂 : 𝑋 ∪𝑔 𝑌 → 𝑋 ∪𝑔 𝑌

is also homotopy identical.
Thus, the proposition formulated above is completely proven. □

Let us now prove that the homotopy type of the space 𝑋 ∪ 𝑓 𝑌 does not
change even when the space 𝑌 is replaced by a space homotopically equivalent
to it. More precisely, we will prove that

Proposition 2.30. under the same assumptions on the pair (𝑋, 𝐴) as above,
any homotopy equivalence 𝑓 : 𝑌 → 𝑍 can be extend to some homotopy equiva-
lence

𝐻 : 𝑋 ∪ 𝑓 𝑌 → 𝑋 ∪ℎ◦ 𝑓 𝑍.

Proof. Let

𝑔 : 𝑍 → 𝑌

be the homotopy equivalence inverse to ℎ, and let

𝐻 = 𝛽−1 ◦ ℎ ◦ 𝛼 : 𝑋 ∪ 𝑓 𝑌 → 𝑋 ∪ℎ◦ 𝑓 𝑍,
𝐺 = 𝛼

′ ◦ 𝑔 ◦ 𝛽−1 : 𝑋 ∪ℎ◦ 𝑓 𝑍 → 𝑋 ∪𝑔◦ℎ◦ 𝑓 𝑌,

where, respectively,

ℎ = 1𝑋 ∪ ℎ : 𝑋 ∪ 𝑌 → 𝑋 ∪ 𝑍,
𝑔 = 1𝑋 ∪ 𝑔 : 𝑋 ∪ 𝑍 → 𝑋 ∪ 𝑌,

𝛼 : 𝑋 ∪ 𝑌 → 𝑋 ∪ 𝑓 𝑌,
𝛼

′
: 𝑋 ∪ 𝑌 → 𝑋 ∪𝑔◦ℎ◦ 𝑓 𝑌,

𝛽 : 𝑋 ∪ 𝑍 → 𝑋 ∪ℎ◦ 𝑓 𝑍,

are the natural projections. Since

𝛽 ◦ ℎ|𝐴 = 𝛽 |𝐴 = ℎ ◦ 𝑓 , 𝛼
′ ◦ 𝑔 |𝐴 = 𝛼

′ |𝐴 = 𝑔 ◦ ℎ ◦ 𝑓 ,

then the maps 𝐻 and 𝐺 are single-valued and continuous.
Since the map

𝑔 ◦ ℎ : 𝑌 → 𝑌

is homotopically identical (i.e., has the form 𝜎1 where

𝜎𝑡 : 𝑌 → 𝑌

is some deformation of the space 𝑌), the map 𝑓 ◦ ℎ ◦ 𝑓 : 𝐴 → 𝑌 is homotopic
to the map 𝑓 : 𝐴 → 𝑌 , and therefore, according to the previous proposition,
the spaces 𝑋 ∪ 𝑓 𝑌 and 𝑋 ∪𝑔◦ℎ◦ 𝑓 𝑌 are homotopically equivalent. Moreover, from
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the construction imposed in the proof of the last proposition it follows that the
homotopy equivalence

𝜂 : 𝑋 ∪𝑔◦ℎ◦ 𝑓 𝑌 → 𝑋 ∪ 𝑓 𝑌

connecting the spaces 𝑋 ∪𝑔◦ℎ◦ 𝑓 𝑌 and 𝑋 ∪ 𝑓 𝑌 , can be de�ned by the formula

𝜂 = 𝛼1 ◦ (𝛼′ )−1,

where 𝛼1 is a �nite map of some homotopy

𝛼𝑡 : 𝑋 ∪ 𝑌 → 𝑋 ∪ 𝑓 𝑌, 0 ≤ 𝑡 ≤ 1,

for which
𝛼0 = 𝛼, 𝛼𝑡 |𝐴 = 𝜎𝑡 ◦ 𝑓 ,

and
𝛼𝑡 |𝑌 = 1𝑌 .

Therefore, the formula

𝑘𝑡 =

{
𝛼 ◦ 𝜎2𝑡 , if 0 ≤ 𝑡 ≤ 1/2,
𝛼2𝑡−1 ◦ 𝑔 ◦ ℎ), if 1/2 ≤ 𝑡 ≤ 1.

where
𝜎𝑡 = 1𝑋 ∪ 𝜎𝑡 : 𝑋 ∪ 𝑌 → 𝑋 ∪ 𝑌, 0 ≤ 𝑡 ≤ 1,

de�nes some homotopy

𝑘𝑡 : 𝑋 ∪ 𝑌 → 𝑋 ∪ 𝑓 𝑌, 0 ≤ 𝑡 ≤ 1,

connecting the map
𝑘0 = 𝛼 ◦ 𝜎0 = 𝛼

with the map
𝑘1 = 𝛼1 ◦ 𝑔 ◦ ℎ = 𝜂 ◦ 𝐺 ◦ 𝐻 ◦ 𝛼.

In this case

𝑘𝑡 |𝐴 =

{
𝛼, if 0 ≤ 𝑡 ≤ 1/2,
𝛼2𝑡−1, if 1/2 ≤ 𝑡 ≤ 1,

i. e,

𝑘𝑡 |𝐴 =

{
𝑓 , if 0 ≤ 𝑡 ≤ 1/2,
𝜎2𝑡−1 ◦ 𝑓 , if 1/2 ≤ 𝑡 ≤ 1.

Therefore, assuming
𝑘∗𝑡 = 𝑘𝑡 ◦ 𝛼−1, 0 ≤ 𝑡 ≤ 1,

we obtain a deformation

𝑘∗𝑡 : 𝑋 ∪ 𝑓 𝑌 → 𝑋 ∪ 𝑓 𝑌, 0 ≤ 𝑡 ≤ 1,
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of the space 𝑋 ∪ 𝑓 𝑌 , connecting the identity map of this space with the map
𝜂 ◦ 𝐺 ◦ 𝐻.

Thus, the last map is homotopy identical and therefore the map 𝐻 is ho-
motopy injective, and the map 𝜂 ◦ 𝐺, and therefore the map 𝐺, is homotopy
surjective.

Similarly (taking the maps ℎ◦ 𝑓 and 𝑔 as the maps 𝑓 and ℎ respectively), we
obtain that the map 𝐺 is homotopy injective. Consequently, the map 𝐺, and
therefore the map 𝜂 ◦ 𝐺, is a homotopy equivalence. But then the map 𝐻 will
also be a homotopy equivalence. To complete the proof, it remains to note that

𝐻 |𝑌 = ℎ.

□

2.4 Homotopy groups and weak homotopy equiv-

alences

Let 𝑛 ≥ 0 and let 𝒖0 be a point (1, 0, . . . , 0) of the unit 𝑛-dimensional sphere S𝑛.
Let, further, 𝑥0 be an arbitrary point of the topological space 𝑋. The subject
of our study in this section will be continuous maps

𝜑 : (S𝑛, 𝒖0) → (𝑋, 𝑥0)

of the pair (S𝑛, 𝒖0) into the pair (𝑋, 𝑥0). The set [(S𝑛, 𝒖0), (𝑋, 𝑥0)] of all homo-
topy classes of such maps relative to 𝑥0 will be denoted by the symbol

𝜋𝑛 (𝑋; 𝑥0).

The class of the constant map S𝑛 → 𝑥0 we will denote by the symbol 0𝑥0 (or
simply 0) and we will call it the zero of the set 𝜋𝑛 (𝑋; 𝑥0).

It is clear that the set 𝜋0 (𝑋; 𝑥0) is naturally identi�ed with the set 𝜋0 (𝑋)
of the path-connected components of the space 𝑋. With this identi�cation,
the zero 0𝑥0 of the set 𝜋0 (𝑋; 𝑥0) corresponds to the component of the space 𝑋
containing the point 𝑥0.

We will call a map of one set of the form 𝜋𝑛 (𝑋; 𝑥0) into another such set a
homomorphism if it maps zero to zero. We will call an injective homomorphism
a monomorphism, a surjective homomorphism an epimorphism, and a bijective
homomorphism an isomorphism.

Remark 2.31. For 𝑛 > 0, an algebraic operation can be introduced into the set
𝜋𝑛 (𝑥; 𝑥0), with respect to which this set turns out to be a group (for 𝑛 > 1, even
an Abelian group) with zero element 0𝑥0 . This group is called the 𝑛-th homotopy
group of the space 𝑋 at the point 𝑥0. In what follows, we will also adhere to
this terminology (even for 𝑛 = 0), although we do not need the mentioned
operation, and we will neither de�ne nor consider it. All homomorphisms of
homotopy groups considered below will in fact be homomorphisms in the usual
group-theoretical sense. We will also ignore this fact.
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According to what was said in �2.1, any continuous map

𝑓 : 𝑋 → 𝑌

de�nes by the formula

𝑓∗ ( [𝜑] rel 𝒖0) = [ 𝑓 ◦ 𝜑] rel 𝒖0,

where 𝜑 is an arbitrary map (S𝑛,𝑼0) → (𝑋; 𝑥0), some map

𝑓∗ : 𝜋𝑛 (𝑋; 𝑥0) → 𝜋𝑛 (𝑌 ; 𝑦0), 𝑦0 = 𝑓 (𝑥0).

This maps zero 0𝑥0 to zero 0𝑦0 , i.e. is a homomorphism (in the sense indicated
above). In those cases where it is necessary to explicitly indicate the point 𝑥0,
we will denote this homomorphism by the symbol 𝑓∗,𝑥0 .

It is clear that if 𝑓 = 1𝑋, then 𝑓∗ = 1𝜋𝑛 (𝑋;𝑥0 ) , and that for any maps 𝑓 : 𝑋 → 𝑌

and 𝑔 : 𝑌 → 𝑍 we have
(𝑔 ◦ 𝑓 )∗ = 𝑔∗ ◦ 𝑓∗.

In the language of category theory, this means that the pair (𝜋𝑛 (𝑋; 𝑥0), 𝑓∗) is a
covariant functor.

We will not present here all the numerous properties of homotopy groups
- this would take us too far from the main topic. We will limit ourselves to
only those properties of these groups that will be needed later. In this case,
for any 𝑛 ≥ 0 we will represent the sphere S𝑛 as a union of two hemispheres
- the �lower� hemisphere E𝑛− consisting of all points 𝒖 = (𝑢1, . . . , 𝑢𝑛+1) ∈ S𝑛,
for which 𝑢𝑛+1 ≤ 0, and the �upper� hemisphere E𝑛+, consisting of all points
𝒖 = (𝑢1, . . . , 𝑢𝑛+1) ∈ S𝑛, for which 𝑢𝑛+1 ≥ 0. The intersection E𝑛− ∩ E𝑛+ of these
hemispheres is the equator 𝑢𝑛+1 = 0 of the sphere S𝑛, which we will identify with
the sphere S𝑛−1. The projection

𝜔 : S𝑛 → E𝑛,

de�ned by the formula

𝜔(𝑢1, . . . , 𝑢𝑛+1) = (𝑢1, . . . , 𝑢𝑛),

is, obviously, a homeomorphism on each of the hemispheres E𝑛− and E𝑛+. We will
denote these homeomorphisms by the symbols 𝜔− and 𝜔+, respectively.

In what follows we will constantly use the fact that

Proposition 2.32. pairs (S𝑛, 𝒖0), (S𝑛,E𝑛+), (S𝑛× 𝐼 (S𝑛, 𝒖0)) and (S𝑛× 𝐼 (S𝑛,E𝑛+))
satisfy the axiom of homotopy extension.

This fact is a special case of one general statement, which we will prove in
�3.4; see Remark 3.56. Therefore, we will leave it here without proof. We will
not use the results of this section until �3.6.

We also note that any vector 𝒗 ∈ E𝑛 can be �related to a point 𝒖0�, i.e.
represented in the form

𝒗 = 𝒖0 + (𝒖 − 𝒖0)𝑟,
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where 𝒖 ∈ S𝑛−1 and 0 ≤ 𝑟 ≤ 1. In this case, the number 𝑟 is determined by the
vector 𝒗 uniquely. The vector 𝒖 is also determined uniquely, if only 𝒗 ≠ 𝒖0. In
addition, for 𝒗 ≠ 𝒖0 the number 𝑟 is nonzero (and for 𝒗 = 𝒖0 it is zero). To
simplify the formulae, we will henceforth denote the vector 𝒗 = 𝒖0+(𝒖−𝒖0)𝑟 ∈ E𝑛

by the symbol [𝒖, 𝑟], and the vectors 𝜔−1
+ (𝒗) ∈ E𝑛+ and 𝜔−1

− (𝒗) ∈ E𝑛− by the
symbols [𝒖, 𝑟]+ and [𝒖, 𝑟]−, respectively.

First of all, we will �nd out under what conditions the two maps

𝑓 , 𝑔 : E𝑛 → 𝑋

of the ball E𝑛 into the space 𝑋, coinciding on its boundary S𝑛−1, are homotopic
relative to S𝑛−1.

For this purpose, to any two such maps 𝑓 and 𝑔 we assign a map

𝜑 : S𝑛 → 𝑋

of the sphere S𝑛 into the space 𝑋, �glued� from maps 𝑓 and 𝑔, considered as
maps of the hemispheres E𝑛+ and E𝑛−, i.e. de�ned by the equalities

𝜑E𝑛
− = 𝑓 ◦ 𝜔− , 𝜑E𝑛

+ = 𝑓 ◦ 𝜔+.

By hypothesis, 𝑓 |S𝑛−1 = 𝑔 |S𝑛−1 and, therefore, the map 𝜑 is uniquely de�ned
and continuous. The element [𝜑] of the group 𝜋𝑛 (𝑋; 𝑥0), where 𝑥0 = 𝜑(𝒖0) (=
𝑓 (𝒖0) = 𝑔(𝒖0)), de�ned by the map 𝜑, we will call the element distinguishing
the maps 𝑓 and 𝑔, and denote it by the symbol 𝛿( 𝑓 , 𝑔).

It is easy to see that any element of the set 𝜋𝑛 (𝑋; 𝑥0) can serve as an element
that distinguishes some map from a given one. Namely,

Proposition 2.33. for any map

𝑔 : E𝑛 → 𝑋

and any element 𝛼 ∈ 𝜋𝑛 (𝑥; 𝑥0), where 𝑥0 = 𝑔(𝒖0), there exists a map

𝑓 : E𝑛 → 𝑋,

such that

𝑓 |S𝑛 = 𝑔 |S𝑛

and

𝛿( 𝑓 , 𝑔) = 𝛼.

Proof. Indeed, let
𝜑 : (S𝑛, 𝒖0) → (𝑋, 𝑥0)

be an arbitrary map of class 𝛼. Obviously, on the hemisphere E𝑛+ the map 𝜑 is
homotopic relatve to 𝒖0 to the map 𝒈 ◦ 𝜔+. And the corresponding homotopy

𝜑𝑡 : E𝑛+ → 𝑋
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can be de�ned, for example, by the formula

𝜑𝑡 ( [𝒖, 𝑟]+) =
{
𝜑( [𝒖, (1 − 2𝑡)𝑟]+), if 0 ≤ 𝑡 ≤ 1/2,
𝑓 ( [𝒖, (2𝑡 − 1)𝑟]), if 1/2 ≤ 𝑡 ≤ 1,

where [𝒖, 𝑟]+ is an arbitrary point of the hemisphere E𝑛+; the essence of the
matter here is that the hemisphere E𝑛+ can be contracted in itself to the point
𝒖0 and therefore any map of this hemisphere is homotopic to the constant map,
so that any two maps are homotopic. Since the pair (S𝑛,E𝑛+) satis�es, as was
said, the axiom of homotopy extension, it follows that the map 𝜑 is homotopic
relative to 𝒖0 to a map

𝜓 : S𝑛 → 𝑋

such that 𝜓 |E𝑛
+ = 𝑔 ◦ 𝜔+. But then it is clear that the map

𝑓 = 𝜓 |E𝑛
− ◦ 𝜔−1

− : E𝑛 → 𝑋

has all the required properties. □

The signi�cance of distinguishing elements 𝛿( 𝑓 , 𝑔) for the problem of homo-
topy relative to S𝑛−1 of maps 𝑓 and 𝑔 is determined by the fact that

Proposition 2.34. if for maps coinciding on S𝑛−1

𝑓 , 𝑔 : E𝑛 → 𝑋,

there exists a map

ℎ : E𝑛 → 𝑋, ℎ|S𝑛−1 = 𝑓 |S𝑛−1 = 𝑔 |S𝑛−1 ,

such that
𝛿( 𝑓 , ℎ) = 𝛿(𝑔, ℎ),

then the maps 𝑓 and 𝑔 are homotopic relative to S𝑛.

Proof. To prove this statement, we consider the maps

𝜑0, 𝜑1 : S𝑛 → 𝑋,

de�ned by the formulae

𝜑0 |E𝑛
− = 𝑓 ◦ 𝜔− , 𝜑1 |E𝑛

− = 𝑔 ◦ 𝜔− , 𝜑0 |E𝑛
+ = 𝜑1 |E𝑛

+ = ℎ ◦ 𝜔+.

As is easy to see, it is enough for us to prove that

𝜑0 ∼ 𝜑1 relE𝑛+. (2.35)

Indeed, for any homotopy 𝜑𝑡 : 𝜑0 ∼ 𝜑1 relE𝑛+ the family of maps

𝜑𝑡 |E𝑛
− ◦ 𝜔−1 : E𝑛 → 𝑋, 0 ≤ 𝑡 ≤ 1,
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will be a homotopy relatiive to S𝑛−1, connecting the map 𝑓 with the map 𝑔.

By hypothesis, 𝛿( 𝑓 , ℎ) = 𝛿(𝑔, ℎ), so that the maps 𝜑0 and 𝜑1 are homotopic
relative to 𝒖0. Having chosen some homotopy relative to 𝒖0 that connects the
maps 𝜑0 and 𝜑1, we consider the map

Φ : S𝑛 × 𝐼 → 𝑋

of the product E𝑛+ × 𝐼 into the space 𝑋 corresponding to this homotopy. Let, in
addition,

Ψ : E𝑛+ × 𝐼 → 𝑋

be a map of the product E𝑛+ × 𝐼 into the space 𝑋 de�ned by the formula

Ψ(𝒖, 𝑡) = 𝜑0 (𝒖) = (ℎ ◦ 𝜔+) (𝒖), (𝒖) ∈ E𝑛− , 0 ≤ 𝑡 ≤ 1.

According to Proposition 2.14, it is applicable, since the pair (S𝑛 × 𝐼, 𝐼 (S𝑛,E𝑛+))
satis�es the axiom of homotopy extension, to prove relation (2.35) it is su�cient
to show that

Φ0 |E𝑛
+×𝐼 ∼ Ψ rel(E𝑛+ × 0 ∪ E𝑛+ × 1).

For any 𝜏 ∈ 𝐼 and any point ( [𝒖, 𝑟]+, 𝑡) ∈ E𝑛+ × 𝐼, where 𝒖 ∈ S𝑛−1, 𝑟, 𝑡 ∈ 𝐼, we set
(see Fig. 2.2)

Figure 2.2:
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Φ𝜏 ( [𝒖, 𝑟]+, 𝑡) =



Φ
(
[𝒖, 𝑟−4𝜏1−2𝜏 ]+,

𝑡−𝜏
1−2𝜏

)
, if 0 ≤ 𝜏 ≤ 𝑟

4 , 𝜏 ≤ 𝑡 ≤ 1 − 𝜏,
ℎ

(
[𝒖, 𝑟−4𝑡1−2𝑡 ]

)
, if 𝑡 ≤ 𝜏 ≤ 1 − 𝑡, 0 ≤ 𝑡 ≤ 𝑟

4 ,

ℎ(𝒖0), if 𝑟
4 ≤ 𝜏 ≤ 4−𝑟

4 , 𝑟4 ≤ 𝑡 ≤ 4−𝑟
4 ,

ℎ
(
[𝒖, 4𝑡+𝑟−42𝑡−2 ]

)
, if 1 − 𝑡 ≤ 𝜏 ≤ 𝑡, 4−𝑟4 ≤ 𝑡 ≤ 1,

ℎ
(
[𝒖, 4𝜏+𝑟−42𝜏−1 ]

)
, if 4−𝑟

4 ≤ 𝜏 ≤ 1, 1 − 𝜏 ≤ 𝑡 ≤ 𝜏.

It is easy to verify (Fig. 2.2) that we thereby obtain a certain homotopy

Φ𝜏 : E𝑛+ × 𝐼 → 𝑋

relative to E𝑛+ × 0 ∪ E𝑛+ × 1, for which

Φ0 = Φ|E𝑛
+×𝐼 , Φ1 = Ψ.

The statement formulated above is thus completely proven. □

Remark 2.36. For the existence of a homotopy Φ𝜏 it is essential that the map
𝜑0 is homotopic to the map 𝜑1 relative to 𝒖0. If 𝜑0 is simply homotopic to 𝜑1,
then the homotopy Φ𝜏 may not exist.

Let us now consider the question of the dependence of the group 𝜋𝑛 (𝑋; 𝑥0)
on the point 𝑥0.

Let 𝑥0 and 𝑥1 be two arbitrary points of the space 𝑋, which can be connected
in 𝑋 by some path 𝑢 : 𝐼 → 𝑋. Since the pair (S𝑛, 𝒖0) satis�es the axiom of
homotopy extension, then for any map

𝜑 : (S𝑛, 𝒖0) → (𝑋, 𝑥0)

there exists a homotopy

𝜑𝑡 : S𝑛 → 𝑋, 0 ≤ 𝑡 ≤ 1,

such that 𝜑0 = 𝜑 and 𝜑𝑡 (𝒖0) = 𝑢(𝑡) for each 𝑡 ∈ 𝐼. We will call this homotopy a
homotopy of the map 𝜑 along the path 𝑢.

We will call two paths 𝑢 and 𝑣, connecting a point 𝑥0 with a point 𝑥1 equiv-
alent if they are homotopic relative to the points 0 and 1, i.e. if there exists a
homotopy

𝑢𝜏 : 𝐼 → 𝑋, 0 ≤ 𝜏 ≤ 1,

consisting of paths connecting the points 𝑥0 and 𝑥1 such that 𝑢0 = 𝑢 and 𝑢1 = 𝑣.
It turns out that

Proposition 2.37. if the maps

𝜑, 𝜓 : (S𝑛, 𝒖0) → (𝑋, 𝑥0)

are homotopic relative to 𝒖0, then for any two equivalent paths 𝑢 and 𝑣 connect-
ing a point 𝑥0 with a point 𝑥1, and any two homotopies

𝜑𝑡 , 𝜓𝑡 : S𝑛 → 𝑋
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of the maps 𝜑 and 𝜓 along, respectively, the paths 𝑢 and 𝑣 the pointed maps

𝜑1, 𝜓1 : (S𝑛, 𝒖0) → (𝑋, 𝑥1)

are homotopic relative to 𝒖0.

Proof. Indeed, let

𝜉𝑡 : (S𝑛, 𝒖0) → (𝑋, 𝑥0), 0 ≤ 𝑡 ≤ 1,

be a homotopy relative to 𝒖0, connecting the map 𝜑 with the map 𝜓. It is clear
that the formula

𝜔𝑡 =


𝜑1−3𝑡 , if 0 ≤ 𝑡 ≤ 1/3,
𝜉3𝑡−1, if 1/3 ≤ 𝑡 ≤ 2/3,
𝜓3𝑡−2, if 2/3 ≤ 𝑡 ≤ 1,

de�nes a certain homotopy

𝜔𝑡 : S𝑛 → 𝑋, 0 ≤ 𝑡 ≤ 1,

connecting the map 𝜑1 with the map 𝜓1. Let

Ω : S𝑛 × 𝐼 → 𝑋

be the map of the product S𝑛×𝐼 into the space 𝑋 corresponding to this homotopy
and let

Ω1 : 𝒖0 × 𝐼 → 𝑋

be the constant map of the segment 𝒖0 × 𝐼 into the point 𝑥1 ∈ 𝑋. Since the pair
(S𝑛 × 𝐼, 𝐼 (S𝑛, 𝒖0)) satis�es the axiom of homotopy extension, then, according to
the proposition proved in �point 2.1, to prove the relation

𝜑1 ∼ 𝜓1 rel 𝒖0

it su�ces to prove that

Ω|𝒖0×𝐼 ∼ Ω1 rel(𝒖0 × 0 ∪ 𝒖0 × 1),

i.e., the path

𝑤 : 𝐼 → 𝑋, 𝑤(0) = 𝑤(1) = 𝑥1,

de�ned by the formula

𝑤(𝑡) = Ω(𝒖0, 𝑡) =

𝑢(1 − 3𝑡), if 0 ≤ 𝑡 ≤ 1/3,
𝑥0, if 1/3 ≤ 𝑡 ≤ 2/3,
𝑣(3𝑡 − 2), if 2/3 ≤ 𝑡 ≤ 1,

is equivalent to the degenerate path 𝑢𝑥1 , which is a constant map of the segment
𝐼 to the point 𝑥1.
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For this purpose, for any 𝑡, 𝜏 ∈ 𝐼 we set (see Fig. 2.3)

𝑤𝜏 (𝑡) =



𝑢
(
3𝜏−6𝑡+2
3𝜏+2

)
, if 0 ≤ 𝜏 ≤ 1/3, 0 ≤ 𝑡 ≤ 3𝜏+2

6 ,

𝑥0, if 0 ≤ 𝜏 ≤ 1/3, 3𝜏+26 ≤ 𝑡 ≤ 4−3𝜏
6 ,

𝑣
(
3𝜏+6𝑡−4
3𝜏+2

)
, if0 ≤ 𝜏 ≤ 1/3, 4−3𝜏6 ≤ 𝑡 ≤ 1,

𝑢(1 − 2𝑡), if 1/3 ≤ 𝜏 ≤ 2/3, 0 ≤ 𝑡 ≤ 1/2,
𝑢2−3𝜏 (2𝑡 − 1), if 1/3 ≤ 𝜏 ≤ 2/3, 1/2 ≤ 𝑡 ≤ 1,

𝑢(1 − 6𝑡 (1 − 𝜏)), if 2/3 ≤ 𝜏 ≤ 1, 0 ≤ 𝑡 ≤ 1/2,
𝑢(1 − 6(1 − 𝑡) (1 − 𝜏)), if 2/3 ≤ 𝜏 ≤ 1, 1/2 ≤ 𝑡 ≤ 1,

where 𝑢𝜏 : 𝐼 → 𝑋, 0 ≤ 𝜏 ≤ 1, is a homotopy relative to the points 0 and 1,
connecting the path 𝑢 with the path 𝑣. It is easy to verify that we thereby

Figure 2.3:

obtain a homotopy

𝑤𝑡 : 𝐼 → 𝑋, 0 ≤ 𝜏1,

relative to the points 0 and 1, connecting the path 𝑤 with the path 𝑢𝑥1 .
The above statement is thus completely proven. □

It follows directly from this statement that for any path 𝑢, connecting points
𝑥0 and 𝑥1 the formula

𝑢# (𝛼) = [𝜑1] rel 𝒖0,
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where 𝛼 ∈ 𝜋𝑛 (𝑋; 𝑥0), and 𝜑1 is a pointed map of an arbitrary homotopy 𝜑𝑡 along
the path 𝑢 of some map

𝜑 : (S𝑛, 𝒖0) → (𝑋; 𝑥0)

of class 𝛼 uniquely determines some map

𝑢# : 𝜋𝑛 (𝑋; 𝑥0) → 𝜋𝑛 (𝑋; 𝑥1),

mapping zero 0𝑥0 to zero 0𝑥1 , i.e. being a homomorphism. At the same time,

Proposition 2.38. the homomorphism 𝑢# depends only on the equivalence
class of the path 𝑢, i.e. for any two equivalent paths 𝑢 and 𝑣 the homomorphisms
𝑢# and 𝑣# coincide.

Now let 𝑢 and 𝑣 be paths of the space 𝑋 such that

𝑢(1) = 𝑣(0).

Then the formula

𝑤(𝑡) =
{
𝑢(2𝑡), if 0 ≤ 𝑡 ≤ 1/2,
𝑣(2𝑡 − 1), if 1/2 ≤ 𝑡 ≤ 1,

de�nes, as is easy to see, a certain path

𝑤 : 𝐼 → 𝑋,

connecting the point 𝑥0 = 𝑢(0) with the point 𝑥1 = 𝑣(1). We will call this path
the product of paths 𝑢 and 𝑣 and will denote it by the symbol 𝑢𝑣. It is easy to
see that

Proposition 2.39. the homomorphism

(𝑢𝑣)# : 𝜋𝑛 (𝑋; 𝑥0) → 𝜋𝑛 (𝑋; 𝑥2),

corresponding to the path 𝑢𝑣, is a composition of 𝑣# · 𝑢# of homomorphisms

𝑢# : 𝜋𝑛 (𝑋; 𝑥0) → 𝜋𝑛 (𝑋; 𝑥1), 𝑣# : 𝜋𝑛 (𝑋; 𝑥1) → 𝜋𝑛 (𝑋; 𝑥2),

corresponding to the paths 𝑢 and 𝑣.

Proof. Indeed, for any homotopy 𝜑𝑡 along the path 𝑢 of an arbitrary map 𝜑 :
(S𝑛, 𝒖0) → (𝑋; 𝑥0) and any homotopy 𝜓𝑡 , along the path 𝑣 of an arbitrary map

𝜓 : (S𝑛, 𝒖0) → (𝑋; 𝑥1)

the formula

𝜔𝑡 =

{
𝜑(2𝑡), if 0 ≤ 𝑡 ≤ 1/2,
𝜓(2𝑡 − 1), if 1/2 ≤ 𝑡 ≤ 1,

de�nes a homotopy along the path 𝑢𝑣 for which 𝜔0 = 𝜑 and 𝜔1 = 𝜓1. □
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To each path 𝑢 : 𝐼 → 𝑋 connecting a point 𝑥0 with a point 𝑥1 we assign
a path 𝑢

′
: 𝐼 → 𝑋 connecting the point 𝑥1𝑥 with the point 𝑥0, de�ned by the

formula
𝑢
′ (𝑡) = 𝑢(1 − 𝑡), 0 ≤ 𝑡 ≤ 1.

It is easy to see that

Proposition 2.40. for any path 𝑢 connecting points 𝑥0 and 𝑥1 the paths 𝑢𝑢
′

and 𝑢
′
𝑢 are equivalent to the corresponding degenerate paths 𝑢𝑥0 and 𝑢𝑥1 .

Proof. Indeed, a homotopy 𝑣𝜏 : 𝐼 → 𝑋, 0 ≤ 𝜏 ≤ 1, relative to the points 0 and
1, connecting, say, the path 𝑢𝑥0 with the path 𝑢𝑢

′
can, for example, be de�ned

by the formula

𝑣𝜏 (𝑡) =
{
𝑢(2𝑡𝜏), if 0 ≤ 𝑡 ≤ 1/2,
𝑢(2(1 − 𝑡)𝜏), if 1/2 ≤ 𝑡 ≤ 1,

0 ≤ 𝜏 ≤ 1.

□

Since the homomorphisms (𝑢𝑥0 )# and (𝑢𝑥1 )# corresponding to the degener-
ate paths 𝑢𝑥0 and 𝑢𝑥1 are, as is easy to see, identity maps of the groups 𝜋𝑛 (𝑋; 𝑥0)
and 𝜋𝑛 (𝑋; 𝑥1) respectively, it follows directly from the last two statements that

Proposition 2.41. for any path 𝑢 :→ 𝑋 connecting the point 𝑥0 with the point
𝑥1 the homomorphisms 𝑢# and (𝑢′ )# are mutually inverse isomorphisms between
the groups 𝜋𝑛 (𝑋; 𝑥0) and 𝜋𝑛 (𝑋; 𝑥1).

In particular,

Proposition 2.42. for any path 𝑢 connecting a point 𝑥0 with a point 𝑥1, the
homomorphism

𝑢# : 𝜋𝑛 (𝑋; 𝑥0) → 𝜋𝑛 (𝑋; 𝑥1)
is an isomorphism.

Thus, for any points 𝑥0 and 𝑥1 belonging to the same path component of the
space 𝑋, the groups 𝜋𝑛 (𝑋; 𝑥0) and 𝜋𝑛 (𝑋; 𝑥1) are essentially the same. For points
belonging to di�erent path components of the space 𝑋, these groups, generally
speaking, are not connected with each other in any way.

In order to clarify the geometric meaning of the isomorphisms 𝑢#, we will
show that

Proposition 2.43. for elements 𝛼 ∈ 𝑝𝑖𝑛 (𝑋; 𝑥0) and 𝛽 ∈ 𝜋𝑛 (𝑋; 𝑥1) if and only
if there exists a path 𝑢 : 𝐼 → 𝑋, 𝑢(0) = 𝑥0, 𝑢(1) = 𝑥1, such that

𝛽 = 𝑢# (𝛼),

if and only if when the maps

𝜑 : (S𝑛, 𝒖0) → (𝑋; 𝑥0), 𝜓 : (S𝑛, 𝒖0) → (𝑋; 𝑥1),

belonging to the classes 𝛼 and 𝛽 are homotopic to each other.
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Proof. Indeed, if 𝛽 = 𝑢# (𝛼), then the map 𝜓 is homotopic (relative to 𝒖0) to
a pointed map 𝜑1 of some homotopy 𝜑𝑡 of the map 𝜑 along the path 𝑢. Thus,
𝜑𝑡 : 𝜑 ∼ 𝜓 and, consequently, 𝜓 ∼ 𝜑. Conversely, any homotopy 𝜑𝑡 : 𝜑 ∼ 𝜓 can
be considered as a homotopy of the map 𝜑 along the path

𝑢(𝑡) = 𝜑𝑡 (𝒖0), 0 ≤ 𝑡 ≤ 1.

Therefore, if 𝜑𝑡 : 𝜑 ∼ 𝜓, then 𝛽 = 𝑢# (𝛼). □

Since for each path 𝑢 the map 𝑢# is an isomorphism, the only element
𝛼 ∈ 𝜋𝑛 (𝑋; 𝑥0) for which 𝑢# (𝛼) = 0𝑥1 is the element 0𝑥0 . This means that

Proposition 2.44. the map

𝜑 : (S𝑛, 𝒖0) → (𝑋; 𝑥0)

is homotopic to some constant map if and only if it is homotopic relative to 𝒖0

to the constant map to the point 𝑥0.

In other words (see �2.1),

Proposition 2.45. the map

𝜑 : (S𝑛, 𝒖0) → (𝑋; 𝑥0)

belongs to the class 0𝑥0 if and only if when it can be extended to some map
E𝑛 → 𝑋.

Therefore,

Proposition 2.46. the space 𝑋 is 𝑚-connected if and only if for some (and
therefore for any) point 𝑥0 ∈ 𝑋 and any 𝑛 ≤ 𝑚 the equality

𝜋𝑛 (𝑋; 𝑥0) = 0

holds.

Let us now consider an arbitrary deformation.

𝜉𝑡 : 𝑋 → 𝑋

of the space 𝑋. For any point 𝑥0 ∈ 𝑋 this deformation de�nes a path

𝑢(𝑡) = 𝜉𝑡 (𝑥0), 0 ≤ 𝑡 ≤ 1,

connecting the point 𝑥0 with the point 𝑥1 = 𝜉1 (𝑥0). On the other hand, it is
clear that for any map

𝜑 : (S𝑛, 𝒖0) → (𝑋; 𝑥0)
the family of maps

𝜉𝑡 ◦ 𝜑 : S𝑛 → 𝑋

represents a homotopy of the map 𝜑 along the path 𝑢. Therefore, for any element
𝛼 ∈ 𝜋𝑛 (𝑋; 𝑥0), the element 𝑢# (𝛼) ∈ 𝜋𝑛 (𝑋; 𝑥1) is the class of the map 𝜉 ◦𝜑, where
𝜉 = 𝜉1, and 𝜑 is an arbitrary map of class 𝛼. This means that
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Proposition 2.47. the homomorphism

𝜉∗ : 𝜋𝑛 (𝑋; 𝑥0) → 𝜋𝑛 (𝑋; 𝑥1)

coincides with the homomorphism

𝑢# : 𝜋𝑛 (𝑋; 𝑥0) → 𝜋𝑛 (𝑋; 𝑥1)

Since the last homomorphism is, as we know, an isomorphism, it is thus
proved that

Proposition 2.48. for any homotopy identity map

𝜉 : 𝑋 → 𝑋

and any point 𝑥0 ∈ 𝑋, the homomorphism

𝜉∗ : 𝜋𝑛 (𝑋; 𝑥0) → 𝜋𝑛 (𝑋; 𝑥1), 𝑥1 = 𝜉 (𝑥0),

is an isomorphism.

A map
𝑓 : 𝑋 → 𝑌

of a topological space 𝑋 into a topological space 𝑌 will be called a weak homotopy
equivalence if for any 𝑛 ≥ 0 and any point 𝑥0 ∈ 𝑋 the homomorphism

𝑓∗ : 𝜋𝑛 (𝑋; 𝑥0) → 𝜋𝑛 (𝑌 ; 𝑦0), 𝑦0 = 𝑓 (𝑥0),

is an isomorphism. From the proposition just proved it easily follows that

Proposition 2.49. any homotopy equivalence

𝑓 : 𝑋 → 𝑌

is a weak homotopy equivalence.

Proof. Indeed, let
𝑔 : 𝑌 → 𝑋

be the homotopy equivalence inverse to the equivalence 𝑓 , and let 𝑥0 be an
arbitrary point in 𝑋. Setting

𝑦0 = 𝑓 (𝑥0), 𝑥1 = 𝑔(𝑦0), 𝑦1 = 𝑓 (𝑥1),

for any 𝑛 ≥ 0 we consider the homomorphisms

𝑓∗ = 𝑓∗,𝑥0 : 𝜋𝑛 (𝑋; 𝑥0) → 𝜋𝑛 (𝑌 ; 𝑦0),
𝑓
′
∗ = 𝑓∗,𝑥1 : 𝜋𝑛 (𝑋; 𝑥1) → 𝜋𝑛 (𝑌 ; 𝑦1),
𝑔∗ = 𝑔∗,𝑦0 : 𝜋𝑛 (𝑌 ; 𝑦0) → 𝜋𝑛 (𝑋; 𝑥1),
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induced by the maps 𝑓 and 𝑔, as well as the homomorphsims

(𝑔 ◦ 𝑓 )∗ : 𝜋𝑛 (𝑋; 𝑥0) → 𝜋𝑛 (𝑋; 𝑥1),
( 𝑓 ′ ◦ 𝑔)∗ : 𝜋𝑛 (𝑌 ; 𝑦0) → 𝜋𝑛 (𝑌 ; 𝑦1),

induced by composite maps

𝑔 ◦ 𝑓 : 𝑋 → 𝑋, 𝑓
′ ◦ 𝑔 : 𝑌 → 𝑌 .

As we know,

(𝑔 ◦ 𝑓 )∗ = 𝑔∗ ◦ 𝑔∗, ( 𝑓 ′ ◦ 𝑔)∗ = 𝑓
′ ◦ 𝑔∗.

On the other hand, since the maps 𝑔 ◦ 𝑓 and 𝑓
′ ◦ 𝑔 are, by hypothesis, homo-

topically identical, the homomorphisms (𝑔 ◦ 𝑓 )∗ and ( 𝑓 ′ ◦ 𝑔)∗ are isomorphisms.
Therefore, from the equality (𝑔 ◦ 𝑓 )∗ = 𝑔∗ ◦ 𝑓 ∗ it follows that the map 𝑔∗ is
epimorphic, and from the equality ( 𝑓 ′ ◦ 𝑔)∗ = 𝑓

′
∗ ◦ 𝑔∗ it follows that the map

𝑔∗ is monomorphic. Consequently, the map 𝑔∗, and therefore the map 𝑓∗, is an
isomorphism. □

Remark 2.50. The converse is generally not true: there are weak homotopy
equivalences that are not homotopy equivalences. However, as we shall see be-
low, for su�ciently �good� spaces (namely cellular spaces), any weak homotopy
equivalence is a homotopy equivalence.

It is clear that the composition of weak homotopy equivalences is also a weak
homotopy equivalence. Therefore, it follows immediately from the previous
statement that

Proposition 2.51. any map that is homotopy equivalent to a weak homotopy
equivalence is also a weak homotopy equivalence.

Remark 2.52. By analogy with the relation of homotopy equivalence of spaces,
one could introduce the relation of their weak homotopy equivalence. This
relation is obviously re�exive and transitive, but, generally speaking, it is not
symmetric. We will not consider it.

We will call a subspace 𝐴 of a space 𝑋 representative if the inclusioon map
𝑖 : 𝐴 ⊂ 𝑋 is a weak homotopy equivalence, i.e. if for any 𝑛 ≥ 0 and any point
𝑥0 ∈ 𝐴 the homomorphism

𝑖∗ : 𝜋𝑛 (𝐴; 𝑥0) → 𝜋𝑛 (𝑋; 𝑥0)

is an isomorphism. It follows directly from the proposition just proved that

Proposition 2.53. the map 𝑓 : 𝑋 → 𝑌 is a weak homotopy equivalence if and
only if the space 𝑋 is a representative subspace of the cylinder 𝑍 𝑓 of the map 𝑓 .

In connection with this proposition, it is useful to note that
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Proposition 2.54. if a subspace 𝐴 of 𝑋 is representative, then for any 𝑛 ≥ 0
each map

𝑓 : (E𝑛, S𝑛−1) → (𝑋, 𝐴)

is homotopic relative to S𝑛−1 to some map 𝑔 : E𝑛 → 𝐴 (i. e, more precisely, to
the map 𝑖 ◦ 𝑔, where 𝑖 : 𝐴 ⊂ 𝑋).

Proof. Indeed, assuming that 𝑛 > 0 (for 𝑛 = 0 the reasoning is only simpli�ed),
we assign to the map 𝑓 the element 𝛼

′
of the group 𝜋𝑛−1(𝐴; 𝑥0, where 𝑥0 = 𝑓 (𝒖0),

de�ned by the map

𝑓 |S𝑛−1 : S𝑛−1 → 𝐴.

Since the map 𝑖 ◦ 𝑓 |S𝑛−1 is a restriction of the map 𝑓 : E𝑛 → 𝑋, then, as proved
above, 𝑖∗ (𝛼

′ ) = 0, and therefore 𝛼
′
= 0 (since the homomorphism 𝑖∗ is, by

assumption, an isomorphism). Therefore, there exists a map

ℎ : E𝑛 → 𝐴,

such that

ℎ|S𝑛−1 = 𝑓 |S𝑛−1 .

Let

𝛽 = 𝛿( 𝑓 , 𝑖 ◦ ℎ)

be an element of the group 𝜋𝑛 (𝑋; 𝑥0) that distinguishes the maps 𝑓 and 𝑖 ◦ ℎ.
Since the subspace 𝐴 is representative, in the group 𝜋𝑛 (𝐴; 𝑥0) there exists an
element 𝛼 such that 𝑖∗(𝛼) = 𝛽. Let

𝑔 : E𝑛 → 𝐴

be a map of the ball E𝑛 into the space 𝐴 that coincides on S𝑛−1 with the map
ℎ such that

𝛿(𝑔, ℎ) = 𝛼.

Then, as is easy to see,

𝛿(𝑖 ◦ 𝑔, 𝑖 ◦ ℎ) = 𝑖∗ (𝛼),

i.e,

𝛿(𝑖 ◦ 𝑔, 𝑖 ◦ ℎ) = 𝛿( 𝑓 , 𝑖 ◦ ℎ).

Therefore, the maps 𝑓 and 𝑖 ◦ 𝑔 are homotopic relative to S𝑛−1. □

Remark 2.55. The converse is also true: if for each 𝑛 ≥ 0 any map (E𝑛, S𝑛−1) →
(𝑋, 𝐴) is homotopic relative to S𝑛−1 to some map E𝑛 → 𝐴 then the subspace 𝐴
is representative. We will not need this fact, and we will leave its proof to the
reader as a simple exercise.



2.5. HOMOTOPY LIMITS 83

2.5 Homotopy limits

Let

𝑋0 ⊂ 𝑋1 ⊂ · · · ⊂ 𝑋𝑛 ⊂ · · · (2.56)

be an increasing sequence of subspaces of a topological space 𝑋, the union of
which is the entire space 𝑋. Consider the inclusion maps

𝑖𝑛𝑚 : 𝑋𝑛 → 𝑋𝑚, 𝑖𝑛 : 𝑋𝑛 → 𝑋, 0 ≤ 𝑛 ≤ 𝑚 ≤ ∞,

and for any point 𝑥 ∈ 𝑋 and any number 𝑛 ≥ 𝑛𝑥 , where 𝑛𝑥 is the smallest 𝑛 for
which 𝑥 ∈ 𝑋𝑛, the homomorphisms induced by these maps

(𝑖𝑛𝑚)∗ : 𝜋𝑘 (𝑋𝑛; 𝑥) → 𝜋𝑘 (𝑋𝑚; 𝑥),
(𝑖𝑛)∗ : 𝜋𝑘 (𝑋𝑛; 𝑥) → 𝜋𝑘 (𝑋; 𝑥),

𝑘 ≥ 0,

of homotopy groups.
We will say that the space 𝑋 is a weak homotopy limit of subspaces (2.56) if

1) for any number 𝑘 ≥ 0, any point 𝑥 ∈ 𝑋, and any element 𝛼 ∈ 𝜋𝑘 (𝑋; 𝑥), there
exist a number 𝑛 ≥ 𝑛𝑥 and an element 𝛼𝑛 ∈ 𝜋𝑘 (𝑋𝑛; 𝑥) such that

𝛼 = (𝑖𝑛)∗ (𝛼𝑛);

2) for any number 𝑘 ≥ 0, any number 𝑛 ≥ 0, any point 𝑥 ∈ 𝑋, and any elements
𝛼, 𝛼

′ ∈ 𝜋𝑘 (𝑋; 𝑥), with the property that

(𝑖𝑛)∗ (𝛼𝑛) = (𝑖𝑛)∗ (𝛼
′
𝑛),

there exists a number 𝑚 ≥ 𝑛 such that

(𝑖𝑛𝑚)∗ (𝛼𝑛) = (𝑖𝑛𝑚)∗ (𝛼
′
𝑛),

It is clear that if the number 𝑛 ≥ 𝑛𝑥 satis�es condition 1), then any number
𝑛
′ ≥ 𝑛 also satis�es this condition, i.e. there exists an element 𝛼𝑛′ ∈ 𝜋𝑘 (𝑋𝑛′ ; 𝑥)
such that (𝑖𝑛

′
)∗ (𝛼𝑛′ ) = 𝛼 (at least the element 𝛼𝑛′ = (𝑖𝑛

𝑛
′ )∗ (𝛼𝑛) has this prop-

erty). Similarly, any number 𝑚
′ ≥ 𝑚 satis�es condition 2) together with the

number 𝑚.

Remark 2.57. The reader familiar with the concept of a spectrum of groups
will immediately discover that for any number 𝑘 ≥ 0 and any point 𝑥 ∈ 𝑋 the
groups 𝜋𝑘 (𝑋𝑛; 𝑥), 𝑛 ≥ 𝑚, and the homomorphisms (𝑖𝑛𝑚)∗, 𝑛𝑥 ≤ 𝑛 ≤ 𝑚 constitute
a spectrum and that conditions 1) and 2) are equivalent to the fact that the
homomorphism of the limit group of this spectrum into the group 𝜋𝑘 (𝑋; 𝑥),
induced by the homomorphisms (𝑖𝑛)∗, is an isomorphism.

One can specify simple set-theoretic conditions under which the space 𝑋 is
a weak homotopy limit of the subspaces (2.56). For example,
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Proposition 2.58. if for any compact set 𝐶 ⊂ 𝑋 there exists a number 𝑛 ≥ 0
such that 𝐶 ⊂ 𝑋𝑛, then the space 𝑋 is a weak homotopy limit of the subspaces
𝑋𝑛.

Proof. Indeed, let 𝑘 ≥ 0, 𝑥 ∈ 𝑋, and let 𝛼 be an arbitrary element of the group
𝜋𝑘 (𝑋; 𝑥). Consider an arbitrary map

𝑓 : (S𝑘 , 𝒖0) → (𝑋; 𝑥)

of class 𝛼. Since the sphere S𝑘 is compact, the set 𝑓 (S𝑘) is also compact, and,
consequently, there exists a number 𝑛 ≥ 0 such that 𝑓 (S𝑘) ⊂ 𝑋𝑛. Therefore, we
can consider the map 𝑓 as a map 𝑓 : (S𝑘 , 𝒖0) → (𝑋𝑛; 𝑥). It is clear that the
element 𝛼𝑛 ∈ 𝜋𝑘 (𝑋𝑛; 𝑥) de�ned by this map has the property that (𝑖𝑖𝑛)∗ (𝛼𝑛) = 𝛼.

Condition 2 is veri�ed similarly (only instead of the compactness of the
sphere S𝑘 , we have to use the compactness of the product S𝑘 × 𝐼). □

In the case of an arbitrary sequence (2.56), the space 𝑋 is not, generally
speaking, a weak homotopy limit of the subspaces 𝑋𝑛. However, it can be
argued that

Proposition 2.59. For any increasing sequence

𝑋0 ⊂ 𝑋1 ⊂ · · · ⊂ 𝑋𝑛 ⊂ · · · (2.60)

of subspaces of 𝑋, there exists a space 𝑋Σ and a sequence

𝑋Σ
0 ⊂ 𝑋Σ

1 ⊂ · · · ⊂ 𝑋Σ
𝑛 ⊂ · · ·

of subspaces of 𝑋Σ such that

1) for any 𝑛 ≥ 0, the space 𝑋Σ
𝑛 is homotopy equivalent to the space 𝑋𝑛;

2) the space 𝑋Σ is a weak homotopy limit of the subspaces 𝑋Σ
𝑛 .

Proof. Indeed, let 𝑋Σ be the subspace of the product 𝑋 × R consisting of all
points (𝑥, 𝑡), 𝑥 ∈ 𝑋, 𝑡 ∈ R, for which 𝑡 ≥ 𝑛 + 1 for 𝑥 ∉ 𝑋𝑛,

𝑋Σ = ∪∞
𝑘=0(𝑋𝑘 × [𝑘,∞]) = ∪∞

𝑘=0 (𝑋𝑘 × [𝑘, 𝑘 + 1])

and let 𝑋Σ
𝑛 be the subspace of 𝑋Σ consisting of all points (𝑥, 𝑡) ∈ 𝑋Σ for which

𝑡 ≤ 𝑛, i.e.,

𝑋Σ
𝑛 = (𝑋0 × [0, 1]) ∪ (𝑋1 × [1, 2]) ∪ · · · ∪ (𝑋𝑛−1 × [𝑛 − 1, 𝑛]) ∪ (𝑋𝑛 × 𝑛).

Since the coordinate 𝑡 of a point (𝑥, 𝑡) of an arbitrary compact set 𝐶 ⊂ 𝑥Σ,
being a continuous function on 𝐶, is bounded, then 𝐶 ⊂ 𝑋Σ

𝑛 for some 𝑛 ≥ 0.
Consequently, according to the statement proved above, the space 𝑋Σ is a weak
homotopy limit of the subspaces 𝑋Σ

𝑛 .
Let us further consider the natural map

𝑝Σ : 𝑋Σ → 𝑋,



2.5. HOMOTOPY LIMITS 85

de�ned by the formula

𝑝Σ (𝑥, 𝑡) = 𝑥, (𝑥, 𝑡) ∈ 𝑋Σ .

It is clear that for any 𝑛 ≥ 00 the inclusion

𝑝Σ (𝑋Σ
𝑛 ) ⊂ 𝑋𝑛,

holds and therefore the map 𝑝Σ de�nes a map

𝑝Σ𝑛 : 𝑋Σ
𝑛 → 𝑋𝑛.

(This map is de�ned by the same formula as the map 𝑝Σ, with the only di�erence
that now (𝑥, 𝑡) ∈ 𝑋Σ

𝑛 .) Setting for any point 𝑥 ∈ 𝑋

𝑞Σ𝑛 (𝑥) = (𝑥, 𝑛),

we obviously obtain a continuous map

𝑞Σ𝑛 : 𝑋𝑛 → 𝑋Σ
𝑛 .

for which 𝑝Σ𝑛 ◦ 𝑞Σ𝑛 = 1𝑋𝑛
. On the other hand, setting

𝜉𝜏 (𝑥, 𝑡) = (𝑥, 𝑡 + 𝜏(𝑛 − 𝑡)), (𝑥, 𝑡) ∈ 𝑋Σ
𝑛 , 0 ≤ 𝜏 ≤ 1,

we obtain a deformation

𝜉𝜏 : 𝑋
Σ
𝑛 → 𝑋Σ

𝑛 , 0 ≤ 𝜏 ≤ 1,

of the space 𝑋Σ
𝑛 such that 𝜉1 = 𝑞Σ ◦ 𝑝Σ𝑛 . Therefore, the maps 𝑝Σ𝑛 and 𝑞Σ𝑛 are

mutually inverse homotopy equivalences.
Thus, the proposition formulated above is completely proven. □

Generally speaking, it is impossible to claim that the map 𝑝Σ is a homotopy
equivalence (even a weak one). Speci�cally, as we will now show,

Proposition 2.61. the map

𝑝Σ : 𝑋Σ → 𝑋

is a weak homotopy equivalence if and only if the space 𝑋 is a weak homotopy
limit of the subspaces 𝑋𝑛.

We will prove an even more general proposition, which applies to the situa-
tion where we are given an arbitrary space 𝑋, which is a weak homotopy limit
of subspaces

𝑋0 ⊂ 𝑋1 ⊂ · · · ⊂ 𝑋𝑛 ⊂ · · ·

an arbitrary space 𝑌 , which is the union of an increasing sequence of subspaces

𝑌0 ⊂ 𝑌1 ⊂ · · · ⊂ 𝑌𝑛 ⊂ · · ·
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and a continuous map

𝑓 : 𝑋 → 𝑌

such that

𝑓 (𝑋𝑛) ⊂ 𝑌𝑛
for any 𝑛 ≥ 0. Let

𝑓𝑛 : 𝑋𝑛 → 𝑌𝑛, 𝑛 ≥ 0,

be the map de�ned by the map 𝑓 . This map is related to the map 𝑓 by the
formula

𝑓 ◦ 𝑖𝑛 = 𝑗𝑛 ◦ 𝑓𝑛,

where 𝑖𝑛 is, as above, the inclusion map 𝑋𝑛 ⊂ 𝑋, and 𝑗𝑛 is the inclusion map
𝑌𝑛 ⊂ 𝑌 . Moreover, for 𝑛 ≤ 𝑚, the maps 𝑓𝑛 and 𝑓𝑚 are related by the formula

𝑓𝑚 ◦ 𝑖𝑛 = 𝑗𝑛𝑚 ◦ 𝑓𝑛,

where 𝑖𝑛𝑚 : 𝑋𝑛 ⊂ 𝑋𝑚 and 𝑗𝑛𝑚 : 𝑌𝑛 ⊂ 𝑌𝑚.
We will show that

Proposition 2.62. if for any 𝑛 ≥ 0 the map 𝑓𝑛 is a weak homotopy equivalence,
then the following two statements are equivalent:

1) the space 𝑌 is a weak homotopy limit of subspaces 𝑌𝑛;

2) the map 𝑓 is a weak homotopy equivalence.

Proof. Indeed, let Statement 1) be true. Consider an arbitrary number 𝑘 ≥ 0
and an arbitrary point 𝑥𝑖𝑛𝑋. Since the space 𝑌 is a weak homotopy limit of
subspaces 𝑌𝑛, then for any element 𝛽 ∈ 𝜋𝑘 (𝑌 ; 𝑦), where 𝑦 = 𝑓 (𝑥), there exist a
number 𝑛 ≥ 𝑛𝑦𝑛 and an element 𝛽𝑛 ∈ 𝜋𝑘 (𝑌𝑛; 𝑦) such that 𝛽 = ( 𝑗𝑛)∗ (𝛽𝑛). In this
case, without loss of generality, we can assume that 𝑛 ≥ 𝑛𝑥 , i.e., that the group
𝜋𝑘 (𝑋𝑛; 𝑥) is meaningful. Since the corresponding homomorphism

( 𝑓𝑛)∗ : 𝜋𝑘 (𝑋𝑛; 𝑥) → 𝜋𝑘 (𝑌𝑛; 𝑦)

is, by assumption, an isomorphism, there exists an element 𝛼𝑛 ∈ 𝜋𝑘 (𝑋𝑛; 𝑥) such
that 𝛽𝑛 = ( 𝑓𝑛)∗ (𝛼𝑛). Consequently, assuming 𝛼 = (𝑖𝑛)∗ (𝛼𝑛), we get that

𝑓∗ (𝛼) = ( 𝑓 ◦ 𝑖𝑛)∗ (𝛼𝑛) = ( 𝑗𝑛 ◦ 𝑓𝑛)∗𝛼𝑛) = (𝑖𝑛)∗ (𝛽𝑛) = 𝛽.

Thus, for any number 𝑘 ≥ 0 and any point 𝑥 ∈ 𝑋, the homomorphism

𝑓∗ : 𝜋𝑘 (𝑋; 𝑥) → 𝜋𝑘 (𝑌 ; 𝑓 (𝑥)) (2.63)

is an epimorphism.
Now let 𝛼 and 𝛼

′
be elements of the group 𝜋𝑘 (𝑋; 𝑥), such that 𝑓∗ (𝛼) = 𝑓∗ (𝛼

′ ).
Since the space 𝑋 is a weak homotopy limit of subspaces 𝑋𝑛, there exist a number
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𝑛 ≥ 𝑛𝑥 and elements 𝛼𝑛, 𝛼
′
𝑛 ∈ 𝜋𝑘 (𝑋; 𝑥) such that 𝛼 = (𝑖𝑛)∗ (𝛼𝑛) and 𝛼

′
= (𝑖𝑛)∗ (𝛼

′
𝑛).

Let 𝛽𝑛 = ( 𝑓𝑛)∗ (𝛼𝑛) and 𝛽
′
𝑛 = ( 𝑓𝑛)∗ (𝛼

′
𝑛). Since

( 𝑗𝑛)∗ (𝛽𝑛) = ( 𝑗𝑛 ◦ 𝑓𝑛)∗ (𝛼𝑛) = ( 𝑓 ◦ 𝑖𝑛)∗ (𝛼𝑛)) = 𝑓∗ (𝛼)
= 𝑓∗ (𝛼

′ ) = ( 𝑓 ◦ 𝑖𝑛)∗ (𝛼
′
𝑛) = ( 𝑗𝑛 ◦ 𝑓 𝑛)∗ (𝛼

′
𝑛) = ( 𝑗𝑛)∗ (𝛽

′
𝑛),

then there exists a number 𝑚 ≥ 𝑛 such that

( 𝑗𝑛𝑚)∗ (𝛽𝑛) = ( 𝑗𝑛𝑚)∗ (𝛽
′
𝑛).

Therefore, putting 𝛼𝑚 = (𝑖𝑛𝑚)∗ (𝛼𝑛) and 𝛼
′
𝑚 = (𝑖𝑛𝑚)∗ (𝛼

′
𝑛), we get that

( 𝑓𝑚)∗ (𝛼𝑚) = ( 𝑓𝑚 ◦ 𝑖𝑛𝑚)∗ (𝛼𝑛) = ( 𝑗𝑛𝑚 ◦ 𝑓𝑛)∗ (𝛼𝑛)) = ( 𝑗𝑛𝑚)∗ (𝛽𝑛)
= ( 𝑗𝑛𝑚)∗ (𝛽

′
𝑛) = ( 𝑗𝑛𝑚 ◦ 𝑓𝑛)∗ (𝛼

′
𝑛) = ( 𝑓𝑚 ◦ 𝑖𝑛𝑚)∗ (𝛼

′
𝑛) = ( 𝑓𝑚)∗ (𝛼

′
𝑛).

Since the map ( 𝑓𝑚)∗ is, by assumption, isomorphic, it follows that 𝛼𝑚 = 𝛼
′
𝑚,

and therefore

𝛼 = (𝑖𝑛)∗ (𝛼𝑛) = (𝑖𝑚)∗ (𝛼𝑚) = (𝑖𝑚)∗ (𝛼
′
𝑚) = (𝑖𝑚 ◦ 𝑖𝑛𝑚)∗(𝛼

′
𝑛) = 𝛼

′
.

Thus, homomorphism (2.63) is also a monomorphism. Therefore, the implica-
tion 1) ⇒ 2) is completely proved.

Now let assertion 2) be true. We will prove that condition 1) of the de�nition
of a weak homotopy limit is satis�ed for the subspaces 𝑌𝑛, i.e., that for any
number 𝑘 ≥ 0, any point 𝑦 ∈ 𝑌 , and any element 𝛽 ∈ 𝜋𝑘 (𝑌 ; 𝑦), there exists a
number 𝑛 ≥ 𝑛𝑦 such that 𝛽 = ( 𝑗𝑛)∗ (𝛽). Since the map 𝑓 induces, by assumption,
a one-to-one correspondence between the path connected components of the
space 𝑋 and the path connected components of the space 𝑌 , we can, without
loss of generality, assume that 𝑦 = 𝑓 (𝑥), where 𝑥 is some point of the space 𝑋.
Consider the corresponding homomorphism

𝑓∗ : 𝜋𝑘 (𝑋; 𝑥) → 𝜋𝑘 (𝑌 ; 𝑦).

Since this homomorphism is, by assumption, an isomorphism, there exists an
element 𝛼 ∈ 𝜋𝑘 (𝑋; 𝑥) such that 𝛽 = 𝑓∗ (𝛼). Since the space 𝑋 is a weak homotopy
limit of subspaces 𝑋𝑛, there exists a number 𝑛 ≥ 𝑛𝑥 ≥ 𝑛𝑦 and an element
𝛼𝑛 ∈ 𝜋𝑘 (𝑋; 𝑥) such that 𝛼 = (𝑖𝑛)∗ (𝛼𝑛). Therefore, setting 𝛽𝑛 = ( 𝑓𝑛)∗ (𝛼𝑛), we
obtain that:

𝛽 = ( 𝑓 ◦ 𝑖𝑛)∗ (𝛼𝑛) = ( 𝑗𝑛 ◦ 𝑓𝑛)∗ (𝛼𝑛) = ( 𝑗𝑛)∗ (𝛽𝑛).
Condition 2) is checked in a completely similar way.
Thus, the above statement is fully proven. □

We will say that the space 𝑋 is a homotopy limit of the sequence of subspaces

𝑋0 ⊂ 𝑋1 ⊂ · · · ⊂ 𝑋𝑛 ⊂ · · · (2.64)

if the map
𝑝Σ : 𝑋Σ → 𝑋

is a homotopy equivalence. By the proposition just proved,
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Proposition 2.65. any space 𝑋 that is a homotopy limit of subspaces 𝑋𝑛 is
also their weak homotopy limit.

We will begin our study of homotopy limits by proving that

Proposition 2.66. if

1) every point 𝑥 ∈ 𝑋 is an interior point of some subspace 𝑋𝑛, i.e., the family
{int 𝑋𝑛; 𝑛 ≥ 0} is an open covering of 𝑋;

2) the covering {int 𝑋𝑛; 𝑛 ≥ 0} can be re�ned into a locally �nite open covering
Γ = {𝑈𝛼;𝛼 ∈ 𝐴}, for which there exists a subordinate partition of unity
{ 𝑓𝛼;𝛼 ∈ 𝐴},

then the space 𝑋 is a homotopy limit of the subspaces 𝑋𝑛.

Proof. Indeed, denoting for each element 𝛼 ∈ 𝐴 by the symbol 𝑏(𝛼) the smallest
𝑛 for which 𝑈𝛼 ∈ int 𝑋𝑛, and setting

𝑓 (𝑥) =
∑︁
𝛼∈𝐴

𝑛(𝛼) 𝑓𝛼 (𝑥), 𝑥 ∈ 𝑋,

we de�ne on the space 𝑋 a certain numerical function 𝑓 (𝑥). This function, as is
easy to see, is continuous (since the covering Γ, by assumption, is locally �nite).
Furthermore, it has the property that 𝑓 (𝑥) ≥ 𝑛 + 1 for 𝑥 ∉ 𝑋𝑛, since if 𝑥 ∉ 𝑋𝑛,
then 𝑓 (𝑥) = 0 for all 𝛼 ∈ 𝐴 for which 𝑛(𝛼) ≤ 𝑛, and therefore

𝑓 (𝑥) ≥ (𝑛 + 1)
∑︁
𝛼∈𝐴

𝑓𝛼 (𝑥) = 𝑛 + 1.

Consequently, the formula

𝑞(𝑥) = (𝑥, 𝑓 (𝑥)), 𝑥 ∈ 𝑋,

de�nes a continuous map
𝑞 : 𝑋 → 𝑋Σ .

Clearly, 𝑝 ◦ 𝑞 = 1𝑋. Moreover, the formula

𝜉𝜏 (𝑥, 𝑡) = (𝑥, (1 − 𝜏)𝑡 + 𝜏 𝑓 (𝑥)), (𝑥, 𝑡) ∈ 𝑋Σ, 0 ≤ 𝜏 ≤ 1,

de�nes, as is easy to see, a deformation 𝜉𝜏 : 𝑋Σ → 𝑋Σ, for which 𝜉1 = 𝑞 ◦ 𝑝.
Thus, the map 𝑝 is, as stated, a homotopy equivalence.

For the existence of a partition of unity { 𝑓𝛼;𝛼 ∈ 𝐴} subordinate to a locally
�nite covering Γ, it is su�cient, as we know, that the space 𝑋 be normal. On
the other hand, for a covering Γ to exist, it is su�cient, for example, to require
that the space 𝑋 be paracompact or (assuming that 𝑋 is normal) that for any
𝑛 ≥ 0 the inclusion int 𝑋𝑛 ⊂ int 𝑋𝑛+1 holds. (Indeed, in the latter case, the
locally �nite covering inscribed in the covering {int 𝑋𝑛; 𝑥 ≥ 0} is the covering
{int 𝑋1, int 𝑋𝑛+1 \𝑉𝑛−1; 𝑛 ≥ 0}, where 𝑉𝑛−1 is a neighbourhood of the set int 𝑋𝑛−1
such that 𝑉𝑛−1 ⊂ int 𝑋𝑛). Thus,
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Proposition 2.67. if condition 1) of the previous proposition is satis�ed, and
the space 𝑋 is normal and, in addition, either this space is paracompact or

int 𝑋𝑛 ⊂ int 𝑋𝑛+1

for any 𝑛 ≥ 0, then the space 𝑋 is a homotopy limit of the subspaces 𝑋𝑛.

These conditions are by no means necessary.
Let us now consider (for an arbitrary space 𝑋 and arbitrary subspaces 𝑋𝑛),

the subspaces
𝑋Σ
0 ⊂ 𝑋Σ

1 ⊂ · · · ⊂ 𝑋Σ
𝑛 ⊂ · · ·

of the space 𝑋Σ. It is clear that int 𝑋Σ
𝑛 is the set of all points (𝑥, 𝑡) ∈ 𝑋Σ for

which 𝑡 < 𝑛. Therefore,

𝑋Σ =

∞∑︁
𝑛=0

int 𝑋Σ
𝑛 ,

i.e., for the subspaces 𝑋Σ
𝑛 , condition 1) of the proposition proved above is satis-

�ed. Moreover, it is easy to see that the sets

int 𝑋Σ
1 , int 𝑋Σ

𝑛+1 \ int 𝑋Σ
𝑛−1 𝑛 ≥ 1, (2.68)

form a locally �nite covering re�ning the covering {int 𝑋Σ
𝑛 ; 𝑛 ≥ 0}, and the

functions 𝑓𝑛+1, 𝑛 ≥ 0, de�ned by the formula

𝑓𝑛+1 (𝑥, 𝑡) =


0, if 𝑡 ≤ 𝑛 − 3

4 or 𝑡 ≥ 𝑛 + 3
4 ,

4𝑡−4𝑛+3
2 , if 𝑛 − 3

4 ≤ 𝑡 ≤ 𝑛 − 1
4 ,

1, if 𝑛 − 1
4 ≤ 𝑡 ≤ 𝑛 + 1

4 ,
3+4𝑛−4𝑡

2 , if 𝑛 − + 1
4 ≤ 𝑡 ≤ 𝑛 + 3

4 ,

constitute a decomposition of the unit subordinate to covering (2.68). Hence,

Proposition 2.69. for any space 𝑋 and any of its subspaces

𝑋0 ⊂ 𝑋1 ⊂ · · · ⊂ 𝑋𝑛 ⊂ · · ·

the space 𝑋Σ is the homotopy limit of the subspaces

𝑋Σ
𝑛 = (𝑋0 × [0, 1]) ∪ · · · ∪ (𝑋𝑛−1 × [𝑛 − 1, 𝑛]) ∪ (𝑋𝑛 × 𝑛).

This proposition is a strengthening of the property of subspaces 𝑋Σ
𝑛 proved

above. Using it, we can extend the basic properties of weak homotopy limits to
the case of homotopy limits.

Let, for example, 𝑋 be an arbitrary space that is a homotopy limit of the
subspaces

𝑋0 ⊂ 𝑋1 ⊂ · · · ⊂ 𝑋𝑛 ⊂ · · ·
𝑌 be an arbitrary space in which an increasing sequence of subspaces

𝑌0 ⊂ 𝑌1 ⊂ · · · ⊂ 𝑌𝑛 ⊂ · · ·
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is de�ned, and 𝑓 be a continuous map

𝑓 : 𝑋 → 𝑌

such that
𝑓 (𝑋𝑛) ⊂ 𝑌𝑛

for any 𝑛 ≥ 0. Then

Proposition 2.70. if for each 𝑛 ≥ 0 the map 𝑓 de�ned by

𝑓𝑛 : 𝑋𝑛 → 𝑌𝑛

is a homotopy equivalence, then the following two conditions are equivalent:

1) the space 𝑌 is a homotopy limit of the subspaces 𝑌𝑛;

2) the map 𝑓 is a homotopy equivalence.

Proof. Indeed, let, as above,

𝑋Σ = ∪∞
𝑘=0(𝑋𝑘 × [𝑘, 𝑘 + 1])

and let similarly
𝑌Σ = ∪∞

𝑘=0 (𝑌𝑘 × [𝑘, 𝑘 + 1]).
Since 𝑓 (𝑋𝑘) ⊂ 𝑌𝑘 , the formula

𝑓 Σ (𝑥, 𝑡) = ( 𝑓 (𝑥), 𝑡), (𝑥, 𝑡) ∈ 𝑋Σ,

de�nes a continuous map
𝑓 Σ : 𝑋Σ → 𝑌Σ

The map 𝑓 is obviously related to the map 𝑓 Σ by the formula

𝑓 ◦ 𝑝Σ = 𝑝Σ ◦ 𝑓 Σ,

where
𝑝Σ : 𝑋Σ → 𝑋, 𝑝Σ : 𝑌Σ → 𝑌

are natural maps. Therefore, if statement 1) is true, then the map 𝑓 Σ is ho-
motopically equivalent to the map 𝑓 , and if statement 2) is true, then the
composition of the maps 𝑓 Σ and 𝑝Σ is a homotopy equivalence. Therefore, to
prove the equivalence of statements 1) and 2), it su�ces to prove that

Proposition 2.71. the map 𝑓 Σ is a homotopy equivalence.

Let us �rst consider the case when 𝑋 = 𝑌 and 𝑋𝑛 = 𝑌𝑛 for all 𝑛 ≥ 0. Let, in
addition, each map

𝑓𝑛 : 𝑋𝑛 → 𝑋𝑛, 𝑛 ≥ 0,

be homotopically identical and let

𝜉𝑛,𝑡 : 𝑋𝑛 → 𝑋𝑛
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be a deformation of the space 𝑋𝑛 that connects the identity map 1𝑋𝑛
with the

map 𝑓𝑛. For any point 𝑥 ∈ 𝑋𝑛, 𝑛 ≥ 0, and any 𝑡, 𝜏 ∈ 𝐼, we set

ℎ𝜏 (𝑥, 𝑛 + 𝑡) =



( 𝑓 (𝑥), 𝑛 + 𝑡 (2𝜏 + 1)), if 0 ≤ 𝜏 ≤ 1/2, 0 ≤ 𝑡 ≤ 1/2,
( 𝑓 (𝑥), 𝑛 + 2(1 − 𝑡)𝜏 + 𝑡), if 0 ≤ 𝜏 ≤ 1/2, 1/2 ≤ 𝑡 ≤ 1,

(𝜉𝑛,2−2𝜏 (𝑥), 𝑛 + 2𝑡), if 1/2 ≤ 𝜏 ≤ 1, 0 ≤ 𝑡 ≤ 1/2,
(𝜉𝑛,1−(3−4𝑡 ) (2𝜏−1) (𝑥), 𝑛 + 1), if 1/2 ≤ 𝜏 ≤ 1, 1/2 ≤ 𝑡 ≤ 3/4,
(𝜉𝑛+1,1−(4𝑡−3) (2𝜏−1) (𝑥), 𝑛 + 1), if 1/2 ≤ 𝜏 ≤ 1, 3/4 ≤ 𝑡 ≤ 1.

It is easy to see (Fig. 2.4) that we thereby obtain a certain homotopy

Figure 2.4:

ℎ𝜏 : 𝑋
Σ → 𝑋Σ

connecting the map 𝑓 Σ with the map ℎ de�ned by the formula

ℎ(𝑥, 𝑛 + 𝑡) =

(𝑥, 𝑛 + 2𝑡), if 0 ≤ 𝑡 ≤ 1/2,
(𝜉𝑛,4𝑡−2 (𝑥), 𝑛 + 1), if 1/2 ≤ 𝑡 ≤ 3/4,
(𝜉𝑛+1,4−4𝑡 (𝑥), 𝑛 + 1), if 3/4 ≤ 𝑡 ≤ 1.

Therefore, it is su�cient for us to prove that the map ℎ is a homotopy equiva-
lence. With this in mind, we note that by the equality

ℎ

(
𝑥, 𝑛 + 1

2

)
= ℎ(𝑥, 𝑛 + 1) = ℎ(𝑥, 𝑛 + 1)
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the formula

𝑔(𝑥, 𝑛 + 𝑡) =
{
(𝑥, 𝑛 + 2𝑡), if 0 ≤ 𝑡 ≤ 1/2,
ℎ

(
𝑥, 𝑛 + 3−2𝑡

2

)
, if 1/2 ≤ 𝑡 ≤ 1.

uniquely determines some continuous map

𝑔 : 𝑋Σ → 𝑋Σ .

Let

𝜂𝜏 (𝑥, 𝑛 + 𝑡) =



(𝑥, 𝑛 + (1 + 6𝜏)𝑡), if 0 ≤ 𝜏 ≤ 1/2, 0 ≤ 𝑡 ≤ 1/4,
(𝑥, 𝑛 + 2(1 − 𝑡)𝜏 + 𝑡), if 0 ≤ 𝜏 ≤ 1/2, 1/4 ≤ 𝑡 ≤ 1,

(ℎ ◦ 𝑔) (𝑥, 𝑛 + 𝑡), if 1/2 ≤ 𝜏 ≤ 1, 0 ≤ 𝑡 ≤ 𝜏/2,
ℎ(𝑥, 𝑛 + 𝜏), if 1/2 ≤ 𝜏 ≤ 1, 𝜏/2 ≤ 𝑡 ≤ 3−2𝜏

2 ,

(ℎ ◦ 𝑔) (𝑥, 𝑛 + 𝑡), if 1/2 ≤ 𝜏 ≤ 1, 3−2𝜏
2 ≤ 𝑡 ≤ 1.

Since
(ℎ ◦ 𝑔)

(
𝑥, 𝑛 + 𝜏

2

)
= ℎ(𝑥, 𝑛 + 𝜏), 0 ≤ 𝜏 ≤ 1,

we have

(ℎ ◦ 𝑔)
(
𝑥, 𝑛 + 𝜏

2

)
= (ℎ ◦ ℎ)

(
𝑥, 𝑛 +

3 − 2 3−2𝜏
2

2

)
= (ℎ ◦ ℎ) (𝑛 + 𝜏) =

{
ℎ(𝜉𝑛,𝜏−2(𝑥), 𝑛 + 1) = (𝜉𝑛,𝜏−2(𝑥), 𝑛 + 1)
ℎ(𝜉𝑛+1,4−4𝜏 (𝑥), 𝑛 + 1) = (𝜉𝑛+1,4−4𝜏 (𝑥), 𝑛 + 1)

= ℎ(𝑥, 𝑛 + 𝜏), 1/2 ≤ 𝜏 ≤ 1,

and
(ℎ ◦ 𝑔) (𝑥, 𝑛 + 𝑡) = (𝑥, 𝑛 + 4𝑡), 0 ≤ 𝑡 ≤ 1/4,

this formula de�nes (Fig. 2.5) a certain homotopy,

𝜂𝜏 : 𝑋
Σ → 𝑋Σ, 0 ≤ 𝜏 ≤ 1,

connecting the identity map 1𝑋Σ with the map

ℎ ◦ 𝑔 : 𝑋Σ → 𝑋Σ .

Similarly, in view of the equalities

(𝑔 ◦ ℎ) (𝑥, 𝑛 + 𝜏

2
) = 𝑔(𝑥, 𝑛 + 𝜏), 0 ≤ 𝜏 ≤ 1,

we have

(𝑔 ◦ ℎ)
(
𝑥, 𝑛 + 3 − 2𝜏

2

)
= ℎ

(
𝑥, 𝑛 + 3 − 2𝜏

2

)
= 𝑔(𝑛 + 𝜏), 1/2 ≤ 𝜏 ≤ 1,
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Figure 2.5:

and
(𝑔 ◦ ℎ) (𝑥, 𝑛 + 𝑡) = (𝑥, 𝑛 + 4𝑡), 0 ≤ 𝑡 ≤ 1/4,

the formula

𝜂𝜏 (𝑥, 𝑛 + 𝑡) =



(𝑥, 𝑛 + (1 + 6𝜏)𝑡), if 0 ≤ 𝜏 ≤ 1/2, 0 ≤ 𝑡 ≤ 1/4,
(𝑥, 𝑛 + (1 − 𝑡)𝜏 + 𝑡), if 0 ≤ 𝜏 ≤ 1/2, 1/4 ≤ 𝑡 ≤ 1,

(𝑔 ◦ ℎ) (𝑥, 𝑛 + 𝑡), if 1/2 ≤ 𝜏 ≤ 1, 0 ≤ 𝑡 ≤ 𝜏/2,
𝑔(𝑥, 𝑛 + 𝜏), if 1/2 ≤ 𝜏 ≤ 1, 𝜏/2 ≤ 𝑡 ≤ 3−2𝜏

2 ,

(𝑔 ◦ ℎ) (𝑥, 𝑛 + 𝑡), if 1/2 ≤ 𝜏 ≤ 1, 3−2𝜏
2 ≤ 𝑡 ≤ 1.

de�nes some homotopy

𝜂𝜏 : 𝑋
Σ → 𝑋Σ, 0 ≤ 𝜏 ≤ 1,

connecting the identity map 1𝑋Σ with the map

𝑔 ◦ ℎ : 𝑋Σ → 𝑋Σ .

Thus, in the particular case under consideration, the map 𝑓 Σ is indeed a homo-
topy equivalence.

Let us now consider the general case.
Let

𝑔𝑛 : 𝑌𝑛 → 𝑋𝑛, 𝑛 ≥ 0,
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be homotopy equivalences inverse to the homotopy equivalences of 𝑓𝑛, and let

𝑖𝑛 : 𝑋𝑛 ⊂ 𝑋𝑛+1, 𝑗𝑛 : 𝑌𝑛 ⊂ 𝑌𝑛+1

be inclusion maps. Since 𝑓𝑛+1 ◦ 𝑖𝑛 = 𝑗𝑛 ◦ 𝑓𝑛, then

𝑖𝑛 ◦ 𝑔𝑛 ∼ 𝑔𝑛+1 ◦ 𝑓𝑛+1 ◦ 𝑖𝑛 ◦ 𝑔𝑛 = 𝑔𝑛+1 ◦ 𝑗𝑛 ◦ 𝑓𝑛 ◦ 𝑔𝑛 ∼ 𝑔𝑛+1 ◦ 𝑗𝑛.

Let
ℎ𝑛,𝜏 : 𝑌𝑛 → 𝑋𝑛+1, 0 ≤ 𝜏 ≤ 1,

be an arbitrary homotopy connecting the map 𝑖𝑛 ◦ 𝑔𝑛 with the map 𝑔𝑛+1 ◦ 𝑗𝑛. It
is easy to see that the formula

ℎ(𝑦, 𝑛 + 𝑡) =
{
(𝑔𝑛 (𝑦), 𝑛 + 2𝑡), if 0 ≤ 𝑡 ≤ 1/2,
(ℎ𝑛,2𝑡−1 (𝑦), 𝑛 + 1), if 1/2 ≤ 𝑡 ≤ 1.

where 𝑦 ∈ 𝑌𝑛, 𝑛 ≥ 𝑡 and 0 ≤ 𝑡 ≤ 1, uniquely determines some continuous map

ℎ : 𝑌Σ → 𝑋Σ .

Consider the map
ℎ ◦ 𝑓 Σ : 𝑋Σ → 𝑋Σ .

It is clear that
(ℎ ◦ 𝑓 Σ) (𝑋Σ

𝑛 ) ⊂ 𝑋Σ
𝑛 , 𝑛 ≥ 0,

and therefore for any 𝑛 ≥ 0 the map 𝑓 ◦ 𝑓 Σ de�nes a certain map

(ℎ ◦ 𝑓 Σ)𝑛 : 𝑋Σ
𝑛 → 𝑋Σ

𝑛 .

Moreover, for any point 𝑥 ∈ 𝑋 the equality

(ℎ ◦ 𝑓 Σ)𝑛 (𝑥, 𝑛) = ((𝑔𝑛 ◦ 𝑓𝑛) (𝑥), 𝑛).

holds. In other words,

(ℎ ◦ 𝑓 Σ)𝑛 ◦ 𝑞Σ𝑛 = 𝑞Σ𝑛 ◦ (𝑔𝑛 ◦ 𝑓𝑛).

where 𝑞Σ𝑛 is the homotopy equivalence 𝑞Σ𝑛 : 𝑋𝑛 → 𝑋Σ
𝑛 constructed above, which

is inverse to the homotopy equivalence 𝑝Σ𝑛 : 𝑋Σ
𝑛 → 𝑋𝑛. Therefore,

(ℎ ◦ 𝑓 Σ)𝑛 ∼ (ℎ ◦ 𝑓 Σ)𝑛 ◦ (𝑞Σ𝑛 ◦ 𝑝Σ𝑛 ) = 𝑞Σ𝑛 ◦ ((𝑔𝑛 ◦ 𝑓𝑛) ◦ 𝑝Σ𝑛 ∼ 𝑞Σ𝑛 ∼ 𝑞Σ𝑛 ◦ 𝑝Σ𝑛 ∼ 1𝑋Σ
𝑛
.

Thus, the map ℎ◦ 𝑓 Σ has (with respect to the subspaces 𝑋Σ
𝑛 ) the property that

we required of the map 𝑓 in the �rst part of the proof. Therefore, by what has
already been proved, the map ℎ ◦ 𝑓 Σ is a homotopy equivalence. Consequently,
the map 𝑓 Σ is homotopy injective.

Similarly, the map
𝑓 Σ ◦ ℎ : 𝑌Σ → 𝑌Σ
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has the property that

( 𝑓 Σ ◦ ℎ) (𝑌Σ
𝑛 ) ⊂ 𝑌Σ

𝑛 , 𝑛 ≥ 0,

and therefore de�nes maps

( 𝑓 Σ ◦ ℎ)𝑛 : (𝑌Σ
𝑛 ) → 𝑌Σ

𝑛 , 𝑛 ≥ 0,

satisfying the relation

( 𝑓 Σ ◦ ℎ)𝑛 ◦ 𝑞Σ𝑛 = 𝑞Σ𝑛 ◦ ( 𝑓𝑛 ◦ 𝑔𝑛).

where 𝑞Σ𝑛 is the map 𝑞Σ𝑛 constructed for the spaces 𝑌𝑛. From the last relation
it follows that the maps ( 𝑓 Σ ◦ ℎ)𝑛 are homotopy identities. Therefore, the map
𝑓 Σ ◦ ℎ is also a homotopy equivalence, and therefore the map 𝑓 Σ is homotopy
sujective. □

Being both homotopically injective and homotopically surjective, the map
𝑓 Σ is a homotopy equivalence. □





Chapter 3

Cellular decompositions

General cellular decompositions seem to provide us with the most natural stock
of objects for constructing a homotopy theory. They have all the basic geo-
metric properties of classical simplicial decompositions (triangulations), and at
the same time their theory compares favourably with the theory of simplicial
decompositions in its generality, structure, and internal integrity. However, un-
til now no one has apparently attempted to give a coherent and independent
exposition of the basic properties of cellular decompositions. This chapter is the
�rst attempt in this direction.

The de�nition and simplest properties of cellular decompositions are pre-
sented in �3.1 and �3.2.

In �3.3 it is proved that any cellularly decomposed space is paracompact
(and, therefore, normal). Here it is also proved that the topological product
of two cellular decompositions is a cellular decomposition if at least one of the
given decompositions is locally �nite or if both of them are locally countable.

In �3.4, after a number of simple remarks on continuous maps of cellularly
decomposed spaces, it is proved that any cellular pair satis�es the axiom of ho-
motopy extension, and the main theorem on cellular maps is formulated (along
with some corollaries). �3.5 is devoted to the proof of this last theorem.

In the �nal �3.6, a remarkable theorem of Whitehead is proved that any weak
homotopy equivalence connecting cellular spaces is a homotopy equivalence. In
this section, several simple remarks are placed on quasi-polyhedra (i.e., spaces
homotopy equivalent to cellularly decomposed spaces).

3.1 Cellular pre-decompositions

Let 𝑋 be an arbitrary Hausdor� space. We call a subset 𝑒 of 𝑋 an (open) cell
if there exists a continuous map

𝜒 : E𝑛 → 𝑋 (3.1)

97
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of the unit Euclidean ball E𝑛 into 𝑋 that homeomorphically maps the open ball
¤E𝑛 onto the set 𝑒 and has the property that 𝜒(S𝑛−1)∩𝑒 = ∅ where S𝑛−1 = E𝑛\ ¤E𝑛.
We will call the dimension 𝑛 of the ball E𝑛 the dimension dim 𝑒 of the cell
𝑒. Clearly, it is uniquely determined by the cell 𝑒 (since the balls E𝑛 are not
homeomorphic for di�erent 𝑛). When it is necessary to speci�cally indicate the
dimension 𝑛 of the cell 𝑒, we will denote this cell by the symbol 𝑒𝑛.

The image 𝜒(E𝑛) of the ball E𝑛 under map (3.1) is compact and therefore a

closed subset of the Hausdor� space 𝑋. Consequently, the closure 𝑒 = 𝜒(E𝑛) of
the cell 𝑒 is contained in the set 𝜒(E𝑛) and therefore coincides with it (since the

continuity of the map 𝜒 implies the inclusion 𝜒(E𝑛) ⊂ 𝜒( ¤𝐸𝑛) (see the properties
of continuous maps in �1.5). Thus,

Proposition 3.2. the image of the ball E𝑛 under the map (3.1) is the closure
𝑒 of the cell 𝑒.

The cells of the space 𝑋 need not be open in 𝑋. For example, for 𝑛 = 0,
the ball E0 = ¤𝐸𝑛 is a one-point space, so that any point of the space 𝑋 is its
zero-dimensional cell.

For 𝑛 > 0, the points of the ball E𝑛 have the form 𝑣𝒖, where 0 ≤ 𝑣 ≤ 1, and
𝒖 is the unit vector, i.e., a point of the unit sphere S𝑛−1. Thus, any point of the
set 𝑒 (after the map (3.1) is chosen) has the form 𝜒(𝑣𝒖), where 0 ≤ 𝑣 ≤ 1, and
|𝒖 | = 1. Moreover, the number 𝑣 is uniquely determined by a given point. The
vector 𝒖 is also uniquely determined if only 0 < 𝑣 < 1.

We will call map (3.1) characteristic for the cell 𝑒. Clearly, every map of the
form 𝜒 ◦ 𝛼 is also characteristic, where 𝛼 : E𝑛 → E𝑛 is an arbitrary homeomor-
phism of the ball E𝑛 onto itself. However, there may exist characteristic maps
E𝑛 → 𝑋 for the cell 𝑒 that are di�erent from maps of the form 𝜒 ◦ 𝛼.

Thus, for example, for a disk E2 in a plane, along with all possible home-
omorphisms E2 → E2, its characteristic maps are identi�cation maps, under
which some arc of the boundary circle S1 is contracted to a point.

Sometimes it will be convenient for us to imagine the set 𝑒 as a continuous
image not of the unit ball E𝑛, but of some space E𝑛𝑒 homeomorphic to the ball E𝑛

(for example, the unit cube or the product E𝑝×E𝑞, where 𝑝+𝑞 = 𝑛). In this case,
the maps E𝑛𝑒 → 𝑋, which are the composition of some homeomorphism E𝑛𝑒 → E𝑛

and an arbitrary characteristic map E𝑛 → 𝑋, we will also call characteristic
maps.

Since the space 𝑋 is, by assumption, Hausdor� and the ball E𝑛 is compact,
the characteristic map 𝜒 (considered as a map of the ball E𝑛 onto the closure 𝑒
of the cell 𝑒) is an identi�cation map and therefore

Proposition 3.3. the topology of the set 𝑒 is the identi�cation topology.

In particular, we see that the topology of the set 𝑒 does not depend on the
topology of the space 𝑋 in the sense that any other topology in 𝑋 in which
the set 𝑒 is a cell (with characteristic map 𝜒) induces the same identi�cation
topology on 𝑒.

Note that, being a continuous image of a compact and path-connected set
E𝑛,
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Proposition 3.4. the set 𝑒 is compact and path-connected.

The set

¤𝑒 = 𝑒 \ 𝑒

will be called the boundary of the cell 𝑒. For any choice of the characteristic
map 𝜒 : E𝑛 → 𝑋, it coincides with the set 𝜒(S𝑛−1). Therefore, for 𝑛 > 1, the set
¤𝑒 is path-connected, and for 𝑛 = 1, it consists of at most two points. For 𝑛 = 0,
the set ¤𝑒 is empty.

The main object of our study will be certain families 𝐾 of pairwise disjoint
cells 𝑒 ⊂ 𝑋. For each such family, we will denote by |𝐾 | its body, i.e., the subspace
of 𝑋 that is the union of all cells 𝑒 ∈ 𝐾, and by 𝐾𝑛, where 𝑛 is some non-negative
integer, its 𝑛-th skeleton, i.e., the subfamily of the family 𝐾 consisting of all cells
𝑒 ∈ 𝐾 whose dimension dim 𝑒 does not exceed 𝑛. It is convenient to add to the
number of skeletons the empty subfamily of the family 𝐾, considering it the
(−1)-th skeleton of 𝐾−1, as well as the family 𝐾 itself, considering it the ∞-th
skeleton of 𝐾∞.

By choosing characteristic maps 𝜒𝑒 : E𝑒 → 𝑋 for all cells 𝑒 of the family 𝐾
such that E𝑒1 ∩ E𝑒2 = ∅ for 𝑒1 ≠ 𝑒2, we can de�ne a topological sum

𝑃𝐾 = ∪𝑒∈𝐾E𝑒

of the spaces E𝑒 and a map

𝜒 : 𝑃𝑘 → 𝑋,

coinciding on each of the summands of E𝑒 with the corresponding map 𝜒𝑒. We
will call the (obviously continuous) map 𝜒 : 𝑃𝑘 → 𝑋 constructed in this way
characteristic for the family 𝐾.

A family 𝐾 of pairwise disjoint cells 𝑒 ⊂ 𝐾 will be called a cellular pre-
decomposition of the space 𝑋 if |𝐾 | = 𝑋 and for any 𝑛 > 0 the boundary ¤𝑒𝑛 of
each 𝑛-dimensional cell 𝑒𝑛 ∈ 𝐾 belongs to the subspace |𝐾𝑛 | (the body of the
𝑛 − 1-th skeleton).

Remark 3.5. Usually, the condition 𝜒(S𝑛−1 ∩ 𝑒) = ∅ is not included in the
de�nition of a cell, since only cells that make up pre-decompositions are of
interest, and for such cells this condition is satis�ed automatically.

It is clear that

Proposition 3.6. any cellular sub-decomposition 𝐾 contains at least one zero-
dimensional cell, i.e., its 0-th skeleton 𝐾0 is not empty (unless, of course, the
space 𝑋 is empty).

In what follows, we will call the zero-dimensional cells of a cellular pre-
decomposition 𝐾 its vertices.

Since

𝐾𝑚 ⊂ 𝐾𝑛

for 𝑚 ≤ 𝑛 and, in particular, 𝐾0 ⊂ 𝐾𝑛 for 𝑛 ≥ 0, then
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Proposition 3.7. any skeleton 𝐾𝑛 of an arbitrary cellular pre-decomposition
𝐾 is not empty.

A pre-decomposition 𝐾 is called �nite-dimensional if there exists 𝑛 ≥ 0 such
that 𝐾 = 𝐾𝑛. The smallest of these 𝑛 is called the dimension dim𝐾 of the pre-
decomposition 𝐾. Clearly, 𝐾𝑚 = 𝐾 for any 𝑚 ≥ dim𝐾. Moreover, dim𝐾𝑚 ≤ 𝑚
for any 𝑚 ≥ 0 (the strict inequality dim𝐾𝑚 < 𝑚 holds if the decomposition 𝐾
has no cells of dimension 𝑚).

Remark 3.8. Thus, for unequal 𝑛 and 𝑚, the equality 𝐾𝑛 = 𝐾𝑚 is possible (even
for 𝑛 and 𝑚 less than dim𝐾). This is possible when the pre-decomposition has
no cells of intermediate dimensions.

Example 3.9. (of pre-decompositions.)

1) Every Hausdor� space 𝑋 can be �scattered� into a family 𝐾 consisting of all
its points. This family will be a cellular pre-decomposition of 𝑋 containing
only zero-dimensional cells.

2) For any 𝑛 ≥ 0, the family 𝐾 = {𝑒0, 𝑒𝑛} consisting of the point 𝑒0 = 𝒖0 =

(1, 0, . . . , 0) of the sphere S𝑛 and its complement 𝑒𝑛 = S𝑛 \ 𝒖0 is a cellular
pre-decomposition of the sphere S𝑛. Here ¤𝑒𝑛 = 𝑒0 (if 𝑛 > 0), 𝑘𝑚 = {𝑒0} for
0 ≤ 𝑚 < 𝑛, and 𝐾𝑚 = 𝐾 for 𝑚 ≥ 𝑛.

3) For any 𝑛 ≥ 0, the family 𝑘 = {𝑒0, 𝑒𝑛, 𝑒𝑛+1} consisting of the cell 𝑒𝑛+1 = ¤E𝑛
and the pre-decomposition {𝑒0, 𝑒𝑛} of the sphere S𝑛 constructed in Example
2) is a cellular pre-decomposition of the ball E𝑛+1. Similarly, the family
consisting of two points 0 and 1 and the open interval (0, 1) is a cellular
pre-decomposition of the segment 𝐼 = [0, 1]. Taking liberties, we will denote
this pre-decomposition by the same symbol 𝐼.

4) For any 𝑛 ≥ 0, the family 𝐾 consisting of the cell 𝑒𝑛+1 = ¤E𝑛 and all points
of the sphere S𝑛 is also a cellular pre-decomposition of the ball E𝑛+1. Its
0-th skeleton 𝐾0 contains (for 𝑛 > 0) an uncountable number of cells and is
a pre-decomposition of 1), constructed for the space 𝑋 = S𝑛.

Remark 3.10. A reader familiar with the concept of a (�nitely) triangulated
space will immediately recognise that any triangulation of such a space is a cellu-
lar pre-decomposition of it. In the following discussion, cellular pre-decomposition
of this kind are not used.

We will call a subfamily 𝐿 of a cellular pre-decomposition 𝐾 its sub-pre-
decomposition if 𝑒 ⊂ |𝐿 | for any cell 𝑒 ∈ 𝐿. It is clear that

1) any sub-pre-decomposition 𝐿 is a cellular pre-decomposition of the subspace
|𝐿 |;

2) any subfamily 𝐿 of a cellular pre-decomposition 𝐾, for which the subspace
|𝐿 | is closed, is a sub-pre-decomposition;

3) for any 𝑛 ≥ 0, the skeleton 𝐾𝑛 is a sub-pre-decomposition of the pre-decomposition
𝐾;
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4) the union and intersection of any (�nite or in�nite) system {𝐿𝛼} of sub-pre-
decomposition of the pre-decomposition 𝐾 is also a sub-pre-decomposition,
and

|∩𝐿𝛼 | = ∩|𝐿𝛼 |, |∪𝐿𝛼 | = ∪|𝐿𝛼 |.

In connection with assertion 2), we note that there may well exist sub-pre-
decompositions of 𝐿 for which the subspace |𝐿 | is not closed. (For example, any
subset of the space 𝑋 is a sub-pre-decomposition of the pre-decomposition of
this space speci�ed in Example 3.9 - 1)). However,

Proposition 3.11. for any �nite (i.e., consisting of a �nite number of cells)
sub-pre-decomposition of 𝐿, the subspace |𝐿 | is closed and even compact.

Proof. Indeed, in this case the subspace |𝐿 | is the union of a �nite number of
compact sets 𝑒, 𝑒 ∈ 𝐿. □

From property 4) it follows, in particular, that

Proposition 3.12. for any subset 𝐴 ⊂ 𝑋 there exists a smallest sub-pre-
decomposition 𝐿 ⊂ 𝐾 for which |𝐿 | ⊃ 𝐴.

Such a sub-pre-decomposition is the intersection of all sub-pre-decompositions
of 𝐿 ⊂ 𝐾 for which |𝐿 | ⊃ 𝐴. We will denote it by the symbol 𝐾 (𝐴).

It is clear that

1) for any point 𝑥 ∈ 𝑋, the equality

𝐾 (𝑥) = 𝐾 (𝑒) = 𝐾 (𝑒)

holds, where 𝑒 is a cell of the pre-decomposition 𝐾 containing the point 𝑥;

2) for any cell 𝑒 ∈ 𝐾, the sub-pre-decomposition 𝐾 (𝑒) consists of the sub-pre-
decomposition 𝐾 ( ¤𝑒) and the cell 𝑒:

𝐾 (𝑒) = {𝐾 ( ¤𝑒), 𝑒};

3) for any cell 𝑒 belonging to a sub-pre-decomposition 𝐿 of a pre-decomposition
𝐾, the equality

𝐿 (𝑒) = 𝐾 (𝑒)

holds.

We will call a cellular pre-decomposition 𝐾 of a space 𝑋 point �nite if any
point 𝑥 ∈ 𝑋 belongs to the body |𝐿 | of some �nite sub-pre-decomposition 𝐿 ⊂ 𝐾

or, in other words, if for any point 𝑥 ∈ 𝑋 the sub-pre-decomposition 𝐾 (𝑥) is
�nite. Similarly, if any point 𝑥 ∈ 𝑋 is an interior point of the body |𝐿 | of some
�nite (resp. countable) sub-pre-decomposition 𝐿 ⊂ 𝐾, then we will call the sub-
pre-decomposition 𝐾 locally �nite (respectively, locally countable). It is clear
that
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Proposition 3.13. any locally �nite pre-decomposition of 𝐾 is point �nite.

Moreover,

Proposition 3.14. any sub-pre-decomposition 𝐿 of a point �nite (resp. locally
�nite or locally countable) pre-decomposition 𝐾 is point �nite (respectively, lo-
cally �nite and locally countable).

Further, it is easy to see that

Proposition 3.15. for any locally �nite (resp. locally countable) pre-decomposition
𝐾 of 𝑋, the characteristic map

𝜒 : 𝑃𝐾 → 𝑋

is locally compact (respectively, locally countably compact).

Proof. Indeed, let 𝑝 be an arbitrary point in the space 𝑃𝐾 . By the condition,
the point 𝜒(𝑝) ∈ 𝑋 has in the space 𝑋 a neighbourhood 𝑈 contained in the
body |𝐿 | of some �nite (resp. countable) sub-pre-decomposition 𝐿 ⊂ 𝐾. Let
𝑆 = 𝜒−1(𝑈) and 𝐶 = 𝜒−1( |𝐿 |). It is clear that the set 𝑆 is a saturated (with
respect to the map 𝜒) neighbourhood of the point 𝑝 in the space 𝑃𝐾 , and
the set 𝐶 is the union of a �nite (respectively, countable) number of terms E𝑒
of the topological sum 𝑃𝐾 and is therefore closed and compact (respectively,
countably compact). Moreover, the set 𝐶 is saturated with respect to the map

𝜒 and contains the closure 𝑆 of the neighbourhood 𝑆. Thus, each point in the
space 𝑃𝐾 has a saturated neighbourhood, the closure of which is contained in
a saturated, closed, and compact (resp. countably compact) set. But this, by
de�nition, means that the map 𝜒 is locally compact (resp. locally countably
compact). □

Remark 3.16. It is easy to see that if a pre-decomposition 𝐾 is point �nite, then
the converse is also true, i.e., any point �nite pre-decomposition 𝐾 for which
the characteristic map 𝑃𝐾 → 𝑋 is locally compact (reps. locally countably
compact) is a locally �nite (resp. locally countable) pre-decomposition. We will
not need this fact.

For any closed set 𝐴 ⊂ 𝑋, all sets of the form 𝐴 ∩ 𝑒, 𝑒 ∈ 𝐾, are, of course,
closed (in 𝑋). If the converse is true, i.e. if every set 𝐴 ⊂ 𝑋 for which the
family {𝐴 ∩ 𝑒; 𝑒 ∈ 𝐾} consists of closed sets is itself closed (in 𝑋), then we will
say that the topology of the space 𝑋 is a weak topology with respect to the pre-
decomposition 𝐾. In other words, the topology of a space 𝑋 is a weak topology
with respect to the pre-decomposition 𝐾 if this space is a free union of subspaces
𝑒 ⊂ 𝑋, 𝑒 ∈ 𝐾. Clearly, this is the case if and only if the characteristic map

𝜒 : 𝑃𝐾 → 𝑋

is an identi�cation map.
Similarly, for any closed set 𝐴 ⊂ 𝑋 and any �nite sub-pre-decomposition

𝐿 ⊂ 𝐾 the intersection 𝐴 ∩ |𝐿 | is closed in 𝑋. It is easy to see that
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Proposition 3.17. if the converse is true, i.e., if a set 𝐴 ⊂ 𝑋 is closed in 𝑋

when it has the property that for any �nite sub-pre-decomposition 𝐿 of a pre-
decomposition 𝐾 the intersection 𝐴 ∩ |𝐿 | is closed in 𝑋, then the topology of the
space 𝑋 is a weak topology with respect to the pre-decomposition 𝐾.

Proof. Indeed, if for any cell 𝑒 ∈ 𝐾 the intersection 𝐴 ∩ 𝑒 is closed, then for any
�nite sub-pre-decomposition 𝐿 ⊂ 𝐾 the intersection 𝐴 ∩ |𝐿 | is also closed (since
the space |𝐿 | is the union of a �nite number of sets of the form 𝑒, 𝑒 ∈ 𝐿), and
therefore, according to the condition, the set 𝐴 is closed. □

However, in the space 𝑋, whose topology is a weak topology with respect
to the pre-decomposition 𝐾, there may exist non-closed subsets 𝐴 possessing
the property that for any �nite sub-pre-decomposition 𝐿 ⊂ 𝐾, the intersection
𝐴∩ |𝐿 | is closed (this property is possessed, for example, by any subset 𝐴 of the
sphere S𝑛−1 in Example 3.9 - 4)).

It follows directly from the proven statement, in particular, that

Proposition 3.18. for any �nite pre-decomposition 𝐾 of the space 𝑋 (when
such a pre-decomposition exists), the topology of the space 𝑋 is a weak topology
with respect to the pre-decomposition 𝐾.

Moreover, it is easy to see that

Proposition 3.19. the last statement holds not only for �nite but also for any
locally �nite pre-decompositions.

Proof. Indeed, for any locally �nite pre-decomposition 𝐾 of the space 𝑋, the
family {𝑒 : 𝑒 ∈ 𝐾} is obviously a locally �nite family of closed subspaces of the
space 𝑋, and therefore this space is their free union (see �1.1). □

Let 𝐾 and 𝐿 be arbitrary cellular pre-decompositions of Hausdor� spaces
𝑋 and 𝑌 , respectively. It is clear that in the case when the spaces 𝑋 and 𝑌
do not intersect, the union 𝐾 ∪ 𝐿 of the cellular pre-decompositions 𝐾 and 𝐿

is a cellular pre-decomposition of the topological sum 𝑋 ∪ 𝑌 . We will call the
pre-decomposition 𝐾∪𝐿 the sum of the pre-decompositions 𝐾 and 𝐿. According
to what has just been said,

|𝐾 ∪ 𝐿 | = |𝐾 | ∪ |𝐿 |.

Similar statements hold for any number of summands.
Furthermore, since for any 𝑛 ≥ 0 and 𝑚 ≥ 0, the ball E𝑛+𝑚 is homeomorphic

to the product E𝑛 × E𝑛, then for any two cells 𝑒𝑛 ∈ 𝐾 and 𝑒𝑚 ∈ 𝐿 (with charac-
teristic maps 𝜒1 : E𝑛 → 𝑋 and 𝜒2 : E𝑛 → 𝑌), the product 𝑒𝑛 × 𝑒𝑚 represents an
(𝑛+𝑚)-dimensional cell of the space 𝑋 ×𝑌 (for the corresponding characteristic
map, one can take, for example, the map 𝜒1 × 𝜒2 : E𝑛 × E𝑚 → 𝑋 × 𝑌), where

(𝑒𝑛 × 𝑒𝑚) · = ¤𝑒𝑛 × 𝑒𝑚 ∪ 𝑒𝑛 × ¤𝑒𝑚.

Consequently, the family 𝐾 × 𝐿 of all cells of the form 𝑒1 × 𝑒2, where 𝑒1 ∈ 𝐾

and 𝑒2 ∈ 𝐿, constitutes a cellular pre-decomposition of the space 𝑋 ×𝑌 , denoted
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as |𝐾 × 𝐿 | = |𝐾 | × |𝐿 |. We will call the pre-decomposition 𝐾 × 𝐿 the product
of the pre-decompositions 𝐾 and 𝐿. The product of any �nite number of pre-
decompositions is de�ned similarly.

It is clear that

Proposition 3.20. the product of point �nite (respectively, locally �nite and
locally countable) pre-decompositions is point �nite (respectively, locally �nite
and locally countable).

In the special case where the pre-decomposition 𝐿 is the pre-decomposition
𝐼 = {0, 1, (0, 1)} of the interval 𝐼 = [0, 1], we obtain a pre-decomposition ×𝐼 of
the product 𝑋 × 𝐼. The cells of this pre-decomposition are of the form 𝑒 × 0,
𝑒 × 1 and 𝑒 × (0, 1), where 𝑒 ∈ 𝐾. In this case, the dimension of the cells 𝑒 × 0
and 𝑒 × 1 is equal to the dimension 𝑛 of the cell 𝑒, and the dimension of the cell
𝑒 × (0, 1) is equal to 𝑛 + 1.

Let
𝜒𝐾 : 𝑃𝐾 → 𝑋, 𝜒𝐿 : 𝑃𝐿 → 𝑌

be the characteristic maps for the pre-decompositions 𝐾 and 𝐿 respectively. It
is clear that in the case when the spaces 𝑃𝐾 and 𝑃𝐿 are chosen to be disjoint, we
can take their topological sum 𝑃𝐾∪𝑃𝐿 as the space 𝑃𝐾∪𝐿, and the corresponding
characteristic map 𝑃𝐾∪𝐿 → 𝑋 ∪ 𝑌 can then be considered as the map

𝜒𝐾 ∪ 𝜒𝐿 : 𝑃𝐾 ∪ 𝑃𝑌 → 𝑋 ∪ 𝑌 .

Similarly, we can consider the space 𝑃𝐾 ×𝑃𝐿 as the space 𝑃𝑋×𝑌 and the map

𝜒𝐾 × 𝜒𝐿 : 𝑃𝐾 × 𝑃𝑌 → 𝑋 × 𝑌 .

as the characteristic map of the pre-decomposition 𝐾 × 𝐿.

3.2 Cellular decompositions

We will call a cellular pre-decomposition 𝐾 of a space 𝑋 a cellular decomposition
if

� it is point �nite, and

� the topology of the space 𝑋 is a weak topology with respect to the pre-
decomposition 𝐾.

It follows directly from the results of the previous section that

Proposition 3.21. any locally �nite (in particular, any �nite) pre-decomposition
of 𝐾 is a decomposition.

Thus, the pre-decompositions indicated in examples 2) and 3) of Example
3.9 in �3.1 are decompositions. Conversely, the pre-decomposition in example
1) is a decomposition only when the space 𝑋 is discrete (because otherwise its
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topology will not be a weak topology). In particular, when 𝑋 = S𝑛, 𝑛 > 0, this
pre-decomposition is not a decomposition. Similarly, the pre-decomposition in
example 4) of Example 3.9 in �3.1 is not a decomposition either, because it is
not point �nite (note that the condition of weakness of the topology is satis�ed
in this example).

The last pre-decomposition also possesses sub-pre-decompositions that are
not decompositions (these are arbitrary subsets of the sphere S𝑛−1). At the
same time,

Proposition 3.22. any sub-pre-decomposition of an arbitrary cell decomposi-
tion 𝐾 is itself a decomposition.

Before proving the last statement, we note that the su�cient condition for
the weakness of the topology of the space 𝑋 indicated in �3.1 is also necessary
in the case of decompositions, so that

Proposition 3.23. A subset 𝐴 of a space 𝑋 = |𝐾 | is closed if for any �nite
sub-decomposition 𝐿 of the decomposition 𝐾 the intersection 𝐴 ∩ |𝐿 | is closed.

Proof. Indeed, since for any cell 𝑒 ∈ 𝐾 the intersection 𝐴∩ |𝐾 (𝑒) | is closed (since
the sub-decomposition 𝐾 (𝑒) is �nite) and since 𝑒 ⊂ |𝐾 (𝑒) |, the intersection
𝐴 ∩ 𝑒 = (𝐴 ∩ |𝐾 (𝑒) |) ∩ 𝑒 is closed. Therefore, the subset 𝐴 is also closed. □

It follows from this that, in contrast to the case of arbitrary sub-decompositions,

Proposition 3.24. the body |𝐿 | of each sub-pre-decomposition 𝐿 of the decom-
position 𝐾 is closed in the space 𝑋 = |𝐾 |.

Proof. Indeed, for any �nite sub-decomposition of 𝑁 ⊂ 𝐾 the intersection 𝐿 ∩𝑁
is also �nite and therefore the intersection |𝐿 | ∩ |𝑁 | = |𝐿 ∩ 𝑁 | is closed. □

Now let 𝐴 be an arbitrary subset of |𝐿 | such that, for any �nite sub-
decomposition 𝑁 ⊂ 𝐿, the intersection 𝐴 ∩ |𝑁 | is closed (in |𝐿 |, and therefore,
by what has been proved, in 𝑋). Then, for any �nite sub-decomposition 𝑁 ⊂ 𝐾,
the intersection

𝐴 ∩ |𝑁 | = 𝐴 ∩ |𝐿 ∩ 𝑁 |

is also closed, and, consequently, the set 𝐴 is closed (in 𝑋, and therefore in |𝐿 |).
This proves that the topology of the space |𝐿 | is a weak topology with respect
to the pre-decomposition 𝐿. Since the pre-decomposition 𝐿 is, moreover, point
�nite (being a sub-pre-decomposition of the point �nite decomposition 𝐾), this
pre-decomosition is, as stated above, a decomposition.

In what follows, we will call sub-decompositions 𝐿 of an arbitrary cellular
decomposition 𝐾 its sub-decompositions.

When studying the properties of cellular decompositions, it is useful to keep
in mind that

Proposition 3.25. for any compact subset 𝐶 of 𝑋 and any cellular decompo-
sition 𝐾 of 𝑋, the sub-decomposition 𝐾 (𝐶) is �nite.
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Proof. To prove this statement, it is su�cient to prove that the subset 𝐶 inter-
sects only a �nite number of cells 𝑒 ∈ 𝐾, since then it will be contained in a
�nite sub-decomposition that is the union of sub-decompositions 𝐾 (𝑒) for which
𝑒 ∩ 𝐶 ≠ ∅.

Let there exist an in�nite system {𝑒𝑖} of di�erent cells 𝑒𝑖 ∈ 𝐾 for which
𝑒𝑖 ∩ 𝐶 ≠ ∅ for each 𝑖, and let 𝑥𝑖 ∈ 𝑒𝑖 ∩ 𝐶. Consider an arbitrary �nite sub-
decomposition 𝐿 of the decomposition 𝐾. It contains only a �nite number of
cells 𝑒𝑖 and 𝑒𝑖 ∩ |𝐿 | = ∅ if 𝑒𝑖 ∉ 𝐿. Therefore, the subspace |𝐿 | contains only
�nitely many points 𝑥𝑖, so the intersection {𝑥𝑖}∩ |𝐿 | is closed. Consequently, the
set 𝑋𝑖 is closed. By similar arguments, any subset of the set {𝑥𝑖} is also closed,
so the set {𝑥𝑖} is discrete. But this is impossible, since any discrete subset of a
compact set must be �nite. Consequently, the set 𝐶 actually intersects only a
�nite number of cells of the decomposition 𝐾. □

It easily follows from the proven statement, for example, that

Proposition 3.26. any pre-decomposition 𝐾, for which, for each 𝑛 = 0, 1, . . . ,∞,
the topology of the space 𝐾𝑛 is a weak topology with respect to the pre-decomposition
𝐾𝑛, constitutes a decomposition.

Proof. Indeed, since 𝐾 = 𝐾∞, we only need to prove that the pre-decomposition
𝐾 is point �nite, for which it is su�cient in turn to prove that for any �nite 𝑛, the
pre-decomposition 𝐾𝑛 is point �nite (because if dim 𝑒 = 𝑛, then 𝐾 (𝑒) = 𝐾𝑛 (𝑒)).
We will prove this by induction on 𝑛, considering that the pre-decomposition
𝐾0 is obviously point �nite.

Let it already be proven for some 𝑛 > 0 that the pre-decomposition 𝐾𝑛−1 is
point inite. Since, by assumption, the topology of the space |𝐾𝑛−1 | is a weak
topology with respect to this pre-decomposition, the pre-decomposition 𝐾𝑛−1 is
a decomposition, and therefore, according to the statement just proven, for any
compact subset 𝐶 ⊂ |𝐾𝑛−1 | the sub-pre-decomposition 𝐾𝑛−1(𝐶) = 𝐾 (𝐶) is �nite.
In particular, for any 𝑛-dimensional cell 𝑒𝑛 ∈ 𝐾, the sub-pre-decomposition
𝐾 ( ¤𝑒𝑛−1) is �nite. But, as we know, 𝐾 (𝑒𝑛) = {𝐾 (𝑒𝑛), 𝑒𝑛}. Therefore, the sub-
pre-decomposition 𝐾 (𝑒𝑛) is also �nite. □

In the study of cellular decompositions, an important role is also played by
the fact that

Proposition 3.27. for any increasing sequence

𝐾0 ⊂ 𝐾1 ⊂ · · · ⊂ 𝐾𝑛 ⊂ · · ·

of sub-decompositions of the decomposition 𝐾, whose union is the entire decom-
position 𝐾, the space 𝑋 = |𝐾 | is a free union of subspaces

|𝐾0 | ⊂ |𝐾1 | ⊂ · · · ⊂ |𝐾𝑛 | ⊂ · · ·

Proof. We must show that any subset 𝐴 of the space 𝑋 for which the intersection
𝐴 ∩ |𝐾𝑛 | is closed for any 𝑛 is itself closed. Since the space 𝑋 is a free union of
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the sets 𝑒, 𝑒 ∈ 𝐾, it su�ces to prove that for any cell 𝑒 ∈ 𝐾, the intersection
𝐴 ∩ 𝑒 is closed.

Let 𝑛 be a number such that 𝑒 ∈ 𝐾𝑛. Then

𝐴 ∩ 𝑒 = (𝐴 ∩ {𝐾𝑛}) ∩ 𝑒,

and therefore, this intersection is closed. □

In particular,

Proposition 3.28. for any decomposition 𝐾 of the space 𝑋, this space is a free
union of subspaces

|𝐾0 | ⊂ |𝐾1 | ⊂ · · · ⊂ |𝐾𝑛 | ⊂ · · ·

Note that the converse of the proposition proven above also holds, i.e.,

Proposition 3.29. if a cellular pre-decomposition 𝐾 of the space 𝑋 is the union
of an increasing sequence

𝐾0 ⊂ 𝐾1 ⊂ · · · ⊂ 𝐾𝑛 ⊂ · · ·

of sub-decompositions 𝐾𝑛, each of which is a cellular decomposition (of the sub-
space 𝐾𝑛), and if the space 𝑋 is a free union of subspaces

|𝐾0 | ⊂ |𝐾1 | ⊂ · · · ⊂ |𝐾𝑛 | ⊂ · · ·

then the pre-decomposition 𝐾 is a decomposition.

Proof. Indeed, since for any cell 𝑒 ∈ 𝐾𝑛 the equality 𝐾 (𝑒) = 𝐾𝑛 (𝑒) holds, the
pre-decomposition 𝐾 is point �nite. Therefore, we only need to prove that the
topology of the space 𝑋 is a weak topology with respect to the pre-decomposition
𝐾. Let 𝐴 be an arbitrary subset of the space 𝑋 for which the family {𝐴∩𝑒; 𝑒 ∈ 𝐾}
consists of closed sets. Since

(𝐴 ∩ |𝐾𝑛 |) ∩ 𝑒 = 𝐴 ∩ 𝑒

for 𝑒 ∈ 𝐾𝑛 and since the topology of the space |𝐾𝑛 | is a weak topology with
respect to the decomposition 𝐾𝑛, for any 𝑛 ≥ 0 the set 𝐴∩ |𝐾𝑛 | is closed in |𝐾𝑛 |.
Therefore, the set 𝐴 is closed in 𝑋. Consequently, the topology of the space 𝑋
is indeed a weak topology with respect to the pre-decomposition 𝐾. □

The existence of a cellular decomposition 𝐾 for a space 𝑋 imposes rather
strong restrictions on the topology of that space. For example, it is clear that

Proposition 3.30. Any space 𝑋 that admits a cellular decomposition 𝐾 is a
canonical space.

Furthermore, since the closure 𝑒 of each cell 𝑒 of an arbitrary cell decompo-
sition 𝐾 is connected, any connected component 𝐴 of the space 𝑋 = |𝐾 | either
contains such a closure entirely, 𝐴∩𝑒 = 𝑒, or does not intersect with it, 𝐴∩𝑒 = ∅.
Since in both cases the intersection 𝐴∩ 𝑒 is closed and open in 𝑒, the connected
component 𝐴 is closed and open in 𝑋. This means that
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Proposition 3.31. any space 𝑋 that admits a cellular decomposition 𝐾 is a
topological sum of its connected components.

Furthermore, for each connected component 𝐴 ⊂ 𝑋, the set 𝐿 of all cells 𝑒 ∈ 𝐾
whose closures are contained in 𝐴 (i.e., for which 𝐴 ∩ 𝑒 = 𝑒) constitutes a sub-
decomposition of the decomposition 𝐾, and the body of this sub-decomposition
coincides with 𝐴 : |𝐿 | = 𝐴.

Thus,

Proposition 3.32. any connected component 𝐴 of the space 𝑋, which admits
a cell decomposition 𝐾, serves as the body of some sub-decomposition 𝐿 ⊂ 𝐾.

On the other hand, since the sets 𝑒, 𝑒 ∈ 𝐾, are not only connected but even
path-connected, the path-connected components 𝐴 of the space 𝑋 also possess
the property that for any cell 𝑒 ∈ 𝐾, either 𝐴 ∩ 𝑒 = ∅ or 𝐴 ∩ 𝑒 = 𝑒, and
therefore each path-connected component 𝐴 is simultaneously closed and open
in 𝑋. Consequently,

Proposition 3.33. every connected space 𝑋 that admits a cellular decomposi-
tion 𝐾 is path-connected.

Furthermore, it is easy to see that

Proposition 3.34. for every space 𝑋 admitting a cell decomposition 𝐾, any of
its connected components is a path-connected component, and, conversely, any
of its path-connected components is a connected component.

Proof. Indeed, any connected component of the space 𝑋, being the body of some
sub-decomposition of the decomposition 𝐾, is path-connected and therefore is
a path-connected component. Conversely, since any path-connected component
is both closed and open, it coincides with the connected component containing
it. □

Since each connected component of the space 𝑋, being the body of some
sub-decomposition, contains at least one vertex of the decomposition 𝐾, and
since his component is path-connected, it follows that

Proposition 3.35. any point in the space 𝑋 = |𝐾 | can be connected by a path
to at least one of the vertices of the decomposition.

Therefore,

Proposition 3.36. the space 𝑋 = |𝐾 | is connected if its subspace 𝐾1 is con-
nected.

It turns out that the converse statement is also true, i.e.,

Proposition 3.37. if the space 𝑋 = |𝐾 | is connected, then its subspace 𝐾1 is
also connected.



3.2. CELLULAR DECOMPOSITIONS 109

Proof. Indeed, let 𝐴 be an arbitrary connected component of the space |𝐾1 |. As
we know, 𝐴 = |𝐿 |, where 𝐿 is some sub-decomposition of the decomposition of
the skeleton 𝐾1. We will show that there exists a sequence of sub-decompositions
𝐿1 ⊂ 𝐿2 ⊂ · · · ⊂ 𝐿𝑛 ⊂ · · · of the form 𝐿𝑛 ⊂ 𝐾𝑛, such that

1) 𝐿1 = 𝐿;

2) (𝐿𝑛+1)𝑛 = 𝐿𝑛;

3) For any cell 𝑒 ∈ 𝐾𝑛, either 𝑒 ∩ |𝐿𝑛 | = ∅ or 𝑒 ∩ |𝐿𝑛 | = 𝑒.

Let a sub-decomposition 𝐿𝑛 be already constructed for some 𝑛 > 0. From
condition 3) it immediately follows that the set |𝐿𝑛 | of this sub-decomposition
is both closed and open in the space |𝐾𝑛 |. Therefore, for any (𝑛+1)-dimensional
cell 𝑒𝑛+1 ∈ 𝐾, either ¤𝑒𝑛+1 ∩ |𝐿𝑛 | = ∅ or ¤𝑒𝑛+1 ∩ |𝐿𝑛 | = ¤𝑒𝑛+1 (recall that the set
¤𝑒𝑛+1 is connected). Therefore, the collection 𝐿𝑛+1 of all cells 𝑒 ∈ 𝐾𝑛+1 for which
𝑒 ∩ |𝐿𝑛 | ≠ ∅ is a sub-decomposition of the decomposition 𝐾𝑛+1. It is clear that
this sub-decomposition satis�es conditions 1) - 3).

Now let us consider the sub-decomposition

𝐿∞ = ∪∞
𝑛=1𝐿𝑛

of the partition 𝐾. It is clear that its body |𝐿∞ | ⊂ 𝑋 has the property that for
any cell 𝑒 ∈ 𝐾, either 𝑒 ∩ |𝐿∞ | = ∅ or 𝑒 ∩ |𝐿∞ | = 𝑒. Therefore, the subspace |𝐿∞ |
is closed and simultaneously open in 𝑋. Consequently, |𝐿∞ | = 𝑋, i.e., 𝐿∞ = 𝐾.
But it is clear that (𝐿∞)1 = 𝐿1 = 𝐿. Therefore, 𝐿 = 𝐾1 and, consequently,
𝐴 = |𝐿 | = |𝐾1 |. Therefore, the subspace |𝐾1 | of the space 𝑋 is connected. □

Since (𝐾𝑛)1 = 𝐾1 for any 𝑛 ≥ 1, it immediately follows from the last two
statements that

Proposition 3.38. if the space 𝑋 = |𝐾 | is connected, then for any 𝑛 ≥ 1 its
subspace |𝐾𝑛 | is also connected; if at least for one 𝑛 ≥ 1 the subspace |𝐾𝑛 | is
connected, then the entire space 𝑋 is also connected.

As for the subspace |𝐾0 |, it is easy to see that

Proposition 3.39. for any cell decomposition 𝐾 of the space 𝑋, the subspace
|𝐾0 | is discrete.

Therefore, the subspace |𝐾0 | is connected if and only if the decomposition 𝐾
contains only one zero-dimensional cell (such decompositions are called single-
vertex decompositions).

Remark 3.40 (Terminology Convention). Further, for the sake of brevity, we
will not distinguish between cellular decompositions of 𝐾 and the corresponding
spaces |𝐾 |. Accordingly, we will allow expressions such as

�connected cellular decomposition of 𝐾,�

�continuous map of a decomposition of 𝐾 into a decomposition of 𝐿,�
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and so on, meaning, respectively,

�a cellular decomposition of 𝐾 for which the space |𝐾 | is connected,�

�a continuous map of the space |𝐾 | into the space |𝐿 |,�

and so on. In particular, the formula 𝑒 ∈ 𝐾 will, as above, mean that the cell 𝑒
belongs to the cellular decomposition of 𝐾, and the formula 𝑒 ⊂ 𝐾, means that
the cell 𝑒 lies in the space |𝐾 |.

In cases where this convention could lead to misunderstandings, we will, nat-
urally, continue to distinguish between decompositions of 𝐾 and spaces |𝐾 |. In
this case, spaces of the form |𝐾 |, i.e., spaces that admit cellular decompositions,
will be called cellular polyhedra.

3.3 Theorem on paracompactness

In this section, we prove that any cellular decomposition (i.e., the space |𝐾 |; see
the terminology convention at the end of the previous section) is paracompact,
i.e., any open covering Γ of it can be re�ned into a locally �nite covering Δ.
We will construct the covering structure Δ by �ascending� step by step along
the skeletons 𝐾𝑛 of the decomposition 𝐾. To describe this construction, it is
convenient for us to introduce the following general de�nition:

Let 𝑋 ⊂ 𝑌 and let {𝑈𝛼;𝛼 ∈ 𝐴} and {𝑉𝛽; 𝛽 ∈ 𝐵} be families of open sets in
spaces 𝑋 and 𝑌 respectively. The family {𝑉𝛽; 𝛽 ∈ 𝐵} will be called an extension
of the family {𝑈𝛼;𝛼 ∈ 𝐴} if 𝐴 ⊂ 𝐵 and

𝑈𝛼 = 𝑉𝛼 ∩ 𝑋

for every 𝛼 ∈ 𝐴.
In order to construct an open covering Δ of a decomposition 𝐾, it is obviously

su�cient to construct a sequence of open coverings

Δ𝑛 = {𝑉𝑛𝛽 ; 𝛽 ∈ 𝐵𝑛}

of the skeletons 𝐾𝑛, having the property that for any 𝑛 > 0 the covering Δ𝑛” is
an extension of the covering Δ𝑛−1. Indeed, then the family Δ of sets

𝑉𝛽 = ∪𝑛𝑉𝑛𝛽

where the summation is extended to all 𝑛 for which 𝛽 ∈ 𝐵𝑛, will, as is easily
seen, be an open covering of the decomposition 𝐾 (with the index set 𝐵 being
the union of the sets 𝐵0 ⊂ 𝐵1 ⊂ · · · ⊂ 𝐵𝑛 ⊂ · · · ).

For this covering to be re�ned in the given covering

Γ = {𝑈𝛼;𝛼 ∈ 𝐴}

of the decomposition 𝐾, it is necessary to ensure that there exists a map 𝛼

𝛼 : 𝐵 → 𝐴,
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such that for any 𝑛 > 0 the inclusion holds

𝑉𝑛𝛽 ⊂ 𝑈𝛼(𝛽) ∩ 𝐾𝑛.

To carry out the proof, it will be more convenient for us to require more,
namely, that the inclusion take place

𝑉
𝑛

𝛽 ⊂ 𝑈𝛼(𝛽) ∩ 𝐾𝑛.

Let us now consider the question of conditions that ensure local �niteness of
the covering

Δ = {𝑉𝛽; 𝛽 ∈ 𝐵}
Let 𝑥 be an arbitrary point in the space 𝐾. To construct a neighbourhood

of a point 𝑥 in the space 𝐾, it is su�cient for any 𝑥 for which 𝑥 ∈ 𝐾𝑛 to de�ne
in the space 𝐾𝑛 a neighbourhood 𝑊𝑛

𝑥 of the point 𝑥 with the property that for
𝑥 ∈ 𝐾𝑛

𝑊𝑛
𝑥 ∩ 𝐾𝑛−1 = 𝑊𝑛−1

𝑥 .

Indeed, then the formula
𝑊𝑥 = ∪𝑛𝑊𝑛

𝑥

(the summation is extended to all 𝑛 for which 𝑥 ∈ 𝐾𝑛) will de�ne for us some
neighbourhood of the point 𝑥 in the entire space 𝐾. This method can obviously
be used to obtain any neighbourhood 𝑊𝑥 (it su�ces to set 𝑊𝑛

𝑥 = 𝑊𝑥 ∩ 𝐾𝑛).
Note that for 𝑊𝑥 ∩𝑉𝛽 ≠ ∅ there exists a number 𝑛 ≥ 0 such that 𝑥 ∈ 𝐾𝑛 and

𝑊𝑛
𝑥 ∩𝑉𝑛𝛽 ≠ ∅.

Now suppose that the neighbourhoods𝑊𝑛
𝑥 have the following two properties:

i) the intersection 𝑊𝑛
𝑥 ∩𝑉𝑛𝛽 for 𝑥 ∈ 𝐾𝑚, where 𝑚 ≤ 𝑛, is non-empty if and only

if 𝛽 ∈ 𝐵𝑚 and the intersection 𝑊𝑚
𝑥 ∩𝑉𝑚

𝛽
is non-empty;

ii) for 𝑥 ∈ 𝐾𝑚 \ 𝐾𝑛−1 the intersection 𝑊𝑛
𝑥 ∩ 𝑉𝑛

𝛽
is non-empty only for a �nite

number of indices 𝛽.

From what has just been said, it follows directly that, if conditions i) and ii)
are satis�ed, the intersection 𝑊𝑥 ∩𝑉𝛽 will be non-empty only for a �nite number
of indices 𝛽. In other words, the existence of neighborhoods 𝑊𝑛

𝑥 satisfying
conditions i) and ii) ensures the local �niteness of the covering Δ.

Summarising all that has been said, we see that to construct a locally �nite
open covering Δ re�ned in a given open covering Γ, it is su�cient to construct

a) a sequence of open coverings Δ𝑛 = {𝑉𝑛
𝛽
; 𝛽 ∈ 𝐵𝑛}, 𝑛 = 0, 1, 2, . . . , each of which

is an extension of the previous covering;

b) a map
𝛼 : 𝐵 → 𝐴,

where 𝐵 = ∪∞
𝑛=0𝐵

𝑛, having the property that for any 𝑛 ≥ 0 and any 𝛽 ∈ 𝐵𝑛,
the inclusion

𝑉
𝑛

𝛽 ⊂ 𝑈𝛼(𝛽) ∩ 𝐾𝑛

holds;
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c) for any 𝑛 ≥ 0 and any point 𝑥 ∈ 𝐾𝑛 in the neighbourhood of 𝑊𝑛
𝑥 , with the

above properties i) and ii).

We will construct these objects by induction on the number 𝑛.
For 𝑛 = 0, we take the 0-th skeleton 𝐾0 of the decomposition 𝐾 for the set

𝐵0. We de�ne the map 𝛼 on the set 𝐵0 by choosing, for each point 𝛽 ∈ 𝐵0 = 𝐾0,
the element of the covering Γ that contains it and taking 𝛼(𝛽) as the index of
this element. For the set 𝑉0

𝛽
corresponding to the point 𝛽 ∈ 𝐵0, we take this

point itself. Similarly, for the set 𝑊0
𝑥 corresponding to the point 𝑥 ∈ 𝐾0, we also

take this point itself. Since the space 𝐾0 is discrete, it is easy to see that all our
conditions are satis�ed.

Let for some 𝑛 ≥ 0 we have already constructed a set 𝐵, a map 𝛼 of this
set into a set 𝐴, open sets 𝑉𝑛

𝛽
⊂ 𝐾𝑛 and neighbourhoods 𝑊𝑛

𝑥 ⊂ 𝐾𝑛, 𝑥 ∈ 𝐾𝑛,

satisfying conditions a), b), c).
In the trivial case 𝐾𝑛+1 =𝑛 we set

𝐵𝑛+1 = 𝐵𝑛, 𝑉𝑛+1𝛽 = 𝑉𝑛𝛽 , 𝑊𝑛+1
𝑥 = 𝑊𝑛

𝑥 .

It is clear that the index sets 𝐵𝑛+1, open sets 𝑉𝑛+1
𝛽

and neighbourhoods 𝑊𝑛+1
𝑥

constructed in this way still satisfy conditions a), b), c).
Thus, we need to consider only the case when 𝐾𝑛+1 ≠ 𝐾𝑛, i.e., when the

decomposition 𝐾 contains 𝑛 + 1-dimensional cells 𝑛+1. For each such cell, we,
having chosen some characteristic map

𝜒 : E𝑛+1 → 𝑋,

wee put

𝑈
′
𝛼 = 𝜒−1(𝑈𝛼) = 𝜒−1(𝑈𝛼 ∩ 𝑒𝑛+1), 𝛼 ∈ 𝐴,
𝑉

′
𝛽 = 𝜒−1(𝑉𝛽) = 𝜒−1(𝑉𝑛𝛽 ∩ ¤𝑒𝑛+1), 𝛽 ∈ 𝐵.

The sets 𝑈
′
𝛼 (many of these sets are, generally speaking, empty) constitute an

open covering Γ
′
of the ball E𝑛+1, and the sets 𝑉

′
𝛽
(among which there may also

be empty sets) constitute an open covering of its boundary sphere S𝑛. Moreover,
in view of condition b), for any element 𝛽 ∈ 𝐵𝑛, the inclusion holds

𝑉
′

𝛽 ⊂ 𝑈 ′

𝛼(𝛽) ∩ S𝑛

(from which, in particular, it follows that the covering {𝑉 ′
𝛽
} is re�ned in the

covering Γ
′ ∩ S𝑛 = {𝑈 ′

𝛼(𝛽) ∩ S𝑛;𝛼 ∈ 𝐴}). Moreover, in view of condition c) (by

which the covering Δ𝑛 = {𝑉𝑛
𝛽
; 𝛽 ∈ 𝐵𝑛} of the space 𝐾𝑛 is locally �nite), the

covering {𝑉 ′
𝛽
; 𝛽 ∈ 𝐵𝑛} of the sphere S𝑛 is locally �nite. (However, it is easy to

see by induction that in fact only �nitely many elements of this covering are
non-empty.)

Next, for each point 𝑥 ∈ 𝐾𝑛 we set

𝑊
′
𝑥 = 𝜒−1(𝑊𝑛

𝑥 ) = 𝜒−1(𝑊𝑛
𝑥 ∩ ¤𝑒𝑛+1).
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Clearly, the (possibly empty) sets 𝑊
′
𝑥 are open in the sphere S𝑛 and have the

property that for each point 𝑥 there are only �nitely many indices 𝛽 for which
𝑊

′
𝑥 ∩𝑉

′
𝛽
≠ ∅.

For any set 𝐺 ⊂ S𝑛 and any positive 𝜀 < 1, we will denote by 𝐺 𝜀 the
�radial extension to 𝜀� of the set 𝐺 into the ball, i.e., the subset of the ball E𝑛+1

consisting of all points 𝒗 = 𝑣𝒖 ∈ E𝑛+1, 0 < 𝑣 < 1, |𝒖 | = 1, for which

1 − 𝜀 < 𝑣 ≤ 1, 𝒖 ∈ 𝐺.

It is clear that if 𝐺 is open in the sphere S𝑛, then the set 𝐺 𝜀 is open in the ball
E𝑛+1.

The sets 𝐺 𝜀 have the property that 𝐺 𝜀 ∩ S𝑛 = 𝐺. Moreover, for any 𝜀 < 𝜀
′
,

the inclusion

𝐺 𝜀
′ ⊂ 𝐺 𝜀

holds. Moreover, for any sets 𝐺, 𝐻 ⊂ S𝑛 and any positive 𝜀 < 1 and 𝜂 < 1,
the intersection 𝐺 𝜀 ∩ 𝐻𝜂 of their �radial extensions� is non-empty if and only
if the intersection of the sets 𝐺 ∩ 𝐻 is non-empty. In particular, the set 𝐺 𝜀 is
non-empty if and only if the set 𝐺 is non-empty.

Now, choosing for each element 𝛽 ∈ 𝐵𝑛 some positive number 𝜀𝛽 < 1, we set

𝑉∗
𝛽 = (𝑉 ′

𝛽)𝜀𝛽 .

Since 𝑉
′

𝛽 ⊂ 𝑈 ′

𝛼(𝛽) ∩ S𝑛, for su�ciently small 𝜀𝛽 the inclusion

𝑉∗
𝛽 ⊂ 𝑈 ′

𝛼(𝛽)

(and even the inclusion 𝑉
∗
𝑛 ⊂ 𝑈 ′

𝛼0 (𝛽)) holds, so that all sets 𝑉∗
𝛽
, 𝛽 ∈ 𝐵𝑛, form an

open (and obviously locally �nite) covering �adjacent� to the sphere S𝑛 of the
set

𝑉∗ = ∪𝛽∈𝐵𝑛𝑉∗
𝛽 ,

re�ned in the covering Γ
′ ∩𝑉∗ = {𝑈 ′

𝛼 ∩𝑉∗}.
Since the set E𝑛+1 \𝑉∗ is closed in the ball E𝑛+1, it is compact, and therefore

it can be covered by a �nite number of non-empty sets of the covering Γ
′
. Let

𝑈
′
𝛼1
, . . . ,𝑈

′
𝛼𝑠

be these sets. Since 𝑉∗ is open and contains the sphere S𝑛, it is
possible to re�ne the open covering 𝑈

′
𝛼1
, . . . ,𝑈

′
𝛼𝑠

of the set E𝑛+1 \ 𝑉∗ into an
open covering 𝑇1, . . . , 𝑇𝑠 such that

𝑇 𝑖 ⊂ 𝑈
′
𝛼𝑖
, 𝑇 𝑖 ∩ S𝑛 = ∅.

For consistency of notation, we will write 𝑉∗
𝛼𝑖

instead of 𝑇𝑖. Here, the su-
perscript ∗, unlike in the previous case, of course, does not mean that 𝑉∗

𝛼𝑖
is

obtained by radial extension. Furthermore, this notation implies that the sets
𝐵𝑛 and 𝐴 do not intersect; clearly, this last assumption does not restrict gen-
erality. It is obvious that the sets 𝑉∗

𝛽
, 𝛽 ∈ 𝐵𝑛, and 𝑉∗

𝛼𝑖
, 𝑖 = 1, . . . , 𝑠, provide
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an open locally �nite (essentially, even �nite) covering of Δ∗ of the ball E𝑛+1,
re�ned in the covering Γ.

Since the set ∪𝑠
𝑖=1𝑉

∗
𝛼𝑖
is closed and does not intersect the sphere S𝑛, then for

any point 𝑥 ∈ 𝐾𝑛 there exists a positive 𝜀
′
𝑥 < 1 such that the set

𝑊∗
𝑥 = (𝑊 ′

𝑥)𝜀′𝑥

does not intersect with the set ∪𝑠
𝑖=1𝑉

∗
𝛼𝑖
. The sets 𝑊∗

𝑥 are open in the ball E𝑛+1

and have the property that
𝑊∗
𝑥 ∩ S𝑛 = 𝑊

′
𝑥 .

Furthermore, each of the sets 𝑊∗
𝑥 intersects with only a �nite number of sets

from the covering Δ∗.
Let 𝑣 be an arbitrary interior point of the ball E𝑛+1. Since the covering Δ∗

is locally �nite, this point has neighbourhoods that consist entirely of interior
points of the ball E𝑛+1 and intersect with only a �nite number of sets of this
covering. Choosing one of these neighbourhoods, we denote it by 𝑊∗

𝑥 , where
𝑥 ∈ 𝑒𝑛+1 is the image of the point 𝑣 under the characteristic map 𝜒. Here,
the asterisk again does not denote radial extension, but is introduced only for
uniformity of notation.

All the constructed objects will have to be considered below for all cells
𝑒𝑛+1 ∈ 𝐾 simultaneously. Therefore, we will introduce an additional index 𝑒𝑛+1

into all notations. Thus, we will consider maps 𝜒𝑒𝑛+1 , numbers 𝑠𝑒𝑛+1 , indices
𝛼𝑖,𝑒𝑛+1 , sets 𝑉

∗
𝑒𝑛+1

, etc.
Now we have everything ready to construct the objects we need for 𝑛 + 1.

We obtain the set 𝐵𝑛+1 by adding to the set 𝐵𝑛 all possible pairs of the form
(𝑖, 𝑒𝑛+1), where 𝑒𝑛+1 ∈ 𝐾, 𝑖 = 1, . . . , 𝑠𝑒𝑛+1 . We de�ne the map 𝛼 on the set 𝐵𝑛+1

by the formula

𝛼(𝛽) =
{
𝛼(𝛽) if 𝛽 ∈ 𝐵𝑛,
𝛼𝑖,𝑒𝑛+1 if 𝛽 = (𝑖, 𝑒𝑛+1),

of the set 𝑉𝑛+1
𝛽

⊂ 𝐾𝑛+1, 𝛽 ∈ 𝐵𝑛+1, by the formula

𝑉𝑛+1𝛽 =

{
𝑉𝑛
𝛽
∪𝑒𝑛+1∈𝐾 𝜒𝑒𝑛+1 (𝑉∗

𝛽,𝑒𝑛+1
), if 𝛽 ∈ 𝐵𝑛,

𝜒𝑒𝑛+1 (𝑉𝛼𝑖 ,𝑒𝑛+1 ), if 𝛽 = (𝑖, 𝑒𝑛+1),

and, �nally, on the neighbourhood 𝑊𝑛+1
𝑥 , 𝑥 ∈ 𝐾𝑛+1, by the formula

𝑊𝑛+1
𝑥 =

{
𝑊𝑛
𝑥 ∪𝑒𝑛+1∈𝐾 𝜒𝑒𝑛+1 (𝑊∗

𝑥,𝑒𝑛+1
), if 𝑥 ∈ 𝐾𝑛,

𝜒𝑒𝑛+1 (𝑊𝑛+1
𝑥,𝑒𝑛+1

), if 𝑥 ∈ 𝑒𝑛+1.

Since for any cell 𝑒𝑛+1 ∈ 𝐾 the characteristic map

𝜒𝑒𝑛+1 : E𝑛+1 → 𝑋

is homeomorphic on the open ball ¤E𝑛+1 = E𝑛+1 \ S𝑛, and 𝑉∗
𝛼𝑖,𝑒𝑛+1

⊂ ¤E𝑛+1 for each
𝑖 = 1, . . . , 𝑠𝑒𝑛+1 , then for any 𝛽 = (𝑖, 𝑒𝑛+1) the set 𝑉𝑛+1

𝛽
= 𝜒𝑒𝑛+1 (𝑉∗

𝛼,𝑒𝑛+1
) is open in
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𝑒𝑛+1. Consequently, this set is also open in 𝐾𝑛+1, because for any cell 𝑒 ∈ 𝐾𝑛+1
di�erent from the cell 𝑒𝑛+1, the intersection 𝑉𝑛+1

𝛽
∩ 𝑒 is obviously empty (and

therefore open in 𝑒).
Furthermore, since for any 𝛽 ∈ 𝐵𝑛 and any cell 𝑒𝑛+1 ∈ 𝐾 the following

equality holds:
𝑉∗
𝛽,𝑒

𝑛+1 ∩ S𝑛 = 𝑉
′

𝛽,𝑒𝑛+1 = 𝜒−1
𝑒𝑛+1 (𝑉

𝑛
𝛽 ),

so the set 𝑉∗
𝑒𝑛+1

is saturated with respect to the map 𝜒𝑒𝑛+1 (considered as a

map from the ball E𝑛+1 to the closure of the cell 𝑒𝑛+1) and therefore the set
𝜒𝑒𝑛+1 (𝑉∗

𝑒𝑛+1
) is open in 𝑒𝑛+1. On the other hand, for any cell 𝑒 ∈ 𝐾𝑛 + 1 either

𝑉𝛽𝑛 + 1 ∩ 𝑒 = 𝑉𝑛
𝛽
∩ 𝑒 (if dim 𝑒 ≤ 𝑛) or 𝑉𝑛+1

𝛽
∩ 𝑒 = 𝜒𝑒𝑛+1 (𝑉∗

𝛽,𝑒𝑛+1
(if 𝑒 =𝑛+1). Since

in both cases the intersection 𝑉𝛽𝑛 + 1∩ 𝑒 is open in 𝑒, it is thus proved that the
set 𝑉𝑛+1

𝛽
is open in the space 𝐾𝑛+1 even for 𝛽𝑖𝑛𝑛𝐵𝑛.

It is similarly proved that all sets of the form𝑊𝑛+1
𝑥 are also open in the space

𝐾𝑛+1.
Let us now check conditions i) and ii) for these sets. First, we will consider

condition ii).
Let 𝑥 ∈ 𝐾𝑛+1 \ 𝐾𝑛 and 𝛽 ∈ 𝐵𝑛+1. Consider a cell 𝑒𝑛+1 of the decomposition

𝐾 containing the point 𝑥. By de�nition,

𝑊𝑛+1
𝑥 = 𝜒𝑒𝑛+1 (𝑊∗

𝑥,𝑒𝑛+1 ),

and therefore the intersection 𝑊𝑛+1
𝑥 ∩𝑉𝑛+1

𝛽
can be non-empty, only when 𝛽 ∈ 𝐵𝑛

or when 𝛽 = (𝑖, 𝑒𝑛+1), where 𝑖 = 1, . . . , 𝑠𝑒𝑛+1 . Since the number of indices 𝛽 of
the form (𝑖, 𝑒𝑛+1) is �nite, it su�ces to prove that the number of those 𝛽 ∈ 𝐵𝑛
for which this intersection is non-empty is also �nite. But it is clear that for
𝛽 ∈ 𝐵𝑛

𝑊𝑛+1
𝑥 ∩𝑉𝑛+1𝛽 = 𝜒𝑒𝑛+1 (𝑊∗

𝑥,𝑒𝑛+1 ∩𝑉
∗
𝛽,𝑒𝑛+1 ),

and therefore, according to the choice of the set 𝑊∗
𝑥,𝑒𝑛+1

, the intersection 𝑊𝑛+1
𝑥 ∩

𝑉𝑛+1
𝛽

is non-empty only for a �nite number of indices 𝛽 ∈ 𝐵𝑛.
Let us now check condition i). Let 𝑚 < 𝑛 + 1, 𝛽 ∈ 𝐵𝑛+1 and 𝑥 ∈ 𝐾𝑚. Since

𝑚 < 𝑛 + 1, then
𝑊𝑛+1
𝑥 = 𝑊𝑛

𝑥 ∪ ∪𝑒𝑛+1∈𝐾 𝜒𝑒𝑛+1 (𝑊∗
𝑥,𝑒𝑛+1 )

Therefore if 𝛽 = (𝑖, 𝑒𝑛+1), then

𝑊𝑛+1
𝑥 ∩𝑉𝑛+1𝛽 = 𝜒𝑒𝑛+1 (𝑊∗

𝑥,𝑒𝑛+1 ∩𝑉
∗
𝛽,𝑒𝑛+1 ) = ∅.

If 𝛽 ∈ 𝐵𝑛, then due to inclusions

𝜒𝑒𝑛+1 (𝑊∗
𝑥,𝑒𝑛+1 ) ∩ 𝐾

𝑛 ⊂ 𝑊𝑛
𝑥 ,

𝜒𝑒𝑛+1 (𝑉∗
𝛽,𝑒𝑛+1 ) ∩ 𝐾

𝑛 ⊂ 𝑉𝑛𝛽

the equality will hold

𝑊𝑛+1
𝑥 ∩𝑉𝑛+1𝛽 = (𝑊𝑛

𝑥 ∩𝑉𝑛𝛽 ) ∪ ∪𝑒𝑛+1∈𝐾 𝜒𝑒𝑛+1 (𝑊∗
𝑥,𝑒𝑛+1 ∩𝑉

∗
𝛽,𝑒𝑛+1 ).
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Let for some cell 𝑒𝑛+1 ∈ 𝐾 the intersection

𝑊∗
𝑥,𝑒𝑛+1 ∩𝑉

∗
𝛽,𝑒𝑛+1

is non-empty. Then the intersection is non-empty

𝑊
′

𝑥,𝑒𝑛+1 ∩𝑉
′

𝛽,𝑒𝑛+1 = 𝜒−1
𝑒𝑛+1 (𝑊

𝑛
𝑥 ∩𝑉𝑛𝛽 ),

and the intersection as well
𝑊𝑛
𝑥 ∩𝑉𝑛𝛽 .

It follows from this that the intersection𝑊𝑛+1
𝑥 ∩𝑉𝑛+1

𝛽
, 𝛽 ∈ 𝐵𝑛, is non-empty if and

only if the intersection 𝑊𝑛
𝑥 ∩𝑉𝑛𝛽 is non-empty, i.e., by the induction hypothesis,

when 𝛽 ∈ 𝐵𝑚 and the intersection𝑊𝑚
𝑥 ∩𝑉𝑚

𝛽
is non-empty. Thus, the construction

of coverings Δ𝑛 and neighbourhoods 𝑊𝑛
𝑥 by induction is accomplished for all 𝑛.

According to the above, it is thus proved that

Proposition 3.41. any open covering Γ of a cellular decomposition 𝐾 can be
re�ned into a locally �nite open covering Δ.

In other words, we have proved that

Proposition 3.42. any cellular decomposition of 𝐾 is a paracompact space.

Since the space 𝐾 is, by assumption, Hausdor�, it follows directly from this
statement that

Proposition 3.43. any cellular decomposition of 𝐾 is a normal (and even stably
normal) space.

Let us now consider the characteristic map 𝜒𝐾×𝐿 : 𝑃𝐾×𝐿 → 𝐾 × 𝐿 for the
pre-decomposition 𝐾 × 𝐿 which is the product of two cellular decompositions 𝐾
and 𝐿. By what has just been proved, the spaces 𝐾 and 𝐿 are regular. Moreover,
as we know, if the decomposition 𝐾 is locally �nite (resp. locally countable),
then the characteristic map 𝜒𝐾 : 𝑃𝐾 → 𝐾 is locally compact (resp. locally
countable). On the other hand, as noted at the end of �3.1, we can assume that
𝑃𝐾×𝐿 = 𝑃𝐾 × 𝑃𝐿 and 𝜒𝐾×𝐿 = 𝜒𝐾 × 𝜒𝐿. Therefore, by the theorem proved in
�1.5, the map 𝜒𝐾×𝐿 is an identi�cation map if at least one of the decompositions
𝐾 and 𝐿 is locally �nite or if both these decompositions are locally countable.
Since the pre-decomposition 𝐾×𝐿 is obviously point-wise �nite, it is thus proved
that

Proposition 3.44. The product 𝐾 × 𝐿 of cellular decompositions 𝐾 and 𝐿 is a
cellular decomposition if at least one of the decompositions 𝐾 and 𝐿 is locally
�nite or if both these decompositions are locally countable.

In particular,

Proposition 3.45. for any cellular decomposition 𝐾, the product 𝐾 × 𝐼 is also
a cellular decomposition.

Remark 3.46. As Dowker showed, there exist cellular decompositions 𝐾 and 𝐿
such that their product 𝐾 × 𝐿 is not a cellular decomposition.
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3.4 Continuous maps of cellular decomposition

Let 𝐾 be an arbitrary cellular decomposition and 𝑌 be an arbitrary topological
space.

Since the decomposition 𝐾 is a free union of sets 𝑒, 𝑒 ∈ 𝐾, then

Proposition 3.47. the single-valued map

𝑓 : 𝐾 → 𝑌

is continuous if and only if for any cell 𝑒 ∈ 𝐾 the map

𝑓 |𝑒 : 𝑒 → 𝑌

is continuous.

Similarly, since a cellular decomposition 𝐾 is a free union of its skeletons 𝐾𝑛,
then

Proposition 3.48. the map
𝑓 : 𝐾 → 𝑌

is continuous if and only if for any �nite 𝑛 ≥ 0 the map

𝑓 |𝐾𝑛 : 𝐾𝑛 → 𝑌 .

is continuous.

In what follows, we will repeatedly construct maps

𝑓 : 𝐾 → 𝑌 .

by constructing, for any 𝑛 ≥ 0, �consistent� continuous maps 𝑓 𝑛, i.e., continuous
maps

𝑓 𝑛 : 𝐾𝑛 → 𝑌 .

such that
𝑓 𝑛+1 |𝐾𝑛 = 𝑓 𝑛

for any 𝑛 ≥ 0, and setting for any point 𝑥 ∈ 𝐾

𝑓 (𝑥) = 𝑓 𝑛 (𝑥), if 𝑥 ∈ 𝐾𝑛.

According to the previous assertion,

Proposition 3.49. the map
𝑓 : 𝐾 → 𝑌 .

constructed in this way is continuous.

All these statements are applicable, in particular, to the decomposition 𝐾× 𝐼
and to continuous maps 𝐾 × 𝐼 → 𝑌 , i.e., to homotopies 𝑓𝑡 : 𝐾 → 𝑌 , 0 ≤ 𝑡 ≤ 1.
Since the decomposition 𝐾 × 𝐼 is obviously a free union of sets 𝑒 × 𝐼, we obtain
from this that
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Proposition 3.50. the family of maps

𝑓𝑡 : 𝐾 → 𝑌, 0 ≤ 𝑡 ≤ 1,

is a homotopy if and only if for any cell 𝑒 ∈ 𝐾 the homotopy is the family

𝑓𝑡 |𝑒 : 𝑒 → 𝑌, 0 ≤ 𝑡 ≤ 1,

and also if and only if for any 𝑛 ≥ 0 the homotopy is the family

𝑓𝑡 |𝐾𝑛 : 𝐾𝑛 → 𝑌 .

Moreover,

Proposition 3.51. if for all 𝑛 ≥ 0 we are given �consistent� skeleton homo-
topies, i.e., homotopies

𝑓 𝑛𝑡 : 𝐾
𝑛 → 𝑌, 0 ≤ 𝑡 ≤ 1,

such that
𝑓 𝑛+1𝑡 |𝐾𝑛 : 𝑒 → 𝑌, 0 ≤ 𝑡 ≤ 1,

for any 𝑛 ≥ 0, then, setting for each point 𝑥 ∈ 𝐾 and any 𝑡 ∈ 𝐼

𝑓𝑡 (𝑥) = 𝑓 𝑛𝑡 (𝑥), if 𝑥 ∈ 𝐾𝑛,

we obtain some homotopy

𝑓𝑡 : 𝐾 → 𝑌, 0 ≤ 𝑡 ≤ 1.

Sometimes we will consider not the sequence 𝐾0, 𝐾1, . . . , 𝐾𝑛, . . . of skeletons,
but an arbitrary increasing sequence

𝐾0 ⊂ 𝐾1 ⊂ · · · ⊂ 𝐾𝑛 ⊂ · · ·

of sub-decompositions of the decomposition 𝐾, the union of which is the entire
decomposition 𝐾. Since the decomposition 𝐾 is the free union of any such
sequence, then

Proposition 3.52. All the assertions proved above remain valid even if the
sequence of skeletons is replaced by an arbitrary increasing sequence of decom-
positions of the decomposition 𝐾, the union of which is this entire decomposition.

On the other hand, since any closed (or open) subspace 𝑋 of the decompo-
sition 𝐾 is a free union of sets 𝑋 ∩ 𝑒, 𝑒 ∈ 𝐾, then everything said above is true
(with obvious modi�cations) for any such space. Thus, for example,

Proposition 3.53. the map
𝑓 : 𝑋 → 𝑌

is continuous if and only if for any cell 𝑒 ∈ 𝐾 the map

𝑓 |𝑋∩𝑒 : 𝑋 ∩ 𝑒 → 𝑌
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is continuous, and also if and only if for any 𝑛 ≥ 0 the map

𝑓 |𝑋∩𝐾𝑛 : 𝑋 ∩ 𝐾𝑛 → 𝑌

is continuous.

A pair (𝐾, 𝐿) consisting of a cellular decomposition 𝐾 and an arbitrary sub-
decomposition 𝐿 of it will be called a cellular pair. Using the above remarks, one
can easily prove that the extension property of maps of spheres, which underlies
the de�nition of 𝑚-connected spaces (see �2.1), holds for any cellular pairs (𝐾, 𝐿)
for which dim(𝐾 \ 𝐿) ≤ 𝑚+1, i.e., for which dim 𝑒 ≤ 𝑚+1 for each cell 𝑒 ∈ 𝐾 \ 𝐿.
Namely,

Proposition 3.54. if dim(𝐾 \ 𝐿) ≤ 𝑚 + 1, then any map 𝑓 : 𝐿 → 𝑌 of a sub-
decomposition 𝐿 into an 𝑚-connected (𝑚 ≥ 0) space 𝑌 can be extended to some
map 𝑔 : 𝐾 → 𝑌 .

Proof. Indeed, let
𝐾𝑛 = 𝐾

𝑛 ∪ 𝐿.
For any 𝑛 = 0, 1, . . . , 𝑚 + 1, we construct a continuous map

𝑔𝑛 : 𝐾𝑛 → 𝑌,

such that 𝑔𝑛 |𝐿 = 𝑓 , 𝑔𝑛+1 |𝐾𝑛
= 𝑔𝑛. Then the map 𝑔𝑚+1 will be the desired map

𝑔 (since, according to the condition, 𝐾𝑚+1 = 𝐾).
We will construct the mapping 𝑔0 by arbitrarily de�ning it on the vertices

of the decomposition 𝐾 that do not belong to the sub-decomposition 𝐿 (on 𝐿,
it must, of course, coincide with 𝑓 ). Clearly, this map is continuous.

Let 𝑔𝑛 already be constructed for some non-negative 𝑛 ≤ 𝑚. If 𝐾𝑛+ = 𝐾𝑛,
then we set 𝑛+1 = 𝑔𝑛. Let 𝑛+1 ≠ 𝐾𝑛 and let 𝑒𝑛+1 be an arbitrary 𝑛+1-dimensional
cell of the decomposition 𝐾 that does not belong to the sub-decomposition 𝐿.
Having chosen a characteristic mapping for each such cell,

𝜒𝑒𝑛+1 : E𝑛+1 → 𝐾,

we consider the composition

𝑔𝑛 ◦ 𝜒𝑒𝑛+1 |S𝑛 : S𝑛 → 𝑌,

of the restriction 𝜒𝑒𝑛+1 |S𝑛 of the map 𝜒𝑒𝑛+1 to the sphere S𝑛 and the ma 𝑔𝑛.
Since the space 𝑌 is, by assumption, 𝑚-connected, and 𝑛 ≤ 𝑚, we can extend
this composition to some map

𝜒𝑒𝑛+1 : E𝑛+1 → 𝑌 .

For any point 𝑥 ∈ 𝐾𝑛+1, we now set

𝑔𝑛+1 (𝑥) =
{
𝑔𝑛 (𝑥), if 𝑥 ∈ 𝐾𝑛,
𝜒𝑒𝑛+1 (𝜒−1𝑒𝑛+1 (𝑥)) if 𝑥 ∉ 𝐾𝑛,
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where 𝑒𝑛+1 is the cell of the decomposition 𝐾 containing the point 𝑥. It is clear
that we thereby obtain a single-valued continuous map

𝑔𝑛+1 : 𝐾𝑛+1 → 𝑌,

possessing all the required properties. □

Let us now show that

Proposition 3.55. any cellular pair (𝐾, 𝐿) satis�es the axiom of homotopy
extension.

Proof. Indeed, let 𝑌 be an arbitrary space, 𝑓 : 𝐾 → 𝑌 an arbitrary map, and
𝑔𝑡 : 𝐿 → 𝑌 , 0 ≤ 𝑡 ≤ 1, be a homotopy such that 𝑔0 = 𝑓 |𝐿. We must construct
a homotopy 𝑓𝑡 : 𝐾 → 𝑌 for which 𝑓0 = 𝑓 and 𝑓𝑡 |𝐿 = 𝑔𝑡 for any 𝑡 ∈ 𝐼. Let
𝐾𝑛 = 𝐾𝑛∪𝐿. According to the above, to construct a homotopy 𝑓𝑡 , it is su�cient
to construct for any 𝑛 ≥ 0 a homotopy

𝑓 𝑛𝑡 : 𝐾𝑛 → 𝑌,

such that
𝑓 𝑛0 = 𝑓 |𝐾𝑛

, 𝑓 𝑛𝑡 |𝐿 = 𝑔𝑡 , and 𝑓 𝑛+1𝑡 |𝐾𝑛
= 𝑓 𝑛𝑡 .

For any point 𝑥 ∈ 𝐾0 we de�ne a homotopy 𝑓 0𝑡 by the formula

𝑓 0𝑡 =

{
𝑔𝑡 (𝑥), if 𝑥 ∈ 𝐿,
𝑓 (𝑥), if 𝑥 ∈ 𝐾0.

It is clear that this formula indeed de�nes a homotopy, for which 𝑓 00 = |𝐾0
and

𝑓 0𝑡 = 𝑔𝑡 for any 𝑡 ∈ 𝐼.
Let for 𝑛 ≥ 0 we have already constructed a homotopy 𝑓 𝑛𝑡 . If 𝐾𝑛+1 = 𝐾𝑛,

then we set 𝑓 𝑛+1𝑡 = 𝑓 𝑛𝑡 , 0 ≤ 𝑡 ≤ 1. Let 𝐾𝑛+1 ≠ 𝐾𝑛 and let 𝑒𝑛+1 be an arbitrary
𝑛 + 1-dimensional cell of 𝐾 that does not belong to 𝐿. Having chosen for each
such cell 𝑒𝑛+1 a characteristic map

𝜒𝑒𝑛+1 : E𝑛 → 𝐾,

For each point 𝑥 = 𝜒𝑒𝑛+1 (𝑣𝒖), 0 ≤ 𝑣 ≤ 1, |𝒖 |, of the set 𝑒𝑛+1 and any number
𝑡 ∈ 𝐼 we set

𝑔𝑒𝑛+1 ,𝑡 (𝑥) =
{
𝑓
(
𝜒𝑛+1𝑒

(
2𝑣
2−𝑡 𝒖

) )
, if 0 ≤ 𝑣 ≤ 2−𝑡

2 ,

𝑓 𝑛2𝑣+𝑡−2 (𝜒𝑛+1𝑒 (𝒖)), if 2−𝑡
2 ≤ 𝑣 ≤ 1.

It is easy to see (Fig. 3.1) that this formula uniquely de�nes a certain map

𝑔𝑒𝑛+1 ,𝑡 : 𝑒
𝑛+1 → 𝑌

(depending on the choice of the map 𝜒). Moreover, since the family of maps

𝑔𝑒𝑛+1 ,𝑡 ◦ 𝜒𝑒𝑛+1 : E𝑛+1 → 𝑌
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Figure 3.1:

is obviously a homotopy, the family of maps 𝑔𝑒𝑛+1 ,𝑡 is also a homotopy (since
the characteristic map 𝜒𝑒𝑛+1 considered as the map E𝑛+1 → 𝑒𝑛+1 is an identity
map, and the segment 𝐼 is compact, so the map 𝜒𝑒𝑛+1 × 1 : E𝑛+1 × 𝐼 → 𝑒𝑛+1 × 𝐼
is also an identity map). This homotopy has the property that

𝑔𝑒𝑛+1 ,0 = 𝑓 |𝑒𝑛+1 and 𝑔𝑒𝑛+1 ,𝑡 | ¤𝑒𝑛+1 = 𝑓 𝑛𝑡 | ¤𝑒𝑛+1

for any 𝑡 ∈. Therefore, the formula

𝑓 𝑛+1𝑡 =

{
𝑓 𝑛𝑡 (𝑥), if 𝑥 ∈ 𝐾𝑛,
𝑔𝑒𝑛+1 ,𝑡 (𝑥) if 𝑥 ∈ 𝑒𝑛+1 ∈ 𝐾𝑛+1 \ 𝐾𝑛,

de�nes a certain homotopy 𝑓 𝑛+1𝑡 : 𝐾𝑛+ → 𝑌 , 0 ≤ 𝑡 ≤ 1, which obviously has all
the required properties.

Thus, the homotopies 𝑓 𝑛𝑡 are constructed, by induction, for all 𝑛 ≥ 0. The
proposition formulated above is thus completely proven. □

Remark 3.56. A special case of the proved proposition is the statement for-
mulated in �2.4, since all pairs listed in this statement, as is easy to see, are
cellular.

We see, therefore, that all the results of �2.3 are applicable to arbitrary
cellular pairs (𝐾, 𝐿), since, together with the pair (𝐾, 𝐿), the pair (𝐾× 𝐼, 𝐼 (𝐾, 𝐿))
is also cellular. Thus, �rstly,

Proposition 3.57. for any cellular pair (𝐾, 𝐿) of any space 𝑌 and any two
homotopic maps

𝑓 , 𝑔 : 𝐿 → 𝑌
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the spaces 𝐾 ∪ 𝑓 𝑌 and 𝐾 ∪𝑔 𝑌 are homotopically equivalent moreover, the corre-
sponding homotopic equivalence can be chosen so that it is the identity map on
𝐾,

and, secondly,

Proposition 3.58. For any cell pair (𝐾, 𝐿), any space 𝑌 , any continuous map

𝑓 : 𝐿 → 𝑌

and any space 𝑍 homotopically equivalent to 𝑌 , every homotopy equivalence

ℎ : 𝑌 → 𝑍

can be extended to some homotopy equivalence

𝐻 : 𝐾 ∪ 𝑓 𝑌 → 𝐾 ∪ℎ◦ 𝑓 𝑍.

Generally speaking, the space 𝐾 ∪ 𝑓 𝑌 is not a cellular decomposition even in
the case when the space 𝑌 is a cellular decomposition. One can only say that

Proposition 3.59. for any cellular pair (𝐾, 𝐿), any cellular decomposition 𝑄
and any continuous map

𝑓 : 𝐿 → 𝑄

the space 𝐾 ∪ 𝑓 𝑄 is homotopy equivalent to some cellular decomposition 𝑄 that
contains the decomposition 𝑄 as a sub-decomposition, and the homotopy equiv-
alence 𝐾 ∪ 𝑓 𝑄 → 𝑄 can be chosen such that it is the identity map on 𝑄.

To prove this statement, we introduce continuous maps

𝑓 : 𝐾 → 𝑄

of a cellular decomposition 𝐾 into a cellular decomposition 𝑄, with the property
that

𝑓 (𝐾𝑛) ⊂ 𝑄𝑛

for any 𝑛 ≥ 0. We will call such maps of cellular decompositions cellular. The
statement formulated above will obviously be proven if we show, �rst, that

Proposition 3.60. any continuous map 𝐾 → 𝑄 is homotopic to some cellular
map 𝐾 → 𝑄

and, secondly, that

Proposition 3.61. For any cellular pair (𝐾, 𝐿), any cellular decomposition 𝑄,
and any cellular map,

𝑓 : 𝐿 → 𝑄

the space 𝐾 ∪ 𝑓 𝑄 is a cellular decomposition containing the decomposition 𝑄 as
a sub�decomposition.
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Let us �rst consider the second statement. Since the cellular decompositions
𝐾 and 𝑄 are, as we know, normal spaces, the space 𝐾 ∪ 𝑓 𝑄 is Hausdor� (�1.6).
Moreover, since the natural projection 𝛼 : 𝐾 ∪ 𝑄 → 𝐾 ∪ 𝑓 𝑄 onto 𝐾 \ 𝐿 and
𝑄 is a homeomorphism, then for any cell 𝑒 ∈ (𝐾 \ 𝐿) ∪ 𝑄 (with characteristic
map 𝜒) the set 𝛼(𝑒) is a cell of the space 𝐾 ∪ 𝑓 𝑄 (with characteristic map
𝛼 ◦ 𝜒). Moreover, given that the map 𝑓 is cellular, all cells 𝛼(𝑒), 𝑒 ∈ (𝐾 \ 𝐿) ∪𝑄
constitute a cellular pre-decomposition of this space.

Let us show that this subdivision is point-�nite, i.e., that any cell 𝛼(𝑒) of it
belongs to some �nite subdivision. For 𝑒 ∈ 𝑄, this is obvious, since the map 𝛼 |𝑄
is homeomorphic, and therefore the image 𝛼(𝑄(𝑒)) of the sub-decomposition
𝑄(𝑒) under the map 𝛼 is a �nite sub-decomposition of the pre-decomposition
𝐾 ∪ 𝑓 𝑄, containing the cell 𝛼(𝑒). Let 𝑒 ∈ 𝐾 \ 𝐿. Since the sub-decomposition
𝐾 (𝑒)∩𝐿 is �nite, it is compact, and therefore its image 𝑓 (𝐾 (𝑒)∩𝐿) ⊂ 𝑄 under the
map 𝑓 is contained in some �nite sub-decomposition 𝑄𝑒 of the decomposition
𝑄. Consider the set 𝛼(𝐾 (𝑒) ∪ 𝑄𝑒). It is obviously compact. Furthermore, it is
the union of cells of the form 𝛼(𝑒), 𝑒 ∈ (𝐾 (𝑒) \ 𝐿) ∪ 𝑄𝑒. Therefore, this set is
a �nite sub-decomposition of the pre-decomposition 𝐾 ∪ 𝑓 𝑄, containing the cell
𝛼(𝑒).

Thus, to prove the statement under consideration, we only need to prove
that the topology of the space 𝐾 ∪ 𝑓 𝑄 is a weak topology. As we know, for
this it is su�cient to prove (see �3.1), that the set 𝐴 ⊂ 𝐾 ∪ 𝑓 𝑄 is closed if its
intersection 𝑎 ∩ 𝑃 with any �nite sub-decomposition 𝑃 ⊂ 𝐾 ∪ 𝑓 𝑄 is closed. At
the same time, since the natural projection 𝛼 is an identi�cation map, and the
topological sum 𝐾∪𝑄 is a cellular decomposition, the set 𝐴 ⊂ 𝐾𝐾∪ 𝑓 𝑄 is closed
if and only if for any cell 𝑒 ∈ 𝐾 ∪ 𝑄 the intersection 𝛼1 (𝐴) ∩ 𝑒 is closed. Thus,
we need to prove that if the intersection 𝐴∩ 𝑃 of some set 𝐴 ⊂ 𝐾 ∪ 𝑓 𝑄 with any
�nite sub-decomposition 𝑃 ⊂ 𝐾 ∪ 𝑓 𝑄 is closed, then for any cell 𝑒 ∈ 𝐾 ∪ 𝑄 the
intersection 𝛼−1(𝐴) ∩ 𝑒 is closed. It is easy to see that this fact will be proved
if we show that for any cell 𝑒 ∈ 𝐾 ∪ 𝑄 the set 𝛼(𝑒) is contained in some �nite
sub-decomposition 𝑃𝑒 of the pre-decomposition 𝐾 ∪ 𝑓 𝑄.

Indeed, since the subdivision 𝑃𝑒, being �nite, is closed, and 𝛼(𝑒) ⊂ 𝑃𝑒, then
𝛼(𝑒) ⊂ 𝛼(𝑒) ⊂ 𝑃𝑒, and therefore 𝑒 ⊂ 𝛼−1(𝑃𝑒). Therefore,

𝛼−1(𝐴) ∩ 𝑒 ⊂ 𝛼−1(𝐴) ∩ 𝛼−1(𝑃𝑒) ∩ 𝑒 ⊂ 𝛼−1(𝐴 ∩ 𝑃𝑒) ⊂ 𝛼−1(𝐴) ∩ 𝑒,

and therefore

𝛼−1(𝐴) ∩ 𝑒 = 𝛼−1(𝐴 ∩ 𝑃𝑒) ∩ 𝑒.

By assumption, the right-hand side of this equality is closed. Therefore, its
left-hand side is also closed.

Thus, we only need to prove that for any cell 𝑒 ∈ 𝐾 ∪𝑄 there exists a �nite
sub-decomposition 𝑃𝑒 ⊂ 𝐾 ∪ 𝑓 𝑄 such that 𝛼(𝑒) ⊂ 𝑃𝑒. But if 𝑒 ∉ 𝐿, then the
set 𝛼(𝑒) is a cell of the pre-decomposition 𝐾 ∪ 𝑓 𝑄 and therefore, as has already
been proved, is contained in some �nite sub-pre-decomposition 𝑃𝑒 of this pre-
decomposition. Let 𝑒 ∈ 𝐿. Since the set 𝑓 (𝑒) ⊂ 𝑄 is compact, it is contained in
some �nite sub-decomposition of the decomposition 𝑄. Therefore, in this case,



124 CHAPTER 3. CELLULAR DECOMPOSITIONS

the set 𝛼(𝑒) = 𝑓 (𝑒) ⊂ 𝑓 (𝑒) (generally speaking, no longer a cell) is contained in
some �nite sub-decomposition 𝑃𝑒 of the pre-decomposition 𝐾 ∪ 𝑓 𝑄.

Thus, the statement that the pre-decomposition 𝐾 ∪ 𝑓 𝑄 is a decomposition
is completely proven.

In particular, we see that

Proposition 3.62. for any cellular pair (𝐾, 𝐿) the space 𝐾/𝐿 is a cellular
decomposition.

Similarly,

Proposition 3.63. the cylinder 𝑍 𝑓 of any cellular map 𝑓 : 𝐾 → 𝐿 is a cellular
decomposition (with cells of the form 𝑒 ∈ 𝐾, 𝑒 ∈ 𝐿 and 𝑒 × (0, 1), 𝑒 ∈ 𝐾).

Remark 3.64. For the above statement to be true, the requirement that the map
𝑓 be cellular is not necessary. It is su�cient that this map have the property
that 𝑓 (𝐿 ∩ ¤𝑒 ⊂ 𝑄𝑛−1 for any cell 𝑒 𝐾 \ 𝐿, where 𝑛 = dim 𝑒.

As for the �rst of the above statements, it can even be strengthened some-
what. Namely, it turns out that

Proposition 3.65. any continuous map 𝐾 → 𝑄 that is a cellular map on some
sub-decomposition 𝐿 ⊂ 𝐾 is homotopic to the cellular map 𝐾 → 𝑄 rel 𝐿.

We will prove this fundamental theorem about cellular maps in the next
section. We will dedicate the end of this section to deducing one important
consequence from it.

A homotopy
𝑓𝑡 : 𝐾 → 𝑄, 0 ≤ 𝑡 ≤ 1,

will be called cellular if the maps 𝑓0 and 𝑓1 are cellular and if

𝑓𝑡 (𝐾𝑛) ⊂ 𝑄𝑛+1 for any 𝑛 ≥ 0.

Clearly, a homotopy 𝑓𝑡 : 𝐾 → 𝑄, 0 ≤ 𝑡 ≤ 1, is cellular if and only if the
corresponding map 𝐾 × 𝐼 → 𝑄 is a cellular map. Cellular maps associated by a
cellular homotopy will be called cellularly homotopic.

It follows from the theorem on cellular mappings that

Proposition 3.66. if cellular maps

𝑓 , 𝑔 : 𝐾 → 𝑄

are homotopic relative to some (possibly empty) sub-decomposition 𝐿 ⊂ 𝐾, then
they are also cellularly homotopic rel 𝐿.

Proof. Indeed, the statement that the maps 𝑓 and 𝑔 are homotopic rel 𝐿 means
that there exists a map

𝐹 : 𝐾 × 𝐼 → 𝑄,

such that
𝐹 (𝑥, 0) = 𝑓 (𝑥), 𝐹 (𝑥, 1) = 𝑔(𝑥)
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for any point 𝑥 ∈ 𝐾 and

𝐹 (𝑥, 𝑡) = 𝑓 (𝑥) = 𝑔(𝑥)

for any points 𝑥 ∈ 𝐿 and 𝑡 ∈ 𝐼. It is clear that the map 𝐹 is cellular on the
sub-decomposition

𝐼 (𝐾, 𝐿) = 𝐿 × ∪𝐾 × 𝐼 ∪ 𝐿 × 1

of the decomposition 𝐾 × 𝐼 and therefore, according to the theorem on cellular
maps, it is homotopic relative to this sub-decomposition to some cellular map

𝐺 : 𝐾 × 𝐼 → 𝑄.

The family of maps corresponding to 𝐺

𝑔𝑡 : 𝐾 → 𝑄, 0 ≤ 𝑡 ≤ 1,

obviously represents a cellular homotopy rel 𝐿, connecting the maps 𝑓 and 𝑔. □

Thus, when studying the homotopy properties of cellular decompositions,
we can, without loss of generality, restrict ourselves to considering only cellular
maps and their cellular homotopies.

Let us apply, for example, this remark to the study of homotopy groups
𝜋𝑛 (𝑋; 𝑥0) in the case where the space 𝑋 is a cellular decomposition of 𝐾. Here
we can obviously assume that the point 𝑥0 is some vertex 𝑒0 of the decomposition
𝐾.

Having agreed to regard the sphere S𝑛 as a cellular decomposition with
a zero-dimensional cell 𝒖0 and an 𝑛-dimensional cell S𝑛 \ 𝒖0, we apply to an
arbitrary map

𝜑 : (S𝑛, 𝒖0) → (𝐾, 𝑒0)

the theorem on cellular maps. Since the points 𝒖0 and 𝑒
0 are vertices, this map

is cellular on 𝒖0. Therefore, according to the theorem on cellular maps, it is
homotopic rel 𝒖0 to some cellular map

𝜓 : (S𝑛, 𝒖0) → (𝐾, 𝑒0).

But the last map, being cellular, is a map of the sphere S𝑛 into the 𝑛-dimensional
skeleton 𝐾𝑛 of the decomposition 𝐾. Therefore, any map (S𝑛, 𝒖0) → (𝐾, 𝑒0) is
homotopic rel 𝒖0 to a map of the form 𝑖 ◦ 𝜓, where 𝑖 : 𝐾𝑛 → 𝐾 is an inclusion,
and 𝜓 is some map (S𝑛, 𝒖0) → (𝐾𝑛, 𝑒0). This means that

Proposition 3.67. the inclusion 𝑖 : 𝐾𝑛 → 𝐾 de�nes an epimorphism

𝑖∗ : 𝜋𝑛 (𝐾𝑛; 𝑒0) → 𝜋𝑛 (𝐾; 𝑒0)

of the group 𝜋𝑛 (𝐾𝑛; 𝑒0) onto the group 𝜋𝑛 (𝐾; 𝑒0).

Similarly, using the fact that homotopic cellular maps are cellularly homo-
topic, we obtain that
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Proposition 3.68. the group 𝜋𝑛 (𝐾; 𝑒0) is isomorphic to the group 𝜋𝑛 (𝐾𝑛+1; 𝑒0)
(and, in general, to any group 𝜋𝑛 (𝐾𝑚; 𝑒0) with 𝑚 ≥ 𝑛 + 1).

In particular, it directly follows from this general statement that

Proposition 3.69. for any 𝑚 < 𝑛, the following equality holds:

𝜋𝑛 (S𝑚, 𝒖0) = 0,

i.e., that the sphere S𝑚 is an (𝑚 − 1)-connected space.

We emphasise, however, that we obtained this statement by relying on the
theorem about cellular maps. On the other hand, in the next section, when prov-
ing the last theorem, we will make substantial use of this statement. Therefore,
to avoid a vicious circle, we will be forced to provide an independent proof of it
there.

3.5 Proof of the theorem on cellular maps

Let 𝑄 be an arbitrary cellular decomposition and

∅ = 𝑄1 ⊂ 𝑄0 ⊂ · · · ⊂ 𝑄𝑛 ⊂ · · ·

be an arbitrary increasing sequence of its sub-decompositions (the union of these
sub-decompositions may be the decomposition 𝑄 or may not). A map

𝑓 : 𝐾 → 𝑄

of some cellular decomposition 𝐾 into a decomposition 𝑄 will be called subor-
dinate to the sequence {𝑄𝑛} if

𝑓 (𝐾𝑛) ⊂ 𝑄𝑛

for any 𝑛 ≥ 0. Accordingly, we will say that for a sequence {𝑄𝑛} the theorem on
subordinate maps holds if for any cellular pair (𝐾, 𝐿) each map 𝑓 : 𝐾 → 𝑄 whose
restriction 𝑓 |𝐿 is subordinate to {𝑄𝑛} is homotopic rel 𝐿 to the subordinate {𝑄𝑛}
map 𝑔 : 𝐾 → 𝑄.

In the case where the sequence {𝑄𝑛} consists of skeletons 𝑄𝑛 of the decom-
position 𝑄, the subordination of the mapping 𝑓 means its cellularity.

Thus, the theorem on cellular maps formulated in the previous section means
that

Proposition 3.70. for the sequence {𝑄𝑛} of skeletons of the decomposition 𝑄,
the theorem on subordinate maps holds.

The basis of the proof of the theorem on cellular mappings is the fact that

Proposition 3.71. if the sequence {𝑄𝑛} is such that for any 𝑛0 every map-
ping (E𝑛, S𝑛−1) → (𝑄,𝑄𝑛−1) is homotopic rel S𝑛−1 to some map (E𝑛, S𝑛−1) →
(𝑄𝑛, 𝑄𝑛−1), then the theorem on subordinate maps holds for the sequence {𝑄𝑛}.
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In other words, if the sequence {𝑄𝑛} has the indicated property, then every
continuous map 𝑓 : 𝐾 → 𝑄 subordinated on 𝐿 to the sequence {𝑄𝑛} is homotopic
rel 𝐿 to some map 𝑔 : 𝐾 → 𝑄 subordinated to the sequence {𝑄𝑛}.

Proof. According to the remarks made at the beginning of the previous section,
to construct a homotopy

𝑓𝑡 : 𝐾 → 𝑄 rel 𝐿, 0 ≤ 𝑡 ≤ 1,

connecting the map 𝑓 with the map 𝑔, it is su�cient for us to construct for each
𝑛 ≥ 0 a homotopy

𝑓 𝑛𝑡 : 𝐾 → 𝑄, 0 ≤ 𝑡 ≤ 1,

such that

𝑓 𝑛0 = 𝑓 |𝐾𝑛 , 𝑓 𝑛1 (𝐾𝑛) ⊂ 𝑄𝑛, 𝑓 𝑛𝑡 |𝐿𝑛 = 𝑓 |𝐿𝑛 , 𝑓 𝑛+1𝑡 |𝐾𝑛 = 𝑓 𝑛𝑡

for a 𝑛 ≥ 0 and 𝑡 ∈ 𝐼.
By hypothesis, every map (E𝑛, S𝑛−1) → (𝑄,𝑄𝑛−1) is a homotopy rel S𝑛−1𝑙

to some map (E𝑛, S𝑛−1) → (𝑄𝑛, 𝑄𝑛−1). For 𝑛 = 0, this means that for any point
𝑦 ∈ 𝑄, there exists a path 𝑢𝑦 : 𝐼 → 𝑄 such that 𝑢𝑦 (0) = 𝑦 and 𝑢𝑦 (1) ∈ 𝑄0. For
every point 𝑥 ∈ 𝐾0 and any number 𝑡 ∈ 𝐼 we put

𝑓 0𝑡 (𝑥) =
{
𝑢 𝑓 (𝑥 ) , if 𝑥 ∉ 𝐿,

𝑓 (𝑥), if 𝑥 ∈ 𝐿.

It is clear that this will give us a homotopy

𝑓 0𝑡 : 𝐾0 → 𝑄, 0 ≤ 𝑡 ≤ 1,

for which
𝑓 00 = 𝑓 |𝐿0 , 𝑓 01 (𝐾0) ⊂ 𝑄0, 𝑓 0𝑡 |𝐿0 = 𝑓 |𝐿0 .

Let for 𝑛 ≥ 0 a homotopy 𝑓 𝑛𝑡 has already been constructed. If 𝐾𝑛+1 = 𝐾𝑛,
then we set 𝑓 𝑛+1𝑡 = 𝑓 𝑛𝑡 . Let 𝐾

𝑛+1 ≠ 𝐾𝑛. Since the pair (𝐾𝑛+1, 𝐾𝑛), being cellular,
satis�es the axiom of homotopy extension, there exists a homotopy

𝑔𝑡 : 𝐾
𝑛+1 → 𝑄, 0 ≤ 𝑡 ≤ 1,

such that
𝑔0 = 𝑓 |𝐾𝑛+1 , and 𝑔𝑡 |𝐾𝑛 = 𝑓 𝑛𝑡

for any 𝑡 ∈ 𝐼.
Let's consider the map

𝑔1 : 𝐾𝑛+1 → 𝑄.

Since 𝑔1 |𝐾𝑛 = 𝑓 1𝑡 , then
𝑔1 (𝐾𝑛) ⊂ 𝑄𝑛.

Let 𝑒𝑛+1 be an arbitrary 𝑛 + 1-dimensional cell of the decomposition 𝐾 and let

𝜒 : E𝑛+1 → 𝐾
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be an arbitrary characteristic map of this cell. Since ¤𝑒𝑛+1 ⊂ 𝐾 and 𝑔1 (𝐾𝑛) ⊂ 𝑄𝑛,
then

𝑔1 ◦ 𝜒 : (E𝑛+1, S𝑛) → (𝑄,𝑄𝑛)

Therefore, according to the condition, there exists a homotopy

𝜉𝑡 : E𝑛+1 → 𝑄 rel S𝑛,

such that

𝜉0 = 𝑔1 ◦ 𝜒, 𝜉1 (E𝑛+1) ⊂ 𝑄𝑛+1.

For any point 𝒙 = 𝜒(𝑣𝒖), 0 ≤ 𝑣 ≤ 1, |𝒖 | = 1, any cell 𝑒𝑛+11, and any number
𝑡 ∈ 𝐼, we set

ℎ𝑒𝑛+1 ,𝑡 (𝑥) =
{
𝑔 2𝑡

1+𝑣
(𝜒(𝑣𝒖)), if 0 ≤ 𝑡 ≤ 1+𝑣

2 ,

𝜉 2𝑡−𝑣−1
1−𝑣

(𝑣𝒖), if 1+𝑣
2 ≤ 𝑡 ≤ 1.

It is easy to verify (Fig. 3.2) that we thereby obtain a certain uniquely de�ned

Figure 3.2:

homotopy

ℎ𝑒𝑛+1 ,𝑡 : 𝑒
𝑛+1 → 𝐿, 0 ≤ 𝑡 ≤ 1.

To construct a homotopy 𝑓 𝑛+1𝑡 , we now consider an arbitrary point 𝑥 ∈ 𝐾𝑛+1.
In the case where 𝑥 ∉ 𝐾𝑛, the point 𝑥 belongs to some uniquely determined 𝑛+1-
dimensional cell 𝑒𝑛+1𝑥 ∈ 𝐾. For any number 𝑡 ∈ 𝐼

𝑓 𝑛+1𝑡 (𝑥) =

𝑓 𝑛𝑡 (𝑥), if 𝑥 ∈ 𝐾𝑛,
𝑓 (𝑥), if 𝑥 ∉ 𝐾𝑛 and 𝑒𝑛+1𝑥 ∈ 𝐿,
ℎ𝑒𝑛+1𝑥

(𝑥), if 𝑥 ∉ 𝐾𝑛 and 𝑒𝑛+1𝑥 ∉ 𝐿.
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It is easy to see that this gives us a homotopy

𝑓 𝑛+1𝑡 : 𝐾𝑛+1 → 𝑄,

such that
𝑓 𝑛+10 = 𝑓 |𝐾𝑛+1 , 𝑓 𝑛+11 (𝐾𝑛+1) =⊂ 𝑄𝑛+1

and
𝑓 𝑛+1𝑡 |𝐿𝑛+1 = 𝑓𝐾𝑛+1 , 𝑓 𝑛+1𝑡 |𝐾𝑛 = 𝑓 𝑛𝑡 for any 𝑡 ∈ 𝐼 .

Thus, the homotopies 𝑓 𝑛𝑡 are constructed for all 𝑛 ≥ 0.
The proposition formulated above is completely proved. □

Now consider the following statement:

Proposition 3.72 (𝐴𝑛). Any map

(E𝑛, S𝑛−1) → (𝑄,𝑄𝑛−1)

is homotopic rel S𝑛−1) to some map

(E𝑛, S𝑛−1) → (𝑄𝑛, 𝑄𝑛−1).

According to the proposition just proved,

Proposition 3.73. To prove the theorem on cellular maps, it su�ces to prove
statement (𝐴𝑛) for any 𝑛 ≥ 0.

Remark 3.74. For 𝑛 = 0, the statement (𝐴𝑛) is true (since in this case it simply
states that any point of the partition 𝑄 can be connected by a path to some of
its vertices). Thus, this statement requires proof only for 𝑛 > 0.

A pair (𝑋, 𝑋0) consisting of some Hausdor� space 𝑋 and its closed subspace
𝑋0, which has the property that the complement 𝑋 \ 𝑋0 is an 𝑚-dimensional
(𝑚 ≥ 0) cell 𝑒𝑚, we will call an 𝑚-dimensional relative cell.

Consider the following statement:

Proposition 3.75 (𝐵𝑛). For any 𝑚 > 𝑛 and any 𝑚-dimensional relative cell
(𝑋, 𝑋0), every continuous map 𝑓 of the ball E𝑛 into the space 𝑋 that maps the
sphere S𝑛−1 into the subspace 𝑋0, i.e., a map of the pair (E𝑛, S𝑛−1) into the pair
(𝑋, 𝑋0), is homotopic rel S𝑛−1 to some map E𝑛 → 𝑋0.

It is easy to see that

Proposition 3.76. if for some 𝑛 ≥ 0 statement 𝐵𝑛 is true, then statement 𝐴𝑛
is also true (for any cellular decomposition 𝑄 and any map 𝑓 : (E𝑛, S𝑛−1) →
(𝑄,𝑄𝑛−1)).

Proof. Indeed, let assertion (𝐵𝑛) be true and let 𝑓 be an arbitrary map of the ball
E𝑛 into some cellular decomposition 𝑄 that takes the sphere S𝑛−1 to the (𝑛−1)-
th skeleton 𝑄𝑛−1. Since the ball E𝑛 is compact, its image 𝑓 (E𝑛) under the map
𝑓 is also compact and therefore is contained in some �nite sub-decomposition
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of the decomposition 𝑄. Therefore, without loss of generality, we can assume
from the outset that 𝑄 is �nite.

Using the �niteness of the decomposition 𝑄, we will prove the statement (𝐴𝑛)
for it by induction on its dimension 𝑚 = dim𝑄 and on the number 𝑎𝑚 (𝑄) of its
𝑚-dimensional cells. If 𝑚 = 𝑛, then the assertion (𝐴𝑛) is trivially true. Assuming
that this assertion has already been proven for all �nite decompositions of 𝑄 for
which either dim𝑄 < 𝑚, where 𝑚 > 𝑛, or the number 𝑎𝑚 (𝑄) is less than some
positive integer 𝑘, consider an arbitrary decomposition of 𝑄 for which dim𝑄 = 𝑚

and 𝑎𝑚 (𝑄) = 𝑘. By choosing an arbitrary 𝑚-dimensional cell 𝑒𝑚 ∈ 𝑄 and setting
𝑄0 = 𝑄 \ 𝑒𝑚, we obviously obtain an 𝑚-dimensional relative cell (𝑄,𝑄0). Since
any map (E𝑛, S𝑛−1) → (𝑄,𝑄𝑛−1) is automatically a map (E𝑛, S𝑛−1) → (𝑄,𝑄0),
then, according to the statement (𝐵𝑛), each such map is homotopic rel S𝑛−1) to
some map 𝑔 : E𝑛 → 𝑄0.

On the other hand, it is clear that the subspace 𝑄0 is a cellular decomposition
such that either dim𝑄0 < 𝑚 or 𝑎𝑚 (𝑄0) < 𝑘. Therefore, by the induction
hypothesis, the map 𝑔 is homotopic with rel S𝑛−1) to some map ℎ : E𝑛 → 𝑄𝑛0 .
Consequently, the map 𝑓 is also homotopic rel S𝑛−1) to the map ℎ. Thus,
assertion (𝐴𝑛) is completely proved. □

Thus, to prove the theorem on cellular maps, we only need to prove the
statement (𝐵𝑛) for any 𝑛 ≥ 0.

Remark 3.77. Like the statement (𝐴𝑛), the statement (𝐵𝑛) is trivially true when
𝑛 = 0 (since the set 𝑒𝑚 is path-connected).

Now consider the following statement:

Proposition 3.78 (𝐶𝑛). For any 𝑚 > 𝑛 and any 𝑚-dimensional relative cell
(𝑋, 𝑋0), every map 𝑓 : (E𝑛, S𝑛−1) → (𝑋, 𝑋0) is homotopic rel S𝑛−1 to some map
𝑔 : E𝑛 → 𝑋 with the property that the image 𝑔(E𝑛) of the ball E𝑛 under 𝑔 does
not contain the entire cell 𝑒𝑚 = 𝑋 \ 𝑋0.

It is easy to see that

Proposition 3.79. statement (𝐶𝑛) implies statement (𝐵𝑛).

Proof. Indeed, let the statement (𝐶𝑛) be true and let 𝑥0 be an arbitrary point
of the cell 𝑒𝑚 that does not belong to the set 𝑔(E𝑛). Let us choose a map

𝜒 : E𝑚 → 𝑒𝑚,

characteristic of the cell 𝑒𝑚 such that 𝜒(0) = 𝑥0 (it is clear that such a map can
always be found). It is easy to see that, by setting

𝑔(𝑥) = 𝜒 : ((𝑣(𝑥), 𝒖(𝑥)), 𝑥 ∈ 𝐺

(where 𝑔 is the map E𝑛 → 𝑋 speci�ed by the statement (𝐶𝑛)), we uniquely
de�ne two continuous maps on the open subset 𝐺 = 𝑔−1(𝑒𝑚) of the ball E𝑛:

𝑣 : 𝐺 → 𝐼, 𝒖 : 𝐺 → S𝑚−1
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(since, by hypothesis, 𝜒(0) ∉ 𝑔(E𝑛), then 𝑣(𝑥) ≠ 0 for each point 𝑥 ∈ 𝐺 and
therefore the map 𝒖 : 𝐺 → S𝑚−1 is uniquely de�ned). For any point 𝑥 ∈ E𝑛 and
any number 𝑡 ∈ 𝐼, we now set

𝑔𝑡 (𝑥) =
{
𝜒(((1 − 𝑡)𝑣(𝑥) + 𝑡)𝒖(𝑥)), if 𝑥 ∈ 𝐺,
𝑔(𝑥), if 𝑥 ∉ 𝐺

It is clear that we thereby obtain a homotopy 𝑔𝑡 : E𝑛 → 𝑋 rel S𝑛−1, for which
𝑔0 = and 𝑔1 (E𝑛) ⊂ 𝑋0. Thus, the map 𝑔, and hence the map 𝑓 , is homotopic rel
S𝑛−1 to some map E𝑛 → 𝑋0. Assertion (𝐵𝑛) is thus completely proved. □

Thus, all that remains for us to prove is statement (𝐶𝑛) for all 𝑛 > 0.
To this end, we consider the following statement:

Proposition 3.80 (𝐷𝑛). For any 𝑚 > 𝑛, any 𝑛-dimensional relative cell (𝑋, 𝑋0),
and any map 𝑓 : (E𝑛, S𝑛−1) → (𝑋, 𝑋0), there exists a map

𝑔 : (E𝑛, S𝑛−1) → (𝑋, 𝑋0),

such that

1) the image 𝑔(E𝑛) of the ball E𝑛 under the map 𝑔 does not contain the entire
cell 𝑒𝑛 = 𝑋 \ 𝑋0;

2) the map 𝑔 coincides with the map 𝑓 outside some open set 𝑈 ⊂ E𝑛;

3) the image of the set 𝑈 under each of the maps 𝑓 and 𝑔 is contained in the
cell 𝑒𝑚.

It is easy to see that

Proposition 3.81. the map 𝑔 provided by statement (𝐷𝑛) is homotopic rel S𝑛−1

to the map 𝑓 .

Proof. Indeed, let
𝜒 : E𝑚 → 𝑋

be an arbitrary map characteristic of the cell 𝑒𝑚. Since, by hypothesis, 𝑓 (𝑈) ⊂
𝑒𝑚 and 𝑔(𝑈) ⊂ 𝑒𝑚, then single-valued continuous maps are de�ned on the set 𝑈

𝑓
′
𝜒−1 ◦ 𝑓 : 𝑈 → E𝑚, 𝑔

′
𝜒−1 ◦ 𝑔 : 𝑈 → E𝑚

For any point 𝒗 ∈ E𝑛 and any number 𝑡 ∈ 𝐼 we put

𝑔𝑡 (𝒗) =
{
𝜒(𝑡 𝑓 ′ (𝒗) + (1 − 𝑡)𝑔′ (𝒗)), if 𝒗 ∈ 𝑈,
𝑓 (𝒗), if 𝒗 ∉ 𝑈.

Clearly, we thereby obtain a homotopy 𝑔𝑡 : E𝑛 → 𝑋 rel S𝑛−1, connecting the
map 𝑓 with the map 𝑔. □
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By condition 1) of assertion (𝐷𝑛), the proven proposition means that

Proposition 3.82. the truth of assertion (𝐷𝑛) implies the truth of assertion
(𝐶𝑛).

Thus, to prove the theorem on cellular mappings, we only need to prove
statement (𝐷𝑛) for any 𝑛 > 0. We will carry out this proof by induction on the
number 𝑛. First, we will consider the case 𝑛 = 1.

Proof. (the case 𝑛 = 1) Let 𝑥0 be an arbitrary interior point of the cell 𝑒𝑚 and
let 𝐹 be its complete preimage 𝑓 −1(𝑥0) under the map 𝑓 : E1 → 𝑋. The set 𝐹 is
a closed subset of the segment E1 = [−1, 1] that does not contain its endpoints.
Since the map 𝑓 is continuous and the cell 𝑒𝑚 is open in the space 𝑋, on the
segment E1 there exists a �nite system of open intervals (𝑎𝑖 , 𝑏𝑖), 𝑖 = 1, . . . , 𝑘
such that their union 𝑈 contains the set 𝐹 and goes under the map 𝑓 into the
cell 𝑒𝑚. Since the set 𝑒𝑚 \ 𝑥0 is linearly connected (since 𝑚 > 1), then for any
𝑖 = 1, . . . , 𝑘 there exists a map 𝑔𝑖 of the closed segment [𝑎𝑖 , 𝑏𝑖] into the set
𝑒𝑚 \ 𝑥0 such that 𝑔𝑖 (𝑎𝑖) = 𝑓 (𝑎𝑖) and 𝑔𝑖 (𝑏𝑖) = 𝑓 (𝑏𝑖). But then it is clear that the
map 𝑔 : E1 → 𝑋 de�ned by the formula

𝑔(𝒗) =
{
𝑔𝑖 (𝒗), if 𝒗 ∈ (𝑎𝑖 , 𝑏𝑖),
𝑓 (𝒗), if 𝒗 ∉ 𝑈,

is continuous and satis�es all the conditions of assertion (𝐷1). Therefore, asser-
tion (𝐷1) is completely proved. □

Now suppose that for some 𝑛 > 1 the assertions (𝐷1, . . . , 𝐷𝑛−1) have already
been proved, and we prove the assertion (𝐷𝑛).

To this end, we �rst note that

Proposition 3.83. the validity of the assertions (𝐷1, . . . , 𝐷𝑛−1) implies that
for any 𝑚 > 𝑛 the sphere S𝑚 is an 𝑛 − 1-connected space.

Since the statement (𝐷𝑘), 𝑘 = 1, . . . , 𝑛 − 1, implies the statement (𝐵𝑘), to
prove this proposition it su�ces to prove that

Proposition 3.84. from the validity of the statement (𝐵𝑘) it follows that for
any 𝑚 > 𝑘 the sphere S𝑚 is a 𝑘-aspherical space.

Proof. Let 𝑔 be an arbitrary map S𝑘 → S𝑚. Having chosen some map

𝜒 : E𝑘 → S𝑘 ,

that maps the sphere S𝑘−1 ⊂ E𝑘 to the point 𝒖0 = (1, 0, . . . , 0) ∈ S𝑘 and home-
omorphically maps the open ball ¤E𝑘 = E𝑘 \ S𝑘−1 to the set S𝑘 \ 𝒖0 (i.e., a
characteristic ma of the cell S𝑘 \ 𝒖0), we consider the map

𝑓 = 𝑔 ◦ 𝜒 : (E𝑘 , S𝑘−1) → (S𝑚, 𝒘0),
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where 𝒘0 = 𝑔(𝒖0) ∈ S𝑚. Since the pair (S𝑚, 𝒘0) is obviously an 𝑚-dimensional
relative cell and 𝑚 > 𝑘, assertion (𝐵𝑘) applies to this map. Therefore, it is
homotopic rel S𝑘−1 to the map of the ball E𝑘 to the point 𝒘0. Let

𝑓𝑡 : E𝑘 → S𝑚

be the corresponding homotopy. Clearly, for any 𝑡 ∈ 𝐼, the map

𝑔𝑡 = 𝑓𝑡 ◦ 𝜒−1 : S𝑘 → S𝑚

is uniquely de�ned and that all these maps form a homotopy connecting the map
𝑔 with the constant map S𝑘 → 𝒘0. Therefore, the sphere S𝑚 is 𝑘-aspherical. □

Using the statements proved in �2.1, we immediately obtain from this that

Proposition 3.85. from the validity of the statements (𝐷1), . . . , (𝐷𝑛) it follows
that for any 𝑚 > 𝑛 the product S𝑚−1 × (0, 1) is an 𝑛 − 1-connected space.

After these preliminary remarks, we can now proceed directly to the proof of
the assertion (𝐷𝑛) (assuming that the assertions (𝐷1), . . . , (𝐷𝑛−1) have already
been proven).

Proof. (of the assertion (𝐷𝑛)) Let 𝑚 > 𝑛 and let

𝑓 : (E𝑛, S𝑛−1) → (𝑋, 𝑋0)

be an arbitrary map of the pair (E𝑛, S𝑛−1) into some 𝑚-dimensional relative cell
(𝑋, 𝑋0). Let, in addition, 𝑥0 be an arbitrary interior point of the cell 𝑒𝑚 = 𝑋 \𝑋0

and let
𝐹 = 𝑓 −1(𝑥0)

be its complete preimage under the map 𝑓 . Since, by hypothesis, the boundary
S𝑛−1 of the ball E𝑛 is mapped by 𝑓 into the subspace 𝑋0, the set 𝐹 (obviously
closed) is contained in the open ball ¤E𝑛 = E𝑛 \ S𝑛−1. By similar considerations,
the set 𝐺 = 𝑓 −1(𝑒𝑚) (obviously open) is also contained in the ball ¤E𝑛. Since
𝐹 ⊂ 𝐺, there exists a cubillage of the Euclidean space R𝑛 (i.e., a partition of
the space R𝑛 into cubes by orthogonal systems of parallel hyperplanes) so small
that the set 𝐹 has a neighbourhood 𝑈 contained in the open set 𝐺, which is the
union of some open cubes of this cubillage. Let 𝑃 be the closure of the set 𝑈
and 𝑄 be the boundary of this closure, i.e., its intersection with the union of all
closed cubes of the cubillage under consideration that do not belong to it. It is
clear that the set 𝑃 is a cellular decomposition of dimension 𝑛 (whose cells are
the open cubes of the cubillage under consideration and their open faces), and
the subset 𝑄 is a cellular subdivision of it. On the other hand, it is clear that
𝐹 ∩𝑄 = ∅ and therefore

𝑓 (𝑄) ⊂ 𝑒𝑚 \ 𝑥0,
so that we can view the map 𝑓 |𝑄 as the map

𝑓 |𝑄 : 𝑄 → 𝑒𝑚 \ 𝑥0,
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Finally, it is obvious that the set 𝑒𝑚 \ 𝑥0 is homeomorphic to the product S𝑛−1 ×
(0, 1) and therefore, by the induction hypothesis and the remarks made above,
it is 𝑛 − 1-connected.

Thus, the mapping 𝑓 |𝑄 is a continuous map of the sub-decomposition 𝑄 of
𝑃 into the 𝑛 − 1-connected space 𝑒𝑚 \ 𝑥0, where dim(𝑃 \ 𝑄) ≤ 𝑛. Therefore, by
the theorem proved in the previous section, there exists some extension

ℎ : 𝑃 → 𝑒𝑚 \ 𝑥0.

for this mapping. We de�ne the map

𝑔 : E𝑛 → 𝑋

by putting

𝑔(𝒗) =
{
ℎ(𝒗), if 𝒗 ∈ 𝑃,
𝑓 (𝒗), if 𝒗 ∉ 𝑃

for any point 𝒗 ∈ E𝑛. Clearly, this map is continuous and satis�es all the
conditions of assertion (𝐷𝑛). □

Thus, the assertions (𝐷𝑛) are proved for all 𝑛 > 0. Along with them, the
theorem on cellular maps is also completely proven.

Remark 3.86. Incidentally, we have proven that for any 𝑛 > 0, the sphere S𝑛 is
an (𝑛 − 1)-connected space (see the end of �3.4).

3.6 Whitehead's theorem. Quasi-polyhedra

Let us return to the proposition proved at the beginning of the previous section.
Setting in this proposition 𝑄 = 𝐾 and 𝑄0 = 𝑄1 = · · · = 𝑄𝑛 = · · · = 𝐾0, where
𝐾0 is some sub-decomposition of the cellular decomposition 𝐾, we immediately
obtain that

Proposition 3.87. if for every 𝑛 ≥ 0 any map (E𝑛, S𝑛−1) → (𝐾, 𝐾0) is homo-
topic rel 𝑆S𝑛−1 to some map E𝑛 → 𝐾0, then every map

𝑓 : (𝐾, 𝐾0) → (𝐾, 𝐾0)

is homotopic rel 𝐾0 to some map

𝑔 : 𝐾 → 𝐾0.

According to the assertion proved at the end of �2.4, the conditions of this
proposition are satis�ed if the sub-decomposition 𝐾0 is a representative subspace
of the space 𝐾. On the other hand, in the case where the map 𝑓 is the identity
map 1𝐾 of the decomposition 𝐾, the map 𝑔 provided by this proposition is
obviously a retraction 𝐾 ⊃ 𝐾0. Thus,

Proposition 3.88. any sub-decomposition 𝐾0 of the decomposition 𝐾, which is
its representative subspace, is a deformation retract of the space 𝐾.



3.6. WHITEHEAD'S THEOREM. QUASI-POLYHEDRA 135

In other words,

Proposition 3.89. for sub-decompositions of cellular decompositions, the prop-
erty of being a representative subspace is equivalent to the property of being a
deformation retract.

It easily follows from this proposition that

Proposition 3.90. for any cellular decompositions 𝐾 and 𝐿, every weak ho-
motopy equivalence

𝑓 : 𝐾 → 𝐿

is a homotopy equivalence.

In other words,

Proposition 3.91. For cell decomposition maps, the property of �being a weak
homotopy equivalence� is equivalent to the property of �being a homotopy equiv-
alence�.

Proof. Indeed, according to the theorem on cellular maps, we can assume with-
out loss of generality that the map 𝑓 is cellular, and therefore its cylinder 𝑍 𝑓
is a cellular decomposition. On the other hand, the fact that the map 𝑓 is a
weak homotopy equivalence means, as we know, that the subspace 𝐾 of the
cylinder 𝑍 𝑓 is representative. Therefore, since this subspace is clearly a sub-
decomposition of the cylinder 𝑍 𝑓 , it is a deformation retract of it, and therefore
the map 𝑓 is a homotopy equivalence. □

The proved proposition is known as Whitehead's theorem. It is one of the
fundamental tools for studying the homotopy properties of cellular decomposi-
tions. For example, this theorem almost immediately implies that

Proposition 3.92. any cellular decomposition 𝐾 is the homotopy limit of every
increasing sequence

𝐾0 ⊂ 𝐾1 ⊂ · · · ⊂ 𝐾𝑛 ⊂ · · ·

of its sub-decomposition, the union of which coincides with the entire decompo-
sition 𝐾.

Proof. Indeed, the space 𝐾Σ corresponding to the sequence under consideration
is, obviously, a cellular decomposition, and the natural map

𝑝Σ : 𝐾Σ → 𝐾

is weak homotopy equivalence. Therefore, according to Whitehead's theorem,
this map is a homotopy equivalence. □

We will call a topological space 𝑋 a quasi-polyhedron if it is homotopically
equivalent to some cellular decomposition. Clearly, Whitehead's theorem re-
mains valid for quasi-polyhedra as well, i.e.,
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Proposition 3.93. any continuous map

𝑓 : 𝑋 → 𝑌

of a quasipolyhedron 𝑋 into a quasipolyhedron 𝑌 that is a weak homotopy equiv-
alence is a homotopy equivalence.

Moreover, from what was said at the end of �3.4 it immediately follows that

Proposition 3.94. for any cell pair (𝐾, 𝐿) and any continuous map 𝑓 : 𝐿 → 𝑌

of a sub-decomposition of 𝐿 into an arbitrary quasi-polyhedron 𝑌 , the space
𝐾 ∪ 𝑓 𝑌 is a quasi-polyhedron.

Remark 3.95. Quasi-polyhedra constitute a remarkable class of topological spaces,
distinguished by the property that practically any �reasonable� operations on
topological spaces do not lead outside this class. For example, for any quasi-
polyhedra 𝑋 and 𝑌 , the space 𝑌𝑋 of all continuous maps 𝑋 → 𝑌 , considered in
the so-called �compact-open topology� (see �9.1), is also a quasi-polyhedron, and
every topological space 𝑋 for which there exists a homotopically injective map
𝐴 → 𝐾 into some quasi-polyhedron 𝐾 is itself necessarily a quasi-polyhedron.
On the other hand, in all homotopy questions one can restrict oneself only to
quasi-polyhedra, since for any space 𝑋 there exists a continuous map from some
quasi-polyhedron 𝑍 to the space 𝑋 that is a weak homotopy equivalence. These
properties of quasi-polyhedra will not be needed by us, and we will leave them
without proof.



Chapter 4

Smooth Manifolds. I

This chapter is mainly devoted to the construction of tensor calculus on arbitrary
smooth manifolds.

In the preparatory �4.1, we introduce the concept of a smooth premanifold
as a Hausdor� topological space on which a certain sheaf of germs of real-valued
functions is de�ned (to use the currently fashionable terminology).

In �4.2, which also has a preparatory character, we prove the classical the-
orem on di�erentiable maps with non-zero Jacobian for Euclidean spaces; in
doing so, we speci�cally emphasise some details that are essential for what fol-
lows, related to estimating the diameter of the domain in which the map is
di�eomorphic, which are usually left without consideration.

In �4.3, smooth manifolds are de�ned as smooth premanifolds that are locally
di�eomorphic to Euclidean spaces. Here, the concept of a product of smooth
manifolds is also introduced.

In �4.4, we prove analogues of Urysohn's lemma and Tietze's theorem for
smooth functions. Here, we also prove that any convex open subset of Euclidean
space is di�eomorphic to an open ball.

In �4.5, we introduce vector �elds as derivations of the algebra of smooth
functions and show that in any coordinate neighbourhood, each vector �eld is
a linear combination of partial derivations with respect to local coordinates.

In �4.6, we introduce the concept of a vector at a point, de�ne the manifold
𝑀∗ of all vectors at all possible points of a given manifold 𝑀, and show that the
vector �elds introduced in �4.5 can be interpreted as smooth maps 𝑀 → 𝑀∗.
In this section, we also introduce the concept of a di�erential of a smooth map
and, in connection with this, the concept of a regular map.

In �4.7, linear di�erential forms are considered in a similar way, and in �4.8,
tensor �elds of arbitrary type.

In �4.9, an algebra of tensors and tensor �elds is constructed. In particular,
the operation of convolution is considered in detail here.

In the �nal �4.10, the concept of a Riemannian space is de�ned and, based
on the results of �4.4, it is proved that on any smooth separable (i.e., with a
countable base) manifold there exists a metric tensor �eld, i.e., that each such
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manifold can be de�ned as a Riemannian space.

4.1 Smooth submanifolds

Let 𝑀 be an arbitrary set and let 𝑓 , 𝑓 1, . . . , 𝑓 𝑟 be some real functions de�ned
on the space 𝑀. We will say that a function 𝑓 depends smoothly on functions
𝑓 1, . . . , 𝑓 𝑟 if there exists an in�nitely di�erentiable function 𝑢(𝑡1, . . . , 𝑡𝑟 ) of real
variables 𝑡1, . . . , 𝑡𝑟 , de�ned (and in�nitely di�erentiable) for all values of these
variables, such that 𝑓 = 𝑢( 𝑓 1, . . . , 𝑓 𝑟 ) on 𝑀, i.e. such that

𝑓 (𝑝) = 𝑢( 𝑓 1 (𝑝), . . . , 𝑓 𝑟 (𝑝)) (4.1)

for any point 𝑝 ∈ 𝑀. If equality (4.1) holds only for points 𝑝 of some set 𝑈 ⊂ 𝑀,
then we will say that the function 𝑓 depends smoothly on the functions 𝑓 1, . . . 𝑓 𝑟

on the set 𝑈.

Remark 4.2. Some authors require that the function 𝑢, which establishes the
smooth dependence (4.1), be de�ned (and in�nitely di�erentiable) only in some
open set of the arithmetic space R𝑟 , containing all points of the form ( 𝑓 1 (𝑝), . . . , 𝑓 𝑟 (𝑝)),
𝑝 ∈ 𝑀. It is easy to show that this (formally more general) de�nition essentially
coincides with our de�nition. On the other hand, it is often required not that
the function 𝑢 be in�nitely di�erentiable, but only that it have a �nite number
of derivatives (up to some �xed order 𝑁). It can easily be veri�ed that all the
theory developed below remains valid with this de�nition of smooth dependence,
provided that the number 𝑁 is su�ciently large.

4.2 Inverse function theorem

4.3 Smooth manifolds

4.4 E-manifolds

4.5 Vector �elds

4.6 Vectors

4.7 Linear di�erential forms

4.8 Tensors and tensor �elds

4.9 Operations on tensors and tensor �elds

4.10 Riemannian spaces
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