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Preface

A word from the transcriber

This is a study memo of “Cohomology Theories” by Eldon Dyer. It is rather
amazing that this succinct account on the subject was published in 1969, more
than fifty years ago.

The preface by Dyer

Let & be the category whose objects are finite cell complexes and whose maps
are continuous maps. Let P2 be the category of pairs in P; i.e., pairs (X, A)
where X is a finite cell complex and A is a subcomplex of X , and maps are
continuous maps of pairs. Let G be the category of abelian groups and homo-
morphisms.

Let T : 9?2 — 92 be the covariant functor defined by

T(X,A) = (A,9) for (X,A) € P*extand
T(f) = fliae) : (A,2) — (B, ) for

amap f:(X,A) = (¥,B) in P2.
A cohomology theory on & is a sequence of contravariant functors

H": 2?5 G
and a sequence of natural transformations
" :H" 'oT — H"
subject to the conditions

1) If fo, f1 € P and fy = f1, (= means “is homotopic t0”), then H"(fy) = H"(f1)
for all n;

2) If (X; A, B) is a triad in & (all possible pairs of X, A, B, AUB and AN B are
in #) and X = AU B, then for the inclusion map k : (A,AN B) — (X, B),

H"(k) : H*(X,B) — H"(A,AN B)

is an isomorphism for all n; and
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3) If (X,A) € ? andi: (A,2) — (X,2) and j : (X,2) — (X,A) are the
inclusion maps, then the sequence

n H"(j Hn(i
S HE A ) S B x, A) Y i (x, o) 2, AL o) - -

of the pair (X, A) is exact.

These conditions are exactly the Eilenberg-Steenrod axioms for cohomology
except we omit the condition

H'(pt,0) =0 for i # 0.

Recall that with this extra condition, one has the singular cohomology groups
with coefficients in H°(pt,0). We shall speak of our cohomology theories as
having coefficients in the graded system {H"(pt, @)}.

In these notes we discuss such cohomology theories. It has been clear for the
past two or three years that they furnish a strong tool for analysing manifolds.

The notes are divided into four chapters. The first deals with generalities of
such theories: axiomatics, origins, spectral sequence of a fibration, multiplicative
structures, orientation of bundles, Poincare duality, and a type of generalised
Riemann-Roch theorem. The second studies the unitary group and character-
istic classes of complex vector bundles. The third discusses an example: the
Grothendieck ring K7 (). The fourth is concerned with applications: the J-
homomorphism, maps of Hopf invariant 1, and properties of stable homotopy.

There are also three appendices, discussing more briefly the cohomology
theory K7, and the J-groups.

The author wishes to acknowledge here his appreciation of Walter Daum for
assistance in preparing these notes.
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Chapter 1

Structure of Cohomology
Theories

1.1 Axiomatics

1.1.1 Eilenberg Steenrod axioms for (generalised) coho-
mology
A (genealised) cohomology theory h* on T ¢z? (or any nice subcategory like
compact pairs, pairs of CW-complexes, etc,) is a collection of
contravariant functors
W' :Ton® —dé, nel
where &/# denotes the category of abelian groups, and

natural transformations
6nljnOR—)hn+1
where R : Ton? — T o7? is the functor that sends (X, A) to (A, @) and
f to f|a, satisfying the following axioms:
(i) Homotopy invariance. If f ~ g then h"(f) = h"(g) for every n € Z.

(ii) Exzcision. For every pair (X,A) and U c A such that the closure U
is contained in the interior A°, the inclusion (X \ U,A\ U) — (X, A)
induces and isomorphism

' (X\U,A\U) = h"(X,A) forevery ne€Z.
(iii) Ezactness. For every pair (X, A), consider the inclusions i : A — X

and j: (X,2) — (X, A). Then there is a long exact sequence

n-1 7 i*
oA S x ) Do) S o)

i*

owr(x, A) D oo S oAy -

1
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1.1.2 Three Theorems

The three theorems which follow can be proved just as in Eilenberg and Steen-
rod, but a simpler proof for the third due to M. Barratt and J. H. C. Whitehead
is indicated.

Theorem 1.1 (Exact Sequence of a Triple). If (X; A, B) is a triple, then the
sequence

¥
S HYYAB S HN X, A) D HY(X,B) 5 H'(A,B) — -
1s exact, where ® and ¥ are induced by the inclusion maps and A is the compo-
sition
H" Y(A,B) - H" Y(A, @) —» H"(X, A).

Theorem 1.2 (Exact Sequence of a Triad). If (X;A, B) is a triad, then the
sequence

S HYYAANB) S HYX,AUB) D H'(X,B) 5 H'(A,ANB) — - --

is exact, where ® and ¥ are induced by the inclusion maps and A is the compo-
sition

H™(A,ANB) 5 H" \(AUB,B) — H" '(AU B,2) > H"(X, AU B)

Theorem 1.3 (Mayer-Vietoris Theorem). Let (X;A, B) be a triad with X =
AU B. Then the sequence

¥
S H'Y(ANB,2) S H (X, 0) D H'(A, @)@H" (B, 2) - H"(ANB,2) — --- .
is exact, where the homomorphisms are defined as in the proof.

Lemma 1.4 (Barratt-Whitehead lemma). ! If the diagramme of groups and
homomorphisms

fi 8i h; fi+
A; B; Ci Ajp1 > Bis
ait lﬁi l%‘ laiﬂ lﬁnl
A/ ; By’ < G " Ajn . B

18 commutative, the horizontal sequences are exact, and the y; are isomorphisms,
then the sequence

isfi ’ i—Bi s h,—yi‘lg;
.HAl(a—f))Al®Bli—ﬁ_)B____)Al+l_)

18 exact.

1See The First Non-Vanishing Group of an (n+l)-ad M. Barratt, J. Whitehead Published
1 July 1956 Mathematics Proceedings of The London Mathematical Society
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The Mayer-Vietoris Theorem follows by applying this lemma to the following
diagramme, in which the isomorphism is condition (ii) in the definition of a
cohomology theory (§§1.1.1).

o= HY(X,0) — H" Y (A, 0) —— H"(X,A) — H"(X,0) — H" (A, Q) —> - --

| \ I= |

o> H"YB,2) > H"Y(ANB,2) = H'(B,ANB) > H"(B,?) = H' (AN B,2) > - - -

1.1.3 Reduced Cohomology Theories

Let &) be the category of finite cell complexes with base point and continuous
base point preserving maps. A reduced cohomology theory is a sequence

H" : 90 - o
of contravariant functors and a sequence
0'":Hn+102—>Hn

of natural transformations subject to three conditions.

Construction of spaces

Before stating these conditions we recall some important constructions. Let
(X, x0) and (Y, yg) be in HAy.

The wedge (X VY,x*) € Py is the subspace (X X yg) U (xg XY) of X XY with
X Xy = as base point.

The smash (X#Y,x*) € P is the factor space (X xXY)/(X VY) with base point
the image of X VY.

The reduced suspension For (X,xg) = (S',1), the unit circle {z € C||x| = 1},
X#Y = XY is the reduced suspension of Y. X is a covariant functor from
Py to Py with Z(f) =id#f, id : S' — S! being the identity map.

We define p : P? — Py by p(X,A) = (X/A,*), where for A = @ , X/o = X*

the disjoint union of X and a distinct point +, to be taken as the base point in

p(X,2) = (X,+). The reduced cone CA U X of a pair (X,A) with x € A c X

consists of X together with a cone over A with the interval from the base point
collapsed to the new base point (the “whisker construction”); i.e.,

CAUX ={(1,(0)#(A, %)} UX.
Note that p : (X,A) — (X/A, %) factors through (CA U X, *):

C(X,A
x. 4) SEY (caux, B (x/A %)
where C is the cone functor and % identifies CA with the base point. As (X, A)
is a finite cellular pair, it has the homotopy extension property, so the map
(CAUX) — (X/A) is a homotopy equivalence.
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Axioms for a reduced cohomology theory

We are now ready to state the conditions for a reduced cohomology theory.
A reduced cohomology theory is a sequence

H": Py — o
of contravariant functors and a sequence
o B oy — |N
of natural transformations such that
1) If fo, f1 € Py and fy = f; in Py, then H"(fy) = H'(f,) for all n;
2) o™(X) : H"(£X) — H"(X) is an isomorphism for all X € Py; and
3) If (X,A) € P? and * € A, then the sequence

H" (P)

H'(X/4) —25 H"(X) |, i (A)

is exact at H"(X) for each n, where p : X — X/A is the map collapsing A to
a point and i : A — X is the inclusion map.

The condition 3) for reduced theories appears weaker than the correspond-
ing condition for non-reduced theories. However, we may deduce the following
condition
3) If (X, A) € P? and * € A, then the sequence

i) X g xa) TP, gy 21O,

H"(A) —
is exact, where A" ! is the composition

on-1 1 H" (k - —
a1(A) % A za) 8 fncau x) - B (x/A)

and k : CAU X — XA is the map collapsing X to a point. _
_ To see the exactness at H"(X/A) we observe that H" 1(A) - H*(CAUX) —
H"(X) is equivalent to

H"(ZA) » H'(CAU X) > H"(X)

and 3) applies since (CA U X)/X is homeomorphic to £A. To see the exactness
at H" '(A), we observe that H"(X) — H""'(A) — H"(X/A) is equivalent to

H'(2X) —» H'(ZA) » H'(CAUX)

and 3) applies since XA has the homotopy type of CX U (CA U X) and (CX U
(CAUX))/(CA U X) is homeomorphic to ZX.
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Theorem 1.5. There is a natural 1-1 correspondence between theories {H, 0}
and {H,o} given by the commutative diagramme

—>90

N

Proof. For (X,A) € 912 and a reduced_theory {H,o} define (aH"(X,A) =
H"(X/A); define 6 : (aH" ") (A, @) — (¢H™)(X, A) to be the composition

H"(p)

H" 1 (A*) & H”(EA*) H'(X*/A%) = H'(X/A).

This system satisfies the cohomology axioms; in particular, ¢ is the image of A

under a.
For (X, *) € & and a theory {H, ¢} define (BH™)(X) = H" (X, {*}) and define
o to be composition of the isomorphisms

H"(X), {*}) = H""(CX, X) = H""' (ZX, {+}),

where the first isomorphism is given by the exact sequence of the triple (CX, X, {x})
and the second is a special case of more general isomorphism

H'(X,A) = H"(X/A,{));
this is given by the composition
H"(X/A,{x}) - H"(CAUX,CA) - H" (X, A),

where the first homomorphism is an isomorphism since the pairs have the same
homotopy type and the second is an isomorphism by the exact sequence of the
triad (CA U X;X,CA). The system {BH, o} satisfies the axioms for a reduced
cohomology theory; in particular, axiom 3 is a consequence of the exact sequence
of a triple.

It is clear from the constructions that Ba{H,o} = {H,o} and oB{H, 5} =
{H,5}. O

1.1.4 Spectra

A spectrum X is an indexed family {X;};ez of spaces with base point together

with a family of base point preserving maps f; : ZX; — Xji1.

Example 1.6. a) & is the spectrum with X; = S, the i-sphere and f; : S/ —
S™*1 the identity.

b) For an abelian group G, # (G) is the spectrum whose i-th space is

K(G,i) i>0
G i=0
pt i<0
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From the canonical homotopy equivalence K (G, i) 5 QK (G,i+1), we obtain
the maps ZK(G,i) —» K(G,i+1).

c) For X a space with base point, &(X) is the spectrum with i-th term XX.
Thus, $(S°) = §.

d) For X a space with base point, and % a spectrum, the spectra X#% and
Y #X are given by {X#Y;} and {Y;#X}. In particular, we have the spectrum

Y =S'HY.
e) For & a spectrum, 27 is the spectrum with i-th term (X9); = X 41.

We shall see that spectra define cohomology theories. Let [A, B] denote
the set of homotopy classes of base point preserving maps. For A € % define
{A, X} to be

li_I)n( [Z’nA7 Xn], ln)7

where for a € [Z"A,X,] , i"(@) € [Z"T A, X,,,1] is the composition

syrA 2 sx I xo

For n > 1, [¥"A, X] is a group and i, is a homomorphism; for n > 2, [X"A, X]
is an abelian group. Thus, {A, 2’} is an abelian group.

Define the homomorphism o : {A, X} — {ZA, L'} to be the direct limit of
o [Z"A, X, ] - [E"2A, X,41], where o = i". We can take this limit since o,
and the i" commute. o only shifts {A, 2’} over one in itself; so we have clearly

Lemma 1.7. o : {A, 2} 5 {ZA, X1}

For g : A — B in %y, composition defines a homomorphism g* : {B,Z'} —
{A, X},

Lemma 1.8. (id)* =id; (go f)* = frog*; if f =g in Py, then f* = g*.
Lemma 1.9. For € BCY, ¥"(CBUY) is homeomorphic to C(X"B) U (£"Y).

It suffices to prove this for n = 1, but that is clear from the definitions.

Lemma 1.10. For € BCY, and BLy 2L Y /B the inclusion and collapsing
maps, the sequence {Y /B, X} Z, {Y, &'} 5 {B, X} is exact at {Y,X}.

Proof. For X a space with base point
[CBUY,X] — [Y,X] — [B, X]
is an exact sequence of sets. Thus, by Lemma 1.9
[Z*(CBUY), X,] — [Z"Y, X, ] — [Z"B, X,]

is an exact sequence of groups; but exactness commutes with direct limits and
CBUY and Y/B have the same homotopy type. The lemma follows. ]
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Theorem 1.11. For a spectrum and a space Y € Py, HI(Y;: ) = {Y, Xy} and
o HWYZY; ) — HY(Y; ), the inverse of the isomorphism of Lemma 1.7,
define a reduced cohomology theory.

A map F : X — ¥ of spectra is a collection f; : X; — Y; of maps of the
terms of the spectra which for i sufficiently large homotopy commute with the
defining maps of the spectra:

X, —= 3,

|

Xiy1—=Yi

Spectra have the role of coefficients in these cohomology theories and maps
of them induced “coefficient homomorphisms”; i.e., natural transformations of
theories.

We cite without proof the following result of E. Brown [18]:

Theorem 1.12. If H is a reduced cohomology theory on Py and HI(S®) is
countable for all g, then there is a spectrum % such that H*(-) and H*(-; %) are
naturally equivalent. Furthermore, % can be found so that the map Y,, — QY41
induced by XY,, — Y41, 15 a homotopy equivalence (% is an Q-spectrum).

1.2 Spectral Sequence of a Fibration

1.2.1 Exact Couples

Some familiarity with exact couples is assumed and we only review briefly the
basic definitions, notation and propositions.

For each pair (p, q) of integers we are given abelian groups AP9 and CP-4
and homomorphisms f, g and & so that the “p-sequence”

“1.g-1 h -1 & 1 f - h g
coo > APLa-1 I opia-l 25 pPa-1 Ly pAp-la I oPd 25 AP 5 L

is exact.



8 CHAPTER 1. STRUCTURE OF COHOMOLOGY THEORIES
We arrange these sequences in the following diagramme:

APYrar Cp+r+1,q—r
f
Ap+r—1,q—r+1 h Cp+r,q—r+1
f

CPJ]*l % AP,Q*l

cra-1 8 _ pp-lg__h cPa g AP-4
S ﬂf

AP~2.q+1 h cr-1l.a+1 8 AP-Lag+l h=> cr-r+l
S S

Cpfr,q+r71 8 Apfr,q+r71

f

Cp—r—l,q+r g Ap—r—l,q+r

The sequence in the bold aroows is the p-sequence and the sum of the indices
in each column is constant.

We define

zZP? =g (im V) c €P4  and
BP? = p(ker f~V) c cP.

Then we can define 6, : ZP*9 — CP+r-a=r+l | pP¥ 4=+ 4 16 o (fr=1)=1o g
Letting EX*? = P9 /B29 | we see that 6, induces a homomorphism

. P4 p+r,q-r+l
d, : E." — Ef .

Furthermore, d, o d, = 0 and so the homology groups # (E,, d,) are defined as
usual. Exactness in the diagramme at AP ~1477+1 and AP~"4* =1 imply that
#(E,,d.)=EP1

r+l-
The sequence of groups {EF*?} and differentials d, is the spectral sequence
of the exact couple (A,C), A = @, 4AP? and C = &, ,CP9.
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Define

zE =g (3 c e,
BLY = h(U, ker f))CP,
Ep’q — Zp’q/Bp’q.

For p + g = n, define A" = m(AP’q,f) and F,A" = ker(A" — AP>?). Then
Fp(A") 5 Fpyr (A7),
If the following two convergence conditions hold

1) AP-Ta*r L AP r-Latr+l iq 0 for r > v(p,q), and

2) APHG=r L APTT-La-r+l jg ~ for p > v(p.q),

then Z”? = zP9 and B”? = BL? for large r and EP*? = EPY = Fp_1(A™)/F,(A™),
n=p+gq.

We note that the spectral sequence is a covariant functor on exact couples;
ie., if F:(A,C) = (A,C) is a map of exact couples, then there are induced
maps

E.(F):E, > E,

of spectral sequences with the appropriate functorial properties. If the conver-
gence conditions hold and some E,(F) is an isomorphism, then all succeeding
ones are and A, = A,

1.2.2 Spectral Sequence of a h*-fibration

Let 7 : E — B be a continuous map of spaces in &; assume B is connected. It
suffices to consider the case in which E and B are finite simplicial complexes
and 7 is simplicial, for this is equivalent to the general case up to homotopy.

If {h"} is a cohomology theory, define AP-4 = hP*4(x~*(BP))), where BP)
is the p—skeleton of B, and CP-9 = h?*4(x=1(B(P)), n~1(BP~1)). These groups
form an exact couple satisfying the convergence condition. Since E is finite
dimensional, A" = h"(E).

We shall say 7 is an h*-fibration if for each simplex A f B and each vertex
v of A, the homomorphism A*(n7(A)) — h*(n~1(v)) induced by inclusion is an
isomorphism. A Serre fibration is an H*-fibration, where H* is ordinary singular
cohomology, and we will see later that an H*-fibration is an A*-fibration for any
cohomology theory h*.

To simplify the notation in what follows, we will write {X, Y} for ' (z~1(X), 7' (Y))
when Y ¢ X ¢ B. We assume throughout the remainder of this section that x
is an h*-fibration.

Lemma 1.13. For simplices A ¢ A C B, the homomorphism {A}* — {A'}*
induced by inclusion is an isomorphism.
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Proof. The diagramme

(A} A’y

N

{v}"

commutes because the homomorphisms are induced by inclusion, and the two
lower homomorphisms are isomorphisms. O

Define a k-box to be either a k-simplex or the union of members of a non-
empty collection of (k — 1)-simplices of a k-simplex which does not include all
of its (k — 1)-simplices.

Lemma 1.14. If D' c D are bozes in B , the homomorphism {D}* — {D'}*
induced by inclusion is an isomorphism.

Proof. The argument is by induction on the dimension of the smaller box D’.
It suffices to give the proof when D is a simplex, because each box is contained
in a simplex. By Lemma 1.13 the conclusion follows if D" is also a simplex.
Suppose D' = Dq U Do, where D; is a box and D5 is a simplex. hen D1 N D5 is
a box of lower dimension than that of D'. Hence, by the induction assumption
and Lemma 1.13, the indicated homomorphisms in the diagramme

(D} ———= (D'}

{D2} ——={D1 N Dy}"

are isomorphisms, and the diagramme commutes since all homomorphisms are
induced by inclusions. O

1R

Lemma 1.15. If v, is the last vertex of the p-simplex A, then {A,,,Ap}p+‘1
{Vp}q'

Proof. Let /i denote the box containing all (p — 1)-simplices of A, except A;,
the face opposite the i-th vertex. By the cohomology sequence of the triple
{Ap,Ap, 20} and Lemma 1.14,

{Ap, AP+ = (A, L0}PHL,

By excision {A,, 20}P*471 = {A?,,A?,}P“f‘l. Continuing this procedure, we get

{Ap, ApyPHe = (A, L0}P* 7 = = (v, 0}4.
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A system € of local coefficients over B is a function from simplices of B to
abelian groups, A — Gy, together with a function from pairs (A,A’), A" C A, of
simplices of B to homomorphisms

nAA, : GA' — GA
such that
1) gy =1if A=A" and
2) Naw 0w’ =Man A" CA CA.

A p-cochain fP with coefficients in & is a function which associates with
each p-simplex A an element of Gx; the p-cochains form an abelian group by
coordinate addition, CP(B;¥%). There is a homomorphism

§:CP(B;%) — CP*Y(B; %)

defined by
p+1

6fP)(Ap+1) = Z UAPHALHfP(Af’H).
j=0

As usual one computes that 6 o § = 0 and defines cohomology H”(B;¥) with
local coefficients as ker 6/im § in dimension p.

In the spectral sequence arising from the exact couple of an A*-fibration one
has

E{Lq =(CP4 = {B(P)’B(P—l)}l’ﬂ]

~ GBAPCB{AP,AP}””’, by excision

= ®p,c8{va,}’, by Lemma 1.15,

= CP(B; h(F)),
where h?(F) is the local coefficient system defined by the function A, — {va,}?
with v, the last vertex of A,. For Ay ¢ A, the homomorphism (in fact isomor-
phism)

Ny, vag bt — {va, 4
is defined via the inclusion isomorphisms with {[va,,va,]}?, where [va ,va,]
is the l-simplex from v, to va,. That this is a local coefficient system then
follows from the first axiom in 1.1.1 for the cohomology system {h9}. Finally,

we note that since B is connected, {v¢} is the same group h9(F), F = n~1(v),
for all vertices v of B. Thus, we have defined an isomorphism

Apg: EP? S CP(B; h9(F)).
Theorem 1.16. A,.1 4 0d =04, 4: that is, the diagramme

d
p.q 1 p+l.q
E - — - FE

1 1

/117,11 j l’llﬂ'lﬂ

CP(B; h(F)) —5> CP*'(B; h (F))
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18 commautative.

Proof. By naturality of the spectral sequence of an exact couple and of the
isomorphisms A, 4, it suffices to prove the assertion in the case B = Apyq.
Consider the composition @it of

1 i . S .
}p+q ‘_> {Ap+1’A§+1 }p+q - {Ap+1} - {Ap+1,Ap+1}P+q+1~

{Ap+1’ p+1
By the cohomology sequence of the triple {Ap+1,Ap+1, ¢i} and Lemma 1.14, the
homomorphism A : {Ap+1, Li}P* — {Ap41,Aps1 }PTIYY s an isomorphism. By

p+ + : ;
excision, {Ap+1, p+1} 9 = {Ap+1 £i}P*4. From the commutative diagramme

{Ap+1’ p+1 }p+q — {Ap+1}

T

J1 {Ap+1, Ap+1}p+q+1

i

{A lp+1}p+q —— {Ap+1’ U-}p+q

p+1°

it follows then that gofv .1 Is an isomorphism.
The differential d; : E? — Ef“’q is the composition 6 o i*. For fP €
CP(B; h1(F)),

p+1
/lp+1,qd1/l;),1q (fp)(ApH) = Z ‘P;;pr (A;;+1)-
i=0

Thus, we wish to show that ¢’ i1 = (= 1) TN

p+1

For i = 0 consider the triad {A,,+1, 20},

p+1’

0—>{A p+q+1_>0

{Ape1, L0} —————— (A }PH

0 @ A
p+1° p+1}P+q {Ap+1s Ap+1}

By the proof of Lemma 1.15, a is 7, a0 5 it is also @01
Assume goi = (—1)i77A Iy for j<p+landforj=p+1andi<k. Let AZ’fl_l
k.k
dT(ilnote the (p — 1)-simplex opposite the edge (k,k —1). Let f? € CP~1(A" il -1,
en

k-1 1Ak k-1 k-1
(D gy fPHAGSTDon AL

T e et P bk
o O g a7 Ao Ay
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Since dy ody =0,

0= /lp+1,qd1/l]_g,lq/lp,qd1/l;,1_1,q(fp_l)(AI;’.fl_l)

_ k k-1 1/ ak,k=1 k k-1 1/ Ak,k=1
= 90p+1((_1) UA‘I;;:%A’;fl—lfp (Ap+1 ) + ‘)Dp+1((_1) UAZHA’;:fl—lfp (Ap+1 )
1, k. k— . —1 Ak k—
=, atet ST A + @ (D i fP7HAGET)
Thus,

1, Ak k-
‘P§+1(7]A£+1A’;;fl*1fp 1(Ap+1 1)) = (_1)k77Ap+1A;" (nAk

n+1 p+1

p—1 k,k—1
Af,fflf (A]H.l ))

Hence,

k _ k
Ppa1 = (D a,ak -

[m]

Corollary 1.17. The chain complezes E{?, dy and {CP(B; h%(F)), 6} are nat-
urally equivalent.

Corollary 1.18. In the spectral sequence of the h*-fibration w : E — B, the term
Eg’q is naturally isomorphic with HP (B; h9(F)), where the latter is ordinary
cohomology with local coefficients.

To summarise the results of this section, there is a functor from the category
of h*-fibrations (f — E 5 B) to the category of exact couples; by composition,
then to the category of spectral sequences. There is a natural isomorphism
ED? = HP(B;h%(F)), in which h%(F) is a system of local coordinates. Fur-
thermore, {EZ?} is the associated graded system to a filtration of 4*(E). The
spectral sequence is also natural with respect to transformations of cohomology
theories.

In particular, if 7 : X — X is the identity map, then E5? = HP (X; h?(pt))
and E2'? is associated to a filtration of 2*(X). This relation can sometimes be
exploited to compute or to deduce properties of h*(X).

1.2.3 Applications of the Spectral Sequence

Proposition 1.19. If v : hi* — k* is a natural transformation of cohomology
theories and T : h*(pt) — k*(pt) is an isomorphism, then t : h*(X,A) —
k*(X,A) is an isomorphism for all pairs (X, A).

Proof. The transformation 7 induces a homomorphism of the spectral sequence
ofid : X — X in the h*-theory into that in the k*-theory. The hypothesis implies
this is an isomorphism at the E5 level and thus for 2*(X) into £*(X). For a pair
(X,A), we consider CA U X. O

Proposition 1.20. If f : B — B’ so that f : H*(B') — H*(B) is an isomor-
phism for ordinary singular cohomology (integer coefficients), then f, : h*(B) —
h*(B) is an isomorphism for any cohomology theory h*.
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Proof. The map f induces a map f of the identity fibration B — B into B° — B’
and thus a map of the spectral sequences of these fibrations. In particular, the
naturality of the universal coefficient sequence and the five lemma imply

ED?(f) : HP (B, h(pt) — H” (B'; h (pt))
is an isomorphism. The conclusion follows. O

Note that this implies our earlier remark that an H*-fibration is an h*-
fibration for any cohomology theory A*.

Proposition 1.21. If hi(pt) = 0 fori # 0, then the cohomology theory h* is nat-
urally equivalent to singular cohomology with coefficients h°(pt), H*(—; h°(pt)).

Proof. The spectral sequence collapses and we have

HP (B;h°(pt)) = E'? = EP"™ = F,,_1h”(B)/F,h? (B) = h”(B).

Proposition 1.22. H"(B;G) = [B,K(G,n)].

Proof. The groups {B, % (G)} give a cohomology theory k* in which k°(pt)
li_n)l[S”,K(G,n)]. The composition

R

[S".K(G,n)] = [S",2K(G,n+1)] — [E8™,K(G,n + 1)]

is the isomorphism [S",QK(G,n + 1)] — [ZS",K(G,n + +1)]. By definition
each of these groups is G. In other dimensions k’(pt) = 0. Thus {B, ¥ (G)"} =
H"(B;G). The object on the left is li_n>1[2"B,K(G,n +1)]. As seen above, these
groups are isomorphic and are mapped isomorphically. Thus [B, K(G,n)] =
{B,#(G)"} = H"(B;G).

ool

It is interesting to note this proof does not use obstruction theory.

1.2.4 The “Universal Cohomology Theory”
For pairs (X, A) and (Y, B), define

n;'.(X,A; Y,B) = li_r)n[Z”"(X/A),Z””(Y/B)].

n

For fixed j and (Y, B), this is a cohomology theory.
For an arbitrary cohomology theory A define

T: 75 (X, A;Y,B) x h*(Y[B) — h*"' 7/ (X/A)

as follows:
for f € [f] € [Z/*N(X/A),Z*N(Y/B)], the composition

hk(Y/B) N hk+i+N(2i+N(Y/B)) N hk+l+N(ZI+N(X/A)) BN hk+i—j (X/A)
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defines the pairing 7 since it is independent of the representative f in the class
of the limit. The pairing is bilinear; and so, induces

T:75(X, A;Y,B) ® h*(Y/B) — W7/ (X/A).

In particular, for j = 0 and (Y, B) = (S°, pt), nj.(X,A;Y, B) = 1'o(X, A), the
cohomology theory called stable cohomotopy. Then for each n

tel: ) r(X,A)@h/(pt) ®Q— h"(X,A) 8 Q

i+j=n
is a natural transformation of cohomology theories.

Theorem 1.23. The transformation

Tel: Y x(X,A) @ (pt)®Q— h"(X,4) 8 Q

i+j=n

is a natural equivalence of cohomology theories, where Q denotes the rationals.
Thus, up to torsion rt'c is a “universal cohomology theory”.

Proof. By Proposition 1.19 it suffices to verify the conclusion for (X,A) =
(89, pt). But 7% (S?, pt) is a torsion group for i # 0 and is the integers Z for i = 0
by a theorem of Serre since the stable cohomotopy groups of spheres are isomor-
phic to the stable homotopy groups of spheres. Then 7 ® 1 is an isomorphism
for (X, A) = (S, pt). O

The maps S" — K(Z, n) generating the homotopy of K(Z, n) induce a map of
spectra & — F (Z). By Proposition 1.22 this induces a natural transformation
of cohomology theories ‘ 4

me(=1) = H'(-).

For a cohomology theory h* define the “generalised Chern character”

Ch:h"(X,A) » > H'(X,A;H (pt) ® Q)

i+j=n

to be the composition

WX A) - WX AR T N (X, el (pt) - > (X, A b (ph)Q).
i+j=n i+j=n

Corollary 1.24. The transformation

Che®l:h"(X,A)®Q — Z H (X, A; W (pt) ® Q)

i+j=n

is a natural equivalence of cohomology theories. It is also natural under trans-
formations of cohomology theories h* — k*.
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Proof. Proposition 1.19 implies the result since it is clearly true for (X,A) =
(SO’ pt) O

Corollary 1.25. Let h and k be cohomology theories, with k a Q-module valued
functor. Then for
¢ : " (pt) — k™ (pt),

there is a unique natural transformation
D:h(-) > k()
of cohomology theories extending .

Proof. Consider the diagramme

B (X, A) —= I"(X, A) € Q ——= > H(X, A; " (pt) 8 Q)

) l‘f’
k(X A) — k" (X,A) @ Q —— > H"(X, A; K" (pt) ® Q)

The homomorphism @ is defined by means of the diagramme; it is unique since
any such homomorphism must factor through h2* ® Q. O

1.3 Multiplicative Cohomology Theories

1.3.1 Preliminaries

A cohomology theory h* is multiplicative if for each (X, A) and (Y, B), there is
a homomorphism

®:h(X,A)@h (Y,B) » h" /(X xY,XxBUAXY)

which is associative, (graded) commutative (i.e., u' ® v/ = (=1)¥v/ ® u') , nat-
ural under maps of pairs, has a unit 1 € #°(S°, pt), and makes the following
diagramme commute:

h(A)®h/(Y,B) ——=—> hi*/(AXY,A X B)

I

6x1 Wt (AXYUX X B,X xB)

|+

(X, A) ® W (Y, B) —= h™/*1 (X x X X BUA XY)

The homomorphism 7y is excision and the ¢ on the right side is that of the
cohomology sequence of the triple (X XxY,A XY U X X B).
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If (X; A, B) is a triad, the external pairing just described defines an internal
pairing
h(X,A)®h/(X,B) > " (X,AUB)

sending (u,v) into u U v. This pairing is the composition

W (X, A)® (X, B) S h*/ (X x X, X X BUAXY) 25, hi*i (X, AU B),

where A : X — X X X is the diagonal map.
This internal pairing has the properties

1. If A=B, h*(X,A) is a ring;
2. If A= B =g, h*(X) is a ring with unit;

3. If B=a, h(X,A) is an h*(X)-module; and

4. h*(A) > h*(X, A) is an h*(X)-module homomorphism.

Conversely, given an internal pairing U, there is an external pairing ® defined
by
xX®y=pxUqy,

where x € h*(X, A), y € h/ (Y, B) and p and g are the projections of (XxX, AXY)
onto (X,A) and (X XY, X x B) onto (Y, B), respectively.

Further, if we are given a natural internal pairing U on 4*(X, A) for all pairs
(X,A) € P? which satisfies 1, 2, 3 and 4, we can define an external pairing by
the following device.

Let i1 and i» denote the injections of (X,*) and (Y, *) in (X X Y,*) and p;
and ps the projections of (X x Y, %) onto (X, *) and (Y, *). For u € h'(X,*) and
v € W/ (Y,*), the element piuUpiv € hi*/(X x Y, ). Since pyoiy : (X,*) —
(#, %) € (Y, %),

i1 (pru U pav) = i1pu U (0) = 0.

Similarly, i3 (piu U piv) = 0. Thus, the element ptu U piv lies in h'*/ (X#Y, *).
We define u ® v = pjuUpiv € /(X XY, X x*U % x7Y). For (X,A) and
(Y, B) we make the same construction on (X/A, =) and (Y/B,*) and use the
homeomorphism (X/A)#(Y/B) = X XY /(X XBUA XY). It can be checked that
this is an external pairing.

We note that if X =Y and A : X — X x X is the diagonal map then since
p1A=po2A=id,

A" (u®v)=A"piuUA"ApLy = u Uv;

and so, the previous process for obtaining an internal pairing from an external
one when applied to this external pairing yields the internal pairing we started
with.

In A" (S", *) define a class ¥" to be (Z")*(1) where 1 is the unit of #°(SP, *)
and (X")* is the suspension isomorphism h°(S°, ¥) — A*(S™, ). In cohomology
with the dimension axiom, y is a generator of A" (S", x).
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Proposition 1.26. The diagramme

RS x X, S" X AU (%) X X)

hi(X,A)

R (EM(XA), %)

113

18 commutative, where y"x denotes external multiplication by y" and the vertical
homomorphism is an excision isomorphism.

Proof. Tt suffices to prove this for n = 1 for it will then follow that y" = y!xy" 1L
Consider the following diagramme.

hO(S°, %) ® h (X, A) — = R (S" x X, () x X US" x A) —— > K (X/A, %)

(€S, S%) ®@ h'(X,A) — h(CSY x X,SY x X U CS® x A) —— Wit (Z(X/A), %)

R (SY, ) @ W' (X,A) ——= K" (S x X, (+) x X US! x A)

The upper line gives (Z')* and the lower line y'(-). Commutativity is clear
except possibly in the upper left-hand corner, where it holds by definition of the
external product. O

Proposition 1.27. Let h* and k* be multiplicative cohomology theories. If
kO(pt) is a Q-module, then k* can be made a Q-module valued functor. If
¢ : h*(pt) — k*(pt) and © is the unique extension of ¢ as in Corollary 1.25
of Theorem 1.23 and if ¢ is a multiplicative homomorphism, then ® is also
multiplicative.

Proof. k* can be made a Q-module valued functor because k%(X,A) ® k°(pt) —
ki(X,A).
In the diagramme

h*(X,A) ® h*(Y,B) ———= h* (X xY,X x BUA x Y)

| |

(X, A)h"(Y,B)@Q——=h"(XXY,XXBUAXY)®Q

o0 |o

K*(X,A) ® k*(Y,B) ———= k*(X XY, X x BUA X Y),
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for a fixed pair (¥, B) all terms in the lower square are cohomology theories in
(X, A) and all homomorphisms are natural. By Corollary 1.25 the two composi-
ties around the square will agree if they agree for (X, A) = (S% ). But with
(X, A) fixed, all terms are cohomology theories in (¥, B), and the same argument
holds. To prove commutativity it then suffices to prove it in the case (Y, B) is
also (SP, *), but this is just the hypothesis that ¢ is multiplicative. O

1.3.2 Dold-Thom-Gysin Theorem

Theorem 1.28. Let h* be a multiplicative cohomology theory and let F 4

E S B be an h*-fibration. Suppose there are elements ai,...,a, in h*(E)
such that (i*aq,...,i%a,;) is an h*(pt)-base for h*(F) as an h*(pt)-module, then
(a1,...,ar) is an h*(B)-base for h*(E) as an h*(B)-module.

Proof. The h*(B)-module structure of 4*(E) is defined by 7* as the composition
h*(B) ® h*(E) =25 n*(E) ® h*(E) > h*(E).

Let C and C’ be the exact couples of the fibrations id : B — Band 7 : E — B,
respectively. The homomorphism

p:CoCoCad---aC—C

defined by p(41 @ --- @ A,) = Xj_; 7°(;)a; is a map of exact couples since 7 is
a fibre preserving map of fibrations
B

]

B——B

T
—_—

and pis an h*(B)-module homorphism commuting with the coboundary operator
in the two couples.

Since (i*ay,...,i*a,) is an h*(pt)-base for h*(F), at the E;-level of the spec-
tral sequences, the homomorphism

CP(B;h*(pt)) ®---® CP(B; h*(pt)) — CP(B; h*(F))

induced by p is an isomorphism. Thus, p induces isomorphisms on E, terms of
the spectral sequence and consequently we have the isomorphism

h*(B)® - @& h*(B) — h*(E),

defined by linear combination with the a;. Thus, (ai,...,a,) is an h*(B)-base
for h*(E). O

The Theorem 1.28 has a relative version. Conceptually, it involves nothing
new except complicated notation. Thus, we will only define the relevant exact
couples and state without proof the theorem for the relative case.
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Suppose E' € E and 7 : E — B such that for each vector v of a simplex A of
B
R (x Y (A), pi (M) NE') = h*(x ' (v), 7' (v) N E")
is an isomorphism. Then (E, E',x, B) is a relative h*-fibration with relative fibre
(F,F') = (n7*(v),pi"*(v) N E’). Let B" be a subcomplex of B. We can then
define an exact couple as follows:

AP = pP¥ ([ (B U (BH]/[(a M (B nEY un~(B)])

with CP-? equal hP*4 of the corresponding pair based on the pth and (p — 1)th
skeletons. As before this leads to the spectral sequence of the relative fibration
and we have

Corollary 1.29. In the spectral sequence of the relative fibration (E,E ,n,B,B’),
the term EYY is naturally isomorphic with HP(B,B; h%(F,F')) and EX? is
the system of graded groups associated with a filtration of W*(E,E U n'(B)),
p+q=n.

In an analogous way we have the following relative version of the Dold-
Thom-Gysin isomorphism:

Theorem 1.30. Let h* be a multiplicative cohomology theory and let (E, E' 7, B, B')
be a relative f*-fibration. Suppose there are elements ai,...,a, in h*(E, E U
1~ Y(B")) such that (i*ay,...,i*a,) is an h*(pt)-base for h*(F,F') as an h*(pt)-
module. Then {a1,...,a,} is an h*(B, B )-base for h*(E,E U n Y (B")) as an
h*(B, B')-module.

The h*(B, B')-module structure of h*(E,E Un~'(B")) is defined by the com-
position

h*(B,B)Y® h*(E,E' Un "(B)) — h*(E,n Y (B)) ® h*(E,E' Un~"(B))
s W (E,E un~L(B)).
Actually, a slighyly weaker hypothesis describes h*(B,B’) : if the classes
ai,...,ar in h*(E,E '), then
(7"h*(B,B))Ua, & & (r*h*(B,B)) Ua, = h*(E,E Urn~'(B)).

1.3.3 Orientability of Bundles

Let 7 : E — B be an n-plane bundle.

Remark 1.31. We shall usually assume 7 is vector bundle, but in the following
Corollary 1.33 to Theorem 1.30 it is sufficient for the structure group to be
group of origin preserving onto-homeomorphisms of R, Euclidean n-space.

Let E' denote the complement of the zero cross-section. Then for any co-
homology theory h*, (E,E ,n, B) is a relative h*-fibration with fibre (F,F’) =
(R, R™\0), which has the cohomology of (S", pt). Thus, h**"(F,F') = hi*"(S", pt) =
h'(pt); so h*(F,F’) is a free h*(pt)-module with one generator u, of degree n
corresponding to 1 € h°(pt).
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Definition 1.32. The n-plane bundle n is h*-orientable if there is a class u €
h"(E,E") such that i*u = u, € h"(F,F') for each fibre inclusion i : (F,F) —
(E,E"). Of course, if B is connected and i*u = u,, for one fibre, then it is so for
all fibres. A choice of such a class u is an h*-orientation of m and = is said to
be h*-oriented by u.

Corollary 1.33. [to Theorem 1.30] If the n-plane bundle n is h*-oriented by
the class u € W*(E,E’), then

¢ : h'(B) > h'*"(E,E)
defined by ¢(z) = 7*z U u is an isomorphism.

If the structure group of the bundle 7 is a subgroup of the orthogonal group,
or more generally of the group of auto-homeomorphisms on R" preserving dis-
tance from the origin, then associated with & are the unit disc bundle D(7) and
the unit sphere bundle S(x) of 7. The factor space D(x))/S(x) has a well deter-
mined base point and is called the Thom space of the bundle 7, herein denoted
B”.

The inclusion (D(x), S(r)) — (E, E") induces an isomorphism of cohomology;
thus,

W (E,E') S f*(B”, ).

Corresponding to each fibre inclusion (R",R"\ 0) — (E,E’) is the disc and
sphere inclusion

(D", ") —— (D(n),S(n))

| |

(R",R"\ 0) —— (E,E)

and D"/S"~! is homeomorphic to $”. Thus, we can equivalently define notions of
h*-orientation in terms of a class u € h"(B”™, ) which restricts to the class y" €
h"(S", *) and the isomorphism of the Corollary becomes ¢ : h'(B) — hi*"(B*, %)
defined by the composition

h'(B) —> K (D(x)) ——— h'*"(B", %)

T,

R+ (D(), S()).

Proposition 1.34. If a and B are vector bundles over X and Y, respectively,
then X YP is homeomorphic to (X xY)?*B, where a x 8 is the bundle with fibre
ax + 8, over the point (x,y).

Proof. The obvious map X% xY# — (X xY)®*B is a homeomorphism except on
the wedge, which goes to the base point. O
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Proposition 1.35. If u € (X, %) and v € h"(XB,*) are h*-orientations of
the vector bundles @ and B over the space X, then A*(uXxv) is an h*-orientation

A
of the Whitney sum a ® B over X, where A* is induced by the map X8 =
(X x X)@xB,

Proof. The Whitney sum a @ 8 is the bundle over X induced from a X 8 over
X x X by the diagonal map. The conclusion then follows from the commutative
diagramme below, and the fact that y™ x y" = y™*",

R (X, %) ® W' (XP %) — K™ (X OHXP, ) —— W™ (X )
hm(Sm’ *) ® hn(Sn’ *) - hm+n(Sm#Sn’ *) — hm+n(Sm+n’ *)
O

Proposition 1.36. If y is a vector bundle over X oriented by the class u €
W' (Xvy,*) and A is a subcomplex of X, then

¢ (X,A) = B (D(y),S(y) UD(y]a)

defined by ¢(z) = n},(z) Uu, where np : D(y) — X is the projection map of the
associated disc bundle D(y), is an isomorphism.

Proof. This is an immediate consequence of Theorem 1.30. O

Theorem 1.37. If « and B are vector bundles over X such that 3 is h*-oriented
by v € "(XP,+) and a ® B is h*-oriented by w € h"*™(X B %), then a is h*-
oriented by a class u € W™ (X?,*) characterised by the equation p*u U n*v = w
(p and © as defined in the proof) and w = A*(u X v).

Proof. Let m : D(a) — X, p : D(n*B) — D(a) and o : D(a ® B) — X be disc
bundle projections. Note that there is a disc-preserving homotopy equivalence

(D(a®p).S(a o p)) = (D(x°B),S(x"B) UD("Bls(a)))-

obtained by deforming the box-like discs on the right radially into the spherical
ones on the left. Since B is h-oriented by v € h"(X,x*), n*B is h-oriented by
7*v € " (D(a)™ B, %). But this implies

¢reph™ " (D(), S(@)) = K™ (D(x*B), S(n*B) UD(x*Bls(a)))
as in Proposition 1.36 is an isomorphism. Also
Paep : ' (X) = " (D(a @ B), S(a ® B))

is an isomorphism. Identifying cohomologies by the homotopy equivalence ob-
served, we then have determined a class u € "™ (D(a), S(a)) by

u =@ s{Paep));
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i.e., u is the unique class of /™"(D(a), S(a)) such that
pluUnv =w.

Restricting u to A" (D™, S™~1), we have that its product with y" is . Thus,
u is an h*-orientation for a.

By definition of the internal product, the class u X v in "™ ((X x X)@*8 %)
restricts to p*u U *v = w on the diagonal X*®5, O

Remark 1.38. Because of the previous results it is clear that if one representative
of a stable class of vector bundles (¢« — B if there are trivial bundles n and m
N

such that n ® @ ~ m @ B) is orientable in a given cohomology theory, then all
representatives are. However, there is no uniqueness to this construction, for
just as there may be a number of inequivalent homotopy equivalences between
two spaces, there also can be a number of inequivalent bundle equivalences.
Each of these yields a homotopy equivalence between the corresponding Thorn
spaces and consequent transport of orientation, but different equivalences may
yield different orientations. For purposes of naturality in some constructions,
this point will cause us to take some care in the next section.

1.4 Applications to Differential Manifolds

The object of this section is to establish a type of Riemann-Roch theorem for
general cohomology theories.

1.4.1 Orientations of Manifolds and the “Umkehr” Homo-
morphism

First, we recall some results from differential topology. If f : M™ — R™" is
a differentiable imbedding of a differentiable m-manifold into Euclidean space,
let v(f) denote the normal r-plane bundle of f. If also g : M™ — R™" is a
differentiable imbedding and r > m + 1, then f and g are homotopic by a differ-
entiable homotopy through differentiable imbeddings; hence v(g) is equivalent
to v(f). If, moreover, r > m + 3, then two such regular homotopies are them-
selves regularly homotopic through regular homotopies, and the two resulting
bundle equivalences are homotopic through bundle equivalences. Thus, we have

Proposition 1.39. If f and g are differentiable imbeddings of M™ in R™",
r>m+3, then there is a disc preserving homeomorphism of M*/) onto M”(8)
which is unique up to the isotopy class of disc-preserving homeomorphism.

Proposition 1.40. If f : M™ — R™" and f : M™ — R™ are differentiable
imbeddings, then for some pair of integers (s,s) there is a uniquely determined
isotopy class of homeoorphisms

Ms@v(f) N Ms’eav(f’) .
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Proof. By Proposition 1.34, with ¥ a point and 8 = n, we have Z"(X%)=ZX (for
= read “is homeomorphic to”). Let i : R™*" — R™**! be the usual inclusion;

then
spmrNzpyrevH=zpvief)

since v(io f) = 1@ v(f). Choose s and s  such that r +s =7 +s >m+3. Then
there are well determined isotopy classes of homeomorphisms

SN Zpr PNz o Vzs ),

where % stands for the iterated inclusion

R+ _’> Rm+r+1 _‘> . _l> RIS,

)

the second homeomorphism in the series is given by Proposition 1.39. Thus,
we have determined a unique isotopy class of homeomorphisms M*®¥(/) —
Ms’eav(f/)‘ O

Proposition 1.41. Each h*-orientation f : M™ — R™" and u € k" (M*) %)
determines for any differentiable imbedding f : M™ — R™*" a unique orienta-
tion class u' € " (MY %).

Proof. The unique isotopy class of homeomorphisms of Proposition 1.40 to-

gether with the s -desuspension from A"+ (Z* ‘MU , %) of the s-suspension of
u into A"+ (25M” ) x) determines the orientation class u’. O

Proposition 1.42. If M is h*-oriented by f and u, then

1) @f W (M) — W (M), %) is an isomorphism defined by ¢ 7(z) = ) (U
u7

2) the diagramme
hj(M) % hj+r(MV(f), )

(=1)Y pioy

hj+r+1 (Mv(iof) , *)
is commutative, and

3) the isomorphism
@ b (M) — WY (M), )

is well determined for any differentiable imbedding f - M™ — R
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Proof. (of 2)) By Proposition 1.26 we have the equalities

Ter(z) =yUpr(z2) =y U (n*(z) Uu) = (-1)/ 7% (2) U (y Uu)
= (1)) Uu = (1) jof(2).
O

We have seen in Proposition 1.41 that the possible h-orientations of a mani-
fold are determined by those of any one of its normal bundles. In fact, they are
also determined by its tangent bundle 7.

Proposition 1.43. For any differentiable imbedding f : M™ — R™*" there is
a well defined 1 — 1 correspondence between the h*-orientations of v(f) and the
h* -orientations of T(M).

Proof. By Proposition 1.41 it suffices to prove this for any f and r; we choose
r > m+3. Then the triviality of the total space (m+r)-bundle over M is assured
for all imbeddings. The conclusion then follows from Theorem 1.37. O

Definition 1.44. Let M™ and N™ be differentiable manifolds and f : M — N
be a continuous map. For d > 2m + 3 there is a differentiable imbedding i :
M — D4 into the interior of the d-dimensional disc such that the imbedding
f=fxi:M — NXD is homotopic to a differentiable imbedding. If the normal
bundle v(f) is h-orientable, then i together with a choice of orientation class
u € h"+a=m(pMv) %) is said to determine an h*-orientation of the map f. The
usual considerations of isotopies of imbeddings show the determination of u is
in fact independent of the imbedding and homotopy.

Proposition 1.45. Let M™ and N" be differentiable manifolds and f : M —
N be a continuous map. The h*-orientations of f are in a well defined 1 —
1 correspondence with the h*-orientations of the bundle v(M) & f*t(N). In
particular, if M and N are h-oriented and f is any continuous map, then f has
a well defined h*-orientation.

Proof. Let j be a differentiable imbedding of N X D in a Euclidean space R of
dimension r > 2(n+d) + 3 and let 7 : N XD — N denote the projection map.
We shall write a number of bundle equivalences; note that in each case they are
uniquely defined.

T(NxD) =" (r(N)) & d.
FA(NxD) = fr*(r(N) @ f*(d) = f*(t(N)) ®d.

v(M) =v(jof)=v(f)® fv())
v(M)® f*r(N) @d = v(f)® fv(j) ® f*(r(N x D))
v(f) e f(r)
=v(fer.

1R
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The first conclusion follows by suspension and desuspension. The second con-
clusion is then obvious by Proposition 1.43. O

Definition 1.46. Suppose that f : M™ — N" is h*-oriented by f: M" —
N" x D4 and u € K*4="m(M>) ). The collapsing map (“Thom construction”)

N = (VD /(N x 571 S DO P /50 7)) = D
can be used to define a homomorphism
K (M) _z> hi+n+d—m(Mv(f)’ %)
1
pienrd=m(nd = PN
this homomorphism is denoted
fii B(M) — R7M(N)
and is determined by f and the h*-orientation of f.

Theorem 1.47. If f : M — N is an h*-oriented map, then for classes x € h* (M)
and y € h*(N),
A () Ux) =yU fi(x).

Proof. We first prove the identity
F @ f ) Ve () = ay(0) U From ).

Consider the diagramme:

h*(N) ® h*(Dv(£),S(vf))

fr®1 m\

h*(M) ® h*(Dv, Sv) h*(N xD) ® h*(Dv, Sv)

nt ®1 /
M

h(Dv,Sy) =<—— " (NXxD®h"(NxD,NxD\Dy)

c* Cx*

h*(Dv,Sy) =<— " (N xD,N xD \ Dv) h*(NxD)®h*(NxD,NxS)

= i /
C

h*(N xD,N xS)

113

=
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The upper quadrilateral commutes because f = 7rN]7; the remainder commutes
because all maps are excisions, inclusions, or products. Thus, the diagramme
commutes. An element y ® ppx at the top is mapped into f*(m}, /"y U ¢x)
following the arrows on the left and into 7}, y U f *onx following the arrows on
the right: thus these elements are equal as we asserted.

Since
F T 'y Uomx) = (£ Uniyx Ugn(1))
= FH(m (Fy Ux) Upnm(1))
= from(f*yUx),
we have R R
From(ffyUx) =ayy U frfom(x).
Thus,
[ yux) = ot From(fy ux) = ot (myy U From(x))
= oat (T y U iy (0 From (1)) U o (1))
= YU ffom(x)
=y U fix).
(¢n = =9 since the bundle over N is trivial.) ]

Next, we establish a functorial property of the “umkehr homomorphism” f;.

Given K L LS M, we seek a theorem of the sort gj o fi = (g o f)1. Since these
homomorphisms clearly depend on the h*-orientations used, in order for there
to be such equality the three orientations must be chosen in some compatible
way. If we assume f and g have specified orientations, we can then orient g o f
as follows:

by Proposition 1.45, both

v(K)® fr(L), v(L)®g (M)
are h*-oriented; thus, by Proposition 1.35
v(K)® f'r(L)® f*(v(L) ® g*"t1(M)) =~ v(K) & f* o g"t(M) & (trivial bundle)

is h*-oriented. This determines an orientation of g o f.
Equivalently, given f: K — LxD%and g:L — M xD?, the composition

ra ’1 ’ ’
KLLde&Mde x DY = M x D+
is go f. Then

v(go /) =v((@x1)of)=v(f)® [ (vEx1).
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This defines the same h*-orientation for g o f.

Note, in particular, that if K, L, and M are h*-oriented, and f, g, and
g o f are given the induced h*-orientations, then the two h*-orientations, i.e.,
the composition orientation and the induced orientation, of g o f agree. This is
clear from the first definition of the composition orientation.

Theorem 1.48. If f : K — L and g : LtoM are h*-oriented maps, the com-
position g o f : toM has an induced h*-orientation and with this orientation
gro fi =(go f)h. Further, if K, L, and M are h*-oriented and f, g, and go f
are oriented by Proposition 1.45, then the orientation of g o f induced by those
of f and g agrees with that given by Proposition 1.45.

Proof. By the comments preceding the statement of the theorem we need only
prove that gy o fi = (g o f)1. To this end consider the diagramme below.

h'(K)

pirCkrd (v (D) - pitm=ked+d (gv(f) )

f* LF* W\

hi+t’—k+d(Ld)’ %) = hi+m—k+d+d' (Ldeav(g)’ %) G hi+m—k+d+d' (Md+d”*)

x| (24 4(2% (%T \

hi+€7k(L) hi+m7k+d/ (Lv(g)’ *) — hi+m7k+d/ (Md/ , *) -~ hi+m7k(M)
g =

All isomorphisms are given by suspensions or Proposition 1.42. The two corner
triangles and the corner square commute by Theorem 1.37. The lower right

hand square commutes because G = ¢ o g. The map F is 3 o f, and so, the

upper left hand square commutes. The collapsing map M d+d _, gv(29F) factors
through F?®v(®) which implies the commutativity of the central triangle. The
left hand column defines fi, the bottom row g, and the diagonal (g o f); thus,

glo fi=(go O

1.4.2 Multiplicative Transformations; Riemann-Roch The-
orem

Let h* be a multiplicative cohomology theory. For (X, A) € %2, h**(X, A) is the

set of formal Laurent series

+00
Do A A€ h(X,A), A=0foralli< some g.

i=—0o0
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Define addition and multiplication in A" (X, A) as follows: if 4 = > A; and
u =, then 1+ p =3 (4; + u;) and A U u is the power series product

(AU = Z AUy
i+j=k

h*™*(X,A) is a (non-commutative) ring under these operations, and a map f :
(X,A) — (Y, B) induces a ring homomorphism f** : h**(Y, B) — h**(X, A) by
taking f* on each coordinate. Similarly, we define

8 h(A) = B (X, A)

coordinate-wise.
Suppose h* and k* are multiplicative theorems. Then ¢ : A" — k™ is a
(normed) multiplicative transformation if

1. ¢ is a natural, additive transformation between the functors A** and k** with
respect to maps f**,

2. t(uU ) =t(u)Ut(d), and

3. If 1, € h**(SY, %) and 1; € k**(SY, #) are the units in &™ and k**, respectively,
and @ = 21, € h** (S, %) and B = Z*1; € k**(S!, ), then t(a) = 8.

Proposition 1.49. For classes u; € h**(X1, A1) and us € h** (X, As), the prod-
uct uy Xug is in h** (X1 X Xo, X1 X Ao U Ay X Xo) and t(u1 X us) = tuy X tus.

Proof. As in §1.3,

uy Xug = pyup Upsus and
t(ur Xuz) = t(py"ur U p3uz) = t(pi'ur) Ui(psuz)
= p7 (tur) U p5*(tus) = tuy X tus.

(]

Proposition 1.50. If u; € h*"(X,A1) and us € h**(X,As), then u; Uuy €
h**(X,Al U A2) and t(u1 U ug) =tuy Utus.

Proof. In the following diagramme,

K (X,A1) @ h™ (X, As) =25 (XXX, XXAzUA; X X) A—**> ™ (X,A; U As)

| [ jf

k**(X,Al) ® k**(X, Ag) ? k**(X X X, X X A2 UA1 X X) ? k**(X,Al U Ag)

the first square commutes by Proposition 1.49 and the second by naturality. O

Proposition 1.51. to Xy, =X ok; i.e., t is stable,
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Proof. By Proposition 1.26, ¥, () = @  u and X (tu) = B tu. Thus, tZ(u) =
ta@tu =B Qtu=2y(tu). O

Proposition 1.52. t04;" =6;" ot.

Proof. The homomorphism ¢;" is the composition

(A, @) —s 1™ (SA, +) — 1™ (CA* U X*) —= 1™ (X, A)

|

R (CAU X, *)

All these homomorphisms commute with ¢.

Suppose « is a vector bundle over X with orientations u € h"(X?,*) and
v € k"(X? x); we can regard u and v as lying in A™(X?, %) and k™ (X?,x)
respectively. Then u and v induce isomorphisms

on (X)) > (X%, %) and  ¢f : K7(X) > K7(X9, )

For x € h**(X), define t(a,x) = cplzltgah(x) € k™ (X). O
Lemma 1.53. Let a be an h- and k-oriented vector bundle over X. Then for
x € ™ (X), t(x) Ut(a, 1) = t(a,x).
Proof.

er(1(x) Ut(a, 1) = gi(1(x) U g 1 (1)
=1 (1) U g trgn(1) Uw
=1 (1(x) U ("¢ 1o (1) Uw)
=t (x) Utep(l)
= 1(m, (x) Uen(1))
= 1px.
Thus, t(x) Ut(a,1) = go,;ltgah(x) = t(a, x). O
Theorem 1.54 (A generalised Riemann-Roch Theorem). If f : X —» Y is a h*-

oriented map of compact, closed manifolds and t : ™ — k™ is a multiplicative
transformation of cohomology theories, then for x € h*™*(X),

tf(x) = K@) v (), D).

Proof. We note first that an A*-orientation u € h"(X%,«) of a vector bundle
determines a k*-orientation (tu), € k" (X%, *) since

Fu=a" €H(S" %) and 1a" = B € K"(S"%);

thus, 8" = i*(tu), and « is k*-oriented. Hence we need not assume additionally
that f : X — Y is k*-orientable; however, in the statement and proof of this
theorem the specific k*-orientation of f is irrelevant.
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The right-hand side of the asserted equation is

EH Vo frer(t(x) Ur(v(f), 1))
which equals R
EH Vo [t (x)

by the Lemma. By the naturality of ¢ this equals

H((EH ™ o [ eon(x)) = 1 (x).
O

Theorem 1.55. Let f : X — Y be a continuous map of h*- and k*-oriented

manifolds. Let t(X) = t(v(X),1) and t(Y) =t(v(Y),1). Then for x € h**(X),
tff () ue(y) = fE(x) v(X)).

Proof.

FE@) UnX) = ¢t fer(t(x) U (X))
= o f ten(x)
= o on(x)
= o [ten(ep fren(x))]
= o Lo (£ () U 1(Y))]
=tf"(x) UL(Y).

1.4.3 Wu Formulae

As applications of the above theorems we present here a proof of the Wu formu-
lae; in a later section we will derive the Atiyah-Hirzebruch differential Riemann-
Roch Theorem.

Let h™* = k™ = H*(—;Z/pZ) and let t = P = 3 P, the sum of the Steenrod
reduced power operations. For p = 2, t = Sq. The Cartan formula implies ¢ is
a multiplicative transformation. For a vector bundle a over X, Sq(a, 1) is the
total Stiefel-Whitney class W(a) of the bundle a.

Lemma 1.56. Every vector bundle is H*(—;Z/2Z)-orientable; a vector bundle
a is H*(—;Z)- or H* (—;Z/pZ)-orientable if and only if the first Stiefel-Whitney
class Wi (a) = 0.

Proof. If « is an n-plane bundle, consider the n-sphere bundle S(a & 1) 5x
and the Gysin sequence with Z/2Z-coefficients:

s H X)) IS B (S(e@ 1) 2 H (X)) » H™(X) — .



32 CHAPTER 1. STRUCTURE OF COHOMOLOGY THEORIES

S(a®1) has a cross-section i : X — S(a®1); and so, the Gysin sequence reduces
to

0— H' (X) 25 H (S(@® 1)) 5 H ~(X) — 0.

There is a class v € H"(S(a®1)) such that A*v = 1 € HY(X). Let w = v—m*i*v.
Then A*w =1 and i*w = 0.
The sequence X5 S(e® 1) 5 X is coexact and so

00— H* (X%, %) —~ > H*(S(a ® 1)) == H*(X) — 0.

T

is exact. There is a unique u,, € H"(X?, %) such that c*u, = w.
Since the diagramme

" —>S@@l)

|

pt—> X

is commutative, so also is

H™ (X, %)

H'(S(@® 1)) —2= H(X)

| |

H"(S") —— H(X),

and it follows that u, restricts to the generator of H"(S", ).
To prove the second part of the lemma, note that wy(a) = ¢! Bun, where g
is the Bockstein homomorphism associated with

0> 2Z/2Z > Z]AZ — Z/2Z — 0
Thus,

wi(a) =0 © u, is the reduction of a mod 4 class
© a is H*(—;Z/4Z) — orientable.

This is equivalent to 1 (X.xg) operating trivially on H*(S";Z) which then by the
Gysin sequence implies the H*(—;Z)- and H*(—;Z/pZ)-orientability of . The
converse is clear. O

The Wu formula asserts there is a class V € H**(X) such that SqV = W(X)(—

Sa(r(X), 1)) and [@ UV](X) = [Sqa](X) for all @ € H*(X). Let Sq™" = 15—
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as formal power series; then SqSq™! = Sq™! Sq = 1 and Sq is multiplicative, Let
f : Xtopt. By Theorem 1.55,

fii H (Sq™H(x) USq™ (v(X), 1) = Sq™ 1(fi(x))

where fi : H*(X) — H*(pt) is given by fi(x) = [x](X), the value of the cohomol-
ogy class x on the top homology class of the manifold X (with Z/2Z coefficients).
For x = Sqa, we then have

[a USq™ (»(X), DI(X) = [Sqal(X).

We claim that Sq(Sq~ ! (v(X), 1)) = Sq(7(X), 1) = W(X). Then V = Sq' (v(X), 1)
is the Wu class and satisfies the formulae above.

Since Sq(r,1) USq(v,v) = Sq(r @ v, 1) = 1 [Appendix B], to verify the claim
we need only prove that

Sq(Sq~t(v(X),1)) USq(v,1) = 1.
To this end we compute
¢(Sa(Sq™ ' (v(X),1)) USq(v,1)) =" Sqe™' Sq™" (1) Un* ™! Sqe(1) U (1)
=7*Sq¢ "' Sqa" (1) USqe(l)

= Sa(ee ™' Sq ! (1))
= p(1).

But ¢ is an isomorphism.






Chapter 2

Complex Vector Bundles and
the Bott Periodicity Theorem

2.1 Bott Periodicity Theorem

2.1.1 Homology of the Unitary Groups

For the complex n-dimensional space C" equipped with a positive definite Her-
mitian inner product, the unitary group U(n) is the group of linear transforma-
tions preserving this inner product. Consider C"~! as a linear subspace of C"*
and choose a vector e; € C" such that (e1,e1) =1 and e; LC*1 ((e1,x) =0 for
all x € C*~1). This defines an inclusion U(n — 1) — U(n) whereby the elements
of U(n — 1) are those transformations of U(n) which leave e; fixed.

The group U(n) acts effectively on the unit sphere $"~! of C" and U(n-1) is
the subgroup of U(n) whose elements leave e; € $?*~! fixed. Thus, U(n)/U(n-1)
is homeomorphic to S$2"~! and the fibration U(n — 1) — U(n) = §2"1 is a
principal U(n — 1)-fibration.

2.1.2 The Universal Base Spaces BU(n)
2.1.3 Bott Periodicity Theorem for BU
2.2 Complex Vector Bundles

2.2.1 Characteristic Classes
2.2.2 Complex Vector Bundles over Spheres
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Chapter 3

The Cohomology Theory K

3.1 Basic Properties of K

3.1.1 Definition of Ké

The groups K(g are a special case of the universal enveloping abelian group of a
monoid. Let G be a set of objects with an associative operation @ and a unit
0. Let A be the free abelian group on the objects of G modulo the subgroup
generated by elements of the form

[ ®B] - [a] - [B]
Then A is an abelian group and the the transformation
e:G— A

defined by e(g) = [g] € A, preserves sums and unit element.

3.1.2 The Multiplicative Transformation ch : K — H"(—;Q)
3.1.3 Cohomology Operations in K¢

3.1.4 Ki-orientation of Complex Vector Bundles
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Chapter 4

Some Geometric Applications

4.1 Vector Bundles over Cell Complexes S" U e

4.1.1 Two technical lemmas

4.1.2 Divisors of Orders of Stable Homotopy Classes, J-
homomorphisms

4.1.3 Maps of Hopf Invariant One
4.2 Toda Brackets
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Appendix A

A.1 The Cohomology Theory Ky
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Appendix B

B.1 A Multiplication Formula

This appendix presents a proof of the following technical proposition which was
used a number of times throughout the text:
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Appendix C

C.1 Fiber Homotopy Equivalence of Bundles, The
Groups J(X)
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Appendix D

Historical Comments

The general idea of obtaining cohomology theories by maps into spectra can be
traced to Barratt [12], in that the track groups of maps from a cofibration yield
an exact sequence. This was made explicit by Puppe [28]. The converse that
cohomology theories are representable in this way was established by Brown
[18].

The material in Chapter 1 on reduced and non-reduced cohomology theories
is described in the fashion of Whitehead [30], while the spectral sequence of
a fibration is presented along lines suggested by Dold [19]. The proof given
of the Dold-Thom-Gysin Theorem also follows Dold (ibid). The approach to
orientability of vector bundles, multiplicative transformations and the Riemann-
Roch Theorem for differentiable manifolds is essentially folk-lore; it was first
presented in [20] but its ideas lie in the work of Atiyah and Hirzebruch as
expounded, for instance, by Hirzebruch in [24]. The proof given here of the Wu
formulas is essentially that of Atiyah and Hirzebruch in [10].

Through the use of Spanier-Whitehead duality [29] one can view the coho-
mology of the Thom space of a normal bundle as being the homology of the
manifold under consideration. An alternate procedure is developed by White-
head in [30] Various of the constructions of Chapter 1 then appear as versions
of Poincare duality, umkehr homomorphism, etc.

The development of the topology of the Unitary Group and associated spaces
presented in Chapter 2 follows that given by the authour in a course at the
University of Chicago in the Winter of 1960. A similar but substantially more
complicated approach works for the Orthogonal and Symplectic Groups [22].
The explicit description of the maps generating 75,41 (SU) given in Theorem 17
is due to Toda.

Atiyah is credited with initiating study of the theory X7, as a cohomology
theory. The material of Chapter 3, Section A, parts 1 and 2 is taken from a
paper by Atiyah and Hirzebruch [10].

The technical lemmas of Section A of Chapter 4 are found in Atiyah and
Hirzebruch [10] and Hirzebruch [23]. The material of Sections 2 and 3 of Chapter
4 follows the authour’s exposition in [21], although it must be noted that Adams
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50 APPENDIX D. HISTORICAL COMMENTS

found ccitee03 a proof similar in spirit to that given here of Theorem 23 some
time earlier than the author; its differences are that he uses results from [1]
while the proof given here uses results on complex cobordism [25].

The Appendix A on the K*-theory essentially follows Atiyah and Hirzebruch
as in [24]. The proposition of Appendix B is very basic, leading in various
roles to the theorems on Stiefel-Whitney and Chern classes of sums of vector
bundles and to the theory of multiplicative sequences. The Appendix C is very
incomplete and is a presentation of material presented by Adams in various
lectures.

Spring 1963.
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