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Preface

A word from the transcriber

This is a study memo of �Cohomology Theories� by Eldon Dyer. It is rather
amazing that this succinct account on the subject was published in 1969, more
than �fty years ago.

The preface by Dyer

Let 𝒫 be the category whose objects are �nite cell complexes and whose maps
are continuous maps. Let 𝒫

2 be the category of pairs in 𝒫; i.e., pairs (𝑋, 𝐴)
where 𝑋 is a �nite cell complex and 𝐴 is a subcomplex of 𝑋 , and maps are
continuous maps of pairs. Let 𝐺 be the category of abelian groups and homo-
morphisms.

Let 𝑇 : 𝒫2 → 𝒫
2 be the covariant functor de�ned by

𝑇 (𝑋, 𝐴) = (𝐴,∅) for (𝑋, 𝐴) ∈ 𝒫2 ext 𝑎𝑛𝑑

𝑇 ( 𝑓 ) = 𝑓 | (𝐴,∅) : (𝐴,∅) → (𝐵,∅) for

a map 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) in 𝒫
2.

A cohomology theory on 𝒫 is a sequence of contravariant functors

𝐻𝑛 : 𝒫2 → 𝐺

and a sequence of natural transformations

𝛿𝑛 : 𝐻𝑛−1 ◦ 𝑇 → 𝐻𝑛

subject to the conditions

1) If 𝑓0, 𝑓1 ∈ 𝒫 and 𝑓0 ≃ 𝑓1, (≃ means �is homotopic to�), then 𝐻𝑛 ( 𝑓0) = 𝐻𝑛 ( 𝑓1)
for all 𝑛;

2) If (𝑋; 𝐴, 𝐵) is a triad in 𝒫 (all possible pairs of 𝑋, 𝐴, 𝐵, 𝐴∪ 𝐵 and 𝐴∩ 𝐵 are
in 𝒫) and 𝑋 = 𝐴 ∪ 𝐵, then for the inclusion map 𝑘 : (𝐴, 𝐴 ∩ 𝐵) → (𝑋, 𝐵),

𝐻𝑛 (𝑘) : 𝐻𝑛 (𝑋, 𝐵) → 𝐻𝑛 (𝐴, 𝐴 ∩ 𝐵)

is an isomorphism for all 𝑛; and
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3) If (𝑋, 𝐴) ∈ 𝒫
2 and 𝑖 : (𝐴,∅) → (𝑋,∅) and 𝑗 : (𝑋,∅) → (𝑋, 𝐴) are the

inclusion maps, then the sequence

· · · → 𝐻𝑛−1(𝐴,∅) 𝛿𝑛

−−→ 𝐻𝑛 (𝑋, 𝐴)
𝐻𝑛 ( 𝑗 )
−−−−−→ 𝐻𝑛 (𝑋,∅)

𝐻𝑛(𝑖)
−−−−−→ 𝐻𝑛 (𝐴,∅) → · · ·

of the pair (𝑋, 𝐴) is exact.

These conditions are exactly the Eilenberg-Steenrod axioms for cohomology
except we omit the condition

𝐻𝑖 (pt, 0) = 0 for 𝑖 ≠ 0.

Recall that with this extra condition, one has the singular cohomology groups
with coe�cients in 𝐻0 (pt, 0). We shall speak of our cohomology theories as
having coe�cients in the graded system {𝐻𝑛 (pt,∅)}.

In these notes we discuss such cohomology theories. It has been clear for the
past two or three years that they furnish a strong tool for analysing manifolds.

The notes are divided into four chapters. The �rst deals with generalities of
such theories: axiomatics, origins, spectral sequence of a �bration, multiplicative
structures, orientation of bundles, Poincare duality, and a type of generalised
Riemann-Roch theorem. The second studies the unitary group and character-
istic classes of complex vector bundles. The third discusses an example: the
Grothendieck ring 𝐾∗

𝒞
(). The fourth is concerned with applications: the 𝐽-

homomorphism, maps of Hopf invariant 1, and properties of stable homotopy.
There are also three appendices, discussing more brie�y the cohomology

theory 𝐾∗
ℛ

and the 𝐽-groups.
The author wishes to acknowledge here his appreciation of Walter Daum for

assistance in preparing these notes.
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Chapter 1

Structure of Cohomology

Theories

1.1 Axiomatics

1.1.1 Eilenberg Steenrod axioms for (generalised) coho-
mology

A (genealised) cohomology theory ℎ∗ on 𝒯ℴ𝓅
2 (or any nice subcategory like

compact pairs, pairs of CW-complexes, etc,) is a collection of

contravariant functors

ℎ𝑛 : 𝒯ℴ𝓅
2 → 𝒜𝒷, 𝑛 ∈ Z

where 𝒜𝒷 denotes the category of abelian groups, and

natural transformations

𝛿𝑛 : 𝑗𝑛 ◦ 𝑅 → ℎ𝑛+1

where 𝑅 : 𝒯ℴ𝓅
2 → 𝒯ℴ𝓅

2 is the functor that sends (𝑋, 𝐴) to (𝐴,∅) and
𝑓 to 𝑓 |𝐴, satisfying the following axioms:

(i) Homotopy invariance. If 𝑓 ≃ 𝑔, then ℎ𝑛 ( 𝑓 ) = ℎ𝑛 (𝑔) for every 𝑛 ∈ Z.
(ii) Excision. For every pair (𝑋, 𝐴) and 𝑈 ⊂ 𝐴 such that the closure 𝑈

is contained in the interior 𝐴◦, the inclusion (𝑋 \𝑈, 𝐴 \𝑈) → (𝑋, 𝐴)
induces and isomorphism

ℎ𝑛 (𝑋 \𝑈, 𝐴 \𝑈) � ℎ𝑛 (𝑋, 𝐴) for every 𝑛 ∈ Z.

(iii) Exactness. For every pair (𝑋, 𝐴), consider the inclusions 𝑖 : 𝐴 → 𝑋

and 𝑗 : (𝑋,∅) → (𝑋, 𝐴). Then there is a long exact sequence

· · · → ℎ𝑛−1(𝐴) 𝛿𝑛−1
−−−−→ ℎ𝑛 (𝑋, 𝐴)

𝑗∗

−→ ℎ𝑛 (𝑋) 𝑖∗−→ ℎ𝑛 (𝐴)
𝛿𝑛

−−→ ℎ𝑛+1 (𝑋, 𝐴)
𝑗∗

−→ ℎ𝑛+1 (𝑋) 𝑖∗−→ ℎ𝑛+1 (𝐴) → · · ·

1



2 CHAPTER 1. STRUCTURE OF COHOMOLOGY THEORIES

1.1.2 Three Theorems

The three theorems which follow can be proved just as in Eilenberg and Steen-
rod, but a simpler proof for the third due to M. Barratt and J. H. C. Whitehead
is indicated.

Theorem 1.1 (Exact Sequence of a Triple). If (𝑋; 𝐴, 𝐵) is a triple, then the
sequence

· · · → 𝐻𝑛−1(𝐴, 𝐵) Δ−→ 𝐻𝑛 (𝑋, 𝐴) Φ−→ 𝐻𝑛 (𝑋, 𝐵) Ψ−→ 𝐻𝑛 (𝐴, 𝐵) → · · ·

is exact, where Φ and Ψ are induced by the inclusion maps and Δ is the compo-
sition

𝐻𝑛−1(𝐴, 𝐵) → 𝐻𝑛−1(𝐴,∅) → 𝐻𝑛 (𝑋, 𝐴).

Theorem 1.2 (Exact Sequence of a Triad). If (𝑋; 𝐴, 𝐵) is a triad, then the
sequence

· · · → 𝐻𝑛−1(𝐴, 𝐴 ∩ 𝐵) Δ−→ 𝐻𝑛 (𝑋, 𝐴 ∪ 𝐵) Φ−→ 𝐻𝑛 (𝑋, 𝐵) Ψ−→ 𝐻𝑛 (𝐴, 𝐴 ∩ 𝐵) → · · ·

is exact, where Φ and Ψ are induced by the inclusion maps and Δ is the compo-
sition

𝐻𝑛−1(𝐴, 𝐴 ∩ 𝐵) �−→ 𝐻𝑛−1(𝐴 ∪ 𝐵, 𝐵) → 𝐻𝑛−1(𝐴 ∪ 𝐵,∅) 𝛿−→ 𝐻𝑛 (𝑋, 𝐴 ∪ 𝐵)

Theorem 1.3 (Mayer-Vietoris Theorem). Let (𝑋; 𝐴, 𝐵) be a triad with 𝑋 =

𝐴 ∪ 𝐵. Then the sequence

· · · → 𝐻𝑛−1(𝐴∩𝐵,∅) Δ−→ 𝐻𝑛 (𝑋,∅) Φ−→ 𝐻𝑛 (𝐴,∅)⊕𝐻𝑛 (𝐵,∅) Ψ−→ 𝐻𝑛 (𝐴∩𝐵,∅) → · · · .

is exact, where the homomorphisms are de�ned as in the proof.

Lemma 1.4 (Barratt-Whitehead lemma). 1 If the diagramme of groups and
homomorphisms

· · · // 𝐴𝑖
𝑓𝑖 //

𝛼𝑖

��

𝐵𝑖

𝑔𝑖 //

𝛽𝑖

��

𝐶𝑖

ℎ𝑖 //

𝛾𝑖

��

𝐴𝑖+1
𝑓𝑖+1 //

𝛼𝑖+1
��

𝐵𝑖+1 //

𝛽𝑖+1
��

· · ·

· · · // 𝐴𝑖
′

𝑓
′
𝑖

// 𝐵𝑖
′

𝑔
′
𝑖

// 𝐶
′
𝑖

ℎ
′
𝑖

// 𝐴
′
𝑖+1

𝑓
′
𝑖+1

// 𝐵
′
𝑖+1

// · · ·

is commutative, the horizontal sequences are exact, and the 𝛾𝑖 are isomorphisms,
then the sequence

· · · → 𝐴𝑖
(𝛼𝑖 , 𝑓𝑖 )−−−−−→ 𝐴

′
𝑖 ⊕ 𝐵1

𝑓𝑖−𝛽𝑖−−−−→ 𝐵
′
𝑖

ℎ𝑖𝛾
−1
𝑖

𝑔
′
𝑖−−−−−−→ 𝐴𝑖+1 → · · · .

is exact.
1See The First Non-Vanishing Group of an (n+l)-ad M. Barratt, J. Whitehead Published

1 July 1956 Mathematics Proceedings of The London Mathematical Society



1.1. AXIOMATICS 3

The Mayer-Vietoris Theorem follows by applying this lemma to the following
diagramme, in which the isomorphism is condition (ii) in the de�nition of a
cohomology theory (��1.1.1).

· · · // 𝐻𝑛−1(𝑋,∅) //

��
𝐻𝑛−1(𝐴,∅) //

��
𝐻𝑛 (𝑋, 𝐴) //

���

𝐻𝑛 (𝑋,∅) //

��

𝐻𝑛 (𝐴,∅) //

��

· · ·

· · · // 𝐻𝑛−1(𝐵,∅) // 𝐻𝑛−1(𝐴 ∩ 𝐵,∅) // 𝐻𝑛 (𝐵, 𝐴 ∩ 𝐵) // 𝐻𝑛 (𝐵,∅) // 𝐻𝑛 (𝐴 ∩ 𝐵,∅) // · · ·

1.1.3 Reduced Cohomology Theories

Let 𝒫0 be the category of �nite cell complexes with base point and continuous
base point preserving maps. A reduced cohomology theory is a sequence

𝐻𝑛 : 𝒫0 → 𝒜

of contravariant functors and a sequence

𝜎𝑛 : 𝐻𝑛+1 ◦ Σ→ 𝐻𝑛

of natural transformations subject to three conditions.

Construction of spaces

Before stating these conditions we recall some important constructions. Let
(𝑋, 𝑥0) and (𝑌, 𝑦0) be in 𝒫0.

The wedge (𝑋 ∨ 𝑌, ∗) ∈ 𝒫0 is the subspace (𝑋 × 𝑦0) ∪ (𝑥0 × 𝑌 ) of 𝑋 × 𝑌 with
𝑥 × 𝑦 = ∗ as base point.

The smash (𝑋#𝑌, ∗) ∈ 𝒫0 is the factor space (𝑋 ×𝑌 )/(𝑋 ∨𝑌 ) with base point
the image of 𝑋 ∨ 𝑌 .

The reduced suspension For (𝑋, 𝑥0) = (S1, 1), the unit circle {𝑧 ∈ C| |𝑥 | = 1},
𝑋#𝑌 = Σ𝑌 is the reduced suspension of 𝑌 . Σ is a covariant functor from
𝒫0 to 𝒫0 with Σ( 𝑓 ) = id# 𝑓 , id : S1 → S1 being the identity map.

We de�ne 𝑝 : 𝒫2 → 𝒫0 by 𝑝(𝑋, 𝐴) = (𝑋/𝐴, ∗), where for 𝐴 = ∅ , 𝑋/∅ = 𝑋+

the disjoint union of 𝑋 and a distinct point +, to be taken as the base point in
𝑝(𝑋,∅) = (𝑋,+). The reduced cone 𝐶𝐴 ∪ 𝑋 of a pair (𝑋, 𝐴) with ∗ ∈ 𝐴 ⊂ 𝑋

consists of 𝑋 together with a cone over 𝐴 with the interval from the base point
collapsed to the new base point (the �whisker construction�); i.e.,

𝐶𝐴 ∪ 𝑋 = {(𝐼, (0))#(𝐴, ∗)} ∪ 𝑋.

Note that 𝑝 : (𝑋, 𝐴) → (𝑋/𝐴, ∗) factors through (𝐶𝐴 ∪ 𝑋, ∗):

(𝑋, 𝐴)
𝐶 (𝑋,𝐴)
−−−−−−→ (𝐶𝐴 ∪ 𝑋, ∗) ℎ−→ (𝑋/𝐴, ∗)

where 𝐶 is the cone functor and ℎ identi�es 𝐶𝐴 with the base point. As (𝑋, 𝐴)
is a �nite cellular pair, it has the homotopy extension property, so the map
(𝐶𝐴 ∪ 𝑋) → (𝑋/𝐴) is a homotopy equivalence.
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Axioms for a reduced cohomology theory

We are now ready to state the conditions for a reduced cohomology theory.
A reduced cohomology theory is a sequence

𝐻𝑛 : 𝒫0 → 𝒜

of contravariant functors and a sequence

𝜎𝑛 : 𝐻𝑛+1 ◦ Σ→ 𝐻𝑛

of natural transformations such that

1) If 𝑓0, 𝑓1 ∈ 𝒫0 and 𝑓0 ≃ 𝑓1 in 𝒫0, then 𝐻
𝑛 ( 𝑓0) = 𝐻𝑛 ( 𝑓1) for all 𝑛;

2) 𝜎𝑛 (𝑋) : 𝐻𝑛+1 (Σ𝑋) → 𝐻𝑛 (𝑋) is an isomorphism for all 𝑋 ∈ 𝒫0; and

3) If (𝑋, 𝐴) ∈ 𝒫2 and ∗ ∈ 𝐴, then the sequence

𝐻𝑛 (𝑋/𝐴)
𝐻𝑛 (𝑝)
−−−−−→ 𝐻𝑛 (𝑋)

𝐻𝑛 (𝑖)
−−−−−→ 𝐻𝑛 (𝐴)

is exact at 𝐻𝑛 (𝑋) for each 𝑛, where 𝑝 : 𝑋 → 𝑋/𝐴 is the map collapsing 𝐴 to
a point and 𝑖 : 𝐴→ 𝑋 is the inclusion map.

The condition 3) for reduced theories appears weaker than the correspond-
ing condition for non-reduced theories. However, we may deduce the following
condition
3
′
) If (𝑋, 𝐴) ∈ 𝒫2 and ∗ ∈ 𝐴, then the sequence

· · · → 𝐻𝑛−1(𝐴) Δ𝑛−1
−−−−→ 𝐻𝑛 (𝑋/𝐴)

𝐻𝑛 (𝑝)
−−−−−→ 𝐻𝑛 (𝑋)

𝐻𝑛 (𝑖)
−−−−−→ 𝐻𝑛 (𝐴) → · · ·

is exact, where Δ𝑛−1 is the composition

𝐻𝑛−1(𝐴)
𝜎𝑛−1 (𝐴)−1
−−−−−−−−−→

�
𝐻𝑛 (Σ𝐴)

𝐻𝑛 (𝑘 )
−−−−−→ 𝐻𝑛 (𝐶𝐴 ∪ 𝑋) −→

�
𝐻𝑛 (𝑋/𝐴)

and 𝑘 : 𝐶𝐴 ∪ 𝑋 → Σ𝐴 is the map collapsing 𝑋 to a point.
To see the exactness at 𝐻𝑛 (𝑋/𝐴) we observe that 𝐻𝑛−1(𝐴) → 𝐻𝑛 (𝐶𝐴∪𝑋) →

𝐻𝑛 (𝑋) is equivalent to

𝐻𝑛 (Σ𝐴) → 𝐻𝑛 (𝐶𝐴 ∪ 𝑋) → 𝐻𝑛 (𝑋)

and 3) applies since (𝐶𝐴 ∪ 𝑋)/𝑋 is homeomorphic to Σ𝐴. To see the exactness
at 𝐻𝑛−1(𝐴), we observe that 𝐻𝑛 (𝑋) → 𝐻𝑛−1(𝐴) → 𝐻𝑛 (𝑋/𝐴) is equivalent to

𝐻𝑛 (Σ𝑋) → 𝐻𝑛 (Σ𝐴) → 𝐻𝑛 (𝐶𝐴 ∪ 𝑋)

and 3) applies since Σ𝐴 has the homotopy type of 𝐶𝑋 ∪ (𝐶𝐴 ∪ 𝑋) and (𝐶𝑋 ∪
(𝐶𝐴 ∪ 𝑋))/(𝐶𝐴 ∪ 𝑋) is homeomorphic to Σ𝑋.



1.1. AXIOMATICS 5

Theorem 1.5. There is a natural 1-1 correspondence between theories {𝐻, 𝛿}
and {𝐻, 𝜎} given by the commutative diagramme

𝒫
2 𝑝 //

𝐻   

𝒫0

𝐻~~
𝒜

Proof. For (𝑋, 𝐴) ∈ 𝒫
2 and a reduced theory {𝐻, 𝜎} de�ne (𝛼𝐻𝑛 (𝑋, 𝐴) =

𝐻𝑛 (𝑋/𝐴); de�ne 𝛿 : (𝛼𝐻𝑛−1) (𝐴,∅) → (𝛼𝐻𝑛) (𝑋, 𝐴) to be the composition

𝐻𝑛−1(𝐴+) 𝜎←−
�
𝐻𝑛 (Σ𝐴+)

𝐻𝑛 (𝑝)
−−−−−→ 𝐻𝑛 (𝑋+/𝐴+) � 𝐻𝑛 (𝑋/𝐴).

This system satis�es the cohomology axioms; in particular, 𝛿 is the image of Δ
under 𝛼.

For (𝑋, ∗) ∈ 𝒫0 and a theory {𝐻, 𝛿} de�ne (𝛽𝐻𝑛) (𝑋) ≡ 𝐻𝑛 (𝑋, {∗}) and de�ne
𝜎 to be composition of the isomorphisms

𝐻𝑛 (𝑋), {∗}) � 𝐻𝑛+1 (𝐶𝑋, 𝑋) � 𝐻𝑛+1 (Σ𝑋, {∗}),

where the �rst isomorphism is given by the exact sequence of the triple (𝐶𝑋, 𝑋, {∗})
and the second is a special case of more general isomorphism

𝐻𝑛 (𝑋, 𝐴) �−→ 𝐻𝑛 (𝑋/𝐴, {∗});

this is given by the composition

𝐻𝑛 (𝑋/𝐴, {∗}) → 𝐻𝑛 (𝐶𝐴 ∪ 𝑋,𝐶𝐴) → 𝐻𝑛 (𝑋, 𝐴),

where the �rst homomorphism is an isomorphism since the pairs have the same
homotopy type and the second is an isomorphism by the exact sequence of the
triad (𝐶𝐴 ∪ 𝑋; 𝑋,𝐶𝐴). The system {𝛽𝐻, 𝜎} satis�es the axioms for a reduced
cohomology theory; in particular, axiom 3 is a consequence of the exact sequence
of a triple.

It is clear from the constructions that 𝛽𝛼{𝐻, 𝜎} = {𝐻, 𝜎} and 𝛼𝛽{𝐻, 𝛿} =
{𝐻, 𝛿}. □

1.1.4 Spectra

A spectrum 𝒳 is an indexed family {𝑋𝑖}𝑖∈Z of spaces with base point together
with a family of base point preserving maps 𝑓𝑖 : Σ𝑋𝑖 → 𝑋𝑖+1.

Example 1.6. a) 𝒮 is the spectrum with 𝑋𝑖 = S𝑖, the 𝑖-sphere and 𝑓𝑖 : ΣS𝑖 →
S𝑖+1 the identity.

b) For an abelian group 𝐺, 𝒦(𝐺) is the spectrum whose 𝑖-th space is
𝐾 (𝐺, 𝑖) 𝑖 > 0

𝐺 𝑖 = 0

pt 𝑖 < 0



6 CHAPTER 1. STRUCTURE OF COHOMOLOGY THEORIES

From the canonical homotopy equivalence 𝐾 (𝐺, 𝑖) ≃−→ Ω𝐾 (𝐺, 𝑖+1), we obtain
the maps Σ𝐾 (𝐺, 𝑖) → 𝐾 (𝐺, 𝑖 + 1).

c) For 𝑋 a space with base point, 𝒮(𝑋) is the spectrum with 𝑖-th term Σ𝑋.
Thus, 𝒮(S0) = 𝒮.

d) For 𝑋 a space with base point, and 𝒴 a spectrum, the spectra 𝑋#𝒴 and
𝒴#𝑋 are given by {𝑋#𝑌𝑖} and {𝑌𝑖#𝑋}. In particular, we have the spectrum
Σ𝒴 = S1#𝒴.

e) For 𝒳 a spectrum, 𝒳𝑞 is the spectrum with 𝑖-th term (𝑋𝑞)𝑖 = 𝑋𝑞+1.

We shall see that spectra de�ne cohomology theories. Let [𝐴, 𝐵] denote
the set of homotopy classes of base point preserving maps. For 𝐴 ∈ 𝒫0 de�ne
{𝐴,𝒳} to be

lim−−→([Σ
𝑛𝐴, 𝑋𝑛], 𝑖𝑛),

where for 𝛼 ∈ [Σ𝑛𝐴, 𝑋𝑛] , 𝑖𝑛 (𝛼) ∈ [Σ𝑛+1𝐴, 𝑋𝑛+1] is the composition

ΣΣ𝑛𝐴
Σ𝛼−−→ Σ𝑋

𝑓𝑛−−→ 𝑋𝑛+1.

For 𝑛 ≥ 1, [Σ𝑛𝐴, 𝑋] is a group and 𝑖𝑛 is a homomorphism; for 𝑛 ≥ 2, [Σ𝑛𝐴, 𝑋]
is an abelian group. Thus, {𝐴,𝒳} is an abelian group.

De�ne the homomorphism 𝜎 : {𝐴,𝒳} → {Σ𝐴,𝒳1} to be the direct limit of
𝜎 : [Σ𝑛𝐴, 𝑋𝑛] → [Σ𝑛Σ𝐴, 𝑋𝑛+1], where 𝜎𝑛 = 𝑖𝑛. We can take this limit since 𝜎𝑛

and the 𝑖𝑛 commute. 𝜎 only shifts {𝐴,𝒳} over one in itself; so we have clearly

Lemma 1.7. 𝜎 : {𝐴,𝒳} �−→ {Σ𝐴,𝒳1}.

For 𝑔 : 𝐴 → 𝐵 in 𝒫0, composition de�nes a homomorphism 𝑔∗ : {𝐵,𝒳} →
{𝐴,𝒳}.

Lemma 1.8. (id)∗ = id; (𝑔 ◦ 𝑓 )∗ = 𝑓 ∗ ◦ 𝑔∗; if 𝑓 ≃ 𝑔 in 𝒫0, then 𝑓 ∗ = 𝑔∗.

Lemma 1.9. For ∗ ∈ 𝐵 ⊂ 𝑌 , Σ𝑛 (𝐶𝐵 ∪𝑌 ) is homeomorphic to 𝐶 (Σ𝑛𝐵) ∪ (Σ𝑛𝑌 ).

It su�ces to prove this for 𝑛 = 1, but that is clear from the de�nitions.

Lemma 1.10. For ∗ ∈ 𝐵 ⊂ 𝑌 , and 𝐵 𝑖−→ 𝑌
𝑝
−→ 𝑌/𝐵 the inclusion and collapsing

maps, the sequence {𝑌/𝐵,𝒳}
𝑝∗

−−→ {𝑌,𝒳} 𝑖∗−→ {𝐵,𝒳} is exact at {𝑌,𝒳}.

Proof. For 𝑋 a space with base point

[𝐶𝐵 ∪ 𝑌, 𝑋] → [𝑌, 𝑋] → [𝐵, 𝑋]

is an exact sequence of sets. Thus, by Lemma 1.9

[Σ𝑛 (𝐶𝐵 ∪ 𝑌 ), 𝑋𝑛] → [Σ𝑛𝑌, 𝑋𝑛] → [Σ𝑛𝐵, 𝑋𝑛]

is an exact sequence of groups; but exactness commutes with direct limits and
𝐶𝐵 ∪ 𝑌 and 𝑌/𝐵 have the same homotopy type. The lemma follows. □
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Theorem 1.11. For a spectrum and a space 𝑌 ∈ 𝒫0, 𝐻
𝑞 (𝑌 ;𝒳) = {𝑌,𝒳𝑞} and

𝜎𝑛 : 𝐻𝑛+1 (Σ𝑌 ;𝒳) → 𝐻𝑛 (𝑌 ;𝒳), the inverse of the isomorphism of Lemma 1.7,
de�ne a reduced cohomology theory.

A map ℱ : 𝒳 → 𝒴 of spectra is a collection 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖 of maps of the
terms of the spectra which for 𝑖 su�ciently large homotopy commute with the
de�ning maps of the spectra:

Σ𝑋𝑖
Σ //

��

Σ𝑌𝑖

��
𝑋𝑖+1 // 𝑌𝑖+1

Spectra have the role of coe�cients in these cohomology theories and maps
of them induced �coe�cient homomorphisms�; i.e., natural transformations of
theories.

We cite without proof the following result of E. Brown [18]:

Theorem 1.12. If 𝐻 is a reduced cohomology theory on 𝒫0 and 𝐻𝑞 (S0) is
countable for all 𝑞, then there is a spectrum𝒴 such that 𝐻∗ (−) and 𝐻∗ (−;𝒴) are
naturally equivalent. Furthermore, 𝒴 can be found so that the map 𝑌𝑛 → Ω𝑌𝑛+1
induced by Σ𝑌𝑛 → 𝑌𝑛+1, is a homotopy equivalence (𝒴 is an Ω-spectrum).

1.2 Spectral Sequence of a Fibration

1.2.1 Exact Couples

Some familiarity with exact couples is assumed and we only review brie�y the
basic de�nitions, notation and propositions.

For each pair (𝑝, 𝑞) of integers we are given abelian groups 𝐴𝑝,𝑞 and 𝐶 𝑝,𝑞

and homomorphisms 𝑓 , 𝑔 and ℎ so that the � 𝑝-sequence�

· · · → 𝐴𝑝−1,𝑞−1 ℎ−→ 𝐶 𝑝,𝑞−1 𝑔
−→ 𝐴𝑝,𝑞−1 𝑓

−→ 𝐴𝑝−1,𝑞 ℎ−→ 𝐶 𝑝,𝑞 𝑔
−→ 𝐴𝑝,𝑞 → · · ·

is exact.
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We arrange these sequences in the following diagramme:

𝐴𝑝+𝑟 ,𝑞−𝑟 //

𝑓

��

𝐶 𝑝+𝑟+1,𝑞−𝑟

𝐴𝑝+𝑟−1,𝑞−𝑟+1 ℎ //

𝑓��

𝐶 𝑝+𝑟 ,𝑞−𝑟+1

𝐶 𝑝,𝑞−1 𝑔 +3 𝐴𝑝,𝑞−1

𝑓

��

...

𝑓

��
𝐶 𝑝,𝑞−1 𝑔 // 𝐴𝑝−1,𝑞 ℎ +3

𝑓

��

𝐶 𝑝,𝑞 𝑔 +3 𝐴𝑝,𝑞

𝑓

��
𝐴𝑝−2,𝑞+1 ℎ //

𝑓��

𝐶 𝑝−1,𝑞+1 𝑔 // 𝐴𝑝−1,𝑞+1 ℎ +3

𝑓

��

𝐶 𝑝,𝑝+1

...

��
𝐶 𝑝−𝑟 ,𝑞+𝑟−1 𝑔 // 𝐴𝑝−𝑟 ,𝑞+𝑟−1

𝑓

��
𝐶 𝑝−𝑟−1,𝑞+𝑟 𝑔 // 𝐴𝑝−𝑟−1,𝑞+𝑟

The sequence in the bold aroows is the 𝑝-sequence and the sum of the indices
in each column is constant.

We de�ne

𝑍
𝑝,𝑞
𝑟 = 𝑔−1(im 𝑓 (𝑟−1) ) ⊂ 𝐶 𝑝,𝑞 and

𝐵
𝑝,𝑞
𝑟 = ℎ(ker 𝑓 (𝑟−1) ) ⊂ 𝐶 𝑝,𝑞 .

Then we can de�ne 𝜃𝑟 : 𝑍 𝑝,𝑞
𝑟 → 𝐶 𝑝+𝑟 ,𝑞−𝑟+1/𝐵𝑝+𝑟 ,𝑞−𝑟+1

𝑟 to be ℎ ◦ ( 𝑓 (𝑟−1) )−1 ◦ 𝑔.
Letting 𝐸 𝑝,𝑞

𝑟 ≡ 𝑍 𝑝,𝑞
𝑟 /𝐵𝑝,𝑞

𝑟 , we see that 𝜃𝑟 induces a homomorphism

𝑑𝑟 : 𝐸 𝑝,𝑞
𝑟 → 𝐸

𝑝+𝑟 ,𝑞−𝑟+1
𝑟 .

Furthermore, 𝑑𝑟 ◦ 𝑑𝑟 = 0 and so the homology groups ℋ(𝐸𝑟 , 𝑑𝑟 ) are de�ned as
usual. Exactness in the diagramme at 𝐴𝑝+𝑟−1,𝑞−𝑟+1 and 𝐴𝑝−𝑟 ,𝑞+𝑟−1 imply that
ℋ(𝐸𝑟 , 𝑑𝑟 ) � 𝐸 𝑝,𝑞

𝑟+1.

The sequence of groups {𝐸 𝑝,𝑞
𝑟 } and di�erentials 𝑑𝑟 is the spectral sequence

of the exact couple (𝐴,𝐶), 𝐴 = ⊕𝑝,𝑞𝐴
𝑝,𝑞 and 𝐶 = ⊕𝑝,𝑞𝐶

𝑝,𝑞.
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De�ne

𝑍
𝑝,𝑞
∞ = 𝑔−1(∩𝜈ℑ 𝑓 (𝜈) ) ⊂ 𝐶 𝑝,𝑞 ,

𝐵
𝑝,𝑞
∞ = ℎ(∪𝜈 ker 𝑓 (𝜈) )𝐶 𝑝,𝑞 ,

𝐸
𝑝,𝑞
∞ = 𝑍

𝑝,𝑞
∞ /𝐵𝑝,𝑞

∞ .

For 𝑝 + 𝑞 = 𝑛, de�ne 𝐴𝑛 = lim←−−(𝐴
𝑝,𝑞 , 𝑓 ) and 𝐹𝑝𝐴

𝑛 = ker(𝐴𝑛 → 𝐴𝑝,𝑞). Then

𝐹𝑝 (𝐴𝑛) ⊃ 𝐹𝑝+1(𝐴𝑛).
If the following two convergence conditions hold

1) 𝐴𝑝−𝑟 ,𝑞+𝑟 𝑓
−→ 𝐴𝑝−𝑟−1,𝑞+𝑟+1 is 0 for 𝑟 > 𝜈(𝑝, 𝑞), and

2) 𝐴𝑝+𝑟 ,𝑞−𝑟 𝑓
−→ 𝐴𝑝+𝑟−1,𝑞−𝑟+1 is � for 𝑟 > 𝜈̃(𝑝, 𝑞),

then 𝑍 𝑝,𝑞
𝑟 � 𝑍

𝑝,𝑞
∞ and 𝐵𝑝,𝑞

𝑟 � 𝐵
𝑃,𝑞
∞ for large 𝑟 and 𝐸 𝑝,𝑞

𝑟 � 𝐸
𝑝,𝑞
∞ � 𝐹𝑝−1 (𝐴𝑛)/𝐹𝑝 (𝐴𝑛),

𝑛 = 𝑝 + 𝑞.
We note that the spectral sequence is a covariant functor on exact couples;

i.e., if 𝐹 : (𝐴,𝐶) → (𝐴′ , 𝐶 ′ ) is a map of exact couples, then there are induced
maps

𝐸𝑟 (𝐹) : 𝐸𝑟 → 𝐸
′
𝑟

of spectral sequences with the appropriate functorial properties. If the conver-
gence conditions hold and some 𝐸𝑟 (𝐹) is an isomorphism, then all succeeding
ones are and 𝐴𝑛 � 𝐴

′
𝑛.

1.2.2 Spectral Sequence of a ℎ∗-�bration

Let 𝜋 : 𝐸 → 𝐵 be a continuous map of spaces in 𝒫; assume 𝐵 is connected. It
su�ces to consider the case in which 𝐸 and 𝐵 are �nite simplicial complexes
and 𝜋 is simplicial, for this is equivalent to the general case up to homotopy.

If {ℎ𝑛} is a cohomology theory, de�ne 𝐴𝑝,𝑞 = ℎ𝑝+𝑞 (𝜋−1(𝐵 (𝑝) )), where 𝐵 (𝑝)
is the 𝑝−skeleton of 𝐵, and 𝐶 𝑝,𝑞 = ℎ𝑝+𝑞 (𝜋−1(𝐵 (𝑝) ), 𝜋−1(𝐵 (𝑝−1) )). These groups
form an exact couple satisfying the convergence condition. Since 𝐸 is �nite
dimensional, 𝐴𝑛 � ℎ𝑛 (𝐸).

We shall say 𝜋 is an ℎ∗-�bration if for each simplex Δ f 𝐵 and each vertex
𝑣 of Δ, the homomorphism ℎ∗ (𝜋−1(Δ)) → ℎ∗ (𝜋−1(𝑣)) induced by inclusion is an
isomorphism. A Serre �bration is an 𝐻∗-�bration, where 𝐻∗ is ordinary singular
cohomology, and we will see later that an 𝐻∗-�bration is an ℎ∗-�bration for any
cohomology theory ℎ∗.

To simplify the notation in what follows, we will write {𝑋,𝑌 }𝑖 for ℎ𝑖 (𝜋−1(𝑋), 𝜋1 (𝑌 ))
when 𝑌 ⊂ 𝑋 ⊂ 𝐵. We assume throughout the remainder of this section that 𝜋
is an ℎ∗-�bration.

Lemma 1.13. For simplices Δ
′ ⊂ Δ ⊂ 𝐵, the homomorphism {Δ}∗ → {Δ′ }∗

induced by inclusion is an isomorphism.
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Proof. The diagramme

{Δ}∗ //

""

{Δ′ }∗

||
{𝑣}∗

commutes because the homomorphisms are induced by inclusion, and the two
lower homomorphisms are isomorphisms. □

De�ne a 𝑘-box to be either a 𝑘-simplex or the union of members of a non-
empty collection of (𝑘 − 1)-simplices of a 𝑘-simplex which does not include all
of its (𝑘 − 1)-simplices.

Lemma 1.14. If 𝐷
′ ⊂ 𝐷 are boxes in 𝐵 , the homomorphism {𝐷}∗ → {𝐷 ′ }∗

induced by inclusion is an isomorphism.

Proof. The argument is by induction on the dimension of the smaller box 𝐷
′
.

It su�ces to give the proof when 𝐷 is a simplex, because each box is contained
in a simplex. By Lemma 1.13 the conclusion follows if 𝐷

′
is also a simplex.

Suppose 𝐷
′
= 𝐷1 ∪ 𝐷2, where 𝐷1 is a box and 𝐷2 is a simplex. hen 𝐷1 ∩ 𝐷2 is

a box of lower dimension than that of 𝐷
′
. Hence, by the induction assumption

and Lemma 1.13, the indicated homomorphisms in the diagramme

{𝐷}∗ //

�

��

{𝐷 ′ }∗

�

��
{𝐷2}∗ �

// {𝐷1 ∩ 𝐷2}∗

are isomorphisms, and the diagramme commutes since all homomorphisms are
induced by inclusions. □

Lemma 1.15. If 𝑣𝑝 is the last vertex of the 𝑝-simplex Δ𝑝, then {Δ𝑝 , ¤Δ𝑝}𝑝+𝑞 �
{𝑣𝑝}𝑞.

Proof. Let ∠𝑖 denote the box containing all (𝑝 − 1)-simplices of Δ𝑝 except Δ𝑖
𝑝,

the face opposite the 𝑖-th vertex. By the cohomology sequence of the triple
{Δ𝑝 , ¤Δ𝑝 , ∠0} and Lemma 1.14,

{Δ𝑝 , ¤Δ𝑝}𝑝+𝑞 � { ¤Δ𝑝 , ∠0}𝑝+𝑞−1.

By excision { ¤Δ𝑝 , ∠0}𝑝+𝑞−1 � {Δ0
𝑝 ,
¤Δ0
𝑝}𝑝+𝑞−1. Continuing this procedure, we get

{Δ𝑝 , ¤Δ𝑝}𝑝+𝑞 � { ¤Δ𝑝 , ∠0}𝑝+𝑞−1 � · · · � {𝑣𝑝 ,∅}𝑞 .

□
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A system 𝒢 of local coe�cients over 𝐵 is a function from simplices of 𝐵 to
abelian groups, Δ ↦→ 𝐺Δ, together with a function from pairs (Δ,Δ′ ), Δ′ ⊂ Δ, of
simplices of 𝐵 to homomorphisms

𝜂ΔΔ′ : 𝐺Δ
′ → 𝐺Δ

such that

1) 𝜂ΔΔ′ = 1 if Δ = Δ
′
and

2) 𝜂ΔΔ′ ◦ 𝜂Δ′Δ′′ = 𝜂ΔΔ′′ if Δ
′′ ⊂ Δ

′ ⊂ Δ.

A 𝑝-cochain 𝑓 𝑝 with coe�cients in 𝒢 is a function which associates with
each 𝑝-simplex Δ an element of 𝐺Δ; the 𝑝-cochains form an abelian group by
coordinate addition, 𝐶 𝑝 (𝐵;𝒢). There is a homomorphism

𝛿 : 𝐶 𝑝 (𝐵;𝒢) → 𝐶 𝑝+1(𝐵;𝒢)
de�ned by

(𝛿 𝑓 𝑝) (Δ𝑝+1) =
𝑝+1∑︁
𝑗=0

𝜂
Δ𝑝+1Δ

𝑗
𝑝+1

𝑓 𝑝 (Δ 𝑗

𝑝+1).

As usual one computes that 𝛿 ◦ 𝛿 = 0 and de�nes cohomology 𝐻 𝑝 (𝐵;𝒢) with
local coe�cients as ker 𝛿/im 𝛿 in dimension 𝑝.

In the spectral sequence arising from the exact couple of an ℎ∗-�bration one
has

𝐸
𝑝,𝑞

1 ≡ 𝐶 𝑝,𝑞 ≡ {𝐵 (𝑝) , 𝐵 (𝑝−1) }𝑝+𝑞

� ⊕Δ𝑝⊂𝐵{Δ𝑝 , ¤Δ𝑝}𝑝+𝑞 , by excision

� ⊕Δ𝑝⊂𝐵{𝑣Δ𝑝
}𝑝 , by Lemma 1.15,

� 𝐶 𝑝 (𝐵; ℎ𝑞 (𝐹)),
where ℎ𝑞 (𝐹) is the local coe�cient system de�ned by the function Δ𝑝 → {𝑣Δ𝑝

}𝑞
with 𝑣Δ𝑝

the last vertex of Δ𝑝. For Δ𝑠 ⊂ Δ𝑝 the homomorphism (in fact isomor-
phism)

𝜂Δ𝑝Δ𝑠
: {𝑣Δ𝑠

}𝑞 → {𝑣Δ𝑝
}𝑞

is de�ned via the inclusion isomorphisms with {[𝑣Δ𝑠
, 𝑣Δ𝑝
]}𝑞, where [𝑣Δ𝑠

, 𝑣Δ𝑝
]

is the 1-simplex from 𝑣Δ𝑠
to 𝑣Δ𝑝

. That this is a local coe�cient system then
follows from the �rst axiom in 1.1.1 for the cohomology system {ℎ𝑞}. Finally,
we note that since 𝐵 is connected, {𝑣𝑞} is the same group ℎ𝑞 (𝐹), 𝐹 = 𝜋−1(𝑣),
for all vertices 𝑣 of 𝐵. Thus, we have de�ned an isomorphism

𝜆𝑝,𝑞 : 𝐸 𝑝,𝑞

1

�−→ 𝐶 𝑝 (𝐵; ℎ𝑞 (𝐹)).
Theorem 1.16. 𝜆𝑝+1,𝑞 ◦ 𝑑1 = 𝛿𝜆𝑝,𝑞: that is, the diagramme

𝐸
𝑝,𝑞

1

𝑑1 //

𝜆𝑝,𝑞

��

𝐸
𝑝+1,𝑞
1

𝜆𝑝+1,𝑞
��

𝐶 𝑝 (𝐵; ℎ𝑞 (𝐹))
𝛿
// 𝐶 𝑝+1(𝐵; ℎ𝑞 (𝐹))
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is commutative.

Proof. By naturality of the spectral sequence of an exact couple and of the
isomorphisms 𝜆𝑝,𝑞, it su�ces to prove the assertion in the case 𝐵 = Δ𝑝+1.

Consider the composition 𝜑𝑖𝑝+1 of

{Δ𝑖
𝑝+1, ¤Δ𝑖

𝑝+1}𝑝+𝑞
𝑗∗1−→ { ¤Δ𝑝+1,Δ

𝑝−1
𝑝+1 }

𝑝+𝑞 𝑖∗−→ { ¤Δ𝑝+1}
𝛿−→ {Δ𝑝+1, ¤Δ𝑝+1}𝑝+𝑞+1.

By the cohomology sequence of the triple {Δ𝑝+1, ¤Δ𝑝+1, ∠𝑖} and Lemma 1.14, the
homomorphism Δ : { ¤Δ𝑝+1, ∠𝑖}𝑝+𝑞 → {Δ𝑝+1, ¤Δ𝑝+1}𝑝+𝑞+1 is an isomorphism. By
excision, {Δ𝑖

𝑝+1,
¤Δ𝑖
𝑝+1}𝑝+𝑞 � { ¤Δ𝑝+1, ∠𝑖}𝑝+𝑞. From the commutative diagramme

{ ¤Δ𝑝+1,Δ
𝑝−1
𝑝+1 }

𝑝+𝑞 𝑖∗ // { ¤Δ𝑝+1}
𝛿

((
{Δ𝑝+1, ¤Δ𝑝+1}𝑝+𝑞+1

{Δ𝑖
𝑝+1, ¤Δ𝑖

𝑝+1}𝑝+𝑞 //

𝑗∗1

OO

{ ¤Δ𝑝+1, ∠𝑖}𝑝+𝑞
Δ

66

it follows then that 𝜑𝑖𝑝+1 is an isomorphism.

The di�erential 𝑑1 : 𝐸 𝑝,𝑞

1 → 𝐸
𝑝+1,𝑞
1 is the composition 𝛿 ◦ 𝑖∗. For 𝑓 𝑝 ∈

𝐶 𝑝 (𝐵; ℎ𝑞 (𝐹)),

𝜆𝑝+1,𝑞𝑑1𝜆
−1
𝑝,𝑞 ( 𝑓 𝑝) (Δ𝑝+1) =

𝑝+1∑︁
𝑖=0

𝜑𝑖𝑝+1 𝑓𝑝 (Δ𝑖
𝑝+1).

Thus, we wish to show that 𝜑𝑖𝑝+1 = (−1)𝑖𝜂Δ𝑝+1Δ𝑖
𝑝+1

.

For 𝑖 = 0 consider the triad {Δ𝑝+1,Δ0
𝑝+1, ∠0}.

0 // {Δ0
𝑝+1, ¤Δ0

𝑝+1}𝑝+𝑞
𝛼

�
// {Δ𝑝+1, ¤Δ𝑝+1}

𝑝+𝑞+1 // 0

{ ¤Δ𝑝+1, ∠0}𝑝+𝑞 //

�

OO

{ ¤Δ𝑝+1}𝑝+𝑞
𝛿

OO

By the proof of Lemma 1.15, 𝛼 is 𝜂Δ𝑝+1Δ0
𝑝+1

; it is also 𝜑0𝑝+1.

Assume 𝜑𝑖
𝑗
= (−1)𝑖𝜂Δ 𝑗Δ

𝑖
𝑗
for 𝑗 < 𝑝 + 1 and for 𝑗 = 𝑝 + 1 and 𝑖 < 𝑘. Let Δ𝑘,𝑘−1

𝑝+1

denote the (𝑝 − 1)-simplex opposite the edge (𝑘, 𝑘 − 1). Let 𝑓 𝑝 ∈ 𝐶 𝑝−1 (Δ𝑘,𝑘−1
𝑝+1 ).

Then

𝜆𝑝,𝑞𝑑1𝜆
−1
𝑝−1,𝑞 𝑓

𝑝−1 = 𝛿 𝑓 𝑝−1 =


(−1)𝑘−1𝜂

Δ𝑘−1
𝑝+1Δ

𝑘,𝑘−1
𝑝+1

𝑓 𝑝−1 (Δ𝑘,𝑘−1
𝑝+1 ) on Δ𝑘−1

𝑝+1

(−1)𝑘−1𝜂
Δ𝑘
𝑝+1Δ

𝑘,𝑘−1
𝑝+1

𝑓 𝑝−1 (Δ𝑘,𝑘−1
𝑝+1 ) on Δ𝑘

𝑝+1
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Since 𝑑1 ◦ 𝑑1 = 0,

0 = 𝜆𝑝+1,𝑞𝑑1𝜆
−1
𝑝,𝑞𝜆𝑝,𝑞𝑑1𝜆

−1
𝑝−1,𝑞 ( 𝑓 𝑝−1) (Δ

𝑘,𝑘−1
𝑝+1 )

= 𝜑𝑘𝑝+1 ((−1)𝑘−1𝜂Δ𝑘−1
𝑝+1Δ

𝑘,𝑘−1
𝑝+1

𝑓 𝑝−1 (Δ𝑘,𝑘−1
𝑝+1 )) + 𝜑

𝑘
𝑝+1((−1)𝑘−1𝜂Δ𝑘

𝑝+1Δ
𝑘,𝑘−1
𝑝+1

𝑓 𝑝−1 (Δ𝑘,𝑘−1
𝑝+1 ))

= 𝜂
Δ𝑝+1Δ

𝑘,𝑘−1
𝑝+1

𝑓 𝑝−1 (Δ𝑘,𝑘−1
𝑝+1 )) + 𝜑

𝑘
𝑝+1 ((−1)𝑘−1𝜂Δ𝑘

𝑝+1Δ
𝑘,𝑘−1
𝑝+1

𝑓 𝑝−1 (Δ𝑘,𝑘−1
𝑝+1 ))

Thus,

𝜑𝑘𝑝+1 (𝜂Δ𝑘
𝑝+1Δ

𝑘,𝑘−1
𝑝+1

𝑓 𝑝−1 (Δ𝑘,𝑘−1
𝑝+1 )) = (−1)

𝑘𝜂Δ𝑝+1Δ𝑘
𝑝+1
(𝜂

Δ𝑘
𝑝+1Δ

𝑘,𝑘−1
𝑝+1

𝑓 𝑝−1 (Δ𝑘,𝑘−1
𝑝+1 )).

Hence,
𝜑𝑘𝑝+1 = (−1)𝑘𝜂Δ𝑝+1Δ𝑘

𝑝+1
.

□

Corollary 1.17. The chain complexes 𝐸 𝑝,𝑞

1 , 𝑑1 and {𝐶 𝑝 (𝐵; ℎ𝑞 (𝐹)), 𝛿} are nat-
urally equivalent.

Corollary 1.18. In the spectral sequence of the ℎ∗-�bration 𝜋 : 𝐸 → 𝐵, the term
𝐸

𝑝,𝑞

2 is naturally isomorphic with 𝐻 𝑝 (𝐵; ℎ𝑞 (𝐹)), where the latter is ordinary
cohomology with local coe�cients.

To summarise the results of this section, there is a functor from the category

of ℎ∗-�brations ( 𝑓 → 𝐸
𝜋−→ 𝐵) to the category of exact couples; by composition,

then to the category of spectral sequences. There is a natural isomorphism
𝐸

𝑝,𝑞

2 � 𝐻 𝑝 (𝐵; ℎ𝑞 (𝐹)), in which ℎ𝑞 (𝐹) is a system of local coordinates. Fur-
thermore, {𝐸 𝑝,𝑞

∞ } is the associated graded system to a �ltration of ℎ∗ (𝐸). The
spectral sequence is also natural with respect to transformations of cohomology
theories.

In particular, if 𝜋 : 𝑋 → 𝑋 is the identity map, then 𝐸 𝑝,𝑞

2 � 𝐻 𝑝 (𝑋; ℎ𝑞 (pt))
and 𝐸 𝑝,𝑞

∞ is associated to a �ltration of ℎ∗ (𝑋). This relation can sometimes be
exploited to compute or to deduce properties of ℎ∗ (𝑋).

1.2.3 Applications of the Spectral Sequence

Proposition 1.19. If 𝜏 : ℎ∗ → 𝑘∗ is a natural transformation of cohomology

theories and 𝜏 : ℎ∗ (pt) �−→ 𝑘∗ (pt) is an isomorphism, then 𝜏 : ℎ∗ (𝑋, 𝐴) →
𝑘∗ (𝑋, 𝐴) is an isomorphism for all pairs (𝑋, 𝐴).

Proof. The transformation 𝜏 induces a homomorphism of the spectral sequence
of id : 𝑋 → 𝑋 in the ℎ∗-theory into that in the 𝑘∗-theory. The hypothesis implies
this is an isomorphism at the 𝐸2 level and thus for ℎ∗ (𝑋) into 𝑘∗ (𝑋). For a pair
(𝑋, 𝐴), we consider 𝐶𝐴 ∪ 𝑋. □

Proposition 1.20. If 𝑓 : 𝐵 → 𝐵
′
so that 𝑓 : 𝐻∗ (𝐵′ ) → 𝐻∗ (𝐵) is an isomor-

phism for ordinary singular cohomology (integer coe�cients), then 𝑓 ∗
ℎ
: ℎ∗ (𝐵′ ) →

ℎ∗ (𝐵) is an isomorphism for any cohomology theory ℎ∗.
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Proof. The map 𝑓 induces a map 𝑓 of the identity �bration 𝐵→ 𝐵 into 𝐵
′ → 𝐵

′

and thus a map of the spectral sequences of these �brations. In particular, the
naturality of the universal coe�cient sequence and the �ve lemma imply

𝐸
𝑝,𝑞

2 ( 𝑓 ) : 𝐻 𝑝 (𝐵, ℎ𝑞 (pt)) → 𝐻 𝑝 (𝐵′ ; ℎ𝑞 (pt))

is an isomorphism. The conclusion follows. □

Note that this implies our earlier remark that an 𝐻∗-�bration is an ℎ∗-
�bration for any cohomology theory ℎ∗.

Proposition 1.21. If ℎ𝑖 (pt) = 0 for 𝑖 ≠ 0, then the cohomology theory ℎ∗ is nat-
urally equivalent to singular cohomology with coe�cients ℎ0 (pt), 𝐻∗ (−; ℎ0 (pt)).

Proof. The spectral sequence collapses and we have

𝐻 𝑝 (𝐵; ℎ0 (pt)) � 𝐸 𝑝,𝑞

2 � 𝐸
𝑝,∞
2 � 𝐹𝑝−1ℎ

𝑝 (𝐵)/𝐹𝑝ℎ
𝑝 (𝐵) � ℎ𝑝 (𝐵).

□

Proposition 1.22. 𝐻𝑛 (𝐵;𝐺) � [𝐵, 𝐾 (𝐺, 𝑛)].

Proof. The groups {𝐵,𝒦(𝐺)} give a cohomology theory 𝑘∗ in which 𝑘0 (pt) �
lim−−→[S

𝑛, 𝐾 (𝐺, 𝑛)]. The composition

[S𝑛, 𝐾 (𝐺, 𝑛)] Σ−→ [S𝑛+1, Σ𝐾 (𝐺, 𝑛 + 1)] → [ΣS𝑛+1, 𝐾 (𝐺, 𝑛 + 1)]

is the isomorphism [S𝑛,Ω𝐾 (𝐺, 𝑛 + 1)] → [ΣS𝑛, 𝐾 (𝐺, 𝑛 + +1)]. By de�nition
each of these groups is 𝐺. In other dimensions 𝑘 𝑖 (pt) = 0. Thus {𝐵,𝒦(𝐺)𝑛} �
𝐻𝑛 (𝐵;𝐺). The object on the left is lim−−→[Σ

𝑖𝐵, 𝐾 (𝐺, 𝑛 + 𝑖)]. As seen above, these

groups are isomorphic and are mapped isomorphically. Thus [𝐵, 𝐾 (𝐺, 𝑛)] �
{𝐵,𝒦(𝐺)𝑛} � 𝐻𝑛 (𝐵;𝐺). □

It is interesting to note this proof does not use obstruction theory.

1.2.4 The �Universal Cohomology Theory�

For pairs (𝑋, 𝐴) and (𝑌, 𝐵), de�ne

𝜋𝑖𝑗 (𝑋, 𝐴;𝑌, 𝐵) = lim−−→
𝑛

[Σ 𝑗+𝑛 (𝑋/𝐴), Σ𝑖+𝑛 (𝑌/𝐵)] .

For �xed 𝑗 and (𝑌, 𝐵), this is a cohomology theory.
For an arbitrary cohomology theory ℎ de�ne

𝜏 : 𝜋𝑖𝑗 (𝑋, 𝐴;𝑌, 𝐵) × ℎ𝑘 (𝑌/𝐵) → ℎ𝑘+1− 𝑗 (𝑋/𝐴)

as follows:
for 𝑓 ∈ [ 𝑓 ] ∈ [Σ 𝑗+𝑁 (𝑋/𝐴), Σ𝑖+𝑁 (𝑌/𝐵)], the composition

ℎ𝑘 (𝑌/𝐵) → ℎ𝑘+𝑖+𝑁 (Σ𝑖+𝑁 (𝑌/𝐵)) → ℎ𝑘+𝑖+𝑁 (Σ 𝑗+𝑁 (𝑋/𝐴)) → ℎ𝑘+𝑖− 𝑗 (𝑋/𝐴)
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de�nes the pairing 𝜏 since it is independent of the representative 𝑓 in the class
of the limit. The pairing is bilinear; and so, induces

𝜏 : 𝜋𝑖𝑗 (𝑋, 𝐴;𝑌, 𝐵) ⊗ ℎ𝑘 (𝑌/𝐵) → ℎ𝑘+𝑖− 𝑗 (𝑋/𝐴).

In particular, for 𝑗 = 0 and (𝑌, 𝐵) = (S0, pt), 𝜋𝑖
𝑗
(𝑋, 𝐴;𝑌, 𝐵) = 𝜋𝑖

𝒮
(𝑋, 𝐴), the

cohomology theory called stable cohomotopy. Then for each 𝑛

𝜏 ⊗ 1 :
∑︁
𝑖+ 𝑗=𝑛

𝜋𝑖
𝒮
(𝑋, 𝐴) ⊗ ℎ 𝑗 (pt) ⊗ Q→ ℎ𝑛 (𝑋, 𝐴) ⊗ Q

is a natural transformation of cohomology theories.

Theorem 1.23. The transformation

𝜏 ⊗ 1 :
∑︁
𝑖+ 𝑗=𝑛

𝜋𝑖
𝒮
(𝑋, 𝐴) ⊗ ℎ 𝑗 (pt) ⊗ Q→ ℎ𝑛 (𝑋, 𝐴) ⊗ Q

is a natural equivalence of cohomology theories, where Q denotes the rationals.
Thus, up to torsion 𝜋𝑖

𝒮
is a �universal cohomology theory�.

Proof. By Proposition 1.19 it su�ces to verify the conclusion for (𝑋, 𝐴) =

(S0, pt). But 𝜋𝑖
𝒮
(S0, pt) is a torsion group for 𝑖 ≠ 0 and is the integers Z for 𝑖 = 0

by a theorem of Serre since the stable cohomotopy groups of spheres are isomor-
phic to the stable homotopy groups of spheres. Then 𝜏 ⊗ 1 is an isomorphism
for (𝑋, 𝐴) = (S0, pt). □

The maps S𝑛 → 𝐾 (Z, 𝑛) generating the homotopy of 𝐾 (Z, 𝑛) induce a map of
spectra 𝒮→𝒦(Z). By Proposition 1.22 this induces a natural transformation
of cohomology theories

𝜋𝑖
𝒮
(−1) → 𝐻𝑖 (−).

For a cohomology theory ℎ∗ de�ne the �generalised Chern character�

𝐶ℎ : ℎ𝑛 (𝑋, 𝐴) →
∑︁
𝑖+ 𝑗=𝑛

𝐻𝑖 (𝑋, 𝐴; ℎ 𝑗 (pt) ⊗ Q)

to be the composition

ℎ𝑛 (𝑋, 𝐴) → ℎ𝑛 (𝑋, 𝐴)⊗Q
(𝜏⊗1)−1
−−−−−−−→

∑︁
𝑖+ 𝑗=𝑛

𝜋𝑖
𝒮
(𝑋, 𝐴)⊗ℎ 𝑗 (pt) →

∑︁
𝑖+ 𝑗=𝑛

𝐻𝑖 (𝑋, 𝐴; ℎ 𝑗 (pt)⊗Q).

Corollary 1.24. The transformation

𝐶ℎ ⊗ 1 : ℎ𝑛 (𝑋, 𝐴) ⊗ Q→
∑︁
𝑖+ 𝑗=𝑛

𝐻𝑖 (𝑋, 𝐴; ℎ 𝑗 (pt) ⊗ Q)

is a natural equivalence of cohomology theories. It is also natural under trans-
formations of cohomology theories ℎ∗ → 𝑘∗.
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Proof. Proposition 1.19 implies the result since it is clearly true for (𝑋, 𝐴) =
(S0, pt). □

Corollary 1.25. Let ℎ and 𝑘 be cohomology theories, with 𝑘 a Q-module valued
functor. Then for

𝜑 : ℎ∗ (pt) → 𝑘∗ (pt),
there is a unique natural transformation

Φ : ℎ∗ (−) → 𝑘∗ (−)

of cohomology theories extending 𝜑.

Proof. Consider the diagramme

ℎ∗ (𝑋, 𝐴) //

Φ

��

ℎ∗ (𝑋, 𝐴) ⊗ Q � //
∑︁

𝐻∗ (𝑋, 𝐴; ℎ∗ (pt) ⊗ Q)

𝜑

��
𝑘∗ (𝑋, 𝐴) // 𝑘∗ (𝑋, 𝐴) ⊗ Q

�
//
∑︁

𝐻∗ (𝑋, 𝐴; 𝑘∗ (pt) ⊗ Q)

The homomorphism Φ is de�ned by means of the diagramme; it is unique since
any such homomorphism must factor through ℎ∗ ⊗ Q. □

1.3 Multiplicative Cohomology Theories

1.3.1 Preliminaries

A cohomology theory ℎ∗ is multiplicative if for each (𝑋, 𝐴) and (𝑌, 𝐵), there is
a homomorphism

⊗ : ℎ𝑖 (𝑋, 𝐴) ⊗ ℎ 𝑗 (𝑌, 𝐵) → ℎ𝑖+ 𝑗 (𝑋 × 𝑌, 𝑋 × 𝐵 ∪ 𝐴 × 𝑌 )

which is associative, (graded) commutative (i.e., 𝑢𝑖 ⊗ 𝑣 𝑗 = (−1)𝑖 𝑗𝑣 𝑗 ⊗ 𝑢𝑖) , nat-
ural under maps of pairs, has a unit 1 ∈ ℎ0 (S0, 𝑝𝑡), and makes the following
diagramme commute:

ℎ𝑖 (𝐴) ⊗ ℎ 𝑗 (𝑌, 𝐵) ⊗ //

𝛿×1

��

ℎ𝑖+ 𝑗 (𝐴 × 𝑌, 𝐴 × 𝐵)

𝛾

��
ℎ𝑖+ 𝑗 (𝐴 × 𝑌 ∪ 𝑋 × 𝐵, 𝑋 × 𝐵)

𝛿

��
ℎ𝑖+1 (𝑋, 𝐴) ⊗ ℎ 𝑗 (𝑌, 𝐵) ⊗

// ℎ𝑖+ 𝑗+1(𝑋 × 𝑋 × 𝐵 ∪ 𝐴 × 𝑌 )

The homomorphism 𝛾 is excision and the 𝛿 on the right side is that of the
cohomology sequence of the triple (𝑋 × 𝑌, 𝐴 × 𝑌 ∪ 𝑋 × 𝐵).
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If (𝑋; 𝐴, 𝐵) is a triad, the external pairing just described de�nes an internal
pairing

ℎ𝑖 (𝑋, 𝐴) ⊗ ℎ 𝑗 (𝑋, 𝐵) → ℎ𝑖+ 𝑗 (𝑋, 𝐴 ∪ 𝐵)

sending (𝑢, 𝑣) into 𝑢 ∪ 𝑣. This pairing is the composition

ℎ𝑖 (𝑋, 𝐴) ⊗ ℎ 𝑗 (𝑋, 𝐵) ⊗−→ ℎ𝑖+ 𝑗 (𝑋 × 𝑋, 𝑋 × 𝐵 ∪ 𝐴 × 𝑌 ) Δ∗−−→, ℎ𝑖+ 𝑗 (𝑋, 𝐴 ∪ 𝐵),

where Δ : 𝑋 → 𝑋 × 𝑋 is the diagonal map.
This internal pairing has the properties

1. If 𝐴 = 𝐵, ℎ∗ (𝑋, 𝐴) is a ring;

2. If 𝐴 = 𝐵 = ∅, ℎ∗ (𝑋) is a ring with unit;

3. If 𝐵 = ∅, ℎ(𝑋, 𝐴) is an ℎ∗ (𝑋)-module; and

4. ℎ∗ (𝐴) 𝛿−→ ℎ∗ (𝑋, 𝐴) is an ℎ∗ (𝑋)-module homomorphism.

Conversely, given an internal pairing ∪, there is an external pairing ⊗ de�ned
by

𝑥 ⊗ 𝑦 = 𝑝∗𝑥 ∪ 𝑞∗𝑦,

where 𝑥 ∈ ℎ∗ (𝑋, 𝐴), 𝑦 ∈ ℎ 𝑗 (𝑌, 𝐵) and 𝑝 and 𝑞 are the projections of (𝑋×𝑋, 𝐴×𝑌 )
onto (𝑋, 𝐴) and (𝑋 × 𝑌, 𝑋 × 𝐵) onto (𝑌, 𝐵), respectively.

Further, if we are given a natural internal pairing ∪ on ℎ∗ (𝑋, 𝐴) for all pairs
(𝑋, 𝐴) ∈ 𝒫2 which satis�es 1, 2, 3 and 4, we can de�ne an external pairing by
the following device.

Let 𝑖1 and 𝑖2 denote the injections of (𝑋, ∗) and (𝑌, ∗) in (𝑋 × 𝑌, ∗) and 𝑝1
and 𝑝2 the projections of (𝑋 ×𝑌, ∗) onto (𝑋, ∗) and (𝑌, ∗). For 𝑢 ∈ ℎ𝑖 (𝑋, ∗) and
𝑣 ∈ ℎ 𝑗 (𝑌, ∗), the element 𝑝∗1𝑢 ∪ 𝑝∗2𝑣 ∈ ℎ𝑖+ 𝑗 (𝑋 × 𝑌, ∗). Since 𝑝2 ◦ 𝑖1 : (𝑋, ∗) →
(∗, ∗) ⊂ (𝑌, ∗),

𝑖∗1 (𝑝∗1𝑢 ∪ 𝑝∗2𝑣) = 𝑖∗1𝑝∗1𝑢 ∪ (0) = 0.

Similarly, 𝑖∗2 (𝑝∗1𝑢 ∪ 𝑝∗2𝑣) = 0. Thus, the element 𝑝∗1𝑢 ∪ 𝑝∗2𝑣 lies in ℎ𝑖+ 𝑗 (𝑋#𝑌, ∗).
We de�ne 𝑢 ⊗ 𝑣 ≡ 𝑝∗1𝑢 ∪ 𝑝∗2𝑣 ∈ ℎ𝑖+ 𝑗 (𝑋 × 𝑌, 𝑋 × ∗ ∪ ∗ × 𝑌 ). For (𝑋, 𝐴) and
(𝑌, 𝐵) we make the same construction on (𝑋/𝐴, ∗) and (𝑌/𝐵, ∗) and use the
homeomorphism (𝑋/𝐴)#(𝑌/𝐵) � 𝑋 ×𝑌/(𝑋 × 𝐵∪ 𝐴×𝑌 ). It can be checked that
this is an external pairing.

We note that if 𝑋 = 𝑌 and Δ : 𝑋 → 𝑋 × 𝑋 is the diagonal map then since
𝑝1Δ = 𝑝2Δ = id,

Δ∗ (𝑢 ⊗ 𝑣) = Δ∗𝑝∗1𝑢 ∪ Δ∗𝐴𝑝∗2𝑣 = 𝑢 ∪ 𝑣;

and so, the previous process for obtaining an internal pairing from an external
one when applied to this external pairing yields the internal pairing we started
with.

In ℎ𝑛 (S𝑛, ∗) de�ne a class 𝛾𝑛 to be (Σ𝑛)∗ (1) where 1 is the unit of ℎ0 (S0, ∗)
and (Σ𝑛)∗ is the suspension isomorphism ℎ0 (S0, ∗) → ℎ𝑛 (S𝑛, ∗). In cohomology
with the dimension axiom, 𝛾 is a generator of ℎ𝑛 (S𝑛, ∗).
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Proposition 1.26. The diagramme

ℎ𝑖+𝑛 (S𝑛 × 𝑋, S𝑛 × 𝐴 ∪ (∗) × 𝑋)

�

��

ℎ𝑖 (𝑋, 𝐴)

𝛾𝑛×
55

(Σ𝑛 ) )∗ ))
ℎ𝑖+𝑛 (Σ𝑛 (𝑋/𝐴), ∗)

is commutative, where 𝛾𝑛× denotes external multiplication by 𝛾𝑛 and the vertical
homomorphism is an excision isomorphism.

Proof. It su�ces to prove this for 𝑛 = 1 for it will then follow that 𝛾𝑛 = 𝛾1×𝛾𝑛−1.
Consider the following diagramme.

ℎ0 (S0, ∗) ⊗ ℎ𝑖 (𝑋, 𝐴) � //

�

��

ℎ𝑖 (S0 × 𝑋, (∗) × 𝑋 ∪ S0 × 𝐴) //

�

��

ℎ𝑖 (𝑋/𝐴, ∗)

(Σ)∗
��

ℎ1 (𝐶S0, S0) ⊗ ℎ𝑖 (𝑋, 𝐴) //

�

��

ℎ𝑖+1(𝐶S0 × 𝑋, S0 × 𝑋 ∪ 𝐶S0 × 𝐴) //

�

��

ℎ𝑖+1 (Σ(𝑋/𝐴), ∗)

ℎ𝑖 (S1, ∗) ⊗ ℎ𝑖 (𝑋, 𝐴) // ℎ𝑖+1(S1 × 𝑋, (∗) × 𝑋 ∪ S1 × 𝐴)

44

The upper line gives (Σ1)∗ and the lower line 𝛾1 (−). Commutativity is clear
except possibly in the upper left-hand corner, where it holds by de�nition of the
external product. □

Proposition 1.27. Let ℎ∗ and 𝑘∗ be multiplicative cohomology theories. If
𝑘0 (pt) is a Q-module, then 𝑘∗ can be made a Q-module valued functor. If
𝜑 : ℎ∗ (pt) → 𝑘∗ (pt) and Φ is the unique extension of 𝜑 as in Corollary 1.25
of Theorem 1.23 and if 𝜑 is a multiplicative homomorphism, then Φ is also
multiplicative.

Proof. 𝑘∗ can be made a Q-module valued functor because 𝑘 𝑖 (𝑋, 𝐴) ⊗ 𝑘0 (pt) �−→
𝑘 𝑖 (𝑋, 𝐴).

In the diagramme

ℎ∗ (𝑋, 𝐴) ⊗ ℎ∗ (𝑌, 𝐵) //

��

ℎ∗ (𝑋 × 𝑌, 𝑋 × 𝐵 ∪ 𝐴 × 𝑌 )

��
ℎ∗ (𝑋, 𝐴) ⊗ ℎ∗ (𝑌, 𝐵) ⊗ Q //

Φ⊗Φ
��

ℎ∗ (𝑋 × 𝑌, 𝑋 × 𝐵 ∪ 𝐴 × 𝑌 ) ⊗ Q

Φ

��
𝑘∗ (𝑋, 𝐴) ⊗ 𝑘∗ (𝑌, 𝐵) // 𝑘∗ (𝑋 × 𝑌, 𝑋 × 𝐵 ∪ 𝐴 × 𝑌 ),
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for a �xed pair (𝑌, 𝐵) all terms in the lower square are cohomology theories in
(𝑋, 𝐴) and all homomorphisms are natural. By Corollary 1.25 the two composi-
ties around the square will agree if they agree for (𝑋, 𝐴) = (S0, ∗). But with
(𝑋, 𝐴) �xed, all terms are cohomology theories in (𝑌, 𝐵), and the same argument
holds. To prove commutativity it then su�ces to prove it in the case (𝑌, 𝐵) is
also (S0, ∗), but this is just the hypothesis that 𝜑 is multiplicative. □

1.3.2 Dold-Thom-Gysin Theorem

Theorem 1.28. Let ℎ∗ be a multiplicative cohomology theory and let 𝐹
𝑖−→

𝐸
𝜋−→ 𝐵 be an ℎ∗-�bration. Suppose there are elements 𝑎1, . . . , 𝑎𝑟 in ℎ∗ (𝐸)

such that (𝑖∗𝑎1, . . . , 𝑖∗𝑎𝑟 ) is an ℎ∗ (pt)-base for ℎ∗ (𝐹) as an ℎ∗ (pt)-module, then
(𝑎1, . . . , 𝑎𝑟 ) is an ℎ∗ (𝐵)-base for ℎ∗ (𝐸) as an ℎ∗ (𝐵)-module.

Proof. The ℎ∗ (𝐵)-module structure of ℎ∗ (𝐸) is de�ned by 𝜋∗ as the composition

ℎ∗ (𝐵) ⊗ ℎ∗ (𝐸) 𝜋∗⊗1−−−−→ ℎ∗ (𝐸) ⊗ ℎ∗ (𝐸) ∪−→ ℎ∗ (𝐸).

Let 𝐶 and 𝐶
′
be the exact couples of the �brations id : 𝐵→ 𝐵 and 𝜋 : 𝐸 → 𝐵,

respectively. The homomorphism

𝜌 : 𝐶 ⊕ 𝐶 ⊕ 𝐶 ⊕ · · · ⊕ 𝐶 → 𝐶
′

de�ned by 𝜌(𝜆1 ⊕ · · · ⊕ 𝜆𝑟 ) =
∑𝑟

𝑖=1 𝜋
∗ (𝜆𝑖)𝑎𝑖 is a map of exact couples since 𝜋 is

a �bre preserving map of �brations

𝐸
𝜋 //

𝜋

��

𝐵

id

��
𝐵 // 𝐵

and 𝜌is an ℎ∗ (𝐵)-module homorphism commuting with the coboundary operator
in the two couples.

Since (𝑖∗𝑎1, . . . , 𝑖∗𝑎𝑟 ) is an ℎ∗ (pt)-base for ℎ∗ (𝐹), at the 𝐸1-level of the spec-
tral sequences, the homomorphism

𝐶 𝑝 (𝐵; ℎ∗ (pt)) ⊕ · · · ⊕ 𝐶 𝑝 (𝐵; ℎ∗ (pt)) → 𝐶 𝑝 (𝐵; ℎ∗ (𝐹))

induced by 𝜌 is an isomorphism. Thus, 𝜌 induces isomorphisms on 𝐸∞ terms of
the spectral sequence and consequently we have the isomorphism

ℎ∗ (𝐵) ⊕ · · · ⊕ ℎ∗ (𝐵) → ℎ∗ (𝐸),

de�ned by linear combination with the 𝑎𝑖. Thus, (𝑎1, . . . , 𝑎𝑟 ) is an ℎ∗ (𝐵)-base
for ℎ∗ (𝐸). □

The Theorem 1.28 has a relative version. Conceptually, it involves nothing
new except complicated notation. Thus, we will only de�ne the relevant exact
couples and state without proof the theorem for the relative case.
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Suppose 𝐸
′ ⊂ 𝐸 and 𝜋 : 𝐸 → 𝐵 such that for each vector 𝑣 of a simplex Δ of

𝐵

ℎ∗ (𝜋−1(Δ), 𝑝𝑖−1(Δ) ∩ 𝐸 ′ ) → ℎ∗ (𝜋−1(𝑣), 𝜋−1(𝑣) ∩ 𝐸 ′ )
is an isomorphism. Then (𝐸, 𝐸 ′ , 𝜋, 𝐵) is a relative ℎ∗-�bration with relative �bre
(𝐹, 𝐹 ′ ) = (𝜋−1(𝑣), 𝑝𝑖−1(𝑣) ∩ 𝐸 ′ ). Let 𝐵

′
be a subcomplex of 𝐵. We can then

de�ne an exact couple as follows:

𝐴𝑝,𝑞 = ℎ𝑝+𝑞 ( [𝜋−1(𝐵 (𝑝) ) ∪ 𝜋−1(𝐵′ )]/[(𝜋−1(𝐵 (𝑝) ) ∩ 𝐸 ′ ) ∪ 𝜋−1(𝐵′ )])

with 𝐶 𝑝,𝑞 equal ℎ𝑝+𝑞 of the corresponding pair based on the 𝑝th and (𝑝 − 1)th
skeletons. As before this leads to the spectral sequence of the relative �bration
and we have

Corollary 1.29. In the spectral sequence of the relative �bration (𝐸, 𝐸 ′ , 𝜋, 𝐵, 𝐵′ ),
the term 𝐸

𝑝,𝑞

2 is naturally isomorphic with 𝐻 𝑝 (𝐵, 𝐵′ ; ℎ𝑞 (𝐹, 𝐹 ′ )) and 𝐸
𝑝,𝑞
∞ is

the system of graded groups associated with a �ltration of ℎ𝑛 (𝐸, 𝐸 ′ ∪ 𝜋1 (𝐵′ )),
𝑝 + 𝑞 = 𝑛.

In an analogous way we have the following relative version of the Dold-
Thom-Gysin isomorphism:

Theorem 1.30. Let ℎ∗ be a multiplicative cohomology theory and let (𝐸, 𝐸 ′ , 𝜋, 𝐵, 𝐵′ )
be a relative 𝑓 ∗-�bration. Suppose there are elements 𝑎1, . . . , 𝑎𝑟 in ℎ∗ (𝐸, 𝐸 ′ ∪
𝜋−1(𝐵′ )) such that (𝑖∗𝑎1, . . . , 𝑖∗𝑎𝑟 ) is an ℎ∗ (pt)-base for ℎ∗ (𝐹, 𝐹 ′ ) as an ℎ∗ (pt)-
module. Then {𝑎1, . . . , 𝑎𝑟 } is an ℎ∗ (𝐵, 𝐵′ )-base for ℎ∗ (𝐸, 𝐸 ′ ∪ 𝜋−1(𝐵′ )) as an
ℎ∗ (𝐵, 𝐵′ )-module.

The ℎ∗ (𝐵, 𝐵′ )-module structure of ℎ∗ (𝐸, 𝐸 ′ ∪ 𝜋−1(𝐵′ )) is de�ned by the com-
position

ℎ∗ (𝐵, 𝐵′ ) ⊗ ℎ∗ (𝐸, 𝐸 ′ ∪ 𝜋−1(𝐵′ )) → ℎ∗ (𝐸, 𝜋−1(𝐵′ )) ⊗ ℎ∗ (𝐸, 𝐸 ′ ∪ 𝜋−1(𝐵′ ))
∪−→ ℎ∗ (𝐸, 𝐸 ′ ∪ 𝜋−1(𝐵′ )).

Actually, a slightly weaker hypothesis describes ℎ∗ (𝐵, 𝐵′ ) : if the classes
𝑎1, . . . , 𝑎𝑟 in ℎ∗ (𝐸, 𝐸 ′ ), then

(𝜋∗ℎ∗ (𝐵, 𝐵′ )) ∪ 𝑎1 ⊕ · · · ⊕ (𝜋∗ℎ∗ (𝐵, 𝐵
′ )) ∪ 𝑎𝑟 � ℎ∗ (𝐸, 𝐸

′ ∪ 𝜋−1(𝐵′ )).

1.3.3 Orientability of Bundles

Let 𝜋 : 𝐸 → 𝐵 be an 𝑛-plane bundle.

Remark 1.31. We shall usually assume 𝜋 is vector bundle, but in the following
Corollary 1.33 to Theorem 1.30 it is su�cient for the structure group to be
group of origin preserving onto-homeomorphisms of R𝑛, Euclidean 𝑛-space.

Let 𝐸
′
denote the complement of the zero cross-section. Then for any co-

homology theory ℎ∗, (𝐸, 𝐸 ′ , 𝜋, 𝐵) is a relative ℎ∗-�bration with �bre (𝐹, 𝐹 ′ ) =
(R𝑛,R𝑛\0), which has the cohomology of (S𝑛, pt). Thus, ℎ𝑖+𝑛 (𝐹, 𝐹 ′ ) � ℎ𝑖+𝑛 (S𝑛, pt) �
ℎ𝑖 (pt); so ℎ∗ (𝐹, 𝐹 ′ ) is a free ℎ∗ (pt)-module with one generator 𝑢𝑛 of degree 𝑛
corresponding to 1 ∈ ℎ0 (pt).
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De�nition 1.32. The 𝑛-plane bundle 𝜋 is ℎ∗-orientable if there is a class 𝑢 ∈
ℎ𝑛 (𝐸, 𝐸 ′ ) such that 𝑖∗𝑢 = 𝑢𝑛 ∈ ℎ𝑛 (𝐹, 𝐹

′ ) for each �bre inclusion 𝑖 : (𝐹, 𝐹 ′ ) →
(𝐸, 𝐸 ′ ). Of course, if 𝐵 is connected and 𝑖∗𝑢 = 𝑢𝑛 for one �bre, then it is so for
all �bres. A choice of such a class 𝑢 is an ℎ∗-orientation of 𝜋 and 𝜋 is said to
be ℎ∗-oriented by 𝑢.

Corollary 1.33. [to Theorem 1.30] If the 𝑛-plane bundle 𝜋 is ℎ∗-oriented by
the class 𝑢 ∈ ℎ𝑛 (𝐸, 𝐸 ′ ), then

𝜑 : ℎ𝑖 (𝐵) → ℎ𝑖+𝑛 (𝐸, 𝐸 ′ )

de�ned by 𝜑(𝑧) = 𝜋∗𝑧 ∪ 𝑢 is an isomorphism.

If the structure group of the bundle 𝜋 is a subgroup of the orthogonal group,
or more generally of the group of auto-homeomorphisms on R𝑛 preserving dis-
tance from the origin, then associated with 𝜋 are the unit disc bundle D(𝜋) and
the unit sphere bundle S(𝜋) of 𝜋. The factor space D(𝜋))/S(𝜋) has a well deter-
mined base point and is called the Thom space of the bundle 𝜋, herein denoted
𝐵𝜋 .

The inclusion (D(𝜋), S(𝜋)) → (𝐸, 𝐸 ′ ) induces an isomorphism of cohomology;
thus,

ℎ∗ (𝐸, 𝐸 ′ ) �−→ 𝑓 ∗ (𝐵𝜋 , ∗).

Corresponding to each �bre inclusion (R𝑛,R𝑛 \ 0) → (𝐸, 𝐸 ′ ) is the disc and
sphere inclusion

(D𝑛, S𝑛−1) //

��

(D(𝜋), S(𝜋))

��
(R𝑛,R𝑛 \ 0) // (𝐸, 𝐸 ′ )

and D𝑛/S𝑛−1 is homeomorphic to S𝑛. Thus, we can equivalently de�ne notions of
ℎ∗-orientation in terms of a class 𝑢 ∈ ℎ𝑛 (𝐵𝜋 , ∗) which restricts to the class 𝛾𝑛 ∈
ℎ𝑛 (S𝑛, ∗) and the isomorphism of the Corollary becomes 𝜑 : ℎ𝑖 (𝐵) → ℎ𝑖+𝑛 (𝐵𝜋 , ∗)
de�ned by the composition

ℎ𝑖 (𝐵) 𝜋∗ // ℎ𝑖 (D(𝜋)) //

∪𝑢 ''

ℎ𝑖+𝑛 (𝐵𝜋 , ∗)

�

��
ℎ𝑖+𝑛 (D(𝜋), S(𝜋)).

Proposition 1.34. If 𝛼 and 𝛽 are vector bundles over 𝑋 and 𝑌 , respectively,
then 𝑋𝛼 𝑌 𝛽 is homeomorphic to (𝑋 ×𝑌 )𝛼×𝛽, where 𝛼× 𝛽 is the bundle with �bre
𝛼𝑥 + 𝛽𝑦 over the point (𝑥, 𝑦).

Proof. The obvious map 𝑋𝛼 ×𝑌 𝛽 → (𝑋 ×𝑌 )𝛼×𝛽 is a homeomorphism except on
the wedge, which goes to the base point. □
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Proposition 1.35. If 𝑢 ∈ ℎ𝑚 (𝑋𝛼, ∗) and 𝑣 ∈ ℎ𝑛 (𝑋𝛽 , ∗) are ℎ∗-orientations of
the vector bundles 𝛼 and 𝛽 over the space 𝑋, then Δ∗ (𝑢× 𝑣) is an ℎ∗-orientation
of the Whitney sum 𝛼 ⊕ 𝛽 over 𝑋, where Δ∗ is induced by the map 𝑋𝛼⊕𝛽 Δ−→
(𝑋 × 𝑋)𝛼×𝛽.

Proof. The Whitney sum 𝛼 ⊕ 𝛽 is the bundle over 𝑋 induced from 𝛼 × 𝛽 over
𝑋 × 𝑋 by the diagonal map. The conclusion then follows from the commutative
diagramme below, and the fact that 𝛾𝑚 × 𝛾𝑛 = 𝛾𝑚+𝑛.

ℎ𝑚 (𝑋𝛼, ∗) ⊗ ℎ𝑛 (𝑋𝛽 , ∗) × //

��

ℎ𝑚+𝑛 (𝑋𝛼#𝑋𝛽 , ∗) //

��

ℎ𝑚+𝑛 (𝑋𝛼⊗𝛽 , ∗)

��
ℎ𝑚 (S𝑚, ∗) ⊗ ℎ𝑛 (S𝑛, ∗) ×

// ℎ𝑚+𝑛 (S𝑚#S𝑛, ∗)
�
// ℎ𝑚+𝑛 (S𝑚+𝑛, ∗)

□

Proposition 1.36. If 𝛾 is a vector bundle over 𝑋 oriented by the class 𝑢 ∈
ℎ𝑛 (𝑋𝛾, ∗) and 𝐴 is a subcomplex of 𝑋, then

𝜑 :𝑖 (𝑋, 𝐴) → ℎ𝑖+𝑛 (D(𝛾), S(𝛾) ∪ D(𝛾 |𝐴))

de�ned by 𝜑(𝑧) = 𝜋∗D (𝑧) ∪ 𝑢, where 𝜋D : D(𝛾) → 𝑋 is the projection map of the
associated disc bundle D(𝛾), is an isomorphism.

Proof. This is an immediate consequence of Theorem 1.30. □

Theorem 1.37. If 𝛼 and 𝛽 are vector bundles over 𝑋 such that 𝛽 is ℎ∗-oriented
by 𝑣 ∈ ℎ𝑛 (𝑋𝛽 , ∗) and 𝛼 ⊕ 𝛽 is ℎ∗-oriented by 𝑤 ∈ ℎ𝑛+𝑚 (𝑋𝛼+𝛽 , ∗), then 𝛼 is ℎ∗-
oriented by a class 𝑢 ∈ ℎ𝑚 (𝑋𝛼, ∗) characterised by the equation 𝜌∗𝑢 ∪ 𝜋∗𝑣 = 𝑤

(𝜌 and 𝜋 as de�ned in the proof) and 𝑤 = Δ∗ (𝑢 × 𝑣).

Proof. Let 𝜋 : D(𝛼) → 𝑋, 𝜌 : D(𝜋∗𝛽) → D(𝛼) and 𝜎 : D(𝛼 ⊕ 𝛽) → 𝑋 be disc
bundle projections. Note that there is a disc-preserving homotopy equivalence

(D(𝛼 ⊕ 𝛽), S(𝛼 ⊕ 𝛽)) � (D(𝜋∗𝛽), S(𝜋∗𝛽) ∪ D(𝜋∗𝛽 |S(𝛼) )),

obtained by deforming the box-like discs on the right radially into the spherical
ones on the left. Since 𝛽 is ℎ-oriented by 𝑣 ∈ ℎ𝑛 (𝑋, ∗), 𝜋∗𝛽 is ℎ-oriented by
𝜋∗𝑣 ∈ ℎ𝑛 (D(𝛼) 𝜋∗𝛽 , ∗). But this implies

𝜙𝜋∗:𝛽ℎ
𝑚+𝑖 (D(𝛼), S(𝛼)) → ℎ𝑚+𝑛+𝑖 (D(𝜋∗𝛽), S(𝜋∗𝛽) ∪ D(𝜋∗𝛽 |S(𝛼) ))

as in Proposition 1.36 is an isomorphism. Also

𝜑𝛼⊕𝛽 : ℎ𝑖 (𝑋) → ℎ𝑚+𝑛+𝑖 (D(𝛼 ⊕ 𝛽), S(𝛼 ⊕ 𝛽))

is an isomorphism. Identifying cohomologies by the homotopy equivalence ob-
served, we then have determined a class 𝑢 ∈ ℎ𝑚 (D(𝛼), S(𝛼)) by

𝑢 = 𝜑−1𝜋∗𝛽{𝜑𝛼⊕𝛽 (1) };
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i.e., 𝑢 is the unique class of ℎ𝑚 (D(𝛼), S(𝛼)) such that

𝜌∗𝑢 ∪ 𝜋∗𝑣 = 𝑤.

Restricting 𝑢 to ℎ𝑚 (D𝑚, S𝑚−1), we have that its product with 𝛾𝑛 is 𝛾𝑚+𝑛. Thus,
𝑢 is an ℎ∗-orientation for 𝛼.

By de�nition of the internal product, the class 𝑢 × 𝑣 in ℎ𝑛+𝑚 ((𝑋 × 𝑋)𝛼×𝛽 , ∗)
restricts to 𝜌∗𝑢 ∪ 𝜋∗𝑣 = 𝑤 on the diagonal 𝑋𝛼⊕𝛽. □

Remark 1.38. Because of the previous results it is clear that if one representative

of a stable class of vector bundles (𝛼
∼−→
𝑠
𝛽 if there are trivial bundles 𝑛 and 𝑚

such that 𝑛 ⊕ 𝛼 ∼ 𝑚 ⊕ 𝛽) is orientable in a given cohomology theory, then all
representatives are. However, there is no uniqueness to this construction, for
just as there may be a number of inequivalent homotopy equivalences between
two spaces, there also can be a number of inequivalent bundle equivalences.
Each of these yields a homotopy equivalence between the corresponding Thorn
spaces and consequent transport of orientation, but di�erent equivalences may
yield di�erent orientations. For purposes of naturality in some constructions,
this point will cause us to take some care in the next section.

1.4 Applications to Di�erential Manifolds

The object of this section is to establish a type of Riemann-Roch theorem for
general cohomology theories.

1.4.1 Orientations of Manifolds and the �Umkehr� Homo-
morphism

First, we recall some results from di�erential topology. If 𝑓 : 𝑀𝑚 → R𝑚+𝑟 is
a di�erentiable imbedding of a di�erentiable 𝑚-manifold into Euclidean space,
let 𝜈( 𝑓 ) denote the normal 𝑟-plane bundle of 𝑓 . If also 𝑔 : 𝑀𝑚 → R𝑚+𝑟 is a
di�erentiable imbedding and 𝑟 > 𝑚 + 1, then 𝑓 and 𝑔 are homotopic by a di�er-
entiable homotopy through di�erentiable imbeddings; hence 𝜈(𝑔) is equivalent
to 𝜈( 𝑓 ). If, moreover, 𝑟 > 𝑚 + 3, then two such regular homotopies are them-
selves regularly homotopic through regular homotopies, and the two resulting
bundle equivalences are homotopic through bundle equivalences. Thus, we have

Proposition 1.39. If 𝑓 and 𝑔 are di�erentiable imbeddings of 𝑀𝑚 in R𝑚+𝑟 ,
𝑟 > 𝑚 + 3, then there is a disc preserving homeomorphism of 𝑀𝜈 ( 𝑓 ) onto 𝑀𝜈 (𝑔)

which is unique up to the isotopy class of disc-preserving homeomorphism.

Proposition 1.40. If 𝑓 : 𝑀𝑚 → R𝑚+𝑟 and 𝑓
′
: 𝑀𝑚 → R𝑚+𝑟 ′ are di�erentiable

imbeddings, then for some pair of integers (𝑠, 𝑠′ ) there is a uniquely determined
isotopy class of homeoorphisms

𝑀𝑠⊕𝜈 ( 𝑓 ) → 𝑀𝑠
′⊕𝜈 ( 𝑓 ′ ) .
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Proof. By Proposition 1.34, with 𝑌 a point and 𝛽 = 𝑛, we have Σ𝑛 (𝑋𝛼)≡̃𝑋 (for
≡̃ read �is homeomorphic to�). Let 𝑖 : R𝑚+𝑟 → R𝑚+𝑟+1 be the usual inclusion;
then

Σ𝑀𝜈 ( 𝑓 ) ≡̃𝑀1⊕𝜈 ( 𝑓 ) ≡̃𝑀𝜈 (𝐼◦ 𝑓 )

since 𝜈(𝑖 ◦ 𝑓 ) = 1 ⊕ 𝜈( 𝑓 ). Choose 𝑠 and 𝑠′ such that 𝑟 + 𝑠 = 𝑟 ′ + 𝑠′ > 𝑚 + 3. Then
there are well determined isotopy classes of homeomorphisms

Σ𝑠𝑀𝜈 ( 𝑓 ) ≡̃𝑀𝜈 (𝑖𝑠◦ 𝑓 ) ≡̃𝑀𝜈 (𝑖𝑠
′
◦ 𝑓 ′ ) ≡̃Σ𝑠

′
𝑀𝜈 ( 𝑓 ′ ) ,

where 𝑖𝑠 stands for the iterated inclusion

R𝑚+𝑟 𝑖−→ R𝑚+𝑟+1 𝑖−→ · · · 𝑖−→ R𝑚+𝑟+𝑠;

the second homeomorphism in the series is given by Proposition 1.39. Thus,
we have determined a unique isotopy class of homeomorphisms 𝑀𝑠⊕𝜈 ( 𝑓 ) →
𝑀𝑠

′⊕𝜈 ( 𝑓 ′ ) . □

Proposition 1.41. Each ℎ∗-orientation 𝑓 : 𝑀𝑚 → R𝑚+𝑟 and 𝑢 ∈ ℎ𝑟 (𝑀𝜈 ( 𝑓 ) , ∗)
determines for any di�erentiable imbedding 𝑓

′
: 𝑀𝑚 → R𝑚+𝑟 ′ a unique orienta-

tion class 𝑢
′ ∈ ℎ𝑟

′
(𝑀𝜈 ( 𝑓 ′ ) , ∗).

Proof. The unique isotopy class of homeomorphisms of Proposition 1.40 to-

gether with the 𝑠
′
-desuspension from ℎ𝑟+𝑠 (Σ𝑠

′
𝑀𝜈 ( 𝑓 ′ ) , ∗) of the 𝑠-suspension of

𝑢 into ℎ𝑟+𝑠 (Σ𝑠𝑀𝜈 ( 𝑓 ) , ∗) determines the orientation class 𝑢
′
. □

Proposition 1.42. If 𝑀 is ℎ∗-oriented by 𝑓 and 𝑢, then

1) 𝜑 𝑓 : ℎ
𝑗 (𝑀) → ℎ 𝑗+𝑟 (𝑀𝜈 ( 𝑓 ) , ∗) is an isomorphism de�ned by 𝜑 𝑓 (𝑧) = 𝜋∗𝜈 ( 𝑓 ) (𝑧)∪

𝑢,

2) the diagramme

ℎ 𝑗 (𝑀)
𝜑 𝑓 //

(−1) 𝑗 𝜑𝑖◦ 𝑓

��

ℎ 𝑗+𝑟 (𝑀𝜈 ( 𝑓 ) , ∗)

≡̃
��

ℎ 𝑗+𝑟+1 (Σ𝑀𝜈 ( 𝑓 ) , ∗)

≡̃
��

ℎ 𝑗+𝑟+1 (𝑀𝜈 (𝑖◦ 𝑓 ) , ∗)

is commutative, and

3) the isomorphism

𝜑 𝑓
′ : ℎ 𝑗 (𝑀) → ℎ 𝑗+𝑟 ′ (𝑀𝜈 ( 𝑓 ′ ) , ∗)

is well determined for any di�erentiable imbedding 𝑓
′
: 𝑀𝑚 → R𝑚+𝑟 ′ .
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Proof. (of 2)) By Proposition 1.26 we have the equalities

Σ𝜑 𝑓 (𝑧) = 𝛾 ∪ 𝜑 𝑓 (𝑧) = 𝛾 ∪ (𝜋∗ (𝑧) ∪ 𝑢) = (−1) 𝑗𝜋+ (𝑧) ∪ (𝛾 ∪ 𝑢)
= (−1) 𝑗𝜋∗ (𝑧) ∪ 𝑢′ = (−1) 𝑗𝜑𝑖◦ 𝑓 (𝑧).

□

We have seen in Proposition 1.41 that the possible ℎ-orientations of a mani-
fold are determined by those of any one of its normal bundles. In fact, they are
also determined by its tangent bundle 𝜏.

Proposition 1.43. For any di�erentiable imbedding 𝑓 : 𝑀𝑚 → R𝑚+𝑟 there is
a well de�ned 1 − 1 correspondence between the ℎ∗-orientations of 𝜈( 𝑓 ) and the
ℎ∗ -orientations of 𝜏(𝑀).

Proof. By Proposition 1.41 it su�ces to prove this for any 𝑓 and 𝑟; we choose
𝑟 > 𝑚+3. Then the triviality of the total space (𝑚+𝑟)-bundle over 𝑀 is assured
for all imbeddings. The conclusion then follows from Theorem 1.37. □

De�nition 1.44. Let 𝑀𝑚 and 𝑁𝑛 be di�erentiable manifolds and 𝑓 : 𝑀 → 𝑁

be a continuous map. For 𝑑 > 2𝑚 + 3 there is a di�erentiable imbedding 𝑖 :
𝑀 → D𝑑 into the interior of the 𝑑-dimensional disc such that the imbedding
𝑓̃ = 𝑓 × 𝑖 : 𝑀 → 𝑁 ×D is homotopic to a di�erentiable imbedding. If the normal
bundle 𝜈( 𝑓̃ ) is ℎ-orientable, then 𝑖 together with a choice of orientation class

𝑢 ∈ ℎ𝑛+𝑑−𝑚(𝑀𝜈 ( 𝑓̃ ) , ∗) is said to determine an ℎ∗-orientation of the map 𝑓 . The
usual considerations of isotopies of imbeddings show the determination of 𝑢 is
in fact independent of the imbedding and homotopy.

Proposition 1.45. Let 𝑀𝑚 and 𝑁𝑛 be di�erentiable manifolds and 𝑓 : 𝑀 →
𝑁 be a continuous map. The ℎ∗-orientations of 𝑓 are in a well de�ned 1 −
1 correspondence with the ℎ∗-orientations of the bundle 𝜈(𝑀) ⊕ 𝑓 ∗𝜏(𝑁). In
particular, if 𝑀 and 𝑁 are ℎ-oriented and 𝑓 is any continuous map, then 𝑓 has
a well de�ned ℎ∗-orientation.

Proof. Let 𝑗 be a di�erentiable imbedding of 𝑁 × D in a Euclidean space R𝑟 of
dimension 𝑟 > 2(𝑛 + 𝑑) + 3 and let 𝜋 : 𝑁 × D → 𝑁 denote the projection map.
We shall write a number of bundle equivalences; note that in each case they are
uniquely de�ned.

𝜏(𝑁 × D) ≃ 𝜋∗ (𝜏(𝑁)) ⊕ 𝑑.
𝑓̃ ∗ (𝑁 × D) ≃ 𝑓̃ ∗𝜋∗ (𝜏(𝑁)) ⊕ 𝑓̃ ∗ (𝑑) ≃ 𝑓 ∗ (𝜏(𝑁)) ⊕ 𝑑.

𝜈(𝑀) = 𝜈( 𝑗 ◦ 𝑓̃ ) ≃ 𝜈( 𝑓̃ ) ⊕ 𝑓̃ ∗𝜈( 𝑗)
𝜈(𝑀) ⊕ 𝑓 ∗𝜏(𝑁) ⊕ 𝑑 ≃ 𝜈( 𝑓̃ ) ⊕ 𝑓̃ ∗𝜈( 𝑗) ⊕ 𝑓̃ ∗ (𝜏(𝑁 × D))

≃ 𝜈( 𝑓̃ ) ⊕ 𝑓̃ ∗ (𝑟)
≃ 𝜈( 𝑓̃ ) ⊕ 𝑟.
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The �rst conclusion follows by suspension and desuspension. The second con-
clusion is then obvious by Proposition 1.43. □

De�nition 1.46. Suppose that 𝑓 : 𝑀𝑚 → 𝑁𝑛 is ℎ∗-oriented by 𝑓̃ : 𝑀𝑚 →
𝑁𝑛 × D𝑑 and 𝑢 ∈ ℎ𝑛+𝑑−𝑚(𝑀𝜈 ( 𝑓̃ ) , ∗). The collapsing map (�Thom construction�)

𝑁𝑑 = (𝑁 × D𝑑)/(𝑁 × S𝑑−1)
𝑓̂
−→ D(𝜈( 𝑓̃ ))/S(𝜈( 𝑓̃ )) = 𝑀𝜈 ( 𝑓̃ )

can be used to de�ne a homomorphism

ℎ𝑖 (𝑀)
𝜑

�
// ℎ𝑖+𝑛+𝑑−𝑚 (𝑀𝜈 ( 𝑓̃ ) , ∗)

𝑓̂ ∗

��
ℎ𝑖+𝑛+𝑑−𝑚 (𝑁𝑑 , ∗) (Σ

𝑑 )∗−1 // ℎ𝑖+𝑛−𝑚(𝑁);

this homomorphism is denoted

𝑓! : ℎ
𝑖 (𝑀) → ℎ𝑖+𝑛−𝑚(𝑁)

and is determined by 𝑓 and the ℎ∗-orientation of 𝑓 .

Theorem 1.47. If 𝑓 : 𝑀 → 𝑁 is an ℎ∗-oriented map, then for classes 𝑥 ∈ ℎ∗ (𝑀)
and 𝑦 ∈ ℎ∗ (𝑁),

𝑓! ( 𝑓 ∗ (𝑦) ∪ 𝑥) = 𝑦 ∪ 𝑓! (𝑥).

Proof. We �rst prove the identity

𝑓̂ ∗ (𝜋∗𝑀 𝑓 ∗ (𝑦) ∪ 𝜑𝑀 (𝑥)) = 𝜋∗𝑁 (𝑦) ∪ 𝑓̂ ∗𝜑𝑀 (𝑥).

Consider the diagramme:

ℎ∗ (𝑁) ⊗ ℎ∗ (D𝜈( 𝑓̃ ), S(𝜈 𝑓̃ ))

𝑓 ∗⊗1
��

𝜋∗
𝑀
⊗1

**
ℎ∗ (𝑀) ⊗ ℎ∗ (D𝜈, S𝜈)

𝜋∗
𝑀
⊗1
��

ℎ∗ (𝑁 × D) ⊗ ℎ∗ (D𝜈, S𝜈)
𝑖∗

tt
�
�� 1⊗ 𝑓̂ ∗

��

ℎ∗ (D𝜈, S𝜈)

⊂∗

��

ℎ∗ (𝑁 × D ⊗ ℎ∗ (𝑁 × D, 𝑁 × D \ D𝜈)oo

⊂∗
��

𝑖∗

**
ℎ∗ (D𝜈, S𝜈)

𝑓̂ ∗ **

ℎ∗ (𝑁 × D, 𝑁 × D \ D𝜈)oo

𝑖∗

��

ℎ∗ (𝑁 × D) ⊗ ℎ∗ (𝑁 × D, 𝑁 × S)

⊂∗tt
ℎ∗ (𝑁 × D, 𝑁 × 𝑆)
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The upper quadrilateral commutes because 𝑓 = 𝜋𝑁 𝑓̃ ; the remainder commutes
because all maps are excisions, inclusions, or products. Thus, the diagramme
commutes. An element 𝑦 ⊗ 𝜑𝑀𝑥 at the top is mapped into 𝑓̂ ∗ (𝜋∗

𝑀
𝑓 ∗𝑦 ∪ 𝜑𝑥)

following the arrows on the left and into 𝜋∗
𝑁
𝑦 ∪ 𝑓̂ ∗𝜑𝑁𝑥 following the arrows on

the right: thus these elements are equal as we asserted.
Since

𝑓̂ ∗ (𝜋∗𝑀 𝑓 ∗𝑦 ∪ 𝜑𝑀𝑥) = 𝑓̂ ∗ (𝜋∗𝑀 𝑓 ∗𝑦 ∪ 𝜋∗𝑀𝑥 ∪ 𝜑𝑀 (1))
= 𝑓̂ ∗ (𝜋∗𝑀 ( 𝑓 ∗𝑦 ∪ 𝑥) ∪ 𝜑𝑀 (1))
= 𝑓̂ ∗𝜑𝑀 ( 𝑓 ∗𝑦 ∪ 𝑥),

we have
𝑓̂ ∗𝜑𝑀 ( 𝑓 ∗𝑦 ∪ 𝑥) = 𝜋∗𝑁 𝑦 ∪ 𝑓̂ ∗𝜑𝑀 (𝑥).

Thus,

𝑓! ( 𝑓 ∗𝑦 ∪ 𝑥) = 𝜑−1𝑁 𝑓̂ ∗𝜑𝑀 ( 𝑓 ∗𝑦 ∪ 𝑥) = 𝜑−1𝑁 (𝜋∗𝑁 𝑦 ∪ 𝑓̂ ∗𝜑𝑀 (𝑥))
= 𝜑−1𝑁 (𝜋∗𝑁 𝑦 ∪ 𝜋∗𝑁 (𝜑∗𝑁 𝑓̂ ∗𝜑𝑀 (𝑥)) ∪ 𝜑𝑁 (1))
= 𝑦 ∪ 𝑓̂ ∗𝜑𝑀 (𝑥)
= 𝑦 ∪ 𝑓! (𝑥).

(𝜑𝑁 = Σ𝑑 since the bundle over 𝑁 is trivial.) □

Next, we establish a functorial property of the �umkehr homomorphism� 𝑓!.

Given 𝐾
𝑓
−→ 𝐿

𝑔
−→ 𝑀, we seek a theorem of the sort 𝑔! ◦ 𝑓! = (𝑔 ◦ 𝑓 )!. Since these

homomorphisms clearly depend on the ℎ∗-orientations used, in order for there
to be such equality the three orientations must be chosen in some compatible
way. If we assume 𝑓 and 𝑔 have speci�ed orientations, we can then orient 𝑔 ◦ 𝑓
as follows:

by Proposition 1.45, both

𝜈(𝐾) ⊕ 𝑓 ∗𝜏(𝐿), 𝜈(𝐿) ⊕ 𝑔∗𝜏(𝑀)

are ℎ∗-oriented; thus, by Proposition 1.35

𝜈(𝐾) ⊕ 𝑓 ∗𝜏(𝐿) ⊕ 𝑓 ∗ (𝜈(𝐿) ⊕ 𝑔∗𝜏(𝑀)) ≃ 𝜈(𝐾) ⊕ 𝑓 ∗ ◦ 𝑔∗𝜏(𝑀) ⊕ (trivial bundle)

is ℎ∗-oriented. This determines an orientation of 𝑔 ◦ 𝑓 .
Equivalently, given 𝑓̃ : 𝐾 → 𝐿 × D𝑑 and 𝑔̃ : 𝐿 → 𝑀 × D𝑑

′
, the composition

𝐾
𝑓̃
−→ 𝐿 × D𝑑 𝑔×1

−−−→ 𝑀 × D𝑑
′
× D𝑑 = 𝑀 × D𝑑+𝑑′

is �𝑔 ◦ 𝑓 . Then
𝜈(�𝑔 ◦ 𝑓 ) = 𝜈((𝑔̃ × 1) ◦ 𝑓̃ ) = 𝜈( 𝑓 ) ⊕ 𝑓̃ ∗ (𝜈(𝑔̃ × 1)).
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This de�nes the same ℎ∗-orientation for 𝑔 ◦ 𝑓 .
Note, in particular, that if 𝐾, 𝐿, and 𝑀 are ℎ∗-oriented, and 𝑓 , 𝑔, and

𝑔 ◦ 𝑓 are given the induced ℎ∗-orientations, then the two ℎ∗-orientations, i.e.,
the composition orientation and the induced orientation, of 𝑔 ◦ 𝑓 agree. This is
clear from the �rst de�nition of the composition orientation.

Theorem 1.48. If 𝑓 : 𝐾 → 𝐿 and 𝑔 : 𝐿𝑡𝑜𝑀 are ℎ∗-oriented maps, the com-
position 𝑔 ◦ 𝑓 : 𝑡𝑜𝑀 has an induced ℎ∗-orientation and with this orientation
𝑔! ◦ 𝑓! = (𝑔 ◦ 𝑓 )!. Further, if 𝐾, 𝐿, and 𝑀 are ℎ∗-oriented and 𝑓 , 𝑔, and 𝑔 ◦ 𝑓
are oriented by Proposition 1.45, then the orientation of 𝑔 ◦ 𝑓 induced by those
of 𝑓 and 𝑔 agrees with that given by Proposition 1.45.

Proof. By the comments preceding the statement of the theorem we need only
prove that 𝑔! ◦ 𝑓! = (𝑔 ◦ 𝑓 )!. To this end consider the diagramme below.

ℎ𝑖 (𝐾)

�
��

�

((

ℎ𝑖+ℓ−𝑘+𝑑 (𝐾𝜈 ( 𝑓̃ ) , ∗)
�
//

𝑓̂ ∗

��

ℎ𝑖+𝑚−𝑘+𝑑+𝑑
′
(𝐾𝜈 (𝑔 𝑓 ) , ∗)

𝐹∗

��

𝜈 (𝑔◦ 𝑓 ,∗)

))

ℎ𝑖+ℓ−𝑘+𝑑 (𝐿𝑑), ∗) � // ℎ𝑖+𝑚−𝑘+𝑑+𝑑
′
(𝐿𝑑⊕𝜈 (𝑔) , ∗) 𝐺

∗
// ℎ𝑖+𝑚−𝑘+𝑑+𝑑

′
(𝑀𝑑+𝑑′ , ∗)

ℎ𝑖+ℓ−𝑘 (𝐿)
�
//

� (Σ𝑑 )

OO

ℎ𝑖+𝑚−𝑘+𝑑
′
(𝐿𝜈 (𝑔) , ∗)

𝑔∗
//

� (Σ𝑑 )

OO

ℎ𝑖+𝑚−𝑘+𝑑
′
(𝑀𝑑

′
, ∗)

(Σ𝑑 )

OO

ℎ𝑖+𝑚−𝑘 (𝑀)
�
oo

�

gg

All isomorphisms are given by suspensions or Proposition 1.42. The two corner
triangles and the corner square commute by Theorem 1.37. The lower right

hand square commutes because 𝐺 = Σ𝑑 ◦ 𝑔̂. The map 𝐹 is Σ𝑑
′
◦ 𝑓̂ ; and so, the

upper left hand square commutes. The collapsing map 𝑀𝑑+𝑑′ → 𝐾𝜈 (𝑔◦ 𝑓 ) factors
through 𝐹𝑑⊕𝜈 (𝑔) , which implies the commutativity of the central triangle. The
left hand column de�nes 𝑓!, the bottom row 𝑔! and the diagonal (𝑔 ◦ 𝑓 )!; thus,
𝑔! ◦ 𝑓! = (𝑔 ◦ 𝑓 )!. □

1.4.2 Multiplicative Transformations; Riemann-Roch The-
orem

Let ℎ∗ be a multiplicative cohomology theory. For (𝑋, 𝐴) ∈ 𝒫2, ℎ∗∗ (𝑋, 𝐴) is the
set of formal Laurent series

+∞∑︁
𝑖=−∞

𝜆𝑖 , 𝜆𝑖 ∈ ℎ𝑖 (𝑋, 𝐴)., 𝜆𝑖 = 0 for all 𝑖 < some 𝑞.
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De�ne addition and multiplication in ℎ∗∗ (𝑋, 𝐴) as follows: if 𝜆 =
∑
𝜆𝑖 and

𝜇 =
∑
𝜇𝑖, then 𝜆 + 𝜇 =

∑(𝜆𝑖 + 𝜇𝑖) and 𝜆 ∪ 𝜇 is the power series product

(𝜆 ∪ 𝜇)𝑘 =
∑︁
𝑖+ 𝑗=𝑘

𝜆𝑖 ∪ 𝜇 𝑗 .

ℎ∗∗ (𝑋, 𝐴) is a (non-commutative) ring under these operations, and a map 𝑓 :
(𝑋, 𝐴) → (𝑌, 𝐵) induces a ring homomorphism 𝑓 ∗∗ : ℎ∗∗ (𝑌, 𝐵) → ℎ∗∗ (𝑋, 𝐴) by
taking 𝑓 ∗ on each coordinate. Similarly, we de�ne

𝛿∗∗ : ℎ∗∗ (𝐴) → ℎ∗∗ (𝑋, 𝐴)

coordinate-wise.
Suppose ℎ∗ and 𝑘∗ are multiplicative theorems. Then 𝑡 : ℎ∗∗ → 𝑘∗∗ is a

(normed) multiplicative transformation if

1. 𝑡 is a natural, additive transformation between the functors ℎ∗∗ and 𝑘∗∗ with
respect to maps 𝑓 ∗∗,

2. 𝑡 (𝜇 ∪ 𝜆) = 𝑡 (𝜇) ∪ 𝑡 (𝜆), and

3. If 1𝑛 ∈ ℎ∗∗ (S0, ∗) and 1𝑘 ∈ 𝑘∗∗ (S0, ∗) are the units in ℎ∗∗ and 𝑘∗∗, respectively,
and 𝛼 = Σ∗∗1ℎ ∈ ℎ∗∗ (S1, ∗) and 𝛽 = Σ∗∗1𝑘 ∈ 𝑘∗∗ (S1, ∗), then 𝑡 (𝛼) = 𝛽.

Proposition 1.49. For classes 𝑢1 ∈ ℎ∗∗ (𝑋1, 𝐴1) and 𝑢2 ∈ ℎ∗∗ (𝑋2, 𝐴2), the prod-
uct 𝑢1 × 𝑢2 is in ℎ∗∗ (𝑋1 × 𝑋2, 𝑋1 × 𝐴2 ∪ 𝐴1 × 𝑋2) and 𝑡 (𝑢1 × 𝑢2) = 𝑡𝑢1 × 𝑡𝑢2.

Proof. As in �1.3,

𝑢1 × 𝑢2 = 𝑝∗∗1 𝑢1 ∪ 𝑝∗∗2 𝑢2 and

𝑡 (𝑢1 × 𝑢2) = 𝑡 (𝑝∗∗1 𝑢1 ∪ 𝑝∗∗2 𝑢2) = 𝑡 (𝑝∗∗1 𝑢1) ∪ 𝑡 (𝑝∗∗2 𝑢2)
= 𝑝∗∗1 (𝑡𝑢1) ∪ 𝑝∗∗2 (𝑡𝑢2) = 𝑡𝑢1 × 𝑡𝑢2.

□

Proposition 1.50. If 𝑢1 ∈ ℎ∗∗ (𝑋, 𝐴1) and 𝑢2 ∈ ℎ∗∗ (𝑋, 𝐴2), then 𝑢1 ∪ 𝑢2 ∈
ℎ∗∗ (𝑋, 𝐴1 ∪ 𝐴2) and 𝑡 (𝑢1 ∪ 𝑢2) = 𝑡𝑢1 ∪ 𝑡𝑢2.

Proof. In the following diagramme,

ℎ∗∗ (𝑋, 𝐴1) ⊗ ℎ∗∗ (𝑋, 𝐴2)
⊗ //

𝑡⊗𝑡
��

ℎ∗∗ (𝑋 × 𝑋, 𝑋 × 𝐴2 ∪ 𝐴1 × 𝑋) Δ∗∗ //

𝑡

��

ℎ∗∗ (𝑋, 𝐴1 ∪ 𝐴2)

𝑡

��
𝑘∗∗ (𝑋, 𝐴1) ⊗ 𝑘∗∗ (𝑋, 𝐴2) ⊗

// 𝑘∗∗ (𝑋 × 𝑋, 𝑋 × 𝐴2 ∪ 𝐴1 × 𝑋)
Δ∗∗
// 𝑘∗∗ (𝑋, 𝐴1 ∪ 𝐴2)

the �rst square commutes by Proposition 1.49 and the second by naturality. □

Proposition 1.51. 𝑡 ◦ Σℎ = Σ𝑘 ◦ 𝑘; i.e., 𝑡 is stable,
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Proof. By Proposition 1.26, Σℎ (𝑢) = 𝛼 ⊗ 𝑢 and Σ𝑘 (𝑡𝑢) = 𝛽 ⊗ 𝑡𝑢. Thus, 𝑡Σℎ (𝑢) =
𝑡𝛼 ⊗ 𝑡𝑢 = 𝛽 ⊗ 𝑡𝑢 = Σ𝑘 (𝑡𝑢). □

Proposition 1.52. 𝑡 ◦ 𝛿∗∗
ℎ

= 𝛿∗∗
𝑘
◦ 𝑡.

Proof. The homomorphism 𝛿∗∗
𝑘
is the composition

ℎ∗∗ (𝐴,∅) Σℎ

�
// ℎ∗∗ (Σ𝐴+,+) 𝑝∗∗ // ℎ∗∗ (𝐶𝐴+ ∪ 𝑋+) � //

�

��

ℎ∗∗ (𝑋, 𝐴)

ℎ∗∗ (𝐶𝐴 ∪ 𝑋, ∗)
�

77

All these homomorphisms commute with 𝑡.
Suppose 𝛼 is a vector bundle over 𝑋 with orientations 𝑢 ∈ ℎ𝑛 (𝑋𝛼, ∗) and

𝑣 ∈ 𝑘𝑛 (𝑋𝛼, ∗); we can regard 𝑢 and 𝑣 as lying in ℎ∗∗ (𝑋𝛼, ∗) and 𝑘∗∗ (𝑋𝛼, ∗)
respectively. Then 𝑢 and 𝑣 induce isomorphisms

𝜑ℎ : ℎ∗∗ (𝑋) → ℎ∗∗ (𝑋𝛼, ∗) and 𝜑𝑘 : 𝑘∗∗ (𝑋) → 𝑘∗∗ (𝑋𝛼, ∗)

For 𝑥 ∈ ℎ∗∗ (𝑋), de�ne 𝑡 (𝛼, 𝑥) ≡ 𝜑−1
𝑘
𝑡𝜑ℎ (𝑥) ∈ 𝑘∗∗ (𝑋). □

Lemma 1.53. Let 𝛼 be an ℎ- and 𝑘-oriented vector bundle over 𝑋. Then for
𝑥 ∈ ℎ∗∗ (𝑋), 𝑡 (𝑥) ∪ 𝑡 (𝛼, 1) = 𝑡 (𝛼, 𝑥).

Proof.

𝜑𝑘 (𝑡 (𝑥) ∪ 𝑡 (𝛼, 1) = 𝜑𝑘 (𝑡 (𝑥) ∪ 𝜑−1𝑘 𝑡𝜑ℎ (1)
= 𝜋∗∗𝑘 (𝑡 (𝑥) ∪ 𝜑

−1
𝑘 𝑡𝜑ℎ (1)) ∪ 𝑣

= 𝜋∗∗𝑘 (𝑡 (𝑥)) ∪ (𝜋
∗∗
𝑘 𝜑
−1
𝑘 𝑡𝜑ℎ (1) ∪ 𝑣)

= 𝑡𝜋∗∗𝑘 (𝑥) ∪ 𝑡𝜑ℎ (1)
= 𝑡 (𝜋∗∗ℎ (𝑥) ∪ 𝜑ℎ (1))
= 𝑡𝜑𝑥 .

Thus, 𝑡 (𝑥) ∪ 𝑡 (𝛼, 1) = 𝜑−1
𝑘
𝑡𝜑ℎ (𝑥) = 𝑡 (𝛼, 𝑥). □

Theorem 1.54 (A generalised Riemann-Roch Theorem). If 𝑓 : 𝑋 → 𝑌 is a ℎ∗-
oriented map of compact, closed manifolds and 𝑡 : ℎ∗∗ → 𝑘∗∗ is a multiplicative
transformation of cohomology theories, then for 𝑥 ∈ ℎ∗∗ (𝑋),

𝑡 𝑓 ℎ! (𝑥) = 𝑓 𝑘! (𝑡 (𝑥) ∪ 𝑡 (𝜈( 𝑓̃ ), 1)).

Proof. We note �rst that an ℎ∗-orientation 𝑢 ∈ ℎ𝑛 (𝑋𝛼, ∗) of a vector bundle
determines a 𝑘∗-orientation (𝑡𝑢)𝑛 ∈ 𝑘𝑛 (𝑋𝛼, ∗) since

𝑖∗𝑢 = 𝛼𝑛 ∈ ℎ𝑛 (S𝑛, ∗) and 𝑡𝛼𝑛 = 𝛽𝑛 ∈ 𝑘𝑛 (S𝑛, ∗);

thus, 𝛽𝑛 = 𝑖∗ (𝑡𝑢)𝑛 and 𝛼 is 𝑘∗-oriented. Hence we need not assume additionally
that 𝑓 : 𝑋 → 𝑌 is 𝑘∗-orientable; however, in the statement and proof of this
theorem the speci�c 𝑘∗-orientation of 𝑓 is irrelevant.
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The right-hand side of the asserted equation is

(Σ𝑑
𝑘 )
−1 ◦ 𝑓̂ ∗∗𝑘 𝜑𝑘 (𝑡 (𝑥) ∪ 𝑡 (𝜈( 𝑓̃ ), 1))

which equals
(Σ𝑑

𝑘 )
−1 ◦ 𝑓̂ ∗∗𝑘 𝑡𝜑𝑘 (𝑥)

by the Lemma. By the naturality of 𝑡 this equals

𝑡 ((Σ𝑑
𝑘 )
−1 ◦ 𝑓̂ ∗∗𝑘 𝜑ℎ (𝑥)) = 𝑡 𝑓

ℎ
! (𝑥).

□

Theorem 1.55. Let 𝑓 : 𝑋 → 𝑌 be a continuous map of ℎ∗- and 𝑘∗-oriented
manifolds. Let 𝑡 (𝑋) ≡ 𝑡 (𝜈(𝑋), 1) and 𝑡 (𝑌 ) ≡ 𝑡 (𝜈(𝑌 ), 1). Then for 𝑥 ∈ ℎ∗∗ (𝑋),

𝑡 𝑓 ℎ! (𝑥) ∪ 𝑡 (𝑌 ) = 𝑓 𝑘! (𝑡 (𝑥) ∪ 𝑡 (𝑋)).

Proof.

𝑓 𝑘! (𝑡 (𝑥) ∪ 𝑡 (𝑋)) = 𝜑
−1
𝑘 𝑓̂ ∗∗𝑘 𝜑𝑘 (𝑡 (𝑥) ∪ 𝑡 (𝑋))

= 𝜑−1𝑘 𝑓̂ ∗∗𝑘 𝑡𝜑ℎ (𝑥)
= 𝜑−1𝑘 𝑡 𝑓̂ ∗∗ℎ 𝜑ℎ (𝑥)
= 𝜑−1𝑘 [𝑡𝜑ℎ (𝜑

−1
ℎ 𝑓̂ ∗∗ℎ 𝜑ℎ (𝑥))]

= 𝜑−1𝑘 [𝜑𝑘 (𝑡 𝑓
ℎ
! (𝑥) ∪ 𝑡 (𝑌 ))]

= 𝑡 𝑓 ℎ! (𝑥) ∪ 𝑡 (𝑌 ).

□

1.4.3 Wu Formulae

As applications of the above theorems we present here a proof of the Wu formu-
lae; in a later section we will derive the Atiyah-Hirzebruch di�erential Riemann-
Roch Theorem.

Let ℎ∗∗ = 𝑘∗∗ = 𝐻∗∗ (−;Z/𝑝Z) and let 𝑡 = 𝒫 =
∑
𝒫

𝑖, the sum of the Steenrod
reduced power operations. For 𝑝 = 2, 𝑡 = Sq. The Cartan formula implies 𝑡 is
a multiplicative transformation. For a vector bundle 𝛼 over 𝑋, Sq(𝛼, 1) is the
total Stiefel-Whitney class 𝑊 (𝛼) of the bundle 𝛼.

Lemma 1.56. Every vector bundle is 𝐻∗ (−;Z/2Z)-orientable; a vector bundle
𝛼 is 𝐻∗ (−;Z)- or 𝐻∗ (−;Z/𝑝Z)-orientable if and only if the �rst Stiefel-Whitney
class 𝑊1 (𝛼) = 0.

Proof. If 𝛼 is an 𝑛-plane bundle, consider the 𝑛-sphere bundle S(𝛼 ⊕ 1) 𝜋−→ 𝑋

and the Gysin sequence with Z/2Z-coe�cients:

· · · → 𝐻𝑟 (𝑋) 𝜋∗−−→ 𝐻𝑟 (S(𝛼 ⊕ 1)) 𝜆∗−−→ 𝐻𝑟−𝑛 (𝑋) → 𝐻𝑟+1 (𝑋) → .
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S(𝛼⊕1) has a cross-section 𝑖 : 𝑋 → S(𝛼⊕1); and so, the Gysin sequence reduces
to

0→ 𝐻𝑟 (𝑋) 𝜋∗−−→ 𝐻𝑟 (S(𝛼 ⊕ 1)) 𝜆∗−−→ 𝐻𝑟−𝑛 (𝑋) → 0.

There is a class 𝑣 ∈ 𝐻𝑛 (S(𝛼⊕1)) such that 𝜆∗𝑣 = 1 ∈ 𝐻0 (𝑋). Let 𝑤 = 𝑣−𝜋∗𝑖∗𝑣.
Then 𝜆∗𝑤 = 1 and 𝑖∗𝑤 = 0.

The sequence 𝑋
𝑖−→ S(𝛼 ⊕ 1) 𝑐−→ 𝑋 is coexact and so

0 // 𝐻∗ (𝑋𝛼, ∗) 𝑐∗ // 𝐻∗ (S(𝛼 ⊕ 1))
𝑖∗ //

𝐻∗ (𝑋) //
𝜋∗
oo 0.

is exact. There is a unique 𝑢𝑛 ∈ 𝐻𝑛 (𝑋𝛼, ∗) such that 𝑐∗𝑢𝑛 = 𝑤.

Since the diagramme

S𝑛 //

��

S(𝛼 ⊕ 1))

��
pt // 𝑋

is commutative, so also is

𝐻𝑛 (𝑋𝛼, ∗)

��
𝐻𝑛 (S(𝛼 ⊕ 1)) 𝜆∗ //

��

𝐻0 (𝑋)

��
𝐻𝑛 (S𝑛) // 𝐻0 (𝑋),

and it follows that 𝑢𝑛 restricts to the generator of 𝐻𝑛 (S𝑛, ∗).
To prove the second part of the lemma, note that 𝑤1 (𝛼) = 𝜑−1𝛽𝑢𝑛, where 𝛽

is the Bockstein homomorphism associated with

0→ Z/2Z→ Z/4Z→ Z/2Z→ 0

Thus,

𝑤1 (𝛼) = 0⇔ 𝑢𝑛 is the reduction of a mod 4 class

⇔ 𝛼 is 𝐻∗ (−;Z/4Z) − orientable.

This is equivalent to 𝜋1 (𝑋.𝑥0) operating trivially on 𝐻∗ (S𝑛;Z) which then by the
Gysin sequence implies the 𝐻∗ (−;Z)- and 𝐻∗ (−;Z/𝑝Z)-orientability of 𝛼. The
converse is clear. □

The Wu formula asserts there is a class 𝑉 ∈ 𝐻∗∗ (𝑋) such that Sq𝑉 = 𝑊 (𝑋) (=
Sq(𝜏(𝑋), 1)) and [𝛼 ∪𝑉] (𝑋) = [Sq𝛼] (𝑋) for all 𝛼 ∈ 𝐻∗ (𝑋). Let Sq−1 = 1

1+(Sq−1 )
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as formal power series; then Sq Sq−1 = Sq−1 Sq = 1 and Sq is multiplicative, Let
𝑓 : 𝑋𝑡𝑜 pt. By Theorem 1.55,

𝑓! : 𝐻
∗ (Sq−1(𝑥) ∪ Sq−1(𝜈(𝑋), 1) = Sq− 1( 𝑓! (𝑥))

where 𝑓! : 𝐻
∗ (𝑋) → 𝐻∗ (pt) is given by 𝑓! (𝑥) = [𝑥] (𝑋), the value of the cohomol-

ogy class 𝑥 on the top homology class of the manifold 𝑋 (with Z/2Z coe�cients).
For 𝑥 = Sq𝛼, we then have

[𝛼 ∪ Sq−1(𝜈(𝑋), 1)] (𝑋) = [Sq𝛼] (𝑋).

We claim that Sq(Sq−1(𝜈(𝑋), 1)) = Sq(𝜏(𝑋), 1) = 𝑊 (𝑋). Then𝑉 = Sq1 (𝜈(𝑋), 1)
is the Wu class and satis�es the formulae above.

Since Sq(𝜏, 1) ∪ Sq(𝜈, 𝑣) = Sq(𝜏 ⊕ 𝜈, 1) = 1 [Appendix B], to verify the claim
we need only prove that

Sq(Sq−1(𝜈(𝑋), 1)) ∪ Sq(𝜈, 1) = 1.

To this end we compute

𝜑(Sq(Sq−1(𝜈(𝑋), 1)) ∪ Sq(𝜈, 1)) = 𝜋∗ Sq 𝜑−1 Sq−1 𝜑(1) ∪ 𝜋∗𝜑−1 Sq 𝜑(1) ∪ (1)
= 𝜋∗ Sq 𝜑−1 Sq−1 𝜑(1) ∪ Sq 𝜑(1)
= Sq(𝜑𝜑−1 Sq−1 𝜑(1))
= 𝜑(1).

But 𝜑 is an isomorphism.





Chapter 2

Complex Vector Bundles and

the Bott Periodicity Theorem

2.1 Bott Periodicity Theorem

2.1.1 Homology of the Unitary Groups

For the complex 𝑛-dimensional space C𝑛 equipped with a positive de�nite Her-
mitian inner product, the unitary group 𝑈 (𝑛) is the group of linear transforma-
tions preserving this inner product. Consider C𝑛−1 as a linear subspace of C𝑛

and choose a vector 𝑒1 ∈ C𝑛 such that (𝑒1, 𝑒1) = 1 and 𝑒1⊥C𝑛−1 ((𝑒1, 𝑥) = 0 for
all 𝑥 ∈ C𝑛−1). This de�nes an inclusion 𝑈 (𝑛 − 1) → 𝑈 (𝑛) whereby the elements
of 𝑈 (𝑛 − 1) are those transformations of 𝑈 (𝑛) which leave 𝑒1 �xed.

The group 𝑈 (𝑛) acts e�ectively on the unit sphere S2𝑛−1 of C𝑛 and 𝑈 (𝑛−1) is
the subgroup of𝑈 (𝑛) whose elements leave 𝑒1 ∈ S2𝑛−1 �xed. Thus, 𝑈 (𝑛)/𝑈 (𝑛−1)
is homeomorphic to S2𝑛−1 and the �bration 𝑈 (𝑛 − 1) 𝑖−→ 𝑈 (𝑛) 𝜋−→ S2𝑛−1 is a
principal 𝑈 (𝑛 − 1)-�bration.

2.1.2 The Universal Base Spaces 𝐵𝑈 (𝑛)
2.1.3 Bott Periodicity Theorem for 𝐵𝑈

2.2 Complex Vector Bundles

2.2.1 Characteristic Classes

2.2.2 Complex Vector Bundles over Spheres
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Chapter 3

The Cohomology Theory 𝐾∗C

3.1 Basic Properties of 𝐾∗C

3.1.1 De�nition of 𝐾∗C

The groups 𝐾0
C are a special case of the universal enveloping abelian group of a

monoid. Let 𝐺 be a set of objects with an associative operation ⊕ and a unit
0. Let 𝐴 be the free abelian group on the objects of 𝐺 modulo the subgroup
generated by elements of the form

[𝛼 ⊕ 𝛽] − [𝛼] − [𝛽]

Then 𝐴 is an abelian group and the the transformation

𝑒 : 𝐺 → 𝐴

de�ned by 𝑒(𝑔) = [𝑔] ∈ 𝐴, preserves sums and unit element.

3.1.2 The Multiplicative Transformation 𝑐ℎ : 𝐾∗C → 𝐻∗∗(−;Q)
3.1.3 Cohomology Operations in 𝐾∗C

3.1.4 𝐾∗C-orientation of Complex Vector Bundles
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Chapter 4

Some Geometric Applications

4.1 Vector Bundles over Cell Complexes S𝑛 ∪ 𝑒𝑚

4.1.1 Two technical lemmas

4.1.2 Divisors of Orders of Stable Homotopy Classes, 𝐽-
homomorphisms

4.1.3 Maps of Hopf Invariant One

4.2 Toda Brackets
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Appendix A

A.1 The Cohomology Theory 𝐾∗R

43





Appendix B

B.1 A Multiplication Formula

This appendix presents a proof of the following technical proposition which was
used a number of times throughout the text:
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Appendix C

C.1 Fiber Homotopy Equivalence of Bundles, The

Groups 𝐽 (𝑋)
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Appendix D

Historical Comments

The general idea of obtaining cohomology theories by maps into spectra can be
traced to Barratt [12], in that the track groups of maps from a co�bration yield
an exact sequence. This was made explicit by Puppe [28]. The converse that
cohomology theories are representable in this way was established by Brown
[18].

The material in Chapter 1 on reduced and non-reduced cohomology theories
is described in the fashion of Whitehead [30], while the spectral sequence of
a �bration is presented along lines suggested by Dold [19]. The proof given
of the Dold-Thom-Gysin Theorem also follows Dold (ibid). The approach to
orientability of vector bundles, multiplicative transformations and the Riemann-
Roch Theorem for di�erentiable manifolds is essentially folk-lore; it was �rst
presented in [20] but its ideas lie in the work of Atiyah and Hirzebruch as
expounded, for instance, by Hirzebruch in [24]. The proof given here of the Wu
formulas is essentially that of Atiyah and Hirzebruch in [10].

Through the use of Spanier-Whitehead duality [29] one can view the coho-
mology of the Thom space of a normal bundle as being the homology of the
manifold under consideration. An alternate procedure is developed by White-
head in [30] Various of the constructions of Chapter 1 then appear as versions
of Poincare duality, umkehr homomorphism, etc.

The development of the topology of the Unitary Group and associated spaces
presented in Chapter 2 follows that given by the authour in a course at the
University of Chicago in the Winter of 1960. A similar but substantially more
complicated approach works for the Orthogonal and Symplectic Groups [22].
The explicit description of the maps generating 𝜋2𝑛+1 (SU) given in Theorem 17
is due to Toda.

Atiyah is credited with initiating study of the theory 𝑋∗C, as a cohomology
theory. The material of Chapter 3, Section A, parts 1 and 2 is taken from a
paper by Atiyah and Hirzebruch [10].

The technical lemmas of Section A of Chapter 4 are found in Atiyah and
Hirzebruch [10] and Hirzebruch [23]. The material of Sections 2 and 3 of Chapter
4 follows the authour's exposition in [21], although it must be noted that Adams
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found ccitee03 a proof similar in spirit to that given here of Theorem 23 some
time earlier than the author; its di�erences are that he uses results from [1]
while the proof given here uses results on complex cobordism [25].

The Appendix A on the 𝐾∗-theory essentially follows Atiyah and Hirzebruch
as in [24]. The proposition of Appendix B is very basic, leading in various
roles to the theorems on Stiefel-Whitney and Chern classes of sums of vector
bundles and to the theory of multiplicative sequences. The Appendix C is very
incomplete and is a presentation of material presented by Adams in various
lectures.

Spring 1963.
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