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Preface

A word from the transcriber

This is an English translation of “Morse Theory” by M. M. Postnikov originally
written in Russian.

The preface by the original authour

When studying Morse theory, the main difficulty for beginners is the “synthetic”
nature of this theory, i.e. the fact that it is located at the junction of at least
three areas of mathematics (topology, analysis and geometry). The purpose
of this book is to help the beginner overcome this difficulty. Actually, only a
smaller part of the book is devoted to Morse theory: most of it is occupied with
presenting the necessary information from topology and geometry.

The first three chapters are devoted to topology.

Since general topology is described in many Russian textbooks, the first
chapter (general methodological issues) is written rather concisely and with
special emphasis on facts that are usually not covered in textbooks. Some of
the issues discussed in this chapter may also be of interest to a specialist.

The second chapter is entirely devoted to homotopy equivalence of topolog-
ical spaces. As far as the author knows, this material (which is well known to
specialists) has not been put together by anyone yet.

The third chapter discusses cellular decompositions. It seems surprising that,
despite the main role that cellular decompositions play in modern topology, a
coherent presentation of their theory has not yet been published anywhere.

The next two chapters are devoted to the theory of smooth manifolds. Al-
though there are a number of expositions of this theory in Russian, none of
them is suitable for our purposes. We construct a theory of smooth manifolds,
following Chevalley, in a non-coordinate form; local coordinates are used only
when it seems appropriate. With great regret, the author had to limit him-
self to finite-dimensional manifolds only - the coverage of infinite-dimensional
manifolds would violate the elementary nature of the presentation. This is all
the more regrettable because (as it has become clear recently) it is infinite-
dimensional manifolds that represent the natural field of construction of Morse
theory.
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The sixth chapter, devoted to the theory of critical points of smooth func-
tions, also belongs to the theory of smooth manifolds. The novelty here is the
systematic consideration of not only non-degenerate critical points, but also
non-degenerate critical manifolds. Morse numbers connecting the numbers of
critical points of a given index with the Betti numbers of the manifold. This is
the only place in the book (except for the directly related first half of paragraph
6 of Chapter 9) where we go beyond the topological material described in the
first three chapters. However, all the necessary properties of Betty numbers in
this supplement are clearly formulated.

The seventh chapter is devoted to the geometry of affine connectivity spaces-
and Riemannian geometry. The presentation here is conducted mainly in the
“classical” spirit, but in compliance with all modern requirements of rigour and
from a global point of view. We are dealing here only with the very basics
of Riemannian geometry, so much that is usually given in geometry courses
remains outside the scope of our presentation. On the other hand, we had to
include here some essential facts of Riemannian geometry (Whitehead’s theorem
on the existence of neighbourhoods normal with respect to any point, and the
Hopf-Rinov theorem on complete Riemannian spaces), which are usually not
considered in standard Riemannian geometry courses. Although we conduct
the entire presentation of Riemannian geometry in the spirit of Cartan’s ideas,
nevertheless, due to the limitations of the tasks set, we managed to do without
external differentiation (although in one place, namely, when deriving Cartan’s
basic equations, the concept of the external differential, although implicitly, still
essentially appears).

The eighth chapter outlines the theory of the so-called “index form”. We
present here, adhering mainly to the original Morse construction, and only in
the last paragraph we turn to a more modern interpretation related to the
replacement of the length functional with the action functional. This, of course,
somewhat lengthens and complicates the construction, but at the same time it
is possible to preserve both the historical perspective and geometric clarity. In
Appendix to this chapter, the “moving end” problem is treated in a similar way.
Here, Morse’s initial reasoning was significantly simplified.

In the ninth and final chapter, the main theorem of Morse theory is proved,
describing the structure of the space of curves connecting two given points of
the complete Riemannian space. In essence, this theorem is a fairly simple
reworking of the main results of the previous chapter, with the aim of giving
these results a more invariant appearance. In conclusion of this chapter, we
give the simplest applications of Morse theory to the topology and geometry of
Riemannian spaces.

A more detailed understanding of the contents of the book can be obtained
from the table of contents and short summaries given to each chapter.

Formally, the reader is not required to have any knowledge beyond the first-
year program of mathematical departments of universities and pedagogical col-
leges, although, of course, a certain level of mathematical culture and the ability
to work with the book is assumed.

When working on the manuscript of this book, the author allowed himself
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to make extensive use of his previous book (see the list of references of Post-
nikov [9]). In particular, chapters seven and eight reproduce the corresponding
chapters of this book almost verbatim.

The list of references at the end of the book is provided with a “Historical
and literary commentary” aimed at helping the reader to navigate the literature
more easily. The list of references does not claim to be complete.

Addition during proofreading. The manuscript of this book was completed in
1965, and its printing was delayed. At present, the author would present many
things in a completely different way, from a more modern perspective. But this
would have postponed the publication of the book indefinitely, and therefore it
was decided to leave it in its original form.

The Authour






Chapter 1

Necessary information from
general topology

In this introductory chapter we present the information we need based on gen-
eral set-theoretic topology. As a rule, we do not seek to exhaust a particular
issue raised. Only questions for which there is no coherent presentation in the
literature known to the authour are considered in detail.

§1.1 sets out the definition of topological spaces, introducing the classes
of spaces distinguished by the axioms of countability and separability are de-
fined, and the most important operations on topological spaces (free associa-
tions, topological sums and topological products) are described.

In §1.2, compact and closed spaces are considered (paracompact, finally
compact, locally compact, etc.). The results of this point are mostly known,
but so far were not collected together anywhere.

§1.3 presents classical theorems on continuous functions (the theorems of
Urysohn and Tietze and the theorem on the existence of a partition of unity).

In §1.4, the presentation is concentrated mainly around Stone’s theorem
on the paracompactness of metric spaces. As a consequence of this theorem,
in particular, we prove (based on the general results of §1.2 the well-known
theorem of P. S. Aleksandrov on the separability of connected locally compact
metric spaces.

In §1.5, the main attention is paid to the issue of constructing continuous
maps. In this regard, identification maps and, in particular, their topological
products are considered in detail.

§1.6 contains rather heterogeneous material, grouped around the concept of
topology of identification. In particular, this section describes the construction
of a cylinder of an arbitrary continuous map.
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1.1 Topological spaces

Since the basic facts of general topology are widely known, in this chapter we
only recall some concepts and clarify terminology.

A set X is said to be defined as a topological space or to have a topology
introduced if some of its subsets are declared open and the following axioms
hold:

1) the set X itself is open;

2) the empty set @ is open;

3) the union of any number of open sets is open;

)
)
)
)

4) the intersection of any finite number of open sets is open.

Let A be an arbitrary subset of the topological space X. Every open set U
containing A is called its neighbourhood. A point a of a set A is called its inner
point if some of its neighbourhood is contained in the set A. The set int A of all
interior points of a set A is called its interior. The interior of int A is the largest
open set contained in the set A. Therefore int(int A) = int A. A set A is open
if and only if int A = A, that is, when any of its points is its interior point. If
A C B, then int A C int B. For any family {A,} of subsets of the space X the
following inclusions occur

intUg,Ag DUgintA,, intNgAg CNeintA,,

and for a finite family {A,} equality takes place in the second of these relations.

A point x of a topological space X is called isolated if it, considered as a
subset of the space X, is its open subset. A topological space in which all points
are isolated is called discrete. The space X is discrete if and only if each of its
subsets is open.

A family {U,} of neighbourhoods U, of a set A is called its fundamental
system of neighbourhoods if for an arbitrary neighbourhood U of the set A there
exists an @ such that U, c U. A topological space X is called a space of
countable local weight' if any of its points has a countable fundamental system
of neighbourhoods. In this case we also say that the space X satisfies the first
aziom of countability.

A base (or a base of open sets) of a topological space X is any family of
its open sets that has the property that the unions of the sets of this family
exhaust all the open sets of the space X. In order for some family of open sets
of the space X to be a base, it is necessary and sufficient that for any point of
the space X from this family it is possible to choose a fundamental system of
neighbourhoods of this point. A family of open sets of a space X that has the
property that all their possible finite intersections form a base of the space X is
called its prebase. The assignment of some pre-base completely determines the

LComment by the transcriber: The weight of a topological space is the smallest cardinality
of an open base.
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topology of the space X, and any family of subsets of the set X can be taken
as a pre-base of some topology defined on this set. A space X is called a space
with a countable base (or a space of countable weight) if it has at least one base
(or, equivalently, a pre-base) containing at most a countable number of sets. In
this case, we also say that the space X satisfies the second aziom of countability.
Every space with a countable base has a countable local weight.

An example of a topological space with a countable base is the number line
R, considered in the usual Euclidean topology. By definition, the base of this
topology is the family of all possible open intervals (a,b), a < b. To obtain
a countable base, it is sufficient to restrict ourselves to intervals (a,b) with
rational a and b.

The complements (in X) of open sets of a topological space X are called
its closed subsets. A set X is completely defined as a topological space if it is
specified which of its subsets are closed. Closed sets have the following basic
properties, dual properties of open sets

1) the empty set @ is closed;

2) the entire set X is closed;

)
3) the intersection of any number of closed sets is closed;
4) the union of any finite number of closed sets is closed.

A point x € X is called a contact point (or an adherent point) of the set a ¢ X
if any of its neighbourhoods intersects with A. The set A of all contact points
of the set A is called its closure. It coincides with X C int(X c A) and therefore
is the smallest closed set of the space X containing the set A. In particular,
the set A is closed if and only if A = A, that is, when it contains all its contact

points. In addition, A = A and A c B if A c B. For any family {A,} of subsets
of the space X there are inclusions

UgAa D UgAe; NeAg CNGAg,

and for a finite family {A,} the first of these relations holds equality.

If A = X then the set A is called everywhere dense (in X). A space X is called
separable (or countable dense) if there exists a countable everywhere dense set
in it. Any space with a countable base is separable.

The set A c X is called nowhere dense (in X) if intA = @, i.e. if the
complement of its closure is everywhere dense (X \ A = X). A set A C X is
nowhere dense if and only if any non-empty open set U C X contains a non-
empty open subset disjoint from A (or, in other words, when any non-empty
open subset X the closed set F C X is contained in a closed set different from X
that contains the set A). The closure of a nowhere dense set is nowhere dense,
and an arbitrary subset of a nowhere dense set is also nowhere dense. The union
of a finite number of nowhere dense sets is nowhere dense. A space X is called a
space of the first category (in the sense of Baire-Hausdorff) if it is decomposable
into the union of a countable number of nowhere dense sets (here, as elsewhere
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in the future, by a countable set we mean a finite or countable set). Otherwise,
the space X is called a space of the second category.

A point a of a space X is called the limit of the sequence {x,} of points
xn, € X, i=1,2,... if for each its neighbourhood U there is an integer N such
that x,, € U for any n > N. In this case, the sequence {x,} is called convergent.
Generally speaking, a convergent sequence can have several different limits. If
all points x, of the convergent sequence {x,} belong to the set A c X, then each
limit a of this sequence belongs to the closure A of the set A. If the space X has
a countable local weight, then the converse is also true, i.e.,

Proposition 1.1. for an arbitrary subset A C X, each point a € A is the limit
of a certain sequence {x,} of points from A.

Proof. Indeed, let {U,},n > 1 be a countable fundamental system of neigh-
bourhoods of a point a. Let us construct the sequence {x,}, taking as a point
Xn, I = 1,2,... an arbitrary point of the set A belonging to he intersection
Vu = Ni_ U; (such a point necessarily exists, because a € A, and the intersec-
tion V,, is a neighbourhood of the point a). It is clear that the sequence {x,}
constructed in this way converges to the point a. O

Each subset A of the topological space X is defined as a topological space if
its open sets are taken to be intersections with A of the open sets of the space
X. This topology of the set A is called the induced topology, and the set A
itself, equipped with an induced topology, is a subspace of the space X. Any
subspace B of the subspace A is a subspace of the space X. The closed sets of
the subspace A are the intersections with A of the closed sets of the space X. A
subspace A is open (resp. closed) in the space X if and only if any open (resp.
closed) subset of it is open (resp. closed) in the space X. Each open subspace
of a space of the first category is itself a space of the first category. Therefore,
if the space X contains an open subspace that is a space of the second category,
then it is itself a space of the second category. Each subspace of a space with a
countable base (or a space of countable local weight) is a space with a countable
base (or, respectively, a space of countable local weight). Every open subspace
of a separable space is separable.

In particular, each subset of the number line R, for example the unit segment,
I =[0,1], is a topological space with a countable base.

A topological space X is called Hausdorff if any two of its different points
have disjoint neighbourhoods, and completely Hausdorff if any two of its differ-
ent points have neighbourhoods with disjoint closures. Thus, every completely
Hausdorff space is Hausdorff. Any point of a Hausdorff space is closed, i.e. it is
a closed subset of it. Each convergent sequence of points in a Hausdorff space
has a single limit. Any subspace of a Hausdorff (completely Hausdorff) space is
Hausdorff (completely Hausdorff).

A Hausdorff space is called regular if any of its closed subsets and any point
not belonging to this subset have disjoint neighbourhoods, and normal if any
of its two disjoint closed subsets have disjoint neighbourhoods. Formally, a
stronger condition for the existence of neighbourhoods with disjoint closures
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leads - in contrast to the case of Hausdorff property- to the same class of spaces.
Thus, for example, in normal space, any two disjoint closed sets have neighbour-
hoods with disjoint closures. Any normal space is regular. Any regular space is
completely Hausdorff. A Hausdorff space is regular (respectively normal) if and
only if for any neighbourhood U of its arbitrary point (an arbitrary closed sub-
set) there exists a neighbourhood V such that V ¢ U. Any subspace of a regular
space is regular and any closed subspace of a normal space is normal. Every
discrete space is normal. Any subspace of the number line R, in particular, the
unit segment I, is a normal space.

Let {X,;a € A} be a family of subspaces X, of the topological space X such
that

X = UgeaXa.

According to the definition of a subspace, for every closed (open) set A C X and
any a € A, the intersection A N X, is closed (open) in the subspace X,. In the
case when the converse is true, i.e., when any set A C X for which all sets AN X,
are closed (open) in the corresponding subspaces X, is itself closed (open) in
the space X, we will say that the space x is a free union of subspace X,. As is
easy to see,

Proposition 1.2. any closed or open subspace A of a free union X of subspaces
Xo is a free union of subspaces AN X,.

In addition,

Proposition 1.3. the space X = UycaX, is a free union of its subspaces X,
acAif

1) all subspaces X, are open; or
2) all subspaces X4 are closed and their number is finite.

Proof. Indeed, if all subspaces X, are open (closed), then every set that is open
(closed) in one or another of the subspaces X, is open (closed) throughout the
space X. In particular, if for a set A € X any of the intersections A N X,) is
open (closed) in the corresponding subspace X,, then all these intersections are
open (closed) in X, and therefore the set

A= UaeA(A N X(t)

is the union of open closed sets A N X, in X. Consequently, A itself is open
(closed, because the number of terms, by condition, is finite). O

A family {A,;a € A} of subsets A, of a space X will be called locally finite
if any point x € X has a neighbourhood intersecting only with a finite number
of subsets A,. It turns out that in condition 2) of the previous proposition,
the requirement of finiteness of the family {X,;@ € A} can be weakened to the
requirement of local finiteness, i.e.
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Proposition 1.4. the space X = U,X, @S a free union of its subspaces Xq,
a € A if all these subspaces are closed and the family {X,;a € A} is locally
finite.

Since the family of {A N X,; @ € A} is locally finite together with the family
{Xq; @ € A}, it immediately follows from the above reasoning that it is enough
for us to prove only the following (which has an independent interest) proposi-
tion:

Proposition 1.5. The union F = U, F, of any locally finite family {F,;a € A}
of closed sets Fo, C X is closed.

We will prove even more, namely that

Proposition 1.6. for any locally finite family {Ao;a € A} of subsets of an
arbitrary space X the foollowing equality holds

UgAg = UgAg.

Proof. Indeed, since UgA, D UgAg, proof requires only the reverse inclusion

UgAg C UgAqg. (1.7)

Let A = UyA, and let x/inA. Due to the local finiteness of the family {Aq,
the point x has a neighbourhood Uj intersecting only with a finite number of
sets Aq,,...,Aqn of this family. Therefore, for any neighbourhood U of the
point x, its neighbourhood V = U N Uy does not intersect with the sets A, for
@ % ay,...,a,. But x € A and therefore VN A # @. Therefore, VNUL, Ay, # @,
i.e, UNUL Ay, # @. Due to the arbitrariness of the neighbourhood U, it follows

that x € U;A,, = U:‘:Ozai C UgAg. Thus, the inclusion (1.7) is proved. O

In connection with the proven proposition, it is useful to note that

Proposition 1.8. a family {A.} of arbitrary sets is locally finite if and only if
the family {A,} consisting of the closures A, of sets Ay is locally finite.

Proof. Indeed, it is clear that an open set U intersects some set A if and only if
it intersects the closure A of this set. O

The concept of free union that we have considered had, so to speak, an “inter-
nal” character: it related to subspaces of a given, “already existing,” topological
space X. It can also be considered when the space X is not given in advance.

Let an arbitrary set X be represented as a union

X =UgeaXo

of sets X, each of which is a topological space. It is easy to see that, by
declaring closed (open) sets those and only those sets A ¢ X for which, for any
a € A, the intersection A N X, is closed (open) in the space X,, we define the
set X as a topological space. However, generally speaking, the spaces X, will
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not be subspaces of this space. (To get an appropriate example, it is enough
to consider the case when all the spaces X, coincide as sets with the space X,
but are equipped with different topologies.) In the case when each space X, is
a subspace of the constructed space X, we will say that the spaces X, are freely
united, and we will call the space X a free union of the spaces X,. It will be a
free union in the previously defined sense of its subspaces X,,.

It is clear that

Proposition 1.9. if all intersections Xq, N Xq,, a1,@2 € A, are closed (open)
spaces of each spaces Xo, and X,,, then the spaces X, are freely united and are
closed (respectively, open) spaces of their free union X.

In particular, the spaces X, are freely combined if they do not intersect in
pairs. We will call the free union of disjoint topological spaces a topological sum.
Each term X, of the topological sum X is closed and simultaneously open in
this sum. Conversely, if

X =UgeaXo

and if each subspace of X, is both closed and open in X, then the space X is
the topological sum of the subspaces of X,. If each term of a topological sum
is Hausdorff, completely Hausdorff, regular or normal, then the topological sum
also has the same property. The same remark applies to topological sums, the
terms of which have a countable local weight. For spaces with a countable base
and separable, a similar statement is true only when the number of terms of the
topological sum is countable.

Along with the topological sum, we will also consider the topological product
X X Y of any two (not necessarily disjoint) topological spaces X and Y. The
points of this product are, by definition, all possible pairs of the form (x,y),
where x € X, y € Y, and the base of its open sets is the collection of all subsets
of the form U x V, where U is an arbitrary open subset of the space X, and V is
an arbitrary open subset of the space Y (the subset UXV consists, as its notation
suggests, of all pairs (x,y), where x € U, y € V). The topological product of any
(possibly infinite) number of topological spaces X, a € A is defined similarly
(in this case, in the case of an infinite number of factors, when constructing
open sets of the base of the product, one should choose open sets that coincide
with the entire space in all but a finite number of factors). The topological
product of any number of Hausdorff, completely Hausdorff, or regular spaces
is, respectively, Hausdorff, completely Hausdorff, and regular. For spaces of
countable local weight of spaces with a countable base or separable spaces,
the corresponding statement holds if the number of factors is countable. The
topological product of normal spaces is not, generally speaking, a normal space.

For example, there is a normal space X whose topological product X X I on
the segment I = [0, 1] of the number line R is no longer a normal space. The
normal space X, for which the product X X I is also normal, we will call it stably
normal.



8CHAPTER 1. NECESSARY INFORMATION FROM GENERAL TOPOLOGY

1.2 Compact and some other similar spaces

A family {A,; @ € A} of subsets A, of a topological space X is called a covering
of the set B c X if
B C UgcaA,.

In particular (for B = X), a family {A,} is called a covering of the space X if
X = Ugeala.

A covering {Ay;a € A} is called open if all sets A, are open, and closed if all
sets A, are closed. In the future, we usually consider only open coverings.

The covering {A,;a € A} of the space X is called point finite if any point
x € X belongs to only a finite number of sets A, locally finite if any point
x € X has a neighbourhood intersecting only with a finite number of sets A, (cf.
§refsect:1-1), and is stellar finite if any set A, intersects only a finite number
of other sets of covering. Any locally finite cover is point finite and any open
stellar-finite cover is locally finite.

We will call the covering {Bg; 8 € B} a subcovering of the covering {A,;a €
A} if B C A and Bg = Ag for any S € B. We will say that the cover {Bg; € B}
is a refinement of the cover {A,;a € A} if for any B € B there exists an a € A
such that Bg C Aa. It is clear that any subcovering of the covering {A,;a € A}
is a refinement of this covering.

A space X is called paracompact if any of its open coverings can be refined
into a locally finite open covering. Every closed subspace of a paracompact space
is paracompact. The topological sum of any number of paracompact spaces is
paracompact. Each discrete space is paracompact.

To prove deeper properties of paracompact spaces, it is useful to first prove
that:

Proposition 1.10. for a subset A and a closed subset F of a paracompact
space X that does not intersect with it to have disjoint open neighbourhoods, it
is sufficient that the set F have an open cover {Uqy;a € A} such that Uy NA = @
for each @ € A.

Proof. Indeed, let us consider the covering {X\ F, U,} of the entire space X. Let
{Wg; B € B} be a locally finite covering refining the covering {X \ F,U,}, and
let B’ be the set of all indices 8 € B for which WgNF # @. Since Wg ¢ X \ F,
for each index B € B there exists an index @ € A such that Wg Cc Uy and
therefore Wg N A = @ (since Wg C U,). Therefore, the set UﬁeB'W’g does not
intersect with the set A. But UBEHW[; = Ugep Wp due to the local finiteness of
the family {Wg}. Therefore, the set U = X \ UﬁeBrWﬁ is open and contains the
set A, i.e. it is an open neighbourhood of the set A. To complete the proof, it
remains to note that the set W = Uz, p» Wp is open, contains the set F' and does
not intersect with the set U. O

It follows easily from this proposition, in particular, that
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Proposition 1.11. any Hausdorff paracompact space X is normal.

Proof. Indeed, let F; and F> be disjoint closed subsets of the space X. Since
the space X is Hausdorff, for any two points x; € F; and xo € F5 there are
disjoint neighbourhoods U(x1) and U(xz). In particular, the point xo will not
belong to the closure U(x1) of the neighbourhood U(x;1) of thee point x;. In
other words, the covering of the set Fy, consisting of the neighbourhoods U (x1,
x1 € F1, satisfies the conditions of the proposition just proved (for F = F; and
A consisting of the point x2). Consequently, there are disjoint open sets V and
V(x2, respectively containing the set F; and the point xs. In particular, the
closure V(x3) of the set V(x2) does not intersect with the set F;. Therefore, the
covering of the set Fs, consisting of the sets V(X3), xo € Fa, also satisfies the
conditions of our proposition (for F = F5 and A = F;). Consequently, the sets
F1 and F5 can be separated by disjoint neighbourhoods. O

A space X (or, more generally, some subset of it) is called compact (respec-
tively, Lindeldf) if any of its open covers can be refined with a finite (respec-
tively, countable) open cover, or, equivalently, if any of its open covers can be
subdivided with a finite (respectively, countable) cover.

Each compact space is Lindel6f. Any discrete compact (Lindeldf) space
is finite (countable). Any finite (countable) space is compact (Lindelof). A
subset of an arbitrary space is compact (Lindelof) if and only if it is compact
(Lindeldf) in the induced topology. In a Hausdorff space X, the set of points of
some convergent sequence together with the limit of this sequence constitutes a
compact subset of the space X. The closed subspace A of a compact (Lindeldf)
space X is compact (Lindel6f). In particular, the intersection of a compact set
with a closed one is compact.

The classical Heine-Borel lemma states that any closed bounded subset of
the real line R is compact. In particular, the interval I = [0, 1] is compact.

Below we prove that in regular (and even Hausdorff) spaces all compact sets
are closed. In this regard, it is useful to note that compact sets of regular spaces
have a property that any closed sets have in a normal space, namely, for any
neighbourhood U of a compact subset C of a regular space X, there exists a
neighbourhood V such that V c U.

Proof. Indeed, since the space X is regular, each point x € C has a neighbour-
hood V, such that V, c U. Since the set C is compact, from its covering
{Vyx,x € C} one can choose a finite subcovering V,,,...,Vy, . The set

V= U?=1in

is open and its closure V (which is the union of the closures Vx,. of the sets Vy,)
is contained in the neighbourhood U. O

A topological space X will be called sequentially compact if each sequence of
its points contains a convergent subsequence. It is easy to see that
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Proposition 1.12. any Hausdorff compact space of countable weight is sequen-
tially compact.

Proof. Indeed, let this not be so, i.e. let there exist a compact space of count-
able local weight, containing a sequence {x,}, with no subsequence of which
converges. It is easy to see that the set of points of this sequence is, firstly,
infinite, secondly, discrete, and, thirdly, closed. On the other hand, any closed
discrete subset of a compact space is necessarily finite. O

It is equally easy to prove that
Proposition 1.13. any Lindeldf and sequentially compact space is compact.

Proof. To prove this statement, it suffices to show that from any countable
open covering {U;} of a sequentially compact space X one can choose a finite
subcovering. Consider the sets V,, = U1 U---UU,, n =1,2,.... If it is impossible
to choose a finite subcovering from the covering {U;}, then we can obviously
assume that all sets V,, are distinct. Let x, € VV,,41 \ Vy,, n = 1,2,.... Since
the point x,, can belong to the set U; only when n < i, then none of the sets U;
contains the limit of any convergent subsequence of the sequence {x,}. But this
is impossible, because the sets Ui cover, according to the condition, the entire
space X. The resulting contradiction shows that from the covering {U;} one can
choose a finite subcovering. m]

In connection with this statement, it is useful to keep in mind that
Proposition 1.14. any space X with a countable base is Lindeldf.

Proof. Indeed, by selecting for an arbitrary open covering I'" of the space X in
a countable base of this space a subfamily of all its elements contained in the
elements of the covering I', we obviously obtain a countable covering of the space
X as a refinement in the covering T O

The compactness of sequentially compact spaces follows not only from Lin-
deldf property, but also from paracompactness, i.e.

Proposition 1.15. a paracompact and sequentially compact space is compact.
To prove this statement it suffices to show that

Proposition 1.16. any locally finite covering {U,} of a sequentially compact
space X is finite.

Proof. Assume the contrary, i.e. assume that the covering {U,} is infinite, and
consider some of its countable subfamily {U;}. Let, as above, V,, = U1 U---UU,,.
From the local finiteness of the covering {U,} it follows directly that the family
{V,,} contains infinitely many different sets Therefore, passing to some of its
subfamily if necessary, we can assume that all sets V,, are distinct. Let x, €
Vi \ V-1 and let x be the limit of some convergent subsequence of the sequence
{xn}. By definition, any neighbourhood of a point x contains infinitely many
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points of the sequence {x,} and therefore intersects with an infinite number of
elements of the covering {U,}. Since this contradicts the local finiteness of the
covering {U,}, the assumption that the covering {U,} is infinite is false. O

The union of a finite (countable) number of compact (Lindel6f) subspaces of
an arbitrary space is compact (Lindelof). In particular, the union of countably
many compact sets is Lindel6f. The topological sum of a finite (countable) num-
ber of compact (Lindeldf) spaces is a compact (Lindelof) space. The topological
product of any number of compact spaces is compact.

For two (and therefore any finite number of factors) this statement is obvious,
since in each open covering of the product X x Y of factors one can inscribe a
covering consisting of ‘“rectangles” U, x Vg, where U, and Vg are elements of
some coverings of the spaces X and Y, respectively.

For paracompact and Lindelof spaces, the corresponding statement is gen-
erally false (even for the case of two factors). However, it can be shown that

Proposition 1.17. the topological product of a paracompact and a compact
space is paracompact.

Proof. Indeed, let T" be an arbitrary open covering of the product X XY of a
paracompact space X and a compact space Y. Without loss of generality, we can
assume that the elements of the covering I" have the form U, x Vg where u, and
Vp are some open coverings of the spaces X and Y, respectively. Since for each
point x € X the “layer” x X Y of the product X XY is obviously compact, from
the covering I' one can choose a finite subfamily {Uq, x X Vg, x|i = 1,2,..., 1}
such that
x XY C U (Ug;x X Vg x)-

In this case, we can obviously assume that x € Uy,  for alli =1,2,...,nx. Let
Ux = N2 Ugy x

It is clear that the sets Uy X Vg, x, i = 1,2,...,nx, are open in X X Y and still
cover the layer x X Y:
x XY cUX (Ux X Vg, x).

Moreover, x € Uy, so that the family {Uy|x € X} is an open covering of the
space X. Let {Ws|6 € A} be a refined locally finite open covering of the covering
{Ux|x € X}. Having chosen for each 6§ € A a point x5 € X such that Ws € Uy,
we consider the sets W5xgi,x§7 i=1,2,...,nxs. It is clear that

Ws XY C U8 (Ws X Vg, xs)-

Consequently, the family {Wéx Vg, 156 € A,i =1,2,...,ny;} is an open covering
of the space X XY, obviously a refinement the covering I'. Therefore, to complete
the proof, it only remains to show that this covering is locally finite. Let (x,y)
be an arbitrary point of the space X X Y. By the paracompactness of the space
X, the point x has a neighbourhood U(x) in X that intersects only a finite
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number of open sets Ws. Consider a neighbourhood U(x) X Vg, x,, of a point
(x,y) in the space X XY, where Vg, ., is one of the sets of the form Vg, y,
containing the point y. If this neighbourhood intersects some set WsxVp, ., then
U(x) N Ws # @ and therefore the number of such sets is finite. Consequently,
the covering Ws X Vg, x5, i =1,2,...,ny, is locally finite. ]

It immediately follows from the proved proposition that the topological prod-
uct of a Hausdorff paracompact and a Hausdorff compact space is a Hausdorff
paracompact and therefore a normal space. Since the segment 7 = [0,1] is a
Hausdorff compact space, it follows, in particular, that

Proposition 1.18. any Hausdorff paracompact space is stably normal.
It is clear that any compact space is paracompact. Therefore,
Proposition 1.19. any Hausdorff compact space is stably normal,

Unlike compactness, Lindel6f-ness, generally speaking, does not ensure para-
compactness. However,

Proposition 1.20. any regular Lindeldf space X is paracompact (and hence
normal).

Proof. We will begin the proof of this statement by considering two disjoint
closed sets F; and Fs of the space X. Since the space X is regular, for any
point x € X, there exists a neighbourhood U(x) such that U(x) N F; # @ if
x ¢ F;. Since the set F;, i = 1,2, is a closed subset of the Lindel6f space X, it
itself is Lindeldf and therefore from its covering {U(x)|x € F;} one can choose
a countable subcovering, i.e. in the set F; there exists a countable system of
points X 1,...,Xin,... such that

F U U(xin), i=12.

In this case U(xl,n) N Fy = @ and similarly E(XQQ’,,) N F1 = @. Now we define by
induction for any n > 1 the sets Vi, and Vs ,, setting

Vl,n = ﬁ(xl,n) \ UZ:lv('x2,k)’
Vo =Ulxan) \ Uﬁzlﬁ(x1,k)~

It is easy to see that Vi, and Va,, do not intersect. Indeed, if n < m, then
Vi N Vam € U(X1,0) N (U(x2,m) \ U(x1.0) = @,
and if n > m, then
Vi 0 Vam € (U(X1.0) \ U(x2,m) N (U(x2,m) = 2.,
Consequently, the sets

Vi=UpiVig, Ve=Ug_ Vo,
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also do not intersect. On the other hand, they obviously contain the sets Fy
and Fs, respectively. Thus, we have proved that any two disjoint closed sets F;
and Fs of the space X can be enclosed in disjoint open sets V; and vy. In other
words, we have proved that the space X is normal. O

Now let T" be an arbitrary open covering of X. Since X is regular by as-
sumption, each point x € X has a neighbourhood U(x) whose closure U(x) is
contained in some element of I'. Since X is also Lindelof, there exists a countable
system of points x1,...,Xk,... in it such that

X = U, U(xp).

Let Uy be an element of the covering I' containing the set U(xy). Using the
already proven normality of the space X, for any n > 1 we can construct by
induction an open set U;' such that

Ug) cUP cUy and Uy c UMY, nk=1,2,...

For each n > 1 we now put
Vvt =Up_ U}

It is clear that V"' c V™*1 and that the sets V" form an open covering of the
space X. Consider the sets

H' =V \V'"?, n=12,...

(for m < 0 we conditionally assume that V" = @). It is easy to see that the
(obviously open) sets H" form a covering of the space X. (Indeed, for any point

x € X there exists an n such that x € V" and x ¢ V"~!. But then x ¢ Vn_Q and
therefore x € H".) In addition, it is clear that this covering is star-finite (since
H™ N H"™ =@ for ny > ny +2).

Let k=1,...,n. Put

Wr=H'nU =UM\V"? n=12...

Since H" c V" = U_ U}, then U_ W = H". Consequently, the sets W}
counstitute an (open) covering of the space X. This covering is a refinement of
the covering I" (since W}' € U}! C Uy) and is star-finite (since it is obtained from
the star-finite covering {H"} by decomposing each of its elements into a finite
number of sets). Since any star-finite open covering is locally finite, it is thus
proved that any open covering of X can be refined into a locally finite open
covering, i.e., that X is paracompact.

Let us now prove the fact mentioned above, namely, that
Proposition 1.21. any compact subset C of a Hausdorff space X is closed,

Proof. To this end, for any point x € X\ C and any point ¢ € C, we choose some
disjoint neighbourhoods U.(x) and Uy (c). For each fixed point x € X \ C, the
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sets Ux(c) ¢ € C obviously form an open covering of the subset C. Therefore,
there exists a finite system of points cy,...,c,; € C such that

Cc U;llex(Ci).

Let
U(x) = UL, U (x).

The set U(x) is open, contains the point x and does not intersect the set C.
Thus, each point x of the set X \ C is its interior point, i.e., this set is open.
Therefore, the set C itself is closed. O

A subset A of a topological space X will be called compactly closed if its in-
tersection with any compact subset C C X is closed (in X). From the proposition
just proved it follows immediately that

Proposition 1.22. any closed subset of a Hausdorff space X is compactly
closed.

Thus, for Hausdorff spaces, the classes of compact, closed, and compact-
closed subsets are related by a simple inclusion relation: each of these classes is
wider than the previous one.

We will call a space X a compactly generated® space if it is a free union of all
its compact subspaces, i.e. if its subset A is closed if and only if for any compact
subset C c X the intersection A N C is closed in C. In a compactly generated
space, any compactly closed set is closed. According to what was said above, if
X is a Hausdorff space, then the converse is also true. Thus,

Proposition 1.23. A Hausdorff space X is said to be a compactly generated
space if and only if any of its compactly closed subsets is closed.

Further, it is easy to see that

Proposition 1.24. any closed (resp. open) subspace Y of a compactly generated
(resp. compactly generated and regular) space X is also a compactly generated
space.

Proof. Indeed, let the set A C Y have the property that for any compact set
C C Y the intersection A N C is closed in C. We need to prove that then A is
closed in Y. If Y is closed, then instead we will prove that A is closed in X. Since
X is a compactly generated space, it suffices to prove that for any compact set
C c X the intersection A N C is still closed in C. But this intersection coincides
with the intersection A N (Y N C), and the set ¥ N C, being the intersection of a
compact and closed set, is compact. Therefore, by hypothesis, the intersection
AN (Y NC)is closed in C. O

2Transcriber’s note: Postnikov has coined the word “kaonic.”
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Now let the subspace Y be open. Let us consider an arbitrary contact point
a of the set A belonging to the subspace Y. Since the space X is, by assumption,
regular, then this point has a neighbourhood U such that U c Y. Since for
any compact set C C X the intersection U N C C Y is compact, the intersection
UNCNAis closed in UN C and therefore in C. Consequently, the intersection

UN A is closed in the space X. But it is clear that a € UN A. Thus, a e UN A
and, therefore, a € A. We have thus proved that each contact point of the set A
belonging to the subspace Y lies in A. But this means that the set A is closed
in the subspace Y.

It is clear that all compact spaces are compactly generated spaces. Moreover,
it is easy to see that

Proposition 1.25. any Hausdorff space X with countable local weight is com-
pactly generated.

Proof. Indeed, let a be an arbitrary contact point of some compactly closed
subset A of the space X and let {a,} be an arbitrary sequence of points of the
set A converging to the point a. Since this sequence together with its limit a
forms a compact set, the intersection of this set with the set A is closed. But
for a ¢ A this intersection would coincide with the sequence {a,} and would be
obviously not closed (since the limit of this sequence a ¢ A would not belong to
it). Consequently, a € A. Thus, A=A, ie. the set A is closed. O

We will call a space X countably compact if it is a free union of some countable
family {X,,,n = 0} of its compact subspaces X,,. Without loss of generality, we
can assume that X, C X4 for all n = 0. Every countably compact space
is a compactly generated space and Lindel6f space. Any closed subspace of
a countably compact space is countably compact. The topological sum of a
countable number of countably compact spaces is a countably compact space.
Moreover,

Proposition 1.26. any Hausdorff countably compact space X is paracompact
and, in particular, normal.

Since the space X is Lindelof, it suffices to establish its regularity. However,
it will be more convenient for us to immediately prove its normality.

Let F') and F® be arbitrary disjoint closed subsets of X. Let us consider
compact (and therefore closed and normal) subspaces

XoCcXiC---CcX,CXpp1 C--v

whose free union is the space X. It turns out that for any n > 0 there exist open
(in X,) sets U, i = 1,2 such that

X,nFD cu® =12,

US) ﬁﬁf) =2 and (forn>0) U NX, ;= Ufli—)l'
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For n = 0, the existence of such sets is ensured by the normality of the space
Xo. Let for some n > 0 the sets U,(li), i = 1,2 have already been constructed. Let
us consider in the subspace X1 the sets (X, N F(i)) U U;i) i =1,2. These sets
are closed and their intersection is empty. Therefore, they have neighbourhoods
v and V® with disjoint closures V" and V¥, On the other hand, since the

sets U,(ll) and U,(lz) are open in the subspace X,, of the space X,;1, then in the
space X,41 there exist open sets W) and W) such that

whnx,=0", i=12.

We will put .

U =vO a WU (X \ X)), i=1,2.
The sets U,(li)l, i = 1,2 constructed in this way obviously possess all the necessary
properties.

Let us now consider the sets
v =ue ol i=1,2.

Since for any n > 0 the sets U,(,i) = U N X, are open in the subspace X,, the
sets UY, i = 1,2 are open in the space X. In addition, they do not intersect
and contain the sets F() and F(?| respectively. Thus, any two non-intersecting
closed sets F) and F(® of the space X have non-intersecting neighbourhoods
UM and U®. But this means that the space X is normal.

Remark 1.27. In the above proof we used only the normality and closedness of
the subspaces X,,.

Therefore,

Proposition 1.28. any space that is a free union of a skeletal increasing se-
quence of closed normal subspaces is itself a normal space.

A space X is called locally compact (resp. emphlocally countably compact)
if each of its points has a neighbourhood whose closure is compact (resp. count-
ably compact). Any compact (resp. countably compact) space is locally com-
pact (resp. locally countably compact). Any discrete space is locally compact.
For each compact subset of a locally compact (resp. locally countably compact)
space, there exists a neighbourhood whose closure is compact (resp. countably
compact). Every Hausdorff locally countably compact and, in particular, lo-
cally compact space is regular (since a Hausdorff countably compact space is
normal). Any closed subspace of a locally compact (resp. locally countably
compact) space X is locally compact (resp. locally countably compact). The
corresponding assertion for open subspaces is also true only if X is Hausdorff. In
particular, any open subspace of a Hausdorff compact space is locally compact.

Theorem 1.29. Conversely, any Hausdorff locally compact space X is an open
subspace of some Hausdorff compact space X' and the space X' can be constructed
so that the “growth” of X \ X consists of only one point (P. S. Alexandrov’s
theorem on one-point compactification,).



1.2. COMPACT AND SOME OTHER SIMILAR SPACES 17

Proof. Indeed, let w be an arbitrary point not belonging to the space X. Let us
introduce a topology into the set X' = XUw, considering its open sets to be those
and only those sets A" ¢ X', for which the set A = A"\ w is open in the space
X and - in the case when to w € A" - is, in addition, the complement (in X) of
some compact set. It is easy to verify that the space X is compact, Hausdorff,
and the topology induced on X by the topology of the space X coincides with
the original topology of the space X. O

From the theorem on one-point compactification, in particular, it follows
directly that

Proposition 1.30. any Hausdorff locally compact space X is a compactly gen-
erated space.

This statement can easily be proved directly. Indeed, let A be an arbitrary
compactly closed subset of a locally compact space X. Let us prove that A is
closed.

Proof. Let x € X \ A. Since X is locally compact, x has a neighbourhood U
whose closure U is compact. Since A is compactly closed, A N U is closed, and
hence its complement V = X \ (A N U) is open. Thus, x has a neighbourhood
V that does not intersect ANU. But then x e UNV c UNV c X \ A, ie.
x € int(X \ A). Thus, X \ A is open, and hence A is closed. O

The last argument is almost literally preserved for locally countable com-
pactly generated spaces. (The closedness of the set A N U follows in this case
from the easily proven fact that the intersection of a compactly closed set with
an arbitrary countably compact subspace is closed in this subspace.) Thus,

Proposition 1.31. any Hausdorff locally countable compact space is a com-
pactly generated space.

Let us now deal exclusively with locally compact spaces (mainly Hausdorff).
First of all, we will prove that

Proposition 1.32. any Hausdorff locally compact space X is a space of the
second category.

Moreover,

Proposition 1.33. any subspace of the first category of a Hausdorff locally
compact space X has the property that its complement is everywhere dense in
the space X.

Proof. Indeed, let {A,;n > 1} be an arbitrary countable family of nowhere dense
subsets of X. We must prove that in any neighbourhood U of an arbitrary point
x of X there exist points that do not belong to any of the sets A,. For this
purpose, we construct in X a family {U,;n > 0} of nonempty open sets U,, such
that
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1) the closure of the set Uy is compact and is contained in a neighbourhood of
U;

2) for any n > 1 the relations

Uy CUpr, UiNAp=0
hold.

The existence of the set Uy follows directly from the local compactness and
regularity of the space X. Let for some n > 1 the set U,_; has already been
constructed. Since the set A, is nowhere dense, in the open set U, there exists
a non-empty open set V,, such that V,, N A,, = @. Since the space X is regular,
there exists a non-empty open set U, C V, such that U, c V,. It is clear that
U, C Uy_1 and U, N A, = @. Thus, the sets U, have been constructed by
induction for all n > 0.
Let us now consider the sets open in the subspace Uy

W,=Ug\U,, n>1.

If the intersection of the sets U,, n > 1, is empty, then the sets W, form a
covering of the subspace Uy. Since this subspace is compact by construction, a
finite subcovering {W,,,...,W,,} can be chosen from this covering. The corre-
sponding sets ﬁnl, . ,ﬁnk will then have an empty intersection. The latter is
impossible, since this intersection is equal to U,,, where m = max(n, ...,nx).
Consequently, the intersection of sets Uy, n > 1 is not empty. Since each point of
the last intersection does not belong to any of the sets A,,, the above proposition

is completely proved. O

Now recall that any Hausdorff locally compact space is regular. Therefore,
if it is also Lindeldf, then it is also paracompact. Since the topological sum of
paracompact spaces is a paracompact space, it follows immediately that

Proposition 1.34. any Hausdorff locally compact space that is a topological
sum of Lineldf subspaces is paracompact.

It turns out that the converse is also true (and even without the Hausdorff
proposition), i.e.

Proposition 1.35. any locally compact paracompact space X is a topological
sum of Lindeldf subspaces.

Proof. Indeed, due to the local compactness of the space X, any point of it has a
neighbourhood with compact closure. All these neighbourhoods form a certain
covering X of the space X. Since the space X is paracompact, a locally finite
covering I' can be inscribed in the covering X. This covering (like the covering
¥) has the property that the closure of each of its elements U is compact. On
the other hand, due to the local finiteness of the covering I', each point x € U
has a neighbourhood V(x) that intersects only a finite number of elements of
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this covering. But, since the set U is compact, there exists a finite system of
points x1,...,x, € U such that

Uc U?:1V(X[).

Consequently, the set U, and therefore the set U, intersects only a finite number
of elements of the covering T, i.e. the covering I is star-finite.

Having now chosen some element U0 of the covering I', we consider for any
n > 1 the subset X,, of X consisting of all points xinX for which there exist n
sets Uy, ...,U, € I' such that x € U,, and

UnNnUi 2@, UiNUs#0,...,U,.1NU, #@.

It is clear that the subset X, is not empty, open and - by the star-like finiteness
of the covering I' - is the union of some finite number of elements of this covering.
Therefore, the set

Xoo = Uy Xpy

is also open and is the union of a countable number of elements of the covering
I. The union X% of their closures is obviously contained in the closure X, of
the subspace X (in fact, it coincides with this closure). Being the union of a
countable number of compact sets, the subspace XZ, is Lindelof.

Since any element of the covering I' is either contained in X, or does not
intersect X, the complement X \ X, is a union of some elements of U € I" and is
therefore open. Consequently, the subspace X is not only open but also closed,
and therefore X7 = X.. Thus, the subspace X is Lindeof.

To complete the proof, it remains to note that the subspaces X, correspond-
ing to different elements Uy of the covering I' either coincide or do not intersect
and that the union of X is the entire space X. O

Connectedness

A topological space X is called connected if each of its non-empty closed and
simultaneously open subspaces coincides with the entire space X. In other words,
a space X is connected if it cannot be decomposed into a union of two (or more)
non-empty disjoint open (or closed) sets. Any space X is a union, generally
speaking, not free, of disjoint closed maximal connected subspaces, called the
connected components of X. A connected Hausdorff space has no isolated points.
In particular, a discrete space is connected if and only if it consists of a single
point.

A set obtained from a connected set by adding some of its points of contact
is connected. In particular, the closure of a connected set is connected. The
union of connected sets with non-empty intersection is connected. For example,
a space X is connected if any two of its points belong to a connected set. Any
interval (a, b) or segment [a, b] of the number line R is connected. In particular,
the unit segment I = [0, 1] is connected.

From the definition of a connected space and the theorem proved above it
immediately follows that
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Proposition 1.36. any connected paracompact locally compact space is Lin-

deldf.

1.3 Continuous functions

A numerical function f defined on a topological space X is called continuous if
for any point xg € X and any & > 0 there exists a neighbourhood U of the point
xp that

|/ (%) = f(xo)| <&

for all points x € U. Such functions have many properties of continuous functions
of a numerical argument. For example, any continuous function defined on a
compact space X is bounded and takes its largest and smallest values. Any
continuous function defined on a connected space X takes all intermediate values.
The restriction f|4 to an arbitrary subspace A ¢ X of any continuous function
f on X is a function continuous on A.

For a numerical function f defined on a space X and an arbitrary number
a, we will denote by the symbol [f < a] the set of all points x € X for which
f(x) < a. The notations [f < a], [f = a], [a < f < b], etc. have a similar
meaning. A function f is continuous if and only if for any a € R the set [f < a]
is closed or, equivalently, if for any @ € R the set [f < a] is open. From this,
in particular, it follows that for any continuous function f and any number a
the set [f = a] is closed and the set [f # a] is open. We will call the closure
[f # 0] of the set [f # 0] the support of the function f.

The sets [f = a] are a special case of the coincidence sets [f = g], defined
for any pair of continuous (on the space X) functions f and g and consisting,
by definition, of all points x € X for which f(x) = g(x). It is easy to see that

Proposition 1.37. for any two continuous functions f and g the set [f = g]
is closed.

Proof. Indeed, if x ¢ [f = g] then f(x) # g(x) and therefore the points f(x) and
g(x) have disjoint neighbourhoods U and V. The set f~1(U) n g=1(V) is open,
contains the point x and does not intersect the set [f = g]. It is thus proved
that the complement X \ [f = g] of the set [f = g] is open. Consequently, the
set [f = g] itself is closed. O

Continuous functions exist on any topological space X. Indeed, any constant
function, i.e. a function that takes the same value at all points x € X, is
obviously continuous. However, non-constant continuous functions, generally
speaking, may not exist. For their existence, it is sufficient that the space X be
normal (and contain more than one point). Namely, it can be shown that for
any two distinct points x¢ and x; of a normal space X, there exists a continuous
function f on X such that f(xg) = 0 and f(x;) = 1. Moreover, as P. S. Uryson
first proved,
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Proposition 1.38. for any closed set A of a normal space X and any of its
neighbourhoods U, there exists on the space X a continuous function f that takes
values from the interval [0, 1], is equal to one on A and zero outside U, i.e. such
that

Ac[f=1], U>[f=#0].

This statement is known as Urysohn’s lemma. Note that here we do not
exclude cases when A = @ or U = X (however, in these cases the lemma is
trivial). We will call each function f satisfying the conditions of the Urysohn
lemma a Urysohn function of the pair (U, A).

Proof. To prove Urysohn’s lemma, we construct in the space X a family {V,}
of neighbourhoods V, of the set A contained in a neighbourhood U, numbered
by binary-rational numbers » € (0,1) (i.e., numbers of the form £, where

n=1,2,... and m=1,2,...,2" = 1) and possessing the property that
V, c V., if r< r.

Such neighbourhoods V, are easily constructed by induction on n. For n = 1,
for the neighbourhood V;;5 we should take an arbitrary neighbourhood V of
the set A for which V c U (such a neighbourhood exists by the normality of
the space X). Let for some n > 1 the neighbourhoods V,,,/o» have already been
constructed (m = 1,2,...,2"—1). Let us take for each number r = (2s+1)/2"*!,
s=0,1,...,2" — 1, the neighbourhood of V, to be an open set V (existing due
to the normality of the space X) for which Vs/gn cVandV c V(len (for
s =0, the set Vs/gn means the set A, and for s = 2" — 1, the neighbourhood of
V(s+1)/2» means the neighbourhood of U). Thus, we obtain neighbourhoods of
V, for n+ 1 as well.

Having constructed the neighbourhoods of V., we define the function g on
the space X by the formula

gx)=supr, xeX.
xX¢V,
In other words, the value g(x) of the function g at a point of x € X is equal to the
upper line of all numbers r, for which x ¢ V,.. The function g is unequivocally
defined and continuous (for for any a € R there are a lot of [g < a] coincides
with the many U,.,V, and therefore open). Its values belong to a segment of
[0,1] and it is equal to zero on a lot of A and to unity outside the vicinity of U.
Therefore, the function f =1 — g is the desired function of Uryson. O

Remark 1.39. Urysohn’s lemma does not assert that A = [f = 1] or that U =
[f # 0]. Generally speaking, a function f for which at least one of these
equalities holds may not exist. Closed sets of the form [ f = const] are sometimes
called functionally closed. Similarly, open sets of the form [ f # const] are called
functionally open. It can be proved that a closed (resp. open) set of a normal
space is functionally closed (resp. open) if and only if it can be represented as
the intersection (resp. union) of a countable family of open (resp. closed) sets.
We will not need this fact and will leave it without proof.
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Let us now show that

Proposition 1.40. for any continuous function g defined on a closed subspace
A of a normal space X, there exists on the space X a continuous function f such
that

fx) =gx)

for each point x € A.

This statement is known as Tietze’s theorem (sometimes it is also called the
Brouwer-Urysohn theorem). The function f provided by this theorem we will
call the extension of the function g (from the subspace A to the entire space X).

Proof. First, we prove Tietze’s theorem under the additional assumption that
lg(x)] <1 (1.41)

for all x € A. We define by induction on the set A the sequence {g,} of continuous
functions, setting

8o =8,
n

2
8n+1 = 8n t 3,1?(2/%1 -1), n=0,

where h,, is the Urysohn function on the space X, constructed for the closed (in
A and therefore in X) set [g, < —%] and its neighbourhood X \ [g, > %]
By induction, for any point x € A, the estimate

2 n
g ()] < (3)

(it should be borne in mind that g,.+1(x) = gn(x) + 33—111 when g, (x) < —33% and
gne1(x) = gn(x) — % for g, (x) = %) Therefore

lim g,x) =0
n—o0

for any point x € A.
Now we compose from functions continuous on the space X

n

Fr0) = =y (2 () = 1)

an infinite series
Jo) + fi(x) + -+ fu(x) + -+ (1.42)

Since for any point x € X the inequality |f,(x)| < 3?.—21 holds and the numerical

series
n

.. . (1.43)

O N

1
37 e
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converges, the functional series (1.42) also converges (at all points x € X and
its sum f(x) is continuous on X. Moreover, for x € A, for the n-th partial sum
sn(x) = fo(x) + -+ ; fu(x) of Series (1.42), the equality

$n(x) = 8o(x) = gn+1(x)

holds. Passing to the limit in this relation (for n — o), we immediately obtain
that for any point x € A, the equality

fx) =gx)

holds. Thus, Tietze’s theorem under the additional assumption (1.41) is com-
pletely proved. In this case, the constructed function f satisfies the inequality

[f(x)| <1, xeX

(since the sum of series (1.43) is equal to unity).
Let us now consider the case when for all points x € A the strict inequality

lg(x)] <1, (1.44)

is satisfied and we will show that then there exists an extension f of the function
g for which a similar strict inequality

|f(x)] <1, (1.45)

is satisfied at all points x € X.

Indeed, as has been proved, there exists an extension f; of the function g
that satisfies the inequality |fo(x)| < 1 at any point x € X. Let Ay = AU [fy =
1] U [fo = 1]. Let us define a numerical function g; on the set A;, assuming

g(x), if xeA,
gl(x) = 1, if xe [fo = —1],
-1, if xel[fo=1].

Since the sets A, [fo = —1] and [fy = 1] are closed and pairwise disjoint, the
function g; is uniquely defined and continuous. Moreover,

lg1 () <1

for any point x € A. Consequently, as proved above, on the space X there exists
an extension f; of the function g; such that

i) <1
for any point x € X. But then the function

fo(x) + fi(x)

flo) = 222
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will be an extension on X of the function g; satisfying the condition (1.45).

To prove Tietze’s theorem in the general case, it is now sufficient to note
that for any function g(x) continuous on A, the function g=(x) = %arctang(x)
is continuous on A and satisfies the condition (1.44). Let f.(x) be its extension
satisfying condition (1.45). It is clear that the function f(x) = tan{Z f(x)} is
continuous on X and is an extension of the function g(x).

Thus, Tietze’s theorem is completely proven. O
In addition to Tietze’s theorem, it is useful to note that
Proposition 1.46. if for any point x € A the inequalities
a<gx)<b

(resp. the inequalities a < g(x) < b) hold, then the extension f of the function
g can be constructed so that for any point x € X the inequalities

a< f(x)<b
(resp. the inequalities a < f(x) < b) hold.
Proof. Indeed, for a = —1, b = 1 this statement has in fact already been proven
above. The general case is reduced to this special one by an obvious linear
transformation. O

Now let T' = {U,; @ € A} be an arbitrary open locally finite covering of X.
A family {f,; @ € A} of continuous functions f, on X will be called a partition
of unity subordinate to the covering T if

1) for any @ € A the function f, is non-negative and its support [f, # 0] is
contained in the element U, of the covering T’;

2) for any point x € X the equality

D fald) =1

a€cA

holds.

(due to the local, and therefore point, finiteness of the covering I', in the last
sum for any point x € X only a finite number of terms are non-zero).
It turns out that

Proposition 1.47. for any locally finite covering T’ = {Uy;a € A} of a normal
space X there exists a subordinate partition of unity {fo;a € A}.

To prove this statement, it suffices to prove that

Proposition 1.48. for any locally finite covering T = {Uy;a € A} of a normal
space X, there exists a covering A = {Vy;a € A} such that

Vo CU,g,

for any a € A.
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Proof. Indeed, since the space X is normal, for any element V, of the covering
A there exists an open set W, such that

Va C Wy WecCU,,
But then, as is easy to see, the functions

ga(x)

Jo) = S e

a€eA xeX,

where g, is the Urysohn function of the pair (Wg, V), are uniquely defined,
continuous (due to the local finiteness of the covering I') and constitute a par-
tition of unity subordinate to the covering I'.

All that remains for us, therefore, is to construct the covering A. For this
purpose, we consider the set 6 of all (open) coverings {G 4; @ € A} of the space X
for which for any a € A either G, C U, or G4 = U,. This set is not empty (for
example, it contains the given covering I'). For any such covering {G,;a € A}
we will denote by the symbol Ag the set of all @ € A for which G4 C U,.

Let us introduce a partial ordering into the set ®, assuming that {G,} <
(G} if Ag C A;) and if G, = G, for any @ € A. Roughly speaking, to obtain a
“larger” covering {G,} from a covering {G,}Oa, we need, without touching the
already constructed sets G, to replace some U, with smaller sets G.

It is clear that this relation is indeed a partial ordering relation (i.e. it has
the property of transitivity).

Let us now consider an arbitrary chain (= linearly ordered subset) in the
set ®. Denoting the elements of this subset by the symbols I'?, where 8 runs
through some set of indices B, and setting I'¥ = {G’f,; a € A}, we define for each
a € A the set G, C X by the formula

Gy = ﬁﬁeBG'lé.

It is clear that for any @ € A all sets G/f, # U, (if such sets exist) coincide
with each other. Therefore, there exists an index 8, € B such that G, = Gﬁ".
Consequently, the set G, is open and has the property that either G, = U, or
Go C Ugy. We will show that the family {G4;a € A} is a covering of the space
X.

Let x be an arbitrary point in X and let A, be a subset of A consisting of
all indices @ € A for which x € U,. Since the set A, is finite due to the local
finiteness of the covering I', among the indices B,, @ € Ay, there exists the
largest (with respect to the ordering of the set B induced by the ordering of
the set ®) index Bq,. Since the family rﬁo = {Gﬁ"‘]a € A} is a covering, there
exists an index @, € A such that x € Fgfo. Since Gﬁ‘:" C U,,, the index a.
belongs to the subset A,. But it is clear that for any index @ € A, the equality
G(ﬁ,"0 = Gﬁ" = G, holds. Consequently, x € G, .

The constructed covering {G,;a € A} belongs, according to what was said
above, to the set ® and is, as is easy to see, its smallest element, following all
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the elements of I'?, i.e., it represents the upper bound of the considered chain
(= linearly ordered subset.)

Thus, we have proved that any chain (= linearly ordered subset) of the set
® has an upper bound. Consequently, according to Zorn’s lemma?, this set
contains at least one maximal element {V,;a € A}.

To complete the proof, it remains to show that the covering A = {V,;a € A}
has the property that for any of its elements V, the inclusion holds

VocU,.

Suppose not. Then there exists an index ag € A such that V,, = U,,. Consider
the closed set
F=X \ Ua/:,t(loU(l‘

It is clear that F C U,,. Therefore, since the space X is normal, there exists an
open set V such that
FcV, VCU,g,.

It is easy to see that the family A" = {V,V,:a € A\ ay} is a covering of the
space X, belongs to the set ®, and is distinct from the covering A and has the
property that A < A". But in view of the maximality of the covering A this is
impossible. O

Thus, the theorem formulated above is completely proven.

Remark 1.49. We needed the local finiteness of the covering I' to ensure that
all sets A, were finite. Consequently, the covering A also exists for point-finite
coverings I'.

1.4 Metric spaces

A set X is said to be defined as a metric space or to have a metric introduced
into it if any two of its points x,y € X are assigned a non-negative real number
p(x,y) (called the distance between these points), and the following axioms are
satisfied:

1) the equality p(x,y) = 0 holds if and only if x = y;
2) for any two points x,y € X the equality holds
p(x.y) = p(y,x);
3) for any three points x, y,z € X the inequality holds
p(x.2) < p(x,y) + p(y.2).

3This lemma states that a partially ordered set in which every chain (= linearly ordered
subset) has an upper bound contains a maximal element.
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Axiom 1) is called the aziom of non-degeneracy of the metric, axiom 2) is
called the aziom of symmetry, and axiom 3) is called the triangle aziom.

An example of a metric space is the n-dimensional arithmetic space R" with
the usual Euclidean metric (in this metric, the distance p(u,v) between the
points u = (uy,...,u,) € R" and v = (vy,...,v,) € R" is taken to be the length
lu —v| = (u1 —v1)2 + -+ (up — v,)? of the vector u — v).

The distance p(A, B) between two subsets A and B of a metric space X is
the greatest lower bound inf p(x,y of the distances p(x,y), where x and y are
arbitrary points of the subsets A and B, respectively. This distance can be equal
to zero even without the sets A and B intersecting. For any & > 0, the set So(A)
of all points x € X for which p(x, A) < ¢ is called a spherical e-neighbourhood
of the subset A C X. In any metric space, one can introduce one and only one
topology in which all spherical neighbourhoods of each of its points are open
and constitute a fundamental system of its neighbourhoods. In this topology,
a set A C X is closed if and only if any point x € X for which p(x,A) = 0
belongs to this set. We will call this topology the natural topology of the metric
space X and in what follows we will consider each metric space (for example,
the Euclidean space R") as a topological space with this natural topology.

The topology of the space R" can be described in another way, noting that
it is a topological product of n copies of the number line R. Therefore, the base
of this space is, for example, the family of all parallelepipeds

al <t <, .. ,d" <" <b", (t',....f") eR",

where a’ and b' > a’,i = 1,...,n are arbitrary real numbers. The parallelepipeds
for which the weight of the number a’ and b’ are rational obviously also form
the base of the space R".

By definition, the natural topology of a metric space X has the property
that for any point x € X, the system of all possible spherical neighbourhoods
S¢(x) is a fundamental system of neighbourhoods of the point x. A similar
statement also holds for compact subsets, i.e., for any compact subset C C X, the
neighbourhoods S.(C) constitute a fundamental system of its neighbourhoods.
In other words, for any open set U D C, there exists € > 0 such that S.(c¢) c U.
For arbitrary closed subsets, the corresponding statement is, generally speaking,
false.

In the natural topology of X, the metric p(x,y) is a continuous function on
the product X x X. Moreover, for any point x € X and any closed set A C X,
the function p(x,A) is continuous on X. For any closed set A ¢ X and any
neighbourhood U, the function

p(x, X\ U)
p(x, A) +p(x, X\ U)

) =

is the Urysohn function of the pair (U, A). For this function, the set [f = 1]
exactly coincides with the set A (and the set [f # 0] with the set U). The set
[f > %] is a neighbourhood of the set A whose closure [f > %] is contained in

the neighbourhood of U. Thus, any metric space, being obviously Hausdorft, is
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normal. Moreover, unlike arbitrary normal spaces, in the metric space X any
closed set is functionally closed and any open set is functionally open.

A topological space X is called metrisable if there exists on it (generally
speaking, not a unique) metric that is consistent with the topology of the space
X, i.e. such that the natural topology defined by it coincides with the topology
of the space X.

Proposition 1.50. This metric can always be chosen so that the resulting met-
ric space is bounded, i.e. so that the distance between any two of its points does
not exceed some fixed number K > 0.

Proof. Indeed, any metric p can be transformed into a bounded (by a number
K) metric p’, defining the same topology, by setting

p(x,y)

p (x,y) = K———"—
1+ p(x,y)

for any points x,y € X. O

Proposition 1.51. FEvery discrete space is metrisable. The topological sum
of any number and the topological product of a countable number of metrisable
spaces are metrisable.

Proof. The metric in the topological product of a countable number of metris-
able spaces is introduced by means of an obvious infinite series. In order for this
series to converge, it is sufficient to choose a metric in the n-th factor, bounded,
say, by the number 1/n2. Verifying that the metric constructed in this way is
consistent with the topology of the product does not present any difficulties,
and we will omit it. O

From the metrisability of the product of metric spaces it immediately follows,
in particular, that any metric space is stably normal.

Each subset A of a metric space X is naturally defined as a metric space,
and the metric of the subset A is consistent with its topology induced by the
natural topology of the entire space X.

In particular, any subset of the Euclidean space R" is a metric space. Among
these subsets, the unit ball E" of the space R”, consisting of all points v € R” for
which |v| < 1, will play a special role for us in what follows (here and below we
identify points of the space R” with their radius vectors). The ball E" is closed
in the space R" and is the closure of the open unit ball E™ consisting of points
v € R" for which |v| < 1. The boundary of the ball E" is the unit sphere $"!
consisting of points u € R" for which |u| = 1. Each point of the ball E" has the
form vu, where 0 < v < 1 and u € $"°!, and for v # 0 this representation is
unambiguous.

In the definitions presented it was assumed that n > 0. Sometimes it will
be convenient for us to extend them to the case n = 0, assuming that the ball
E° consists of one point. In this case we will assume that E° = E° and that
St=0.



1.4. METRIC SPACES 29

It is easy to show that the ball E" (and also the open ball E™) and the sphere
S"7! (for n > 1) are connected. Moreover, the ball E* and the sphere S"~! are
compact, and the open ball E" is locally compact. Finally, the space R" (and
therefore all its subspaces) is a space with a countable base and, therefore, has
countable local weight, is separable and Lindel6f.

It is easy, however, to see that

Proposition 1.52. any metric space X is a space of countable local weight.

Proof. Indeed, for each point x € X the neighbourhoods S/, (x) obviously con-
stitute a fundamental system of neighbourhoods. O

In particular,
Proposition 1.53. every metric space is a compactly generated space.
Moreover,

Proposition 1.54. for any metric space X the following properties are equiva-
lent:

1) the space X has a countable base;
2) the space X is separable;
3) the space X is Lindeldf.

Proof. Indeed, implications 1) = 2) and 1) = 3) hold for any topological spaces.
To prove implication 2) = 1) it suffices to note that for any countable everywhere
dense set {x,} the open sets of the form S, (x,), where n,m =1,2,..., form a
base of the space X.

To prove implication 3 = 2), we, having chosen an arbitrary n > 0, consider
the family of all subsets of the space X, each of which has the property that
the pairwise distances between any two of its points are not less than 1/n. It is
clear that this family (partially ordered by inclusion) satisfies the conditions of
Zorn’s lemma and, therefore, it contains a maximal subset C;,. This subset is
discrete and therefore (by the Lindeldf property) countable. Consequently, the
set

C=U,_;Cin

is also countable. To complete the proof, it remains to note that the set C is
everywhere dense (since for any point x € X and any n > 0 in the set Cy/, , and
- due to its maximality - therefore in the set C, there exists a point y such that

P(xa)’)<1/n) O
Since every compact space is finally compact, this theorem implies that
Proposition 1.55. every compact metric space is separable.

Local compactness, however, is no longer sufficient for separability of a metric
space. Nevertheless,
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Proposition 1.56. any connected locally compact metric space is separable.

This theorem is due to P. S. Alexandrov. It follows immediately from the
result of 2) above and the fact that

Proposition 1.57. any metric space X is paracompact.
The last proposition was first proven by Stone.

Proof. To prove it, we must establish that any covering {U,;@ € A} of X can
be refined into a locally finite covering. For this purpose, we assume that the
set of indices A of the covering under consideration is well-ordered. Let aq be
its first element. Denoting for any set A c X and any n > 0, by the symbol
[A],, the set (obviously closed) of all points x € X for which Sy-n(x) C A, we
construct by induction for each @ € A and any n > 0 the closed set FJ,, by

F:;U = [Ua/o]n, FZ = [U(y \ UB<aF/rgl]n-

Let x be an arbitrary point in X and let @ be the smallest index in A for
which x € U,, and n be a number such that Sy-n(x)) € U,. If x ¢ FJ, then

So-n(x) & Ug \ Uﬁ«,F/’;, and therefore there exists an index @; < a such that
Sa-n(x) N Fp, # @. But then

X € Sg-n (Fgl) = SQ’”([Urll \U,8<0Fg]n) CUy \ UB<0F£ CUg,,

which is impossible due to the choice of index @. Consequently, x € FJ. It is
thus proved that
X =Up oF).

Let us further consider the sets
! = §2—(n+3 (F), G2So-n2)(FL).
It is clear that the closed set @7, is contained in the open set G,. Further, since
§2’" (F(r;) - Ua \ UB<(1F:;,

then for any B < a the intersection So-»(FJ) N Fg is empty because p(F, F;;) >
27", Therefore, p(G’},,Gg) > 27"+ Since @ c G, it follows that for any
n > 0 the set
" =u,0"
is closed.
Now we define by induction the open sets V}}, setting

Vi=GL, V'=G"\U,,,o".

Let x € X. Since U, oF}, = X and, therefore, U, ,®” = X, there exist n > 0
and a € A such that x € ®?. If n is chosen (for a given @) to be the smallest
possible, then

X € q)r(zl \ Um<n¢)rg = q)r(ly \ Um<n¢)m
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(as we know, @}, C G, and therefore @7 N @ # @, if @ # ). Hence
X €G" \ppan @™ = V"

This shows that the sets V} form a covering of the space X.
Since
Vo € GG CSan(Fg) CUa \Np<aFpg CUq

then the covering {V} is a refinement of the covering {U,}.
Finally, let x € X and let x € FZ,. Since

SQ—(n+3) (.x) C @:;r C @n

then
So-mray (x) NV =@

for any @ € A and any m > n. On the other hand, since p(G'(;‘,G;’;) > 2~ (m+1)

for @ # B, and 2 - 270"+3) < 2=(+1) for ;< p, then for each m < n there is at
most one index @ € A for which Sy-u+s) (x) N G # @, and hence at most one
index @ € A for which Sy-(+3) (x) NV = @. Thus, the neighbourhood S5-(n+s) (x)
of the point x intersects at most n elements of the covering {V2}. Consequently,
this covering is locally finite.

Thus, Stone’s theorem is completely proved. O

From Stone’s theorem and the results of §1.2 it immediately follows, in par-
ticular, that

Proposition 1.58. a metric space is compact if and only if it is sequentially
compact.

All the properties of metric spaces considered above are related not so much
to metric spaces as to metrisable spaces and therefore had, in essence, a topo-
logical character. Let us now consider some “metric” properties of metric spaces,
i.e. properties that essentially depend on the metric given in the space.

A sequence {x,} of points of a metric space X is called fundamental if for
any & > 0 there exists N > 0 such that p(x,,x,) < & when n,m > N. It is
clear that any convergent sequence is fundamental. If the converse is true, i.e.
if any fundamental sequence of points of X converges, then this space is called
a complete space. Obviously, every closed subspace of a complete space is itself
a complete space.

Proposition 1.59. If any closed bounded subspace of a metric space X is com-
pact, then X is complete.

Proof. Indeed, let {x,} be an arbitrary fundamental sequence of points in X.
If among its points there are only a finite number of distinct ones, then this
sequence obviously converges. Let among the points x, there be infinitely many
distinct ones. The set of these points, being obviously discrete and bounded,
cannot be closed (for otherwise it would be compact, and any discrete compact
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set is finite). Therefore, for this set there exists an adherent point a, that does
not belong to it. This point is the limit of some convergent subsequence of the
sequence {x,}, and therefore of the entire sequence {x,} (since this sequence,
by assumption, is fundamental). O

The conditions of this theorem are satisfied, in particular, by the Euclidean
space R". Therefore, the space R” (and consequently any of its closed subspaces)
is complete.

On the other hand, every compact metric space also satisfies these conditions.
Consequently,

Proposition 1.60. any compact metric space is complete.

The requirement of local compactness for completeness is no longer sufficient,
even if we additionally assume the existence of a countable base. However, in any
locally compact topological space X with a countable base, one can introduce
a metric consistent with the topology of this space, with respect to which the
space X is a complete metric space. We will not need this result, and therefore
we will leave it without proof.

It can be shown that any complete metric space is a space of the second
category. The proof of this statement essentially repeats the proof of a similar
proposition for Hausdorff locally compact spaces (see §1.2). It is only necessary
to require that instead of the compactness of the sets U,, their diameters tend
to zero. Since we will not need this statement either, we will not give this proof
in detail.

1.5 Continuous maps
Let X and Y be arbitrary topological spaces. It is easy to see that
Proposition 1.61. for any single-valued map
f:X—>Y
of X into Y the following properties are equivalent:

1) the complete preimage f~1(B) under the map f of an arbitrary closed set
B CY is closed in X;

2) the complete preimage f~1(V) under the map f of an arbitrary open set
V CY is open in X;

2°) the complete preimage f~*(V) under the map f of an arbitrary element V
of some prebase of open sets of Y is open in X;

3) for any point x € X and any neighbourhood V of f(x)) in Y there exists in X
a neighbourhood U of x such that f(U) C V;
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3’) for any point x € x and any neighbourhood V of f(x) in the space Y, be-
longing to some fundamental system of neighbourhoods of this point, there
exists in the space X a neighbourhood U of the point x such that f(U) € V;

4) for any set A C X the inclusion holds
f(A) € f(A)

Maps f : X — Y that have these properties are called continuous. These
include, in particular, all constant maps, i.e. maps that take the entire space X
to some fixed point yg of the space Y.

The continuous functions considered in §1.3 are nothing more than continu-
ous maps of the space X into the real numbers R.

The definition of the coincidence set [f = g] is literally transferred from
continuous functions to any continuous maps f,g : X — Y. However, unlike the
case of numerical functions, this set may not be closed. We can only assert that

Proposition 1.62. if the space Y is Hausdorff, then for any two continuous
maps f,g: X > Y the set [f = g] is closed.

Indeed, in the proof for continuous functions given in §1.3, only the Hausdorff
property of the real line was used.

A special case of a coincidence set is the set [f = idx] of all fixed points of
the map f : X — X (i.e., the points x € X for which f(x) = x). According to
what has just been said,

Proposition 1.63. the set of fized points of an arbitrary continuous map f :
X — X of a Hausdorff space X is closed in itself in this space.

The composition®
gof:X—-Z

of any two continuous maps f : X —» Y, g : Y — Z is also a continuous map.
Moreover, for any space X the identity map

dy: X - X

(defined by the formula idx(x) = x) is continuous. In the language of category
theory, these statements mean that the totality 2 of all topological spaces and
all their continuous maps forms a category. Isomorphisms of this category, i.e.
bijective® continuous maps f : X — Y for which the inverse map f™':¥ — X
is also continuous, are called homeomorphisms. Spaces X and Y for which there
exists at least one homeomorphism X — Y are called homeomorphic. As a rule,
we will further consider homeomorphic spaces as identical.

4A map h : X — Z is called the composition of the maps f: X —» Y and g : Y — Z if
h(x) = g(f(x)) for any point x € X. The composition of the maps f and g is denoted by the
symbol go f.

5Amap f: X — Y is called injective if f(x1) # f(x2) when x1 # x2, sujective if f(X) =Y,
and bijective if it is both injective and surjective.
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Remark 1.64. In §1.1 we defined the concept of the topological sum of any
non-intersecting spaces. The convention just introduced allows us to define the
topological sum of arbitrary spaces, including intersecting ones, as the topologi-
cal sum of spaces homeomorphic to them, but non-intersecting. The topological
sum constructed in this way is defined up to homeomorphism.

A space Y is called a continuous image of a space X if there exists at least
one continuous surjective map X — Y. It is easy to see that a continuous image
of any compact (resp. Lindel6f or countably compact) space is compact (resp.
Lindeldf or countably compact). Similarly, a continuous image of a connected
space is connected.

Continuous mappings

u:l—-X

into the space X of the unit segment 7 = [0, 1] we will call paths of the space X.
We will call the points xg = u(0) and x; = u(1) respectively the beginning and
end of the path u and we will say that the path u connects the point xg with
the point x;. We will call the space X path-connected if any two of its points
can be connected by at least one path.

Proposition 1.65. Any path-connected space X is connected.

Proof. Indeed, for each path u : I — X the set u(II) C X is connected (since the
segment [ is connected). Thus, any two points of a linearly connected space X
belong to a connected set. Therefore, the space X is connected. O

An arbitrary topological space X decomposes into a union of disjoint linearly
connected subspaces, called the components of linear connectivity of the space
X. We will denote the set of all components of linear connectivity of the space
X by the symbol my(X).

Let the space X be represented as the union of some family {X,;
mu € M} of its subspaces:

X = UﬂeMXﬂ
Then for any continuous map
f:X—>Y
and each u € M the partial map
f|XH : Xu —Y,

as we know, is continuous. The converse, generally speaking, is not true, i.e.
the continuity of the partial mappings f|x, does not imply the continuity of the
map f. However, it is easy to see that

Proposition 1.66. if the space X is a free union of its subspaces X,, p € M,
then for any space Y the map
f:X->Y

is continuous if and only if all partial maps

flx, : Xu > Y,



1.5. CONTINUOUS MAPS 35

are continuous.

This proposition allows us to construct continuous maps X — Y from con-
tinuous maps
Ju: Xy —>Y
of subspaces X, x € M, of the space X, of which it is a free union. In this case,

it is only required that the maps f,, be
emphconsistent, i.e. that

S X, 0%,y = Jra X, 0%,

for any p1,u2 € M. Indeed, by putting
fx) = fulx), if xeX,,
where X is an arbitrary point in the space X, we obtain a single-valued map
f:X—>Y

for which

le,, = fy
for any u € M. According to the previous proposition, the map f constructed
in this way is continuous.

As a rule, we will use this construction only in the case when the number of
subspaces X, is finite and each of them is closed. As we know, in this case the
space X is automatically a free union of subspaces X,,.

Aunother (even more important) method of constructing continuous maps
uses the map a~! (generally speaking, multi-valued), the inverse of a given

surjective continuous map
a:P—X.

Let g : P — Y be a continuous map such that the composite map
f=goat: XY

is single-valued. Under what conditions is the map f continuous?

In order to give (even if only an incomplete) answer to this question, we shall
call a continuous surjective map « : P — X an identification map if each subset
A C X whose complete preimage @~ (A) under the map « is closed (resp. open)
in P is itself closed (resp. open) in X. It is clear that

Proposition 1.67. if the map a is an identification map, then the map f =
goa™! (assumed to be single-valued) is continuous if and only if the map g = foa
1§ contnuous.

We will call a subset S C P saturated with respect to the map a :— X if it
is a complete preimage of its image, i.e. if

S =a Ha(s)).
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For the set S to be saturated, it is sufficient to require that S > o~ (a(S)),
since always S € a~!(a(S)). The union and intersection of saturated sets are
saturated. In addition, the complete preimage a~'(A) of an arbitrary set A ¢ X
is saturated with respect to the map a : P — X.

For any continuous surjective map @ : P — X, each closed (esp. open) set
A c X is the image of some closed (resp. open) saturated set S c P (for exam-
ple, the set S = a~1(A)). It turns out that the inverse property characterises
identification maps, i.e.

Proposition 1.68. a continuous surjective map « : P — X 1is an identification
map if and only if for any closed (resp. open) saturated set S C P the set a(S)
is closed (resp. open) in X.

Proof. Indeed, if « is an identification map, then for any saturated closed (resp.
open) set S the set a(S) is closed (resp. open), since the set a~!(a(S)) = S is
closed (open). Conversely, let for any closed (resp. open) saturated set S the
set a(S) be closed (resp. open). Consider an arbitrary set S c X for which the
set S = @ 1(A) is closed (resp. open) in P. Then, since the set S is saturated,
the set A = a(S) will, by assumption, be closed (resp. open), and therefore the
map « will be an identification map. O

It follows directly from the proved statement that

Proposition 1.69. any continuous map @ of a compact space P onto a Haus-
dorff space X is an identification map.

Proof. Indeed, let the closed saturated set S ¢ P be the complete preimage of
the subset A c x. Being a closed subset of the compact space P, the set § is
compact and therefore its image a(S) = A is also compact, and therefore closed
(since the space X is Hausdorff). i

In general, a continuous bijective map may not be a homeomorphism. How-
ever,

Proposition 1.70. any bijective identification map @ — X is a homeomor-
phism.

Proof. Indeed, any set T C P is saturated with respect to the bijective map «
and therefore, if it is closed (in P), then the set (a~!)™'T = a(T) is also closed
(in X). But this also means that the inverse map ™! : X — P is continuous. O

In particular,

Proposition 1.71. any bijective continuous map a of a compact space P onto
a Hausdorff space X is a homeomorphism.

Let, for example, P be an arbitrary bounded convex body lying in the Eu-
clidean space R", i.e., an arbitrary bounded closed (and therefore compact)
convex subset of the space R" containing interior points. It is easy to see that
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any such body is stellar with respect to any of its internal points xg, i.e., each
ray
Xo + ut, MESn_l,OSt<OO

starting from the point xq intersects the boundary of the body P at one point.
In other words, for any vector u € S"~! there exists a number ¢(u) > 0 such that
xo+utePfor0<t<¢(u)and xo+ut ¢ P for t > ¢(u). Moreover, elementary
geometric considerations show that the function ¢(u) of the vector u € $*7! is
continuous on the sphere S"~!. Since, in addition, any point x € P has the form
Xxo +ut, where u € S*71, 0 <t < o(u), and for x # xg this representation is
single-valued, then the formula

t
a(xg+ut)= ——u

w(u)

defines a bijective continuous map
a:P—>E"

of the body P onto the unit ball E". Since the body P is compact and the ball
E" is Hausdorff, this map is homeomorphic. Thus, we have proved that

Proposition 1.72. any bounded convexr body P C R" is homeomorphic to the
ball E™.

From this, in particular, it follows that

Proposition 1.73. for any n > 0 and m > 0 the product E" X E™ of the balls
E" and E™ is homeomorphic to the ball E"*™.

Proof. Indeed, the product E" X E™ is obviously a bounded convex body of the
space R = R" x R™, O

Note, by the way, that

Proposition 1.74. for n # m the balls E" and E™ are not homeomorphic.

The proof of this statement, despite its obvious “obviousness”, is not at all
simple and requires a deep study of the topology of Euclidean spaces. Since we
essentially do not need this statement, we will not prove it here.

We will call a continuous map f : P — X a map of compact character if the
preimage f~1(C) of any compact set C C X is a compact subset of the space P.
It turns out that

Proposition 1.75. if the space X is Hausdorff and compactly generated, then
for any map f : P — X of compact character the subset f(P) is closed in the
space X, and if, in addition, the space P is also Hausdorff, then the map f,
considered as a map onto the subset f(P), is an identification map.
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Proof. Indeed, let C be an arbitrary compact subset of X. Since the set f~1(C)
is compact by assumption, the set f(f~'(C)) is also compact and therefore
closed. On the other hand, since

f7HC) = i n f(P)),

then f(f~'(C)) = Cn f(P). Thus, the subset f(P) is compactly closed. Conse-
quently, it is closed. O

Similarly, if for some subset A ¢ f(P) the subset f~1(A) c P is closed, then
for any compact set C S the set ff1(ANC) = f1(A) N f~1(C) is compact,
and therefore the set ANC = f(f (AN C)) is also compact. Thus, the set A
is compactly closed and, therefore, closed.

In particular, we see that

Proposition 1.76. an injective map of a compact character of a Hausdorff
space to a Hausdorff compactly generated space is a homeomorphism onto a
closed subspace.

Let P, Q, X, Y be arbitrary topological spaces and
a:P—-X, B:0-Y
be arbitrary continuous maps. It is easy to see that the formula

(axpB)(p,q) = (a(p),B(q)), peP,qgel,

uniquely determines some continuous map
axXfB:PxQ— XXY.

We will call this map the topological product of maps @ and B. It is surjective
(esp. injective) if maps a and B are surjective (resp. injective).
Along with the product a x 8, we will also consider the topological sum

aUB:PUQ - XUY

of the mappings @ and . This sum is defined when the spaces P U Q and
X UY are defined (i.e. when PN Q = @ and X NY = @), and, by definition,
is a map that coincides on P with the map @, and on Q with the map 8. It
is also surjective (resp. injective) when the maps « and B are surjective (resp.
injective). Furthermore, if the maps a and B are identification maps, then their
sum a U B is also an identification map.

For the map a X B8 the analogue of the last statement, generally speaking,
does not apply. Having in mind to indicate sufficient conditions under which the
product axf of two identification maps is also an identification map, we will call
a continuous surjective map @ : P — X locally compact (resp. locally countably
compact) if any point p € P has a neighbourhood saturated with respect to the
map «a, the closure of which is contained in a closed, saturated and compact
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(resp. countably compact) set C c P. If the space X is locally compact, then
any surjective map P — X of compact character is locally compact. If a locally
compact (resp. locally countable-compact) mapP — X exists, then the space P
is necessarily locally compact (resp. locally countable-compact). On the other
hand, if the space P is compact (resp. countably compact), then for every
space X any continuous sujective map P — X is locally compact (resp. locally
countably compact).
It is easy to see that

Proposition 1.77. if the space X is regular and the map a : P — X 1is locally
compact (resp. locally countably compact), then for any point p € P and any of
its neighbourhoods S* saturated with respect to the map «, there exists a saturated
neighbourhood S of the point p whose closure S is compact (resp. countably
compact) and is contained in the neighbourhood S*.

Proof. Indeed, by hypothesis, the point p has a saturated neighbourhood T,
whose closure T is contained in a compact (resp. countably compact) set and
is therefore itself compact (resp. countably compact). Let us consider the set
U = a(TNS*). Since the set TNS* is saturated with respect to the map «, the set
U is open, i.e. it is a neighbourhood of the point a(p) in the space X. But then,
due to the regularity of the space X, the point @(p) has a neighbourhood V such
that V c U. Let § = a’l(V)._The set S is saturated and is a neighbourhood of
the point p. Moreover, since S € @ 1(V) c a1 (U) = TN S*, then, firstly, S c §*
and, secondly, S C T, so that the set S is compact (resp. countably compact)
and is contained in S*. O

Let us now show that

Proposition 1.78. if the identification map « : P — X is locally compact and
the space X is reqular, then for any identification map B: Q — Y the map

axXB:PxXQ—XxY
is also an identification map.

Proof. Indeed, let W be an arbitrary subset of the product X XY whose preimage
(@ x B)~1(W) under the map @ X S is open in the space P x Q. We must prove
that each such set W is open in the space X X Y, i.e., that any of its points
(x0, yo) is its interior point. In other words, we must prove that in the spaces X
and Y there exist neighbourhoods U and V of the points xg and yg, respectively,
such that

(x0,y0) eUXV CW.

Let pg and gg be points in the spaces P and Q, respectively, such that a(pg) = xo,
B(qo) = yo- It is clear that to prove the existence of neighbourhoods U and V
it is sufficient to prove that the points py and g¢ have (in the spaces P and
0, respectively) saturated (with respect to the maps @ and S, respectively)
neighbourhoods S and T such that

(Po,qo) € SXT C (axpB)'W.
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For this purpose, we consider the set S* of all points p € P for which the
following holds

(P, q0) € (@xB))" (W).

It is clear that the set S* contains the point pg, is open in the space P and
is saturated with respect to the map a. Therefore, by the proposition proved
above, the point pg has a neighbourhood S that is saturated with respect to the
map a, whose closure S is compact and is contained in the neighbourhood §*.

Let, further, T be the set of all points ¢ € Q with the property that for any
point p € S the following inclusion holds

(p.q) € (@xB)H(W).

In other words, T is the maximal subset of the space Q for which the following
inclusion holds _
SXT c (axp)HW).

In particular, we have
SxT c (axp)HW).

Moreover, go € T (since S c §*). Further,

SxBHB(T)) c a™H(@(S) xBH(B(T)) = (axB) HaxB)(SXT) c (axB)~ (W),

whence, in view of the maximality of the set T, it follows that 8~1(8(T)) c T,
i.e., that the set T is saturated with respect to the map S.

Therefore, to complete the proof, we only need to prove that the set T is
open in the space Q.

To this end, we note that since the set (ax8)~1(W) is, by assumption, open,
each of its points is its interior point and therefore for points p and ¢ there exist
(in the spaces P and Q, respectively) neighbourhoods S, (p) and T}, (¢g) such that

(P.q) € Sq(p) xTp(q) € (@ xB)H(W).

For each point g € T, all possible sets of the form S, (P) NS, p € S, obviously con-
stitute an open covering of the subspace S c P. Therefore, since this subspace is,
by construction, compact, there exists a finite system of points p1,...,pn € S,
such that _
S c Uf‘zlSq(pi).
Let
T(q) = ﬁ?ﬂTp,— (9).
It is clear that the set T(g) is open (in Q), contains the point ¢ and has the
property
pxT(q) c (axp)~ (W)
for any point p € U, S,(p;i), and therefore, in particular, for any point p € S.

Therefore, T(q) C T, i.e. q € intT. Thus, the set T, as stated, is open. Thus,
the above statement is completely proven. O
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It is possible to specify other conditions under which the product of identi-
fication maps is an identification map. For example,

Proposition 1.79. if the identification maps @ : P — X and 8 : Q — Y are
locally countably compact, the spaces P and Q are Hausdorff, and the spaces X
and Y are regular, then the map

aXB:PxQ —XXxXY
is an identification map.

Proof. Indeed, in this case the points py and g¢ have (in the spaces P and Q,
respectively) saturated neighbourhoods §* and T* with respect to the maps «
and B, whose closures S and T are contained in the closed saturated countably
compact sets C € P and D c Q. Let

CocCic---CcCpC---.
DocDyc---cD,C---

be increasing sequences of compact subsets C,, ¢ P and D, c Q, whose free
unions are the sets C and D, respectively. Without loss of generality we can
assume that

Po € Co, qo € Do.

Note also that, since the spaces P and Q are, by assumption, Hausdorff, all sets
C, and D,, are closed.

First of all, for any n > 0 we will construct open sets S,, ¢ C, and T,, € D,
saturated with respect to the maps a|c, and B|p, (in the spaces C, and D,,
respectively) such that

Po €S, qo €Ty, Sn C Spaa, Tn C Tus1

and

Sy XTy C Wy, (1.80)
where
W, = (alc, X Blp,) " = (Cu X D) N (@ x B)~H(W).

To this end, we note that since the space C, is compact, the map a|c, is
locally compact. Therefore, the maps a|c, : C, — X and B|p, : D, — Y satisfy
the conditions of the previous proposition. Therefore, for any point (p,q) € W,
in the spaces C, and D, there exist saturated (with respect to the maps a|c,
and B|p,) neighbourhoods Sg.n(p) and T}, ,,(q) of the points p and g such that

(p-q) € S, ,(p) XT, ,(q) C Wy.

Furthermore, since the spaces X and Y are regular by assumption, the points
p and g have in the spaces C,, and D, saturated neighbourhoods S, ,.(p) and
Ty n(q) such that §q,n(p) c Sy .(p) and Tp,n(q) cT,.(q) (here we mean clo-
sures in the spaces C, and D,; however, since the subspaces C, and D,, are
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closed, these closures coincide with the closures in the spaces P and Q). Thus,
for any point (p, g) € W,, we have constructed in the spaces C,, and D, saturated
neighbourhoods S, ,(p) and T, ,(gq) of the points p and g with respect to the
maps a|c, and S|p, such that

(P+q) € Sqn(P) X T p n(q) C Wi,

In particular, for n = 0, p = pg, ¢ = go we obtain neighbourhoods

So =8q.0(p), To=Tp0(q)

of the points pg and g¢ (in the spaces Cyp and Dy) that have property (1.80).

Reasoning by induction, we assume that for some n > 0 neighbourhoods S,
and T,_; possessing property (1.80) have already been constructed. It is clear
that for any point g € T,_q all sets of the form S,_1 N Sqn(p), p € Sp_1, form
an open covering of the space S,—1. Since this space, being a closed subspace
of the compact space C,—1, is compact, there exists a finite system of points
P1s-+->Pn € S,_1 such that

Sn—l - Sq,ny

where

Sq,na = Ulesq,n(pi)'
Let

Tu(q) = N_1Tpn(q).

It is clear that the sets S, , and T,,(q) are saturated (with respect to the maps
@|c, and B|p, ), open (in the spaces C,, and D,) and have the property that

§q,n XTn(‘]) C Wh.

Moreover, g € T,(q), so that all possible sets of the form T, -1 NTn(q), q € Tn_1
form an open covering of the space T,_;. Since the space T,_; (similar to the

space S,,_l) is compact, there exists a finite system of points ¢g1,...,¢, € T,,_l
such that

Tn—l - Tna
where

T, = Uﬁlen(‘]i)~
It is clear that the set T,, together with the set

Sn = Niz1Sq;»

satisfies all the conditions imposed on the neighbourhoods of S, and T,,.
Thus, the neighbourhoods S, and T,, are constructed for all n > 0.
Now let

Seo = Ui

i=

150, Too = U2 T
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It is obvious that the sets So and T, are saturated (with respect to the maps
a and B, respectively), since the sets C and D are saturated by assumption. In
addition, pg € Se, g0 € Teo, and Seo X Too C (@ x 8)~1(W). Therefore, the sets

S=8"NSe, T=T"NTy
are also saturated and have the property that
(Po-q0) € SXT C (@ X B)'W,.

Therefore, to complete the proof, it remains only for us to show that the sets S
and T are open (in the spaces P and Q, respectively).

mLet us first consider the set S.. Since the set S, is open in the subspace
C,, then for any m < n the set S,, N Cy, is open in the subspace C,, ¢ C,. On
the other hand, S, "Cm =S,, € S,, N Cy,, for m > n. Therefore,

Seo N Cr = UL, (S N Cry)

for any m > 0 and this set is open in the subspace C,,. Since the space C is a
free union of subspaces C,, it follows that the set S, is open in the space C
and, therefore, the set S = §* N S« is open in the subspace S* ¢ C. But the
last subspace is open in the space P. Consequently, the set S is also open in the
space P.

The fact that the set T is open in the space Q is proved similarly.

Thus, the statement formulated above is completely proven. O

1.6 Topologies of identification, glued spaces, rel-
ative homeomorphisms

Let P be an arbitrary topological space and let
a:P—-X

be an arbitrary map of the space P onto some set X. We introduce a topology
into the set X, considering a subset A c X to be open (resp. closed) if and
only if its complete preimage a~!(A) is open (resp. closed). We will call this
topology the identification topology (defined by the map «). It is the weakest
(i.e. containing the largest number of closed sets) topology of the space X in
which the map « is continuous.

It is clear that

Proposition 1.81. if the space X is equipped with the identification topology,
then the map « is an identification map in the sense of §1.5.

Conversely,

Proposition 1.82. if a topological space X has the property that a given sur-
jective map « : P — X is an identification map then the topology of this space
is the identification topology defined by the map a.
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In other words, the identification topology of the space X is uniquely deter-
mined by the requirement that the given map a be an identification map.

In most applications, the set X is the set of all classes under some equivalence
relation defined in the space P, and the map a : P — X is the natural projection
that associates with each point p € P its equivalence class. In this case, the
set x, equipped with the identification topology, is called the factor space of the
space P with respect to the given equivalence relation. However, the difference
between factor spaces and any spaces equipped with the identification topology
is essentially purely formal, since for any identification map @ : P — X there
exists on P an equivalence relation such that the corresponding factor space is
naturally homeomorphic to the space X. In this equivalence relation, the points
P1, P2 € P are equivalent if and only if

a(p1) = a(p2).

An important example of a factor space arises when considering an arbitrary
continuous map
f:A—>Y

of a closed subspace A of some topological space Z into a given space Y. Assum-
ing that the spaces X and Y do not intersect, we introduce in their topological
sum

P=XUY

an equivalence relation, considering that

1) points x1,x2 € X are equivalent if and only if either x; = x5 or x1,x2 € A and

fx1) = fx2);
2) points x € X and y € Y are equivalent if and only if y = f(x);
3) points y1,ys € Y are equivalent if and only if y; = ys.

We will denote the corresponding factor space of the space P by the symbol
XUyY and we will say that it is obtained by gluing the space X along the subspace
A to the space Y by means of the map F.

The natural projection

a:P—->XUrY

is a homeomorphism on the subspace Y ¢ P. Therefore, in the future we will, as
a rule, identify the space Y with its image a(Y), i.e. we will consider the space
Y as a subspace of the space X Uy Y:

YCXUpY.

It is easy to verify that the space Y is closed in the space X Uy Y.
Further, as is easy to see, the natural projection a is a homeomorphism on
the open set X \ A. Therefore, we can also assume that

X\ACXUsY.
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In this case
X\A=(XUrY)\Y,

so that the space X \ A is open in the space X Uy Y.
Thus, the space X Us Y can be considered as the union

XUrY=(X\A)UY

of two mutually complementary spaces X \ A and Y, the first of which is open
and the second is closed. In this connection, we will sometimes say that the
space X Uy Y is obtained by gluing the spaces X \ A and Y.

On the subspace A the natural projection a coincides with the map f.

It is customary to call a pair of spaces (or simply a pair) an arbitrary pair
(X, A) consisting of some topological space X and some of its subspace A. We
will call a pair (X, A) Hausdorff if the space X is Hausdorff, and compact if the
space X is compact and its subspace A is closed.

Let (X,A) and (Z,Y) be arbitrary pairs. By a map

g:(X,A) = (Z,Y) (1.83)

of a pair (X, A) into a pair (Z,Y) we mean an arbitrary continuous map g of
the space X into the space Y for which g(A) c Y. We will call the map (1.83) a
relative homeomorphism if it homeomorphically maps the subspace X \ A onto
the subspace Z \ Y. From the above properties of the natural projection

a:P—-XUfY
it immediately follows that
Proposition 1.84. the restriction
alx : X > XUpY

of the projection a on the space X is a relative homeomorphism of the pair (X, A)
onto the pair (X Uy Y,Y).

Relative homeomorphisms of the form «|x are identification maps, and the
subspace Y is closed for them. It turns out that in the class of all relative
homeomorphisms, maps of the form «a|x are uniquely characterised by these
properties up to homeomorphism, i.e.

Proposition 1.85. for every relative homeomorphism
8- (X’A)_ - (Z’Y)’

for which the subspace Y is closed in the space Z and the map g : X — Z is an
identification map, there exists a homeomorphism

h:XUrY—>Z, f=gla,
identical on the subspace Y such that

g=hoalx.
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Thus, if the specified conditions are met, the space Z can be considered as
the result of gluing the space X to the space Y along the subspace A by means
of the map f = g|a.

Remark 1.86. This formulation implies that X NY = @. Otherwise, the space X
should be replaced by a homeomorphic space that already has this property.

To prove the formulated proposition, we first note that the subspace A, being
the prreimae under a continuous map of the closed subspace Y, is itself closed.
Therefore (in view of the remark made above), the space XUV is defined. Let’s
consider the map

h:XUpY — Z,

coinciding on X \ A with the map g and identical on Y. It is clear that this
map is bijective and has the property that the map & o @ coincides on X with
the map g (and is the identity map on Y). From this, firstly, it follows that
the map h is continuous (since the map % o @ is continuous, and the projection
@ is an identification map). Secondly, since for any closed set C € X Uf Y the
intersection of the closed set (%o a) ' (h(C)) = a '(C) c CUY with the space
X coincides with the set g~!(4(C), then, since the map g is an identification
map, the set g(C) is closed in Z. Consequently, the map A~ is also continuous.
Thus, the map h, as stated, is homeomorphic.

As we know, the condition on the map g is automatically satisfied if the
space X is compact and the space Z is Hausdorff. Moreover, it is clear that in
this case, for the space Y to be closed, it is sufficient that the space A is closed.
Thus,

Proposition 1.87. for any Hausdorff pair (Z,Y) relatively homeomorphic to
a compact pair (X,A), the space Z is homeomorphic to the space obtained by
gluing the space X to the space Y along the subspace A.

Generally speaking, the space X Uy Y may not be Hausdorff, even if the
spaces X and Y are Hausdorff. However,

Proposition 1.88. the space X Uy Y is Hausdorff if
1) the space X \ A is Hausdorff;

2) each point of the subspace X \ A has a neighbourhood whose closure does not
intersect the subspace A;
and either

3) the space Y is Hausdorff and any two disjoint open (in A) subsets of the
subspace A that are saturated with respect to the map f are cut out on A by
disjoint open subsets of the space X ;
or

4) the space Y is completely Hausdorff and any two disjoint closed subsets of
the subspace A have disjoint neighbourhoods in X.
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Proof. Indeed, condition 1) obviously ensures the Hausdorfl property (the ex-
istence of disjoint neighbourhoods) for any pair of distinct points of the space
X Uy Y belonging to the subspace X \ A, and condition 2) ensures the Hausdorff
property for any two points x € X \ A and y € Y. Therefore, we need to check
the Hausdorff property only for (distinct) points yi,ys € Y.

Let condition 3) be satisfied. Then the points y; and y; have in Y non-
intersecting neighbourhoods Vi and V,. The preimages f~'(V;) and f=1(Vs)
(possibly empty) of these neighbourhoods also do not intersect and are open
sets in A, saturated with respect to the map f. Therefore, according to the
condition, in X there exist open disjoint sets U; and Us such that

UrnA=f(Vi), UsnA=f1(Va).
It is clear that the sets
(Ui \NA)uVy, (Ux\A)UuV,

are open in the space X U Y and do not intersect (since they serve as images
under the natural projection a : X UY — X Uy Y of non-intersecting, open, and
saturated sets with respect to the map « of U; UV; and U2 U V3). Since these
sets contain the points y; and ys, the Hausdorff property for these points is thus
completely proved.

Let condition 4) be satisfied. Then the points y; and y, have neighbourhoods
Vi and Vs in Y, the closures of which V, and V5 do not intersect. Let us consider

the sets V| = f~1(Vy) and V, = f~1(Va). Since V,  f~1(V1), Vy C £~1(V») and
Y (V) n f~1(Vy = @, then we have

V,nV,=a.

Thus, the sets V, and V., are disjoint closed subsets of the subspace A (recall
that A is assumed to be closed). Therefore, according to the condition, these
sets have disjoint neighbourhoods U; and Us in X. It is clear that the sets

(U1 \NA) UV, (U\A)UV,

are open in the space X Uy Y and do not intersect (since they serve as images
under the natural projection @ of non-intersecting, open and saturated sets
(U1 \A)U V{ UV and (U \ A)U Vé UV, with respect to the map «.) Since these
sets contain the points y; and ys, the Hausdorff property is thus proved in this
case as well. O

It is clear that conditions 1), 2) and 4) (in the part concerning the subspace
A) are automatically satisfied if the space X is normal. Therefore,

Proposition 1.89. if the space X is normal and the space Y is completely
Hausdorff, then the space X Uy Y is Hausdorff.

Remark 1.90. It can be shown that if the spaces X and Y are normal, then the
space X Uy Y is also normal. We will not need this fact.
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In the special case when the space Y consists of only one point yo (and,
consequently, the map f : A — Y automatically turns out to be constant),
the space X Uy Y is denoted by the symbol X/A and is called the result of
the contraction of the subspace A to the point yo. In this case, condition 4) is
obviously satisfied. As for conditions 1) and 2), they are certainly satisfied if
the space X is regular. Thus,

Proposition 1.91. if the space X is reqular, then for any of its closed subspaces
A the space X/A is Hausdorff.

Another important special case of gluing arises when considering an arbitrary

continuous map
f:X->Y.

Let X x 1 be a subspace of the product X x I, where [ is the unit segment [0, 1]
consisting of all points of the form (x,1), x € X, and let

fi:Xx1->Y
be the map into the space Y, defined by the formula

fi(x, 1) = f(x).

Let us consider the space
Zr=(XxI)UyY.

This space is called the mapping cylinder by f and, as we shall see later, plays
a fundamental role in the study of the homotopy properties of this map. Each
of its points either has the form (x,#), where x € X, 0 <r < 1, or is a point y of
the space Y.

It is clear that condition 2) for the space Z; is always satisfied (a neighbour-
hood of the point (x,¢), x € X, 0 <t < 1, the closure of which does not intersect
the subspace X x 1 is, for example, any neighbourhood of the form X x [0, +¢),
where ¢ is any positive number less than 1 —7), and condition 1) is satisfied if
the space X is Hausdorff. Moreover, condition 4) (in the part not related to the
space Y) is also obviously always satisfied (open sets of the subspace X x 1 have
the form G x 1, where G are open sets of the space X; they are cut out from
X x 1 by open sets G X1 in X X I; if the sets G; X 1 and G5 X 1 do not intersect,
then the sets G; x 1 and G2 X I also do not intersect). Consequently,

Proposition 1.92. if the spaces X and Y are Hausdorff, then for any map
f:X =Y the space Zy is also Hausdorff.



Chapter 2

Homotopy equivalences

This chapter mainly sets out various criteria that allow, in some cases, to judge
whether a given continuous map will be a homotopy equivalence.

In the introductory §2.1, the basic concepts of the homotopy theory of contin-
uous maps are presented and the simplest connections between these concepts
are established. In particular, a simple but useful lemma is proved here, es-
tablishing conditions under which two homotopic maps that coincide on some
subspace are homotopic relattive to this subspace. At the end of this section, the
concept of a m-connected space is considered and some elementary properties
of such spaces are proved.

In §2.2, after a number of simple remarks on homotopy equivalences, a well-
known characteristic property of their cylinders is proved.

In §2.3 it is proved that (under certain conditions) the homotopy type of the
glued space X Uy Y depends only on the homotopy type of the space Y and the
homotopy equivalence class of the map f.

In §2.4 the concept of weak homotopy equivalence is introduced and in con-
nection with this a number of properties of homotopy groups are presented.
However, the detailed theory of homotopy groups remains almost completely
outside the scope of our exposition (it is enough to say that we do not even use
their group operation here).

In §2.5 the concept of homotopy limit is considered (in both the “weak” and
“strong” versions) and it is proved that the limit of homotopy equivalences is
also a homotopy equivalence.

2.1 Homotopies and extensions of continuous maps

Each family
fi: X>Y, 0<r<l1, (2.1)

of continuous maps of a topological space X into a topological space Y defines
by the formula
F(x,t) = fi(x), xeX,tel,

49
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a certain map
F:XxI—>Y (2.2)

into the space Y of the product X X I of the space X and the unit segment
I = [0,1]. We will call the family (2.1) a homotopy of maps of the space X
into the space Y if the corresponding map (2.2) is continuous. It is clear that,
conversely, any continuous map (2.2) defines some homotopy (2.1).

We will call the map fy the initial map, and the map f; the final map of
homotopy (2.1).

In what follows, we will often have to consider not separate spaces X and Y,
but pairs (X,A) and (Y, B), where A and B are some subspaces of the spaces
X and Y respectively. In this case, we will be interested, as a rule, only in

homotopies of the form
fi: (X,A) - (Y,B),

i.e., homotopies (2.1) for which

fi(A)c B

for any t € I. We will call such homotopies homotopies of pair maps.
Maps
f.g: X—>Y

(or maps f,g : (X,A) — (Y, B)) we will call homotopic (notation, f ~ g) if there
exists a homotopy
fi: X—>Y, 0<tr<1,

(or, correspondingly, a homotopy f; : (X, A) — (Y, B) such that

fo=f, fi=g

i.e., that the map f is its initial, and the map g is its final map. In this case
we will also say that the maps f and g are related by a homotopy f; (notation

fei f~8)
Each continuous map
f:X->Y

defines a certain homotopy
(Ip)i: X =Y, 0<r<1,

for which

(1) (x) = f(x)

for any x € X and t € I. We will call this homotopy a stationary homotopy of
the map f.
The homotopy relation is, as is easy to see, an equivalence relation, i.e. it is

reflexive since (1), : f ~ f,

symmetric if f; f ~ g, then f1_,: g~ f,
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transitive if f; : f ~ g and g; : ¢ ~ h, then h; : f ~ h, where

Pt for 0<1r<1/2,
- 8or-1 for 1/23t§1

Therefore, the set of all continuous maps X — Y (respectively, the set of all
continuous maps (X, A) — (¥, B)) splits into disjoint homotopy classes consist-
ing of pairwise homotopic maps. We will denote the set of all homotopy classes
of maps X — Y by the symbol [X,Y], and maps (X,A) — (Y, B) by the sym-
bol [(X, A), (Y,B)]. We will denote the class containing a given map f by the
symbol [f].

For any two homotopies

i X->Y, g:Y—>Z 0<r<1,

the family of maps
hi=giofi: X—2Z, 0<t<1,

is also, obviously, a homotopy. It follows that

Proposition 2.3. if the maps fo : X > Y and go : Y — Z are homotopic,
respectively, to the maps fi : X > Y and g1 : Y — Z, then the map go o fo :
X — Z is homotopic to the map g1 : X — Z.

In other words,
Proposition 2.4. for any maps
f:X->Y, g:¥Y—>Z
the homotopy class [g o f] € [X, Z] of the map
gof:X—7Z

depends only on the homotopy classes [ f] € [X,Y] and [g] € [Y, Z] of the maps
f and g, respectively.

In particular, for any space Z and any continuous map
f:X—>Y

the formula
flel =1[foel, ¢:Z-X,
uniquely determines some map of sets

fiZ2,X] - [Z,Y].

We will say that the map f. is induced by the continuous map f.
Similar statements hold, of course, for maps of pairs.
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Recall that the map
f:X->Y
is called the extension of the map
gAY,
where A is some subspace of the space X, if
f(a) =g(a)

for any point @ € A. In this case, we also say that the map g is a restriction of
the map f on the subspace A and write

g = fla.
Otherwise, we can say that

g=foi
where

i:A—>X

is an inclusion map, i.e. a map defined by the formula
i(a)=a

for any point a € A. In what follows, we will indicate that some mapi: A — X is
an inlusion map by replacing the symbol “—” with the symbol “C”, i.e. instead
of i : A — X we will write

i:AcCX.

A map
r: X —A

of a space X onto its subspace A is called retractive if it is an extension of the
identity map

1a:A—> A,
ie., if
roi=1gk,
or, in other words, if
r(a) =a

for any point a € A. In this case, we will write
r:X>A.

Subspaces A of X for which retractive map r : X D A exist are called its
retracts. For a retractive map (or retraction, for short) r : X — A the set A
coincides with the set of all fixed points of the map i o r. Therefore,

Proposition 2.5. every retract A of a Hausdorff space X is closed in X.
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It is easy to see that

Proposition 2.6. a space A of a space X is a retract of it if and only if for any
space Y each map g : A — Y admits an extension f: X — Y.

Proof. Indeed, if any map g : A — Y can be extended, then, in particular, the
identity map 14 : A — A can also be extended. Conversely, if there exists
a retractive map r : X — A, then for any map g : A — Y the composition
gor:X — Y will be an extension of the map g. O

The concept of the extension of maps is closely related to the concept of
a homotopy of maps, since for any homotopy f; : X — Y connecting the map
f: X — Y with the map g : X — Y, the corresponding map F : X X I — Y is
an extension to the space X X I of the map (X x0) U (X x1) — Y, which maps
each point (x,0), s € X, to the point f(x), and each point (x,1), x € X, to the
point g(x).

A pair (X, A) is said to satisfy the aziom of homotopy extension if for any
space Y, any map f : X — Y and any homotopy g; : A — Y of the map g = f|a
there exists a homotopy f; : X — Y such that fy = f and fi|a = g; for any ¢ € I.
The significance of this axiom is primarily that for pairs (X, A) subject to it,
the property of the map g : A — Y to allow the extension f : X — Y depends
only on the homotopy class of the map g, i.e., together with the map g, each
homotopic map g : A — Y can be extended to the entire space X.

Examples of pairs satisfying the axiom of homotopy extension are given
below.

It is clear that

Proposition 2.7. if the pair (X, A) satisfies the aziom of homotopy extension,
then the subspace (X X 0) U (A X I) of the product X X I is its retract.

Proof. Indeed, the homotopy f; constructed for the identity map 1x : X — X
and the stationary homotopy (1;); : § — X of the inclusion map i : A € X
obviously defines a retracting map X X I — (X x0) U (A X I). O

If the subspace A is closed in the space X, then the converse is also true, i.e.

Proposition 2.8. if the subspace (X X 0) U (A X I) of the product X X I is its
retract, and the subspace A is closed in the space X, then the pair (X, A) satisfies
the axiom of homotopy extension.

Proof. Indeed, the problem of constructing a homotopy f; is equivalent to the
problem of extending to the entire space X x I the map

G:(XxX0U(AXI) —Y,

defined by the formula

Gl - {f(x), it 1=0.
g: (%), if xeA
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(for closed A the space (X x 0) U (A X I) is obviously a free union of the spaces
X x0 and A x I and therefore this map is continuous). Therefore, if the space
(X x0)U(AXxI) is a retract of the space X X I, then the homotopy f; exists. O

In connection with the last statement, it is useful to keep in mind that

Proposition 2.9. if the space X is Hausdorff and the subspace (X X0)U (AXI)
of the product X X I is its retract, then the subspace S is closed in the space X.

Proof. Indeed, then the subspace (X x0) U (A X I) is closed in the product X x I
and therefore the set

AX1=[(XxX0UAXD]IN(Xx1)
is closed in the space X x 1. O

Thus,

Proposition 2.10. if the space X is Hausdorff or if the subspace A is closed,
then the pair (X, A) satisfies the aziom of homotopy extension if and only if the
subspace (X X 0) U (A X I) is a retract of the product X X I.

Remark 2.11. The property of a pair (X, A) to satisfy the axiom of homotopy
propagation is mainly local in nature, i.e., it is essentially determined by the
structure of the space X in some neighborhood of the subspace A. The precise
meaning of this statement can be given in many different ways. For example, it
is easy to prove that

Proposition 2.12. a pair (X, A) (with closed A) satisfies the axiom of homotopy
extension if and only if the subspace A is functionally closed and there exists a
homotopy f; : X = Y and a function ¢ : X — I equal to zero on the subspace A
such that

folx) =x, xeX,
fila)=a, (a,t)eAXI,
fix) e A, if ox) <1

It can also be shown that

Proposition 2.13. a pair (X, A) (with closed A) satisfies the axiom of homotopy
extension if and only if there exists on the space X a continuous non-negative
function ¢ equal to zero on the subspace A, and a map F into the space X of
the subspace of the product X X I consisting of all points (x,t) for which

0<1<o(x),
having the following properties:

F(x,0) =x, for any point x € X,
F(x,p(x)) € A, if ¢(x) <1
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We will not need these statements and therefore we will not prove them here.
A homotopy
fi:X—>Y, 0<t<l,

will be called a homotopy relative to a subspace A C X if this homotopy is
stationary on A, i.e. if

fi(a) = fo(a)

for any point a € A and any t € I. Accordingly, we will call the two maps
f,g: X—>Y

homotopic relative to A (notation f ~ grel A) if they are related by some ho-
motopy relative to A. Of course, for this it is necessary that

fla = gla,

i.e. that the maps f and g coincide on A. It is clear that homotopy relative to
A is also an equivalence relation, and therefore the set of all continuous maps
X — Y that coincide on A splits into disjoint homotopy classes relative to A.
The class containing the given map f : X — Y we will denote by the symbol
[f]rel A, and the set of all such classes - by the symbol [X,Y]rel A.

The properties of relative homotopy classes are similar to the properties
of the “absolute” classes discussed above. For example, any continuous map
f :Y — Z defines by the formula

fi([e]rel A) = [fogp]relA, ¢:X —>Y,

some map
fi: [X,Y]rel A - [X,Z] rel A.

If the space Y is Hausdorff, then any homotopy f; : X — Y that is stationary on
A will obviously also be stationary on the closure A of the subspace A. Conse-
quently, in this case we can, without loss of generality, consider the subspace A
to be closed.

The problem of constructing a homotopy relative to a closed subspace A is

equivalent to the problem of extending to the entire space X x I the map
F:(XxX0)UAXI]) - (Xx1)—>Y,

defined by the formula

F(x,t) =

f(x), if r=0forxeA,
g(x), if r=1.

In what follows, to simplify the formulae, for any pair (X, A) we will denote
the subspace (X X 0) U (A X I)U (X x 1) of the space X x I (see Fig. 2.1) by the
symbol I(X, A). When A is closed, it is closed.

Note that if f|a = g|la and f ~ g, then, generally speaking, it cannot be
asserted that f ~ rel A. However,
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Figure 2.1:

Proposition 2.14. if the pair (X X I, 1(X, A)) satisfies the axiom of homotopy
estension and if
Haxy ~ Frel(A X UA X 1),

where H is the map X X I — Y corresponding to the homotopy h; : X XI — Y,
connecting the maps f and g, and F is the map AXI — Y corresponding to the
stationary homotopy (15); : A =Y, then

f~grelA

Proof. Indeed, we can extend the homotopy relative to A x0U A X 1 connecting
the maps H|ax; and F to some homotopy

H I(X,A) =Y 0<t<]l,

assuming that
Ht('x?o) :f(x)9 Ht(-x9 1) :g(x)
for all r € I. It is clear that

HO|A><1 = H|A><1‘

Therefore, since the pair X x I,1(X,A)) satisfies, by condition, the axiom of
homotopy extension, there exists a homotopy

F:XxI—Y, 0<t<l,

such that
Fo=H, Flixa=H, 0<r<L

Therefore, the map
Fi:XxXI—->Y,

defines (by the formula f;(x) = Fy(x,)) a homotopy
fi: X—>Y, 0<t<1,

relative to A, such that f; = f and f; = g. Consequently, f ~ grel A. O
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In what follows, continuous maps into a given space X of the unit n-dimensional
sphere S, n > 0 will be of great importance. In particular, we will be interested
in the conditions under which any such map is homotopic to a constant map,
i.e., a map to one point. In this connection, we first note that

Proposition 2.15. a map [ : S" — x is homotopic to a constant map if and
only if the map f can be extended to some map B — X.

Proof. Indeed, any homotopy
fi:S" > X,

for which fy = f and f1(u) = xo for any point u € S", where x( is some fixed
point of the space X defines by the formula

Fou) = fi_,(u), 0<v<l, ues
a continuous map F : B! — X, for which
Flgn = f.
Conversely, any such map F : E"*! — X defines by the formula
fiw)F(1-Hu), 0<t<1, ues"
a homotopy f; : S" — X for which fy = f and fi(u) = xo, where xg = F(0). O
Thus,
Proposition 2.16. for any space X the following properties are equivalent:
1) any map f : S" — X is homotopic to a constant map;
2) any map f:S" — X can be extended to some map F : E"*! — X,

Spaces with these properties we will call n-aspherical. Property 2) for n =0
is obviously equivalent to the path-connectedness. Thus,

Proposition 2.17. a space X is 0-aspherical if and only if it is path-connected.

Spaces that are n-aspherical for all non-negative n < m will be called m-
connected.
It is easy to see that

Proposition 2.18. the open unit interval (0,1) (as well as the closed segment
I =10,1]) is an m-connected space for any m > 0.

This statement follows immediately from Tietze’s theorem (see §1.3), since
the ball E"*! is a normal space. However, it is easy to see that for each n > 0 the
extension F : E"*' — (0,1) of an arbitrary map f : S — (0,1) can be defined
by the formula

F(vu) =

1 2 -1
W, 0<v<l uesS"

It is equally easy to see that
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Proposition 2.19. the topological product X XY of two m-connected spaces X

and Y is also an m-connected space.

Proof. Indeed, let
f:8" > XxY

be an arbitrary map of the n-dimensional (n < m) sphere S" into the product
X x Y. Assuming for any point u € S",

fu)=(fiu), f(w),  fi(u) € X, fo(u) €Y,
we obtain two (obviously continuous) maps
fi:"> X, fo:8"->Y.

By the condition, these maps can be extended to maps

Fi:E"' 5 X, F:E" >y,
It is clear that the formula

F(v) = (F1(v), F2(v)), v €E"™,
then defines a continuous map

F:E" - XxY,
which is an extension of the map f. O
Comparing the proved statements, we obtain, in particular, that

Proposition 2.20. for any m-connected space X the space X X (0,1) is also
m-connected.

2.2 Homotopy equivalences and deformation re-
tracts

Let X be an arbitrary space. Each homotopy
&:X—>X, 0<r<l,

for which & = 1x, we will call the deformation of the space X. A continuous
map
h:X—->X

we will call homotopically identical if it is homotopic to the identity map 1x of
the space X, i.e. if there exists a deformation & : X — X of the space X such
that & = h. A continuous map

f:X->Y
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will be called a homotopy equivalence if there exists a continuous map
g: Y- X,
such that both maps
gof:X—X, fog:¥Y—>Y

are homotopically identical. In this case, the map g is also a homotopy equiv-
alence. We will call it the homotopy equivalence inverse to the equivalence f.
Since the equivalence f is in turn inverse to the equivalence g, we will some-
times call the equivalences f and g mutually inverse. It is clear that any map
that is homotopic to a homotopy equivalence is also a homotopy equivalence.
We will call spaces X and Y homotopically equivalent if there exists at least one
homotopy equivalence f : X — Y.
It is obvious that the composition

foofi: X—>Z

of two homotopy equivalences f; : X —» Y and f; : ¥ — Z is also a homotopy
equivalence. Therefore, the relation of homotopy equivalence of spaces is transi-
tive. Since it is obviously reflexive and symmetric, the totality of all topological
spaces decomposes into homotopy types of pairwise homotopy equivalent spaces.
A continuous map
f:X->Y

we will call homotopically injective (resp. homotopically surjective) if there ex-
ists a continuous map such that the composition go f : X — X (resp. the
composition fo : ¥ — Y) is homotopically identical. It is clear that any ho-
motopy equivalence is a map that is both homotopy injective and homotopy
surjective. It turns out that the converse is also true, i.e.

Proposition 2.21. a map f : X —> Y is a homotopy equivalence if and only if
it is homotopy injective and homotopy surjective.

Proof. Indeed, let the map f be homotopically injective and simultaneously
homotopically surjective, i.e. let there exist maps

g1:Y =X, g:Y-—>X,

such that
giof~1x, foga~ly.
Then
fogi~(fogi)o(foga)=/fo(griof)oga~foga~1y
and similarly
g20 f ~1x.
Therefore, the map f is a homotopy equivalence and each of the maps g; and
g2 is a homotopy equivalence inverse to the equivalence f. O
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Note that the above argument has a general, “purely categorical” character.
Similar general considerations show that if for the map f : X — Y there exist a
space Z and a map h : Z — X such that the composition f o & is a homotopy
equivalence, then the map f is homotopy surjective. Similarly, if there exist a
space Z; and a map h; : ¥ — Z; such that the composition #; o f is a homotopy
equivalence, then the map f is homotopy injective. Thus,

Proof. if for the map f : X — Y there exist maps h: Z —» X and hy : ¥ — Z3
such that the compositions f o h and h; o f are homotopy equivalences, then
the map f is also a homotopy equivalence. O

Let the spaces X and Y be homotopically equivalent to the spaces X and Y,
respectively. Continuous maps

f:X->Y, f:X oY
we will call homotopically equivalent if there exist homotopic equivalences

0:X>X, y:Y oY,

such that
pof~fop
i.e. if the diagramme
X ;> Y
wl lw
X’ ﬁ YI
f

is homotopically commutative. Denoting by
X 55X, y:Y oY

the homotopy equivalences inverse to the equivalences ¢ and i, respectively, we
immediately obtain that this condition is equivalent to both the condition

[~y of g
and the condition
yofop ~f
It is clear that a map that is homotopically equivalent to a homotopically
injective (resp. surjective) map is also homotopically injective (resp. surjective).
A trivial example of homotopy equivalence is an arbitrary homeomorphic
map f : X — Y. This shows that all the concepts introduced above are topo-
logically invariant.
Less trivial make-ups of homotopy equivalences arise when considering re-

tractive maps
f:XDA.
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A subspace A is called a deformation retract of the space X if there exists a
retractive map r : X O A that is a homotopy equivalence. Since, by definition,
roi = 1,4, the retractive map r is necessarily homotopy injective. Therefore, it is
a homotopy equivalence if and only if it is homotopy injective, i.e., when there
exists a map k : A — X such that kor ~ 1x. As we have seen, in this case both
maps i and k are necessarily homotopy equivalences, inverse to the homotopy
equivalence r. In particular, the condition i o r ~ 1x will be satisfied. Thus,

Proposition 2.22. for a retracting map r to be a homotopy equivalence, it is
necessary and sufficient that the composite map

ior: X —X
be homotopy identical.

Moreover,

Proposition 2.23. for any deformation retract A the inclusion map i : A C X
is a homotopy equivalence.

Note that the converse is generally not true.
We obtain an important example of a deformation retract by considering
see §1. e cylinder Z¢ of an arbitrary continuous map
1.6) the cylinder Z¢ of bit b

f:X->Y.
Namely, as we will now show,
Proposition 2.24. the subspace Y of the space Zy is its deformation retract.
Proof. To this end, for any 7 € I we define the map
priZy—>Zy, 0<7<1,
of the space Zy into itself, putting

pc(x,t)y=(x,t+717-71), x€X,0<t<1,
pc(y) =y, yeY.

(In the first of these formulae, as in similar cases below, the symbol (x,1) is
understood to mean the point f(x) € ¥.) The maps p, constructed in this
way obviously constitute a homotopy (i.e. the corresponding map Zy x I — Z¢
is unique and continuous). In addition, po = 1z, i.e. this homotopy is a
deformation of the space Z;. Finally, for the map

p1:Zf—>Zf

the formula
piL=jop,
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holds, where
Jj:YCZy,

is the inclusion map, and
p:ZsDY

is the retracting map of the space Z onto its subspace Y, defined by the formulae
p(x,t)=f(x), xeX,0<r<1,
p(y) =y, yeYr.
Since p o j = 1y, the above statement is thus completely proven. O
Another remarkable property of the space Z¢ is that
Proposition 2.25. the map
jof:X =2z

is homotopic to the map
i: X—>Zf,

defined by the formula
i(x) =(x,0), xeX.

Proof. Indeed, the formula
ii(x)=(x,0), xeX,0<r<1,
defines, as is easy to see, a homotopy
i X - Zf,
connecting the map f with the map jo f. O

Since the inclusion map j is, as proved, a homotopy equivalence, this propo-
sition means that the maps i and f are homotopy equivalent. On the other hand,
identifying each point x € X with the corresponding point i(x) = (x,0) € Zy, we
can assume that

itXcCzy.

Thus, it is proved that

Proposition 2.26. for any map f : X — Y there exists a space Zy homotopi-
cally equivalent to the space Y and containing the space X such that the map
f X — Y is homotopically equivalent to the inlclusion map i : X C Zy.

Since a map homotopically equivalent to a homotopy equivalence is itself a
homotopy equivalence, it follows from this statement that

Proposition 2.27. if a subspace X of Zy is its deformation retract, then the
map f is a homotopy equivalence.
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It turns out that the converse is also true, i.e.

Proposition 2.28. for any homotopy equivalence f : X — Y the space X is a
deformation retract of the space Zy.

Proof. Indeed, let
g:Y—-X

be a homotopy equivalence inverse to the homotopy equivalence f, and let
& X—->X, i Y->Y
be deformations of the spaces X and Y, respectively, such that
§1=gof, m=fog
For any point z € Zy and any 7 € I we set
(x,t+47(1-1)) for 0<7<1/4,
Nar—1(f(x)) for 1/4<7t<1/2,

(g(f(x)),3—-41) for 1/2<7<3/4,
E1+(1-1)(3-47) for 3/4<7t<1,

q.(z) =

if z=(x,1), xinX,0<t<1, and

y for 0<7<1/4,

Nar-1(y) for 1/4<7t<1/2,
O 0,340 for 1257 <3/,

g(y) for 3/4<t<1,

ifz=yeY.
It is easy to verify that the family

qT;Zf—>Zf, 0<t<l,

defined in this way is a homotopy (recall that according to the results of §1.6,
the map a x1; : [(X XTUY]XI — Zyx I, where o : (XXI)UY — Z is the
natural projection, is an identification map). Since, in addition,

q0 =1z,

thus the homotopy ¢- is a deformation of the space Z;.
On the other hand, the map

q1:2Zy > Zy
obviously has the form
q1 =104,
where g is the map Zy — X defined by the formulae
gx, 1) =&(x), xeX, 0<r<1,
q(y) =g(y), yeY.

Since g oi = 1x the above statement is thus completely proven. O
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2.3 Homotopy type of glued spaces

Let X and Y be topological spaces, A be a closed subspace of X and f: A —>Y
be a continuous map of the subspace A into the space Y. Then (see §1.6) the
space X Uy Y is defined, obtained by gluing the space X along the subspace
A to the space Y by means of the map f. In this section we will show that
for a sufficiently “good” pair (X,A) the homotopy type of the space X Uy Y
depends only on the homotopy class of the map f and the homotopy type of
the space Y. In other words, for any map g : A — Y homotopic to the map f,
the space X Ug Y is homotopically equivalent to the space X Uy Y, and for ny
space Z homotopically equivalent to the space Y, the space X Ujor Z, where h is
an arbitrary homotopy equivalence ¥ — Z, is homotopically equivalent to the
space X Uy Y.
First of all, we will show that

Proposition 2.29. if a pair (X, A) has the property that both it and the pair (XX
1,1(X, A)) satisfy the axiom of homotopy extension, then for any two homotopic
maps

f.g:A—>Y
the spaces X UrY and XUy Y are homotopy equivalent, and the homotopy equiv-
alence X Uy Y — X Ug Y can be chosen in such a way that on the space Y it is
the identity map.

Proof. Let
fi:A—>Y, 0<t<l1,

be an arbitrary homotopy connecting the map f with the map g. First, we
extend this homotopy to some homotopy of the space UY into the space X U;Y.
Since the natural projection

a:XUY > XUrY

on the subspace A C Y coincides with the map f : A — Y and since the pair
(X, A) satisfies, by hypothesis, the axiom of homotopy extension, then there
exists a homotopy

o X > XUpY, 0<t<1,

such that
oy =alx, af = fi.

Putting

a, on X,
ay = 0<t< 15
ly on Y,
we obviously obtain a homotopy
o XUY - XUpY, 0<1<1,

for which
@y = «a, atlA = ﬁ
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Since the homotopy @, has the property that

aila =g,

the map
77=a/10,8_1:XUgY—>XUfY,

where
B:XUY > XUy Y

is the natural projection, is a single-valued map. Moreover, since the map
@y =nop

is continuous, and the map B is an identification map, the map 7 is continuous
(see §1.5). On the space Y this map is identical:

nly = 1y.

Let us now construct the “inverse” map X U, Y — X U¢ Y. By the same consid-
erations as above, there exists a homotopy

Bi:XUY - XU, Y, 0<r<l,

such that
Bo =B, PBrla= fi-s
and
:BtlY =1y.
Since B1]a = f, then, setting
E=proal,

we obtain a single-valued continuous map
E:XUpY 5 XU, 7Y,

for which, as for 7,
Ely = 1y.

The above statement will obviously be proved if we show that the maps &
and n are mutually inverse homotopy equivalences. With this in mind, for any
number r € I we set

oo, if 0<r<1/2,
e no Bo-1, if 1/2<r<1.

Since a1 =1 o By, then we thereby obtain some homotopy

Vi XUY > XUpY, 0<1r<1,
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for which
Yo=a, vyi=noéfoa.

The homotopy vy, is not, generally speaking, a homotopy relative to A, be-
cause
it 0<r<1/2,

,yl — f2[7
M fon, i 12<r<L

Nevertheless, the map A x I — X Uy Y corresponding to the homotopy y;|a, as
is easy to see, is homotopic relative to AX0UA X 1 to the map AxI — XUY,
which maps each point (a,f) € A X I to the point @(a) € X Uy Y, i.e., which
defines a stationary homotopy of the map a|4. The corresponding homotopy

Ho:AxI—XUpY, 0<7t<l,

can, for example, be defined by the formula

far(i-7)(a), if 0<r<1/2,

H (a,t) =
(@0 {f2(1—z)(1—f)(a), if 1/2<r<1.

where (a,1) is an arbitrary point in space A X I. Therefore, according to the
statement proved in 2.14 (the conditions of applicability of which are fulfilled),
the maps @ and 1 o £@ are also homotopic relative to A. The corresponding
homotopy

Yi:XUY - XUsY, 0<r<1,

relative to A has the property that
Yila=f

for any t € I. Therefore, the formula

h,:y:oa_l, 0<r<1,
uniquely defines a certain homotopy

he:XUpY — XUpY
(recall that by the results of §1.5 the map
axlp: (XUY)XI— (XUpY)xI

is an identification map), which, obviously, has the property that

ho = 1xu,y, hi1=moé.

Therefore, the map
noé:XUsY - XUsY

is homotopy identical.
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Since the maps f and g are completely equivalent, then, by symmetry con-
siderations, the map
Eon:XUgY - XUgY
is also homotopy identical.

Thus, the proposition formulated above is completely proven. O

Let us now prove that the homotopy type of the space X Uy Y does not
change even when the space Y is replaced by a space homotopically equivalent
to it. More precisely, we will prove that

Proposition 2.30. under the same assumptions on the pair (X,A) as above,
any homotopy equivalence f : Y — Z can be extend to some homotopy equiva-
lence

H:XUfY—>XUhOfZ.

Proof. Let
g:Z-Y

be the homotopy equivalence inverse to &, and let

H=p"lohoa:XUsY — X Upes Z,
G:a/ogoﬂ_l :XUhon—)XUgohon’

where, respectively,

h=1xUh:XUY > XUZ,
g=1xUg:XUZ—> XUY,

a:XUY > XUrY,

’

a :XUY—)XUgohOfY,
ﬁ:XUZ—)XUhOfZ,
are the natural projections. Since
Bohla=Bla=hof, @ ogla=ala=gohof,

then the maps H and G are single-valued and continuous.
Since the map
goh:Y—>Y

is homotopically identical (i.e., has the form ¢ where
oY —>Y

is some deformation of the space Y), the map foho f: A — Y is homotopic
to the map f : A — Y, and therefore, according to the previous proposition,
the spaces X Uy Y and X Ugopor Y are homotopically equivalent. Moreover, from
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the construction imposed in the proof of the last proposition it follows that the
homotopy equivalence
U:XUgohon—>XUfY

connecting the spaces X Ugopor Y and X Uy Y, can be defined by the formula
— -1
n=aio(a),
where @, is a finite map of some homotopy

@ :XUY > XUsY, 0<t<l,

for which
@ =a, ala=oiof,
and
aly = ly.
Therefore, the formula
k[:{aoﬁgt, if 0<r<1/2
ay_10g0oh), if 1/2<t<1.

where
Et=1xu0't.XUY—>XUY, OSISL

defines some homotopy
ki:XUY - XUpY, 0<t<l,

connecting the map
ko=aoog=«a

with the map B
ki =ajogoh=noGoHoa.

In this case

a, if 0<r<1/2,
ktlA: .
@or_1, if 1/2<t<1,
i. e,
I, if 0<tr<1/2,
kllA = .
o9-1 0 f, if 1/2<t<1.

Therefore, assuming
ki=koa™, 0<t<I,

we obtain a deformation

ki :XUpY > XUpY, 0<r<1,
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of the space X Uy Y, connecting the identity map of this space with the map
noGoH.

Thus, the last map is homotopy identical and therefore the map H is ho-
motopy injective, and the map n o G, and therefore the map G, is homotopy
surjective.

Similarly (taking the maps ho f and g as the maps f and h respectively), we
obtain that the map G is homotopy injective. Consequently, the map G, and
therefore the map n o G, is a homotopy equivalence. But then the map H will
also be a homotopy equivalence. To complete the proof, it remains to note that

Hly =h.

2.4 Homotopy groups and weak homotopy equiv-
alences

Let n > 0 and let ug be a point (1,0, . ..,0) of the unit n-dimensional sphere S".
Let, further, xg be an arbitrary point of the topological space X. The subject
of our study in this section will be continuous maps

("2 (Sn’uO) - (X’XO)

of the pair (S",up) into the pair (X, xg). The set [(S", ug), (X,x0)] of all homo-
topy classes of such maps relative to xo will be denoted by the symbol

ﬂ'n(X;xO)~

The class of the constant map S" — xo we will denote by the symbol 0y, (or
simply 0) and we will call it the zero of the set 7, (X;xo).

It is clear that the set mo(X;xg) is naturally identified with the set mo(X)
of the path-connected components of the space X. With this identification,
the zero O, of the set mo(X;xo) corresponds to the component of the space X
containing the point xg.

We will call a map of one set of the form m,(X;xg) into another such set a
homomorphism if it maps zero to zero. We will call an injective homomorphism
a monomorphism, a surjective homomorphism an epimorphism, and a bijective
homomorphism an isomorphism.

Remark 2.31. For n > 0, an algebraic operation can be introduced into the set
7 (x5 X0), with respect to which this set turns out to be a group (for n > 1, even
an Abelian group) with zero element Oy,. This group is called the n-th homotopy
group of the space X at the point xo. In what follows, we will also adhere to
this terminology (even for n = 0), although we do not need the mentioned
operation, and we will neither define nor consider it. All homomorphisms of
homotopy groups considered below will in fact be homomorphisms in the usual
group-theoretical sense. We will also ignore this fact.
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According to what was said in §2.1, any continuous map
f:X->Y
defines by the formula

fe(lglrelug) = [f o ¢] relu,

where ¢ is an arbitrary map (S",Uy) — (X;x0), some map

feo i (X5x0) = ma(Ysy0),  yo = f(xo).

This maps zero Oy, to zero 0Oy, i.e. is a homomorphism (in the sense indicated
above). In those cases where it is necessary to explicitly indicate the point xg,
we will denote this homomorphism by the symbol f; .

It is clear that if f = 1x, then f, = 1, (x.x,), and that for any maps f : X — Y
and g : Y — Z we have

(80 f)e=8xo fo

In the language of category theory, this means that the pair (r,(X;xg), f) is a
covariant functor.

We will not present here all the numerous properties of homotopy groups
- this would take us too far from the main topic. We will limit ourselves to
only those properties of these groups that will be needed later. In this case,
for any n > 0 we will represent the sphere S" as a union of two hemispheres
- the “lower” hemisphere E” consisting of all points u = (u',...,u"*") € S",
for which u"*! < 0, and the “upper” hemisphere E”, consisting of all points
u=(ut,...,u"t) e §" for which u"*! > 0. The intersection E" NE”" of these
hemispheres is the equator u"*' = 0 of the sphere $", which we will identify with
the sphere S"~!. The projection

w:S"— E",
defined by the formula
w, . W™ =t "),

is, obviously, a homeomorphism on each of the hemispheres E” and E?}. We will
denote these homeomorphisms by the symbols w_ and w., respectively.
In what follows we will constantly use the fact that

Proposition 2.32. pairs (S",ug), (S",E}), (S"XI(S", ug)) and (S"xI(S",E}))
satisfy the axiom of homotopy extension.

This fact is a special case of one general statement, which we will prove in
§3.4; see Remark 3.56. Therefore, we will leave it here without proof. We will
not use the results of this section until §3.6.

We also note that any vector v € E" can be “related to a point ugy”, i.e.
represented in the form

v =ug+ (u—ug)r,
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where u € §"7! and 0 < r < 1. In this case, the number r is determined by the
vector v uniquely. The vector u is also determined uniquely, if only v # ugy. In
addition, for v # u( the number r is nonzero (and for v = ug it is zero). To
simplify the formulae, we will henceforth denote the vector v = ug+(u—ug)r € E*
by the symbol [u,r], and the vectors w;'(v) € E? and w>!(v) € E" by the
symbols [u,r]+ and [u,r]-, respectively.

First of all, we will find out under what conditions the two maps

f.g:E">X

of the ball E" into the space X, coinciding on its boundary $"~!, are homotopic
relative to $"71.
For this purpose, to any two such maps f and g we assign a map

p:S" > X

of the sphere S" into the space X, “glued” from maps f and g, considered as
maps of the hemispheres E! and E", i.e. defined by the equalities

gen = fow-, ¢mr=fow,.

By hypothesis, f|gn-1 = g|gn-1 and, therefore, the map ¢ is uniquely defined
and continuous. The element [¢] of the group n,(X;xp), where xg = ¢(ug)(=
f(ug) = g(ugp)), defined by the map ¢, we will call the element distinguishing
the maps f and g, and denote it by the symbol §(f, g).

It is easy to see that any element of the set 7, (X;x() can serve as an element,
that distinguishes some map from a given one. Namely,

Proposition 2.33. for any map
g:B'"—> X

and any element a € m,(x;x0), where xo = g(ug), there exists a map

f:E" > X,
such that

flsn = glsn
and

6(f.8) =a.

Proof. Indeed, let
("2 (Sn’uO) - (X’XO)

be an arbitrary map of class @. Obviously, on the hemisphere E7} the map ¢ is
homotopic relatve to ug to the map g o w,. And the corresponding homotopy

¢ Bl - X
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can be defined, for example, by the formula

o([u,(1-20)r]y), if 0<r<1/2,

orllaerle) = {f([u,(?t— Drl). i 1/2<r<1,

where [u,r]; is an arbitrary point of the hemisphere E}; the essence of the
matter here is that the hemisphere E} can be contracted in itself to the point
uy and therefore any map of this hemisphere is homotopic to the constant map,
so that any two maps are homotopic. Since the pair (S",E") satisfies, as was
said, the axiom of homotopy extension, it follows that the map ¢ is homotopic
relative to ug to a map

y:S" - X

such that y|gr = g o w,. But then it is clear that the map
f=vYlgmow ' :E" - X
has all the required properties. O

The significance of distinguishing elements d(f, g) for the problem of homo-
topy relative to S"~! of maps f and g is determined by the fact that

Proposition 2.34. if for maps coinciding on S"!
f.g:B"> X,
there exists a map
h:E"—> X, hlgni-1 = flgn-1 = glgn-,

such that
o(f,h) =0(g.h),

then the maps f and g are homotopic relative to S".

Proof. To prove this statement, we consider the maps
@0, 1 : 8" = X,
defined by the formulae
wolen = fow-, il =gow-, oler = p1ler = how,.
As is easy to see, it is enough for us to prove that
%o ~ ¢1rel EY. (2.35)
Indeed, for any homotopy ¢; : ¢o ~ ¢1 rel E} the family of maps

ilenow™ E" > X, 0<t<1,
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will be a homotopy relatiive to S"~!, connecting the map f with the map g.

By hypothesis, §(f, h) = 6(g, h), so that the maps ¢y and ¢; are homotopic
relative to uy. Having chosen some homotopy relative to ug that connects the
maps ¢ and ¢1, we consider the map

O:S"xI—>X

of the product E} x I into the space X corresponding to this homotopy. Let, in
addition,

Y EIxI—>X
be a map of the product E} x I into the space X defined by the formula
Y(u,t) = po(u) = (hows)(u), (u)eB",0<t<1.
According to Proposition 2.14, it is applicable, since the pair (S" x I, I(S", E))

satisfies the axiom of homotopy extension, to prove relation (2.35) it is sufficient
to show that

Dplgrxs ~ Prel(B} x 0OUEY x 1).

For any 7 € I and any point ([u,r]4,) € E" X I, where u € S"~1, r,t € I, we set
(see Fig. 2.2)
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@([u,%]hf:—;), if 0<t<ir<t<l-r,
h([u, 5=21), if r<t<l-1,0<t<1,
@, ([u,r]y, 1) = { h(ug), if L<r<ir r<r<it,
h ([, 22547, if 1-r<r<rir<r<l,
h([u, 432541, if Ef<r<ll-7<t<T.

It is easy to verify (Fig. 2.2) that we thereby obtain a certain homotopy
O EixI—>X
relative to B} x 0 U E} x 1, for which
Dy = Dlgnyy, @ =Y.
The statement formulated above is thus completely proven. O

Remark 2.36. For the existence of a homotopy @ it is essential that the map
o is homotopic to the map ¢, relative to ug. If ¢g is simply homotopic to ¢,
then the homotopy ®,; may not exist.

Let us now consider the question of the dependence of the group n, (X;xo)
on the point xg.

Let xg and x; be two arbitrary points of the space X, which can be connected
in X by some path u : I — X. Since the pair (S",u() satisfies the axiom of
homotopy extension, then for any map

@ (8" up) — (X,x0)
there exists a homotopy
o :S" > X, 0<r<1,

such that ¢y = ¢ and ¢;(ug) = u(t) for each t € I. We will call this homotopy a
homotopy of the map ¢ along the path u.

We will call two paths u and v, connecting a point xg with a point x; equiv-
alent if they are homotopic relative to the points 0 and 1, i.e. if there exists a
homotopy

ur:I—- X, 0<7t<1,

consisting of paths connecting the points xy and x; such that ug = u and u; = v.
It turns out that

Proposition 2.37. if the maps
@, ¢ 1 (58", ug) — (X, x0)

are homotopic relative to ug, then for any two equivalent paths u and v connect-
ing a point xo with a point x1, and any two homotopies

oY ST = X
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of the maps ¢ and ¥ along, respectively, the paths u and v the pointed maps
e1,¥1 1 (8", up) — (X, x1)
are homotopic relative to ug.

Proof. Indeed, let
& (8" uo) = (Xoxo), 0<r<1,

be a homotopy relative to uy, connecting the map ¢ with the map ¢. It is clear
that the formula
$1-3t5 if 0<t<1/3,
wr = €3¢-1, if 1/3<t<2/3,
War-2, if 2/3<t<1,

defines a certain homotopy
w:S"—= X, 0<t<1,
connecting the map ¢; with the map . Let
Q:S"xI—-X

be the map of the product S"xI into the space X corresponding to this homotopy
and let
Qi :ugxIlI - X

be the constant map of the segment ug X I into the point x; € X. Since the pair
(S" X 1,1(S",uq)) satisfies the axiom of homotopy extension, then, according to
the proposition proved in §point 2.1, to prove the relation

@1 ~Yyrelug
it suffices to prove that
Qluoxr ~ Qrrel(ugx0Uug x 1),

i.e., the path
w:l—>X, w(0)=w(l)=ux,

defined by the formula
u(l-3t), if 0<r<1/3,

w(t) = Q(uo,t) = {xo, if 1/3<t<2/3,
v(3r-2), if 2/3<r<],

is equivalent to the degenerate path u,,, which is a constant map of the segment
I to the point x;.
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For this purpose, for any 7,7 € I we set (see Fig. 2.3)

u (35042) if 0<7t<1/3,0<1<3%2
X0, if 0<7<1/3,32 <r< 40T,
v (3Tt if0<7t<1/3,42<r<1,
we(t) = qu(l-21), if 1/3<7t<2/3,0<t<1/2,
ug—3 (2t — 1), if 1/3<1t<2/3,1/2<t<1,
u(l-6t(1-1)), if 2/3<7t<1,0<t<1/2
u(l-6(1-1)(1-1)), if 2/3<7<1,1/2<1<1,

where u; : I — X, 0 < 7 <1, is a homotopy relative to the points 0 and 1,
connecting the path u with the path v. It is easy to verify that we thereby

z A

7
z 7
7
Z(7) “i7) 7
S|Ss
S T s HEP S S =
s | «(7- 5t(7—r/) g :‘_u(7 E(7-)(7-T)) | 3
5_ w2 (7-2¢) wu(2t-7) 2
z(7-22) u(2t-7) 7
s <
= m—————— sIS r-——------ =
s Vou(7-2¢) ! 5 8 ,u2_3r(2t 7)' &
—————— - E) —_—————-—- N
7 u(7-2¢) v (2t-7) 7
3 2(7-2¢) v(2¢t-7) J
S |, I br+2) ) S - :"?3;12? IS
SN IT+2 A/ — L a\= ';. Fr+2 S
________ Tz s L
Y uz(7-32) Zp v (32—2) ;
g 2Z 7 ¢
N I <<
% =
N Na
Figure 2.3:

obtain a homotopy
we: I > X, 0<7l,

relative to the points 0 and 1, connecting the path w with the path u,,.
The above statement is thus completely proven. O

It follows directly from this statement that for any path u, connecting points
xo and x; the formula

u? (@) = [¢1] relug,
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where @ € 7, (X;xg), and ¢; is a pointed map of an arbitrary homotopy ¢; along
the path u of some map
@ (8", ug) = (X;x0)

of class @ uniquely determines some map
u? (X xo) = (X x1),
mapping zero Oy, to zero Oy, , i.e. being a homomorphism. At the same time,

Proposition 2.38. the homomorphism u? depends only on the equivalence
class of the path u, i.e. for any two equivalent paths u and v the homomorphisms
u# and v¥# coincide.

Now let u and v be paths of the space X such that

u(1) = v(0).
Then the formula
u(2t), if 0<r<1/2,
w(t) = .
v(2t -1), if 1/2<t<1,

defines, as is easy to see, a certain path
w:l—X,

connecting the point xg = u#(0) with the point x; = v(1). We will call this path
the product of paths u and v and will denote it by the symbol uv. It is easy to
see that

Proposition 2.39. the homomorphism
W)™ = 1 (X;x0) = 7m0 (X:x2),
corresponding to the path uv, is a composition of v¥ - u# of homomorphisms
u? ma(Xix0) = ma(X;x1), v (Xixy) = m(X;x2),
corresponding to the paths u and v.

Proof. Indeed, for any homotopy ¢, along the path u of an arbitrary map ¢ :
(S",ug) — (X;x0) and any homotopy ¥;, along the path v of an arbitrary map

¥ (8" o) = (X5x1)

the formula
_ Je(20), if 0<r<1/2,

wr =
{1//(21‘—1), if 1/2<r<1,

defines a homotopy along the path uv for which wg = ¢ and w; = ¥ O
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To each path u : I — X connecting a point xy with a point x; we assign
a path u" : I — X connecting the point x;x with the point xo, defined by the
formula
w()=u(l-1, 0<tr<1.

It is easy to see that

Proposition 2.40. for any path u connecting points xo and x1 the paths uu’
and u'u are equivalent to the corresponding degenerate paths Uy, and uy, .

Proof. Indeed, a homotopy v, : I — X, 0 < 7 < 1, relative to the points 0 and
1, connecting, say, the path u,, with the path uu’ can, for example, be defined
by the formula

IA
—

(1) = u(2t7), if 0<r<1/2,
e -0, i 1/2<1<1,

O

Since the homomorphisms (uy,)* and (uy,)# corresponding to the degener-
ate paths uy, and uy, are, as is easy to see, identity maps of the groups m,,(X;xo)
and 7, (X;x1) respectively, it follows directly from the last two statements that

Proposition 2.41. for any path u :— X connecting the point xo with the point
x1 the homomorphisms u# and (u')# are mutually inverse isomorphisms between
the groups m,(X;x0) and 7, (X;x1).

In particular,

Proposition 2.42. for any path u connecting a point xo with a point x1, the
homomorphism
w2 70 (X;x0) = (X5 x1)

is an isomorphism.

Thus, for any points xo and x; belonging to the same path component of the
space X, the groups 7, (X;xg) and 7,,(X; x1) are essentially the same. For points
belonging to different path components of the space X, these groups, generally
speaking, are not connected with each other in any way.

In order to clarify the geometric meaning of the isomorphisms u#, we will
show that

Proposition 2.43. for elements a € pi,(X;xq) and B € n,(X;x1) if and only
if there exists a path u : I — X, u(0) = xg, u(1) = x1, such that

B =u*(a),
if and only if when the maps
@ (8" up) = (X;x0), ¢ :(S",up) = (X;x1),

belonging to the classes a and B are homotopic to each other.



2.4. HOMOTOPY GROUPS AND WEAK HOMOTOPY EQUIVALENCEST9

Proof. Indeed, if 8 = u¥ (@), then the map ¢ is homotopic (relative to ug) to
a pointed map ¢; of some homotopy ¢, of the map ¢ along the path u. Thus,
¢+ ¢ ~ ¢ and, consequently, ¥ ~ ¢. Conversely, any homotopy ¢; : ¢ ~ ¢ can
be considered as a homotopy of the map ¢ along the path

u(t) = ¢1(ug), 0<t<1.
Therefore, if ¢; : ¢ ~ ¥, then 8 = u# (). O

Since for each path u the map u® is an isomorphism, the only element
a € m,(X;x0) for which u#(a) = 0, is the element 0,,. This means that

Proposition 2.44. the map
@ (8% ug) = (X;x0)

is homotopic to some constant map if and only if it is homotopic relative to ug
to the constant map to the point xq.

In other words (see §2.1),
Proposition 2.45. the map
@ (8" up) = (X;x0)

belongs to the class Oy, if and only if when it can be extended to some map
E" —» X.

Therefore,

Proposition 2.46. the space X is m-connected if and only if for some (and
therefore for any) point xo € X and any n < m the equality

7rn(X§ )Co) =0
holds.

Let us now consider an arbitrary deformation.
&:X—>X
of the space X. For any point xo € X this deformation defines a path
u(t) = &(xo), 0<t<1,

connecting the point xo with the point x; = & (xg). On the other hand, it is
clear that for any map
@ (5" ug) = (X;x0)
the family of maps
ELop:S" o X

represents a homotopy of the map ¢ along the path u. Therefore, for any element
@ € m,(X;x0), the element u# (@) € 7, (X;x1) is the class of the map & o ¢, where
& =¢1, and ¢ is an arbitrary map of class @. This means that
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Proposition 2.47. the homomorphism

&t (X5x0) = mn(X;x1)
coincides with the homomorphism

w7y (X;x0) = (X5 x1)

Since the last homomorphism is, as we know, an isomorphism, it is thus
proved that

Proposition 2.48. for any homotopy identity map
E:X—-X
and any point xg € X, the homomorphism
&t (X x0) = mu(Xix1),  x1 = €(xo),
is an isomorphism.

A map
f:X->Y

of a topological space X into a topological space Y will be called a weak homotopy
equivalence if for any n > 0 and any point xg € X the homomorphism

Je 1 (X5x0) = 10 (Yiy0),  yo = f(x0),
is an isomorphism. From the proposition just proved it easily follows that
Proposition 2.49. any homotopy equivalence
f:X—>Y
is a weak homotopy equivalence.

Proof. Indeed, let
g:Y—-X

be the homotopy equivalence inverse to the equivalence f, and let xy be an
arbitrary point in X. Setting

yo = f(x0), x1=g(0), y1=[(x1),
for any n > 0 we consider the homomorphisms
Je = Fexo 1 T (X5x0) = w0 (Ysy0),

f*, = fox P Ta(X5x1) — (Y5 y1),
8+ = 8x,y0 * mn(Y5y0) = ma(X;x1),
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induced by the maps f and g, as well as the homomorphsims

(g0 fe:mu(X;x0) = mp(X;x1),
(f 08)e: ma(Y;30) = mu(Y;y1),

induced by composite maps
gof:X—>X, fog:¥Y—oY.

As we know,
(80 f)=8:08s (f 08)=[ ogu.

On the other hand, since the maps g o f and f o g are, by hypothesis, homo-
topically identical, the homomorphisms (g o f), and (f o g). are isomorphisms.
Therefore, from the equality (g o f). = g. o fx it follows that the map g. is
epimorphic, and from the equality (f o g). = f, o g. it follows that the map
g+« is monomorphic. Consequently, the map g., and therefore the map f,, is an
isomorphism. O

Remark 2.50. The converse is generally not true: there are weak homotopy
equivalences that are not homotopy equivalences. However, as we shall see be-
low, for sufficiently “good” spaces (namely cellular spaces), any weak homotopy
equivalence is a homotopy equivalence.

It is clear that the composition of weak homotopy equivalences is also a weak
homotopy equivalence. Therefore, it follows immediately from the previous
statement that

Proposition 2.51. any map that is homotopy equivalent to a weak homotopy
equivalence is also a weak homotopy equivalence.

Remark 2.52. By analogy with the relation of homotopy equivalence of spaces,
one could introduce the relation of their weak homotopy equivalence. This
relation is obviously reflexive and transitive, but, generally speaking, it is not
symmetric. We will not consider it.

We will call a subspace A of a space X representative if the inclusioon map
i:AcC X is a weak homotopy equivalence, i.e. if for any n > 0 and any point
Xxg € A the homomorphism

ix : Tp(A;x0) = ma(X;x0)
is an isomorphism. It follows directly from the proposition just proved that

Proposition 2.53. the map f : X — Y is a weak homotopy equivalence if and
only if the space X is a representative subspace of the cylinder Z; of the map f.

In connection with this proposition, it is useful to note that
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Proposition 2.54. if a subspace A of X is representative, then for any n > 0
each map

f: (B S = (X, A)

is homotopic relative to S"~* to some map g : B* — A (i. e, more precisely, to
the map iog, wherei: A cC X).

Proof. Indeed, assuming that n > 0 (for n = 0 the reasoning is only simplified),
we assign to the map f the element o of the group 7,_1(A; xo, where xo = f(uo),
defined by the map

f|Sn—1 : Sn_l — A.

Since the map i o f|gn-1 is a restriction of the map f : E" — X, then, as proved
above, i.(a’) = 0, and therefore @' = 0 (since the homomorphism i, is, by
assumption, an isomorphism). Therefore, there exists a map

h:E"— A,
such that
hlsnfl = f|Sn,—1.
Let
B=0(f,ioh)

be an element of the group =z, (X;x) that distinguishes the maps f and i o A.
Since the subspace A is representative, in the group m,(A;xg) there exists an
element « such that ix(a) = 8. Let

g:E'—> A

be a map of the ball E” into the space A that coincides on $"! with the map
h such that

6(g,h) =a.

Then, as is easy to see,
6(iog,ioh)=i.(a),

i.e,

6(iog,ioh)=6(f,ioh).

Therefore, the maps f and i o g are homotopic relative to S~ 1. O

Remark 2.55. The converse is also true: if for each n > 0 any map (E*, " !) —
(X, A) is homotopic relative to $*~! to some map E* — A then the subspace A
is representative. We will not need this fact, and we will leave its proof to the
reader as a simple exercise.
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2.5 Homotopy limits

Let
XocXyc---cX,C--- (2.56)

be an increasing sequence of subspaces of a topological space X, the union of
which is the entire space X. Consider the inclusion maps

i Xn—=>Xm, ":Xp—X, 0<n<m< oo,

and for any point x € X and any number n > n,, where n, is the smallest n for
which x € X;,, the homomorphisms induced by these maps

(T = k(X3 %) = 70 (X ),

m k=0,
(l )* : ﬂ-k(Xn;-x) - ﬂ-k(X;x)’

of homotopy groups.
We will say that the space X is a weak homotopy limit of subspaces (2.56) if

1) for any number k > 0, any point x € X, and any element « € 7 (X;x), there
exist a number n > n, and an element @, € 7 (X,;x) such that

a = (i"):(an);

2) for any number k > 0, any number n > 0, any point x € X, and any elements
@,a € mi(X;x), with the property that

(i) (@n) = (") (ay),

there exists a number m > n such that
(i) (@n) = (i)« (),

It is clear that if the number n > n, satisfies condition 1), then any number
n > n also satisfies this condition, i.e. there exists an element o, € m(X,;x)

such that (i"’)*(a/nf) = «a (at least the element «, = (i:,)*(cm) has this prop-

erty). Similarly, any number m' > m satisfies condition 2) together with the
number m.

Remark 2.57. The reader familiar with the concept of a spectrum of groups
will immediately discover that for any number k > 0 and any point x € X the
groups mk(X,;x), n > m, and the homomorphisms (i})., nx < n < m constitute
a spectrum and that conditions 1) and 2) are equivalent to the fact that the
homomorphism of the limit group of this spectrum into the group mx(X;x),
induced by the homomorphisms (i")., is an isomorphism.

One can specify simple set-theoretic conditions under which the space X is
a weak homotopy limit of the subspaces (2.56). For example,
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Proposition 2.58. if for any compact set C C X there exists a number n > 0
such that C C X,,, then the space X is a weak homotopy limit of the subspaces
X,,.

Proof. Indeed, let k > 0, x € X, and let @ be an arbitrary element of the group
7k (X;x). Consider an arbitrary map

£ (85 m0) = (X;0)

of class @. Since the sphere S¥ is compact, the set f(S¥) is also compact, and,
consequently, there exists a number n > 0 such that f(S*) ¢ X,,. Therefore, we
can consider the map f as a map f : (SK,ug) — (X,;x). It is clear that the
element @, € mx(X,;x) defined by this map has the property that (ii").(a,) = a.

Condition 2 is verified similarly (only instead of the compactness of the
sphere S¥, we have to use the compactness of the product S* x I). O

In the case of an arbitrary sequence (2.56), the space X is not, generally
speaking, a weak homotopy limit of the subspaces X,,. However, it can be
argued that

Proposition 2.59. For any increasing sequence
XocXpic---cX,C--- (2.60)
of subspaces of X, there exists a space X* and a sequence
chXlzc--~cX§c~~-
of subspaces of X* such that
1) for any n >0, the space X= is homotopy equivalent to the space X,;
2) the space X* is a weak homotopy limit of the subspaces XE.

Proof. Indeed, let X~ be the subspace of the product X x R consisting of all
points (x,1), x € X, t € R, for which t > n+ 1 for x ¢ X,,,

X* = U2 (Xg X [k, 00]) = U (Xx X [k, k +1])

and let X> be the subspace of X* consisting of all points (x,¢) € X* for which
t<n,ie.,

X2 = (Xox [0,1]) U (X; X [L,2)) U+ U (Xpo1 X [n = 1,n]) U (X, X ).

Since the coordinate ¢ of a point (x,7) of an arbitrary compact set C ¢ x=,

being a continuous function on C, is bounded, then C ¢ X* for some n > 0.
Consequently, according to the statement proved above, the space X~ is a weak
homotopy limit of the subspaces X>.

Let us further consider the natural map

pE:XZ—>X,
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defined by the formula
pE(x,1) =x, (x,1) € X™.
It is clear that for any n > 00 the inclusion
p=(X)) C X,
holds and therefore the map p* defines a map
pf : XE — Xy

(This map is defined by the same formula as the map p*, with the only difference
that now (x,f) € X>.) Setting for any point x € X

4y (x) = (x,n),
we obviously obtain a continuous map
qE Xy — Xf
for which pZ o g% = 1x,. On the other hand, setting
Er(x,0) = (i +7(n—1), (x1)e€X,,0<7<1,
we obtain a deformation

E XE X 0<t<l,

of the space X such that & = g* o pZ. Therefore, the maps p> and ¢ are

mutually inverse homotopy equivalences.
Thus, the proposition formulated above is completely proven. O

Generally speaking, it is impossible to claim that the map p* is a homotopy
equivalence (even a weak one). Specifically, as we will now show,

Proposition 2.61. the map

pZ XE o X
is a weak homotopy equivalence if and only if the space X is a weak homotopy
limit of the subspaces X,,.

We will prove an even more general proposition, which applies to the situa-
tion where we are given an arbitrary space X, which is a weak homotopy limit
of subspaces

XoCcXjCc---CcX,C---

an arbitrary space Y, which is the union of an increasing sequence of subspaces

YocYiycCc.--CcY,C---
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and a continuous map
f:X—>Y

such that
f(Xn) C Yy

for any n > 0. Let
fo:Xn—>Y,, nx=0,

be the map defined by the map f. This map is related to the map f by the
formula

foi®=j"0fu,

where " is, as above, the inclusion map X, € X, and ;" is the inclusion map
Y, c Y. Moreover, for n < m, the maps f,, and f,, are related by the formula

fmoin :jrrrllofn’

where !, : X,, C X; and j)), 0 Y, C Y.
We will show that

Proposition 2.62. if for any n > 0 the map f, is a weak homotopy equivalence,
then the following two statements are equivalent:

1) the space Y is a weak homotopy limit of subspaces Y, ;
2) the map f is a weak homotopy equivalence.

Proof. Indeed, let Statement 1) be true. Consider an arbitrary number & > 0
and an arbitrary point xinX. Since the space Y is a weak homotopy limit of
subspaces Y;, then for any element 8 € n;(Y;y), where y = f(x), there exist a
number n > nyn and an element B, € mi(Y,;y) such that 8= (j").(8,). In this
case, without loss of generality, we can assume that n > n,, i.e., that the group
7 (Xy; x) is meaningful. Since the corresponding homomorphism

(S s (X3 x) = 7 (Yo y)

is, by assumption, an isomorphism, there exists an element «, € 7 (X,;x) such
that B, = (fu)«(@,). Consequently, assuming @ = (i").(ay), we get that

fe(@) = (foi")(an) = (" o fu)san) = (i)« (Bn) = B.
Thus, for any number k > 0 and any point x € X, the homomorphism
Jo i m(X5x) = mie (Y5 f (%)) (2.63)
is an epimorphism.

Now let @ and o be elements of the group 7 (X;x), such that f.(a) = fi(a).
Since the space X is a weak homotopy limit of subspaces X;,, there exist a number
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n > n, and elements a,, @, € 7x(X;x) such that @ = (i").(a,) and @’ = (i").(a,,).

Let B8, = (fu)«(an) and :8;1 = (fn)*(a/;l) Since
(™) (Bn) = (j™ © fr)ul@n) = (f 0i")u(@n)) = ful@)
= fu(@) = (f o i")u(a,) = (j" o fa)(ay) = (M) (B),

then there exists a number m > n such that

(1) (Bn) = (1)< (BLy).-

Therefore, putting a,, = (i%,).(a,) and a,, = (i",).(a,), we get that

F)s(@m) = (fn 0 )u (@) = (G2 0 fi)o(@n)) = ()2 (Bn)
= (1) (B) = G o fi)e (@) = (fin 0 im)ul@n) = (fm)s (@)

Since the map (f,). is, by assumption, isomorphic, it follows that a,, = a;n,
and therefore

@ = (i"):(@n) = (™) (@m) = (™)u(a,,) = ("o il)x(a,) = a.

Thus, homomorphism (2.63) is also a monomorphism. Therefore, the implica-
tion 1) = 2) is completely proved.

Now let assertion 2) be true. We will prove that condition 1) of the definition
of a weak homotopy limit is satisfied for the subspaces Y}, i.e., that for any
number k > 0, any point y € Y, and any element B8 € 7 (Y;y), there exists a
number n > ny, such that 8 = (j").(8). Since the map f induces, by assumption,
a one-to-one correspondence between the path connected components of the
space X and the path connected components of the space Y, we can, without
loss of generality, assume that y = f(x), where x is some point of the space X.
Consider the corresponding homomorphism

fo im(X5x) — m (Y5 ).

Since this homomorphism is, by assumption, an isomorphism, there exists an
element « € m;(X;x) such that 8 = f.(a). Since the space X is a weak homotopy
limit of subspaces X,, there exists a number n > n, > n, and an element
a, € mi(X;x) such that @ = (i").(@,). Therefore, setting B, = (fu)«(@,), we
obtain that:
B=(foi")lan) = (" o fu)(an) = (j"):(Bn)-
Condition 2) is checked in a completely similar way.
Thus, the above statement is fully proven. O

We will say that the space X is a homotopy limit of the sequence of subspaces
XocXyc---cX,C--- (2.64)

if the map
p2 (XE o X

is a homotopy equivalence. By the proposition just proved,
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Proposition 2.65. any space X that is a homotopy limit of subspaces X,, is
also their weak homotopy limit.

We will begin our study of homotopy limits by proving that
Proposition 2.66. if

1) every point x € X is an interior point of some subspace X,, i.e., the family
{int X,;;n > 0} is an open covering of X;

2) the covering {int X,;n > 0} can be refined into a locally finite open covering
I' = {Uy;a € A}, for which there exists a subordinate partition of unity

{fa;a € A},
then the space X is a homotopy limit of the subspaces X;,.

Proof. Indeed, denoting for each element @ € A by the symbol b(«@) the smallest
n for which U, € int X,;, and setting

flx) = Z n(a)fe(x), xeX,

acA

we define on the space X a certain numerical function f(x). This function, as is
easy to see, is continuous (since the covering I', by assumption, is locally finite).
Furthermore, it has the property that f(x) > n+ 1 for x ¢ X, since if x ¢ X,,,
then f(x) =0 for all @ € A for which n(a) < n, and therefore

f(x) > (n+1) Z foulx) =n+1.

acA

Consequently, the formula

q(x) = (x, f(x)), x€X,

defines a continuous map
qg:X—- X=.

Clearly, p o ¢ = 1x. Moreover, the formula
E D=0, -Dt+1f(x), (x)eX*0<T<1,

defines, as is easy to see, a deformation &, : X* — X%, for which & = g o p.
Thus, the map p is, as stated, a homotopy equivalence.

For the existence of a partition of unity {f,;a € A} subordinate to a locally
finite covering I', it is sufficient, as we know, that the space X be normal. On
the other hand, for a covering I" to exist, it is sufficient, for example, to require
that the space X be paracompact or (assuming that X is normal) that for any
n > 0 the inclusion int X,, C int X,+1 holds. (Indeed, in the latter case, the
locally finite covering inscribed in the covering {int X,;;x > 0} is the covering
{int X1, int X,41\Vn—1;n > 0}, where V,,_; is a neighbourhood of the set int X,,_;
such that V,_; c int X,,). Thus,
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Proposition 2.67. if condition 1) of the previous proposition is satisfied, and
the space X is normal and, in addition, either this space is paracompact or

int X, C int X;,41

for any n > 0, then the space X is a homotopy limit of the subspaces X,,.

These conditions are by no means necessary.
Let us now consider (for an arbitrary space X and arbitrary subspaces X,,),
the subspaces
XycXfc--cXrc---

of the space X*. It is clear that int X> is the set of all points (x,f) € X* for
which ¢ < n. Therefore,

00

X* =" int X,

n=0

i.e., for the subspaces XZ, condition 1) of the proposition proved above is satis-
fied. Moreover, it is easy to see that the sets

int X¥, int X%, \ int X> , n>1, (2.68)

form a locally finite covering refining the covering {int X>;n > 0}, and the
functions f,+1, n > 0, defined by the formula

0, if tSn—%ort2n+%,

a3 if n-3<r<n-14,
fn+1(‘xv[): . 1 1

1, if n—-3<t<n+g,

stn-dt - if n—+l<r<n+ 3,

counstitute a decomposition of the unit subordinate to covering (2.68). Hence,

Proposition 2.69. for any space X and any of its subspaces
XoCcXyCc---CcX,C---
the space X~ is the homotopy limit of the subspaces
XZ = (Xox [0,1])U---U (X,_1 X [n=1,n]) U (X, X n).

This proposition is a strengthening of the property of subspaces X2 proved
above. Using it, we can extend the basic properties of weak homotopy limits to
the case of homotopy limits.

Let, for example, X be an arbitrary space that is a homotopy limit of the
subspaces

XoCcXjCc---CcX,C---

Y be an arbitrary space in which an increasing sequence of subspaces

YocYiycCc..-CcY,C---
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is defined, and f be a continuous map
f:X->Y
such that
f(Xn) Yy
for any n > 0. Then
Proposition 2.70. if for each n > 0 the map f defined by
Jn i Xn > Yy
is a homotopy equivalence, then the following two conditions are equivalent:
1) the space Y is a homotopy limit of the subspaces Y,;
2) the map f is a homotopy equivalence.
Proof. Indeed, let, as above,
X* = U o (Xi X [k, k +1])
and let similarly
Y = U (Ye X [k, k +1]).
Since f(Xx) C Y, the formula

o = (F),0),  (x1) € X7,

defines a continuous map
f RS GRS 2

The map f is obviously related to the map f* by the formula
fop®=p"of%

where
priXE > X, 1_72:YZ—>Y

are natural maps. Therefore, if statement 1) is true, then the map f* is ho-
motopically equivalent to the map f, and if statement 2) is true, then the
composition of the maps f* and p* is a homotopy equivalence. Therefore, to
prove the equivalence of statements 1) and 2), it suffices to prove that

Proposition 2.71. the map f* is a homotopy equivalence.

Let us first consider the case when X =Y and X,, =Y, for all n > 0. Let, in
addition, each map
fo:Xn—>X,, nx0,

be homotopically identical and let

gn,t Xp > X,
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be a deformation of the space X,, that connects the identity map 1x, with the
map f,. For any point x € X,,, n > 0, and any t,7 € I, we set

(f(x),n+1(2t + 1)), if 0<7t<1/2, 0<r<1/2,

(fx),n+2(1 -1 +1), if 0<7t<1/2 1/2<t<1,
he(x,n+1) = 3 (Ena—ar(x),n +20), if 1/2<7t<1, 0<1<1/2,

(€n,1-(3-4n)(27-1) (X), n + 1), if 1/2<7t<1, 1/2<1<3/4,

(Ens1i-(a-3)2e—n(X),n+1), if 1/2<7<1, 3/4<t<1.

It is easy to see (Fig. 2.4) that we thereby obtain a certain homotopy

14
¢ l 7
7 . 7
((z), n+7) ~ (reg 2-20(x)147) §
S - imrerer
. D) ¥
o S| &y T2 Y
b, Rl NS 3
] S (F(zx), n+7) 95| 5
2 () n+2(7-2)r+2) ) - y
U200 ) S, ey |
NS SN e __ S
R |/ I
M, r-t-s0y2e) @P)S
Zz'+7 g boo o m e = - ¥
7 (*1z), n+ 5 X (E 2 (T) 1+7) &4
2 (Fi(z), n+ 2’*’) (& 2-2c0x), m+7). | ?
o 2D
~: e ————— = ?S’ &:] Fom————————— = &
SN (), n+t(2e+7) L IR (&, o0y (z), 1422) ) & |
E [ N B R A _| IS
N 2|8 NS
X NSy
0 (F(z), n) (&n, 2-20(x) 1)
g % 7z
Figure 2.4:
he : X5 — X*

connecting the map f* with the map 4 defined by the formula

(x,n+2t), if 0<r<1/2,
h(x,n+1) =1 (énar—2(x),n+ 1), if 1/2<t<3/4,
(€ns1,4-4¢(x),n+ 1), if 3/4<t<1.

Therefore, it is sufficient for us to prove that the map £ is a homotopy equiva-
lence. With this in mind, we note that by the equality

1
h(x,n+§) =h(x,n+1)=h(x,n+1)
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the formula

(x,n+2t), if 0<r<1/2,
glx,n+t) = 3_0r .
hx,n+352),  if 1/2<r<1.
uniquely determines some continuous map
g: X* > X*.
Let
(x,n+ (1 +671)1), if 0<7t<1/2, 0<t<1/4,
(x,n+2(1 =0T +1), if 0<t<1/2, 1/4<t<1,
ne(x,n+t)y=9(hog)(x,n+1), if 1/2<1t<1,0<t<1/2,
; 3-2
h(x,n+7), if 1/2<7<1, 7/2<1 <57,
(hog)(x,n+1), if 1/2<7t<1, 2T <r<1.
Since -
(hog)(x,n+§) =h(x,n+71), 0<7<1,
we have

3—-27
(hog) (x,n+%) = (hoh) (x,n+Tz)

h(fn,‘r—2(x)sn + 1) = (gn,T—Q(x)’ n+ 1)
h(§n+1,4—4‘r(x)a n+l) = (§n+1,4_47()€),i’l +1)

=h(x,n+71), 1/2<7<1,

=(h0h)(n+‘r)={

and
(hog)(x,n+1t)=(x,n+4t), 0<t<1/4,

this formula defines (Fig. 2.5) a certain homotopy,
ne:X*—> X% 0<t<l,
connecting the identity map lys with the map
hog:X* — X~
Similarly, in view of the equalities
(g0 h)(x.n+ %) =gltn+1), 0<T<I,

we have

-2 -2
(gOh)(x,n+3 5 T)zh(x,n+3 5 T)

=gn+71), 1/2<7<1,
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Figure 2.5:
and
(goh)(x,n+t)=(x,n+4t), 0<t<1/4,
the formula
(x,n+ (1 +67)1), if 0<t<1/2, 0<t<1/4,
(e,n+ (1=1)T +1), if 0<t<1/2, 1/4<¢t<1,
n.(x,n+1)=4(goh)(x,n+1), if 1/2<7t<1,0<r<1/2,
glx,n+1), if 1/2<7t<1, T/QStS%,
(goh)(x,n+1), if 1/2<t<1, 2 <1<l
defines some homotopy
L XE o XE 0<T<],

connecting the identity map lys with the map

goh:X* - X%

93

Thus, in the particular case under consideration, the map f* is indeed a homo-

topy equivalence.

Let us now consider the general case.

Let

&n:Yn — X,

n >0,
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be homotopy equivalences inverse to the homotopy equivalences of f,,, and let
in:Xn CXn+1,  Jn:¥Yn C Yo
be inclusion maps. Since fy,4+1 i = ju © fy, then
In©8n ~ &n+1 © fn+100n ©8n = &n+1© jn © fn ©8n ~ &n+1 © Jn-

Let
hn,‘r Yy —> X, 02721,

be an arbitrary homotopy connecting the map i, o g, with the map g,+10j,. It
is easy to see that the formula

(gn(y),n +21), if 0<tr<1/2,

h(y,n+1) =
(2 +1) {(hn,z,_l(y),nﬂ), if 1/2<r<1.

where y € Y, n >t and 0 <t < 1, uniquely determines some continuous map
h:Y* — X

Consider the map
ho f*:X* — X*.

It is clear that
(ho fX)(Xy) c Xy, n>0,

and therefore for any n > 0 the map f o f* defines a certain map
(ho f¥),: X* = X=.
Moreover, for any point x € X the equality

(ho fF)n(x,n) = ((8n 0 fu)(x),1).

holds. In other words,
(hofz)nOQE = ‘IE o (gno fu)

where ¢* is the homotopy equivalence ¢ : X, — X> constructed above, which
is inverse to the homotopy equivalence p> : X* — X,,. Therefore,

(ho f¥ )~ (ho fX)no(gnopy) =qno((gnofu)opy~an~anopy~1lx:.

Thus, the map ho f* has (with respect to the subspaces XZ) the property that
we required of the map f in the first part of the proof. Therefore, by what has
already been proved, the map & o f* is a homotopy equivalence. Consequently,
the map f* is homotopy injective.

Similarly, the map

fEoh:YE Y
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has the property that
(fFoh)(Yr)cYy, nx0,
and therefore defines maps
(fFoh)n: (Yy) =Yy, n20,
satisfying the relation
(f* 0 Mo Gy =Gy 0 (fno8n).

where EE is the map ¢* constructed for the spaces ¥,. From the last relation
it follows that the maps (f~ o h),, are homotopy identities. Therefore, the map
f* o h is also a homotopy equivalence, and therefore the map f* is homotopy
sujective. O

Being both homotopically injective and homotopically surjective, the map
f* is a homotopy equivalence. O






Chapter 3

Cellular decompositions

General cellular decompositions seem to provide us with the most natural stock
of objects for constructing a homotopy theory. They have all the basic geo-
metric properties of classical simplicial decompositions (triangulations), and at
the same time their theory compares favourably with the theory of simplicial
decompositions in its generality, structure, and internal integrity. However, un-
til now no one has apparently attempted to give a coherent and independent
exposition of the basic properties of cellular decompositions. This chapter is the
first attempt in this direction.

The definition and simplest properties of cellular decompositions are pre-
sented in §3.1 and §3.2.

In §3.3 it is proved that any cellularly decomposed space is paracompact
(and, therefore, normal). Here it is also proved that the topological product
of two cellular decompositions is a cellular decomposition if at least one of the
given decompositions is locally finite or if both of them are locally countable.

In §3.4, after a number of simple remarks on continuous maps of cellularly
decomposed spaces, it is proved that any cellular pair satisfies the axiom of ho-
motopy extension, and the main theorem on cellular maps is formulated (along
with some corollaries). §3.5 is devoted to the proof of this last theorem.

In the final §3.6, a remarkable theorem of Whitehead is proved that any weak
homotopy equivalence connecting cellular spaces is a homotopy equivalence. In
this section, several simple remarks are placed on quasi-polyhedra (i.e., spaces
homotopy equivalent to cellularly decomposed spaces).

3.1 Cellular pre-decompositions

Let X be an arbitrary Hausdorff space. We call a subset e of X an (open) cell
if there exists a continuous map

x:E'"—>X (3.1)

97
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of the unit Euclidean ball E" into X that homeomorphically maps the open ball
E" onto the set e and has the property that y(S""')Ne = @ where S*~! = E"\E".
We will call the dimension n of the ball E" the dimension dime of the cell
e. Clearly, it is uniquely determined by the cell e (since the balls E" are not
homeomorphic for different n). When it is necessary to specifically indicate the
dimension n of the cell e, we will denote this cell by the symbol e”.

The image y (E") of the ball E" under map (3.1) is compact and therefore a
closed subset of the Hausdorff space X. Consequently, the closure e = y (E") of
the cell e is contained in the set y(E") and therefore coincides with it (since the

continuity of the map y implies the inclusion y(E") c y(E") (see the properties
of continuous maps in §1.5). Thus,

Proposition 3.2. the image of the ball B" under the map (3.1) is the closure
e of the cell e.

The cells of the space X need not be open in X. For example, for n = 0,
the ball E° = E" is a one-point space, so that any point of the space X is its
zero-dimensional cell.

For n > 0, the points of the ball E" have the form vu, where 0 <v < 1, and
u is the unit vector, i.e., a point of the unit sphere $"~'. Thus, any point of the
set e (after the map (3.1) is chosen) has the form y(vu), where 0 < v < 1, and
|lu| = 1. Moreover, the number v is uniquely determined by a given point. The
vector u is also uniquely determined if only 0 <v < 1.

We will call map (3.1) characteristic for the cell e. Clearly, every map of the
form y o « is also characteristic, where a : E" — E" is an arbitrary homeomor-
phism of the ball E" onto itself. However, there may exist characteristic maps
E" — X for the cell e that are different from maps of the form y o a.

Thus, for example, for a disk E? in a plane, along with all possible home-
omorphisms E? — E2?, its characteristic maps are identification maps, under
which some arc of the boundary circle S! is contracted to a point.

Sometimes it will be convenient for us to imagine the set e as a continuous
image not of the unit ball E”, but of some space E] homeomorphic to the ball E*
(for example, the unit cube or the product EP XE?, where p+¢ = n). In this case,
the maps E — X, which are the composition of some homeomorphism E} — E"
and an arbitrary characteristic map E" — X, we will also call characteristic
maps.

Since the space X is, by assumption, Hausdorff and the ball E" is compact,
the characteristic map y (considered as a map of the ball E” onto the closure e
of the cell ¢) is an identification map and therefore

Proposition 3.3. the topology of the set e is the identification topology.

In particular, we see that the topology of the set e does not depend on the
topology of the space X in the sense that any other topology in X in which
the set e is a cell (with characteristic map y) induces the same identification
topology on e.

Note that, being a continuous image of a compact and path-connected set
En

b
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Proposition 3.4. the set e is compact and path-connected.

The set
é=ec\e

will be called the boundary of the cell e. For any choice of the characteristic
map y : E" — X, it coincides with the set y(S"*~'). Therefore, for n > 1, the set
¢ is path-connected, and for n = 1, it consists of at most two points. For n = 0,
the set ¢ is empty.

The main object of our study will be certain families K of pairwise disjoint
cells e C X. For each such family, we will denote by |K]| its body, i.e., the subspace
of X that is the union of all cells e € K, and by K", where n is some non-negative
integer, its n-th skeleton, i.e., the subfamily of the family K consisting of all cells
e € K whose dimension dim e does not exceed n. It is convenient to add to the
number of skeletons the empty subfamily of the family K, considering it the
(=1)-th skeleton of K~!, as well as the family K itself, considering it the co-th
skeleton of K.

By choosing characteristic maps y. : E. — X for all cells e of the family K
such that E,, NE., = @ for e; # e3, we can define a topological sum

Pg = UeekEe

of the spaces E, and a map
x: Py — X,

coinciding on each of the summands of E, with the corresponding map y.. We
will call the (obviously continuous) map y : Px — X counstructed in this way
characteristic for the family K.

A family K of pairwise disjoint cells e ¢ K will be called a cellular pre-
decomposition of the space X if |K| = X and for any n > 0 the boundary é" of
each n-dimensional cell ¢" € K belongs to the subspace |K"| (the body of the
n — 1-th skeleton).

Remark 3.5. Usually, the condition y(S"! Nne) = @ is not included in the
definition of a cell, since only cells that make up pre-decompositions are of
interest, and for such cells this condition is satisfied automatically.

It is clear that

Proposition 3.6. any cellular sub-decomposition K contains at least one zero-
dimensional cell, i.e., its 0-th skeleton K° is not empty (unless, of course, the
space X is empty).

In what follows, we will call the zero-dimensional cells of a cellular pre-
decomposition K its wvertices.
Since
K™ c K"

for m < n and, in particular, K c K" for n > 0, then
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Proposition 3.7. any skeleton K" of an arbitrary cellular pre-decomposition
K is not empty.

A pre-decomposition K is called finite-dimensional if there exists n > 0 such
that K = K. The smallest of these n is called the dimension dim K of the pre-
decomposition K. Clearly, K™ = K for any m > dim K. Moreover, dim K" < m
for any m > 0 (the strict inequality dim K™ < m holds if the decomposition K
has no cells of dimension m).

Remark 3.8. Thus, for unequal n and m, the equality K" = K™ is possible (even
for n and m less than dim K). This is possible when the pre-decomposition has
no cells of intermediate dimensions.

Ezample 3.9. (of pre-decompositions.)

1) Every Hausdorff space X can be “scattered” into a family K consisting of all
its points. This family will be a cellular pre-decomposition of X containing
only zero-dimensional cells.

2) For any n > 0, the family K = {e",e"} consisting of the point ¢’ = uy =
(1,0,...,0) of the sphere S" and its complement e" = S" \ ug is a cellular
pre-decomposition of the sphere S$". Here é¢" = ¢° (if n > 0), k™ = {e°} for

0<m<n,and K™ =K for m > n.

3) For any n > 0, the family k = {e°, e", e"*'} consisting of the cell e"*! = E"
and the pre-decomposition {e°, "} of the sphere S" constructed in Example
2) is a cellular pre-decomposition of the ball E"*!. Similarly, the family
consisting of two points 0 and 1 and the open interval (0,1) is a cellular
pre-decomposition of the segment I = [0, 1]. Taking liberties, we will denote
this pre-decomposition by the same symbol I.

n+1

4) For any n > 0, the family K consisting of the cell e"*! = E" and all points
of the sphere S” is also a cellular pre-decomposition of the ball E**1. Its
0-th skeleton K° contains (for n > 0) an uncountable number of cells and is
a pre-decomposition of 1), constructed for the space X = S".

Remark 3.10. A reader familiar with the concept of a (finitely) triangulated
space will immediately recognise that any triangulation of such a space is a cellu-
lar pre-decomposition of it. In the following discussion, cellular pre-decomposition
of this kind are not used.

We will call a subfamily L of a cellular pre-decomposition K its sub-pre-
decomposition if e C |L| for any cell e € L. It is clear that

1) any sub-pre-decomposition L is a cellular pre-decomposition of the subspace
|L];

2) any subfamily L of a cellular pre-decomposition K, for which the subspace
|L| is closed, is a sub-pre-decomposition;

3) for any n > 0, the skeleton K" is a sub-pre-decomposition of the pre-decomposition
K.

)
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4) the union and intersection of any (finite or infinite) system {L,} of sub-pre-
decomposition of the pre-decomposition K is also a sub-pre-decomposition,
and

|mLa| = ﬁ|La/|a |ULQ| = U|La/|~

In connection with assertion 2), we note that there may well exist sub-pre-
decompositions of L for which the subspace |L| is not closed. (For example, any
subset of the space X is a sub-pre-decomposition of the pre-decomposition of
this space specified in Example 3.9 - 1)). However,

Proposition 3.11. for any finite (i.e., consisting of a finite number of cells)
sub-pre-decomposition of L, the subspace |L| is closed and even compact.

Proof. Indeed, in this case the subspace |L| is the union of a finite number of
compact sets e, e € L. O

From property 4) it follows, in particular, that

Proposition 3.12. for any subset A C X there exists a smallest sub-pre-
decomposition L C K for which |L| D A.

Such a sub-pre-decomposition is the intersection of all sub-pre-decompositions
of L c K for which |L| > A. We will denote it by the symbol K(A).
It is clear that

1) for any point x € X, the equality
K(x) =K(e) =K(e)
holds, where e is a cell of the pre-decomposition K containing the point x;

2) for any cell e € K, the sub-pre-decomposition K(e) consists of the sub-pre-
decomposition K(¢) and the cell e:

K(e) = {K(é),e};

3) for any cell e belonging to a sub-pre-decomposition L of a pre-decomposition
K, the equality
L(e) = K(e)

holds.

We will call a cellular pre-decomposition K of a space X point finite if any
point x € X belongs to the body |L| of some finite sub-pre-decomposition L c K
or, in other words, if for any point x € X the sub-pre-decomposition K(x) is
finite. Similarly, if any point x € X is an interior point of the body |L| of some
finite (resp. countable) sub-pre-decomposition L c K, then we will call the sub-
pre-decomposition K locally finite (respectively, locally countable). It is clear
that



102 CHAPTER 3. CELLULAR DECOMPOSITIONS

Proposition 3.13. any locally finite pre-decomposition of K is point finite.
Moreover,

Proposition 3.14. any sub-pre-decomposition L of a point finite (resp. locally
finite or locally countable) pre-decomposition K is point finite (respectively, lo-
cally finite and locally countable).

Further, it is easy to see that

Proposition 3.15. for any locally finite (resp. locally countable) pre-decomposition
K of X, the characteristic map

x:Pxk—X
is locally compact (respectively, locally countably compact).

Proof. Indeed, let p be an arbitrary point in the space Px. By the condition,
the point y(p) € X has in the space X a neighbourhood U contained in the
body |L| of some finite (resp. countable) sub-pre-decomposition L c K. Let
S = x Y(U) and C = y"Y(|L]). It is clear that the set S is a saturated (with
respect to the map y) neighbourhood of the point p in the space Pk, and
the set C is the union of a finite (respectively, countable) number of terms E,
of the topological sum Pk and is therefore closed and compact (respectively,
countably compact). Moreover, the set C is saturated with respect to the map
y and contains the closure S of the neighbourhood S. Thus, each point in the
space Pk has a saturated neighbourhood, the closure of which is contained in
a saturated, closed, and compact (resp. countably compact) set. But this, by
definition, means that the map y is locally compact (resp. locally countably
compact). mi

Remark 3.16. 1t is easy to see that if a pre-decomposition K is point finite, then
the converse is also true, i.e., any point finite pre-decomposition K for which
the characteristic map Px — X is locally compact (reps. locally countably
compact) is a locally finite (resp. locally countable) pre-decomposition. We will
not need this fact.

For any closed set A C X, all sets of the form ANe, e € K, are, of course,
closed (in X). If the converse is true, i.e. if every set A ¢ X for which the
family {A Ne;e € K} consists of closed sets is itself closed (in X), then we will
say that the topology of the space X is a weak topology with respect to the pre-
decomposition K. In other words, the topology of a space X is a weak topology
with respect to the pre-decomposition K if this space is a free union of subspaces
e C X, e € K. Clearly, this is the case if and only if the characteristic map

x:Pxk—X

is an identification map.
Similarly, for any closed set A ¢ X and any finite sub-pre-decomposition
L c K the intersection A N|L| is closed in X. It is easy to see that
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Proposition 3.17. if the converse is true, i.e., if a set A C X is closed in X
when it has the property that for any finite sub-pre-decomposition L of a pre-
decomposition K the intersection AN|L| is closed in X, then the topology of the
space X is a weak topology with respect to the pre-decomposition K.

Proof. Indeed, if for any cell e € K the intersection A Ne is closed, then for any
finite sub-pre-decomposition L C K the intersection A N |L| is also closed (since
the space |L| is the union of a finite number of sets of the form e,e € L), and
therefore, according to the condition, the set A is closed. O

However, in the space X, whose topology is a weak topology with respect
to the pre-decomposition K, there may exist non-closed subsets A possessing
the property that for any finite sub-pre-decomposition L c K, the intersection
AN|L| is closed (this property is possessed, for example, by any subset A of the
sphere S"! in Example 3.9 - 4)).

It follows directly from the proven statement, in particular, that

Proposition 3.18. for any finite pre-decomposition K of the space X (when
such a pre-decomposition exists), the topology of the space X is a weak topology
with respect to the pre-decomposition K.

Moreover, it is easy to see that

Proposition 3.19. the last statement holds not only for finite but also for any
locally finite pre-decompositions.

Proof. Indeed, for any locally finite pre-decomposition K of the space X, the
family {e : e € K} is obviously a locally finite family of closed subspaces of the
space X, and therefore this space is their free union (see §1.1). O

Let K and L be arbitrary cellular pre-decompositions of Hausdorff spaces
X and Y, respectively. It is clear that in the case when the spaces X and Y
do not intersect, the union K U L of the cellular pre-decompositions K and L
is a cellular pre-decomposition of the topological sum X UY. We will call the
pre-decomposition KUL the sum of the pre-decompositions K and L. According
to what has just been said,

IKUL|=|K|UIL.

Similar statements hold for any number of summands.

Furthermore, since for any n > 0 and m > 0, the ball E"*™ is homeomorphic
to the product E" x E", then for any two cells ¢” € K and ¢™ € L (with charac-
teristic maps y1 : E" — X and x5 : E" — Y), the product e” X ™ represents an
(n+ m)-dimensional cell of the space X XY (for the corresponding characteristic
map, one can take, for example, the map y1 X y2 : E" X E™ — X xY), where

(e"xe™) =¢é"xemUe" xe™.

Consequently, the family K x L of all cells of the form e' x e2, where e! € K
and e? € L, constitutes a cellular pre-decomposition of the space X XY, denoted



104 CHAPTER 3. CELLULAR DECOMPOSITIONS

as |K X L| = |K| x |L|. We will call the pre-decomposition K X L the product
of the pre-decompositions K and L. The product of any finite number of pre-
decompositions is defined similarly.

It is clear that

Proposition 3.20. the product of point finite (respectively, locally finite and
locally countable) pre-decompositions is point finite (respectively, locally finite
and locally countable).

In the special case where the pre-decomposition L is the pre-decomposition
I =1{0,1,(0,1)} of the interval I = [0, 1], we obtain a pre-decomposition xI of
the product X x I. The cells of this pre-decomposition are of the form e x 0,
ex 1 and e x (0,1), where e € K. In this case, the dimension of the cells ¢ X 0
and e x 1 is equal to the dimension n of the cell e, and the dimension of the cell
e x (0,1) is equal to n + 1.

Let

Xk Pk = X, xL:PL—Y

be the characteristic maps for the pre-decompositions K and L respectively. It
is clear that in the case when the spaces Px and P are chosen to be disjoint, we
can take their topological sum PxUPy, as the space Pxyr, and the corresponding
characteristic map Pgyr — X UY can then be considered as the map

Xk YUxr:PxkUPy - XUY.
Similarly, we can consider the space Pg X P, as the space Pxxy and the map
)(KXXL:PKXPy—>XXY.

as the characteristic map of the pre-decomposition K x L.

3.2 Cellular decompositions

We will call a cellular pre-decomposition K of a space X a cellular decomposition
if

e it is point finite, and

e the topology of the space X is a weak topology with respect to the pre-
decomposition K.

It follows directly from the results of the previous section that

Proposition 3.21. any locally finite (in particular, any finite) pre-decomposition
of K is a decomposition.

Thus, the pre-decompositions indicated in examples 2) and 3) of Example
3.9 in §3.1 are decompositions. Conversely, the pre-decomposition in example
1) is a decomposition only when the space X is discrete (because otherwise its
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topology will not be a weak topology). In particular, when X = S$", n > 0, this
pre-decomposition is not a decomposition. Similarly, the pre-decomposition in
example 4) of Example 3.9 in §3.1 is not a decomposition either, because it is
not point finite (note that the condition of weakness of the topology is satisfied
in this example).

The last pre-decomposition also possesses sub-pre-decompositions that are
not decompositions (these are arbitrary subsets of the sphere S"!). At the
same time,

Proposition 3.22. any sub-pre-decomposition of an arbitrary cell decomposi-
tion K is itself a decomposition.

Before proving the last statement, we note that the sufficient condition for
the weakness of the topology of the space X indicated in §3.1 is also necessary
in the case of decompositions, so that

Proposition 3.23. A subset A of a space X = |K| is closed if for any finite
sub-decomposition L of the decomposition K the intersection A N |L| is closed.

Proof. Indeed, since for any cell e € K the intersection AN|K(e)| is closed (since
the sub-decomposition K(e) is finite) and since e c |K(e)|, the intersection
Ane=(AN|K(e)|) Ne is closed. Therefore, the subset A is also closed. O

It follows from this that, in contrast to the case of arbitrary sub-decompositions,

Proposition 3.24. the body |L| of each sub-pre-decomposition L of the decom-
position K is closed in the space X = |K|.

Proof. Indeed, for any finite sub-decomposition of N C K the intersection LN N
is also finite and therefore the intersection |L| N |N| = |L N N| is closed. O

Now let A be an arbitrary subset of |L| such that, for any finite sub-
decomposition N c L, the intersection A N |N| is closed (in |L|, and therefore,
by what has been proved, in X). Then, for any finite sub-decomposition N c K,
the intersection

AN|N|=ANn|LNN|

is also closed, and, consequently, the set A is closed (in X, and therefore in |L|).
This proves that the topology of the space |L| is a weak topology with respect
to the pre-decomposition L. Since the pre-decomposition L is, moreover, point
finite (being a sub-pre-decomposition of the point finite decomposition K), this
pre-decomosition is, as stated above, a decomposition.

In what follows, we will call sub-decompositions L of an arbitrary cellular
decomposition K its sub-decompositions.

When studying the properties of cellular decompositions, it is useful to keep
in mind that

Proposition 3.25. for any compact subset C of X and any cellular decompo-
sition K of X, the sub-decomposition K(C) is finite.
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Proof. To prove this statement, it is sufficient to prove that the subset C inter-
sects only a finite number of cells e € K, since then it will be contained in a
finite sub-decomposition that is the union of sub-decompositions K(e) for which
enC # Q.

Let there exist an infinite system {e;} of different cells ¢; € K for which
e; N C # @ for each i, and let x; € ¢; N C. Consider an arbitrary finite sub-
decomposition L of the decomposition K. It contains only a finite number of
cells e; and e; N |L| = @ if e; ¢ L. Therefore, the subspace |L| contains only
finitely many points x;, so the intersection {x;} N|L| is closed. Consequently, the
set Xi is closed. By similar arguments, any subset of the set {x;} is also closed,
so the set {x;} is discrete. But this is impossible, since any discrete subset of a
compact set must be finite. Consequently, the set C actually intersects only a
finite number of cells of the decomposition K. O

It easily follows from the proven statement, for example, that

Proposition 3.26. any pre-decomposition K, for which, for eachn =0,1, ..., oo,
the topology of the space K" is a weak topology with respect to the pre-decomposition
K™, constitutes a decomposition.

Proof. Indeed, since K = K=, we only need to prove that the pre-decomposition
K is point finite, for which it is sufficient in turn to prove that for any finite n, the
pre-decomposition K" is point finite (because if dime = n, then K(e) = K"(e)).
We will prove this by induction on n, considering that the pre-decomposition
K° is obviously point finite.

Let it already be proven for some n > 0 that the pre-decomposition K"~! is
point inite. Since, by assumption, the topology of the space |[K"~!| is a weak
topology with respect to this pre-decomposition, the pre-decomposition K"~! is
a decomposition, and therefore, according to the statement just proven, for any
compact subset C ¢ |K"!| the sub-pre-decomposition K"~*(C) = K(C) is finite.
In particular, for any n-dimensional cell e € K, the sub-pre-decomposition
K(eé" 1) is finite. But, as we know, K(e") = {K(e"),e"}. Therefore, the sub-
pre-decomposition K(e") is also finite. O

In the study of cellular decompositions, an important role is also played by
the fact that

Proposition 3.27. for any increasing sequence
KycKyc---CcK,, C---

of sub-decompositions of the decomposition K, whose union is the entire decom-
position K, the space X = |K| is a free union of subspaces

Kol C |Ky| €+~ C Kyl C -2

Proof. We must show that any subset A of the space X for which the intersection
A N |K"| is closed for any n is itself closed. Since the space X is a free union of
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the sets e, e € K, it suffices to prove that for any cell e € K, the intersection
A Ne is closed.
Let n be a number such that ¢ € K. Then

Ane=(AN{K"})Ne,
and therefore, this intersection is closed. O
In particular,

Proposition 3.28. for any decomposition K of the space X, this space is a free
union of subspaces
IK°| c |K'|c---c|K"| C---

Note that the converse of the proposition proven above also holds, i.e.,

Proposition 3.29. if a cellular pre-decomposition K of the space X is the union
of an increasing sequence

KhcKyc---CcK,C---

of sub-decompositions K", each of which is a cellular decomposition (of the sub-
space K™), and if the space X is a free union of subspaces

|Kol € |Ky| -+ C|Kyl C -
then the pre-decomposition K is a decomposition.

Proof. Indeed, since for any cell e € K" the equality K(e¢) = K, (e) holds, the
pre-decomposition K is point finite. Therefore, we only need to prove that the
topology of the space X is a weak topology with respect to the pre-decomposition
K. Let A be an arbitrary subset of the space X for which the family {Ane; e € K}
consists of closed sets. Since

(AN|K")ne=Ane

for e € K" and since the topology of the space |K"| is a weak topology with
respect to the decomposition K", for any n > 0 the set AN |K"| is closed in |K"|.
Therefore, the set A is closed in X. Consequently, the topology of the space X
is indeed a weak topology with respect to the pre-decomposition K. O

The existence of a cellular decomposition K for a space X imposes rather
strong restrictions on the topology of that space. For example, it is clear that

Proposition 3.30. Any space X that admits a cellular decomposition K is a
canonical space.

Furthermore, since the closure e of each cell e of an arbitrary cell decompo-
sition K is connected, any connected component A of the space X = |K| either
contains such a closure entirely, ANe = e, or does not intersect with it, ANe = @.
Since in both cases the intersection A Ne is closed and open in e, the connected
component A is closed and open in X. This means that
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Proposition 3.31. any space X that admits a cellular decomposition K is a
topological sum of its connected components.

Furthermore, for each connected component A C X, the set L of all cells e € K
whose closures are contained in A (i.e., for which A Ne = ¢) constitutes a sub-
decomposition of the decomposition K, and the body of this sub-decomposition
coincides with A : [L| = A.

Thus,

Proposition 3.32. any connected component A of the space X, which admits
a cell decomposition K, serves as the body of some sub-decomposition L C K.

On the other hand, since the sets e, ¢ € K, are not only connected but even
path-connected, the path-connected components A of the space X also possess
the property that for any cell e € K, either AnNe = @ or Ane = e, and
therefore each path-connected component A is simultaneously closed and open
in X. Consequently,

Proposition 3.33. every connected space X that admits a cellular decomposi-
tion K is path-connected.

Furthermore, it is easy to see that

Proposition 3.34. for every space X admitting a cell decomposition K, any of
its connected components is a path-connected component, and, conversely, any
of its path-connected components is a connected component.

Proof. Indeed, any connected component of the space X, being the body of some
sub-decomposition of the decomposition K, is path-connected and therefore is
a path-connected component. Conversely, since any path-connected component
is both closed and open, it coincides with the connected component containing
it. O

Since each connected component of the space X, being the body of some
sub-decomposition, contains at least one vertex of the decomposition K, and
since his component is path-connected, it follows that

Proposition 3.35. any point in the space X = |K| can be connected by a path
to at least one of the vertices of the decomposition.

Therefore,

Proposition 3.36. the space X = |K| is connected if its subspace K' is con-
nected.

It turns out that the converse statement is also true, i.e.,

Proposition 3.37. if the space X = |K| is connected, then its subspace K' is
also connected.
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Proof. Indeed, let A be an arbitrary connected component of the space |K'|. As
we know, A = |L|, where L is some sub-decomposition of the decomposition of
the skeleton K. We will show that there exists a sequence of sub-decompositions
Ll1clLyc---CcL,cC-- of the form L, c K", such that

].) L1 = L,
2) (Ln+1)" = Ly;
3) For any cell e € K", eitheren|L,| =@ oren|L,| =e.

Let a sub-decomposition L, be already constructed for some n > 0. From
condition 3) it immediately follows that the set |L,| of this sub-decomposition
is both closed and open in the space |K"|. Therefore, for any (n+ 1)-dimensional
cell e"*! € K, either ¢"*' N |L,| = @ or ¢"*' N |L,| = é"*! (recall that the set
é"*1 is connected). Therefore, the collection L,4; of all cells e € K"*! for which
enN|L,| # @ is a sub-decomposition of the decomposition K™*!. It is clear that
this sub-decomposition satisfies conditions 1) - 3).

Now let us consider the sub-decomposition

Ly = U;ozan

of the partition K. It is clear that its body |L«| C X has the property that for
any cell e € K, either e N |Le| = @ or e N |Ls| = €. Therefore, the subspace |Le|
is closed and simultaneously open in X. Consequently, |Lo| = X, i.e., Lo = K.
But it is clear that (Le)! = L = L. Therefore, L = K' and, consequently,
A =|L| = |K'|. Therefore, the subspace |K!| of the space X is connected. ]

Since (K™)! = K! for any n > 1, it immediately follows from the last two
statements that

Proposition 3.38. if the space X = |K| is connected, then for any n > 1 its
subspace |K™| is also connected; if at least for one n > 1 the subspace |K"| is
connected, then the entire space X is also connected.

As for the subspace |K°|, it is easy to see that

Proposition 3.39. for any cell decomposition K of the space X, the subspace
|K°| is discrete.

Therefore, the subspace |K°| is connected if and only if the decomposition K
contains only one zero-dimensional cell (such decompositions are called single-
vertex decompositions).

Remark 3.40 (Terminology Convention). Further, for the sake of brevity, we
will not distinguish between cellular decompositions of K and the corresponding
spaces |K|. Accordingly, we will allow expressions such as

“connected cellular decomposition of K,”

“continuous map of a decomposition of K into a decomposition of L,”
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and so on, meaning, respectively,
“a cellular decomposition of K for which the space |K| is connected,”
“a continuous map of the space |K| into the space |L|,”

and so on. In particular, the formula e € K will, as above, mean that the cell e
belongs to the cellular decomposition of K, and the formula e c K, means that
the cell e lies in the space |K|.

In cases where this convention could lead to misunderstandings, we will, nat-
urally, continue to distinguish between decompositions of K and spaces |K|. In
this case, spaces of the form |K|, i.e., spaces that admit cellular decompositions,
will be called cellular polyhedra.

3.3 Theorem on paracompactness

In this section, we prove that any cellular decomposition (i.e., the space |K|; see
the terminology convention at the end of the previous section) is paracompact,
i.e., any open covering ' of it can be refined into a locally finite covering A.
We will construct the covering structure A by “ascending” step by step along
the skeletons K" of the decomposition K. To describe this construction, it is
convenient for us to introduce the following general definition:

Let X c Y and let {U,;@ € A} and {Vp; B € B} be families of open sets in
spaces X and Y respectively. The family {Vg;8 € B} will be called an extension
of the family {U,;@ € A} if A C B and

Uy =VanX

for every a € A.
In order to construct an open covering A of a decomposition K, it is obviously
sufficient to construct a sequence of open coverings

A" ={V};B € B"}

of the skeletons K", having the property that for any n > 0 the covering A" is
an extension of the covering A"~!. Indeed, then the family A of sets

VB = UnV’g

where the summation is extended to all n for which g € B", will, as is easily
seen, be an open covering of the decomposition K (with the index set B being
the union of the sets B c Bt c---c B"cC--+).

For this covering to be refined in the given covering

I'={Uy;a € A}
of the decomposition K, it is necessary to ensure that there exists a map a

a:B—> A,
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such that for any n > 0 the inclusion holds
V,g C Ua,(ﬁ) NnK".

To carry out the proof, it will be more convenient for us to require more,
namely, that the inclusion take place

‘_/73 CUqp NnK".

Let us now consider the question of conditions that ensure local finiteness of

the covering
A ={Vg;B € B}

Let x be an arbitrary point in the space K. To construct a neighbourhood
of a point x in the space K, it is sufficient for any x for which x € K" to define
in the space K" a neighbourhood W7 of the point x with the property that for
x e K"

WinK" Tt =with
Indeed, then the formula
Wy =U, W
(the summation is extended to all n for which x € K™) will define for us some
neighbourhood of the point x in the entire space K. This method can obviously
be used to obtain any neighbourhood W, (it suffices to set W2 = W, N K™).
Note that for W, NVg # @ there exists a number n > 0 such that x € K" and

wWinvg # 2.
Now suppose that the neighbourhoods W¢ have the following two properties:

i) the intersection W7 NV7 for x € K™, where m < n, is non-empty if and only
if B € B™ and the intersection W' N Vg’ is non-empty;

ii) for x € K™\ K""! the intersection W” N Vg is non-empty only for a finite
number of indices S.

From what has just been said, it follows directly that, if conditions i) and ii)
are satisfied, the intersection W, NVg will be non-empty only for a finite number
of indices 8. In other words, the existence of neighborhoods W7 satisfying
conditions i) and ii) ensures the local finiteness of the covering A.

Summarising all that has been said, we see that to construct a locally finite
open covering A refined in a given open covering T, it is sufficient to construct

a) a sequence of open coverings A" = {V[’;;ﬁ € B"},n=0,1,2,..., each of which
is an extension of the previous covering;
b) a map
a:B— A,
where B = U}’ | B", having the property that for any n > 0 and any 8 € B",
the inclusion
—n
V.B C U(Y(B) nK"
holds;
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c) for any n > 0 and any point x € K" in the neighbourhood of W7, with the
above properties i) and ii).

We will construct these objects by induction on the number n.

For n = 0, we take the 0-th skeleton K° of the decomposition K for the set
B°. We define the map a on the set B® by choosing, for each point 8 € B® = K9,
the element of the covering I' that contains it and taking @(f8) as the index of
this element. For the set Vg corresponding to the point 8 € B°, we take this

point itself. Similarly, for the set WY corresponding to the point x € K, we also
take this point itself. Since the space K° is discrete, it is easy to see that all our
conditions are satisfied.

Let for some n > 0 we have already constructed a set B, a map « of this
set into a set A, open sets Vg C K" and neighbourhoods W¢ c K", x € K",

satisfying conditions a), b), c).
In the trivial case K"t =" we set

1 1 1
Bl =", vptl=vE Wit = Wi

It is clear that the index sets B"*!, open sets Vg“ and neighbourhoods W7+!

constructed in this way still satisfy conditions a), b), c).

Thus, we need to consider only the case when K**! # K", i.e., when the
decomposition K contains n + 1-dimensional cells "*!'. For each such cell, we,
having chosen some characteristic map

y: B S x,
wee put

Uy =x""(Ua) =x"'(Uane™), aeA,
Ve=xT'(Vp) =x (Vi né™h), BeB.

The sets U/(, (many of these sets are, generally speaking, empty) constitute an
open covering I of the ball E"*!, and the sets V’L; (among which there may also

be empty sets) constitute an open covering of its boundary sphere S". Moreover,
in view of condition b), for any element g € B", the inclusion holds

Ve CUpyp NS

(from which, in particular, it follows that the covering {Vl;} is refined in the
covering I' N §" = {U:l(ﬁ) NS™; a € A}). Moreover, in view of condition c) (by
which the covering A" = {Vg;ﬁ € B"} of the space K" is locally finite), the
covering {V[;,; B € B"} of the sphere S" is locally finite. (However, it is easy to
see by induction that in fact only finitely many elements of this covering are
non-empty.)

Next, for each point x € K" we set

W= x LW = x (W n e,
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Clearly, the (possibly empty) sets W; are open in the sphere S" and have the
property that for each point x there are only finitely many indices B for which
W, NV, 0.

For any set G c S" and any positive € < 1, we will denote by G, the
“radial extension to &” of the set G into the ball, i.e., the subset of the ball E**!
consisting of all points v = vu € B!, 0 <v < 1, |u| = 1, for which

l-e<v<l, ucedG.

It is clear that if G is open in the sphere S", then the set G, is open in the ball
En+1‘
The sets G, have the property that G, NS" = G. Moreover, for any ¢ < &,
the inclusion
G, CcGg

holds. Moreover, for any sets G,H C S" and any positive € < 1 and n < 1,
the intersection G, N H,, of their “radial extensions” is non-empty if and only
if the intersection of the sets G N H is non-empty. In particular, the set G, is
non-empty if and only if the set G is non-empty.

Now, choosing for each element 8 € B" some positive number €5 < 1, we set

Vi = (Vg)ey-

Since Vﬁ c U;(ﬁ) N S", for sufficiently small gg the inclusion

’

Vs €U

(and even the inclusion Vi C Ulao(ﬁ,)) holds, so that all sets VB*, B € B", form an

open (and obviously locally finite) covering “adjacent” to the sphere S" of the
set
V* = Ugepn Vs,

refined in the covering I' N V* = {U,, N V*}.
Since the set E,4; \ V* is closed in the ball E"*!, it is compact, and therefore
it can be covered by a finite number of non-empty sets of the covering I'". Let

’

Ug,s-- - U/as be these sets. Since V* is open and contains the sphere S", it is
possible to refine the open covering U;,l, .. .,U'(,S of the set B\ V* into an
open covering 71, ..., T such that

T, cU,, T,ns"=0.

For consistency of notation, we will write V; instead of T;. Here, the su-
perscript #, unlike in the previous case, of course, does not mean that V is
obtained by radial extension. Furthermore, this notation implies that the sets
B™ and A do not intersect; clearly, this last assumption does not restrict gen-
erality. It is obvious that the sets V[’;, B € B" and V,,i=1,...,s, provide
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an open locally finite (essentially, even finite) covering of A* of the ball E"*!,
refined in the covering I'.

Since the set U‘l.‘zlv; is closed and does not intersect the sphere S", then for
any point x € K" there exists a positive s; < 1 such that the set

Wi = (W),

does not intersect with the set Ufﬂ‘_/;_. The sets W are open in the ball E"*!
and have the property that

Wins'=w,.
Furthermore, each of the sets Wy intersects with only a finite number of sets
from the covering A*.

Let v be an arbitrary interior point of the ball E"*!. Since the covering A*
is locally finite, this point has neighbourhoods that consist entirely of interior
points of the ball E**! and intersect with only a finite number of sets of this
covering. Choosing one of these neighbourhoods, we denote it by W, where
x € ™! is the image of the point v under the characteristic map y. Here,
the asterisk again does not denote radial extension, but is introduced only for
uniformity of notation.

All the constructed objects will have to be considered below for all cells
e™1 € K simultaneously. Therefore, we will introduce an additional index e*!
into all notations. Thus, we will consider maps yen+1, numbers s.n+1, indices
@; en1, sets V2, ete.

Now we have everything ready to construct the objects we need for n + 1.
We obtain the set B"™! by adding to the set B" all possible pairs of the form
(i,e™1), where e™! € K,i=1,...,5.n+1. We define the map a on the set B!
by the formula

o(6) - {a(ﬂ) if BeB,

a/,»,enﬂ lf ﬂ = (l, €n+1),

of the set Vg*l c K™, B e B™!, by the formula

n+l _
VB =

V;; Ue'”lEK Xent+l (V,B*,e'”l)’ lf ﬁ (S Bn,
Xentl (V(ti,e"”)’ if ﬁ = (i, €n+1),

and, finally, on the neighbourhood W"*! x € K"*!, by the formula

1 {W;} Uensiex Xert(We ), if x € K™,

X - .
Xen+1 (W;H;H), if xee'h

n+1

Since for any cell ¢"** € K the characteristic map

Xentt t B 5 X

is homeomorphic on the open ball E"*! = E**1\ §", and V' c E"*! for each

(Y,"en+1

i=1,...,8.m+1, then for any 8 = (i, e"*!) the set Vg” = Xen+1 (V) ) 18 Open in
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2"*!. Consequently, this set is also open in K"*!, because for any cell e € K"*!
different from the cell e¢"*!, the intersection Vg” N e is obviously empty (and
therefore open in e).
Furthermore, since for any 8 € B" and any cell "' € K the following
equality holds:
Vﬁ*’en+1 ns" = Vé,e”“ = Xe_n1+1 (Vg)’

so the set V7, ,, is saturated with respect to the map y,n+ (considered as a

map from the ball E™*! to the closure of the cell "*') and therefore the set

Xen+1(V,,1) is open in 2"*1. On the other hand, for any cell e € Kn + 1 either

Vgn+1ne=Vyne (if dime < n) or Vg” Ne = Yot (V) o (if e ="*1). Since
in both cases the intersection Vgn + 1 N'e is open in e, it is thus proved that the
set V/';” is open in the space K"*! even for SinnB".

It is similarly proved that all sets of the form W?*! are also open in the space
Kn+1‘

Let us now check conditions i) and ii) for these sets. First, we will consider
condition ii).

Let x € K™\ K" and 8 € B""'. Consider a cell ¢"*! of the decomposition
K containing the point x. By definition,

n+l _ 5
Wx - Xe"+1(Wx’en,+1),

and therefore the intersection Wi*! nVi*! can be non-empty, only when g € B"

or when 8 = (i,e™!), where i = 1,..., s,n+1. Since the number of indices 8 of
the form (i, e"*1) is finite, it suffices to prove that the number of those g € B"
for which this intersection is non-empty is also finite. But it is clear that for
B e B

W;H—l N V£+1 = Xen+1 (W;’enﬂ N Vﬁ*’erwl)’

and therefore, according to the choice of the set W ne1, the intersection witln
Vg” is non-empty only for a finite number of indices 8 € B".

Let us now check condition i). Let m < n+ 1, 8 € B"! and x € K™. Since
m < n+1, then
W = WU Ugnt e Xerot (W) i)

Therefore if 8 = (i, ¢**!), then
W;H-l N V£+1 = Xentl (W;,en+1 N V,[;,e"”) = Q.
If B € B", then due to inclusions

Xen+1 (W;’en+1) N Kn C W;l,
Xert (Vi ) K" C VS

the equality will hold

W;l+1 N V£+1 = (W;l N V,Z;) U Uerz+1 cK Xen+l (W;,e"” N VE,€"+1)'
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Let for some cell e**! € K the intersection
W;’erwl n V;’erwl
is non-empty. Then the intersection is non-empty

W ,€"+1 m Vﬁ,e"” = Xgn1+1 (W_)'Cl m V£)3

X

and the intersection as well
win Vg.

It follows from this that the intersection W7+! ﬂVE”, B € B", is non-empty if and
only if the intersection W NV} is non-empty, i.e., by the induction hypothesis,
when 8 € B™ and the intersection W*NV7* is non-empty. Thus, the construction
of coverings A" and neighbourhoods W¥ by induction is accomplished for all n.
According to the above, it is thus proved that

Proposition 3.41. any open covering I' of a cellular decomposition K can be
refined into a locally finite open covering A.

In other words, we have proved that
Proposition 3.42. any cellular decomposition of K is a paracompact space.

Since the space K is, by assumption, Hausdorff, it follows directly from this
statement that

Proposition 3.43. any cellular decomposition of K is a normal (and even stably
normal) space.

Let us now consider the characteristic map yxxr : Pxkxr — K X L for the
pre-decomposition K x L which is the product of two cellular decompositions K
and L. By what has just been proved, the spaces K and L are regular. Moreover,
as we know, if the decomposition K is locally finite (resp. locally countable),
then the characteristic map yx : Pk — K is locally compact (resp. locally
countable). On the other hand, as noted at the end of §3.1, we can assume that
Pgxr = Px X Pp and ygxr = xk X xr- Therefore, by the theorem proved in
§1.5, the map ygxr is an identification map if at least one of the decompositions
K and L is locally finite or if both these decompositions are locally countable.
Since the pre-decomposition KX L is obviously point-wise finite, it is thus proved
that

Proposition 3.44. The product K X L of cellular decompositions K and L is a
cellular decomposition if at least one of the decompositions K and L is locally
finite or if both these decompositions are locally countable.

In particular,

Proposition 3.45. for any cellular decomposition K, the product K X I is also
a cellular decomposition.

Remark 3.46. As Dowker showed, there exist cellular decompositions K and L
such that their product K X L is not a cellular decomposition.
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3.4 Continuous maps of cellular decomposition

Let K be an arbitrary cellular decomposition and Y be an arbitrary topological
space.
Since the decomposition K is a free union of sets e, e € K, then

Proposition 3.47. the single-valued map
f:K—>Y

is continuous if and only if for any cell e € K the map
fle:e—>Y

18 continuous.

Similarly, since a cellular decomposition K is a free union of its skeletons K",
then

Proposition 3.48. the map
f:K—>Y

is continuous if and only if for any finite n > 0 the map
flgn : K" > Y.
18 continuous.

In what follows, we will repeatedly construct maps
f:K—>Y.

by constructing, for any n > 0, “consistent” continuous maps f", i.e., continuous
maps
f"K"—>Y.

such that
fn+1|K" — fn

for any n > 0, and setting for any point x € K
fx) = f"(x), if xeK".
According to the previous assertion,

Proposition 3.49. the map
f:K—>Y.

constructed in this way is continuous.

All these statements are applicable, in particular, to the decomposition K x 1
and to continuous maps K X I — Y, i.e., to homotopies f; : K - Y, 0<¢ < 1.
Since the decomposition K X I is obviously a free union of sets e x I, we obtain
from this that
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Proposition 3.50. the family of maps
fiK—>Y, 0<t<l,
is a homotopy if and only if for any cell e € K the homotopy is the family
file:e—>Y, 0<t<1,
and also if and only if for any n = 0 the homotopy is the family
filgn : K" > Y.
Moreover,

Proposition 3.51. if for all n > 0 we are given “consistent” skeleton homo-
topies, i.e., homotopies

fn, K" —>Y, 0<tr<l,

such that
ffHlgn:e—>Y, 0<t<l1,

for any n > 0, then, setting for each point x € K and any t € 1
filx) = fi'(x), if xeK",
we obtain some homotopy
fi: K—>Y, 0<t<l1.

Sometimes we will consider not the sequence K°, K, ..., K", ... of skeletons,
but an arbitrary increasing sequence

KhcKycCc---CcK,C---

of sub-decompositions of the decomposition K, the union of which is the entire
decomposition K. Since the decomposition K is the free union of any such
sequence, then

Proposition 3.52. All the assertions proved above remain valid even if the
sequence of skeletons is replaced by an arbitrary increasing sequence of decom-
positions of the decomposition K, the union of which is this entire decomposition.

On the other hand, since any closed (or open) subspace X of the decompo-
sition K is a free union of sets X Ne, e € K, then everything said above is true
(with obvious modifications) for any such space. Thus, for example,

Proposition 3.53. the map
f:X—>Y

is continuous if and only if for any cell e € K the map

flxne : XNe—-Y
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is continuous, and also if and only if for any n > 0 the map
f|XﬂK" : XﬂK" —Y

18 continuous.

A pair (K, L) consisting of a cellular decomposition K and an arbitrary sub-
decomposition L of it will be called a cellular pair. Using the above remarks, one
can easily prove that the extension property of maps of spheres, which underlies
the definition of m-connected spaces (see §2.1), holds for any cellular pairs (K, L)
for which dim(K\ L) < m+1, i.e., for which dime < m+1 for each cell e € K\ L.
Namely,

Proposition 3.54. if dim(K\ L) < m + 1, then any map f : L — Y of a sub-
decomposition L into an m-connected (m > 0) space Y can be extended to some
map g: K —>Y.

Proof. Indeed, let
K,=K"'UL.
For any n =0,1,...,m + 1, we construct a continuous map

gn:Kn_>Y,

such that g,z = f, gn+1lk, = gn- Then the map g,,+1 will be the desired map
g (since, according to the condition, K,,+1 = K).

We will construct the mapping go by arbitrarily defining it on the vertices
of the decomposition K that do not belong to the sub-decomposition L (on L,
it must, of course, coincide with f). Clearly, this map is continuous.

Let g, already be constructed for some non-negative n < m. If K4 = K,,,
then we set ,41 = gn. Let 41 # K, and let ™! be an arbitrary n+ 1-dimensional
cell of the decomposition K that does not belong to the sub-decomposition L.
Having chosen a characteristic mapping for each such cell,

Xentl ! En+1 e K,
we consider the composition
gn © Xentt|gn : 8" =Y,

of the restriction y,n+|sn of the map y.n+1 to the sphere S" and the ma g,.
Since the space Y is, by assumption, m-connected, and n < m, we can extend
this composition to some map

Yent1 : B Y.

For any point x € K,,+1, we now set

8gn(x), if x¢€Kp,

o1 () = {x (Ch ) i xg K,
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where ¢! is the cell of the decomposition K containing the point x. It is clear

that we thereby obtain a single-valued continuous map
gn+1 : Kny1 — Y,
possessing all the required properties. O
Let us now show that

Proposition 3.55. any cellular pair (K, L) satisfies the aziom of homotopy
extension.

Proof. Indeed, let Y be an arbitrary space, f : K — Y an arbitrary map, and
gL —>Y, 0<1t<1, beahomotopy such that gg = f|L. We must construct
a homotopy f; : K — Y for which fy = f and f;|, = g; for any t € I. Let
K, = KnUL. According to the above, to construct a homotopy f;, it is sufficient
to construct for any n > 0 a homotopy

1K, —Y,

such that
= flk,, fl'le=g. and f"*k, =f"

For any point x € Ky we define a homotopy £ by the formula

o _ &), if xelL,
Je = f(x), if xeKk°.
It is clear that this formula indeed defines a homotopy, for which fg = |k, and
f) =g foranytel.
Let for n > 0 we have already constructed a homotopy f/'. If K,+1 = Ky,
then we set f"*! = f" 0 <t <1. Let Ky41 # K,, and let ¢"*! be an arbitrary
n + 1-dimensional cell of K that does not belong to L. Having chosen for each

such cell e"*! a characteristic map
Xen+1 : B > K,
For each point x = yne1(var), 0 < v < 1, |u|, of the set 2"*' and any number
t €1 we set
o [Pl )i 0svs
g "+1,l’ X) = . _
¢ (i (u)), if Z<v<l

It is easy to see (Fig. 3.1) that this formula uniquely defines a certain map
genri i@ Y
(depending on the choice of the map y). Moreover, since the family of maps

Genti g O Xent1 : BT Y
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is obviously a homotopy, the family of maps g.n+1; is also a homotopy (since
the characteristic map y,n+: considered as the map E"*' — 2"*! is an identity
map, and the segment I is compact, so the map yens1 X 1 : B x T — " x T

is also an identity map). This homotopy has the property that

gen+1’0 = flgrwl and ge"+1,t|é”+1 = f;”|én+1

for any t €. Therefore, the formula

el (X)), if xek,,
! Zen+1 ¢ (X) if xee™ €K, \K,,

defines a certain homotopy f**!: K,+ — Y, 0 <t < 1, which obviously has all
the required properties.

Thus, the homotopies f;* are constructed, by induction, for all n > 0. The
proposition formulated above is thus completely proven. O

Remark 3.56. A special case of the proved proposition is the statement for-
mulated in §2.4, since all pairs listed in this statement, as is easy to see, are
cellular.

We see, therefore, that all the results of §2.3 are applicable to arbitrary
cellular pairs (K, L), since, together with the pair (K, L), the pair (KxI, (K, L))
is also cellular. Thus, firstly,

Proposition 3.57. for any cellular pair (K,L) of any space Y and any two
homotopic maps

f.g:L—>Y
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the spaces KUrY and K Ug Y are homotopically equivalent moreover, the corre-
sponding homotopic equivalence can be chosen so that it is the identity map on
K,

and, secondly,

Proposition 3.58. For any cell pair (K, L), any space Y, any continuous map
f:L—>Y
and any space Z homotopically equivalent to Y, every homotopy equivalence
h:Y—>Z
can be extended to some homotopy equivalence
H:KUfY > KUpor Z.

Generally speaking, the space KUY is not a cellular decomposition even in
the case when the space Y is a cellular decomposition. One can only say that

Proposition 3.59. for any cellular pair (K, L), any cellular decomposition Q
and any continuous map

f:L—>Q

the space K Uy Q is homotopy equivalent to some cellular decomposition é that
contains the decomposition Q as a sub-decomposition, and the homotopy equiv-
alence K Uy Q — Q can be chosen such that it is the identity map on Q.

To prove this statement, we introduce continuous maps
f:K—>Q

of a cellular decomposition K into a cellular decomposition Q, with the property
that

fK™) c Q"

for any n > 0. We will call such maps of cellular decompositions cellular. The
statement formulated above will obviously be proven if we show, first, that

Proposition 3.60. any continuous map K — Q is homotopic to some cellular
map K — Q

and, secondly, that

Proposition 3.61. For any cellular pair (K, L), any cellular decomposition Q,
and any cellular map,

f:L—>Q

the space K Uyr Q 1is a cellular decomposition containing the decomposition Q as
a sub—decomposition.
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Let us first consider the second statement. Since the cellular decompositions
K and Q are, as we know, normal spaces, the space K Uy Q is Hausdorff (§1.6).
Moreover, since the natural projection & : K UQ — K Uy Q onto K \ L and
Q is a homeomorphism, then for any cell e € (K \ L) U Q (with characteristic
map x) the set a(e) is a cell of the space K Uy Q (with characteristic map
@ o y). Moreover, given that the map f is cellular, all cells a(e), e € (K\L)UQ
constitute a cellular pre-decomposition of this space.

Let us show that this subdivision is point-finite, i.e., that any cell a(e) of it
belongs to some finite subdivision. For e € Q, this is obvious, since the map a|¢g
is homeomorphic, and therefore the image a(Q(e)) of the sub-decomposition
Q(e) under the map « is a finite sub-decomposition of the pre-decomposition
K Uy Q, containing the cell a(e). Let e € K\ L. Since the sub-decomposition
K(e)NL is finite, it is compact, and therefore its image f(K(e)NL) C Q under the
map f is contained in some finite sub-decomposition Q. of the decomposition
Q. Consider the set a(K(e) U Q,). It is obviously compact. Furthermore, it is
the union of cells of the form a(e), ¢ € (K(e) \ L) U Q.. Therefore, this set is
a finite sub-decomposition of the pre-decomposition K Uy Q, containing the cell
ale).

Thus, to prove the statement under consideration, we only need to prove
that the topology of the space K Uy Q is a weak topology. As we know, for
this it is sufficient to prove (see §3.1), that the set A ¢ K Us Q is closed if its
intersection a N P with any finite sub-decomposition P ¢ K Uy Q is closed. At
the same time, since the natural projection « is an identification map, and the
topological sum K UQ is a cellular decomposition, the set A € KK U Q is closed
if and only if for any cell e € K U Q the intersection a'(A) Ne is closed. Thus,
we need to prove that if the intersection AN P of some set A ¢ KUy Q with any
finite sub-decomposition P ¢ K Uy Q is closed, then for any cell e € K U Q the
intersection @' (A4) Ne is closed. It is easy to see that this fact will be proved
if we show that for any cell e € K U Q the set a(e) is contained in some finite
sub-decomposition P, of the pre-decomposition K Us Q.

Indeed, since the subdivision P., being finite, is closed, and a(e) C P,, then
a(e) c a(e) C P,, and therefore ¢ ¢ a~*(P,). Therefore,

a A necalt@ne(P)neca (AnP,)cat(A)Ne,

and therefore
a (A ne=a'(ANP,)NE.

By assumption, the right-hand side of this equality is closed. Therefore, its
left-hand side is also closed.

Thus, we only need to prove that for any cell e € K U Q there exists a finite
sub-decomposition P, ¢ K Uy Q such that a(e) C P.. But if e ¢ L, then the
set a(e) is a cell of the pre-decomposition K Uy QO and therefore, as has already
been proved, is contained in some finite sub-pre-decomposition P, of this pre-
decomposition. Let e € L. Since the set f(e) C Q is compact, it is contained in
some finite sub-decomposition of the decomposition Q. Therefore, in this case,
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the set a(e) = f(e) C f(e) (generally speaking, no longer a cell) is contained in
some finite sub-decomposition P, of the pre-decomposition K Ur Q.

Thus, the statement that the pre-decomposition K Uy Q is a decomposition
is completely proven.

In particular, we see that

Proposition 3.62. for any cellular pair (K,L) the space K/L is a cellular
decomposition.

Similarly,

Proposition 3.63. the cylinder Zy of any cellular map f : K — L is a cellular
decomposition (with cells of the form e € K, e € L and e X (0,1), e € K).

Remark 3.64. For the above statement to be true, the requirement that the map
f be cellular is not necessary. It is sufficient that this map have the property
that f(LNé c Q" ! for any cell e K \ L, where n = dime.

As for the first of the above statements, it can even be strengthened some-
what. Namely, it turns out that

Proposition 3.65. any continuous map K — Q that is a cellular map on some
sub-decomposition L C K is homotopic to the cellular map K — Q rel L.

We will prove this fundamental theorem about cellular maps in the next
section. We will dedicate the end of this section to deducing one important
consequence from it.

A homotopy

i K—=0, 0<t<1,

will be called cellular if the maps fy and f; are cellular and if
fi(K") c Q"' forany n>0.

Clearly, a homotopy f; : K — Q, 0 <t < 1, is cellular if and only if the
corresponding map K X I — Q is a cellular map. Cellular maps associated by a
cellular homotopy will be called cellularly homotopic.

It follows from the theorem on cellular mappings that

Proposition 3.66. if cellular maps
f,.g: K—0

are homotopic relative to some (possibly empty) sub-decomposition L C K, then
they are also cellularly homotopic rel L.

Proof. Indeed, the statement that the maps f and g are homotopic rel L means
that there exists a map
F:KxI—Q,

such that
F(x,0) = f(x), F(x,1)=g(x)
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for any point x € K and
F(x,1) = f(x) = g(x)

for any points x € L and t € I. It is clear that the map F is cellular on the
sub-decomposition
I(K,L) = LXUKXITULX1

of the decomposition K X I and therefore, according to the theorem on cellular
maps, it is homotopic relative to this sub-decomposition to some cellular map

G:KxI— Q.
The family of maps corresponding to G
g :K—>Q, 0<r<1,
obviously represents a cellular homotopy rel L, connecting the maps f and g. O

Thus, when studying the homotopy properties of cellular decompositions,
we can, without loss of generality, restrict ourselves to considering only cellular
maps and their cellular homotopies.

Let us apply, for example, this remark to the study of homotopy groups
7. (X;xp) in the case where the space X is a cellular decomposition of K. Here
we can obviously assume that the point xg is some vertex e° of the decomposition
K.

Having agreed to regard the sphere S" as a cellular decomposition with
a zero-dimensional cell #y and an n-dimensional cell S” \ uy, we apply to an
arbitrary map

¢ (8" ug) — (K, e?)

the theorem on cellular maps. Since the points ug and e are vertices, this map
is cellular on uy. Therefore, according to the theorem on cellular maps, it is
homotopic rel ug to some cellular map

W (S"ug) — (K, e0).

But the last map, being cellular, is a map of the sphere S” into the n-dimensional
skeleton K" of the decomposition K. Therefore, any map (S",ug) — (K, e°) is
homotopic rel ug to a map of the form i oy, where i : K — K is an inclusion,
and y is some map (S",ug) — (K", e"). This means that

Proposition 3.67. the inclusion i : K" — K defines an epimorphism
iy Ta (K™ e%) — 1 (K e?)
of the group m,(K";e®) onto the group m,(K;e°).

Similarly, using the fact that homotopic cellular maps are cellularly homo-
topic, we obtain that
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Proposition 3.68. the group m,(K;e®) is isomorphic to the group m,(K*1; %)
(and, in general, to any group m,(K™;e®) withm >n+1).

In particular, it directly follows from this general statement that

Proposition 3.69. for any m < n, the following equality holds:
”n(SmﬁuO) = 0’
i.e., that the sphere S™ is an (m — 1)-connected space.

We emphasise, however, that we obtained this statement by relying on the
theorem about cellular maps. On the other hand, in the next section, when prov-
ing the last theorem, we will make substantial use of this statement. Therefore,
to avoid a vicious circle, we will be forced to provide an independent proof of it
there.

3.5 Proof of the theorem on cellular maps
Let O be an arbitrary cellular decomposition and

@=0Q1CQpgC---CQ,C---

be an arbitrary increasing sequence of its sub-decompositions (the union of these
sub-decompositions may be the decomposition Q or may not). A map

f:K—Q

of some cellular decomposition K into a decomposition Q will be called subor-
dinate to the sequence {Q,} if

J(K™) C Qn

for any n > 0. Accordingly, we will say that for a sequence {Q,} the theorem on
subordinate maps holds if for any cellular pair (K, L) each map f : K — Q whose
restriction f|g is subordinate to {Q,} is homotopic rel L to the subordinate {Q,}
map g: K — Q.

In the case where the sequence {Q,} consists of skeletons Q" of the decom-
position Q, the subordination of the mapping f means its cellularity.

Thus, the theorem on cellular maps formulated in the previous section means
that

Proposition 3.70. for the sequence {Q,} of skeletons of the decomposition Q,
the theorem on subordinate maps holds.

The basis of the proof of the theorem on cellular mappings is the fact that

Proposition 3.71. if the sequence {Q,} is such that for any n° every map-
ping (E*,S" 1) = (Q,0,-1) is homotopic rel S"! to some map (E",S$" 1) —
(Qn,On-1), then the theorem on subordinate maps holds for the sequence {Q,}.
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In other words, if the sequence {Q,} has the indicated property, then every
continuous map f : K — Q subordinated on L to the sequence {Q,,} is homotopic
rel L to some map g : K — Q subordinated to the sequence {Q,}.

Proof. According to the remarks made at the beginning of the previous section,
to construct a homotopy

fi:K—>Qrel L, 0<t<1,

connecting the map f with the map g, it is sufficient for us to construct for each
n > 0 a homotopy
ffK—>Q0, 0<t<1,

such that

f3 = flgns AUK™) CQuy fMlen = flens I kn = £

foran>0andrel.

By hypothesis, every map (E",S"') — (Q,Q,_1) is a homotopy rel $"~ ']
to some map (B, $" 1) — (Qn,Qn_1). For n = 0, this means that for any point
y € Q, there exists a path u, : I — Q such that u,(0) =y and u,(1) € Qo. For
every point x € K and any number ¢ € I we put

UF(x),s if x¢lL,
fIO(x) — f(x) ]
fx), if xelL.

It is clear that this will give us a homotopy
R K->, 0<t<l,

for which
£ = feos REK) Qo fleo = flro.
Let for n > 0 a homotopy f" has already been constructed. If K"+ = K",

then we set f"*! = f1'. Let K"*! # K. Since the pair (K"*!, K"), being cellular,
satisfies the axiom of homotopy extension, there exists a homotopy

g K" 50, 0<r<]l,

such that
g0 = flgnr, and  g/lxn = f'
for any r € I.
Let’s consider the map
g1: Kn+1 — Q
Since gllK" = ftl, then
g1(K") C Qn.

Let ¢"*! be an arbitrary n + 1-dimensional cell of the decomposition K and let

y:E" S K
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be an arbitrary characteristic map of this cell. Since ¢"*! ¢ K and g;(K") C Q,,
then

grox: (E™,5") — (Q,00)
Therefore, according to the condition, there exists a homotopy
& B 5 Q0 rel S7,
such that

fo=g1ox, E1(E™) C Q.

For any point x = y(vu), 0 < v < 1, |u| = 1, any cell ¢"*'1, and any number
tel, we set

2 (y(vu)), if 0<r< it
henet 4 (x) = {g 2 (x(v)) 0 :
f% (Vu), lf T <t< 1

It is easy to verify (Fig. 3.2) that we thereby obtain a certain uniquely defined

r & (vu) ’
7
r—=--=--= ]
.7 (VW)
s| Vg®
I T T =2 g1(1‘( =)
J go("'n §
7 5
12 2]
L’/ [ ===
5| LB
3
S
ZX(ve))

)
~
Q

Figure 3.2:

homotopy
honvi i@ > L, 0<r<l.

To construct a homotopy f/"*!, we now consider an arbitrary point x € K"*!,
In the case where x ¢ K", the point x belongs to some uniquely determined n+ 1-

dimensional cell ¢"*! € K. For any number ¢ € 1

(), if xeK",
fHE) = f @), if x¢K" and e'lel,
hep+1 (x), if x¢gK" and el ¢lL.
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It is easy to see that this gives us a homotopy
fn+1 . Kn+1 N Q
t . >

such that
ot = fliewn,  fITHE™Y) =C Qi

and
fH e = fxner, [k = 7 for any t € 1.

Thus, the homotopies f* are constructed for all n > 0.
The proposition formulated above is completely proved. O

Now consider the following statement:
Proposition 3.72 (A,). Any map
(E",§"1) = (0,0"™)
is homotopic rel S 1) to some map
(E", s" 1) =5 (0", 0" ).
According to the proposition just proved,

Proposition 3.73. To prove the theorem on cellular maps, it suffices to prove
statement (A,) for any n > 0.

Remark 3.74. For n = 0, the statement (A,) is true (since in this case it simply
states that any point of the partition Q can be connected by a path to some of
its vertices). Thus, this statement requires proof only for n > 0.

A pair (X, Xy) consisting of some Hausdorff space X and its closed subspace
Xy, which has the property that the complement X \ Xy is an m-dimensional
(m = 0) cell e™, we will call an m-dimensional relative cell.

Consider the following statement:

Proposition 3.75 (B,). For any m > n and any m-dimensional relative cell
(X, Xo), every continuous map f of the ball E" into the space X that maps the
sphere S"~1 into the subspace Xy, i.e., a map of the pair (B, S*~1) into the pair
(X, Xo), is homotopic rel S"~! to some map E" — X,.

It is easy to see that

Proposition 3.76. if for some n > 0 statement B, is true, then statement A,
is also true (for any cellular decomposition Q and any map f : (E",S"71) —

(Q.0"1).

Proof. Indeed, let assertion (B,,) be true and let f be an arbitrary map of the ball
E" into some cellular decomposition Q that takes the sphere $*~! to the (n—1)-
th skeleton Q" !. Since the ball E" is compact, its image f(E") under the map
f is also compact and therefore is contained in some finite sub-decomposition
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of the decomposition Q. Therefore, without loss of generality, we can assume
from the outset that Q is finite.

Using the finiteness of the decomposition Q, we will prove the statement (A,)
for it by induction on its dimension m = dim Q and on the number a,,(Q) of its
m-dimensional cells. If m = n, then the assertion (A,) is trivially true. Assuming
that this assertion has already been proven for all finite decompositions of Q for
which either dim Q < m, where m > n, or the number a,,(Q) is less than some
positive integer k, consider an arbitrary decomposition of Q for which dim Q = m
and a,,(Q) = k. By choosing an arbitrary m-dimensional cell ¢ € Q and setting
Qo = 0\ €™, we obviously obtain an m-dimensional relative cell (Q, Q). Since
any map (E",S"1) — (Q,0Q" ') is automatically a map (E",S""') — (Q,Qo),
then, according to the statement (B,), each such map is homotopic rel $"7!) to
some map g : E" — Q.

On the other hand, it is clear that the subspace Qy is a cellular decomposition
such that either dimQy < m or a,,(Qp) < k. Therefore, by the induction
hypothesis, the map g is homotopic with rel $*~!) to some map & : E" — 5.
Consequently, the map f is also homotopic rel §"7!) to the map h. Thus,
assertion (A,) is completely proved. O

Thus, to prove the theorem on cellular maps, we only need to prove the
statement (B,) for any n > 0.

Remark 3.77. Like the statement (A,), the statement (B},) is trivially true when
n =0 (since the set €” is path-connected).

Now comnsider the following statement:

Proposition 3.78 (C,). For any m > n and any m-dimensional relative cell
(X, Xp), every map f : (B*,S" 1) = (X, Xo) is homotopic rel "' to some map
g : B" — X with the property that the image g(E") of the ball B" under g does
not contain the entire cell e™ = X \ Xo.

It is easy to see that
Proposition 3.79. statement (C,) implies statement (B,,).

Proof. Indeed, let the statement (C,) be true and let xy be an arbitrary point
of the cell ™ that does not belong to the set g(E"). Let us choose a map

x:E™—e",

characteristic of the cell ™ such that y(0) = xo (it is clear that such a map can
always be found). It is easy to see that, by setting

g(x) =x : ((v(x),u(x)), xeG

(where g is the map E" — X specified by the statement (C,)), we uniquely
define two continuous maps on the open subset G = g=!(e™) of the ball E":

v:G—-I, u:G—o8s"!
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(since, by hypothesis, y(0) ¢ g(E"), then v(x) # 0 for each point x € G and
therefore the map u : G — $™! is uniquely defined). For any point x € E" and
any number ¢ € I, we now set

{X((u —v(x) +u(x)), if xeG,
g;(X) = .
g(x), if x¢G

It is clear that we thereby obtain a homotopy g; : " — X rel $"~!, for which
go = and g1 (E") c Xy. Thus, the map g, and hence the map f, is homotopic rel
S"1 to some map E" — Xj. Assertion (B,) is thus completely proved. O

Thus, all that remains for us to prove is statement (C,,) for all n > 0.
To this end, we consider the following statement:

Proposition 3.80 (D,,). For any m > n, any n-dimensional relative cell (X, Xo),
and any map f: (E",S" 1) = (X, Xy), there exists a map

8" (En’Sn_l) - (X’X0)9
such that

1) the image g(E™) of the ball E" under the map g does not contain the entire
cell " = X \ Xo;

2) the map g coincides with the map f outside some open set U C E";

3) the image of the set U under each of the maps f and g is contained in the
cell e™.

It is easy to see that

Proposition 3.81. the map g provided by statement (D,,) is homotopic rel S"~1
to the map f.

Proof. Indeed, let
x:E"—>X

be an arbitrary map characteristic of the cell ¢”. Since, by hypothesis, f(U) c
e™ and g(U) c €™, then single-valued continuous maps are defined on the set U

fxltef:U—E" gxlog:U—E"
For any point v € E" and any number ¢ € [ we put

{X(tf'(v) +(1-ng (), if veU,
gt(") = .
f), if veU.

Clearly, we thereby obtain a homotopy g; : E* — X rel $"!, connecting the
map f with the map g. O
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By condition 1) of assertion (D,), the proven proposition means that

Proposition 3.82. the truth of assertion (D,) implies the truth of assertion

(Cn)-

Thus, to prove the theorem on cellular mappings, we only need to prove
statement (D,,) for any n > 0. We will carry out this proof by induction on the
number n. First, we will consider the case n = 1.

Proof. (the case n = 1) Let xg be an arbitrary interior point of the cell ¢” and
let F be its complete preimage f~'(xo) under the map f : E! — X. The set F is
a closed subset of the segment E' = [—1, 1] that does not contain its endpoints.
Since the map f is continuous and the cell €™ is open in the space X, on the
segment E' there exists a finite system of open intervals (a;,b;), i = 1,...,k
such that their union U contains the set F and goes under the map f into the
cell e™. Since the set e™ \ x¢ is linearly connected (since m > 1), then for any
i =1,...,k there exists a map g; of the closed segment [a;, b;] into the set
€™\ xg such that g;(a;) = f(a;) and g;(b;) = f(b;). But then it is clear that the
map g : B! — X defined by the formula

gi(v), if v e (a;,b),

g(v) = { .

fv), if veU,
is continuous and satisfies all the conditions of assertion (D). Therefore, asser-
tion (Dq) is completely proved. O

Now suppose that for some n > 1 the assertions (D1, ..., D,—-1) have already
been proved, and we prove the assertion (D).
To this end, we first note that

Proposition 3.83. the validity of the assertions (D1,...,D,_1) implies that
for any m > n the sphere S™ is an n — 1-connected space.

Since the statement (Dy), k = 1,...,n — 1, implies the statement (By), to
prove this proposition it suffices to prove that

Proposition 3.84. from the validity of the statement (By) it follows that for
any m > k the sphere S™ is a k-aspherical space.

Proof. Let g be an arbitrary map S¥ — $™. Having chosen some map
x : EF - sk,

that maps the sphere S¥~! c EX to the point ug = (1,0,...,0) € Sk and home-
omorphically maps the open ball EF = EF \ k7! to the set SK\ uy (i.e., a
characteristic ma of the cell S¥ \ u), we consider the map

f=gox: (EESY = (8™, wy),
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where wg = g(up) € S™. Since the pair (S™,wq) is obviously an m-dimensional
relative cell and m > k, assertion (By) applies to this map. Therefore, it is
homotopic rel S¥~! to the map of the ball EX to the point w. Let

f, :BF > g§m
be the corresponding homotopy. Clearly, for any ¢ € I, the map
g =frox! sk —g"

is uniquely defined and that all these maps form a homotopy connecting the map
g with the constant map S¥ — wg. Therefore, the sphere S$™ is k-aspherical. O

Using the statements proved in §2.1, we immediately obtain from this that

Proposition 3.85. from the validity of the statements (D), ..., (Dy) it follows
that for any m > n the product S™ ! x (0,1) is an n — 1-connected space.

After these preliminary remarks, we can now proceed directly to the proof of
the assertion (D,) (assuming that the assertions (D1),...,(D,-1) have already
been proven).

Proof. (of the assertion (D)) Let m > n and let
£ (B8 - (X, Xo)

be an arbitrary map of the pair (E", $*~!) into some m-dimensional relative cell
(X, Xo). Let, in addition, xqg be an arbitrary interior point of the cell ™ = X\ Xj
and let

F = " (xo)

be its complete preimage under the map f. Since, by hypothesis, the boundary
S"~1 of the ball E" is mapped by f into the subspace Xy, the set F (obviously
closed) is contained in the open ball E* = E" \ $"*~!. By similar considerations,
the set G = f~1(e™) (obviously open) is also contained in the ball E". Since
F c G, there exists a cubillage of the Euclidean space R" (i.e., a partition of
the space R" into cubes by orthogonal systems of parallel hyperplanes) so small
that the set F' has a neighbourhood U contained in the open set G, which is the
union of some open cubes of this cubillage. Let P be the closure of the set U
and Q be the boundary of this closure, i.e., its intersection with the union of all
closed cubes of the cubillage under consideration that do not belong to it. It is
clear that the set P is a cellular decomposition of dimension n (whose cells are
the open cubes of the cubillage under consideration and their open faces), and
the subset Q is a cellular subdivision of it. On the other hand, it is clear that
F N Q =@ and therefore

f(Q) c e\ xo,

so that we can view the map f|p as the map

flo : Q — €™\ xo,
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Finally, it is obvious that the set ¢\ xq is homeomorphic to the product S*~! x
(0,1) and therefore, by the induction hypothesis and the remarks made above,
it is n — 1-connected.

Thus, the mapping f|p is a continuous map of the sub-decomposition Q of
P into the n — 1-connected space €™ \ xg, where dim(P \ Q) < n. Therefore, by
the theorem proved in the previous section, there exists some extension

h:P—e™\ xg.
for this mapping. We define the map
g:E'">X

by putting
h(v), if veP,
gv) = .
f(v), if vgP

for any point v € E". Clearly, this map is continuous and satisfies all the
conditions of assertion (D). i

Thus, the assertions (D,) are proved for all n > 0. Along with them, the
theorem on cellular maps is also completely proven.

Remark 3.86. Incidentally, we have proven that for any n > 0, the sphere S" is
an (n — 1)-connected space (see the end of §3.4).

3.6 Whitehead’s theorem. Quasi-polyhedra

Let us return to the proposition proved at the beginning of the previous section.
Setting in this proposition Q = K and Qg = Q1 = --- = Q, = --- = K, where
Ky is some sub-decomposition of the cellular decomposition K, we immediately
obtain that

Proposition 3.87. if for every n > 0 any map (E",S" ') — (K, Ky) is homo-
topic rel SS"! to some map E" — K, then every map

f (K, Ko) — (K, Ko)
is homotopic rel Ky to some map
g: K — Kp.

According to the assertion proved at the end of §2.4, the conditions of this
proposition are satisfied if the sub-decomposition Kj is a representative subspace
of the space K. On the other hand, in the case where the map f is the identity
map lg of the decomposition K, the map g provided by this proposition is
obviously a retraction K D K. Thus,

Proposition 3.88. any sub-decomposition Ky of the decomposition K, which is
its representative subspace, is a deformation retract of the space K.
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In other words,

Proposition 3.89. for sub-decompositions of cellular decompositions, the prop-
erty of being a representative subspace is equivalent to the property of being a
deformation retract.

It easily follows from this proposition that

Proposition 3.90. for any cellular decompositions K and L, every weak ho-
motopy equivalence
f:K—L

15 a homotopy equivalence.
In other words,

Proposition 3.91. For cell decomposition maps, the property of “being a weak
homotopy equivalence” is equivalent to the property of “being a homotopy equiv-
alence”.

Proof. Indeed, according to the theorem on cellular maps, we can assume with-
out loss of generality that the map f is cellular, and therefore its cylinder Zy
is a cellular decomposition. On the other hand, the fact that the map f is a
weak homotopy equivalence means, as we know, that the subspace K of the
cylinder Z; is representative. Therefore, since this subspace is clearly a sub-
decomposition of the cylinder Zy, it is a deformation retract of it, and therefore
the map f is a homotopy equivalence. m]

The proved proposition is known as Whitehead’s theorem. It is one of the
fundamental tools for studying the homotopy properties of cellular decomposi-
tions. For example, this theorem almost immediately implies that

Proposition 3.92. any cellular decomposition K is the homotopy limit of every
increasing sequence
KhcKyc---CcK,C---

of its sub-decomposition, the union of which coincides with the entire decompo-
sition K.

Proof. Indeed, the space K* corresponding to the sequence under consideration
is, obviously, a cellular decomposition, and the natural map

pZ:KE—>K

is weak homotopy equivalence. Therefore, according to Whitehead’s theorem,
this map is a homotopy equivalence. O

We will call a topological space X a quasi-polyhedron if it is homotopically
equivalent to some cellular decomposition. Clearly, Whitehead’s theorem re-
mains valid for quasi-polyhedra as well, i.e.,
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Proposition 3.93. any continuous map
f:X—>Y

of a quasipolyhedron X into a quasipolyhedron Y that is a weak homotopy equiv-
alence is a homotopy equivalence.

Moreover, from what was said at the end of §3.4 it immediately follows that

Proposition 3.94. for any cell pair (K, L) and any continuwous map f : L —»Y
of a sub-decomposition of L into an arbitrary quasi-polyhedron Y, the space
K UrY is a quasi-polyhedron.

Remark 3.95. Quasi-polyhedra constitute a remarkable class of topological spaces,
distinguished by the property that practically any “reasonable” operations on
topological spaces do not lead outside this class. For example, for any quasi-
polyhedra X and Y, the space YX of all continuous maps X — Y, considered in
the so-called “compact-open topology” (see §9.1), is also a quasi-polyhedron, and
every topological space X for which there exists a homotopically injective map
A — K into some quasi-polyhedron K is itself necessarily a quasi-polyhedron.
On the other hand, in all homotopy questions one can restrict oneself only to
quasi-polyhedra, since for any space X there exists a continuous map from some
quasi-polyhedron Z to the space X that is a weak homotopy equivalence. These
properties of quasi-polyhedra will not be needed by us, and we will leave them
without proof.



Chapter 4

Smooth Manifolds. 1

This chapter is mainly devoted to the construction of tensor calculus on arbitrary
smooth manifolds.

In the preparatory §4.1, we introduce the concept of a smooth premanifold
as a Hausdorff topological space on which a certain sheaf of germs of real-valued
functions is defined (to use the currently fashionable terminology).

In §4.2, which also has a preparatory character, we prove the classical the-
orem on differentiable maps with non-zero Jacobian for Euclidean spaces; in
doing so, we specifically emphasise some details that are essential for what fol-
lows, related to estimating the diameter of the domain in which the map is
diffeomorphic, which are usually left without consideration.

In §4.3, smooth manifolds are defined as smooth premanifolds that are locally
diffeomorphic to Euclidean spaces. Here, the concept of a product of smooth
manifolds is also introduced.

In §4.4, we prove analogues of Urysohn’s lemma and Tietze’s theorem for
smooth functions. Here, we also prove that any convex open subset of Euclidean
space is diffeomorphic to an open ball.

In §4.5, we introduce vector fields as derivations of the algebra of smooth
functions and show that in any coordinate neighbourhood, each vector field is
a linear combination of partial derivations with respect to local coordinates.

In §4.6, we introduce the concept of a vector at a point, define the manifold
M, of all vectors at all possible points of a given manifold M, and show that the
vector fields introduced in §4.5 can be interpreted as smooth maps M — M,.
In this section, we also introduce the concept of a differential of a smooth map
and, in connection with this, the concept of a regular map.

In §4.7, linear differential forms are considered in a similar way, and in §4.8,
tensor fields of arbitrary type.

In §4.9, an algebra of tensors and tensor fields is constructed. In particular,
the operation of convolution is considered in detail here.

In the final §4.10, the concept of a Riemannian space is defined and, based
on the results of §4.4, it is proved that on any smooth separable (i.e., with a
countable base) manifold there exists a metric tensor field, i.e., that each such
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manifold can be defined as a Riemannian space.

4.1 Smooth submanifolds

Let M be an arbitrary set and let f, f',..., f" be some real functions defined
on the space M. We will say that a function f depends smoothly on functions

fL, ..., f" if there exists an infinitely differentiable function u(¢',...,") of real
variables ¢!, ...,¢", defined (and infinitely differentiable) for all values of these
variables, such that f = u(f',..., f") on M, i.e. such that

f()=u(f (p),....f (p) (4.1)

for any point p € M. If equality (4.1) holds only for points p of some set U c M,
then we will say that the function f depends smoothly on the functions f*,... f"
on the set U.

Remark 4.2. Some authors require that the function u, which establishes the
smooth dependence (4.1), be defined (and infinitely differentiable) only in some

open set of the arithmetic space R”, containing all points of the form (f(p), ..., f"(p)),
p € M. It is easy to show that this (formally more general) definition essentially
coincides with our definition. On the other hand, it is often required not that

the function u be infinitely differentiable, but only that it have a finite number

of derivatives (up to some fixed order N). It can easily be verified that all the
theory developed below remains valid with this definition of smooth dependence,
provided that the number N is sufficiently large.

4.2 Inverse function theorem

4.3 Smooth manifolds

4.4 E-manifolds

4.5 Vector fields

4.6 Vectors

4.7 Linear differential forms

4.8 Tensors and tensor fields

4.9 Operations on tensors and tensor fields

4.10 Riemannian spaces
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